
Towards
reliable network control planes

Ahmed Elhassany

Diss. ETH No. 26296

 A
hm

ed
 E

lh
as

sa
ny

26
29

6

Ahmed Elhassany: Towards Reliable Network Control Planes, © 2019
doi: 10.3929/ethz-a-26296

C

M

Y

CM

MY

CY

CMY

K

cover-print.pdf 1 7/22/20 15:53

diss . eth no. 26296

TOWARDS
REL IABLE NETWORK CONTROL PLANES

A dissertation submitted to attain the degree of

doctor of sciences of eth zürich
(Dr. sc. ETH Zürich)

presented by

ahmed h .a . elhassany
Master of Science

University of Delaware

born on 1st April 1986
citizen of Palestine

accepted on the recommendation of

Prof. Dr. Laurent Vanbever
Prof. Dr. Aditya Akella

Prof. Dr. Arvind Krishnamurthy
Prof. Dr. Ankit Singla
Prof. Dr. Martin Vechev

2019

Ahmed H.A. Elhassany: Towards Reliable Network Control Planes, © 2019

doi: 10.3929/ethz-a-26296

To Mom and Dad

ABSTRACT

Many critical services, such as e-commerce, emergency response, or even remote
surgeries, rely on computer networks. �is strategic importance makes them a
mission-critical infrastructure that must operate reliably, with minimum downtime.
Achieving reliable operations is challenging, though, as con�rmed by the countless
major network downtimes that are frequently making the news.
In this dissertation, we develop techniques and tools to enable the reliable network

operations of the two main types of networks deployed today: (i) networks running
distributed routing protocols; and (ii) networks managed by a logically-centralized
controller, also known as So�ware-De�ned Networks (SDN). Each paradigm comes
with its own set of operational challenges. In networks running distributed routing
protocols, the main problem is con�guring each device correctly. Studies have indeed
shown that human-induced miscon�gurations, not physical failures, explain the
majority of network downtimes. In contrast, in SDN, the main problem is ensuring
the correctness of the controller so�ware.�erefore, we tackle two complementary
problems: (i) how to synthesize con�gurations for networks running distributed routing
protocols automatically?; and (ii) how to catch bugs in SDN networks?
To eliminate human-induced miscon�gurations, we propose two novel and

complementary techniques to synthesize con�gurations from high-level policies.�e
�rst technique aims at generality, while the second one aims at usability and scalability.
Speci�cally, the �rst technique enables the synthesis of correct con�gurations for
arbitrary protocols from operators’ intents and a formal speci�cation of the protocols’
behavior. While useful, we show that this technique is limited in its scalability and
can produce con�gurations that are far from what a human would write.�e second
set of techniques rely on autocompletion to address these problems. Here, we allow
the network operators to specify parts of the con�gurations and constraint the values
that the synthesizer is permitted to produce. We show that autocompletion enables
the synthesizer to scale to large networks and generates interpretable con�gurations.
To catch bugs in SDN controllers, we develop new techniques for detecting and

troubleshooting concurrency violations. As an event-based system, an SDN controller
is indeed particularly subject to concurrency issues.�us, we present a sound and
complete dynamic concurrency analyzer for SDN controllers. Furthermore, we
present techniques to assist the developers in identifying and troubleshooting the
source of the reported concurrency violations.

v

ZUSAMMENFAS SUNG

Viele Dienstleistungen aus unserem Alltag, wie z.B. der elektronische Zahlungsver-
kehr, Alarmierungssysteme oder chirurgische Eingri�e mit ferngesteuerten Robotern
benötigen heutzutage Computer Netzwerke, um richtig zu funktionieren. Es ist des-
halb umso wichtiger, dass die verwendeten Netzwerke möglichst ohne Fehler und
Unterbrechungen arbeiten. Unzählige Berichte zu schwerwiegenden Netzwerk Aus-
fällen zeigen jedoch, wie schwierig es ist, Netzwerke zuverlässig zu betreiben.
In dieserDissertation erarbeitenwir neueVerfahren undHilfsmittel, umComputer

Netzwerke verlässlich und ohne Ausfälle zu betreiben. Dabei kann heutzutage zwi-
schen zwei Netzwerk-Architekturen unterschieden werden: Einerseits traditionelle
Netzwerke, die auf verteilten Routingprotokollen basieren; und andererseits soge-
nannte So�ware-De�ned Netzwerke (SDN), welche von einem zentralen Controller
gesteuert werden. Die beiden Netzwerk-Architekturen haben je ihr eigenen Probleme
und Schwierigkeiten. In traditionellen Netzwerken besteht die grösste Schwierigkeit
in der korrekten Kon�guration aller Geräte im Netzwerk, da jedes Gerät einzeln kon-
�guriert werden muss. Wie Studien zeigen, ist der Grund für die meisten Netzwerk
Unterbrüche nicht etwa ein Hardwarefehler, sondern menschliches Versagen bei
der Gerätekon�guration. SDN Netzwerke bringen ganz andere Herausforderungen
mit sich. In diesen Netzwerken müssen wir vor allem sicherstellen, dass der zentrale
Controller fehlerfrei läu�. Zusammenfassend gehen wir deshalb zwei Probleme an,
die sich gegenseitig ergänzen: Wie können wir automatisch Gerätekon�gurationen
für traditionelle Netzwerke generieren?; und wie können wir So�warefehler in SDN
Netzwerken �nden?
Ummenschliche Kon�gurationsfehler zu vermeiden, präsentieren wir zwei neue,

sich ergänzende Verfahren, um die Kon�guration aufgrund von abstrakten Richtli-
nien automatisch herzustellen. Das erste Verfahren generiert Kon�gurationen, die
möglichst allgemein einsetzbar sind, wobei der zweite Ansatz mehr darauf achtet,
dass die erzeugten Kon�guration für den Netzwerkbetreiber verständlich und skalier-
bar sind. Basierend auf den Zielen des Netzwerkbetreibers und auf einer formellen
Protokoll-Beschreibung, kann das erste Verfahren korrekte Kon�gurationen für be-
liebige Protokolle herstellen. Die so erzeugten Kon�guration sind jedoch o� schwer
verständlich und der Ansatz kommt an seine Grenzen mit zunehmender Grösse des
Netzwerkes. Anders sieht es beim zweiten Ansatz aus. Ein Netzwerkbetreiber kann
nun bereits wichtige Teile der Kon�guration vorgeben oder die Werte verschiedener
Parameter einschränken. Unser Verfahren vervollständigt dann automatisch die

vii

fehlenden Teile der Kon�guration. Wie wir in verschiedenen Auswertungen zeigen,
kann dieser Ansatz Kon�gurationen für sehr grosse Netzwerke generieren, die zudem
einfach zu verstehen sind.
Um So�warefehler in SDN Controller zu �nden, erarbeiten wir neue Ansätze, um

Probleme in nebenläu�gen Prozessen zu erkennen und zu lösen. Solche Probleme
treten in einem SDN Controller häu�g auf, da es sich um ein ereignisgesteuertes
System handelt. Deshalb präsentieren wir ein System, das SDNController dynamisch
analysieren kann und beweisen dessen Korrektheit und Vollständigkeit. Zudem be-
schreiben wir Verfahren, die es den Entwicklern ermöglichen, die zugrundeliegende
Ursache des Nebenläu�gkeitsproblems zu �nden und zu lösen.

viii

PREAMBLE

Many critical services such as teleconferencing, e-commerce, digital currencies,
emergency response, and remote surgeries rely on computer networks.�is strategic
importance makes them a mission-critical infrastructure that must operate reliably.
Achieving reliable operations is a challenging task, as con�rmed by the countless
major network downtimes that are frequently making the news [1–9].
To ensure reliable operations, network operators need to guarantee that the

network is operating correctly; i.e., it is forwarding data according to its business
and performance goals. �e forwarding paths along which the network devices
forward tra�c (i.e., the application data) are computed by the network’s control-plane.
Nowadays, two di�erent paradigms implement a network’s control-plane: distributed
using distributed routing protocols and logically centralized using So�ware-De�ned
Networking (SDN).�erefore, we address both paradigms’ open problems to ensure
that networks implement the operators’ intents correctly. Namely, we develop new
methods and techniques to (i) correctly con�gure distributed routing protocols using
synthesis, and (ii) verify that SDN networks are free from concurrency errors.
�e �rst problem we tackle in this dissertation is how to produce correct low-

level con�gurations automatically such that networks running distributed routing
protocols behave according to the operators’ intents. In such networks, a network
device (i.e., router) runs so�ware implementing the routing protocols.�is so�ware
operates by exchanging reachability information with the device’s neighbors and
then using this reachability information and local con�gurations (i.e., low-level
instructions that are the inputs to the routing protocols) to decide how to forward
tra�c.�e network operators derive (o�en manually) the low-level con�gurations
from high-level business and performance requirements.�ey have to derive the
local con�gurations for hundreds or even thousands of network devices. A single
miscon�guration (i.e., a con�guration under which the network does not meet the
expected behavior) not only can violate the business and performance requirements
but also can bring down the network infrastructure, or worse a piece of the Internet.
As an illustration, Facebook su�ered from widespread issues for about an hour due
to a miscon�guration [1], while a miscon�guration in Verizon’s network slowed
down the performance of the Internet for two hours [2]. Studies show that human-
induced miscon�gurations, not physical failures, explain the majority of network
downtimes [3, 10, 11].

ix

In this dissertation, we propose network-wide con�gurations synthesis as an
alternative to manually con�guring networks running distributed routing protocols.
Synthesizing con�gurations not only simpli�es the task of con�guring a network
but also reduces the chances of human-induced errors and increases the network’s
overall reliability. Designing a network-wide con�gurations synthesis framework that
is practical, expressive, and scalable to production-size networks is a challenging task.
�e synthesis framework needs to capture complex distributed routing protocols
computations and invert them to �nd inputs (con�guration parameters) that induce
speci�c forwarding paths.�en, the synthesis framework needs to e�ciently search
the large space of possible con�guration parameters and �nd con�gurations (for
every single device in the network) that meet the operators’ intents.
In this dissertation, we develop two novel techniques to synthesize network-wide

con�gurations.�e �rst technique is a general synthesis framework that is capable
of synthesizing con�gurations for any distributed routing protocol based on formal
speci�cations of the protocol’s behavior. In particular, our general synthesizer takes
two inputs: (i) the operators’ intents; and (ii) the formal speci�cations of the network
(i.e., how the distributed routing protocols computes the paths to forward tra�c).
However, the generality comes at the cost of interpretability and scalability. Speci�cally,
a general synthesizer cannot produce con�gurations that follow the best practices
for a given protocol to improve the interpretability of the synthesized con�gurations,
and cannot leverage protocol-speci�c optimizations to improve the scalability of
the synthesizer. We address the interpretability and scalability limitations in the
second technique we develop in this dissertation.�e second technique frames the
network-wide con�gurations synthesis problem as an autocompletion problem. In
particular, our autocompletion synthesizer takes two inputs: (i) the operators’ intents;
and (ii) a sketch of the desired output con�gurations.�e con�gurations sketch
enables the network operators to specify the parts of the existing con�gurations that
the synthesizer is permitted to change and to constrain the values that the synthesizer
is permitted to use.�is approach enables the synthesizer to scale to large networks
and produce con�gurations that are similar to what a human operator would write.
�e second problem we tackle in this dissertation is detecting and troubleshooting

concurrency bugs in SDN controllers. SDN argues for a (logical) centralization of
the control logic, which relies on standardized APIs, such as OpenFlow [12], to
directly program each network device as opposed to using per-device low-level
con�gurations and distributed routing protocols. SDN controllers abstract away
the complexities of low-level interfaces and allow the network operators to de�ne
the network-wide behavior as high-level programs (policies) [13–19]. Due to the
asynchronous nature of a network, SDN controllers are event-based systems in which
provisioning new policies as well as updating existing ones is communicated via

x

asynchronous protocol over an unreliable network [20]. Meanwhile, the SDN switches
are simple devices that forward tra�c in the network according to the decisions made
by the controller. An SDN switch uses a �ow table (i.e., a look-up table) to forward
tra�c. Conceptually, SDN switches (in particular, the �ow table in each switch) can
indeed be seen asmemory locationswhich are read andmodi�ed by various events and
entities including the SDN controller. In practice, building such highly asynchronous
programs is known to be a very challenging problem, requiring developers to reason
about concurrent behavior. As a result, SDN controllers inadvertently introduce
harmful-concurrency errors. We demonstrate how these concurrency errors may
lead to policy violations or cause downtimes similar to miscon�gurations in networks
using distributed control planes.
In this dissertation, we produce new methods and techniques for detecting and

troubleshooting concurrency violations in production-grade SDN controllers. We
start tackling this problem by developing a model that formally captures the ordering
of events in an SDN network based on the potential causality relation between
them; i.e., happens-before (HB) model. We use this formal model to analyze SDN
controllers’ events and detect any potential data races in the �ow tables’ read/write
operations. As with standard concurrency analyzers, any SDN concurrency analyzer
could report many potential concurrency issues, including false-positive reports.
�us, our second step is to develop techniques to �lter out false-positive issues and
only report true-positive data races; i.e., harmful violations that can cause the tra�c to
be forwarded incorrectly or may bring the network down. While detecting data races
in �ow tables is important, we need to understand these races’ broader impact on the
network’s correctness�us, our third step is to develop techniques that analyze the
reported harmful-concurrency violations and report if of them any caused violations
of high-level correctness properties. Finally, we develop techniques to assist the
controller developers in troubleshooting and �xing the bugs causing the concurrency
violations. In particular, we develop new clustering techniques that use domain-
speci�c knowledge to cluster the harmful violation reports (potentially 1,000s) into
a handful of clusters; each cluster represents a bug in the controller. Further, our
framework identi�es the most representative concurrency violation for each cluster
(i.e., those that capture the cause of the violations in the cluster) to assist the SDN
controller developers in debugging the root cause of the concurrency issues.
�is dissertation is divided into three parts.�e �rst part highlights the necessary

background material.�e second part focuses on the network-wide con�gurations
synthesis problem. While the third part focuses on detecting and troubleshooting
concurrency bugs in SDN controllers.
We begin the second part by motivating the need for network con�gurations syn-

thesis and de�ning the network-wide con�gurations synthesis problem in Chapter 2.

xi

�en, we present the �rst general network-wide con�gurations synthesis framework
we developed in Chapter 3. In particular, we frame the network-wide con�gura-
tions synthesis problem as an instance of synthesizing inputs to Datalog program (a
declarative logic programming language). We remark that our contributions to input
synthesis for strati�ed Datalog programs extend beyond the domain of computer
networks. In Chapter 4, we frame the network-wide con�gurations synthesis prob-
lem as an autocompletion problem. We present techniques that not only allow the
network operators to synthesize con�gurations according to their intents but also
allow the network operators to constrain the shape of the output con�gurations.
We begin the third part by demonstrating the impact of concurrency issues on the

correctness and reliability of SDN networks and de�ning the problem of detecting
and troubleshooting such issues in Chapter 5. In Chapter 6, we present a sound
and complete dynamic concurrency analyzer for SDN controllers that can ensure
a network is free of concurrency violations. We demonstrate how our framework
reports harmful violations that could impact the network’s correctness and how our
framework analyzes the low-level violations to report these violations’ impact on
high-level correctness properties. Finally, we conclude and suggest future research
directions in Chapter 7.

xii

PUBL ICAT IONS

Most of the work presented in this dissertation appeared previously in peer-reviewed
conference and workshop proceedings.�e list of accepted publications is presented
herea�er.

1. Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever & Martin Vechev. Net-
Complete: Practical Network-Wide Con�guration Synthesis with Autocompletion
in Proceedings of the 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’18, Renton, WA, USA (USENIX Association, 2018).

2. Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever & Martin Vechev.
Network-Wide Con�guration Synthesis in Proceedings of the 29th International
Conference on Computer Aided Veri�cation CAV ’17 (Springer, Heidelberg,
Germany, 2017).

3. Roman May, Ahmed El-Hassany, Laurent Vanbever & Martin Vechev. BigBug:
Practical Concurrency Analysis for SDN in Proceedings of the 3rd ACM SIG-
COMM Symposium on So�ware De�ned Networking Research SOSR ’17 (ACM,
Santa Clara, CA, USA, 2017).

4. Ahmed El-Hassany, JeremieMiserez, Pavol Bielik, Laurent Vanbever &Martin
Vechev. SDNRacer: Concurrency Analysis for SDNs in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation PLDI ’16 (ACM, Santa Barbara, CA, USA, 2016).

5. JeremieMiserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever &Martin
Vechev. SDNRacer: Detecting Concurrency Violations in So�ware-de�ned
Networks in Proceedings of the 1st ACM SIGCOMM Symposium on So�ware
De�ned Networking Research SOSR ’15 (ACM, Santa Clara, CA, USA, 2015).

xiii

ACKNOWLEDGMENTS

I look back upon my journey over the many years to reach this point fondly. Despite
many challenges and obstacles, I could not be here without the support of my adviser
and the great people that I met during this journey. While it would be impossible for
me to acknowledge every person who helped me during my Ph.D. journey, many of
them deserve special thanks.
First and foremost, I would like to thank Professor Laurent Vanbever for his

teaching, patience, encouragement, and guidance over the years. Laurent taught me
valuable lessons in identifying research problems and how to be methodological and
systemic in solving them.His insightful feedback tomy ideas andwritings throughout
my Ph.D. have been invaluable; his criticisms always constructive; and his logic always
clear. I could not have wished for a kinder supervisor. Laurent, thank you for guiding
me during this journey! I would like to thank Professor Martin Vechev, who acted as
a second adviser, for opening my eyes to the �eld of programming languages; an area
that I always ignored before. Martin taught me valuable lessons in formal methods
and opened my eyes to new ideas that I would not understand without his guidance.
I would also like to thank Dr. Petar Tsankov for helping me navigate the PL side of
research. It has also been a pleasure to work with great co-authors over the years; all
of whom have taught me a great deal. Special thanks to co-authors of the papers that
appeared in this dissertation: Pavol Bielik, Jérémie Miserez, and Roman May.
I would also like to thank the external reviewers of my dissertation – Professor

Aditya Akella, Professor Arvind Krishnamurthy, and Professor Ankit Singla – for
taking the time to read and evaluate this work.
I would like to thank my colleagues at the Network Systems Group: Rüdiger

Birkner, Tobias Bühler, Edgar Costa Molero, Alexander Dietmüller, Albert Gran
Alcoz,�omas Holterbach, Roland Meier, and Maria Apostolaki for being amazing
colleagues. I also thank all my colleagues who have provided valuable feedback on this
dissertation’s dra�s: Rüdiger Birkner, Tobias Bühler, Albert Gran Alcoz, Edgar Costa
Molero, and Alexander Dietmüller. Special thanks to Rüdiger Birkner and Tobias
Bühler for helping with the German translations of the abstract of this dissertation.
Very special thanks to Beat Futterknecht who helped me a great deal throughout my
Ph.D. to navigate the Swiss system.
I could not have joined ETH without the continuous support of some great people.

I would like to thank Professor Scott Shenker for getting me to believe in research
and �nishing my Ph.D. again a�er I almost lost hope in the process. Special thanks

xv

to Aurojit Panda for his feedback on my applications and listening to my constant
complaints. And I would like to thank Dan Gunter, Brian Tierney, and Inder Monga
for helping me to get back on the Ph.D. track at a very critical time of my journey. I
also would like to thank Professor Ryan Newton for providing a temporary home for
me in his group before joining ETH.
My journey to join ETH passed through Gaza, Delaware, Indiana, and California.

At every stop, I met great people who helped me to keep my life balanced in this
journey far away from home; despite, sometimes, our short encounters. While I
cannot acknowledge every person who touched me on this journey, I would like
some of the great friends that without their help, I would not make it this point. I
would like Ahmed Radwan for opening my eyes to the research possibilities early
on; I will not forget these deep philosophical debates. Special thanks to the fellow
residents of Nerd Mansion: Matthew and Debbie Ja�ee, Jason Hemann, Miao Zhang,
Guilherme Fernandes, and Andrew Younge for being such good companions and for
the good memories that I will cherish forever. Special thanks to Jason Hemann for
being my remote Ph.D. buddy. Also, I would like to thank Anushka Drescher for her
inspiring conversations.
�is journey took me far away from my family for over ten years, with almost

no way to visit them. Despite the distance, I received constant and unconditional
support from them. I would like to thank my family for this unconditional love, who
supported me through this really long journey. Mom, Dad, and my seven siblings
Dalia, Sami, Alaa, Mohammed, Ali, Samar, and Nasser, thank you all! I also would
like to thank Tania Schiesser, who has been the big sister to me in the past few years.

xvi

CONTENT S

Preamble ix
Publications xiii
Acknowledgments xv
List of Figures xix
List of Tables xxii

i background
1 internet routing 3
1.1 IP Router . 3
1.2 IP Routing . 5
1.3 Intra-domain Routing . 5
1.4 Inter-domain Routing . 6
1.5 So�ware-De�ned Networking (SDN) 8
1.6 Network Policies . 9

ii network configurations synthesis
2 network configurations synthesis problem statement 13
2.1 Motivating Example . 14
2.2 �e Network-wide Con�gurations Synthesis Problem 19
2.3 Our Contributions . 22
2.4 Related Work . 23

3 general network-wide configurations synthesis 29
3.1 Background: Strati�ed Datalog . 30
3.2 Declarative Network Speci�cation . 31
3.3 Reducing Network-wide Con�gurations Synthesis Problem to Strat-

i�ed Datalog Input Synthesis Problem 35
3.4 Input Synthesis for Strati�ed Datalog 36
3.5 Network Synthesis Algorithm . 47
3.6 Implementation and Evaluation . 48
3.7 Summary . 51

4 network-wide configurations synthesis with autocom-
pletion 53
4.1 Motivating Scenarios . 54
4.2 Overview . 55
4.3 BGP Synthesis . 60

xvii

xviii contents

4.4 OSPF Synthesis . 67
4.5 Implementation and Evaluation . 70
4.6 Summary . 76

iii network verification
5 sdn programming and concurrency issues 79
5.1 A Non-Deterministic Forwarding Loop in a Load Balancer 80
5.2 Problem Statement . 82
5.3 Our Contributions . 82
5.4 Related Work . 83

6 concurrency analysis for software-defined networks 87
6.1 Overview . 87
6.2 Formal Model of SDN Operations . 91
6.3 Happens-Before Model . 95
6.4 Commutativity Speci�cation . 97
6.5 Consistency Properties . 101
6.6 Assist with Debugging . 104
6.7 Implementation . 108
6.8 Evaluation . 109
6.9 Summary . 118

7 conclusions and open problems 121
7.1 Open Problems . 122

bibliography 125
curriculum vitae 143

L I ST OF F IGURES

Figure 1.1 �e high-level architecture of an IP Router. 4
Figure 1.2 Commonly used attributes in BGP announcements. 7
Figure 2.1 To con�gure a network, the network operators consider the

network topology (2.1a), any existing con�gurations (2.1b)
and the new routing policy to implement (2.1c) as inputs. . 14

Figure 2.2 Network operators are presented with a network that is
con�gured with Col d (2.1b) and implements a known policy
φRol d (2.2b).�e goal of the network operators is to �nd a
new con�guration Cnew that implements the required new
policy φRnew . 15

Figure 2.3 Common miscon�gurations pitfalls. Figures 2.3a and 2.3b
show a miscon�guration due to not considering the depen-
dencies between routing protocols. Figures 2.3c and 2.3d
show a miscon�guration that is caused by only considering
local link costs. Figures 2.3c and 2.3d show that the routing
policy cannot be implementable by OSPF. 18

Figure 2.4 Correct con�guratoins Cnew that implements the routing
policies φRnew in Figure 2.1c. 19

Figure 2.5 A network-wide con�gurations synthesis framework takes
as input: network topology, routing policies, any existing
con�gurations, and a network model of the routing pro-
tocols and the interactions between them, then produces
network-wide con�gurations that induce a forwarding state
satisfying the intended policies. 20

Figure 3.1 Syntax of strati�ed Datalog. 30
Figure 3.2 Semantics for a Datalog program P with strata P1 ∪⋯∪ Pn . 31
Figure 3.3 Partial network speci�cationN expressed as Datalog pro-

gram.�is program speci�cs OSPF, static routes, and se-
lecting the best route to be the forwarding entry based on
the Administrative Distance (AD). 32

Figure 3.4 Example con�gurations input to the network speci�ca-
tionN de�ned in Figure 3.3 based on Cnew de�ned in Fig-
ure 2.4. 35

xix

xx list of figures

Figure 3.5 A Datalog program P with strata P1, P2, and P3, and the
�ow of predicates between the strata. 37

Figure 3.6 Encoding a Datalog program P into SMT constraints [P]k . 39
Figure 3.7 Internet2 topology. 49
Figure 4.1 High-level policy for our running example. 57
Figure 4.2 Overview of NetComplete. �e inputs are: (a) network

topology, (b) routing requirements, and (c) con�gurations
sketch.�e output is a con�guration for each router; one
example is shown in (e). 58

Figure 4.3 Deriving a BGP propagation graph fromBGP requirements
and a network topology. 61

Figure 4.4 Example of two BGP policy sketches. 64
Figure 4.5 SMTencoding of the BGP tie-breaking process of announce-

ments carrying same pre�x. 65
Figure 4.6 Example of OSPF requirements and a correct link costs

assignment. 68
Figure 4.7 NetComplete synthesizes ordered path requirements faster

when the con�guration sketch provides more concrete val-
ues for edge costs. 72

Figure 4.8 BGP synthesis time grows linearly with respect to the num-
ber of symbolic variables. 75

Figure 4.9 NetComplete is > 600× faster than [101]. 75
Figure 5.1 An example of a simple load-balancing application and a

sequence of events, which leads a concurrency violation
that triggers a forwarding loop. 80

Figure 6.1 �e pipeline of SDNRacer. SDNRacer accepts an event
trace from production or emulated SDN network. First,
SDNRacer analyzes the event trace identifying harmful con-
sistency violations.�en, SDNRacer analyzes the reported
races and identify if any causes a violation of high-level
properties. To aid the developers, out of potentially thou-
sands of violations, SDNRacer reduces them to a handful of
representative ones which closely map to actual controller
bugs. 88

Figure 6.2 Happens-before rules capturing ordering of events in a trace π. 96
Figure 6.3 Commutativity speci�cation of an OpenFlow switch. Note

that two read or two del operations always commute. . . 99

list of figures xxi

Figure 6.4 �e e�ect of SDNRacer �lters.When all �lters are applied,
more than 90% of all races are �ltered in 89% of the cases.
Commutativity �ltering is the most e�cient, followed by
Time-based �ltering. 113

Figure 6.5 �e e�ect of time-based �lter. Choosing smaller δ �lters
more races. With δ=2, SDNRacer can �lter more than 20%
of the races in 48% of the cases. While with δ=8, SDNRacer
can �lter 20% of the races in 40% of the cases. 114

Figure 6.6 �e e�ect of covered races. �e covered race can �lter more
than 10% of the races in 50% of the cases by itself. However,
its e�ect is minimal when used a�er the time �lter. 115

Figure 6.7 Analysis time for traces from Table 6.2. In 90% of the cases
SDNRacer can analyze the traces in less than 30 seconds. . 118

L I ST OF TABLE S

Table 3.1 SyNET’s synthesis times (averaged over 10 runs) for di�er-
ent number of routers, protocol combinations, and tra�c
classes. 50

Table 4.1 UsingCounter-ExampleGuided Inductive Synthesis (CEGIS)
to synthesize OSPF weights is considerably faster than a
naive OSPF algorithm which aims to solve all constraints
at once. 73

Table 4.2 Number of generated symbolic variables.�anks to partial
evaluation, NetComplete is able to evaluate between 7%
and 25% of the symbolic variables—making BGP synthesis
signi�cantly faster. 74

Table 6.1 While SDNRacer does not require controller instrumenta-
tion, adding few lines of instrumentation code enables to
�lter more harmless issues (around 20% more). 109

Table 6.2 Reported races and properties violations for di�erent traces
with applying time �lter using δ = 2. �e numbers in
bold are the �nal numbers of races and incoherent packets
reported to the user. 112

Table 6.3 SDNRacer clustering performance on traces computed over
a binary tree topology (200 steps, median on 15 repetitions). 117

xxiii

Part I

BACKGROUND

1
INTERNET ROUT ING

A computer network is a set of connected devices, called network nodes, exchanging
data with each other. Nowadays, network nodes exchange data using the Internet
Protocol (IP) [21, 22]; a connectionless and unreliable protocol whose goal is to relay
datagrams or IP packets across one or more networks. Network tra�c is a group of IP
packets moving across the network at a given point in time.
An end-system (the source) generates IP packets then sends them to another end-

system (the destination) via the network. Each end-system is assigned a numerical
label, called IP address, that is 32-bit long in IPv4 [21] or 128-bit long in IPv6 [22].
When an end-system generates a packet, it labels it with the source IP address (the
address of the end-system which generated the packet) and the destination IP address
(the address of the end-system to whom this packet is destined to). Related end-
systems (e.g., all students or all sta� members) are usually grouped and addressed
together using the concept of an IP pre�x. An IP pre�x (o�en denoted as IP/n)
identi�es a set of IP addresses whose �rst n bits are identical.�ese n bits identify
the “network” part of the IP address, while the remaining bits o�en identify the
end-system part of the address.
In this chapter, we introduce the main concepts of how IP networks work. First,

we present the IP router in Section 1.1; which is the primary device that is in charge
of computing in-network paths and forwarding tra�c.�en, we brie�y present, in
Section 1.2, the di�erent paradigms of how networks compute paths along which to
forward tra�c.�e following three sections, sections 1.3 to 1.5, highlight how inter-
domain routing, intra-domain routing, and So�ware-De�ned Networking (SDN)
implement IP routing. Finally, we de�ne network policies in Section 1.6.

1.1 ip router

End-systems belonging to the same IP pre�x can communicate with each other
directly or via devices such as network switches, while end-systems belonging to
di�erent pre�xes have to communicate via network gateways known as IP routers.
IP routers are composed of two logical planes: the control plane and the data plane;
see Figure 1.1.�e control plane decides how to forward packets (the path(s) each
packet takes in the network to reach its destination), while the data plane forwards
the tra�c accordingly.

3

4 internet routing

ge-0/0/1

ge-0/0/0

ge-0/1/1

ge-0/1/0Network
Interface Switch Fabric

Forwarding Information Base (FIB)

Data Plane

Routing Information Base (RIB)

OSPFStatic BGP

Con�gurations Remote Access Monitoring

Control Plane

Routing
Process

FIB Update

Figure 1.1:�e high-level architecture of an IP Router.

In the control plane, IP routing is the process of computing routing paths to
destination IP pre�xes in the network. A routing path is a set of network nodes that a
packet traverses to reach its destination. A router runs one or more routing protocols
to execute the IP routing task. Routing protocols compute the in-network routing
paths based on per-router local con�gurations, de�ned by the network operators,
and the information exchanged with other routers in the network (called peers or
neighbors). Each router stores the computed paths in a designated table called the
Routing Information Base (RIB) or the routing table.
By adapting the con�guration of each device, network operators can control their

routing behavior (e.g., which paths they prefer) and, by extension, their forwarding
behavior. To forward tra�c, each router stores for each destination the next hop
(i.e., a neighbor router that can reach the destination) in a designated table called
the Forwarding Information Base (FIB) or the forwarding table.�e union of all the
forwarding tables in the network is the network-wide forwarding state. Note that the
forwarding table is a subset of the routing table.�e network operators con�gure, as
local per-router con�gurations, how a router selects entries from the routing table as
forwarding table entries.

1.2 ip routing 5

In the data plane, packet forwarding is the act of sending packets along the selected
forwarding paths to the destination of each packet (the destination IP address in the
packet’s header).

1.2 ip routing

Traditionally, routers perform the IP routing task using one or more distributed
routing protocols. When using distributed routing protocols, each router runs an
instance of the protocol (in its control plane) and exchanges information (via protocol-
speci�c messages) about the network with the neighboring routers running the same
protocol.�en each router, locally, uses the information it learned about the network
and local parameters (i.e., per-router con�gurations de�ned by the network operator)
to compute the routing paths in the network.
A routing domain is a group of network routers managed by a single administrative

entity (e.g., one organization or team of network operators) [23]. In the context of the
Internet, an Autonomous System (AS) is a routing domain. We remark that network
operators may partition their network into multiple ASes to better enforce routing
requirements within the network. We refer to the internal ASes under the operators’
control as private and to the ASes visible on the Internet as public.
Nowadays, there are two families of distributed routing protocols: intra-domain

and inter-domain. Intra-domain routing protocols compute routing paths within one
routing domain, while inter-domain routing protocols compute routing paths across
multiple routing domains.
Routing protocols di�er by the type of routing paths that they are capable of

computing. For instance, routing protocols based on the Dijkstra algorithm (e.g., the
Open Shortest Path First protocol (OSPF)) can only compute routing paths that direct
tra�c along least-cost-paths. While policy-based protocols (e.g., the Border Gateway
Protocol (BGP)) can direct tra�c along non-shortest paths. In the meantime, OSPF
supports multi-path routing and is thus better suited for load-balancing tra�c (a
feature heavily used in practice), while BGP cannot forward tra�c along multiple
paths by default.

1.3 intra-domain routing

Intra-domain routing is concerned with computing routing paths within a single
administrative domain. Intra-domain protocols, also called Interior Gateway Protocols
(IGPs), provide optimal routing based on given criteria; e.g., link capacity or the
number of hops.

6 internet routing

�ere are two families of intra-domain routing protocols: distance-vector and
link-state protocols.

Distance-vector routing protocols. In this family, the distributed routing protocol
computes the best route based on the distance; i.e., a numerical metric (e.g., the
number of hops) to estimate the cost to reach the destination via this path. Generally,
this family of routing protocols works as follows: each router periodically exchanges,
with all its neighbors, the routing table (i.e., a table that lists network destinations
and how to reach them) and a distance to each destination in the network.�en,
upon receiving the updated routing table from its neighbor, each router updates the
distance of each destination and uses a distance-vector algorithm (e.g., Bellman-Ford
algorithm [24–26]) to compute the best route to each destination.�is family includes
routing protocols such as RIP [27], EIGRP [28], DSDV [29] and Babel [30].

Link-state routing protocols. Unlike the distance-vector routing protocols, the link-
state routing protocols do not share the distance vector to each destination. Instead,
each router advertises the state of each of its links to every other router.�en each
router builds an IGP adjacency graph (i.e., a weighted graph that represents the
connectivity of the network) and uses it to compute the routing table. Routers
construct the IGP adjacency graph in three steps. First, each router in the network
discovers its direct neighbors via periodically sending HELLO messages over
all its connected links. Second, each router �oods the network with a link-state
advertisement (LSA) containing: (i) the ID of the router that created the LSA; (ii) cost
of links to reach its directly connected neighbors; (iii) a sequence number identifying
the LSA version; and (iv) and a time-to-live (TTL) value for the LSA to prevent it from
in�nitely looping the network. Finally, every router constructs and IGP adjacency
map of the network based on the received LSAs and compute the best route(s) to each
destination in the network; generally, using a variant of the Dijkstra algorithm [31].
�is family includes protocols such as Open Shortest Path First (OSPF) [32, 33] and
Intermediate System to Intermediate System (IS-IS) [34].

1.4 inter-domain routing

Inter-domain routing is concerned with computing routing paths between di�erent
administrative domains. Path-vector protocols are commonly used for this purpose.
Generally, path-vector protocols work as follow: each router periodically exchanges,
with its neighbors, a path vector (i.e., a list of routers or ASes) to reach each network
destination.�en, each router uses a local policy to select the best route to use to
forward tra�c; for instance, the local policy might select the best route based on the
business agreement between two neighbors.

1.4 inter-domain routing 7

Name Description

Prefix A value that represents a set of destination IP addresses
LocalPref A positive integer that indicates the degree of preference for one route over

the other routes
Origin �e origin of the announcement: IGP, EGP, or Incomplete
MED (Multi-Exit Discriminator) A positive integer that indicates which of the

multiple routes received from the same AS is preferred
ASPath �e AS path to reach the destination, we use ASPathLen to denote the

length of the AS path
NextHop �e router to which to forward packets
Communities A list of tags carried with the announcement

Figure 1.2: Commonly used attributes in BGP announcements.

In today’s Internet, the Border Gateway Protocol (BGP), a path-vector protocol, is
the only used inter-domain routing protocol [35].�e network operators con�gure
each BGP-enabled router to establish peering sessions (a TCP connection) with other
BGP-enabled routers.�e BGP routers exchange routing information (i.e., BGP
announcements) via the peering sessions.�ere are two types of peering sessions;
eBGP and iBGP. eBGP peering sessions connect routers in di�erent ASes, while iBGP
peering sessions connect routers within a single AS.
Network operators may con�gure each BGP router with custom import and export

�lters; i.e., the BGP policies. A router processes each received announcement using
the import �lters, which may drop the announcement or modify its attributes;
see Figure 1.2 for the commonly used attributes. �en, the router selects one
announcement (of possibly many) for each IP pre�x as the best route. Finally,
the router processes best-routes using the export �lters, which may drop the
announcement or modify its attributes, then it forwards the result to its neighboring
routers. Note that a router propagates announcement it learns from its neighbors if
and only if the router selects the announcement as the best route, and the router’s
BGP export �lters do not drop the announcement.
BGP routers use a tie-breaking process when receiving (a�er applying the import

�lters) multiple announcements for the same destination pre�x.�is tie-breaking
process works in multiple steps until the process breaks the tie and selects only

8 internet routing

one announcement as the best route.�e following is the standard tie-breaking
process1 [35]:

1. Prefer higher LocalPref,

2. Prefer shorter ASPathLen,

3. Prefer lower origin type: IGP < EGP < Incomplete,

4. Prefer lower MED for announcements learned for the same peering AS,

5. Prefer announcements from external routers;

6. Prefer lower IGPCost, calculated by the network’s Internal Gateway Protocol
(IGP), such as OSPF,

7. Prefer lower BGP identi�er value (an unsigned integer value con�gured for
each BGP router),

8. Prefer the route received from the lowest peer address.

1.5 software-defined networking (sdn)

While distributed routing protocols have many advantages (e.g., scalability,
robustness), the physical coupling of the two logical planes in one device (the IP
router) has limited the innovation in computer networks. Commercial vendors
traditionally provide IP routers as closed boxes with limited access for researchers
and third parties [12]. Recently, So�ware-De�ned Networking (SDNs) has emerged as
an alternative paradigm to distributed routing protocols that couples the control and
data planes into IP routers. At its core, SDN is predicated around two key principles.
First, SDN argues for a physical separation between the control plane and the data
plane. Second, SDN argues for a (logical) centralization of the control logic, which
relies on standardized APIs, such as OpenFlow [12], to program forwarding state in
each network device (SDN switch).
In SDN, the network consists of multiple SDN-enabled switches and a logically-

centralized controller.�e switches communicate with the controller via standardized
APIs such as OpenFlow [12]. Each switch forwards packets based on the content
of its forwarding table.�e forwarding table of a switch is an ordered (by priority)
list of forwarding entries composed, among other things, of a match, actions, and
(optionally) a timeout value.�e match is a boolean predicate that identi�es a set

1 Some vendors extend the standard BGP tie-breaking process with additional steps, or give the option to
disable some of the steps.

1.6 network policies 9

of packets to which the corresponding forwarding actions are applied. Forwarding
actions includemodifying the packet’s header (e.g., change the destination IP address)
or sending the packet to the controller or a given output port.�ere are two types of
forwarding entry timeout values set by the controller: so�-timeout or hard-timeout.
So�-timeout value purges the forwarding entry a�er a set time since the last packet
matched it. Hard-timeout value purges the forwarding entry a�er a �xed amount of
time has elapsed since the controller wrote the entry to the �ow table. Forwarding
entry timeouts usually trigger a subsequent noti�cation to the controller.
�e SDN controller is in charge of computing the forwarding state and populating

each switch’s forwarding table with the information necessary to forward packets; this
process is called a network update. A network update is triggered either proactively or
reactively. External events to the network such a manual change from the network
operator trigger proactive network updates, while internal network events such as
link failures trigger reactive network updates.

1.6 network policies

Although the primary job of a computer network is to deliver IP packets via the data
plane, networks usually have many additional requirements on which packets to
deliver and how to deliver them. We refer to the set of requirements speci�ed by the
network operators as the network policies or intents. More precisely, network policies
are a set of conditions and constraints that specify: (i)which packets the networkmust
deliver or which packets the network must drop (e.g., for security reasons); and (ii)
what path(s) the network should use to deliver each packet. In the context of network
policies, tra�c class is a set of IP pre�xes handled according to the same policy.
Network operators o�en derive the network policies from business, performance,
and security objectives. For instance, the network operators of an Internet service
provider (ISP) might de�ne the policies of how their network forwards tra�c other
networks based on their business peering agreements [36].
Traditionally, the high-level network policies are de�ned informally, and o�en

scattered across human-readable documents (e.g., network design, requirements, and
speci�cations documents).�is informal approach created ambiguity about what the
network should do and made it harder to automate network management. In recent
years, researchers developed formal languages to capture high-level policies [13, 14,
16, 17, 37–44].�ese policy languages provide the network operators valuable tools to
unambiguously express the expected behavior of the network precisely and concisely.

Implementing network policies is the act of translating the high-level policies into a
compliant forwarding state; i.e., a forwarding state that forwards packets according

10 internet routing

to the intended policies. Implementing network policies di�ers widely based on the
network’s type.
In SDN networks, the controller directly compiles the high-level policy into a

compliant forwarding state. For instance, ONOS, a production-grade SDN controller,
provides an intent framework that allows the operators to express their intents (policy)
in high-level languages.�en ONOS automatically compiles a compliant forwarding
state and pushes it to switches [45].
On the other hand, implementing policies in traditional networks is not as direct

as SDN networks. In traditional networks, the network operators translate the high-
level policies to low-level con�gurations; low-level con�gurations are o�en vendor-
dependent. Note that the network operators have to derive low-level con�gurations
for every device in the network. For brevity, we say that con�gurations implement
a routing policy, while, in fact, the distributed routing protocol uses the given
con�gurations as an input to compute a forwarding state.

Part II

NETWORK CONF IGURAT IONS SYNTHES I S

2
NETWORK CONF IGURAT IONS SYNTHES I S PROBLEM
STATEMENT

Today’s computer networks are large dynamic distributed systems whose
requirements keep evolving with the business needs.�us, the network operators
keep changing the network policies to meet the ever-evolving requirements. To
implement network policies, network operators translate the high-level policies
into low-level, o�en vendor-dependent, con�gurations for every device in the
network; see Section 1.6.
However, translating the high-level policies into correct con�gurations is very

challenging and is prone to errors. �e network operators have to understand
potentially thousands of con�guration �les and complex-distributed protocols, then
decide on possible changes to parameters scattered across the con�guration �les
and predict the impact of these changes to the computed forwarding state. Errors
in translating the high-level policies into con�gurations lead to miscon�gurations.
More precisely,miscon�gurations are con�gurations that incorrectly implement the
intended high-level policies. Miscon�gurations violate the intended policies and
can cause network downtime. Ultimately, miscon�gurations can lead to substantial
�nancial and reputational losses. Every few months, downtimes involving major
players such as Verizon [2, 46], United Airlines [6], Google [4, 7, 47], NYSE [8], or
Facebook [1] make the news.
Several studies show that human-induced miscon�gurations, not physical failures,

explain the majority of downtimes [3, 10, 11]. To reduce miscon�gurations due to
human errors, network operators would write the network-wide policies as high-
level declarative speci�cations.�e high-level declarative speci�cations describe the
forwarding state they desire rather than the details of how the routing protocols would
converge to that state.�en they use a tool that automatically translates the network
policies into correct low-level con�gurations; we refer to this step as network-wide
con�gurations synthesis.
We start this chapter with amotivating example of hownetwork operatorsmanually

con�gure a network highlighting the key challenges and pitfalls in Section 2.1.�en,
we formally de�ne the network-wide con�gurations synthesis problem and present the
design space and the challenges for designing network con�gurations synthesis
frameworks in Section 2.2. In Section 2.3, we highlight our main contributions

13

14 network configurations synthesis problem statement

to address this problem. Finally, we review the related work of the network-wide
con�gurations synthesis problem in Section 2.4.

2.1 motivating example

A

B C

D

AS100 AS200

N1 N2
(a) Network Topology T

Router’s D con�gs
Router’s C con�gs
Router’s B con�gs
Router’s A con�gs
! Interface to D
interface Fa1/1/1
ip ospf cost 20
...

...
interface Fa1/1/2
ip ospf cost 12

...

(b) Con�gurations Col d

1. Traffic from A to N1 prefers:
A→ C → D.

2. Traffic from A to N2 prefers:
A→ D.

3. Traffic from A to E x t
prefers: A→ B → AS100.

4. Traffic from D to E x t
prefers: D → C → AS200.

(c) New Policy φRnew

Figure 2.1: To con�gure a network, the network operators consider the network topology
(2.1a), any existing con�gurations (2.1b) and the new routing policy to implement
(2.1c) as inputs.

In this section, we present a motivating example to showcase the need for network-
wide con�gurations synthesis. Speci�cally, we present a typical work�ow of manually
con�guring a network to implement new routing policies. We remark that the exact
work�ow of con�guring a network varies from one network to another. Here, we
focus on a generic work�ow to highlight the key challenges in manually con�guring
a network in order to motivate the need for automation.
In our example, the network operators are given new routing policies to implement

on an existing network; see Figure 2.1.�e new policies might re�ect security policies
ormight be generated by a tra�c engineering optimization tool [48, 49]. Furthermore,
the network operators may formally specify the new policy using a network policy
language; see Chapter 1. Additionally, we assume that existing routing policies
(implemented by the existing con�gurations) are known to the network operators, e.g.,
via documentation or tools such as Net2Text [50].�e task of the network operators
is to change the existing con�gurations and produce new con�gurations compliant
with the new policy; see Figure 2.2.

2.1 motivating example 15

A

B C

D

AS100 AS200

N1 N2

12
10
20

5

7 5

LP 200 LP 100

(a) Col d

Implements
BGP, OSPF, Static, ...

A

B C

D

AS100 AS200

N1 N2

E x t

N1, N2

(b) φRol dCon�gure
BGP, OSPF, Static, ..

A

B C

D

AS100 AS200

N1 N2

? ?
?

?

? ?

LP ? LP ?

(c) Cnew

Implements
BGP, OSPF, Static, ...

A

B C

D

AS100 AS200

N1 N2

E x tE x t

N1

N2

(d) φRnew

Figure 2.2: Network operators are presented with a network that is con�gured with Col d
(2.1b) and implements a known policy φRol d (2.2b).�e goal of the network
operators is to �nd a new con�guration Cnew that implements the required
new policy φRnew .

16 network configurations synthesis problem statement

2.1.1 Inputs

Now, we start describing the inputs that network operators typically consider before
con�guring a network; see Figure 2.1.

Input 1: Network Topology T. We consider a simple network topology, depicted
in Figure 2.1a, composed of 4 routers denoted A, B, C and D. Routers B and C
connect to two provider ASes; AS100 and AS200, respectively. Router D connects
two internal subnets N1 and N2.

Input 2: Existing Con�gurations Col d and Policy φRol d .�e existing routing policies
φRol d are as follow; see Figure 2.2b. For OSPF, the network prefers forwarding tra�c
entering the network at router A with a destination to either N1 or N2 along the
path A→ C → D. While for BGP, AS100 is the preferred provider to reach external
pre�xes; hence, each router uses the least-cost OSPF path to router B that is connected
to AS100.
�e network is running OSPF and BGP routing protocols. �e existing

con�gurations Col d are as follow. An iBGP mesh is running on all the routers in the
network. Additionally, the network is con�gured to peer with two ASes (AS100 and
AS200) to reach external pre�xes Ext.�e BGP con�gurations set the LocalPref to
100 for the pre�xes that router C learns from AS200, while it sets the LocalPref to
200 for all pre�xes that router B learns from AS100; making AS100 themost preferred
peer. For OSPF, we mark the cost of each link on the topology in Figure 2.2a. We
assume the link cost is symmetrical; i.e., the cost is the same in each direction.

Input 3: New Routing Policy φRnew . In this example, the network operators want to
implement new internal and peering routing policies φRnew ; see Figure 2.2d.
�e new internal routing policy load-balances tra�c entering the network through

router A as follows.�e network should prefer forwarding tra�c along the path
A → C → D if the destination of the tra�c is N1. While if the destination of the
tra�c is N2, then the network should prefer forwarding the tra�c along the direct
path A→ D. We remark that this policy only de�nes the �rst preference and other
available paths should be used in case the most-preferred path is not available, hence
guaranteeing reachability.
If tra�cwith a destination Ext is entering the network at routerA, then the network

should prefer forwarding that tra�c along the path A → B → AS100. While if the
tra�c with a destination Ext is entering the network at router D, then it should exit
via router C to AS200.

2.1 motivating example 17

2.1.2 Con�gurations Pitfalls

We show some of the common miscon�gurations pitfalls that network operators
might encounter while manually con�guring a network.

Pitfall 1: Not Considering Protocol Dependencies. Let us consider changing the BGP
import policies to comply with φRnew . Intuitively, the new policy requires using both
ASes (AS100 and AS200) as upstream providers. Considering Col d (Figure 2.2a), one
standing observation is that the LocalPref values are not equal in the BGP import
policies; hence, BGP selects only the AS with the highest LocalPref value. One
easy change is to recon�gure BGP import policies such that pre�xes learned from
either AS100 or AS200 have the same LocalPref values; see Figure 2.3a. However,
this solution is not su�cient to implement φRnew because it does not consider the
IGP cost. By just changing the LocalPref, iBGP is going to propagate routes from
AS100 and AS200 to router A. Router A is going to prefer routes learned from AS200
via path A → C because the path A → C → AS200 has a lower OSPF cost than
the path A → B → AS100 1; see Figure 2.3b. Such miscon�guration could have
catastrophic implications. For instance, this miscon�guration could congest the link
A→ C (i.e., the network sending more tra�c over this link than its capacity) or even
worse sending tra�c using the link A→ C might break some security policies; some
security policies might prevent using less secure links for speci�c tra�c classes.

Pitfall 2: Only Considering Local Values. To implement the new BGP policy in
φRnew , the network operators have to change both the BGP import policies and OSPF
link weights. A�er changing the LocalPref, one possible change to IGP paths is to
lower the link cost from A to B. However, if the network operators set the link cost to
a low value, see Figure 2.3c, tra�c destined to N1 and N2 will start �owing through
the path A→ B → C → D; see Figure 2.3b. In this example, the network operators
need to consider weights such that the cost of path A→ B is less than the cost of path
A→ C but greater than the cost of the path A→ C → D.

Pitfall 3: Protocols Expressiveness.Networks run one or more routing protocols that
are capable of expressing di�erent policies; i.e., di�erent protocols are capable of
computing di�erent forwarding paths.�e network operators need to consider if the
protocols running in the network are capable of implementing the intended policies
or not. For instance, in OSPF, the tra�c for all pre�xes between any two routers must
follow the same path (or paths in the case of ECMP). Hence, OSPF is not capable
of implementing the internal routing requirements in φRnew ; since it requires using
di�erent paths between routers A and D to forward tra�c destined for N1 and N2.
In this case, the network operator must use a di�erent protocol to implement this

1 For simplicity, we assume that the routers are con�gured to ignore AS path attribute.

18 network configurations synthesis problem statement

A

B C

D

AS100 AS200

N1 N2

12
10
20

5

7 5

LP 200 LP 200

(a) Cwrong1

Implements
BGP, OSPF, Static, ...

A

B C

D

AS100 AS200

N1 N2

E x tE x t

(b) φR wrong1

A

B C

D

AS100 AS200

N1 N2

2 10
20

5

7 5

LP 200 LP 200

(c) Cwrong2

Implements
BGP, OSPF, Static, ...

A

B C

D

AS100 AS200

N1 N2

E x tE x t

(d) φR wrong2

A

B C

D

AS100 AS200

N1 N2

9 10
20

5

7 5

LP 200 LP 200

(e) Cwrong3

Implements
BGP, OSPF, Static, ...

A

B C

D

AS100 AS200

N1 N2

E x tE x t

(f) φR wrong3
Figure 2.3: Common miscon�gurations pitfalls. Figures 2.3a and 2.3b show

a miscon�guration due to not considering the dependencies between routing
protocols. Figures 2.3c and 2.3d show a miscon�guration that is caused by only
considering local link costs. Figures 2.3c and 2.3d show that the routing policy
cannot be implementable by OSPF.

2.2 the network-wide configurations synthesis problem 19

A

B C

D

AS100 AS200

N1 N2

9 10

20

5

7 5

LP 200 LP 200

dst: N2

Figure 2.4: Correct con�guratoins Cnew that implements the routing policies φRnew in
Figure 2.1c.

requirement. For instance, the network operators could keep the existing OSPF link
costs such that tra�c destined to N1 uses the path A→ C → D, but install a static
route at A to forward tra�c destined to N2 via the direct path A→ D.

2.1.3 Correct Con�gurations

Now, we present a correct con�guration Cnew that implements the routing policies for
our example.We remark that there aremultiple con�gurations to implement the given
routing policies; we only show one of them.�e changes to the old con�gurations
are as follow:

1. Set the LocalPref for announcements learned from AS200 to 200.

2. Set the link weight for the link A− B to 9.

3. Setup a static route on router A such that tra�c destined to pre�x N2 goes
directly to router D via the link A−D.

2.2 the network-wide configurations synthesis problem

Informally, a network-wide con�gurations synthesis framework takes as inputs
(see Figure 2.5): (i) a model of the network (also called network speci�cation); (ii)
any existing con�gurations; (iii) the network topology; and (iv) high-level routing
policies.�e network speci�cations capture the behavior of the various distributed
routing protocols running in the network and the interactions between them, allowing

20 network configurations synthesis problem statement

network
topology

high-level
requirements

Synthesizer

network-wide
configurations

network model
(specifications)

existing
configurations
 (if any)

Figure 2.5: A network-wide con�gurations synthesis framework takes as input: network
topology, routing policies, any existing con�gurations, and a network model
of the routing protocols and the interactions between them, then produces
network-wide con�gurations that induce a forwarding state satisfying the
intended policies.

the synthesizer to predict the forwarding state of the network under given inputs.
Network operators o�en con�gure networks incrementally as the business needs
change. If a synthesizer accepts the existing con�gurations as input, the synthesizer
will be able to produce con�gurations with minimal changes and are similar in style
to the existing ones.�e network topology de�nes the devices in the network and the
links between them.�e high-level policies capture the network operators’ intents.
Formally, we de�ne the network-wide con�gurations synthesis problem as follows:

De�nition 2.2.1. Network-wide Con�gurations Synthesis Problem
Given a network speci�cationN , which de�nes the behavior of all routing protocols
run by the routers, a set of routing policies φR de�ned over the network-wide
forwarding state, and (optionally) any existing con�gurations Col d , �nd a new
con�gurations Cnew such that the routers converge to a network-wide forwarding
state satisfying φR .

2.2.1 Con�gurations Synthesis Design Space

To solve the network-wide con�gurations synthesis problem, one must ask three
essential questions: (i) which routing protocols to support?; (ii) how to deal with
existing con�gurations?; and (iii) how to build synthesis frameworks that can scale
to support large production networks?

2.2 the network-wide configurations synthesis problem 21

Supporting Multiple Routing Protocols

Network operators prefer to rely as much as possible on distributed routing protocols
(as opposed to using static routes) to compute the forwarding state to ensure network
reliability and scalability. For instance, a typical ISP runs IS-IS as the IGP protocol
and uses BGP to peer with other ISPs. While warehouse-scale data centers o�en
choose to run a single routing protocol (e.g., BGP) to simplify its operations.
A network-wide con�gurations synthesis framework might support one or more

routing protocols.�e choice of how many and which routing protocols a given
network-wide con�gurations synthesis framework supports a�ects the practicality,
expressivity, and scalability of the system. For instance, if a synthesis framework
supports a single routing protocol, it is only applicable to networks running one
protocol (e.g., data centers running only BGP). Additionally, these frameworks can
only support the policies that the given protocol can implement. While using more
routing protocols may allow the network operator to implement richer policies. A
practical con�gurations synthesizer should strike a balance between the number of
protocols running in the network and classes of network policies it can support.�is
balance should maximize the use of each routing protocol and avoid the complexities
of running unnecessary routing protocols. Ideally, the network operator should be
able to de�ne a preference over which routing protocols to be used to implement a
given policy.

Handling Existing Con�gurations

A network-wide con�gurations synthesis framework can choose to either generate
new con�gurations from scratch for every policy change or generate minimum
changes to the existing con�gurations.
Generating new con�gurations from scratch, whenever the policy or the network

topology changes, enables the synthesis framework to choose a con�gurations
style that is optimal for synthesis. While this choice allows for greater scalability,
operators rarely con�gure networks from scratch in practice; instead, they implement
small incremental policy changes during the lifetime of the network. Additionally,
generating entirely new con�gurations for every policy change creates additional
operational overhead. Namely, this approach creates complexities in con�gurations
management and potentially increases the convergence time of routing protocols; as
more routers are a�ected by the change.
A general synthesis framework should be able to accept the initial con�gurations

and to synthesize new con�gurations that only re�ect the policy change; i.e., the
changes in the con�gurations should be proportional to the changes in the policy. In

22 network configurations synthesis problem statement

general, the con�gurations generated and the subsequent changes should be small in
size such that a human operator or static analyzers can easily verify them.

Scalability

A practical con�gurations synthesis framework should be able to scale to handle
production-size networks in terms of the number of routers in the network and the
number of tra�c classes de�ned in the policy. As we described, the framework’s
choice of the supported routing protocols and the style of the output con�gurations
a�ects the scalability of the system.
Distinct routing protocols o�en depend on one another, making it challenging to

ensure that they collectively compute a compatible forwarding state. For instance,
BGP uses the path costs computed by the intra-domain protocol (e.g., OSPF) to
select the best route.�is dependency between protocols complicates the synthesis
process; the synthesizer, in some cases, cannot simply synthesize con�gurations
for each routing protocol independently, but rather need to consider them jointly.
Synthesis frameworks designed to support only one routing protocol can leverage
many protocol-speci�c optimizations without having to worry about interactions
between di�erent routing protocols.�is design choice enables such frameworks to
synthesize con�gurations for large network sizes (>1, 000 devices).
Regardless of how the synthesis framework handles any existing con�gurations,

the search space of con�guration parameters is massive, and it is thus di�cult to
�nd con�gurations that implement the intended policies. To make any synthesis
framework feasible to use, the synthesis framework needs to utilize intelligent search
heuristics to prune the search space of the possible con�gurations.

2.3 our contributions

We next summarize our main contributions to address the network-wide
con�gurations synthesis problem.

1. In Chapter 3, we present a general solution to the network-wide con�gurations
synthesis problem. In particular, we formulate the network-wide con�gurations
synthesis problem in terms of synthesizing inputs to a strati�ed Datalog
program.�e strati�ed Datalog program captures the behavior of the network;
i.e., the distributed protocols ran by routers together with any protocol
dependencies. Here, the output (the �xed point) of a Datalog program
represents the stable forwarding state of the network.�en we develop an
algorithm to �nd an input for a strati�ed Datalog programwhere the program’s
�xed point satis�es the given requirements.�is new approach allows us to

2.4 related work 23

build a general network con�gurations synthesis framework (called SyNET); i.e.,
it can synthesize con�gurations for any routing protocol that can be expressed
as strati�ed Datalog. However, as we show in our evaluation, the generality
comes at the cost of scalability.We note that this contribution solves the general
strati�ed Datalog input synthesis problem.

2. In Chapter 4, we describe a sketch-based con�guration synthesis approach
and the NetComplete system based on it. In this approach, the network
operators express the high-level policies in addition to constraints on the
output con�gurations. �e constraints on the output con�gurations are
expressed by sketching parts of the existing con�guration that should remain
intact (capturing a high-level insight) and “holes” represented with symbolic
values which the synthesizer should instantiate (e.g., OSPF weights, BGP
import/export policies). NetComplete then autocompletes these “holes” such
that the resulting con�guration leads to a network that exhibits the required
behavior.�is new approach allows us to build a system that supports multiple
routing protocols and yet scales to larger network sizes while supporting
existing con�gurations and producing changes that are understandable by
network operators.

2.4 related work

Intent-based Networking and SDN Languages. �e importance of relying on high-
level abstractions in network management has received considerable attention,
speci�cally in the context of So�ware-De�nedNetworking (SDN) [14, 16, 38, 39, 41–43,
51, 52].�is in�uence goes beyond academics with two of the largest production-grade
SDN controllers (ONOS and OpenDayLight) now providing declarative network
management [45, 53].
Our work brings programmability to traditional networks, by enabling operators

to enforce policies expressed in high-level SDN-like languages such as Genesis [38]
or Frenetic [14]. Our work, therefore, complements the above initiatives and enables
them to be used beyond OpenFlow or P4-enabled networks.

Network Con�guration Synthesis. Recently, multiple works have aimed at
synthesizing con�gurations out of high-level requirements [37, 54–58].
Con�gAssure [54] is a general system that accepts requirements in �rst-order

constraints as inputs and outputs a con�guration satisfying the requirements. For
example, Con�gAssure can be used to express requirements such as ”all interfaces
must have unique addresses,“ and it can automatically compute a compliant
con�guration that assigns addresses to interfaces. �e �xed point computation

24 network configurations synthesis problem statement

performed by routing protocols cannot be captured using the formalism used in
Con�gAssure. Additionally, as shown in our evaluation for NetComplete and SyNET,
a direct encoding of routing computations into constraints goes beyond what existing
solvers can handle.�erefore, Con�gAssure cannot be used to specify networks’
routing policies and, in turn, to synthesize protocol con�gurations for networks.
Route Shepherd [57, 58] takes a partial speci�cation of BGP preferences and derives

constraints over link costs that capture the absence of BGP instability. In contrast,
our work models the derivation of BGP preferences and also synthesizes the BGP
con�guration.
Propane [37] and PropaneAT [55] produce BGP con�gurations out of high-level

requirements. Having the freedom to output any con�guration enables these systems
to use templates and, in turn, to scale to large networks. In contrast, both techniques
we develop in this dissertation support partial con�gurations for multiple protocols
(OSPF, BGP, and static routes), which prevents us from leveraging speci�c protocol-
speci�c templates. While techniques pay for this �exibility in terms of scalability,
they are still fast, synthesizing con�gurations for practical network-sizes within a
reasonable time (seconds for NetComplete and less than 24h for SyNET).
Zeppelin [56] synthesizes con�gurations for traditional control planes (i.e., using

BGP, OSPF, and static routes). Zeppelin uses a two-phase approach. First, Zeppelin
uses Genesis [38] to synthesize a set of forwarding paths compliant with the given
policy (note, there are zero or more sets of forwarding paths compliant with a given
policy). Second, Zeppelin tries to synthesize control-plane con�gurations such that
the control plane converges to the synthesized forwarding paths in the �rst step. If
Zeppelin fails to �nd con�gurations to implement the given forwarding paths, it
retries again using Genesis to generate a new set of policy-complaint forwarding
paths. In our work, we assume a front-end that accepts SDN-like policy language
(e.g., Genesis [38], Propane [37]) but we did not implement a full loop to retry
with di�erent forwarding paths as in Zeppelin. Zeppelin encodes the notation of
hierarchical control planes; e.g., it groups the routers into domains running OSPF
and connects them via BGP and static routes. Zeppelin uses a greedy stochastic
search algorithm, Markov Chain Monte Carlo (MCMC) sampling method [59], to
�nd a domain assignment that minimizes BGP con�gurations overhead (i.e., the
number of local preference entries) and the need for static routes.While SyNET has no
notation of domains, NetComplete allows the operator to encode the OSPF domains
directly in the con�gurations sketch.�e domain assignment can be done manually
or automatically using the Zeppelin engine. To synthesis OSPF con�gurations,
Zeppelin uses an LP-solver making it 2-3 orders of magnitude faster than the direct
SMT encoding used in SyNET. However, the CEGIS algorithm we developed in
NetComplete achieves similar speedups. Moreover, Zeppelin directly encodes the

2.4 related work 25

notation of resiliency (only, 1-link failures). In our work, we encode resiliency as any-
path requirements. In which, the operator provides multiple paths as a requirement
allowing, potentially, support for more than 1-link failure. Zeppelin gives the network
operators coarse-grained control over the output con�gurations (e.g., the number
of domains), while NetComplete gives the operator �ne-grained control of the
synthesized con�gurations.
CPR [60] uses high-level abstraction to represent the network’s control plane

as graphs. �en it poses the synthesis problem as �nding the minimal changes
on the computed graphs to re�ect the new policy. �is problem formulation
allows CPR to be very e�cient in implementing small policy changes on existing
con�gurations; however, unlike SyNET, it is not able to synthesize con�gurations
from scratch. CPR can only synthesize con�gurations that are slightly di�erent than
the input con�gurations, while in NetComplete, the network operator can use both
�ne-grained and coarse-grained con�guration sketches allowing NetComplete to
synthesize con�gurations for policies that are widely di�erent.
Synthesizers such as NetEgg [40, 61], NetGen [62], and Genesis [38] target SDN

environments and aim to derive controller programs (instead of con�gurations) out
of requirements. While their goal is similar to ours, our target is di�erent (distributed
protocols vs. centralized controller).

Network Veri�cation. Network veri�cation approaches are used to check if the
con�gurations correctly implement the high-level policies. In contrast, our work
in NetComplete and SyNET focuses on synthesizing correct con�gurations, which
subsumes veri�cation; e.g., NetComplete can verify policies given the con�guration
sketch is concrete (with no holes).
For networks running distributed routing protocols, researchers introduced two

main approaches to check if a given con�guration is correct.�e �rst approach is to
use static analysis tools to verify the correctness of the con�guration �les [63–66].
However, the existing con�guration analysis tools handle con�gurations complexity
by restricting the scope of application; i.e., considering only speci�c protocols or
network properties.�e second approach is to model the entire control plane [64, 67–
72]. In this approach, the tools designers have tomake a trade-o� regarding the �delity
of the control-plane model; i.e., the level of details included in the model. Using a
high-�delity model (i.e., modeling everything) results in a slow veri�cation tool [67].
In contrast, using a more abstract model a�ects the accuracy of the model and may
prevent the network operator from checking the correctness of certain properties [64,
68]. Further, to make use of such tools, the network operators need to provide the
intended high-level policy as invariants over the network-wide forwarding state. Next,
we summarize the closely related veri�cation tools.

26 network configurations synthesis problem statement

FSR [72] encodes BGP preferences using routing algebra [58] and veri�es safety
properties (e.g., BGP stability) using SMT solvers. Bagpipe [69] formalizes BGP
and presents an analyzer for BGP con�gurations. While our work focuses on the
multi-protocol case.
ARC [68] uses a novel graph-based high-level abstraction to verify the correctness

of a network’s control plane under arbitrary link failures.�e key to ARC’s scalability
is that ARC can verify a large set of correctness properties without the need to generate
the network-wide forwarding state from the given con�gurations.
Bat�sh [67] encodes routing protocols in Datalog and uses a Datalog solver to

check conformance with routing requirements. In Bat�sh’s encoding, the input to the
Datalog program is the network con�gurations and the Datalog solver computes a
�xed-point for this program.�e �xed-point of the Datalog program is the network-
wide forwarding state.�en, Bat�sh reasons over the �xed-point of the Datalog
program to verify various network properties. In SyNET we use strati�ed Datalog
to model the network, however, SyNET does not use a Datalog solver to compute a
�xed-point of the strati�ed Datalog. Instead, SyNET takes an input the �xed-point
(i.e., the requirements) and uses SMT solver to synthesize inputs to the strati�ed
Datalog program such that if a Datalog solver runs the Datalog program, then it
produces the given requirements.
Minesweeper [73] encodes the network as SMT formulas similar to our work in

NetComplete. However, the purpose of the two systems is di�erent. Minesweeper
can only verify existing con�gurations, while NetComplete can synthesize new
con�gurations and verify existing ones (if the user provides concrete con�gurations).
Both systems build a model of the networkN . One of the di�erences in the encoding
is that Minesweeper is more concrete since the con�gurations are concrete, while
NetComplete’s model has more free variables that correspond to the holes in the
con�gurations sketch. Given the larger number of free variables, our model can be
slower to solve using an SMT solver.�us, we developed optimization techniques
(e.g., CEGIS algorithm and BGP Propagation graphs) to reduce the search time.
Without optimizations to reduce the search space, using Minesweeper to synthesize
con�gurations would be very slow for any practical application. Given a Policy φR
and network modelN (as encoded by Minesweeper or NetComplete), we ask the
SMT solver slightly di�erent questions. Minesweeper asks ifN ∧¬φR is unsat (that
the policy is not violated).While NetComplete asksN ∧φR is sat and read the values
assigned free variables ofN (those are the holes in the con�guration sketch).
Analysis of Datalog Programs. Datalog has been successfully used to declaratively
specify a variety of static analyzers such as points-to analysis and race detection [74,
75] . It has also been used to verify network-wide con�gurations for protocols such as
OSPF and BGP [67]. Recent work [76] has extended Datalog to operate with richer

2.4 related work 27

classes of lattice structures. Further, the µZ tool [77] extends the Z3 SMT solver with
support for �xed points.�e focus of all these works is on computing the �xed point
of a program P for a given input I and then checking a property φ on the �xed point.
�at is, they check whether [[P]]I ⊧ φ. All of these works assume that the input is
provided a priori. In contrast, SyNET discovers an input that produces a �xed point
satisfying a user-provided property.
�e algorithm presented in Zhang et al. [75] can be used to check whether certain

tuples are not derived for a given set of inputs. Given a Datalog program P (without
negation in the literals), a set Q of tuples, and a set I of inputs, then the algorithm
computes the set Q ∖⋂{[[P]]I ∣ I ∈ I}.�is algorithm cannot address our problem
because it does not support strati�ed Datalog programs, which are not monotone.
While their encoding can be used to synthesize inputs for each stratum of a strati�ed
Datalog program, it supports only negative properties, which require that certain
tuples are not derived. Our approach in SyNET is thus more general than [75] and
can be used in their application domain.
�e FORMULA system [78, 79] can synthesize inputs for non-recursive Datalog

programs, as it supports non-recursive Horn clauses with strati�ed negation (even
though [80] which uses FORMULA shows examples of recursive Horn clauses w/o
negation). Handling recursion with strati�ed negation is nontrivial as bounded
unrolling is unsound if applied to all strata together. Note that virtually all network
speci�cations require recursive rules, which our system supports.

Symbolic Analysis and Program Synthesis. Our SyNET’s synthesis algorithm is
similar in spirit to symbolic (or concolic) execution, which is used to generate inputs
for programs that violate a given assertion automatically (e.g., division by zero);
see [81–83] for an overview.�ese approaches unroll loops up to a bound and �nd
inputs by calling an SMT solver on the symbolic path. While we also �nd inputs for
a symbolic formula, the entire setting, techniques, and algorithms are all di�erent
from the standard symbolic execution setting.
Counter-example guided synthesis approaches are also related [84]. Typically,

the goal of program synthesis is to discover a program, while in our case the
program is given and we synthesize an input for it. In NetComplete, we showed a
novel instantiation of counter-example guided inductive synthesis (CEGIS) [84] for
synthesizing weights in OSPF. CEGIS is a general concept that has become popular
in the program synthesis community. A key challenge in using it is �nding e�ective
ways to specialize it (e.g., e�cient representation of the hypothesis space, interaction
with the SMT solver) to the particular application domain (e.g., networking and the
OSPF protocol in our case).

3
GENERAL NETWORK -WIDE CONF IGURAT IONS SYNTHES I S

In this chapter, we present the �rst general solution to the network-wide
con�gurations synthesis problem. Our solution accepts (i) the network speci�cation
and (ii) the routing requirements as inputs and outputs real network con�gurations.
Considering the network speci�cation as input to our solution allows us to develop
a synthesizer that not only works for a limited set of hard-coded protocols but also
works for any existing or future protocol(s) speci�ed in the network speci�cation as
an input. We remark that the speci�cation is de�ned once for each protocol; one can
imagine a library of protocol speci�cations available for reuse.
Our approach to solve this problem is based on two steps.
First, we use strati�ed Datalog to capture the behavior of the network, i.e., the

distributed routing protocols ran by the routers in the network and the dependencies
between protocols. We refer to this Datalog program as the network speci�cationN .
Here, the input to the Datalog program represents the network-wide con�gurations,
while the �xed point of a Datalog program represents the stable forwarding state of
the network. Datalog is indeed particularly well-suited for describing distributed
routing protocols in a declarative way [67, 85].

Second, and a key insight of our work, we pose the network-wide con�gurations
synthesis problem as an instance of �nding an input for a strati�ed Datalog program
where the program’s �xed point satis�es a given property. In this problem formation,
the network operators provide merely the high-level requirements on the forwarding
state (i.e., which is the same as requiring the Datalog program’s �xed point to satisfy
those requirements), and our synthesizer automatically �nds an input I to the Datalog
program (i.e., which identi�es the wanted network-wide con�gurations). We remark
that our Datalog input synthesis algorithm is a general, independent contribution,
and is applicable beyond networks.
We start this chapter with a brief introduction to strati�ed Datalog programs

in Section 3.1.�en, in Section 3.2, we show how to express network speci�cationN ,
the routing requirements φR and the network-wide con�gurations C declaratively.
A�erward, we formulate the network-wide synthesis problem in terms of input
synthesis for strati�ed Datalog in Section 3.3, and we present the �rst input synthesis
algorithm for strati�ed Datalog in Section 3.4.�is algorithm is of broader interest
and is applicable beyond networks. In Section 3.5 we describe how to use the Datalog’s
input synthesis algorithm to synthesis network-wide con�gurations. In Section 3.6,

29

30 general network-wide configurations synthesis

(Values) v ∈ Vals (Atom) a ∶∶= p(t)
(Variables) X,Y ∈ Vars (Literal) l ∶∶= a ∣ ¬a

(Term) t ∶∶= X ∣ v (Rule) r ∶∶= a ← l
(Predicates) p, q ∈ Preds (Program) P ∶∶= r

Figure 3.1: Syntax of strati�ed Datalog.

we present an instantiation and an end-to-end implementation of our input synthesis
algorithm along with network-speci�c optimizations in a system called SyNET.
Finally, Section 3.7 concludes this chapter.

3.1 background : stratified datalog

We brie�y overview the syntax and semantics of strati�ed Datalog.

Syntax. Datalog’s syntax is given in Figure 3.1. We use r, l , and t to denote zero or
more rules, literals, and terms separated by commas, respectively. A Datalog program
is well-formed if for any rule a ← l , we have vars(a) ⊆ vars(l), where vars(l) returns
the set of variables in l .
A predicate is called extensional if it appears only in the bodies of rules (right

side of the rule), otherwise (if it appears at least once in a rule head) it is called
intensional. We denote the sets of extensional and intensional predicates of a program
P by edb(P) and idb(P), respectively.
ADatalog program P is strati�ed if its rules can be partitioned into strata P1, . . . , Pn

such that if a predicate p occurs in a positive literal in the body of a rule in Pi , then
all rules with p in their heads are in a stratum Pj with j ≤ i. While, if a predicate q
occurs in a negative literal in the body of a rule in Pi , then all rules with q in their
heads are in a stratum Pj with j < i. Strati�cation ensures that predicates that appear
in negative literals are fully de�ned in lower strata.
We syntactically extend strati�ed Datalog with aggregate functions such as min and

max.�is extension is possible as strati�ed Datalog is equally expressive to Datalog
with strati�ed aggregate functions [86].

Semantics. Strati�ed Datalog’s semantics is given in Figure 3.2. LetA = {p(t) ∣ t ⊆
Vals} denote the set of all ground (i.e., variable-free) atoms.�e complete lattice
(P(A),⊆,∩,∪,∅,A) partially orders the set of interpretations P(A).
Given a substitution σ ∈ Vars→ Valsmapping variables to values. Given an atom a,

we write σ(a) for the ground atom obtained by replacing the variables in a according

3.2 declarative network specification 31

(Substitutions) σ ∈ Vars→ Vals
(Ground atoms) A = {p(t) ∣ t ⊆ Vals}

(Consequence TP ∈ P(A)→ P(A)
operator) TP(A) = A∪ {σ(a) ∣ a ← l1 . . . ln ∈ P,∀l i ∈ l . A ⊢ σ(l i)},

where A ⊢ σ(a) if σ(a) ∈ A
and A ⊢ σ(¬a) if σ(a) /∈ A

(Input) I ⊆ {p(t) ∣ p(t) ∈ A, p ∈ edb(P)))}
(Model) [[P]]I = Mn ,

where M0 = I andM i = ⋂{A ∈ fp TPi ∣ A ⊆ M i−1}

Figure 3.2: Semantics for a Datalog program P with strata P1 ∪⋯∪ Pn .

to σ ; e.g., σ(p(X)) returns the ground atom p(σ(X)).�e consequence operator
TP ∈ P(A)→ P(A) for a program P:

TP(A) = A∪ {σ(a) ∣ a ← l1 . . . ln ∈ P,∀l i ∈ l . A ⊢ σ(l i)}

where A ⊢ σ(a) if σ(a) ∈ A and A ⊢ σ(¬a) if σ(a) /∈ A.
An input for P is a set of ground atoms constructed using P’s extensional predicates.

Let P be a program with strata P1, . . . , Pn and I be an input for P.�e model of P for
I, denoted by [[P]]I , isMn , whereM0 = I andM i = ⋂{A ∈ fp TPi ∣ A ⊆ M i−1} is the
smallest �xed point of TPi that is greater than the lower stratum’s modelM i−1.

3.2 declarative network specification

We �rst describe how to declaratively specify the behavior of the network as a
Datalog program.�en, we discuss how to specify routing requirements as constraints
over the �xed point of a Datalog program. Finally, we describe how network-wide
con�gurations are expressed as inputs to Datalog programs.

3.2.1 Specifying Networks

To capture a network’s behavior, we model (i) the behavior of the routing protocols
and their interactions, and (ii) the topology of the network.

Expressing Network Speci�cation in Strati�ed Datalog.We formalize the network
speci�cationN as a strati�ed Datalog program P.�e Datalog program P derives the

32 general network-wide configurations synthesis

1 OSPFRoute (TC , Router , NextHop , Cost) ←
Se tNetwork (Router , TC) ,
SetOSPFEdgeCost (Router , NextHop=� , Cos t =0)

2 OSPFRoute (TC , Router , NextHop , Cost) ←
Cost=Cos t 1 +Cost2 ,
SetOSPFEdgeCost (Router , NextHop , Co s t 1) ,
OSPFRoute (TC , NextHop , R ’ , Cos t2)

3 minOSPF (TC , Router , min<Cost >) ←
OSPFRoute (TC , Router , NextHop , Cost)

4 BestOSPFRoute (TC , Router , NextHop) ←
minOSPF (TC , Router , Cos t) ,
OSPFRoute (TC , Router , NextHop , Cost)

5 Route (TC , Router , Next , " s t a t i c ") ←
S e t S t a t i c (TC , Router , NextHop)

6 Route (TC , Router , NextHop , " o s p f ") ←
BestOSPFRoute (TC , Router , NextHop)

7 minAD(TC , Router , min<Cost >) ←
Route (TC , Router , NextHop , Pro to) ,
SetAD (Proto , Router , Cos t)

8 Fwd (TC , Router , NextHop) ←
Route (TC , Router , NextHop , Pro to) ,
SetAD (Proto , Router , Cos t) ,
minAD(TC , Router , Cos t)

Figure 3.3: Partial network speci�cationN expressed as Datalog program.�is program
speci�cs OSPF, static routes, and selecting the best route to be the forwarding
entry based on the Administrative Distance (AD).

predicate Fwd(TC, Router, NextHop) for each tra�c class TC at each router Router.
�e union of all Fwd predicates represents the network’s global forwarding state.
As an example, we show (a subset of) of our OSPF formalization in strati�ed

Datalog in Figure 3.3. Furthermore, we show the relevant rules that de�ne how the
routing entries computed by OSPF are combined with those de�ned via static routes
to derive the Fwd predicates. We do not show the formalization of BGP for brevity.
In the OSPF model, speci�ed in Figure 3.3, there are two extensional (edb)

predicates SetOSPFEdgeCost and SetNetwork that are given by the network
con�gurations as input (or to be synthesized by our system). In more details, the
edb predicate SetOSPFEdgeCost(R1, R2, Cost) represents that the routers R1 and
R2 are neighbors connected by a link with cost Cost, while, the edb predicate
SetNetwork(Router, TC) represents that Router is directly connected (i.e., advertise)
tra�c class TC. In our example, a tra�c class is a set of one or more pre�xes.
�e �rst four lines, in Figure 3.3, concisely implement the shortest-path

computation performed by the routers running OSPF. More speci�cally, the �rst rule

3.2 declarative network specification 33

drives the predicate OSPFRoute for directly connected tra�c classes TC; i.e., OSPF can
forward tra�c to pre�xes directly attached to a router with zero cost.�e second rule
transitively computes multi-hop routing paths by summing up the costs associated
along all OSPF routes.�ese two rules combined derive the values for the intensional
predict OSPFRoute.�e third rule, minOSPF, derives the minimum cost OSPF route for
each router and each destination network by aggregating over all possibleOSPF routes.
�e predicate BestOSPFRoute(TC, Router, NextHop) represents the best OSPF route
selected by the router Router for the tra�c class TC to be the next hop NextHop.
At lines 5 and 6 in Figure 3.3, the predicate Route(TC, Router, NextHop, Proto)

captures the routing table. In our example, it captures static routes and the best OSPF
routes (we do not show BGP). It derives the next hops Next for a given tra�c class TC
on a given router Router and de�nes through which protocol Proto this route has
been learned.
Finally, lines 7 and 8 captures the forwarding state of the network.�e Datalog rule

in line 7 states that routers select, for each tra�c class TC, the forwarding entry with
the minimal administrative cost minAD calculated over all protocols via the Datalog
rule in line 8.
For more details on specifying routing protocols in Datalog, see works related to

declarative networking [85] and Datalog-based network veri�cation [67].

Network Topology. �e network topology T is also captured via Datalog rules (we
do not show this in Figure 3.3 for brevity). We model each router as a constant and
use predicates to represent the topology. For example, the predicate SetLink(R1,
R2) represents that two routers R1 and R2 are connected via a link, and we add the
Datalog rule SetLink(R1, R2)← true to de�ne such a link.

3.2.2 Specifying Requirements

We specify the requirements as function-free �rst-order constraints over the predicate
Fwd(TC, Router, NextHop), which de�nes the network’s forwarding state. We write
A ⊧ φ to denote that aDatalog interpretationA (i.e., inputs) satis�es φ. For illustration,
we describe how common routing requirements can be speci�ed:

Path(TC, R1, [R1, R2, .., Rn]) : �e path requirement requirement
stipulates that packets for tra�c class TC must follow the path R1, .., Rn.
�ese requirements are speci�ed as a conjunction over the predicate Fwd; i.e.,
Fwd(TC, R1, R2)∧⋯∧ Fwd(TC, Rn-1, Rn).

∀R1,R2 . Fwd(TC1, R1, R2)⇒ ¬Fwd(TC2, R1, R2) : �e tra�c isolation
requirement stipulates that the paths for two distinct tra�c classes TC1 and
TC2 do not share links in the same direction.

34 general network-wide configurations synthesis

Reach(TC, R1, R2) : �e reachability requirements stipulates that packets for
tra�c class TC can reach router R2 from router R1. �e predicate Reach is
the transitive closure over the predicate Fwd that is de�ned via Datalog rules.

∀TC , R . (¬Reach(TC, R, R)): �e loop-freeness is
a generic requirement stipulating that the forwarding plane has no loops.
�is requirement can be speci�ed as follow: ∀TC, R. (¬Reach(TC, R, R)).

More complex requirements, such as way pointing, can be speci�ed based on the
core function-free �rst-order constraints provided by SyNET. Further, SyNET can be
used as a backend for a high-level requirements language that is easier to use by a
network operator.

3.2.3 Network-wide Con�gurations

We represent the input (con�gurations) to the protocols deployed in the network as
edb predicates. Note, the Datalog program P that formalizes the protocols takes the
edb predicates as input. For instance, the edb predicate SetOSPFEdgeCost speci�es the
OSPF weights associated with the links connected to router in the network. Further,
a static route in the router’s con�guration is represented with the edb predicate
SetStatic(TC, Router, NextHop). We refer to all local router con�gurations as the
network-wide con�gurations C.
We remark that network-wide con�gurations must satisfy well-formedness

constraints φC , which can be directly speci�ed as constraints over the edb predicates
that represent con�gurations. For example, the costs in OSPF con�gurations must be
positive integers with a value less than 216.�is is formalized as:

∀R1, R2, Cost. (SetOSPFEdgeCost(R1, R2, Cost)⇒ Cost > 0)
∧ ∀R1, R2, Cost. (SetOSPFEdgeCost(R1, R2, Cost)⇒ Cost < 216)

To show how the network speci�cationN accepts the con�gurations as an input,
let us consider the Cnew in Figure 2.4 as example. We show the encoding of Cnew as
edb predicts in Figure 3.4. Here,N takes the predicate SetStatic(N2, A, D), which
represents static routes, de�nes a static route for N2 from A to D. Additionally, SetAD
de�nes the administrative cost of static routes to be lower than that of OSPF (so
static routes are preferred over forwarding entries computed by OSPF). Moreover,
the predict SetOSPFEdgeCost de�nes the link cost for every internal link the topology.
Similarly, BGP con�gurations, not shown in the example, can be speci�ed as edb
predicts. Note, in synthesis C is not known.

3.3 reducing network-wide configurations synthesis problem to stratified datalog input synthesis problem 35

1 Se tNetwork (D, N1)
2 Se tNetwork (D, N2)
3 S e t S t a t i c (N2 ,A ,D)
4 SetAD (A , 5 , " s t a t i c ")
5 SetAD (A, 1 0 , " o s p f ")
6 SetOSPFEdgeCost (A , B , 9)
7 SetOSPFEdgeCost (A , C , 1 0)
8 SetOSPFEdgeCost (A ,D, 2 0)
9 SetOSPFEdgeCost (B , C , 5)
10 SetOSPFEdgeCost (B ,D, 7)
11 SetOSPFEdgeCost (C ,D, 5)

Figure 3.4: Example con�gurations input to the network speci�cation N de�ned
in Figure 3.3 based on Cnew de�ned in Figure 2.4.

�e goal of a network-wide con�gurations synthesis framework to �nd edb
predicates that then transformed (via simple rewrite rules) to vendor-speci�c routers
con�gurations.

3.3 reducing network-wide configurations synthesis problem
to stratified datalog input synthesis problem

In this section, we pose the network-wide synthesis problem as the problem of input
synthesis for strati�ed Datalog.
Formally, the network-wide con�gurations synthesis problem that we consider

in this chapter is as follow. Given the two inputs a declarative network speci�cation
N and a high-level routing requirements φR , �nd a complaint con�gurations C
such that using the new con�gurations, the distributed routing protocols converge
to a network-wide forwarding state that satis�es the input requirements. We write
[[N]]C ⊧ φR to denote that a network speci�ed byN converges to a forwarding state
complaint with φR given a con�guration C, for short we write this as C ⊧ φR .
To reduce the network-wide con�gurations synthesis [[N]]C ⊧ φR to input

synthesis for strati�ed Datalog, we express the network speci�cationN as a strati�ed
Datalog program P.�e semantics of P is given by a �xed point, which is computed
by �rst partitioning P’s rules into strata P1, . . . , Pn and the iteratively computing, for
each startum Pi , the least �xed point that contains the least �xed point of the previous
stratum. We denote the resulting �xed point by [[P]].
An input I for P is a set of tuples constructed using P’s edb predicate symbols;

i.e., those that do not appear in the heads of P’s rules. We denote the �xed point
obtained when evaluating P using I by [[P]]I . In Section 3.2.3, we present how a

36 general network-wide configurations synthesis

network con�gurations C is expressed as edb predicates. Likewise, using simple
transformations, the synthesized Datalog input I can be directly used to derive
vendor-speci�c router con�gurations.
A property φ speci�es both which tuplesmust be contained in P’s �xed point as

well as which tuplesmust not be contained in the �xed point. Given a property φ, a
strati�ed Datalog program P, and an input I for P, we write [[P]]I ⊧ φ to denote that
[[P]]I satis�es φ. In Section 3.2.2, we show how to derive φ from φR by expressing
φR as function-free �rst-order constraints over the predicate Fwd.

De�nition 3.3.1. Input Synthesis for Strati�ed Datalog
Input: A strati�ed Datalog program P and a property φ.
Output: An input I such that [[P]]I ⊧ φ or unsat if no such input exists.

Note that while some Datalog inputs produce a �xed point compatible with the
requirements, they are not valid network con�gurations. For instance, a synthesized
input that contains negative OSPF link weights cannot produce a valid network
con�gurations. A synthesized input is well-formed if it derives valid network
con�gurations. In our synthesizer, we add additional constraints φC to ensure that I
is always well-formed (I ⊧ φC). For our synthesis problem we use: φ = φR ∧ φC ∧ T .
�ese conditions guarantee that: (i) the synthesized con�guration is well-formed
(I ⊧ φC), (ii) they are compatible with the network topology (I ⊧ T), and (iii) the
network’s forwarding state satis�es the requirements ([[N]]C ⊧ φR).
We remark on several key points. First, for any edb atom a, we have a ∈ I

i� a ∈ [[P]]I . �erefore, [[P]]I ⊧ T ∧ φC implies I ⊧ T ∧ φC , and it is thus
equivalent to �nd an input I such that [[P]]I ⊧ φR ∧T ∧ φC . Second, the conjunction
φR ∧T ∧ φC can be encoded through Datalog rules, such that an atom aS AT ∈ [[N]]I
i� [[N]]I ⊧ φR ∧ T ∧ φC . We remark that the satis�ability of network con�guration
synthesis can thus be reduced to query satis�ability in strati�ed Datalog [87], and
vice versa, which means that our synthesis problem is undecidable.�e problem is,
however, decidable if we �x a �nite set of values to bound the set of inputs.�is is
a reasonable assumption in the context of networks where values represent �nitely
many routers and con�guration parameters.

3.4 input synthesis for stratified datalog

We present a new iterative algorithm for synthesizing inputs for strati�ed Datalog.
We �rst describe the high-level �ow of the algorithm before presenting the details.

High-Level Flow. Consider the strati�ed Datalog program P with strata P1, P2, and
P3, depicted in Figure 3.5. Incoming and outgoing edges of a stratum Pi indicate the
edb predicates and, respectively, the idb predicates of that stratum. For example, the

3.4 input synthesis for stratified datalog 37

I P1 P2 P3
p(t) q(t)

q(t)p(t)

r(t)
s(t)

Figure 3.5: A Datalog program P with strata P1 , P2 , and P3 , and the �ow of predicates
between the strata.

stratum P3 takes as input predicates q(t) and r(t) and derives the predicate s(t).
Our iterative algorithm �rst synthesizes an input I3 for P3 which determines the
predicates q(t) and r(t) that P1 ∪ P2 must output. To synthesize such an input for
a single stratum, we present an algorithm, called SSemiPos, that addresses the input
synthesis problem for semi-positive Datalog programs [88]; i.e., Datalog programs
where negation is restricted to edb predicates. Note that each stratum of a strati�ed
Datalog program is a semi-positive Datalog program. A�er synthesizing an input I3
for P3, our iterative algorithm synthesizes an input I2 for P2 such that the �xed-point
[[P2]]I2 produces the predicates r(t) that are contained in the already synthesized
input I3 for P3. We note that this iterative process may require backtracking, in case
no input for P2 can produce the desired predicates r(t) contained in I3.�e algorithm
terminates when it synthesizes inputs for all three strata.
Next, we �rst present the algorithm SSemiPos that is used to synthesize an input

for a single stratum (a semi-positive Datalog program).�en, we present the general
algorithm, calledSStrat, that iteratively appliesSSemiPos for each stratum to synthesize
inputs for strati�ed Datalog programs.

3.4.1 Input Synthesis for Semi-positive Datalog with SMT

�e key idea of our approach is to reduce the input synthesis problem to satis�ability
of SMT constraints: Given a semi-positive Datalog program P and a constraint φ, we
encode the question ∃I. [[P]]I ⊧ φ into an SMT constraint ψ. If ψ is satis�able, then
from a model of ψ we can derive an input I such that [[P]]I ⊧ φ.

SMT Encoding Challenges.Given aDatalog program P and a constraint φ, encoding
the question ∃I. [[P]]I ⊧ φ with SMT constraints is non-trivial due to the mismatch
between Datalog’s program �xed point semantics and the classical semantics of �rst-
order logic.�is means that simply taking the conjunction of all Datalog rules into an

38 general network-wide configurations synthesis

SMT solver does not solve our problem. For example, consider the following Datalog
program Ptc :

tc(X,Y) ← e(X,Y)
tc(X,Y) ← tc(X, Z), tc(Z,Y)

which computes the transitive closure of the predicate e(X,Y). A naive way of
encoding these Datalog rules with SMT constraints:

∀X,Y . (e(X,Y) ⇒ tc(X,Y))
∀X,Y . ((∃Z. tc(X, Z)∧ tc(Z,Y)) ⇒ tc(X,Y))

and we denote the conjunction of these two SMT constraints as [Ptc]. Now, suppose
we have the �xed point constraint φtc = (¬e(v0, v2)) ∧ tc(v0, v2) and we want to
generate an input I so that [[Ptc]]I ⊧ φtc . A model that satis�es [Ptc]∧ φtc is

M = {e(v0, v1), tc(v0, v1), tc(v0, v2)}

�e input derived from thismodel, obtained by projectingM over the edb predicate e,
is IM = {e(v0, v1)}. If we run Ptc with inputs IM, we get

[[Ptc]]IM = {e(v0, v1), tc(v0, v1)}

and so [[Ptc]]IM /⊧ φtc , which is clearly not what is intended.

SMT Encoding. Our key insight for encoding is to split the constraint φ into a
conjunction of positive and negative clauses, where a clause φ is positive (respectively,
negative) if A ⊧ φ implies that A′ ⊧ φ for any interpretation A′ ⊇ A (respectively,
A′ ⊆ A). We can then unroll recursive predicates to obtain a sound encoding for
positive constraints, and we do not unroll them to get a sound encoding for negative
constraints.
�e encoding of a Datalog program P into an SMT constraint is de�ned

in Figure 3.6.�e resulting SMT constraint is denoted by [P]k , where the parameter k
de�nes the number of unroll steps. In the encoding we assume that (i) all terms in
rules’ heads are variables and (ii) rules’ heads with the same predicate have identical
variable names. Note, Datalog programs can be converted into this form using
recti�cation [89] and variable renaming.

Function Encode. �e constraint returned by Encode(p, P) states that an atom
p(X) is derived if P has a rule that derives p(X) and whose body evaluates to true.
To capture Datalog’s semantics, the variables, X, in p(X) are universally quanti�ed,
while those in the rules’ bodie, Y = vars(l) ∖ X, are existentially quanti�ed.�is
constraint Encode(p, P) is sound for negative requirements, but not for positive

3.4 input synthesis for stratified datalog 39

[P]k = ⋀
p∈idb(P)

Encode(P, p)∧Unroll(P, p, k)

Encode(P, p) = ⋀
p(X)←l∈P

∀X. ((∃Y . ⋀ l)⇒ p(X)),

where Y = vars(l)∖ X
Unroll(P, p, k) = ⋀

0<i≤k
Step(P, p, i)

Step(P, p, i) = ∀X. (p i(X)⇔ (⋁
p(X)←l∈P

∃Y . τ(l , i − 1))),

where Y = vars(l)∖ X

τ(l , k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(l1 , k)∧⋯∧ τ(ln , k) if l = l1 ∧⋯∧ ln

¬τ(p(t), k) if l = ¬p(t)
false if l = p(t), p ∈ idb(P), k = 0
pk(t) if l = p(t), p ∈ idb(P), k > 0
p(t) if l = p(t), p ∈ edb(p)

Figure 3.6: Encoding a Datalog program P into SMT constraints [P]k .

ones as it does not state that p(X) is derived only if a rule body with p(X) in the
head evaluates to true.

Functions Unroll and Step. �e SMT constraint returned by Step(P, p, i)
encodes whether an atom p(X) is derived a�er i applications of P’s rules; e.g., p(X)’s
truth value a�er 3 steps is represented with the atom p3(X). Intuitively, p(X) is true
i� there is a rule that derives p(X) and whose body evaluates to true using the atoms
derived in previous iterations. Which atoms are derived in previous iterations is
captured by the literal renaming function τ. Note that τ(l , 0) returns false for any idb
literal l since all intensional predicates are initially false. Further, τ(l , k) returns l
for any extensional literal l (the last case in Figure 3.6) since their truth values do not
change. Finally, the constraint returned by Unroll(P, p, k) conjoins Step(P, p, 0),
. . . , Step(P, p, k) to capture the derivation of p(X) a�er k steps.�is is sound for
positive requirements, but not for negative ones since more p(X) atoms may be
derived a�er k steps.

Example. To illustrate the encoding, we translate the Datalog program:

tc(X,Y) ← e(X,Y)
tc(X,Y) ← tc(X, Z), tc(Z,Y)

40 general network-wide configurations synthesis

Algorithm 1: Algorithm SSemiPos for semi-positive Datalog
Input: Semi-positive Datalog program P and a constraint φ
Output: An input I such that [[P]]I ⊧ φ or �

1 begin
2 φ′ ← Simplify(φ)
3 for k ∈ [1..boundk] do
4 φk ← Rewrite(φ′, k)
5 ψ ← [P]k ∧ φk
6 if ∃J. J ⊧ ψ then
7 I ← {p(t) ∈ J ∣ p ∈ edb(P)}
8 return I

9 return �

which computes the transitive closure of the predicate e(X,Y).�is program has
one idb predicate, tc.�e function Encode(P, tc) returns

(∀X,Y . e(X,Y) ⇒ tc(X,Y))
∧(∀X,Y . (∃Z. tc(X, Z)∧ tc(Z,Y)) ⇒ tc(X,Y))

We apply function Unroll(P, tc, 2) for k = 2, which a�er simpli�cations returns

∀X,Y . (tc1(X,Y) ⇔ e(X,Y))
∀X,Y . (tc2(X,Y) ⇔ e(X,Y)∨ (∃Z. tc1(X, Z)∧ tc1(Z,Y))

In the constraints, the predicates tc1 and tc2 encode the derived predicates tc a�er 1
and, respectively, 2, derivation steps.

Algorithm. SSemiPos(P,φ), see Algorithm 1, �rst calls function Simplify(φ) that (i)
instantiates any quanti�ers in φ and (ii) transforms the result into a conjunction of
clauses, where each clause is a disjunction of literals.
A�erward, the algorithm iteratively unrolls the Datalog rules, up to a pre-de�ned

bound boundk . In each step of the for-loop, the algorithm SSemiPos(P,φ) generates
an SMT constraint that captures (i) which atoms are derived a�er k applications of
P’s rules and (ii) which atoms are never derived by P.�e resulting SMT constraint
is denoted by [P]k .�e algorithm also rewrites the simpli�ed constraint φ′ using the
function Rewrite(φ′, k) which recursively traverses conjunctions and disjunctions

3.4 input synthesis for stratified datalog 41

in the simpli�ed constraint φ′ and maps positive literals to the k-unrolled predicate
pk(t) and negative literals to ¬p(t):

Rewrite(φ, k)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk(t) if φ= p(t)
¬p(t) if φ=¬p(t)
Rewrite(φ1 , k)∨⋯∨Rewrite(φn , k) if φ=φ1 ∨ ..∨ φn

Rewrite(φ1 , k)∧⋯∧Rewrite(φn , k) if φ=φ1 ∧ ..∧ φn

Note that since∨ and∧ aremonotone, negative literals constitute negative constraints
and positive literals constitute positive constraints.
If the resulting constraint [P]k ∧ ψk is satis�able, then an input is derived by

projecting the interpretation I that satis�es the constraint over all edb predicates.
Note that if there is an input I such that [[P]]I ⊧ φ and for which the �xed point [[P]]I
is reached in less than boundk steps, then SSemiPos(P,φ) is guaranteed to return an
input.

�eorem 3.4.1. Let P be a semi-positive Datalog program, φ a constraint.
If SSemiPos(P,φ) = I then [[P]]I ⊧ φ.

Next, we prove the correctness of the semi-positive algorithm.

Semi-positive Algorithm Proof

Given a program P and an interpretation J, we denote by inp(P, J) the set of all
ground atoms contained in J that are constructed with edb predicate symbols of the
program P.
First, we remark that any semi-positive Datalog program can be strati�ed into a

single partition P.�e model [[P]]I of P for a given input I is given by the least �xed
point of the consequence operator TP that contains I.�e �xed point [[P]]I can be
iteratively computed as T∞P ,I where T0P ,I = I and T i+1

P ,I = TP(T i
P ,I) ∪ T i

P ,I . Note that
T i

P ,I ⊆ T j
P ,I for any i ≤ j.

Negative Constraints. We �rst show that any interpretation J that satis�es the
constraint [P]k is an over-approximation of the ground atoms p(t) derived by
program P for the input inp(P, J).

Lemma 3.4.2. Let P be a semi-positive Datalog program. For any k ≥ 0 and any
interpretation J such that J ⊧ [P]k , we have [[P]]inp(P ,J) ⊆ J.

Proof. By induction on the iterative computation of [[P]]inp(P ,J), we show that for
any i ≥ 0 we have T i

P ,inp(P ,J) ⊆ J.

42 general network-wide configurations synthesis

Base Case: For the base case, we have i = 0.�en, T0P ,inp(P ,J) = inp(P, J). Since
inp(P, J) = {p(t) ∈ J ∣ p ∈ edb(P)}, it is immediate that inp(P, J) ⊆ J, and thus
T0P ,inp(P ,J) ⊆ J.

Inductive Step: For our inductive step, assume that T j
P ,inp(P ,J) ⊆ J holds for

0 ≤ j ≤ i, for some i ≥ 0. We show that T i+1
P ,inp(P ,J) ⊆ J.

By de�nition, we have T i+1
P ,inp(P ,J) = TP(T i

P ,inp(P ,J)) ∪ T i
P ,inp(P ,J). By induction,

we know that T j
P ,inp(P ,J) ⊆ J. It remains to prove that TP(T i

P ,inp(P ,J)) ⊆ J. Suppose
p(t) ∈ TP(T i

P ,inp(P ,J)). We need to show that p(t) ∈ J. Since p(t) ∈ TP(T i
P ,inp(P ,J)),

we know that there is a rule p(X)← l1, . . . , ln in P such that for some substitution σ
we have σ(p(X)) = p(t) and for all l i we have T i

P ,inp(P ,J) ⊢ σ(l i). We can conclude
that T i

P ,inp(P ,J) ⊧ ∃Y .l1 ∧⋯∧ ln . By induction hypothesis, we have T j
P ,inp(P ,J) ⊆ J.

Since P is semi-positive, we know that all negative literals in l1, . . . , ln are constructed
using edb predicates. Moreover, both TP ,inp(P ,J) and J contain the same set of edb
literals, and we can thus conclude that J ⊧ ∃Y .l1 ∧⋯ ∧ ln . By de�nition of [P]k ,
we know that [P]k contains the constraint ∀X. ((∃Y .l1 ∧⋯∧ ln)⇒ p(X)). Since
J ⊧ [P]k , we get that J ⊧ p(t).�erefore, p(t) ∈ J.

We can now prove that SSemiPos is sound for negative constraints.

Lemma 3.4.3. Let P be a semi-positive Datalog program and ¬p(t) a negative
constraint. If SSemiPos(P,¬p(t)) = I, then [[P]]I ⊧ ¬p(t).

Proof. Suppose SSemiPos returns an input I for some k ∈ [1..boundk].�e input I is
derived from an interpretation J such that J ⊧ [P]k ∧¬p(t) and inp(P, J) = I. From
J ⊧ ¬p(t), we get p(t) /∈ J. Furthermore, from J ⊧ [P]k , by Lemma 3.4.2, we get
[[P]]I ⊆ J. We conclude that p(t) /∈ [[P]]I and thus [[P]]I ⊧ ¬p(t).

Positive Constraints. We now prove that any interpretation J that satis�es the
constraint [P]k contains a ground atom pk(t) then the ground atom p(t) is derived
by P for input inp(P, J).

Lemma 3.4.4. Let P be a semi-positive Datalog program. For any k ≥ 1 and any
interpretation J such that J ⊧ [P]k , if pk(t) ∈ J then p(t) ∈ [[P]]inp(P ,J).

Proof. By induction on the iterative computation of [[P]]I , we show that p i(t) ∈ J
implies that p(t) ∈ T i

P ,inp(P ,J), for any i ≥ 1. Since T i
P ,inp(P ,J) ⊆ [[P]]inp(P ,J) for any

i, this also implies that p(t) ∈ [[P]]inp(P ,J).

3.4 input synthesis for stratified datalog 43

Base Case: For the base case, we have i = 1. Assume p1(t) ∈ J. By de�nition of
[P]1, the constraint

∀X.(p1(X)⇔ (⋁
p(X)←l∈P

∃Y . τ(l , 0))),

where Y = vars(l) ∖ X, is conjoined to the constraint [P]1. Since J ⊧ p1(t), we
conclude that there is a rule p(X)← l1, . . . , ln in P such that for some substitution
σ we have σ(p(X)) = p(t) and J ⊧ σ(τ(l i , 0)) for 1 ≤ i ≤ n. By de�nition of
τ, all literals l i must be constructed using edb predicates (since τ(l i , 0) maps any
idb literal l i to false and J′ /⊧ false for any J′). Note that for edb literals we have
τ(l i , 0) = l i . Since J and inp(P, J) contain the same set of edb ground atoms, we get
inp(P, J) ⊢ σ(l i) for all 1 ≤ i ≤ n. By de�nition of TP and T 1P ,inp(P ,J), it is immediate
that p(t) ∈ T 1P ,inp(P ,J).

Inductive Step: For our inductive step, assume that p j(t) ∈ J implies that
p(t) ∈ T j

P ,inp(P ,J), for 1 ≤ j ≤ i, for some i ≥ 1. We show that p i+1(t) ∈ J implies that
p(t) ∈ T i+1

P ,inp(P ,J).
Assume p i+1(t) ∈ J. By de�nition of [P]i+1, the constraint

∀X.(p i+1(X)⇔ (⋁
p(X)←l∈P

∃Y .τ(l , i))),

where Y = vars(l)∖ X, is conjoined to the constraint [P]i+1. Since p i+1(t) ∈ J and
J ⊧ [P]i+1, we know there is a rule p(X) ← l1, . . . , ln in P such that for some
substitution σ we have σ(p(X)) = p(t) and J ⊧ σ(τ(l1, i)) ∧ ⋯ ∧ σ(τ(ln , i)).
For any edb literal l in the body of this rule, we have τ(l , i) = l and σ(l) ∈ J i�
σ(l) ∈ T i

P ,inp(P ,J), simply because J and T i
P ,inp(P ,J) contain the same edb ground

atoms. Furthermore, for any positive idb literal σ(l) = q(t′) ∈ J in the body of
this rule, we have τ(q(t′), i) = q i(t′) and using our inductive hypothesis we get
q(t) ∈ T i

P ,inp(P ,J). We conclude for all literals l that appear in the body of this rule
we have T i

P ,inp(P ,J) ⊢ σ(l). By de�nition of T i+1
P ,inp(P ,J) and TP we conclude that

p(t) ∈ T i+1
P ,inp(P ,J).

We can now prove that SSemiPos is sound for positive constraints.

Lemma 3.4.5. Let P be a semi-positive Datalog program and p(t) a positive
constraint. If SSemiPos(P, p(t)) = I then [[P]]I ⊧ p(t).

Proof. Suppose SSemiPos returns an input I for some k ∈ [1..boundk].�e input I
is derived from an interpretation J such that inp(P, J) = I and J ⊧ [P]k ∧ pk(t).

44 general network-wide configurations synthesis

From J ⊧ pk(t), we know that pk(t) ∈ J. From J ⊧ [P]k , by Lemma 3.4.4, we get
p(t) ∈ [[P]]inp(P ,J). It is immediate that [[P]]I ⊧ p(t).

We can now prove the correctness of SSemiPos �eorem 3.4.1.

Proof. �e algorithm SSemiPos transforms the constraint φ into a constraint that uses
conjunction and disjunction over positive and negative constraints. Since conjunction
and disjunction and monotone, the proof of [[P]]I ⊧ φ follows from Lemma 3.4.3
and Lemma 3.4.5.

3.4.2 Iterative Input Synthesis for Strati�ed Datalog

Our iterative input synthesis algorithm for strati�ed Datalog SStrat is given
in Algorithm 2.We assume that the �xed point constraint φ is de�ned over predicates
that appear in the highest stratum Pn ; this is without any loss of generality, as
any constraint can be expressed using Datalog rules in the highest stratum, using
a standard reduction to query satis�ability; see [87]. Starting with the highest
stratum Pn , SStrat generates an input In for Pn such that [[Pn]]In ⊧ φ. �en, it
iteratively synthesizes an input for the lower strata Pn−1, . . . , P1 using the algorithm
SSemiPos. Finally, to construct an input for P, the algorithm combines the inputs
synthesized for all strata and returns this.
Recall that the �xed point of a stratum Pi is given as input to the higher strata Pi+1,

. . . , Pn . A key step when synthesizing an input I i for Pi is to ensure that the idb
predicates derived by Pi are identical to the edb predicates synthesized for the
inputs I i+1, . . . , In of the higher strata. Formally, let

∆ i = (edb(Pi)∪ idb(Pi))∩ (edb(Pi+1)∪⋯∪ edb(Pn))

Wemust ensure that

{p(t) ∈ [[Pi]]I i ∣ p ∈ ∆ i} = {p(t) ∈ I i+1 ∪⋯∪ In ∣ p ∈ ∆ i}

Key Steps. �e algorithm �rst partitions P into strata P1, . . . Pn .�e strata can be
computed using the predicates’ dependency graph; see [88]. For each stratum Pi , it
maintains a set of inputs Fi , which contains inputs for Pi for which the algorithm
failed to synthesize inputs for the lower strata P1, . . . , Pi−1. We call the sets Fi failed
inputs. All Fi are initially empty.
In each iteration of the while loop, the algorithm attempts to generate an input I i

for stratum Pi . At line 4, the algorithm checks whetherFi has exceeded a pre-de�ned
bound boundF . If the bound is exceeded, it adds I i+1 to the failed inputs Fi+1, re-
initializes Fi to the empty set, and backtracks to a higher stratum by incrementing

3.4 input synthesis for stratified datalog 45

Algorithm 2: Strati�ed Datalog input synthesis algorithm SStrat
Input: Strati�ed Datalog program P = P1 ∪⋯∪ Pn , constraint φ over Pn
Output: An input I such that [[P]]I ⊧ φ or �

1 begin
2 F1 ← ∅, . . . ,Fn ← ∅; I1 ← �, . . . , In ← �; i ← n
3 while i > 0 do
4 if ∣Fi ∣ > boundF then
5 Fi ← ∅; Fi+1 ← Fi+1 ∪ {I i+1}
6 i ← i + 1; // backtrack to higher stratum

7 continue
8 ψF ← ⋀

I′∈Fi

(¬ ⋀
p∈edb(Pi)

EncodePred(I′, p))

9 if i = n then
10 ψ i ← φ

11 else
12 ψ i ← ⋀

p∈∆ i
EncodePred(I i+1 ∪⋯∪ In , p)

13 where ∆ i = (edb(Pi)∪ idb(Pi))∩ (edb(Pi+1)∪⋯∪ edb(Pn))

14 I i = SSemiPos(Pi ,ψ i ∧ψF)

15 if I i ≠ � then
16 i ← i − 1

17 else
18 if i < n then
19 Fi ← ∅; Fi+1 ← Fi+1 ∪ {I i+1}
20 i ← i + 1 // backtrack to higher stratum

21 else
22 return �

23 return I = {p(t) ∈ I1 ∪⋯∪ In ∣ p ∈ edb(P)}

i.�is avoids exhaustively searching through all inputs to �nd an input compatible
with those synthesized for the higher strata.
At line 8, the algorithmuses the helper function EncodePred(I′, p).�is function

returns the constraint ∀X. (⋁p(t)∈I′ X = t) ⇔ p(X), which is satis�ed by an
interpretation I i� I contains identical p(t) predicates as those in I′. �at is, if
I ⊧ EncodePred(I′, p) then for any p(t) we have p(t) ∈ I i� p(t) ∈ I′.�erefore,
the constraint ψF constructed at line 8 is satis�ed by an input I i i� I i /∈ Fi , which
avoids synthesizing inputs from the set of failed inputs.

46 general network-wide configurations synthesis

�e constraint ψ i in the algorithm constrains the �xed point of Pi . For the highest
stratum Pn , ψ i is set to the constraint φ given as input to the algorithm. For the
remaining strata Pi , ψ i is satis�ed i� the �xed point of Pi is compatible with the
synthesized inputs for the higher strata Pi+1, . . . , Pn . In addition to constraining Pi ’s
idb predicates, we also constraint the input edb predicates.�is is necessary to eagerly
constrain the inputs.
At line 14, the algorithm invokes SSemiPos to generate an input I i such that

[[Pi]]I i ⊧ φ i ∧ψF .�e algorithm proceeds to the lower stratum if such an input is
found (I ≠ �); otherwise, if i < n the algorithm backtracks to the higher stratum by
increasing i and updating the sets Fi+1, and if i = n if returns �.
Finally, the while-loop terminates when the inputs of all strata have been generated.

�e algorithm constructs and returns the input I for P.

�eorem 3.4.6. Let P be a strati�ed Datalog program with strata P1, . . . , Pn , and φ a
constraint over predicates in Pn . If SStrat(P,φ) = I then [[P]]I ⊧ φ.

Next, we prove the correctness of the strati�ed Datalog input synthesis
algorithm SStrat, which uses the SSemiPos algorithm as a building block.

Proof. By induction on the computation of the inputs In , In−1, . . . , I1, we show that
[[Pi ∪⋯∪ Pn]]inp(Pi∪⋯∪Pn ,I i∪⋯∪In) ⊧ φ holds for 1 ≤ i ≤ n. Note that the case for
i = 1 proves the theorem.

Base Case: For the base case, we have i = n.�en In = SSemiPos(Pn ,φ). We have
inp(Pn , In) = In , and by�eorem 1, we get [[Pn]]In ⊧ φ.

Inductive Step: For our inductive step, assume that
[[Pj ∪ ⋯ ∪ Pn]]inp(P j∪⋯∪Pn ,I j∪⋯∪In) ⊧ φ holds for i ≤ j ≤ n, for some 1 < i ≤
n. We need to show that [[Pi−1 ∪ ⋯ ∪ Pn]]inp(Pi−1∪⋯∪Pn ,I i−1∪⋯∪In) ⊧ φ. Recall
that according to the semantics of strati�ed Datalog, the model [[Pi−1 ∪ ⋯ ∪
Pn]]inp(Pi−1∪⋯∪Pn ,I i−1∪⋯∪In) is computed by �rst computing [[Pi−1]]I i−1 and then
computing [[Pi ∪⋯∪ Pn]]I where I contains all ground atoms in [[Pi−1]]I i−1 together
with ground atoms in I′ = inp(Pi−1 ∪⋯∪ Pn , I i ∪⋯∪ In). �e only di�erence
between I and inp(Pi ∪⋯∪ Pn , I i ∪⋯∪ In) therefore is that edb atoms of Pi ∪⋯∪Pn
that are contained in I i ∪ . . . In and are constructed using idb predicates of Pi−1
are now derived by the the program Pi−1 for the input I i−1.�e constraint φ i−1
constructed at line 12 of Algorithm 2 ensures that these two sets of ground atoms are
identical. We can thus conclude that [[Pi−1 ∪ Pi⋯∪ Pn]]inp(Pi−1∪⋯∪Pn ,I i−1∪⋯∪In) ⊧
φ.

3.5 network synthesis algorithm 47

3.5 network synthesis algorithm

We now show how we use the algorithm SStrat to synthesize network-wide
con�gurations.
�e main steps of our algorithm for synthesizing network con�gurations is

given in Algorithm 3. Given a network speci�cationN , requirements φR , network
topology T , and con�guration constraints φC , we need to generate an input C
(con�guration) forN such that the con�guration is well-formed C ⊧ T ∧ φC and the
network converges to a forwarding state compliant with the requirements [[N]]C ⊧
φR .�is is equivalent to synthesizing an input C such that [[N]]C ⊧ T ∧ φC ∧ φR .
SinceSStrat requires that the input constraint is de�ned over predicates in N ’s highest
stratum, andN and Cmay refer to predicates in lower strata, as a �rst step we translate
the constraint T ∧ φC ∧ φR into a set Q of Datalog rules that contains a designated
predicate a✓ such that for any input C for Q, we have [[Q]]C ⊧ T ∧ φC ∧ φR if and
only if a✓ ∈ [[Q]]C .�is translation is denoted by

a✓↪ in Algorithm 3. We remark
that the translation

a✓↪ is analogous to a standard query satis�ability reduction for
Datalog.

Algorithm 3: �e algorithm SNet for synthesizing correct network-wide
con�gurations.

Input: Network speci�cationN , global requirements φR , network topology T , and
protocol con�guration constraints φC

Output: An input C such that C ⊧ T ∧ φC and [[N]]C ⊧ φR , or �
1 begin
2 Compute Q such that T ∧ φC ∧ φR

a✓
↪ Q

3 StratifyN ∪Q into P with partitions P1 , . . . , Pn such that a✓ ∈ idb(Pn)
4 I ← SStrat(P, a✓)

5 return I

Second, the algorithm extend the network speci�cationN with the setQ ofDatalog
rules, which is obtained a�er translating φR ∧T ∧φC , and strati�es the rules inN ∪Q
into strati�ed Datalog program P with the stratra P1, . . . , Pn . Note that since the atom
a✓ does not appear in the body of a rule in P, the rule with the head a✓ can be placed
in the highest stratum Pn . Note that edb(N) = edb(P), and therefore extendingN
with Q does not change the signature ofN ’s inputs.
Finally, we invoke the algorithm SStrat for the inputs P and the constraint a✓ and

the algorithm returns the answer output by the algorithm SStrat.

48 general network-wide configurations synthesis

3.6 implementation and evaluation

In this section we �rst describe SyNET, and end-to-end implementation of our
Datalog’s input synthesis algorithm applied to the network-wide con�gurations
synthesis problem. We then turn to our evaluation of SyNET on practical topologies
and requirements. Our results highlight the feasibility of network-wide con�gurations
synthesis.

3.6.1 Implementation

Our system SyNET is implemented in Python and automatically encodes strati�ed
Datalog programs speci�ed in the LogicBlox language [90] into SMT constraints
speci�ed in the SMT-LIB v2 format [91]. It uses the Python API of Z3 [92] to check
whether the generated SMT constraints are satis�able and to obtain a model.

SyNET supports routers that run both, OSPF and BGP protocols, and that can be
con�gured with static routes. SyNET can support additional protocols if the strati�ed
Datalog speci�cations of the protocols is supplied as input. SyNET uses natural
splitting for routing protocols: external routes are handled by BGP, while internal
routes are handled by IGPprotocols (OSPF and static, where static routes are preferred
over OSPF). We have partitioned the Datalog rules that capture these protocols and
their dependencies into 8 strata. SyNET relies on additional SMT constraints to
ensure the well-formedness of the OSPF, BGP, and static route con�gurations output
by our synthesizer. For most topologies and requirements, the Datalog program
reaches a �xed point within 20 iterations, and so we �xed the unroll and backtracking
bounds (boundk and boundF) to 20.
SyNET is vendor agnostic with respect to the synthesized con�gurations. A

simple script can be used to convert the output of SyNET into any vendor speci�c
con�guration format and then deploy them in production routers. Indeed, to test the
correctness of SyNET, we implemented a small script to convert the input synthesized
by SyNET to Cisco router con�gurations.
SyNET supports two key optimizations that improve its performance and are

vital in making the synthesis algorithm applicable to practical network-wide
con�gurations synthesis problems.�e �rst optimization is partial evaluation: SyNET
partially-evaluates Datalog rules with predicates whose truth values are known
apriori. For example, all SetLink predicates are known and can be eliminated.�is
optimization reduces the number of variables in the rules and, in turn, in the generated
SMT constraints.�e second optimization is network-speci�c constraints: we have
con�gured SyNET with generic constraints, which are true for all forwarding states,
and with protocol-speci�c constraints, i.e., constraints that hold for any input to a

3.6 implementation and evaluation 49

SEAT

LOSA

SALT

KANS

CHIC

ATLA

NEWY

WASH

HOUS

Figure 3.7: Internet2 topology.

particular protocol. An example constraint is: “No packet is forwarded out of the router
if the destination network is directly connected to the router”.�ese constraints are not
speci�c to particular requirements or topology.�ey are thus de�ned one time and
can be used to synthesize con�gurations for any requirements and networks.

3.6.2 Experiments

To investigate SyNET’s performance and scalability, we experimented with di�erent:
(i) topologies, (ii) requirements; and (iii) protocol combinations. Further to test
correctness, we ran all synthesized con�gurations on an emulated environment of
Cisco routers [93] and we veri�ed that the forwarding paths computed match the
requirements for each experiment.

Network Topologies. We used network topologies that have between 4 and 64
routers.�e 4-router network is our overview example where we considered the same
requirements as those described in Section 2.1.�e 9-router network is Internet2
(see Figure 3.7), a US-based network that connects several major universities and
research institutes.�e remaining networks are n × n grids.

Routing Requirements. For each router and each tra�c class, we generate a routing
requirement that de�nes where the packets for that tra�c class must be forwarded to.
We consider 1, 5, and 10 tra�c classes. For a topology with n routers and m tra�c
classes, we thus generate n ×m requirements.
For topologieswithmultiple tra�c classes, we add one external network announced

by two randomly selected routers. We add requirements to enforce that all packets

50 general network-wide configurations synthesis

1 Tra�c Class 5 Tra�c Classes 10 Tra�c Classes

Protocol # Routers Avg Std Avg Std Avg Std

Static 9 1.3s (0.5) 2.0s (0.1) 2.8s (0.4)
9 (Internet2) 1.3s (0.5) 2.0s (0.0) 4.0s (0.8)
16 5.9s (0.3) 7.8s (0.4) 11.2s (0.4)
25 32.0s (0.6) 37.0s (0.6) 46.1s (0.9)
36 2m49.7s (3.0) 3m1.5s (4.5) 3m27.0s (4.4)
49 12m29.2s (7.0) 13m02.3s (10.6) 14m10.7s (15.0)
64 46m36.2s (49.0) 47m23.8s (27.2) 49m22.2s (39.3)

OSPF+Static 9 9.4s (0.5) 19.8s (0.4) 39.9s (0.5)
9 (Internet2) 9.0s (1.4) 21.3s (1.2) 49.3s (0.5)
16 43.5s (0.7) 1m19.8s (0.6) 4m5.8s (1.6)
25 2m55.2s (6.1) 7m3.8s (9.9) 15m56.4s (38.1)
36 10m00.5s (9.5) 23m58.9s (22.5) 1h11m38.2s (127.5)
49 24m11.6s (43.5) 1h30m00.3s (89.6) 5h22m55.8s (421.2)
64 2h22m13.2s (209.9) 5h42m58.9s (619.4) 21h13m16.0s (1986.7)

BGP+OSPF+Static 9 15.3s (0.5) 27.7s (0.5) 1m0.5s (2.6)
9 (Internet2) 13.3s (0.9) 22.7s (0.9) 1m19.7s (0.5)
16 56.0s (1.6) 2m24.7s (0.9) 8m29.0s (10.7)
25 3m56.3s (3.1) 8m46.3s (5.3) 40m09.3s (99.2)
36 14m14.0s (15.0) 43m38.0s (5.7) 2h35m11.7s (197.7)
49 1h23m20.7s (211.1) 2h15m18.0s (12.8) timeout (> 24h)
64 1h46m35.0s (165.8) 7h24m51.3s (519.2) timeout (> 24h)

Table 3.1: SyNET’s synthesis times (averaged over 10 runs) for di�erent number of routers,
protocol combinations, and tra�c classes.

destined to the external networks are forwarded to one of the two routers.�is models
a scenario where the operator is planning maintenance downtime for one of the two
routers. Further, to show that SyNET synthesizes con�gurations with partially de�ned
input and protocol dependencies, we assume the local BGP preferences are �xed by
the network operator and thus SyNET has to synthesize correct OSPF costs to meet
the BGP requirements.

Protocols.We consider three di�erent combinations of protocols: (i) static routes;
(ii) OSPF and static routes; and (iii) OSPF, BGP, and static routes.�e protocol
combinations (i) and (ii) ignore requirements for external networks since only BGP
computes routes for them.

3.7 summary 51

Experimental Setup.We run SyNET on amachinewith 128GB of RAMand amodern
12-core dual-processors running at 2.3GHz.

Results. �e synthesis times for the di�erent networks and protocol combinations
are shown in Table 3.1. Additionally, SyNET synthesizes the overview example’s
con�guration described in Section 2.1 in 10 seconds. For the largest network (64
routers) and number of tra�c classes (10 classes), SyNET synthesizes a con�guration
for static routes (protocol combination (i)) in less than 1h, and for the combination
of static routes and OSPF, SyNET takes less than 22h. When using both OSPF and
BGP protocols along with static routes, for all network topologies SyNET synthesizes
con�gurations for 1 and 5 tra�c classes within 8h; for 10 tra�c classes, SyNET times
out a�er 24h for the largest topologies with 49 and 64 routers.

Interpretation. Our results show that SyNET scales to real-world networks. Indeed,
a longitudinal analysis of more than 260 production networks [94] revealed that 56%
of them have less than 32 routers. SyNET would synthesize con�gurations for such
networks within one hour. SyNET also already supports a reasonable amount of tra�c
classes. According to a study on real-world enterprise and WAN networks [95], even
large networks with 100,000s of IP pre�xes in their forwarding tables usually see less
than 15 tra�c classes in total.
While SyNET can take more than 24 hours to synthesize a con�guration for the

largest networks (with all protocols activated and 10 tra�c classes), we believe
that this time can be reduced through divide-and-conquer. Real networks tend
to be hierarchically organized around few regions (to ensure the scalability of the
protocols [96]) whose con�gurations can be synthesized independently. We plan to
explore the synthesis of such hierarchical con�gurations in future work.

3.7 summary

We formulated the network-wide con�gurations synthesis problem as a problem
of �nding inputs of a strati�ed Datalog program and presented a new strati�ed
Datalog input synthesis algorithm to solve this challenge. Our algorithm is based
on decomposing the Datalog rules into strata and iteratively synthesizing inputs
for the individual strata using o�-the-shelf SMT solvers.�is problem formulation
allowed us to solve a more general problem and our contributions apply to domains
other than networks. However, this generalization, while powerful, prevented our
algorithm from using more e�cient network-speci�c optimizations.�us, limiting
the synthesis speed of our implementation.

52 general network-wide configurations synthesis

Furthermore, we implemented our approach in a system called SyNET and showed
that it scales to realistic network size using any combination of OSPF, BGP and static
routes. Network operators can now express their global routing requirements and
use SyNET to automatically obtain network-wide con�gurations which ensure that
routers compute a compliant forwarding state.

4
NETWORK -WIDE CONF IGURAT IONS SYNTHES I S W ITH
AUTOCOMPLET ION

While SyNET is capable of synthesizing network-wide con�gurations from routing
high-level requirements, network operators o�en need to adapt the existing
con�gurations of a network to comply with changing routing policies. Evolving
existing con�gurations, however, is a complex task as local router-level con�guration
changes can have unforeseen global e�ects. Not surprisingly, recon�guring the
network o�en leads to mistakes that result in network downtimes.
Network con�gurations synthesis frameworks promise to alleviate most of the

operator’s burdens by deriving correct con�gurations from high-level objectives.
While promising, network operators can be still reluctant to use existing synthesis
systems for at least three reasons: (i) interpretability: the synthesizer can produce
con�gurations that di�er wildly from manually provided ones, making it hard to
understand what the resulting con�gurations do. Moreover, small policy changes
can cause the synthesized con�gurations (or con�guration templates in the case of
PropaneAT [55]) to change radically; (ii) protocol coverage: existing systems [37, 55]
are restricted to producing BGP-only con�gurations, while most networks rely on
multiple routing protocols (e.g., to leverage OSPF’s fast-convergence capabilities);
and (iii) scalability: today’s networks are growing in both the number of psychical
nodes and the number of tra�c classes and policies they implement. Any practical
con�gurations synthesis framework should be able to meet the scalability of realistic
networks.
In this chapter, we present a system, NetComplete, which addresses the above

challenges with partial synthesis. Rather than synthesizing new con�gurations from
scratch, NetComplete allows network operators to express their intents by sketching
the parts of the existing con�gurations that should remain intact (capturing high-level
insights) and “holes” represented with symbolic values which the synthesizer should
instantiate (e.g., OSPF link weights and BGP import/export policies). NetComplete
then autocompletes these “holes” such that the resulting con�gurations lead to a
network that exhibits the required behavior. Our approach supports a practical and
relevant scenarios as few network operators ever start from scratch but rather modify
their existing con�gurations (e.g., OSPFweights) to handle new routing requirements.
�is evolving approach also has the bene�t of better explainability as large parts of the
existing con�gurations are preserved in the newly synthesized con�gurations. Further,

53

54 network-wide configurations synthesis with autocompletion

because we focus on synthesizing parts of the con�gurations, there is an opportunity
to scale the synthesizer to realistic networks.�is opportunity arises even though
NetComplete is quite expressive: it handles static routes, OSPF, and BGP as well as
a variety of essential routing requirements such as waypointing, failure-resilience,
load-balancing, and tra�c isolation.
NetComplete reduces the autocompletion problem to a constraint satisfaction

problem that it solves with o�-the-shelf SMT solvers (e.g., Z3 [92]). �e main
challenge is that a naive encoding of the problem leads to complex constraints that
cannot be solved in reasonable time (e.g., within a day). To scale, NetComplete
relies on two key insights: (i) partial evaluation along with (ii) network-speci�c
heuristics to e�ciently navigate the search space. Speci�cally, it speeds up BGP
synthesis by propagating symbolic announcements through partial BGP policies
allowing it to eliminate many variables. For OSPF, NetComplete is 100x faster than
a naive encoding via a new counter-example guided inductive synthesis algorithm.
Our evaluation shows that NetComplete autocompletes con�gurations for networks
with up to 200 routers in a few minutes.
In this chapter, we start by motivating the need for partial con�gurations synthesis

through practical scenarios in Section 4.1. �en, in Section 4.2, we present a
motivating example of how a network operator would use a partial con�gurations
synthesis framework, before diving into the details of our BGP and OSPF synthesis
procedures in Section 4.3 and Section 4.4 respectively. Finally, we present our
NetComplete’s implementation and experimental evaluation in Section 4.5.

4.1 motivating scenarios

In this section, we motivate the need for NetComplete through three practical use
cases rooted within existing network management practices.�ese use cases are
di�cult or practically impossible to solve today.

Scenario 1: Evolving con�gurations preserving existing semantics
Existing con�gurations typically embed deep knowledge of semantics and design

guidelines. For instance, network operators o�en use speci�c OSPF weights to
identify primary/backup links, and speci�c BGP local-preferences or communities
to identify their peers.�is (o�en unwritten) semantic helps them reason about the
network-wide con�gurations. At the same time, these rules also reduce the operators’
�exibility as it can complexify the implementation of new routing requirements, e.g.,
by requiring the modi�cation of multiple weights instead of one.

4.2 overview 55

NetComplete allows operators to communicate such semantics as constraints
on the con�gurations sketch and let the synthesizer �nd a valid network-wide
con�gurations that adheres to the operators’ style.

Scenario 2: Simplifying federated or constrained management
Network con�gurations are o�en maintained by multiple teams of operators [97,

98], each responsible for some parts (e.g., edge vs core) or functionalities.
Coordinating changes in these federated con�gurations tends to be challenging
as multiple teams need to come together. With NetComplete, the operators can
easily explore whether there is a way to implement the policy locally, for instance,
without adapting the BGP con�guration (i.e., by restricting changes to the OSPF
con�guration). Similar requirements appear in heterogeneous networks where not
all routers support all protocols (e.g., due to licensing issues or device capabilities).
NetComplete allows operators to simply communicate such constraints as part of

the sketch and let the synthesizer �nd a multi-protocol con�guration.

Scenario 3: Con�guration Refactoring and Network Merging
Network con�gurations evolve over time and this increases their complexity.

Design decisions that made sense in the past may no longer do, requiring refactoring.
Other examples calling for large refactoring include merging and acquisitions; e.g.,
when a company buys another one and wishes to integrate their networks [99].

NetComplete helps operators to refactor con�gurations by enabling them to
morph entire pieces of their existing con�gurations, e.g., to adopt the con�guration
guidelines of one network and let the synthesizer compute and propagate the changes
network-wide.

4.2 overview

In this section, show how given a network topology, high-level routing requirements,
and partial con�gurations, NetComplete autocompletes the partial con�gurations
to correct network-wide con�gurations. First, we present a small running example
and de�ne NetComplete’s inputs. We then present the key synthesis steps to produce
the output con�guration before explaining the more complex steps in detail in the
following sections.

4.2.1 Running Example

In Figure 4.2, we show how a network operator would use NetComplete to synthesize
a network-wide con�guration that enforces routing requirements. We consider that
the AS number of the operator’s network is AS500 and consists of four routers: A, B,

56 network-wide configurations synthesis with autocompletion

C, and D. Furthermore, this network is connected to one customer peer AS100 and
three external peers: AS200, AS300, and AS400.

High-level Routing Policy. �e policy for our example is given in Figure 4.1.�is
policy speci�es the following routing behavior. Rule (1) disallows transit tra�c
between external peers; e.g., AS200 cannot send tra�c to AS300 through the network.
Rule (2) de�nes how the customer peer accesses pre�xes announced by external peers:
AS300 is most preferred, followed by AS400, and then AS200. Tra�c to AS200 may
exit via B or C, where B is preferred. Rules (3) and (4) capture tra�c engineering
requirements. Note that this policy can be formalized in a high-level network policy
language language, such as Propane [37], Genesis [38], Frenetic [14], or SyNET
(presented in Chapter 3).

4.2.2 NetComplete Inputs

NetComplete takes three inputs: (i) network topology, (ii) routing requirements, and
(iii) con�gurations sketch.

(1) Network Topology. �e network topology is given via a graph over the set of
routers (A, B, C, and D) and external peers (AS100, AS200, AS300, and AS400). An
edge represents a physical link that connects two nodes.

(2) Routing Requirements.We now describe the type of requirements supported
by NetComplete. We start with some basic notation. A routing path is of the form:
P ∶∶= Src → R1 → ⋯ → Rn → Dst, where Src and Dst are source and destination
routers, respectively, and R1, . . . ,Rn are router identi�ers. We use a wildcard notation
to denote sets of simple paths, i.e., paths without repeated nodes. For example,
Src→ ∗→ Dst denotes all simple paths from Src to Dst.

NetComplete supports positive and negative requirements. Positive requirements
have the form:

Req ∶∶= (P,⋯, P) ∣ (P = ⋯ = P) ∣ Req ≫ Req

where P is a routing path. All routing paths that appear in a requirement must have
identical source and destination.�e semantics of requirements is as follows:

• An any-path requirement {P1, . . . , Pk} is satis�ed if the tra�c from the source
to the destination is forwarded along any available path in the given set.�e
requirement is not-applicable if all paths P1, . . . , Pk are unavailable. We denote
any-path requirement that includes all the paths between Src and Dst as
Src → ∗→ Dst. A simple requirement is an any-path requirement consisting
of a single path. We remark that any-path requirements are used to ensure
failure-resilience.

4.2 overview 57

Rule 1 No transit between AS200, AS300, and AS400;
Rule 2 Tra�c from the customer peerAS100 to the external peers prefers exit routers

in order: AS300, AS400, AS200 via B, AS200 via C;
Rule 3 Tra�c from AS100 to AS300 is load-balanced along A→ C and A→ D → C;

if both paths are unavailable, then the path A→ B → C is used;
Rule 4 Tra�c from AS100 to AS400 must follow the path A→ B → C.

Figure 4.1: High-level policy for our running example.

• An ECMP requirement (P1 = ⋯ = Pk) is satis�ed if the tra�c from Src to Dst
is load-balanced among all available paths in the set {P1, . . . , Pk}. Note, this
requirement is not-applicable if all paths P1, . . . , Pk are unavailable. We remark
that ECMP requirements are useful to capture load-balancing.

• An ordered requirement Req1 ≫ Req2 de�nes a preference over requirements.
�is requirement is satis�ed if the most preferred applicable requirement is
satis�ed, and it is not-applicable if both requirements are not-applicable. For
example:

(AS100→ A→ B → C → AS300) ≫ (AS100→ A→ C → AS300)

is satis�ed if tra�c from AS100 to AS300 is forwarded along this path if it is
available: AS100 → A → B → C → AS300. Otherwise, tra�c is forwarded
along the path: AS100→ A→ C → AS300.

• Negative requirements of the form !{P1, . . . , Pk}, where {P1, . . . , Pk} is a set of
routing paths.�is requirement is satis�ed if tra�c is not forwarded along any
path in this set. Negative requirements are useful to express tra�c isolation.

�e requirements for our example are given in Figure 4.2b. Policy rules 1, 2, 3, and
4, given in Figure 4.1, are speci�ed as requirements 1, 2− 7, 8, and 9, respectively. We
use a natural assignment of requirements to protocols. Speci�cally, requirements 1− 7
pertain to external peers and they are assigned to BGP. Requirement 8 pertains to
tra�c engineering within the network and is assigned to OSPF, which forwards tra�c
along the shortest path. Note that requirements 8 and 9 cannot be both enforced by
OSPF. To enforce requirement 9, the cost of A→ B → C must be lower than that of
A→ C and A→ D → C. However, this would also divert tra�c from AS100 to AS300
to be forwarded along routers A→ B → C, which would violate requirement 8. To
this end, requirement 9 is enforced using a static route.

58 network-wide configurations synthesis with autocompletion

(a) Network topology

! B Configuration Sketch
! 10G interface to C
interface TenGigabitEthernet1/1/1
 ip address ?
 ip ospf cost
router ospf 100

 ...
router bgp 6500
...
 neighbor AS200 import route-map imp-p1
 neighbor AS200 export route-map exp-p1
 ...
ip community-list C1 permit
ip community-list C2 permit
route-map imp-p1 permit 10
 set
 set
route-map exp-p1 10
 match community C2
route-map exp-p2 20
 match community C1
...

(c) Con�guration sketch for router B (e) Synthesized con�guration for router B

?

?
10 < ? < 100

?

?

?

?

(b) Routing requirements

Link connectivity and
static routes synthesis

BGP Synthesis

OSPF Synthesis

(d) Con�guration synthesis �ow

BGP requirements:
 1. (AS100→*→AS300 >> AS100→*→C-AS400
 >> AS100→*→B→AS200 >> AS100→*→C→AS200)
 2. !AS200→*→AS300 4. !AS300→*→AS200 6. !AS400→*→AS200
 3. !AS200→*→AS400 5. !AS300→*→AS400 7. !AS400→*→AS300

OSPF requirements:
 8. (AS100→A→C→AS300 = AS100→A→D→C→AS300) >> AS100→A→B→C→AS300

Static routes:
 9. AS100→A→B→C→AS400

Additional OSPF
requirements

NetComplete

?

Input

In
pu

t

O
ut

pu
t

! B Configuration Sketch
! 10G interface to C
interface TenGigabitEthernet1/1/1
 ip address 10.0.0.0 255.255.255.254
 ip ospf cost 15
router ospf 100
 network 10.0.0.1 0.0.0.1 area 0.0.0.0
 ...
router bgp 6500
...
 neighbor AS200 import route-map imp-p1
 neighbor AS200 export route-map exp-p1
 ...
ip community-list C1 permit 6500:1
ip community-list C2 permit 6500:2
route-map imp-p1 permit 10
 set community 6500:1
 set local-pref 50
route-map exp-p1 permit 10
 match community C2
route-map exp-p1 deny 20
 match community C1
...

B C

A D

AS200

AS300

AS400

AS100

AS500

?

?

Figure 4.2: Overview of NetComplete.�e inputs are: (a) network topology, (b) routing
requirements, and (c) con�gurations sketch.�e output is a con�guration for
each router; one example is shown in (e).

We remark that the requirements above can be speci�ed manually by the operator,
or using existing systems [14, 37, 38, 55] that compile high-level policies to forwarding
paths.

(3) Con�gurations Sketch.Con�gurations sketches are normal router con�gurations
where some of the parameters are le� symbolic. To specify symbolic values, the
operator tags parts of the con�gurations with a question mark symbol ? (instead of
writing concrete values).�e symbol ? represents: (i) speci�c attributes (e.g., OSPF
link cost, BGP local preferences1); or (ii) entire import/export policies, e.g., match
? , action ? .
As an example, we depict the sketch of router B’s con�guration in Figure 4.2c. We

remark that operators can write additional constraints to restrict how NetComplete

instantiates symbolic parameters. For example, the symbolic OSPF link cost in the
sketch of router B is constrained to values between 10 and 100.

1 Except BGP AS numbers, which are assigned based on higher-level considerations that are not captured
in the requirements.

4.2 overview 59

�is sketching language enables NetComplete to be used in di�erent scenarios.
For example, changes can be restricted to certain parts of the network [Scenario 2].
By leaving most of the con�gurations symbolic, an operator can explore a large range
of possible con�gurations that implement a given set of requirements [Scenarios 1
and 3]. Moreover, an operator can also provide a fully concrete con�guration to verify
its correctness.

4.2.3 Con�gurations Synthesis

NetComplete synthesizes a network-wide con�gurations that enforces the
requirements in three steps.

First, it synthesizes the sessions between routers that have a physical link between
them andmay be necessary to enforce the routing requirements. Further, it con�gures
any static routes de�ned in the requirements. For example, for requirement AS100→
A→ B → C → AS400, NetComplete establishes a session between A− B and B −C,
and con�gures static routes at A and B.

Second, NetComplete synthesizes router-level BGP con�gurations based on the
BGP routing requirements. To this end, NetComplete computes a propagation graph
that captures which BGP announcements are exchanged between the routers and in
what order theymust be selected. NetComplete then synthesizes BGP con�gurations
that enforce the constructed propagation graph. We explain this step in detail in
Section 4.3. Note that BGP may select routes based on path costs (computed by
OSPF).�erefore, whenever this is necessary to enforce the requirements, the BGP
synthesizer outputs additional OSPF requirements to be enforced by the OSPF
synthesizer.
�ird, NetComplete synthesizes OSPF costs that enforce all OSPF requirements.

�is is a well-known hard problem that is di�cult to scale to large networks. We solve
the problem in Section 4.4 via a novel counter-example guided inductive synthesis
algorithm.
If all synthesis steps succeed, NetComplete outputs a con�guration that is

guaranteed to enforce the requirements. Otherwise, a counter-example is returned
to indicate that the requirements cannot be enforced for the given inputs. Based on
this counter-example, the network operator can modify the partial con�guration
(by making more parameters symbolic) or adapt the requirements. We present a
detailed evaluation of NetComplete with practical topologies and requirements in
Section 4.5.

60 network-wide configurations synthesis with autocompletion

4.3 bgp synthesis

We now present NetComplete’s BGP synthesizer which takes as input BGP
requirements and a sketch of the desired output BGP con�gurations then computes
router-level BGP policies. It also outputs a set of OSPF requirements (to be fed to
NetComplete’s OSPF synthesizer) if the BGP requirements cannot be enforced by
BGP policies alone.
To synthesize BGP con�gurations, NetComplete uses a two-step approach.

First, NetComplete computes a BGP propagation graph which de�nes a correct
propagation of BGP announcements. Second, NetComplete uses a user-provided
con�gurations sketch in addition to the knowledge of how BGP protocol propagates
announcements and the BGP route selection process to synthesize BGP policies that
enforce the BGP propagation graph.
In this chapter, we present the construction of the BGP propagation graph

which de�nes a correct propagation of BGP announcements in Section 4.3.1. We
illustrate NetComplete’s BGP sketches in Section 4.3.2 and propagation of (symbolic)
announcements over them in Section 4.3.3.�en, we present the encoding of the
BGP route selection process in Section 4.3.4. Finally, in Section 4.3.5, we describe our
BGP synthesis procedure.

4.3.1 BGP Propagation Graph

We present how NetComplete builds, for each pre�x, a propagation graph that
de�nes correct enforcement of the BGP routing requirements for that pre�x. In
more details, NetComplete �rst constructs a graph Gebgp that only considers
announcements learned over eBGP.�en, it re�nes Gebgp into Gbgp, which also
de�nes how announcements are propagated internally (using iBGP). In Figure 4.3,
we illustrate the steps of constructing a BGP propagation graph using our running
example.

Construct eBGP Propagation Graph. �e graph Geb g p contains one node for each
private/public AS. For our example, Geb g p has one AS, AS500, that is managed by
the network operator using NetComplete and four public ones AS100, . . . ,AS400;
see Figure 4.3.
�e graphGeb g p has two kinds of labeled edges: propagate and block edges, labeled

with the preference order over announcements and, respectively, announcements
that must be dropped.
While the requirements de�ne how the tra�c should �ow from the source

to the destination (a destination router or AS), BGP propagates announcements

4.3 bgp synthesis 61

AS100→∗→AS300≫ AS100→∗→AS400
≫ AS100→∗→B→AS200
≫ AS100→∗→C→AS200

(a) Positive BGP requirements.

!AS200→∗→AS300 !AS300→∗→AS200 !AS400→∗→AS200
!AS200→∗→AS400 !AS300→∗→AS400 !AS400→∗→AS300

(b) Negative BGP requirements.

Propagate edge Block edge

 Forward graph Gfwd BGP propagation graph Gebgp BGP propagation graph Gbgp

B

AS200

AS300

AS400

AS100

AS500
C

DA
AS300 > AS400 > B-AS200 > C-AS200

B

AS200

AS300

AS400

AS100

AS500
C

DA

AS200

AS300

AS400

AS100

AS500

AS300 > AS400 > AS200

!AS300
!AS400

!AS200,!AS400
!AS200,!AS300

!AS200,!AS400
!AS200,!AS300

!AS300
!AS400

!AS300
!AS400

AS300

> AS400

> AS200

AS300

> AS400

> AS200

AS300 > AS400

> B-AS200 > C-AS200

(c) Step-by-step derivation of the BGP propagation graph.
Figure 4.3: Deriving a BGP propagation graph from BGP requirements and a network

topology.

in the opposite direction.�us, to add propagate edges, NetComplete traverses
each positive BGP requirement backward and appends edges along the traversed
ASes. For example, for the requirement AS100 → ∗ → AS300 (see Figure 4.3a),
NetComplete traverses three ASes and adds the propagate edges AS300 → AS500
and AS500 → AS100. While adding these edges, NetComplete tracks the set of
symbolic announcements that must be propagated along them and labels the edges
with the preference order based on the requirements.
To add block edges, NetComplete traverses each negative requirement and adds

block edges to enforce it. For example, given the requirement !AS200 → ∗ →
AS300, NetComplete adds the block edge AS500 → AS200, labeled with !AS300
in Figure 4.3c, to enforce this requirement.
Once Geb g p is entirely constructed, NetComplete checks if preferences over

announcements are consistent. To illustrate, suppose AS1 must select announcements

62 network-wide configurations synthesis with autocompletion

from AS2, and AS2 must select from AS3.�en, the preferences over announcements
labeled along the edges AS3→ AS2 and AS2→ AS1 must match.

Construct iBGP Propagation Graph. Next, NetComplete re�nes Geb g p into a
detailed propagation graph, Gb g p , that also accounts for iBGP (only in the ASes
managed by the operators using NetComplete).
First, for each private AS in Geb g p , NetComplete adds to Gb g p all BGP-enabled

routers within that AS. For our example, NetComplete adds the routers A, B, C, and
D.
Second, NetComplete connects the neighbor routers between ASes that have an

edge in Geb g p . For example, for edge AS200→AS500 in Geb g p , NetComplete adds
the edges AS200→B and AS200→C to Gb g p .
Finally, NetComplete extends the paths learned via eBGP. Note that in iBGP

routers will not export routes learned from another iBGP router. Similar to
Geb g p , nodes in Gb g p are labeled with the preferences over announcements and
NetComplete check if the preferences over announcements are consistent.

4.3.2 BGP Policies

We, �rst, present the semantics of BGP policies then we show how an operator
would provide a sketch of BGP policies in NetComplete. Finally, we show how
NetComplete encodes BGP policy sketches into SMT formulas.
A BGP policy applies on a set of announcements and has a match expression

followed by zero or more actions.�e match expression is a boolean formula over the
announcement’s attributes. If thematch expression holds for the input announcement,
then the actions are executed which modify the announcement’s attributes or drop
the announcement. For example, the following policy:
1 BGPPol icy
2 match next −hop AS200
3 s e t l o c a l − p r e f 10

matches an announcement whose NextHop attribute is set to AS200 and sets the value
of attribute LocalPref to 10.

Sketching BGP Policies. NetComplete allows network operators to de�ne the policy
sketch at three levels of details; (i) everything is concrete (no holes), (ii) de�ne the
types of matches and actions but leave the speci�c values empty (see Figure 4.4a),
(iii) or leave the matches and actions as holes (see Figure 4.4b).

Encoding BGP Policy Sketches.We illustrate the encoding of BGP sketches using
SMT constraints. Consider the following BGP sketch:

4.3 bgp synthesis 63

1 A t t r i b u t e s S k e t c h
2 match next −hop AS200
3 s e t l o c a l − p r e f ? < 50

�is sketch would match any announcement that has the value AS200 set for
the next hop attribute. If an announcement is matched, this policy sets the local
preference of the output announcement to a value that is yet to be synthesized by
the BGP synthesizer. As de�ned by the sketch, this local preference value must be
smaller than 50. Note that this BGP policy does not change the remaining attributes
(as there are no further actions).
We encode this BGP sketch as follows:

if NextHopAin = AS200
then ((LocalPrefAout = Var1)∧ (0 < Var1 < 50)

∧(∀X ∈ Attrs∖ {LocalPref}. XAout = XAin))
else ∀X ∈ Attrs. XAout = XAin

where Attrs = {NextHop, . . .} and Var1 are fresh variables

Here, the variable Var1 represents the local preference value that will be set by the
BGP policy. Ain represents the input announcement (before the BGP policy processes
it) and Aout the output one.�e constraint formalizes that only input announcements
with next hop equal to AS200 are matched. For matched announcements, the then
constraint encodes that the output announcement has a local preference set to Var1,
which is a value smaller than 50, and all remaining attributes are identical to those in
the input announcement (and thus remain unchanged). Finally, the else constraint
ensures that if an announcement is not matched (its local preference is not AS200),
then all attributes remain unchanged.
In Section 4.3.5, we show how NetComplete synthesizes BGP policy and

instantiates the symbolic values in the given sketch to enforce the BGP propagation
graph.

4.3.3 Processing Symbolic Announcements

We present how NetComplete processes symbolic BGP announcements that
are passing through the various BGP policy sketches in the network. Given an
announcement A, we write attrA to denote the attribute attr of A. For instance,
LocalPrefA returns A’s local preference. Each announcement attribute either has a
concrete value, if its value is �xed by the partial con�gurations, or a symbolic value,
if a correct concrete value is yet to be discovered by the BGP synthesizer.

64 network-wide configurations synthesis with autocompletion

1 A t t r i b u t e s S k e t c h
2 match next −hop AS200
3 s e t l o c a l − p r e f ? < 50

(a) Attributes sketch Sattr

1 A b s t r a c t S k e t c h
2 match ?
3 s e t ?

(b) Abstract sketch Sabs
Figure 4.4: Example of two BGP policy sketches.

We represent announcements symbolically as their attributes’ values
are constrained by the BGP policies, which are yet to be synthesized. In
NetComplete, each announcement A is represented with a set of symbolic variables
PrefixA, . . . , NextHopA.�e set of possible attribute values of A is captured by a
conjunction of constraints over these variables. For example, the constraint:

(NextHopA = AS200)∧ (0 < LocalPrefA < 50)

captures all announcementswhose next hop isAS200 and local preference is a positive
integer smaller than 50.
In addition to the standard BGP attributes that are listed in Figure 1.2 we introduce

two boolean variables: PermittedA, which indicates whether the announcement A is
dropped, and eBGPA, which indicates whether A is sent via eBGP or iBGP.

Processing Announcements with Policy Sketches. A BGP policy sketch takes as
input a symbolic announcement Ain (a set of constraints over Ain’s attributes) and
outputs another symbolic announcement Aout. To compute the set of possible output
announcements for a given input announcement, we take the conjunction of the
BGP sketch constraints with the constraint that captures the set of possible concrete
input announcements.
To illustrate this step, consider the input announcement NextHopAin = AS200 and

the BGP sketch in Figure 4.4a. Since the NextHop attribute is concrete and equal to
AS200, NetComplete knows that the input announcement would match this policy.
�erefore, NetComplete captures the set of possible output announcements with the
constraint:

(LocalPrefAout = Var1)∧ (0 < Var1 < 50)∧ (NextHopAout = NextHopAin) ∧ ⋯

Namely, the local preference of the output announcement is set to the value of Var1,
which is constrained to positive values below 50 (to be synthesized by NetComplete),
and all remaining attributes are identical to those in the input announcement
(captured with equality constraints, such as NextHopAout = NextHopAin).
As another example, consider the input announcement NextHopAin = Var1

where the NextHop attribute is symbolic. When evaluating this announcement with

4.3 bgp synthesis 65

PrefNoIGP(A1 ,A2)⇔

// 0) A1 is received and A2 is dropped

(permittedA1 ∧ ¬permittedA2)

// 1) Higher local preference

∨(permittedA1 ∧ permittedA2 ∧ (LocalPrefA1 > LocalPrefA2))

// 2) Lower AS path length

∨(permittedA1 ∧ permittedA2 ∧ (LocalPrefA1 = LocalPrefA2)

∧ (AsPathLenA1 > AsPathLenA2))

⋮

// 5) Prefer routes learned over eBGP

∨(permittedA1 ∧ permittedA2 ∧ (LocalPrefA1 = LocalPrefA2)

⋯∧ (eBGPA1 ∧¬eBGPA2))

Pref(A1 ,A2)⇔ PrefNoIGP(A1 ,A2)∨
// 6) Lower IGP cost

(permittedA1 ∧ permittedA2 ∧ (LocalPrefA1 = LocalPrefA2)

⋯∧ (IGPCostA1 < IGPCostA2))

Figure 4.5: SMT encoding of the BGP tie-breaking process of announcements carrying
same pre�x.

the BGP sketch in Figure 4.4a, NetComplete captures the set of possible output
announcements with the following constraint:

if Var1 = AS200
then (LocalPrefAout = Var2)∧ (0 < Var2 < 50)

∧ (NextHopAout = NextHopAin)∧ ⋯
else (NextHopAout = NextHopAin)∧ ⋯

�is constraint is more complex because the result of the match expression depends
on the symbolic next hop (Var1). If the next hop is AS200, then the local preference is
set to Var2 and all remaining attributes remain unchanged. Otherwise, all attributes
in the output announcement Aout are identical to those in the input announcement
Ain.

66 network-wide configurations synthesis with autocompletion

4.3.4 SMT Encoding of the BGP Selection Process

When a BGP router receives di�erent announcements for the same pre�x, it uses the
BGP’s tie-breaking process to select the best route; see Section 1.4. We encode the
selection process into two SMT predicates: PrefNoIGP(A1,A2) and Pref(A1,A2). For
any two symbolic announcements A1 and A2 carrying the same pre�x, the predicate
PrefNoIGP(A1,A2) holds if and only if A1 is preferred over A2 without considering
the IGP costs of A1 and A2. In other words, steps 1 through 5 in the BGP tie-breaking
process, de�ned in Section 1.4, are su�cient to break the tie break between A1 and
A2. While the predicate Pref(A1,A2) holds if and only if A1 is preferred over A2 with
considering the IGP costs of the paths that A1 and A2 are learned over.
Both Pref(A1,A2) and PrefNoIGP(A1,A2) are de�ned as a disjunction over the

di�erent cases de�ned by the BGP selection process. First, if A2 is dropped, then A1
is selected as a best route. Second, if both announcements are permitted, the router
selects A1 over A2 if A1’s local preference is lower than that of A2. Analogously, the
constraint encodes cases 3− 5 described in Section 1.4. Note, for the SMT encoding
to be correct, the disjunction formula checks for each step that the previous step was
a tie.

4.3.5 BGP Policy Synthesis

We now describe how NetComplete synthesizes BGP policies from requirements
and policy sketches.

Encoding Requirements. Suppose that a router receives multiple announcements
A1, . . . ,An to the same pre�x.�e BGP propagation graph identi�es a preference
with which the announcements must be selected by the router. Suppose the router
must select announcements A1,A2, and A3 in the order A1 ≫ A2 ≫ A3. We encode
this requirement with the following constraint:

Pref(A1,A2)∧ Pref(A2,A3)∧ (∀i ∈ [4, .., n].Pref(A3,A i))

Note that simpler requirements that do not stipulate a particular order are a special
case. For example, if a requirement stipulates that an announcement Ak is selected
as the best route, the above constraint becomes:

∀i ∈ [1, n]. k ≠ i Ô⇒ Pref(Ak ,A i)

Overall Synthesis Algorithm Putting all pieces together, the complete algorithm
employed by NetComplete to synthesize concrete BGP policies is as follows:

4.4 ospf synthesis 67

Step 1 (Section 4.3.1): Construct a BGP propagation graph Gbgp from the given
requirements and the network topology.

Step 2 (Section 4.3.2): Encode the routers’ BGP policy sketches. �e result is a
constraint φS over variables S. Each concrete instantiation of the variables S
identi�es concrete BGP policies.

Step 3 (Section 4.3.3): Declare symbolic variables A to represent all the
announcements propagated through the BGP propagation graph. Propagate
all symbolic announcements through the policy sketches.�e result is an SMT
constraint φannouncements over the variables S and A.

Step 4 (Synthesis without additional IGP requirements): Encode the route selection
process and the requirements with the BGP selection predicate PrefNoIGP,
resulting in SMT constraints φselect and φreq over the variables A. If a model of
φselect ∧ φreq exists, then derive concrete BGP policies and return; otherwise,
go to Step 5.

Step 5 (Synthesis with additional IGP requirements): Find the unsatis�able core of
φselect ∧φreq and derive a set S of pairs (A1,A2) of announcements that cannot
be correctly selected without considering their IGP costs.Modify the constraint
to:

(⋀
(A1 ,A2)∈S

IGPCostA1 < IGPCostA2)⇒ φselect ∧ φreq

If a model of this constraint exists, then derive BGP policies, create
IGP requirements from the set S, and return; otherwise, return that the
requirements cannot be satis�ed.

4.4 ospf synthesis

We now present NetComplete’s OSPF synthesizer. OSPF is a Dijskstra-based routing
protocol that forwards tra�c along the shortest path, where path costs are computed
based on the OSPF cost (positive integer) attached to each link [32, 33]. NetComplete
features a new counter-example guided inductive synthesis (CEGIS) [84] algorithm for
OSPF that, given a set of OSPF requirements and a network topology, outputs OSPF
link costs that enforce the requirements. Our algorithm can be tailored to support
other Dijkstra-based routing protocols, such as IS-IS [34].

4.4.1 SMT Encoding

We phrase the OSPF synthesis problem as a constraint solving problem as follows:
For any link that connects two nodes R to R′ we introduce an integer variable CR ,R′

to represent the cost of link R → R′.�e cost of a path is given by the sum of the

68 network-wide configurations synthesis with autocompletion

(AS100→ A→ C → AS300
= AS100→ A→ D → C → AS300)

≫ AS100→ A→ B → C → AS300

(a) OSPF Requirements.

B C

A D

AS300

AS100

AS500

20

10

20

1010

(b) Link costs.
Figure 4.6: Example of OSPF requirements and a correct link costs assignment.

link costs along that path. For example, the cost of AS100→ A→ B → C → AS300,
denoted by Cost(A → B → C), is CA,B + CB,C . Note, the links AS100 → A and
C → AS300 are eBGP links and, hence, not included in the OSPF path cost. We also
denote the �nite set of all simple paths between two nodes R and R′ with Paths(R,R′).
We can encode that the path P = AS100 → A → C → AS300 has the lowest cost
among all other simple paths from AS100 to AS300 via:

∀x ∈ Paths(AS100,AS300)∖{P}. Cost(A→ C)<Cost(x)

We can directly use this method to encode the enforcement of OSPF requirements;
see Figure 4.6. For our example requirements, we obtain:

Cost(A→ C) = Cost(A→ D → C)
∧(Cost(A→ C) < Cost(A→ B → C))
∧(∀x ∈ Paths(AS100,AS300)∖ Reqs. Cost(A→ C) < Cost(x)),

where Reqs = {A→ C,A→ D → C,A→ B → C}

�is constraint captures that: (i) AS100→ A→ C → AS300 and AS100→ A→ D →
C → AS300must have equal costs, (ii) path AS100→ A→ C → AS300 has lower cost
than AS100→ A→ B → C → AS300, and (iii) all other paths have higher cost than
AS100 → A → B → C → AS300. Note, in this example, Paths(AS100,AS300) = S.
�erefore, we have Paths(AS100,AS300)∖ S = ∅ and condition (iii) vacuously holds.

Naive OSPF Synthesis. A naive synthesis solution is to encode all requirements with
constraints, as described above, and to then use a constraint solver to discover a
model that identi�es correct link costs. Unfortunately, phrasing the OSPF synthesis
problem directly into SMT does not scale to large networks.�e main issue is the
for-all (∀) quanti�er in the constraints used to encode that a path has a lower cost
among all other simple paths with the same source and destination. Note, counting
all paths in a graph is ♯P-complete [100].

4.4 ospf synthesis 69

4.4.2 Counter-Example Guided Inductive Synthesis for OSPF

In this section, present our new counter-example guided inductive synthesis (CEGIS)
algorithm for OSPF. CEGIS is a contemporary approach to synthesis, where a correct
solution is iteratively learned from counter-examples [84]. CEGIS algorithms tend to
work quite well in practice because o�en a small number of counter-examples (that
is, few iterations) is su�cient to discover a correct solution.
�e OSPF synthesis problem amounts to �nding a model of logical constraints of

the form:
∃C. EncodeOSPF(C, r,Paths(r))

where C is the set of variables that represent link costs, r is an OSPF requirement,
Paths(r) is the set of all paths from the source Src and destination Dst provided in
the requirement r, and EncodeOSPF(C, r,Paths(r)) returns a logical formula that
encodes the requirement’s satisfaction (as described in Section 4.4.1). Finding amodel
of this formula directly using a constraint solver is di�cult due to the large number of
paths in Paths(r). To avoid this quanti�er, CEGIS restricts the constraint to a (small)
set of paths S = {P1, . . . , Pn} ⊆ Paths(r).�e resulting constraint is:

∃C. EncodeOSPF(C, r, S)

which is easier to solve by existing constraint solvers. A model of this constraint
identi�es link costs that imply that the requirement holds over the paths in S.
However, it may not hold over all paths in Paths(r).�e idea of CEGIS is to check
the requirement over all paths and to obtain a concrete counter-example that violates
it, if one exists; we remark that the step of checking is usually e�cient.�e set S is
then iteratively expanded with counter-examples until a correct solution is found.

Algorithm We show the main steps of our CEGIS algorithm in Alg. 4. For each
requirement r ∈ Reqs, the algorithm declares a set Sr (line 3).�e algorithm then
iteratively repeats the following steps. For each requirement r ∈ Reqs, the algorithm
samples b paths from the source to the destination of the requirement r and adds these
to Sr (line 7). It then encodes the requirement’s satisfaction with respect to Sr (line 8)
and conjoins the result to φ (line 9). If the resulting constraint φ is unsatis�able, it
means the requirements cannot be satis�ed and the algorithm returns � to indicate
this. Otherwise, it obtains a modelM of the constraints φ (line 12), which de�nes a
concrete value for each link cost variable.
�e algorithm then checks whether these costs de�ned by M enforce the

requirements Reqs (over all paths). If the requirements are satis�ed, the algorithm
returnsM(C) (line 14), i.e. it returns the values associated to the link cost variables
C. Otherwise, it obtains a concrete counter-example as a pair (r, path) of a path path

70 network-wide configurations synthesis with autocompletion

Algorithm 4: CEGIS algorithm for synthesizing OSPF link costs with
respect to OSPF requirements.

Input: OSPF requirements Reqs = ⋃i r i , link cost variables C, bound b
Output: OSPF link costs

1 begin
2 for r ∈ Reqs do
3 Sr = ∅

4 while true do
5 φ = true
6 for r ∈ Reqs do
7 Sr ← Sr ∪ SamplePaths(r, b)
8 φr ← EncodeOSPF(C, r, Sr)
9 φ ← φ ∧ φr

10 if Unsat(φ) then
11 return �
12 M ←Model(φ)
13 if CheckReqs(M,Reqs) then
14 return M(C)

15 (r, path)← CounterExample(M,Reqs)
16 Sr ← Sr ∪ {path}

that violates a requirement r, and expands the set Sr with path (line 16).�is ensures
that the counter-example is avoided in the next iteraion. Further, to reach a solution
faster, the algorithm samples additional b paths for each requirement r and adds
them to Sr .�ese steps are repeated until a solution is found or the requirements are
deemed unsatis�able.

4.5 implementation and evaluation

We implemented NetComplete in about 10K lines of Python code using SMT-
LIB v2 [91] and Z3 [92]. NetComplete’s SMT formulas use the theories of linear
integer arithmetic and quanti�er-free uninterpreted functions. Our prototype takes
as input partial con�gurations (combining OSPF, BGP, and static routes) and outputs
completed ones. We support standard Cisco commands for setting OSPF costs and
BGP policies and can easily extend our code base to support other languages.
In this section, we show that NetComplete’s implementation is practical and

scales to realistic networks. Speci�cally, we measure: (i) NetComplete OSPF and

4.5 implementation and evaluation 71

BGP synthesis times in growing network topologies; (ii) the impact of having more or
less symbolic variables in the sketches; and (iii) how NetComplete compares against
competing approaches such as SyNET.

4.5.1 Methodology and Datasets

We evaluate NetComplete on real-world network topologies from the well-known
dataset Topology Zoo [94]. However, this dataset provides only topologies without
any high-level policies and routers con�gurations. In this section, we show our
methodology of how we select our evaluation topologies from Topology Zoo and
how we generate high-level routing requirements and con�gurations sketches for the
selected topologies.

Topologies.We sample 15 network topologies from Topology Zoo that we classify
according to the number of routers in the topology: small (from 32 to 34 routers),
medium (from 68 to 74 routers), and large (from 145 to 197 routers). We select 5
topologies per category.

Requirements. For each chosen topology, we generate a set of routing requirements
to evaluate our implementation. We generate four types of routing requirements
(simple, any-path, ECMP, and ordered). For each requirement, we randomly select
a source-destination pair (Src,Dst) from the routers in the topology. For simple
path requirements, we choose a random feasible path to forward tra�c from Src to
Dst. For the other requirements, we �rst choose two paths P1 and P2 from Src to Dst
and then we construct (P1, P2) for any-path requirements, (P1 = P2) for ECMP, or
P1 ≫ P2 for ordered requirements. For each topology, we generate multiple sets of
requirements of size 2, 8, and 16. We generate all four types of requirements for the
OSPF evaluation, and only generate simple and ordered path requirements for the
BGP evaluation. Indeed, any-path and ECMP requirements are typically internal
requirements and are therefore typically enforced by IGP protocols.

Sketches. We construct con�guration sketches for each topology from a fully
concrete con�guration (which we synthesize using NetComplete) for which we
randomlymake a given percentage of the variables symbolic. For instance, to generate
partial OSPF (resp. BGP) con�gurations that are 50% symbolic, we randomly make
50% of the edges (resp. BGP import/export policies) in the synthesized concrete
con�gurations symbolic.

Validation. We validate that our synthesized con�gurations comply with the
corresponding requirements in an emulated environment composed of Cisco
routers [93].

72 network-wide configurations synthesis with autocompletion

4.5.2 Results

We now present our experimental-evaluation results focusing �rst on OSPF synthesis,
before then BGP synthesis, and �nishing with a comparison with SyNET. We run
all our experiments on a server with 128GB of RAM and a 12-core dual-processors
running at 2.3GHz. Unless indicated, we report averaged results over 5 runs and
across topologies of the same class.

OSPF Synthesis. We �rst illustrate the e�ectiveness of synthesizing OSPF
con�guration using our CEGIS algorithm versus a naive algorithm in which the
entire ∃∀φ constraint, i.e., exploring all the paths between the source and destination
in one shot, is directly fed to the solver. We then evaluate how sketches a�ect the
overall synthesis time.
We report our results in Table 4.1 and convey four important insights. First, CEGIS

signi�cantly outperforms naive OSPF synthesis, especially in large networks where
naive synthesis does not even terminate within a day. Second, we see that the synthesis
time is proportional to both the topology size and the number of requirements.
Indeed, the number of symbolic variables is equal to the number of symbolic edge
costs, while the number of constraints is proportional to the requirements size and
the number of available paths.�ird, ordered path requirements take more time
to synthesize than the other requirements.�is is expected as such requirements
specify a strict sequence of paths making the search space more sparse. Fourth, the
use of more concrete values signi�cantly reduces the synthesis time, especially for
ordered path requirements with reductions up to 70%. We further illustrate this
behavior in Figure 4.7 which depicts the times required to synthesize 16 ordered
path requirements for the large networks as a function of the percentage of symbolic
values. We see that NetComplete indeed leverages the concrete variables and the
reduced search space to synthesize con�gurations faster.

0 20 40 60 80 100
Percentage of symbolic edge costs

0

500

1000

1500

2000

Ti
m

e
[s

]

Figure 4.7: NetComplete synthesizes ordered path requirements faster when the
con�guration sketch provides more concrete values for edge costs.

4.5
im

plem
entation

and
evaluation

73

2 requirements 8 requirements 16 requirements
Network Req. 50% symbolic 100% symbolic 50% symbolic 100% symbolic 50% symbolic 100% symbolic
size type CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive

Small Simple 0.41 0.93 0.43 1.04 1.66 2.42 1.67 2.73 3.33 6.95 3.39 8.02
Any-path 0.62 2.00 0.67 2.38 2.31 12.27 2.38 14.48 4.63 7.22 4.76 8.58
ECMP 0.48 0.84 0.53 0.94 1.72 5.02 1.77 5.76 3.44 3.16 3.48 3.61
Ordered 0.55 0.54 0.68 0.64 2.90 2.93 5.49 3.50 4.76 5.07 7.93 6.05

Medium Simple 0.79 790.04 0.81 1554.81 3.06 19613.55 3.10 20.60 6.17 3238.46 6.18 6039.24
Any-path 1.27 1677.30 1.28 4208.68 4.89 18758.02 4.94 66.10 9.70 107.13 9.83 122.68
ECMP 0.85 567.02 0.86 1370.70 3.16 5643.60 3.24 22272.88 6.34 45.32 6.39 51.61
Ordered 1.76 450.64 2.81 732.60 30.83 2942.83 33.60 8636.21 31.08 49.43 43.63 58.54

Large Simple 1.78 > 24h 1.85 > 24h 7.35 > 24h 7.40 > 24h 13.90 > 24h 14.03 > 24h
Any-path 4.23 > 24h 4.33 > 24h 16.59 > 24h 16.89 > 24h 32.61 > 24h 33.01 > 24h
ECMP 1.83 > 24h 1.89 > 24h 7.07 > 24h 7.14 > 24h 13.37 > 24h 13.52 > 24h
Ordered 6.90 > 24h 15.00 > 24h 33.81 > 24h 44.72 > 24h 249.48 > 24h 1155.19 > 24h

Table 4.1: Using Counter-Example Guided Inductive Synthesis (CEGIS) to synthesize OSPF weights is considerably faster than a naive
OSPF algorithm which aims to solve all constraints at once.

74 network-wide configurations synthesis with autocompletion

BGP Synthesis.We now evaluate the e�ectiveness of our BGP synthesizer and how
it leverages partial evaluation to concretize up to 25% of the symbolic variables and
therefore speed up the overall synthesis time.

Topo Req. Total # 16 reqs.
type of vars Min% Eval Max% Eval

Small Simple 58578 9.62% 18.76%
Ordered 37662 16.75% 18.76%

Medium Simple 98683 7.27% 13.54%
Ordered 58924 10.02% 22.81%

Large Simple 83832 11.93% 14.57%
Ordered 29565 22.56% 25.07%

Table 4.2: Number of generated symbolic variables. �anks to partial evaluation,
NetComplete is able to evaluate between 7% and 25% of the symbolic variables—
making BGP synthesis signi�cantly faster.

In Table 4.2, we show the average number of generated symbolic variables for each
group. We see that the number of generated symbolic variables is not directly related
to the topology size and the number of requirements: the number of variables for
medium topologies can exceed the ones of larger topologies. For BGP, the number
of variables indeed depends on: (i) the number of routers (and their connectivity)
in the computed BGP propagation graph; (ii) the complexity of the con�guration
sketch; and (iii) the e�ectiveness of partial evaluation.
Regarding partial evaluation, we observe that NetCompletemanages to evaluate

between 7% and 25% of the generated symbolic variables (see Table 4.2), whichmakes
BGP synthesis proportionally faster. Indeed, in Figure 4.8, we show how the BGP
synthesis time evolves linearly as a function of the number of symbolic variables. We
also see that NetComplete always manages to synthesize BGP con�gurations in less
than 14min.

Comparison to SyNET We now compare the synthesis time of NetComplete to
SyNET. Speci�cally, we compare NetComplete and SyNET running times for the
worst-case scenario reported in [101] involving 10 requirements de�ned in topologies
with 49 and 64 routers. Since SyNETde�nes requirements in terms of the number of
tra�c classes and not forwarding paths as NetComplete, we �rst translate each tra�c

4.5 implementation and evaluation 75

0 50k 100k 150k
Number of symbolic variables

0

200

400

600

800

Ti
m

e
[s

]

Figure 4.8: BGP synthesis time grows linearly with respect to the number of symbolic
variables.

class to a set of simple path requirements. To ensure a fair comparison, we provide
NetComplete with entirely symbolic sketch since SyNETdoes not accept sketches.

Rtrs Protocol SyNET NetComplete

49 Static 14m11s 0.05s
Static + OSPF 5h22m56s 2m1s
Static + OSPF + BGP timeout (> 24h) 44m2s

64 Static 49m22s 0.06s
Static + OSPF 21h13m16s 2m22s
Static + OSPF + BGP timeout (> 24h) 6h6m30s

Figure 4.9: NetComplete is > 600× faster than [101].

Our results, in Figure 4.9, shows that NetComplete is at least 600× faster than
SyNET and is able to synthesize con�gurations for larger topologies that SyNET timed
out on.�is speed up stems from two factors. First, NetComplete does not use
an SMT solver for the requirements that it can solve directly (such as synthesizing
static routes). Second, NetComplete relies on domain-speci�c heuristics (CEGIS
and partial evaluation) to reduce the search space, while SyNET relies on the generic
optimizations of the underlying SMT solver.

76 network-wide configurations synthesis with autocompletion

4.6 summary

We presented NetComplete, the �rst scalable network-wide con�guration
synthesizer to support multiple protocols and a partial sketch of the desired
con�guration. While SyNET presented a general network-wide synthesis framework,
NetComplete focused on the practical aspects of this problem.Namely, unlike SyNET,
NetCompleteis capable of synthesizing con�gurations for a limited set of built-in
protocols. However, this design choice enables NetCompleteto use more e�cient
optimization strategies that enables it to scale to support networks larger in size and
to evolve existing con�gurations rather than synthesizing new ones.
NetComplete features a new BGP synthesis procedure that supports BGP

con�guration sketches and partial computations over symbolic announcements.
It also introduces an e�cient synthesis procedure for the widely-used OSPF protocol.
�is procedure is based on counter-example guided inductive synthesis and achieves
signi�cant speedups (> 100x) over existing solutions.
Finally, we presented a comprehensive set of experimental results, which

demonstrate that NetComplete can autocomplete con�gurations for large networks
with up to 200 routers within few minutes.

Part III

NETWORK VER I F ICAT ION

5
SDN PROGRAMMING AND CONCURRENCY I S SUE S

In the past few years, So�ware-De�ned Networking (SDN) managed to establish
itself as a promising approach for designing and operating computer networks. SDN’s
vision focuses on two fundamental premises: separating the control and data planes
and centralizing the controller; see Section 1.5. However, realizing this vision in
practice requires developers to build highly sophisticated and reliable SDN controllers
(i.e., control so�ware operating on top of a network). An SDN controller, at its core,
is an event-driven program whose goal is to compute, maintain, and populate the
forwarding table of each SDN switch in the network. SDN controllers operate in
highly asynchronous environments where events such as packets arriving at a switch,
link or node failures, or expiring �ows can be dispatched to the controller at any time,
all non-deterministically.�e controller can request synchronously other events such
as statistics from the switches. Building such highly asynchronous programs is known
to be a challenging problem due to inadvertently introducing harmful concurrency
errors.
In the context of SDN, there are two places where concurrent interference can

occur: (i) within the SDN control so�ware itself (e.g., if it is multi-threaded or
distributed); and (ii) at the interface between the control so�ware and the SDN
switches. SDN switches can indeed be seen as memory locations which are read and
modi�ed by various events and entities. While the �rst kind of interference can be
detected with standard approaches [102], the second kind of interference is harder
to detect as it o�en depends on a particular ordering of speci�c, but unpredictable
events. Yet, detecting these interferences is crucial as they are typically at the root of
deeper semantic problems such as black holes, forwarding loops or non-deterministic
forwarding.
In the following, we say that a concurrency issue arises when there are two

unordered accesses to the switch �ow table, one of which is a write produced by the
controller. A harmful concurrency violation is a bug that a�ects the correctness of the
SDN controller’s execution [103].

79

80 sdn programming and concurrency issues

load-balancer

Replica#1
198.51.100.1

Replica#2
198.51.100.1

Internet

Host#1
203.0.113.1

S1

S3

2 3 9
76

1

854 10

slow

S2

Controller

(a) Events sequence

i f d s t == s e r v e r :
_rep=rep [i dx]
i dx =(i dx + 1)%2
i n s t a l l _ p a t h (s r c , _rep)
i n s t a l l _ p a t h (_rep , s r c)
p a c k e t _ou t (pkt , in_sw)

d e f i n s t a l l _ p a t h (s , d) :
pa th= d i j k s t r a (s , d)
f o r p i n pa th :
flow_mod (i , s , d , fwd (p [i + 1]))

(b) Basic load-balancing application

Figure 5.1: An example of a simple load-balancing application and a sequence of events,
which leads a concurrency violation that triggers a forwarding loop.

5.1 a non-deterministic forwarding loop in a load balancer

We start this section by introducing the example application showing a sequence of
events that leads to a concurrency violation.�en, demonstrate how the concurrency
violations leads to violations in high-level correctness properties.
Consider a simple SDN controller programwhich runs a load-balancer application

(see Figure 5.1) that directs external requests to a chosen replica in a round-robin
fashion. For this basic program, we show that a data race can happen; i.e., two
unordered operations on a �ow table, one of which is a �ow table write event. A race
condition can cause the tra�c to be trapped in a forwarding loop or be delivered to
di�erent replicas.
Now, consider the following sequence of events: an external host, Host #1, sends

a request directed to a farm of web server replicas identi�ed by the IP address
198.51.100.1.�at request hits the �rst switch in the network, S1 1©; since it is
a new request, S1 sends the request to the controller 2© in an OpenFlow message
called PACKET_IN.�e controller (i) elects Replica #1 to serve the new request; (ii)
computes the shortest-path between S1 and Replica #1 (as well as the return path)
according to the load-balancing application de�ned in Figure 5.1b; (iii) pushes down
two �ow table write events (called FLOW_MODs), one for each tra�c direction, on
S1 3©– 4© and similarly on S2 9©– 10© to forward the packets fromHost #1 to Replica #1
(as well as the return path); and (iv) sends the request back to S1 in a PACKET_OUT
5©. S1 sends the request to S2 6©. In this trace, the packet hits S2 7© before the
corresponding �ow rules 9©– 10© are installed on S2, causing the packet to be sent

5.1 a non-deterministic forwarding loop in a load balancer 81

back to the controller 8© (as switch S2 does not have any entries installed to handle
this packet). Assuming a round-robin selection algorithm, the controller assumes
this is a new request and elects Replica #2, computes the shortest-path between S2
and Replica #2 and pushes down the corresponding �ow rules on S2, S1, and S3; for
brevity we do not show this step in Figure 5.1.
From this point on, the tra�c is processed incorrectly, in a non-deterministic

manner, as S1 and S2 each have forwarding entries with the same priority that match
each direction of the tra�c. Concretely, both directions of the tra�c either end up
caught in a forwarding loop, if S1 (respectively, S2) uses the rule to forward the
tra�c to S2 (respectively, S3), or hits one of the two replicas, non-deterministically.
As replicas maintain state for each connection they receive, changing the replica
on-the-�y will cause the connection to drop. In both cases, tra�c ends up being lost.

Concurrency Violations. In this example, the concurrency error arises between the
read event caused by the packet received by S2 7© and the write event 9©matching
it which leads to lost tra�c. Note that the controller could prevent this problem by
using OpenFlow Barrier messages (BARRIER_REQUEST and BARRIER_REPLY) to
ensure the rules are installed on both S1 and S2 before pushing the request back to
S1.

High-Level Properties Violations. In particular, we focus on two high-level
properties: update isolation and packet coherence.
Informally, update isolation dictates that di�erent policy changes do not interfere

with each other (we provide a formal de�nition in Section 6.5.2). Note that update
isolation property only pertains to concurrency violations between di�erent �ow
table write events. In our example, the load-balancer application issued two policy
changes: the �rst policy selects Replica #1, while the second policy selects Replica #2.
However, due to the concurrency violations between the read event caused by the
packet received by S2 7© and the write event 9©, the network violates the update
isolation property. In particular, S1 forwards tra�c according to the �rst policy
(to Replica #1) while S2 is forwarding tra�c according to the second policy (to
Replica #2). Note that solving the underlying concurrency violation also solves the
violation of this property.
On the other hand, the packet coherence property dictates that each packet is

processed entirely by one consistent global policy (we provide a formal de�nition
in Section 6.5.3). Note that update packet coherence property only pertains to
concurrency violations between �ow table write events and packets reading the
�ow table entries. In our example, the switches process the �rst packet of the request
using two policies (using Replica #1 and Replica #2). In this instance, the violation of
the packet coherence properties could lead to a forwarding loop in the network.

82 sdn programming and concurrency issues

5.2 problem statement

A practical SDN concurrency analysis tool would help SDN controller developers
not only to detect concurrency violations but also to provide useful insights into any
violations of high-level properties. Informally, an SDN concurrency analysis tool
takes as input an event trace π and reports to the developers (i) harmful concurrency
violations; (ii) high-level properties violations to understand the broader impact
of the harmful concurrency violations on the correctness of the SDN controller;
and (iii) a small set of representative concurrency violations (ideally, one violation
per bug). To obtain an event trace π, the developers could collect the events from
their existing quality-assurance (QA) environment; in which the controller runs
on real hardware or an emulated network to detect any bugs before deployment
to production. However, even a small event trace could contain millions of events;
depending on the size of the network, the number of packets �owing through the
network, and the complexity of the SDN applications running inside the controller.
�us, a concurrency analysis tool could report thousands or even tens of thousands of
concurrency violations overwhelming the developers, making such tools impractical.
�us, it is crucial for a practical concurrency analysis tool to report only harmful
concurrency violations. Due to the nature of the network, the same bug that is the
root cause of a concurrency violation could be triggered multiple times and report
di�erent violations. Hence, ideally, a concurrency analysis tool should report one
representative violation per bug so the controller developer could focus on �xing a
given bug. For instance, in our example load-balancer app, every new request triggers
the same concurrency bug (see Section 5.1).

De�nition 5.2.1. SDN Concurrency Analysis Problem Statement
Given an event trace π produced by an SDNnetwork, �nd all the harmful concurrency
violations and the high-level properties that are violated as a consequence.

5.3 our contributions

We next summarize our main contributions to address the SDN concurrency analysis
problem:

1. A thorough happens-before model (HB model) [104] which precisely captures
the asynchronous interaction between an OpenFlow-based SDN controller
and the SDN switches (Section 6.3).�e HB model is a relation that precisely
captures the ordering of events in an SDN network based on the potential
causality relation between them. We use the ordering captured by the HB
model to detect any potential unordered memory access and, hence, potential

5.4 related work 83

concurrency violations. Note, not all reports from this analysis alone are true
violations that a�ect the correctness of the SDN network.

2. A set of e�ective �lters that dramatically reduce the number of reports,
including a commutativity speci�cation which captures the precise conditions
under which two operations on the network switch commute (Section 6.4).
Together, the speci�cation and the �lters reduce the number of reported issues
by several orders of magnitude.

3. A set of domain-speci�c features to measure the similarities between
concurrency violations. We use the set of domain-speci�c features to cluster
the related concurrency violations and rank the violations in each cluster.�en
we develop a ranking algorithm to select a representative candidate of each
cluster (Section 6.6). In a case study, we show that solving the concurrency bug
using the representative violation caused 99.23% of the violations to disappear
(Section 6.8).

4. A complete implementation of SDNRacer, a dynamic analyzer which can
readily analyze production-grade (single and multi-threaded) SDN controllers
for various properties including data races, packet coherence, and update
isolation (Section 6.7).

5. A comprehensive evaluation of SDNRacer attesting that it can uncover
harmful and previously unknown bugs in existing SDN applications [105–
113] (Section 6.8).

5.4 related work

Data Plane Veri�cation. Several projects aim to verify the correctness of SDN
networks. Anteater [114], HSA [115] and Libra [116] collect snapshots of the network
forwarding state and check if it violates certain properties. VeriFlow [117] and
NetPlumber [118] build on this by allowing real-time checking upon network updates.
An extension of VeriFlow allows using assertions to check network properties during
controller execution [119]. Similar to SDNRacer, these tools can detect interesting
invariant violations. However, they cannot tell what precise sequence of events led
to them, only that the latest update triggered the violation. STS [120] extends these
works by considering theminimal sequence of events responsible for a given invariant
violation. Unlike SDNRacer, STS does not have a precise formal speci�cation of the
partial orderings of events or the conditions under which two operations commute.
As a result, STS cannot detect bugs unless the invariant is violated in a given trace. On

84 sdn programming and concurrency issues

the other hand, SDNRacer reports strictly more violations than STS by generalizing
the observed trace to all traces obtainable from the same inputs. Additionally, STS
uses network-wide snapshots to check various properties while SDNRacer considers
all relevant events and thus does not miss any harmful violations. Finally, the output
of SDNRacer and STS is di�erent. STS outputs the minimal sequence of input events
that reproduce an invariant violation while SDNRacer outputs the exact pairs of
read/write events that caused the property violation.

Controller Veri�cation. Other approaches seek to eliminate controller bugs, for
instance, by synthesizing provably correct controllers [121, 122]. Similarly, in
FlowLog [43], rulesets are partially compiled to NetCore [44] policies and then
veri�ed.
NICE [123] uses concolic execution of Python controller programs with symbolic

packets and then runs a model checker to determine invariant violations. Kuai [124]
uses a simpli�ed version of an OpenFlow switch as well as a custom controller
language, but applies partial order reduction techniques to reduce the number of
states the model checker has to explore. Although signi�cantly more performant,
Kuai still su�ers from the state-space explosion problem associated with full model
checking. Vericon [125] converts programs into �rst-order logic formulas and uses
a theorem prover to verify safety properties. In contrast, SDNRacer is a dynamic
analyzer that operates on actual controller traces and can quickly detect concurrency
issues: the root cause of many bugs.�e speed of the analysis only depends on the
trace size, not on the controller. Previous approaches could bene�t from our formal
speci�cations in order to speed-up their veri�cation time; e.g., by not checking
operations that do not interfere with the network state.
CONGUARD uses similar techniques as SDNRacer to detect and exploit

concurrency violations inside the SDN controller so�ware [126]. �is work is
orthogonal to SDNRacer since SDNRacer focuses on the concurrency violations
that are induced by the read/write events from the switches, while CONGUARD
focuses on the concurrency violations inside the SDN controller.
Moreover, researchers [127, 128] presented formal model-checking techniques

to validate SDN controllers. While model checking techniques provide extended
coverage of the application, the controller developers need to develop a faithful
model of their implementation.�e work of Jagadeesan et al. [129] overcomes some
of the traditional scalability limitations of model-based veri�cation by leveraging
machine-learning algorithms.

Consistency properties.OpenFlow is asynchronous, and there is research on how
to provide consistency guarantees under certain circumstances; e.g., how to ensure
per-packet or per-�ow consistency during policy changes. Reitblatt et al. introduced

5.4 related work 85

the notion of update consistency [130]. Several papers [130–133] introduced di�erent
formal techniques to preserve these properties during network updates. Researchers
developed domain-speci�c languages such as the Frenetic language [14], the FatTire
language [134], and NetCore [44] which aim to eradicate bugs in OpenFlow networks
altogether.�is is achieved by adding layers of abstraction and forcing the developers
to use higher-level constructs or declarative languages instead. �ese are then
executed by a run-time system or compiled by a compiler that ensures correctness.
Developers using such systems can use more abstract thinking but must trust that
the run-time system being used is sound. SDNRacer complements this work and can
be used to verify that the run-time system is correct.�e authors of Attendre [135]
propose a mechanism using versioned �ow-table entries and packet bu�ers that
would eliminate certain classes of race conditions in OpenFlow networks.�e main
problem with these solutions is that they do not scale: as �ow tables and bu�ers are
always of �nite size, solutions relying on them cannot make any guarantees for the
worst case when the network is congested. However, they do help in situations where
there is guaranteed to be enough space available for a given task; i.e., the �ow table
should have enough space to hold more than one policy version.

Troubleshooting tools. OFRewind [136] enables manual debugging of OpenFlow
networks by running as a proxy between OpenFlow switches and controllers. It can
capture both control and data plane tra�c, and can re-inject traces into the network.
Similar e�orts are made with ndb [137], a network debugger that sits between the
controller and switches and enables tracing of packets across the network.�ese tools
can be useful for debugging, but they do not explore reorderings of events. In the
case of ndb, additional barrier messages are inserted to prevent reorderings during
debugging.

Violation Clustering and Ranking. Researchers applied grouping or clustering
concurrency violation for event-driven concurrency analyzers in other domains [138–
143].�e main di�erence is that our clustering method is based on �ne-grained
semantic happens-before information rather than coarse-grained indicators (e.g.,
whether an operation in a violation is in the framework [138]). Also, SDNRacer does
not rely on static analysis and actually considers the controller code as a black box.
�anks to this, our clustering approach based on happens-before information is
general and can thus bene�t existing analyzers such as EventRacer for Android [138].
SDNRacer also goes beyond reducing the number of false positives produced by

traditional concurrency analyzers by automatically reasoning about the common
causes underlying the violations using domain-speci�c knowledge [102, 103, 144].

6
CONCURRENCY ANALYS I S FOR SOFTWARE -DEF INED
NETWORKS

In this chapter, we present a system called SDNRacer, the �rst comprehensive
dynamic and controller-agnostic concurrency analyzer for production-grade SDN
controllers. SDNRacer checks for a variety of errors including (high-level) data races,
packet coherence violations, and update isolation violations. It precisely captures the
asynchrony of SDN environments; thanks to the �rst formulation of a happens-before
(HB) model [104] for the most commonly used OpenFlow features. Our HB relation
is based on an in-depth study of the OpenFlow speci�cation [20] and the behavior
of network switches [145]. Further, we present a commutativity speci�cation of an
SDN switch under which two operations on the switch commute.�is speci�cation
elegantly abstracts the behaviors of the switch and is a principled approach to reducing
the number of false positives, enabling precise and scalable analysis. To assist the
SDN controller developers to debug and �x the reported concurrency violations,
SDNRacer automatically identi�es the most representative concurrency violations:
those that capture the cause of the violation.�e two key insights behind this assist
are that: (i)many violations share the same root cause, and (ii) violations with the
same cause share common characteristics. SDNRacer leverages these observations to
cluster reported violations according to the similarity of events in them as well as
SDN-speci�c features. SDNRacer then reports the most representative violation for
each cluster using a ranking function.
We illustrate the practicality of SDNRacer by analyzing real-world SDN controllers

(both, single and multi-threaded) and show that it automatically discovers harmful
and previously unknown concurrency errors.

6.1 overview

Now, we provide an overview of SDNRacer. We explain, in Section 6.1.1, how
SDNRacer analyzes a trace of SDNnetwork’s events and identify harmful concurrency
issues. In Section 6.1.2, we discuss how to use SDNRacer to detect violations of higher-
level properties (beyond races) such as consistency violations. Finally, in Section 6.1.3,
we discuss how SDNRacer aid developers to troubleshoot and debug concurrency
issues.

87

88 concurrency analysis for software-defined networks

…

events
millions

Build HB Graph

race!

concurrency
violations

10—1000s

Concurrency
Analysis

race!

harmful
concurrency

violations

10—1000s

Filter
False-positive

0—10s

update consistency
packet coherence

Clustering RankingPre-processing

A

B

C

f(.)

per-violation graphs clusters 1 to 6ranking
function

representative
per-violation graphs

10—1000s

Concurrency AnalysisSTS

Troubleshooting

High-Level Properties Analysis

packet coherence violations

update consistency violations

Figure 6.1:�e pipeline of SDNRacer. SDNRacer accepts an event trace from production
or emulated SDN network. First, SDNRacer analyzes the event trace identifying
harmful consistency violations.�en, SDNRacer analyzes the reported races and
identify if any causes a violation of high-level properties. To aid the developers,
out of potentially thousands of violations, SDNRacer reduces them to a handful
of representative ones which closely map to actual controller bugs.

6.1.1 Concurrency Analysis

Detecting concurrency issues, such as described in Section 5.1, requires a careful and
precise de�nition of the operations in the network and of how ordering between
operations is induced in the network. We begin by de�ning a small set of events
which succinctly encapsulate the relevant operations performed by the controller, the
network switches, and hosts in the network.�e goal of de�ning these events is to
design an abstraction that captures all the relevant information for the concurrency
analysis without having to analyze irrelevant low-level implementation details
(e.g., how a switch bu�ers a packet). Example of these events are PACKET_IN,
PACKET_OUT, and FLOW_MOD presented in Section 5.1. SDNRacer accepts a
trace of events produced by SDN network in production or emulated environment.
We provide full speci�cations of the relevant events in Section 6.2.
�en, we de�ne a precise happens-before (HB) model [104] for SDN networks.

Happens-before is a binary relation that de�nes an ordering of events such that if
event a happens before event b then the results of event a (e.g., modifying a �ow table)
are visible to event b. We provide the �rst happens-before speci�cations for SDN
networks in Section 6.3. Events unordered by happens-before relation can interfere;
e.g., events 7© and 9© in the example in Section 5.1. Not all interfering events are
harmful to the network. For example, events that writes or reads di�erent parts of the

6.1 overview 89

�ow space (e.g., di�erent IP addresses) do not need strict happens-before ordering;
hence are considered false positive concurrency issues.

Filtering False-Positive Concurrency Issues

A key problem that every practical concurrency analyzer must address is reducing the
amount of reported issues that are false positives and therefore, harmless. SDNRacer
�lters numerous false positives by leveraging two distinct �lters. Together, these two
�lters reduce the number of races by up to 99.97%. Detailed evaluation of the �ltering
performance of our tool is provided in Section 6.8.

Filter 1: Commuting Events. Commutativity relates to whether changing the order
of two events a�ects the network state in di�erent ways. If not, then even if two events
are interfering with each other (via low level reads and writes), the network state ends
up being identical. Such interference is therefore harmless and can be �ltered out.
Consider Figure 5.1 again and the write events 3©– 4© that are pushed to S1 upon

the reception by the controller of the packet sent by Host #1 2©.�ese two write
events race with each other as the switch does not guarantee any ordering between
write requests: either 3© will happen before or 4©. However, the race is harmless as
the two events are for non-overlapping entries of the forwarding table. In other words,
the forwarding table at S1 will end up being identical independently of whether 3©
happens before 4© or not.We say that 3© and 4© commute.We present a precise formal
de�nition of the commutativity speci�cation of the forwarding table in Section 6.4.

Filter 2: Time. In theory, SDN switches can take an unbounded amount of time
to perform a command (read or write). In practice, though, they tend to execute
them within a relatively short time frame.�is observation enables SDNRacer to
�lter unlikely interference issues [146–148]. For instance, if a read and a write event
are separated by, say 10 seconds, then they are unlikely to be reordered in practice.
SDNRacer enables the SDN developer to specify a time δ a�er which two events
cannot interfere anymore.�is δ can easily be estimated based on the maximum
network delay and the maximum switch processing time.

6.1.2 Detecting Violations of High-Level Properties

SDNRacer goes beyond detecting interferences and is capable of detecting violations
of higher-level properties such as inconsistent packet forwarding during a network
update [130]. In particular, SDNRacer uses the detected harmful concurrency
violations to identify if any violates update isolation and packet coherence properties.
Informally, SDNRacer analyzes harmful violation between events that belongs to

90 concurrency analysis for software-defined networks

di�erent updates to detect any violations of update isolation property. Similarly,
SDNRacer analyzes harmful violation between packet read events and �ow table
write events to detect any violations of packet coherence property. We provide a
formal speci�cation of the high-level properties and how SDNRacer uses the results
of the concurrency analysis to detect any violations of these properties in Section 6.5.
So far, only a few SDN controllers such as Frenetic [14] guarantee update

consistency. With SDNRacer, an SDN developer can now analyze any controller
for consistency problems. In Section 6.8, we show that many such controllers
(Floodlight [149], POX [150], ONOS [15]) are actually inconsistent. Most importantly,
SDNRacer consistency analysis enabled us to discover previously unknown harmful
bugs in several of them.

6.1.3 Assist with Debugging

SDNRacer detects and reports all true-positive concurrency violations—every single
one of them—which can amount to thousands even inminutes-long traces. Analyzing
and troubleshooting all these violations is tedious for at least four reasons. First,
using classical debugging tools that require replaying the log traces and �xing issues
one-by-one is infeasible as the concurrency violations are o�en non-deterministic
and hard to reproduce in test environments. Second, violations originating from
the same bug might di�er (either subtly or vastly), which makes them hard to
classify manually. In our previous example, Section 5.1, violations would di�er in the
number of “bounces” observed between the controller and the switch.Worse,multiple
switches can also be involved leading to a combinatorial explosion in the number
of distinct violations.�ird, the number of violations induced by each bug can vary
signi�cantly (Section 6.8) and does not necessarily correlate with the importance
of the problem. Fourth, a developer has no information on the number of bugs that
are causing the violations. A naive approach to randomly �x one violation at a time
and then re-run the analysis can, therefore, take a long time to converge and be
sub-optimal (especially, if done in a greedy way).
To aid the debugging process, SDNRacer aims to present the developer with only

the representative violations which, ideally, correspond to the actual bugs.�is allows
SDN developers to focus on addressing the most serious cases. SDNRacer reduces the
number of concurrency violations according to a three-step process; see Figure 6.1.
Here we give a high-level overview of the three-steps process, and we describe in
detail each step in Section 6.6.

Step 1: Pre-processing. Out of a given execution trace, a concurrency analyzer will
typically build a directed graph according to a happen-before (HB) relation (where

6.2 formal model of sdn operations 91

event a is connected to b if a happens before b).�e analyzer will then report a
concurrency violation for any two events which are unordered in the graph (i.e., are
disconnected), both events access the same location, and one is a write event.
As SDNRacer needs to compare violations together, a pre-processing step �rst

produces one sub-graph per violation given the HB-graph.�is sub-graph only
contains the events that led to the violation.

Step 2: Clustering. Given a set of per-violation graphs, SDNRacer clusters these
graphs into a number of (ideally, representative of the bugs) classes. SDNRacer
initializes the clustering process by grouping all isomorphic per-violation graphs.
�e intuition is that because these graphs share the same sequence and structure of
events, they are more likely to exert the same code path (and therefore the same bug)
inside the controller.
While isomorphic-based clustering is e�cient at identifying “look-alike” violations,

di�erent violations from the same bug can take di�erent shapes (e.g., di�erent number
of switches trigger the bug).�erefore, in the second phase, to reduce the number of
clusters, SDNRacer applies a clustering strategy based on whether two per-violation
graphs are similar to each other. SDNRacer de�nes this similarity based on a distance
de�ned over a set of domain-speci�c features. If two per-violation graphs exhibit
the same features, SDNRacer considers them similar to each other and clusters them
together. SDNRacer uses several features for distance computation; for instance,
two violations are closer to each other if both have a packet bouncing between the
controller and the switch (as described in our example).

Step 3: Ranking. Since the number of clusters reported by SDNRacer is very low (6 or
less in all experiments), each of the clusters contains many violations, sometimes on
the order of 1,000s. In the �nal step, SDNRacer uses a ranking function to select “the
most interesting” violation representative of the entire cluster.�e ranking function
identi�es the most commonly occurring features in each cluster.�en, the ranking
function selects the per-violation graphs that exhibit the most features and selects
the smallest of these, thus, showing the simplest representative graph.

6.2 formal model of sdn operations

In this section, we de�ne a formal model of a So�ware-De�ned Network.�is model
includes both events occurring in the network as well as a model of the �ow table in
an OpenFlow switch. In later sections, we use this formalization to specify a precise
happens-before (HB) relation and a commutativity speci�cation of the �ow table.

92 concurrency analysis for software-defined networks

6.2.1 Operations and Events

We begin by de�ning a small set of events which succinctly encapsulate the relevant
operations performed by the controller, the network switches, and hosts in the
network. �e operations are de�ned in Section 6.2.2 and contain the reads and
writes (updates) to the �ow table.
For each event type, we de�ne a set

of attributes that describe the event. Depending on the event type, only a subset
of the attributes ⟨pid,mid, out_pids, out_mids,msg_type, sw, ops⟩ is used. Where
pid is the identi�er of the packet processed by the event. Since network packets
are potentially processed by more than one event, SDNRacer generates a Packet
ID pid that does not map directly to any of the headers but rather it designates a
speci�c packet in a speci�c event. mid is the identi�er of the OpenFlow message
processed by the event. If there are no such packets/messages, these attributes are
set to the unde�ned value ⊥.�e set out_pids contains the identi�ers of all packets
emitted by the event. For each event that emits a packet (e.g., SendPkt), SDNRacer
generates a new unique pid for the packet and add it to the event’s out_pids set.
Each out_pids is a set because events emitting multiple packets generates multiple
new pids. For instance, SDN switches can duplicate packets and output them on
multiple ports.�e HB model uses the Packet IDs to link causally related events as
de�ned in Section 6.3.�e set out_mids contains the identi�ers of all OpenFlow
messages emitted by the event. Each out_mids is a set because the controller can
issue multiple messages in response to one event. If there are no such packets or
messages, these sets are empty ∅. For events where mid ≠ ⊥, the OpenFlow message
processed by the event is of type msg_type.�e relevant message types for our
analysis are: PACKET_IN, PACKET_OUT,BARRIER_REQUEST,BARRIER_REPLY,
PORT_MOD, FLOW_REMOVED and FLOW_MOD. Finally, sw is a switch identi�er,
and ops is the set of �ow table operations the event contains.
�e following events capture the behavior of the switches, controllers, and hosts:

HandlePkt(sw, pid, out_pids, out_mids, ops) denotes that a switch sw received
and processed a data plane packet pid.�ere are three cases: (i) the switch generates
OpenFlow messages. In this case, out_mids contains the OpenFlow messages and
out_pids contains the packet stored in the switch bu�er; (ii) the switch forwards the
packet. In this case, out_pids contains the packet to be forwarded, or; (iii) the switch
drops the packet.

HandleMsg(sw, mid, pid, out_pids, out_mids, msg_type, ops) denotes that a
switch sw received and processed the OpenFlow message mid with type msg_type.
�e pid is ⊥ unless the switch reads a packet from its bu�er to process the OpenFlow

6.2 formal model of sdn operations 93

message (e.g., PACKET_OUT OpenFlow message). As a result of processing this
packet, the switch can generate OpenFlow messages, and in such case, out_mids
contains the OpenFlow messages identi�ers. Moreover, the switch can generate new
packets; in which case out_pids contains new packets identi�ers.

SendPkt(sw, pid, out_pids) denotes that a switch sw sent the packet pid with a new
identi�er (in out_pids) out to another switch or host.

SendMsg(sw, mid, out_mids) denotes that a switch sw sent the OpenFlow message
mid out to the controller with the identi�er in out_mids.

RemovedFlow(sw, mid, out_mids, ops) denotes that a �ow table entry in the switch
timed out or a message mid explicitly deleted it. As a result of this event, the switch
might generate an OpenFlow �ow removed message; in which case the out_mids
contains its identi�er.

CtrlHandleMsg(mid, out_mids) denotes that the controller received and processed
the OpenFlow message mid, and generated the OpenFlow messages in out_mids in
response. If the controller did not generate a response, then out_mids is empty.

CtrlSendMsg(mid, out_mids) denotes that the controller sent the OpenFlow
message mid out to the control plane with the identi�er in out_mids.

HostHandlePkt(pid, out_pids) denotes that a host received and processed the
packet pid, and generated the packets in out_pids in response.

HostSendPkt(pid, out_pids) denotes that a host sent the packet pid with a new
identi�er (in out_pids) out to another switch or host.

6.2.2 A Model of an SDN Flow Table

We now de�ne a model of the �ow table in an OpenFlow switch which contains a set
of entries used to match packets.

Flow Table: Entries

A packet contains a header and a payload.�e header consists of a set of �elds (e.g.,
IP source, IP destination, or VLAN ID).�e switch uses the header �elds to match
packets against �ow table entries.�e payload is a sequence of bits and does not a�ect
our speci�cation. For a packet pkt, we use the notation pkt.h to refer to the header
associated with pkt.
Each �ow table entry contains the �elds match, priority, actions, counters, and

timeouts.�e match is a boolean predicate over a packet header’s �elds, and the

94 concurrency analysis for software-defined networks

boolean predicate can be either an exact match (i.e., matching a single value) or a
wildcardmatch (i.e., using bit masks). Priority is a number specifying entry preference
in case the packetmatchesmultiple �ow entries, and actions specify a set of forwarding
operations the switch must perform on a matching packet. Counters contain values
used for statistics, while timeouts contain hard and idle timeout values.
For a �ow table entry e, we use the shortcut notation e.m, e.p and e.a to refer to

thematch, priority, and actions, respectively. Amatch between two entries e1 and e2 is
exact, denoted as e1.m = e2.m, when allmatch �elds are exactly the same (including
the wildcards). A match between e1 and e2 is wildcard, denoted as e1.m ⊆ e2.m, if
some of the �elds in e1.m are not an exact match but contained in e2.m due to more
permissive wildcards.�e same de�nition of wildcard and exact match applies to a
packet and to a �ow table entry.

Flow Table: Operations

An OpenFlow switch performs four types of operations on its �ow table: read, add,
mode, and del . read operations are part ofHandl ePkt event.�e switch performs a
read operation on the �ow table for each packet it receives.While add,mod, and (iv)
del operations are part ofHandl eMsg events with amsg_type of FLOW_MOD and
the switch performs these operations when an OpenFlow message is processed. We
de�ne the semantics of the �ow table operations, according toOpenFlow speci�cation
1.0 [20], as follow:

1. read(pkt)/eread : A read operation denotes that a switch matches a packet
pkt against the �ow table to determine the highest priority �ow table entry
eread that should be applied. If there is no such �ow table entry, then eread is
the empty value none. Note that the value of eread depends on the state of the
�ow table when the switch matched the packet pkt.

2. add(eadd , no_overl ap): An add operation denotes that a switch tries to add
a new entry eadd to the �ow table. When no_overl ap is true, then the switch
does not add the new entry if there is exists an entry in the �ow table with the
same priority and the match of both entries overlap (i.e., there exists at least
one packet that may match both the new entry the existing entry).

3. mod(emod , strict): A mod operation modi�es existing entries in the �ow
table. A boolean �ag strict is used to distinguish between the two types of
modi�cations issued by the controller. In strict mode, the switch uses an exact
match (including the priorities) to determine whether it should modify an
entry whereas in non-strict mode the switch uses a wildcard match. Note that
the switch treats mod as an add in case no match is found.

6.3 happens-before model 95

4. del(ed e l , strict): A del operation deletes all entries that match the entry ed e l
in the �ow table. Similarly to the mod operation, strict a�ects how the switch
performs the match operation to determine which entries to remove.

6.3 happens-before model

In this section, we de�ne a precise happens-before (HB) model for SDN networks
based on the events described in Section 6.2. To ensure the correctness of the happens-
before model, we designed the model based on an in-depth study of the OpenFlow
switch speci�cation [20] and the analysis of two so�ware switch implementations:
the POX so�ware switch as well as the production quality Open vSwitch [145].
�e HB relation is a binary relation ≺ ⊆ Event × Event that is irre�exive and

transitive. For convenience, we use the notation α ≺ β instead of (α, β) ∈≺. For a
�nite trace consisting of a sequence of events π = α0 ⋅ α1 ⋅ ⋅ ⋅ ⋅ ⋅ αn we use α <π β to
denote that event α occurs before event β in π. We use Handl eMsgs to denote a set
of all the events of type Handl eMsg and de�ne such sets for each event type de�ned
in Section 6.2. We illustrate the HB ordering rules induced from a given trace π in
Figure 6.2. All except four rules (BarrierPre, BarrierPost, Time1, Time2) make
use of the information provided by the attributes pid, out_pids,mid, and out_pids.
�ese capture the causality between two events α and β in the trace, where α caused
β to happen. BarrierPre, BarrierPost describe the e�ect of BARRIER_REQUEST
messages on OpenFlow switches.�e rules Time1 and Time2 are speculative (discuss
later).
We next proceed to describe our rules. We also illustrate the e�ect of each rule on

the example shown in Figure 5.1.

SwitchDataPlane: �is rule orders events that process packets within a single
switch. It orders events that generate a given packet before the SendPkt events
sending the given packet to another switch. In the background example, this rule
introduces the ordering 5© ≺ 6©.

SwitchControlPlane: �is rules orders events that process OpenFlow messages
within a single switch. It orders events that generate a givenOpenFlowmessage before
the SendMsg events sending the given message to the controller. In the background
example, this rule introduces the orderings 1© ≺ 2©, and 7© ≺ 8©.

SwitchBuffer: When sending a PACKET_IN OpenFlow message to the controller
in a SendMsg event, the full packet contents need not be contained inside the
message. Instead, the switch may store the packet in its bu�er and send only a part of
the packet to the controller. Later, a Handl eMsg event ofmsg_type PACKET_OUT

96 concurrency analysis for software-defined networks

SwitchDataPlane:
α ∈ Handl ePkts ∪Handl eMsgs β ∈ SendPkts β.pid ∈ α.out_pids

α ≺ β

SwitchControlPlane:

α ∈ Handl ePkts ∪Handl eMsgs ∪ RemovedFlows β ∈ SendMsgs β.mid ∈ α.out_mids
α ≺ β

SwitchBuffer:
α ∈ Handl ePkts ∪Handl eMsgs β ∈ Handl eMsgs β.pid ∈ α.out_pids

α ≺ β

Host:
α ∈ HostHandl ePkts β ∈ HostSendPkts β.pid ∈ α.out_pids

α ≺ β

Controller:
α ∈ CtrlHandl eMsgs β ∈ CtrlSendMsgs β.mid ∈ α.out_mids

α ≺ β

Dataplane:

α ∈ SendPkts ∪HostSendPkts β ∈ Handl ePkts ∪HostHandl ePkts β.pid ∈ α.out_pids
α ≺ β

ControlplaneTo:
α ∈ SendMsgs β ∈ CtrlHandl eMsgs β.mid ∈ α.out_mids

α ≺ β

ControlplaneFrom:
α ∈ CtrlSendMsgs β ∈ Handl eMsgs β.mid ∈ α.out_mids

α ≺ β

BarrierPre:
α, β ∈ Handl eMsgs α.msg_type = BARRIER_REQUEST α.sw = β.sw α <π β

α ≺ β

BarrierPost:
α, β ∈ Handl eMsgs β.msg_type = BARRIER_REQUEST α.sw = β.sw α <π β

α ≺ β

Time1:
α ∈ Handl ePkts ∪Handl eMsgs β ∈ Handl eMsgs β.t − α.t > δ

α ≺ β

Time2:
α ∈ Handl eMsgs β ∈ Handl ePkts ∪Handl eMsgs β.t − α.t > δ

α ≺ β

Figure 6.2: Happens-before rules capturing ordering of events in a trace π.

6.4 commutativity specification 97

or FLOW_MODmay retrieve the packet from the bu�er before processing it.�is rule
orders Handl ePkt and Handl eMsg events that store a packet in the switch bu�er
before the Handl eMsg event that eventually retrieves a packet from the switch’s
bu�er. In the example, this rule introduces the ordering 1© ≺ 5©.

Host: �is rule orders the processing of the packet in a HostHandl ePkt event
before the sending of the reply packets in HostSendPkt events.

Controller: �is rule orders the processing of the OpenFlow message in a
CtrlHandl eMsg event before the sending of the reply messages in CtrlSendMsg
events. In the example, this rule introduces the orderings 2© ≺ 3©, 2© ≺ 4©, 2© ≺ 5©,
2© ≺ 9©, and 2© ≺ 10©.

DataPlane: �is rule orders events that send a packet before events that receive
the packet. In the example, this rule introduces the ordering 6© ≺ 7©.

ControlPlaneTo and ControlPlaneFrom: �ese rules order events that send
an OpenFlow message before events that receive the message. In our example, these
rules order the send of 2©, 3©, 4©, 5©, 8©, 9©, and 10© before the respective receive.

Barrier: For performance reasons, the switch is allowed to handle messages
received from the controller in a di�erent order from the one they were sent.
To enforce ordering, the controller can issue a BARRIER_REQUEST message
which ensures that the network switch �nishes processing of all previously received
messages (enforced by BarrierPre rule), before executing any messages beyond
the BARRIER_REQUEST (enforced by BarrierPost rule). Note that the switch
sends BARRIER_REPLY message to the controller once it �nished processing
BARRIER_REQUEST and all the messages before it.

Speculative time-based rules �is rule adds edges between events that are highly
unlikely to be reordered due to the physical limits of the network.�e value of δ
depends on the speci�c parameters of the network. It should include the maximum
delay that a packet might take traversing the network and the time window in which
the OpenFlow switches can reorder write events. �e proper value of δ can be
inferred from related work that measured �ow setup time in di�erent environments
and switches from various vendors [146–148]. We show the e�ect of choosing δ in
Section 6.8.2.

6.4 commutativity specification

In this section we introduce a commutativity speci�cation for an OpenFlow switch.
�is is an important component that has been used previously to improve concurrency

98 concurrency analysis for software-defined networks

of multicore systems [151] as well as to enhance the precision of program analyses
dealing with interference [152]. Here, the commutativity speci�cation is important to
reduce the number of reported false positives. As with the HB model, we designed
the model based on an in-depth study of the OpenFlow switch speci�cation [20] and
experimental testing with Open vSwitch [145].
To de�ne what commutativitymeans, we compare the results of two operations,

in particular, �ow table state and the returned values (if any) of the participating
operations. We consider two �ow tables to be in the same state if all their �ow
table entries contain identical priority,match, and actions �elds. For the purposes
of commutativity we ignore the counters and timeout �elds as they are not used for
matching packets or entries.
�e commutativity speci�cation is conveniently speci�ed in a form of a logical

predicate φ over pairs of operations. For a pair of operations a and b, the predicate
φa

b evaluates to true if operations commute and to f al se otherwise.

Auxiliary RelationsWe de�ne three auxiliary functions. First, we overload the set
intersection operator e1 ∩ e2 for entry match structures e.m (and packet headers e.p)
and use it to compute all packet headers that may match both e1 and e2. Next, we
use e1 str i c t

⊆ e2 to model the semantics of table entry matching in regular and strict
modes as follows:

e1
str i c t
⊆ e2 ∶= e1.m = e2.m ∧ e1.p = e2.p

e1.m ⊆ e2.m

if strict

if ¬strict

A del etes predicate models the semantics of a delete operation and speci�es
whether an entry e can be deleted:

del etes(ed e l , e, strict) ∶= e
str i c t
⊆ ed e l ∧ e.out_port ⊆ ed e l .out_port

Commutativity Speci�cation.We present the full commutativity speci�cation of
an OpenFlow switch in Figure 6.3. We write the rules in the form that speci�es when
the operations do not commute which is then negated. We adopt this approach as
the resulting rules are more intuitive to read. What follows is a description of some
of the non-trivial rules.

6.4
com

m
u

tativity
specification

99

φread(pkt)/eread

add(eadd , no_overl ap)
∶=

¬(eread ≠ none ∧ eread = eadd)

¬(pkt.h ⊆ eadd .m

∧(eread = none ∨ (eread .p ≤ eadd .p ∧ eread .a ≠ eadd .a)))

if add <π read

if read <π add

φread(pkt)/eread

mod(emod , strict)
∶=
¬(eread ≠ none ∧ eread

str i c t
⊆ emod ∧ eread .a ≠ emod .a)

¬(eread ≠ none ∧ pkt.h ⊆ emod .m ∧ eread .a ≠ emod .a)

if mod <π read

if read <π mod

φread(pkt)/eread

del(ed e l , strict)
∶=
¬(pkt.h ⊆ ed e l .m)

¬(eread ≠ none ∧ del etes(ed e l , eread , strict))

if del <π read

if read <π del

φdel(ed e l , strictd e l)

mod(emod , strictmod)
∶=
¬(del etes(ed e l , emod , true))

¬(ed e l .m ∩ emod .m ≠ ∅)

if strictmod

otherwise

φadd(eadd , no_overl ap)

del(ed e l , strict)
∶= ¬(del etes(ed e l , eadd , strict)∨ (no_overl ap ∧ eadd ∩ ed e l ≠ ∅))

φmod(e1 , strict1)

mod(e2 , strict2)
∶=

¬(e1 .m ∩ e2 .m ≠ ∅∧ e1 .a ≠ e2 .a)

¬(e1 .m = e2 .m ∧ e1 .p = e2 .p ∧ e1 .a ≠ e2 .a)

¬((e1
str i c t2
⊆ e2 ∨ e2

str i c t1
⊆ e1)∧ e1 .a ≠ e2 .a)

if ¬strict1 ∧¬strict2
if strict1 ∧ strict2
otherwise

φadd(eadd , no_overl ap)

mod(emod , strict)
∶=
¬(eadd

str i c t
⊆ emod ∧ eadd .a ≠ emod .a)

¬(eadd ∩ emod ≠ ∅)

if ¬no_overl ap

otherwise

φadd(e1 , no_overl ap1)

add(e2 , no_overl ap2)
∶=
¬(e1 .m ∩ e2 .m ≠ ∅∧ e1 .p = e2 .p)

¬(e1 .m = e2 .m ∧ e1 .p = e2 .p ∧ e1 .a ≠ e2 .a)

if no_overl ap1 ∨ no_overl ap2
otherwise

Figure 6.3: Commutativity speci�cation of an OpenFlow switch. Note that two read or two del operations always commute.

100 concurrency analysis for software-defined networks

φ(add, add): Adding two entries does not commute if: (i) the second entry
overwrites the �rst one, or (ii) the second entry is not added because the �rst entry
is already in the table.�e entries can overwrite each other only if both are added
without the no_overl ap option and their match and priority are identical. In this
case, the old entry is replaced with the new one and as long as their actions are
di�erent they do not commute. If at least one entry speci�es the no_overl ap option,
then they do not commute if they have the same priority and there exists an entry
that can be matched by both entries.

φ(add,mod): In case the no_overl ap option is not set, add and mod do not
commute in cases when they are allowed to modify the same entry with di�erent
actions. If no_overl ap is set, then mod can add a new entry that overlaps with add
which would result in add not being added.

φ(del ,mod): If mod a�ects only a single entry (strict mode), we simply check
whether this entry can be deleted. Otherwise, as long as both rules can match the
same entry, they do not commute.

φ(add, del): add and del do not commute if: (i) the added entry can be removed
by a subsequent delete, or (ii) the delete does not remove the entry to be added but
might enable adding it by removing some other entries.�is situation arises when
headers that may match add and del overlap.

φ(mod,mod): If neither modify operation uses strict mode then they do not
commute if there is an entry that may match both. If they are both strict then
this entry needs to be exactly the same. Otherwise they do not commute if they are
allowed to change the entry of each other.

φ(read, add/mod/del): For read operations we distinguish two cases depending
on the order in which the operations are executed in the trace. If a read happens
�rst, the operations do not commute if the matched entry is not guaranteed to match
a�er the second operation is performed. Since we know the concrete �ow entry that
matched the initial read, such a check can be performed precisely. In the case of a
read executing second, we simply check whether the matched rule is identical to
the one added or modi�ed. For a del operation, we conservatively check whether an
entry that matches the packet can be removed.

Key Points Note, that for the read operations our commutativity speci�cation
incorporates parts of the �ow table state by using the returned values. Further,
commutativity rules for read are specialized based on the trace order, which is a
direct consequence of depending on the state in which the operations were performed.
However, commutativity checking remains e�cient, as no �ow table state beyond
these return values needs to be stored or simulated.

6.5 consistency properties 101

6.5 consistency properties

In this section, we discuss the checking of two important previously de�ned
consistency related properties in Section 6.5.2 and Section 6.5.3. A useful guarantee
of our checking approach is that if we establish the properties holding on a single
trace, it follows that the properties hold for all traces which contain the same events
(though perhaps events appear in a di�erent order) where the traces use the same
input (Section 6.5.4).�is guarantee reduces the number of traces we need to explore
per input.

6.5.1 Network Update

SDN applications typically update more than one �ow rule in the network to re�ect
entire policy changes; e.g., re-routing congested tra�c through a di�erent end-to-end
path. To capture this behavior, we map individual events containing write operations
in a trace π into sets of network updates, such that each set Γ of network updates
re�ects a policy change in the network. Network updates are either triggered reactively
bymessages from switches (e.g., PACKET_INmessages), or proactively by an external
event (e.g., manual change from a network operator).
In reactive applications such as a learning switch, we can use the happens-before

model to extract the set Γ of events that are part of a reactive update for the event
α. For reactive updates, α is of type RemovedFlow or SendMsg. More formally, a
reactive update for event α is the set of events de�ned as follows:

R(π, α) ∶∶=
{β ∣ β ∈ π ∧ α ≺ γ1 ≺ γ2 ≺ β

∧ γ1 ∈ CtrlHandl eMsgs ∧ γ1 ∈ Succ(α)
∧ γ2 ∈ CtrlSendMsgs ∧ γ2 ∈ Succ(γ1)

∧ β ∈ Succ(γ2)}

where Succ(γ) returns all events created directly as a result of processing event γ:

Succ(γ) ∶∶= {e ∣ e.pid ∈ γ.pid_outs}

On the other hand, in proactive applications, such as a static �ow pusher, the
updates are caused by external events or internal controller con�gurations and hence
are outside the scope of our HB model. We provide two options to group proactive
write events into network updates.�e controller can annotate the writes with the
version number. Alternatively, to keep controller instrumentation to a minimum,

102 concurrency analysis for software-defined networks

we provide a heuristic to detect proactive updates.�e heuristic uses a clustering
algorithm to group events together based on time into a set Γ of network updates.
�en, we merge di�erent clusters if there is a barrier request in one cluster and the
response in another.�is merge operation mitigates clustering errors from slow
network updates.

commutativity race Beyond standard read-write data races, a core high level
property that we check is commutativity races [152]. A commutativity race occurs
when two events: (i) do not commute according to our commutativity speci�cation,
and (ii) the events are unordered by our happens-before relation. Given a trace π, we
denote the set of commutativity races in π as CR(π).
Further, for the reported commutativity races the same guarantees as in existing

state-of-the-art commutativity happens-before race detectors [152] are provided. In
particular: (i) the �rst reported race is always guaranteed to be a real race, and (ii) if
no race is reported for the given execution, then no execution from the same input
state contains a race.

6.5.2 Update Isolation

Wang et al. [153] de�ne a set of policy changes to be isolated if they do not interferewith
each other.�at is, executing the updates de�ned by each policy in any interleaving
results in a network state that is equivalent to one that is obtained by some serial
execution.We check if a set of multiple policy changes Γ⋆ = {Γ1, Γ2, Γ3, . . .} is isolated,
by checking if no pair of events (across di�erent policy changes) is in the set of
commutativity races CR(π):

UI(Γ⋆) ∶∶= ∄ α, β ∶ (α, β) ∈ CR(π)∧ α ∈ Γu ∧ β ∈ Γv ∧ Γu ≠ Γv

6.5.3 Packet Coherence

�e next property we check is coherence of a packet trace. We say that a packet
trace is coherent if each packet is processed entirely using one consistent global
network con�guration [130, 154]. To check for this property, given a trace π, we �rst
de�ne the notion of a packet trace which is a subset of events that participate in
processing packet pkt as it traverses throughout the network until the packet reaches
a destination host. An event trace τ(π, γ) is a subset of the events in trace π that were
created as a result of processing event γ. We say that event trace τ(π, γ) corresponds

6.5 consistency properties 103

to a packet trace for a given packet pkt if event γ originated the packet pkt. More
formally, the event trace τ(π, γ) is de�ned as follows:

τ(π, γ) ∶∶= γ ∪ {τ(π, β) ∣ β ∈ Succ(γ)∧ β /∈ HostHandl ePkts}

�en, we write CRτ(π, γ) to denote all races where one of the racing events is in
τ(π, γ).

CRτ(π, γ) ∶∶= {(α, β) ∣ α ∈ τ(π, γ) ∧ (α, β) ∈ CR(π)}

We check packet coherence for all packets pkt in a given trace π, i.e., we check
coherence for each packet trace τ(π, γ) extracted from the trace π. We can be certain
that a packet trace τ(π, γ) exhibits packet coherence if CRτ(π, γ) = ∅: any network
update that could a�ect the packet trace would introduce at least one race between
the previous network state and the updated state.
However, under certain conditions a packet trace can be coherent in the presence

of races, i.e., when CRτ(π, γ) ≠ ∅.�en, there is packet coherence if (i) there is only
a single event e (containing �ow table read operations on a single switch sw) that is
part of any races in CRτ(π, γ), and (ii) there are no events in CRτ(π, γ) that modify
any switches other than sw.

PC(π, γ) ∶∶= CRτ(π, γ) = ∅
∨(∃ e ∶ (∀(α, β) ∈ CRτ(π, γ) ∶ α = e
∧∀(α, β) ∈ CRτ(π, γ) ∶ β.sw = e.sw))

Intuitively, this means that there can be packet coherence even in the presence
of races, if the reordering of the single event in the races does not negatively a�ect
packet coherence.�is is possible if there is only a single such event, i.e., if there are
only two possible reorderings.

6.5.4 Guarantees

We note that our checks for the properties discussed above are more general than
simply taking snapshots of the �ow tables [115, 117, 118], as veri�cation of a static
snapshot does not consider event reorderings. Even though a trace π may be free
of violations, there may be another trace π′ with the same inputs as π which does
contain violations. In contrast, our checks on π guarantee that any such trace π′ is
free of violations, which is useful as it means we do not need to explore all possible
traces π′. Our guarantee is standard in happens-before classic race detectors [102,
152], however, here we ensure the guarantee even beyond races.

104 concurrency analysis for software-defined networks

6.6 assist with debugging

As we observe in our evaluation, see Section 6.8, even the simplest bugs can trigger
thousands of harmful concurrency violations due to the highly asynchronous nature
of the network. Such a large number of reports can overwhelm the developers and
make it hard to troubleshoot and debug the bug behind the concurrency violations.
In this section, we present how SDNRacer assists developers with troubleshooting

and debugging SDN concurrency violations in three steps. In Section 6.6.1, we explain
how SDNRacer pre-processes the happen-before graph to prepare it for the next two
steps. In Section 6.6.2, we present the clustering algorithm that SDNRacer utilizes
to group related violations into clusters. Finally, in Section 6.6.3., we describe how
SDNRacer ranks the violations in each cluster to present the developer with the most
representative violation in each cluster.

6.6.1 Pre-processing

SDNRacer starts by pre-processing the output of SDN concurrency analyzer: the
directed graph induced by the happens-before relation (HB-graph) and a list of
violations, to produce one graph per-violation with only the events that led to it.
We �rst show how SDNRacer reduces the size of the HB-graph.�en, we present

how SDNRacer extracts sub-graphs to help analyzing each concurrency violation
individually in later stages.

Trimming HB-Graph.While the number of events in each trace is large, not all of
these events pertain to concurrency violations. Such events are �ltered by SDNRacer
to reduce the computational complexity of the following stages. Note, at this stage
SDNRacer does not detect new violations and it does not remove any from the HB-
graph.
SDNRacer removes three categories of events from the HB-graph. First, it removes

all the events that occurred during the network initialization phase and did not cause
any concurrency violation such as the handshake messages between each switch
and the controller. Second, it removes all events that did not lead to a concurrency
violation.�ird, it removes any redundant HB edges in the HB-graph.

Extracting Per-Violation Graphs. Even a�er removing irrelevant events, the
resulting HB-graph is still massive containing many events and concurrency
violations. As we are interested in how individual concurrency violations compare
with each other, SDNRacer isolates each one of them into a separate graph such that
each graph contains a single concurrency violation with all the events that led to
it. SDNRacer builds the violation graphs by performing an upward traversal of the

6.6 assist with debugging 105

HB-graph starting from the two events involved in each violation until it reaches one
of the entry points (e.g., host send or proactive update) present in the trace. Note that
the violation graphs vary in size and a single event may appear in multiple graphs, if
it causes more than violation.

6.6.2 Hierarchical Clustering

Now we describe SDNRacer hierarchical clustering process. We �rst show how
SDNRacer relies on graph isomorphism to initialize the set of clusters. Next, we
present a set of SDN-speci�c features that SDNRacer utilizes to measure how related
two nonisomorphic violations are.�en, we present how SDNRacer uses the SDN-
speci�c features to calculate a distance measure between di�erent violations. Finally,
we present that full clustering algorithm.

Cluster Initialization. SDNRacer �rst clusters each violation according to an
isomorphic check, essentially grouping violations containing equivalent event
sequences.
In SDNRacer, we restrict the notion of event equivalence to event type (not the

actual content of the event). Speci�cally, we say that two violation graphs G and H
are isomorphic (and therefore grouped in the same cluster) if each node in G can be
exactly mapped to a node H with the same type and the same set of edges.
While checking for graph isomorphism can be done in quasipolynomial time [155],

it can still take a long time to complete in practice.�erefore, SDNRacer uses a
con�gurable timeout value (by default 10 sec) to limit the wall-clock time for the
isomorphism computation. If SDNRacer could not complete the isomorphic test
within the time budget, the two graphs are considered as not isomorphic and put in
di�erent clusters. Observe that they can still be clustered together in later stages. Note
that a heuristic isomorphic test can be used instead to speed up SDNRacer cluster
initialization (at the cost of accuracy) [156].

Identifying Related Violations �rough SDN-Speci�c Features. As a second step,
SDNRacer uses SDN domain-speci�c features computed over each graph to compute
a distance matrix between clusters.�is distance matrix is then used to re�ne the
initial clustering, clustering together closely related (but not equivalent) violations.
We identi�ed these features by manually inspecting the similarities among violation
graphs of many known bugs traces.�en, we tested the learned features against
di�erent known bugs in real controllers. Other features can be discovered using
machine-learning techniques.
SDNRacer uses two di�erent feature types: (i) boolean features that either exist or

not in a violation graph, e.g., the graph has a packet �ooding event; and (ii) numerical

106 concurrency analysis for software-defined networks

features that represent how o�en the feature is present in the graph, e.g., the number
of HostSendPkt events.
Formally, let Gk be the set of graphs in cluster Ck , Fi ∶ Gk →N be a function that

returns the number computed for feature i. If feature i is boolean, Fi returns 1 if a
graph has this feature, 0 otherwise. If feature i is numerical, Fi returns the actual
number of features.
We now present the seven di�erent features currently implemented in SDNRacer

(adding additional ones is easy).

1. Controller/Switch bouncing: �is boolean feature captures repeated
PACKET_IN and PACKET_OUT events between the controller and a given
switch for the same given packet.�is situation occurs when the controller
does not use proper synchronization primitives to ensure the rule that
matches the packet has been committed to the Flow Table before sending
the PACKET_OUT back to the switch.

2. Reply packets: �is boolean feature captures if host replying to a packet it
received triggered the violation. O�en, the controller simultaneously installs a
bidirectional path for a �ow.�e intuition behind this feature is to consider
concurrency violations a�ecting the same �ow closer to each other.

3. Flow expiry: OpenFlow allows �ow entries to expire a�er a certain speci�ed
(hard or so�) timeout [20]. While the so� timeout helps cleaning the �ow table,
de�ning the timeout is usually tricky in asynchronous environments. O�en,
early �ow expiry leads to many concurrency violations.�is boolean feature
captures violations caused by a �ow expiry event.

4. Flooding: O�en controllers �ood packets for various reasons; i.e., the
controller discovering the network topology or it is not aware of the location
of the destination host of a given packet. However, the paths and the event-
ordering that follows a packet �ood is completely non-deterministic (hence, not
isomorphic). If miss-handled, �ooded packets cause concurrency violations.
�e corresponding graphs are o�en entirely di�erent. As such, this boolean
feature simply captures if packet �ooding caused the violation.

5. Number of root events: �is feature returns the number of root events in
the violation graph. A root event is an event with only outgoing edges in the
violation graph; e.g., the HostSendPkt event for the �rst packet in a �ow.�e
number of root events indicates if one or more events cause the violation.

6. Number of host sends:�is feature returns the number of the host send events.

6.6 assist with debugging 107

7. Number of proactive violations: SDNRacer distinguishes two types of events:
reactive and proactive events. Reactive events are events sent by the controller in
response to received messages (e.g., responding to PACKET_IN event), while
proactive are sent independently (e.g., proactive network update).�is feature
returns the number of proactive events involved in the violation.

Our experiments and manual analysis of various HB-graphs indicated that not
all features carry the same signi�cance in relating two violations; see Section 6.8.4.
For instance, violations sharing the �ooding feature tend to be more related than
violations sharing reply packets one. Next, we show how SDNRacer captures this e�ect
in a distance function by assigning di�erent weights to each feature.

Distance Calculation. A�er SDNRacer extracts the features of each graph in a given
cluster, it computes the mean of each feature in the cluster. Let {g1, . . . , gn} ∈ Gk be
the set of graphs in cluster Ck .�e mean of feature i is computed as:

mk
i =

∑l=∣Gk ∣
l=1 Fi(g l)

∣Gk ∣

Our distance calculation algorithm then computes the distance between every
two clusters per-feature.�e computation treats boolean and numerical features
di�erently. For boolean features, two clusters are closer to each other if they contain a
similar number of occurrences of the feature. For numerical features, two clusters are
closer to each other if they share the same mean. Speci�cally, SDNRacer computes
the per-feature distance between two clusters C l and Ck as:

d i = abs(m l
i −mk

i)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if m l
i = mk

i

1 if m l
i ≠ mk

i

if i is a boolean feature if i is a numerical feature

We assign di�erent weights for each of the j features.�e distance between two
clusters C l and Ck is:

d =
j
∑
i=1

w i d i

SDNRacer computes the distance matrix between all the clusters and then feed it
to the clustering algorithm.
�en, the hierarchical clustering algorithm groups several clusters into new clusters.

For the distance between these groups, SDNRacer uses the distance between the

108 concurrency analysis for software-defined networks

farthest neighbors (also known as complete linkage) as the distance between the
clusters.

Clustering Algorithm. We now describe SDNRacer’s hierarchical clustering
algorithm, which is a case of agglomerative clustering [157].
�e six major steps of the algorithm are: Step 1, initialize the clusters using the

isomorphic check. Step 2, evaluate all the pair-wise distances. Step 3, construct a
distance matrix using distances values. Step 4, merge the cluster pairs with shortest
distances and remove them from the distance matrix. Step 5, evaluate all distances
from this new cluster to all other clusters and update the matrix. Step 6, repeat until
the distance matrix is reduced to a single element or the distances are longer than a
prede�ned threshold.

6.6.3 Ranking

While the clustering algorithm groups the concurrency violations into a small number
of clusters, the number of violations per cluster is large, potentially in the order of
1,000s. SDNRacer’s ranking function selects the most representative violation for
each cluster.
�e primary intuition is to �nd the smallest graph that exhibits the most common

features across all graphs in one cluster.�e ranking function starts with examining
the boolean features �rst. It selects all violation graphs that have all the boolean
features exhibited in 50% or more of the reported violations in the cluster.�e second
stage is to reduce the set of chosen graphs based on the pre-computed numerical
features. For numerical features, we chose the graphs with the minimum di�erence
between the feature in the given graph and the overall mean for the cluster.�e order
of selecting the graphs based on the numerical features is: proactive violation events,
the number of HostSendPkt events and �nally the number of root events. For the
�nal set of chosen graphs, our ranking function selects the graph with the minimum
number of events to present to the controller developers.

6.7 implementation

We implemented a full prototype of SDNRacer in around 3, 000 lines of Python
code1.�e implementation consists of three parts: (i) an instrumentation of the
SDN troubleshooting system STS [120]; (ii) an instrumentation of several controller
frameworks (POX, Floodlight, ONOS); and (iii) a concurrency analyzer that
implements the happens-before rules, commutativity checks, high-level properties

1 https://github.com/nsg-ethz/SDNRacer

https://github.com/nsg-ethz/SDNRacer

6.8 evaluation 109

Controller POX FloodLight ONOS

LoC 40 139 55

Table 6.1: While SDNRacer does not require controller instrumentation, adding few lines of
instrumentation code enables to �lter more harmless issues (around 20% more).

checks, and presents the developer with handful of representative concurrency
violations.

Network Instrumentation. STS simulates a entire network, including OpenFlow
switches, links, and hosts [120]. We instrumented STS to further track packets,
messages, and switch operations and write them to a �le. We remark that SDNRacer
is not dependent on STS and use any production-grade quality-assurance framework
to obtain event traces similar to the ones produced by STS.

(Optional) Controller Instrumentation. �e controller instrumentation for POX,
Floodlight, and ONOS includes a wrapper around the respective event handlers
for incoming messages, and links the incoming message with the corresponding
outgoing message, when possible. Instrumenting the controller only requires a few
lines of code (Table 6.1).�e controller instrumentation then passes this information
to STS. Instrumenting the controller is not needed for SDNRacer to work, but it helps
in �ltering harmless concurrency issues by adding more HB orderings in addition
to those de�ned in Section 6.3 (e.g., from 314 to 239 reported races, 23.9%, in one
experiment). POX uses cooperative threading and runs only one task at any given
time while Floodlight and ONOS are multi-threaded and they context-switch threads.
However, this is not relevant to our model because SDNRacer treats the controller as
a blackbox, allowing us to use SDNRacer on a wide set of controllers with minimal
instrumentation in the controller framework. A more speci�c approach would allow
for more precision at the price of being controller-speci�c.

SDNRacer SDNRacer reads events from a trace �le, builds the HB graph and then
runs the concurrency analysis on top of it.�e HB graph as well as the races and
inconsistent packets are output graphically for further inspection.

6.8 evaluation

In this section, we evaluate SDNRacer’s performance and usability. A�er describing
our setup, in Section 6.8.1, we �rst show in Section 6.8.2 that SDNRacer detects many
consistency issues in existing controllers. As the number of issues is o�en large, we

110 concurrency analysis for software-defined networks

also show that SDNRacer can e�ciently reduce the number of reported issues through
�ltering. Second, we show in Section 6.8.3 several examples of consistency violations
discovered by SDNRacer.�ird, we show in Section 6.8.4 how SDNRacer is e�ective
in selecting the most representative violations to assist the developers in �xing the
underlying bugs that are causing the majority of the harmful violations. Finally, we
show in Section 6.8.5 that SDNRacer is fast and completes its analysis in few seconds
on large traces containing thousands of events. Our results indicate that SDNRacer is
an e�ective tool for troubleshooting real-world SDN deployments.

6.8.1 Experimental Setup

We ran SDNRacer on a set of network traces collected from a representative set
of SDN controllers, running di�erent existing applications, on di�erent network
topologies.

SDN Controllers.We run SDNRacer against three controllers: Floodlight version
0.91 [149], POX EEL [150], and ONOS version 1.2.2 [15]. We further instrumented
them to better track HB relation (Table 6.1).

SDN Applications. We choose 5 representative applications, including purely
proactive and pure reactive applications. Unless speci�ed otherwise, we run the
same application on each controller.�e implementation of all analyzed applications
is included as part of the o�cial controller distribution.
App#1. MAC-learning: A purely reactive application builds and maintains a dynamic
MAC address table for each switch.�is table maps known MAC addresses to the
physical port on which they can be reached.We analyze the implementations shipped
with Floodlight and POX [105, 106].
App#2. Forwarding:MAC-learning applications are highly ine�cient as theywork on a
per-switch basis. To alleviate this, most controllers include a “ForwardingApplication”
which works at the network-level and reactively builds and maintains one network-
wide MAC address table. We analyze the implementations shipped with Floodlight,
POX, ONOS [107–110].
App#3. Circuit Pusher:�is purely proactive application automatically installs paths
between two hosts identi�ed by their MAC addresses, as well as the switch and port
they are connected to. We analyze the implementation shipped with Floodlight [111].
App#4. Admission Control:�is SDN application allows/drops host communication
based on given operator policies. We analyze the implementation shipped with
Floodlight [112].

6.8 evaluation 111

App#5. Load Balancer:�is application performs stateless load balancing among a set
of replica identi�ed by a virtual IP address (VIP). Upon receiving packets destined to
a VIP, the application selects a particular host and installs �ow rules along the entire
path. We analyze the implementation shipped with Floodlight [113].

Network Topologies.We ran each controller on three di�erent topologies: Single,
Linear, and BinTree. Single has one switch with two hosts. Linear has two switches
with one host connected to each. BinTree has seven switches connected as a binary
tree with four hosts connected to leaf switches.

Event Traces. We collected 29 traces using STS [120] and a mix of applications,
controllers, and network topologies.�e traces have between 193 and 24, 612 events
spanning between 26 and 74 seconds (Table 6.2). Each trace is the result of 200 STS
simulation steps. In every step, each host in the topology decides randomly whether
it is going send a packet to another randomly chosen host.

Distance Function. A simple sensitivity analysis led us to use the following weights
for the distance function (Section 6.6.2):�e weight used for Controller/Switch
Bouncing, Packet Flood, and Flow Expiry is 2.�e weight used for the number of
Proactive Violations is 1.5. While the weight used for the number of Host Sends is
1.�e number of root events and Reply Packets has a weight of 0.5.�e maximum
distance for the merging of clusters was set to 2. We are aware that di�erent weights
can result in an even better (or worse) clustering and leave a full sensitivity analysis
for later work.

Application Speci�c Parameters. Some applications required additional parameters
to run. ForCircuit Pusher, we install a new circuit every second between two randomly
selected hosts as well as remove one existing circuit with a probability of 0.5. For
Admission Control, we allow 80% of the hosts (randomly selected) to communicate.
For Load Balancer, we create replica pools with two hosts and assign them a VIP.
All hosts send tra�c to the VIP. Since Load Balancer only makes sense with more
than two hosts, we run it on larger topologies: (Single4 and Linear4), connecting four
hosts instead of two.

6.8.2 Race Detection and Filtering E�ciency

SDNRacer reports many races (Table 6.2) whose actual number depends on the
number of read and write events which in turn depend on the controller running the
application. As an illustration, the same set of inputs led to 16 reads and 66 writes
for the MAC-learning application running on POX EEL, but only six reads and 66
writes when running on Floodlight.

112 concurrency analysis for software-defined networks

Events Races Updates Packet Coherence

App Topology Controller Events WR RD Races Comm. Time Remain. Num ¬ Isolt. Pkts Racing Incoh

Learning Single POX EEL 193 7 42 294 218 66 10 (3.40%) 6 0 42 10 0
Floodlight 314 7 70 494 223 227 44 (8.91%) 5 0 70 18 0

Linear POX EEL 274 16 66 532 387 121 24 (4.51%) 18 0 34 11 5
Floodlight 233 6 66 190 64 125 1 (0.53%) 5 0 33 1 0

BinTree POX EEL 4033 487 663 62066 61337 664 65 (0.10%) 402 0 190 28 18
Floodlight 9320 1251 904 275257 270217 4737 302 (0.11%) 1156 34 223 119 72

Forwarding Single POX Angler 106 4 16 61 33 21 7 (11.48%) 12 0 16 7 0
POX EEL 145 8 19 109 84 24 1 (0.92%) 12 0 17 1 0
POX EEL Fx 184 8 29 189 145 42 1 (0.53%) 12 0 26 2 1
ONOS 476 18 71 1336 1163 127 14 (1.05%) 3 0 73 27 22
Floodlight 97 3 13 35 13 14 8 (22.86%) 5 0 13 8 0

Linear POX Angler 248 13 48 323 116 191 12 (3.72%) 31 1 20 6 6
POX EEL 306 20 50 405 235 159 7 (1.73%) 28 1 20 7 7
POX EEL Fx 303 16 51 276 206 62 4 (1.45%) 27 0 20 3 3
ONOS 880 44 181 4059 3781 228 49 (1.21%) 11 0 76 19 15
Floodlight 180 6 36 104 46 45 13 (12.50%) 5 0 14 5 5

BinTree POX Angler 2106 286 359 20447 13179 6988 272 (1.33%) 127 4 77 43 42
POX EEL 4362 504 453 34385 27956 6201 219 (0.64%) 138 3 86 59 58
POX EEL Fx 4283 467 413 12509 12238 242 24 (0.19%) 147 0 92 61 55
ONOS 8031 1492 920 236429 233578 2598 239 (0.10%) 37 0 131 66 49
Floodlight 1886 203 323 12293 11766 317 209 (1.70%) 71 0 76 57 53

CircuitPusher Single Floodlight 218 25 41 1301 1040 218 43 (3.31%) 8 1 41 35 0
Linear Floodlight 327 42 74 1933 1581 287 65 (3.36%) 10 1 38 34 21
BinTree Floodlight 1200 144 227 6156 5605 507 44 (0.71%) 14 3 142 10 6

Adm. Ctrl. Single Floodlight 190 3 36 104 35 62 6 (5.77%) 5 0 36 7 0
Linear Floodlight 221 6 48 139 56 69 14 (10.07%) 6 0 21 6 6
BinTree Floodlight 841 52 170 1384 1090 228 66 (4.77%) 25 0 74 20 10

LoadBalancer Single4 Floodlight 3889 822 476 703864 685158 16492 2214 (0.31%) 449 1114 77 22 0
BinTree Floodlight 24612 6213 2163 4705379 4642118 62031 1230 (0.03%) 1419 464 226 101 97

Table 6.2: Reported races and properties violations for di�erent traces with applying time
�lter using δ = 2.�e numbers in bold are the �nal numbers of races and
incoherent packets reported to the user.

6.8 evaluation 113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

% of races reduced by each �lter

Commute
Time Filter (δ=2)

All �lters

Figure 6.4:�e e�ect of SDNRacer �lters.When all �lters are applied, more than 90% of
all races are �ltered in 89% of the cases. Commutativity �ltering is the most
e�cient, followed by Time-based �ltering.

Reporting too many races is of little use to the developer. So, to be of practical use,
SDNRacer is equipped with a set of �lters based on commuting events, timing, and
race coverage [158]. We now evaluate the e�ciency of each �lter in turn. When all
�lters are applied, SDNRacermanages to �lter out more than 90% of the races in the
vast majority of cases.

Filter 1. Commutativity. Commutativity is a major contributor to reducing the
number of reported races.�is �lter alone reduces at least 33% of the races in almost
all traces and more than 73% of races in 65.5% of the traces (Figure 6.4).
Commutativity �ltering performs best in traces that have many unrelated reads

andwrites.�is high number of disjoint reads and writes is o�en the result of di�erent
hosts sharing the same path. For example, 91% of all races reported by running Circuit
Pusher on the BinTree topology commute (Table 6.2) as the events are related to
di�erent hosts and non-overlapping entries.

Filter 2. Time-Based. Time �ltering further helps reduce more than 20% of the races
in about half of our traces (Figure 6.5) with a δ value of 2 seconds; see Section 6.3.
In Figure 6.5, we report �ltering as a function of δ. If we set δ to a high value,

SDNRacer reports more false-positive races. For instance, when we set δ to 8 seconds,
the time �lter can only reduce up to 34.5% of the races in its best case. In contrast,
SDNRacer can �lter up to 51.7% of the races in its best case when we set δ to 2 seconds.

114 concurrency analysis for software-defined networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
D

F

% of races reduced by the time filter

Time filter δ=2
Time filter δ=4
Time filter δ=8

Figure 6.5:�e e�ect of time-based �lter. Choosing smaller δ �lters more races. With δ=2,
SDNRacer can �lter more than 20% of the races in 48% of the cases. While with
δ=8, SDNRacer can �lter 20% of the races in 40% of the cases.

For our evaluation, 2 seconds is safe; given our switch implementation and network
size.

Other Filters. Like all happens-before detectors (e.g., FastTrack [102]), SDNRacer’s
checks are as precise as the happens-before model. Hence, there can be false positives
for covered races [158] due to data dependencies. To discover such cases, in addition to
commutativity-based and time-based �ltering, SDNRacer provides an additional �lter
that discovers covered races. Covered races are reported interferences that cannot
happen because of high-level dependencies.We observed, however, that covered races
account for only up to 2.4% of the races. As such, to speed-up processing, SDNRacer
does not enable that �lter by default. Actually, we discovered (Figure 6.6) that covered
races are redundant with time-based �ltering. If time-based �ltering is not applied,
then 10% of races in 50% of the cases can be �ltered.

6.8.3 Consistency Checks

SDNRacer detected consistency violations in all applications and controllers used in
our experiments. In many cases, these violations turned out to be subtle (and some
are unknown) bugs. In the following, we detail both update isolation and packet
coherence violations (Section 6.5). Recall that the former leads to ultimately di�erent

6.8 evaluation 115

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

CD
F

% of races Coverd by Data Dependency

Time �lter delta=2

Time �lter delta=4

Time �lter delta=8

No Time Filter

Figure 6.6:�e e�ect of covered races. �e covered race can �lter more than 10% of the
races in 50% of the cases by itself. However, its e�ect is minimal when used
a�er the time �lter.

network states being installed in the network while the latter relates to packets being
forwarded according to di�erent policies.

Violations of Update Isolation. SDNRacer discovered update consistency violations
in four applications (in particular, 10 out of 29 traces): MAC-Learning, Forwarding,
Circuit Pusher, and Load Balancer. For the Load Balancer application, the violation
was the source of a severe bug.
• Violation#1: Floodlight Load Balancer distributes �ows inconsistently. SDNRacer
reports 1114 inconsistent network updates on the single switch topology and
464 inconsistent network update on the BinTree topology (Table 6.2).
At �rst glance, the number of update isolation violations might seem high.
However, the vast majority of the violations are symptoms of the same bug. By
analyzing the reported violations by SDNRacer and the application code we
realized that, upon packet reception, the controller selects a replica, pushes �ow
rules to direct tra�c to it, sends the packet back in the network towards the
replica without waiting for the �ow rule to be committed to the switch. As the
controller installing the �ow table entries, further packets go to the controller
and trigger the replica selection process again. Concretely, this means that
the controller is taking multiple load-balancing decisions for the same �ow.
Inconsistent �ow assignments can lead to bad performance but also leads to

116 concurrency analysis for software-defined networks

connection drops as the install rules to send packets from the same �ow can
to di�erent replicas.
Fix: �e bug is easily �xed by forcing the Load-Balancer to request a barrier
before pushing packets back into the network and by having it bu�er (or drop)
any subsequent packets it receives for the same connection.

• Violation#2: POX forwarding module deletes rules installed by other modules.
SDNRacer reports an inconsistent update where the removal of a �ow induced
by one module raced with a �ow insertion induced by another module.
Investigating the application code, we found out that the rules installed by the
Discovery module (in charge of learning the network topology) were deleted
by the Forwarding module whenever the topology changed.
In this speci�c case, the race between the two modules is not harmful as the
default OpenFlow 1.0 action is to direct packets to the controller.�is ensured
that even though rules from the Discovery modules were deleted, it was still
able to learn the topology. We stress that in newer versions of OpenFlow, the
default action is now to drop packets, meaning this bug would cause the entire
network tra�c to be dropped whenever the topology changes.
Fix: �is bug is easily �xed by ensuring that the Forwarding application only
deletes its own �ow rules.

Violations of Packet Coherence. SDNRacer discovered per-packet coherence
violations in almost all traces (Table 6.2). Most of the incoherent packet cases
concerned races occurring when the controller installs a set of �ow rules and then
sends a packet matching these �ow rules without waiting for the �ow rules to be
committed �rst. As such, these type of races occurred more o�en in traces of reactive
applications such as the Forwarding application. While waiting for writes to be
committed is an obvious solution, it also slows down network operations, indicating
that many controllers trade consistency for speed. In general, violating per-packet
coherence may not always be harmful. Poorly performed policy updates, for instance,
can create per-packet coherence violations without leading to data losses. Even in
this case, we believe that it is still important to report and quantify violations of
per-packet coherence as correctness predicated on policy content is undesirable.

6.8.4 Selecting Representative Violations

SDNRacer reports a small number of concurrency violations to the developer,
moreover, �xing only these reported violations signi�cantly reduces the number
of violations exhibited by the controller.

6.8 evaluation 117

Concurrency Analyzer Clustering Cluster Sizes

App Controller Events Violations Isomorphic # Final Clusters Median Max

Adm. Ctrl. Floodlight 908 81 26 (32.10 %) 3 (3.70 %) 24 33

CircuitPusher Floodlight 1017 39 6 (15.38 %) 2 (5.13 %) 19.5 32

Forwarding Floodlight 3016 288 58 (20.14 %) 3 (1.04 %) 31 215
POX EEL 5632 310 160 (51.61 %) 4 (1.29 %) 64.5 143

LearningSwitch Floodlight 6658 344 210 (61.05 %) 5 (1.45 %) 48 155
POX EEL 3408 66 61 (92.42 %) 2 (3.03 %) 33 46

LoadBalancer Floodlight 17593 1910 272 (14.24 %) 5 (0.26 %) 204 1362

Table 6.3: SDNRacer clustering performance on traces computed over a binary tree
topology (200 steps, median on 15 repetitions).

Table 6.3 shows that SDNRacer is able to reduce the number of reported violations
by up to three orders of magnitude. Clustering isomorphic graphs already reduces
the number of violations by more than 66% in 50% of all cases.�e feature-based
agglomerative clustering further reduces them to less than 95% of the reported
violations of SDNRacer in 50% of the cases.

Usability. To demonstrate the usability of SDNRacer, we used the reported violations
by SDNRacer to �x the Floodlight Load Balancer application. When tested on the
�xed version, the number of clusters reported by SDNRacer dropped from 3 to 2 and
the number of violations was reduced by 99.23%.
It is worth mentioning that not all concurrency violations in SDN networks are

�xable.�is due to the inherent lack of OpenFlow synchronization primitives that
order packets upon entering or while traversing the network. However, recent SDN
systems give the controller the ability to synchronize packet entry to the network [159].

6.8.5 Time

SDNRacer �nishes its concurrency and property violations analysis in less than 32
seconds in the vast majority of traces (Figure 6.7). To measure this, we ran SDNRacer
20 times and collected the total time for: (i) loading the trace; (ii) building the HB
graph; (iii) applying all �lters; and (iv) performing all consistency analysis.
�e worst case (3.7 minutes) happened when SDNRacer analyzed the FloodLight

Load Balancer on the BinTree topology.�is long running time is due to a bug in the

118 concurrency analysis for software-defined networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

C
D

F

Time in seconds (log-scale)

Median

95th Percentil

Figure 6.7: Analysis time for traces from Table 6.2. In 90% of the cases SDNRacer can
analyze the traces in less than 30 seconds.

application (see Section 6.8.3) that caused the trace to have an order of magnitude
more events and races than other traces.

Clustering Time. For the experiments reported in Table 6.3, SDNRacer �nished in
less than one second for 60 % of all the experiments, and only 5% of the experiments
took more than 216 seconds with a worst case of 21 minutes (for Floodlight Load
Balancer on binary tree).
�e 10 seconds timeout for isomorphic check was triggered in only 2.08% of the

checks of POX EEL Forwarding Application on binary tree.�is application has a
�ooding-related concurrency violation which creates large violation graphs spanning
the entire network.
SDNRacer can process subsets of the trace (windowing) which would be helpful

to troubleshoot longer traces.�e intuition here is that individual races are usually
“concentrated” and do not last over the entire trace.

6.9 summary

In this chapter, we presented SDNRacer, the �rst scalable analysis system for �nding
a variety of concurrency-induced errors including (high-level) data races, per-packet
consistency, and update consistency. SDNRacermakes several key contributions: (i) a
precise formal happens-before model of SDN (OpenFlow) concurrency; (ii) e�cient

6.9 summary 119

�lters including a commutativity speci�cation of a network switch; (iii) clustering and
ranking algorithms aim to help developers to troubleshot and debug the underlying
bugs in the controller; and (iv) a thorough experimental evaluation illustrating that
our techniques for �ltering races and identifying high-level (consistency) violations
work in practice. SDNRacerwas also able to identify previously unknown and harmful
bugs in existing SDN controllers.

7
CONCLUS IONS AND OPEN PROBLEMS

In this dissertation, we developed techniques and tools that increase the network’s
reliability by automating the con�guration process of networks running distributed
routing protocols and verifying that SDN networks are free from concurrency errors.
We demonstrated with a practical example in Chapter 2 that human-induced

miscon�gurations could cause policy violations and network downtimes. We then
proposed using network-wide con�gurations synthesis to avoid human-induced
miscon�gurations and listed the key challenges to build a practical network-wide
con�gurations synthesis framework.�erefore, in this dissertation, we developed two
frameworks to synthesize network-wide con�gurations: SyNET and NetComplete.
Our �rst solution posed the network-wide con�gurations synthesis problem as an

instance of synthesizing inputs to strati�ed Datalog programs; presented in Chapter 3.
�is insight allowed our system, SyNET, to be general and to synthesize con�gurations
for any protocol that is speci�ed as a strati�ed Datalog program.�en, we developed
a novel algorithm to synthesize inputs for strati�ed Datalog programs; a problem
that has not been solved in previous work. We evaluated SyNET and showed that it
could be used to synthesize con�gurations for networks with less than 64 routers.
However, the generality of SyNET prevented it from scaling to larger networks and
generating con�gurations that are similar to those written by humans.
InChapter 4, we revisited the network-wide con�gurations problem and built a new

system, NetComplete, with a focus on scalability and practicality. In NetComplete,
we developedmore e�cient synthesis techniques optimized for each of the commonly
used routing protocols. Moreover, we used con�gurations sketches to reduce the
search space of possible con�gurations and to produce con�gurations closer to
human-written ones. We demonstrated in our comprehensive set of experimental
results that NetComplete can autocomplete con�gurations for large networks with
up to 200 routers within a few minutes.
In Chapter 5, we introduced the notion of concurrency errors in SDN networks

and demonstrated how such errors could a�ect production networks; causing policy
violations and network downtimes.
In Chapter 6, we presented SDNRacer, the �rst scalable analysis system for �nding

a variety of concurrency-induced errors; including data races, per-packet consistency,
and update consistency. To �nd concurrency-induced errors, we developed a
precise model to capture the asynchronous of SDN networks. We demonstrated

121

122 conclusions and open problems

in our thorough experimental evaluation that SDNRacer e�ectively �lters races and
identifying high-level (consistency) violations work in practice. SDNRacer was also
able to identify previously unknown and harmful bugs in existing SDN controllers.

7.1 open problems

Model Veri�cation. Recent network synthesis and veri�cation projects rely on a
formal model of the network. For instance, NetComplete and Minesweeper [73] rely
on a �rst-order logic model of the network, while SyNET and Bat�sh [67] rely on a
Datalog model of the network.�us, the correctness of these tools is dependent on
the model being faithful to the network implementation. O�en, the developers of
such tools manually write the formal model that their tools use to synthesize or verify
network con�gurations. To avoid formalmodeling of the network, Plankton-neo [160]
uses model checking techniques directly against the so�ware implementation to
verify middleboxes, but it is very dependent on the deterministic state restoration
ability for the system under test.�e question remains how we can derive correct
abstract models of the network implementation. One approach is to learn the models
directly from the network. Similar techniques have been employed before to learn
program speci�cations [161–163]. However, in the context of networks, there are more
challenges in terms of scalability and heterogeneity. We addressed the scalability
challenges earlier in this thesis. For heterogeneity, there are multiple implementations
of the same protocols from multiple vendors. A speci�cation learning tool must
understand what is common and di�erent between these implementations. Another
approach is to verify the correctness of the hand-written models against network
implementation. In the second approach, data-plane veri�cation tools [115, 117, 118,
125] can be used to verify that the computed forwarding state in the network matches
the state that the model anticipated.

Synthesis for Quantitative Properties.While the existing network con�gurations
synthesis frameworks focus on functional requirements (e.g., forwarding paths),
synthesizing con�gurations that comply with quantitative properties remains an open
problem. Quantitative properties include, for instance, producing con�gurations
that give optimal convergence time, or a con�guration that has a minimal number
of changes compared to the existing con�guration or con�gurations that induce
minimal complexity. A solution to this problem needs to employ di�erent techniques.
For instance, minimizing the changes in a con�guration or the complexity of a
con�guration can be framed as a MAX-SAT problem, while the properties for a fast
convergence con�guration can be learned from a large set of examples. Combining

7.1 open problems 123

the various techniques used to synthesize functional and quantitative requirements
in one scalable framework increases the challenges of this problem.

Learning-Based Synthesis. Existing network con�gurations synthesis frameworks
either generate con�gurations that do not resemble what a human operator would
write (e.g., SyNET and Propane [37]) or require inputs from the operator to generate
the desired con�gurations (e.g., sketches in NetComplete or bounds on the routing
domains in Zeppelin [56]). To foster the deployment of synthesis tools, a synthesis
framework need to generate con�gurations that are similar to what a human operator
would write. One particular sub-problem would be to �gure out how to automatically
learn “good” sketches from existing con�gurations; e.g., sketches that capture best
con�guration practices or local con�guration style.

Learning-Based Concurrency Analysis.While SDNRacer is a complete and sound
concurrency analyzer, its output is very verbose and could overwhelm the developers.
To assist the developers in troubleshooting the root cause of these errors, we developed
a method to cluster related concurrency violations based on a �xed set of features.
However, we discovered these features by manually examining traces of known
concurrency bugs. Manually �nding the set of features to correlate violations and the
weights to use in the clustering algorithm is a tedious task and does not guarantee
that we discovered all the related features. One interesting problem here is applying
Machine Learning techniques to learn the set of features from traces of known bugs.

B I BL IOGRAPHY

1. Jenni Ryall. Facebook, Tinder, Instagram su�er widespread issues http://
mashable.com/2015/01/27/facebook-tinder-instagram-issues/

(cited on pages ix, 13).
2. Tom Strickx. How Verizon and a BGP Optimizer Knocked Large Parts of the

Internet O�ine Today https://blog.cloudflare.com/how-verizon-

and-a-bgp-optimizer-knocked-large-parts-of-the-internet-

offline-today/ (cited on pages ix, 13).
3. Juniper Networks.What’s Behind Network Downtime? Proactive Steps to Reduce

Human Error and Improve Availability of Networks technical report (Juniper
Networks, 2008) (cited on pages ix, 13).

4. Google. Google Compute Engine Incident 16004 https://status.cloud.

google.com/incident/compute/16004 (cited on pages ix, 13).
5. TimeWarnerCable.Outage’s Presss Releasehttp://www.twcableuntangled.

com/2014/08/twc-identifies-cause-of-internet-outage/ (cited
on page ix).

6. United Airlines jets grounded by computer router glitch http://www.bbc.

com/news/technology-33449693 (cited on pages ix, 13).
7. Google routing blunder sent Japan’s Internet dark on Friday https://www.

theregister.co.uk/2017/08/27/google_routing_blunder_sent_

japans_internet_dark/. 2017 (cited on pages ix, 13).
8. Stock trading closed on NYSE a�er glitch caused major outage https://www.

theguardian.com/business/live/2015/jul/08/new-york-stock-

exchange-wall-street (cited on pages ix, 13).
9. BGPmon. Internet Pre�xes Monitoring. http://www.bgpmon.net/blog/
(cited on page ix).

10. Algosec.�e State of Automation in Security technical report (Algosec, 2016)
(cited on pages ix, 13).

11. Stay Up to Stay in Business – �e Cost and Cause of Network Downtime https:
//www.packetdesign.com/blog/cost- and- cause- of- network-

downtime/. Accessed: 2019-05-04. 2016 (cited on pages ix, 13).

125

http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://status.cloud.google.com/incident/compute/16004
https://status.cloud.google.com/incident/compute/16004
http://www.twcableuntangled.com/2014/08/twc-identifies-cause-of-internet-outage/
http://www.twcableuntangled.com/2014/08/twc-identifies-cause-of-internet-outage/
http://www.bbc.com/news/technology-33449693
http://www.bbc.com/news/technology-33449693
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
http://www.bgpmon.net/blog/
https://www.packetdesign.com/blog/cost-and-cause-of-network-downtime/
https://www.packetdesign.com/blog/cost-and-cause-of-network-downtime/
https://www.packetdesign.com/blog/cost-and-cause-of-network-downtime/

126 bibliography

12. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker & Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Com-
munication Review 38, 69 (2008) (cited on pages x, 8).

13. Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford & David
Walker. Modular SDN Programming with Pyretic. Technical Reprot of USENIX
(2013) (cited on pages x, 9).

14. Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-
nifer Rexford, Alec Story & David Walker. Frenetic: A Network Programming
Language in Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming ICFP ’11 (ACM, Tokyo, Japan, 2011) (cited on pages x,
9, 23, 56, 58, 85, 90).

15. Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,
William Snow, et al. ONOS: Towards an Open, Distributed SDN OS in Proceed-
ings of the 3rd ACM SIGCOMM Workshop on Hot Topics in So�ware De�ned
Networking HotSDN ’14 (ACM, Chicago, Il, USA, 2014) (cited on pages x, 90,
110).

16. Carolyn Jane Anderson, Nate Foster, Dexter Kozen & David Walker. NetKAT:
Semantic Foundations for Networks in Proceedings of the 41st ACM SIGPLAN
Symposium on Principles of Programming Languages POPL ’14 (ACM, San
Diego, CA, USA, 2014) (cited on pages x, 9, 23).

17. Jedidiah McClurg, Hossein Hojjat, Nate Foster & Pavol Černy. Event-driven
Network Programming in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation PLDI ’16 (ACM, Santa
Barbara, CA, USA, 2016) (cited on pages x, 9).

18. Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfa�, Martin Casado, Nick
McKeown & Scott Shenker. NOX: Towards an Operating System for Networks.
ACM SIGCOMM Computer Communication Review 38, 105 (2008) (cited on
page x).

19. Jan Medved, Robert Varga, Anton Tkacik & Ken Gray. OpenDaylight: Towards
a Model-Driven SDN Controller Architecture in A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), IEEE 15th International Symposium
on (IEEE, 2014) (cited on page x).

bibliography 127

20. OpenFlow Switch Speci�cation. Version 1.0.0 https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/

openflow/openflow-spec-v1.0.0.pdf (cited on pages xi, 87, 94, 95, 98,
106).

21. Jon Postel. RFC 791: Internet Protocol 1981 (cited on page 3).
22. Steve Deering & Robert Hinden. RFC 8200: Internet Protocol, Version 6 (IPv6)

Speci�cation 2017 (cited on page 3).
23. Richard Colella, R Callon, E Gardner & Y Rekhter. RFC 1629: Guidelines for

OSI NSAP Allocation in the Internet 1994 (cited on page 5).
24. Richard Bellman. On a Routing Problem. Quarterly of applied mathematics 16,

87 (1958) (cited on page 6).
25. Lester R Ford Jr. Network Flow �eory technical report (Rand Corp Santa

Monica Ca, 1956) (cited on page 6).
26. Edward F Moore.�e Shortest Path �rough a Maze (Bell Telephone System.,

1959) (cited on page 6).
27. C Hedrick. RFC 1058: Routing Information Protocol 19855 (cited on page 6).
28. Donnie Savage, J Ng, S Moore, D Slice, Peter Paluch & R White. RFC 7868:

Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP) 2016 (cited on
page 6).

29. Charles E Perkins & Pravin Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector routing (DSDV) for Mobile Computers in Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication SIGCOMM
’94 (ACM, London, United Kingdom, 1994) (cited on page 6).

30. J Chroboczek. RFC 6126: �e Babel Routing Protocol 2011 (cited on page 6).
31. Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-

merische mathematik 1, 269 (1959) (cited on page 6).
32. J Moy. RFC 1583: OSPF Version 2 1994 (cited on pages 6, 67).
33. Rob Coltun, Dennis Ferguson, John Moy & A Lindem. RFC 2622: OSPF for

IPv6 2008 (cited on pages 6, 67).
34. R. W. Callon. RFC 1195: Use of OSI IS-IS for Routing in TCP/IP and Dual

Environments 1990 (cited on pages 6, 67).
35. Yakov Rekhter, Tony Li & Susan Hares. RFC 4271: A Border Gateway Protocol

4 (BGP-4) 2006 (cited on pages 7, 8).
36. Matthew Caesar & Jennifer Rexford. BGP Routing Policies in ISP Networks.

IEEE Network 19 (2005) (cited on page 9).

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

128 bibliography

37. Ryan Beckett, Ratul Mahajan, ToddMillstein, Jitendra Padhye &DavidWalker.
Don’t Mind the Gap: Bridging Network-wide Objectives and Device-level Con�g-
urations in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication SIGCOMM ’16 (ACM, Florianopolis, Brazil, 2016) (cited
on pages 9, 23, 24, 53, 56, 58, 123).

38. Kausik Subramanian, Loris D’Antoni & Aditya Akella. Genesis: Synthesizing
Forwarding Tables in Multi-tenant Networks in Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages POPL ’17 (ACM,
Paris, France, 2017) (cited on pages 9, 23–25, 56, 58).

39. Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma & Ying Zhang.
PGA: Using Graphs to Express and Automatically Reconcile Network Policies
in Proceedings of the Conference of the ACM Special Interest Group on Data
Communication SIGCOMM ’15 (ACM, London, United Kingdom, 2015) (cited
on pages 9, 23).

40. Yifei Yuan, Rajeev Alur & Boon�au Loo. NetEgg: Programming Network
Policies by Examples in Proceedings of the 13th ACM Workshop on Hot Topics in
Networks HotNets ’14 (2014) (cited on pages 9, 25).

41. Andreas Voellmy, JunchangWang, Y Richard Yang, Bryan Ford & Paul Hudak.
Maple: Simplifying SDN Programming Using Algorithmic Policies in Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
SIGCOMM ’13 (ACM, Hong Kong, China, 2013) (cited on pages 9, 23).

42. Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer & Nate Foster.Merlin: A Language for Provisioning
Network Resources in Proceedings of the 10th ACM Conference on Emerging Net-
working Experiments and Technologies CoNEXT ’14 (ACM, Sydney, Australia,
2014) (cited on pages 9, 23).

43. Tim Nelson, Andrew D Ferguson, Michael JG Scheer & Shriram Krishna-
murthi. Tierless Programming and Reasoning for So�ware-De�ned Networks
in Proceedings of the 11th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’14, Seattle, WA, USA (USENIX Association, 2014)
(cited on pages 9, 23, 84).

44. ChristopherMonsanto,Nate Foster, RobHarrison&DavidWalker.A Compiler
and Run-time System for Network Programming Languages in Proceedings of
the 39th ACM SIGPLAN Symposium on Principles of Programming Languages
POPL ’12 (ACM, Philadelphia, PA, USA, 2012) (cited on pages 9, 84, 85).

bibliography 129

45. Open Network Operating System (ONOS) Intent Framework https://wiki.

onosproject.org/display/ONOS/The+Intent+Framework (cited on
pages 10, 23).

46. Martin J Levy.�e deep-dive into how Verizon and a BGP Optimizer Knocked
Large Parts of the Internet O�ine Monday https://blog.cloudflare.

com/the-deep-dive-into-how-verizon-and-a-bgp-optimizer-

knocked-large-parts-of-the-internet-offline-monday/ (cited on
page 13).

47. Tom Paseka. How a Nigerian ISP Accidentally Knocked Google O�ine https:
//blog.cloudflare.com/how-a-nigerian-isp-knocked-google-

offline/ (cited on page 13).
48. D. Awduche, A. Chiu, A. Elwalid, I. Widjaja & X. Xiao. RFC 3272: Overview

and Principles of Internet Tra�c Engineering 2002 (cited on page 14).
49. Bernard Fortz, Jennifer Rexford & Mikkel�orup. Tra�c Engineering with

Traditional IP Routing Protocols. IEEE Communications Magazine (2002)
(cited on page 14).

50. Rüdiger Birkner, Dana Drachlser-Cohen, Laurent Vanbever & Martin Vechev.
Net2Text: Query-Guided Summarization of Network Forwarding Behaviors in
Proceedings of the 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’18, Renton, WA, USA (USENIX Association, 2018)
(cited on page 14).

51. Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford & David
Walker. Composing So�ware De�ned Networks in Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
’13, Lombard, IL, USA (USENIX Association, 2013) (cited on page 23).

52. Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva & Laure�omp-
son. A Coalgebraic Decision Procedure for NetKAT in Proceedings of the 42nd
ACM SIGPLAN Symposium on Principles of Programming Languages POPL ’15
(ACM, Mumbai, India, 2015) (cited on page 23).

53. OpenDayLight (ODL) Group-Based Policy https://wiki.opendaylight.

org/view/Group_Policy:Main (cited on page 23).
54. Sanjai Narain, Gary Levin, Sharad Malik & Vikram Kaul. Declarative Infras-

tructure Con�guration Synthesis and Debugging. Journal of Network and
Systems Management 16, 235 (2008) (cited on page 23).

https://wiki.onosproject.org/display/ONOS/The+Intent+Framework
https://wiki.onosproject.org/display/ONOS/The+Intent+Framework
https://blog.cloudflare.com/the-deep-dive-into-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-monday/
https://blog.cloudflare.com/the-deep-dive-into-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-monday/
https://blog.cloudflare.com/the-deep-dive-into-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-monday/
https://blog.cloudflare.com/how-a-nigerian-isp-knocked-google-offline/
https://blog.cloudflare.com/how-a-nigerian-isp-knocked-google-offline/
https://blog.cloudflare.com/how-a-nigerian-isp-knocked-google-offline/
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main

130 bibliography

55. Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitu Padhye & David Walker.
Network Con�guration Synthesis with Abstract Topologies in Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation PLDI ’17 (ACM, Barcelona, Spain, 2017) (cited on pages 23, 24,
53, 58).

56. Kausik Subramanian, Loris D’Antoni & Aditya Akella. Synthesis of Fault-
Tolerant Distributed Router Con�gurations in Proceedings of the ACM on
Measurement and Analysis of Computing Systems SIGMETRICS ’18 (ACM,
Irvine, CA, USA, 2018) (cited on pages 23, 24, 123).

57. Alexander J.T. Gurney, Xianglong Han, Yang Li & Boon�au Loo. Route
Shepherd: Stability Hints for the Control Plane in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication SIGCOMM ’12
(ACM, Helsinki, Finland, 2012) (cited on pages 23, 24).

58. Alexander J., T. Gurney, Anduo Wang Limin Jia & Boon�au Loo. Partial
Speci�cation of Routing Con�gurations in Proceedings of the 1st Workshop on
Rigorous Protocol Engineering WRIPE ’11 (IEEE, Vancouver, BC Canada, 2011)
(cited on pages 23, 24, 26).

59. Eric Schkufza, Rahul Sharma & Alex Aiken. Stochastic Superoptimization
in Proceedings of the 18th International Conference on Architectural Support
for Programming Languages and Operating Systems ASPLOS XVIII (ACM,
Houston, TX, USA, 2013) (cited on page 24).

60. Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan & Hongqiang Harry
Liu. Automatically Repairing Network Control Planes Using an Abstract Repre-
sentation in Proceedings of the 26th Symposium on Operating Systems Principles
SOSP ’17 (ACM, Shanghai, China, 2017) (cited on page 25).

61. Yifei Yuan, Dong Lin, Rajeev Alur & Boon�au Loo. Scenario-based Program-
ming for SDN Policies in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies CoNEXT ’15 (ACM, eidelberg, Ger-
many, 2015) (cited on page 25).

62. Shambwaditya Saha, Santhosh Prabhu & PMadhusudan.NetGen: Synthesizing
Data-plane Con�gurations for Network Policies in Proceedings of the 1st ACM
SIGCOMM Symposium on So�ware De�ned Networking Research SOSR ’15
(ACM, Santa Clara, CA, USA, 2015) (cited on page 25).

63. Ehab S Al-Shaer & Hazem H Hamed. Discovery of Policy Anomalies in Dis-
tributed Firewalls in Proceedings of IEEE INFOCOM 2004 (IEEE, Toronto,
Canada, 2004) (cited on page 25).

bibliography 131

64. Nick Feamster & Hari Balakrishnan. Detecting BGP Con�guration Faults with
Static Analysis in Proceedings of the 2nd USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’05, Boston, MA, USA (USENIX
Association, 2005) (cited on page 25).

65. Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler &
ShriramKrishnamurthi.�e Margrave Tool for Firewall Analysis in LISA (2010)
(cited on page 25).

66. Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su & P.
Mohapatra. FIREMAN: a toolkit for �rewall modeling and analysis in S&P
(2006) (cited on page 25).

67. Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govin-
dan, Ratul Mahajan & Todd Millstein. A General Approach to Network Con�g-
uration Analysis in Proceedings of the 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’15, Oakland, CA, USA (USENIX
Association, 2015) (cited on pages 25, 26, 29, 33, 122).

68. AaronGember-Jacobson, Raajay Viswanathan, Aditya Akella &RatulMahajan.
Fast Control Plane Analysis Using an Abstract Representation in Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
SIGCOMM ’16 (ACM, Florianopolis, Brazil, 2016) (cited on pages 25, 26).

69. Konstantin Weitz, DougWoos, Emina Torlak, Michael D. Ernst, Arvind Krish-
namurthy & Zachary Tatlock. Scalable Veri�cation of Border Gateway Protocol
Con�gurations with an SMT Solver in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications OOPSLA’16 (ACM, Amsterdam, Netherlands, 2016) (cited on
pages 25, 26).

70. Santhosh Prabhu, Ali Kheradmand, Brighten Godfrey & Matthew Caesar.
Predicting Network Futures with Plankton in Proceedings of the First Asia-Paci�c
Workshop on Networking (ACM, New York, NY, USA) (cited on page 25).

71. Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman &
George Varghese. Checking Beliefs in Dynamic Networks in Proceedings of the
12th USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’15, Oakland, CA, USA (USENIX Association, 2015) (cited on page 25).

72. A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov
& C. Talcott. FSR: Formal Analysis and Implementation Toolkit for Safe In-
terdomain Routing. IEEE/ACM Transactions on Networking 20, 1814 (2012)
(cited on pages 25, 26).

132 bibliography

73. Ryan Beckett, Aarti Gupta, Ratul Mahajan & David Walker. A General Ap-
proach to Network Con�guration Veri�cation in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication SIGCOMM ’17
(ACM, Los Angeles, CA, USA, 2017) (cited on pages 26, 122).

74. Yannis Smaragdakis &Martin Bravenboer.Using Datalog for Fast and Easy Pro-
gram Analysis in Proceedings of International Datalog 2.0 Workshop (Springer,
Oxford, United Kingdom, 2010) (cited on page 26).

75. Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik & Hongseok Yang. On
Abstraction Re�nement for Program Analyses in Datalog in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation PLDI ’14 (ACM, Edinburgh, UK, 2014) (cited on pages 26, 27).

76. Magnus Madsen, Ming-Ho Yee & Ondřej Lhoták. From Datalog to Flix: A
Declarative Language for Fixed Points on Lattices in Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation
PLDI ’16 (ACM, Santa Barbara, CA, USA, 2016) (cited on page 26).

77. Kryštof Hoder, Nikolaj Bjørner & Leonardo De Moura. µZ: An E�cient En-
gine for Fixed Points with Constraints in Proceedings of the 23th International
Conference on Computer Aided Veri�cation CAV ’11 (Springer, Snowbird, UT,
USA, 2011) (cited on page 27).

78. Ethan K. Jackson & Janos Sztipanovits. Towards a Formal Foundation for Do-
main Speci�c Modeling Languages in Proceedings of the 6th ACM International
Conference on Embedded So�ware EMSOFT ’06 (ACM, Seoul, Republic of
Korea, 2006) (cited on page 27).

79. Ethan K. Jackson &Wolfram Schulte.Model Generation for Horn Logic with
Strati�ed Negation in Proceedings of the International Conference on Formal
Techniques for Networked and Distributed Systems FORTE’08 (Springer, Tokyo,
Japan, 2008) (cited on page 27).

80. Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert &�omas
Santen. Components, Platforms and Possibilities: Towards Generic Automation
for MDA in Proceedings of the 10th ACM International Conference on Embedded
So�ware EMSOFT ’10 (ACM, Scottsdale, AZ, USA, 2010) (cited on page 27).

81. Cristian Cadar &Koushik Sen. Symbolic Execution for So�ware Testing:�ree
Decades Later. Communications of the ACM (2013) (cited on page 27).

82. Daniel Kroening & Michael Tautschnig. CBMC – C Bounded Model Checker
in Proceedings of 20th International conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS ’14 (Springer, Grenoble, France,
2014) (cited on page 27).

bibliography 133

83. Edmund Clarke, Daniel Kroening & Flavio Lerda. A Tool for Checking ANSI-
C Programs in Proceedings of 10th International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems TACAS ’04 (Springer,
Barcelona, Spain, 2004) (cited on page 27).

84. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia & Vijay
Saraswat. Combinatorial Sketching for Finite Programs in Proceedings of the 12th
International Conference on Architectural Support for Programming Languages
and Operating Systems ASPLOS XII (ACM, San Jose, CA, US, 2006) (cited on
pages 27, 67, 69).

85. Boon �au Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph
M Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe &
Ion Stoica. Declarative Networking: Language, Execution and Optimization in
SIGMOD (2006) (cited on pages 29, 33).

86. Inderpal Singh Mumick & Oded Shmueli. How expressive is strati�ed ag-
gregation? Annals of Mathematics and Arti�cial Intelligence (1995) (cited on
page 30).

87. Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua Sagiv & Oded Shmueli.
Static Analysis in Datalog Extensions. Journal of the ACM (2001) (cited on
pages 36, 44).

88. Foundations of Databases: �e Logical Level (Eds. Serge Abiteboul, Richard
Hull & Victor Vianu) (Addison-Wesley Longman Publishing Co., Inc., 1995)
(cited on pages 37, 44).

89. Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems (Com-
puter Science Press, 1989) (cited on page 38).

90. https : / / logicblox . com / content / docs4 / corereference / html /

index.html, (cited on page 48).
91. C. Barrett et al.�e SMT-LIB Standard: Version 2.0 2010 (cited on pages 48,

70).
92. L. De Moura & N. Bjørner. Z3: An E�cient SMT Solver in Proceedings of

14th International conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS ’08 (Springer, Budapest, Hungary, 2008) (cited on
pages 48, 54, 70).

93. Graphical Network Simulator-3 (GNS3) https://www.gns3.com/ (cited on
pages 49, 71).

94. Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Alistair Bowden &
Matthew Roughan.�e Internet Topology Zoo. IEEE Journal on Selected Areas
in Communications (2011) (cited on pages 51, 71).

https://logicblox.com/content/docs4/corereference/html/index.html
https://logicblox.com/content/docs4/corereference/html/index.html
https://www.gns3.com/

134 bibliography

95. �eophilus Benson, Aditya Akella & David A. Maltz. Mining Policies from
Enterprise Network Con�guration in IMC (2009) (cited on page 51).

96. Je� Doyle & Jennifer Carroll. Routing TCP/IP, Volume 1 (Cisco Press, 2005)
(cited on page 51).

97. Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang & Ahsan
Are�n. A Network-State Management Service in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication SIGCOMM ’15
(ACM, London, United Kingdom, 2015) (cited on page 55).

98. Nanxi Kang, Ori Rottenstreich, Sanjay G Rao & Jennifer Rexford. Alpaca:
Compact Network Policies With Attribute-Encoded Addresses. IEEE/ACM
Transactions on Networking (2017) (cited on page 55).

99. G Gonzalo et al. Network Mergers and Migrations: Junos Design and Implemen-
tation (John Wiley & Sons, 2011) (cited on page 55).

100. Leslie G Valiant.�e Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing 8, 410 (1979) (cited on page 68).

101. Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever & Martin Vechev.
Network-Wide Con�guration Synthesis in Proceedings of the 29th International
Conference on Computer Aided Veri�cation CAV ’17 (Springer, Heidelberg,
Germany, 2017) (cited on pages 74, 75).

102. Cormac Flanagan & Stephen N. Freund. FastTrack: E�cient and Precise Dy-
namic Race Detection in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation PLDI ’09 (ACM, Dublin,
Ireland, 2009) (cited on pages 79, 85, 103, 114).

103. Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards &
Brad Calder. Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis in Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation PLDI ’07 (ACM, San Diego,
CA, USA, 2007) (cited on pages 79, 85).

104. Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM (1978) (cited on pages 82, 87, 88).

105. James McCauley. POX EEL L2 Learning Switch https://github.com/

noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py. 2015 (cited
on pages 83, 110).

106. Big Switch Networks, Inc. Floodlight Learning Switch https://github.

com/floodlight/floodlight/tree/v0.91/src/main/java/net/

floodlightcontroller/learningswitch. 2013 (cited on pages 83, 110).

https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch

bibliography 135

107. Big Switch Networks, Inc. Floodlight Forwarding Application https : / /

github.com/floodlight/floodlight/blob/v0.91/src/main/java/

net / floodlightcontroller / forwarding / Forwarding . java. 2013
(cited on pages 83, 110).

108. JamesMcCauley. POX Angler Forwarding Application https://github.com/

noxrepo/pox/blob/angler/pox/forwarding/l2_multi.py. 2012 (cited
on pages 83, 110).

109. James McCauley. POX EEL Forwarding Application https://github.com/

noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py. 2015 (cited on
pages 83, 110).

110. Open Networking Laboratory. ONOS (Open Network Operating System): For-
warding Application https://github.com/opennetworkinglab/onos/

tree/onos-1.2/apps/fwd. 2015 (cited on pages 83, 110).
111. Big Switch Networks, Inc. Floodlight Circuit Pusher Application https :

/ / github . com / floodlight / floodlight / tree / v0 . 91 / apps /

circuitpusher. 2013 (cited on pages 83, 110).
112. Big Switch Networks, Inc. Floodlight Firewall https : / / github . com /

floodlight / floodlight / tree / v0 . 91 / src / main / java / net /

floodlightcontroller/firewall. 2013 (cited on pages 83, 110).
113. Big Switch Networks, Inc. Floodlight Load-Balancer Application https://

github.com/floodlight/floodlight/tree/v0.91/src/main/java/

net/floodlightcontroller/loadbalancer. 2013 (cited on pages 83, 111).
114. Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten

Godfrey & Samuel Talmadge King. Debugging the Data Plane with Anteater
in Proceedings of the Conference of the ACM Special Interest Group on Data
Communication SIGCOMM ’11 (ACM, Toronto, ON, Canada, 2011) (cited on
page 83).

115. PeymanKazemian, George Varghese &NickMcKeown.Header Space Analysis:
Static Checking for Networks in Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI ’12, San Jose, CA, USA
(USENIX Association, 2012) (cited on pages 83, 103, 122).

116. Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju,
Junda Liu, Nick McKeown & Amin Vahdat. Libra: Divide and Conquer to
Verify Forwarding Tables in Huge Networks in Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation, NSDI ’14, Seattle,
WA, USA (USENIX Association, 2014) (cited on page 83).

https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/noxrepo/pox/blob/angler/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/angler/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py
https://github.com/opennetworkinglab/onos/tree/onos-1.2/apps/fwd
https://github.com/opennetworkinglab/onos/tree/onos-1.2/apps/fwd
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer

136 bibliography

117. Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar & P Godfrey. Veri�ow:
Verifying network-wide invariants in real time in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication SIGCOMM ’12
(ACM, Helsinki, Finland, 2012) (cited on pages 83, 103, 122).

118. Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick
McKeown & Scott Whyte. Real Time Network Policy Checking Using Header
Space Analysis in Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’13, Lombard, IL, USA (USENIX
Association, 2013) (cited on pages 83, 103, 122).

119. Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rex-
ford & David Walker. An Assertion Language for Debugging SDN Applications
in Proceedings of the 3rd ACM SIGCOMM Workshop on Hot Topics in So�-
ware De�ned Networking HotSDN ’14 (ACM, Chicago, Il, USA, 2014) (cited on
page 83).

120. Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or,
Je�erson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, SamWhitlock, H.B.
Acharya, Kyriakos Zari�s & Scott Shenker. Troubleshooting Blackbox SDN Con-
trol So�ware with Minimal Causal Sequences in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication SIGCOMM ’14
(ACM, Chicago, IL, USA, 2014) (cited on pages 83, 108, 109, 111).

121. Arjun Guha, Mark Reitblatt & Nate Foster. Machine-veri�ed Network Con-
trollers in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation PLDI ’13 (ACM, Seattle, WA, USA, 2013)
(cited on page 84).

122. J. Christian" Attiogbé.Building Correct SDN Components from a Global Event-B
Formal Model in Formal Aspects of Component So�ware (Springer International
Publishing, Cham, 2018) (cited on page 84).

123. Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić & Jennifer Rex-
ford. A NICE Way to Test OpenFlow Applications in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
’12, San Jose, CA, USA (USENIX Association, 2012) (cited on page 84).

124. Rupak Majumdar, Sai Deep Tetali & Zilong Wang. Kuai: A Model Checker
for So�ware-de�ned Networks in Proceedings of the 14th Conference on Formal
Methods in Computer-Aided Design FMCAD ’14 (IEEE, Lausanne, Switzerland,
2014) (cited on page 84).

bibliography 137

125. �omas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira & Asaf Valadarsky. VeriCon: Towards
Verifying Controller Programs in So�ware-de�ned Networks in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation PLDI ’14 (ACM, Edinburgh, UK, 2014) (cited on pages 84,
122).

126. Lei Xu, Je� Huang, Sungmin Hong, Jialong Zhang & Guofei Gu. Attacking
the Brain: Races in the SDN Control Plane in Proceedings of the 26th USENIX
Security Symposium USENIX Security ’17 (USENIX Association, Vancouver,
BC, Canada, 2017) (cited on page 84).

127. Jiangyuan Yao, Zhiliang Wang, Xia Yin, Xingang Shi, Yahui Li & Chongrong
Li. Testing Black-Box SDN Applications with Formal Behavior Models in 2017
IEEE 25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS) (2017), 110 (cited on
page 84).

128. Elvira Albert, Miguel Gómez-Zamalloa, Albert Rubio, Matteo Sammartino &
Alexandra Silva. SDN-Actors: Modeling and Veri�cation of SDN Programs in
International Symposium on Formal Methods (2018), 550 (cited on page 84).

129. Lalita J Jagadeesan & Veena Mendiratta. Analytics-Enhanced Automated Code
Veri�cation for Dependability of So�ware-De�ned Networks in 2017 IEEE Inter-
national Symposium on So�ware Reliability Engineering Workshops (ISSREW)
(2017), 139 (cited on page 84).

130. MarkReitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger&DavidWalker.
Abstractions for Network Update in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication SIGCOMM ’12 (ACM, Helsinki,
Finland, 2012) (cited on pages 85, 89, 102).

131. Jedidiah McClurg, Hossein Hojjat, Pavol Černý & Nate Foster. E�cient Synthe-
sis of Network Updates in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation PLDI ’15 (ACM, Portland,
OR, USA, 2015) (cited on page 85).

132. Naga Praveen Katta, Jennifer Rexford & David Walker. Incremental Consistent
Updates in Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics
in So�ware De�ned Networking HotSDN ’13 (ACM, Hong Kong, China, 2013)
(cited on page 85).

138 bibliography

133. Jedidiah McClurg, Hossein Hojjat & Pavol Černý. Synchronization Synthesis
for Network Programs in Proceedings of the 29th International Conference on
Computer Aided Veri�cation CAV ’17 (Springer, Heidelberg, Germany, 2017)
(cited on page 85).

134. Mark Reitblatt, Marco Canini, Arjun Guha & Nate Foster. FatTire: Declarative
Fault Tolerance for So�ware-De�ned Networks in Proceedings of the 2nd ACM
SIGCOMM Workshop on Hot Topics in So�ware De�ned Networking HotSDN
’13 (ACM, Hong Kong, China, 2013) (cited on page 85).

135. Xiaoye Sun, Apoorv Agarwal & Tze Sing Eugene Ng. Attendre: Mitigating Ill
E�ects of Race Conditions in Open�ow via Queueing Mechanism in Proceed-
ings of the Eighth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ACM, New York, NY, USA, 2012), 137 (cited on
page 85).

136. Andreas Wundsam, Dan Levin, Srini Seetharaman & Anja Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting for Networks in
Proceedings of the 2011 USENIX Conference on USENIX Annual Technical
Conference USENIXATC ’11 (USENIX Association, Portland, OR, USA, 2011)
(cited on page 85).

137. Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres &
Nick McKeown.Where is the Debugger for My So�ware-de�ned Network? in
Proceedings of the 1st ACM SIGCOMM Workshop on Hot Topics in So�ware
De�ned Networking HotSDN ’12 (ACM, Hong Kong, China, 2012) (cited on
page 85).

138. Pavol Bielik, Veselin Raychev & Martin Vechev. Scalable Race Detection for
Android Applications in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions OOPSLA’15 (ACM, Pittsburgh, PA, USA, 2015) (cited on page 85).

139. Woosuk Lee, Wonchan Lee & Kwangkeun Yi. Sound Non-Statistical Clustering
of Static Analysis Alarms in International Workshop on Veri�cation, Model
Checking, and Abstract Interpretation (2012) (cited on page 85).

140. T. Muske, A. Baid & T. Sanas. Review E�orts Reduction by Partitioning of Static
Analysis Warnings in Source Code Analysis and Manipulation (SCAM) (IEEE,
2013) (cited on page 85).

141. T. Muske. Improving Review of Clustered-Code Analysis Warnings in Proceed-
ings of the 2014 IEEE International Conference on So�ware Maintenance and
Evolution ICSME (IEEE, Victoria, BC, Canada, 2014) (cited on page 85).

bibliography 139

142. Wei Le & Mary Lou So�a. Path-based Fault Correlations in Proceedings of the
ACM SIGSOFT 18th International Symposium on the Foundations of So�ware
Engineering FSE ’10 (ACM, Santa Fe, NM, USA, 2010) (cited on page 85).

143. Tukaram Muske & Alexander Serebrenik. Survey of Approaches for Handling
Static Analysis Alarms in Proceedings of 16th International Working Conference
on Source Code Analysis and Manipulation (IEEE, 2016) (cited on page 85).

144. Baris Kasikci, Cristian Zam�r & George Candea. Data Races vs. Data Race
Bugs: Telling the Di�erence with Portend in Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating
Systems ASPLOS XVII (ACM, London, UK, 2012) (cited on page 85).

145. Open vSwitch. Production Quality, Multilayer Open Virtual Switch http://

openvswitch.org/ (cited on pages 87, 95, 98).
146. Maciej Kuźniar, Peter Perešíni & Dejan Kostić.What You Need to Know About

SDN Flow Tables in Proceedings of the 16th International Conference on Passive
and Active Measurement PAM ’15 (Springer, New York, NY, USA, 2015) (cited
on pages 89, 97).

147. Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood & AndrewW.
Moore. OFLOPS: An Open Framework for Open�ow Switch Evaluation in Pro-
ceedings of the 13th International Conference on Passive and Active Measurement
PAM ’12 (Springer, Vienna, Austria, 2012) (cited on pages 89, 97).

148. Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, JimWanderer, Junlan Zhou, Min Zhu, et al.
B4: Experience with a Globally-Deployed So�ware De�ned WAN in Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
SIGCOMM ’13 (ACM, Hong Kong, China, 2013) (cited on pages 89, 97).

149. Floodlight Open SDN Controller http : / / projectfloodlight . org /

floodlight (cited on pages 90, 110).
150. James Mccauley. POX: A Python-based OpenFlow Controller https : / /

github.com/noxrepo/pox (cited on pages 90, 110).
151. Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris

& Eddie Kohler.�e Scalable Commutativity Rule: Designing Scalable So�ware
for Multicore Processors in Proceedings of the 24th Symposium on Operating
Systems Principles SOSP ’13 (ACM, Farmington, PA, USA, 2013) (cited on
page 98).

http://openvswitch.org/
http://openvswitch.org/
http://projectfloodlight.org/floodlight
http://projectfloodlight.org/floodlight
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox

140 bibliography

152. Dimitar Dimitrov, Veselin Raychev, Martin Vechev & Eric Koskinen. Commu-
tativity Race Detection in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation PLDI ’14 (ACM, Edin-
burgh, UK, 2014) (cited on pages 98, 102, 103).

153. Anduo Wang, Wenchao Zhou, Brighten Godfrey & Matthew Caesar. So�ware-
De�ned Networks as Databases in the Open Networking Summit 2014 (ONS
2014) (USENIX Association, Santa Clara, CA, 2014) (cited on page 102).

154. Ratul Mahajan & Roger Wattenhofer. On Consistent Updates in So�ware De-
�ned Networks in Proceedings of the Twel�h ACM Workshop on Hot Topics in
Networks (2013) (cited on page 102).

155. László Babai. Graph Isomorphism in Quasipolynomial Time. Computing Re-
search Repository (CoRR) abs/1512.03547 (2015) (cited on page 105).

156. Derek G. Corneil & David G. Kirkpatrick. A�eoretical Analysis of Various
Heuristics for the Graph Isomorphism Problem. SIAM Journal on Computing
(1980) (cited on page 105).

157. Anil K. Jain & Richard C. Dubes.Algorithms for Clustering Data (Prentice-Hall,
Inc., 1988) (cited on page 108).

158. Veselin Raychev,Martin Vechev&Manu Sridharan. E�ective Race Detection for
Event-driven Programs in Proceedings of the 2013 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations OOPSLA’13 (ACM, Indianapolis, IN, USA, 2013) (cited on pages 113,
114).

159. Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah & Hans
Fugal. Fastpass: A Centralized "Zero-Queue" Datacenter Network in Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
SIGCOMM ’14 (ACM, Chicago, IL, USA, 2014) (cited on page 117).

160. Santhosh Prabhu, Gohar IrfanChaudhry, BrightenGodfrey&MatthewCaesar.
High-Coverage Testing of So�warized Networks in Proceedings of the ACM
SIGCOMM 2018 Workshop on Security in So�warized Networks: Prospects and
Challenges SecSoN ’18 (ACM, Budapest, Hungary, 2018) (cited on page 122).

161. GlennAmmons, Rastislav Bodik& James R. Larus.Mining Speci�cations in Pro-
ceedings of the 29th ACM SIGPLAN Symposium on Principles of Programming
Languages POPL ’02 (ACM, Portland, OR, Oregon, 2010) (cited on page 122).

162. Mark Gabel & Zhendong Su. Testing Mined Speci�cations in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of So�ware
Engineering FSE ’12 (ACM, Cary, North Carolina, 2012) (cited on page 122).

bibliography 141

163. David Lo, Siau-Cheng Khoo & Chao Liu.Mining Past-time Temporal Rules
from Execution Traces in Proceedings of the 2008 International Workshop on
Dynamic Analysis WODA ’08 (ACM, Seattle, Washington, 2008) (cited on
page 122).

CURR ICULUM VITAE

personal data

Name Ahmed Elhassany
Date of Birth April 1, 1986
Citizen of Palestine

education

2015 – 2019 Ph.D. Student, ETH Zürich
Zürich Switzerland

2009 – 2011 M.S. Computer Science, University of Delaware
Newark, DE, USA.

2003 – 2008 B.Sc. Computer Engineering, Islamic University of Gaza
Gaza, Palestine.

employment

June ’15 – Oct. ’19 Research Assistant
ETH Zürich
Zürich, Switzerland

June – Sept. ’18 So�ware Engineer Intern
Facebook Inc.
Menlo Park, CA, USA

Spring ’15 Research Associate
Indiana University
Bloomington, IN, USA

July ’13 – Nov. ’14 Research Scientist
International Computer Science Institute (ICSI)
Berkeley, CA, USA

143

144 bibliography

May – July ’13 Summer Student
Lawrence Berkeley National Lab. (LBL)
Berkeley, CA, USA

Aug. ’11 – July ’13 Research Associate
Indiana University
Bloomington, IN, USA

August ’10 Summer Student
Lawrence Berkeley National Lab. (LBL)
Berkeley, CA, USA

Feb. ’09 – July ’09 So�ware Engineer
Municipality of Gaza
Gaza, Palestine

Dec. ’08 – Mar. ’09 Independent Consultant
Palestinian National Internet Naming Authority (PN-
INA)
Gaza, Palestine

June – Sept ’08 Student Developer
Google Inc. & Internet2
Gaza, Palestine

Sep. ’07 – Mar. ’08 So�ware Engineer
AfkarIT
Gaza, Palestine

Sep. ’04 – Oct. ’05 Contractor So�ware Engineer
Ard El-Insan
Gaza, Palestine

	Abstract
	Zusammenfassung
	Preamble
	Publications

	Publications
	Acknowledgements

	Acknowledgments
	Contents

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	 Background
	1 Internet Routing
	1.1 IP Router
	1.2 IP Routing
	1.3 Intra-domain Routing
	1.4 Inter-domain Routing
	1.5 Software-Defined Networking (SDN)
	1.6 Network Policies

	 Network Configurations Synthesis
	2 Network Configurations Synthesis Problem Statement
	2.1 Motivating Example
	2.2 The Network-wide Configurations Synthesis Problem
	2.3 Our Contributions
	2.4 Related Work

	3 General Network-Wide Configurations Synthesis
	3.1 Background: Stratified Datalog
	3.2 Declarative Network Specification
	3.3 Reducing Network-wide Configurations Synthesis Problem to Stratified Datalog Input Synthesis Problem
	3.4 Input Synthesis for Stratified Datalog
	3.5 Network Synthesis Algorithm
	3.6 Implementation and Evaluation
	3.7 Summary

	4 Network-Wide Configurations Synthesis with Autocompletion
	4.1 Motivating Scenarios
	4.2 Overview
	4.3 BGP Synthesis
	4.4 OSPF Synthesis
	4.5 Implementation and Evaluation
	4.6 Summary

	 Network Verification
	5 SDN programming and concurrency issues
	5.1 A Non-Deterministic Forwarding Loop in a Load Balancer
	5.2 Problem Statement
	5.3 Our Contributions
	5.4 Related Work

	6 Concurrency Analysis for Software-Defined Networks
	6.1 Overview
	6.2 Formal Model of SDN Operations
	6.3 Happens-Before Model
	6.4 Commutativity Specification
	6.5 Consistency Properties
	6.6 Assist with Debugging
	6.7 Implementation
	6.8 Evaluation
	6.9 Summary

	7 Conclusions and open problems
	7.1 Open Problems

	 Bibliography
	Curriculum Vitae

	 Curriculum Vitae

