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a b s t r a c t

With the emergence of the Internet of People (IoP) and its user-centric applications, novel solutions to
the many issues facing today’s societies are to be expected. These problems include unhealthy diets,
with obesity and diet-related diseases reaching epidemic proportions. We argue that the proliferation
of mixed reality (MR) headsets as next generation primary interfaces provides promising alternatives
to contemporary digital solutions in the context of diet tracking and interventions. Concretely, we
propose the use of MR headset-mounted cameras for computer vision (CV) based detection of diet-
related activities and the consequential display of visual real-time interventions to support healthy
food choices. We provide an integrative framework and results from a technical feasibility as well
as an impact study conducted in a vending machine (VM) setting. We conclude that current neural
networks already enable accurate food item detection in real-world environments. Moreover, our user
study suggests that real-time interventions significantly improve beverage (reduction of sugar and
energy intake) as well as food choices (reduction of saturated fat). We discuss the results, learnings,
and limitations and provide an overview of further technology- and intervention-related avenues of
research required by developing an MR-based user support system for healthy food choices.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Motivation

Today’s food systems focus on efficiency and the production
f inexpensive and foods high in calorific value. As a result,
nhealthy foods with salt, sugars, saturated fats, and trans fats
ave become cheaper and ubiquitously available [1]. The global
upply of unhealthier foods (e.g. red meat, sweetened drinks
nd processed foods) has surged [2]. Consequently, excessive di-
tary intake has become a recognized public health priority while
upporting healthier food choices is becoming paramount to im-
rove consumer behaviors and population health [2]. These con-
equences emerge from unhealthy food choices that are linked
o both increasingly prevalent diet-related non-communicable
iseases (e.g. obesity, diabetes and cardiovascular diseases) as
ell as preventable premature deaths [2]. Due to their increasing

ncidence and continuous excessive dietary intake, related dis-
ases have become an alarming issue globally [3,4]: Today, over
.9 billion adults are overweight, of which 650 million adults
re affected by obesity with growth rates reaching epidemic
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proportions [5,6]. Because diet-related non-communicable dis-
eases involve chronic conditions, they often require long-term,
cost-intensive medical treatment. As a result, increased occur-
rence significantly and increasingly burdens health-care systems
financially [3,7–11].

Unfortunately, contemporary countermeasures (involving food
labeling, nutritional education, food counseling) have been un-
able to shift consumer behaviors. Most consumers still seem to
struggle to identify healthy foods. Despite first positive results
from front-of-package labels (FoPL) in particular [12,13] only few
countries have successfully implemented FoPL on a significant
scale. Examples include Australia (Health Star Rating, HSR) [14],
France (Nutri-Score, NS), and England (Multiple Traffic Light,
MTL) [13]. Approximately three out of four shoppers do not refer
to such labels at all [15]. We argue that the lack of effectivity
is owed to several barriers that thwart the diffusion of such
food labels. Retailers, brands, and manufacturers tend to resist
voluntarily introducing food labels as they fear not only negative
economic impacts due to administrative and logistical efforts but
also declining revenues [16]. Hence, most countries still adhere
to conventional regulation, only requiring text-based declaration
at the back of food items, i.e. back-of-package labels (BoPL).

However, scientific evidence strongly suggests that consumers
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nd especially low-literate citizens make significantly healthier
ood choices when food labels are clearly visible [13,14]. Thus,
ost consumers are not yet benefitting from easy-to-compare
oPL when making food choices.
In addition to food labeling, nutritional counseling and edu-

ation as part of multi-purpose programs have been proposed to
nduce the necessary shift in consumer behavior and to counter
he underlying excessive energy intake [17,18]. However, due
o limited financial resources, the majority of population can-
ot be included in current personnel-intense counseling pro-
rams, which additionally face the challenge of low acceptance
ates [19]. To this end, a series of digital solutions, mostly in
orm of barcode scanning mobile Health (mHealth) applications,
ave been developed. Unfortunately, these apps often experience
ow adoption, short-lived retention, and self-selection by healthy
sers. While they are generally seen as an inclusive and scalable
upport system for healthy behavior, the efficacy of such apps to
upport healthy food choices under realistic conditions remains
ontested.
First, diet-related mHealth applications require manually log-

ing every consumed meal or food item [20–22]. Second, such
obile apps are impractical, as users must actively remember to
pen them during a meal or during grocery shopping in order
o retrieve relevant decision support [23]. Moreover, querying
uch information might require consumers to use both hands
hen operating the phone’s application, which is usually im-
ractical when eating or shopping [20,23]. Third, studies show
hat current diet-related mHealth apps are primarily retained by
sers with above-average interest in nutrition [24], a passion
hat is ordinarily not prevalent in sociodemographic segments
rone to diet-related diseases [25,26]. Hence, diet-related mobile
pplications unsurprisingly suffer from low adoption [24], short
etention rates [20], self-selection bias [24], and underreporting
abits [20–22]. Clearly, consumers require more user-friendly,
uman-centric solutions.
The emergence of the Internet of People (IoP) and the ex-

ected adoption of mixed reality (MR) headsets such as Microsoft
oloLens or Magic Leap One and their successors could soon
ave the way for novel and decidedly more human-centric and
ser-friendly food choice support systems. The IoP holds this
romise because it promotes bridging machine intelligence with
uman intelligence to form novel user-centric applications. We
uggest that the new technical capabilities of wearable head-
ets in combination with a user-centric solution design can help
vercome the existing drawbacks of contemporary mobile diet
pplications. In the dietary context, computer vision-based in-
erpretation of video streams from headset-mounted cameras
an enable the automatic detection, identification [27–29], and
uantification [30–32] of diet-related activity and food items
ithout requiring any manual user input (e.g. keeping a food
iary) [20,23]. Moreover, MR headsets also enable displaying
hree-dimensional visualizations of interventions because spatial
omputing allows positioning visualizations relative to the user’s
eriphery and detected objects, thereby achieving high presence,
alience, and immersion. Based on the detected context, such
isual interventions can be tailored to the user’s nutritional spe-
ific needs and integrated in real time into the field of view
o support headset wearers in making healthy food choices [33,
4]. These aspects act as important prerequisites for effective
nterventions [33,34]. Both approaches – (i) automatic context
etection (e.g. eating a certain food or grocery shopping) and (ii)
ersonalized real-time interventions – offer advantages over cur-
ent mobile diet applications, as they can be passively triggered
nd follow the just-in-time adaptive intervention paradigm [35],
onsidered best practice in ongoing health support.
Hence, this article describes what such an IOP arena based on

omputer vision (CV) and visual interventions in the context of
nutrition and consumer behavior might look like in the future.
First, we review the current research on CV-based food detection,
identification, and quantification, as well as the latest research
on MR-based interventions to nudge users toward healthier food
choices. Second, as one of the main contributions of this arti-
cle, we develop and illustrate a holistic framework for jointly
applying automatic CV-based food identification and real-time
visual interventions in a vending machine (VM) setting via MR
headsets. Third, to assess such a system’s potential of identifying
packaged food products, we present findings from a technical
feasibility study. Fourth, to assess the potential of visual inter-
ventions to alter user behavior, we conducted a user study with
61 participants under realistic conditions. Finally, we identify
and discuss the gaps in current research and technology and
thereby open up interesting avenues of research in personalized,
nutrition-targeted interventions.

2. Related work

To support users in their food choices without necessitating
active user input in the real world, future IOP systems can lever-
age the joint application of automatic CV-based identification of
food items and real-time visual interventions via MR headsets,
which are expected to be mass-adopted over the next years.

2.1. Computer vision-based detection of diet-related activity

As an alternative to less intrusive methods (e.g. keeping a food
diary or scanning product barcodes), computer vision (CV) based
detection leads to increased ease-of-use and consistent moni-
toring [20,21,36,37]. Together, the introduction of AlexNet [38],
the consequential development of (deep) convolutional neural
networks (CNN) [39,40], and the increased affordability and avail-
ability of more performant hardware have advanced object detec-
tion (OD) and image classification across many domains, leading
to novel, advanced applications. For example, CV-based detec-
tion of road signs and traffic situations has enabled the de-
velopment of autonomous cars while real-time translation of
image-encoded words has eased the life of travelers [41,42].
CV-based food detection [20] enables wearable MR headsets to
detect diet-related user activity, identify packaged food prod-
ucts [34], and quantify nutritional properties of cooked meals [29]
without user input. CV thereby overcomes the most relevant
drawbacks of current mobile diet applications, which require
logging food manually, actively taking a picture, or scanning
a barcode. Specifically, wearable headsets can rely on built-in
cameras that constantly produce an interpretable video feed [23].
This allows the wearer to remain hands-free, which represents
a more convenient method for capturing a person’s dietary con-
texts (at home, at restaurants, in supermarkets, or on the go).
Most importantly, CV-based automatic food detection does not
rely on factors otherwise determining logging: salience, memory,
(bad) conscience or feelings in general, involvement or interest in
nutrition.

In order to detect food items from a headset’s video feed,
different approaches of varying complexity and combining ob-
ject detection and consequential image classification, have been
suggested and validated. MobileNet [43,44] is a CNN aimed to
support implementations on mobile devices with limited com-
putational capabilities. ResNet [45,46] (presented at ILSVRC2015
by Kaiming He and his colleagues) features heavy batch normal-
ization and 152 layers, making it computationally more intense
than MobileNet. Finally, Inception v4 [47] outperformed ResNet,
albeit once again featuring higher complexity.

Recent advances in deep learning and representation learning
have created many such feature extractors [48]. These are generic,
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multipurpose, and applicable to a range of objects, including
cooked meals and packaged products [49]. Neural network ar-
chitectures and their hyperparameters are context-, task-, and
design-dependent and hence not necessarily directly transferable
to every new context or dataset without adaptation and sequen-
tial testing on realistic context-specific data. With enough train-
ing data and a suitable architecture choice, CNNs can be taught
to extract features on multiple levels and may exceed human
performance in some applications (e.g. face recognition) [50].
Until now, scholars have built dedicated CV pipelines, either for
food items (e.g. meals) [27,29,51,52] or for packaged products
in a retail environment [53–56]. Similarly, the publication of
image datasets, which are central to developing CV solutions,
follows this separation of meals and packaged products. For ex-
ample, FoodNet101 contains 101’000 labeled images of composed
dishes [27], while SKU110 contains 1.74 million images of pack-
aged retail products [57]. To this end, a holistic solution aimed at
detecting composed meals as well as grocery products needs to
combine the capabilities of both streams to enable meaningfully
detecting diet-related activity.

Object detection (OD) precedes image classification as it deals
with identifying an area within an image as a potential candidate
for classification. Recent publications on detecting retail products
suggest a correct mapping of 74% mean average precision (mAP)
for large supermarket datasets, over 77% mAP for smaller product
datasets [55], even reaching over 93% mAP when over 60 images
are available per product [58]. Similarly, meal detection in real-
world images has been shown to be feasible [59,60]. In terms of
meal image classification (IC), current research suggests accuracy
rates of over 72% [27] for detecting category affiliation in the
FoodNet101 dataset. For packaged food products, recent accuracy
rates range between 48% to 69% for large supermarket-based
product datasets [54], and over 95% for smaller datasets [58].
Given feature variety, as well as the vast number of meal classes
and retail products, these accuracy rates are already acceptable
for real-world applications. For example, CV-based meal detec-
tion and identification is already evident in mobile diet applica-
tions (e.g. Lifesum, Snaq, Bite.ai), where users can take a picture
of a meal instead of searching for it via text. Similarly, retail stores
are using autonomous robots that leverage CV for inventory stock
keeping. Image classification accuracy and OD are expected to
grow in the future with larger publicly available image datasets
and hardware improvements (e.g. camera resolution).

Finally, to conclude the CV-based detection of diet-related ac-
tivity, the identified food item’s nutritional properties and quan-
tity [30–32] can be retrieved. To this end, an increasing num-
ber of semantically labeled datasets are available [61], which
were shown to yield reliable calorie and nutrient estimates for
a meal [29,51,59,60]. Similarly, to interpret the detected activity
and to nudge users toward healthy food choices during a super-
market visit, the nutritional composition data of grocery products
are becoming increasingly available via open databases [62] and
retrievable after prior CV identification [34].

2.2. Display of real-time interventions in mixed reality

The increasing possibility of identifying one or multiple food
items within single frames in video feeds enables a user support
system based on MR headsets to display corresponding visual
cues to nudge users toward healthier food choices. Given suffi-
cient accuracy (i.e. high mean average precision (mAP)), retriev-
ing the dimensions of the detected food items becomes feasible.
Further, relative user and item positioning can be approximated
via spatial computing [63]. Meeting these preconditions enables
displaying item-related information. For example, El Sayed and
colleagues [64] and Microsoft [65] demonstrated navigating a
headset wearer toward the healthiest product on a shelf while the
user remained hands-free. Other potential interventions might
include support in selecting healthy items from a restaurant
buffet or praising a user when eating a salad and thereby form
healthier habits.

Counterintuitively, given the technological feasibility of iden-
tifying food items from video feeds automatically, it seems sur-
prising that existing research on MR-mediated food choice in-
terventions has so far remained rather nascent. Studies on MR-
mediated interventions for supporting consumers in selecting
healthy food items have not advanced beyond intervention de-
sign. These studies have mainly demonstrated early-stage pro-
totypes or are field studies involving smartphones rather than
headsets. For example, smartphone-mediated MR applications
have been designed to leverage CV to support consumers in
identifying vegetables [66], to estimate portion sizes of composed
dishes [31,67], and to help users navigate supermarkets and dis-
cover healthy food items [68]. Smartphone-based MR applications
were found to be easy-to-use [68], to alter consumer behav-
ior [69,70], and to positively improve food choices [70]. Still,
outcome effects remain contested and shortcomings associated
with manual logging persist.

In contrast to smartphone-mediated MR interventions,
headset-mediated MR interventions allow users to remain hands-
free. For example, a Google glass-based intervention study
demonstrated the feasibility of automatically detecting vegeta-
bles and fruits through CV, in turn enabling food monitoring and
interventions [71]. El Sayed et al. demonstrated a variance of MR
visualizations aimed at improving user performance on search,
selection, and ranking tasks on supermarket shelves [33]. Simi-
larly to smartphone-based applications, wearable cameras were
also shown to effectively monitor the consumption of composed
dishes using CV [72]. Microsoft even patented a wearable headset
able to deliver MR interventions for eating activities [65]. But
although MR headset-mediated interventions on food selection
have been shown to be feasible, little is known about their impact
on user choice and other outcomes in the real world, nor about
users’ opinions on such systems and their efficacy.

Hence, we address the existing research gap of the joint ap-
plication of CV-based detection of food items and just-in-time
visual interventions to improve food choices. To this end, we
present a novel conceptual, integrative framework that com-
bines both research streams into a novel user support system for
making healthy food choices. Further, we present findings from
one of the first in-the-wild implementations and validations of
MR-mediated purchase interventions aimed at improving food
choices. Specifically, we applied a MR (MR) wearable headset-
mediated intervention (N = 61) at vending machines (VMs) to
explore the technical feasibility and potential impact of passively
activated, pervasive MR food labels in affecting beverage and food
purchasing choices. This article extends our previous publications
on beverage choices [34] and technical feasibility [58] through
multiple additional assessments. First, we expanded the assess-
ment of beverage choices to include food choices. What follows
is therefore one of the first randomized and controlled real-world
intervention studies on food selection using MR interventions.
We assess whether visual cues in form of front-of-package labels
(i.e. Nutri-Score) influence consumers in preferring and selecting
healthy or unhealthy beverages and foods. Second, we analyze
consumers with low food literacy, a sociodemographic segment
that is especially at risk for diet-related diseases and unlikely to
enroll in traditional diet-related interventions. Third, we include
an in-depth discussion on the latency of product detection via CV
to assess the technical feasibility of detecting packaged products
under realistic circumstances.
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. Integrative framework and implementation

To combine the advantages of automatic detection of diet-
elated activity and passively triggered, just-in-time interven-
ions, we propose a novel integrative framework based on jointly
pplying MR headset-mediated CV and visual interventions
Fig. 2). Counterintuitively, despite its promising potential of au-
omatic tracking and passively triggered real-time interventions,
he proposed combination of food item detection and holographic
nterventions displayed in a wearer’s MR headset represents a
ovelty that so far has received little attention in the relevant
iterature. To close this gap, we show how such an integrative
ramework might be created and introduce its necessary func-
ional elements (Fig. 2). In addition, we have implemented the
ost important subsystems of the proposed framework in two
alidation studies (discussed below in the respective sections).
irst, by implementing a CV-based system to detect packaged
ood products, we corroborate the current technical capabilities
f today’s neural networks and present our findings, based on
conducted a technical feasibility study (Fig. 4). Second, we

mplemented a MR-mediated intervention system and conducted
n impact study (Fig. 7) through an empirical field study. Hence,
ather than considering an actual implementation of the over-
ll framework, this article discusses the implementation and
alidation of its most important, yet hitherto underresearched
ubsystems: (i) CV-based detection of packaged products and (ii)
R mediated real-time interventions.

.1. Mixed reality user support system for healthy food choices

In the following, we introduce the proposed integrative frame-
ork in form of a holistic user support system based on MR
eadsets (Fig. 2). We discuss several preconditions that are re-
uired for the proposed system to become feasible. We argue
hy we believe that these preconditions will highly likely be
et in the coming years. Currently, our proposed system rep-

esents a vision for the IoP rather than an actual prediction
ith a foreseeable timeline. It might only be a matter of time
ntil this vision becomes a reality, especially because relevant
ech companies including Apple, Facebook, Microsoft, and Magic
eap have all recently announced that they will be introducing
onsumer-oriented MR headsets in the next few years. Whether
he adoption of such headsets will occur as speedily as the adop-
ion of smartphones or might take longer such as the adoption of
R headsets remains to be seen.
First, we assume that next-generation MR headsets (e.g. Mi-

rosoft HoloLens or Magic Leap One) and their successors will be-
ome increasingly available and will be adopted as primary inter-
aces to the Internet. We also assume that such next-generation
R headsets will become smaller in size, lighter in weight, more
urable in terms of battery capacity, and popular to use. These
mprovements will increase the likelihood of users wearing these
evices more or less permanently during the day. We thus expect
hat future generation MR headsets will be used similarly to
earable smartwatches (e.g., Apple Watch). As these devices aid
sers in improving their physical activities through tracking and
otifications, we propose that MR headsets can support users in
aintaining healthier diets.
Second, we assume that MR headset features (e.g. frontal

nd sideward facing cameras), will be permanently switched on
nd will constantly scan the environment for objects and ges-
ures. Scanning will also enable detecting food-related activities.
hrough gesture detection, MR headsets allow for very natural
uman-to-device and human-to-object interactions, as spatial
omputing and holographic projections enable users to use their
yes and gestures to interact with the device as well as with
applications, rather than via human-made artifacts (e.g., mouse,
keyboards, or two-dimensional screens). Such input gestures are
likely to include ‘‘air taps’’ or ‘‘blooms’’ (i.e. hand gestures to
interact with HoloLens), which are among the principal ways of
interacting with the device. On a more abstract level, drinking or
eating (e.g. with knife and fork, chopsticks, hands) requires using
one’s hands and can therefore be considered to be a ‘‘gesture’’
that is detectable by the headset’s cameras. Hence, these headsets
have the technical capability to allow for continuous monitoring
and consequential detection of diet-related activities (e.g. eating
a meal or selecting groceries from a shelf aside from food items).

Third, we hypothesize that real-time CV-based detection of
meals and packaged products will become available on a global
scale. The previous section has shown that, although they not yet
perfect, current accuracy rates for detecting and identifying food
products and meals are promising. We believe that offering and
maintaining CV models for interpreting meals and food products
remains nontrivial. Deep learning models require large amounts
of training images and have to manage a plethora of food item
classes, which, moreover, are prone to high feature variety. This
is the case in particular because many packaged products have
a similar visual appearance and because thousands of newly
packaged food items are constantly added to the market. These
aspects require constantly adding newly labeled image data and
consequential retraining of neural networks. But similar to the
proliferation and successful adoption of other CV applications,
we believe it is only a matter of time until improvements in
detecting and identifying of food items from video feeds become
evident. Therefore, we argue that such deep learning models will
be offered by dedicated service providers, similar to today’s of-
ferings, which already enable identifying meals from photographs
(e.g. Bite.ai, Snaq). We also argue that the state of the art will fur-
ther improve in the near future due to the increased availability
of labeled image data and improved deep learning models.

Fourth, we expect that wearable headset-based support sys-
tems offering dietary coaching will be increasingly adopted. Espe-
cially since the vast majority of consumers report being interested
in nutrition, yet drop out of manual logging mHealth appli-
cations [25], such an automatic and convenient system could
become popular. But even in the unexpected case, in which such
wearable, headset-mediated diet coaching applications will not
be mass-adopted, such devices could prove very useful in super-
vised counseling sessions (e.g. for diabetic or obese patients). For
example, dietary monitoring is still considered a cornerstone of
diabetes treatment. It is, however, widely observed that espe-
cially obese individuals underreport food intake [73]. Wearable
headset-based support systems would provide less obtrusive and
unbiased monitoring.

Finally, we argue that MR headsets will become capable of
streaming video feeds to servers for cloud- and CV-based inter-
pretation and corresponding detection of food items. While, in
theory, devices could detect diet activity and identify meals and
groceries with on-device models, we believe that cloud-based
models have advantages in terms of updates, runtime, and inclu-
sion of new products. An alternative to both approaches might be
edge-computing. While potentially offering advantages in terms
of privacy and latency, this still requires an online connection.
Similar to gesture detection, detection of grocery shopping or eat-
ing could also be run on-device, while actual food identification
could in turn rely on server-side models. We argue that especially
with the upcoming roll-out of 5G telecommunication networks
globally, the necessary bandwidth for uploading video streams to
server-side CV interfaces will be made available at scale in the
near future.

If these preconditions are met, we believe that the proposed
framework in form of an MR headset mediated user support
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systems (Fig. 2) will become technically feasible. Further, we
believe that its likely adoption as a next-generation user device
will enable the MR headset to finally bring diet-related inter-
ventions to a new, unprecedented high quality and ease-of-use
outperforming current mobile application-based approaches. We
hold that the MR headset will achieve this goal in particular
through its camera-based capturing of its environment and its
ability to integrate visual cues into the field of view. As such, this
system will help users to make healthier food choices through
(i) the automatic detection of diet-related activity (Fig. 4) and
(ii) real-time visual interventions (Fig. 7). Below, we describe the
process through which the proposed system can support users in
real-world scenarios.

As described in the introduction, consumers make many cru-
cial diet-related decisions every day, for example, during con-
sumption of meals or beverages and during grocery shopping.
We suggest that our proposed MR headset-based support system
can help to keep track, interpret, and improve a user’s behavior.
First, we assume that users are wearing their MR headset with
the support system application installed and with the device
activated and connected to the Web. Once users engage in a diet-
related activity (e.g. selecting food products in a supermarket),
the system will detect this circumstance by interpreting the video
feed from the headset’s cameras. In an alternative scenario, users
could also wear their headset while eating in a restaurant or
drinking a soda.

Once context detection confirms that a diet-related activity is
taking place, the system sends video feeds to a server-side CV
interface that applies object detection and image classification to
assess the food items present in the current scene. To achieve
this, neural networks (NNs) need to be pretrained with image
databases to be able to identify meals and products. Product
detection consists of two steps: (i) object detection and (ii) con-
sequential product classification. First, the NN estimates where
an object of interest might be located, and only then predicts
which product is involved. This approach is well established in
the related literature on packaged product identification [54,58].
In addition, detection can be improved in terms of latency and
accuracy by including additional contextual information (e.g. user
location) to reduce the search universe of potentially present food
items. If, for example, a given restaurant is known, the potential
food items are likely to be products of that restaurant, for which
meal images might be available. Or, if the specific supermarket
where a user is purchasing groceries, is known, the number of
potentially present classes can be significantly reduced. It remains
to be seen whether such augmentation with context-based meta-
data will generate purpose-specific knowledge graphs or simply
deeper NNs (also pretrained with potentially present location
data). In either case, the CV model will reveal a list of candidates
and confidence values for identified food items. In case such
confidence values only yield low confidence, image pooling or
a recurrent NN architecture could enable repeated estimations
multiple times per second in a video feed, leading to more reliable
accuracy rates.

Given the successful detection, identification, and quantifica-
tion of present food items, food composition databases can be
queried to retrieve an item’s corresponding nutritional attributes.
Such properties refer to the estimated amounts of relevant nu-
trients per 100 grams of the food item and can include val-
ues for calories, sugar, carbohydrate, fat, saturated fat, protein,
salt/sodium, dietary fiber, diverse minerals and vitamins — all
potentially relevant for evaluating the quality of a food choice. In
addition, food composition databases could also include further
attributes such as present allergens, category affiliation, or food
labels. Finally, the server-side CV would return the positions,
nutritional properties, and additional attributes of one or multiple
identified food items back to the system.
Next, having identified the current context, the system can
compare it to a user’s recent diet-related activity, preferences,
and current health state, in order to interpret the impact of
the currently visible food item and in turn to design the corre-
sponding real-time intervention to be shown to the user. To this
end, the nutritional properties of the identified food items are
interpreted to assess their nutritional quality. Food labels such as
Nutri-Score enable evaluating the amounts of present nutrients
and consequentially ranking a food item’s healthiness on a scale
from −15 (very healthy) to 40 (very unhealthy) [74]. Likewise,
composed foods could automatically be assessed by their esti-
mated nutritional composition. Similar to dieticians, the support
system must interpret a food item compared to a user’s recent
activity. For example, after physical exercise, an intervention for
the same detected food item might look differently than after a
sedentary day at the office. Similarly, recent consumption of pre-
viously detected food items could impact intervention design. For
example, if a user has already eaten a chocolate bar, the impact
of consuming a second one might be interpreted differently than
the first one. Therefore, concepts such as the Healthy Eating Index
(HEI) [75] can support users in interpreting food items based on
previously consumed meals. Because users have varying prefer-
ences for certain foods, the intervention should also consider a
user’s dietary patterns and taste. For example, recommending a
meat-based meal would entail very different user experiences
for vegetarian users. Similarly, taste could also be important in
designing interventions. While some users prefer spicy foods,
others might have a ‘‘sweet tooth’’ and hence react differently to
identical interventions. In this regard, current research on food
recommendation systems [61] could help to research and design
supportive and effective nudges.

Beyond preference, tailoring interventions is also important
for health reasons, as different users (in terms of gender, age,
body-mass-index, and health state) have varying recommended
daily intake rates [76]. In addition, food allergies should be re-
spected when designing interventions [68], for example, through
warning signals. Icon-based notifications may prove superior over
text-based notifications [77]. Finally, visual interventions need to
be designed. Whether these will follow rather concrete instruc-
tions or complex three-dimensional and/or gamification-inspired
animations remains to be seen.

We assume that MR support systems will keep track of users’
food consumption and be able to identify their most promising
improvement potentials as well as their healthiest, already estab-
lished habits. Intervention design should endeavor to strengthen
healthy habits (e.g. by praising a user for successful streaks) and
to exploit improvement potential (e.g. by suggesting alternative
food items). For example, improvement potentials might be a
‘‘reduction in sugar within yogurts’’ for a certain user and an
‘‘uptake in vegetables’’ for another user. Similar to the Apple
Watch-mediated interventions on physical activity, an MR sup-
port system could also leverage behavior change theory to help
users to maintain healthy habits, for example, by motivating them
(e.g. ‘‘keep eating three portions of vegetables per day’’) or by
applauding them (e.g. ‘‘you achieved your sufficient daily fruit
intake level for today’’).

Based on the joint application of (i) the CV-based detection of
diet-related activity and (ii) the display of real-time interventions
in MR, the proposed next-generation MR-based user support sys-
tem promises to automatically track and efficiently improve food
choices over time. To validate the system’s potential, we therefore
conducted two validation studies for both of its subsystems: a
technical feasibility study of CV-based identification of packaged
products (Fig. 4) and an in-the-wild user study of real-time visual
interventions in MR headsets (Fig. 7).
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Fig. 1. Mixed reality headset wearer about to make a food choice in front of a vending machine.
Fig. 2. Integrative framework of the joint application of (i) computer vision-based detection of diet-related activity (green) and (ii) display of real-time interventions
(red) in mixed reality headsets . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.2. Implementation of validation studies

Below, we introduce the trial setup, which consists of a vend-
ng machine (VM), packaged products, wearable headset, and the
tudy application. We decided to trial the MR user support system
t a VM setup for three reasons. First, VMs contain a limited
umber of products that can be photographed and labeled to train
deep learning CV pipeline. Also, VMs display products without
cclusion and with an active light, which aids detection and
dentification. Importantly, VMs offer an ideal, grid-like layout
hat can be used as a digital anchor to map interventions both
elative to the location of the products and the machine. Second,
Ms offer predominantly unhealthy food items, especially ones
rich in sugar and saturated fats. As such, we expected the VM
in our setup to be used by users who more frequently con-
sume processed foods than by health-aware consumers. Third,
VM product ranges remain relatively static, enabling the creation
of a comprehensive, up-to-date database of ingredient data. Fur-
thermore, it was financially feasible to purchase all the products
within the machine to collect multiple pictures of the items both
inside and outside the VM. We chose a Selecta VM (Fig. 1) to
ensure representativeness. Selecta is the European market leader
with 125’000 machines worldwide and caters to five million
consumers every day. We conducted the user trial at VMs lo-
cated at Zurich main railway station in Switzerland. Most Selecta
machines are similarly or even equally assorted. Hence, choosing
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Table 1
Products available in the VM (N = 43).
Snacks Mean (SD) Beverages Mean (SD)

Weight (g) 58.2 (26.8) Weight (ml) 400 (118.3)
Price (CHF) 2.77 (0.63) Price (CHF) 3.18 (0.61)

Snacks by NS Count (%) Beverages by NS Count (%)

A (Healthy) 0 (0%) A (Healthy) 4 (20%)
B 3 (13%) B 4 (20%)
C 6 (26%) C 4 (20%)
D 7 (30.5%) D 4 (20%)
E (Unhealthy) 7 (30.5%) E (Unhealthy) 4 (20%)

these VMs increased the reproducibility and generalizability of
this study since its impact goes beyond the few machines used
here and could potentially be reproduced and applied in a similar
way across VMs internationally.

For the study design, we consulted dietary experts from the
wiss Society for Nutrition (SGE-SSN). Together with these ex-
erts, we decided to focus our MR headset-mediated intervention
n beverages and snacks separately. While both high-calorific
nacks and sugar-sweetened beverages have been shown to play
major role in the increased prevalence of diet-related dis-

ases [78,79], they are nonideal substitutes for one another. This
elationship is intuitive, as a hungry consumer is unlikely to
hoose a mineral water, regardless of a well-designed interven-
ion. To interpret the different food items, we decided to draw
n the Nutri-Score (NS) framework [74] for three reasons. First,
he NS food label can be converted into visual cues that can be
isplayed in the user’s field of view. Second, growing evidence
xists that this form of FoPL correlates with healthier food choices
n purchasing environments [80]. Third, the NS framework in-
ludes both a food- and a beverage-specific rating for nutritional
uality. In order to realize the Nutri-Score in its original, in-
ended form, not only a product’s nutrients, but also its relative
hare of fruit, vegetable, and nuts requires accounting for, as the
utri-Score credits such ingredients with a bonus on the score.
egarding content (see product characteristics and NS ratings
n Table 1), the Selecta machine offers different assortments for
oth categories. Distribution of beverage products is uniform,
anging from healthy (e.g. mineral water) to unhealthy items, and
hereby offering a variety of healthy substitutes for consumers to
hoose from. For snacks, the range is skewed toward unhealthy
tems with fewer healthy alternatives to choose from. Available
ypes of beverages are equally distributed regarding nutritional
uality (from A to E according to Nutri-Score; Table 1). Beverages
n the Selecta VM include mineral water (still and sparkling),
uices, energy drinks, energy-reduced and sugared soft drinks.
n average, bottles contain 400 ml and cost CHF 3.18 (USD
.30). Standard deviation is rather small, indicating a more or
ess identical price across different types of beverages. Available
nacks include chewing gums, cakes, donuts, chips, chocolate
ars, waffles, and beef jerky. On average, they cost 2.77 CHF (USD
.87) and weigh 58.2 grams on average.
To conduct our studies (technical feasibility and user study),

e purchased all products available in the VM and manually
ntered their properties including nutritional composition into a
atabase hosted on a dedicated server. In total, the number of
roducts (snacks and beverages) available over the course of the
tudy in a VM was 109. However, Selecta’s cyclical changes to the
roduct assortment reduced the final product universe in the user
tudy to 43 products from which users could choose (Table 1).

. Computer vision-based detection of diet-related activity

Based on one of our previous studies, we now provide in-
ights into the technical feasibility of current CV models sup-
orting the correct detection and identification of food items
using MR headsets. We compared different NN architectures and
their corresponding accuracy rates for image classification and
OD, respectively [58]. We decided to create one large labeled
image dataset and to evaluate classification and detection tasks
separately. To assure realistic conditions in terms of resolution
and quality (Fig. 2), the pictures used for training the CV models
were recorded using Microsoft HoloLens or comparable mobile
devices. To train the NNs and consequential inference, we used
Google Cloud with P100 GPU instances and TPU v2 instances.

We decided to evaluate how many labeled image instances of
a product are required to achieve suitable performance to support
the detection and identification of food items. We chose this
approach due to the still relatively limited availability of pub-
licly accessible labeled training data for packaged products, and
also because labeled product images are potentially expensive to
acquire or generate for the millions of existing products. In this
context, we also released this study’s labeled dataset containing
295 images of VMs assortments with 10’035 labeled instances
(5646 beverages, 4389 snacks) to stimulate research on packaged
retail products [81]. To the best of our knowledge, our dataset (N
= 10’035 labeled product image instances) represents the largest
publicly available dataset in this domain that contains product
identifiers (GTINs) and therefore allows integration of nutrient
data. As collecting such labeled image data requires significant
time and effort, we assume that this situation will improve over
time and that this paper represents an important and first mile-
stone, by moving from synthesized lab data [54] to real-world
product detection [58].

We compared three current models for (i) image classification
and (ii) OD. Using (i) Inception ResNet V2 [47], (ii) ResNet50
V2 [45], and (iii) MobileNet V2 [44] as classification networks,
we used a subset of popular CNNs architectures available for
image classification of differing complexity. The corresponding,
implemented networks (ODNs) were: (i) Inception ResNet V2 [47]
for classification, with Faster RCNN [82] for OD; (ii) ResNet50
V2 [45] for classification, with SSD and Focal Pyramid Networks
(RetinaNet) [83] for OD; and (iii) MobileNet V2 [44] for classifica-
tion, with SSD [84] for OD. We trained all NNs by fine-tuning from
existing checkpoints. For image classification, those checkpoints
stemmed from Tensorflow hub and were pretrained with the Im-
ageNet 2012 dataset [85], while those for OD originated from the
Tensorflow API [86], pretrained with the COCO 2014 dataset [87].

Image classification operations are the backbone of OD op-
erations as they classify an object that was previously found
to be potentially interesting within an image. Thus, successful
OD requires reliable image classification performance. Hence, we
raised two research questions (RQs). RQ1 Can current NNs yield
sufficiently high accuracy for image-based product classification
in a realistic retail environment? Based on the results of the
image classification tasks, we addressed the same objective for
OD, which includes image classification as a subsequent task.
This leads to RQ2: Can current NNs in combination with object
detection networks (ODNs) yield sufficiently high enough mean
average precision (mAP) for image-based product detection?

Next, we manually labeled products via defining image
patches from pictures taken from the VM (Fig. 3). Second, to en-
sure consistency across the multiple subsets of varying k ∈ [0,100]
images, we chose a subset of N = 39 products from the VM, for
which the total labeled dataset included at least 100 (training)
+ 20 (test) instances per product class. This step allowed us to
evaluate the NN architectures for any k smaller or equal to 100
for the N = 39 products. For product classification, we excluded
the 20 instances per class as a holdout dataset. Similar to product
detection, the holdout dataset including randomly sampled 20%
of the images guaranteed that there were at least 100 instances of
every product in the training set. Thus, the test set for OD was im-
balanced in a number of classes, yet included at least 20 instances
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Fig. 3. Vending machine with a labeled, rectangular image patch (e.g., Maltesers snack 100 g). (Product classes: 109 in total, of which N = 43 were available during
the user study and N = 39 were captured with over 100 labeled image patches).
Fig. 4. Computer vision-based detection of diet-related activity using MR headsets.
Fig. 5. Generation of training data with k images per product class for training the neural networks in the image classification and object detection tasks.
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f every product. For each k smaller than 100, subsamples of
he entire training dataset were chosen. For image classification,
mages not needed were simply excluded from the dataset. For
he OD task, the parallel occurrences of certain product instances
ithin VM made this approach impossible (e.g. RedBull is present

our times in every Selecta VM). We therefore randomly chose in-
tances in the training set to algorithmically cover surplus image
atches with black overlays until every labeled product existed
xactly k times across all training images (Fig. 5). Training images
ithout labeled instances (i.e. fully blacked out) were excluded.
or every k, the training dataset looked slightly different, since
ifferent images were blacked out. However, the holdout set
emained constant for all datasets.

We considered it important to highlight the aspect of ‘‘fast-
aced’’ in our research questions, especially because our technical
etup aimed to address the realistic conditions experienced by
onsumers in a retail environment. These include that consumers
an expect instant results (i.e. within one second), as they poten-
ially encounter thousands of products on their journey through
retail store or a train station. The duration of one second
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proved well-suited to multiple user tests, where we equipped
users with a HoloLens device in front of the VM. As different
NN architectures feature varying complexity levels and accuracy
rates, the trade-off between latency, accuracy, the number of
available training images, and the computational environment
(i.e. mobile device or cloud backend) became another focus of
our study and led to RQ3: Can object detection run at a real-
time latency with a frequency rate of at least multiple frames per
second on user devices?

If detection over multiple frames is an option, this may theo-
retically increase accuracy by image pooling the confidence and
object predictions over multiple frames. Frame pooling is possible
since the headset continuously uses simultaneous localization
and mapping (SLAM) algorithms to map headset surroundings.
This map enables inferring the position of the headset and the
camera parameters from the 3D position of a pixel on the im-
age via ray tracing. This, in turn, allows for capturing multiple
instances of a food item, yet to be detected. Next, the average
confidence for all frames per class and the average position of
all overlapping boxes can be taken and the item class with the
highest average confidence can be selected as the prediction. This
provides the NN with multiple possibilities for finding the object,
assuming that NN accuracy is so high that it will on average
predict the correct object more often than the incorrect one. Such
image pooling allows for recurrent NNs in which the previous
image instances of an item are refed to the next prediction. There-
fore, fast inference speed may boost accuracy through image
pooling. If accurate image classification (RQ1) and object detec-
tion (RQ2) are possible at fast inference speed (RQ3), then the
technical feasibility of the proposed detection and interpretation
of diet-related activity through MR headsets can be confirmed.

5. Display of real-time interventions in mixed reality

Next, we assessed the potential impact of the proposed MR
headset-based support system on actual user behavior, i.e. bev-
erage and snack choices from the vending machine. As such,
this section extends our preliminary results [34]. Also, it includes
(1) the addition of food items to the analysis, and thus extends
previous analysis of beverages [34], (2) an additional analysis of
food choice behavior in users with low food literacy, and (3) in-
depth discussion of the intention-to-use of MR headset wearers.
Given technical feasibility, the efficacy of the visual intervention
is of course a further requirement that a support system must
meet to change behavior.

To conduct our in-the-wild field user study (at Zurich main
railway station), we needed to ensure fast product detection
relative to the headset wearer’s position, in order to prevent
any selection bias among participants arising from intervention
appearance.

When evaluating whether to use a hard-coded or CV-based
layout in our impact study, we compared both methods and
ultimately opted to use a hard-coded layout to validate the po-
tential impact of the MR intervention. We implemented and
tried the OD and image classification using NNs and image pool-
ing, and indeed observed successful and correct detection for
most products within a few seconds under realistic conditions.
Unfortunately, reproducible, quantitative assessments of prod-
uct recognition rates under real conditions are impossible due
to the many moderating factors impacting inference frequency.
More specifically, several factors, among others, varying product
orientation (i.e. non front-facing products), lighting conditions,
angle and distance to the VM, configured minimum confidence
thresholds to display an intervention, and Internet connection
speed, all heavily impact the time needed to detect products
via the headset. In our development phase, we used Microsoft
HoloLens to stream image frames to a Google Cloud Platform
GPU to assess the feasibility of using the OD pipeline presented
in this paper to identify products in the VM. We had to use
a server-side NN because HoloLens (version 1) was unable to
run TensorFlow on-device. Fifteen colleagues at our lab tried
the headset and self-reported (through qualitative feedback) that
they observed detection rates of approximately 70% of all prod-
ucts within approximately three seconds in the VM, when in
WiFi, under non-ideal lighting conditions and with high min-
imum confidence thresholds to minimize the number of false
positive detections. But since HoloLens did not support fast web-
socket transfers, we also compared it to a OnePlus 6T Android
device, where detection was much faster with approximately 85%
of products detected within two seconds. Especially the discussed
edge cases in [58] hindered a perfect detection of all products
(e.g. backside-rotated products, mineral waters look very similar).
Due to the many moderating factors involved, an exact quantifi-
cation of such CV-based detection rates in the wild is impractical
and was not conducted by us.

To ensure rigorous analysis of the potential impact of the
visual intervention on product selection behavior and to avoid
selection bias due to varying inference speed (early, delayed, or
potentially false display), we hard-coded the relative position
and mapping of products to the fixed VM layout. Given that
study participants should not be impacted by technical issues,
we proceeded with the hard-coded layout for the purpose of
intervention assessment. This allowed instant visualization of all
Nutri-Scores once the VM was detected (i.e. 100% of products
detected within 0.1s). The intervention within the MR app was
then mapped on the VM with its 49 boxes surrounding each
product respectively. In addition, we included an explanation
menu, start button, introductory text, and a submenu to display
nutrients about a particular product (Fig. 6). We argue that this
does not seriously limit the generalizability of the results, as
technical feasibility is ensured, and as detection accuracy and
latency will only improve with future generation headsets and
further improved models.

As described in the system introduction, our intervention
design included displaying product-specific Nutri-Score labels
(Fig. 7). Therefore, we color-coded the products’ surrounding
boxes with frames color-coded to the corresponding Nutri-Scores
(Fig. 6). The interventions were designed using FreeCAD and
Unity UI elements. We also included an optional detailed nutrient
display, which could be opened via the Microsoft Hololens Clicker
devices and displayed the detailed nutritional details (similar
to what a color-coded declaration of nutrients would look like,
i.e., indicating why a Nutri-Score is high or low; see Fig. 8, right).
The product database was specified as an object in the app’s
C# code. Product nutrients were cached locally on HoloLens to
minimize interaction time. At setup time, every VM box was
assigned a product key, thus granting access to all the nutrients
displayed at runtime. Even if product allocation to boxes changed
(e.g. by introducing a new product), changes could be made
relatively fast. The updated app could be redeployed on the study
device within minutes, after retrieving the new product data
including nutrients from the study’s server. Nutrients included
energy, sugar, saturated fat, sodium, protein, fiber, the share
of fruit/vegetable/nuts (to calculate the Nutri-Score), as well as
the respective Nutri-Score value, ranging from A (healthy) to
E (unhealthy). In addition, every product was labeled either as
a ‘‘Snack’’ or as a ‘‘Beverage’’ based on the product identifier
allocated to each box.

To assess intervention efficacy, we conducted a randomized
controlled trial (RCT). Hence, recruited study participants were
allocated to either a treatment (TG) (Figs. 8 and 9, right) or a
control group (CG) (see Figs. 8 and 9, left). Before new users
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Fig. 6. Computer-vision on packaged products allows novel human–object interactions, e.g. passively triggered diet interventions in the absence of markers or
barcodes (Screenshot of Microsoft HoloLens viewing the study’s vending machine).
Fig. 7. Display of real-time interventions in mixed reality.
ould use the app, the study supervisor prepared the headset
nd HoloSelecta app, and familiarized users with the headset.
s the experiment (i.e. TG and CG) was implemented within
ne app, the supervisor manually entered the user identifier and
ser allocation on the headset prior to new users receiving the
eadset. In addition, the supervisor selected the menu language
English or German) for every user and recalibrated the VM layout
o fit perfectly onto the box grid. To support mapping from
irtual to reality, the machine-sized quad was displayed with 50%
ransparency. Around 20 times per second, the app logs all user
nteractions, including the focal point, the submenu status, and
roduct selection. This tracking is sent with the survey to a server
or continuous evaluation and stored on-device for persistence.

We aimed to examine how an MR headset-mediated nutrition
abel, in this case Nutri-Score (NS), impacts actual selection of
nacks and beverages. To this end, we conducted a non-blinded,
upervised randomized controlled trial RCT with a follow-up sur-
ey involving 61 users at a VM at Zurich main railway station in
Switzerland. When users were allocated to the TG, they received
the Nutri-Score in color when considering and purchasing snacks
(Fig. 8, right) or beverages (Fig. 9, right). In the control group (CG),
users saw white frames during the purchase process, i.e. when
selecting snacks (Fig. 8, left) or beverages (Fig. 9, left). Two re-
search questions interested us in this setting. RQ4: Does the MR
mediated purchase intervention impact the nutritional quality
of snacks chosen at the VM? And, correspondingly, RQ5: Does
the MR mediated purchase intervention impact the nutritional
quality of beverages chosen at the VM?

We used convenience sampling for this study, as users were
proactively asked to participate when approaching the VM area.
Initially, the supervisor set a new three-digit user identifier on
his laptop. Next, he asked the prospective user to take a brief
introductory survey. After initializing the survey with the respec-
tive user identifier and user language, users provided information
about their gender, age, and education. In addition, the supervisor

guessed users’ height and weight for sampling. Users were not
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Fig. 8. MR Intervention: (left) CG selecting snacks; (right) TG selecting snacks (with details).
Fig. 9. MR intervention: (left) CG selecting beverages (with details); (right) TG selecting beverages.
asked directly to state their age and gender to prevent priming.
Correct weights and heights were collected in a post-hoc survey.

After users completed the introductory survey, the supervi-
sor retrieved the pseudonymized data on his machine. Next, an
algorithm placed users into either the treatment group or the
control group based on balanced sampling. This was done to
ensure that the sum of differences between the groups for every
basic item (age, gender, (estimated) height, (estimated) weight,
and education was minimal, in order to create balanced samples
between TG and CG. When users received the HoloLens device,
they were shown a welcome screen and a tutorial. This provided
details of how to control the app with head movements and
the clicker. Next, users were shown an overview of the available
snacks and beverages (as well as the corresponding Nutri-Scores
for the TG, i.e. white frames for the CG). The HoloLens Clicker
was used for product selections in the app instead of gestures,
since gestures by novice users might not have been detected
immediately.

The experiment required users to conduct four choice tasks.
Every task was first described on an explanatory screen, i.e. before
users could begin the task. For the first task, users were asked
to purchase a snack of their own choice. Second, users were
asked to select a beverage. The ‘‘Select’’ button enabled users to
purchase their selected product and to finish the task. Selections
were logged under every user identifier. After purchasing both
products, users were asked to identify the healthiest snack and
the healthiest beverage. This enabled us to assess whether the
intervention led users to selection healthy products, or ‘only’
increased their ability to identify healthy products. During every
task, users were only allowed to select one box related to the
task. Finally, users took a final, post-hoc survey including items
on usage antecedents and randomization checks (Table 4). All
items were scored using a seven-point Likert scale (1: strong
disagreement to 7: strong agreement). The final survey marked
the end of the study, with users offered the selected items for
free.

With the post-hoc survey data available, we further inves-
tigated the effectiveness of real-time interventions in high-risk
user groups, as well as the self-reported intention to use such a
system. We thus aimed to answer two research questions. RQ6:
Is the real-time intervention also effective for risk users, i.e. ones
who are prone to make unhealthy food choices? And RQ7: The
MR support system being novel, do users intend to use such a
system again in the future? The analysis of the sample description
was performed via descriptive statistics to obtain the means,
frequencies (n), and percentages (%). Chi-square and independent
sample t-tests were used to test for differences across TG and
CG users. All statistical analyses were performed using Python.
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ccuracy of image classification per k labeled images.
Model Number of images used for training image classification

3 6 10 20 40 60 100+

Inception 0.74 0.90 0.94 0.94 0.97 0.97 0.98
ResNet 0.65 0.85 0.90 0.92 0.96 0.96 0.97
MobileNet 0.62 0.70 0.86 0.91 0.94 0.95 0.95

Significance between the treatment and the control group was
measured using Mann–Whitney-U tests, since our sample did not
follow normal distribution.

6. Results

We then set forth to assess (i) the technical feasibility of
V-based detection of food items in a purchase process (RQ1–
Q3) and (ii) the potential impact of visual real-time on choice
ehavior (RQ4–RQ7).

.1. Summarized results of the technical feasibility study

Based on our positive results regarding RQ1, RQ2, and RQ3, we
rgue that the automatic OD of food items in next-generation MR
eadsets is technically feasible. Especially noteworthy, headset-
ounted cameras allow reliable identification of food items un-
er realistic conditions in near real-time while only requiring
imited amounts of labeled training images.

To address the technical feasibility of image classification un-
er realistic conditions in-the-wild, we compared the perfor-
ance of the three neural networks, i.e. Inception ResNet V2

‘‘Inception’’), ResNet50 V2 (‘‘ResNet’’), and MobileNet V2 (‘‘Mo-
ileNet’’) in our first research question (RQ1). Concretely, we
ested the potential of the three NNs to correctly classify labeled
mage patches, i.e. to identify which one of the total N = 39
products (with over 120 image patches) in the VM sample are
displayed in an image snippet. We used classes with a sufficiently
large number of k labeled image patches and selected 100 (train-
ing) + 20 (test) instances for each of the N = 39 applicable
product classes as the training dataset. As depicted in Table 2,
the more complex the Inception network performs, the less so-
phisticated (but faster) the model becomes in terms of accuracy
of the image classification task. Accuracy may range between
0 (always false predictions) and 1 (always correct predictions).
We assume that accuracy rates of 95% (90%) may be considered
sufficient for a user support system to meaningfully interpret a
user’s general dietary behavior. Our study suggests that Inception
requires six images for a 90%, and 26 images for a 95% accuracy.
Further, the other networks converge to nearly perfect accuracy
with a growing number of available training images and are
also able to reach 90% and 95% accuracy in image classification.
These accuracies would however require labeled training data.
For further details on technical feasibility assessment including
more in-depth discussion of challenging edge cases, please refer
to our previous publication [58].

Next, we assessed the potential of ODNs to support product
detection within images of the retail environment (RQ2). The
OD task included the identification of image patches that each
contain a product and the subsequent correct classification of
the detected image patches. Concretely, the ODNs must (i) detect
the position of objects in the VM assortment and (ii) correctly
classify the detected objects against the labeled ground truth.
Finally, the ODN’s respective performance can then be calculated
by the mean average precision (mAP) [87]. The mAP requires an
intersect over union (IoU) between the estimated and the true
label [87] of 0.5, as recommended by similar studies in other
Table 3
Mean average precision (mAP) for object detection per k labeled images.
Model Number of images used for training object detection

20 30 40 60 100+

Inception 0.42 0.58 0.65 0.75 0.82
ResNet 0.78 0.83 0.89 0.94 0.93
MobileNet 0.40 0.45 0.53 0.66 0.72

Table 4
Inference speed for the different neural networks on-device and on cloud.
Model Latency in ms (fps)

On-devicea Cloudb (total) Cloudb (prediction)

Inception ./.c 480 (2.08) 241 (4.15)
ResNet 2200 (0.45) 160 (6.25) 76 (13.16)
MobileNet 80 (12.50) 120 (8.33) 31 (32.26)

aOnePlus 6T.
bGoogle Cloud P100 GPU.
cDid not run on mobile device.

fields. Mean average precision can range between 0 (none of the
predictions achieved an overlay with the actual product of over
0.5) and 1 (all of the predictions achieved an overlay with the ac-
tual product of over 0.5). The corresponding, implemented ODNs
are (i) Inception ResNet V2 [47] for classification, with Faster
RCNN [82] for OD (Inception), (ii) ResNet50 V2 [45] for classifica-
tion, with SSD and Focal Pyramid Networks (RetinaNet) [83] for
OD, iii) MobileNet V2 [44] for classification, with SSD [84] for OD.

Table 3 shows that only the ResNet/RetinaNet architecture
achieves an mAP of over 0.9 and that none of the networks
achieved an mAP of over 0.95. Concretely, 42 images were re-
quired for an mAP of 0.9. For a subset of products with more
than 150 labeled image patches available, an mAP of over 0.95
was reached. The ResNet/RetinaNet even reaches an accuracy of
98.6%, when used with all available data (i.e. classes have varying
numbers of training images, from 100 to 1000 images, with a
mean around 250). Inception was able to achieve a 94.5% mAP
when the entire dataset was used. The MobileNet architecture
was unable to achieve an mAP of over 90% in our study. This
architecture choice seems to play a much larger role as the focal
pyramid network architecture of the RetinaNet was far superior
when used to detect objects. However, one explanation might be
the perfect amount of regularization achieved through downsized
images of 320 × 320 pixels, which the other pipelines were not
optimized for. Hence, we found that OD yields acceptable results
given the right architecture design and a sufficient number of at
least 42 labeled training images. For further details on detection
assessment, please refer to our previous publication [58].

As described in the introduction to our proposed user support
system, CV-based detection of diet-related activities will likely be
conducted by interpreting video streams sent from MR headsets.
Theoretically, image pooling enables further reducing the error
rates of incorrect image classification by using multiple video
frames per second to detect objects and by using a mean con-
fidence pooling approach. For a network already achieving high
accuracy (e.g. 94% for RetinaNet), predicting the same food item
across multiple (i.e. slightly different) frames in a video stream,
and given that the user’s movement is not rapid, is far more likely
than making the same false prediction for a food object multiple
times per second.

Thus, can OD run at a real-time latency with a frequency rate
of at least multiple frames per second on user devices (RQ3)?
Unfortunately, HoloLens 1 fitted with a Unity UWP was neither
able to run Tensorflow OD models on the device, nor support
fast websocket-based transfers to the server. Therefore, we used
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a comparable mobile device that supports Android and has native
support for Tensorflow Lite for latency validation (i.e. OnePlus 6T)
to assess the models’ inference speed on user devices. It can be ar-
gued that at least future-generation MR reality headsets will have
the computational capabilities of such a mobile phone. Therefore,
these inference speed estimates could be interpreted as lower
bounds to future detection rates. For cloud-based validation, we
used a Linux computer with support for gRPC (faster transfer of
image data than REST).

Table 4 shows that only MobileNet is fast enough to run in
memory on the mobile device, achieving predictions at 12 frames
per second (fps). On cloud, MobileNet performs slower, as image
upload slows down prediction speed. Nevertheless, it can still
achieve 8 fps, while the inference rate per single image is 80 ms
for inference with MobileNet on the phone and 2200 ms with
Resnet. The more complex models perform better in the cloud,
with MobileNet taking around 120 ms, ResNet 160 ms, and Incep-
tion taking 480 ms for each prediction. Increasing resolution from
320 × 320 to 640 × 640 prolongs latency equally for all networks
by 10 ms. These results are in line with similar studies [86].
In theory, through image pooling, the achievable accuracy could
approximate 100%. The chance of not finding the right object
within each second is reduced by an increasing number of pre-
dictable frames per second: error = (1 − mAP)fps. Because this
requires the user to record ‘‘different’’ images (i.e. the user slowly
moves), and probably would still not help identify edge cases
(i.e. distorted shapes, reflections, occlusions, etc.), this is a rather
theoretical consideration, but should encourage further research.
The trade-off between fast neural networks and their respective
accuracy remains a very important topic for academia as well
as for real-world use-cases. Given the possible frame rate of
6.25 predictions per second for RetinaNet-based OD (including
image classification with ResNet) through gRPC on the cloud, we
argue that the inference speed of sufficiently accurate models is
sufficient for image pooling.

6.2. Summarized results of our user study

Next, we assessed the impact of visual real-time interventions
on actual food choices, as postulated by RQ4 and RQ5. Participants
in our in-the-wild study had a mean age of 29.83 (SD = 13.38)
years, 33% were female, and 53% had tertiary education. While
56% of participants stated that they rarely use VMs, 21% reported
monthly usage, and 16% reported weekly or daily usage. We
did not find any significant differences between the Treatment
Group (TG) (N = 31) and the Control Group (CG) (N = 30)
across any of the sample dimensions, which indicates successful
randomization of the randomized controlled trial (RCT). The study
protocol envisaged that participants undergo four tasks in a con-
sequential sequence: (1) choose a snack of their own choice and
(2) select a beverage of their own choice. After selecting their true
preferences (they were given the products for free after successful
participation in the study), they were asked to identify (3) the
healthiest snack and (4) the healthiest beverage (see Table 5).

Regarding impact on snack choices (RQ4), we observed signif-
icant differences. Users in the TG with the Nutri-Score interven-
tion selected products with 48% less saturated fat per 100 g on
average. This result can be interpreted as a large reduction. Other
differences include TG users choosing healthier snacks (−5.8
utri-Score points), as well as a 14% reduction in sugar and a 9%
eduction in calories. The Nutri-Score improved from 11.37 (CG)
own to 10.00 (TG) (Scale −15 = healthy to 40 = unhealthy).
aturated fat content of the selected snack reduced from 9.95
/100 g (CG) down to 5.16 g/100 g (TG).
When identifying the healthiest snack, highly significant dif-

erences between TG and CG were observed. The average Nutri-
core points of the chosen snacks improved from 10.57 (CG)
Table 5
Sample description of study participants (N = 61).
Age (years) Mean (SD) Gender Count (%)

29.83 (13.38) Female 20 (32.8%)
Male 38 (62.8%)
Other 3 (4.9%)

MR experience Count (%) Education Count (%)

none at all 26 (42.6%) Primary 12 (19.7%)
some (tried) 29 (44.3%) Secondary 14 (23.0%)
a lot (frequent) 4 (6.6%) Tertiary 32 (52.5%)
N.A. 4 (6.6%) NA 3 (4.9%)

Weight (BMI) Count (%) VM frequency Count (%)

Underweight 2 (3.3%) Infrequently 34 (55.7%)
Normal 46 (75.4%) Monthly 13 (21.3%)
Overweight 7 (11.5%) Weekly 5 (8.2%)
Obese 6 (9.8%) Almost daily 5 (8.2%)

N.A. 4 (6.6%)

VM: Vending machine.

Table 6
Snack choices across treatment group (N = 31) and control group (N = 30).
Task Item

Snacks

TGe CGe ∆TG-CG (%)f P

1. Select a snack of your own choice

NSa 10.00 11.37 −1.37 .35
Energyb 324.09 354.90 −30.81 (−9%) .18
Saturated fatc 5.16 9.95 −4.79 (−48%) 0.003*
Sugarc 23.51 27.26 −3.75 (−14%) .13
Sodiumc 0.43 0.27 +0.16 .23
Proteinc 9.30 8.32 +0.98 .35
Fiberc 0.98 1.49 +0.51 .29
Timed 52.43 46.14 +6.29 .25

3. Identify the healthiest snack

NSa 4.84 10.57 −5.73 0.000*
Energyb 238.83 394.70 −155.87 (−39%) 0.000*
Saturated fatc 2.79 5.36 −2.57 (−48%) 0.000*
Sugarc 7.03 13.18 −6.15 (−46%) 0.001*
Sodiumc 0.28 0.80 −0.52 0.000*
Proteinc 5.69 15.09 −9.40 (−62%) 0.000*
Fiberc 0.55 2.52 −1.97 (−77%) 0.002*
Timed 36.23 31.27 +4.96 .16

*Significant at 5% level.
aNutri-Score has a point scale from −15 (very healthy) to 40 (very unhealthy).
bin KJ/100 g.
cin g/100 g.
din seconds.
emean values.
fPercentage change for differences over 1 g/100 g or 10 KJ/100 g.

down to 4.84 (TG). The real-time visual intervention seemed to
greatly support identifying healthy snacks. Among other qualita-
tive feedback, the TG and CG both stated the VM offers little to
no substitutes for certain snack products. The only rather healthy
snacks were chewing gums, a product that can hardly be con-
sidered a perfect substitute for consumers who planned to buy
a salty sack. In fact, no snack received the healthiest Nutri-Score
‘‘A’’ (less than -1 Nutri-Score point). Nevertheless, (i) the signif-
icant improvement in saturated fat (and the improvements in
other nutrients) within the snack assortment with limited healthy
substitutes available, as well as (ii) the significantly improved
ability to identify healthy snacks via the real-time intervention
led us to accept RQ4 (see Table 6).

Regarding users purchasing a beverage of their own choice
(RQ5), significant differences were observed, as shown in our
previous publication [34]. Users with the Nutri-Score intervention
selected products with 5.8 Nutri-Score points less on average
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able 7
everage choice across treatment group (N = 31) and control group (N = 30).
Task Item

Beverages

TGe CGe ∆TG-CG (%)f P

2. Select a beverage of your own choice

NSa −0.97 4.80 −5.77 0.009*
Energyb 22.03 33.47 −11.44 (−34%) .06
Saturated fatc 0.05 0.03 +0.02 .37
Sugarc 4.88 6.79 −1.91 (−28%) 0.049*
Sodiumc 0.02 0.02 0 .43
Proteinc 0.34 0.23 +0.11 .38
Fiberc 0.00 0.00 0 .50
Timed 35.52 28.19 +7.33 .15

4. Identify the healthiest beverage

NSa −14.37 −13.48 −0.89 .27
Energyb 0.63 2.07 −1.44 .27
Saturated fatc 0 0 0 .16
Sugarc 0.15 0.49 −0.34 .28
Sodiumc 0 0 0 .35
Proteinc 0 0.02 −0.02 .16
Fiberc 0 0 0 .50
Timed 23.97 17.88 +6.09 .38

*Significant at 5% level.
aNutri-Score has a point scale from −15 (very healthy) to 40 (very unhealthy).
in KJ/100 ml.
in g/100 ml.
in seconds.
mean values.
Percentage change for differences over 1 g/100 ml or 10 KJ/100 ml.

and therefore healthier products), with significantly less sugar
28%), and significantly less calories (34%, albeit only on a 90%
onfidence interval) per 100 ml. The Nutri-Score declined from
.8 (CG) down to −0.97 (TG) (Scale −15 = healthy to 40 =

nhealthy). The sugar content of the selected beverage declined
rom 6.79 g/100 ml (CG) down to 4.88 g/100 ml (TG). The energy
ontent of the selected drink reduced from 33.47 KJ/100 ml (CG)
own to 22.03 KJ/100 ml (TG). Regarding users selecting the
ealthiest beverage, no significant differences between TG and
G were observed. The average Nutri-Score declined from −13.48
CG) down to −14.37 (TG). These scores are both very close to
he perfect score (−15), as most users correctly selected mineral
ater to be the healthiest drink, a widely known fact that even
ost users in the control group were well aware of. Qualitative

eedback from both TG and CG included spontaneously remem-
ering mineral water being healthiest, when asked to identify
he healthiest beverage. Most users seemed able to correctly
dentify the two different mineral waters as the healthiest option.
nly a few users selected orange juice as the healthiest option.
he significant improvements in Nutri-Score, energy (−34%), and
ugar (−28%) within the beverage assortment led us to accept
Q5.
As discussed more in-depth in our previous publication [34],

ociodemographic segments prone to diet-related diseases can
enefit from passively triggered, visual real-time interventions in
R headsets. Was the real-time intervention also effective among

isk users, who are prone to unhealthy food choices? (RQ6). When
omparing overweight (BMI over 25 kg/m2) to non-overweight
sers, the intervention seems more effective among overweight
sers. Both overweight and non-overweight users exhibited im-
roved values for sugar, energy, and Nutri-Score for the selected
everages when receiving the intervention (TG). When compar-
ng higher educated (e.g. tertiary education) to less educated
sers, the intervention seems to be supportive in both segments:
ess educated users experience a significant improvement of
he Nutri-Score of the selected product, while higher educated
nes choose healthier products on average. Similarly, preexist-
ng food literacy (measured by a food literacy questionnaire)
orrelates with significant improvements in the Nutri-Score of
elected products. Nevertheless, also less food-literate users ex-
erience improved Nutri-Score, sugars, and energy of the selected
roducts. Further statistical tests comparing overweight versus
on-overweight, highly educated versus less educated, food lit-
rate versus illiterate receivers of the intervention do not suggest
hat the intervention makes either group perform the tasks sig-
ificantly better. Given that all risk groups (i.e. less food-literate,
ess educated, and overweight users) benefit from the real-time
ntervention, we accepted RQ6.

After the experiment, all participants took a final survey. This
ncluded questions on usage antecedents and additional random-
zation checks, to better understand whether study participants
ould reuse a similar system in the future (RQ7). All items
ere encoded as 7-stage Likert scales, ranging from 1 (strong
isagreement) to 7 (strong agreement). We found that the MR-
ased support system is quite popular with study participants.
ualitative feedback included the desire to take the HoloLens
evice home or requesting that such a visual intervention app be
eleased for their smartphones. Negative feedback included the
eight of the HoloLens headset and lack of familiarity with or
nderstanding of the Nutri-Score concept. One participant even
uggested developing a Nutri-Score intervention for color-blind
eople, as they might be unable to interpret the red-to-green
olor-coding of product frames.
Users in the TG stated a significantly higher intention to use

3 items) and had high performance expectations after trying out
he intervention themselves (5 items). They mentioned that the
eadset system is helpful, educative, supports faster and healthier
roduct decision, and thus encourages starting or maintaining
healthy diet. In addition, they stated that their social envi-

onment (2 items) supported and favored them using such a
ystem. Observations showed that all three constructs (Intention
o use, performance expectation, and social influence) ranked
ignificantly higher in the TG than in the CG. Interestingly, users
f both groups felt rather unobserved and claimed to have se-
ected their ‘‘true, unbiased’’ behavior. They also users indicated
hat they had enjoyed the HoloSelecta experiment and consid-
red the experience ‘‘fun’’ and ‘‘exciting’’. Therefore, we accepted
Q7, as users states that they were highly motivated to use
uch a headset-based support system for healthy food choices if
vailable.

. Discussion

Although the majority of people claim to be interested in nu-
rition and maintaining a healthy lifestyle [25], counterintuitively
erhaps diet-related diseases such as obesity and cardiovascu-
ar diseases are steadily increasing [88]. Current smartphone-
ediated dietary mHealth applications fail to be mass-adopted

25] and are often ineffective [20] due to effort-intensive and
rror-prone manual logging, aside from the salience required
nd delayed interventions. Thus, developing such new and more
ser-centric approaches certainly seems to be called for. To this
nd, we introduce a novel integrative framework in line with
he principles of the Internet of People (IoP) leveraging the joint
pplication of CV-based detection of diet-related activities and
ust-in-time visual interventions via next-generation MR head-
ets.
Our proposed framework describes how such a vision might

e realized in the future. Our technical feasibility study demon-
trated the current capabilities and limitations of NNs in sup-
orting such a framework while our impact study examined its
otential to support healthier food choices. Specifically, we were
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interested in whether wearable smartglasses, which leverage CV
and MR real-time interventions, support healthier food selections
at VMs, i.e. locations where consumers may in fact (intend to)
purchase unhealthier foods and beverages. While most research
in this domain so far has focused on classifying food products via
CV through pre-fabricated image datasets [53–55], or has only
assessed visual interventions via augmented reality on handheld
devices [89], our study contributes to the literature by lever-
aging MR headsets and interventions, thereby overcoming the
drawbacks of current smartphone-mediated interventions.

Our proposed integrative framework currently represents a
vision for the IoP rather than a prediction with a foreseeable time-
line. However, since relevant tech companies (including Apple,
Facebook, Microsoft, and Magic Leap) have announced that they
intend to release their consumer-oriented MR headsets as next-
generation computer systems in the coming years, it might only
be a matter of time for such a vision to become reality. Whether
such headsets will be adopted as quickly as smartphones or will
take longer (such as the adoption of VR headsets) remains to be
seen. Even if mass adoption of wearable headsets might still be
years away, our proposed system might already be enabled in
diet-counseling programs to educate patients in making healthier
food choices. Also, the discussed subsystems (i.e. MR interven-
tions and CV-based detection of diet-related activity) might also
be adopted independently by home assistant systems such as
Google Home or Amazon Alexa. Future versions of these systems
could leverage cameras to detect eating activity, for example, or
automatically display visual feedback after ordering food online.
Still, the insights from the validation study lead us to conclude
that implementing such as framework is likely to be technically
feasible in terms of improving food choices.

Compared to existing studies on detecting packaged prod-
ucts [53–55], our technical feasibility study is the first to collect,
label, and apply real-world images for product detection. To the
best of our knowledge, the collected dataset of 10’035 labeled
product instances represents the largest labeled image dataset to
include product identifiers (GTINs). It therefore allows integration
of product metadata. As labeled image data remains one of the
largest limitations to identifying packaged products, our study
demonstrated higher accuracy rates for product classification and
OD due to the increased number of labeled instances per product.
Compared to accuracy rates of up to 85.3% in [54], we observed
product classification accuracy rates of 95%–97.7% (see RQ1) with
100 images per class via transfer learning [58]. Furthermore, we
concluded that at least six (for 90% accuracy) to 26 images (for
95% accuracy) are required to train relevant models (see RQ2).
Our study therefore provides insight into the feasibility of image
classification on packaged products. It also demonstrates that
real-world implementation of image detection is feasible. Thus, a
limited amount of investment and effort will be required in future
studies.

Moreover, we observed that OD under real-world conditions
is possible, yet heavily depends on architecture choice (see RQ3).
The ResNet/RetinaNet architecture implemented in our study
achieved acceptable results, i.e. mean average precision (mAP) of
over 90%, after being trained on 42 images. An mAP of over 95%
was observed when 100 images per product were used. Again,
this is much higher than in related studies, which leveraged less
images per product and observed an mAP of 73.5%–76.93% [54].
In further studies, we believe it would be interesting to assess
the accuracy of already performant networks by using video
stream data and by factoring latency in detail. Especially the
trade-off between the complexity of the neural network models
and their respective inference speed (i.e. a device’s upload speed
to a cloud-based server and the headset’s own computational
capability) is worth assessing. Our study suggests that server-
side GPU-supported predictions are much faster compared to
local predictions as they are limited by the device’s hardware.
Differences in latency allow for improved accuracy when predict-
ing products on the server, especially via image pooling. Given
ResNet’s mAP of 0.94, the device can only predict once every
2.2 s. Server-side predictions can make 13.75 predictions in the
same amount of time, even factoring in the image transport
via gRPC, and thus yielding a theoretical error of close to zero:
(1 − 0.94)13.75.

Of course, these results do not hold in the real world, as
many factors impact accuracy (e.g. lighting conditions, connec-
tivity, orientation, product assortment, etc.). A particular feature
of our research context was that HoloLens did not support Ten-
sorFlow at the time of implementation, meaning we could not
compare on-device prediction in the real world. Once HoloLens 2
is available, it is will possible to realistically assess device-based
capability of predicting packaged products in the real world.
To conclude, the current advantages of cloud-based inference
and the advantages of image pooling over multiple frames in a
video sequence may prove a promising approach to achieving
higher degrees of accuracy and mAP. In other words, the vision
of a global detection of packaged products is likely to occur.
Yet whether this will occur via one or many NNs, which, for
example, might be connected via a knowledge graph, remains to
be researched. Given a certain location, an MR headset application
might then be able to retrieve currently valid pretrained NNs to
make a local prediction on the respective shelf or VM, and thereby
benefit from specially trained networks. An alternative global
NN for predicting products would in turn have to be pretrained
on labeled training data from a sufficient number of shelves
to predict products on all types of shelves (e.g. from VMs to
large supermarkets). Hence, our study contributes to the nascent
body of research on the CV-based identification of food items by
demonstrating the feasibility of detecting packaged products [90].

Regarding our impact study, this paper presents the first
real-world validation of a MR headset-mediated intervention
on packaged products. Previous studies have leveraged hand-
held tablets [89], monochromatic glasses with text-based inter-
ventions [71], or wearable clothes-integrated cameras [72], all
with varying disadvantages. For example, handheld devices may
prove impractical during shopping, text-based interventions non-
trivial to interpret, and textile-integrated cameras need a second
screen to display interventions. The only document describing
the displays of diet-related interventions inside a MR headset
is a patent by Microsoft [65]. However, nothing is yet known
about such a system’s efficacy under realistic conditions. We
therefore conducted an in-the-wild user study using Microsoft
HoloLens (1st generation) to validate the potential impact of
visual interventions during the purchase process at a VM. We
observed significant differences regarding food and beverage
choices (RQ4, RQ5): significant reductions in sugar and calories
among beverages and saturated fat in food items.

This study hence contributes to existing work on purchase-
related mHealth [91] and food labels [74] that both examine
two-dimensional static cues and their impact on food decisions.
Our findings contribute to previous research by suggesting that
dynamic, three-dimensional environmental cues can achieve a
similar effect, and could even be shown automatically in the
absence of a printed food label. In fact, we argue that in some
cases our proposed solution is superior because it does not re-
quire salience or active user input. As such, it enables hands-free
shopping, and thereby overcomes one of the strongest barriers of
mHealth-based solutions [20,21,23]. We also find that MR headset
wearers more easily identify healthy snacks when supported by
the intervention (see Table 7). Additionally, our impact study con-
cluded that irrespective of their health state or nutritional literacy

users were able to profit from the intervention and indicated high
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otivation to use a wearable device for food choice support (RQ6,
Q7). This finding is encouraging, as food-illiterate users are tra-
itionally underserved by contemporary mHealth interventions.
inally, we found that the MR-based support system was popular
mong study participants, whose qualitative feedback included
he desire to take the MR headset device home.

Our findings have certain limitations, of course. We believe
hat four limitations warrant special attention. First, we applied
convenience sampling and single-blinded observation to our

esearch design. We mainly sampled male commuters and trav-
lers, who might not be entirely representative of a population.
urther studies should apply a stratified sampling approach to
chieve a more representative sample. Moreover, the technol-
gy used and the ‘‘single-blindness’’ of our study may have af-
ected the outcome, especially for participants who required more
echnical support than others. Fortunately, users who were less
amiliar with the intervention technology did not significantly
iffer regarding the nutritional quality of their selected items.
onetheless, with further investment in the technological set-
p of the study, future research designs should take note of
sers’ technological familiarity and degree of blindedness in the
ntervention setup. We recommend designing research settings in
hich users systematically feel less observed.
Second, the VM research setting represents another poten-

ial limitation regarding the transferability of the results. We
onsidered this point in multiple ways. Since there is a general
ack of training data for packaged products, we selected a sub-
titute that could also be ‘‘observed in the wild’’ [92] and be
eneralized to a supermarket setting. A VM, if understood as a
helf with products, is comparable to a collection of shelving
ound in a retail store. Furthermore, we selected a representative
M, operated by the European market leader (Selecta: 0.125M
achines worldwide and five million consumers daily). From
uch a perspective, it would be interesting to compare these
indings with other studies on the same or other VM contexts, in
rder to increase the generalizability of our findings. It would also
e worth conducting validation studies – moving from VMs to
upermarkets – when training data becomes available on a large
cale. We believe crowdsourcing product image data might be a
iable option for populating labeled image databases from shelves
round the world.
The research setting may have provided a third potential

ource of limitation. We argue that the layout of the VM does
ot limit the external validity of CV-based detection, as OD and
mage classification are conducted in two separate steps. First,
he NN estimates where an object of interest could be, and only
ubsequently predict which product might be involved. Therefore,
etecting ‘‘areas of interest’’ needs to proceed independently
f hardcoding layout and is reliable for detecting most product
ositions. Therefore, a new product or changed position does
ot necessarily entail a false prediction, but rather nonprediction
f the product is unknown in the training data (i.e. confidence
hresholds will likely be too low to make a meaningful predic-
ion). This approach is similar to the architectures of Tonioni’s
ork on detecting products on supermarket shelves (e.g. Grozi
atasets, i.e. GP-180 and Grozi 3.2k) [54,55]. Our CV pipeline
herefore also yields similar results to [54,55] when trained and
pplied to those datasets, and as such does not inherently possess
performance bias toward VMs.
Relatedly, a fourth potential limitation may arise from combin-

ng the research environment and surrounding research design
hoices. This limitation primarily involves hard-coding our head-
et setup. As discussed, given the high dependence on external
actors (e.g. lighting conditions, distance and angle, connectivity,
onfigured confidence thresholds), we opted for a hard-coded
ayout to control for such potentially varying factors. Integrat-
ng these factors into our context might have delayed inferring
certain products and displaying related interventions, and there-
fore might have impacted users’ choices. Hence, we opted to
hard-code the positions within the impact study to avoid biased
selections based on delays. However, we argue that hard-coding
does not necessarily limit outcome generalizability in terms of
the impact study. Moreover, further technological improvements
(e.g. availability of labeled image data, improved connectivity via
5G, edge computing, improved headset hardware), which support
the ubiquitous CV-based recognition of food products, will reduce
differences in inference frequency between products over time.

In the future, research is needed to leverage CV in order
to scale such MR interventions to supermarket shelves with
thousands of products. Further, validation studies are needed to
compare interventions to printed labels (e.g. inside the VM) or
to mHealth interventions aimed at improving food selection. If
wearable smartglasses become widely adopted consumer devices,
integration of MR interventions into personnel-based counseling
programs can be expected. In turn, these approaches will be able
to complement traditional nutrition interventions in situations
where consumers intend to make food purchase selections. Fu-
ture research could shed light on more comprehensive system
designs and different interactions between associations, concepts,
goals and awareness, as well as outcomes potentially optimizing
MR-based nutrition interventions. Finally, MR headsets could
support developing future FoPL labels, as such headsets could be
tested with MR glasses and potentially integrate eye and gaze
tracking. This aspect might be especially useful for developing
new or tailored FoPL labels, in turn enabling comparing different
labels without physical changes.

8. Open challenges and future avenues of research

This section adds to our aforementioned research ideas and
discusses the most pressing challenges and the resulting research
potentials identified above. We selected the following topics as
these promise to be important avenues of research, with a view
to successfully implementing IOP-based user support systems in
the context of healthier food choices.

Currently, reliable global CV-based food detection models are
still missing. More specifically, disjunctive, pretrained special-
purpose models exist for packaged products as well as composed
meals, yet need to be combined to support diet-related interven-
tions via MR headsets. Merging these domains, i.e. developing
CV models capable of detecting meals and packaged products,
also seems worth investigating. To this end, the potential of
knowledge graphs, which enable searching only within a rele-
vant, small subset of all globally available meals or products, is
fascinating. For example, if the support system, based on a user’s
location, knows that he or she is currently at a specific store or
restaurant, the CV model could focus on assessing the possible
food item candidates available at that particular venue rather
than searching among all food items.

Furthermore, limitations of CV-based detection of diet-related
activities include edge cases, for which visual appearance is a
non-ideal proxy for identifying nutritional composition. Edge
cases also include look-a-like food and beverage products (e.g.
Coca Cola and Coca Cola Zero) or some types of composed meals
(e.g. nutritional quality of similarly looking soups may very
strongly). It will hardly be possible through CV alone to identify
differences that are not subject to human vision but instead are
inferred through taste (e.g. salt content of a soup). Here, alterna-
tive, novel methods including near-infrared spectroscopy (NIRS)
could enable differentiating sugar-free and sugar-rich items, for
example. Still, we consider the autonomy of user input to be
more importance than attaining perfect accuracy. In contrast
to CV applications such as self-checkouts (e.g. Amazon Go) or
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inventory stock keeping via robots, diet tracking does not require
perfect, yet rather acceptable accuracy [20,36]. False positives are
less critical: In the dietary domain, tracking general behavior is
often more important than accuracy. In fact, if accurate dietary
assessments are needed, state-of-the-art methods include blood
sampling or spot-urine assessments via medical laboratories.
Nevertheless, a validation of MR-mediated tracking with food
diaries or bio samples remains unprecedented.

Detection of eating behaviors and activities is likely to be an
important avenue of research to extend the IoP based framework
presented. Aside from detecting food items, MR headsets can also
assess a user’s eating speed and eating times via CV [93]. For
example, growing evidence shows that slower eating and certain
eating time windows correlate with improved health [94]. The
scarcity of such studies likely stems from sampling, educating,
and monitoring participants requiring great effort. While self-
reporting may ameliorate this situation, researchers must then
account for various biases related to food habits. MR headsets
offer the chance to improve sampling size and tracking eat-
ing activities (e.g. speed and frequencies). Such setups could
also plausibly be extended with other tested systems for iden-
tifying food activities (e.g. smart watches, electromyography, or
automated wrist motion tracking). Such approaches could help
overcome some of the major limitations in nutritional science,
and thus enable better understanding the relationship between
a user’s intentions, intake, behavior and health outcomes.

Food label design might represent another interesting av-
enue of research. Intervention efficacy as observed in our impact
study might also partly arise from food label design. Although
Nutri-Score represented the state-of-the-art in terms of effec-
tivity and adoption in previous studies, other frameworks may
prove more effective over time. Such potentially more person-
alized interventions could include interpreting recent activities
(i.e. previously consumed food or physical workouts), personal
food preferences (i.e. taste, preferring a vegetarian diet), infor-
mation on an individual’s health state (e.g. diseases or aller-
gies). Study questions in this area could include comparing dif-
ferent intervention designs, potentially ranging from monetary
reward systems to sophisticated three-dimensional gamification
elements (e.g. avatars). Furthermore, interventions could inte-
grate other non-food-related information such as feedback on
product sustainability (e.g. palm oil content). Food waste pre-
vention could be assessed through MR-mediated interventions.
Headset cameras could track leftovers on a plate or hand gestures
indicating food waste. Finally, MR headsets could also support
developing future front-of-package labels, as they could be tested
with MR glasses capable of measuring eye-tracking and gaze. This
aspect might be useful for developing new or tailored food labels,
enabling comparison of different labels without physical changes.

Another very important study aspect of CV-mediated MR
headsets is user-intervention interaction. CV and MR allow for
just-in-time-interventions (JITAI), considered best practice in dig-
ital health interventions [95]. Users can thus be prompted,
nudged, or reminded anytime or just in time prior to, during, or
directly after eating. To this end, we conducted an explorative
analysis that compared users who spent varying lengths of time
in the real-time intervention. We measured head poses through
constant logging of the focal point. As expected, users who spent
less time in the intervention seem to be ‘‘pre-determined’’ and
only look at a few products in the assortment (presumably due
to a preformed preference). In contrast, users who spent longer in
the intervention ‘‘browsed around’’ and checked multiple alterna-
tive food items (Fig. 10). Hence, different exposure times to visual
intervention impact food choice. Therefore, future intervention
design could leverage the ability to measure eye tracking to

adapt interventions to users’ current focus. Future studies could
thus research when such prompts ideally should occur, whether
prompt archetypes exist that better cater to certain user groups,
and of course what such prompts should look like (e.g. mes-
sages, avatars, scores). A large body of research has studied these
topics in the area of mHealth, which makes it interesting to
see how previous findings might translate to the MR context.
We suspect that next-generation MR headsets will become less
obtrusive for users, who could therefore potentially adhere to
diet interventions more long-term than happens with short-lived
mHealth retention. Hence, research on MR-mediated JITAI will
be able to better study feedback and motivation mechanisms,
which would be central to developing a sustainable, personal food
choice support system.

Another important research topic that remained underdis-
cussed in this paper, yet is central to the IoP paradigm are users.
Our user study found that participants indicated high intention-
to-use and performance expectations, as well as hedonic mo-
tivation. This suggests that with the uptake of MR headsets in
the future, such diet intervention formats could become popular.
However, we believe that IOP approaches as demonstrated in this
paper allow for a deeper understanding of users’ eating habits.
Studies on eating behaviors are often conducted in the laboratory
or under controlled conditions [96]. Observation may lead users
to reduce their calorific intake, even if observation is missing [97].
Future studies could assess whether introducing MR headsets
might have such effects, whether users experience patronization,
or even whether users grow accustomed to their wearable head-
set over time and behave naturally. Such study findings would be
interesting to discuss in the context of diet pattern detection and
in the context of improving consumer behavior in the long-term,
as users might revert to their former (unhealthy) behavior once
an intervention or the feeling of monitoring wanes.

Finally, but not trivially, validation studies are required to
compare existing dietary interventions with novel MR-mediated
interventions. For example, printed labels (e.g. inside the VM) or
mobile health interventions aimed at improving food selection
need to be compared to MR-mediated interventions, especially in
future long-term scenarios. We have provided various pragmatic
and theoretical arguments about the drawbacks of existing ap-
proaches (see Section 2). Such claims, however, require further
validation. Validation studies should not be seen as a trivial
exercise. They instead might highlight the necessity of using
existing approaches for particular tasks in the diet-related behav-
ior change process. For example, personal contact (e.g. in form
of counseling or food education) might remain necessary and
cannot simply be replaced but rather needs to be extended with
diet-related IOP approaches. As such, integrating MR-based diet
interventions in personnel-based counseling programs represent
an interesting possible foray for nutrition studies. In turn, these
approaches could complement traditional nutrition interventions
in situations where consumers intend to make food purchase
selections. Future research could shed light on more comprehen-
sive system designs and different interactions between associ-
ations, concepts, goals, and awareness, as well as on outcomes
potentially leading to optimized MR and IOP based nutrition
interventions.

9. Conclusion

We have considered what an IOP-based user support system
for improved diet behaviors might look like in the future and have
focused on real-time detection and intervention of food items. We
have discussed the necessary elements of such a system. Based
on our previous studies, we have highlighted various aspects
of real-time detection and intervention. CV- and MR-mediated
identification and intervention of packaged products is still a
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Fig. 10. Head pose tracking of different users who spent varying amounts of time in the intervention (left: short to right: long).
nascent field and lacks publicly available datasets and published
research. Nevertheless, our studies provide insight into how im-
age classification and OD represent promising approaches to an
IOP-based user support system. Finally, we provide interesting
avenues for future research, which could enable IOP-based user
support systems that help users to make healthier food choices.
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