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Introduction. Let n denote a finite group. I t is well known that every element of the
projective class group Ko In may be realized as Wall obstruction of a finitely dominated
complex with fundamental group n (cf. (13)). We will study two subgroups N0Zn and
NZn of KQZTT, which are closely related to the Wall obstruction of nilpotent spaces.
If the group n is nilpotent and if S denotes the set of elements xeK0Zn which occur as
Wall obstructions of nilpotent spaces, then

N0Zn c S c NZn.

I t turns out that in many instances one has N0Zn = NZn (cf. Section 3) and one obtains
hence new information on S. The main theorem (2-4) provides a systematic way of
constructing finitely dominated nilpotent (or even simple) spaces with non-vanishing
Wall obstructions.

1. The groups TZn and NZn .If n denotes a finite group then one defines TZn c K02n
to be the subgroup consisting of all elements of the form [(k, N)] — [Zn], where N = Sr,
xen, and (k, N) is the projective ideal in Zn generated by N and an integer k prime to
card (77). The group TZn is known to be trivial if n is cyclic (9). On the other hand
TZn + 0 if 77 contains a noncyclic subgroup of odd order (11). TZn is completely known
for 77 a^>-group (10).

I t is convenient to think of Ko Zn to be generated by 77-modules M of type FP and to
write [M] for the element S( - l)f [P<] eK0Zn, if

0 -> Pn -> Pn_x -> ... -+ Po -> M -> 0

is a projective resolution of finite type. For instance, if k is prime to card (77) one has an
exact sequence 0 -> Z77 -*• (k, N) -> Z/k -> 0 and hence

[(k,N)]-[Zn] = [Z/k]eK0Zn,

where Z/k is considered as a trivial 77-module (cf. (4)). If 77 4= {1} then every trivial
77-module of type FP is necessarily finite and of order prime to card (77). We can then
identify TZn with the subgroup oiK0Zn consisting of all elements representable in the
form [M], where M is a trivial 77-module of type FP.

In view of the applications we have in mind, we will define more general subgroups
NtZn <=• K0Zn in a similar way.

Definition 1-1. Let 77 be a finite non-trivial group. Then i\̂ Z77 <=• K0Zn is the
sub-group consisting of all elements of the form S( — l)k [Pk], where P = {Pk} is a
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200 GTTIDO M I S L I N

projective complex of finite type whose homology groups Hk(P) are all nilpotent
77--modules and for which Ht{P) = 0 for j > i. Furthermore, NZn = U N{Zn and for
n = {1} we define NZn = NtZn = 0 for all i.

To see that N{Zn is indeed a subgroup for n =# {1}, it suffices to check that all
elements oiN^Zn are of finite order (Ntln is'obviously closed under addition). But this
amounts to showing that 2( - 1 )k rank (Pk) = 0 for P = {Pk} as in 1 • 1. But this follows
immediately from the isomorphism

Hk(P)®Q%Hk(P)®nQ

which holds, since Hk(P) is a nilpotent 7r-module, and from the equalities

2( - l)*rank (Pk) = S( - l)*dimQ (Hk(P) ®n Q) = -L S( - l)*dimQ (Hk(P) ® Q).

By definition N0Zn consists of elements x = [M], where M is a nilpotent Tr-module of
type FP. If P is as in 11 and H^P) = 0 for j > 0 then //0(P) = M is a finite module,
S m C e S( - l)fcrank (PJ = dimQ (If ®ff Q) = 0.

Clearly, this M is also cohomologically trivial, since it is of type FP.

COROLLARY 1-2. The subgroup N0Zn c Koln consists of all elements x = [M]eK0l7r,
where M is a finite, nilpotent, and cohomologically trivial n-module.

This is clear from the above, since a finite M which is cohomologically trivial is of
type FP (and even of projective dimension < 1 by (8)).

In particular we see that Tin <= N0Zn <= NIn. The following example will illustrate
that in general however Tin =(= N0Zn.

LEMMA 1-3. If n is cyclic of order 15, then N0Zn is of order two.

Proof. Choose a map n -> Aut (Z/9) which maps on to the subgroup of order 3. This
defines a nilpotent 7T-module M with underlying abelian group Z/9. M is a nilpotent,
cohomologically trivial 7r-module and M generates R0Zn ^ 2/2 (cf. (5), Lemma 2-8).
Hence N0Zn is of order two.

Remark. Let DZn denote the kernel of the map K0Zn -> KQZn, induced by including
Zn into a maximal Z-order Zn in Qn. Ifn is nilpotent, then

NIn <=• DZn.

This is proved in (12) for n cyclic and in (7) for a general nilpotent n. An example is
given in (7) to show that in general NZn =f= DZn, even if n is cyclic..

2. The realization theorem. All spaces we consider are supposed to be pointed con-
nected CPT-complexes; X denotes the universal covering space of a space X. As usual
a homology class is called spherical if it lies in the image of the Hurewicz homo-
morphiam. First, we will describe a particular way of killing certain spherical classes.

LEMMA 2-1. Let X be an n-dimensional CW-complex and let P c HnX denote a pro-
jective nxX-module consisting of spherical classes. Denote by <f>: L -> HnX a map from a
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Geome'ric realization of Wall obstructions 201

free ir^X-module L with basis {ba, a el}, such that <j>{L) = P. Then one can form a new

complex I ' = I U ( U er1)
ae/

of dimension n+ I such that
(1) there is a commutative diagram

Hu

(2)

(3) Hn+1X' is protective and spherical {i.e. it consists entirely of spherical classes).

Proof. Since P is projective, one can find P <= nnX such that P is mapped isomor-
phically onto P by the Hurewicz homomorphism. Hence we can choose <j>: L-+P
to obtain a commutative diagram

P l
n

V \ i
z[h \Hu

Denote by pr: X ->• X the projection. We attach (n+ l)-cells to X using the maps
pr (^ba), ael, and obtain X' = X u (II e™+1). I t is immediate that (j> lifts to an iso-
morphism <j>L giving rise to diagram (1). We consider now the diagram obtained by
mapping the homotopy sequence of (X',X) into the homology sequence of this pair:

Y Y == Y

Hn+1X' - i Hn+1(X',X) -1 HnX - ^ HnX>

Then im3ff = P and hence imdH = P. Therefore # n X ' ^ (HnX)/P. Note also that
a(7Tn+1X') is mapped isomorphically onto fi(Hn+1X') ^ Hn+1X', since P is mapped
isomorphically onto P. Hence Hn+lX' ^ KerSn s Ker^ and nn+1X' -> Hn+lX' is
onto. Therefore (2) and (3) hold.

THEOREM 2-2. Let X be a connected CW-complex of dimension n > 1 and let M be a
TTxX-module of cohomological dimension < 1. Then there is a space Y obtained from X by
attaching cells of dimension > n, such that

HtX if i =t= n

(HnX)@M if i = n.
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202 GUIDO MISLIN

Furthermore, if X is finitely dominated and M of type FP, then Y can be chosen to be
finitely dominated; the reduced Wall obstructions of X and Y are then related by

wY = wX+(-l)n[M]eg0Zn.

Proof. Choose a free resolution

••• -»" Ln+t > Ln+i-\ -* • • • -» • Ai+1 > K -*->- M.

(If M is a type FP, we choose a free resolution of finite type.) Since proj.dim M < 1,
im(<f>n+i) is protective for all i > 1. We construct Y inductively as follows. Let
Yn = X v B, where B is a bouquet of w-spheres corresponding to a basis of Ln. Then
Hn T

n ~ (Hn X) © Ln and Hn Y
n contains a spherical projective submodule P isomor-

phic to im {(f>n+x). Attaching (n+ l)-cells to Yn with respect to the map £n_+1 -> Hn Y
n

corresponding to $5n+1, we obtain by the previous Lemma a new space Yn+1 with

EL fn+1 = •H

if
{HnX)©M if »=» n

if i =

Since Ker^ n + 1 ~ Hn+1 T
n+1 is projective and spherical (Lemma 2-1) we can kill this

group using Ln+2 ->• Hn+X T
n+1. By repeating this construction we obtain spaces Yn+k,

k > 1, and we can form Y = u Yn+k. By construction, T has the homology groups
claimed in the theorem. Furthermore, the cellular chain complex of Y is isomorphic to
the complex

Ln+1

where CX is the cellular chain complex of X. Since the complex

Ln+i -»" Ln+i-l - * • • • - * -^n+l "* i m <

is contractible, it follows that Y is a retract of Yn+1. Hence Y is finitely dominated, if
X is finitely dominated and M of type FP. From the definition of the Wall obstruction
it is immediate that

where CX is a chain complex of type FP, chain homotopy equivalent to CX.
Before we apply this Theorem to the construction of certain nilpotent spaces, we

need the following elementary lemma.

LEMMA 2-3. Let n be a finite group. Then there exists a finite complex X with n1X ~ n
and Euler characteristic x(X) ~ 0, such that all covering transformations t: X ->• X are
homotopic to the identity.

Proof. Choose an embedding n <= SU(k). Then X = SU(k)/n has the desired
properties.

Note that X = SU(k)/n is nilpotent, if n is a nilpotent group, and it is a simple space,
in ease n is abelian.
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Geometric realization of Wall obstructions 203

We can now prove our main theorem.

THEOREM 2-4. Let n be a finite nilpotent group and let xeN0In c K02n. Then there
exists a finitely dominated nilpotent space Y with fundamental group n and Wall
obstruction w( Y) =x.Ifx lies in TZn and n is abelian, then Y may be chosen simple.

Proof. Let x = [M] with M a nilpotent 7r-module (trivial ?r-action in case xe T2.it).
Choose X = SU(k)/n as in the previous lemma (we may assume that dimX is even).
Then, according to Theorem 2-2 we can construct a finitely dominated space Y with
n1 Y ~ TTXX and

(Htl if i + dimZ
' ~ 1 ^ X M if t

It follows that wY = [M] = x, since X is finite with Euler characteristic 0. Moreover,
Y is nilpotent since its fundamental group is nilpotent and since Ht Y is nilpotent for
all i. In order to see that Y is simple in case n is abelian and xeTZn, we prove the
stronger result stating that, if M is a trivial 77--module, then all covering transforma-
tions t: Y -*• Y are homotopic to the identity. By the ' Hasse-Principle' for free maps
(3) it suffices to show that the localizations tp: Yp ->• Tp are homotopic to the identity for
all primes p. If p does not divide the order of M, then the inclusion X ^ Y induces
Ht Xp ~ H( Yp and hence Xp ~ Yp (the induced map of fundamental groups is certainly
an isomorphism). Therefore tp ~ IdJ^, since the corresponding result is true for X by
construction. If p divides the order of the trivial 7r-module M, then p is necessarily
prime to the order of n, since otherwise M would not be cohomologically trivial. I t
follows therefore that the projection Y -> Y induces a homotopy equivalence Yv ~ Yp

if p divides the order of M; clearly this implies that tp ~ Id Yp and hence the global
map t is homotopic to the identity (3).

Remark. If in Theorem 2-4 the assumption that n be nilpotent is dropped, one can
still construct the finitely dominated space Y with w( Y) = x eNQZ.n. The space Y will
however in general only be homologically nilpotent in the sense that n1 Y operates
nilpotently on Ht Y for all i.

Theorem 2-4 enables us to construct examples of the following types:

COROLLARY 2-5. (a) There exists a finitely dominated simple space with non-vanishing
Wall obstruction.

(b) There exists a finitely dominated nilpotent space with cyclic fundamental group and
non-vanishing Wall obstruction.

Proof. For (a) choose any abelian group n with TZn + 0 (e.g. (Z/p) x (Z/j>) x (I/p),
p any prime) and apply Theorem 2-4. Similarly, for (b) we can choose an3r cyclic group n
with Noln 4= 0 (e.g. Z/15, cf. Lemma 1-3) and we obtain such an example by Theorem
2-4.

3. Some computations involving NZn. One can consider N0Zn as a lower bound for the
elements in K0Zn which occur as Wall obstructions of finitely dominated homo-
logically nilpotent space. Similarly, NZn provides an upper bound for this set. The
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following examples show that for many groups one has N0Zn = NZn and, indeed, we
don't know of an example with N0Zn 4= NZn.

Our main tool will be a homomorphism

T: U(Z[l/n]) -> K0In/Tln

which was defined in (5) for groups n with cyclic Sylow subgroups (U(l[l/n]) the units
in Z[l/n] and n = card (n)). For the following computation we will assume that n is of
square-free order n (hence T is defined). If N = "Lx, xen, the projection In -> Zn/N
induces an injective map

pr#: K0Zn/TZn >->K0(Zn/N).

I t is convenient to describe T by considering K0(Zn/N) as the range ofT. Ifp is a prime
dividing n = card (n) then the trivial Tr-module Z/p considered as a Zw/iV^-module, is
of type FP with respect to the ring Zn/N and

Furthermore, T( - 1) = 0 (for details see (5)).
The connexion with NZn is given by the next lemma.

LEMMA 3-1. Let n denote a group of square-free order n and let xeNZn. Let P =
be a protective n-complex with x = 2( — 1)' [JPJ and H^P nilpotent for all i. Then

p(P) = card Hev(Zn/N ® „ P)/card HoM(Zn/N ®n P)

is a unit in Z[l/n] and if x denotes the image of a; in NZn/TZn then

x = Tp(P)eK0Zn/TZn.

In particular one has NZn/TZn <= im (T).

Proof. This result was proved in ((5), Section 3) in case x = wX, the Wall obstruction
of a homologically nilpotent space X. The same proof works for an arbitrary x e NZn.

COROLLARY 3-2. Let n be of order p or 2p, p an arbitrary prime. Then NZn = 0.

Proof. If card (n) = p with p an arbitrary prime or if card (n) = 2p, p an odd prime,
then im (T) = 0 by ((5), Theorem 2-5). Hence NZn = TZn in these cases. But in both
cases one has TZn = 0 (cf. (11)). I t remains to consider the case card(w) = 4. But it is
well known that R0Zn = 0 if card (n) = 4. Hence the result follows.

THEOREM 3-3. If 'n is a cyclic group of square-free order, then

N0Zn = Nln = im (T).

Proof. Note that Tin = 0 for n cyclic. Hence NZn <= im (T) by Lemma 3-1 and it
suffices therefore to show that im (T) <=N0Zn. If p is a prime dividing card(7r) then
pr+T(p) = [Z/p]eK0(Zn/N). I t remains to prove that there exist xeN0Zn with
pr+x = [Z/p]. Ifx = [M], M a nilpotent 7r-module of projective dimension < 1. and if
0 ->• Px -> Po -> M -> 0 is a resolution of type FP, then by definition

= {Zn/N®vP0]-[Zn/N®l,P1}.
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Geometric realization of Wall obstructions 205
But since M is cohomologically trivial, one has

Tor? (Zn/N, M) ~ Ker (M/IM 4- M) = fi-^n, M) = 0

and therefore the sequence

0 -> Zn/N ®„ P1 -> Z7r/iV ® „ Po ->• 27r/iV ®B Jfef -• 0

is exact. Hence we can write

We will now construct for all prime divisors of card (n) nilpotent 7r-modules of type
FP with Zn/N (g)n M ~ Z/p. First consider the case of an odd primes*. Let Z/p act in
a non-trivial way on Z/p2 and define a ^-action on Z/p2 using a surjection n -> Z/p.
One verifies easily that the resulting 7r-module M is nilpotent and cohomologically
trivial. Furthermore, prt [M] = [Zn/N ®ffM] = [M/NM] = [Z/p]. If p = 2, one can
use Z/8 as underlying abelian group for M, which one equips with a Z/2-action by
mapping a into 5a, aeZ/8, and defining a Tr-module structure by means of a surjection
TT->->Z/2. Again one verifies that pr% [M] = [Z/2]. Hence im(T) <= N0Zn and the
result follows.

For the groups of Theorem 3-3 we can obtain an upper bound for the order and the
exponent of NZn in terms of the Euler ^-function </>(n) = card (U(Z/n)) and the
function e(n) = (exponent of U(Z/n)).

THEOREM 3-4. If n is a cyclic group of square-free order n, then the order of

N0Zn = NZn

divides <f>(n)/e(n) and its exponent divides e(n).

Proof. Letp be a prime which divides n and let n c n be a subgroup of index p. The
[Z/p]eTZn <= K0Zn is mapped to [Zn®;Z/p] = [Z/p[n/n]]eK0Zn by the map
induced by n <= n (one uses that Tov\(Zn,Z/p) = 0). But if M = Z/p[n/n] then
Zn/N®nM = M/NM is a nilpotent 7r-module of cardinality pv~x and hence
pr*[M] = (p-l)pr*T(p)eK0(Zn/N). Since TZn = 0 (5f is cyclic), [M] = 0 and hence
(p — l)T(p) = 0. We obtain therefore a factorization

U{Z[l/n]) 5- K0Zn
A\ / T

U(Z/n)

where A: U(Z[l/n]) -+ U(l/n) s U(Z/p-1) is defined by A( - l ) = 0 and
A(p) = (0,...,0,1,0, ...0) if p divides n. The diagonal element A = (!,...,I) in
U(Z/n) ~ U(Z/p- 1) is mapped to 0 by T, since T(n) = 0 (cf. Theorem 2-5 of (5)).
Moreover, N0Zn = NZn = im (T) by Theorem 3-3. Hence the exponent of NZn divides
the exponent of U(Z./n) and the order of NZn divides <j>{n)/e(n) which is the order of
U(Z/n)/(A}.

For example, if n is a cyclic group of order Zp, p a prime > 3, then card (NZn) ^ 2
since <f>{%p) = 2(p— 1) and e(2p) = p— 1.
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As a final example, we want to compute Nln in case n — M(p, q), the metacyclic
group of square-free order pq, p and q odd primes and q\p — 1, denned by

M(p,q) = <x,y\xP = y* = 1, y~xxy = xT),

r a primitive g'th root of 1 mod p.

THEOREM 3-5. Let n = M(p, q). Then

Tin = Noln = Nln ^ 1/q.

Proof. I t has been shown in (6) that if xsKoln is the Wall obstruction of a homo-
logically nilpotent space X with fundamental group M(p,q), then xeTZn. The same
argument shows that for an arbitrary x e Nln one has x e Tin and hence Nln = Tin.
Furthermore, Tin = 1/q by (li).

One can combine the results of this section to obtain the following table for Nln, in
case n is a group of small, square-free order.

COROLLARY 3-6. Let n be a group of square-free order n < 30. Then

0 if n # 15, 21

2 / 3

Z/2or 0
if
if

n= 21,
n = 21,
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