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A distributed algorithm for almost-Nash equilibria of average
aggregative games with coupling constraints

Francesca Parise, Basilio Gentile and John Lygeros

Abstract—We consider the framework of average aggregative
games, where the cost function of each agent depends on his
own strategy and on the average population strategy. We focus
on the case in which the agents are coupled not only via their
cost functions, but also via a shared constraint coupling their
strategies. We propose a distributed algorithm that achieves an
ε-Nash equilibrium by requiring only local communications of
the agents, as specified by a sparse communication network. The
proof of convergence of the algorithm relies on the auxiliary class
of network aggregative games. We apply our theoretical findings
to a multi-market Cournot game with transportation costs and
maximum market capacity.

I. INTRODUCTION

AVERAGE aggregative games are used to describe pop-
ulations of non-cooperative agents where each agent is

not subject to one-to-one interactions, but is rather influenced
by the average strategy of the population. These games can
be used to model a vast number of technological applications
ranging from traffic [1] and wireless systems [2] to electric-
ity [3] and commodity markets [4]. Applying game theoretical
concepts to such systems is challenging because the agents
have private costs and constraints and may be able or willing
to exchange information only with a (small) subset of the
(large) population. Moreover, often the agents’ strategies must
collectively satisfy some physical coupling constraints, as in
electricity markets [5], where the energy demand should not
exceed the grid capacity, or in communication networks [6],
where the package traffic should not exceed the congestion
level.

Main contributions: We present a distributed algorithm that
guarantees convergence to an ε-Nash Equilibrium (NE) of
an average aggregative game with affine coupling constraints
by using local communications over a sparse network. The
tolerance ε can be made arbitrarly small by increasing the
number of communications among the agents. Our method
works for populations of heterogeneous agents with local
convex constraints, a shared coupling constraint and smooth
strongly convex cost functions (e.g., we do not assume that the
cost functions are quadratic, as in [7]) under the assumption
of strong monotonicity of the game operator. To prove algo-
rithmic convergence we rely on two key steps: i) we show
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that the NE of the average aggregative game of interest can
be approximated to any desired precision by the NE of an
auxiliary network aggregative game (as defined in [8]); ii) we
show that previously derived algorithms can be implemented in
a distributed fashion to compute the NE of such auxiliary game
(which is an almost-Nash equilibrium for the original game).
As a side contribution, to tackle i) we derive a convergence rate
result for parametric variational inequalities (VIs) with affine
constraints that is applicable beyond the context of games.

To illustrate our theoretical findings, we study a Cournot
game with transportation costs, as introduced in [9, Section
1.4.3]. Such setup extends the multi-market Cournot game [10,
Section 7.1] by introducing transportation costs.

Comparison with the literature: We review the rapidly
growing literature on NE coordination by distinguishing
whether the proposed algorithms 1) can only be applied when
the agent strategy sets are decoupled or allow for constraints
coupling the agents’ strategies and 2) employ a central coor-
dinator (decentralized algorithms) or local communications
(distributed algorithms); which type of communication struc-
ture (i.e. decentralized vs distributed) is preferable depends on
the application.

A vast literature focused on the case of decoupled strategy
sets, where the feasible strategy set of each agent is not
affected by the strategies of the other agents. Distributed
algorithms relying on local communications among the agents
are suggested in [11], [12], [13], [14]. All these algorithms
cannot be applied to the case of shared coupling constraints,
because they build on the core assumption that the strategy
sets are decoupled, as we highlight in detail in Section IV-C.
To the best of our knowledge, the only distributed algorithm
available in the literature for average aggregative games with
coupling constraints is [15]. However such algorithm is only
applicable if the coupling constraints can be expressed as a
system of linear equations [15, eq. (5)], thus preventing its
applicability to the cases discussed above.

Finally, we note that our work has some affinity with the
distributed algorithms suggested in [10], [16], [17], [18], [19],
[20], [21] to compute a NE of generic games (i.e., games that
do not have the aggregative structure considered here) with
coupling constraints. In [10], [16] each agent is required to
communicate with all the agents affecting its cost function.
Hence, these schemes require communications among all the
agents in the setup of average aggregative games. The recent
work [17] presents a two-level algorithm, whereas here we
propose a one-level algorithm. The algorithm in [18] requires
an assumption on the coupling constraint that is not met
in our setup (e.g. a constraint on the sum of the strategies
would violate such an assumption). Finally, the algorithms
proposed in [19], [20] and [21], which appeared in parallel
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to our work, can be applied to the setup considered in this
paper. The algorithms in [19] and [20] require an additional
assumption in terms of an extended pseudo gradient mapping,
hence we focus our comparison with the algorithm in [21],
which is the closest to our work. While in our setting multiple
communications are used in between two strategy updates,
in [21] strategies and estimates are updated simultaneously.
The approach of [21] has the advantage of converging to an
exact Nash equilibrium rather than to an ε-Nash equilibrium.
On the other hand, it requires each agent to maintain and
communicate a local estimate of the strategies of all the rest
of the agents, which can be expensive for large populations,
whereas our algorithm requires each agent to only store and
communicate an estimate of the average strategy. Moreover,
given that each strategy update is performed with a more
accurate estimate of the average, our setting might be ben-
eficial for cases when multiple communications are cheap and
it is instead important to minimize the number of strategy
updates. By deriving rigorous bounds on the dependence of ε
on the number of communications we allow a tradeoff between
number of communications and performance. Finally, we note
that convergence in [21] is proven for undirected networks,
while we here consider (doubly stochastic) directed networks.
Organization: In Section II we formulate the game setup and
we introduce the proposed algorithm. In Section III we present
some preliminary results. In Section IV we prove our main re-
sult. Section V focuses on the application. Section VI presents
generalizations and future research directions. Appendix A
is a standalone section on convergence of parametric VIs.
Appendix B contains the proofs omitted in the main text.

Notation: Given A ∈ Rn×n ‖A‖µ is the induced µ-norm
of A, for simplicity we write ‖A‖2 = ‖A‖; rstep(A) =
‖A− 1

n1n1>n ‖2; diag(A) is the diagonal matrix which has the
same diagonal of A. For a, b ∈ Z, a ≤ b, Z[a, b] := [a, b] ∩ Z.
Given N vectors of Rn, [xi]Ni=1 := [x1>, . . . , xN

>
]> ∈ RNn

and x−i := [x1; . . . ;xi−1;xi+1; . . . ;xN ] ∈ R(N−1)n. Given
sets X 1, . . . ,XN ⊆ Rn, 1

N

∑N
i=1 X i := {z ∈ Rn|z =

1
N

∑N
i=1 x

i, for some xi ∈X i} and X−i := X 1 × . . .X i−1 ×
X i+1 × . . .XN . ΠX [x] is the projection of x onto X .

II. PROBLEM FORMULATION AND MAIN RESULT

A. Average aggregative games

Consider a population of N ∈ N agents, where agent i ∈
Z[1, N ] chooses his decision variable xi in his individual con-
straint set X i ⊆ Rn, and interacts with the other agents via the
average of their strategies. The aim of agent i is to minimize his
cost function J i

(
xi, σ∞(x)

)
= J i (z1, z2) |z1=xi,z2=σ∞(x),

where J i (z1, z2) : X i × conv(X 1, . . . ,XN )→ R and

σ∞(x) :=
1

N

N∑
j=1

xj . (1)

Note that we use as aggregator the average σ∞(x) instead of
the sum

∑N
j=1 x

j of the strategies. This is without loss of gen-
erality. Moreover, the subscript∞ does not refer to an infinite
population, but to the fact that the agents interact through the
exact average 1

N

∑N
j=1 x

j . We set x := [x1; . . . ;xN ] ∈ X :=

X 1 × · · · × XN ⊂ RNn. Besides the individual constraints,
we assume that the agents have to satisfy a linear coupling
constraint on the average

x ∈ C∞ := {x ∈ RNn | Âσ∞(x) ≤ b̂}, (2)

with Â ∈ Rm×n, b̂ ∈ Rm, for some m > 0, where σ∞(x) is as
in (1). The coupling constraints in (2) can model the fact that
the usage level for a certain commodity cannot exceed a fixed
capacity, as in [5]. The strong modeling flexibility of linear
coupling constraints is further discussed in [10, Remark 3.1].

The cost and constraints give rise to the average aggregative
game (AAG)

G∞ :=


agents : (1, . . . , N)

cost of agent i : J i(xi, σ∞(x))

individual constraint : X i

coupling constraint : C∞.

(3)

Let us denote Q∞ := X ∩ C∞, and Qi∞(x−i) := {xi ∈
X i|x ∈ C∞} = {xi ∈ X i|Âσ∞(x) ≤ b̂}.

Definition 1 (Nash Equilibrium (NE)). A set of strategies x̄ =
[x̄1; . . . ; x̄N ] ∈ Q∞ is an ε-Nash equilibrium of G∞ if for all
i ∈ Z[1, N ] and all xi∈Qi∞(x̄−i)

J i(x̄i, σ∞(x̄))≤J i
(
xi, 1

N x
i+
∑
j 6=i

1
N x̄

j
)

+ ε . (4)

If (4) holds with ε = 0 then x̄ is a Nash equilibrium. �

A NE for a game with coupling constraints is usually called
a generalized NE [22]; here we omit the word generalized
for brevity. The following conditions on cost functions and
constraints of G∞ are assumed to hold throughout.

Standing assumption. For each i, X i ⊂ Rn is convex,
compact and has non-empty interior. For all i ∈ Z[1, N ], the
cost function J i(xi, σ∞(x)) is convex in xi for all x−i ∈ X−i
and J i(z1, z2) is continuously differentiable in z1, z2 and
Lipschitz with constant L, that is, |J i(z1, z2)− J i(z′1, z′2)| ≤
L(‖z1 − z′1‖+ ‖z2 − z′2‖) for all z1, z2, z

′
1, z
′
2

1. �

B. Communication limitations
Our main objective is to coordinate the agents’ strategies to

a NE by using a distributed algorithm that utilizes communi-
cations over a (typically sparse) communication network. We
model such network by its adjacency matrix T ∈ [0, 1]N×N ,
where the element Tij ∈ [0, 1] is the weight that agent i
assigns to communications received from agent j, with Tij = 0
representing no communication. For brevity, we refer to T as
communication network, even though it is its adjacency matrix.
Agent j is an in-neighbor of i if Tij > 0 and an out-neighbor if
Tji > 0. We denote the sets of in- and out-neighbors of agent
i as N i

in and N i
out, respectively.

Assumption 1 (Communication network). The communication
matrix T is primitive (i.e. there exists ν > 0 such that T ν

is element-wise positive) and doubly stochastic (i.e. T1N =
T>1N = 1N ).2 Moreover, rstep(T ) = ‖T − 1

n1n1>n ‖2 < 1. �

1Note that the same Lipschitz constant L is used for each agent. This is
without loss of generality since N is finite, hence L can be taken as the
maximum of the Lipschitz constants.

2A relaxation of doubly stochasticity is discussed in Section VI-1.
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Graph theoretical conditions guaranteeing Assumption 1 can
be found in [23]. Loosely speaking, the fact that T is primitive
and doubly stochastic ensures that if the agents communicate
a sufficiently large number of times over T , they are able
to approximate the average to any desired precision. The
requirement on rstep(T ) is automatically met if either T is
symmetric [23, Theorem 10.2 and Lemma 10.3] or if all its
diagonal elements are strictly positive [23, Exercise 10.1].

C. The distributed algorithm

We propose an algorithm (Algorithm 1 below), where at
iteration k each agent i updates four variables:

- his strategy xi(k),
- a dual variable λi(k) relative to the coupling constraint C∞,
- a local average of his in-neighbors’ strategies σiν,(k),
- a local average of his out-neighbors’ dual variables µiν,(k).

To overcome the fact that the communication network is sparse
we assume that to compute σiν,(k) and µiν,(k) the agents com-
municate not once but multiple times over the network T . The
number of rounds of communication per update is denoted by
ν ∈ N and is a tuning parameter of the algorithm. The personal
strategy (or primal variable) and the dual variable, in turn,
are updated by a gradient-like step that depends on a second
tuning parameter τ > 0. In particular, the strategy update
step is similar to that of the standard projection algorithm [9,
Algorithm 12.1.1]. We finally note that both tuning parameters
ν and τ are decided a priori and do not change during the
algorithm execution.

Algorithm 1: Distributed algorithm for εν-NE of G∞
Initialize: Agent i with state xi(0) ∈ X

i and dual variable
λi(0)∈R

m
≥0. A communication network T . Set τ > 0,

ν ∈ N, k = 0, σiν,(0) = xi(0).
Iterate until convergence:
Communication: Dual µiν,(k) ← λi(k),∀ i

repeat ν times
µiν,(k) ←

∑
j∈N iout

Tji µ
j
ν,(k), ∀ i

Update: Primal⌊
F iν,(k) ← ∇xiJ i(xi(k), σ

i
ν,(k)), ∀ i

xi(k+1) ←ΠX i [x
i
(k)−τ(F iν,(k) +Â

>
µiν,(k))], ∀ i

Communication: Primal σiν,(k+1) ← xi(k+1), ∀ i
repeat ν times

σiν,(k+1)←
∑
j∈N iin

Tijσ
j
ν,(k+1),∀ i

Update: Dual⌊
λi(k+1) ←ΠRm≥0

[λi(k) − τ(b̂− 2Âσiν,(k+1) + Âσiν,(k))], ∀ i

k ← k + 1

The objective of the paper is to prove convergence of
Algorithm 1 to an εν-Nash of G∞, where εν → 0 as ν → ∞.
To this end, we introduce the following additional assumptions.

Definition 2 (Strong monotonicity). An operator F : K ⊆
Rn→Rn is strongly monotone if there exists α>0 such that
(F (x)− F (y))>(x− y)≥α‖x− y‖2 for all x, y∈K. �

Assumption 2 (Regularity of cost functions). The operator
F∞ : X → RNn, defined as

x 7→ F∞(x) := [∇xiJ i(xi, σ∞(x))]Ni=1 (6)

is strongly monotone with constant α∞. The cost func-
tion J i(z1, z2) is twice continuously differentiable for all
i ∈ Z[1, N ]. Let L′ > 0 and M ′ > 0 be such that
‖∇zaJ i(z1, z2) − ∇zaJ i(z1, z

′
2)‖2 ≤ L′‖z2 − z′2‖2 and

‖∇zaJ i(z1, z2)‖2 ≤ M ′ for all a ∈ {1, 2}, all z1, z2, z
′
2 and

all i ∈ Z[1, N ]. �

We note that sufficient conditions for Assumption 2 to hold
have been discussed in [24, Lemmas 3 and 4, Corollaries 1 and
2] for specific instances of average aggregative games.

Our key idea to prove convergence of Algorithm 1 to an εν-
NE of G∞ is to construct an auxiliary game Gν , parametric in
the number of communications ν, and note that:

Claim 1: Algorithm 1 converges to a specific NE of Gν ,
called a variational NE;

Claim 2: the variational NE of Gν is an εν-NE of G∞, with
εν → 0 as ν →∞.

It turns out that, thanks to the structure imposed on the game
Gν , Claim 1 follows easily from previous literature results (in
fact also other algorithms proposed in the literature could be
similarly adapted to find the variational NE of Gν by using
only communications over T ). Claim 2, on the other hand, is
the main contribution of the paper. A convergence rate for εν
is provided under the following additional assumption.

Assumption 3. There exists Gi ∈ Rmi×n and gi ∈ Rmi
such that X i := {xi ∈ Rn | Gixi ≤ gi}. Let G :=
[Gi]

N
i=1, g := [gi]

N
i=1. The set Q∞ has non-empty interior.

There exists L′′ > 0 and M ′′ > 0 such that ‖∇zazbJ i(z1, z2)−
∇zazbJ i(z1, z

′
2)‖2 ≤ L′′‖z2−z′2‖2 and ‖∇zazbJ i(z1, z2)‖2 ≤

M ′′ for all a, b ∈ {1, 2}, all z1, z2, z
′
2 and i ∈ Z[1, N ]. �

The second half of Assumption 3 requires that, for each agent
i, every second derivative of J i is bounded and is Lipschitz in
the second argument (uniformly in the first). Claims 1 and 2
are proven in Section IV, we start with auxiliary results.

III. AUXILIARY RESULTS

We here define the game Gν , introduce some basic results on
variational inequalities (VI) and study the relation between the
operators and the sets of the VIs associated with G∞ and Gν .

A. Multi-communication network aggregative games

In each iteration of Algorithm 1 the agents need to com-
municate ν times over T ; mathematically this is equivalent to
communicating once over a fictitious network with adjacency
matrix T ν . Based on T ν , we introduce the local averages

σiν(x) :=
∑N
j=1[T ν ]ijx

j .
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We define Gν as a game with same constraints and cost
functions as in G∞ except for the fact that each agent reacts to
the local average σiν(x) instead of the global average σ∞(x).
Specifically, upon defining

Cν := {x ∈ RNn | Âσjν(x) ≤ b̂, ∀j ∈ Z[1, N ]}

we formally introduce the multi-communication network ag-
gregative game as

Gν :=


agents : (1, . . . , N)

cost of agent i : J i(xi, σiν(x))

individual constraint : X i

coupling constraint : Cν .
The definition of NE for Gν is the analogous of Definition 1.

B. Variational inequalities and variational Nash equilibria

A fundamental fact used throughout the rest of the paper is
that a specific class of Nash equilibria of any convex game,
called variational Nash equilibria, can be obtained by solving
a variational inequality constructed from the game primitives.

Definition 3 (Variational inequality). Given a set K ⊆ Rn and
an operator H : K → Rn, the point x̄ ∈ Rn is a solution of
VI(K, H) if it satisfies

H(x̄)>(x− x̄) ≥ 0, ∀x ∈ K.

A discussion on how variational inequalities generalize convex
optimization programs can be found in [9, Section 1.3.1]. In
the following we report a sufficient condition for existence and
uniqueness of the solution of a variational inequality.

Proposition 1 ([9, Theorem 2.3.3.b]). Consider a closed and
convex set K and a strongly monotone operator H : K → Rn.
Then VI(K,H) admits a unique solution. �

The following lemma gives a more intuitive characterization
of the strong monotonicity property.

Proposition 2 ([9, Proposition 2.3.2]). A continuously differ-
entiable operator H : K ⊆ Rn → Rn is strongly monotone
with monotonicity constant α if and only if ∇xH(x) � αIn
for all x ∈ K. �

To draw the connection between VIs and Nash equilibria, let
us introduce the following quantities relative to Gν

Aν := T ν ⊗ Â, b := 1N ⊗ b̂ (7a)

Fν(x) := [∇xiJ i(xi, σiν(x))]Ni=1, (7b)
Qν := {x ∈ X |Aνx ≤ b}, (7c)

Qiν(x−i) := {xi ∈ X i|Aνx ≤ b}, (7d)

and recall the corresponding quantities relative to G∞
A∞ := 1

N 1N1N> ⊗ Â. (8a)

F∞(x) := [∇xiJ i(xi, σ∞(x))]Ni=1, (8b)
Q∞ := {x ∈ X |A∞x ≤ b}, (8c)

Qi∞(x−i) := {xi ∈ X i|A∞x ≤ b}, (8d)

The operator in (8b) is the same as (6) in Assumption 2 and
in (8) the coupling constraint C∞ is expressed in the redundant

form A∞x ≤ b (consisting of N repetitions of the constraint
Âσ∞(x) ≤ b̂) to match the structure of Aνx ≤ b in (7).

In the following we specialize a well-known result of [22,
Theorem 2.1] to the two games G∞ and Gν .

Proposition 3 (Variational NE [22, Theorem 2.1]). Every so-
lution x̄∞ of VI(Q∞,F∞) is a NE of G∞, called a variational
NE of G∞. Moreover, if J i(xi, σiν(x)) is convex in xi for all
x−i ∈ X−i, every solution x̄ν of VI(Qν ,Fν) is a NE of Gν ,
called a variational NE of Gν . �

Due to the presence of the coupling constraints the converse
of Proposition 3 does not hold.3

C. Convergence of sets and operators

Given Proposition 3, to show Claim 2 it suffices to prove
that the solution to VI(Qν , Fν) is a good approximation of the
solution to VI(Q∞, F∞), for ν sufficiently large. To this end,
we start by introducing three lemmas that clarify the relation
between the operators Fν , F∞ and the sets Qν ,Q∞. Their
proofs are in Appendix B. To simplify the exposition we define

M2 := max
x∈X
‖x‖2, M∞ := max

x∈X
‖x‖∞

and, for any norm µ, we define dµ(ν) := ‖ 1
N 1N1N>−T ν‖µ.

Lemma 1 (Operator convergence). Under Assumption 1
1) limν→∞ T ν = 1

N 1N1N>, limν→∞Aν = A∞ and
limν→∞ Fν(x) = F∞(x) uniformly in x.

2) For all x ∈ X and all ν, ‖Fν(x)‖ ≤ Fmax and
‖F∞(x)‖ ≤ Fmax, with Fmax := 2

√
NM ′.

3) d2(ν) ≤ rstep(T )ν and d∞(ν) ≤
√
Nrstep(T )ν .

Under the additional Assumption 2
4) ‖F∞(x)−Fν(x)‖2 ≤ KF rstep(T )ν with KF := 2L′M2+

M ′
√
N . �

The next lemma provides a sufficient condition for Fν to
be strongly monotone, thus guaranteeing uniqueness of the
solution to VI(Qν , Fν).

Lemma 2 (Strong monotonicity ofFν). If Assumptions 1 and 2
hold, there exists νSMON such that Fν is strongly monotone for
all ν > νSMON. Under the additional Assumption 3 we can use

νSMON =
1

log(rstep(T ))
log

(
α∞

4(L′′M2 +M ′′)

)
. �

Finally, we look at convergence of the sets Qν to Q∞ in
terms of the Hausdorff distance.

Definition 4 (Hausdorff distance). The Hausdorff distance
between two subsets R and S of Rn is

dH(R,S) := max{sup
r∈R

inf
s∈S
‖r − s‖2, sup

s∈S
inf
r∈R
‖r − s‖2} . �

3In other words, there can be Nash equilibria of G∞ (resp. Gν ) that cannot
be obtained as solutions of VI(Q∞,F∞) (resp. VI(Qν ,Fν )). Within the class
of Nash equilibria, variational Nash equilibria enjoy special stability and
sensitivity properties and the burden of meeting the coupling constraints is
divided equally among all the agents [22, Theorem 3.1]. Variational equilibria
are also a subset of the normalized equilibria defined in [25], which are in
most cases the only Nash equilibria that can be computed.
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To study convergence rates we use the following quantity.

Definition 5. [26] For any matrix H ∈ Rm×n, let β(H) be
the smallest number such that for each nonsingular submatrix
B of H all entries of B−1 are at most β(H) in absolute value.
Then we define ∆(H) = n

√
nβ(H). �

Lemma 3 (Hausdorff convergence of sets). Under Assump-
tion 1, the following facts hold.

1) dH(Qν ,Q∞)→ 0;
2) dH(Qiν(x̄−iν ),Qi∞(x̄−iν ))→ 0,∀x̄ν ∈ Qν , i ∈ N[1, N ].

If additionally Assumption 3 holds then
3) dH(Qν ,Q∞) ≤ KHrstep(T )ν ,∀ν ≥ νglob

H ;
4) dH(Qiν(x̄−iν ),Qi∞(x̄−iν )) ≤ 2Ki

Hrstep(T )ν ,∀ν ≥ ν loc
H ,

x̄ν ∈ Qν , i ∈ N[1, N ];

where νglob
H := 1

log(rstep(T )) log
(

MÂ

‖Â‖∞M∞
√
N

)
, KH :=

∆(
[
A∞
G

]
)
√
N‖Â‖∞M∞, MÂ := maxx∈X minh∈{1,...,m}[b̂−

Âσ∞(x)]h > 0, ν loc
H := 1

log(rstep(T )) log
(

1
2N

)
, Ki

H :=

∆(
[
Ai∞
Gi

]
)
√
N‖Â‖∞M∞ ≤ KH , Ai∞ := 1

N [1N ⊗ Â]. �

Note that MÂ as defined in Lemma 3 is positive since, by
Assumption 3, there exists a point x̃ ∈ X such that Âσ∞(x̃) <
b̂ and thus minh∈{1,...,m}[b̂− Âσ∞(x̃)]h > 0.

IV. MAIN RESULTS

A. Convergence of variational NE

We here prove Claim 2. Specifically, Theorem 1 shows that
the Euclidean distance between the vectors corresponding to the
variational NE of Gν and G∞ converges to zero. Theorem 2 then
shows that the variational NE of Gν is an εν-NE of Gν . We note
that this latter fact is not a trivial consequence of Theorem 1
and Lipschitz continuity because the set of feasible deviations
for each agent i (i.e. Qiν(x̄−iν ) vs Qi∞(x̄−iν )) is different in the
two games, thus requiring Lemma 3.

Theorem 1 (Convergence in strategies). Suppose that Assump-
tions 1 and 2 hold. Then

1) The game G∞ has a unique variational Nash equilibrium
x̄∞ and for any ν > νSMON, Gν has a unique variational
Nash equilibrium x̄ν . Moreover,

lim
ν→∞

x̄ν = x̄∞. (9)

2) If additionally Assumption 3 holds then for ν >
max{νSMON, ν

glob
H } it holds

‖x̄ν − x̄∞‖2 ≤ KX

√
rstep(T )ν

where KX :=
KF+
√
K2
F+8α∞FmaxKH
2α∞

, with Fmax,KF and
KH as defined in Lemmas 1 and 3.

Proof: 1) Existence and uniqueness of x̄∞ and x̄ν solu-
tions to VI(Q∞,F∞) and VI(Qν ,Fν) respectively is guaranteed
by Proposition 1, because the operatorF∞ is strongly monotone
by Assumption 2 and the operator Fν (for ν > νSMON) is
strongly monotone by Lemma 2. Strong monotonicity of Fν

implies convexity of J i(xi, σiν(x)) in xi. Consequently, Propo-
sition 3 guarantees that x̄∞ and x̄ν are the unique variational
NE of G∞ and Gν , respectively. Asymptotic convergence of x̄ν
to x̄∞ follows from a continuity result for the solution of para-
metric VIs given in [27, Theorem A(b)], whose assumptions
are verified in Lemma 1 and Lemma 3.1).
2) The second statement follows from Theorem A.1, given in
Appendix A, combined with Lemma 1 and Lemma 3.3) to
bound dF (ν) and dH(Qν ,Q∞), respectively.

Theorem 2 (Convergence to ε-Nash). Suppose that Assump-
tions 1 and 2 hold. Then

1) For every ε > 0, there exists νε > 0 such that, for all
ν ≥ νε, any variational Nash equilibrium x̄ν of Gν is an
ε-Nash equilibrium of G∞.

2) Under the additional Assumption 3, we can use νε =
max{ν loc

H , νJ} where4

νJ :=
1

log(rstep(T ))
log

(
ε

2L(2 maxi(Ki
H) +M∞

√
Nn)

)
,

with ν loc
H and Ki

H as defined in Lemma 3.

Proof: 1) We divide the proof of this statement into two
parts: i) we prove that x̄ν ∈ Q∞ for any ν > 0, and ii) we
prove that condition (4) is satisfied.
i) Since x̄ν is a NE for Gν , x̄ν ∈ X and Âσiν(x̄ν) ≤ b̂ for all i.
By summing over all i and dividing by N , we obtain

Â
(

1
N

∑N
i=1 σ

i
ν(x̄ν)

)
≤ b̂. (10)

However,∑N
i=1 σ

i
ν(x̄ν) =

∑N
i=1

∑N
j=1[T ν ]ij x̄

j
ν

=
∑N
j=1

(∑N
i=1[T ν ]ij

)
x̄jν =

∑N
j=1 x̄

j
ν = Nσ∞(x̄ν),

(11)

where the second to last equality holds because, by Assump-
tion 1, T is doubly stochastic, hence so is T ν . By substitut-
ing (11) into (10) we obtain Âσ∞(x̄ν) ≤ b̂, thus x̄ν ∈ Q∞∀ν.
ii) Since x̄ν is a NE for Gν , for all i ∈ Z[1, N ] and for all
xiν ∈ Qiν(x̄−iν ) it holds

J i(x̄iν ,
∑
j

[T ν ]ij x̄
j
ν) ≤ J i(xiν , [T ν ]iix

i
ν+
∑
j 6=i

[T ν ]ij x̄
j
ν). (12)

Recall that L is the Lipschitz constant of J i(z1, z2) as by
standing assumption. Then

J i(x̄iν , σ∞(x̄ν)) = J i(x̄iν ,
∑
j

1
N x̄

j
ν)

≤ J i(x̄iν ,
∑
j [T

ν ]ij x̄
j
ν) + L‖

∑
j(1/N − [T ν ]ij)x̄

j
ν‖

≤ J i(x̄iν ,
∑
j [T

ν ]ij x̄
j
ν) + L

∑
j |1/N − [T ν ]ij |‖x̄jν‖

≤ J i(x̄iν ,
∑
j [T

ν ]ij x̄
j
ν) + L

√
nM∞d∞(ν)

(12)
≤ J i(xiν , [T

ν ]iix
i
ν +

∑
j 6=i[T

ν ]ij x̄
j
ν) + L

√
nM∞d∞(ν)

≤ J i(xiν , 1
N x

i
ν +

∑
j 6=i

1
N x̄

j
ν) + 2L

√
nM∞d∞(ν),

(13)
for all xiν ∈ Qiν(x̄−iν ), where the last inequality follows
through with a chain of inequalities similar to the previous

4If the quantities depending on cost functions, network, constraints do not
scale with N , Theorem 2 reads νε = max

{
c1 log (

√
N/ε), c2 log

(√
N
)}

,
where c1 and c2 are constants independent from N , ε.
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ones. Condition (13) holds for all xiν ∈ Qiν(x̄−iν ), as we used
the fact that x̄ν is a NE for Gν . To show that (4) holds for all
xi ∈ Qi∞(x̄−iν ) note that, by definition of Hausdorff distance,
for any any xi ∈ Qi∞(x̄−iν ) there exists x̃iν ∈ Qiν(x̄−iν ) such
that ‖xi − x̃iν‖ ≤ dH(Qiν(x̄−iν ),Qi∞(x̄−iν )) =: Hi(ν). From
(13) we know that since x̃iν ∈ Qiν(x̄−iν ) then

J i(x̄iν , σ∞(x̄ν))

≤ J i(x̃iν , 1
N x̃

i
ν +

∑
j 6=i

1
N x̄

j
ν) + 2L

√
nM∞d∞(ν)

≤ J i(xi, 1
N x

i +
∑
j 6=i

1
N x̄

j
ν) + εi(ν).

(14)

for εi(ν) := (L + L
N )Hi(ν) + 2L

√
nM∞d∞(ν). Note that

Hi(ν) → 0 by Lemma 3.2) and d∞(ν) → 0 by Lemma 1.
Consequently εi(ν)→ 0 and there exists νε such that εi(ν) ≤ ε
for all i ∈ N[1, N ] and all ν ≥ νε. Since (14) holds for all i
and all xi ∈ Qi∞(x̄−iν ) and given i), x̄ν is an ε-NE of G∞, for
all ν ≥ νε.
2) Under the additional Assumption 3 we get that for all ν ≥
ν loc
H , by Lemma 1 and Lemma 3.4),

εi(ν) := (L+ L
N )Hi(ν) + 2L

√
nM∞d∞(ν)

≤ 2L(2Ki
H +M∞

√
Nn)rstep(T )ν

≤ 2L(2 max
i

(Ki
H) +M∞

√
Nn)rstep(T )ν .

Setting the right hand side equal to ε leads to νJ .

B. Convergence of Algorithm 1

Corollary 1. Suppose that for the value of ν used in Algo-
rithm 1 the operator Fν in (7b) is strongly monotone with
constant αν > 0 and Lipschitz with constant Lν > 0. Set

τ ≤ −L
2
ν+
√
L4
ν+4α2

ν‖Aν‖2
2αν‖Aν‖2 . (15)

Then for every initial condition (x(0), λ(0)) ∈ X × RNm≥0 the
sequence (x(k))

∞
k=1 produced by Algorithm 1 converges to

the unique variational Nash equilibrium of Gν which, under
Assumptions 1 and 2, is an ε-NE of G∞ for any ν ≥ νε.

Proof: Let us define x(k) := [xi(k)]
N
i=1, λ(k) :=

[λi(k)]
N
i=1, σν,(k) := [σiν,(k)]

N
i=1, µν,(k) := [µiν,(k)]

N
i=1. Then the

communication steps are equivalent to

σν,(k) ← (T ν ⊗ In) x(k), µν,(k) ← (T ν ⊗ Im)>λ(k).

Consequently, the update steps can be rewritten as

xi(k+1)←ΠX i [x
i
(k) − τ(F iν,(k) +Â

>∑N
j=1[T ν ]jiλ

j
(k))],

λi(k+1) ← ΠRm≥0
[λi(k) − τ(b̂− Â

∑N
j=1[T ν ]ij(2x

j
(k+1) − x

j
(k)))]

for all i ∈ Z[1, N ] or, in compact form,

x(k+1) ←ΠX [x(k)−τ
(
Fν(x(k)) +Aν

>λ(k)

)
],

λ(k+1) ←ΠRNm≥0
[λ(k) − τ(b− 2Aνx(k+1) +Aνx(k))].

(16)

The update (16) coincides with one iteration of the asymmetric
projection algorithm given e.g. in [24, Algorithm 2] or in [10,
Algorithm 4.1] (for L̄ = 0) applied to VI(Qν , Fν). Then [24,
Theorem 3] shows that, by choosing τ as in (15), which implies
τ < 1/‖Aν‖, Algorithm 1 is guaranteed to converge to the

unique solution of VI(Qν , Fν). The conclusion then follows
by Theorem 2.

Remark 1. To implement Algorithm 1 the agents need to agree
on the values of ν and τ to use. Under Assumption 3, we can
provide explicit ways of computing these two quantities.
Regarding ν, the quantities νSMON, ν loc

H , νJ are given in
Lemmas 2 and 3, Theorem 2. Some recent works, such as [28],
tackle the problem of computing rstep(T ) in a distributed
way for symmetric communication networks. For asymmetric
communication networks instead, one can use the bound
rstep(T ) = ‖T − (1/N)1N1>N‖2 ≤ ‖T − (1/N)1N1>N‖1‖T −
(1/N)1N1>N‖∞ and the fact that one and infinity norms can
be distributedly computed as maxima over all the nodes of
local quantities. N can be computed with classical distributed
algorithms, while the constants M2,M∞ can be computed
in a distributed way if each agent is willing to disclose
max
xi∈X i

‖xi‖2 and max
xi∈X i

‖xi‖∞. Bounds on α∞ relying only

on local information have been studied in the literature in
the case of specific cost functions J i, as in [24, Lemma 3].
Finally, the remaining constants L, L′, L′′, M ′′ are (or can be
upper bounded by) the maximum of local quantities, see e.g.
footnote 1, and can thus be computed in a distributed fashion.
Regarding τ , the bound in (15) of Corollary 1 can be used. To
compute the quantities in there, note that ‖Aν‖ = ‖T ν‖‖Â‖ =
‖Â‖ (as T is doubly stochastic); an upper bound to αν is given
in (25) by using L′′,M2,M

′′, rstep(T ); and Lν can be upper
bounded by using L′ and N .

C. Relations with the literature on distributed convergence in
AAG without coupling constraints

Distributed algorithms for AAGs without coupling con-
straints have been derived in the literature e.g. in [11], [12], [13],
[14]. We highlight here how the steps of Algorithm 1 and the
proofs greatly simplify in the absence of coupling constraints.

Regarding Theorem 1, in the absence of coupling constraints
the VIs of Gν and G∞ feature the same non-parametric set X .
Convergence of x̄ν to x̄∞ can thus be proven by using standard
sensitivity analysis results for VIs (see Appendix A).

Regarding Theorem 2, in the absence of coupling constraints
the fact that x̄ν is an ε-NE of G∞ is a trivial consequence of
(9) and of the fact that the cost functions are Lipschitz. The
difficulty when introducing the coupling constraints are that i)
the feasibility of x̄ν in Gν does not imply feasibility of x̄ν in
G∞ and ii) in the definition of NE, the set of feasible deviations
Qiν(x̄−iν ) in Gν is different from the set of feasible deviations
Qi∞(x̄−iν ) in G∞ (without coupling constraints both these sets
would be X i). Hence to prove Theorem 2 one needs to show
Hausdorff convergence of Qiν(x̄−iν ) to Qi∞(x̄−iν ) as ν → ∞,
as done in Lemma 3.

Regarding Algorithm 1 and Corollary 1, in the absence of
coupling constraints since the constraint setX can be decoupled
among the agents, the standard projection algorithm [9, Algo-
rithm 12.1.1] is distributed and it is guaranteed to converge
to a solution to VI(X , Fν), because Fν is strongly monotone.
Hence, one can run Algorithm 1 with only the primal steps and
simplified strategy update xi(k+1) ←ΠX i [x

i
(k)−τF

i
ν,(k)].
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V. APPLICATION: COURNOT GAME WITH
TRANSPORTATION COSTS

A. Game definition

Consider a single-commodity Cournot game with N firms
and V markets, which correspond to V physical locations. Firm
i ∈ Z[1, N ] chooses to sell yiv ∈ R≥0 amount of commodity at
each market v ∈ Z[1, V ]. Each firm i produces its commodity
at a given location `i ∈ Z[1, V ] and then ships its com-
modity to the different markets over a transportation network,
where the V nodes represent market locations and a directed
edge connecting two nodes represents a road connecting two
markets. We characterize the network by its incidence matrix
B ∈ {0, 1,−1}V×E , where E is the number of edges and
Bv,e = −1 if edge e leaves node v, Bv,e = 1 if edge e enters
node v and Bv,e = 0 otherwise. Denote by ri ∈ R≥0 the
total amount of commodity produced and sold by firm i (i.e.,
ri =

∑
v∈V y

i
v) and by tie ∈ R≥0 the amount of commodity

transported by firm i over edge e, with ti = [tie]
E
e=1. Define

the strategy vector of firm i as xi := [ti; ri] ∈ RE+1
≥0 , which

uniquely determines yi := [yiv]
V
v=1, due to the balance equation

yi = Bti + e`ir
i = Hixi,

withHi := [B, e`i ] ∈ RV×(E+1) and ej the jth canonical vector.
1) Cost function: We assume that at each market the com-

modity is sold at a price that depends on the total commodity
sold by the N firms. We allow for inter-market effects and use
the inverse demand function p : RV≥0 → RV≥0 that maps the nor-
malized vector σ∞(x) = 1

N

∑N
j=1 y

j = 1
N

∑N
j=1H

jxj to the
vector of prices of each market p(σ∞(x)) := [pv(σ∞(x))]Vv=1.
Then the revenue of firm i is p(σ∞(x))>yi. Moreover, for firm
i transporting tie commodity over an edge comes with cost

cie(t
i
e) := βiet

i
e − γie(tie), (17)

where, for all i, γie is a strongly concave, increasing function
with maximum derivative smaller than βie. The transportation
cost in (17) can be thought of as the sum of two terms: the first
is a cost proportional to the amount shipped, the second term
is a discount that increases with the amount shipped.

The production cost function of firm i has a similar form

ai(ri) := βiar
i − γia(ri), (18)

where γia is a strongly concave, increasing function with max-
imum derivative smaller than βia. The functions (17) and (18)
are strongly convex, as in [9, Section 1.4.3]. To sum up

J i(xi, σ∞(x)) := ai(ri)︸ ︷︷ ︸
production cost

+
∑E
e=1 c

i
e(t

i
e)︸ ︷︷ ︸

transportation cost

− p(σ∞(x))>yi︸ ︷︷ ︸
revenue

.

2) Constraints: The strategy of firm i must satisfy the
individual constraints

X i := {xi ∈ RE+1
≥0 |x

i ≤ r̄i · 1E+1, y
i = Hixi ≥ 0}, (19)

where r̄i is the production capacity of firm i. Note that (19)
implies tie ≤ r̄i ∀e, guaranteeing boundedness of X i. This
constraint is without loss of generality, as the transportation
costs cie are increasing. We also assume that each market v is
composed by retailers whose storage capacity imposes an upper

bound Kv on the total commodity that can be sold at market v,
leading to the coupling constraints σ∞(x) ≤ K := [Kv]

V
v=1.

3) Communication network: We assume that the firms can
communicate with each other according to a sparse communi-
cation network T satisfying Assumption 1. This network can
model spatial proximity of firms, or the fact that they may want
to share their strategies only with firms they trust.

B. Theoretical guarantees

The cost, constraints and network introduced above give rise
to a game as in (3), with the only difference that the aggregate
σ∞(x) depends on yi = Hixi instead of xi directly. Defining
a new game with strategies x̃i = Hixi, so that the aggregate
depends only on the x̃i, is not possible as the cost J i(xi, σ∞(x))
cannot be expressed in terms of the x̃is only, unless Hi is full
column rank for all i. Our theoretical results can nonetheless
be easily extended to cover such case.

1) Extension: Set Hblkd := blkdiag(H1, . . . ,HN ) ∈
RNV×N(E+1), the quantities in (7) (8), relative to G∞, Gν are

F∞(x) := [∇xiJ i(xi, σ∞(x))]Ni=1,

= [∇z1J i(xi, σ∞(x)) + 1
NH

>
i ∇z2J i(xi, σ∞(x))]Ni=1,

Q∞ := {x ∈ X 1 × · · · × XN |A∞x ≤ b},

A∞ :=

(
1

N
1N1>N ⊗ Â

)
Hblkd, b := 1N ⊗ b̂,

Fν(x) := [∇xiJ i(xi, σiν(x))]Ni=1,

=[∇z1J i(xi, σiν(x))+[T ν ]iiH
>
i ∇z2J i(xi, σiν(x))]Ni=1,

Qν := {x ∈ X 1 × · · · × XN |Aνx ≤ b},
Aν := (T ν ⊗ Â)Hblkd.

2) Verify the assumptions: Assumption 1 holds by problem
statement. To guarantee that Assumption 2 holds we make the
following assumption, whose sufficiency is proven in Lemma 4.

Assumption 4 (Cournot-game regularity conditions). The cost
J i(z1, z2) is twice continuously differentiable for all i, and
the inverse demand function p satisfies one of the following
conditions.
1) p is affine, i.e., p(σ∞(x)) = −Dσ∞(x) + d, for some
D ∈ RV×V , d ∈ RV and D � 0.
2) pv depends only on the commodity sold at v, i.e.,
p(σ∞(x)) =: [pv([σ∞(x)]v)]

V
v=1. For each v, pv is twice

continuously differentiable, strictly decreasing and satisfies

minv∈{1,...,V }
z∈[0,r̃]

(
−p′v(z) + r̃

8p
′′
v(z)

)
> 0, r̃ := max

i∈Z[1,N ]
r̄i.

(20)
�

Lemma 4. If Assumption 4 holds then the Cournot game in
Section V-A satisfies Assumption 2. �

We report the proof in Appendix B.

Remark 2. If the function p is as in Assumption 4.1) and
D = D>, then G∞ is a potential game. In other words, there
exists a function f : Q → R such that ∇xf(x) = F∞(x) and
VI(Q∞,F∞) is equivalent to argminx∈Q∞ f(x), as described
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in [9, Section 1.3.1]. Then a NE can be found by solving the
optimization program argminx∈Q∞ f(x). Assumption 4.1) is
verified for instance in [7] or in the cost (5)-(6) in [12], with
bh = 1, for any ah, ch. Assumption 4.2) is satisfied if pv is
convex and strictly decreasing ∀v.

Regarding the Standing Assumption, Assumption 2 implies
that J i is continuously differentiable in its arguments and
that ∇x[∇xiJ i(xi, σ∞(x))]Ni=1 � αIN(E+1) by Proposition 2,
which in turn implies convexity of J i in xi for all fixed x−i.
The sets X i are trivially convex, compact and non-empty.

Finally, the next lemma (proven in [29]) shows that for the
network, number of rounds of communication ν and price
functions used in the next subsection, Fν is strongly monotone.

Lemma 5. Under Assumption 4.1), if T is the adjacency
matrix of an undirected network, so that T = T>, then the
operator Fν is strongly monotone for any ν even. �

C. Numerical analysis

We consider the transportation network illustrated in Fig-
ure 2 which consists of V = 43 markets and E = 51
(bidirectional) edges connecting them. The network is taken
from [30], which provides the Cartesian coordinates of the
vertexes. We consider 5 firms that differ only for their lo-
cations `i ∈ {37, 20, 11, 6, 35}, as indicated in Figure 2.
Each firm has a production capacity of r̄i = 10, while
we consider a capacity of 1.5 for each market (i.e. K =
1.5/5). The production and transportation costs for firm i are
ai(ri) = a(ri) = 2

[
ri −

(
1− 1

1+ri

)]
, cie(t

i
e) = ce(t

i
e) =

ρe

(
tie −

(
1− 1

1+tie

))
, for all e where ρe ∈]0, 1] is the nor-

malized5 length of road e. The inverse demand function p is
affine, i.e. p(σ) = 10 · 143 − Dσ and it encodes intra-market
competition via the matrix D whose component in position
(h, k) is [D]h,k = 1 if h = k, [D]h,k = 0.3(1 − ρe), if
there is a road e = (h, k) between markets h and k, while
[D]h,k = 0 otherwise. In words, the price pv at market v not
only decreases when more commodity is sold at v, but also
when more commodity is sold at the neighboring markets, with
physically close markets being more influential. We verified
numerically that D � 0. We use the communication matrix
T that corresponds to a symmetric ring, i.e., Tij = 0.5 if
|i − j| = 1 or |i − j| = 4, Tij = 0 otherwise. Note that T
satisfies Assumption 1. We run Algorithm 1 with τ = 0.05,
initial conditions all equal to zero and different values of ν.6

We use max{‖x(k) − x(k−1)‖∞, ‖λ(k) − λ(k−1)‖∞} < 10−4

as stopping criterion. We consider even values of ν between 2
and 20. For each ν we run Algorithm 1 and find the variational
NE of Gν , which is an εν-NE for G∞, as by Theorem 2. After

5Defined as the absolute length divided by the maximum road length.
6The values in (15) can be shown to be αν = (2ρmin)/(1 + r̃)3 =

7 · 10−5,∀ν; Lν = λmax(H>blkd[(IN ⊗ D)(T ν ⊗ IE) + diag(T ν) ⊗
D>]Hblkd) ≤ 12.89; and ‖Aν‖ = 1, ∀ν; then (15) reads τ ≤ 4 · 10−7.
This is a conservative bound, we verified by simulations that the algorithm
converges also for τ = 0.05. Lemma 2 gives theoretical guarantees of
convergence for ν ≥ νSMON = 67. Note that an extension of Lemma 2
is needed due to the presence of Hi; this results in νSMON = log(α∞/((1+
h)2(L′′M2) + 2(h + h2)M ′′))/ log(rstep(T )), with h := ||Hblkd‖2. We
verified by simulations that Fν is strongly monotone for all ν ≥ 11.

convergence, εν can be computed according to Definition 1. A
more descriptive quantity is the relative maximum improvement
ε̂ν , defined as7

ε̂ν := max
i,xi∈Qi∞(x̄−iν )

J i(x̄iν , σ∞(x̄ν))− J i(xi, 1
N x

i+
∑
j 6=i

1
N x̄

j
ν)

J i(x̄iν , σ∞(x̄ν))
.

(21)
Figure 1 reports the value of ε̂ν as function of ν, thus nu-
merically verifying Theorem 2. It also contains the value of
‖x̄ν − x̄∞‖2 as function of ν, thus numerically verifying
Theorem 1. In Figure 2 we illustrate the variational NE of G∞
obtained by setting ν = 1 and T = 1

N 1N1>N . Each firm is the
only seller at its production location, and more in general firms
tend to sell close to their production location, as expected.

4 6 8 10 12 14 16 18
0

2

4

6
ε̂ν

‖x̄ν − x̄∞‖2

Fig. 1: Relative maximum improvement and two-norm distance against ν.
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upper bound y1
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v

Fig. 2: Variational Nash of G∞, computed by Algorithm 1 for ν = 1 and
T = 1

N
1N1>N . Each of the 5 firms is represented by a different color. The

bottom plot reports yiv for each firm i and market v (from 1 to 43). Note that
the coupling constraint

∑
i y
i
v ≤ 1.5 is met in all markets v. A geographic

illustration of the market is represented in the graph on top. Therein each
market takes the color of the firm that sells the most commodity there. The
five production locations are denoted by squares. Note that each firm has
majority in the markets closer to its location (as transporting there is cheaper).

VI. IMMEDIATE GENERALIZATIONS AND FUTURE WORK

1) Weighted average: The above results can be immediately
generalized to aggregative games that depend on a weighted
average σ∞(x) =

∑N
i=1 wix

i, for some wi > 0 instead of
the average σ∞(x) = 1

N

∑N
i=1 x

i used above. We can impose∑
i wi = 1 without loss of generality. Then Assumption 1

should require T to be primitive with w > 0 as left eigenvector
relative to the eigenvalue 1 (normalized such that w>1N = 1).

7Note that for any fixed x̄ν , ε̂ν in (21) can be computed by solving the N
optimization problems {min

xi∈Qi∞(x̄−iν )
Ji(xi, 1

N
xi+

∑
j 6=i

1
N
x̄jν)}Ni=1.
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2) Local strategy sets of different dimensions: Here X i ⊂
Rn for all i, but the results hold for strategy sets of differ-
ent dimension, i.e, X i ⊂ Rni , as in [10], with σi(x) =
1
N

∑N
j=1[Hjxj + hj ] ∈ Rn, for some Hj ∈ Rn×nj , hj ∈ Rn.

3) Wardrop instead of Nash equilibrium: The results stated
for Nash equilibrium extend to Wardrop equilibrium [24,
Definition 2], called traffic equilibrium in transportation or
competitive equilibrium in economics. If in the primal update
of Algorithm 1 we use F iν,(k) ← ∇z1J i(xi(k), σ

i
ν,(k)), then

Algorithm 1 converges to a Wardrop equilibrium.
Future directions: An extension to time-varying networks,

as well as asynchronous updates would be valuable for appli-
cations where synchronization might be problematic. It would
also be interesting to perform a comparison in terms of strategy
and communication updates with the algorithms presented in
the recent works (for generic games) [19], [21]. Finally, it would
be valuable to understand if convergence to the equilibrium
x̄∞ can be achieved via an algorithm where the number of
communications changes with the iterations.

APPENDIX

A. Convergence result for parametric variational inequalities

The notation in Appendix A is disjoint from the main paper.
1) Literature: We survey some literature results on conver-

gence of the solution x̄θ of VI(Qθ, Fθ) to the solution x̄θ̂ of
VI(Qθ̂, Fθ̂) under the assumption that Fθ̂ is strongly monotone
and Fθ converges uniformly to Fθ̂ as θ → θ̂. Such results can
be divided in three classes, based on assumptions on the sets.

The first class of results focuses on fixed sets and studies
convergence of the solution x̄θ of VI(Q, Fθ) to the solution
x̄θ̂ of VI(Q, Fθ̂). If Q is closed and convex, Fθ is Lipschitz
in θ uniformly in x and Fθ̂ is strongly monotone, then the
solution is Lipschitz continuous [31, Theorem 1.14], [9, Section
5.3]. Strong monotonicity of Fθ̂ can be relaxed if Q is a
polytope [32]. The second class of results [33], [34] focuses
on parametric sets that can be described as Qθ := {x ∈
Rn | g(x, θ) ≤ 0} for a suitable parametric function g(x, θ).
If g(x, θ) converges uniformly in x to g(x, θ̂) as θ → θ̂ and at
x̄θ̂ the Linear Independence Constraint Qualification holds, the
parametric solution x̄θ is locally Lipschitz continuous around
θ̂. Such results have been applied to games, e.g. in [35]. The
third class of results [34], [27] is the most general and only
assumes that Qθ converges to Qθ̂ according to the Kuratowski
set convergence definition. In this case one can prove continuity
of x̄θ around θ̂. We are not aware of results proving Lipschitz
continuity in this case.

In the following we show convergence (and derive conver-
gence rates) without assuming any constraint qualification for
VIs whose parametric sets have the special structure

Qν := {x ∈ X ⊂ Rn|Aνx ≤ bν},
Q∞ := {x ∈ X ⊂ Rn|A∞x ≤ b∞},

(22)

where Aν , A∞ ∈ Rm×n, bν , b∞ ∈ Rm, Aν → A∞, bν → b∞.
Note that we focus on a discrete parameter ν ∈ N that tends to
infinity, however similar arguments can be used for a continuous
parameter θ tending to θ̂. Our results depend on X : 1) If X is
convex and compact we show that Qν converges to Q∞ in

Hausdorff (and thus Kuratowski) norm. Convergence of the VI
solution then follows from [34], [27]; 2) If X is a polytope
we additionally bound the distance between the solution to
VI(Qν , Fν) and VI(Q∞, F∞).

Our result in 2) can be seen as an extension of [32], [36] on
parametric variational inequalities over polyhedral sets, since
[32] studies VIs where the polyhedron is fixed and [36] provides
convergence rates when only the right-hand side bν of the
affine constraint defining the polyhedron is parametric. Instead,
we allow the parameter to appear also in the matrix Aν (and
quantify its effect on the convergence rate).

2) Preliminaries on Hausdorff distance: We report here
some preliminary facts, which follow immediately from pre-
vious literature results.

Lemma A.1. For any matrix H ∈ Rm×n there exists a
constant ∆(H) > 0, such that for any x1 ∈ Rn and
h1, h2 ∈ Rm such that {x ∈ Rn | Hx ≤ h2} 6= ∅ and
Hx1 ≤ h1 there exists x2 ∈ Rn such that Hx2 ≤ h2 and

‖x1 − x2‖2 ≤ ∆(H)‖h1 − h2‖∞ �

This lemma follows immediately from the fact that the Haus-
dorff distance between polytopes of the form {x | Hx ≤ h} is
Lipschitz continuous in h, see e.g. [37]. Different refinements
for the constant ∆(H) have been provided in different works,
see e.g. [38]. Here we use the formula derived in [26, Theorem
0.1] and reported in Definition 5. The previous lemma leads to
the following convergence result for the sets Qν ,Q∞ when X
is a polytope.

Lemma A.2. Suppose that the set X in (22) is a com-
pact polytope X := {x ∈ Rn|Gx ≤ g}. Let c(ν) :=
maxx∈X {‖(A∞ −Aν)x+ bν − b∞‖∞}. The following holds.

1) If Qν ,Q∞ are non-empty, then

dH(Qν ,Q∞) ≤ max
{

∆(
[
A∞
G

]
),∆(

[
Aν
G

]
)
}
· c(ν);

2) If additionally, {x ∈ X | A∞x ≤ b∞ − c(ν)1m} is non-
empty then

dH(Qν ,Q∞) ≤ ∆(
[
A∞
G

]
) · c(ν).

Proof: Take any point x1 ∈ Qν . By definition of Qν it
holds

[
Aν
G

]
x1 ≤

[
bν
g

]
equivalently H1x1 :=

[
A∞
G

]
x1 ≤[

bν+(A∞−Aν)x1
g

]
=: h1. If we set h2 =

[
b∞
g

]
, by Lemma

A.1 we know that there exists x2 ∈ Q∞ (non-empty by
assumption) such that ‖x1 − x2‖∞ ≤ ∆(

[
A∞
G

]
)‖(A∞ −

Aν)x1 + bν − b∞‖∞ ≤ ∆(
[
A∞
G

]
)c(ν). Similarly, for any

point x1 ∈ Q∞ by Lemma A.1 there exists x2 ∈ Qν such
that ‖x1 − x2‖∞ ≤ ∆(

[
Aν
G

]
)c(ν), thus concluding the first

part of the proof. If the set {x ∈ X | A∞x ≤ b∞− c(ν)1m} is
non-empty then an alternative way to associate a point x2 ∈ Qν
to any x1 ∈ Q∞ is to set h2 =

[
b∞
g

]
−
[
c(ν)1

0

]
. By definition

of Q∞ it holds Hx1 :=
[
A∞
G

]
x1 ≤

[
b∞
g

]
=: h1. By Lemma

A.1 there exists x2 such that[
A∞
G

]
x2 ≤

[
b∞
g

]
−
[
c(ν)1m

0

]
(23)

and ‖x1 − x2‖∞ ≤ ∆(
[
A∞
G

]
)c(ν). Let us now show that

x2 ∈ Qν . Inequality (23) implies
[
Aν
G

]
x2 ≤

[
bν
g

]
+[

(Aν−A∞)x2+(b∞−bν)
0

]
−
[
c(ν)1m

0

]
. From Gx2 ≤ g it follows
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x2 ∈ X , hence ‖(Aν −A∞)x2 + (b∞− bν)‖∞ ≤ c(ν) and the
previous inequality implies

[
Aν
G

]
x2 ≤

[
bν
g

]
. Hence x2 ∈ Qν .

This leads to the second statement.
If X is not a polytope, we prove asymptotic convergence.

Lemma A.3. Suppose that the set X ⊂ Rn is convex, compact
and has non-empty interior. Moreover, limν→∞Aν = A∞,
limν→∞ bν = b∞. Then dH(Qν ,Q∞)→ 0 as ν →∞.

Proof: Since X is compact there exists a polytope X c :=
{x ∈ Rn | Gx ≤ g} such that X ⊆ X c. We define Sν :=
{x ∈ X c|Aνx ≤ bν}, S∞ := {x ∈ X c|A∞x ≤ b∞}. Since
∆(
[
Aν
G

]
) → ∆(

[
A∞
G

]
), implying that ∆(

[
Aν
G

]
) is bounded,

and c(ν)→ 0, Lemma A.2 implies that dH(Sν ,S∞)→ 0. The
conclusion follows since Qν = Sν ∩ X and Q∞ = S∞ ∩ X
and X is convex, compact and has non-empty interior, see [27,
Lemma 1.4] and [39, Theorem 3].

3) Convergence result: Convergence of the solution of
VI(Qν , Fν) to the solution of VI(Q∞, F∞) can be proven
immediately by using Lemma A.3 and [27, Theorem A(b)]
since Hausdorff implies Kuratowski convergence in compact
spaces. In the next theorem we provide a refinement of [27,
Theorem A(b)] that gives an explicit convergence rate.

Theorem A.1. Suppose that F∞ is strongly monotone with
constant α∞ > 0 and that the sets Qν , Q∞ are convex and
compact. Moreover, assume that
i) ‖Fν(x)− F∞(x)‖ ≤ dF (ν) for all x and ν,
ii) there exists Fmax s.t. ‖F∞(x)‖ ≤ Fmax and ‖Fν(x)‖ ≤ Fmax
for all x ∈ X and all ν.
Let x̄∞ be the unique solution of VI(Q∞, F∞) and x̄ν any
solution of VI(Qν , Fν), then

‖x̄ν − x̄∞‖ ≤
dF (ν) +

√
dF (ν)2 + 8α∞FmaxdH(Qν ,Q∞)

2α∞
.

In particular, if dH(Qν ,Q∞)→ 0 and dF (ν)→ 0 as ν →∞
then x̄ν → x̄∞.

Proof: By definition of solution to a VI it holds

F∞(x̄∞)>(x∞ − x̄∞) ≥ 0, ∀x∞ ∈ Q∞
Fν(x̄ν)>(xν − x̄ν) ≥ 0, ∀xν ∈ Qν

(24)

By definition of Hausdorff distance there exists x̃∞ ∈ Q∞ and
x̃ν ∈ Qν such that ‖x̃∞ − x̄ν‖ ≤ dH(Qν ,Q∞) =: dH and
‖x̃ν− x̄∞‖ ≤ dH . Plugging these values instead of the generic
x∞ and xν in (24) and adding and subtracting x̄ν , x̄∞ we get

F∞(x̄∞)>(x̃∞ − x̄ν) ≥ F∞(x̄∞)>(x̄∞ − x̄ν)

Fν(x̄ν)>(x̃ν − x̄∞) ≥ −Fν(x̄ν)>(x̄∞ − x̄ν)

adding the two inequalities leads to T1 ≥ T2 with
T1 := F∞(x̄∞)>(x̃∞ − x̄ν) + Fν(x̄ν)>(x̃ν − x̄∞), T2 :=
[F∞(x̄∞) − Fν(x̄ν)]>(x̄∞ − x̄ν). T1 ≤ (‖F∞(x̄∞)‖ +
‖Fν(x̄ν)‖)dH ≤ 2FmaxdHT2 := [F∞(x̄∞) − F∞(x̄ν) +
F∞(x̄ν) − Fν(x̄ν)]>(x̄∞ − x̄ν) ≥ α∞‖x̄∞ − x̄ν‖2 −
dF (ν)‖x̄∞ − x̄ν‖. Combining we get α∞‖x̄∞ − x̄ν‖2 −
dF (ν)‖x̄∞ − x̄ν‖ − 2FmaxdH ≤ 0, as desired.

Remark 3. This proof is based on [31, Theorem 1.14], where
however only the VI operator is parametric. If X is a polytope,
dH(Qν ,Q∞) can be bound as in Lemma A.2. Hence Theorem
A.1 can be used to bound the VI solutions distance.

B. Omitted proofs

Proof of Lemma 1

1) The fact that limν→∞ T ν = 1
N 1N1N> is proven in [23,

Theorem 2.13]. Convergence of Aν to A∞ follows immedi-
ately from the definitions (7a), (8a) and the properties of the
Kronecker product. Note that

F∞(x) = [∇z1J i(xi, σ∞(x)) + 1
N ∇z2J

i(xi, σ∞(x))]Ni=1,

Fν(x) = [∇z1J i(xi, σiν(x)) + [T ν ]ii∇z2J i(xi, σiν(x))]Ni=1.

Uniform convergence of Fν to F∞ follows by continuity
of ∇z1J i(z1, z2) and ∇z2J i(z1, z2) in z1, z2 for all i, by
[T ν ]ii → 1

N , and by σiν(x)→ σ∞(x) uniformly in x.
2) Since ‖∇z1J i(z1, z2)‖ and ‖∇z2J i(z1, z2)‖
are continuous functions over the compact set
X i × conv{X 1, . . . ,XN}, there exists M ′ > 0 such
that ‖∇z1J i(z1, z2)‖ ≤ M ′ and ‖∇z2J i(z1, z2)‖ ≤ M ′, for
all (z1, z2) ∈ X i × conv{X 1, . . . ,XN}. Note that [T ν ]ii ≤ 1
for all i ∈ Z[1, N ] and for all ν > 0, since T and thus T ν

are non-negative and doubly stochastic. Then ‖Fν(x)‖2 =∑N
i=1‖∇z1J i(xi, σiν(x)) + [T ν ]ii∇z2J i(xi, σiν(x))‖2 ≤∑N
i=1(M ′2 +M ′2 + 2M ′2) = 4NM ′2 = F 2

max, for all x ∈ X .
The bound ‖F∞(x)‖ ≤ Fmax can be proven in the same way.
3) The result on d2(ν) follows from [23, Lemma 10.3] and it
implies the one on d∞(ν), because ‖A‖∞ ≤

√
N‖A‖2 for

any matrix A ∈ RN×N .
4) Under Assumption 2, ∇zaJ i(z1, z2) is Lipschitz
continuous for a ∈ {1, 2} with constant L′.
Note that F∞(x) − Fν(x) = v1 + v2 + v3 with
v1 := [∇z1J i(xi, σ∞(x)) − ∇z1J i(xi, σiν(x))]Ni=1,
v2 := 1

N [∇z2J i(xi, σ∞(x)) − ∇z2J i(xi, σiν(x))]Ni=1 and
v3 := [ 1

N∇z2J
i(xi, σiν(x)) − [T ν ]ii∇z2J i(xi, σiν(x))]Ni=1.

Moreover, ‖v1‖22 =
∑N
i=1 ‖∇z1J i(xi, σ∞(x)) −

∇z1J i(xi, σiν(x))‖2 ≤
∑N
i=1(L′)2‖σ∞(x) − σiν(x)‖2 =

(L′)2‖[( 1
N 1N1>N − T ν) ⊗ In]x‖2 ≤ (L′)2d2(ν)2M2

2 .
Similarly, ‖v2‖2 ≤ 1

NL
′d2(ν)M2. Finally, ‖v3‖22 =∑N

i=1 ‖(
1
N − [T ν ]ii)∇z2J i(xi, σiν(x))‖2 ≤ (M ′)2

∑N
i=1( 1

N −
[T ν ]ii)

2 ≤ (M ′)2‖ 1
N 1N1>N − T ν‖2F ≤ (M ′)2Nd2(ν)2,

where for any matrix A ∈ RN×N , ‖A‖F denotes
its Frobenius norm and we used ‖A‖F ≤

√
N‖A‖2.

Overall, using the triangular inequality, we get
‖F∞(x)− Fν(x)‖ ≤ (2L′M2 +M ′

√
N)d2(ν).

Proof of Lemma 2

By the mean value theorem8, there exists x̄ ∈ [x, y] such that

(Fν(x)− Fν(y))>(x− y) = (F∞(x)− F∞(y))>(x− y)+

(Fν(x)− F∞(x)− (Fν(y)− F∞(y)))>(x− y) ≥
(α∞ − ‖∇xF∞(x̄)−∇xFν(x̄)‖)‖x− y‖2 =: αν‖x− y‖2.

8Applied to the function φ(t) = (x− y)>F̃ (tx+ (1− t)y) with F̃ (·) =
Fν(·) − F∞(·), so that (x − y)>[F̃ (x) − F̃ (y)] = φ(1) − φ(0) = (x −
y)>∇F̃ (t̄x+ (1− t̄)y)(x− y).
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As J i(z1, z2) is twice-continuously differentiable, T ν →
1
N 1N1>N and σiν(x)→ σ∞(x), then ∇xF∞(x)−∇xFν(x)→
0, uniformly in x because X is compact (Heine-Cantor theo-
rem). Hence for ν large enough αν > 0 and Fν is strongly
monotone. To derive an exact bound, under the additional
Assumption 3, note that

∇xFν(x) = K(11)
ν +K(12)

ν [W (1)
ν ⊗ In] +K(22)

ν [W (2)
ν ⊗ In]

∇xF∞(x) = K(11)
∞ +K(12)

∞ [W (1)
∞ ⊗ In] +K(22)

∞ [W (2)
∞ ⊗ In]

where W
(1)
ν := (diag(T ν) + T ν), W (2)

ν := (diag(T ν)T ν),
W

(1)
∞ := 1

N (IN + 1N1>N ), W (2)
∞ := 1

N2 1N1>N , K(ab)
ν :=

blkdiag[∇zazbJ i(xi, σiν(x))]Ni=1 for a, b ∈ {1, 2} and similar
for K(ab)

∞ . Since ‖K(ab)
ν −K(ab)

∞ ‖2 ≤ L′′M2d2(ν), ‖W (a)
∞ −

W
(a)
ν ‖2 ≤ 2d2(ν), ‖K(ab)

ν/∞‖2 ≤ M ′′, ‖W (1)
ν/∞‖2 ≤ 2 and

‖W (2)
ν/∞‖2 ≤ 1 it holds

‖∇xF∞(x̄)−∇xFν(x̄)‖2 ≤ 4(L′′M2 +M ′′)d2(ν). (25)

Hence for strong monotonicity it suffices to impose d2(ν) <
α∞

4(L′′M2+M ′′) . The conclusion follows from d2(ν) ≤ rstep(T )ν ,
as shown in Lemma 1.

Proof of Lemma 3

Statements 1) and 2) follow from Lemma A.3. To prove 3),
note that ν > νglob

H implies

d2(ν) ≤ MÂ

‖Â‖∞M∞
√
N
. (26)

Moreover, according to the definition of Qν ,Q∞ in (7c) and
(8c), we have that bν = b∞. Consequently, for c(ν) as defined
in Lemma A.2 it holds

c(ν) = max
x∈X
‖[( 1N1N

>

N − T ν)⊗ Â]x‖∞ ≤ d∞(ν)‖Â‖∞M∞.
(27)

Note that a sufficient condition for {x ∈ X | A∞x ≤
b∞ − c(ν)1Nm} to be non-empty is that c(ν) ≤ MÂ.
Combining with (27) we get that a sufficient condition is
d∞(ν)‖Â‖∞M∞ ≤MÂ, which is met for ν ≥ νglob

H as shown
in (26). The conclusion then follows from Lemma A.2.2).
For part 4) we cannot apply the same reasoning because the non-
empty condition might not be met. However, Lemma A.2.1)
implies that

dH(Qν(x̄−iν ),Q∞(x̄−iν ))≤max
{

∆(
[
Ai∞
Gi

]
),∆(

[
Aiν
Gi

]
)
}
·ci(ν),

where ci(ν) = maxxi∈X i{‖(Ai∞ − Aiν)xi +
∑
j 6=i(A

j
∞ −

Ajν)x̄jν‖∞} ≤ c(ν) and Aiν = [[T ν ]1iÂ; . . . ; [T ν ]NiÂ], Ai∞ =
[ 1
N Â; . . . ; 1

N Â]. Because of this structure for any submatrix Bν
of
[
Aiν
Gi

]
and corresponding submatrix B∞ of

[
Ai∞
Gi

]
it holds

B−1
ν = B−1

∞ D, where D is a diagonal matrix with elements
that are either 1 (corresponding to rows selected from Gi) or

1
T νjiN

(corresponding to rows selected from Ai). Consequently,
for each element eν of B−1

ν and corresponding element e∞ of
B−1
∞ it holds that either eν = e∞ or eν = e∞

1
T νjiN

. Note that in

the latter case it holds |eν | = |e∞| 1
T νjiN

. For ν ≥ ν loc
H it holds

that |T νji− 1
N | ≤ d2(ν) ≤ 1

2N or equivalently |NT νji− 1| ≤ 1
2 .

Hence 1
T νjiN

≤ 2 and in all cases |eν | ≤ 2|e∞|. This

implies max
{

∆(
[
Ai∞
Gi

]
),∆(

[
Aiν
Gi

]
)
}
≤ 2∆(

[
Ai∞
Gi

]
). Finally,

Ki
H ≤ KH since ∆(

[
Ai∞
Gi

]
) ≤ ∆(

[
A∞
G

]
) given that

[
Ai∞
Gi

]
is

a submatrix of
[
A∞
G

]
.

Proof of Lemma 4

We start by computing the operator F∞(x).

F∞(x) = [∇xi
(
ai(ri) +

E∑
e=1

cie(t
i
e)

)
]Ni=1 + P (x),

where P (x) := −[∇xi(p(σ∞(x))>yi)]Ni=1. Since for each i
the functions ai and cie are strongly convex and continuously
differentiable, by Proposition 2 and [40, equation (12)] there
exists α > 0 such that

∇x([∇xi
(
ai(ri) +

E∑
e=1

cie(t
i
e)

)
]Ni=1) � αIN(E+1), ∀x ∈ X .

We now prove that ∇xP (x) � 0 under either of the two
conditions stated.
1) We have

N · P (x) :=
[∑
j

H>i DHjx
j +H>i D

>Hix
i−NH>i d

]N
i=1

= [H>DH +H>blkdD
>Hblkd]x−N [H>i d]Ni=1,

with H := ([H>i ]Ni=1)> and Hblkd = blkdiag(H1, . . . ,HN ).
Moreover, since D � 0, then ∇xP (x) = 1

N (H>DH +
H>blkdD

>Hblkd) � 0.

2) Let P̃ (y) := −[∇yi(p( 1
N

∑N
j=1 y

j)>yi)]Ni=1. It was
shown in [24, Corollary 1], that if (20) holds, then there
exists α′ > 0 such that ∇yP̃ (y) � α′INE . Moreover,
from p(σ∞(x))>yi = p( 1

N

∑N
j=1H

jxj)>Hixi one imme-
diately gets that P (x) = H>blkdP̃ (Hblkdx). It follows that
for any x and corresponding y = Hblkdx, ∇xP (x) =
(H>blkd∇yP̃ (y)Hblkd)|y=Hblkdx � 0. We have proven that
∇xF∞(x) � αIN(E+1) for all x. Consequently, F∞ is strongly
monotone by Proposition 2 and Assumption 2 holds.
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