

The Time-Triggered Wireless Architecture

Other Conference Item

Author(s):

Jacob, Romain (b); Zhang, Licong; Zimmerling, Marco; Beutel, Jan (b); Chakraborty, Samarjit; Thiele, Lothar

Publication date:

2020-07

Permanent link:

https://doi.org/10.3929/ethz-b-000422402

Rights / license:

Creative Commons Attribution 4.0 International

The Time-Triggered Wireless Architecture

Romain Jacob

Licong Zhang

Marco Zimmerling

Jan Beutel

Samarjit Chakraborty

Lothar Thiele

ECRTS 2020

July 7-10 – Virtual Conference

@RJacobPartner

Emerging Cyber-Physical Systems (CPS) applications have challenging requirements

Fast and reliable

Mobile

Scalable

Representative example Stabilizing an inverted pendulum

Things get more complex when the controller is physically separated from the pendulum

Applications are sets of distributed tasks

The application defines the requirements

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

- Low latency
- Low energy consumption

Goal of this work

Design complete architecture combining end-to-end predictability and adaptability while remaining efficient

Guaranteed stability over low-power multi-hop network

tiny.cc/WirelessCPSVideo

The Time-Triggered Wireless Architecture

Synchronous transmissions

abstract the network as a virtual bus

Co-scheduling approach

providing end-to-end guarantees

Predictable implementation

matching the scheduler's assumptions

The Time-Triggered Wireless Architecture

Wireless communication technique

Multi-hop broadcast using flooding

Synchronous transmissions
abstract the network as a virtual bus

Co-scheduling approach providing end-to-end guarantees

Predictable implementation matching the scheduler's assumptions

Using synchronous transmissions,

multi-hop network

can be abstracted as a

shared bus

Low-Power Wireless Bus.

F. Ferrari, M. Zimmerling, L. Mottola, L. Thiele. SenSys, 2012.

Much simpler to schedule

shared bus

Slots N₁ N₂ ... N_B Floods

Nodes are assigned dedicated slots to send their messages

We save energy using rounds

A central host controls the operations at runtime

host

The Time-Triggered Wireless Architecture

Synchronous transmissions

abstract the network as a virtual bus

Co-scheduling approach

providing end-to-end guarantees

Predictable implementation

matching the scheduler's assumptions

System model

Applications are strictly periodic

- Applications have arbitrary deadlines
- Tasks and messages inherit period from their application
- Persistent applications remain undisturbed by changes in the rest of the system

Periodic execution time of tasks

No jitter

a.d is unrelated to a.p

$$\tau . p = m . p = a . p$$

Task execution remains periodic

How to schedule the messages and communication rounds?

In practice

How do you get the message deadlines?

From the execution time of the tasks!

End-to-end guarantees require coupling between the task and message schedules

Network
Controler

Sensing
actuation

Comp.

End-to-end deadline

End-to-end guarantees require coupling between the task and message schedules

Chosen TTW statically co-schedules

coupling all tasks and messages

Chosen coupling

TTW statically co-schedules all tasks and messages

- Schedule offline based on a MILP
- Execute at runtime

Inspired by time-triggered wired networks e.g., TTEthernet, FlexRay

Offline scheduling allows to minimize the achievable latency at runtime

Rounds save energy but complexify the synthesis

Messages must be served in a round that finishes before their deadline

```
\begin{cases} \text{1 if } m_i \text{ is assigned to } r_j \\ \text{0 otherwise} \end{cases} m_i. \ d \geq \left(r_j. \ o + T_r\right) * \delta_{ij} \text{Non-linear!}
```

16 BPayloadReduction of
$$\sim 30\%$$
 in
radio-on time10Slots per roundradio-on time

Our solution is inspired by network calculus

Count the number of message instances of m_i that

 af_i have been released

 sf_i have been served

 df_i have passed their deadline

Our solution is inspired by network calculus

$$m_i.d \ge (r_j.o + T_r) * \delta_{ij}$$

$$\Leftrightarrow$$
 $sf(r_j.o) \ge df(r_j.o + T_r)$

$$\Leftrightarrow \sum_{k=1}^{J} \delta_{ij} \geq \left[\frac{r_j.o + T_r - m_i.o - m_i.d}{m_i.p} \right]$$

Linear

Piecewise-constent can be handled with common MILP tricks

Count the number of message instances of m_i that

 af_i have been released

 sf_i have been served

 df_i have passed their deadline

Static scheduling is nice but static

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

- Low latency
- Low energy consumption

System switches between operation modes at runtime

Well-known approach

- Synthesize schedules for mulitple operation modes
- Switch between modes at runtime

Challenge

Preserve real-time guarantees across mode changes

See the paper for more details

- Creates dependencies between modes
- Tackled in TTW while aiming to limit the impact on energy consumption

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

All great! ... on paper

- Can we implement this?
- Does it really work?

The Time-Triggered Wireless Architecture

Synchronous transmissions

abstract the network as a virtual bus

Co-scheduling approach

providing end-to-end guarantees

Predictable implementation

matching the scheduler's assumptions

The Time-Triggered Wireless Architecture

Synchronous transmissions

abstract the network as a virtual bus

Co-scheduling approach

providing end-to-end guarantees

Predictable implementation

matching the scheduler's assumptions

- ī
- WCET of tasks
- WCET of messages

TTnet runs on embedded hardware

The Dual Processor Platform Architecture: Demo Abstract J. Beutel *et al.*. IPSN, 2019

Synchronous Transmissions Made Easy: Design Your Network Stack with Baloo R. Jacob, J. Bächli, R. da Forno, L. Thiele. EWSN, 2019

We used confidence intervals (CI)

Informally

Numerical interval

in which lies

the true value

(which you do not know)

of some parameter

with a certain probability,

called the confidence level

[a, b] is a 95% CI for the median of x

which means that

The probability that the true median of x is within [a, b] is larger or equal to 95%.

It is actually easy to compute CI for percentiles

Probability of any P_p to be between two consecutive samples

$$Pr\{x_k \le P_p \le x_{k+1}\} = \binom{N}{k} p^k (1-p)^{N-k}$$

Binomial distribution

For any confidence cFor any percentile P_p

$$N \ge \frac{\log(1-c)}{\log(1-p)}$$

95% CI
$$c = 0.95$$

p = 0.5

90-th
$$p = 0.1$$

99-th
$$p = 0.01$$

99,9-th
$$p = 0,001$$

Is the *TTnet* model providing a safe and tight upper-bound?

Metric Maximum measured

round time T_r among all nodes

CI 95th percentile

95% confidence level

Aim to upper-bound the 95^{th} percentile of the maximum round time T_r with 95% confidence

Round model f

- Must be safe
- Should be tight

No overruns

Little wasted time

Metric

Maximum measured round time T_r among all nodes

CI

95th percentile 95% confidence level

Aim to upper-bound the 95^{th} percentile of the maximum round time T_r with 95% confidence

Minimal number of repetitions

c = 0.95p = 0.05

 \Rightarrow $N \ge 59$

 ⇒ Scheduled 60 runs per series, randomly distributed over one week

Slots per round

Slots per round

Round length [ms]

All documents, software, data are openly available

github.com/romain-jacob/TTW-Artifacts

DOI 10.5281/zenodo.3835478

Many thanks for offering an Artifact Evaluation!

The Time-Triggered Wireless Architecture

Project webpage

ttw.ethz.ch

Romain Jacob

Marco Zimmerling

Samarjit Chakraborty

Licong Zhang

Jan Beutel

Lothar Thiele

ETH Zurich

TU Dresden

University of North Carolina at Chapel Hill

www.romainjacob.net

@RJacobPartner