

The geometric realization of Wall obstructions by nilpotent and simple spaces

Journal Article

Author(s): Mislin, Guido

Publication date: 1980

Permanent link: https://doi.org/10.3929/ethz-b-000422876

Rights / license: In Copyright - Non-Commercial Use Permitted

Originally published in: Mathematical Proceedings of the Cambridge Philosophical Society 87(2), <u>https://doi.org/10.1017/S0305004100056656</u>

The geometric realization of Wall obstructions by nilpotent and simple spaces

By GUIDO MISLIN ETH-Z, 8092 Zürich

(Received 12 March 1979)

Introduction. Let π denote a finite group. It is well known that every element of the projective class group $K_0\mathbb{Z}\pi$ may be realized as Wall obstruction of a finitely dominated complex with fundamental group π (cf. (13)). We will study two subgroups $N_0\mathbb{Z}\pi$ and $N\mathbb{Z}\pi$ of $K_0\mathbb{Z}\pi$, which are closely related to the Wall obstruction of nilpotent spaces. If the group π is nilpotent and if S denotes the set of elements $x \in K_0\mathbb{Z}\pi$ which occur as Wall obstructions of nilpotent spaces, then

$$N_0\mathbb{Z}\pi \subset S \subset N\mathbb{Z}\pi$$

It turns out that in many instances one has $N_0\mathbb{Z}\pi = N\mathbb{Z}\pi$ (cf. Section 3) and one obtains hence new information on S. The main theorem (2.4) provides a systematic way of constructing finitely dominated nilpotent (or even simple) spaces with non-vanishing Wall obstructions.

1. The groups $T\mathbb{Z}\pi$ and $N\mathbb{Z}\pi$. If π denotes a finite group then one defines $T\mathbb{Z}\pi \subset K_0\mathbb{Z}\pi$ to be the subgroup consisting of all elements of the form $[(k, N)] - [\mathbb{Z}\pi]$, where $N = \Sigma x$, $x \in \pi$, and (k, N) is the projective ideal in $\mathbb{Z}\pi$ generated by N and an integer k prime to card (π) . The group $T\mathbb{Z}\pi$ is known to be trivial if π is cyclic (9). On the other hand $T\mathbb{Z}\pi \neq 0$ if π contains a noncyclic subgroup of odd order (11). $T\mathbb{Z}\pi$ is completely known for π a p-group (10).

It is convenient to think of $K_0\mathbb{Z}\pi$ to be generated by π -modules M of type FP and to write [M] for the element $\Sigma(-1)^i [P_i] \in K_0\mathbb{Z}\pi$, if

$$0 \to P_n \to P_{n-1} \to \dots \to P_0 \to M \to 0$$

is a projective resolution of finite type. For instance, if k is prime to card (π) one has an exact sequence $0 \to \mathbb{Z}\pi \to (k, N) \to \mathbb{Z}/k \to 0$ and hence

$$[(k, N)] - [\mathbb{Z}\pi] = [\mathbb{Z}/k] \in K_0 \mathbb{Z}\pi,$$

where \mathbb{Z}/k is considered as a trivial π -module (cf. (4)). If $\pi \neq \{1\}$ then every trivial π -module of type FP is necessarily finite and of order prime to card (π) . We can then identify $T\mathbb{Z}\pi$ with the subgroup of $K_0\mathbb{Z}\pi$ consisting of all elements representable in the form [M], where M is a trivial π -module of type FP.

In view of the applications we have in mind, we will define more general subgroups $N_i \mathbb{Z}\pi \subset K_0 \mathbb{Z}\pi$ in a similar way.

Definition 1.1. Let π be a finite non-trivial group. Then $N_i \mathbb{Z}\pi \subset K_0 \mathbb{Z}\pi$ is the sub-group consisting of all elements of the form $\Sigma(-1)^k [P_k]$, where $P = \{P_k\}$ is a

0305-0041/80/0000-7050 \$03.50 (c) 1980 Cambridge Philosophical Society

Guido Mislin

projective complex of finite type whose homology groups $H_k(P)$ are all nilpotent π -modules and for which $H_j(P) = 0$ for j > i. Furthermore, $N\mathbb{Z}\pi = \bigcup N_i\mathbb{Z}\pi$ and for $\pi = \{1\}$ we define $N\mathbb{Z}\pi = N_i\mathbb{Z}\pi = 0$ for all i.

To see that $N_i \mathbb{Z}\pi$ is indeed a subgroup for $\pi \neq \{1\}$, it suffices to check that all elements of $N_i \mathbb{Z}\pi$ are of finite order $(N_i \mathbb{Z}\pi \text{ is obviously closed under addition})$. But this amounts to showing that $\Sigma(-1)^k \operatorname{rank}(P_k) = 0$ for $P = \{P_k\}$ as in 1.1. But this follows immediately from the isomorphism

$$H_k(P) \otimes \mathbb{Q} \xrightarrow{\cong} H_k(P) \otimes_{\pi} \mathbb{Q}$$

which holds, since $H_k(P)$ is a nilpotent π -module, and from the equalities

$$\Sigma(-1)^k \operatorname{rank}(P_k) = \Sigma(-1)^k \dim_{\mathbb{Q}}(H_k(P) \otimes_{\pi} \mathbb{Q}) = \frac{1}{|\pi|} \Sigma(-1)^k \dim_{\mathbb{Q}}(H_k(P) \otimes \mathbb{Q}).$$

By definition $N_0 \mathbb{Z} \pi$ consists of elements x = [M], where M is a nilpotent π -module of type FP. If P is as in 1·1 and $H_j(P) = 0$ for j > 0 then $H_0(P) = M$ is a finite module, since $\Sigma(-1)^k \operatorname{rank}(P_k) = \dim_{\mathbb{Q}}(M \otimes_{\pi} \mathbb{Q}) = 0.$

Clearly, this M is also cohomologically trivial, since it is of type FP.

COROLLARY 1.2. The subgroup $N_0\mathbb{Z}\pi \subset K_0\mathbb{Z}\pi$ consists of all elements $x = [M] \in K_0\mathbb{Z}\pi$, where M is a finite, nilpotent, and cohomologically trivial π -module.

This is clear from the above, since a finite M which is cohomologically trivial is of type FP (and even of projective dimension ≤ 1 by (8)).

In particular we see that $T\mathbb{Z}\pi \subset N_0\mathbb{Z}\pi \subset N\mathbb{Z}\pi$. The following example will illustrate that in general however $T\mathbb{Z}\pi \neq N_0\mathbb{Z}\pi$.

LEMMA 1.3. If π is cyclic of order 15, then $N_0\mathbb{Z}\pi$ is of order two.

Proof. Choose a map $\pi \to \operatorname{Aut}(\mathbb{Z}/9)$ which maps on to the subgroup of order 3. This defines a nilpotent π -module M with underlying abelian group $\mathbb{Z}/9$. M is a nilpotent, cohomologically trivial π -module and M generates $\tilde{K}_0\mathbb{Z}\pi \cong \mathbb{Z}/2$ (cf. (5), Lemma 2.8). Hence $N_0\mathbb{Z}\pi$ is of order two.

Remark. Let $D\mathbb{Z}\pi$ denote the kernel of the map $K_0\mathbb{Z}\pi \to K_0\overline{\mathbb{Z}\pi}$, induced by including $\mathbb{Z}\pi$ into a maximal \mathbb{Z} -order $\overline{\mathbb{Z}\pi}$ in $\mathbb{Q}\pi$. If π is nilpotent, then

$$N\mathbb{Z}\pi \subset D\mathbb{Z}\pi.$$

This is proved in (12) for π cyclic and in (7) for a general nilpotent π . An example is given in (7) to show that in general $N\mathbb{Z}\pi \neq D\mathbb{Z}\pi$, even if π is cyclic.

2. The realization theorem. All spaces we consider are supposed to be pointed connected CW-complexes; \tilde{X} denotes the universal covering space of a space X. As usual a homology class is called spherical if it lies in the image of the Hurewicz homomorphism. First, we will describe a particular way of killing certain spherical classes.

LEMMA 2.1. Let X be an n-dimensional CW-complex and let $P \subset H_n \tilde{X}$ denote a projective $\pi_1 X$ -module consisting of spherical classes. Denote by $\phi: L \to H_n \tilde{X}$ a map from a

Geome'ric realization of Wall obstructions

free $\pi_1 X$ -module L with basis $\{b_{\alpha}, \alpha \in I\}$, such that $\phi(L) = P$. Then one can form a new complex $X' = X \cup (II \circ e^{n+1})$

$$X' = X \cup (\coprod_{\alpha \in I} e_{\alpha}^{n+1})$$

of dimension n + 1 such that

(1) there is a commutative diagram

$$\pi_{n+1}(\tilde{X}',\tilde{X}) \xrightarrow{\vartheta} \pi_n \tilde{X} \xrightarrow{Hu} H_n \tilde{X}$$

$$\phi_L \uparrow \cong \phi$$

$$L \qquad \phi$$

(2)
$$H_i \tilde{X}' \cong \begin{cases} H_i \tilde{X} & \text{if } i \neq n, n+1\\ (H_i \tilde{X})/P & \text{if } i = n\\ \text{Ker } \phi & \text{if } i = n+1. \end{cases}$$

(3) $H_{n+1}\tilde{X}'$ is projective and spherical (i.e. it consists entirely of spherical classes).

Proof. Since P is projective, one can find $\overline{P} \subset \pi_n \widetilde{X}$ such that \overline{P} is mapped isomorphically onto P by the Hurewicz homomorphism. Hence we can choose $\overline{\phi} \colon L \to \overline{P}$ to obtain a commutative diagram

$$\begin{array}{ccc}
\overline{P} & \subset \pi_n \tilde{X} \\
\overline{\phi} & \swarrow \\
L & \cong \downarrow h & \downarrow Hu \\
\phi & P \subset H_n \tilde{X}
\end{array}$$

Denote by pr: $\hat{X} \to X$ the projection. We attach (n+1)-cells to X using the maps pr $(\bar{\phi}b_{\alpha}), \alpha \in I$, and obtain $X' = X \cup (\coprod e_{\alpha}^{n+1})$. It is immediate that ϕ lifts to an isomorphism ϕ_L giving rise to diagram (1). We consider now the diagram obtained by mapping the homotopy sequence of (\tilde{X}', \tilde{X}) into the homology sequence of this pair:

$$\begin{array}{ccc} \pi_{n+1}\tilde{X}' \stackrel{\alpha}{\to} \pi_{n+1}(\tilde{X}', \tilde{X}) \stackrel{\partial \pi}{\to} \pi_n \tilde{X} \\ \downarrow & \downarrow \cong & \downarrow \\ H_{n+1}\tilde{X}' \stackrel{\beta}{\to} H_{n+1}(\tilde{X}', \tilde{X}) \stackrel{\partial_H}{\to} H_n \tilde{X} \xrightarrow{} H_n \tilde{X} \end{array}$$

Then im $\partial_{\pi} = \overline{P}$ and hence im $\partial_{H} = P$. Therefore $H_{n}\tilde{X}' \cong (H_{n}\tilde{X})/P$. Note also that $\alpha(\pi_{n+1}\tilde{X}')$ is mapped isomorphically onto $\beta(H_{n+1}\tilde{X}') \cong H_{n+1}\tilde{X}'$, since \overline{P} is mapped isomorphically onto P. Hence $H_{n+1}\tilde{X}' \cong \operatorname{Ker} \partial_{\pi} \cong \operatorname{Ker} \phi$ and $\pi_{n+1}\tilde{X}' \to H_{n+1}\tilde{X}'$ is onto. Therefore (2) and (3) hold.

THEOREM 2.2. Let X be a connected CW-complex of dimension n > 1 and let M be a $\pi_1 X$ -module of cohomological dimension ≤ 1 . Then there is a space Y obtained from X by attaching cells of dimension $\geq n$, such that

$$H_i \tilde{Y} = \begin{cases} H_i \tilde{X} & \text{if } i \neq n \\ (H_n \tilde{X}) \oplus M & \text{if } i = n. \end{cases}$$

Guido Mislin

Furthermore, if X is finitely dominated and M of type FP, then Y can be chosen to be finitely dominated; the reduced Wall obstructions of X and Y are then related by

$$\tilde{w}Y = \tilde{w}X + (-1)^n [M] \in \tilde{K}_0 \mathbb{Z}\pi.$$

Proof. Choose a free resolution

$$\ldots \to L_{n+i} \xrightarrow{\phi_{n+i}} L_{n+i-1} \to \ldots \to L_{n+1} \xrightarrow{\phi_{n+i}} L_n \to \to M.$$

(If M is a type FP, we choose a free resolution of finite type.) Since proj. dim $M \leq 1$, im (ϕ_{n+i}) is projective for all $i \geq 1$. We construct Y inductively as follows. Let $Y^n = X \vee B$, where B is a bouquet of n-spheres corresponding to a basis of L_n . Then $H_n \tilde{Y}^n \cong (H_n \tilde{X}) \oplus L_n$ and $H_n \tilde{Y}^n$ contains a spherical projective submodule P isomorphic to im (ϕ_{n+1}) . Attaching (n+1)-cells to Y^n with respect to the map $L_{n+1} \to H_n \tilde{Y}^n$ corresponding to ϕ_{n+1} , we obtain by the previous Lemma a new space Y^{n+1} with

$$H_i \tilde{Y}^{n+1} = \begin{cases} H_i \tilde{X} & \text{if } i \neq n, n+1 \\ (H_n \tilde{X}) \oplus M & \text{if } i = n \\ \text{Ker } \phi_{n+1} & \text{if } i = n+1. \end{cases}$$

Since Ker $\phi_{n+1} \cong H_{n+1} \tilde{Y}^{n+1}$ is projective and spherical (Lemma 2.1) we can kill this group using $L_{n+2} \to H_{n+1} \tilde{Y}^{n+1}$. By repeating this construction we obtain spaces Y^{n+k} , $k \ge 1$, and we can form $Y = \bigcup Y^{n+k}$. By construction, \tilde{Y} has the homology groups claimed in the theorem. Furthermore, the cellular chain complex of \tilde{Y} is isomorphic to the complex

$$\ldots \to L_{n+1} \to L_{n+i-1} \to \ldots \to L_n \oplus C_n \, \tilde{X} \to C_{n-1} \, \tilde{X} \to \ldots,$$

where $C\tilde{X}$ is the cellular chain complex of \tilde{X} . Since the complex

$$\dots \to L_{n+i} \to L_{n+i-1} \to \dots \to L_{n+1} \to \operatorname{im} \phi_{n+1}$$

is contractible, it follows that Y is a retract of Y^{n+1} . Hence Y is finitely dominated, if X is finitely dominated and M of type FP. From the definition of the Wall obstruction it is immediate that

$$\begin{split} \tilde{w}(Y) &= \sum_{i=0}^{n} (-1)^{i} [\bar{C}_{i} X] + (-1)^{n+1} [\operatorname{im} \phi_{n+1}] \\ &= \tilde{w}(X) + (-1)^{n} [\mathcal{M}], \end{split}$$

where $\overline{C}\overline{X}$ is a chain complex of type *FP*, chain homotopy equivalent to $C\overline{X}$.

Before we apply this Theorem to the construction of certain nilpotent spaces, we need the following elementary lemma.

LEMMA 2.3. Let π be a finite group. Then there exists a finite complex X with $\pi_1 X \cong \pi$ and Euler characteristic $\chi(X) = 0$, such that all covering transformations $t: \tilde{X} \to \tilde{X}$ are homotopic to the identity.

Proof. Choose an embedding $\pi \subset SU(k)$. Then $X = SU(k)/\pi$ has the desired properties.

Note that $X = SU(k)/\pi$ is nilpotent, if π is a nilpotent group, and it is a simple space, in case π is abelian.

We can now prove our main theorem.

THEOREM 2.4. Let π be a finite nilpotent group and let $x \in N_0 \mathbb{Z} \pi \subset K_0 \mathbb{Z} \pi$. Then there exists a finitely dominated nilpotent space Y with fundamental group π and Wall obstruction w(Y) = x. If x lies in $T\mathbb{Z}\pi$ and π is abelian, then Y may be chosen simple.

Proof. Let x = [M] with M a nilpotent π -module (trivial π -action in case $x \in \mathbb{TZ}\pi$). Choose $X = SU(k)/\pi$ as in the previous lemma (we may assume that dim X is even). Then, according to Theorem 2.2 we can construct a finitely dominated space Y with $\pi_1 Y \cong \pi_1 X$ and

$$H_i \, \tilde{Y} = \begin{cases} H_i \tilde{X} & \text{if } i \neq \dim X \\ (H_i \tilde{X}) \oplus M & \text{if } i = \dim X. \end{cases}$$

It follows that wY = [M] = x, since X is finite with Euler characteristic 0. Moreover, Y is nilpotent since its fundamental group is nilpotent and since $H_i \tilde{Y}$ is nilpotent for all i. In order to see that Y is simple in case π is abelian and $x \in T\mathbb{Z}\pi$, we prove the stronger result stating that, if M is a trivial π -module, then all covering transformations $t: \tilde{Y} \to \tilde{Y}$ are homotopic to the identity. By the 'Hasse-Principle' for free maps (3) it suffices to show that the localizations $t_p: \tilde{Y}_p \to \tilde{Y}_p$ are homotopic to the identity for all primes p. If p does not divide the order of M, then the inclusion $X \subset Y$ induces $H_i \tilde{X}_p \cong H_i \tilde{Y}_p$ and hence $X_p \simeq Y_p$ (the induced map of fundamental groups is certainly an isomorphism). Therefore $t_p \simeq \operatorname{Id} \tilde{Y}_p$ since the corresponding result is true for X by construction. If p divides the order of the trivial π -module M, then p is necessarily prime to the order of π , since otherwise M would not be cohomologically trivial. It follows therefore that the projection $\tilde{Y} \to Y$ induces a homotopy equivalence $\tilde{Y}_p \simeq Y_p$ if p divides the order of M; clearly this implies that $t_p \simeq \operatorname{Id} \tilde{Y}_p$ and hence the global map t is homotopic to the identity (3).

Remark. If in Theorem 2.4 the assumption that π be nilpotent is dropped, one can still construct the finitely dominated space Y with $w(Y) = x \in N_0 \mathbb{Z}\pi$. The space Y will however in general only be homologically nilpotent in the sense that $\pi_1 Y$ operates nilpotently on $H_i \tilde{Y}$ for all *i*.

Theorem 2.4 enables us to construct examples of the following types:

COROLLARY 2.5. (a) There exists a finitely dominated simple space with non-vanishing Wall obstruction.

(b) There exists a finitely dominated nilpotent space with cyclic fundamental group and non-vanishing Wall obstruction.

Proof. For (a) choose any abelian group π with $T\mathbb{Z}\pi \neq 0$ (e.g. $(\mathbb{Z}/p) \times (\mathbb{Z}/p) \times (\mathbb{Z}/p)$, p any prime) and apply Theorem 2.4. Similarly, for (b) we can choose any cyclic group π with $N_0\mathbb{Z}\pi \neq 0$ (e.g. $\mathbb{Z}/15$, cf. Lemma 1.3) and we obtain such an example by Theorem 2.4.

3. Some computations involving $N\mathbb{Z}\pi$. One can consider $N_0\mathbb{Z}\pi$ as a lower bound for the elements in $K_0\mathbb{Z}\pi$ which occur as Wall obstructions of finitely dominated homologically nilpotent space. Similarly, $N\mathbb{Z}\pi$ provides an upper bound for this set. The

following examples show that for many groups one has $N_0\mathbb{Z}\pi = N\mathbb{Z}\pi$ and, indeed, we don't know of an example with $N_0\mathbb{Z}\pi \neq N\mathbb{Z}\pi$.

Our main tool will be a homomorphism

$$T: U(\mathbb{Z}[1/n]) \to K_0 \mathbb{Z}\pi/T\mathbb{Z}\pi$$

which was defined in (5) for groups π with cyclic Sylow subgroups $(U(\mathbb{Z}[1/n])$ the units in $\mathbb{Z}[1/n]$ and $n = \operatorname{card}(\pi)$). For the following computation we will assume that π is of square-free order n (hence T is defined). If $N = \Sigma x$, $x \in \pi$, the projection $\mathbb{Z}\pi \to \mathbb{Z}\pi/N$ induces an injective map

$$\overline{pr}_*: K_0\mathbb{Z}\pi/T\mathbb{Z}\pi \to K_0(\mathbb{Z}\pi/N).$$

It is convenient to describe T by considering $K_0(\mathbb{Z}\pi/N)$ as the range of T. If p is a prime dividing $n = \operatorname{card}(\pi)$ then the trivial π -module \mathbb{Z}/p considered as a $\mathbb{Z}\pi/N$ -module, is of type FP with respect to the ring $\mathbb{Z}\pi/N$ and

$$\overline{pr}_*T(p) = [\mathbb{Z}/p] \in K_0(\mathbb{Z}\pi/N).$$

Furthermore, T(-1) = 0 (for details see (5)).

The connexion with $N\mathbb{Z}\pi$ is given by the next lemma.

LEMMA 3.1. Let π denote a group of square-free order n and let $x \in N\mathbb{Z}\pi$. Let $P = \{P_i\}$ be a projective π -complex with $x = \Sigma(-1)^i [P_i]$ and $H_i P$ nilpotent for all i. Then

$$\rho(P) = \operatorname{card} H_{\text{ev}}(\mathbb{Z}\pi/N \otimes_{\pi} P)/\operatorname{card} H_{\text{odd}}(\mathbb{Z}\pi/N \otimes_{\pi} P)$$

is a unit in $\mathbb{Z}[1/n]$ and if \overline{x} denotes the image of x in $N\mathbb{Z}\pi/T\mathbb{Z}\pi$ then

$$\tilde{x} = T\rho(P) \in K_0 \mathbb{Z}\pi / T\mathbb{Z}\pi.$$

In particular one has $N\mathbb{Z}\pi/T\mathbb{Z}\pi \subset \operatorname{im}(T)$.

Proof. This result was proved in ((5), Section 3) in case x = wX, the Wall obstruction of a homologically nilpotent space X. The same proof works for an arbitrary $x \in N\mathbb{Z}\pi$.

COROLLARY 3.2. Let π be of order p or 2p, p an arbitrary prime. Then $N\mathbb{Z}\pi = 0$.

Proof. If card $(\pi) = p$ with p an arbitrary prime or if card $(\pi) = 2p$, p an odd prime, then im (T) = 0 by ((5), Theorem 2.5). Hence $N\mathbb{Z}\pi = T\mathbb{Z}\pi$ in these cases. But in both cases one has $T\mathbb{Z}\pi = 0$ (cf. (11)). It remains to consider the case card $(\pi) = 4$. But it is well known that $\tilde{K}_0\mathbb{Z}\pi = 0$ if card $(\pi) = 4$. Hence the result follows.

THEOREM 3.3. If π is a cyclic group of square-free order, then

$$N_0\mathbb{Z}\pi=N\mathbb{Z}\pi=\mathrm{im}\,(T).$$

Proof. Note that $T\mathbb{Z}\pi = 0$ for π cyclic. Hence $N\mathbb{Z}\pi \subset \text{im}(T)$ by Lemma 3.1 and it suffices therefore to show that $\text{im}(T) \subset N_0\mathbb{Z}\pi$. If p is a prime dividing card (π) then $\overline{pr}_*T(p) = [\mathbb{Z}/p] \in K_0(\mathbb{Z}\pi/N)$. It remains to prove that there exist $x \in N_0\mathbb{Z}\pi$ with $\overline{pr}_*x = [\mathbb{Z}/p]$. If x = [M], M a nilpotent π -module of projective dimension ≤ 1 , and if $0 \to P_1 \to P_0 \to M \to 0$ is a resolution of type FP, then by definition

$$pr_*x = [\mathbb{Z}\pi/N \otimes_{\pi} P_0] - [\mathbb{Z}\pi/N \otimes_{\pi} P_1].$$

204

But since M is cohomologically trivial, one has

$$\operatorname{Tor}_{1}^{\pi}(\mathbb{Z}\pi/N,M) \cong \operatorname{Ker}\left(M/IM \xrightarrow{N} M\right) = \widehat{H}^{-1}(\pi,M) = 0$$

and therefore the sequence

$$0 \to \mathbb{Z}\pi/N \otimes_{\pi} P_1 \to \mathbb{Z}\pi/N \otimes_{\pi} P_0 \to \mathbb{Z}\pi/N \otimes_{\pi} M \to 0$$

is exact. Hence we can write

$$\overline{pr}_{*}[M] = [\mathbb{Z}\pi/N \otimes_{\pi} M].$$

We will now construct for all prime divisors of card (π) nilpotent π -modules of type FP with $\mathbb{Z}\pi/N \otimes_{\pi} M \cong \mathbb{Z}/p$. First consider the case of an odd prime p. Let \mathbb{Z}/p act in a non-trivial way on \mathbb{Z}/p^2 and define a π -action on \mathbb{Z}/p^2 using a surjection $\pi \to \mathbb{Z}/p$. One verifies easily that the resulting π -module M is nilpotent and cohomologically trivial. Furthermore, $\overline{pr}_*[M] = [\mathbb{Z}\pi/N \otimes_{\pi} M] = [M/NM] = [\mathbb{Z}/p]$. If p = 2, one can use $\mathbb{Z}/8$ as underlying abelian group for M, which one equips with a $\mathbb{Z}/2$ -action by mapping a into $5a, a \in \mathbb{Z}/8$, and defining a π -module structure by means of a surjection $\pi \to \mathbb{Z}/2$. Again one verifies that $\overline{pr}_*[M] = [\mathbb{Z}/2]$. Hence im $(T) \subset N_0 \mathbb{Z}\pi$ and the result follows.

For the groups of Theorem 3.3 we can obtain an upper bound for the order and the exponent of $N\mathbb{Z}\pi$ in terms of the Euler ϕ -function $\phi(n) = \operatorname{card} (U(\mathbb{Z}/n))$ and the function $e(n) = (\text{exponent of } U(\mathbb{Z}/n))$.

THEOREM 3.4. If π is a cyclic group of square-free order n, then the order of

 $N_0\mathbb{Z}\pi = N\mathbb{Z}\pi$

divides $\phi(n)/e(n)$ and its exponent divides e(n).

Proof. Let p be a prime which divides n and let $\overline{\pi} \subset \pi$ be a subgroup of index p. The $[\mathbb{Z}/p] \in T\mathbb{Z}\overline{\pi} \subset K_0\mathbb{Z}\overline{\pi}$ is mapped to $[\mathbb{Z}\pi \otimes_{\overline{\pi}}\mathbb{Z}/p] = [\mathbb{Z}/p[\pi/\overline{\pi}]] \in K_0\mathbb{Z}\pi$ by the map induced by $\overline{\pi} \subset \pi$ (one uses that $\operatorname{Tor}_{\overline{\pi}}^1(\mathbb{Z}\pi,\mathbb{Z}/p) = 0$). But if $M = \mathbb{Z}/p[\pi/\overline{\pi}]$ then $\mathbb{Z}\pi/N \otimes_{\pi} M = M/NM$ is a nilpotent π -module of cardinality p^{p-1} and hence $\overline{pr}_*[M] = (p-1)\overline{pr}_*T(p) \in K_0(\mathbb{Z}\pi/N)$. Since $T\mathbb{Z}\overline{\pi} = 0$ ($\overline{\pi}$ is cyclic), [M] = 0 and hence (p-1)T(p) = 0. We obtain therefore a factorization

$$U(\mathbb{Z}[1/n]) \xrightarrow{T} K_0 \mathbb{Z}n$$
$$\lambda \searrow \qquad \nearrow \quad \overline{T}$$
$$U(\mathbb{Z}/n)$$

where $\lambda: U(\mathbb{Z}[1/n]) \to U(\mathbb{Z}/n) \cong \Pi(\mathbb{Z}/p-1)$ is defined by $\lambda(-1) = 0$ and $\lambda(p) = (0, ..., 0, \overline{1}, 0, ...0)$ if p divides n. The diagonal element $\Delta = (\overline{1}, ..., \overline{1})$ in $U(\mathbb{Z}/n) \cong \Pi(\mathbb{Z}/p-1)$ is mapped to 0 by \overline{T} , since T(n) = 0 (cf. Theorem 2.5 of (5)). Moreover, $N_0\mathbb{Z}\pi = N\mathbb{Z}\pi = \operatorname{im}(T)$ by Theorem 3.3. Hence the exponent of $N\mathbb{Z}\pi$ divides the exponent of $U(\mathbb{Z}/n)$ and the order of $N\mathbb{Z}\pi$ divides $\phi(n)/e(n)$ which is the order of $U(\mathbb{Z}/n)/\langle\Delta\rangle$.

For example, if π is a cyclic group of order 3p, p a prime > 3, then card $(N\mathbb{Z}\pi) \leq 2$ since $\phi(3p) = 2(p-1)$ and e(2p) = p-1.

Guido Mislin

As a final example, we want to compute $N\mathbb{Z}\pi$ in case $\pi = M(p,q)$, the metacyclic group of square-free order pq, p and q odd primes and q|p-1, defined by

$$M(p,q) = \langle x, y | x^p = y^q = 1, y^{-1}xy = x^r \rangle,$$

r a primitive qth root of $1 \mod p$.

THEOREM 3.5. Let $\pi = M(p,q)$. Then

$$T\mathbb{Z}\pi = N_0\mathbb{Z}\pi = N\mathbb{Z}\pi \cong \mathbb{Z}/q.$$

Proof. It has been shown in (6) that if $x \in K_0 \mathbb{Z}\pi$ is the Wall obstruction of a homologically nilpotent space X with fundamental group M(p,q), then $x \in T\mathbb{Z}\pi$. The same argument shows that for an arbitrary $x \in N\mathbb{Z}\pi$ one has $x \in T\mathbb{Z}\pi$ and hence $N\mathbb{Z}\pi = T\mathbb{Z}\pi$. Furthermore, $T\mathbb{Z}\pi = \mathbb{Z}/q$ by (11).

One can combine the results of this section to obtain the following table for $N\mathbb{Z}\pi$, in case π is a group of small, square-free order.

COROLLARY 3.6. Let π be a group of square-free order n < 30. Then

$$N_0 \mathbb{Z} \pi = N \mathbb{Z} \pi = \begin{cases} 0 & \text{if } n \neq 15, 21 \\ \mathbb{Z}/2 & \text{if } n = 15 \\ \mathbb{Z}/3 & \text{if } n = 21, \ \pi \text{ noncyclic} \\ \mathbb{Z}/2 \text{ or } 0 & \text{if } n = 21, \ \pi \text{ cyclic}. \end{cases}$$

REFERENCES

- FRÖHLICH, A. On the class group of integral group rings of finite abelian groups. I. Mathematika 16 (1969), 143-152.
- (2) FRÖHLICH, A., KEATING, M. E. and WILSON, S. M. J. The class groups of quaternion and dihedral 2-groups. *Mathematika* 21 (1974), 64-71.
- (3) HILTON, P., MISLIN, G., ROITBERG, J. and STEINER, R. On free maps and free homotopies into nilpotent spaces. Springer Lecture Notes in Math. Vol. 673, 1977.
- (4) MISLIN, G. Finitely dominated nilpotent spaces. Ann. of Math. 103 (1976), 547-556.
- (5) MISLIN, G. Groups with cyclic Sylow subgroups and finiteness conditions for certain complexes. Comment. Math. Helv. 52 (1977), 373-391.
- (6) MISLIN, G. Finitely dominated complexes with metacyclic fundamental groups. Topology and Algebra, Proceedings of a Colloquium in honour of B. Eckmann, Monographie No. 26, L'Enseignement Mathématique 1978, 233-235.
- (7) MISLIN, G. and VARADARAJAN, K. The finiteness obstruction for nilpotent spaces lie in $D(\mathbb{Z}\pi)$. Inventiones math. 53 (1979), 185-191.
- (8) RIM, D. S. Modules over finite groups. Ann. of Math. 63 (1959), 700-712.
- (9) SWAN, R. G. Periodic resolutions for finite groups. Ann. of Math. 72 (1960), 267-291.
- (10) TAYLOR, M. J. Locally free class groups of prime power order. J. Algebra 50 (1978), 463-487.
- (11) ULLOM, S. V. Nontrivial lower bounds for class groups of integral group rings. Illinois J. of Math. 20 (1976), 361-371.
- (12) VARADARAJAN, K. Finiteness obstructions for nilpotent spaces. J. Pure and Appl. Algebra 12 (1978), 137-146.
- (13) WALL, C. T. C. Finiteness conditions for CW-complexes. Ann. of Math. 81 (1965), 56-69.

206