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Abstract
The hardware trend toward higher core counts will likely
result in a dynamic, bursty and interactive mix of parallel
applications in personal and server computing. We inves-
tigate whether gang scheduling can provide performance
benefits for applications in this scenario. We present
a systematic study of the conditions under which gang
scheduling might be better than classical general-purpose
OS scheduling, and derive a set of necessary conditions
on the workload.

We find that these conditions are rarely met today, ex-
cept in a small subset of workloads, for which we give
an example. However, we propose that this subset is
potentially important in the future, if (for example) par-
allel algorithms become increasingly used for real-time
computer-human interaction.

1 Introduction

In this paper, we examine the usefulness of gang
scheduling for a general-purpose operating system on
future multicore hardware. As parallel applications be-
come commonplace in personal and server computing,
general-purpose operating systems must handle a dy-
namic, bursty, and interactive mix of scalable paral-
lel programs sharing a multicore machine [19, 23], for
which current schedulers will likely be inadequate [10].

Many are looking to prior work in high-performance
computing (HPC) to address the challenges of the mul-
ticore era. It is therefore important to critically examine
to what extent such ideas can be transplanted to general-
purpose computing. One example of an important idea
from the HPC field is seen in coscheduling [22] and
gang scheduling [9], which have long been proposed for
scheduling synchronization-intensive parallel programs.
These exploit lightweight busy waiting by ensuring that
threads involved in a computation execute simultane-
ously on all cores. They are regarded as effective for pro-
grams employing fine-grain synchronization, but such

programs typically have exclusive access to the machine
(or partition thereof), and time slices are long (at least
100ms) relative to context-switch time.

In contrast, general-purpose OSes have not widely
used gang schedulers, because parallel workloads that
benefit from them have been rare, and techniques such
as adaptive blocking synchronization are thought of as
sufficient to achieve near-optimal performance [20].

In this paper we confirm that gang scheduling indeed
has few benefits for current general-purpose workloads,
except in a very limited set of cases. We characterize this
space of workloads to show when gang scheduling can
deliver significant benefits over classical OS schedulers.

One implication is that gang scheduling might be
important in the future, if multiple parallel algorithms
which synchronize at a fine grain are frequently in-
voked on small input datasets, for example for real-time
computer-human interaction.

While our analysis applies to all workloads involving
synchronization, we focus on parallel programs imple-
mented using a single program, multiple data (SPMD)
model, where data is partitioned among worker threads,
each of which works on a partition in parallel. A control
thread waits until all workers have finished processing,
before the program can continue. The model is attrac-
tive because it allows the runtime to fix the number of
parallel worker threads. Furthermore, it is easier to rea-
son about than more dynamic models. Examples of the
SPMD model are OpenMP [21], widely used in numeri-
cal libraries, and MapReduce [7].

We describe gang scheduling in Section 2, and in Sec-
tion 3 present a systematic study of the SPMD work-
loads for which gang scheduling might be beneficial in
a general-purpose OS. We conclude that it provides no
benefits over current general-purpose schedulers, except
when a set of narrow conditions are met, which we char-
acterize. In Section 4 we give an example of such a sce-
nario, based on existing algorithms retargeted at an inter-
active workload, and conclude with Section 5.
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2 Background and related work

Originally introduced as coscheduling by Ouster-
hout [22], the class of techniques that we collectively
refer to as gang scheduling includes several variants
[1, 9, 11, 12]. All are based on the observation that a
parallel job will achieve maximum overall progress if
its component serial tasks execute simultaneously, and
therefore aim to achieve this through explicit control of
the global scheduling behavior. Compared to uncoordi-
nated local scheduling on each processor, gang schedul-
ing is particularly beneficial for programs that synchro-
nize or communicate frequently, because it reduces the
overhead of synchronization in two ways.

First, gang scheduling ensures that all tasks in a gang
run at the same time and at the same pace. In parallel
programs that use the SPMD model, work is typically
partitioned equally among threads. This allows threads
to reach synchronizations points at the same time.

Second, it is typically cheaper for a running task to
resume from a period of busy waiting, in which it re-
mains active without releasing the processor by spinning,
than from blocking and voluntarily relinquishing control
to the local scheduler, allowing another task to execute
while it waits. However, if the task spins for a long time,
it wastes processor cycles that could be used by other ap-
plications. Gang scheduling enables busy-waiting syn-
chronization by reducing average wait times, and thus
the time wasted in spinning.

The claimed benefits of gang scheduling include bet-
ter control over resource allocation, and more pre-
dictable application performance by providing guaran-
teed scheduling of a job across all processor resources
without interference from other applications. It achieves
this without relying on other applications to altruistically
block while waiting. Gang scheduling has also been
proposed to enable new classes of applications using
tightly-coupled fine-grained synchronization by elimi-
nating blocking overheads [9].

Gang scheduling has not yet achieved uptake
in general-purpose computing, where parallel
synchronization-intensive applications are a niche,
though notable exceptions include IRIX [4], which
supported gang-scheduled process groups, and some
user-level resource managers for cluster environ-
ments [16, 27]. Downsides of gang scheduling include
underutilization of processors due to fragmentation
when tasks in a gang block or the scheduler cannot
fit gangs to all available cores in a time slice. The
problem of backfilling these processors with other tasks
is complex, much researched [6, 12, 22, 26], and beyond
the scope of this paper.

The first thorough examination of the tradeoffs of gang
scheduling performance benefits was conducted by Feit-

elson et al. [9] on a supercomputer with dedicated mes-
sage passing hardware, and reports that gang scheduling
improves application performance at a synchronization
interval equivalent to a few hundred instructions on their
system. We find that these tradeoffs still hold, albeit at
a time scale equivalent to a hundred thousand cycles on
our system, and thus the space has widened considerably.
However, at the same time, time slices are shorter (15ms
vs. 50ms on their system), which allows Linux to react
more quickly to workload changes, and our results sug-
gest that the space of workloads benefitting from gang
scheduling is still small.

A more recent evaluation of gang scheduling appears
as a case study [10], which uses a similar synthetic work-
load to ours, and compares to schedulers in several ver-
sions of Linux and Tru64 UNIX. It confirms that shorter
time slices aid synchronization-oblivious schedulers, and
shows that parallel applications tend to self-synchronize.
We also confirm the results of this study.

Other recent work evaluates gang scheduling on clus-
ters [8, 11] or supercomputers [13] and is less relevant to
this study. Finally, some multiprocessor virtual machine
monitors employ gang scheduling for performance and
correctness reasons [14, 25], but VMs are a special case
in that they use pure busy waiting – our results do not
apply, since we assume waiting tasks eventually block.

3 Conditions for useful gang scheduling

Schedulers in general-purpose OSes like Linux or Win-
dows typically offer best-effort scheduling with priori-
ties. Feedback mechanisms prioritize IO-bound and in-
teractive processes, and schedule the threads of a par-
allel process independently on each core. Several stan-
dard techniques can be applied with such schedulers to
give good performance for parallel programs without the
need for gang scheduling. We describe these techniques
as they arise in our experiments, but note here that they
are sufficiently commonplace and automatable to reflect
the current state-of-the-art.

We have determined a set of necessary conditions for
gang scheduling to enhance the performance of parallel
applications over these techniques:

• fine-grained synchronization,
• good load balancing of work,
• latency-sensitive workloads,
• multiple important parallel workloads,
• a need to adapt under changing conditions.

In this section, we demonstrate the necessity of each
condition using a microbenchmark that uses barrier syn-
chronization among a pool of threads, and discuss the
implications of these conditions.
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void BARRIER(int interval, int variance)
{
#pragma omp parallel
for(;;) {
int spincycles = interval + rand(variance);
spin(spincycles); // computation
#pragma omp barrier
iterations[omp_get_thread_num()]++;
}
}

Figure 1: Pseudo-code of BARRIER program, with in-
puts for synchronization interval and maximum variance.
rand(a) returns a normally-distributed random number
in [0, a]. spin(x) exercises the CPU for x cycles.

In addition to these conditions, a few assumptions are
needed for gang scheduling to make sense. First, the
scheduler must be serving multiple competing tasks, oth-
erwise the choice of scheduler has little impact on perfor-
mance. Second, the application that might benefit from
gang scheduling must be composed of multiple synchro-
nizing/communicating execution contexts. If one thread
never has to wait for another, it does not matter whether
or not they are scheduled to run at the same time.

We also assume that blocking and unblocking a pro-
cess incurs high costs for an individual application rela-
tive to spin-waiting, since much of the advantage realized
by gang scheduling is achieved by avoiding the cost of
blocking threads at synchronization calls. This assump-
tion is currently realistic: on our Linux system, the cost
of blocking (excluding the effects of TLB flushing and
cache pollution) is approximately 7.4µs, whereas busy-
waiting requires a tight loop of only a few instructions
(40ns on average).

Finally, in the experiments we present, performance
is highly sensitive to the implementation of the bar-
rier synchronization primitive. A naive implementation
hurts performance regardless of the scheduler, but gang
scheduling is penalized more than others. Therefore,
to give a “best-case” advantage to gang scheduling, we
use our own implementation of a preemption-safe, fixed-
time spin-block competitive barrier, described by Kon-
tothanassis et al. [17], tuned to a spin time of 50µs. Using
a balanced workload, this is enough to pass our barrier
without blocking. Essentially, a good barrier implemen-
tation is also a necessary condition for gang scheduling
to give a performance benefit.

3.1 Experimental environment

Our main workload for these experiments is BAR-
RIER, a synthetic, synchronization-intensive parallel mi-

crobenchmark shown in Figure 1, run on a 16-core Su-
permicro H8QM3-2 4-socket AMD Opteron (Shanghai)
server, clocked at 2.5GHz under Linux 2.6.32.

BARRIER counts iterations of a synchronized loop
with configurable minimum interval (interval), and
maximum variance (variance) of independent process-
ing time in between synchronizations, to the arrival times
of threads at synchronization points. When not explicitly
stated, interval and variance are zero.

We use a simple user-space gang scheduler which
forces Linux to schedule the desired threads by adjusting
their priorities, similar to existing cluster gang schedul-
ing solutions. Application performance under this sched-
uler is below the achievable performance of an in-kernel
gang scheduler due to the overhead of running in user-
space, using system calls to control program execution,
but suffices for comparisons with other scheduling strate-
gies. We have measured the overhead of our gang sched-
uler indirectly as less than 1%, by measuring iterations of
a tight loop composed of two identical processes execut-
ing once under Linux and once under gang scheduling.

Our gang scheduler does not combat thread fragmen-
tation due to an imperfect fit. However, in our experi-
ments this property is not relevant to the results obtained:
gangs always fit the available cores.

3.2 Fine-grained synchronization
We first show gang scheduling working when all con-
ditions hold,1 and that relaxing the requirement of fine-
grained synchronization removes any benefits.

We run two BARRIER applications concurrently. In
one, we vary the frequency of barrier invocation by spin-
ning for a specific number of cycles on each thread be-
fore invocation using the interval parameter. We re-
tain interval at zero for the other application, which
acts as a competing background load contending for the
processor cores.

Figure 2 shows the results: as synchronization gran-
ularity decreases, so do the benefits of gang scheduling
since the overhead of blocking and waiting is amortized
over fewer synchronization points. Despite this situation
being highly favourable for gang scheduling, the perfor-
mance benefit begins to diminish at a synchronization
interval of 40µs, and is negligible when the synchroniza-
tion interval is the average time-slice length of the Linux
scheduler, in this case observed to be 15ms. This thresh-
old can be pushed out slightly with a higher background
workload, delivering a slight benefit with an interval up
to 100ms on a heavily loaded system, but no further.

Few parallel applications meet this condition: since
global synchronization does not scale, parallel algo-

1We assume that the computation in this benchmark has been gen-
erated in response to a changing workload.
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Figure 2: Gang scheduling vs. Linux under different syn-
chronization granularities and barrier wait times. We
show average/min/max over 10 runs.

rithms are designed to maximize the amount of unsyn-
chronized parallel work, scaling it proportionally to the
workload size. Thus, local computation dominates syn-
chronization for most existing non-trivial workloads.

3.3 Good load-balancing of work

The average wait time for synchronization (the variance
in synchronization times of different threads) must also
be low for gang scheduling to offer performance bene-
fits, otherwise it is better to block and allow other appli-
cations to run while waiting for synchronization. In the
lower graph of Figure 2 we vary the variance parame-
ter, so that each thread spins independently for a random
number of cycles between 0 and variance.

As soon as the imbalance of work between threads
reaches a few milliseconds of CPU time, gang schedul-
ing loses effectiveness. Using different background loads
or background blocking behavior does not lead to results
significantly different from those in Figure 2.

3.4 Latency-sensitive workload

Gang scheduling time-slices parallel applications across
multiple processors. As in classical time-sharing, this
is only useful for applications with latency or respon-
siveness requirements. If the workload is entirely
throughput-bound, and response time or completion time
are not concerns, simple run-to-completion mechanisms
(such as a first-come first-served batch scheduler) will
suffice and offer lower overhead.
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Figure 3: Gang scheduling vs. Linux under different
scheduling priorities for App2.

We showed this experimentally by running two BAR-
RIER programs, each with 16 threads, for 10 seconds in
two configurations: as two 5-second, back-to-back batch
jobs, and running concurrently with scheduling. We
measured the achieved loop iterations per second. The
batch configuration achieves higher throughput: 1.5%
more iterations than with gang scheduling, due to re-
duced context switching and associated cache miss over-
heads (which are significant in our user-level gang sched-
uler). However, as a batch job the second BARRIER in-
stance is only serviced 5 seconds after arrival.

This result is not surprising and, indeed, the overheads
of time-slicing over batch scheduling have long been an
accepted tradeoff in commodity computing, where inter-
activity and responsiveness are important metrics. How-
ever, it helps to re-emphasize that gang scheduling is
only of benefit to workloads which are latency-sensitive,
and adds the burden of a globally-coordinated schedule.

3.5 Multiple important parallel workloads
A necessary condition for gang scheduling to outperform
priority-based scheduling is that the performance of mul-
tiple parallel applications is of interest. If not, simply pri-
oritizing the one “important” application (e.g. the inter-
active program in the foreground) is sufficient to ensure
that all its parts execute simultaneously.

We demonstrate this by running two BARRIER in-
stances concurrently, each with 16 threads. Figure 3
shows the individual and aggregate performance of the
two instances under various prioritization strategies.
From left to right, we show the performance using the
Linux scheduler with identical priorities (Identical), the
Linux scheduler with App2 given a higher priority than
App1 using the default spin time (High), and with a spin
time of 4ms (High 4ms). These are followed by two
versions of gang scheduling, one where the two applica-
tions are given equal length time slices (Gang), and one
in which App2 is given a longer time-slice to simulate a
higher priority (GangHi).

In the High experiment, App2 performs similarly to
the Identical experiment, because spinning for only a
short time causes threads to block frequently, rendering
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them unable to make use of their additional CPU alloca-
tion, while App1 is nearly starved due to frequent pre-
emption by App2, resulting in worse overall CPU uti-
lization. The performance of App2 is improved when
spin time is increased, until it approaches that of gang
scheduling, as shown in the High 4ms experiment.

We conclude that prioritizing a single application is
a viable alternative to gang scheduling, with the caveat
that, depending on the application’s blocking behavior,
its priority may have no effect on its performance.

3.6 Bursty, adaptive workloads

If demands are static over long periods, and fit within the
resource constraints of the system, then a fixed number of
hardware execution contexts (i.e. cores) can be allocated
to an application. Space-partitioning schedulers have
been proposed to achieve this [3, 19]. The existence of
resource guarantees, and the knowledge that workloads
will not exceed the allocation allows space partitioning
to provide many of the same benefits of gang scheduling.
Indeed, if the workload granularity matches the available
cores in the system, space partitioning yields better per-
formance than gang scheduling, as it does not impose any
context switching overhead.

However, if workloads are bursty, and it is not possi-
ble to over-provision CPUs to applications, then space-
partitioning is not possible without frequent repartition-
ing, which can be expensive. Further, it is difficult to
detect, and then re-provision, resources that are under-
utilized. In such cases, time slicing is still desirable, and
gang scheduling may be a reasonable choice, as it can
yield higher total utilization of the system than sharing-
agnostic schedulers [15]. We therefore include a bursty
workload as a necessary condition to benefit from gang
scheduling.

Space partitioning may become more feasible in fu-
ture systems with high numbers of cores: unused
CPU time could simply be ignored, and cores over-
provisioned. However, it is likely that such systems will
be performance-asymmetric [18]; in this case, a small
number of powerful cores would be shared by applica-
tions, while a large number of “wimpy” cores may be
space-partitioned. Gang scheduling would therefore re-
main suitable for the powerful cores.

4 Future application workloads

In the preceding section, we showed how gang schedul-
ing offers a performance benefit only when a set of re-
strictive conditions is satisfied. Indeed, we were not able
to find a standard benchmark suite showing compelling
improvements under gang scheduling.
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In this section, we investigate the performance of gang
scheduling on a hypothetical interactive workload that
does satisfy the conditions enumerated in the previous
section, and compare this performance with the default
Linux scheduler. In particular, we consider an interactive
network monitoring application that employs data stream
clustering to analyze incoming TCP streams, looking for
packets clustering around a specific attribute suggest-
ing an attack. The stream clustering component of our
application is drawn from the PARSEC benchmarking
suite [5], which is designed to be representative of fu-
ture applications for multicore computers, namely the
widely anticipated, computationally-intensive and poten-
tially interactive “recognition, mining, and synthesis”
(RMS) workloads [2, 5, 24]. We argue that such work-
loads will become increasingly important and useful.

We must first verify that this workload does indeed
satisfy the conditions we laid out. First, an interactive
application will use a small workload size, which in the
PARSEC stream cluster benchmark leads to more fine-
grained synchronization that is still balanced. We con-
firmed this experimentally: When run for 3 seconds on
a small workload (specifically, the “simlarge” dataset),
the benchmark executes 16,200 barriers with an average
processing time of 81µs, and average barrier wait time of
88µs, falling within the ranges measured in Section 3.2.
The workload is latency-sensitive, since it is in the con-
text of an interactive application. As multiple streams are
being analyzed concurrently, there are multiple tasks of
equal importance, and finally, since streams may arrive
in bursts, the resource allocation must adapt to changing
conditions. We used our tuned barrier implementation,
rather than the naive default shipped with PARSEC.

The results of this application benchmark are pre-
sented in Figure 4. In this workload, for each of 4 TCP
streams, cluster centers are updated every 16,000 pack-
ets, using 8 threads for each parallel computation. The
graph shows the latency between the arrival of all 16,000
packets on a stream, and the update of the stream’s
clusters as the burstiness of requests increases. Gang
scheduling allows the application to cope with increased
burstiness, maintaining an average compute time of 5
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seconds with a small variance. Performance under the
Linux scheduler degrades as burstiness increases. Fur-
thermore, variance in performance increases consider-
ably. Gang scheduling also outperforms a static parti-
tioning of the machine, because in order to handle the
maximum burst rate, only 4 cores could be provisioned
for each stream.

5 Conclusion

As we enter an era where massively-parallel comput-
ers are mainstream, rather than restricted to scientific
computation, it is important to understand how to apply
the insights of the HPC community appropriately to the
somewhat different world of general-purpose computing.

While gang scheduling promises performance im-
provements for synchronizing parallel applications, we
find that a long list of conditions must be met before it
is useful in practice; for current general-purpose work-
loads, these preclude any benefit from the technique.

Nevertheless, the latency constraints and burstiness
faced by parallel interactive applications force them to
synchronize frequently as they await results from paral-
lel computations to present to users. We hypothesize that
future workloads are more likely to fall into this space.
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