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Abstract

This dissertation is a collection of four essays in economic geography. The disserta-

tion broadly examines how geography shapes the spatial distribution of economic

activity and growth.

The first chapter, co-authored with Peter Egger, analyzes the importance of

R&D-investment incentives in a quantitative general-equilibrium model at the

level of 5,633 regions around the world. While incentives vary across countries,

the responses are largely heterogeneous across regions within and across countries.

The reason for this heterogeneity roots in average technology differences as well

as in the geography and amenities across regions. Results indicate that the pro-

motion of innovation has relatively long-lasting positive effects. About one-tenth

of the economic growth around the world can be attributed to the use and imple-

mentation of innovation-promoting tax schemes. In particular, R&D-investment

incentives benefit low-amenity, peripheral places, and ones where patenting is rel-

atively less common than elsewhere. This suggests that the studied nation-wide

investment incentives also work as place-based policies.

The second chapter, co-authored with Peter Egger and Gabriel Loumeau, doc-

uments patterns in the size and growth of natural cities in China between 1992

and 2013. The boundaries of a natural city are identified in terms of night-light

radiance of connected subcity places. The analysis documents a rapid growth of

natural cities in China between 1992 and 2009, which was followed by a slight re-

duction in the size of some natural cities between 2010 and 2013 in the aftermath

of the recent global financial crisis. Institutional factors – such as the location

of places near Special Economic Zones, the ramifications of legal migration from

rural to urban areas following reforms to the hukou (household registration) sys-

tem, and infrastructure accessibility – are found to be important drivers of the

xiii



integration of peripheral places into natural cities.

The third chapter, co-authored with Peter Egger and Gabriel Loumeau, inves-

tigates the economic effects of road network improvements. We propose a quan-

tifiable general-equilibrium model in which transport infrastructure affects the

long-run equilibrium along four channels: accessibility of amenities, technology

diffusion, reduced migration frictions and reduced trade frictions. We calibrate

the model using Chinese prefecture-level data and exploit the massive growth

in the Chinese road network between 2000 and 2013 to inform the model. The

analysis suggests that the network changes stimulated regional convergence of

lagging-behind prefectures in terms of population density and real per-capita in-

comes. Road-network-induced technology spillovers and trade-cost reductions led

to economically large gains in prefectures that benefited the most from connec-

tivity improvements. Associated amenity spillovers and migration-cost reductions

mitigated almost offsetting consequences for population density and real incomes.

The results indicate that not only the extension of the highway network but also

improvements of other road network layers were quantitatively important.

The final chapter quantifies the importance of capital city status on road net-

work integration of U.S. micro/metropolitan statistical areas. Road network in-

tegration is defined as a class of measurements that evaluate how well a location

is connected to all other locations through the National Highway System (NHS).

Capital status is instrumented using a k-means clustering algorithm that predicts

the boundaries of 48 U.S. states on the basis of historical county-level data and

defines the geographical center as a hypothetical capital location. I find signif-

icant and robust evidence that capital cities are more directly integrated in the

NHS than non-capital cities of similar characteristics. Two possible mechanisms

are discussed: (i) the favorable geographical position of capital cities within their

state and (ii) a political interest in connecting capital cities well to major urban

areas around.
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Zusammenfassung

Diese Dissertation besteht aus vier Forschungsarbeiten im Bereich Wirtschafts-

geographie. In der Dissertation wird untersucht, wie geographische Aspekte die

räumliche Verteilung der Wirtschaftsleistung und des Wirtschaftswachstums be-

einflussen.

Das erste Kapitel wurde in Zusammenarbeit mit Peter Egger verfasst und

analysiert die Bedeutung steuerpolitischer Maßnahmen zur Innovationsförderung.

Dies geschieht anhand eines quantitativen Modells des allgemeinen Gleichgewichts

und berücksichtigt 5.633 Regionen weltweit. Die steuerlichen Anreize variieren von

Land zu Land. Wir können jedoch beobachten, dass Unterschiede in ihren ökono-

mischen Auswirkungen selbst zwischen Regionen innerhalb eines Landes und über

Ländergrenzen hinweg bestehen. Der Grund für diese Heterogenität liegt darin,

dass Regionen unterschiedlich produktiv sind und sich in ihren geographischen

Gegebenheiten, sowie in den exogenen Faktoren, die zur Attraktivität einer Regi-

on beitragen, unterscheiden. Die Ergebnisse legen nahe, dass die Innovationsförde-

rung relativ lang andauernde positive Wachstumseffekte hat. Etwa ein Zehntel des

weltweiten Wirtschaftswachstums ist auf den Einsatz innovationsfördernder Steu-

ersysteme zurückzuführen. Generell sind die positiven Auswirkungen nur zum Teil

von patentierten Innovationen bestimmt. Der größere Anteil der Wachstumseffekte

ist auf nicht patentierte Innovationen zurückzuführen, wobei die Bedeutung pa-

tentierter vs. nicht-patentierter Innovationen je nach Land variiert. Die Förderung

von Innovationen kommt insbesondere Regionen zugute, die grundsätzlich weni-

ger attraktiv sind und solchen wo der Zugang zu globalen Märkten schwieriger ist.

Aus wirtschaftspolitischer Sicht sind diese steuerlichen Anreize zur Förderung von

Innovationen somit vergleichbar mit anderen sogenannten Place-based Policies.

Das zweite Kapitel, das gemeinsam mit Peter Egger und Gabriel Loumeau ver-
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fasst wurde, dokumentiert und analysiert das Wachstum von sogenannten natural

cities in der Volksrepublik China im Zeitraum von 1992 bis 2013. Das Konzept

der natural city definiert die Größe einer Stadt anhand ihrer organisch gewach-

senen Ausdehnung. Die Grenzen einer natural city werden mit Hilfe von Daten

identifiziert, die nächtliche Lichtemissionen von zusammenhängenden Teilflächen

messen. Die Ergebnisse der Analyse deuten darauf hin, dass natural cities in China

zwischen 1992 und 2009 sehr schnell gewachsen sind. Auf das schnelle Wachstum

folgte jedoch zwischen 2010 und 2013 eine leichte Verkleinerung von manchen

natural cities, welche auf die wirtschaftlichen Folgen der jüngsten globalen Fi-

nanzkrise zurückzuführen ist. Die Integration von peripheren Regionen in natural

cities wird von verschiedenen institutionellen Faktoren positiv beeinflusst. Dazu

gehören beispielsweise die Nähe einer Region zu Sonderwirtschaftszonen, die Aus-

wirkungen der Reformen des Hukou-Systems1, sowie ein einfacher Zugang zu guter

Verkehrsinfrastruktur.

Das dritte Kapitel wurde gemeinsam mit Peter Egger und Gabriel Loumeau

verfasst und analysiert die wirtschaftlichen Auswirkungen einer Erweiterung des

Straßennetzes. Basierend auf einem quantitativen Modell des allgemeinen Gleich-

gewichts analysieren wir den Einfluss von Verkehrsinfrastruktur auf das langfri-

stige Gleichgewicht anhand von vier Mechanismen: dem vereinfachten Zugang zu

Faktoren, die die Lebensqualität in einer Region steigern, dem vereinfachten Aus-

tausch von Technologien, sowie der Reduktion von Migrations- und Handelskosten.

Das Modell wird mit Hilfe von Daten zu chinesischen Präfekturen kalibriert. Des

Weiteren nutzen wir in unserem Model Informationen bezüglich der massiven Er-

weiterung des chinesischen Straßennetzes zwischen 2000 und 2013. Die Analyse

legt nahe, dass die Erweiterung des chinesischen Straßennetzes dazu führte, dass

weniger entwickelte Präfekturen in Bezug auf die Bevölkerungsdichte und das reale

Pro-Kopf-Einkommen aufholen konnten. Der vereinfachte Austausch von Techno-

logien und die Senkung der Handelskosten haben die größten positiven Auswirkun-

gen auf jene Präfekturen, die die stärkste Veränderung in Bezug auf eine verbes-

serte Netzwerkintegration erfahren haben. Der verbesserte Zugang zu lebensqua-

litätssteigernden Faktoren und die Reduzierung der Migrationskosten haben eine
1Das Hukou-System beschreibt ein offizielles System der Wohnsitzkontrolle der Bevölkerung

in China.
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ausgleichende Wirkung auf die Bevölkerungsdichte und das Realeinkommen. Im

Allgemeinen, legen die Ergebnisse nahe, dass nicht nur Verbesserungen der Auto-

bahnen, sondern auch die Erweiterung des regionalen Straßennetzes eine wichtige

Rolle für die wirtschaftlichen Auswirkungen spielten.

Das letzte Kapitel analysiert die Bedeutung des Hauptstadtstatus für die Inte-

gration in das nationale Straßennetz am Beispiel von US-amerikanischen Städten.

Die Integration eines Standortes in das nationale Straßennetz wird mit Hilfe von

vier verschiedenen Variablen gemessen. Die Variablen bewerten in unterschiedli-

cher Weise, wie gut ein Standort über das National Highway System der USA mit

allen anderen Standorten verbunden ist. Da die Wahl der Hauptstädte in den ver-

schiedenen Staaten der USA keineswegs zufällig war, wird der Hauptstadtstatus

mithilfe eines k-means-Clustering-Algorithmus instrumentiert. Dieser Algorithmus

bestimmt die Grenzen der 48 Bundesstaaten auf Grundlage von historischen Regio-

naldaten und definiert das geographische Zentrum jedes Staates als hypothetische

Hauptstadt. Die empirischen Ergebnisse legen nahe, dass Hauptstädte in den USA

direkter in das National Highway System integriert sind als vergleichbare Städte,

die keinen Hauptstadtstatus haben. Die Analyse diskutiert zwei mögliche Erklä-

rungen für dieses Ergebnis. Zum einen sind Hauptstädte innerhalb ihres Staates

geographisch sehr zentral und damit günstig gelegen. Und zum anderen ist es

denkbar, dass es ein politisches Interesse daran gibt, die Hauptstädte besonders

gut mit anderen wirtschaftlich wichtigen Städten in der Umgebung zu verbinden.
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Introduction

Economic activity is unevenly distributed across space. Individuals worldwide

are increasingly concentrated in metropolitan regions, and it is expected that

68% of the world’s population will be living in urban areas by 2050.2 Similarly,

economic output concentrates primarily in highly productive urban areas. In 2003,

38% of the total GDP in OECD countries was generated by only 10% of OECD

regions.3 A region’s location in space and its proximity to economic clusters play

a crucial role in the relative gains from (inter-)national trade and migration, the

magnitude of investments, and the effectiveness of public policies. The overall aim

of this dissertation is to examine the role of geography in the spatial distribution

of economic activity. This will help to inform and design future public policies

through understanding the forces at play and their consequences on regional well-

being. Each chapter is briefly introduced below.4

Many national governments utilize R&D tax policy instruments to attract in-

novative activity and therefore stimulate regional growth and gain in international

competition. This behavior affects the spatial distribution of innovative activity

and provides important insights regarding the global economic growth path. The

first chapter (co-authored with Peter Egger) outlines a quantitative global model

to assess the importance of R&D investment incentives across 5,633 regions around

the globe in a long-term economic growth analysis. The model is calibrated so

that the main regional characteristics – including population density, per-capita in-

come, and market accessibility – match those of the real world in the year 2005. In

the counterfactual equilibrium analysis, we focus on the effects of R&D-investment

incentives on three key variables – place-specific employment, productivity, and
2United Nations Population Division. World Urbanization Prospects: 2018 Revision.
3OECD Regions at a Glance: 2007 Edition.
4Each co-author made equal contributions to Chapters 1, 2 and 3.
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welfare – in a scenario where investment incentives towards innovation are aban-

doned. The analysis suggests that the promotion of innovation has relatively

long-lasting positive effects. About one-tenth of the economic growth around the

world can be attributed to the use and implementation of innovation-promoting

tax schemes. These effects are particularly strong in regions where innovation-

promoting policies are in place. However, regions that are not exposed to such

policies nonetheless benefit from them being in place elsewhere, given that im-

provements in technology dissipate and become publicly available with time. On

average, only a relatively small part of the benefits, in terms of real consumption

gains, materializes through patenting. To a varying degree across regions, most

of the gains are due to unpatented innovations. Overall, innovation-promoting

policy instruments are most productive in regions where amenities are weak and

global markets are harder to access. From an economic policy point of view, R&D

investment incentives act as place-based policies, which are commonly adapted to

enhance the economic performance of disadvantaged regions.

Apart from innovation clusters, the concentration of economic activity is re-

flected by the existence of densely populated urban areas. The growth of urban

settlements is particularly large in fast-growing economies. For instance, in China

almost 25% of the population has moved to urban areas during the past two

decades. The second chapter (co-authored with Peter Egger and Gabriel Loumeau)

documents patterns in the size and growth of Metropolitan Statistical Areas in

China between 1992 and 2013. We employ a definition of city boundaries based on

what we call natural borders. Natural city borders are identified in terms of night-

light radiance – a measure of economic activity – of connected subcity places using

a City Clustering Algorithm. The analysis suggests that the number of distinct

natural city centers decreased between 1992 and 2013 due to the absorption of

some natural cities by others. This was particularly the case for larger cities, such

as Shanghai or Beijing, that formed natural super-cities during that time period.

Moreover, we document that Chinese natural cities grew considerably beyond the

administrative boundaries. The rapid growth between 1992 and 2009 was followed

by a slight reduction in the size of some natural cities between 2010 and 2013 in

the aftermath of the recent global financial crisis. Institutional factors – such as
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the proliferation of Special Economic Zones, provisions of the hukou (household

registration) system and infrastructure accessibility – are found to be important

drivers of the integration of peripheral places into natural cities. In particular,

the results indicate that the enormous investments in transport infrastructure in

China can be expected to induce relatively rapid adjustments in natural city size

over the next 20 years; a finding that inspired us to further research.

Investments in transport infrastructure are among the few public policy inter-

ventions that have a direct impact on the determinants of trade and migration

costs. The vast majority of research on the economic effects of infrastructure im-

provements has focused on the accessibility of goods and factors through highway

networks. The third chapter (co-authored with Peter Egger and Gabriel Loumeau)

takes a broader view on transport infrastructure. It considers multiple channels

through which infrastructure improvements affect the region-specific well-being of

households beyond the standard transport of goods and factors, and decomposes

the heterogeneous economic effects across network types. We propose a quantifi-

able general-equilibrium model that is amenable to studying the decomposition of

economic effects of transport infrastructure across four channels: the accessibility

of amenities, technology diffusion, reduced migration frictions and reduced trade

frictions. Our analysis builds on a calibrated version of the open Chinese economy

in which we use novel, hand-collected, annual data on the road network for the

period between 2000 and 2013. Regarding the endogeneity of road infrastructure

placements, we propose a novel Instrumental Variable approach that is based on

the classical Monge-Kantorovich transportation problem. In the counterfactual

analysis, we decompose the overall effects of road infrastructure improvements on

population densities and regional income across Chinese prefectures. The results

indicate that the extension of the Chinese road network between 2000 and 2013

fostered regional convergence in population density and real income, as population

relocated from large centers to mid-sized prefectures in central China. Increased

accessibility of technology and reduced trade frictions have had large positive real

income effects in prefectures that gained the most in connectivity. Associated

amenity spillovers and migration-cost reductions mitigated almost offsetting con-

sequences for population density and real incomes. Regarding network types, the
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results indicate that highway improvements have strong integration effects on for-

merly remote places. Regional road improvements reduce former differences in

local connectivity and alleviate the differences that are generated by the highway

network.

Beyond recent policies, there exist long-lasting institutional features that shape

the economic geography of regions and countries. One prominent example of such

an institutional feature is the political status of urban areas. The last chapter links

the political status of U.S. micro/metropolitan statistical areas to their integration

in the National Highway System (NHS) in order to understand whether there is a

capital premium in road network provision. Historically, most state capital cities

in the U.S. embodied their role of political power by being centrally located within

their state. I use this common feature of geographical centrality to construct an

instrument for the endogenous capital location. The Instrumental Variable design

is based on a k-means clustering algorithm that predicts the boundaries of 48 U.S.

states and defines the geographical center as a hypothetical capital location. I

then estimate the causal effect of capital status on four outcomes of road network

integration. Two outcomes (connectivity and market access) evaluate the strength

of integration based on the aggregate proximity to all other locations. The other

two outcomes (relative connectivity and relative market access) measure how di-

rectly connected a location is to all others. I find significant and robust evidence

that U.S. state capital cities are more directly integrated in the NHS compared

to non-capital cities of similar characteristics. The reason for this finding is a

combination of two aspects. First, capital cities have a favorable geographical

position within their state. This makes them a natural candidate for a direct

road network integration according to the central place theory. Second, as capital

cities are places of political power and decision-making, there seems to be a gov-

ernmental interest in establishing direct connections to other major urban areas.

The decision on the location of the U.S. federal highway network was subject to

inter-governmental negotiations, which likely favored state capital cities.

The dissertation contributes to the literature in several ways. First, it provides

new tools, both theoretical and empirical, to analyze key spatial interactions in

the context of heterogeneous geography. Second, it details mechanisms through
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which various public policies affect the spatial distribution of economic activity.

Third, it proposes new approaches to address the endogenous location choice of

policy interventions, such as transport infrastructure placements or capital city

location. Finally, it discusses implications for the design of future spatial policies.

The four chapters follow below.
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Chapter 1

The Economic Geography of

Innovation

This is the original manuscript of an article published as CEPR Discussion Paper No.

DP13338, available online: https: // ssrn. com/ abstract= 3290531

1.1 Introduction

Technology and productivity are key drivers not only of production potential of

places but also of the attractiveness for mobile factors to locate there and, hence,

of demand potential and well-being. The technological capabilities of production

factors located in a place are influenced to a major extent by local innovation and

the capability of absorbing innovations generated elsewhere. Policy makers have

a number of instruments at hand which are particularly aimed at stimulating

innovation for exactly that reason. Earlier research concerned with the effect

of innovation incentives – where innovations are commonly measured by patent

filings and other patenting behavior – on economic outcomes focuses largely on

reduced-form effects, which abstract from general-equilibrium repercussions. One

related strand of reduced-form work focuses on the effect of R&D tax incentives

on innovation (see Jong and Verhoeven, 2007, for the Netherlands; Ernst and

Spengel, 2011, for multiple EU countries; Westmore, 2013, for 19 OECD countries;

Aralica and Botrić, 2013, for Croatia; Knoll et al., 2014, for European countries;

Czarnitzki and Lopes-Bento, 2014, for Canada; Bösenberg and Egger, 2017, for 106
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countries). Another strand of reduced-form work highlights the effect of R&D tax

incentives on productivity (see Caiumi, 2011, for Italy; Hallépée and Houlou, 2012,

for France; and Cappelen et al., 2012, for Norway). The shortcoming of reduced-

form analysis is that quantitatively potentially important interdependencies of

outcomes, markets, and places are ignored by assumption. Also, the heterogeneity

of places in their response to even a homogeneous treatment of economic policy

is beyond the reach of a reduced-form analysis, at least to the degree that is

suggested by general-equilibrium theory.

The present paper adopts a structural approach, which permits accounting

for direct and indirect (spillover plus general-equilibrium) effects of customary

innovation-stimulating policies. For this purpose, it formulates, estimates key pa-

rameters of, and calibrates a quantitative, multi-region model of trade and factor

mobility among places in order to assess the economic value of innovation incen-

tives and their consequences for the location of supply and demand across places

as well as for the well-being of consumers there. With this agenda, the paper

particularly relates to three lines of work. The one on the social cost-benefit and

aggregate analysis of individual tax incentives towards R&D (see Cornet, 2001,

and Lokshin and Mohnen, 2011, for the Netherlands; Parsons and Phillips, 2007,

for Canada; and Bloom et al., 2013, for the United States) which is based on

reduced-form estimates but aims at accounting for effects on various outcomes.

The structural aggregate (macro-economic) modeling approach in Atkeson and

Burstein (2019), which permits gauging global effects of innovation policies, ab-

stracting from the multi-region structure of the world economy. And a host of

studies with a focus on structural-quantitative, multi-region models with mobile

goods and factors without a deeper consideration of innovation policies (see Allen

and Arkolakis, 2014; Ahlfeldt et al., 2015; Donaldson and Hornbeck, 2016; Nagy,

2017; Allen and Donaldson, 2018; Monte et al., 2018; Caliendo and Parro, 2015;

Caliendo et al., 2018; Desmet et al., 2018; Donaldson, 2018; Redding and Rossi-

Hansberg, 2017, for an extensive review of that line of work).

The model we propose builds on Allen and Arkolakis (2014), Desmet et al.

(2018), and Allen and Donaldson (2018) and describes a world in which each

place is unique in terms of amenities, productivity, and geography. Firms have an

8



incentive to innovate as it improves their productivity and competitiveness. How-

ever, the benefits from innovation which are exclusive to the firm are short-lived,

and knowledge about any newly-invented technology becomes public after one pe-

riod. The technology available to firms in a place evolves through an endogenous

dynamic process. Innovation is produced under constant returns to scale, using

research labor for each unit of innovation produced. In contrast to Allen and

Arkolakis (2014) and Desmet et al. (2018), total factor productivity consists of

a random and a chosen part through (optimal) investments in innovation. The

parametrization and estimation of the endogenous productivity component as well

as of the dynamic technology process are at the heart of the paper’s interest. Firms

benefit from R&D investment incentives in places, ceteris paribus, as they reduce

the costs of generating innovations all else equal. Firms use patented as well as

non-patented innovations in doing so.

Our analysis considers 5,633 regions in 213 countries around the globe, where

the delineation of regions follows the definition by the Organization of Economic

Cooperation and Development (OECD) and their Regional Patent-statistical

Database (REGPAT). For the estimation of the R&D-worker-specific productivity

shifter, we use region-specific efficiency levels that are recovered from the model

structure and five country-specific indicators on R&D investment incentives which

are geared towards innovations from Bösenberg and Egger (2017).

In the counterfactual equilibrium analysis we focus on the effects on three key

variables – place-specific employment, productivity, and welfare – in a scenario

where investment incentives towards innovation are abandoned. There are three

main take-aways from the analysis. First, the use of policy instruments which are

designed to stimulate private R&D are globally beneficial in terms of productivity

and welfare. In other words, also countries and their regions who do not use such

instruments benefit from their use elsewhere due to technology spillovers. Second,

the long-run relocation effects due to a hypothetical abolishment of R&D tax

incentives are substantial and lead to a re-shifting of the population towards high-

density areas (i.e., centrally-located ones with great exogenous amenities). Hence,

transport accessibility and good exogenous amenities work as a quasi-insurance

against adverse innovation policy shocks. Analogously, the quantitative analysis
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suggests that a nation-wide innovation policy works indirectly as a place-based

policy, where low-amenity, peripheral regions benefit, ceteris paribus, relatively

more than high-amenity, centrally located ones. This effect is particularly driven

by a relative gain in international competitiveness from national R&D policies due

to the cross-border mobility of labor.

Furthermore, the quantitative analysis suggests that about one-tenth of the

long-run growth rate of real GDP on the globe can be attributed to the use of

R&D policy instruments as used in the year 2005 alone. The findings also imply

that only a relatively small fraction of that should be attributed to the stimulus

on patenting, but the share of non-patented innovations triggered by such policy

instruments is relatively large.

The remainder of the paper is organized as follows. Section 1.2 presents the

model, states the equilibrium conditions for each period and defines the underlying

assumptions for a unique balanced growth path to exist. Section 1.3 discusses the

calibration of key model parameters, including a methodology to determine or

estimate them. Section 1.4 presents the results of our counterfactual analysis.

Section 1.5 concludes.

1.2 The Model

We consider a world where S is a set of regions r on a two-dimensional surface,

i.e., r ∈ S. Region r has land density Gr > 0, where Gr is exogenously given and

normalized by the average land density of all regions in the world. The world is

inhabited by a measure L̄ of workers, who are freely mobile between regions and

endowed with one inelastically-supplied unit of labor each. Each region is unique

in terms of geography, amenities and productivity.

1.2.1 Innovation and Production

In each region, firms produce product varieties ω, innovate, and trade subject to

iceberg transport costs. A firm’s production of ω per unit of land in the intensive

form is defined as
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qrt(ω) = φrt(ω)γ1 zrt(ω) Lrt(ω)µ, γ1, µ ∈ (0, 1]. (1.1)

Output depends on production labor per unit of land, Lrt(ω), and the firm’s

total factor productivity, which is determined by two components: an endogenous

innovation component, φrt(ω), and an exogenous, product-specific productivity

factor, zrt(ω), which is drawn from a Fréchet distribution with location parameter

Trt = τrtL̄
α
rt and shape parameter θ, where α ≥ 0 and θ > 0. Where in the

productivity distribution a firm is located depends on the total workforce at region

r in period t, L̄rt, and the region’s level of efficiency, τrt.

The value of τrt is determined by an endogenous dynamic process, which de-

pends on past investments into local innovations, and the capability of absorbing

innovations that were generated elsewhere and now diffuse globally. Assuming a

first-order autoregressive process about efficiency,1 we postulate

τrt = φγ1θ
rt−1

[∫
S
Wrsτst−1ds

]1−γ2

τ γ2
rt−1, (1.2)

where γ1, γ2 ∈ (0, 1) and Wrs is an rs-specific technology diffusion weighting

scalar.2 The value of γ2 determines the strength of technological diffusion. The

higher γ2, the more a region benefits from own investments in technology. In re-

turn, low levels of γ2 imply that the aggregate level of investment into technology

in a region is relatively more important than local investments.

Firms have an incentive to invest into innovation as it improves their produc-

tivity in (1.1). This allows them to post a higher bid for the regionally fixed factor

of production, land. However, due to a decreasing marginal product of labor, the

innovation effort will be finite. The latter is guaranteed by the parameter configu-

ration where land intensity is larger than the cost normalized innovation intensity

in production, [1− µ] > γ1/ξ.

Innovation, φrt(ω), is produced under Cobb-Douglas technology and with con-

stant returns to scale, such that a firm has to employ νφrt(ω)ξh−1
rt additional units

1Allowing for a longer memory in the process would be technically straightforward. E.g.,
Allen and Donaldson (2018) consider a second-order process. However, the available data for
the present paper do not permit doing so, as the time series available for each region is extremely
short, as will become clear below.

2The definition of Wrs is discussed in further detail in Section 1.2.5.
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of labor in order to innovate, where hrt ≥ 1 is a region-time-specific R&D-worker

productivity shifter, which reduces the cost of innovation per unit of innovation

produced. The latter will be key to the analysis here, as it captures the influence

of R&D tax incentives.

Firms enjoy the benefit of their innovation for only one period. In the next

period all entrants to the market have the same access to technology. This sim-

plifies the dynamic profit maximization to a sequence of static problems. After

learning their productivity draw zrt(ω), firms maximize their profits with choosing

the level of employment and innovation through

max
Lrt(ω),φrt(ω)

prt(ω) φrt(ω)γ1 zrt(ω) Lrt(ω)µ − wrt[Lrt(ω) + φrt(ω)ξh−1
rt ]− brt,

where prt is the price a firm charges for a product that is sold in region r and

period t. A firm’s productivity affects prices without changing unit costs, ort,

such that prt(ω) = ort/zrt(ω), with

ort ≡
[

1
µ

]µ [
νξ

γ1

]1−µ [
brtγ1

wrtν(ξ(1− µ)− γ1)

](1−µ)− γ1
ξ

h
− γ1

ξ

rt wrt. (1.3)

Each firm considers their production unit costs as given, which is why ort is not

product-specific. brt reflects the firms’ bid rent for land, which can be derived

from the first-order conditions as a function of the per-unit costs of innovation

wrtφrt(ω)ξh−1
rt , so that

brt =
[
ξ(1− µ)

γ1
− 1

]
νwrtφrt(ω)ξh−1

rt . (1.4)

1.2.2 Innovation and Total Employment

Total employment in region r at period t is the sum of production workers, Lrt(ω),

and innovation workers, νφrt(ω)ξh−1
rt , so that

L̄rt(ω) = Lrt(ω) + νφrt(ω)ξh−1
rt = Lrt(ω)

[
1 + γ1

µξ

]
, (1.5)
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where the last equality follows from the first-order relation between production

labor and innovation labor,

ξ

γ1
νφrt(ω)ξh−1

rt = Lrt(ω)
µ

⇒ νφrt(ω)ξh−1
rt = γ1

ξ[µ+ γ1/ξ]
L̄rt(ω). (1.6)

1.2.3 Utility and Consumption

When choosing residence in region r, a representative worker in period t derives

utility from local amenities, art, and from consuming a set of differentiated product

varieties ω with CES preferences according to

urt = artCrt = art

 1∫
0

crt(ω)
σ−1
σ dω


σ
σ−1

with art = ārt L̄
−λ
rt , (1.7)

where art are amenities at r in t, with ārt being an exogenous amenity attribute

and λ ≥ 0 being a congestion externalities parameter. Crt is the real consumption

bundle, and σ ∈ (1,∞) is the elasticity of substitution between products ω.

Consumer-workers earn income from work, wrt, and from local ownership of

land. Local land rents are uniformly distributed among all residents in a region,

i.e., the land rent per resident is brt/L̄rt. As we assume that agents cannot write

debt contracts with each other and there is perfect local competition, it follows

that each consumer-worker spends all her income. Hence, the indirect utility is

defined as

urt = artyrt = art
wrt + brt/L̄rt

Prt
, (1.8)

where Prt = Γ
(

1−σ
θ

+ 1
) 1

1−σ
[∫
S Tkt[oktζks]−θdk

]− 1
θ is the price index in region r

and period t. As in Eaton and Kortum (2002), the share of consumption in region

r of products produced in region s is determined by

πrst = Trt[ortζrs]−θ∫
S Tkt[oktζks]−θdk

, ∀r, s ∈ S, (1.9)

where ζrs > 1 denote the iceberg costs of transporting a product from r to s.

13



1.2.4 Equilibrium in Each Period

Profits and utility are maximized within each period, as neither firms nor con-

sumers are forward-looking; see also Desmet et al. (2018) and Allen and Donaldson

(2018).

The equilibrium population density will be evaluated as a measure of the lo-

cation specific utility, urt, such that

L̄rt = L̄

Gr

urt
1/Ω∫

S u
1/Ω
kt dk

, with
∫
S
GrLrtdr = L̄, (1.10)

where Ω is a Fréchet dispersion parameter of a location-specific preference shock as

in Desmet et al. (2018).3 Overall, population mobility is restricted by the location-

specific preference parameter (Ω), an amenity-reducing congestion parameter (λ)

and the land-intensity in production (1− µ).

Product-market clearing requires total revenues in region r to be equal to total

expenditures on products from region r. Hence,

wrtGrL̄rt =
∫
S
πrstwstGsL̄st ds ∀r, s ∈ S, (1.11)

where Lrt can be replaced with L̄rt as production labor is proportional to total

labor across all regions.

In equilibrium, population density in each region is determined by (1.10), re-

placing urt by the indirect utility in (1.8). The product-market clearing pins down

wages, with substituting (1.4) into (1.3) and using this expression to replace it

into the trade share (1.9), which in return can be substituted in (1.11).

An equilibrium exists and is unique if dispersion forces are greater than ag-

glomeration forces. Hence,

α

θ
+ γ1

ξ︸ ︷︷ ︸
Static agglomeration forces

≤ λ+ 1− µ+ Ω︸ ︷︷ ︸
Static dispersion forces

. (1.12)

3Notice that location-time-specific utility, urt, and, more specifically, the amenity parameter,
art, is proportional to average migration costs in region r. In general, residence-region-specific
migration costs are isomorphic to location-specific amenities. Hence, the population-share spec-
ification in (1.10) accounts for such costs.
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A detailed proof of the uniqueness condition can be based on the insights from

Allen and Arkolakis (2014), Desmet et al. (2018) and Allen and Donaldson (2018),

and it is presented in Appendix 1.8.

1.2.5 Balanced Growth Path

In a balanced growth path (BGP), technology growth rates are constant and iden-

tical across regions at constant fundamentals, implying that τrt+1
τrt

is constant over

time and space, and τst
τrt

is constant over time. Firms’ investment decisions into

innovation are constant, but they differ across regions. In order for a BGP to ma-

terialize, we assume that the R&D-worker-specific productivity shifter is constant

over time, hrt = hr, in the BGP as well as in the transition towards it. Rewrit-

ing the endogenous dynamic process in (1.2), the growth rate of τrt can then be

expressed as
τrt+1

τrt
= φθγ1

rt

[∫
S

Wrsτst
τrt

ds
]1−γ2

. (1.13)

That growth rate relative to region s’ is

τrt+1
τrt
τst+1
τst

=
[
τst
τrt

]1−γ2
[
φrt
φst

]θγ1 [∫
SWrsτstds∫
SWsrτrtdr

]1−γ2

. (1.14)

In a BGP,
(
τrt+1
τrt

/ τst+1
τst

)
= 1. Furthermore, for a BGP to exist, technological

diffusion, which is governed by Wrs, needs to be uniform across space, implying

that [
∫
SWrsτstds/

∫
SWsrτrtdr] = 1, see Egger and Pfaffermayr (2006).4 Desmet

et al. (2018) propose to specify Wrs =
[

1
N

]
,∀rs, where N describes the total

number of locations considered in the model, and we follow them in this regard.

With the latter assumption, (1.14) reduces to

τrt
τst

=
[
φrt
φst

] θγ1
1−γ2

=
[
L̄rthr

L̄sths

] θγ1
(1−γ2)ξ

. (1.15)

4To see this, consider the following thought experiment. Suppose each region r would receive
the same time-invariant, common growth impulse. If [

∫
S
Wrsτstds 6=

∫
S
Wsrτrtdr], the same

impulse would have region-specific consequences due to the importance of the regions’ location
in the spillover network. Then, the same impulse would be amplified (or moderated) to a
heterogeneous degree, and regional growth would be heterogeneous in the BGP, as a result.
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Then, there exists a unique BGP of the system, if

α

θ
+ γ1

ξ︸ ︷︷ ︸
Static agglomeration forces

+ γ1

[1− γ2]ξ︸ ︷︷ ︸
Dynamic agglomeration forces

≤ λ+ 1− µ+ Ω︸ ︷︷ ︸
Static dispersion forces

, (1.16)

which is the same as in Desmet et al. (2018); see Appendix 1.9.1 for a proof.

In the BGP, aggregate welfare and real consumption growth depends on the

population density, the R&D-worker-specific productivity shifter and their distri-

bution in space, according to

urt+1

urt
= Crt+1

Crt
=
[ 1
N

] 1−γ2
θ

[
γ1/ν

γ1 + µξ

] θγ1
ξ (∫

S
(L̄shs)

θγ1
[1−γ2]ξ ds

) 1−γ2
θ

, (1.17)

where art = art+1, as the population density in each region is constant over time

in the BGP.5

1.3 Calibration of Key Model Parameters

To compute the quantitative multi-region equilibrium for each time period from a

given year to the steady state, we need the parameters contained in the equations

above and summarized in Table 1.1. Apart from parameters that are common to all

regions and region-specific land endowments which are given in the data, these are

initial efficiency levels in production and exogenous amenity levels for all regions,

the R&D-worker-specific productivity shifter as well as trade costs between all

pairs of regions. Table 1.1 alludes to the sources of these parameters, some of

which are collected from other work and some of which are derived (computed or

estimated) here.

We organize the remainder of this section in subsections which pertain to

important model blocks based on which estimating equations are formulated or

key parameters can be backed out.
5A detailed derivation of the growth rate of aggregate welfare is presented in Appendix 1.9.2.
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Table 1.1: Calibration Overview

Parameter Common to All Regions
1. Preferences
σ = 4 Elasticity of substitution. Bernard et al. (2003)
λ = 0.596 Relation between amenities and population. Own estimation, Section 1.3.7
Ω = 0.5 Elasticity of migration flows w.r.t. income. Monte et al. (2018)
2. Technology
α = 0.06 Elasticity of productivity w.r.t. pop. density. Carlino et al. (2007)
θ = 6.5 Trade elasticity and dispersion of productivity. Eaton and Kortum (2002),

Simonovska and Waugh (2014)
µ = 0.8 Labor share in production (non-land share). Greenwood et al. (1997);

Desmet and Rappaport (2017)
γ1 = 0.234 Elasticity of tomorrow’s productivity Own estimation, Section 1.3.5

w.r.t. today’s innovation.
3. Evolution of Productivity
γ2 = 0.979 Elasticity of tomorrow’s productivity Own estimation, Section 1.3.5

w.r.t. today’s productivity.
ξ = 125 Elasticity of innovation costs w.r.t. innovation. Desmet and Rossi-Hansberg (2015)
ν = 0.15 Intercept parameter in innovation cost function. Desmet et al. (2018)

Region-specific Parameter
1. Land Endowments
Gr Extract land mass for each region. ArcGIS Software

(Gr is normalized by 1
N

∑
S Gr)

2. Initial Efficiency in 2005
τrt Initial efficiency distribution. Own estimation, Section 1.3.3
2. Amenities in 2005
art Initial amenity distribution. Own estimation, Section 1.3.7
ārt Exogenous amenity attribute. Own estimation, Section 1.3.7
3. Productivity-shifter for R&D workers in 2005
hr Estimation using binary R&D policy indicators Own estimation, Section 1.3.4.

hr = exp(Drβ̂ + |latr|Drγ̂ + δ̂|latr|))
4. Transport Costs
ζrs Based on Allen and Arkolakis (2014) and Fast Marching Algorithm.
5. Other Trade Costs
tariffsrs Weighted applied import tariffs for manufactures World Development Indicator (WDI)
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1.3.1 Delineation of Regions and Land Endowments

The delineation of regions used in our analysis is dictated by the definitions used in

the Regional Patent-Statistical Database (REGPAT) of the Organization of Eco-

nomic Cooperation and Development (OECD).6 In 2005, REGPAT distinguishes

5,633 regions across 213 countries on the globe. The size of regions by land mass

(somewhat less so by income or patenting) differs to a large extent. In some coun-

tries the granularity of regions is very fine, while it is coarse in others. In some

cases, even a whole country is a region, e.g., in some African, Asian or South

American countries. This pattern is related to the intensity of patenting in a

country: economies with more patents tend to be organized in a more fine-grained

fashion, while the ones with less patenting tend to be more coarsely captured.

Figure 1.1 shows a world map of all regions that indicates all countries in the

sample with a red color and countries not part of the sample with a white color.

In the figure, country borders are drawn in blue and regional borders in yellow.

Whenever region and country borders coincide, the yellow region borders are not

visible.

Figure 1.1: REGPAT Regions

The map shows that REGPAT region are relatively small (and numerous) in

North America (United States, Canada, and Mexico) and Europe. We can link the

REGPAT regions with spatial information from two sources: (i) the Geographical

Information and Maps (GISCO) database from Eurostat for spatial information
6The REGPAT database links the Worldwide Statistical Patent Database (PATSTAT) from

the European Patent Office (EPO) to 5,633 regions across the globe, utilizing the addresses of
the applicants and inventors.
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on European countries (NUTS3 regions, 2010), and (ii) the Global Administra-

tive Areas (GADM) spatial database on administrative boundaries for all other

countries. We extract the land mass for each region using ArcGIS software af-

ter excluding water sheds within the boundaries of a region and normalize the

region-specific land mass by the average landmass, 1
N

∑
S Gr.

1.3.2 Trade-cost-function Parameters

In constructing trade costs, we employ three ingredients: (i) fast-marching-

algorithm-based transportation costs between pairs of 1◦ grid cells along the lines

of Desmet et al. (2018), using passing-through parameters from Allen and Arko-

lakis (2014)7; (ii) a correspondence of these transport costs to the level of REG-

PAT regions by weighted averaging them within regions as explained in Appendix

1.10.3; (iii) the consideration of discontinuities in trade costs at national bor-

ders due to tariffs and linguistic proximity. Tariffs and common language are

among the most important factors which are used in parameterizing the inter-

national trade-cost function beyond mere transportation costs. We follow the

customary approach to specify the trade-elasticity-scaled trade costs as a prod-

uct of their scaled ad-valorem ingredients – here a transport-cost factor, a tariff

factor, and a language factor. We specify the tariff factor between regions r and

s as (1 + tariffrs)−θ, where tariffrs is the weighted applied import tariff on

manufactures in 2005 (which differs between most-favored-nation partners and

customs-union or free-trade-area members). To acknowledge the language factor

in trade costs we follow Melitz and Toubal (2014) and use exp(ρ × proxlingrs),

where proxlingrs ∈ [0, 1] is the linguistic proximity and ρ = 0.078 is the corre-

sponding parameter estimate favored in Melitz and Toubal (2014, p.357, Table

3, column 6) on their Automated Similarity Judgment Program (ASJP) measure,

which we use here.
7We modify those costs by making them symmetric (using the average for costs from r to s

and s to r) and by assuming that intra-cell transport costs are (essentially) zero as is customary
in quantitative Ricardian work (see Eaton and Kortum, 2002; Donaldson, 2018).
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1.3.3 Initial Efficiency Distribution

Simulating the model requires knowledge on the spatial distribution of the initial

efficiency (τrt) in the benchmark year 2005. We use the product-market clearing

condition in (1.11) to rewrite τrt as a function of observables, replacing the R&D-

worker-specific productivity shifter, which is unknown at this point, by the BGP

relationship, τrt ∝
(
L̄rhr

) θγ1
(1−γ2)ξ . Hence, we can express a scaled version of τrt as

follows

τ
(2−γ2)
rt = L̄1−ι1

rt Grw
1+θ
rt∫

S
wstL̄stGsζ

−θ
rs

[∫
S
τ

(2−γ2)
kt L̄ι1rtζ

−θ
rk w

−θ
kt dk

]−1
ds

, (1.18)

where ι1 ≡ α− (1− µ)θ. We numerically solve for τ 2−γ2
rt by applying a standard

contraction mapping procedure and using observed levels of population densities,

L̄rt, and wages, wrt, for the benchmark year 2005. Population levels are from

SEDAC and wage levels from the G-Econ Project, which are both aggregated to

the regional level as described in Appendices 1.10.1 and 1.10.2, respectively.8

1.3.4 Estimation of the Productivity Shifter for R&D

Workers

To estimate the R&D-worker-specific productivity shifter governing the BGP and

the transition towards it, hr, we use (1.15) along with the derived (scaled) initial

efficiency distribution from the previous section.9

8Technical details on the derivation of (1.18) are presented in Appendix 1.7.
9Using the BGP relationship to estimate the R&D-worker specific productivity shifter im-

plicitly assumes that all regions in the sample are growing at the steady-state rate already in
2005. Notice that also Desmet et al. (2018, pp. 927 and 929) have to assume that the data are
characterized by a BGP in order to determine the relative importance of technology inertia and
diffusion parameters. We have to make this assumption also in order to calibrate the productiv-
ity levels across regions in the benchmark year and to link it to the R&D-policy variables. For
robustness regarding the latter, we ran the analysis only for OECD member countries, including
Singapore, and found that the parameter estimates in estimating (1.19) are very similar when
running the regression for the mentioned sub-sample relative to the full data-set (see Table 1.7
in the Appendix). However, we should admit that solving for τrt in Section 1.3.3 inevitably
requires assuming all places to grow at the BGP rate. Otherwise, the market-clearing condi-
tion for goods for all places depends on both {τrt, hrt} for every {rt}. Hence, the mentioned
robustness analysis should be taken with a grain of salt. We also reran the analysis for all non-
OECD member countries (excluding Singapore). In this subsample of 434 regions, only two out
of five R&D-policy instruments are used, and the most important instrument in this sample are
tax holidays. We present the table summarizing the corresponding results for OECD countries
plus Singapore on the one hand (5,199 regions) and the other 434 regions as Table 1.7 in the
Appendix.
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Taking logs of the BGP relationship and multiplying both sides with the ex-

ponent (2− γ2) obtains

log
[
τ 2−γ2
rt /τ 2−γ2

st

]
= θγ1(2− γ2)

(1− γ2)ξ log
[
L̄r/L̄s

]
+ θγ1(2− γ2)

(1− γ2)ξ log
[
hr/hs

]
. (1.19)

We parameterize hr as

hr = exp(Drβ + |latr|Drγ + δ|latr|), (1.20)

where Dr describes a vector of binary R&D-policy indicators from Bösenberg and

Egger (2017) which are measured in the same year as hr (here, 2005). The indica-

tors in Dr are country-specific and pertain to all regions in a country. Specifically,

Dr includes a binary indicator variable for partial exemptions of returns on R&D

investments, also known as patent boxes (Dpatentboxr), R&D investment related

grants from the government which act akin to subsidies (Dgrantsr), tax credit

on R&D investments (Dtaxcreditr), tax holidays for firms with R&D investment

(Dtaxholidayr), and any form of deductions of R&D investments from profits

other than super deductions (Ddeducr). In any case, a binary indicator is set to

unity, if the respective kind of provision is in place in the year 2005 and zero else.

We use binary indicators for R&D instruments for one specific reason: combining

these instruments into specific rates requires information about the detailed in-

vestment structure of firms in each region and time. These data are not available

globally.

Additionally, we include an interaction term of each binary R&D policy in-

dicator with the absolute value of the latitude of the region’s centroid (|latr|Dr)

for two reasons. First, it allows us to account for differences on how productively

a region can use an adopted R&D policy instrument depending on its distance

to the equator. Notable contributions that have highlighted a relation between a

firm’s ability to adopt new technologies and its distance to the equator are Theil

and Galvez (1995) and Hall and Jones (1997), among others. And, second, it adds

variation in the marginal effect of country-level policy instruments across regions.

Clearly, the absolute value of the latitude is a better representation for between-

rather than within-country variations when considering the ability to adopt new
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technologies. However, there is also evidence for a within-country variation as a

number of economies in our sample display a clear north-south divide in economic

activity, e.g., Italy, France or the US.10 The specification which takes interac-

tions of the national binary R&D policy environment with latitudes into account

allows for general latitude-related patterns of the unobserved investment struc-

ture of firms, which affects the bite of the R&D-policy environment for R&D-cost

reductions.

We refrain from explicitly modeling any budgetary effects of the considered

R&D policy instruments for the following reason. The employed instruments af-

fect the marginal tax rate on returns generated from R&D in a highly nonlinear

way. However, as countries do not report specific tax revenues generated from

such investments, it is not possible to validate a structural form of the associated

nonlinear relationship. From this perspective, it appears customary to resort to a

reduced-form nexus between the instruments and innovation and consider treat-

ment effects of the instruments based on this reduced-form nexus by embedding

it in the structure of the general equilibrium model.11

As the location decision of individuals is endogenous to the productivity po-

tential of a region, we instrument log(L̄r) in the year 2005 with a region-specific

remoteness index in logs, log(Rr) = log(areasharer) + log
(

1
N

∑
S ζrs

)
.12 After

substituting log(hr) with (Drβ + |latr|Drγ + δ|latr|) according to (1.20), we esti-

mate (1.19) with two-stage least squares (2SLS) to obtain the parameter estimates

{ ̂θγ1(2−γ2)
(1−γ2)ξ , β̂, γ̂, δ̂} based on data for the baseline year t = 2005.

In Table 1.2, we summarize all variables which inform this procedure. The

table is organized in three vertical blocks: the one at the top summarizes mo-

ments of the scaled initial efficiency, the land and population distribution as well
10We tried to estimate (1.19) using a region-specific remoteness index being interacted with

each binary R&D-policy indicator. The results are comparable to the ones presented here, but
remoteness interactions are less statistically significant than latitude interactions.

11Modeling tax revenue effects more explicitly with the R&D tax instruments at hand would
require detailed information in the structure of a region’s capital stock (the ratio of buildings
versus machinery in that stock and its financing, etc.), see Egger and Loretz (2010). As such
information is not available for the regions at hand, we resort to the parsimonious approach
adopted here.

12Notice that trade frictions are among the few exogenous parameters in the model. Hence,
they are natural candidate instruments for endogenous variables in the model. Any (highly
nonlinear) reduced form of the model would involve trade costs as a determinant of every one of
the endogenous variables in the model.
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as log(L̄r), which combines the two and the remoteness index; the one in the cen-

ter summarizes the elements of Dr as well as |latr| used in |latr|Dr, underlying

the parametrization of hr; and the block at the bottom provides information on

registered patents per unit of land in region r from REGPAT, which will be further

discussed in the decomposition exercise in Section 1.3.6.

Table 1.2: Summary Statistics (2005)

Variable Mean Std. Dev. Min. Max.
Scaled initial efficiency (τ2−γ2

rt ) 11.487 413.097 5.43e-09 30,142
Population (L̄rtGr) 1,108,491 7,637,692 5 2.17e+08
Normalized land (Gr) 1 11.83 1.9e-04 624.27
log(L̄rt) 9.89 2.01 -0.428 16.44
Remoteness (Rr) 0.171 1.668 0 69.754
R&D-policy indicators
Dtaxcreditr 0.715 0.452 0 1
Dtaxholidayr 0.023 0.151 0 1
Dgrantsr 0.081 0.273 0 1
Dpatentboxr 0.022 0.147 0 1
Ddeducr 0.029 0.169 0 1
Absolute latitude (|latr|) 40.205 9.583 0.2 74.728
Patents per norm. unit of land
Patents

(inv)
rt (2005) 1,278.1 8,648.6 0 297,026.4

Patentstock
(inv)
rt (1995-2005) 10,366.8 67,655.1 0 2,474,476.5

Patents
(app)
rt (2005) 1,749.2 20,186.2 0 832,164.6

Patentstock
(app)
rt (1995-2005) 9,330.5 105,772.2 0 4,488,536.5

Notes: Patents(inv)
rt and Patentstock(inv)

rt refer to a regional denomination of patents in 2005 and patent
stocks from 1995-2005, respectively, according to the residence of inventors (inv). Patents

(app)
rt and

Patentstock
(app)
rt refer to a regional denomination of patents in 2005 and patent stocks from 1995-2005,

respectively, according to the residence of applicants (app).

While the information about the population and land data may be interesting

to some readers, we suppress a discussion here for the sake of brevity and rather

focus on the R&D-policy instruments used in the parametrization of hr. The

respective indicators suggest that more than two-thirds of the regions operated

under a regime with tax credits (Dtaxcreditr), while other R&D-policy instru-

ments were used much less frequently (by fewer countries or by countries with not

very fine-grained regions) in 2005. For example, a grants system was applied in

only about eight percent of the regions, and deductions, tax holidays, and patent

boxes were used in only about two to three percent of the regions.
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The parameter estimates and some other statistics based on the aforementioned

procedure and data are summarized in Table 1.3. There, we report on marginal

effects of the covariates in (1.19) for three specifications. The first column presents

the ordinary least squares (OLS) results, while columns (2) and (3) show the

results from the 2SLS regression, which takes the potential endogeneity of an

individual location decision into account. The second and third columns differ, as

the specification in column (3) controls for continent fixed effects, while the one in

column (2) does not.13 Apart from marginal effects of log(L̄r) as well as individual

elements in Dr and the absolute value of the latitude we report the overall model

fit through the correlation of the data with the model prediction as well as the

number of observations (regions) used for estimation.14 As key variables of interest

are measured at the country level, all standard errors and test statistics are robust

to clustering at the country level.

We document in the upper block of Table 1.3 that the proposed instrument is

highly relevant. The OLS and second-stage 2SLS results suggest that more densely

populated regions (i.e., ones with higher values of log(L̄r)) have higher efficiency

values, as predicted by the model. Comparing the parameter on log(L̄r) in column

(1) to those in column (2) and (3), it becomes evident that accounting for endo-

geneity not only reduces the importance of population density on efficiency levels

but also reveals significant effects of country-specific R&D policy instruments on

regional efficiency. The latter is concealed by the bias of the OLS estimates. In

particular, tax holidays (Dtaxholidaysr) and grants (Dgrantsr) tend to raise ef-

ficiency according to columns (2) and (3), while patent boxes (Dpatentboxr; a

back-end incentive which primarily promotes the ownership but not the inven-

tion of patents) reduce efficiency levels.15 Also regular deductions (Ddeducr) of

R&D investments from profits display a positive effect on efficiency levels. The

explanatory power of the model is relatively high, as can be seen from the overall
13Continent fixed effects inter alia capture the heterogeneity in the granularity of regions as

classified in REGPAT. Moreover, they capture a heterogeneity at the macro-regional level in
terms of the desirability of patenting among innovative firms.

14Clearly, as the elements in Dr are binary, what we report is the average effect of an indicator
being unity versus zero for the considered R&D tax-policy instruments.

15Patent box is the only policy instrument in our analysis for which the invention does not
need to have taken place at the same location as where the tax incentive would be enjoyed. This
is why the point estimate is likely to differ in sign compared to other instruments.
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Table 1.3: Estimation Results (Marginal Effects)

(1) (2) (3)
log(τ 2−γ2

r ) OLS 2SLS 2SLS
First Stage log(L̄r) log(L̄r)
log(Rr) -0.576*** -0.688***

(0.102) (0.074)
Second Stage
̂log(L̄r) 1.154*** 0.620*** 0.593***

(0.104) (0.096) (0.087)
Dtaxcreditr 0.216 -0.464 0.915**

(0.342) (0.313) (0.368)
Dtaxholidayr 0.873 1.931*** 1.299**

(0.738) (0.598) (0.628)
Dgrantsr 0.602 1.552** 1.838***

(0.645) (0.614) (0.525)
Dpatentboxr -0.301 -0.572 -1.679**

(0.715) (0.569) (0.650)
Ddeducr 0.763 1.300*** 0.715**

(0.502) (0.352) (0.410)
|latr| 0.076*** 0.039*** 0.017*

(0.008) (0.011) (0.009)
continent FE NO NO YES
# obs 5,633 5,633 5,633

Corr. coeff. {log(τ 2−γ2
r ); ̂log(τ 2−γ2

r )} 0.734 0.707 0.708

Notes: Robust and country-level clustered standard errors in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.

fit measured by the correlation coefficient between the data and the model pre-

diction as reported at the bottom of the table. Overall, these results document

that, as postulated and hypothesized, a favorable so-called front-end R&D-policy

environment indeed appears to have cost-reducing effects on innovation and pro-

ductivity – which is the very intention of the associated policies – and, hence,

boosts productivity as intended in a way which is measurable at the regional

level.

In what follows, we will use the specification in column (3) as the preferred

model, since its explanatory power is relatively highest among the two 2SLS mod-
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els, and the parameters on R&D policy instruments are all statistically relevant

predictors of regional efficiency levels. Given the parameter estimates, we obtain

an estimate of hr for each region r in 2005 and the transition towards as well as

the BGP as

ĥr = exp(Drβ̂ + |latr|Drγ̂ + δ̂|latr|). (1.21)

The R&D-policy instruments included in Dr jointly contribute to a sizable

variation of log(ĥr) in the data. We illustrate the latter by way of a kernel density

plot in Figure 1.2.

Figure 1.2: Kernel Density of the Estimated Log R&D-worker-specific
Productivity Shifter
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1.3.5 Technology and Efficiency-evolution Parameters

Table 1.1 summarizes the assumed values of the technology parameters {α, θ, µ}

and the efficiency-evolution parameters {ξ, ν} which we take from others’ work.

Here, we focus on the two remaining parameters {γ1, γ2} which are elemental but

for which existing estimates are not available given the adopted model structure.

Specifically, the BGP implies that welfare grows according to (1.17). Taking logs

and expressing (1.17) for a finite number of regions obtains

log(urt+1)−log(urt) = log(yrt+1)− log(yrt)

=(1− γ2)
θ

log
( 1
N

)
+ γ1

ξ
log(Ψ) + 1− γ2

θ
log
(∑

S

(
L̄shs

) θγ1
(1−γ2)ξ

)
,

(1.22)
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where Ψ ≡ γ1/ν
γ1+µξ and N = 5, 633. Note that equation (1.22) depends on both

population density (L̄rt) and on real-income (yrt+1, yrt). Either type of data is

available at the 1◦ × 1◦ resolution from the G-Econ 4.0 Research Project at Yale

University. However, as the estimation is informed by parameter values established

in the estimation of Section 1.3.4, we employ the population data from SEDAC

for consistency.16

For identification of the parameters it is useful to see that the left-hand side

of (1.22) is indexed by t, whereas none of the parameters and variables on the

right-hand side is. Moreover, γ1 can be expressed as a function of γ2 (and vice

versa), and all the other parameters are known at this point. Hence, for a single

year, γ2 could be exactly solved for. For identification we pool the mentioned data

for t ∈ {1990, 1995, 2000} and t + 5 ∈ {1995, 2000, 2005} and approximate the

log difference between years t+ 1 and t by the average annual change within any

five-year interval. We use the estimated parameter ̂θγ1(2−γ2)
(1−γ2)ξ of Section 1.3.4 and

rearrange all parameters dependent on γ1 in (1.22) to express them as a function

of γ2. Noting that γ1, γ2 ∈ (0, 1), we can search for the optimal value of γ2 by

doing a grid search on the unit interval with an objective function that minimizes

the sum of squared residuals between the left-hand side and the right-hand side

of (1.22) for the mentioned three year tuples {t, t + 1} together. Adopting this

procedure obtains the grid-search estimates γ̂2 = 0.979 and the implied γ̂1 = 0.234

as listed in Table 1.1.

1.3.6 Patented vs. Non-patented Innovations

Patenting is often used as a measure of innovation (see e.g., Griliches, 1990; Na-

gaoka et al., 2010). However, not all innovations are patented. In fact, non-

patented innovations appear much more common than patented ones on average

(see more details on this in the discussion below). The model structure allows

us to obtain a measure of the overall innovation level for each region, φrt, and

data on patenting permit attributing it to patented innovations versus (residual)
16Whereas SEDAC provides gridded population data with an output solution of 30 arc-seconds

(approx. 1 km at the equator), the G-Econ project provides the same data on an aggregated
1◦ × 1◦ resolution. We use population data from SEDAC directly to avoid measurement error
from aggregation. However, we reran the analysis with population data from the G-Econ Project
as a robustness check, and the parameter estimates do not change significantly, when doing so.
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non-patented ones. For this, we use data on patent registrations, assuming a

Cobb-Douglas relationship: φrt = (φPatentrt )α1r(φRestrt )1−α1r . Taking logs we obtain

log(φrt) = α1r log(φPatentrt ) + (1− α1r) log(φRestrt ), (1.23)

where φrt ∝ τ
1−γ2
θγ1
rt according to the BGP relationship in (1.15), φPatentrt is a measure

of patent registrations from REGPAT, φRestrt is a measure of non-patented (unob-

served) innovations, and α1r ∈ (0, 1) is a region-specific Cobb-Douglas weight.

Table 1.2 reports figures on patent registrations at the bottom, which are ex-

pressed in normalized units of land, Gr. The two lines at the top of the respective

block pertain to a regional denomination of patents according to the residence of

inventors (inv), whereas the two lines at the bottom of the respective block per-

tain to a regional denomination of patents according to the residence of applicants

(app). For each concept, we report the average normalized patent registration

counts for 2005 as well as the patent stock counts from 1995 to 2005. The re-

spective figures suggest that inventions are more dispersed than applications (i.e.,

applications are more concentrated). This pattern shows in higher first and second

moments of patent applications as well as in a higher frequency of zeros across

regions in the applications data than the inventions data, which is not obvious

from the table.

It is useful to introduce a parametrization of α1r log(φPatentrt ) in order to gauge

the relative importance of observable patented innovations and unobservable non-

patented ones. In particular, we parameterize α1r log(φPatentrt ) as a weighted av-

erage of the log of the normalized patent stock in a region (log(Patentstockrt))

and an interaction term thereof with the log normalized land mass (log(Gr)). The

reason for an inclusion of the latter is that REGPAT regions tend to be larger in

areas of the globe where patenting is relatively rare, and the mentioned interaction

term captures this pattern. Then, using inventor-based patent data, the suggested

parametrization reads

α1r log(φPatent(inv)
rt ) ≡ α2 log(Patentstock(inv)

rt ) + α3r log(Patentstock(inv)
rt )× log(Gr). (1.24)

Based on this, we can replace α1r log(φPatentrt ) in (1.23) by the expression on the

right-hand side of (1.24) and obtain (1− α1r)φRestrt as a residual, in order to yield
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region-specific shares for patent-related innovations as α̂1r = α̂2 + α̂3r log(Gr).17

According to the data and estimates, (inventor-based) patent-related innovation

stocks explain about 42 percent of the variation in log(φrt) (in terms of theR2), and

their Cobb-Douglas share α̂1r ranges from 0.005 to 0.014, with an average of 0.009

and a standard deviation of 0.0008. Hence, the cost share of patented innovations

in the generation of all innovations is with about one percent on average relatively

small, and it does not vary too starkly in the data.

One may assume that this low cost share is driven by regions in which the

patent law is such that the patent stock would over-represent inventive activities

and, hence, bias our estimates. Nagaoka et al. (2010) mention this problem by

reference to the Japanese patent law. Including a binary indicator for Japan in

the analysis, however, does not reveal any significant effect, which we take as

evidence that the institutional differences do not seem to play a significant role

for our results (when conditioning on the included factors determining endogenous

innovation, φrt).

In fact, the notion of a relatively low cost share of patented innovations in all

innovations squares with earlier evidence. For instance, Bloom and Reenen (2000)

find a relatively low elasticity of total-factor productivity with respect to patents

of about 0.03. Moreover, the evidence in Danguy et al. (2010) suggests that an

increase in R&D expenditures raises patents at an elasticity of only 0.12. Moser

(2016) documents that, using historical exhibition data, the share of inventors who

chose to patent their innovations varied between 5 and 20 percent across industries.

Sierotowicz (2015) finds that the average number of patents per million euros of

R&D expenditures in leading European Union countries varied between 0.03 in

Spain and 0.26 in Germany. Nagaoka et al. (2010) summarize the reasons for

why innovations may not be patented. Clearly, in the proposed model a micro

foundation of the choice of patenting is absent, and firms are characterized as to

rely on both patented and non-patented innovations for technological reasons.18

In Figure 1.3, we display the relationship between calibrated log overall in-

novative productivity in the benchmark year 2005 (log(φr)) and the estimated
17The results are similar when estimating (1.23) with any other measure of patent registrations

that is listed in Table 1.2.
18This is consistent with a notion of patented innovations to be technologically different from

non-patented ones.
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Figure 1.3: Log Overall Innovative Productivity vs. Estimated
Region-specific Importance Weight of Patented Innovations (2005)
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region-specific importance weight of patented innovations therein (α̂1r). Interest-

ingly, this relationship is negative, though weakly so. This means that in larger

regions – where patents are, on average, relatively rare and α̂1r is relatively high –

the overall productivity is relatively lower than on average, in spite of the higher

weight of the (fewer) patents. Hence, larger regions enjoy on average a lesser de-

gree of non-patented innovations. However, we should acknowledge that the R2

underlying the linear relationship in Figure 1.3 is as low as 0.04.

It is worth mentioning that (1.23) postulates a relationship between log(φrt)

and log(φPatentrt ) which does not vary too starkly around 0.009. Using

the estimates {α̂2, α̂3r} and data on log(Patentstock(inv)
rt ) and, alternatively,

log(Patentstock(app)
rt ) as well as log(Gr), we can plot log(φrt) against the estimates

log(φ̂Patentrt ). Figure 1.4 does so by way of scatter plots using binned data, where

we group regions into 20 equally-sized bins and compute averages within bins for

inventor-based (left panel) and applicant-based patents (right panel). The re-

sult is a non-parametric visualization of the conditional expectation function, and

the figure suggests that the data support relatively well a low variability of the

log-linear relationship between log(φrt) and log(φ̂Patentrt ), as expected.
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Figure 1.4: Log Overall Innovative Productivity vs. Log Patented
Innovations (2005)
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1.3.7 Estimating Amenity-function Parameters

Before we can simulate the model and do counterfactual analyses, we need to esti-

mate the amenity-function parameters. We postulate and expect overall amenities

to decrease with population density as described in equation (1.7). Taking logs of

art = ārtL̄
−λ
rt obtains

log(art) = −λ log(L̄rt) + const.+ εart, (1.25)

where log(ārt) is specified as a common constant (const., which measures the av-

erage of log(ārt) across all regions) plus a deviation from it (εart, i.e., a disturbance

term). Clearly, as population density L̄rt depends on people’s location choice in

the model which itself depends on art, it should be treated as endogenous in es-

timating the region-specific exogenous amenity parameter ārt and the congestion

parameter λ based on (1.25). Therefore, we estimate (1.25) by two-stage least

squares (2SLS) for the baseline year 2005, instrumenting L̄rt with a region-specific

area-weighted remoteness index, Rr = weightarear

(
1
N

∑
S ζrs

)
, which does not de-

pend on individual location decisions.19 In order to measure L̄rt we use gridded
19See Footnote 12 for a reasoning regarding this instrumentation strategy.
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population data from the Socioeconomic Data and Application Center (SEDAC)

which we aggregate to the required (non-gridded) regional level.20

To construct the dependent variable based on art in (1.25), we use the structure

of the model, substitute the indirect utility (1.8) into (1.10) and solve for art as

in equation (1.27) in Appendix 1.7.

Table 1.4: Amenity Parameter Estimation Results

Moments of ̂̄ar ≡ exp(ĉonst.+ ε̂ar)
First Stage Dep. Var. log (L̄r) Mean Std.Dev.
log(Rr) ρ1 -0.473*** 60,107 352,390

(0.014)
Second Stage Dep. Var. log(art) 5% 10% 50% 90% 95%
̂log (L̄r) −λ -0.596*** 194.8 440.0 6,272.7 77,787.9 158,529.7

(0.033)
#obs 5,633

Notes: Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 1.4 reports the estimation results from estimating (1.25), with the con-

gestion parameter estimated at a value of λ̂ = 0.596. Furthermore, the table

reports first-order and second-order moments of ̂̄art. As described above, the

region-specific exogenous amenity attribute is defined as ̂̄art ≡ exp(ĉonst. + ε̂art).

In the general-equilibrium analysis, ̂̄art is kept constant at its level of the year

t = 2005 for all subsequent time periods.

1.4 Counterfactual Analysis

In the counterfactual equilibrium analysis we focus on the effects on three key

variables – place-specific employment, productivity, and welfare – in a scenario

where investment incentives towards innovation – except for patent boxes –

are abandoned. Effectively, this means that in the counterfactual analysis the

R&D-worker-specific productivity shifter equals hcr = exp(β̂PBDPatentboxr +

γ̂PB|latr|DPatentboxr + δ̂|latr|), ∀r ∈ S. We split the analysis in three parts.

First, we investigate how economic outcomes react in response to abandoning

incentives towards innovation and distinguish between regions in policy-adopting
20Technical details on this aggregation are described in Appendix 1.10.1.
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vs. policy-non-adopting countries. Table 1.5 lists all policy-adopting countries

for each instrument in the year 2005, according to Bösenberg and Egger (2017).

The second part of the analysis concentrates on the role of the treatment-size,

exogenous amenities, and remoteness for welfare responses. Lastly, we investigate

the role of the patented innovation weight for innovation responses.

Table 1.5: R&D Policy Instruments in 2005

R&D Policy
Instrument

Description Adopting Countries (in 2005)

Dtaxcreditr Tax credits on R&D investments. Austria, Canada, China, France, Ireland, Japan,
Mexico, Netherlands, Norway, Portugal, South
Korea, Spain, Taiwan, US, Venezuela.

Dtaxholidayr Tax holidays for firms with R&D
investments.

France, Malaysia, Singapore, Switzerland.

Dgrantsr R&D investment related grants
from the government.

Germany, Hungary, Ireland, Israel.

Dpatentboxr (Partial) exemption of returns on
R&D investments.

France, Hungary.

Ddeducr Deductions on R&D investments
other than super deductions.

Australia, Belgium, Ireland, Japan, South Korea.

Notes: France incl. Guadeloupe, French Guiana, Martinique, Reunion; Netherlands incl. Bonaire; US incl.
American Samoa, US Minor Outlying Islands; Australia incl. Cocos Islands; UK incl. Falkland Islands, Gibral-
tar, Montserrat, Pitcarn, St. Helena.

1.4.1 Economic Outcomes and R&D-policy Instruments

In Figure 1.5 we display the variation in long-run (T = 100) counterfactual changes

in important economic outcomes across all regions in the data. These three out-

comes are log population levels (log(L̄rtGr)), log (overall) productivity levels of

the Fréchet location parameter (θ−1 log(τrtL̄αrt)), and log welfare levels of the rep-

resentative household as expressed in real GDP (log(yrt) = log(urt/art)).

The three panels in the figure suggest that all three economic aggregates are re-

duced on average when abolishing the considered R&D-policy instruments. How-

ever, a non-trivial mass of regions gains population – mainly due to a loss in

competition for workers from otherwise less attractive regions that could compete

for mobile workers through the use of R&D-policy instruments. The (T = 100)

long-run changes are quite substantial: some regions gain about eight percent in

population while others lose more than 30 percent due to the hypothetical policy

change in the long run. Note that the distribution of log changes in population
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Figure 1.5: Density Estimates of Counterfactual Changes, T=100
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levels does not integrate to one. Given the logarithmic transformation of the

displayed population change, the hypothetical abolishment of R&D-policy indica-

tors implies that workers move to high-density places (large agglomerations) away

from (previously competitive) low-density places. Hence, country-wide R&D tax

incentives increase the competitiveness of less attractive low-density places in com-

parison to similar low-density places abroad, where these policy indicators are not

adopted.

Accordingly, these nationally adopted instruments indirectly work as place-

based policies in an international context for two reasons. First, they raise the

attractiveness of low-density (peripheral and low-amenity) places relative to high-

density places at a national level, where the policy is adopted, and, second, they

raise the attractiveness of low-density places in policy-adopting countries relative

to such places in non-adopting economies.

The effects of abandoning R&D-policy instruments on overall productivity are

detrimental throughout and even larger than on population changes; also the

welfare changes are negative throughout and almost as large as the productivity

changes. The fact that welfare and productivity changes are negative throughout

the distribution implies that also countries and their regions which do not use such

instruments benefit from their use elsewhere due to technology spillovers.

Table 1.6 presents moments of the real GDP growth rate in the short- (T=10),
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Table 1.6: Moments of Real GDP Growth

Period Min Max Mean Std
Baseline in %
T=10 0.9 6.5 3.6 0.53
T=50 1.6 4.1 2.8 0.24
T=100 2.1 3.1 2.6 0.09
Counterfactual in %
T=10 0.8 6.5 3.4 0.52
T=50 1.4 3.9 2.5 0.24
T=100 1.9 2.8 2.3 0.09
Counterfactual-Baseline in %pts
T=10 -0.94 -0.00 -0.23 0.10
T=50 -0.58 -0.16 -0.26 0.05
T=100 -0.38 -0.22 -0.26 0.02

medium- (T=50), and long-run (T=100). The table shows that regions converge

towards a model-induced balanced growth path, as the dispersion of growth rates

declines with time. The lower panel of the table presents counterfactual-minus-

benchmark growth rate differences in percentage points. The corresponding panel

suggests that one-tenth of the average long-run real GDP growth can be attributed

to the R&D policy instruments alone.

1.4.2 The Role of Treatment Size, Remoteness, and

Amenities for Welfare Responses

In Figure 1.6, we focus on the welfare changes as in the third panel of Figure 1.5

and plot them against the size of the direct treatment changes – i.e., the change

in hr induced by abolishing R&D-policy instruments. We differentiate between

all possible combinations of R&D-policy instruments that were in place in 2005.

Figure 1.6 suggests that the relationship between the treatment change and the

associated change in utility is almost linear. Hence, the direct (or partial) effect

entails a strong signal for the long-run response. There are indirect effects, which

are most obvious for the non-adopting regions in 2005 (about one-percent of the

regions displayed in blue circles in the upper-right corner of the figure). The

indirect effects on the other regions materialize inter alia as deviations of the data

points from the latent linear relationship in Figure 1.6.
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Figure 1.6: Welfare Change at T=100 and Changes in hr
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In Figure 1.7, we shed further light on potentially important mediators of the

general-equilibrium treatment effect on welfare changes. While Figure 1.6 alluded

to the nexus between the treatment signal and the welfare response, we focus

now on the role of exogenous amenities in 2005 (log(ārt); in the left panel) and a

region’s remoteness (log(Rr); in the right panel).

In the two panels of Figure 1.7, we use different color to plot the relationships

for different continents. Interestingly, the left panel reveals a positive relationship

between amenities and the welfare change for regions in North America, Europe

and Oceania (including Australia). Hence, a better endowment with good

amenities provides for a better insurance against adverse effects from the global

abolishment of R&D-stimulating policies. That relationship is still positive but

weaker for regions in South America, while it is negative for regions in Africa

and Asia. The right panel in Figure 1.7 reveals a negative relationship between

remoteness and the welfare change (i.e., more remote regions lose less on welfare

from the global abolishment of R&D-promoting policies) for regions in North

America, Oceania (including Australia), and also South America, while for regions

on other continents this relationship tends to be positive.
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Figure 1.7: Welfare Change and Amenity/Remoteness Levels
(by continents)
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In summary, greater (exogenous) amenities and a higher degree of centrality

of a place in the transport network provides for a better quasi-insurance against

adverse effects from weak R&D-policy institutions, on average. Moreover, an

R&D policy at the national level with a homogeneous direct effect of treatment of

all innovations across the places there has indirect place-based effects which are

ceteris paribus stronger for more peripheral places with less attractive amenities.

1.4.3 The Role of the Patented Innovation Weight for In-

novation Responses

In Section 1.3.6 we discussed the relative importance of patented and non-patented

innovations for overall innovation in the data. In the model, the weight of patented

in all innovations is α1r; see equation (1.23). The respective parameter is indexed

by region, because the importance of patenting depends on the land mass of a

region, according to equation (1.24). The latter was introduced to capture the
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fact that the delineation of regional borders in the REGPAT database was done

according (with region size being inversely related) to the frequency of patenting.

However, the overall role of innovation in a region is not a simple function of land

mass only but also depends on other fundamentals, such as amenities, market

access, etc.

Figure 1.8: Long-term Log Changes in Overall Innovation vs. Estimated
Region-specific Importance Weight of Patented Innovations (T=100)
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In this subsection, we shed light on how the innovation responses of general

R&D incentives depend on the relative importance of patenting in a region, as

captured by α1r. In Figure 1.8 we plot the log change in overall (patented plus

non-patented) innovation as induced by the counterfactual change in R&D tax

instruments against α1r. There could be a pattern in this relationship, if the land

mass of the regions were related to the latitude (as the effectiveness of R&D in-

centives may vary with the latitude of a region) or to the actual use of instruments

(e.g., through the more intensive use of the instruments by countries where patent-

ing is common and, hence, the average land mass of a region is small). The figure

suggests that the relationship between the counterfactual-to-benchmark change in

log(φr) and α1r is weak: recall that the R2 of a linear regression of log(φr) on

α1r was 0.04, and the one of a linear regression of log(φcr)− log(φr) on α1r is 0.02

when considering the change after T = 100 periods. However, the slope of the
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regression line for the change is positive. Hence, larger regions – i.e., ones with

a lower patent count on average in the outset which are also the ones where the

overall innovation level log(φr) was low and α1r was high – are the ones which gain

more in overall innovation than on average. It turns out that this relationship is

mainly driven by changes in Asia and not on other continents.

1.5 Conclusion

This paper outlines a multi-regional model of innovation, production, trade, and

factor mobility with a dynamic technology diffusion process. The key parame-

ters of the model are estimated and the model is otherwise calibrated to 5,633

REGPAT regions. One of the main goals of the paper is to provide a quanti-

tative account of the consequences and the value of innovation for regional and

national economies as well as the global economy. Since nationally implemented

policy instruments towards firm-level R&D are particularly important, we put em-

phasis on quantifying the role of such incentives. We document that, in spite of

their national inception, these instruments affect regions between but also within

adopting and non-adopting countries heterogeneously. The degree of heterogene-

ity depends on the extent of the treatment – how many and which instruments are

used and how productively (in terms of its absorptive capacity) a region can use

them. Moreover, the degree of heterogeneity depends on other fundamentals such

as a region’s integration in the national and international transport network as

well as its attractiveness for the location of mobile labor in terms of the available

amenities.

One important insight is that the use of policy instruments which are designed

to stimulate private R&D are globally beneficial in terms of productivity and wel-

fare. In other words, also countries and their regions who do not use such incen-

tives benefit from their use abroad due to technology spillovers. Also, the long-run

relocation effects from a hypothetical abolishment of R&D investment incentives

are substantial and lead to a re-shifting of the population towards high-density

areas. This is mainly due to a loss in competition for workers from otherwise less

attractive regions, which could gain in international competitiveness for mobile
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factors through the use of R&D policy instruments.

In line with the previous result, the quantitative analysis suggests that partic-

ularly low-amenity, peripheral places – and, on average, ones where the patenting

of innovations is less common than elsewhere – benefit relatively more strongly

from R&D investment incentives than others. The latter implies that these in-

struments work as place-based policies. This result is especially true for regions in

North America and Oceania, whereas the effect is less predominant in Europe or

Asia. Overall, R&D-policy instruments affect endogenous innovations primarily

through non-patented innovations, as the estimated range of weights of patented

innovations in all innovations is relatively small around the globe.
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Appendix

1.6 Estimation Table: Robustness

Table 1.7: Robustness Estimation Results (Marginal Effects) –
Subsamples

OECD Countries Non-OECD Countries
(with Singapore) (without Singapore)

(1) (2) (3) (4) (5) (6)
log(τ2−γ2

r ) OLS 2SLS 2SLS OLS 2SLS 2SLS

First Stage log(L̄r) log(L̄r) log(L̄r) log(L̄r)
log(Rr) -0.793*** -0.814*** -0.442*** -0.517***

(0.074) (0.065) (0.070) (0.063)

Second Stage
̂log(L̄r) 1.200*** 0.620*** 0.606*** 0.608** 0.350 0.283

(0.088) (0.063) (0.087) (0.274) (0.434) (0.389)
Dtaxcreditr 0.090 -0.650 1.150** -0.080 0.265 -1.103

(0.421) (0.421) (0.448) (0.541) (0.669) (0.894)
Dtaxholidayr -0.262 1.098*** 0.418* 8.843*** 8.752*** 8.626***

(0.441) (0.320) (0.201) (0.648) (0.576) (0.830)
Dgrantsr 0.265 1.293** 1.787*** (omitted) (omitted) (omitted)

(0.706) (0.636) (0.489)
Dpatentboxr 0.710* 0.225 -1.238*** (omitted) (omitted) (omitted)

(0.381) (0.308) (0.419)
Ddeducr 0.564 1.176*** 0.660* (omitted) (omitted) (omitted)

(0.514) (0.392) (0.324)

|latr| 0.079*** 0.039*** 0.014** 0.033 0.023 0.060*
(0.009) (0.011) (0.007) (0.021) (0.020) (0.033)

continent FE NO NO YES NO NO YES
# obs 5,199 5,199 5,199 434 434 434

Corr. coeff. 0.736 0.704 0.709 0.549 0.417 0.120
{log(τ2−γ2

r ); ̂log(τ2−γ2
r )}

Notes: Robust and country-level clustered std. errors in parentheses. In columns (4)-(6) the binary indicators
Dgrantsr, Dpatentboxr and Ddeducr are omitted because none of these policy instruments was in place in any of
the non-OECD countries in 2005.

1.7 Initial Efficiency and Amenity Distribution

To identify the initial efficiency distribution, we need to derive an expression

for τrt, using the model structure. To do so, we replace unit costs (1.3) into

the bilateral trade share in (1.9), plug it into the product-market clearing (1.11)
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and solve for a scaled τrt. At this point, we do not have any information on

the R&D-worker-specific productivity shifter hr. However, we can use the BGP

relationship, τrt ∝
(
L̄rhr

) θγ1
(1−γ2)ξ , and replace hr as a function of population density

and efficiency levels. Then,

τ
(2−γ2)
rt = L̄1−ι1

rt Grw
1+θ
rt∫

S
wstL̄stGsζ

−θ
rs

[∫
S
τ

(2−γ2)
kt L̄ι1rtζ

−θ
rk w

−θ
kt dk

]−1
ds

, (1.26)

where ι1 ≡ α− (1−µ)θ. Now, we numerically solve for the scaled τrt by applying

a standard contraction mapping procedure as it is described in Appendix B.7 in

Desmet et al. (2018), and using observed levels of population densities, L̄rt and

wages, wrt for the benchmark year 2005. Population levels come from SEDAC and

wage levels come from the G-Econ Project, which are aggregated to the regional

level as described in 1.10.1 and 1.10.2, respectively. Note that L̄rt represents

population density, hence, population levels are divided by normalized land Gr to

obtain L̄rt.

After learning hr and parameters values γ1 and γ2 as described in Section 1.3.4

and 1.3.5, respectively, we identify the initial distribution of amenities, art in the

year 2005. To do so, we replace the unit costs (1.3) in the price index and plug the

price index into the indirect utility function in (1.8). Then we replace the utility

in (1.10) and solve for amenities, art. Then, after defining

Πst ≡ L̄ι1stGsw
−θ
st h

−θγ1/ξ
s τstζ

−θ
rs ,

art =
(
L̄rtGr

L̄

)Ω 1
wrt

[∫
S

(aktwkt)1/Ω
(∫

S
Πstds

)1/Ωθ
dk

]Ω [∫
S

Πktdk
]−1/θ

. (1.27)

Again, we apply an iterative procedure to solve for the initial amenity

distribution art using observed population densities and wages. With art we esti-

mate the exogenous region-specific amenity-shock ārt as described in Section 1.3.7.
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1.8 Equilibrium: Existence and Uniqueness

The uniqueness condition in (1.12) can be derived along the lines of Desmet et al.

(2018) (see their Section B.3). We can manipulate the system of equations that

defines an equilibrium as follows. For the first set of equations, we substitute (1.4)

into (1.3) and replace that expression in the price index. Then,

Prt = κ0

[∫
S
τstL̄

α−(1−µ−γ1/ξ)
st w−θst ζ

−θ
rs h

θγ1/ξ
st ds

]− 1
θ

, (1.28)

where κ0 = p̄
(

1
µ

)µ ( ξν
γ1

)γ1/ξ ( ξµ+γ1
ξ

)−(1−µ−γ1/ξ) and p̄ = Γ
(

1−σ
θ

+ 1
) 1

1−σ .

Substituting (1.28) into (1.8) gives

[
ār
urt

]−θ
L̄θλrtw

−θ
rt = κ1

∫
S
τstL̄

α−(1−µ−γ1/ξ)θ
st w−θst ζ

−θ
rs h

θγ1/ξ
st ds, (1.29)

where κ1 =
(
κ0

µξ+γ1
ξ

)−θ
. For the second set of equations, we insert (1.9) and the

price index into the product-market clearing (1.11) so that

wrtGrL̄rt = p̄−θ
∫
S
Trt[ortζsr]−θP θ

stwstGsL̄stds. (1.30)

Substituting unit costs (1.3) and Trt = τrtL̄
α
rt, as well as replacing the price

index with the indirect utility in the previous equation yields

τ−1
rt w

1+θ
rt Grh

− θγ1
ξ

rt L̄
1−(α−(1−µ−γ1/ξ)θ)
rt = κ1

∫
S

[
ās
ust

]θ
ζ−θsr w

1+θ
st GsL̄

1−λθ
st ds. (1.31)

Assuming symmetric trade costs, we follow the proof of Theorem 2 in Allen

and Arkolakis (2014), which is based on Theorem 2.19 in Zabreyko et al. (1975).

Let us introduce the following function f̄r, which is the ratio of LHS’s of (1.29)

and (1.31):

f̄r = τ−1
rt w

1+θ
rt Grh

− θγ1
ξ

rt L̄
1−(α−(1−µ−γ1/ξ)θ)
rt[

ār
urt

]−θ
L̄θλrtw

−θ
rt

. (1.32)
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Equivalently, f̄r also equals the RHS’s of (1.29) and (1.31) that is

f̄r =

∫
S

[
ās
ust

]θ
ζ−θsr w

1+θ
st GsL̄

1−λθ
st ds∫

S
τstL̄

α−(1−µ−γ1/ξ)θ
st w−θst ζ

−θ
rs h

θγ1/ξ
st ds

. (1.33)

Applying symmetric trade costs, ζrs = ζrs, we can rewrite f̄r as follows

f̄r =
∫
S f̄
−λ
s

¯̄fsr ds∫
S f̄
−(1+λ)
s

¯̄fsr ds
, (1.34)

where

¯̄fsr =
[
ās
ust

]θ(1+λ)
τ−λst G

1+λ
s ζ−θsr h

−λ θγ1
ξ

st w
1+θ+(1+2θ)λ
st L̄

1−λθ−λ[α−1+(λ+ γ1
ξ
−(1−µ))θ]

st .

(1.35)

Rewrite (1.34) as

¯̄̄
fr = f̄−λr∫

S f̄
−λ
s

¯̄fsr ds
= f̄−(1+λ)

r∫
S f̄
−(1+λ)
s

¯̄fsr ds
. (1.36)

Then, changing the notation to

ḡr = f̄−λr and ¯̄gr = f̄−(1+λ)
r , (1.37)

and rewrite both as follows

ḡr =
∫
S

¯̄̄
fr

¯̄fsrḡs ds and ¯̄gr =
∫
S

¯̄̄
fr

¯̄fsr ¯̄gs ds. (1.38)

Define ¯̄̄
fr

¯̄fsr as kernel Ksr. Hence, ḡr and ¯̄gr are both solutions to the integral

equation

xr =
∫
S
Krs xs ds. (1.39)

We have to ensure that Ksr is (i) non-negative, (ii) measurable and (iii) square-

integrable. Non-negativity holds as ¯̄f and ¯̄̄
f are non-negative. Measurability holds

because it can be shown that ¯̄f and ¯̄̄
f are approximately continuous everywhere.

Square-integrability holds as long as population at any given location is bounded

from below and above. The former is true because by construction population
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cannot shrink to zero unless nominal wages are zero or amenities are infinitely

high. The latter is true because population at any given location cannot exceed

the level of world population L̄.

Given the properties of Ksr, Theorem 2.19 in Zabreyko et al. (1975) guarantees

that there exists a unique (to scale) strictly positive function that satisfies the

system of equations in (1.39). Hence,

ḡr = $¯̄gr ⇒ f̄−λr = $f̄−(1+λ)
r ⇒ f̄r = $, (1.40)

where $ is a constant. Therefore, we have

τ−1
rt w

1+θ
rt Grh

− θγ1
ξ

rt L̄
1−(α−(1−µ−γ1/ξ)θ)
rt[

ār
urt

]−θ
L̄θλrt w

−θ
rt

= $, (1.41)

and solving for wrt gives

wrt = w̄
[
ār
urt

]− θ
1+2θ

τ
1

1+2θ
rt G

− 1
1+2θ

r L̄

α−1+[λ+ γ1
ξ
−[1−µ]]θ

1+2θ
rt h

θγ1/ξ
1+2θ
rt , (1.42)

where w̄ = $
1

1+2θ . Substituting (1.42) into (1.29) gives
[
ār
urt

]− θ(1+θ)
1+2θ

τ
− θ

1+2θ
rt G

θ
1+2θ
r L̄

λθ− θ
1+2θ

[
α−1+

[
λ+ γ1

ξ
−[1−µ]

]
θ
]

rt h
− θ(θγ1/ξ)

1+2θ
rt

= κ1

∫
S

[
ās
ust

] θ2
1+2θ

τ
1+θ
1+2θ
st G

θ
1+2θ
s ζ−θrs L̄

1−λθ+ 1+θ
1+2θ

[
α−1+

[
λ+ γ1

ξ
−[1−µ]

]
θ
]

st h
(1+θ)(θγ1/ξ)

1+2θ
st ds.

(1.43)

Inserting (1.10) into (1.43) gives

B̄rt û
1
Ω [λθ− θ

1+2θ [α−1+[λ+ γ1
ξ
−[1−µ]]θ]]+ θ(1+θ)

1+2θ
rt

= κ1

∫
S
û

1
Ω [1−λθ+ 1+θ

1+2θ [α−1+[λ+ γ1
ξ
−[1−µ]]θ]]− θ2

1+2θ
st

¯̄Bstζ
−θ
rs ds,

(1.44)

where

B̄rt = ā
− θ(1+θ)

1+2θ
r τ

− θ
1+2θ

rt G
θ

1+2θ [α+[λ+γ1/ξ−(1−µ)]θ]−λθ
r h

− θ(θγ1/ξ)
1+2θ

rt ,

and
¯̄Bst = ā

θ2
1+2θ
s τ

1+θ
1+2θ
st G

θ
1+2θ−1+λθ− 1+θ

1+2θ [α−1+[λ+γ1/ξ−(1−µ)]θ]
s h

(1+θ)(θγ1/ξ)
1+2θ

st ,
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and

ûrt = urt

[
L̄∫

S u
1/Ω
kt dk

]Ω
[

1− θ
1
Ω [[λ+(1−µ)− γ1

ξ ]θ−α]+θ
]
. (1.45)

Rewrite (1.44) as

B̄rf
γ̃1
r = κ1

∫
S

¯̄Bsζ
−θ
rs f

γ̃2
s ds, (1.46)

and apply Theorem 2.19 in Zabreyko et al. (1975), then the solution f(·) to equation

(1.46) exists and is unique if (a) the function κ1B̄
−1
r

¯̄Bsζ
−θ
rs is strictly positive and

continuous, and (b)
∣∣∣ γ̃2
γ̃1

∣∣∣ ≤ 1. The latter implies

1
Ω

[
1− λθ + 1+θ

1+2θ

[
α− 1 +

[
λ+ γ1

ξ
− [1− µ]

]
θ
]]
− θ2

1+2θ
1
Ω

[
λθ − θ

1+2θ

[
α− 1 +

[
λ+ γ1

ξ
− [1− µ]

]
θ
]]

+ θ(1+θ)
1+2θ

≤ 1,

which after some simplification can be written as the uniqueness condition (1.12)

as stated in Section 1.2.4

α

θ
+ γ1

ξ
≤ λ+ 1− µ+ Ω.

1.9 Balanced Growth Path: Derivation

1.9.1 Uniqueness and Existence Condition in the BGP

The BGP uniqueness and existence condition is derived along the lines of Desmet

et al. (2018). Efficiency evolves according to a endogenous dynamic process in

(1.2) and, hence, the growth rate of τrt is given by

τrt+1

τrt
= φθγ1

rt

[∫
S

Wrsτst
τrt

ds
]1−γ2

, (1.47)

where we define Wrs ≡ 1/N,∀rs as described in Section 1.2.5. Divide both sides

by the corresponding equation for region s, and rearrange, knowing that τrt+1
τrt

is

constant over time and space and τst
τrt

is constant over time. Hence,

τrt+1
τrt
τst+1
τst︸ ︷︷ ︸
=1

=
[
τst
τrt

]1−γ2
[
φrt
φst

]θγ1 [∫
S τstds∫
S τrtdr

]1−γ2

︸ ︷︷ ︸
=1

⇒ τst
τrt

=
[
φst
φrt

] θγ1
1−γ2

=
[
L̄shs

L̄rhr

] θγ1
(1−γ2)ξ

,

(1.48)
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where the last equality follows from (1.6). We drop the time subscript to demon-

strate that population density remains constant in the BGP. Rewrite the last

equation as

L̄s =
[
τst
τrt

] (1−γ2)ξ
θγ1

L̄r
hr
hs
,

and integrate both sides over s and apply the labor market clearing condition,∫
S
GsL̄stds = L̄ such that

∫
S
GsL̄sds = τrt

− (1−γ2)ξ
θγ1 L̄rhr

∫
S
Gsτ

(1−γ2)ξ
θγ1

st h−1
s ds ⇒ τrt = κ̃t(hrL̄r)

θγ1
(1−γ2)ξ , (1.49)

where κ̃t depends on time but not on location. Take the last equation and substi-

tute it into (1.43) such that

[
ār
urt

]− θ(1+θ)
1+2θ

G
θ

1+2θ
r L̄

λθ− θ
1+2θ

[
α−1+[λ+ γ1

ξ
−[1−µ]]θ+ θγ1

(1−γ2)ξ

]
r h

− θ(θγ1/ξ)
1+2θ (1+ 1

1−γ2
)

r

= κ1κ̃t

∫
S

[
ās
ust

] θ2
1+2θ

G
θ

1+2θ
s ζ−θrs L̄

1−λθ+ 1+θ
1+2θ

[
α−1+[λ+ γ1

ξ
−[1−µ]]θ+ θγ1

(1−γ2)ξ

]
s

h
(1+θ)(θγ1/ξ)

1+2θ (1+ 1
1−γ2

)
s ds.

(1.50)

Inserting (1.10) in (1.50) and rearranging conveniently, yields

D̄r
ˆ̂u

1
Ω

[
λθ− θ

1+2θ

[
α−1+[λ+ γ1

ξ
−[1−µ]]θ+ θγ1

(1−γ2)ξ

]]
+ θ(1+θ)

1+2θ

rt

= κ1κ̃t

∫
S

ˆ̂u
1
Ω

[
λθ+ 1+θ

1+2θ

[
α−1+[λ+ γ1

ξ
−[1−µ]]θ+ θγ1

(1−γ2)ξ

]]
− θ2

1+2θ

st
¯̄Ds ζ

−θ
rs ds,

(1.51)

where

D̄r = ā
− θ(1+θ)

1+2θ
r G

θ
1+2θ [α+[λ+ γ1

ξ
−[1−µ]]θ+ θγ1

(1−γ2)ξ ]
r h

− θ(θγ1/ξ)
1+2θ (1+ 1

1−γ2
)

r ,

and

¯̄Ds = ā
θ2

1+2θ
s G

θ
1+2θ−1+λθ− 1+θ

1+2θ [α−1+[λ+ γ1
ξ
−[1−µ]]θ+ θγ1

(1−γ2)ξ ]
s h

(1+θ)(θγ1/ξ)
1+2θ (1+ 1

1−γ2
)

s ,

are exogenously given, and

ˆ̂urt = urt

[
L̄∫

S u
1/Ω
kt dk

]Ω

1− θ

1
Ω

[
[λ+(1−µ)− γ1

ξ ]θ−α− θγ1
(1−γ2)ξ

]
+θ


.

(1.52)
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Analogously to the existence and uniqueness proof in Section 1.8, we can

rewrite (1.51) as

D̄rg
˜̃γ1
r = κ1κ̃t

∫
S

¯̄Dsζ
−θ
rs g

˜̃γ2
s ds. (1.53)

According to Theorem 2.19 in Zabreyko et al. (1975) g(·) is a solution to the

system of equations in (1.53) that is unique if
∣∣∣ ˜̃γ2

˜̃γ1

∣∣∣ ≤ 1. This condition implies

1
Ω

[
α− 1 +

[
λ+ γ1

ξ
− [1− µ]

]
θ + θγ1

(1−γ2)ξ

]
+ θ(1+θ)

1+2θ
1
Ω

[
1− λθ + 1+θ

1+2θ

[
α− 1 +

[
λ+ γ1

ξ
− [1− µ]

]
θ + θγ1

(1−γ2)ξ

]]
− θ2

1+2θ

≤ 1,

from which, after some rearrangement, we get the uniqueness condition in the

balanced growth path (1.16) as stated in Section 1.2.5

α

θ
+ γ1

ξ
+ γ1

[1− γ2]ξ ≤ λ+ 1− µ+ Ω.

1.9.2 Growth Rate of Aggregate Welfare

To derive the growth rate of aggregate welfare, we follow again the procedure in

Desmet et al. (2018). To start, rewrite (1.42) as follows

τrt = w̄−(1+2θ)
[
ār
urt

]θ
w1+2θ
r GrL̄

1−α+[λ+ γ1
ξ
−[1−µ]]θ

1+2θ
r h

− θγ1
ξ

r . (1.54)

Substituting the previous equation into (1.49) and solving for urt gives

urt = κ̃
1
θ
t Er, (1.55)

where Er is only dependent on the location and not on time. Hence,

urt+1

urt
=
(
κ̃t+1

κ̃t

) 1
θ

=
(
τrt+1

τrt

) 1
θ

, (1.56)

where the last equality follows from (1.49). From (1.47) and (1.48) we know

τrt+1

τrt
= φθγ1

rt

[
1
N

∫
S

τst
τrt
ds

]1−γ2

=
(

γ1/ν

γ1 + µξ
L̄rhr

) θγ1
ξ

 1
N

∫
S

(
L̄shs

L̄rhr

) θγ1
(1−γ2)ξ

ds

1−γ2

. (1.57)
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Rearranging the previous equation and substituting it into (1.56) gives

urt+1

urt
=
[ 1
N

] 1−γ2
θ

[
γ1/ν

γ1 + µξ

] θγ1
ξ (∫

S
(L̄shs)

θγ1
[1−γ2]ξ ds

) 1−γ2
θ

.

1.10 Data Aggregation

Our unit of interest are REGPAT regions. We use gridded data with different res-

olution for which we need an aggregation strategy to the regional level. Hereafter,

we discuss the aggregation strategy for each data source separately.

1.10.1 Population Data from SEDAC

The Socioeconomic Data and Application Center (SEDAC) provides gridded pop-

ulation data with an output resolution of 30 arc-seconds (approximately 1 km at

the equator). As the size of each grid cell is smaller than the smallest region in

our data, we simply sum up the population count over all grid cells falling withing

the regional border.

1.10.2 Population and GDP from G-Econ Project

The Geographically based Economic Data (G-Econ) project at Yale University

provides SEDAC gridded population data aggregated to the 1◦ by 1◦ resolution

(approximately 100km by 100km at the equator), which is about the same size

as second level political entities in most countries. Besides population data, the

G-Econ project offers gridded GDP data (gross cell product at purchasing power

parity (PPP)) at the 1◦ by 1◦ resolution. We assign population and GDP values

to each region through an area-weighted average aggregation. Figure 1.9 illus-

trates how the area-weights are assigned in the case of GDP data (left panel) and

population count data (right panel). In both panels, the green area represents the

urban region of Prague in the Czech Republic, which falls into two different grid

cells (bordered in red). Therefore, the GDP value of Prague is equal to six-tenth

of the left grid cell plus four-tenth of the right grid cell. In the case of population

count data, we construct the area-weight as the part of Prague that falls into the

grid cell relative to the overall area of the grid cell. Hence, the population count
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of Prague is four-hundreds of the left grid cell plus three-hundreds of the right

grid cell.

Figure 1.9: Aggregation for Data with One Degree Resolution

0.6

0.4

0.04

0.03

1.10.3 Transportation Costs based on the Fast-marching

Algorithm

We derive the fast-marching-algorithm-based transportation costs between pairs

of 1◦ grid cells along the lines of Desmet et al. (2018). To find a correspondence

of these transportation costs to the level of REGPAT regions, we employ an area-

weighted average assignment. The area-weights are constructed as the share of

regional area falling into a grid cell relative to the total regional area (see left

panel of Figure 1.9). Our averaging procedure can be best explained using matrix

notation. Let Wnx1 be the vector of area-weights for n sub-regions, where a sub-

region refers to an intersection between a REGPAT region and a one-degree grid

cell area. Furthermore, we define the fast-marching transportation costs matrix as

Tnxn, which is blown up from the number of one-degree grid cells to the number of

n sub-regions, using information on sub-region intersections with one-degree grid

cells from ArcGIS. Lastly, we need a correspondence of sub-region to the final set

of REGPAT regions r and define a selector matrix Snxr using ArcGIS, where r

is equal to 5,633. Then the regional transportation costs Trxr can be obtained as

follows

Trxr = W ′
nxrTnxnWnxr, (1.58)

where Wmxr = (Wmx1ι
′
mx1) ◦ Smxr.
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Chapter 2

Natural City Growth in the

People’s Republic of China

This is the original manuscript of an article published by MIT Press in the Asian Devel-

opment Review 34(2), available online: https: // doi. org/ 10. 1162/ adev_ a_ 00095

2.1 Introduction

With the increase in global population, the change in urbanization rates around

the world is a startling dynamic phenomenon. While in 1994 only 30% of the

world population lived in cities as defined by national statistical offices, about

54% of the population did in 2014.1 In the People’s Republic of China (henceforth

China), which has been among the most dynamic economies over the last quarter

of a century, almost 25% of the population has moved to urban areas within

the past two decades. China’s National New-type Urbanization Plan, 2014-2020

targets an urbanization rate of 60% by 2020. While urbanization is often measured

as the increase in the population within the administrative boundaries of cities,

urbanization in a broad sense is driven by three phenomena: (i) the increase in

population density (and economic activity) within the administrative boundaries

of existing urban zones, (ii) the increase in population density (and economic

activity) in areas in the vicinity of administrative urban zones through the growth

of Metropolitan Statistical Areas (MSAs), and (iii) (to a lesser extent) the physical
1World Bank. 2015. World Development Indicators.
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growth of the administrative areas of cities.2 This paper focuses on the first

two phenomena, which are objects of interest in the theoretical and empirical

urban economics literature focusing on city growth; urban sprawl, which goes

hand in hand with the formation of densely populated urban subcenters; and the

decentralization of economic activity (see, for example, Fujita and Ogawa, 1980,

1982; Henderson and Mitra, 1996; Glaeser and Kahn, 2001, 2004; McMillen and

Smith, 2003; Burchfield et al., 2006; Garcia-Lopez et al., 2017).

Unlike in many other countries, China’s city growth in the recent past has

been governed by regulations. The country’s one-child policy, which had been

instituted in its most restrictive form between 1978 and 2015, led to a slump in

overall population growth, reduced the growth rate of cities, and slowed the av-

erage urbanization rate. Furthermore, the hukou (household registration) system

has restricted the internal migration of people to urban centers by limiting ac-

cess to public goods such as health care, schools, universities, and official housing.

Finally, the inception of Special Economic Zones (SEZs) has ensured the protec-

tion of the private property rights of foreign investors, alleviated taxes and tariffs,

regulated the policy of land usage, and liberalized economic and labor laws in

geographically confined zones. According to Wang (2013), most major cities in

China’s 326 municipalities hosted some sort of SEZ by 2006. A consideration of

these regulatory provisions – apart from factors capturing the economic attractive-

ness and amenities in cities – appears relevant as they may lead to a gap between

actual and optimal city size in China, thereby affecting the associated economies

of scale and scope (see, for example, Au and Henderson, 2006a,b; Desmet and

Rossi-Hansberg, 2013), and resulting in potentially significant output losses.

Chinas extensive investments in transport infrastructure, particularly road and

railway networks, have fundamentally reshaped the structure of its urban areas. In

the early 1990s, the Chinese government began to renew and upgrade its transport

infrastructure, which caused previously underdeveloped regions to grow faster as
2The term MSA is mostly used in the context of the study of cities in the United States. In

Europe, the literature primarily refers to a Functional Urban Area, which essentially describes
the same concept of agglomerations measured by a minimum density of the population according
to census data. In this paper, we utilize the term natural cities to indicate something similar,
though it is based on the measurement of a city by remote-sensing (night-light radiance) data
in conjunction with the City Clustering Algorithm.
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industries started to decentralize (see Banerjee et al., 2012; Faber, 2014; Baum-

Snow et al., 2016, 2017). For example, Baum-Snow et al. (2017) find that suburban

ring roads have displaced an average of about 50% of central city industrial gross

domestic product (GDP) to the outskirts of cities, while marginal radial railroads

have displaced an additional 20%. Similarly, Baum-Snow et al. (2016) argue that

expanded regional highway networks in China have had a negative average effect

on local population density, causing a reallocation of economic activity and altering

the structure of the country’s cities.

The focus of this paper is on the growth of natural cities, which are defined

as connected places with a minimum night-light radiance as a measure of place-

and time-specific economic activity (Henderson et al., 2012), and which are asso-

ciated with China’s 300 largest administrative cities over the period 1992-2013.

One major merit of using remote-sensing data to define cities is that such data are

available at much higher frequency than population census data. Furthermore, the

data collection itself is much more homogeneous in terms of timing and concept.

The data suggest that China’s natural cities grew rapidly between 1992 and 2010

before shrinking to some extent in the last few years of the review period, which

might be attributable to the detrimental effects of the recent global financial cri-

sis. We document this phenomenon for all cities in terms of descriptive statistics

and illustrate it for two major agglomerations, Beijing and Shanghai. This paper

explores these developments using econometric analysis and identifies institutional

factors – as reflected in the proliferation of SEZs and the provisions of the hukou

system – and infrastructure accessibility as being important determinants of nat-

ural city growth. We highlight the effects of road and railway accessibility, and

illustrate that shocks to infrastructure can be expected to induce relatively rapid

adjustments in natural city size over the next 20 years.

The remainder of the paper is organized as follows. Section 2.2 introduces the

definition of a natural city employed in this paper and outlines the measurement

thereof. The data and their descriptive statistics, empirical strategy, and results

are presented in Section 2.3. Section 2.4 concludes.
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2.2 Natural City Borders in China, 1992-2013

In this paper, we employ a definition of city boundaries based on what we call nat-

ural borders. Natural city borders relate to the well-known concepts of MSAs and

Functional Urban Areas (FUAs), which measure city size by activity rather than

administrative boundaries (see, for example, Zipf, 1949; Krugman, 1996; Eaton

and Eckstein, 1997; Harris Dobkins and Ioannides, 2001; Ioannides and Overman,

2003; Eeckhout, 2009; Rozenfeld et al., 2011). A general motivation to use a city

definition based on either MSA or FUA is that they capture more accurately the

extent of urban units, going beyond – and sometimes integrating several units with

– administrative boundaries. When looking at emerging urban areas, especially

in transition economies such as China, the study of MSAs and FUAs follows an

economic rather than an administrative logic. We define the boundaries of natu-

ral cities based on the City Clustering Algorithm (CCA) (Rozenfeld et al., 2008,

2011), which we apply to remote-sensing (night-light radiance) data collected from

satellites (Burchfield et al., 2006; Henderson et al., 2012). We measure the aver-

age night-light radiance in places that are 3 kilometers (km) in length by 3 km

in width.3 We are facing a trade-off between portraying and approximating the

boundaries of small cities, especially in the early phases of the sample period, and

the tractability of the data, particularly the application of the CCA.4 The former

requires sufficiently small places and the latter sufficiently few places. For those

reasons, the consideration of 3 km x 3 km places was the finest-grained grid we

could use given the time constraints. In general, one major advantage of using

remote-sensing data to define natural cities is that annual data are available be-

tween 1992 and 2013, while MSA and FUA data are based on population censuses

and therefore only available at lower frequency.

We consider the 300 biggest administrative cities in China by population as of

the year 2000.5 Figure 2.1 shows a map of China and the location of the centroids
3Individual places in China bordering water or other boundaries may be smaller in size than

3 km x 3km.
4The distribution of city sizes in the sample is presented in Figure 2.5.
5A list of the 300 biggest Chinese cities by population in 2000 is presented in Table 2.7 in

the Appendix. Moreover, we report a list of all natural cities by size in 2000 in Table 2.8. There
are three different administrative levels of cities in the Chinese urban system: municipalities,
prefecture-level cities, and county-level cities. With regard to the empirical analysis we use
administrative boundary information on the county-level only. For further information on this

54



Figure 2.1: Centroids of 300 Biggest Administrative Cities in China
(by Population in 2000)
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Legend:
! City centroid

Provincial border

of all 300 cities covered. Very few cities are located in western China, while there is

a particularly high density in the vicinity of the coastal belt, which is not surprising

provided the high degree of economic activity through international trade in that

area.

The object of interest in this study are the aforementioned 3 km x 3km places.

We define natural city borders on a uniform grid of such places for all cities in the

sample. On this grid, we assign a place to a natural city in a year if (i) the average

night-light radiance on the square exceeds a value of 40; and (ii) it is located near a

cluster of places with average night-light radiance over 40, including the place that

contains the city centroid (based on the CCA algorithm). We employ Version 4

of the Defense Meteorological Satellites Program Operational Linescan System to

measure night-light radiance at the pixel level (Croft, 1978). The remote-sensing

(night-light radiance) data therein take on values between 0 (no light) and 63

(maximum light). Night-light radiance data per pixel are available for all years

between 1992 and 2013 based on pictures from six different satellites (F10, F12,

F14, F15, F16, and F18)6, with some years covered by two satellites. We chose

point please proceed to Section 2.3.1.
6The satellite identifiers correspond to those used by the Defense Meteorological Satellites

Program. For further information, please see National Oceanic and Atmospheric Administration.
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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the data such that the number of satellites they come from is minimized (F10

for 1992-1993, F12 for 1994-1999, F15 for 2000-2004, F16 for 2005-2009, and F18

for 2010-2013). The data comprise a raw-data version as well as a stable-data

version, where the latter ensures that the data are not conflated by fire or firework

incidents, or clouds or any other weather conditions. In this paper, we use the

stable-light data version and compute the mean of radiance across all pixels within

each place. In the final data set, we include all those places that were assigned to

be in a natural city in any year between 1992 and 2013, and we track these places

over the entire review period.

Figure 2.2: Natural City over Time – Beijing

(a) Beijing 1992

Legend:
Centroid

Prefecture city border

Natural city place

(b) Beijing 1998

(c) Beijing 2007 (d) Beijing 2013

Figures 2.2 and 2.3 delineate the natural city with its city centroid (black dot)

and administrative boundaries for Beijing and Shanghai for the years 1992, 1998,

2007, and 2013. In every panel, gray grids represent places that constitute the

natural city in that particular year. Prefecture-level administrative city boundaries

are indicated in black.7 In the case of Beijing, we observe that its natural city size
7Figures 2.2 and 2.3 show prefecture-level administrative boundaries. However, in the es-
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Figure 2.3: Natural City over Time – Shanghai

(a) Shanghai 1992

Legend:
Centroid

Prefecture city border

Natural city place

(b) Shanghai 1998

(c) Shanghai 2007 (d) Shanghai 2013

grew remarkably over the entire sample period. Especially from 1998 onward, the

natural city of Beijing grew outward toward the northeast, which could be partly

related to the 1993 opening of the Airport Expressway linking central Beijing to

the Beijing Capital International Airport. Additional infrastructure investments

to improve airport connectivity (e.g., Airport Express Subway) in preparation for

the 2008 Olympic Games may have also contributed to the northeast developing

more rapidly than other parts of Beijing.

Similar to Beijing, Shanghai’s natural city grew over the entire review period

and mostly integrated urban areas along the downstream part of the Yangtze

River. The example of Shanghai illustrates that, especially toward the end of the

review period, several administrative cities merged into one natural super-city.

The natural city of Shanghai in 1992 contained only one administrative centroid,

while by 2013 it had incorporated a number of formerly distinct administrative

timation, all variables that include information on administrative boundaries rely on county-
level boundaries as those boundaries represent the city-size distribution in a better way than
prefecture-level boundaries.
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and natural cities along the Yangtze River into one natural super-city of Shanghai.

However, in spite of the general growth of natural cities through 2007-2013, many

natural cities, including Beijing and Shanghai, shrank between 2010 and 2013,

most likely as a consequence of the global financial crisis (Figure 2.4).

Figure 2.4: Shrinking Natural Cities from 2010 to 2013

(a) Beijing

Legend:
Centroid

Natural city place in:
2010 and 2013

2010

2013

(b) Shanghai

Table 2.1 reports average unconditional transition probabilities for natural city

places for the whole sample of places considered. The table suggests that there

is a high degree of persistence from one year to another: 92% of all natural city

places keep their status, while about 90% of all places outside the natural city

boundary remain outside that boundary from one year to another. The probability

of acquiring natural city status amounts to 10%, while losing natural city status

occurs in 7% of all cases from one year to another. The latter development is

almost entirely driven by transitions during 2010-2013, reflecting China’s economic

downturn in the aftermath of the global financial crisis.

Table 2.1: Transition Matrix

Target

Nat = 1 Nat = 0 Total

Origin Nat = 1 92.63 7.37 100
Nat = 0 10.06 89.94 100

Total 39.65 60.35 100
Abbreviation: Nat = natural city.

Per Table 2.1, the average natural city size is expected to grow over the sample

period. Figure 2.5 draws kernel density estimates of natural city sizes for the years
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1992, 1998, 2007, and 2013. In each of the four panels of Figure 2.5, the horizontal

axis shows the number of 3 km x 3 km places in a natural city. We observe that the

average natural city size, reflected in the total number of places covered, increases

remarkably with time. Especially in the beginning of the review period, the density

mass is concentrated in the left tail of the distribution, indicating a great number

of relatively small natural cities and only a small number of very large super-cities

in the sample. Later in the review period, the degree of dispersion in terms of

natural city size increases and the density mass in the left tail of the distribution

gets smaller.

Figure 2.5: Kernel Density Estimates of Natural City Size across Cities
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2.3 Drivers of Natural City Growth

In this section, we introduce all variables included in the subsequent empirical

analysis.

2.3.1 Data

We use average (night-light) radiance data in a 3 km x 3 km place i at period t as

the dependent variable to measure economic activity in that area. The variable
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radianceit is continuous and censored from below as well as from above, ranging

from 0 (no light) to 63 (maximum light). Information on the source and the

processing of the radiance data can be found in Section 2.2.

We identify three key categories of variables that drive natural city growth:

geographical, climate, and institutional variables. The geographical variables in-

clude the following distance measures, some of which are time-variant (indexed

by both i and t) and others are not (indexed by i only): distance to the admin-

istrative city center (dist to centeri), distance to the administrative city border

(dist to adborderit), distance to the nearest waterway (dist to wateri), distance to

the ocean (dist to oceani), distance to the nearest road (dist to roadi) and distance

to the nearest railway line (dist to raili). The geographical variables include a

binary indicator that is unity if a place lies within the administrative boundary

of the city centroid, and zero otherwise (within admin boundaryit). Except for

dist to adborderit and within admin boundaryit, which utilize annual information

on administrative boundaries (at the county-level) from the China Data Center at

University of Michigan, all distances of places are taken from OpenStreetMap us-

ing ArcGIS software.8 Furthermore, we utilize topological information in the form

of a measurement of altitude (altitudei) from WorldClim Global Climate Data,

and we control for the geographical location of each centroid by using informa-

tion on its longitude and latitude from ArcGIS. For instance, Chinese cities near

the coast grew faster due to better accessibility to sea transport, which attracted

foreign direct investment and was further stimulated by the formation of SEZs.

We use the following time-invariant climate data: the average annual rain-

fall during the period of observation (raini), the average annual temperature

(temperaturei), and the average annual temperature variation (sd temperaturei;

as measured by the standard deviation). Gridded climate data are available from

WorldClim Global Climate Data.

The institutional variables represent two types of institutional changes that

governed China’s urban growth: reforms in the hukou system and the formation
8OpenStreetMap information is based on the most recent network information available only.

Distance to the nearest road includes all types of different roads (e.g., private roads, lower-
capacity highways, higher-capacity highways, and limited-access highways). Distance to the
nearest railway line includes all types of railway lines (e.g., subway lines and inter-provincial
railway lines).
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of SEZs. Between the late 1970s and mid-2000s, a period which is referred to as

the first wave of hukou reforms, restrictions on movement and work were lifted,

which led to a large inflow of rural workers into urban areas. In most provinces,

the scale of reforms varied with city size. Generally, reforms have had little impact

on institutions in the most attractive urban areas such as provincial capitals and

large cities along the coastal belt. To capture the different effects, we introduce

three binary indicators – smallit, mediumit and largeit – which are unity if a

province applied their latest hukou reform to small, medium, and large cities,

respectively, and zero otherwise. A combined effect of these reforms is captured

in the binary indicator hukouit, which is unity if either of the three, two out of

three, or all three city size indicator variables are unity, and zero otherwise. Time-

variant information on the extent of the latest hukou reform by province during

the period 1998-2008 is available in the Organisation for Economic Co-operation

and Development Economic Surveys: China (2013).

SEZs are geographic regions that are typically characterized by liberal eco-

nomic policies designed to attract foreign investors and enhance economic activ-

ity. In this paper, we use the term SEZ as a generic term for all types of spe-

cial economic zones and open areas, including Free Trade Zones, Economic and

Technology Development Zones, and open coastal cities, among others. Wang

(2013) characterizes four big waves in the formation of SEZs in China (1979-1985,

1986-1990, 1991-1995, and 1996-2007) and lists the corresponding municipalities

that were designated as SEZs in each of the first three waves. This allows us to

code three different binary indicator variables – firstwaveit, secondwaveit, and

thirdwaveit – of which the former two are time-variant because of the time varia-

tion in administrative city boundaries. The third variable is time-variant because

in our coding there is no treatment of places and cities prior to 1995. We also

include the combined effect of the three waves that is captured in the binary indi-

cator SEZit, which is unity if any one of the three, two of the three, or all three

SEZ wave indicator variables are unity, and zero otherwise. Since the information

on SEZs provided in Wang (2013) pertains to the municipality level, and while

data utilized here vary by place, we assume that all places within the treated

municipalities were affected by SEZs in the same way.
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As an additional control variable we include the population density

(popdensi1990) in 1990.9

2.3.2 Descriptive Statistics

Table 2.2 summarizes descriptive features of all variables by natural city status

(within a natural city, Nat=1 ; outside of a natural city, Nat=0 ; Average) and

reports the mean and standard deviation for each variable.

Table 2.2 indicates that places within a natural city are on average 1.4 times

closer to the city centroid than places outside of a natural city. Similarly, places

inside are 1.1 times closer to the coast, 1.3 times closer to waterways, 1.6 times

closer to the nearest road, and 1.6 times closer to the nearest railway line. As

expected, places are on average much closer to the nearest road (0.3 km) than to

the nearest railway line (3.5 km). We also observe that places inside a natural city

are closer to the nearest administrative border since administrative areas close to

the considered city centroids are smaller in the average year than areas outside of

the considered administrative city centers. Places within and outside of natural

cities do not differ in terms of their average location in terms of longitude and

latitude, but they differ in terms of altitude: places inside natural cities have

an average altitude 1.2 times lower than places outside. Only about 30% of all

places in the data lie within the administrative boundaries of one of the 300 major

city centroids in our sample. By comparison, 62% of all places are located inside

natural cities in the average year. Finally, places inside and outside natural cities

do not significantly differ in terms of average precipitation and temperature.

Table 2.2 further suggests that places inside natural cities are more densely

populated and more luminous in the beginning of our study period (1.5 times

and 2.3 times, respectively). Over the entire study period, both places inside

and outside of natural cities have a higher radiance level than they did in 1992.

Places inside of a natural city appear to experience a relatively stronger increase

in radiance during the study period. These places are also an average of 2.5 times

more luminous than places outside of a natural city over the entire study period.
9Gridded population density data for 1990 by 2.5 arc-minute grid cells are available from the

Socioeconomic Data and Applications Center. http://dx.doi.org/10.7927/H4XK8CG2.
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Table 2.2: Summary Statistics – In and Out Natural City and Total

Nat=1 Nat= 0 Average
Mean SD Mean SD Mean SD

Geography
dist to roadi (in km) 0.23 0.32 0.37 0.44 0.32 0.40
dist to raili (in km) 2.50 3.26 4.05 4.68 3.46 4.26
dist to oceani (in km) 261.61 413.37 293.31 426.36 281.14 421.70
dist to wateri (in km) 1.65 1.94 2.17 2.45 2.00 2.28
dist to centeri (in km) 12.39 9.60 17.28 11.48 15.40 11.06
dist to adborderit (in km) 3.15 3.07 3.76 3.35 3.52 3.26
within admin boundaryit 0.33 0.47 0.26 0.44 0.29 0.45
altitudei (in m) 152.4 327.5 176.3 359.7 167.1 347.9
longitudei 116.30 6.94 116.30 7.19 116.30 7.10
latitudei 33.47 7.03 33.65 6.31 33.58 6.59
Climate
raini (in mm) 95.37 47.32 92.17 41.83 93.40 44.04
temperaturei (in ◦C) 14.52 5.40 14.24 4.93 14.35 5.12
sd temperaturei (in ◦C) 9.13 2.72 9.23 2.48 9.19 2.57
hukouit 0.69 0.46 0.38 0.48 0.50 0.50
smallit 0.65 0.48 0.37 0.48 0.48 0.50
mediumit 0.56 0.50 0.30 0.46 0.40 0.49
largeit 0.54 0.50 0.29 0.45 0.39 0.49
SEZit 0.69 0.46 0.54 0.50 0.60 0.49
firstwaveit 0.04 0.19 0.02 0.14 0.03 0.16
secondwaveit 0.46 0.50 0.37 0.48 0.41 0.49
thirdwaveit 0.39 0.49 0.27 0.45 0.32 0.47
Miscellaneous
popdensi1990 (in ppl/km2) 1209 1837 812 775 964 1305
radiancei1992 29.67 17.79 13.02 8.93 19.41 15.37
radianceit (0-63) 53.93 6.95 21.78 11.58 34.12 18.59
# observations 266,613 166,061 432,674
Abbreviations: ◦C = degree Celsius, km = kilometer, m = meter, mm = millimeter, Nat = natural
city, SD= standard deviation, ppl/km2 = people per squared kilometer, SEZ= Special Economic
Zone.

Table 2.3 summarizes descriptive statistics (mean and standard deviation) for

all time-variant variables by year, 1992, 1998, 2007, and 2013. Table 2.3 suggests

that the latest wave of hukou started applying in small cities – 7.5% of all places

in the sample were treated in 1998 – before reaching medium-sized and large cities

after 1998. Given that the hukou data are coded at the provincial level and that

we consider the 300 biggest administrative cities in China, it is not surprising that

by 2013 almost 93% of all places in the sample had experienced some degree of

hukou reform. Concerning the SEZ indicators, the first wave of reforms (1979-
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Table 2.3: Summary Statistics – Averages for 1992, 1998, 2007, 2013

1992 1998 2007 2013
Mean SD Mean SD Mean SD Mean SD

hukouit 0.041 0.198 0.075 0.263 0.842 0.364 0.928 0.258
smallit 0.041 0.198 0.075 0.263 0.842 0.364 0.850 0.357
mediumit 0.000 0.000 0.000 0.000 0.724 0.447 0.773 0.419
largeit 0.000 0.000 0.000 0.000 0.698 0.459 0.742 0.437

SEZit 0.415 0.493 0.623 0.485 0.625 0.484 0.610 0.488
firstwaveit 0.026 0.160 0.027 0.161 0.027 0.161 0.027 0.161
secondwaveit 0.389 0.488 0.410 0.492 0.410 0.492 0.395 0.489
thirdwaveit 0.000 0.000 0.347 0.476 0.349 0.477 0.349 0.477

dist to adborderit (in km) 3.61 3.35 3.54 3.29 3.50 3.23 3.52 3.22
within admin boundaryit 0.296 0.456 0.285 0.451 0.288 0.453 0.298 0.457

radianceit (0-63) 19.41 15.37 27.58 17.18 41.68 15.19 53.88 8.72

# observations 19,667 19,667 19,667 19,667

Abbreviations: SD = standard deviation, km = kilometer.

1985) included a relatively small number of places, with only 2.6% of all places

treated during this wave, whereas the second (1986-1990) and third (1991-1995)

waves applied to more than one third of all places in the sample. Consequently,

about 62.3% of all places were assigned to an SEZ as of 1995. Finally, Table 2.3

indicates that the average night-light radiance (radianceit) increased from 19.4 in

1992 to 53.9 in 2013.

2.3.3 Econometric Approach

In this subsection, we outline the econometric model used to estimate coefficients

on the suspected determinants of the (night-light) luminosity of place i in year t,

radianceit. Two features of the dependent variable are worth mentioning: (i) it is

censored from below at 0 and from above at 63, and (ii) it appears to be serially

correlated.10
10Even though the original night-light radiance data take on integer values only, the dependent

variable used here is continuous over the entire range of the data as we take the average of the
night-light radiance across the pixels within a 3 km x 3km place.
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To respect both the double-censoring and auto-correlation through equicorre-

lation (accruing to the repeated observation of places over time and the presence

of place-specific effects) and through inertia, we postulate a dynamic Tobit model

with double-censoring and random effects. We account for dynamic adjustment

by letting radianceit be a function of its first-, second-, and third-lagged values

Rit=(radianceit−1, radianceit−2, radianceit−3), respectively, and estimate it along

the lines of Wooldridge (2005). Accordingly, the endogeneity of the lagged de-

pendent variables on the right-hand side of the model – through the presence

of time-invariant random shocks, µi, in the models – can be acknowledged by

properly specifying the initial conditions of the process Hsiao (2014).

Subsume all exogenous drivers of radianceit in the common vector Xit, and

let α = (α1, α2, α3)′ be the unknown parameters on Rit and β be the unknown

parameters on Xit. Furthermore, let εit be the (normalized) remainder distur-

bances in the processes. Then, we may introduce a latent, uncensored, normal

counterpart to radianceit, radiance∗it, and relate the two of them as follows:

radianceit =



0 if radiance∗it ≤ 0

radiance∗it if 0 < radiance∗it ≤ 63

63 if radiance∗it > 63

. (2.1)

Moreover, we may specify the latent variable radiance∗it in a linear fashion as

a function of the parameters of interest through

radiance∗it = Ritα + Xitβ + µi + εit. (2.2)

For estimation of equation (2.2), we employ two alternative sets of initial con-

ditions for Rit. One involves the observed radiance in the initial year of the data,

radiancei1992, and the other one additionally involves the time averages of all time-

variant variables in Xit. Since the functional form of the dynamic Tobit model

with double-censoring is nonlinear and Xit includes squared values of some of the

determinants, we will report marginal effects only, as is customary with nonlinear

models.
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2.3.4 Results

Table 2.4 summarizes the estimated effects of the lagged dependent variables as-

sociated with α̂, but only a subset of the effect estimates associated with β̂.11 For

instance, we do not report the effects pertaining to variables used for the modeling

of the initial condition with averages of the time-variant variables. Since the mod-

els are dynamic, the reported estimates should be interpreted as short-run effects

materializing within a 3-year time window. Moreover, for the binary variables in

Xit (e.g., the four variables relating to either hukou or SEZ each), we compare the

average of the conditional mean when the variable takes on a value of unity for

all places with the one when the variable takes on a value of zero for all places

(Greene, 2017). In Column (1) of Table 2.4, we model the initial condition as a

function of the radiance in the initial year, radiancei1992. In Column (2), the initial

condition additionally includes the time averages of all time-variant variables. On

a final note, the magnitudes of the total short-run effects of continuous variables

in Table 2.4 should only be compared across such variables after normalization

(e.g., by scaling them with the standard deviation of the respective variables in

Table 2.3).

As the signs of significant effects do not differ qualitatively between Columns

(1) and (2), and since the estimation of Column (2) is less efficient than for Column

(1), we focus on the effects in Column (1). While we observe that hukou and

SEZ variables induce significant effects on radianceit, we skip discussion of those

effects here for the sake of brevity. Similarly, we forego discussion of the effects

of geography and climate that are also reported in Table 2.4. In what follows, we

focus on the effects of infrastructure, particularly roads and railways, near a place.

Two things stand out regarding these effects: (i) greater distance to trans-

port infrastructure – such as roads, railway lines, and waterways – reduces the
11Table 2.9 provides effects estimates akin to the dynamic Tobit model in Table 2.4 based

on three alternative specifications which ignore censoring. These alternative models are linear
models which always include satellite fixed effects, and otherwise, apart from the infrastructure
variables of interest, they are specified as follows: the model in Column (1) does not include
any other variables besides place fixed effects; the model in Column (2) is as the one in Column
(1) but includes control variables; the model in Column (3) is as the one in Column (2) but
includes lags of the dependent variable and is an immediate linear counterpart to the dynamic
Tobit model in Table 2.4. In any case, it turns out that the results across these models and the
dynamic Tobit in Table 2.4 are very robust. As with the dynamic Tobit model, the fixed effects
are parameterized in terms of averages of the time-variant explanatory variables.
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Table 2.4: Estimation Results Dynamic Tobit

(1) (2) (3) (4) (5) (6)
radianceit radianceit radianceit radianceit radianceit radianceit

Full Sample Full Sample Nat = 1 Nat = 0 Admin = 1 Admin = 0
radianceit−1 0.603*** 0.602*** 0.237*** 0.524*** 0.607*** 0.598***

(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)
radianceit−2 0.194*** 0.194*** 0.0950*** 0.149*** 0.206*** 0.189***

(0.002) (0.002) (0.002) (0.002) (0.004) (0.002)
radianceit−3 0.100*** 0.100*** 0.114*** 0.028*** 0.088*** 0.106***

(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)
radiancei1992 0.039*** 0.039*** 0.088*** 0.190*** 0.035*** 0.044***

(0.001) (0.001) (0.002) (0.003) (0.002) (0.001)
ln(popdensi1990) 0.149*** 0.158*** 0.098*** 0.115*** 0.110*** 0.166***

(0.011) (0.011) (0.019) (0.023) (0.024) (0.013)
ln(dist to roadi) -0.219*** -0.217*** -0.360*** -0.317*** -0.219*** -0.221***

(0.007) (0.007) (0.013) (0.014) (0.013) (0.009)
ln(dist to raili) -0.041*** -0.038*** -0.066*** -0.091*** -0.003 -0.056***

(0.008) (0.008) (0.014) (0.015) (0.015) (0.009)
ln(dist to oceani) -0.116*** -0.108*** -0.272*** -0.276*** -0.165*** -0.092***

(0.010) (0.010) (0.018) (0.018) (0.021) (0.011)
ln(dist to wateri) -0.079*** -0.077*** -0.085*** -0.140*** -0.089*** -0.080***

(0.008) (0.008) (0.015) (0.015) (0.015) (0.010)
ln(dist to centeri) -0.199*** -0.236*** -0.055* -0.095*** -0.105*** -0.260***

(0.016) (0.016) (0.028) (0.031) (0.027) (0.021)
ln(dist to adborderi) -0.025*** -0.059 -0.015 0.056*** -0.022 -0.035***

(0.009) (0.044) (0.017) (0.017) (0.017) (0.012)
within admin boundaryit -0.047* -0.704*** -0.027 -0.065

(0.024) (0.118) (0.043) (0.045)
ln(altitudei) -0.010*** -0.085*** -0.306*** 0.072** -0.051* -0.133***

(0.016) (0.016) (0.032) (0.029) (0.028) (0.020)
longitudei 0.006* -0.001 0.014** -0.001 -0.018*** 0.022***

(0.003) (0.003) (0.006) (0.006) (0.006) (0.004)
latitudei 0.054*** 0.093*** 0.087*** 0.078*** 0.119*** 0.026**

(0.011) (0.012) (0.020) (0.020) (0.022) (0.013)
ln(raini) -0.288*** -0.103* -1.134*** -0.719*** 0.089 -0.494***

(0.055) (0.057) (0.107) (0.099) (0.102) (0.067)
temperaturei 0.076*** 0.079*** 0.035 0.197*** 0.077*** 0.052***

(0.012) (0.012) (0.023) (0.021) (0.020) (0.016)
sd temperaturei -0.003 -0.081*** -0.089*** -0.016 -0.082** -0.033

(0.018) (0.019) (0.033) (0.032) (0.035) (0.022)
hukouit -0.750*** -1.316*** -0.036 -2.627*** 0.596*** -0.963***

(0.069) (0.081) (0.070) (0.137) (0.207) (0.082)
smallit 1.128*** 1.506*** 0.592*** 2.746*** -0.408** 1.556***

(0.066) (0.078) (0.067) (0.132) (0.190) (0.080)
mediumit 0.497*** 1.093*** 0.405*** 1.226*** -0.441*** 0.550***

(0.054) (0.074) (0.062) (0.095) (0.165) (0.064)
largeit -0.696*** -0.927*** -0.809*** -0.809*** 0.018 -0.785***

(0.053) (0.065) (0.063) (0.088) (0.153) (0.064)
Continued.
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Table 2.4: Continued.

(1) (2) (3) (4) (5) (6)
radianceit radianceit radianceit radianceit radianceit radianceit

Full Sample Full Sample Nat = 1 Nat = 0 Admin = 1 Admin = 0
SEZit 0.167*** 0.977*** 0.159** 0.561*** 0.658*** 0.048

(0.040) (0.185) (0.074) (0.074) (0.103) (0.047)
firstwaveit -0.258*** -0.315*** 0.011 -0.475*** -1.761*** 0.079

(0.071) (0.075) (0.125) (0.142) (0.179) (0.081)
secondwaveit -0.237*** -0.306*** -0.536*** -0.421*** -0.630*** -0.167***

(0.035) (0.041) (0.064) (0.064) (0.101) (0.039)
thirdwaveit 0.319*** -1.649*** 0.467*** 0.069 0.175** 0.421***

(0.031) (0.277) (0.057) (0.056) (0.074) (0.036)
Constant 2.409*** 0.990 18.02*** 13.86*** 4.793*** 0.493

(0.914) (0.921) (1.644) (2.013) (1.558) (1.660)
Time averages YES
Satellite effects YES YES YES YES YES YES

# observations 373,673 373,673 158,116 215,557 107,780 265,893
# places 19,667 19,667 19,656 16,756 6,144 14,187
Notes: Reported coefficients are marginal effects. Standard errors are reported in parentheses ; *** p<0.01,
** p<0.05, * p<0.1. All columns include squared terms for the following geography and climate variables:
ln(dist to roadi), ln(dist to raili), ln(dist to oceani), ln(dist to wateri), ln(dist to adborderit), ln(dist to centeri),
ln(altitudei), ln(raini), temperaturei, sd temperaturei. Column (2) includes time averages for all time variant
variables. All distance measures in the empirical estimation are in units of meters rather than kilometers.
Abbreviations: Nat= natural city, Admin = within administrative boundary.

night-light radiance of a place; and (ii) the magnitude of the marginal effect of

ln(dist to roadi) is around five times larger than the one of ln(dist to raili). Clearly,

these effects on radianceit reflect the importance of transport infrastructure, par-

ticularly roads, for local economic growth across all places in the sample.

In Columns (3)-(6), we estimate the same model as in Column (1) for various

subsamples of the data. Columns (3) and (4) divide the sample between places

inside and outside of natural cities, while Columns (5) and (6) separate places

inside and outside of the administrative borders of the major cities in our sample.

Interestingly, the effect of ln(dist to roadi) in Column (3) is larger than in Column

(4), while the opposite is observed for ln(dist to raili). Similarly, Column (6) shows

a significant negative impact of ln(dist to raili), while the corresponding estimate

in Column (5) is much smaller and not significant. The differences in the effects

between Columns (3) and (4) on one hand and Columns (5) and (6) on the other

– both in absolute terms and in comparison to Column (1) – reflect differences

in the opportunity costs of certain types of transport infrastructure depending
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on the relative centrality or peripherality of places relative to the natural city or

the administrative city center. In general, these results indicate that a marginal

decline in distance to the road network leads places inside the natural city to

grow relatively faster than places outside of it. However, a marginal decline in the

distance to railway lines benefits peripheral areas more than central ones.12

Using the estimated effects from Column (1) in Table 2.4, we can predict the

radiance level of all places from period to period and the change associated with an

infrastructure improvement to the road or railway networks. We do so by reducing

the distance to roads and railway lines by one standard deviation. We use 2007 as

the benchmark year for this thought experiment since it is the year in which there

are almost as many places outside (49%) as inside natural cities (51%). We predict

the radiance level of all places in 2007 given the estimated coefficients associated

with Column (1) of Table 2.4 and the variables in Rit and Xit as observed. We

plot the kernel density estimates of observed and predicted radiance levels in 2007

in Figure 2.6. Then, we shock ln(dist to roadi) and ln(dist to raili) alternatively

by one standard deviation in 2007 and let the process run to see how such shocks

impact radiance levels in the short- and long-term. Following the definition of a

natural city used in this paper, we assume that any place will be part of a natural

city in the counterfactual scenario if (i) its predicted radiance level amounts to at

least 40, and (ii) it is connected to other places in the natural city with a radiance

level of at least 40.

12Table 2.10 presents the results of the estimation of the baseline model (Column (1) in Table
2.4) on further subsamples, namely places in all four domains of the binary classification divided
into administrative and natural city boundaries.
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Figure 2.6: Kernel Density Estimates – Observed vs. Predicted Radiance
Levels, 2007

Figure 2.7: Kernel Density Estimates: Observed vs. Predicted Radiance
Levels, All Years

In Tables 2.5 and 2.6, we report effects of these shocks on radiance levels

in 2007 – as well as after 5, 10, 15, and 20 years – compared to the baseline

predictions. Table 2.5 shows the effect of a shock on road infrastructure. Most

places predicted to lie inside a natural city in the baseline case remain inside it

in the counterfactual scenario after 5 years (99.7% in 2012) and after 20 years

(100.0% in 2027). However, the share of places in the sample that are predicted to

lie outside of the natural city in the baseline but inside of it in the counterfactual

scenario steadily increases over time in response to the shock from 0.7% in 2007
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Table 2.5: Transition Matrix of Counterfactual ln(dist to roadi)

Definition: Nat = 1 if radiance ≥ 40, Nat = 0 if radiance< 40

Counterfactual: ln(dist to roadi)

Nat = 1 Nat = 0 Total

Baseline Nat = 1 99.95(2007) 0.05(2007) 100
99.72(2012) 0.28(2012) 100
99.80(2017) 0.20(2017) 100
99.95(2022) 0.05(2022) 100
99.99(2027) 0.01(2027) 100

Nat = 0 0.66(2007) 99.34(2007) 100
6.18(2012) 93.82(2012) 100
30.15(2017) 69.85(2017) 100
51.85(2022) 48.15(2022) 100
83.39(2027) 16.61(2027) 100

Total 43.50(2007) 56.50(2007) 100
61.43(2012) 38.57(2012) 100
85.57(2017) 14.43(2017) 100
96.91(2022) 3.09(2022) 100
99.73(2027) 0.27(2027) 100

Notes: Additional to the radiance threshold, the CCA condition is a necessary condition for a
place to be assigned natural city (Nat = 1). The CCA condition implies that a place has to be
in the neighborhood of a cluster of places with average radiance greater or equal the threshold.
Abbreviation: Nat = natural city.

Table 2.6: Transition Matrix of Counterfactual ln(dist to raili)

Definition: Nat = 1 if radiance ≥ 40, Nat = 0 if radiance< 40

Counterfactual: ln(dist to raili)

Nat = 1 Nat = 0 Total

Baseline Nat = 1 100.00(2007) 0.00(2007) 100
99.92(2012) 0.08(2012) 100
99.91(2017) 0.09(2017) 100
99.96(2022) 0.04(2022) 100
99.98(2027) 0.02(2027) 100

Nat = 0 0.13(2007) 99.87(2007) 100
1.02(2012) 98.98(2012) 100
4.18(2017) 95.82(2017) 100
10.47(2022) 89.53(2022) 100
15.34(2027) 84.66(2027) 100

Total 43.22(2007) 56.78(2007) 100
59.43(2012) 40.57(2012) 100
80.36(2017) 19.94(2017) 100
94.31(2022) 5.69(2022) 100
98.64(2027) 1.36(2027) 100

Notes: Additional to the radiance threshold, the CCA condition is a necessary condition for a
place to be assigned natural city (Nat = 1). The CCA condition implies that a place has to be
in the neighborhood of a cluster of places with average radiance greater or equal the threshold.
Abbreviation: Nat = natural city.
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to 30.2% in 2017 and to 83.4% in 2027. The magnitude of the effect is considered

to be relatively high because the actual number of places not in a natural city

after 2017 is relatively small by construction of the data set.13 Figures 2.8 and 2.9

illustrate the examples of Beijing and Shanghai, respectively.

The picture is similar, albeit of a smaller magnitude, when looking at the effect

of a shock on rail infrastructure as shown in Table 2.6. The extreme majority of

places predicted inside a natural city in the baseline are also predicted to lie

inside in the counterfactual analysis after 5 years (99.9% in 2012) and 100.0%

in 2027). The share of places predicted to lie outside in the baseline but inside

in the counterfactual (Nat = 0 in baseline, Nat = 1 in counterfactual) is also

increasing over time from 0.1% in 2007 to 4.2% in 2017 and to 15.2% in 2027. The

smaller magnitude of the effect reflects the smaller magnitude of the coefficient

of ln(dist to raili) compared to the coefficient of ln(dist to roadi) estimated in

Column (1) of Table 2.4.14

Our finding that transport infrastructure has a positive effect on local eco-

nomic activity is well-aligned with the findings in Banerjee et al. (2012). They

indicate that transport networks lead to higher levels of GDP per capita, even

though the effect reported is small in magnitude. In line with Baum-Snow (2007)

and Baum-Snow et al. (2016), the results in our paper also suggest that better

transport connectivity increases local economic activity in suburban areas. Con-

sidering the population density in city centers versus suburban areas, Baum-Snow

et al. (2016, p. 2) suggest that “each additional radial highway displaced about 4%

of [the] central city population to suburban regions and that the existence of some

ring road capacity in a city reduced city population by about 20%”. Contrary to

these findings, we observe a positive effect of transport infrastructure on natural

city growth, with a positive effect on both central and more peripheral areas of

an average natural city. These results contrast with Faber (2014), who, looking
13The data set includes only those places that were in a natural city at some point in time

between 1992 and 2013. This implies that all places that are not yet in a natural city in 2007
have a high probability of becoming part of a natural city within a few years

14In Tables 2.11 and 2.12, we report the dynamic responses to an infrastructure shock when
fixing the night-light-radiance threshold for a place to be inside a natural city to 50 instead of 40.
As expected, the main message of the results holds, even though the share of places predicted
to lie outside the natural city in the baseline and inside in both counterfactuals is lower than in
Tables 2.5 and 2.6. This simply reflects the distribution of night-light radiance across places as
shown in Figure 2.7.
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Figure 2.8: Counterfactual Road and Rail – Beijing over Time

Counterfactual Road Counterfactual Rail

(a) Beijing 2007

Legend:
Centroid

Natural city place in:
Both

Baseline

Counterfactual

(b) Beijing 2007

(c) Beijing 2012 (d) Beijing 2012

(e) Beijing 2017 (f) Beijing 2017
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Figure 2.9: Counterfactual Road and Rail – Shanghai over Time

Counterfactual Road Counterfactual Rail

(a) Shanghai 2007

Legend:
Centroid

Natural city place in:
Both

Baseline

Counterfactual

(b) Shanghai 2007

(c) Shanghai 2012 (d) Shanghai 2012

(e) Shanghai 2017 (f) Shanghai 2017
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at peripheral counties outside the commuting zones of metropolitan areas, finds

that highway network connections have led to lower GDP growth among periph-

eral counties. This difference in findings suggests that transport networks have

different effects on economic activity in remote areas than in metropolitan areas.

2.4 Conclusion

This paper documents patterns in the size and growth of natural cities in China for

the 300 largest urban entities between 1992 and 2013. Rather than using admin-

istrative data on economic outcomes and their determinants, the paper identifies

the boundaries of a natural city, which is related more closely to the notion of

MSAs or Functional Urban Zones, in terms of the night-light radiance of con-

nected places that measure 3 km x 3 km. Ultimately, the boundaries of natural

cities are determined by applying the CCA to remote-sensing data for those places

during the review period.

The key results of our analysis include the following. First, the number

of distinct natural city centers decreased during the review period due to the

absorption of some natural cities by others. This was particularly the case for

larger cities, such as Shanghai, that formed natural super-cities during the review

period. Second, we detected rapid growth for the average natural city, which is

in accordance with population census data that are only available at less frequent

time intervals than night-light data, and adheres to China’s goal of fostering the

rate of urbanization. The results suggest that natural cities grew considerably

beyond the administrative boundaries of cities, which calls into question policies

that target urbanization rates and other related development objectives based on

administrative city boundaries. Third, the global financial crisis at the end of

the last decade left its marks on natural city growth as many Chinese natural

cities in our sample shrank between 2010 and 2013. Fourth, infrastructure

improvements to the road and railway networks benefit agglomerations, although

railway network improvements are expected to mainly benefit peripheral areas of

cities more so than road improvements.
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In future work, we plan to focus more explicitly on the difference between time-

variant administrative versus natural city boundaries, and shed further light on the

dynamic process of responses to the two exogenous shocks. While we mainly used

institutional variables related to the hukou system and SEZs as control variables,

we will scrutinize their effects more closely after having coded them at a greater

level of detail in order to understand these effects with greater precision and a

broader scope than was possible in the current paper. Finally, we will investigate

the effects of changes in China’s infrastructure networks, which was not possible

with the data at hand, to better identify the associated effects on economic and

other outcomes.
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2.5 Supplement Tables
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Table 2.9: Estimation Results for Alternative Non-Tobit Models

(1) (2) (3)
OLS OLS OLS

radianceit radianceit radianceit

radianceit−1 0.609***
(0.002)

radianceit−2 0.194***
(0.002)

radianceit−3 0.100***
(0.002)

radiancei1992 0.019***
(0.001)

ln(popdensi1990) 0.098***
(0.008)

ln(dist to roadi) -2.851*** -2.195*** -0.185***
(0.066) (0.063) (0.006)

ln(dist to raili) -2.915*** -2.405 -0.044***
(0.068) (0.067) (0.007)

ln(dist to oceani) -1.434*** -0.090***
(0.092) (0.008)

ln(dist to wateri) -1.417*** -0.080***
(0.072) (0.007)

ln(dist to centeri) -7.130*** -0.159***
(0.143) (0.013)

ln(dist to adborderi) -0.404*** -0.094**
(0.138) (0.046)

ln(altitudei) -0.261* -0.066***
(0.145) (0.013)

longitudei -0.026 -0.004
(0.034) (0.003)

latitudei 1.183*** 0.044***
(0.131) (0.011)

ln(raini) -2.387*** -0.160***
(0.561) (0.047)

temperaturei 1.183*** 0.060***
(0.120) (0.011)

sd temperaturei -1.633*** -0.066
(0.186) (0.013)

hukouit -1.966*** -1.502***
(0.253) (0.079)

smallit 3.059*** 1.667***
(0.257) (0.079)

mediumit 2.094*** 1.093***
(0.231) (0.071)

largeit -0.480** -0.807***
(0.231) (0.071)

Continued.
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Table 2.9: Continued.

(1) (2) (3)
OLS OLS OLS

radianceit radianceit radianceit

SEZit 0.520*** 0.769***
(0.179) (0.118)

firstwaveit -2.192*** -0.245***
(0.311) (0.059)

secondwaveit 0.003 -0.214***
(0.220) (0.032)

thirdwaveit 0.401*** -1.468***
(0.144) (0.222)

Constant 64.25*** 140.6*** 3.105***
(1.652) (10.22) (0.684)

Place fixed effects YES YES YES
Satellite effects YES YES YES
Control variables YES YES
Lagged variables YES
# observations 432,674 432,674 373,673
# places 19,667 19,667 19,667
Notes: Reported coefficients are marginal effects. Standard errors are reported
in parentheses ; *** p<0.01, ** p<0.05, * p<0.1. Squared terms are in-
cluded for the following geography and climate variables: ln(dist to roadi),
ln(dist to raili), ln(dist to oceani), ln(dist to wateri), ln(dist to adborderit),
ln(dist to centeri), ln(altitudei), ln(raini), temperaturei, sd temperaturei.
Contrary to the summary statistics in Table 2.2, all distance measures in the
empirical estimation are in units of meters rather than kilometers.
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Table 2.10: Estimation Results Dynamic Tobit by Categories

(1) (2) (3) (4)
radianceit radianceit radianceit radianceit

Nat = 1, Nat = 1, Nat = 0, Nat = 0,
Admin = 1 Admin = 0 Admin = 1 Admin = 0

radianceit−1 0.487*** 0.530*** 0.263*** 0.226***
(0.005) (0.003) (0.003) (0.002)

radianceit−2 0.167*** 0.142*** 0.106*** 0.090***
(0.005) (0.003) (0.003) (0.002)

radianceit−3 0.024*** 0.030*** 0.090*** 0.124***
(0.005) (0.003) (0.003) (0.002)

radiancei1992 0.161*** 0.207*** 0.079*** 0.092***
(0.006) (0.004) (0.003) (0.002)

ln(popdensi1990) 0.180*** 0.084*** 0.103** 0.094***
(0.044) (0.027) (0.040) (0.022)

ln(dist to roadi) -0.324*** -0.315*** -0.294*** -0.387***
(0.025) (0.016) (0.022) (0.016)

ln(dist to raili) -0.004 -0.131*** -0.083*** -0.046***
(0.028) (0.018) (0.025) (0.017)

ln(dist to oceani) -0.342*** -0.245*** -0.320*** -0.236***
(0.040) (0.021) (0.035) (0.022)

ln(dist to wateri) -0.118*** -0.140*** -0.113*** -0.061***
(0.027) (0.018) (0.026) (0.018)

ln(dist to centeri) -0.268*** 0.123*** 0.219*** -0.290***
(0.055) (0.040) (0.044) (0.038)

ln(dist to adborderi) -0.003 0.036 0.025 -0.026
(0.031) (0.022) (0.029) (0.021)

ln(altitudei) 0.159*** 0.039 -0.188*** -0.364***
(0.048) (0.037) (0.052) (0.039)

longitudei -0.040*** 0.014* -0.012 0.025***
(0.010) (0.008) (0.010) (0.008)

latitudei 0.050 0.090*** 0.275*** -0.009
(0.037) (0.024) (0.038) (0.025)

ln(raini) -0.561*** -0.778*** -0.636*** -1.503***
(0.173) (0.122) (0.189) (0.130)

temperaturei 0.147*** 0.220*** 0.151*** -0.101***
(0.034) (0.029) (0.035) (0.031)

sd temperaturei 0.031 -0.056 -0.272*** -0.159***
(0.060) (0.040) (0.062) (0.043)

Continued.
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Table 2.10: Continued.

(1) (2) (3) (4)
radianceit radianceit radianceit radianceit

Nat = 1, Nat = 1, Nat = 0, Nat = 0,
Admin = 1 Admin = 0 Admin = 1 Admin = 0

hukouit -1.068*** -2.844*** 1.398*** -0.122
(0.302) (0.165) (0.272) (0.090)

smallit 0.985*** 3.073*** -0.559** 0.822***
(0.281) (0.162) (0.252) (0.085)

mediumit 0.156 1.573*** -0.708*** 0.331***
(0.223) (0.112) (0.243) (0.077)

largeit -0.188 -1.034*** 0.190 -0.930***
(0.203) (0.102) (0.227) (0.078)

SEZit 1.323*** 0.476*** 1.076*** -0.244***
(0.192) (0.086) (0.173) (0.089)

firstwaveit -3.040*** -0.198 -2.047*** 0.835***
(0.388) (0.159) (0.293) (0.142)

secondwaveit -0.810*** -0.471*** -1.362*** -0.362***
(0.185) (0.072) (0.169) (0.072)

thirdwaveit -0.380*** 0.224*** 0.534*** 0.688***
(0.135) (0.066) (0.120) (0.069)

Constant 11.90*** 21.32*** 25.09*** 15.14***
(3.227) (3.970) (2.600) (2.921)

Satellite effects YES YES YES YES
# observations 51,995 55,785 159,772 106,121
# places 5,957 4,781 12,330 14,040
Notes: Reported coefficients are marginal effects. Standard errors are reported in
parentheses ; *** p<0.01, ** p<0.05, * p<0.1. All columns include squared terms
for the following geography and climate variables: ln(dist to roadi), ln(dist to raili),
ln(dist to oceani), ln(dist to wateri), ln(dist to adborderit), ln(dist to centeri),
ln(altitudei), ln(raini), temperaturei, sd temperaturei. All columns include satel-
lite effects. Contrary to the summary statistics in Table 2.2, all distance measures in
the empirical estimation are in units of meters rather than kilometers. Abbreviations:
Nat = natural city, Admin = within administrative boundary.
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Table 2.11: Robustness – Transition Matrix of Counterfactual
ln(dist to roadi)

Definition: Nat = 1 if radiance ≥ 50, Nat = 0 if radiance< 50

Counterfactual: ln(dist to roadi)

Nat = 1 Nat = 0 Total

Baseline Nat = 1 99.87(2007) 0.13(2007) 100
99.70(2012) 0.30(2012) 100
99.51(2017) 0.49(2017) 100
99.48(2022) 0.52(2022) 100
99.50(2027) 0.50(2027) 100

Nat = 0 0.49(2007) 99.51(2007) 100
2.77(2012) 97.23(2012) 100
7.94(2017) 92.06(2017) 100
18.58(2022) 81.42(2022) 100
35.03(2027) 64.97(2027) 100

Total 28.71(2007) 71.29(2007) 100
39.02(2012) 60.98(2012) 100
51.50(2017) 48.50(2017) 100
67.11(2022) 32.89(2022) 100
82.16(2027) 17.84(2027) 100

Notes: Additional to the radiance threshold, the CCA condition is a necessary condition for a place
to be assigned natural city (Nat = 1). The CCA condition implies that a place has to be in the
neighborhood of a cluster of places with average radiance greater or equal the threshold. Abbreviation:
Nat = natural city.

Table 2.12: Robustness – Transition Matrix of Counterfactual
ln(dist to raili)

Definition: Nat = 1 if radiance ≥ 50, Nat = 0 if radiance< 50

Counterfactual: ln(dist to raili)

Nat = 1 Nat = 0 Total

Baseline Nat = 1 100.00(2007) 0.00(2007) 100
99.93(2012) 0.07(2012) 100
99.88(2017) 0.12(2017) 100
99.82(2022) 0.18(2022) 100
99.84(2027) 0.16(2027) 100

0.06(2007) 99.94(2007) 100
0.52(2012) 99.48(2012) 100

Nat = 0 1.54(2017) 98.46(2017) 100
3.65(2022) 96.35(2022) 100
6.31(2027) 93.69(2027) 100

Total 28.43(2007) 71.57(2007) 100
37.70(2012) 62.30(2012) 100
48.32(2017) 51.68(2017) 100
61.34(2022) 38.66(2022) 100
74.68(2027) 25.32(2027) 100

Notes: Additional to the radiance threshold, the CCA condition is a necessary condition for a place
to be assigned natural city (Nat = 1). The CCA condition implies that a place has to be in the
neighborhood of a cluster of places with average radiance greater or equal the threshold. Abbreviation:
Nat = natural city.
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Chapter 3

Decomposing the Economic

Effects of Transport

Infrastructure

3.1 Introduction

In the wide range of determinants of trade and migration costs, few are actionable

by policy makers. Of those, infrastructure investments, as a transport cost vari-

able, appear most important, both sub-nationally and internationally. The need

of transport infrastructure investments appears particularly pertinent, whenever

economies are economically large or fast-growing while facing high transport costs

due to bad transport networks. A prime example of such a country is China.

Since the early 1990s and particularly since its membership in the World Trade

Organization (WTO) in 2001, we did see an enormous surge in transport infras-

tructure projects in China. Of all the transport infrastructure projects in the world

worth $1,1 billion funded by the World Bank in 2017, $450 million were invested

in China.1 In the same year, the estimated private investments into transport

infrastructure in China amounted to $13 billion.2 Similarly, India saw its share
1The World Bank funded 29 projects on the development of roads and highways in China

since 1990 and the process is still ongoing. Projects & Operations, The World Bank
http://projects.worldbank.org

2Private Participation in Infrastructure Project Database, The World Bank.
http://ppi.worldbank.org
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of infrastructure investment to GDP double between 2004 and 2016.3 Overall, we

see a widespread use of infrastructure improvements to make places (countries or

regions) more accessible for goods and factors.

Motivated by this line of thought, earlier research documented the role of infras-

tructure for international goods trade and migration (Michaels, 2008; Duranton

et al., 2014; Donaldson, 2018) as well as for interregional goods trade (Tombe and

Zhu, 2015; Caliendo et al., 2018) and migration (Baum-Snow, 2007; Duranton and

Turner, 2012; Fretz et al., 2017). Economic models suggest that infrastructure ef-

fects on economic outcomes tend to be asymmetric across economic agents and

jurisdictions due to their inherent heterogeneity in many dimensions. Additionally,

it has been documented that infrastructure improvements induce heterogeneous

effects at the regional and even at the national level (Chandra and Thompson,

2000; Faber, 2014). The latter poses the question of identifying the optimal size

and spatial design of infrastructure networks (Fajgelbaum and Schaal, 2017). Not

surprisingly in view of the rapid changes witnessed in China, economists have

looked into the development there, and we have now good evidence of Chinese

transport infrastructure effects on economic growth (Banerjee et al., 2012; Yu

et al., 2012; Egger et al., 2017; Baum-Snow et al., 2018) and real consumption

(Baum-Snow et al., 2017; Baum-Snow and Turner, 2017) as well as the hetero-

geneity of these effects (Faber, 2014; Qin, 2017; Lovely et al., 2019). Moreover,

there is recent evidence on the specific effects on routing, volume, and congestion

in affecting broader measures of welfare beyond mere consumption (Ma and Tang,

2020; Barwick et al., 2018; Allen and Arkolakis, 2019).

What economists tend to have in mind with accessibility is more or less ex-

clusively: for goods and factors. Moreover, the vast majority of research on the

economic effects of infrastructure improvements has focused on highway networks.

The purpose of this paper is to take a broader view on transport infrastructure,

and consider the complexity and multiplicity of the economic effects of infrastruc-

ture improvements. In particular, we study: (i) multiple channels through which

the extension of the road network affected region-specific well-being of households

beyond the standard transport of goods and factors, and (ii) the heterogeneous
3Infrastructure Investment, OECD.

https://data.oecd.org/transport/infrastructure-investment.htm
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economic effects across network types (i.e., highway or regional networks).

Beyond the standard transport of goods and factors, this paper considers as

well the dissipation of technology and accessibility of amenities beyond locally avail-

able ones. Of those two, only the former has been on the radar of economic models

(see, among others, Coe and Helpman, 1995; Rodriguez-Clare, 1996; Feenstra and

Kee, 2008; Fracasso and Vittucci Marzetti, 2015).4 However, in most quantitative

multi-regional models, amenities – as an unobservable parameter to characterize

the desirability of a place to locate in – are a strictly local attribute,5 and technol-

ogy is either strictly local or fully global.6 We propose a framework that allows us

to analyze the economic effects of transport infrastructure through each channel

separately, as well as their interactions.

Transport networks in general and road networks in particular are multi-layered

objects. In most countries, national road networks are composed of a highway net-

work as well as multiple layers of integrated regional road networks. The economic

literature on quantitative effects of road networks has focused almost exclusively

on highways (see, among others, Baum-Snow, 2007; Michaels, 2008; Duranton and

Turner, 2012; Faber, 2014). However, in most countries highway networks connect

only a small subset of the micro-regions directly. Regional road networks, on the

other hand, establish important access nodes to the highway networks and they

connect many such regions, where highways do not. For instance, according to

the data used in this paper, 32% of the reduction in inter-prefectural travel times

in China between 2000 and 2013 accrue to changes in regional road networks and

not highways.7

We propose a quantitative multi-region model of the (open) Chinese economy
4The discussion emerged around the debate whether goods trade or technology should be

mainly held responsible for changes in factor demand, and the mentioned authors proposed and
found that technology “travels” with, or at least along, the same routes as goods trade.

5Even though in a different context and using a static approach, let us note that recent works
in urban economics analyzing amenity spillovers as part of local agglomeration forces are similar
in spirit to our approach of amenity diffusion (see, among others, Ahlfeldt et al., 2015).

6For instance, in static multi-country quantitative models of international trade, technology
(and productivity) is characterized by fixed country- or region-specific parameters (Eaton and
Kortum, 2002; Caliendo and Parro, 2015). In dynamic multi-region quantitative models, inno-
vation is a local activity that depends on the factors available there, but technology dissipates
completely to all regions within a relatively short period (see Desmet and Rossi-Hansberg, 2009,
2014; Desmet et al., 2018; Allen and Donaldson, 2018).

7This number is based on the sum of bilateral times between all prefecture pairs in China.
See Figure 3.1.
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which features the following aspects. First, both goods and individuals are mo-

bile between regions up to some frictions as is customary in quantitative regional

general-equilibrium work. Second, the production potential of regions depends

on the local endogenous labor supply and the exogenous availability of land as

well as on productivity. Productivity consists of two parts: one that is exoge-

nous to a region and one that is endogenous and a function of local labor supply

and spillovers from other regions. Similarly, local amenities are determined by

two components: one that is exogenous to the region and one that is endogenous

and a function of the local population and spillovers from other regions. Third,

mobility and trade frictions inter alia depend directly on the transport infras-

tructure. Accordingly, the improvement of the transport network affects regional

well-being through four channels: accessibility of goods markets (trade); accessi-

bility of residence places (migration); accessibility of productivity (transportation-

bound technology spillovers); and accessibility of amenities (transportation-bound

amenity spillovers).

In conducting a structural quantitative analysis for 330 prefectures in China

and the rest of the world (RoW), we build on three pillars. First, we use hand-

collected, and digitized data on the Chinese road network between 2000-2013,

distinguishing between three hierarchical layers, namely highways, province-level

roads, and prefecture-level roads. The sources of these data are 14 detailed road

maps covering the entire Chinese road network. This data-set permits tracking the

changes in the road network for each layer and it allows computing the connectiv-

ity between prefectures in terms of travel times. The magnitude of China’s road

infrastructure improvements between 2000 and 2013 is nothing else than startling:

the total road network length increased from 371,385 kilometers to 515,480 kilome-

ters. Hence, by 2013 about 28% of all road-kilometers were connections which did

not exist in 2000. The total length of highways alone almost tripled (from 50,127

kilometers in 2000 to 142,983 kilometers in 2013), and even the total length of Chi-

nese regional (non-highway) roads increased by 77,855km, implying a net increase

of 21%.

Second, we develop a novel approach in dealing with the endogeneity of the

realized road infrastructure placements in a given year. We address this endo-
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geneity through an Instrumental Variable (IV) approach in which the observed

travel time between Chinese prefectures is instrumented by the travel time on an

optimal road network.8 The optimal road network is obtained by solving a mod-

ified version of the classical Monge-Kantorovich transportation problem (Monge,

1781; Kantorovitch, 1958) using historical population data and estimated costs of

building roads on a fine geographical grid of China. This approach has three key

advantages: (i) it offers an high predictive power to the (dense) Chinese road net-

work; (ii) it permits a derivation of an optimal road typology – between highways,

national roads, and secondary roads – in a straightforward manner; and (iii) it

solves for the global optimum road network.

Third, we conduct a counterfactual analysis, where we compare the evolution

of the Chinese economy since the year 2000 in terms of two long-run equilibria:

one where the road infrastructure stays constant at its level of 2000, and one where

it is changed in the year 2000 to its level of 2013. We then decompose the overall

effects of road infrastructure improvements in China on population densities and

regional income across Chinese prefectures into four components: one accruing to

the increased accessibility of local amenities for the population in a prefecture; one

pertaining to the increased accessibility of technology levels elsewhere in China by

firms in a prefecture; one capturing transport cost reductions for goods; and one

reflecting reduced migration costs. Moreover, we decompose the overall effects

into their components which accrue to changes in the highway- versus other road

network components.

There are three main take-away messages from the corresponding analysis.

First, the road network improvements made between 2000 and 2013 foster over-

all regional convergence in population and real income by relocating population

from large centers to mid-sized prefectures in central China. Second, dissipation

of technology and reduced trade frictions have large positive real income effects

in prefectures that gain the most in connectivity. Amenity diffusion and reduced

migration frictions, however, work in opposite directions with a similar order of

magnitude for both population and real income. Finally, whereas highway im-

provements have strong integration effects on formerly remote places, regional
8See, among others, Faber (2014) and Alder and Kondo (2018) for examples of the use of an

optimal transport network in an instrumental variable approach.
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road improvements relieve former differences in local connectivity and mitigate

the differences that are generated by the highway network.

The paper proceeds as follows. In Section 3.2, we present our theoretical

framework. We describe the evolution of the Chinese road network between 2000

and 2013 and detail our instrumentation strategy in Section 3.3. Before presenting

the counterfactual analysis in Section 3.5, we calibrate the model using Chinese

prefecture-level data in Section 3.4. Section 3.6 concludes.

3.2 Theoretical Framework

In this section, we outline a multi-region general equilibrium model that is

amenable to studying the decomposition of economic effects of road infrastructure

improvements in China within the last two decades. Locations differ according

to (time-varying) amenity and productivity fundamentals. These fundamentals

evolve according to a dynamic amenity- and technology-diffusion process that

crucially depends on each location’s integration in the transport network. Loca-

tions interact in product markets through (costly) trade in goods and in labor

markets through (costly) migration. Trade and migration frictions are directly

affected by the transport network, which implies feedback effects in prices and

consumption patterns through changes in trade volumes and individual mobility.

In what follows, we describe the elements of the theoretical framework in detail.

3.2.1 Setup

Consider a world composed of a finite number of locations i ∈ S = {1, . . . , s} on a

lattice. Time is discrete and indexed by t, which refers to years. Available land in

each location is allocated to residential (R) and commercial (C) use and measured

by the land densities HR
i , H

C
i > 0, respectively. We assume that income from

land is owned by immobile landlords, who receive expenditures on commercial and

residential land as income and consume only local goods.9 The world economy

is populated by a total of L̄ individuals who are endowed with one unit of labor
9This is a customary assumption in regional economics, and it ensures that neither the indi-

viduals’ nor firms’ location decisions are affected by the distributional assumptions of local land
rents (see, e.g., Ahlfeldt et al., 2015; Monte et al., 2018).
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each, which they supply inelastically. After deciding on their residence location,

individuals produce in the location in which they live and consume.

3.2.2 Individual Preferences

Each period, the utility of an individual ω residing in i at period t is defined over

the consumption of a set of differentiated products (Cit), residential land use (HR
i ),

local endogenous amenities (ait), an idiosyncratic utility shock (εUit), and bilateral

moving costs (κijt). Formally, individual utility takes the following Cobb-Douglas

form:10

Uijt(ω) =
(
Cit(ω)
α

)α(
HR
i (ω)

1− α

)1−α
ait
κijt

εUit(ω), (3.1)

where α ∈ (0, 1) denotes the Cobb-Douglas share of goods consumption in util-

ity. Endogenous amenities, ait, are determined by a dynamic amenity process, as

follows

ait =
(
Lit
HR
i

)−λ1

exp
(∫

S
WR

ijt−1 log ajt−1 dj

)λ2

εRit . (3.2)

Endogenous amenities decrease with residential population density
(
Lit
HR
i

)
as

long as λ1 > 0, and λ1 denotes a congestion-externality parameter. It is fur-

ther characterized by the past weighted amenity level of all other locations,

exp
(∫

S
WR
ijt−1 log(ajt−1) dj

)
. The amenity-diffusion process is governed by an ijt-

specific weighting scalar, WR
ijt−1 and λ2 ∈ (0, 1). The definition of the weighting

scalar WR
ijt−1 crucially depends on the road network and will be discussed in detail

in Section 3.4.3. The parameter εRit is a location- and time-specific amenity shifter.

Individuals choose a residence that maximizes their utility in (3.1), after learn-

ing their individual preference shock, εUit(ω). The individual preference shock

governs the dispersion of utility and, hence, absorbs unobserved preferences for

location choices that cannot be explained by income and price differences. We

assume that εUit(ω) is drawn from a Fréchet distribution with shape parameter

1/Ω.11

Individuals consume residential housing, HR
i , and a continuum of tradable

10We do not use a time index on HR
i to indicate that it will be fixed in the data.

11The probability that individual ω in location i at time t draws an idiosyncratic preference
smaller than z is given by Pr(εUit(ω) ≤ z) = exp(−z−(1/Ω)). We assume that εUit(ω) is i.i.d. across
locations, individuals and time.
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varieties ρ, which are combined in a consumption bundle, Cit.12 Their indirect

utility is defined as

uijt(ω) = ũit
εUit(ω)
κijt

with ũit = aitwit

Pα
it r

R
it

1−α = aityit, (3.3)

where ũit is the indirect utility that an individual derives from residing in location i,

which is independent of factors that determine the ex-ante location choice to reside

in i.13 ũit is a function of local amenities (ait), income (wit) and the corresponding

housing and consumer prices (rRit and Pit). We define the goods-consumption price

index at location i and time t as Pit =
[∫
S
pit(ρ)1−σdρ

] 1
1−σ

. For later convenience,

we introduce yit to denote real income per capita.

3.2.3 Technology and Production

Firms in i at t use two production factors, labor (Lit) and commercial land (HC
i ),

to produce output units (Qit) of product varieties ρ under a Cobb-Douglas tech-

nology:14

Qit(ρ) = zit(ρ)TitLit(ρ)µHC
i (ρ)1−µ

, (3.4)

where µ ∈ (0, 1) denotes the labor share in production. Output depends on

production inputs and a firm’s total-factor productivity, which is determined by

two components. The first component is a variety-specific exogenous productivity

parameter, zit, that is drawn from a Fréchet distribution with shape parameter

θ > 0. The second component is an endogenous technology part, Tit, which is

determined as

Tit =
(
Lit
HC
i

)γ1

exp
(∫

S
WC

ijt−1 log Tjt−1 dj

)γ2

εCit . (3.5)

Endogenous technology increases with commercial population density
(
Lit
HC
i

)
,

and γ1 > 0 is an agglomeration parameter in production. Analogously to
12We assume that Cit = [

∫ 1
0 cit(ρ)σ−1

σ dρ]
σ
σ−1 according to constant-elasticity-of-substitution

(CES) preferences, where σ > 0 is the elasticity of substitution.
13In other words, this assumes that bilateral moving costs, κijt, and the idiosyncratic prefer-

ence for that location, εUit(ω), are irrelevant for the location-specific indirect utility ũit.
14We use a time index on Lit but not on HC

i to indicate that the former will change from
period to period, while the latter will be fixed in the data.
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amenities, it is further characterized by the past-weighted aggregate technology

levels elsewhere, exp
(∫

S
WC
ijt−1 log(Tjt−1) dj

)
. γ2 ∈ (0, 1) governs the technology

diffusion process. WC
ijt−1 is an ijt-specific weighting scalar, which crucially

depends on the road network (see Section 3.4.3 for further details) and εCit is a

location- and time-specific technology shifter.

After learning their exogenous productivity draw, zit, firms maximize their

profits by choosing the level of employment and commercial land through

max
Lit(ρ),HC

i (ρ)
pit(ρ) zit(ρ) Tit Lit(ρ)µ HC

i (ρ)(1−µ) − witLit(ρ)− rCitHC
i (ρ),

where pit(ρ) is the price a firm charges for a product that is sold in i and period t.

The model structure implies that pit(ρ) is directly proportional to unit costs and

inversely proportional to a location’s total-factor productivity, which follows the

basic price-productivity relation as outlined in Eaton and Kortum (2002). Then,

E[pit(ρ)] = oit
Titzit

with oit =
[

(1− µ)µ−1

µµ

]
rCit

1−µ
wµit = 1

µ
wit

(
Lit
HC
i

)1−µ

, (3.6)

where oit denotes the unit costs in location i at time t which firms take as given.

3.2.4 Trade

Bilateral sales from location i to location j are subject to iceberg transportation

costs, ζijt ≥ 1. The price of a good produced in i and consumed in j is pijt =

pitζijt = oitζijt
Titzit

. Then, bilateral trade shares take on the well-known gravity form

as in Eaton and Kortum (2002):

πCijt = Tit[oitζijt]−θ∫
S
Tkt[oktζkjt]−θ dk

, ∀i, j ∈ N, (3.7)

where πCijt is the share of expenditures in j on i and the price index in a location

j is given by

Pjt = p̄
[∫
S
Tkt[oktζkjt]−θ dk

]− 1
θ

, (3.8)

where p̄ is a normalizing constant.
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3.2.5 Migration

Bilateral migration from location i to location j is subject to migration costs

κijt ≥ 1. The indirect utility in (3.3) is monotonically increasing with the idiosyn-

cratic Fréchet-distributed preference shock εUit(ω). Then, the indirect utility for

an individual residing in i at t is itself Fréchet-distributed.15 Analogously to trade

shares, the share of individuals coming from j and choosing to reside in i can be

expressed in the well-known gravity form as

πRijt = (aitwit)1/Ω(κijtPα
it r

R
it

1−α)−1/Ω∫
S
(aktwkt)1/Ω(κkjtPα

ktr
R
kt

1−α)−1/Ω dk
=

ũ
1/Ω
it κ

−1/Ω
ijt∫

S
ũ

1/Ω
kt κ

−1/Ω
kjt dk

. (3.9)

Summing πRijt across migration locations j for a given residence, we obtain the

probability that individuals reside in location i:

πRit =

∫
S
Lijt dj

L̄
= Lit

L̄
=

ũ
1/Ω
it

∫
S
κ
−1/Ω
ijt dj∫

S

∫
S
ũ

1/Ω
kt κ

−1/Ω
kjt dk dj

. (3.10)

3.2.6 Equilibrium

Profits and utility are maximized within each period, as neither individuals nor

firms are forward-looking. This implies that both firms and individuals are un-

informed about the endogenous dynamic process that guides the amenity and

technology diffusion. Furthermore, we assume that decisions on the extension of

transport network, which directly impact the amenity and technology diffusion as

well as trade and migration costs, are taken from an absentee central planner and,

hence, are not anticipated.

An equilibrium is characterized such that goods and factor markets clear in

each period. More formally, for any initial amenity, technology, population, and

land vectors {ait, Tit, Lit, HR
i , HC

i } for all {i, t}, any trade- and migration-cost

vectors {κijt, ζijt}, as well as any weight scalars {WR
ijt, WC

ijt} for all {i, j, t}, a

competitive equilibrium is a set of endogenous vectors {Lit, wit, uit, Pit, ait, Tit,

rRit , rCit} for all {i, t}, such that for all locations i in each time period t we have:
15Given that, utility is distributed as Git(u) = exp(−Φitu−1/Ω), where Φijt =

(aitwit)1/Ω(κijtPαitrRit
1−α)−1/Ω.
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1. Goods-market Clearing: Total revenues in a location i are equal to the

value of all location’s purchases from it. Thus,

witLit =
∫
S
πCijtwjtLjt dj. (3.11)

2. Population Accounting: The number of residents in all locations is equal

to the total population
∫
S
Lit di = L̄. In view of equation (3.10), this implies

Lit =
∫
S
πRijtLjtdj. (3.12)

3. Land-market Clearing: The residential and commercial land markets in

each location i are in equilibrium, so land is assigned to the highest bidder.

Hence, equilibrium land rents are given as

rRit = [1− α]wit
Lit
HR
i

and rCit =
[

1− µ
µ

]
wit

Lit
HC
i

. (3.13)

We can manipulate the system of equations presented above and reduce it to a

system that determines the equilibrium distribution of wages, wit, and employment

levels, Lit, in all locations. Conditional on {ait, Tit, HR
i , H

C
i , κijt, ζijt,WR

ijt,WC
ijt},

and parameter values, the equilibrium wage and equilibrium employment satisfy

the following equations:

Equilibrium Wages using goods-market clearing in (3.11)

wit = L
(γ1−θ(1−µ))−1

1+θ
it HC

i

−θ(µ−1)−γ1
1+θ τ

1
1+θ
it

∫
S

wjtLjtζ
−θ
ijt∫

S
Πktζ

−θ
kjtdk

dj


1

1+θ

, (3.14)

where τit ≡ exp
(∫

S
WC

ijt−1 log Tjt−1 dj

)γ2

and Πkt ≡ τkt

(
Lkt
HC
k

)γ1−θ(1−µ)
w−θkt .
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Equilibrium Employment using migration shares in (3.10)

Lit =

(
wαit(L̄κ̃it)ΩHR

i
(1−α)+λ1 ãit

) 1
Ω̃
(∫

S
Πitζ

−θ
ijt dj

) α
θΩ̃

∫
S

∫
S

 ãktwαktHR
k

(1−α)+λ1

κkjtL
(1−α)+λ1
kt

 1
Ω (∫

S
Πjtζ

−θ
kjtdj

) α
θΩ
dkdj


−Ω

Ω̃
, (3.15)

where κ̃it =
∫
S
κ
−1/Ω
ijt dj, ãit ≡ exp

(∫
S
WR

ijt−1 log ajt−1 dj

)λ2

and Ω̃ ≡ Ω+λ1 +(1−

α).16 Given these two sets of equilibrium values, all other endogenous variables of

the model are determined.

To guarantee that the solution to the system of equations exists, is stable and

unique, we establish two crucial conditions.17

Uniqueness There exists a unique (up-to-scale) solution of the vectors {wt,Lt}

to satisfy (3.14) and (3.15), if

αγ1

θ
≤ (1− µα) + λ1 + Ω. (3.16)

This condition is intuitive. It states that agglomeration forces expressed in local

production externalities (αγ1
θ
) may not dominate the three dispersion forces: land

availability restrictions (1− µα), congestion externalities in amenities (λ1) and

the variance of local preferences (Ω).

Stability An equilibrium requires that both the amenity diffusion in (3.2) as

well as the technology diffusion in (3.5) reach an equilibrium level in the long run

upon a shock in infrastructure. For either process, this is the case whenever (i)

the infrastructure-accessibility weights WR
ijt and WC

ijt are properly normalized so

that their integral for each prefecture and time period is bounded, and (ii) the

adjustment-cost parameters, λ2 and γ2, are suitably bounded. To address the

former, we normalize both WR
ijt and WC

ijt such that their diagonal elements are

zero and the maximum of their row sums equals unity, i.e., maxi
∫
S
W(·)

ijtdj = 1

for (·) ∈ {C,R}. We adopt a maximum-row-sum normalization over the more
16Section 3.7 of the Appendix presents the derivation of (3.14) and (3.15) in further detail.
17Section 3.8 and 3.9 of the Appendix present a detailed derivation of the uniqueness and

stability conditions.
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standard row-sum normalization as it retains differences in absolute connectivity

of the locations (see Kelejian and Prucha, 2010). To address the latter, we need

to assume |λ2|, |γ2| ∈]0, 1[.18

3.3 Transport Network

In the last three decades, the development of the transport infrastructure net-

work has been a key focus for the Chinese government. A major part of the

transport infrastructure investments was spent on the extension and technological

improvements of the national road system. In what follows, this section describes

a hand-collected novel dataset on the Chinese road network (Section 3.3.1) and

explains in detail in which way we treat it as endogenous and overcome potential

associated biases in estimating key model parameters when using it in estimating

equations (Section 3.3.2).

3.3.1 Chinese Transport Infrastructure Network

We collected 14 road atlases covering the entire Chinese road network for the years

2000-2013.19 All books were digitalized in high-resolution portable document for-

mat (PDF). After digitalization, we geo-referenced all maps and classified the road

features into three different categories: highways (including the National Trunk

Highway System built between 1992-2007), provincial-level roads, and prefecture-

level roads using ArcGIS software.20 Furthermore, as a significant fraction of the

transport infrastructure investments was spent on upgrading the existing network,

our classification scheme pays particular attention to such upgrading. As a result,

we obtained a highly comprehensive, novel database on the Chinese road network

(including highways, provincial-level roads, and prefecture-level roads) between

2000 and 2013. It permits observing changes in infrastructure which can inform
18We detail the stability condition for the amenity- and technology-diffusion processes in

further detail in Section 3.9 of the Appendix.
19We list the sources of all road atlases in Table 3.6 of Section 3.11 in the Appendix.
20In the road atlases, provincial-level roads are sometimes also referred to as national roads,

and prefecture-level roads are dubbed secondary roads. The main difference between these road
categories is the road capacity and allowed driving speed. The official speed limits for these
roads in China are 120km/h, 80km/h, and 50km/h, respectively; see Ma and Tang (2020).
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a regional quantitative analysis that investigates the overall economic effects and

various components thereof.

Figure 3.1: Evolution of Unnormalized Travel Time Between All
Prefecture Pairs (2000-2013)

Share of 2000-2013 travel times improvements imputable to:
   - Regional road investments: 31.70%

   - Highway investments: 68.30%
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Between 2000 and 2013, the total road network length increased from 371,385

kilometers to 515,480 kilometers. Hence, by 2013 about 28% of all road-kilometers

were connections which did not exist in 2000. Figure 3.1 shows the evolution of

Chinese road connections for the period 2000 and 2013. In particular, it displays

the sum of bilateral travel times between all 330 considered Chinese prefectures

for each year between 2000 and 2013. We observe an almost linear decrease in the

sum of bilateral travel times in the given period. This decrease is imputable to

the extension of the highway network, but also to the densification of the regional

road network. About one third (31.70%) of the decrease in the sum of bilateral

travel times was achieved by developing the regional road network.

One noticeable improvement of the Chinese transport network between 2000

and 2013 is the concentration of the highway network. The total number of

kilometers of highway (including the National Trunk Highway System) grew

from 50,127 kilometers in 2000 to 142,983 kilometers in 2013. Figure 3.2 maps

the evolution of the highway network between 2000 and 2013. Consistent with

population-density patterns, most new highway segments were built in the eastern

and northern parts of China.
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Figure 3.2: Chinese Highway Network (2000 and 2013)

¯

Legend:
Chinese national borders
Highway network in 2000
Addition to the highway network by 2013

However, looking solely at the improvements of the highway network would not

capture the full extent of the Chinese road network extension as already indicated

in Figure 3.1. Figure 3.3 displays the evolution of the regional road network

(i.e., the provincial-level and prefecture-level roads together), using gray lines for

prefecture borders. For better display, we focus on a few prefectures in mid-eastern

China here (namely, Pingdingshan, Luohe, and Zhoukou, all located in Henan

Province). In 2013, Chinese provincial-level roads totaled 124,594 kilometers and

prefecture-level roads amounted to 246,146 kilometers. Between 2000 and 2013,

the total length of Chinese regional roads increased by 21%.

Whereas Figure 3.2 highlights the importance of the highway network improve-

ments on a nation-wide scale, Figure 3.3 reveals that regional roads are crucial to

accurately capture bilateral connections at the prefecture level. This is especially

true for short distance travels and when it comes to providing shortest-distance

access to the highway system. Prefectures are relatively small geographical units,

and for analyzing the road network improvement effects on them – even when

focusing on highways – it is elemental to also consider regional road network con-

nections and their improvements.

Finally, Figure 3.4 displays the geography of connectivity growth between 2000

and 2013 in terms of aggregate inverse travel times in a map for each prefecture
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Figure 3.3: Chinese Regional Road Network (2000 and 2013)

Legend:
Chinese prefectoral borders
National and secondary roads in 2000
National and secondary roads added by 2013

¯

Notes: Regional roads include both provincial-level and prefecture-level roads. The figure zooms in on the

prefectures of Pingdingshan, Luohe, and Zhoukou, all in Henan Province.

(a) and in a graph by longitude bins of 5◦ (b). It suggests that prefectures in

mid-eastern China (at a longitude of around 105◦ E) had the largest gains in

connectivity. Moreover, prefectures in the Far West of China gained more than

on average in road connectivity, mostly because they started from a very low

connectivity level in 2000.

3.3.2 Optimal Transport Network

One key concern when analyzing transport networks is that connections between

places are not random. Central planners decide on the location of new road seg-

ments to maximize some objective function (e.g., connecting large centers, opening

up isolated regions, etc.). The explicit modeling of this objective function is out-

side of the focus of the present paper. For estimating the impact of travel time

on moving and trade costs, we employ an Instrumental Variable (IV) strategy

to avoid a bias associated with endogenous road-transport infrastructure place-

ments. Travel time in the observed network is instrumented with the solution of

the classical Monge-Kantorovich optimal-transport problem as proposed in Monge

(1781) and Kantorovitch (1958). This approach has several advantages. First, it
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Figure 3.4: The Geography of Connectivity Growth (2000-2013)

(a) Prefecture-level Connectivity Growth

(b) Connectivity Growth by Longitude
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, where dijt denotes the bilateral travel

time in year t. Figure 3.4b displays the average connectivity growth by longitude bins of 5◦.

predicts significantly more connections (or edges) between the nodes (here, prefec-

tures) in a network than a minimum-spanning-tree approach. This can lead to a

higher predictive power for the Monge-Kantorovich predicted network than for a

minimum-spanning-tree network in the first stage, where the actual road network

is explained. Second, it allows to predict an intensity-of-connection usage and,

hence, a connection typology (here, of highways, provincial-level, and prefecture-

level roads), which would not be the case for the minimum-spanning-tree network.

We derive the optimal transport network in three steps. First, using a grid of

4,000,000 cells over China, we predict the cost of building a road in each cell us-

ing observed geographical, historical and year-2007 network data (this is the year

in the middle of our study period). Second, using Dijkstra’s (1959) algorithm,
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we compute a path of minimum costs between any two Chinese prefectures. Fi-

nally, we select among all cost-minimizing paths the ones that solve the Monge-

Kantorovich optimal-transport problem using historical population data. In the

remainder of this section, we outline each step of deriving the optimal transport

network in more detail.

Step 1: Grid and Estimation of Construction Costs — We build a grid

of 2,000×2,000 = 4,000,000 cells covering all of mainland China. This leads to cells

of about 3.1×3.1 kilometers in size. To each cell, we attribute the average slope

(land gradient) in the cell, the area of the cell covered by water, and the population

density of the prefecture in which the cell lies according to 1953 population data.21

Note that these three variables are not affected by the construction of new roads

in 2007. We also defined an indicator variable which equals unity, if a cell does

not contain (is not crossed by) a road connection in 2007, and zero otherwise. We

use the latter as a binary dependent variable in a cross-sectional probit model,

where the underlying latent continuous variable should be interpreted as to reflect

the costs of building roads in a cell. The index which informs the propensity

of road construction is specified as a linear function of a constant and the three

aforementioned variables (the average slope, the extent of water areas, and the

population density of 1953).

Step 2: Computing the Minimum Costs of Building a Connection Be-

tween Each Prefecture Pair — Based on the construction costs obtained

from the previous step, we determine the minimum-cost path between any two

prefectures using Dijkstra’s (1959) algorithm. This algorithm searches for the

cost-minimizing path by sequentially adding legs (here, cells) to the best current

path and comparing it to all alternative paths. Searching the full space for each bi-

lateral connection requires an inefficiently large amount of time as extreme routes

are unlikely to be cost minimizing. Hence, we restrict the search space to all cells

within a 7◦ (about 750km) bandwidth around the great-circle-distance connec-
21The 1953 Population Census for China is available in pdf format and contains information

on population counts at the provincial and county levels. We digitalized the data using optical
character recognition (OCR) methods. Then, we aggregated all county-level population data to
the prefecture level using prefecture borders as of the year 2000.

104



tion between any two prefectures. Figure 3.5 illustrates the search space for an

exemplary pair of prefectures.

Figure 3.5: Illustration of the Search Space for Dijkstra’s Algorithm

!

!

¯

Legend:
Chinese national borders

! Two prefectures
Straight line between prefectures
Search space for Dijkstra's algorithm

Step 3: Selecting Connections — In the last step, we select the connections

to be included in the optimal network. Importantly, to obtain a valid instrument,

it is crucial that the selection process does not depend on shocks and other time-

specific components in variables (specifically, population density) which are mea-

sured during the period of investigation and, in particular, in 2000, which is the

benchmark year for the state of the road infrastructure network (see Section 3.4

for more details). Solutions based on a cost-benefit analysis using contemporary

data would typically not be suited. Moreover, given the relatively high density

of the observed transport network and the relatively large number of prefectures,

a minimum-spanning tree connecting all prefectures is likely to have low predic-

tive power and underestimate the connectivity of prefectures during the period of

investigation.

To obtain a valid instrument with a sufficiently high predictive power and

a reasonable degree of predicted connectivity among prefectures, we formulate

and solve the classical Monge-Kantorovich optimal-transport problem22 proposed
22See Villani (2003), for a textbook treatment of the mathematical problem.
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in Monge (1781) and Kantorovitch (1958) in the context of the Chinese road

transport network. Specifically, we formulate the problem as a standard linear

program in which all individuals as of 1953 must move to another prefecture

at minimized overall moving costs. Costs between each pair of prefectures are

given by the previous steps. Clearly, this leads to a denser network, when large

prefectures are surrounded by smaller prefectures than when prefectures are of

similar sizes. After defining, cij as the cost between prefectures i and j and hij as

the population flow between them, and h is the stacked vector of s(s−1) elements

hij with i 6= j, the linear program can be formulated as follows:

min
h

f(h) =
s∑
i=1

∑
j 6=i

cijhij

s.t.
∑
i

hij =
∑
j

hij

hij ≥ 0,∀{i 6= j}.

(3.17)

To insure that the solution of the optimal-transport problem at hand does not

lead to disconnected sub-networks within the big network of Chinese prefectures,

we complement the respective solution by the minimum-spanning-tree connections.

This is done using the cost-minimizing path from Dijkstra’s (1959) algorithm and

Kruskal’s (1956) algorithm. Hence, all unconnected sub-networks (islands) based

on the Monge-Kantorovich algorithm will be connected by minimum-spanning-tree

least-cost road paths. The latter complement is similar to the strategy employed

in Faber (2014).

The overall optimal-transport network is illustrated in Figure 3.6. Note that

each connection is defined by a number of movers. This can be interpreted as a

connection intensity and permits defining a road typology. Sorting connections

by the number of movers, we assume the largest third to be highways, the middle

third to be provincial-level roads and the bottom third to be prefecture-level roads.

Assuming that movers travel at the speed limits of 120km/h on highways, 80km/h

on provincial-level roads, and 50km/h on prefecture-level roads (see Ma and Tang,

2020), we obtain the projected travel time between any two prefectures based on

the optimal network and the adopted assumptions. We use the resulting bilateral

travel time as an instrument for the observed bilateral travel time.
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Figure 3.6: Optimal Network using the Monge–Kantorovich
Transportation Problem
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3.4 Calibration

In general, for calibrating the proposed model, one needs data for two consecutive

years. In principal, one could of course calibrate the model to any sequence of

consecutive year pairs t and t + 1 for which data are available. Following the

adopted convention, baseline road network data will be measured in 2000 and

other variables associated with this baseline will be measured in the same year

or the one thereafter, 2001. We choose 2000 for the baseline, because it is the

earliest year in the period for which we collected road-transport-network data,

and the network changed quite substantially up until more recent years. When

calibrating the model, we will close the gap between key model variables and

the corresponding data in 2000 and 2001. We will compute long-run equilibrium

values which are informed by the exogenous factors as of 2000. These long-run

equilibrium values will be reached only after the adjustment processes about

amenities in (3.2) and the one about technology in (3.5) played out. In any case,

for what follows in this section it should be borne in mind that whenever referring

to the baseline year of the calibration we address 2000.
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In the counterfactual analysis, we will shock China’s domestic road-transport

network as of 2000 ceteris paribus. For this, we will impose actual road-

connectivity data from 2013 in 2000. Hence, the outcomes realized in the baseline

model in 2000 will adjust in response to this shock up until they stay constant

between any pair of years when letting the adjustment process run forward. We

will then compare the long-run-equilibrium vectors of outcome variables for all

considered prefectures in China (and, in the background, the rest of the world,

RoW) between the baseline road network as of 2000 and the one of 2013. Other

exogenous factors are held constant at the values of the year 2000.

In the benchmark year 2000, China was composed of 349 prefecture-level re-

gions. We use information on administrative boundaries of Chinese prefectures for

that year from the China Data Center at University of Michigan.23 Throughout

the analysis, we hold prefecture-level borders constant as of the year 2000 and

calibrate all variables accordingly. In the analysis, we focus on a sub-sample of

330 Chinese prefectures. With this strategy, we dropped 19 prefectures which in-

clude the following: ones that are not part of what is often called mainland China

(i.e., Hongkong, Taiwan, and Macao); prefectures on Hainan Island (as there is no

road connection to mainland China); and all prefectures in the Tibet Autonomous

Region (mainly for data restrictions). Moreover, we merged prefectures to one

greater-city prefecture within the following five cities, namely Beijing, Baoshan,

Chongqing, Shanghai, and Tianjin. Overall, we observe that the land mass of

prefectures tends to be larger in the West and smaller in the East, which clearly

reflects the relatively greater population density in the East.

While the focus of this study is on Chinese prefectures, we decided to model

China as a large open economy, given the importance of its foreign trade. However,

there is no need for going into much regional detail with regard to the rest of the

world for the present purpose. That means, apart from the 330 Chinese prefecture-

level regions, our data include one additional region representing the rest of the

world, which accounts for all the economic activity outside of the considered 330

regions. Hence, the total number of regions we cover is 331 in this paper. The rest

of the world population count is obtained by subtracting the mainland Chinese
23Note that the Chinese Data Center website has been closed and is no longer available since

September 2018. We acquired the data on Chinese administrative boundaries in November 2016.
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population count in 2000 and 2001 from the world population in those years. To

determine the per-capita wage in the rest of the world in 2000 and 2001, we use the

following data moments. First of all, we use the prefecture-population-weighted

average nominal wages to obtain a per-capita wage level for mainland China in

2000 and 2001. Second, we compute the ratio of the OECD to Chinese price level

given OECD data.24 We then multiply this ratio to the Chinese per-capita average

wage and thereby back out the per-capita wage level for the rest of the world.

Table 3.1: Calibration Overview

Parameter common to all locations
1. Preferences & Evolution of Amenities
σ = 4 Elasticity of substitution. Bernard et al. (2003)
α = 0.850 Consumption share in utility (non-land share). Own estimation
λ1 = 0.690 Elasticity of end. amenities w.r.t. pop. density. Own estimation
λ2 = 0.494 Elasticity of tomorrow’s amenities Own estimation

w.r.t. today’s aggregate amenities.
Ω = 0.5 Elasticity of migration flows w.r.t. income. Monte et al. (2018)
2. Technology & Evolution of Productivity
µ = 0.800 Labor share in production (non-land share). Own estimation
θ = 3.570 Trade elasticity and dispersion of technology. Own estimation
γ1 = 0.683 Elasticity of technology w.r.t. pop. density. Own estimation
γ2 = 0.728 Elasticity of tomorrow’s technology Own estimation

w.r.t. today’s aggregate technology.
3. Migration & Trade Cost Elasticities
φ1 = 0.055 Elasticity of travel time to migration costs. Own estimation
φ2 = 0.044 Elasticity of travel time to trade costs. Own estimation
Location-specific parameter
1. Land Endowments
HR
i Residential land mass in location i. Geofabrik, OSM

HC
i Commercial land mass in location i. Geofabrik, OSM

2. Initial Distributions
Tit Initial technology distribution. Own estimation
ait Initial amenity distribution. Own estimation
3. Network Parameters & Weighting Scalars
dijt Bilateral travel time (Road) Network Analyst, ArcGIS
WR
ijt Weighting scalar governing amenity diffusion. Own calibration

WC
ijt Weighting scalar governing technology diffusion. Own calibration

4. Migration & Trade Costs
κijt Migration costs Own estimation
ζijt Trade costs Own estimation
Note: OSM refers to Open Street Map.

To compute the quantitative multi-region long-run general equilibrium for any

baseline calibration, we need the parameters contained in the equations above and
24Source: https://data.oecd.org/price/price-level-indices.htm
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summarized in Table 3.1. Apart from parameters that are common to all regions

in the model, these are residential and commercial land endowments {HR
i , H

C
i },

distributions of amenities and technology for years 2000 as well as 2001, {Tit, ait}

and {Tit+1, ait+1}, network transmission (or spillover) weights captured by the

scalars {WR
ijt,WC

ijt} measured in 2000 (and, in the counterfactual in 2013), as well

as interregional trade- and migration-cost parameters {κijt, ζijt}, also measured

in 2000 (and 2013). Table 3.1 lists the parameters and gives a brief explanation

of how they are assigned and chosen. Two of the parameter values are based on

previous work, namely {σ,Ω}, while all others are either estimated or calibrated

by us. In what follows, we briefly describe our choices for the adopted parameter

values in more detail.

3.4.1 Elasticity-of-substitution Parameter σ

We assume a value for the elasticity of substitution between varieties of σ = 4 in

the model. This value is motivated by earlier work. For instance, Bernard et al.

(2003) report a value of σ = 3.8, and Broda and Weinstein (2006) an average

one of σ = 4 (based on price and expenditure data measured at the three-digit

trade-classification product level).

3.4.2 Land Endowments (HR
i , H

C
i )

The total area of each prefecture is measured using ArcGIS software. However, as

our theoretical framework distinguishes between residential and commercial land

markets, we need additional information on land use in each prefecture. This

information is provided by the Open Street Map (OSM) GeoFabrik Database.25

Land-use data for the rest of the world are obtained by generalizing the land-use

patterns observed in the EU28 countries to all countries in the rest of the world

(RoW). For this, we use data from the European Union buildings database.26

25The GeoFabrik database is updated every day and we extracted the information on November
11th, 2018. Hence, residential and commercial land endowments (HR

i , H
C
i ) are dated to the year

2018 and assumed constant for the entire analysis. https://download.geofabrik.de/asia/
china.html.

26https://ec.europa.eu/energy/en/eu-buildings-database
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3.4.3 Infrastructure Network Data and Network

(Spillover) Weights (dijt, WR
ijt, WC

ijt)

We use hand-collected and digitized information on the size and exact location

of all highways, provincial-level roads, and prefecture-level roads in China, in this

paper specifically for the years 2000 and 2013. Based on this comprehensive road

network information, we derive the travel time on the network between any two

prefectures i and j in hours for each year, dijt, using the Network Analyst from

ArcGIS and customary speed limits.

For the purpose of measuring inter-prefectural distances, we define the loca-

tion of prefecture i by the main city center as measured by the highest density

within a prefecture using population-density data from the Socioeconomic Data

and Application Center (SEDAC) for the year 2000.

Inter-prefectural travel time is obtained by assuming that commuters drive at

the speed limits. Speed limits are 120km/h on highways, 80km/h on provincial-

level roads, and 50km/h on prefecture-level roads (see, Ma and Tang, 2020). Ac-

cordingly, we assume that travel times are symmetric between regions i and j,

whereby for any generic year dij· = dji·. The travel time between each prefecture

and the RoW is defined as the travel time on the network to the nearest of the six

largest Chinese ports – Shanghai, Shenzhen, Ningbo, Guangzhou, Qingdao, and

Tianjin – plus the travel time from that port to the centroid of the population-

weighted RoW countries.27 By this token, the connectivity to the RoW is impacted

by Chinese road network improvements.

The cross-prefecture diffusion or accessibility of amenities and technology

through the network are governed by the weights WR
ijt and WC

ijt, respectively. We

conjecture that the diffusion decreases with distance and assume that WR
ijt and

WC
ijt both are zero for intra-regional relations (i = j). Otherwise, each element

(i 6= j) is inversely related to dijt. Moreover, we follow the literature on spatial and

network econometrics and normalize both WR
ijt and WC

ijt (Kelejian and Prucha,

2010) such that the maximum row sum equals unity (see the stability condition in

Section 3.2.6). To summarize, for any V ∈ {R,C} of the connectivity or spillover
27For the travel time from any Chinese port to the centroid of the population-weighted RoW

we assume an average travel speed of 25km/h.
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scalars WV
ijt, we obtain WV

ijt = 0 for all i = j and WV
ijt = d−1

ijt

maxi
∑331

i=1 d
−1
ijt

for i 6= j.

3.4.4 Cobb-Douglas Shares in Preferences and Production

(α, µ)

We compute the consumption share in utility (α) and the labor share in production

(µ) using data on residential and commercial land rents. Rearranging equilibrium

land rents (3.13) gives

α = 1−
[
rRitH

R
i

witLit

]
and µ =

[
1 +

[
rCitH

C
i

witLit

]]−1

.

We measure employment (Lit) by combining population data from the Socioe-

conomic Data and Application Center (SEDAC), time-varying labor-force partici-

pation rates from the International Labor Organization Statistics Database (ILO-

STAT), and time-varying labor-force-in-population shares from the World Bank’s

World Development Indicators (WDI) for the years 1990-2015.28 Hence, we obtain

the employment measurement by multiplying the population count from SEDAC

with the labor-force participation rate from ILOSTAT and the share of population

in employment age (15-64) from WDI. Data on the average annual wage per capita

(wit) in RMB for the years 2000-2009 come from the Chinese Annual Survey of

Industrial Firms (CASIF) provided by the National Bureau of Statistics China.

As these data are geo-referenced, we can compute average wages by prefecture for

each year covered.

Residential and commercial land use data (HR
i , H

C
i ) for all 330 prefectures and

the RoW come from the sources described in Section 3.4.2. Residential land rents

(rRit) in RMB per square meter for 105 prefectures between 2008-2016 are provided

by the Ministry of Natural Resources in China (Department of Land Use Man-

agement). Commercial land rents (rCit ) in RMB per square meter are available for

340 prefectures between 1992-2014 from the National Bureau of Statistics China.

Both residential and commercial land-rent data represent purchasing prices and
28SEDAC provides gridded population data with an output resolution of 30 arc-seconds (cor-

responding to approximately 1 × 1 kilometer at the equator) for a five-year interval between
1990-2015 for the whole world (including China). We fill in data for the missing years within
the intervals using linear interpolation. The data from ILOSTAT and WDI vary by year and
country and are assumed to be identical across regions within a country.
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need to be converted to annual rental-price data. We assume that annual rental

prices correspond to a hypothetical annual mortgage payment if one had to borrow

the total purchasing price. The generic annual mortgage payment M is calculated

using the formula M = 12×
(
P ς(1+ς)n

(1+ς)n−1

)
, where P is the generic total purchasing

price, ς is the monthly interest rate, and n is the total tenure of the mortgage,

which we assume to be n = 240 months (or 20 years) for all regions and years.

We use data on annual interest rates for China from the World Bank database.

Adopting this procedure and using the mentioned data obtains the parameters

α = 0.850 and µ = 0.800 as listed in Table 3.1.

3.4.5 Migration-cost Parameters (Ω, κijt, φ1)

We follow Desmet et al. (2018) and Allen and Donaldson (2018) and assume a

common parameter about the Fréchet dispersion of stochastic migration costs, Ω.

The latter pertains to the heterogeneity in individuals’ tastes for location choices

(with higher values of Ω indicating larger taste heterogeneity). More formally, Ω

describes the inverse of the elasticity of migration flows to location-specific utility

levels (net bilateral migration costs), which becomes apparent in equation (3.10).

We assume a value of Ω on the basis of previous estimates that have been derived in

the within-country context, i.e., without formal migration restrictions. We follow

Desmet et al. (2018), who set a value of Ω = 0.5, based on studies by Ortega and

Peri (2016), Diamond (2016), Fajgelbaum et al. (2019), and Monte et al. (2018).

This value is informed by data based on the European Union. Two remarks are

in order with regard to that choice. First of all, assuming a common value for Ω

should appear less problematic here than in global regional studies because the

regional entities considered in this study are – with the exception of one large entity

capturing the RoW – all located within one country, China. Second, the residence

choice in China is to some extent impeded by the household registration system

called hukou. The hukou system was aimed at decreasing population pressure in

large urban centers and Special Economic Zones (SEZs). However, at the same

time China aims at increasing the share of the population living in urban centers

(see, Egger et al., 2017). Between the 1970s and the mid-2000s, the hukou system

has undergone numerous reforms towards greater flexibility. In any case, while
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there is the hukou system, there are (almost) no cultural and only minor to no

language barriers for internal migrants in China, unlike for internal migrants in

the European Union. In view of these arguments, we follow earlier quantitative

work in regional economics and use the parameter value Ω = 0.5.

As is customary in the quantitative economic-geography literature, we model

mobility frictions κijt as an exponential function of bilateral travel times. φ1

governs the translation of bilateral travel times into migration frictions.

κijt = exp(φ1dijt). (3.18)

Accordingly, there is a semi-log gravity equation for mobility flows between

residence i and origin j in terms of travel time between i and j in year t:

log πRijt = −ξdijt + ait + bjt + εijt, (3.19)

where ait are residence-region-time fixed effects capturing residence characteris-

tics, bjt are destination-region-time characteristics. The denominator of (3.9) is

captured by bjt as it is constant across residence regions i. The parameter ξ is

the semi-elasticity of migration flows with respect to travel time. It is defined as

ξ = φ1/Ω, where φ1 is the travel-cost parameter and Ω = 0.5 is the heterogeneity

parameter associated with the Fréchet-distributed shock on individuals’ utility.

Table 3.2: Gravity Estimation Results of Bilateral Migration

Dep. Var. log πRij in 2000

dij(= −φ1/Ω) -0.109***
(0.003)

Estimation 2SLS
Fixed effects Yes
Observations 10’547
R2 0.21
Weak instr. (F statistic) 5,679
Notes: Standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1. For one endogenous regressor, one
instrumental variable and a maximum relative bias of
5%, the critical value for the weak instrumentation F-
Statistic is 16.38 (Stock and Yogo, 2005).
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To empirically estimate the semi-elasticities of migration flows, we measure

bilateral migration shares from the Fifth National Population Census (2000). The

prided data are a random sample of the census with a coverage of 0.95 per 1,000

people. Overall, there are 1,180,111 individuals covered. The data include, for

each individual, their origin and current location at the prefecture level, and the

year they moved, if they did. We consider all individuals in 2000 that have changed

their residential location between 1995 and 2000 as migrants. This is the case for

10.5% of the sample. We aggregate all individuals to the prefecture level (for origin

and destination) and get a bilateral measure of migration: Lijt, for the year 2000.

We instrument the travel time between two locations by the Monge-Kantorovich

procedure-based travel time (d∗ij). Table 3.2 displays the estimation of (3.19) using

these data. Given Ω = 0.5, we obtain φ1 = 0.055 based on these estimates.

3.4.6 Trade-cost Parameters (θ, ζijt, φ2)

Chinese prefecture-to-prefecture trade data are not available, as it is the case in

other data-sets used in quantitative multi-region general equilibrium work (see,

e.g., Desmet et al., 2018). However, in contrast to many other countries, China

reports prefecture-level trade aggregates with various regional aggregates within

China and with foreign countries which can be used for parameter identification.

In any case, to determine the trade-cost parameters, we cannot adopt the same

strategy as for the migration-cost parameters. In this section, we propose a novel,

model-guided approach which can be used with the available trade data.

The Investment Climate Survey (ICS) provides information on domestic and

international trade volume for China. This survey is part of the 2005 World

Bank Enterprise Survey, and it collects a wide range of information on 12,400

establishments in 123 prefectures in mainland China (for the year 2004). For

instance, the survey reports the percentage of sales of an establishment (i) within

the prefecture of its location, (ii) to other prefectures within the province of its

location, (iii) to the rest of China (i.e., to all other provinces together), and (iv) to

foreign countries (including Taiwan, Hongkong, and Macao). The ICS also offers

information on the firms’ performance from their income statements, which we

use in order to aggregate sales of the sampled firms to the prefecture level.
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Let us define pi as the set of all prefectures within the same province as pre-

fecture i, and ri as the set of prefectures in China outside of i’s province, and let

us use the index pi to refer to this aggregate as an aggregate destination region.

The share of aggregate purchases from firms in i in the total expenditures of the

province that i is located in (denoted by pi) according to the model may be written

as:

πCipit =

∫
pi
Tit(oit)−θζ−θijt dj∫

pi

∫
S
Tkt(okt)−θζ−θkjt dk dj

. (3.20)

Analogously, let us define ri as the set of all Chinese prefectures not contained

in (geographically, outside of the) set pi, and let us use the index ri to refer to

this aggregate as an aggregate destination region. Then, the share of aggregate

purchases from firms in i in the total expenditures of other Chinese provinces than

i’s is:

πCirit =

∫
ri
Tit(oit)−θζ−θijt dj∫

ri

∫
S
Tkt(okt)−θζ−θkjt dk dj

. (3.21)

Based on the ICS data, we can measure both πCipit and πCirit, which we will use

to obtain both θ and ζijt. For identification of these parameters, it will be useful to

defineMit as the Mahalanobis distance of a prefecture i. It measures how distant a

prefecture i is to all others relative to the Chinese average. As such it involves the

predicted row vector d̂it using the Monge-Kantorovich procedure-based travel time

(d∗ij) for prefecture i. Furthermore, it depends on the s × s variance-covariance

matrix Σt of travel times among the Chinese prefectures. Then, the Mahalanobis

distance for prefecture i based on year-2004 data is:

Mi2004 =
√
d̂i2004Σ−1

2004d̂
′
i2004. (3.22)

Trade Elasticity and Dispersion of Technology — We first estimate

the trade-elasticity and dispersion-of-technology parameter θ. Consider two pre-

fectures i and i′ in the same province with similar Mahalanobis distance values

Mit u Mi′t. The latter means that these prefectures have approximatively the

same trade costs to all other prefectures.
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Thus,29
πCipit
πCi′pit

u
Tit(oit)−θ
Ti′t(oi′t)−θ

, if Mit u Mi′t. (3.23)

Similarly, considering the expenditure shares on these two prefectures to other

provinces than their own province, we have:

πCirit
πCi′rit

u
Tit(oit)−θ
Ti′t(oi′t)−θ

, if Mit u Mi′t. (3.24)

Knowing that we can express oi as a function of Lit, wit, HC
i , and µ following

(3.6), we can rewrite (3.23) and (3.24) for prefectures with Mit u Mi′t by taking

logs as:

log
πCipit
πCi′pit

u −θ log
( wit( LitHC

i
)1−µ

wi′t(Li′tHC
i′

)1−µ

)
+ εiiipit

log πCirit
πCi′rit

u −θ log
( wit( LitHC

i
)1−µ

wi′t(Li′tHC
i′

)1−µ

)
+ εiiirit.

(3.25)

Note that in equation (3.25) the two terms εiiipit and εiiirit are treated as

residual terms which are functions of the endogenous technology terms Tit and Ti′t.

As outlined in Section 3.4.4, the vectors Lit, wit, HC
i , and µ are observable. We

estimate (3.25) using only those prefectures in a province, for which the absolute

difference |Mit −Mi′t| is minimal. We instrument the ratio of unit costs, oit/oi′t,

with the natural logarithm of the ratio of land areas30 for prefectures i and i′.

Adopting this procedure, we obtain a value of θ = 3.570.

Elasticity of Travel Times to Trade Costs — Given the value of θ, we

employ a brute-search approach to determine the parameters of trade frictions

ζijt. Similar to the migration frictions, we model ζijt as an exponential function of

bilateral travel times, dijt. φ2 governs the mapping of travel time into trade costs.

ζijt = exp(φ2dijt). (3.26)

29The detailed derivation is presented in Section 3.10 of the Appendix.
30Land area is measured in squared kilometers. Note that the availability of land in a prefecture

is relevant and exogenous in the model.
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Consider the ratio of ratios of expenditure on two prefectures i and i′ from the

same and other provinces in China. Ensure again that i and i′ belong to the same

province but now use only ones for which Mit 6= Mi′t. For such prefectures, this

ratio of ratios is defined as:31

πCipitπ
C
i′rit

πCi′pitπ
C
irit

=

∫
pi
ζ−θijt dj

∫
ri
ζ−θi′jtdj∫

pi
ζ−θi′jtdj

∫
ri
ζ−θijt dj

. (3.27)

Note that the left-hand-side variable of equation (3.27) is observed, and, re-

garding the right-hand side, θ is known from above, and so is ζijt up to the scalar

φ2 in equation (3.26). Hence, we can minimize the sum of squared distances be-

tween the left-hand side and the right-hand side in equation (3.27). In fact, this

procedure is best informed for those prefectures i and i′, for which the absolute

difference |Mit−Mi′t| takes on the maximum value within a province. Using only

those prefectures in a province, for which the absolute difference |Mit −Mi′t| is

maximal, the proposed procedure obtains a parameter of φ2 = 0.044. From (3.26)

and the observed dijt, we then obtain ζijt.

3.4.7 Parameters Governing the Distribution of Endoge-

nous Technology (Tit, γ1, γ2)

Solving the model for a reference year t requires knowledge on the prevailing tech-

nology in that year, Tit for all regions i, and the respective parameters governing

the technology-adjustment process, γ1 and γ2. We start by numerically solving

for the endogenous technology Tit through a standard contraction-mapping pro-

cedure, using the model structure and observed levels of population, wages, and

land endowments for the benchmark year 2000. For this, we use the goods-market-

clearing condition in (3.11) to solve for Tit as a function of observables, substituting

the trade shares with the expression in equation (3.7) and the unit costs with the

one in equation (3.6).
31The detailed derivation is presented in Section 3.10 of the Appendix.
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Hence, we obtain

Tit = w1+θ
it L

1+θ(1−µ)
it HC

i
θ(µ−1)∫

S
wjtLjtζ

−θ
ijt

(∫
S
TktL

−θ(1−µ)
kt w−θkt H

C
k

−θ(µ−1)
ζ−θkjtdk

)−1
dj

. (3.28)

To inform this system of equations, we use the parameter values for {µ, θ, ζijt}

for all regions {i, j, k} in the year 2000 from the earlier subsections, population data

from the Socioeconomic Data and Application Center (SEDAC), annual average

wages per capita from the Chinese Annual Survey of Industrial Firms (CASIF),

and commercial land endowments from the OSM GeoFabrik database.

Table 3.3: Endogenous Technology Parameter Estimation Results

First Stage

Dep. Var. log
(
Lit+1/H

C
i

) ∫
S
WC
ijt log(Tjt)dj

log(Longitudei) 4.817*** -0.849***
(0.708) (0.135)∫

S
W∗
ijt log(Tjt)dj -0.187 0.702***

(0.116) (0.066)
Second Stage

Dep. Var. log(Tit+1)

log
(
Lit+1/H

C
i

)
0.683***
(0.075)∫

S
WC
ijt log(Tjt)dj 0.728***

(0.157)
Observations 1,324
Weak Instr. (F-statistic) 43.71
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. For
two endogenous regressors, two instrumental variables and a maximum relative bias
of 5%, the critical value for the weak instrumentation F-Statistic is 7.03 (Stock and
Yogo, 2005).

Based on the respective model solutions for Tit, we can estimate γ1 and γ2

using the technology-evolution equation (3.5). Taking logs of (3.5) obtains

log Tit+1 = γ1 log
(
Lit+1

HC
i

)
+ γ2

(∫
S
WC

ijt log Tjtdj
)

+ log εCit+1, (3.29)

where log εCit+1 is the log of the technology shifter that includes a common con-

stant. We estimate (3.29) by 2SLS, instrumenting
(∫

S
WC

ijt log Tjtdj
)

and log

population density
(
Lit+1
HC
i

)
on the right-hand side. The included instruments are(∫

S
W∗ijt log Tjt dj

)
and the longitude coordinate of each location i. W∗ijt is based

on the normalized, inverse Monge-Kantorovich procedure-based travel time (d∗ij)
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and otherwise obtained in the same way asWC
ijt in Section 3.4.3. We use {Tit, Tit+1}

together with population data {Lit, Lit+1}, where t ∈ {2000, 2001, 2002, 2003} and

t + 1 ∈ {2001, 2002, 2003, 2004}.32 Adopting this procedure obtains a parameter

value for γ1 = 0.683 and γ2 = 0.728. Table 3.3 reports the results from estimating

(3.29).

3.4.8 Parameters Governing the Distribution of Endoge-

nous Amenities (ait, λ1, λ2)

Endogenous amenities are determined by an adjustment-cost process akin to

amenities. The process for amenities from t onwards depends on the initial (or

baseline) distribution of amenities in year t as well as on the congestion parameter

λ1 and the amenity diffusion parameter λ2.

The adopted procedure to obtain these parameters is analogous to the one that

pins down initial technology levels Tit and the technology parameters γ1 and γ2 in

Section 3.4.7. First, we numerically solve for ait through a contraction mapping

approach using parameter values {α, µ,Ω, θ, κijt, ζijt, Tit} for the year 2000 that

are known at this point as well as observed levels of population, wages and land

endowments for the same year.33 To do so, we rewrite migration shares in (3.10),

replacing the location-specific indirect utility with (3.3) and the price index with

(3.8). Then, after some rearrangements, ait can be expressed as

ait =
L

Ω+(1−α)
it

(
L̄κ̃it

)−Ω
w−αit H

R
i

(α−1)

∫
S

∫
S

aktwαktHR
k

(1−α)

κkjtL
(1−α)
kt

 1
Ω (∫

S
Πktζ

−θ
kjtdj

) α
θΩ
dkdj


−Ω [∫

S
Πitζ

−θ
ijt dj

]α
θ

, (3.30)

where κ̃it =
∫
S
κ
−1/Ω
ijt dj and Πkt ≡ Tktw

−θ
kt (LktHC

k )−θ(1−µ).

Having obtained a measure for ait from this procedure, we can estimate λ1 and

λ2 using the endogenous amenity equation (3.2). Taking logs of (3.2) obtains

log ait+1 = −λ1 log
(
Lit+1

HR
i

)
+ λ2

(∫
S
WR

ijt log ajt dj
)

+ log εRit+1, (3.31)

32{Tit, Tit+1} for t ∈ {2001, 2002, 2003, 2004} are readily obtained from solving the system in
(3.28) in the same way as done for the year 2000 and based on data from the same sources.

33Observed levels of population, wages, and land endowments are taken from the same sources
as described in Section 3.4.7.
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Table 3.4: Endogenous Amenity Parameter Estimation Results

First Stage

Dep. Var. log
(
Lit+1/H

R
i

) ∫
S
WR
ijt log(ajt)dj

log(Longitudei) 2.704*** 0.008
(0.358) (0.005)∫

S
W∗
ijt log(ajt)dj 0.633** 1.257***

(0.289) (0.045)
Second Stage

Dep. Var. log(ait+1)

log
(
Lit+1/H

R
i

)
-0.690***
(0.279)∫

S
WR
ijt log(ajt)dj 0.494*

(0.297)
Observations 1,324
Weak Instr. (F-statistic) 34.11
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. For
two endogenous regressors, two instrumental variables and a maximum relative bias
of 5%, the critical value for the weak instrumentation F-Statistic is 7.03 (Stock and
Yogo, 2005).

where log εRit+1 is the log of the amenity shifter that includes a common con-

stant. As for endogenous technology, we estimate (3.31) by 2SLS, instru-

menting
(∫

S
WR

ijt log ajt dj
)

and
(
Lit+1
HR
i

)
by

(∫
S
W∗ijt log ajt dj

)
and the longi-

tude coordinate of each location i. We use {ait, ait+1} together with pop-

ulation data {Lit, Lit+1}, where t ∈ {2000, 2001, 2002, 2003} and t + 1 ∈

{2001, 2002, 2003, 2004}.34 This procedure leads to parameter values of λ1 = 0.690

and λ2 = 0.494. Table 3.4 summarizes the estimation results.

3.5 Counterfactual Analysis

In this section, we investigate the economic effects of the road infrastructure im-

provements that took place in China between 2000 and 2013. Given the parame-

ters as determined in the previous section, we can simulate the model forward by

solving the system of two equations (3.14) and (3.15).

The remainder of this section is organized as follows. We first present the

main aspects of the initial state (Section 3.5.1), i.e., the level of trade and migra-

tion costs which are consistent with the road infrastructure of the year 2000. We

report on some outcome variables – population, nominal wages relative to Bei-
34Again, {ait, ait+1} for t ∈ {2001, 2002, 2003, 2004} is readily obtained from solving the system

in (3.30) in the same way as done for year 2000 and based on data from the same sources.
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jing’s, amenities, and technology across Chinese prefectures – that are measured

or estimated in the year 2000. In Section 3.5.2, we outline the counterfactual

analysis and present evidence on the distribution of key long-run-equilibrium val-

ues across Chinese prefectures. These values include population, nominal wages

relative to Beijing’s, amenities, and technology and are obtained when letting the

model run based on the initial conditions and road infrastructure levels of the

year 2000. In Section 3.5.3, we discuss the overall long-run effects on population

and real income in the model when changing the road infrastructure in 2000 to

2013. We then decompose these effects by channel and road type. We first focus

on the decomposition along four channels in Section 3.5.4 into: (1) increased ac-

cessibility of amenities, (2) increased technology diffusion, (3) reduced migration

frictions, and (4) reduced trade frictions. Finally, we decompose the economic ef-

fects of transport infrastructure improvements by road type: (1) highway network

improvements and (2) regional road network improvements in Section 3.5.5.

3.5.1 Changes in Trade and Migration Costs and Initial

Model State

In Figure 3.7, we provide prefecture-level maps35 to highlight the implicit trade and

migration costs associated with the road infrastructure in the initial period in 2000

as well as their evolution between 2000 and 2013. In the top two panels of Figure

3.7, we illustrate the summed levels of trade costs (left panel) and migration costs

(right panel) across prefectures. A larger value implies larger trade and migration

costs.36

The top two panels should be viewed as to summarize the status quo of rel-

ative aggregate remoteness across the prefectures as of the year 2000. The two

panels suggest that, not surprisingly, the domestic transport network was partic-

ularly dense – and associated trade and mobility costs were low – in what may

be called central-eastern China (the blue areas in the two panels at the top of

Figure 3.7). This is particularly true for the greater region around Beijing and the

provinces surrounding it. Moreover, frictions were particularly low in the south
35The prefecture-level maps use the delineation of prefectures as of the year 2000.
36To illustrate both larger values on the extreme and smaller values within the distribution,

we plot the average value within decile for each prefecture.

122



Figure 3.7: Prefecture-level Trade and Migration Costs

(a) Trade Costs (
∑
j ζijt),

log-Levels in 2000
(b) Migration Costs (

∑
j κijt),

log-Levels in 2000

(c) Trade Costs,
Changes in 2000-2013

(d) Migration Costs,
Changes in 2000-2013

Notes: White prefectures are omitted for network accessibility reasons, as indicated in Section 3.4.

Location-specific migration and trade costs are defined as the sum of associated frictions over all destinations.

in the bigger area of the Pearl River Basin around Guangdong province. In the

bottom two panels of Figure 3.7, we report on changes in these remoteness vari-

ables due to the road infrastructure changes between the years 2000 and 2013.

The figure suggests that large reductions in trade and migration costs happened

especially in peripheral areas which are remote from the coast. The western and

northern prefectures (along the Russian border), experienced a particularly im-

portant reduction in trade and migration costs. Moreover, some few prefectures

in central-eastern China without direct access to the coast experienced an increase

in connectivity.

In Figure 3.8, we report on the distribution of the population, normalized

wages, location-specific amenities and location-specific technology in 2000. Nor-

malized wages are expressed relative to the wages in Beijing. Clearly, these two
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Figure 3.8: Key Variables in the Initial State

(a) Initial Population,
log-Levels in 2000

(b) Initial Normalized Wages,
log-Levels in 2000

(c) Initial Location-specific
Amenity log-Levels in 2000

(d) Initial Location-specific
Technology log-Levels in 2000

Notes: White prefectures are omitted for network accessibility reasons, as indicated in Section 3.4.

maps illustrate that the population was dense in central-eastern China, especially,

in the greater region around Beijing and bordering provinces. Wages were high

along the coast and in central prefectures with little population. Initial location-

specific amenities were particularly high in remote and less connected prefectures,

whereas initial location-specific technology was high along the coast and in large

urban centers, such as Beijing or Shanghai.

3.5.2 Simulating Benchmark and Counterfactual Equilib-

rium Outcomes

For the counterfactual analysis, we start with simulating the model forward to

obtain long-run vectors of the endogenous variables of interest – population and

real income – based on the initial conditions established for the year 2000 and
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keeping road infrastructure values constant at that year’s level. Population and

real income summarize the key mechanisms at play given our framework. All other

effects can be derived from these.

The lagged weighting scalars on amenities and technology on the right-hand-

side of equations (3.2) and (3.5) are kept at their levels of the year 2000 for all

years thereafter, and trade and migration costs will also stay constant at their

levels from 2000 onwards. Then, technology and amenities, both of which depend

on past-year values, and also the population and prices (normalized wages but also

output and rental prices) will be updated in periods from the year 2000 onwards.

We apply a standard contraction-mapping procedure to solve for equilibrium wages

and employment levels jointly using (3.14) and (3.15).

After updating the weighted technology and amenity levels on the right-hand-

side of equations (3.2) and (3.5) as lagged values for the next period, the simulation

runs forward for P time periods until it reaches a long-run general equilibrium.

How many time periods it needs to reach this equilibrium depends on the distance

between {Lit−1, Lit} and {wit−1, wit} for all {i, t}. We assume that as soon as the

maximum absolute difference for either equilibrium outcome is lower than 1e−03,

the system has reached an equilibrium state {L∗it, w∗it}. Knowing the equilibrium

distribution of employment and wages, the one of technology and amenity levels,

T ∗it and a∗it, is also determined. One can then solve for the location-specific equi-

librium utility {ũ∗it} through a contraction mapping using (3.10). From there, we

determine equilibrium real income y∗it = ũ∗it/a
∗
it = w∗it

Pαitr
R
it

1−α . With the mentioned

stopping criteria, we reach the baseline long-run equilibrium after P = 40 periods.

We illustrate the initial long-run equilibrium values of the mentioned outcomes

by way of Figure 3.9. We observe a decentralization pattern for population, es-

pecially in favor of northern prefectures. Real income, however, concentrates in

central prefectures slightly of the coast between Beijing and Shanghai.

Regarding the counterfactual equilibrium, the lagged weighting scalar for

amenities and technology on the right-hand-side of equations (3.2) and (3.5) will

be updated and kept constant at their levels of the year 2013, and also trade and

migration costs will be kept constant at the corresponding levels. The annual and

long-run equilibrium values of all endogenous variables are then determined in the
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Figure 3.9: Key Variables in the Long-run Equilibrium Consistent with
Year-2000 Road Infrastructure

(a) Benchmark Population,
Long-run log-Levels

(b) Benchmark Real Income,
Long-run log-Levels

Note: White prefectures are omitted for network accessibility reasons, as indicated in Section 3.4.

same way as for the benchmark equilibrium path. We achieve the counterfactual

long-run equilibrium based on the chosen stopping criteria after P = 37 periods.

3.5.3 Long-run Economic Effects of a Counterfactual

Change in the Infrastructure Between Years 2000

and 2013

To assess the overall economic effects of China’s road network improvements be-

tween 2000 and 2013, we use the long-run equilibrium with the road network as

of year-2013 versus year-2000 data. We illustrate the overall changes in the two

outcome variables of particular interest – population and real income – in Figure

3.10 by way of maps.

We illustrate the changes across prefectures of mainland China. All changes

of variables are defined for any variable as the difference between counterfactual

and benchmark divided by the benchmark value (i.e., as a growth rate). Hence,

larger values imply larger changes. It suggests that peripheral prefectures (along

the Mongolian border and around Tibet) particularly benefited in terms of pop-

ulation. Their population growth comes at the expense of coastal or near-coastal

prefectures. The largest reductions in the sum of migration frictions, displayed in

Figure 3.7, appear to explain the largest population growth. Real income growth
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Figure 3.10: Changes in Long-run Equilibrium Variables (2000-2013)

(a) Population,
Long-run Growth (%)

(b) Real Income,
Long-run Growth (%)

Note: White prefectures are omitted for network accessibility reasons, as outlined in Section 3.4.

appears particularly large for central prefectures on the longitude line south of

Mongolia (105◦ E). These prefectures benefited from important gains in connectiv-

ity, while enjoying a strategic geographical location (i.e., being a mid-way between

China’s large centers and more peripheral regions in the Far West).

Figure 3.11 shows how population and real income grew as a function of road

connectivity improvements. Such improvements are measured in a straightfor-

ward manner by taking, for every prefecture, the inverse of the sum of travel

time to all other prefectures. Formally, connectivity growth is measured as∑331
j=1 d

−1
ij2013−

∑331
j=1 d

−1
ij2000∑331

j=1 d
−1
ij2000

here. The horizontal axis of Figure 3.11 displays deciles

of connectivity growth between 2000 and 2013, with the tenth decile referring to

the largest gains in connectivity. Naturally, Figure 3.11 reveals the same patterns

as Figure 3.10. A larger connectivity growth leads to a larger population growth

(up to 9%), and an increase in real income (up to 32%). Note, however, that

the increase in population only concerns the top-half of the prefectures in terms

of connectivity growth. Individuals relocate from the bottom-half and the rest

of the world (i.e., historically large centers) towards prefectures with improved

connectivity (i.e., historically small and mid-sized prefectures).

In Table 3.5, we consider the overall effects of the transport network improve-

ments on the long-run regional convergence of the prefectures in terms of the

considered outcome variables. To compare convergence between the baseline and

the counterfactual appropriately given normalizations, we look at the difference in
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Figure 3.11: Change in Long-run Equilibrium Variables by Connectivity
Growth

(a) Population,
Long-run Growth
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(b) Real Income,
Long-run Growth
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the Herfindhal-Hirschmann index (hhi) between the counterfactual and the base-

line long-run equilibria. Formally, denoting the counterfactual (baseline) variables

with a subscript c (b) and taking population as an example, the hhi index is defined

as:

hhiL =
∑
i

( Lci∑
i L

c
i

)2
−
∑
i

( Lbi∑
i L

b
i

)2
. (3.32)

Consequently, a negative value implies a smaller concentration in the coun-

terfactual than in the baseline scenario; hence, convergence. Overall, the road

network improvements between 2000 and 2013 appear to have led prefectures to

converge in population levels and real income. Convergence in real income is

particularly important. These findings are in line with the patterns observed in

Figure 3.11.

Table 3.5: Long-run Regional Convergence

(1) (2)
Population Real Income

hhi -0.03 -6.75
Notes: A negative value indicates convergence.
hhi× 103 is reported.
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3.5.4 Decomposing the Long-run Equilibrium Effects by

Channel

The framework in this paper models the impact of transport infrastructure along

four channels: (i) increased accessibility of (or spillovers in) amenities, (ii) in-

creased technology diffusion, (iii) reduced migration frictions, and (iv) reduced

trade frictions. Each channel affects the long-run equilibrium in its own way. For

instance, if prefectures were symmetric in terms of all exogenous fundamentals, an

equalization of mobility would lead individuals to locate such that prefectures are

equally large. This would also maximize trade flows. Conversely, making migra-

tion costs extremely asymmetric would lead individuals to relatively concentrate

in the prefecture with the lowest cost. This would reduce the demand and need

for trade, as fewer people elsewhere would need to be served with goods from the

agglomeration. Similar arguments can be made for amenities and technology. For

instance, making amenities and technology elsewhere better accessible reduces the

importance of workers to locate, where local amenities and where expected local

productivity draws are the best. Hence, all of these channels affect the attractive-

ness of locations on their own, and they matter for long-run equilibrium outcome

across prefectures in an interdependent way.

To disentangle the relative importance of each channel through China’s road

network expansion between 2000 and 2013, we run four different counterfactual

exercises. In each of them, we replace the 2000 transport network by the 2013

network as before, but now only through the channel under investigation. Hence,

while the change in road infrastructure alters the accessibility of amenities, the

diffusion of technology, the migration costs of individuals, and the transport costs

of goods simultaneously, we will consider only one of those changes at a time in

this subsection. This will give us an insight into the qualitative as well as the

quantitative differences of the effects through the four channels. Clearly, since

the model structure is nonlinear, the sum of the individual effects across the four

channels will principally add up to more (with a positive correlation of the channel-

specific effects) or less (with a negative correlation) than the total. However, the

generic insights are not fundamentally affected by this feature.37

37By way of analogy, in nonlinear regression work, one would decompose the overall explana-

129



Channel 1: Diffusion of Amenities (WR
ij,2000 → WR

ij,2013) — Many fac-

tors determine the long-run level of local amenities (ait) as they depend on local

population density and inverse-distance-weighted lagged amenities of other prefec-

tures. Hence, convergence to the long-term level is a sluggish adjustment process.

That being said, allowing only the diffusion of amenities to adjust to the con-

sidered road network change provides interesting insights. Akin to Figure 3.11,

Figure 3.12 shows population growth, and real income growth in the long-run

with improved diffusion of amenities only. The figure suggests that places with

the largest connectivity growth lose the most in population (about -10%). As ac-

cess to these places increases, it becomes less important to locate precisely there

relative to nearby places. As population declines in places with the largest con-

nectivity growth, real income follows a reverse trend due to reduced congestion.

In these prefectures, real income grows by almost 4%.

Figure 3.12: Long-run Equilibrium with Diffusion of Amenities

(a) Population,
Long-run Growth
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(b) Real Income,
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Channel 2: Diffusion of Technology (WC
ij,2000 → WC

ij,2013) — Figure 3.13

presents the changes in population and real income that are triggered by the in-

creased technology diffusion in the quantitative model. According to the figure,

prefectures enjoying the largest connectivity growth benefit the most from the dif-

tory power of all variables in a model together by using the contributions of component-specific
explanatory power to decompose the overall level of explanatory power. For instance, the vari-
ance contribution to the overall explanatory power could be approximated by the share of con-
tributed variance by one component in the sum of all individual components, where the latter
is normalized to the joint level of explanatory power.
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fusion of technology. This is especially the case, since the road network improve-

ments benefited most mid-eastern prefectures, which had lower initial productivity

levels than large urban centers such as Beijing or Shanghai. In response, popula-

tion moves towards better-connected places (with a maximum growth of 4% for

the top decile). Only the prefectures in the bottom-two deciles of connectivity

growth face a decline in population, indicating that China’s road-infrastructure-

improvement-induced productivity growth particularly benefits China relative to

the rest of the world. The gains in connectivity are also associated with gains in

real income across the board (from 3% and up to 12% for the top decile).

Figure 3.13: Long-run Equilibrium with Diffusion of Technology

(a) Population,
Long-run Growth
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(b) Real Income,
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Channel 3: Reduced Migration Frictions (κij,2000 → κij,2013) — After

isolating the economic effects of amenity and technology diffusion, we turn our

attention to the effects of reduced migration and trade frictions. We start by

examining the case of reduced migration frictions alone. Figure 3.14 presents the

changes in population and real income that are triggered by changes in migration

costs alone. Apparently, the effects are opposite to the ones of amenity diffusion.

Population increases in the top six deciles of connectivity growth at the expense

of the other Chinese prefectures and of the rest of the world. Population growth

is larger in prefectures that experience a larger connectivity growth (up to 9%).

Due to the increasing pressure on the local housing market which is a consequence

of population growth and relatively less gains in productivity, real income drops

(but by a smaller magnitude, down to -2%).
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Figure 3.14: Long-run Equilibrium with Reduced Migration Frictions

(a) Population,
Long-run Growth
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(b) Real Income,
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Channel 4: Reduced Goods-trade Frictions (ζij,2000 → ζij,2013) — Finally,

we analyze the impact of reduced trade frictions alone that are consistent with

connectivity changes in China between the years 2000 and 2013. We summarize

the associated effects by way of Figure 3.15. Population grows in the top half of the

prefectures in terms of connectivity growth, with a maximum of 9%. In prefectures

with the largest connectivity growth, real income grows by about 17%. Even in

prefectures with lower connectivity growth and negative population growth, real

income increases as congestion costs decline mostly via a reduced demand on the

housing market.

Figure 3.15: Long-run Equilibrium with Reduced Goods-trade Frictions

(a) Population,
Long-run Growth
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3.5.5 Decomposing the Long-run Equilibrium Effects by

Road Type

So far, we have considered road network changes at any level of roads, jointly.

As outlined above, the Chinese road network can be characterized by at least

two layers, and the improvements between these layers had been heterogeneous

between the years 2000 and 2013. Highways are particularly relevant to connect

large centers over long distances. Regional roads connect all centers, large and

small, as directly as possible, and they establish an access to the highway system.

Figure 3.16 displays the deciles of connectivity growth for highways and regional

roads between 2000 and 2013 separately. Improvements of the highway network

led to large connectivity gains along the Mongolian border as well as along the 105◦

E longitude line (i.e., south of Central Mongolia). Improvements of the regional

(non-highway) roads led to a more smooth picture of connectivity growth. This is

particularly true in central China, off the coastal regions. Both types of network

improvements have benefited the far-western prefectures. Overall, given these

simple observations, it appears reasonable to expect that each road type affects

the long-run equilibrium in its own way.

Figure 3.16: Connectivity Growth by Road Type (2000-2013)

(a) Improvements of Highways,
Growth (%)

(b) Improvements of Regional Roads,
Growth (%)

In the reminder of this section, we investigate the effects of both road types –

highways versus regional roads – on long-run equilibrium variables. To do so, we

derive WR,high
ij,2013, W

C,high
ij,2013, ζ

high
ij,2013 and κhighij,2013 by adding only the highway-network

improvements made between 2000 and 2013 toWR
ij,2000, WC

ij,2000, ζij,2000 and κij,2000.
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We proceed analogously for regional road improvements.

Road Type 1: Improvements of Highways — We start by looking at the

role of highway improvements on the long-run equilibrium. Figure 3.17 reveals that

highway improvements led to a larger population growth in the western prefectures

as well as along the Mongolian border. This is in line with the connectivity effects

of highway improvements observed in Figures 3.2 and 3.16. The picture is similar

for real income. We observe larger real income growth in the western prefectures,

but mid-eastern prefectures also gain relative to coastal ones. Hence, for both

population and real income, highways improvements have mostly acted as a tool

to connect the western prefectures to central China, and by extension, to the rest

of the world.

Figure 3.17: Growth in Long-run Equilibrium Variables with
Improvements of Highways (2000-2013)

(a) Population,
Long-run Growth (%)

(b) Real income,
Long-run Growth (%)

Note: White prefectures are omitted for network accessibility reasons, as outlined in Section 3.4.

Road Type 2: Improvements of Regional Roads — We now turn to the

role of improvements in the regional road network on the long-run equilibrium.

Figure 3.18 suggests that regional road improvements have benefited mostly the

western prefectures, similarly to highway improvements. There are two main

reasons for this result: these regions were characterized by a particularly low level

of road infrastructure in 2000, and the regional roads are important means of

access to the highway system. As indicated above, regional roads have a less

heterogeneous effect across the regions than the highway system does, because the
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network has grown very densely. The smooth increase in regional network density

is particularly apparent when looking at real income. Real income growth appears

to increase in three steps from coastal prefectures (small decline), via mid-eastern

prefectures (small growth) to prefectures in the Far West (large growth).

Figure 3.18: Growth in Long-run Equilibrium Variables with
Improvements of Regional Roads (2000-2013)

(a) Population,
Long-run Growth (%)

(b) Real income,
Long-run Growth (%)

Note: White prefectures are omitted for network accessibility reasons, as outlined in Section 3.4.

In sum, the extension of the highway network has led to a strong integration

of formerly remote prefectures into the Chinese economy. The very patchy picture

observed in panel (b) of Figure 3.17 indicates that improvements in highways have

benefited a given subset of prefectures which have enjoyed large connectivity gains.

Conversely, regional roads improvements largely relieved the former differences in

local connectivity, since they led to a very dense network of roads between the

years 2000 and 2013.

3.6 Conclusion

This paper contributes to the literature on the quantitative effects of transport in-

frastructure in open regions in three ways. First, it compiles and digitizes detailed

annual data on China’s road network over the period 2000-2013. Specifically, it

does so using a taxonomy which distinguishes between highways, province-level

roads, and prefecture-level roads. This data-set permits a detailed view on the

changes in road connectivity, e.g., in terms of shortest travel time, at a detailed
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regional level and it supports an attribution of the changes to specific layers of the

road network.

Second, the paper proposes a quantitative regional model of 330 Chinese pre-

fectures plus a rest of the world, where the transport network may affect regions

through four direct channels. Of those, two are customary and at the heart of tra-

ditional quantitative models of regions, and these are the goods-trade-cost and the

moving-cost (or mobility-cost) channels. Two other ones are not customary, and

they relate to the technology-spillover and amenity-spillover effects of transport

networks. By this token, we consider that technology will dissipate more easily

between better-connected places, and we allow peoples’ residence choices not only

to depend on locally available amenities but also on ones in the well-connected

neighborhood.

Third, we delineate the quantitative effects of China’s road network improve-

ments over the considered time span along two lines: distinguishing between the

four considered channels on the one hand and between highways and other roads

on the other hand. Estimates of key model parameters and simulation results of

the model suggest that all four channels of effects and both types of roads are

important in their own right. For instance, road network improvements stimulate

technology spillovers and reduce trade costs both of which fostered the convergence

of Chinese prefectures in terms of population density and real income. The same

improvements stimulated amenity spillovers – a dispersion force – and reduced

mobility costs – an agglomeration force – in a relatively offsetting way. The im-

provements of the highway system led ceteris paribus to a heterogeneous change in

connectivity of the prefectures, but the simultaneous expansion of the provincial-

and prefecture-level road network layers equalized these changes by connecting

some prefectures directly and by granting highway access to others.
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Appendix

3.7 Derivation: Equilibrium Equations

This section derives the set of equations that solves equilibrium wages and

employment levels in each location i.

For simplicity, we rewrite the equations that define amenities in (3.2) and

endogenous technology in (3.5) as follows:

ait =
(
Lit
HR
i

)−λ1

ãit, with ãit = exp
(∫

S
WR

ijt−1 log ajt−1 dj

)λ2

,

and

Tit =
(
Lit
HC
i

)γ1

τit, with τit = exp
(∫

S
WC

ijt−1 log Tjt−1 dj

)γ2

.

Note that in equilibrium, the location- and time-specific amenity and tech-

nology shifter, εRit εCit , cancel as their expected value is unity for every location

i. Furthermore, as ãit and τit are only dependent on past variables, they are

exogenously given in period t.

Equilibrium Wages We start by deriving equilibrium wages in (3.14). To do

so, take the good-market-clearing condition (3.11) and substitute (3.7). Then,

witLit =
∫
S

Tit[oitζijt]−θ∫
S
Tkt[oktζkjt]−θ dk

wjtLjtdj. (3.33)

Inserting Tit = τit

(
Lit
HC
i

)γ1

and replacing unit costs (3.6) obtains

witLit = τitw
−θ
it

(
Lit
HC
i

)−θ(1−µ)+γ1 ∫
S

ζ−θijtwjtLjt∫
S
τit

(
Lit
HC
i

)−θ(1−µ)+γ1

w−θkt ζ
−θ
kjt dk

dj. (3.34)
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Solving the previous equation for wages gives the first set of equilibrium equa-

tions that is detailed in (3.14)

wit = L
(γ1−θ(1−µ))−1

1+θ
it HC

i

−θ(µ−1)−γ1
1+θ τ

1
1+θ
it

[∫
S
wjtLjtζ

−θ
ijt

(∫
S

Πktζ
−θ
kjtdk

)−1
dj

] 1
1+θ

,

where Πkt ≡ τkt

(
Lit
HC
i

)γ1−θ(1−µ)
w−θkt .

Equilibrium Employment To derive equilibrium employment in (3.15) take

migration shares in (3.10) and substitute location-specific utility (ũit). Then,

Lit

L̄
=

[
aitwit

Pαitr
R
it

1−α

]1/Ω
κ̃it∫

S

∫
S

[
aktwkt

Pα
ktr

R
kt

1−α

]1/Ω

κ
−1/Ω
kjt dk dj

, (3.35)

where κ̃it =
∫
S
κ
−1/Ω
ijt dj.

Substituting ait = ãit

(
Lit
HR
i

)−λ1

, replacing the residential land rents with (3.13)

and the price index with (3.8) gives, after some rearrangements, the second set of

equilibrium equations (3.15)

Lit =

(
wαit(L̄κ̃it)ΩHR

i
(1−α)+λ1 ãit

) 1
Ω̃
(∫

S
Πitζ

−θ
ijt dj

) α
θΩ̃

∫
S

∫
S

 ãktwαktHR
k

(1−α)+λ1

κkjtL
(1−α)+λ1
kt

 1
Ω (∫

S
Πjtζ

−θ
kjtdj

) α
θΩ
dkdj


−Ω

Ω̃
, (3.36)

where Ω̃ ≡ Ω + λ1 + (1− α).

3.8 Equilibrium: Existence and Uniqueness

The uniqueness condition in (3.16) can be derived along the lines of Desmet

et al. (2018) (see their Section B.3). The rewriting of amenities and endogenous

technology as stated at the beginning of Section 3.7 applies. We can manipulate

the system of equations that defines an equilibrium as follows.
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First Set of Equations We derive a first set of equations that uses the location-

specific indirect utility, ũit, in (3.3) as a basis. Take the price index in (3.8) and

substitute the unit costs (3.6), commercial land rents (3.13) and Tit = τit

(
Lit
HC
i

)γ1

,

then

Pit = ψ0

[∫
S
τjtL

γ1−θ(1−µ)
jt w−θjt H

C
j

−θ(µ−1)−γ1
ζ−θjit dj

]− 1
θ

, (3.37)

where ψ0 = p̄/µ and p̄ = Γ
(

1−σ
θ

+ 1
) 1

1−σ . Substituting (3.37), residential land

rents (3.13) and ait = ãit

(
Lit
HR
i

)−λ1

into (3.3) gives

[
ãit
ũit

]− θ
α

[
Lit
HR
i

]− θ(α−1−λ1)
α

w−θit = ψ1

∫
S
τjt

[
Ljt
HC
j

]γ1−θ(1−µ)

w−θjt ζ
−θ
jit dj, (3.38)

where ψ1 = ψ−θ0 ((1− α)α−1)θ/α.

Second Set of Equations We derive a second set of equations that uses the

equilibrium goods-market-clearing condition in (3.11). Insert the trade shares

(3.7) and the price index into the goods-market-clearing condition so that

witLit = p̄−θ
∫
S
Tit[oitζijt]−θP θ

jtwjtLjtdj. (3.39)

Substituting unit costs (3.6) and Tit = τit

(
Lit
HC
i

)γ1

, as well as replacing the

price index with the indirect utility into (3.39) yields

τ−1
it w

1+θ
it HC

i

θ(µ−1)+γ1
L

1−(γ1−θ(1−µ))
it

= ψ1

∫
S

[
ãjt
ũjt

] θ
α

w1+θ
jt HR

j

θ(1−α)+λ1
α L

1+ θ(α−1−λ1)
α

jt ζ−θijt dj.

(3.40)

Proof We follow the uniqueness proof of Theorem 2 in Allen and Arkolakis

(2014), which is based on Theorem 2.19 in Zabreyko et al. (1975). Let us introduce

the following function f̄i, which is the ratio of LHS’s of (3.38) and (3.40):

f̄i = τ−1
it w

1+θ
it HC

i
θ(µ−1)+γ1L

1−(γ1−θ(1−µ))
it[

ãit
ũit

]− θ
α L
− θ(α−1−λ1)

α
it w−θit H

R
i
− θ(1−α+λ1)

α

. (3.41)
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Equivalently, f̄i also equals the ratio of the RHS’s of (3.38) and (3.40) that is

f̄i =

∫
S

[
ãjt
ũjt

] θ
α

w1+θ
jt HR

j

θ(1−α+λ1)
α L

1+ θ(α−1−λ1)
α

jt ζ−θijt dj∫
S
τjtL

γ1−θ(1−µ)
jt w−θjt H

C
j

−θ(µ−1)−γ1
ζ−θjit dj

. (3.42)

Applying symmetric trade costs, ζijt = ζjit, we can rewrite f̄i as follows

f̄i =

∫
S
f̄−βj

¯̄fij dj∫
S
f̄
−(1+β)
j

¯̄fij dj
, (3.43)

where

¯̄fij =
[
ãjt
ũjt

] (1+β)θ
α

τ−βjt ζ−θijtH
C
j

β(θ(µ−1)−γ1)
HR
j

(1+β)θ(1−α+λ1)
α w

1+θ+(1+2θ)β
jt

L
(1+β)(1+ θ(α−1−λ1)

α
)−β(γ1−θ(1−µ))

jt .

(3.44)

Rewrite (3.43) as

¯̄̄
fi = f̄−βi∫

S
f̄−βj

¯̄fij dj
= f̄

−(1+β)
i∫

S
f̄
−(1+β)
j

¯̄fij dj
. (3.45)

Then, changing the notation to

ḡi = f̄−βi and ¯̄gi = f̄
−(1+β)
i , (3.46)

and rewrite both as follows

ḡi =
∫
S

¯̄̄
fi

¯̄fij ḡj dj and ¯̄gi =
∫
S

¯̄̄
fi

¯̄fij ¯̄gj dj. (3.47)

Define ¯̄̄
fi

¯̄fij as kernel Kij. Hence, ḡi and ¯̄gi are both solutions to the integral

equation

xi =
∫
S
Kij xj dj, (3.48)

140



where Kij can be expressed as

Kij =
τitL

γ1−θ(1−µ)
it w−θit H

C
i
−θ(µ−1)−γ1ζ−θijt∫

S
τjtL

γ1−θ(1−µ)
jt w−θjt H

C
j

−θ(µ−1)−γ1
ζ−θjit dj

, (3.49)

or

Kij =

[
ãit
ũit

] θ
α w1+θ

it HR
i

θ(1−α+λ1)
α L

1+ θ(α−1−λ1)
α

it ζ−θijt∫
S

[
ãjt
ũjt

] θ
α

w1+θ
jt HR

j

θ(1−α+λ1)
α L

1+ θ(α−1−λ1)
α

jt ζ−θijt dj

. (3.50)

We have to ensure that Kij is (i) non-negative, (ii) measurable and (iii) square-

integrable. Non-negativity holds as ¯̄f and ¯̄̄
f are non-negative. Measurability holds

because it can be shown that ¯̄f and ¯̄̄
f are approximately continuous everywhere.

Square-integrability holds as long as population at any given location is bounded

from below and above. The former is true because by construction population

cannot shrink to zero unless nominal wages are zero or amenities are infinitely

high. The latter is true because population at any given location cannot exceed

the level of world population L̄.

Given the properties of Kij, Theorem 2.19 in Zabreyko et al. (1975) guarantees

that there exists a unique (to scale) strictly positive function that satisfies the

system of equations in (3.48). Hence,

ḡi = $¯̄gi ⇒ f̄−βi = $f̄
−(1+β)
i ⇒ f̄i = $, (3.51)

where $ is a constant. Hence,

τ−1
it w

1+θ
it HC

i
θ(µ−1)+γ1L

1−(γ1−θ(1−µ))
it[

ãit
ũit

]− θ
α L
− θ(α−1−λ1)

α
it w−θit H

R
i

−θ(1−α+λ1)
α

= $, (3.52)

and solving for wit gives

wrt = w̄
[
ãit
ũit

]− θ
α(1+2θ)

τ
1

1+2θ
it HC

i

−θ(µ−1)−γ1
1+2θ HR

i

−θ(1−α+λ1)
α(1+2θ L

−θ(α−1−λ1
α )+(γ1−θ(1−µ))−1

1+2θ
it ,

(3.53)
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where w̄ = $
1

1+2θ . Substituting (3.53) into (3.38) gives

[
ãit
ũit

]− θ(1+θ)
α(1+2θ)

τ
− θ

1+2θ
it HC

i

θ2(µ−1)+γ1θ
1+2θ HR

i

−θ(1+θ)(1−α+λ1)
α(1+2θ)

L
−θ(α−1−λ1

α
)+ 1

1+2θ [γ1−θ(1−µ)−θ(α−1−λ1
α

)−1]
it

= ψ1

∫
S

[
ãjt
ũjt

] θ2
α(1+2θ)

τ
1+θ
1+2θ
jt HC

j

−θ(1+θ)(µ−1)−γ1
1+2θ HR

j

θ2(1−α+λ1)
α(1+2θ)

L
γ1−θ(1−µ)− θ

1+2θ [γ1−θ(1−µ)−θ(α−1−λ1
α

)−1]
jt ζ−θijt dj.

(3.54)

Inserting (3.10) into (3.54) gives

B̄it û
1
Ω [−θ[α−1−λ1

α ]+ 1
1+2θ [γ1−θ(1−µ)−θ(α−1−λ1

α
)−1]]+ θ(1+θ)

α(1+2θ)
it

= ψ1

∫
S
û

1
Ω [γ1−θ(1−µ)− θ

1+2θ [γ1−θ(1−µ)−θ(α−1−λ1
α

)−1]]− θ2
α(1+2θ)

jt
¯̄Bjtζ

−θ
ijt dj,

(3.55)

where
B̄it = ã

− θ(1+θ)
α(1+2θ)

it τ
− θ

1+2θ
it HC

i

θ2(µ−1)+γ1θ
1+2θ HR

i

− θ(1+θ)(1−α+λ1)
α(1+2θ)

κ̃
−θ[α−1−λ1

α ]+ 1
1+2θ [γ1−θ(1−µ)−θ(α−1−λ1

α
)−1]

it ,

and
¯̄Bjt = ã

θ2
α(1+2θ)
jt τ

1+θ
1+2θ
jt HC

j

(1+θ)(−θ(µ−1)−γ1)
1+2θ HR

j

θ2(1−α+λ1)
α(1+2θ)

κ̃
γ1−θ(1−µ)− θ

1+2θ [γ1−θ(1−µ)−θ(α−1−λ1
α

)−1]
jt ,

and

ûit = ũit

 L̄∫
S

∫
S
ũ

1/Ω
kt κ

−1/Ω
kjt dkdj


Ω
[

1− θ

1
Ω [γ1−θ(1−µ)−θ(α−1−λ1

α )]+θ

]
. (3.56)

Rewrite (3.55) as

B̄if
β̃1
i = ψ1

∫
S

¯̄Bjζ
−θ
ijt f

β̃2
j dj, (3.57)

and apply Theorem 2.19 in Zabreyko et al. (1975), then the solution f(·) to equation

(3.57) exists and is unique if (a) the functions ψ1B̄
−1
i and ¯̄Bjζ

−θ
ijt are strictly positive

and continuous, and (b)
∣∣∣ β̃2
β̃1

∣∣∣ ≤ 1. The latter implies

1
Ω

[
γ1 − θ(1− µ)− θ

1+2θ

[
γ1 − θ(1− µ)− θ(α−1−λ1

α
)− 1

]]
− θ2

α(1+2θ)
1
Ω

[
−θ

[
α−1−λ1

α

]
+ 1

1+2θ

[
γ1 − θ(1− µ)− θ(α−1−λ1

α
)− 1

]]
+ θ(1+θ)

α(1+2θ)

≤ 1,
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which after some simplification can be written as the uniqueness condition (3.16)

that is stated in Section 3.2.6:

αγ1

θ
≤ (1− µα) + λ1 + Ω.

3.9 Equilibrium: Stability Condition

In the long run, the distribution of amenities as well as of technology is required

to be stable. Here, we spell out the stability condition for amenities, knowing that

the one for the technology process is analogous. For amenities, stability requires

ait = ait−1 = a∗i and WR
ijt = WR

ijt−1 = WR∗
ij for all i and j. Using a∗ = (a∗i ) to

denote the s×1 stacked vector of amenities of s regions in a long-run equilibrium,

WR∗ = (WR
ijt) for the respective s× s equilibrium connectivity matrix, d∗ = (d∗i )

for the s × 1 vector of equilibrium population densities, Is for an s × s identity

matrix, and εa∗ for the s× 1 vector of amenity shifters in logs in equilibrium, this

means that the relationship for amenities in equation (3.2) in equilibrium needs

to adhere to

loga∗ = −λ1 logd∗ + λ2W
R∗ loga∗ + εa∗, (3.58)

⇒ (Is − λ2W
R∗) loga∗ = εa∗ − λ1 logd∗, (3.59)

⇒ loga∗ = (Is − λ2W
R∗)−1εa∗ − (Is − λ2W

R∗)−1λ1 logd∗. (3.60)

Given that E[εa∗] = 0, we have a unique mapping of amenity and population

density in equilibrium:

E[loga∗] = −(Is − λ2W
R∗)−1λ1 logd∗. (3.61)

As long as (Is − λ2W
R∗)−1 as well as λ1 logd∗ exist and are finite, so are

the s elements of loga∗. In the literature on network effects, it is customary to

normalize WR∗ so that either all row sums or the maximum row sum of WR∗ is

unity. The latter normalization then requires |λ2| < 1 so that (Is − λ2W
R∗)−1 =∑∞

q=0(λ2W
R∗)q is finite (see Kelejian and Prucha, 2010). We use row normalization

about WR∗ which implies that all of its elements, which are real numbers with
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0 ≤ WR
ijt ≤ 1, are absolutely summable, and ∑

j WR∗
ij ≤ 1. Altogether, the

assumptions about the elements of WR∗ and |λ2| < 1 guarantee that all elements

of loga∗ exist and are real numbers.

3.10 Calibration: Trade-cost Parameters

For the purpose of clarity, this section repeats significant parts of Section 3.4.6,

and additionally includes the detailed derivation of each step.

Trade Elasticity and Dispersion of Technology Consider two prefectures i

and i′ in the same province with similar Mahalanobis distance values Mit u Mi′t.

The latter means that these prefectures have approximatively the same trade costs

to all other prefectures. Thus,

πCipit
πCi′pit

=

∫
pi
Tit(oit)−θζ−θijt dj∫

pi

∫
S
Tkt(okt)−θζ−θkjt dk dj


∫
pi
Ti′t(oi′t)−θζ−θi′jt dj∫

pi

∫
S
Tkt(okt)−θζ−θkjt dk dj

−1

u
Tit(oit)−θ
Ti′t(oi′t)−θ

,

(3.62)

if Mit u Mi′t.

Similarly, considering the expenditure shares on these two prefectures outside

of others than their own province, we have:

πCirit
πCi′rit

=

∫
ri
Tit(oit)−θζ−θijt dj∫

ri

∫
S
Tkt(okt)−θζ−θkjt dk dj


∫
ri
Ti′t(oi′t)−θζ−θi′jt dj∫

ri

∫
S
Tkt(okt)−θζ−θkjt dk dj

−1

u
Tit(oit)−θ
Ti′t(oi′t)−θ

,

(3.63)

as long as Mit u Mi′t.
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Knowing that we can express oi as a function of Lit, wit, HC
i , and µ following

(3.6), we can rewrite (3.63) for prefectures with Mit u Mi′t by taking logs as:

log
πCipit
πCi′pit

= −θ log
( wit( LitHC

i
)1−µ

wi′t(Li′tHC
i′

)1−µ

)
+ εiiipit

log πCirit
πCi′rit

= −θ log
( wit( LitHC

i
)1−µ

wi′t(Li′tHC
i′

)1−µ

)
+ εiiirit,

(3.64)

Note that in equation (3.64) the two terms εiiipit and εiiirit are treated as resid-

ual terms which are functions of the endogenous technology terms Tit and Ti′t. As

outlined in Section 3.4.4, the vectors Lit, wit, HC
i , and µ are observable. We es-

timate (3.64) using only those prefectures in a province, for which the absolute

difference |Mit −Mi′t| is minimal. We instrument oit/oi′t with the natural loga-

rithm of the ratio of land areas38 of prefectures i and i′. Adopting this procedure,

we obtain a value of θ = 3.570.

Elasticity of Travel Times to Trade Costs Given the value of θ, we can

search for trade frictions ζijt. Similarly to the migration frictions, we model ζijt
as a exponential function of travel time, dijt, where φ2 governs the translation of

travel time into trade frictions. Then,

ζijt = exp(φ2dijt). (3.65)

Consider the ratio of ratios of expenditure on two prefectures i and i′ from the

same and other provinces in China. Let us again consider i and i′ to belong to

the same province but now use only ones for which Mit 6= Mi′t.
38Land area is measured in squared kilometers. Note that the availability of land in a prefecture

is relevant and exogenous in the model.
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For such prefectures, this ratio of ratios is defined as

πCipitπ
C
i′rit

πCi′pitπ
C
irit

=

∫
pi
Tit[oitζijt]−θdj∫

pi

∫
S
Tkt[oktζkjt]−θ dk

∫
ri
Ti′t[oi′tζi′jt]−θdj∫

ri

∫
S
Tkt[oktζkjt]−θ dk∫

pi
Ti′t[oi′tζi′jt]−θdj∫

pi

∫
S
Tkt[oktζkjt]−θ dk

∫
ri
Tit[oitζijt]−θdj∫

ri

∫
S
Tkt[oktζkjt]−θ dk

=

∫
pi
ζ−θijt dj

∫
ri
ζ−θi′jtdj∫

pi
ζ−θi′jtdj

∫
ri
ζ−θijt dj

.

(3.66)

Note that the left-hand-side variable in equation (3.66) is observed, and, re-

garding the right-hand side, θ is known from above, and so is ζijt up to the scalar

φ2 in equation (3.65). Hence, we can minimize the sum of squared distances be-

tween the left-hand-side and the right-hand side in equation (3.66). In fact, this

procedure is best informed for those prefectures i and i′, for which the absolute

difference |Mit−Mi′t| takes on the maximum value within a province. Using only

those prefectures in a province, for which the absolute difference |Mit −Mi′t| is

maximal, the proposed procedure obtains a parameter of φ2 = 0.044.
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Chapter 4

Capital Cities and Road Network

Integration: Evidence from the

U.S.

4.1 Introduction

A significant share of world trade in goods happens within national borders, via

national roads. In 2007, 80 percent of U.S. manufacturing production was traded

domestically (Egger et al., 2019) and 44 percent of it using the national road

network (U.S. Bureau of Transportation Statistics).1 Thus, integration into the

national transport system is key for any city’s economic prosperity. Cities, how-

ever, are heterogeneous. One important, yet understudied, dimension in which

cities differ is their political status. Investigating whether city heterogeneity, such

as political status, affects a city’s access to the transport network is important for

local economic prosperity, and, therefore, for both researchers and policy makers.

This paper links the political status of U.S. urban areas to their integration in

the national road network, in order to understand whether there is a capital pre-

mium – i.e., a premium to being a state capital city in terms of road infrastructure

provision. Road network integration is defined as a class of measurements that

evaluate how well a location is connected to other locations through the National
1Egger et al. (2019) report country-level information on own consumption in total production

of manufacturing goods in US dollars. The U.S. Bureau of Transportation Statistics provides
information on shipments by travel mode in U.S. ton-miles of freight.
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Highway System (NHS). The main empirical result suggests that, indeed, U.S.

state capitals have on average 14 percent larger levels of (population-weighted)

road network integration compared to non-capital cities of similar characteristics.

The paper contributes to the literature in the following two ways. First, to the

best of my knowledge, this is the first paper that quantifies the causal effect of

political status on road network integration and applies the analysis to 920 U.S.

Core Based Statistical Areas (CBSAs). The U.S. offer a unique variation to answer

the question at hand. There is a large variation of state capital characteristics,

which allow me to differentiate political status from size effects. Moreover, it is

the only country in the world where such a large number of states, capital cities

and urban areas are connected by a common national road network under the

same institutional and cultural framework.

The second dimension in which the paper contributes to the literature is its

instrumentation strategy. The location choice for most state capitals was closely

related to the westward expansion of the U.S. along historical exploration roads,

which are correlated with nowadays’ transport network (see Duranton and Turner,

2012). To tackle this concern, I construct an instrument which captures the fact

that state centrality – independent of the transport network – is a key feature

of U.S. capital cities. Formally, I employ a k-means clustering algorithm – a

concept that is widely applied in machine learning – that predicts the boundaries

of 48 U.S. states and defines their geographical center as a hypothetical capital

location. Then, capital status is predicted by the rank in distance to the respective

hypothetical capital location.

For each CBSA, I determine the integration in the NHS by four different mea-

sures of road network integration: connectivity and market access, which are based

on absolute distances between locations, and relative connectivity and relative mar-

ket access, which are based on relative distances between locations. All measures

have in common that their value for a given CBSA is the sum over connections

to all other places. While connectivity and market access define a connection as

inverse (absolute) distance on the network, direct connectivity and direct market

access evaluate the distance on the network relative to the great-circle distance.

Overall, I find a positive and significant effect of capital status on relative distance
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measures, which is evidence for a more direct integration of capital cities in the

National Highway System. The effect is driven by capital cities in large states and

those with an above-median rate of urbanization (at the national level).

There are two reasons why U.S. state capitals are expected to be better inte-

grated in the federal road network than comparably large non-capital cities. First,

(most) state capitals embody their role of political power by being centrally lo-

cated and easily accessible from other urban centers around them. This makes

U.S. capital cities a natural candidate for a direct integration in the transport net-

work, following Christaller’s (1933) Central Place Theory (CPT). The transport

principle in the CPT suggests that the most efficient and cost minimizing trans-

port network is one that radially connects the most central place in the hierarchy

to all other places in the jurisdiction.

Another reason why capital cities may have been favored in the provision of

road network infrastructure is that the decision on new road locations is a highly

political one. Highway spending, in particular, responds to strong interest groups,

’pork barrel’ projects being an obvious example (see Evans, 1994). In the case

of the Interstate Highway System (as part of the NHS), states were asked to

submit proposals for their portion of the federal highway network in response to

the recommended national plan (see Baum-Snow, 2007). The final proposal was

quite certainly an outcome of inter-governmental lobbying, both from private and

public sector interest groups. Of course, whenever the capital city was also the

largest economic center, better road infrastructure provision has a straight-forward

economic implication. However, for capital cities with little economic relevance

this argument does not hold. In those cases, the political status itself could have

been the main driver to attracting better access to road infrastructure – despite

economic theory predicting the revers.

State capital centrality and the political interest to have state capitals well

connected to major urban centers are the main mechanisms that motivate the

empirical analysis in this paper. In the discussion, I provide further evidence

for both mechanisms that underline an existing capital premium in direct road

network integration.
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This paper relates to several strands of the literature. It first relates to the

new economic geography literature that has emphasized the importance of market

access in explaining the spatial distribution of economic activity (starting with

Krugman, 1991). Apart from theoretical contributions on market access (e.g.,

Helpman, 1998; Redding and Sturm, 2008), there is a vast empirical literature that

focuses on the relationship between access to markets and economic development

(e.g., Davis and Weinstein, 2003; Hanson and Xiang, 2004; Redding and Venables,

2004; Hanson, 2005). Most empirical contributions that specifically estimate the

importance of transport infrastructure on urban development (e.g., Banerjee et al.,

2012; Baum-Snow, 2007; Michaels, 2008; Donaldson, 2018) face an econometric

challenge as changes in the transport infrastructure have both direct and indirect

(i.e., general equilibrium induced) effects on the observed location. Donaldson and

Hornbeck (2016) provide a methodology for measuring the aggregate impact of

transport infrastructure changes using a reduced-form market access approach that

is derived from general equilibrium trade theory. This paper builds on the insights

from Donaldson and Hornbeck (2016) in creating the road network integration

measures.

When analyzing the link between transport infrastructure and urban develop-

ment, most studies differentiate cities according to economic characteristics such

as city size, productivity or sector composition. Political status as an additional

source of heterogeneity, however, has gained only recently more attention. In

particular, there have been a few contributions that exploited the economic con-

sequences of relocating or constructing national capitals. For instance, Becker

et al. (2018) evaluate the impact of a public employment shock on private sector

employment due to the relocation of the German capital from Berlin to Bonn and

vice versa. Morten and Oliviera (2018) quantify the effect of an exogenous shock

in transport infrastructure on trade and migration, succeeding the construction of

Brazil’s new capital Brasilia. Bai and Jia (2020) exploit the historical variation in

changing provincial capitals to analyze the importance of administrative hierarchy

on local development in China. They find evidence that Chinese regimes read-

justed the transportation network in favor of prefectures that had capital status.

In contrast to urban economics, the importance of political status has been
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widely studied in political sciences, more specifically, in the field of political econ-

omy. Most contributions in this literature concentrate on comparative analyses of

national capitals in terms of locational policy agendas (see, i.e., Nagel, 2013, for

capital cities of federations; Mayer et al., 2017, for capitals that are not the pri-

mary economic city of their nations; Rossman, 2018, for newly established capital

cities).

Finally, this paper relates to a new strand of the economic geography literature

that has applied algorithmic approaches in instrumentation strategies. For exam-

ple, Faber (2014) instruments the endogenous placement of China’s National Ex-

pressway Network based on Kruskal’s (1956) minimum-spanning-tree algorithm.

Egger et al. (2020) use a modified algorithm of the classical Monge-Kantorovich

transportation problem to address the non-random highway and secondary road

placements in China between 2000 and 2013. Moreover, machine learning ap-

proaches have recently been employed in the urban context as a tool to (opti-

mally) define statistical borders of urban areas (see, among others, Arribas-Bel

et al., 2019; de Bellefon et al., 2019). All of the mentioned studies have in com-

mon, that they use mathematical tools, including machine learning algorithms, to

replicate key observed institutional features. In particular, they focus on modeling

the main determinant that guides the institutional design. For example, transport

networks are constructed along the least cost path (Faber, 2014; Alder and Kondo,

2018; Egger et al., 2020) or urban statistical areas unite locations with similar ur-

ban context (Arribas-Bel et al., 2019; de Bellefon et al., 2019). As long as the key

determinant is well identified, these approaches will provide powerful instruments.

The present paper adopts a similar approach and predicts hypothetical capital

locations using the k-means clustering algorithm that is based on geographical

and topological data. By minimizing the distance from the hypothetical capital

to all points within a cluster, the k-means clustering algorithm exploits the fact

that state capital cities occupy central locations within their jurisdictions.2

The structure of the paper is as follows. Section 4.2 provides a historical back-

ground on U.S. American state capitals and the U.S. National Highway System

that motivates the empirical analysis. Section 4.3 presents the data and introduces
2A formal analysis of the performance of the algorithm is provided in Section 4.4.
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the measurements of road network integration. Section 4.4 outlines the identifica-

tion strategy and the instrumental variable design, and presents the main empirical

result. Section 4.5 discusses drivers and possible mechanisms behind the results.

Finally, Section 4.6 concludes.

4.2 Historical Background

4.2.1 U.S. American State Capitals

The historical geography of American state capitals is complex and diverse. This

section attempts to summarize their spatial and historical evolution in five major

patterns, which will inform the empirical analysis of this paper. The summarized

facts build heavily on Christian Montès’ (2014) comprehensive contribution on

American Capitals: A Historical Geography. I start with a brief overview of the

U.S. settlement and the evolution of urban centers in the 19th century.

After the creation of the United States of America in 1776, the U.S. terri-

tory expanded gradually toward the West, with its first great expansion being the

Louisiana Purchase of 1803. The territorial expansion was followed by a substan-

tial shift of population and economic activity from the coast to the center of the

territory. U.S. population increased by a factor of eight between 1790 and 1860

and new cities formed, which led to a rapid urbanization during the 19th century.

Two-thirds of the increase in urbanization can be attributed to new cities forming

(predominantly) in the South and the Midwest (see Nagy, 2017, for a review on

U.S. urban history in the 19th century).

The land was organized into territories and then states. Once established,

states have generally retained their initial borders.3 Capitals as symbolic places

and embodiments of political power and decision making have participated in

territorial structuring. Local elites tried to win state capital status not only for

economic advantage but also for the political stability that such a status might

provide. Most of the time, however, stability did not last, and state capitals mi-
3The exception are four states that have been created from land claimed by another state

(Maine, Kentucky, Vermont, West Virginia) and four states (Louisiana, Missouri, Nevada and
Pennsylvania) that expanded significantly after acquiring additional federal territory (Zandt,
1976).
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grated – on average 3.8 times (Fact 1). The spatial patterns of capital movements

were highly heterogeneous (Fact 2). Some states relocated their capitals following

the general trends of the U.S. settlements, others experienced a rotation system

of capital cities, and again others readjusted their capital location to balance eco-

nomic and political forces. Eventually, all but eleven of the (present) state capitals

were established in the 19th century, 35 of them before the American Civil War

in 1860 (Fact 3). The final decision on capital selection in every state was as

heterogeneous as the path that led toward it. However, one striking factor of cap-

ital selection was predominant: most states decided against the largest city of the

time in the interest of economic and political balance (Fact 4). Some capitals have

remained small, others evolved into bustling metropolises. While investigating the

reasons for this different development path might warrant a deeper analysis, it is

clearly beyond the scope of this paper. One important aspect that distinguished

state capitals at the time, though, is whether or not they were strategically located

at important trading routes (Fact 5).

In what follows, I explain the mentioned facts in more detail.

Fact 1: Migration of State Capitals

Most first chosen capitals marked the entry point in the ’New World’ or strategic

defense spots that were built to “protect” the pioneers. However, political stability

did not last long and capitals migrated – often westward, following the territorial

conquest. Only eight states – Hawaii, Massachusetts, Minnesota, Nevada, New

Mexico, Utah, Washington and Wyoming – never changed their capital. On av-

erage, American states have had 3.84 successive capitals. California, for instance,

changed its capital seven times between 1849-1854. How often states have moved

their capital does not follow a clear geographical pattern.

Fact 2: Heterogeneous Spatial Patterns of Capital Move-

ments

Montès (2014) identifies three major spatial patterns of capital movement that

amount to 80 percent of all cases.

155



Westward/Centrality By far the most common reason to relocate the

capital (44% of all cases) was due to the western pull factor that initiated the

movement inland from the coast to the center of a territory. The process first

occurred in the East, where coastal capitals had to yield to more centrally located

cities, due to the westward expansion inside the state. For instance, New Jersey’s

first capital Elizabethtown – the port of entry – was relocated 50-miles south-

westward and Trenton became the new capital in 1790.

Rotation Five states (10%) – mostly small ones – experienced a complex

system of wandering capitals: Delaware, New Hampshire, North Carolina, Rhode

Island and Vermont. This was often an outcome of political rivalries. Apart from

Rhode Island, all other states that experienced a capital rotating system chose

their permanent capital around the turn to the 19th century. Anecdotal evidence

suggests that as the abrupt ending of rotation happened within two decades, the

ultimate capital choice was a quasi-random outcome among all geographically

central alternatives (Montès, 2014, p.71).

Readjustment Six states (14%) – Alaska, Colorado, Kentucky, Maryland,

Montana, Oklahoma, Oregon – relocated their capital in a readjustment process to

alter economic and political balance. The readjustment process typically implied

a small relocation not far from the first capital choice towards the center of the

state.

All three major spatial patterns for capital migration are somehow linked to

state centrality. Nowadays, U.S. state capitals are on average located in a radius

of 70 miles from the state centroid. Figure 2 summarizes the spatial patterns

of capital change and shows a map of all states indicating the reason for capital

relocation.
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Figure 4.1: Spatial Patterns of Capital Movement
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Fact 3: Timing of Capital Selection

The majority of state capitals (79%) were selected during the 19th century. With

New Mexico being the exception (Santa Fe was chosen already in 1610), the first

states to select their permanent capital are – not surprisingly – those along the

east coast: Massachusetts (1692), Maryland (1694), Delaware (1781), and Virgina

(1779). In total, 35 states had made the decision for their permanent capital

before 1860 – just when the American Civil War hit the country and created a

large and long-lasting impact on the U.S. economy. With this timing in mind, one

could argue that for those 35 states, the reconstruction and subsequent economic

development after the Civil War happened with the capital city location as given.

Table 4.8 in the Appendix summarizes the timing of capital selection for all states

and adds additional information, including income and population statistics as

well as the rank (by population) of each capital city now and then.
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Table 4.1: Descriptive Statistics

Capitals Non-Capitals Top 50 Non-Capitals*

Av. Population (2010) 1,100,626 267,133 2,777,541

Av. Annual Wage (2018) 50,949 45,874 51,556

Av. Area (CBSA) 6,305 2,824 8,113

Av. Population Rank within State 2.75 15.06 2.40

Av. Annual Wage Rank within State 2.16 7.21 4.70

Av. Area within State 3.88 15.00 4.22

Observations 48 872 50

*: by population in 2010. Data Source: Wage estimates (2018) for 376 CBSAs are taken from U.S. Bureau
of Labor Statistics. Population records in 2010 and area in km2 in 2017 by CBSA are provided by the U.S.
Census Bureau. Notes: The average population rank within states ranges between 1-12 for capitals, 1-69 for
non-capitals, and 1-9 for top 50 non-capitals. The average wage rank within states ranges between 1-7 for
capitals, 1-26 for non-capitals, and 1-24 for top 50 non-capitals. The average area rank within state ranges
between 1-18 for capitals, 1-69 for non-capitals, and 1-29 for top 50 non-capitals.

Fact 4: Rejection of the Largest City

Even though states and their selection process for capital cities were highly het-

erogeneous, there is one striking pattern: the majority of states (70%) decided

against the largest city (at the time) for their capital. The basic facts in Table

4.8 compare the population rank of all capital cities at the year of selection to

the rank in 2010. Some capitals have remained small (e.g., Frankfort, Kentucky;

Annapolis, Maryland; Carson City, Nevada), while others have evolved into the

largest cities of their state (e.g., Jackson, Mississippi; Phoenix, Arizona; Atlanta,

Georgia). Nowadays, most capitals are de facto large and economically important

in their state, though, in 42 percent of the cases they are not the largest city.

Table 4.1 presents further descriptive statistics regarding recent population,

wages and area for three categories: (present) capital cities, non-capital cities and

the top 50 non-capitals cities (by population). It suggests that capital cities are

half the size of the largest non-capital cities in terms of population, but four times

larger than the average non-capital metropolitan area. Average annual wages in

capital cities are similar to wages in the largest non-capital cities, however, capital

cities are about 25% smaller in area than large non-capital agglomerations. Within

their respective state, capital cities occupy an higher rank in population (i.e., they

are relatively smaller in population), but a lower rank in wages and area relative

to large non-capital cities.4

4The wage rank in Table 4.1 has not be interpreted with caution as data on wage estimates
in metropolitan and non-metropolitan areas provided by the U.S. Bureau of Labor Statistics is
only available for 376 out of 920 CBSAs.
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Fact 5: Capitals as Mercantile Gateways

Capital cities were of primary importance to the developing trading network. Al-

most all first capitals in the newly settled West were founded at important trad-

ing posts (Montès, 2014, p.119). Inland transportation in the 19th century relied

heavily on trails and streams, while the importance of the road network declined

drastically with technological change. However, intra-state and short-distance

transportation still depended on the existing road network. In particular, cen-

trally located capitals served as re-distribution hubs to all other populated places

within their state.

4.2.2 The U.S. National Highway System

The National Highway System (NHS) constitutes the major federal road network,

which strategically connects all states across the U.S. The first federal involvement

in developing a national highway system came with the Federal Aid Highway Act of

1944 and the subsequent construction of the Interstate Highway System. By 2011,

about 164,000 miles of national highways were completed, of which 47,000 miles

compromise the Interstate Highway System. According to the U.S. Department

of Transportation, all urban centers with a population of over 50,000 are within

five miles of the network.

Figure 4.2 portrays the federal road network commonly known as the National

Highway System and highlights the location of state capitals. It shows that the

network is more dense in the Northeast – i.e., in proximity of a larger number of

high-density urban areas – and less dense in the Midwest and West of the U.S.

(except for California).5 Moreover, the map suggests that in the present network

capital cities are well connected. Especially in those states where capital cen-

trality is predominant, the federal road network extends radially in all directions,

suggesting a direct integration of capital cities (i.e., Arizona, Iowa, Indiana).
5The larger number of high-density urban areas in the Northeast is also a result of an average

smaller state size in north-eastern U.S.
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Figure 4.2: State Capitals and National Highway System
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Note: National Highway System as of 2017 (Natural Earth Data Version 4.0.0).

4.3 Data Construction

The units of analysis are Core Based Statistical Areas (CBSA) in the U.S.

CBSAs include Metropolitan and Micropolitan Statistical Areas and consist of

the county, counties or equivalent entities associated with at least one urban

core of at least 10,000 people.6 After excluding non-contiguous jurisdictions and

off-shore territories (i.e., Alaska, Hawaii and Puerto Rico) the subsequent analysis

includes a total of 920 CBSAs.

Geographical Boundaries and Population The U.S. Census Bureau

provides information on geographical boundaries in 2015 and total population

estimates between 2010 and 2017 for each CBSA. The geographical extent of a

CBSA can be extracted using ArcGIS Software. CBSAs that belong to several
6Metropolitan Statistical Areas (MSAs) are based on urbanized areas of 50,000 people or

more. Micropolitan Statistical Areas (µSAs) are based on urban clusters of at least 10,000 but
less than 50,000 people. Adjacent counties become part of a larger urban entity if they have a
high degree of social and economic integration with the core as measured by commuting ties.
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U.S. states are attributed to the state in which the main urban center is located

(i.e., New York-Newark-Jersey City is assigned to the state of New York even

though it extends into New Jersey and Pennsylvania). Historical population

records and county boundaries for each decade between 1790-1900 are provided

by the National Historical Geographic Information System (NHGIS) Database at

the University of Minnesota.7

State Capitals The data include a binary indicator for capital status that is

unity if a CBSA is a state capital, and zero otherwise. Note that neither the capital

of Vermont (Montpelier), nor the capital of Maryland (Annapolis) have an official

CBSA definition. I add both to the data and use population levels of 2010 that

correspond to the municipal population of Montpelier and Annapolis, respectively.

Road Network Geographical information on the U.S. road network in 2017

is provided by the Natural Earth database.8 The road network includes major

highways, secondary highways, minor roads and ferry routes. In the analysis,

I concentrate on major and secondary highways, which broadly define the

National Highway System (NHS). Quantifying distances between CBSAs requires

a mapping of the geographical division to a single departure or destination

point. In the economic geography literature it is customary to simply assume

the centroid of an area. Given that the connection between CBSAs is of

major interest to the analysis in this paper, I create a point measurement that

represents the largest concentration of population in a CBSA (i.e., maximum

density point) using ArcGIS. In comparison to the centroid of a CBSA, the

maximum density point has the advantage that it represents the point from which

most people (in expectation) commute or migrate from and therefore reduces a

potential measurement error in establishing the distance between each CBSA pair.

Measuring Road Network Integration

Road network integration is defined as a class of measurements that evaluate how
7Historical population records report information of any settlement above 2,500 inhabitants.
8Natural Earth is a public domain supported by the North American Cartographic Informa-

tion Society. I use version 4.0.0. of the database, which got released in 2017.
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well a location is integrated in the National Highway System. In total, I consider

four different measures: connectivity and market access, which are based on ab-

solute distances between locations, and relative connectivity and relative market

access, which are based on relative distances between locations. All measures have

in common that their value for a given CBSA is the sum over connections to all

other locations. While connectivity and market access define a connection as in-

verse (absolute) distance on the network, relative connectivity and relative market

access evaluate the distance on the network relative to the great-circle distance.

Hence, relative distances measure network integration in terms of how directly two

locations are connected.

In defining the four measures, I denote dod as the shortest distance between

an origin (o) and a destination (d) using the transportation network. Given that

most CBSAs are not directly located on the transportation network, dod is further

defined as

dod ≡ ϕ(doNo + ddNd) + dNoNd , (4.1)

where doNo (and ddNd) indicate the straight-line distance from location o (and d) to

the transportation network No (and Nd). Distances to the transportation network

are adjusted by a common factor of ϕ = 1.4, adding an over-proportional cost

if a location is far away from the transportation network (as in Donaldson and

Hornbeck, 2016). The shortest distance through the transportation network is

denoted as dNoNd .

In the following, I discuss the theoretical foundation as well as the mathemat-

ical definition of each measurement.

Absolute Distance Measures Absolute distances between locations matter

for trade and migration. A first attempt to formally define how well a CBSA is

integrated in the road network is to aggregate the inverse of all bilateral distances.

Denote connectivity as Connecto, then,

Connecto =
∑
d6=o

(1/dod). (4.2)

Higher values of Connecto indicate smaller aggregate distances to all locations
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and, hence a better road network integration. A potential concern with the con-

nectivity measure is that it is entirely dependent on the geographical position of

a location in space. That is to say, connectivity is naturally larger for those CB-

SAs that are more centrally located in the road network, as compared to similar

sized CBSAs at the border of the U.S. territory. To add another (important)

dimension to the measure of network integration, one could account for the fact

that some connections are economically more valuable than others. For instance,

trade theory predicts that proximity to larger markets increases the probability to

trade, and hence fosters economic growth. Consequently, considering a measure

of market access addresses the economic value of transport connections.

Figure 4.3: Absolute Distance Measures
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In the new economic geography literature, market access plays a major role in

explaining the spatial distribution of economic activity (starting with Krugman,

1991). Donaldson and Hornbeck (2016) derive a first-order approximation for mar-

ket access from general equilibrium trade theory, which offers an easy application

in reduced form analysis. In particular, their approximation defines market access

as the sum over the cost of trading with each other location and the other loca-

tion’s population. I follow them and define trade costs as the shortest distance on

the network (dod), assuming the elasticity of distance to trade costs to be unity.

Then market access, MAo can be formulated as

MAo =
∑
d6=o

(Ld/dod), (4.3)
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where Ld is the population level at destination d.

Figure 4.3 shows maps of both absolute distance measures at the CBSA level.

As expected, connectivity levels are highest in central north-eastern CBSAs and

gradually decrease as one moves towards the U.S. national border. The map on

market access shows a similar pattern, however, the highest levels are shifted

towards highly-populated CBSAs at the north-eastern coast (around Boston and

New York). Also, market access levels are high along the south-western coast,

due to a large number of high-density places in California.

Relative Distance Measures Contrary to absolute distance measures, relative

distance measures evaluate a road network connection relative to the great-circle

distance. Essentially, the relative distance captures how direct a connection is

between a location pair. Figure 4.4 gives an example of a direct connection and

an indirect connection. While the connection from Jamestown to Fargo is almost

following a straight line, the connection from Jamestown to Grand Folks requires

a detour via Fargo.

Figure 4.4: Direct vs. Indirect Connection
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MinnesotaNorth Dakota

The more a location is directly connected to others the better is its relative

connectivity. Formally, relative connectivity is denoted as ConnectRo and defined

as

ConnectRo =
∑
d6=o

(dGCod /dod), (4.4)

where dGCod describes the great-circle distance between origin o and destination d.

The ratio of great-circle distance to network distance, (dGCod /dod), ranges between
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0 and 1 for all origin-destination pairs. A ratio close to unity implies that the

network distance follows closely the straight-line between the connected places.

Weighting the relative connection between two locations by size of the destination

market adds an economic value to the relative connection. Hence, the fourth

measurement combines market size with the relative distance and formally defines

relative market access, MARo , as

MARo =
∑
d6=o

Ld(dGCod /dod). (4.5)

Figure 4.5 shows maps of relative distance measures at the CBSA level. Two

things stand out. First, relative distance measures are less dependent on the

geographical position of a CBSA. While there is still a concentration of high levels

along the north-eastern coast, relative distance measures show a more significant

within-state variation across all U.S. states. Second, both relative connectivity and

relative market access identify road network transportation hubs within states. For

instance, the centrally located CBSAs in Texas and Alabama are relatively better

integrated in the federal road network as those closer to the state border.

Figure 4.5: Relative Distance Measures
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A potential concern with relative distance measures is that a direct connection

between location pairs may be crucially dependent on natural features surrounding

them. In other words, connecting CBSAs that are located in, say, the Rocky

Mountains may require a large deviation from the great-circle distance solely due

to terrain ruggedness. To show that this concern does not systematically affect
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the relative distance measures, I calculate the average relative connectivity and

average relative market access by state and plot the outcome in Figure 4.6.9 For

a better comparison, I add an elevation heat map in the lower panel of Figure 4.6.

Figure 4.6: Relative Distance Measures (Average by State)
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The maps in Figure 4.6 suggest that terrain ruggedness is not a strong de-

terminant of (average) relative distance measures. Neither states in the Rocky

Mountains (e.g., Idaho, Montana, Wyoming, Colorado, New Mexico), nor those

located along the Appalachian Mountains (e.g., Maine, New Hampshire, Penn-

sylvania, Virginia) have systematically lower levels in relative distance measures

than neighboring states that are not located in the mountains. Instead, there

is a clear north-south divide in relative distance measures. To some extent, this
9An alternative approach would be to use Dijkstra’s (1959) optimal route (algorithm) in-

stead of the great-circle distance. The advantage of using Dijkstra’s algorithm would be that
topological features enter as inputs into the design of the optimal route. However, the perfor-
mance of the algorithm relies heavily on how building costs are specified, which is the topic of
a large body of literature in engineering and transport design. The possibility to build tunnels,
bridges, bypass segments, etc. typically complicates the choice of the appropriate specification.
In comparison, the great-circle distance is a simple and intuitive measure. This modeling choice
is further supported by the fact that that terrain ruggedness is indeed not a strong determinant
of relative distance measures in the present application, as revealed by Figure 4.6.
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captures the higher density of the National Highway System in the Northeast and

the South, as compared to the Northwest (compare Figure 4.2).

4.4 Empirical Strategy

This section outlines the empirical strategy with a particular emphasis on the

Instrumental Variable (IV) design, which allows – given its validity – a causal

interpretation of capital status on road network integration.

4.4.1 Identification

I model the effect of capital status on road network integration using a log-linear

specification, that is

log Yo = β Capitalo +Xoγ + εo, (4.6)

where Yo is one of the road network integration outcomes at location o, Capitalo
describes a binary indicator that is one if a location is a state capital and zero

otherwise, Xo is a vector of covariates of interest, and εo is the error term. The

vector of covariates includes log population levels in 2010 (logL2010
o ), log area size

(logAo), absolute values of longitude and latitude (|lato|, |lono|), and binary indi-

cators for the four large U.S. regions (Northeasto, Southo, Midwesto, Westo).10

Retrieving an unbiased estimate for β using Ordinary Least Squares (OLS) re-

quires that capital status was randomly assigned. However, given the historical

background of capital selection this assumption would be strong. Even though

some capital locations could be defended as (quasi-) random, the location choice

for most capitals was closely related to the westward expansion of the U.S. The

main concern of endogeneity is that historical routes, such as exploration routes,

were a strong determinant for both capital location and today’s transport net-

work, which affects in turn the measures of road network integration. Duranton

and Turner (2012) provide empirical evidence that historical exploration routes
10The mapping of each CBSA to one of the four large U.S. regions follows Caselli and Coleman

(2001). For reasons of collinearity, only three out of four U.S. region indicators are included in
the estimation.
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in the U.S. (between 1528-1850) are a strong predictor for nowadays’ transport

connections. Montès (2014) provides anecdotal evidence that capitals were often

located at mercantile gateways (Fact 5) along which the historical road network

expanded. Consequently, the error term εo is likely correlated with capital status,

Capitalo, leading to a biased estimate for β.

4.4.2 Instrumental Variable Design

To address the endogeneity concern, I construct an instrument for capital status.

The instrument exploits the fact that (most) state capitals were chosen for their

geographically central and easily accessible location relative to other population

clusters in their jurisdiction.11 I replicate this pattern by employing a heuristic

algorithm that predicts the boundaries of 48 U.S. states based on historical U.S.

county information and define the geographic center of each predicted U.S. state

as the hypothetical capital location.

Formally, the construction of the instrument proceeds in three steps.

Step 1: Predicting Geography-based Population Density In order to

inform the heuristic algorithm, I predict geography-based population density in

1900 at the county level.12 Extracting the variation in population distribution

that is due to geographical features addresses a potential endogeneity concern, in

which the population distribution of 1900 was partially determined by the location

of the historical road network. As geographical features I use three measures:

(i) the average gradient of a county c (Gc), (ii) the distance to the first arrival

(Fc), and (iii) the distance to a river (Rc). The average gradient of a county is

based on gridded elevation data from the U.S. Geological Survey. It addresses

the feasibility of settlement given topographical constraints. The distance to first

arrival is a (straight-line) distance between the county’s centroid and the nearest

first arrival point of European settlers on the eastern coast and on the western
11In the empirical analysis, I abstract from changes in capital city location prior to choosing

the permanent capital.
12Historical population records are only available at the county level. In some cases historical

counties were significantly larger than nowadays CBSAs. To avoid measurement error, I refrain
from aggregating the historical county level information to the CBSA level.
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coast, respectively.13 It accounts for the gradual evolution of U.S. settlement from

the coast to the center of the territory. The distance to the closest river is a

(straight-line) distance between a county’s centroid and the nearest river based on

Natural Earth data. It reflects the importance of population clusters close to good

trading opportunities. To predict geography-based population density in 1900, I

define the following log-linear specification:

log L̄1900
c = α1r logGc + α2r logFc + α3r logRc + εc with Gc, Fc, Rc > 0, (4.7)

where the subscript r on either coefficient {α1r, α2r, α3r} stands for region. It

describes one of the four large U.S. regions: the Northeast, the South, the Midwest

and the West.14 I estimate (4.7) for each region separately by OLS and present

the estimation outcome in Table 4.2. As expected, all geography measures are

negatively related to population density in 1900. Moreover, all measures are highly

relevant for counties located in the Northeast, the South and the Midwest. For

counties in the West, only the distance to the first arrival is statistically significant.

Table 4.2: Geography-based
Population Density in 1900

(1) (2) (3) (4)
log L̄1900

c Northeast South Midwest West

logGc -0.471∗∗∗ -0.147∗∗∗ -0.475∗∗∗ -0.128
(0.090) (0.041) (0.063) (0.144)

logFc -0.449∗∗∗ -1.595∗∗∗ -2.163∗∗∗ -0.699∗∗∗

(0.114) (0.115) (0.107) (0.121)
logRc -0.136∗∗ -0.262∗∗∗ -0.225∗∗∗ -0.086

(0.055) (0.038) (0.035) (0.066)
Obs. 243 1253 1023 315
Adj R2 0.164 0.196 0.277 0.139

Notes: Robust standard errors in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.

Figure 4.7: Predicted vs. Observed
Population Density
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Figure 4.7 plots the predicted log population density against the observed log

population density and highlights the fitted values as a red line. It suggests that

the three geography measures replicate a large share of the variation in observed

population density. The correlation coefficient between both is 0.64.
13The first arrival point on the east coast is Jamestown, Virginia. The first arrival point on

the west coast is San Francisco, California.
14I assign I assign each county to one of the four large U.S. regions (the Northeast, the South,

the Midwest and the West) following the mapping of Caselli and Coleman (2001).
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Step 2: k-means Clustering Algorithm I use the predicted (log) population

density as weights in a k-means clustering algorithm. In my specific application,

the k-means clustering provides an answer to the following question: If a central

planner had to draw the borders of 48 U.S. states according to the (weighted)

location of U.S. counties in 1900, where would she draw them? Mathematically,

k-means clustering partitions observed counties c ∈ C into k = 48 sets (with

k ≤ C) based on (weighted) county coordinate information. The objective is

to choose 48 clusters so as to minimize the within-cluster variance. Thereby, I

assume the number of clusters as exogenously given, knowing that continental

U.S. is composed of 48 contiguous states.15 Formally, the algorithm solves the

following optimization problem:

argminS
k∑
i=1

∑
xc∈Si

||xc − xµi||2, (4.8)

where xc denotes the coordinate point of an observed county c, and xµi de-

notes the k-mean coordinate point of any set S = {S1, S2, ..., Sk}, over which the

algorithm optimizes. K-means clustering is a non-deterministic polynomial-time

problem, which implies that it is computationally difficult (if not impossible) to

determine a global optimum. However, applying an efficient heuristic algorithm

allows converging quickly to a local optimum. The hypothetical capital locations

are then defined as the resulting cluster centers (i.e., k-mean coordinates). Figure

4.8 shows a cluster plot, which identifies the 48 U.S. states in different colors and

marks the hypothetical capital location as the cluster centers in black dots.

15By construction, the k-means clustering algorithm improves within-cluster variance as the
number of clusters k increases. Taking it to the extreme, the within-cluster variance is optimal
if each data point is assigned to its own cluster. While this is not a desirable outcome, the data
science literature has developed various methods to identify the appropriate number of clusters
(see Kaufman and Rousseeuw, 1990). The most common methods (i.e., the elbow method or
the silhouette method) are based on the idea that adding another cluster is only appropriate if
the marginal gain in variance minimization is significantly large enough. In my data, the most
appropriate number of clusters according to the silhouette method is k = 2.
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Figure 4.8: Predicted U.S. States and Hypothetical Capital Locations
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Step 3: Construction of the Final Instrument I spatially assign each CBSA

in the data to the predicted U.S. state in which the CBSA lies.16 Once each CBSA

is mapped to a predicted U.S. state (k-cluster), I calculate the (straight-line) dis-

tance to the respective hypothetical capital. I then rank all CBSAs within a

predicted U.S. state according to their (straight-line) distance to the hypothetical

capital location; and denote this variable as Ranko. In the first stage regres-

sion, Ranko serves as an instrument that predicts the binary indicator Capitalo.

Formally, I estimate the following first stage specification:

Capitalo = ρRanko +Xoγ + εFirsto . (4.9)

Table 4.3 presents the first stage results. The instrument is highly relevant

and, as expected, it shows a negative sign, which implies that capital cities are

in fact nearer located to hypothetical capital locations. The Kleinbergen-Paap F-

Statistic for a weak instrument test can be rejected at the 5% significance level.17

The strength of the instrument is further supported by Figure 4.9. It plots the
16The exact location of the CBSA is determined by its maximum density point (see Section

4.3).
17Stock and Yogo (2005) report critical values at which the weak instrumentation test can be

rejected. The critical value is a function of the number of included endogenous regressors, the
number of instrumental variables, and the desired maximum bias relative to OLS. In my case,
for one endogenous regressor, one instrumental variable and a maximum relative bias of 5%, the
critical value is 16.38.
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Table 4.3: First Stage
Results

Capitalo

Ranko -0.003∗∗∗

(0.001)

Number of k 48
Observations 920
Adj. R2 0.12
F-Stat Weak Inst 17.75

Notes: State clustered and robust standard
errors in parentheses. ∗ p < 0.10, ∗∗ p <
0.05, ∗∗∗ p < 0.01. The regression includes
the list of covariates stated in Section 4.4.1.

Figure 4.9: Predicted Capital Status vs. Rank
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Note: The graph shows the average probabilty of capital status by rank.

probability of being a capital against its rank in distance to the hypothetical

capital location and shows a clear negative correlation between the two.

4.4.3 Results

Table 4.4 reports the second stage results from estimating (4.6) for all network

integration outcomes. For each outcome, I compare the results of the IV specifica-

tion to the simple OLS estimate. For brevity, coefficients of all included covariates

are suppressed in the main table. The interested reader can find the full table in

the Appendix (see Table 4.9).

Table 4.4: Second Stage Results

Absolute Distances Relative Distances
logConnecto logMAo logConnectRo logMARo
(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Capitalo 0.022 0.298 -0.017 0.470 0.005∗∗ 0.151∗∗∗ 0.008∗∗∗ 0.152∗∗∗

(0.025) (0.652) (0.026) (0.484) (0.002) (0.047) (0.002) (0.056)
Observations 920 920 920 920 920 920 920 920
Adj. R2 0.91 0.61 0.29 0.17 0.87 0.80 0.40 0.34

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01. All regressions include the list of covariates stated in Section 4.4.1.

When estimating the model with OLS, the effect of capital status on road network

integration outcomes is small in magnitude relative to the IV specification. This

first finding is surprising. If the capital selection process did, as expected, favor

cities that were already well connected, OLS should over-estimate the true capital

effect. The small magnitude of the OLS estimates is actually more in line with
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the historical balance-of-power hypothesis. This hypothesis stipulates that capital

status was intentionally attributed to smaller, (initially) less well connected cities

in order to spatially separate political and economic centers of power.

Once the endogenous binary indicator Capitalo is instrumented, the effect gets

larger in magnitude for all outcomes and highly significant for relative distance

measures. Relative distances measures include relative connectivity and relative

market access. The effect of capital status on both is very similar in terms of

magnitude and significance. Hence, weighting each relative distance connection

by size of the destination market does not change the capital effect overall. In

particular, the IV regression result suggests that capital cities have on average

about 14 percent larger levels of relative connectivity and relative market access

as compared to non-capital cities of similar characteristics.18 While this result does

not have a straight-forward economic interpretation, it confirms that capitals are

on average more directly integrated in the road network than non-capital cities.

Absolute distance measures, on the other hand, have a straight-forward eco-

nomic interpretation. Trade theory suggests that larger levels of connectivity and

– even more so of market access – imply better trading opportunities and hence

economic prosperity. In the main empirical result, I find a positive though in-

significant effect of capital status on connectivity and market access. A possible

explanation for why the effect is insignificant could be due to the definition of

the absolute distance measures. Both measures are very concentrated in some

regions of the U.S. and their magnitude is heavily dependent on how centrally

located the CBSA is in the overall National Highway System (see Figure 4.3).

State capitals, however, are naturally very spread out across the entire country.

Consequently, the spatial variation in capital city locations is not captured enough

by the concentrated measures of connectivity and market access.
18Halvorsen and Palmquist (1980) provide a review on the interpretation of dummy variables

in semilogarithmic equations. The effect is calculated as g = 100× (exp(b− V (b)/2)− 1), where
g is the effect in percent, b is the coefficient on the dummy variable and V (b) is the variance of
the coefficient of the dummy variable.
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4.5 Discussion

The estimated effect of capital status on road network integration measures is an

outcome of a pooled regression, which combines CBSAs of heterogeneous states

and capital cities that have been selected for many different reasons. This section

sheds further light on the drivers of the effect and provides evidence for plausible

mechanisms behind the results. The subsequent analysis concentrates on relative

market access as main outcome variable.

Drivers To understand the drivers of the capital effect on relative market ac-

cess, I construct a number of state-level binary indicators that classify the sample

according to general and historical characteristics.

The general characteristics include information on the state urbanization rate,

state size and the size of the capital city. Regarding the urbanization rate and state

size, I calculate the 50th percentile of the entire distribution and define each binary

indicator as unity if a CBSA is located in a state with below median urbanization

rate and state size, respectively. Regarding size of the capital city, I define the

binary indicator as unity if a CBSA is located in a state in which the capital city

is not the largest city.

The historical characteristics include information on the spatial patterns of

capital migration (see historical background, Section 4.2). I define four binary in-

dicators for either type of spatial pattern: Westward/Centrality, Rotation, Read-

justment and Other.19 Each indicator is unity if a CBSA is located in a state in

which the respective spatial pattern was not prevalent.

In separate analyses, I use one binary indicator at the time as an interaction

term with capital status, to single out its importance in the overall effect. The

empirical specification is as follows

logMARo = β̃ Capitalo+δ1Indicatoro+δ2Capitalo×Indicatoro+Xoγ+εo, (4.10)

where Indicatoro describes one of the previously mentioned binary indicators.
19The category Other includes all states that have never changed capital, and those that had

other reasons for capital migration than westward/centrality, rotation or readjustment.
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Then, the coefficient β̃ is the effect of capital status on relative market access

conditional on Indicatoro being zero. For this reason, I have defined each indicator

in its reverse sense, implying that they are zero for the attribute they are analyzed

for.
Table 4.5: Estimation Results – Drivers

Panel A: General Characteristics
Dep. Var. log(MARo ) (1) (2) (3)

Capital is Above Median Above Median
Largest City State Size Urbanization Rate

Capitalo (β̃) 0.297∗∗ 0.454∗ 0.189∗∗∗

(0.134) (0.236) (0.0701)
Panel B: Historical Characteristics

Dep. Var. log(MARo ) (1) (2) (3) (4)
Westward/Centrality Rotation Readjustment Other

Capitalo (β̃) 0.255** 5.230 2.008 1.105
(0.102) (10.98) (1.761) (0.864)

Observations 920 920 920 920

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.4.1. Capitalo and Capitalo × Indicatoro are
instrumented with Ranko and Ranko × Indicatoro.

Table 4.5 presents the results from estimating (4.10) as IV regression. The

table is divided in two panels and each column in a panel is named after the

indicator that is analyzed.20 When looking at general state characteristics, the

results in panel A suggest that the capital effect is driven by large, urbanized

states in which the capital is the largest city. Moreover, panel B suggests that

the historical decision on state capital centrality within the state is a driver of

the capital effect, while other spatial patterns are not.

Centrality Throughout the paper, centrality has played an important role in

characterizing U.S. state capitals. By far the most common spatial pattern that

decided on the capital location was (geographical) centrality. The employed in-

strument, that is highly relevant in predicting capital status, is fundamentally

based on the idea of (demographic) centrality. The effect of capital status on rel-

ative market access is (partially) driven by large U.S. states, where centrality is

key to governing the political jurisdiction. In short, centrality matters.
20For brevity, Table 4.5 shows only the estimate of interest, β̃ (see Table 4.10 in the Appendix,

for full information).
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Additional evidence that underlines the centrality argument could be to rerun

the analysis with an alternative instrument that is based on geographical centrality

within the actual state borders. To do so, I rank each CBSA by its distance to

the state centroid and denote this instrument as R̃anko. Table 4.6 contrasts the

main estimation result in column (1) to the estimation result with the alternative

instrument in column (2). The results suggest that state centrality – based on

actual U.S. state borders – is as relevant to predicting the capital location and the

capital effect remains positive and significant, though smaller in magnitude.

Table 4.6: Estimation Results – Alternative Instrument

First Stage

(1) (2)

Instrument Ranko -0.003*** R̃anko -0.003***

(0.001) (0.001)

Dep. Var. log(MARo ) Second Stage

Capitalo 0.152*** 0.039*

(0.056) (0.020)

Observations 920 920

F-Stat Weak Inst 17.75 11.94

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.4.1. For one
endogenous regressor, one instrumental variable and a maximum relative bias
of 5%, the critical value for the weak instrumentation F-Statistic is 16.38
(Stock and Yogo, 2005).

Even though U.S. states and their capital cities are highly heterogeneous,

their common feature of state capital centrality is the main mechanism that

explains a better – and effectively more direct – road network integration.

On the one hand, the Christaller’s (1933) Central Place Theory suggests that

an efficient road network radially expands around the most central place on

top of the hierarchy. On the other hand, even if the capital city is not the

largest, most important urban center, its central location favors a better road

network integration. This is because, a network that connects places across

the entire jurisdiction passes on average more often by the geographic center.

Along these lines, Faber (2014) provides evidence that some peripheral places

in China have been comparatively well integrated in the National Trunk High-

way System due to an on-the-way treatment between targeted metropolitan areas.
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Connection to Major Urban Centers The second mechanism that may

explain the capital effect on (direct) road network integration is related to po-

litical interest representation. Conceptually, this mechanism is hard to test for

as political influence in road network provision is (nearly) impossible to measure.

However, there is one plausible argument that interest groups could have defended.

As capitals are places of power and decision making, it may be of interest to inte-

grate capital cities well with economically important urban areas around. To test

this hypothesis, I construct an alternative measurement of relative market access,

M̃ARo , which considers only connections to the 50 largest CBSAs – i.e., those with

more than one million inhabitants.

Table 4.7: Estimation Results – Alternative Measure
of Relative Market Access

(1) (2)

logMARo log M̃ARo

Capitalo 0.152*** 0.147**

(0.056) (0.060)

Observations 920 920

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01. All regressions include the list of
covariates stated in Section 4.4.1.

Table 4.7 compares the main estimation result in column (1) with the effect on the

alternative measurement of relative market access in column (2). The comparison

shows that the capital effect still holds when only considering connections to the

main urban centers, even though the coefficient is slightly smaller in magnitude.

4.6 Conclusion

This paper links the political status of U.S. urban areas to their integration in

the National Highway System (NHS) in order to understand whether there is a

capital premium in road network provision. I document historical patterns of U.S.

state capital selection and use the common feature of geographical centrality to

construct an instrument for the endogenous capital location. In particular, the IV
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design is based on a k-means clustering algorithm that predicts the boundaries

of 48 U.S. states and defines the geographical center as a hypothetical capital

location. I then estimate the causal effect of capital status on four outcomes

of road network integration. Two outcome measures (connectivity and market

access) evaluate the strength of integration based on the aggregate proximity to

all other locations. The other two outcomes (relative connectivity and relative

market access) measure how directly connected a location is to all others. I find

significant and robust evidence that capital cities are more directly integrated in

the NHS compared to non-capital cities of similar characteristics. The reason for

this finding is a combination of two aspects. First, (most) capital cities have a

favorable geographical position within their state. This makes them a natural

candidate for a direct road network integration according to the Central Place

Theory. And second, as capital cities are places of political power and decision-

making, there is a governmental interest in establishing direct connections to other

major urban areas. Given that the decision on the location of the federal highway

network was subject to inter-governmental negotiations, this interest likely played

in favor of capital cities.

178



Appendix

4.7 Supplement Tables
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Table 4.9: Second Stage Results - Full Table

Absolute Distances Relative Distances
logConnecto logMAo logConnectRo logMARo

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Capitalo 0.022 0.298 -0.017 0.470 0.005** 0.151*** 0.008*** 0.152∗∗∗

(0.025) (0.652) (0.026) (0.484) (0.002) (0.047) (0.002) (0.056)
log(L2010

o ) 0.027∗∗ 0.014 0.079∗∗∗ 0.055∗ 0.004∗∗∗ -0.003 0.002∗∗∗ -0.005∗

(0.011) (0.035) (0.014) (0.030) (0.001) (0.002) (0.001) (0.003)

log(Ao) -0.091∗∗∗ -0.098∗∗∗ -0.154∗∗∗ -0.166∗∗∗ -0.000 -0.004 -0.003∗ -0.007∗

(0.019) (0.026) (0.019) (0.027) (0.002) (0.003) (0.001) (0.003)

|lono| -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ 0.000 0.000 0.000 0.000
(0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000)

|lato| -0.003 -0.004 -0.011∗ -0.013∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.008) (0.006) (0.007) (0.005) (0.000) (0.000) (0.000) (0.000)

Northeast -0.132 -0.142 -0.021 -0.040 0.023∗∗ 0.018 0.016∗ 0.010
(0.147) (0.147) (0.099) (0.101) (0.011) (0.012) (0.009) (0.008)

South 0.161 0.152∗ -0.096 -0.112 -0.002 -0.007 0.005 -0.000
(0.104) (0.092) (0.074) (0.071) (0.009) (0.009) (0.007) (0.006)

Midwest 0.250∗∗∗ 0.246∗∗∗ 0.007 -0.001 0.008 0.005 0.011∗∗ 0.009∗∗

(0.080) (0.076) (0.057) (0.059) (0.006) (0.007) (0.004) (0.004)

Cons. 1.712∗∗∗ 1.949∗∗∗ 14.682∗∗∗ 15.102∗∗∗ 6.687∗∗∗ 6.813∗∗∗ 19.378∗∗∗ 19.503∗∗∗

(0.534) (0.498) (0.381) (0.332) (0.032) (0.052) (0.031) (0.046)
Observations 920 920 920 920 920 920 920 920

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. log(L2010
o )

is log population is 2010, log(Ao) is log area size, log(|lono|) and log(|lato|) are log absolute values of longitude and
latitude, respectively. Northeasto, Southo and Midwesto are binary indicators that are unity if a CBSA is located
in a state that belongs to the Northeast, the South and the Midwest, respectively.
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Table 4.10: Estimation Results - Drivers (Full Table)

Panel A: General Characteristics
Dep.Var. log(MARo ) (1) (2) (3)

Capital is Above Median Above Median
Largest City State Size Urbanization Rate

Capitalo (β̃) 0.297∗∗ 0.454∗ 0.189∗∗∗

(0.134) (0.236) (0.070)
Indicatoro 0.018∗ 0.022∗∗ 0.008

(0.010) (0.010) (0.005)
Capitalo × Indicatoro -0.274∗∗ -0.420∗ -0.174∗∗∗

(0.129) (0.226) (0.067)
log(L2010

o ) -0.007∗ -0.010 -0.004
(0.004) (0.006) (0.003)

log(Ao) -0.007∗∗ -0.004 -0.001
(0.003) (0.007) (0.003)

|lono| 0.000 0.000 0.000
(0.000) (0.000) (0.000)

|lato| -0.003∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(0.000) (0.001) (0.000)
Northeasto 0.001 0.030∗∗ 0.014

(0.011) (0.013) (0.009)

Southo 0.000 0.006 0.005
(0.006) (0.012) (0.007)

Midwesto 0.006 0.015 0.013∗∗∗

(0.006) (0.010) (0.005)

Cons. 19.514∗∗∗ 19.530∗∗∗ 19.452∗∗∗

(0.058) (0.108) (0.035)
Continued.
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Table 4.10: Continued.

Panel B: Historical Characteristics
Dep.Var. log(MARo ) (1) (2) (3) (4)

Westward/Centrality Rotation Readjustment Other
Capitalo (β̃) 0.255∗∗ 5.230 2.008 1.105

(0.102) (10.982) (1.761) (0.864)

Indicatoro 0.015∗∗∗ 0.538 0.127 0.048
(0.005) (1.136) (0.103) (0.042)

Capitalo × Indicatoro -0.240∗∗ -5.186 -1.965 -1.065
(0.098) (10.920) (1.739) (0.842)

log(L2010
o ) -0.001 -0.012 -0.015 -0.012

(0.002) (0.024) (0.016) (0.010)

log(Ao) -0.010∗∗ -0.003 -0.008 -0.015
(0.004) (0.012) (0.008) (0.011)

|lono| 0.000 -0.003 0.000 0.001
(0.000) (0.006) (0.000) (0.001)

|lato| -0.003∗∗∗ 0.000 -0.003∗∗∗ -0.004∗∗∗

(0.000) (0.006) (0.001) (0.001)

Northeasto 0.007 -0.250 0.011 0.035∗

(0.008) (0.543) (0.019) (0.019)

Southo -0.007 -0.020 -0.002 0.009
(0.006) (0.051) (0.012) (0.016)

Midwesto 0.005 -0.076 0.003 0.014
(0.005) (0.170) (0.014) (0.012)

Cons. 19.487∗∗∗ 19.258∗∗∗ 19.517∗∗∗ 19.556∗∗∗

(0.044) (0.571) (0.153) (0.150)

Observations 920 920 920 920

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.4.1. Capitalo and Capitalo × Indicatoro
are instrumented with Ranko and Ranko×Indicatoro. log(L2010

o ) is log population in 2010, log(Ao) is log
area size, |lono| and |lato| are absolute values of longitude and latitude, respectively. Northeasto, Southo
and Midwesto are binary indicators that are unity if a CBSA is located in a state that belongs to the
Northeast, the South and the Midwest, respectively.
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