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Commodity multi-cores are still uncommon in real-time systems, as resource sharing complicates traditional timing analysis. The
Predictable Execution Model (PREM) tackles this issue in software, through scheduling and code refactoring. State-of-the-art PREM
compilers analyze tasks one at a time, maximizing task-level performance metrics, and are oblivious to system-level scheduling
effects (e.g. memory serialization when tasks are co-scheduled). We propose a solution that allows PREM code generation and system
scheduling to interact, based on a genetic algorithm aimed at maximizing overall system performance. Experiments on commodity
hardware show that the performance increase can be as high as 31% compared to standard PREM code generation, without negatively
impacting the predictability guarantees.
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1 INTRODUCTION

Over the past decade, multi-core systems have taken over every market segment, but their adoption is still slow in the
context of real-time systems because contention on shared resources leads to unpredictable access times. The most
severely contended resource is the global memory [12], e.g., the DRAM, from which all cores load instructions and
data. To guarantee that timing constraints are never violated, the worst case execution time (WCET) of each task is
analyzed. On traditional single-core systems, such analysis is well understood and mature tools exist [16]. However, for
WCETs valid under any multi-core execution the maximum interference would have to be assumed for every access
[17], leading to very pessimistic bounds. These may even nullify the benefits of multi-core execution in the first place
as memory latency increases linearly with the number of cores [3].

The Predictable Execution Model (PREM) [11] has been proposed to solve the contention problem by enforcing
mutual exclusive access to the shared memory system. To avoid stalling other tasks while memory is occupied, the tasks
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are transformed to utilize their allotted memory time to copy data from global memory to core private local memory.
As local memory is not subject to interference, computation can be performed without contention. To achieve this,
PREM tasks are divided into intervals of prefetch (P), compute (C), and writeback (WB) phases. The C phase performs
the local computation, the P phase brings data to the local memory, and WB moves data back to global memory. Only
the P and WB phases access memory, and are referred to as memory phases. By scheduling the system such that only a
single task is executing a memory phase at a time, interference can be effectively prevented, and the WCET can be
calculated in isolation. When the system is composed of several tasks, the timing properties of individual tasks remain
the same, but time intervals spent waiting for memory access need to be taken into account. Thus, PREM transforms
the interference problem into a statically solvable scheduling problem [1, 9, 18]. Besides scheduling, another important
aspect is the proposal of PREM compilers [9, 14]. These automate the transformation of programs into sequences of P,
C, and WB phases, a tedious and error-prone process.

However, PREM compilers and schedulers are individually unable to construct a well-optimized PREM system. The
compiler has a local view of each task, which it can optimize for predictability and performance, but it cannot optimize
for the interactions with other tasks deployed on the system. This is done by the scheduler, which has full visibility of
all tasks in the system. However, even a state-of-the-art optimal scheduler may produce sub-optimal schedules, as the
scheduler cannot improve the schedule beyond the degrees of freedom given by the intervals created by the compiler.

Furthermore, the objectives of the scheduler and compiler optimizations are often in direct conflict: Each individual
task will perform better if larger intervals are selected, as this reduces the cost of scheduling at the PREM phase
boundaries. The scheduler, in contrast, has the most amount of freedom if PREM intervals are selected as small as
possible, as blocking memory phases can then be interleaved at finer granularity. Thus, for each PREM system there
exists an optimum where for per-task and per-system objectives are combined, but it can not be found by the compiler
or scheduler in isolation.

Soliman et al. [15] address this concern by integrating the scheduler into the compiler, but this solution is still subject
to the local view of the compiler: All tasks need to be compiled together in a single compilation unit to enable scheduling,
breaking common development flows such as partial compilation into object files. To fully address this issue, a new
methodology that preserves the strengths of both the compiler’s per-task and scheduler’s per-system optimization,
while finding the sweet spot is required. This work addresses this question, making the following contributions:

• A novel methodology for optimizing PREM systems.
• An implementation of the new tools needed to realize the methodology in practice.
• Results showing that this methodology can reduce the response time of PREM systems by as much as 31%.

The paper is structured as follows: Section 2 provides the background on PREM compilation and Section 3 defines the
problem this paper addresses. Following this, Section 4 provides the proposed solution, which is evaluated in Section 5.
Section 6 presents related work and Section 7 concludes.

2 BACKGROUND

This section describes the underlying architectural problem from a real-time perspective, and how PREM solves it.
Following this, we provide an overview of the features of PREM compilers and PREM schedulers relevant to this work.
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Fig. 1. An overview of the architectural template.

2.1 Architectural Template and Interference

As shown in Figure 1, our work considers a multi-core system consisting of N cores {c0, c1, · · · , cN−1}, each with their
own private L1 cache, which we refer to as the local memory L. Additionally the system may share zero or more layers
of shared caches, illustrated in the figure with a shared L2 cache. The last level cache (LLC) is connected via an on-chip
interconnect to an off-chip memory, e.g., DRAM.

With the exception of the private L1 memory, the entire memory system is shared in multi-core systems. This
resource sharing means that the latency to access memory from one core depends on the memory activity of other cores.
While this is not a problem in general purpose systems, it makes the deployment of real-time systems problematic. The
worst case execution time (WCET) is required for schedulability analysis and provably safe operation, but variance in
the memory access latency makes the analytical computation of the WCET difficult, if not infeasible.

2.2 The Predictable Execution Model

PREM solves the contention problem by only permitting a single core c at a time to access the global DRAM. This
mutually exclusive access to the shared memory ensures that memory latency can be modeled in single-core equivalent

terms, i.e., as if the memory system was not shared with other cores [11], and the WCET can be calculated in isolation.
Thus, only the blocking time while waiting for the memory mutex needs to be taken into account, transforming the
interference problem in multi-core systems into a scheduling problem which we will discuss in Section 2.4.

The system consists of a number of tasks τ ∈ T , where T is the set of all tasks to be executed on the system. Each
task τ is mapped to a core c , and for the purposes of this paper we assume that there is no migration at runtime. To
achieve mutually exclusive memory accesses the Predictable Execution Model divides each task τ ∈ T into a sequence
of intervals Iτ = {i0, i1, · · · , in }. Each interval i internally consists of independently schedulable prefetch (P), compute
(C) and writeback (WB) phases, where the P and WB phases are referred to as the memory (M) phases. The memory
phases are responsible for moving the data from the shared memory to a core-private memory L which is not subject to
interference, upon which the C phase computes. Importantly, this means that only the memory phases P and WB need
to be scheduled with mutually exclusive memory access. To ensure that all data can be stored locally, the size of the
data accessed within an interval size(i) must be dimensioned such that it is smaller than the size of the local memory
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void main() {

  int A = 0;

  for (int i = 0; i < 100; i++) {

    A = A + B[i]

  }

  return A;

}

main

int A = 0 for ( ... ) return A

A = A + B[i]

e0 e1

Fig. 2. An example program and the resulting region tree, with control flow edges e overlaid.

size(L), as shown in Equation 1.
∀τ ∈ T : ∀i ∈ Iτ : size(i) < size(L) (1)

There exist multiple valid partitionings of a task τ into intervals Iτ , the selection of which is the task of the compiler.

2.3 PREM Compilers

Due to the complexity of making programs PREM-compliant, compiler support has been proposed [9, 14] to automatically
identify code segments that fulfil the requirements of Equation 1, and transform these segments into PREM intervals

of prefetch, compute, and writeback phases. The following section outlines three of the major components of PREM
compilers [9, 14] that impact the final PREM system.

All recently proposed PREM compilers [4, 9, 14] use Single Entry Single Exit (SESE) regions as the atomic unit from
which PREM intervals are created. SESE regions are code regions represented by every part of the Control Flow Graph
(CFG) that only has a single incoming edge and a single outgoing edge. This maps well to PREM intervals, as data can
be loaded on the incoming edge and stored on the outgoing edge. Regions are hierarchical, and are represented as a tree
ϒτ , as shown in Figure 2: Each SESE region may contain SESE regions within them, but not across the boundaries of the
parent region. The solid arrows represent the parent-child relationship of the tree property. For non-loop regions the
union of all children make up the same code as the parent region. For loop-regions the parent region can be unrolled
into a sequence of their child regions. In addition to the tree property, the control flow graph of the program is overlayed
on the table with dotted arrows, representing the SESE edges e between the regions in the program. For a detailed
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description of the region tree we direct the interested reader to [14], that also describe how to use this interprocedurally.
We refer to the set of all regions in task τ as ϒτ .

For the compiler to create intervals that respect the requirement of Equation 1, the memory footprint (i.e., size in
bytes of data accessed) of all regions must be calculated. This can be calculated as outlined in [9, 14]. For the remainder
of the discussion we assume this methodology is used.

With each region r ∈ Rτ annotated with its memory footprint, the compiler can assign each region into a PREM
interval I , after which the code is transformed into PREM memory and compute phases based on these intervals.

As outlined previously, there are two fundamental types of regions: sequential regions and loops [9]. The selection of
sequential regions rseq into an interval I is a binary decision: Either rseq is in an interval i ∈ I or it is not. If a sequential
region is too large to fit into a PREM interval, its children in the region tree can be selected, or if it is a leaf node, it can
be split. Loops smaller than the local memory can be treated in the same way. The only feasible approach for loops too
large to fit into a PREM interval is to tile them. Tiling is typically used to increase cache locality and involves dividing a
set of large loops into a larger set of smaller loops, thus reducing the memory footprint of each inner loop. Loops are
represented in the region tree as loop regions rloop , and their tiling can be expressed as a tuple (rloop ,д), where д is the
number of iterations in the new nested loop, referred to as the tiling granularity. We return to this in Section 4.2.

2.4 PREM Schedulers

The objective of PREM scheduling is to ensure that memory interference is effectively avoided, while still ensuring
that all tasks τ meet their deadlines Dτ . Memory interference is avoided by finding a system schedule that maps each
interval i to a core c , and globally scheduling the system such that only a single core c is executing the memory phase
of an interval i at a time. Scheduling techniques to achieve this are readily available in the literature [1, 9, 18], and as all
share the fundamental requirement that only one task is executing its memory phase at once, the total response time
Rτ of a task τ can be generically modeled as shown in Equation 2.

Rτ = Bcore + Bmemory + S(|Iτ |) + eτ (2)

Here, Bcore is the blocking time due to core-local scheduling, e.g., the increase in the response time due to τ being
preempted by another task executing on the same core. The Bmemory term is the blocking time due to a τ having to
wait for a task on another core using the memory, due to the mutually exclusive policy at the heart of PREM. The S term
is the static cost of performing the context switch for performing the online scheduling decision. This cost may vary
from small (e.g., cost of a function call to determine the next interval in a pre-computed static schedule) to very large
(e.g., a syscall and online decision from a dynamic scheduler). This cost grows linearly with the number of intervals |Iτ |
in τ that require handling during execution [5]. The specific scheduling policy (e.g., fixed priority, earliest deadline first,
etc.) determines when a task is blocked. Lastly, the eτ term is the accumulated worst case execution time of all intervals
in task τ , as shown in Equation 3.

eτ =
∑
i ∈Iτ

len(i) (3)

Here, len(i) is the worst case execution time (WCET) of interval i ∈ Iτ . For the remainder of this discussion, we will
assume that len(i) is provided by an external tool which we will refer to as theWCET analyzer, of which many have been
proposed in the literature [16]. As PREM scheduling implies single-core equivalence for the WCET analysis, classical
single core analysis techniques can be used. As is customary, we say that a taskset T is schedulable if every task in the
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P C WB

P C WB

P PC CWB WB

P C WB A

τ0

τ0

τ1

τ1

B

t0 t1 t2 t3 t4
Fig. 3. Illustrative example of how PREM interval sizing of individual tasks affects the overall system performance.

taskset responds before its deadline, as shown in Equation 4.

∀τ ∈ T : Rτ < Dτ (4)

For the remainder of the discussion, we will only consider a single task τ executing per core c , and as such the term
Bcore will always be zero, assuming |T | ≤ N . However, the fundamental insights of this paper generalize to the case
where multiple tasks are deployed on each core, although the relative impact of Bcore on the remaining terms may lead
to a different optimal configuration. Following this, we revise Equation 2 as shown in Equation 5.

Rτ = Bmemory + S(|Iτ |) + eτ (5)

We use the notation Rτ0,τ1, · · · to refer to the total response time of the system, defined as the maximum response time of
any of the tasks in the systemmax(Rτ0 ,Rτ1 , . . .).

3 PROBLEM DESCRIPTION

As shown in Equation 5, there are three terms that should be minimized to reduce the response time Rτ , thus both
improving the performance of the system, and increasing the likelihood of making the taskset T schedulable. The
accumulated interval WCET eτ is ideally constant1, but the remaining terms can be tuned: To minimize Bmemory , the
interval lengths len(i), i ∈ Iτ̄ (where τ̄ means tasks other than τ ) should be minimized to reduce blocking time. On
the other hand, to minimize S(|Iτ |) the interval lengths len(i), i ∈ Iτ should be maximized to reduce the number of
scheduling points and their overheads. We make two key observations:
Observation 1: Both options to alter the intervals i ∈ Iτ are only available during compilation. The first is to alter
size(i), as a smaller interval size (in bytes) will lead to less computation in the interval i , and a shorter execution time
len(i). The other option is to completely alter the scheduling conditions by selecting a different set of intervals I ′

altogether.
Observation 2: The impact of both options on Rτ is only known after scheduling, and cannot be used by the compiler
to select a different I ′ or to alter size(i), i ∈ I . Furthermore, the compiler can only infer information about the task τ

1In practice, intervals that contain loop tiles may incur non-negligible tiling overhead for small loop sizes, but at that point S ( |Iτ |) will dominate.
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under compilation, limiting optimizations to criteria available at the granularity at which compilers analyze programs
(i.e., translation unit), effectively excluding optimizations to τ̄ .

In light of these limitations, previously proposed PREM compilers [9, 14] have fallen back to select PREM intervals
that are as large as possible, while still fitting into the local memory. This reduces the total amount of online scheduling
decisions at runtime, and therefore S(|Iτ |), at the cost of increasing Bmemory for other tasks. Thus, the current state of
the art compilers may, by reducing one of the terms, inadvertently increasing the other, overall worsening Rτ .

Consider the example in Figure 3. In the top scenario, tasks τ0 and τ1 have been compiled with the larger-is-better
interval sizing heuristic. While this is best for the performance of each individual task, the co-scheduled system suffers
from serialization effects, as the memory phases (P, WB) of τ1 cannot be co-scheduled with those of τ0. In this example,
both tasks are released at time t0 and the final phase of τ1 finishes at t4, which is the response time R {τ0,τ1 } of the
taskset {τ0,τ1}. In the bottom scenario, τ0 has been divided into intervals of half the size. Due to scheduling overhead,
the task now takes longer to execute, finishing at t3 instead of t2, marked A○. However, due to the finer scheduling
granularity, τ1 can now be scheduled earlier, completing already at t1. Thus, while we increased the execution time of
τ0, the response time of the taskset is reduced from t4 to t3, marked B○.

Clearly, there exists a trade-off between the best performance for the individual tasks and the best performance for
the overall system. This could potentially be addressed by in-compiler techniques (e.g., link-time optimization), but no
approach exists that allows the entire set of schedulable tasks to be put under the control of the compiler. Instead, we
propose a novel methodology for PREM system deployment.

4 SYNERGISTIC OPTIMIZATION METHODOLOGY

For the first time, our methodology enables PREM tools, i.e., compiler, WCET analyzer, and scheduler to exchange
information, as shown in Figure 4, to globally optimize the system. It can be fully automatized, driven by the novel
Optimizer component. By using this methodology, the source code and real-time constraints are automatically trans-
formed, analyzed, and scheduled to produce an optimized PREM system, outputting executable binaries and a static
system schedule.

The first steps of the methodology are directly derived from the traditional PREM system deployment approach:
The first step of the proposed method is the compilation of the source code for each PREM task τ ∈ T with the PREM
compiler to produce the PREM intervals I . As a starting point, the compiler relies on a simple heuristic that maximizes
use of available local memory (to minimize synchronization overheads, S(|Iτ |)). The compiled program is analyzed for
WCET, i.e., upper bounds of the execution time of each PREM intervals len(i) are derived. This can be done through
measurements or using one of the static analysis methods available in the literature [16]. This provides the input to the
PREM scheduler [1, 9, 18] together with the real-time constraints, e.g., the deadline Dτ . Additionally, as proposed by
Matejka et al. [9], the scheduler takes a directed acyclic graph (DAG) of the ordering of intervals as input, which is
produced by the PREM compiler. The DAG specifies the dependencies between the PREM intervals to preserve program
order in the constructed schedule. At the top level, the SESE edges e (see Section 2.3) that connect the PREM intervals
are transferred to the DAG, and within each intervals there are edges that specify the dependency of the WB phase
on the C phase, and of the C phase on the P phase. The scheduler also gives additional information, e.g., a binary
fail/success if the schedule respects the schedulability constraint as given in Equation 4, and the response time R of the
system. This is where the traditional approach would end.

However, as outlined in Section 3, the identified solution may not be optimal with respect to R, as the schedule is
only optimal for the exact set of intervals I produced by the compiler. If all real-time constraints are met (Equation
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PREM
Compiler

WCET
Analyzer

PREM
Scheduler

Optimizer

Source
code

Binary
code

Real-time
constraints

region tree,
tiled loops dependency 

DAG

overruling
vector

response time,
success/fail

System 
schedule

Fig. 4. Data exchange in the proposed methodology.

4), this might be acceptable, but if the scheduler was unable to schedule the selected intervals I without violating the
constraints, this does not necessarily mean that the system is unschedulable under PREM.

4.1 Connecting the Region and Time Domains

This is where our novel methodology offers a solution, which enables the exchange of high-level information between
the scheduling and compilation steps to enable a synergistic optimization of the system.

Importantly, and as outlined in Sections 2.3 and 2.4, the compiler operates in the region domain of the source code of
the program, while the scheduler operates in the time domain. However, it is inadvisable to intertwine the fundamentally
different region and time domains of the compiler and scheduler, as this increases tool complexity and interdependence,
increasing the development and maintenance cost of either tool. In particular, the compiler should not be extended to
be aware of the behavior of tasks outside its current compilation unit, and the scheduler should not be extended to
understand the low-level code details of SESE regions in the region domain. The only shared concept that exist between
the compiler and the scheduler are the PREM intervals I , which we instead use to pass information between the two.

To enable this, we introduce a new component, the Optimizer as shown in Figure 4 to manage the additional
information. This optimizer is responsible for translating the output in the time domain from the scheduler, into a
refined interval selection based on the regions ϒτ of each task τ – thus ensuring that the compiler only handles the τ in
the current translation unit.

As shown in Figure 4, the PREM scheduler retains the same input and output parameters as defined in Sections 2.4
and 4, but the output is in the proposed methodology redirected to the optimizer, which triggers a re-compilation and
re-scheduling with a different set of intervals I ′ based on an overruling vector passed to the compiler. The overruling
vector is given in terms of regions r ∈ ϒτ that the compiler natively understands, allowing it to alter the Iτ selected to
improve the response time R achieved by the scheduler.

8



A Synergistic Approach to Predictable Compilation and Scheduling LCTES ’20, June 16, 2020, London, United Kingdom

r0 r1 r2 r3 r4

b0 b1 b2 b3
P C WB P WBC

a)

r5 r6 r7 r8 r9

b4 b5
P C WB P WBC

b)
P C WBP C WBP C WB

g0

Fig. 5. Overruling parameters linked to regions.

We will describe how the optimizer achieves this translation in Section 4.3, but first we define overruling vectors.

4.2 Overruling Vectors

The new overruling vector overrules the internal heuristics for interval selection in the compiler. We define the overruling
vector Z as a collection of boolean values b, where each b represents a decision whether two regions r0, r1 ∈ ϒτ are
to be combined into the same interval. Each b is mapped to the unique SESE edge er0,r1 (see Section 2.3) connecting
the SESE regions r0 and r1 in the CFG. If the boolean value b is true both regions r0 and r1 connected by this edge
will be selected into the same interval i . Consider the example in Figure 5a: Five sequential regions r0, r1, r2, r3, r4 are
shown in the CFG. The figure depicts the interval selection that {b0,b1,b2,b3} = {1, 1, 0, 1} would result in, giving
two intervals i0 = {r0, r1, r2}, i1 = {r3, r4}. This corresponds to the selection of regions rseq in Section 2.3, which uses
compiler heuristics to perform the same process. However, the overruling vector allows the proposed methodology to
alter the interval selection of the built-in compiler heuristics to improve the overall system response time of all tasks, as
we outlined in Section 3.

Regions with loops rloop that are larger than local memory size(rloop ) > size(L) cannot be joined with other regions
into an interval, as the loop region in itself is already too large, thus violating the constraint in Equation 1. This can
intuitively be addressed by unrolling the loop in region rloop into several smaller regions rloopchunk0 , rloopchunk1 , · · ·

(see Section 2.3), and selecting each of them using the boolean values b for the resulting edges erloopchunk0,rloopchunk1

that connect them. However, previously proposed PREM compilers [9] have built-in support for loop tiling, achieving the
same effect but without unrolling the code and increasing the code size. In this case, the compiler will see a single region
rloop , and to inform the compiler that this region is to be split into tiles, we introduce the additional overruling vector
L of tuples (r ,д). Every tuple selects the tiling granularity д for the loop region r , determining how many iterations of

9
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the loop that are executed within each tile, as shown in Figure 5b. This constitutes a compact way of representing the
unrolling operation that would otherwise be required.

Note that regions rloop that are tiled can not be selected into an interval i with their predecessor and successor
regions rpred and rsucc . This, as the interval would without tiling violate the size constraint in Equation 1, and tiling
invalidates the edges erpred ,rloop and erloop,rsucc (replacing them with multiple new edges). Therefore we do not
associate a boolean value b ∈ Z with edges connecting to a loop that must be tiled, allowing only the use of (r ,д) ∈ L,
as shown in Figure 5b. Here r5 and r6, as well as r8 and r9 retain the b ∈ Z vector, while r7 is only associated with
(r ,д) ∈ L. Note that the loop back-edge for region r7 is placed outside the region for illustration purposes only. Note
also that loop regions rloop which are smaller than the local memory size(rloop ) ≤ size(L) do not need to be tiled, but
can be handled with the Z vector.

To guarantee that the resulting intervals from the overruling vectors L and Z still correspond to correct PREM
intervals, we extend the compiler to validate that the overruled interval selection do not violate the constraint in
Equation 1.

4.3 Optimizer

The new optimizer triggers, as part of the novel methodology, a re-scheduling with a different set of intervals I ′ based
on the overruling parameters. This can be executed for any number of iterations, either until an I that results in a
feasible schedule is found, or further optimized according to some additional metric. Because the compiler selected the
optimal intervals for each task τ during the initial compilation (optimizing S(|Iτ |)), this implies that we are trading off
per-task performance to produce smaller intervals that enable finer-grained scheduling to optimize Bmemory .

To construct I ′, the optimizer constructs the necessary overruling vectors based on the result from the previous
scheduling. To achieve this, the compiler exports the regions r ∈ ϒτ as an XML file. This allows the optimizer to
deconstruct a previous interval i ∈ Iτ into its constituent regions r ∈ ϒτ (required for the overruling vectors), and
reassemble them into any number of new intervals i ′ ∈ I ′τ .

Depending on the amount of metadata produced by the scheduler, the selection of which compiler decisions to
overrule can be differently precise: If the scheduler outputs information about which intervals are blocking which, these
can be selectively overruled, but in the generic case when no such information is provided, the optimizer must use a
suitable algorithm to determine how to produce overruling vectors. We will discuss this further in Section 5.3, but first
present a generic optimizer that makes as few assumptions as possible on the output of the scheduler.

4.3.1 Genetic PREM Optimizer: A Use Case. While the optimizer can be tailored to the unique characteristics of a
specific PREM scheduler, we propose an optimizer that uses only the response time R of the system (a quantity that any
PREM scheduler will output) to implement the proposed methodology. As small changes in the interval sizing could
potentially significantly alter the optimal interleaving of memory phases, we are searching for a global optimum on
a non-continuous optimization function. For this reason, we base our optimizer on a genetic algorithm (GA) [6], as
they are known to perform well on such functions [2]. GAs operate on populations of N individuals and execute in
epochs. At the end of each epoch the fitness F of the population is evaluated, in our algorithm given by F = 1

R , where
R is the response time. Each individual in the population has a different genome γ that represents the characteristic
of the individual. In our algorithm, the genome is represented by the overruling vectors Z and L for every task in the
taskset as follows: Each b ∈ Z is a single bit representing the decision whether two regions are to be combined into the
same interval. Each д ∈ L represents the tiling granularity and uses as many bits as required to express the maximum
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Table 1. Benchmarks of different memory complexity.

Complexity
Benchmark Description Compute Memory Shorthand
axpy Vector addition n n AY
gemv Matrix-vector mult. n2 n2 GV
gemm Matrix-matrix mult. n3 n2 GM
jacobi-1d 1D Jacobi stencil n n JA
conv-2d 2D Convolution n2 n2 C2
conv-3d 3D Convolution n3 n3 C3

tiling granularity that results in an interval smaller than the local memory. This value is provided by the compiler.
As such, we can represent the parameters L and Z , which describe each possible interval selection of the task (e.g.,
all individuals), as a single binary string, which maps well to GAs. Reusing the example from Figure 5, example (a)
would use four bits to represent b0,b1,b2,b3, and example (b) would use two bits to represent b4,b5, as well as the
bits required to represent д0. If the maximum legal value of д0 is 432, an additional 9 bits would be used to represent
base2(д0) = 110110000. Any д not on the form 2n − 1 can express a tiling granularity that would result in intervals
larger than size(L), violating Equation 1, and we assign these a fitness score of 0.

At the end of each epoch individuals with the worst fitness F are eliminated, determined by the generation gap
parameter G. We use G = 0.5, meaning 50% of the individuals are eliminated. Following this, new individuals are
generated through two processes: Crossover, in which the genome of two surviving individuals are combined into a
new individual, and mutation, where a new individual is generated by randomly changing the genome of an individual
[6]. The former explores solutions close to known good solutions as well as their linear combinations, and how many
individuals are affected is determined by the crossover rate C . The latter introduces random variance into the genome
by randomly flipping a bit in the genome γ so that the algorithm is not stuck in a local optimum. How often this occurs
is determined by the mutation rateM .

5 EVALUATION

We evaluate the performance of PREM tasksets generated by the proposed methodology, showing it is able to improve
the PREM interval selection such that inter-task memory blocking Bmemory is minimized. We show that reducing the
performance of one or more tasks τ ∈ T can lead to a better overall response time R of the system. We also show that
this requires information that is not available at compile time, motivating the need for the proposed methodology.

To investigate memory blocking, we use benchmarks of different compute-to-communication ratios (CCR), which
block the memory for different amounts of time. We initially consider Basic Linear Algebra Subroutines (BLAS) [8],
which are classified according to their CCR, as shown in the first three rows of Table 1: The memory-bound BLAS1
kernel axpy, the BLAS2 kernel gemv, and the compute-bound BLAS3 kernel gemm. We refer to these kernels as AY, GV,
and GM.

We use the optimizer from Section 4.3.1 and implement overruling vectors in previously presented compilers [9, 14].
Evaluation of PREM schedulers and WCET analyzers is out of scope of this work, and we use a first-come-first-served
(FCFS) schedule and measurement-based execution times. As the benchmarks are loop-based, they always execute in a
steady-state of repeating fixed sized intervals under FCFS.

We implement PREM runtime scheduling in a separate process, which we call the memory arbitrator (MA), on one
of the unused cores. The MA ensures that only a single task executes a memory phase at a time. At the start of each
experiment, the PREM tasks use a UNIX socket to connect to the MA to set up a shared memory region shm (not
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Fig. 6. Execution times of the symmetric and asymmetric scenarios.

included in measurements). Shared memory is the fastest inter-process communication in the system2, but still subject
to overheads, as will be shown in Section 5.2. Each PREM phase starts with a handshake with the MA using shm, and
only when the arbitrator gives permission the task executes the phase.

5.1 Evaluation Platform and Setup

We evaluate on the NVIDIA TX2 [10] SoC, featuring a 4-core ARM A57 cluster, each core with a 32 KB private cache,
and a 2 MB shared L2. All cores share the global memory. For our PREM setup, we use the A57 cores, dimensioning the
PREM intervals to stage data through the private L1. The TX2 runs Ubuntu Linux 16.04, and to avoid OS scheduling
interference, we migrate all processes that are not under investigation to a single core. As the tasks are mostly sleeping,
their impact on the memory system is negligible.

We execute a PREM task on each of the two remaining cores. For each task τ executed in the experiments (i.e., an
instance of AY, GV, or GM), we select input sizes such that each task has the same execution time Rbase . This provides
an intuitive measure of how well the memory blocking time Bmemory is minimized: If we co-run two tasks that in
isolation require Rbase time units to finish, the time to run the two tasks τ0 and τ1 in parallel Rcorun (i.e., the response
time of the taskset) would be the same Rcorun = Rbase time units if the tasks never block each other. We can then
quantify the optimality scoreOS of the interval selection asOS = Rbase

Rcorun . If the tasks never block each other, we would
get OS = 1.0, while complete serialization gives OS = 0.5. For our experiments we select input sizes such that for each
task Rτbase ≈ 0.8s , and for each taskset Rτ0,τ1

base =max(Rτ0
base ,R

τ1
base ).

2Found using ipc-bench (github.com/goldsborough/ipc-bench).
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We use the notation τ0 × τ1 to designate a scenario where τ0 and τ1 are executed on one core each. We divide the
set of scenarios into two classes: Symmetric scenarios where both tasks execute the same program but with different
genomes, and asymmetric scenarios where each task executes a different program. These former scenarios are AY×AY,
GV×GV, and GM×GM, and the latter are AY×GV, AY×GM, and GV×GM. To execute the scenarios, we release both tasks
simultaneously, measuring the time until both have completed, giving the total response time Rcorun of the scenario.

5.2 Solution space exploration

For each scenario we plot the execution times for the exhaustive exploration of the selection space in Figure 6, using
the tiling granularity д of the BLAS kernel loop to represent the selection space of each task. As the benchmarks are
loop-bound, the effect of the interval overruling parameter L will be most dominant, and we will discuss the impact of
the Z vector in Section 5.2.1. As outlined in Section 3, the compiler heuristics produce the largest intervals possible,
represented by the largest д in each dimension.

The results of the symmetric scenarios AY×AY, GV×GV, and GM×GM are shown in Figures 6a, 6b, and 6c. They
are symmetrical around the X = Y plane, which is expected as {τ0,τ1} achieves the same score as {τ1,τ0} since both
tasks are the same. With decreasing loop granularities д, the taskset response time Rcorun generally increases, as
the fixed-size scheduling cost (i.e., S(|Iτ |), see Equation 5) becomes more and more dominant. Note that to increase
readability, we are not plotting configurations whose response time Rcorun > 2s . However, in AY×AY and GV×GV local
minima are exposed when the tiling granularity дi of τi is a multiple of дj of τj . As AY has a lower CCR, its intervals
are shorter and more sensitive to this overhead, causing an offset in the minimum. In GM×GM, this effect is only a
plateau, due to the higher CCR causing less memory contention.

For AY×AY and GV×GV, the maximum interval size compiler heuristics performs best also under co-scheduling.
However, for GM×GM, the optimizer found a tiling granularity д = 15 that is more efficient than the д = 20 selected by
the compiler heuristic (maximizing interval size). As data is reloaded at each PREM interval, the tile shape at д = 15
causes less inter-interval data reuse, leading to fewer reloads of data, and better performance.

Furthermore, the CCR impacts the OS , as memory-bound tasks require memory access for a larger portion of their
execution time, which blocks their co-runner, thus increasing Bmemory . The memory-bound AY achieves a maximum
OS = 0.80

1.12 = 0.71, GV a maximum OS = 0.83
0.92 = 0.90, and the compute-bound GM a maximum OS = 0.71

0.74 = 0.95.
The results for the asymmetric scenarios AY×GV, AY×GM, and GV×GM are shown in Figures 6d, 6e, and 6f. These

plots have a much more angular surface due to local optima where an even number of intervals of τ0 can be executed
during an interval of τ1, or vice versa. In scenarios with GM, the best OS is always achieved when дGM = 15 (as
found before). For the co-running task however, we see two different effects for AY and GV. The GV×GM scenario is
compute-bound enough to not introduce any significant memory blocking, and for GV the larger-is-better compiler
heuristic leads to the best optimality score OS = 0.83

0.90 = 0.92. In the AY×GM scenario, however, Rcorun can be reduced
compared to the compiler selected дAY = 4096 to дAY = 3369. This implies a reduction by the tile size of ∼ 1/5th,
increasing the OS of AY×GM from OS = 0.80

1.35 = 0.59 to OS = 0.80
0.93 = 0.86, providing a 45% increase in the optimality

score.
For AY×GV, reducing the tiling granularity д of both tasks yields the best result. Reducing the compiler selected

дAY = 4096;дGV = 11 toдAY = 3830;дGV = 8 increases the optimality score fromOS = 0.80
1.12 = 0.71 toOS = 0.80

1.0 = 0.80.
This shows that reduced interval sizes can reduce the total response time Rcorun , at the cost of task performance (due
to increased S(|Iτ |)), as illustrated in AY×GV: For the best version under co-scheduling, the per-task execution times
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Table 2. Difference between the best and worst configurations of the Z vector, in percent of the response time R .

AY×AY GV×GV GM×GM AY×GV AY×GM GV×GM
3.63% 5.93% 6.09% 3.98% 1.70% 2.80%

Fig. 7. The performance of previously proposed compiler heuristics compared to the best optimized solution.

were increased by 1% for AY and 4.2% for GV, due to finer-grained scheduling. However, this reduces the response time
Rcorun of the co-scheduled taskset by 11%.

5.2.1 Impact of Z overruling vectors. As the AY, GV, GM benchmarks are primarily loop based, the impact of the loop
overruling vectors L are the most dominant. The impact of the combination overruling vector Z on the total execution
time is presented in Table 2. While the impact is relatively small (the Z vector can only affect the execution time by a
few percent), it might not be negligible in optimizing a system with tight deadlines Dτ .

Generally for three-phase PREM intervals, the behavior of loop-based and more sequential programs will be similar,
as the L optimization vector can be expanded into the Z vector through unrolling, as outlined in Section 4.2. The
impact these intervals have on the memory blocking time Bmemory is limited by the size of the local memory size(L),
as all intervals, unrolled or not, must conform to the requirement of Equation 1. Therefore, these results are also
representative for the impact of the Z vector in non-loop based programs.

However, the PREM model also supports single-phased compatible intervals [11] to execute portions of the code
which can not be transformed by the compiler (e.g., syscalls) as a single memory phase. These intervals take ownership
of the memory system during their entire execution (retaining the PREM single-core equivalence property), affecting
Bmemory . As both memory and computation time contribute to their len(i), it is not limited by size(L). The Z vector
will start to dominate the L vector as the amount of compatible intervals with long execution times len(i) increases. As
compatible intervals should be avoided due to their bad behavior on Bmemory , they are not otherwise covered in this
paper.

5.2.2 Performance of Optimizer. To reach the described optima, the GA used the following parameters: Crossover rate
C = 12.5%, mutation rate M = 12.5%, and population size of N = 100. The GA used a scaling windowW = 1 and a
pure selection strategy P . These parameters are chosen based on the discussion by Grefenstette [6]. We observe rapid
convergence: on average 91% of the improvement was achieved already in the first epoch of the GA (worst being 88%).
In this setup, 40 epochs take 6.5 hours on the TX2 on average. Within 10 epochs we achieved results within 3% of the
best with only N = 32, which complete in under an hour. In larger PREM systems, scheduling more than two tasks will
require more time to complete, and an optimization of the GA parameters and the workstation could be appropriate.
However, we argue that the time to solution is tractable, as the optimizer is only invoked once. Furthermore, each
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task within the system can be developed and tested with short iteration times, and only when all tasks are final, the
proposed methodology is applied.

The presented GA-based optimizer uses only the response time R as optimization criteria. As shown, this is sufficient
to solve the problem outlined in Section 3, and as it is a fundamental output parameter of any scheduler, it has the
additional benefit of working with any PREM scheduler proposed in the literature. However, with tighter coupling of
the optimizer to the scheduler, a more specialized optimizer could be possible. As part of our ongoing work we are
exploring the explicit targeting of the intervals i ∈ Iτ that cause the maximum memory blocking time Bmemory for
other tasks τ̄ in the system. By focusing the optimization on this task τ it might be possible to reduce the time to
solution.

5.3 Compiler vs Optimizer

Having determined that 10 epochs with N = 32 gives results close to the optima, we use these parameters to extend the
evaluation to include three stencil kernels, jacobi-1d (JA), convolution-2d (C2) and convolution-3d (C3) (as shown in the
bottom three rows of Table 1) from the PolyBench suite [13]. These benchmarks are executed in scenarios with the
previously presented BLAS kernels, the results of which are shown in Figure 7. The first six set of bars refer to the
BLAS scenarios described earlier.

The results show that the proposed optimizer can reduce the scenario response times up to 31% over the compiler
generated intervals. Two lessons can be learned from this. First, once intervals are large enough to dominate the
scheduling cost S(|Iτ |), it is more efficient to optimize for locality rather than maximizing interval size. This was shown
clearly in the performance gain in the GM kernel in Figure 6c. As it only affects the task τ currently being compiled, is
an optimization that could be implemented with compiler heuristics. Second, we validate that selecting the maximum
PREM interval sizes can cause significant memory blocking Bmemory , negatively impacting the response time Rτ as
shown in in Equation 5. By selecting smaller interval sizes, the interleaving of memory and compute phases could be
improved between the two tasks, as suggested by the motivating example in Figure 3, leading to a reduction in the
response time Rcorun in all but two scenarios.

As a rule of thumb, Rcorun improvements are highest in memory bound scenarios (with large Bmemory ) where the
CCR are sufficiently different between the tasks τ0,τ1 to allow effective interleaving. If both tasks are significantly
compute bound, e.g., C3×GM, Bmemory is low, and there is little to optimize. If both tasks are memory bound but the
CCR similar, e.g., AY×AY, reducing the interval size still causes high Bmemory . However, for memory bound scenarios
where the CCR are not the same, e.g., AY×GM and JA×AY, scaling the interval sizes can lead to a large improvement
due to better interleaving. These optimizations strictly depend on the interaction between tasks, and in contrast to the
tiling optimization, there exist no compiler heuristics that could perform this optimization. Instead the solution can
only be found with our proposed methodology.

6 RELATEDWORK

A large amount of work has been done on PREM scheduling [1, 9, 18] and compilation [4, 9, 14]. All those works can
be used together with the genetic optimizer presented in Section 4.3.1, as it only relies on the fundamental output
parameter of the total response time R. A benefit of our proposed methodology is that it is not specific to one tool,
which enables easy integration with custom or commercial tools.

Most closely related is the work by Soliman et al. [15], which also identifies the problem in Section 3. In contrast to
our methodology, they integrate a segmentation-aware PREM scheduler into the compiler, which does not remove the
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fundamental visibility problem of the translation unit, which this work addresses. Their scheduler could be adopted
for use in our methodology to provide richer scheduler output to the optimizer. In contrast to their simulation-based
evaluation, we execute real programs on real hardware and provide novel insights on the interplay between per-task
and per-system performance from the PREM interval selection.

A non-PREM interference-aware scheduler was presented by Xiao et al [17]. Instead of fundamentally removing
interference, it accounts for instruction cache interference in the WCET. However, this requires static analysis of the
cache behavior, which is a difficult task on COTS systems.

Beside PREM, other software-based approaches to address memory interference in multi-core systems have been
proposed [19, 20]. In contrast to the scheduling-based PREM, these are online methods that block memory accesses of
interfering low-priority tasks to ensure that quality of service guarantees can be upheld for high-priority tasks. This
gives PREM an advantage, as every PREM task in a system is guaranteed at design time to meet its real-time constraints.

Gupta et al [7] use busy-idle task graphs to defer task partitioning to scheduling time, similarly to overruling vectors
in this work. However, these task-graphs are generated at compile time, which requires information about all tasks
in the system. This makes their approach subject to the translation unit visibility problem addressed in this work.
Furthermore, the underlying busy-idle profiles assume a loop-based message passing paradigm, and does not account
for separate memory and compute phases over more generic programs.

7 CONCLUSION

In this work we have explored the impact and trade-offs between per-task and per-system performance in PREM systems.
We have shown that due to memory serialization effects, selecting a performance-wise sub-optimal PREM interval
configuration for tasks during compilation can improve the overall system response time. As these optimizations can
not be implemented with compiler heuristics, we propose a novel methodology that is able to optimize at a system
level, by taking the interactions between tasks into consideration. We have shown that our methodology can improve
the response time of dual-core PREM execution tasksets by up to 31% without source code changes.
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