
ETH Library

Self-Supervised Learning of Non-
Rigid Residual Flow and Ego-
Motion in Dynamic 3D Scenes

Master Thesis

Author(s):
Tishchenko, Ivan

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000431668

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000431668
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Self-Supervised Learning of
Non-Rigid Residual Flow and

Ego-Motion in Dynamic 3D Scenes

Master’s Thesis

Ivan Tishchenko

May 29, 2020

Advisors: Sandro Lombardi, Dr. Martin Oswald

Supervisor: Prof. Dr. Marc Pollefeys

Department of Computer Science, ETH Zürich

Computer Vision and Geometry Lab

Abstract

Recent supervised 3D deep learning methods have demonstrated a re-
markable performance in the area of scene flow estimation. Neverthe-
less, one common pitfall of the majority of methods is that they rely on
large quantities of synthetic data to train deep neural networks with
millions of parameters. This is caused by the fact that acquiring the
ground truth for scene flow is very hard or sometimes impossible for
real world datasets. Training on synthetic datasets introduces the do-
main gap when the model trained on a synthetic dataset from one
domain will not necessary generalize to real world data from another
domain. Furthermore, the majority of current methods cannot be ap-
plied to datasets with incomplete labels or to real worlds datasets with
no ground truth at all. We address this issue by extending the current
state of the art supervised approaches with self-supervisory signals
based on the temporal consistency of a sequence of point clouds.

Secondly, most of the scene flow methods model scene flow as a per
point translation vector without any assumption of ego-motion. In our
work we propose a different way for learning total scene flow, where
we jointly learn the non-rigid part in form of the residual non-rigid flow
and the rigid part of the motion by learning the ego-motion flow. We
investigate the effect of self-supervision on a model that jointly learns
the decomposed flow and contrast it to models which learn the total
flow directly.

Our solution allows both hybrid training with a supervised loss and
self-supervisory signals as well as training in a fully self-supervised
mode. The former can be beneficial in a weakly supervised setting,
where the labels are inaccurate or incomplete. The later can be used
for training on real world datasets with no ground-truth at all or for
fine-tuning in self-supervised mode after supervised pre-training.

Experiments showed that complementing the supervised part of the
total loss with the self-supervised signals allowed us to outperform the
current state of the art supervised baseline. Internal comparison has
demonstrated that pre-training on one dataset and fully supervised
fine-tuning on another dataset can help to alleviate the domain gap.
On simpler scenes fully supervised models have delivered comparable
performance to supervised methods in terms of qualitative evaluation.
Scene flow decomposition has improved the performance if trained in
a fully self-supervised mode.

i

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my
advisors Sandro Lombardi and Dr. Martin Oswald for their outstand-
ing supervision, insightful ideas and continuous support. Their guid-
ance and suggestions during our weekly meetings and beyond them
have significantly contributed to the quality of this work.

I would like to thank Prof. Marc Pollefeys for providing an oppor-
tunity to work on this project in his group and for the excellent and
motivating environment.

My special thanks go to Dr. Petri Tanskanen and Dr. Olivier Saurer
for a valuable discussion on selecting a topic for this thesis and sharing
their experience on doing research.

Finally, I want to thank my family and friends for always being there
for me with their constant support and encouragement during this
project.

ii

Nomenclature

Xt Point cloud at time step t

Trel Relative camera pose between time step t and t + δ

~x Point in a point cloud X

~d Total scene flow

~dnr Non-rigid residual scene flow

~dcm Ego-motion scene flow

~v Optical flow

~vnr Projected non-rigid residual flow

~vcm Projected ego-motion flow

A∗d Permutohedral lattice of dimension d

EPE3D End Point Error 3D

ROE Relative Orientation Error

RLE Relative Location Error

NN Nearest Neighbour

FB Forward-Backward Consistency

iii

Contents

Abstract i

Acknowledgments ii

Nomenclature iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Focus of This Work . 5
1.4 Thesis Structure . 5

2 Related Work 7
2.1 Deep Scene Flow . 7
2.2 Self-Supervised Learning . 8
2.3 Ego-Motion and Relative Camera Pose Estimation 9
2.4 Feature Comparison . 10

3 Theory 11
3.1 3D Motion Model . 11
3.2 Learning in 3D Space . 14
3.3 Neural Networks for Point Clouds 15

3.3.1 Permutohedral Lattice Networks 16
3.4 Self-Supervised Learning . 18

3.4.1 Forward-Backward Consistency 19

v

Contents

3.4.2 Cycle Consistency . 21

4 Method 23
4.1 Overview . 23
4.2 Self-Supervisory Signals . 24

4.2.1 Nearest Neighbour Search 25
4.3 Model’s Architecture . 26

4.3.1 Encoder . 26
4.3.2 Relative Pose Regressor 27
4.3.3 Decoder . 28

4.4 Loss Functions . 28

5 Experiments 33
5.1 Datasets . 33

5.1.1 Input Data and Ground Truth 33
5.1.2 FlyingThings3D . 34
5.1.3 RefRESH . 35
5.1.4 KITTI . 35

5.2 Evaluation Metrics . 36
5.3 Training Setup . 37
5.4 Quantitative Study . 37

5.4.1 Self-Supervision in Total Scene Flow Learning 37
5.4.2 Non-Rigid Flow and Ego-Motion 41
5.4.3 Comparison to Related Methods 45

5.5 Qualitative Study . 46

6 Conclusion 51
6.1 Future Work . 52

A Additional Qualitative Results 55
A.1 FlyingThings3D . 55
A.2 RefRESH . 55
A.3 KITTI . 55

Bibliography 59

vi

List of Figures

1.1 Example input point clouds . 2
1.2 Example of total scene flow on a pair of point clouds 4

3.1 Full scene flow model and its relation to optical flow 12
3.2 Visualization of the full scene flow model 13
3.3 Delaunay tessellation for two dimensional permutohedral lattice 16
3.4 Constriction of a permutohedral lattice 17
3.5 Illustration of position vector embedding and a Splat-Blur-Slice

operation . 19
3.6 Demonstration of forward-backward consistency 20
3.7 Demonstration of cycle consistency 21

4.1 High-level overview of the learning pipeline 24

5.1 Convergence of loss functions in self-supervision experiments . . 40
5.2 Convergence of loss functions in non-rigid flow and ego-motion

experiments . 43
5.3 Qualitative evaluation on FlyingThings3D 48
5.4 Qualitative evaluation on RefRESH 49
5.5 Qualitative evaluation on KITTI . 50

6.1 Lower bound for total flow estimation 53

A.1 Additional qualitative evaluation on FlyingThings3D 56
A.2 Additional qualitative evaluation on RefRESH 57
A.3 Additional qualitative evaluation on KITTI 58

vii

List of Tables

2.1 Comparison to related work. 10

5.1 Overview of scene flow datasets. 33
5.2 Evaluation of total scene flow in self-supervision experiments . . 39
5.3 Evaluation of total flow from non-rigid flow and ego-motion . . 42
5.4 Evaluation of non-rigid flow . 44
5.5 Evaluation of relative camera pose estimation 45
5.6 Quantitative comparison to other methods 45

viii

Chapter 1

Introduction

This chapter servers as an overview and a starting point for the whole
project. Section 1.1 introduces the reader to the area and presents the motiva-
tion of our work while discussing examples of potential application areas. In
section 1.2, we define the problem this project is addressing along with our
main contributions. We finish the chapter with an overview of the structure
of this thesis in Section 1.4.

1.1 Motivation

Recent advances in Convolutional Neural Networks (CNNs) allowed us to
achieve human-level performance in 2D computer vision tasks. Researchers
have been able to design very accurate systems for understating 2D motion,
which is most commonly represented in a form of optical flow.

However, the world and all dynamic objects that we perceive around us are
three dimensional (3D). In order to build fully autonomous agents we need
to enable these agents to perceive the world in 3D and also to do reason-
ing about it directly in 3D. Estimation and understanding of motion in 3D
scenes is an essential building block to advance emerging technologies in the
areas such as dynamic reconstruction, robotic perception, drone navigation,
autonomous driving, VR/AR, human-computer interaction etc.

Rapid advances in data acquisition such as LiDAR, RGB-D cameras and 3D
scanners facilitated a direct acquisition of 3D representations of the scene in
form of point clouds. Driven by the success in 2D motion estimation with
deep neural networks, the focus of current research on 3D motion estimation
has shifted to scene flow estimation with deep learning based approaches.
Modern methods [16, 30, 46] are able to process 3D point clouds directly
without relying on stereo or RGB-D inputs. Advances in network architec-
tures and hardware capabilities allow us to directly process a large number

1

1. Introduction

of point clouds fast and efficiently. Figure 1.1 shows three examples of input
point clouds from various types of common scene flow datasets.

(a) FlyingThings3D (b) RefRESH (c) KITTI

Figure 1.1: Example input point clouds. (a) are point clouds produced from a synthetic
dataset. (b) shows points from a semi-synthetic dataset (c) is a point cloud from a real world
dataset.

Deep learning based methods [16, 31] have been successfully used for super-
vised scene flow estimation. However, one pitfall common for most of the
learning based methods is that in order to achieve good results one needs
to employ very deep networks with a large number of trainable weights.
This in turn requires large amounts of labelled observations. Acquiring
the ground truth of scene flow for real world data is intractable or some-
times even impossible. As a consequence, researches have relied on using
rendered synthetic data-sets [33, 31, 36, 35] to train the networks on. This
spawns a discrepancy between real world and synthetic data. Concretely,
networks trained on synthetic data are not guaranteed to generalize to raw
real world data. The reason for a gap is that synthetic datasets are not al-
ways shape and depth realistic and that they generally represent one specific
narrow domain. The way to tackle these issues is to utilize large amounts of
unlabeled data.

Self-supervised learning has shown its effectiveness in bridging the gap be-
tween synthetic and real-world data for the case of optical flow [29]. Al-
though most of the methods based on fully self-supervised learning are not
yet performing as good as the supervised learning versions, the difference
in performance becomes smaller and smaller. The main advantage of fully
self-supervised methods is that we do not need any labelled data to train
the network on. Additionally, the combination of supervised learning and
self-supervision is possible with pre-training and fine-tuning. In this way
we can utilize the best parts of two approaches. Furthermore, researching
self-supervision is also beneficial from the supervised learning perspective.
Specifically, we can design self-supervised losses (signals) which serve as

2

1.2. Problem Statement

implicit regularizers for the supervised part of the loss. This kind of config-
uration can also be useful in a weakly supervised setting, where the method
can still learn from datasets with incomplete labels and put more weight on
the self-supervised part of the loss if the labels in the dataset are inaccurate.

Another common property of learning based approaches for scene flow [16,
30] is that most of them model scene flow holistically as a 3D translation
vector without any distinct separation of camera and object motion. While
this type of scene flow modelling is acceptable in case of static scenes, it is
beneficial for the case of dynamic scene to disentangle the observer (camera)
motion from the object motion. This view on scene flow will allow us to
deduce which part of the scene flow is induced by the ego-motion of an
observer and which is induced by the object itself. For practical applications
it is often useful to obtain pure object motion, relative camera pose and the
total motion in just one single forward pass.

1.2 Problem Statement

Let Xt ∈ Rn×d be a point cloud representation of the scene at time step t and
Xt+δ ∈ Rm×d be a point cloud at time step t + δ. This pair of point clouds
has the following properties:

• Points clouds dimensions n and m may or may not be the same.

• Points in these two point clouds are not ordered.

• The correspondences between a pair of point clouds are not enforced
i.e. some point ~x in Xt may not be represented in Xt+δ

Each point ~x ∈ Rd in the point cloud X is represented as a vector of spatial
location in 3D space. Every point is also associated with a signal vector
~v ∈ Rk, where a signal in general case can include information such as a
color vector, a normal vector, an intensity vector in addition to the original
spatial position vector, which can make the signal dimension k > d. In
the scope of this work our signal is represented by the spatial location only.
Therefore, ~v = ~x with dimensions d = k = 3.

Having Xt and Xt+δ our main goal is to estimate total scene flow ~d ∈ R3

sometimes also known as 3D motion field. Total scene flow is a per-point
displacement vector which describes where a point in Xt will be in Xt+δ.
Total scene flow is closely related to optical flow. Specifically, if we would
project total scene flow vector onto a 2D image plain, we will get the optical
flow. Figure 1.2 contains a visualization of input point clouds and the total
flow we are trying to estimate.

Furthermore, we propose to decompose the total scene flow into a pair of
components:

3

1. Introduction

(a) a pair of input point clouds (b) expected estimate of total scene flow

Figure 1.2: Example of total scene flow on a pair of point clouds. (a) red and green represent
the membership to corresponding point clouds (b) is a visualization of total scene flow in a form
of yellow displacement vectors.

~d = ~dnr + ~dcm (1.1)

where ~dnr ∈ R3 represents the per point non-rigid flow which is induced by
the moving object itself. Additionally, there is the ego-motion flow ~dcm ∈ R3

which represents per point motion induced by the movement of an observer
(camera). Ego-motion flow is defined in the following equation:

~dcm = (Rrel − I3)~xt + trel (1.2)

where Rrel ∈ R3×3 is the relative rotation of the camera and trel ∈ R3 repre-
sents relative translation of the camera from time step t to time step t + δ.
Furthermore, variables ~dcm, ~xt and Trel can also be expressed in homoge-
neous coordinates using a more compact form:

~dcm =
([

Rrel trel
]
− I4

)
~xt (1.3)

where Trel =
[
Rrel trel

]
∈ R4×4 is the relative camera pose between a point

cloud at time step t and t + δ expressed in homogeneous coordinates.

Hence, our second goal is to estimate the relative camera pose Trel as well as
~dnr. We can combine the two using equations 1.2, 1.1 and obtain total scene
flow ~d.

4

1.3. Focus of This Work

1.3 Focus of This Work

Our work complements previous works on scene flow learning with 3D
deep learning [16, 46, 30] by adding self-supervision and a different ap-
proach for learning scene flow which disentangles ego-motion from the
object motion. Furthermore, it is important to note that there have been
projects [37, 54, 50] which explored self-supervision for scene flow in par-
allel with us. However, all of these methods rely on total scene flow only.
While there have been works on separating the camera motion and object
motion for scene flow, most of them learn on 2.5D data [31, 28], which
makes them inapplicable if the original data is in point cloud format. More-
over, they also do not offer an end-to-end learning pipeline but rather learn
different components with separate networks. Besides that, these works do
not utilize self-supervision [6, 31].

In summary, the contribution of this work is a combination of the following
parts into an end-to-end 3D deep learning pipeline. Our work aggregates:

• Learning of total scene flow with 3D deep learning from point clouds.
This is achieved by modification of total flow architecture HPLFlowNet
[16] to fit the purpose of joint learning of non-rigid flow and relative
ego-motion.

• Investigation of self-supervision for scene flow learning in form of su-
pervised learning with self-supervisory signals, fine-tuning in fully
self-supervised mode and fully self-supervised learning from scratch.
This includes design and implementation of architecture agnostic self-
supervisory signals.

• Novel view on 3D scene flow which decomposes the total flow into
non-rigid and ego-motion parts. Comparison with a traditional mo-
tion model of holistic total scene flow. Studying the effect of self-
supervision on the decomposed model.

1.4 Thesis Structure

This thesis is structured in the following way. Chapter 2 reviews related
work and compares its features to the ones of our project. Concretely, it
covers the areas such as classical scene flow estimation, deep scene flow es-
timation, ego-motion estimation and self-supervision. Chapter 3 provides
a theoretical basis for our approach and formally discusses and arguments
our architectural choices. We present the details of our method in chap-
ter 4, which includes giving details on the overview of the pipeline, our
model and loss functions. Chapter 5 presents our experiments, their setup
and their outcome. Our experimentation consists of an internal quantitative
comparison and an internal qualitative evaluation along with a quantitative

5

1. Introduction

comparison to the related methods. Finally, we conclude on the results and
on the outcome of the entire project and outline the directions for future
work in chapter 6. We provide additional visualizations of scene flow pre-
dictions in the appendix A.

6

Chapter 2

Related Work

In this chapter we introduce the literature related to our approach. Section
2.1 overviews the evolution of scene flow estimation specifically focusing on
approaches based on 3D deep learning. Section 2.3 summarizes the work
conducted on ego-motion estimation and relative camera pose estimation
with deep neural networks. In section 2.2 we introduce self-supervision
and how it can be applied to scene flow learning. Finally, in section 2.4 we
conduct a comparative analysis between the features of our work and other
most related approaches.

2.1 Deep Scene Flow

Scene flow was formally defined in the seminal work of Vedula et. al [48],
in which they proposed a three-dimensional dense non-rigid motion model
for describing motion directly in 3D analogously to optical flow in 2D. Our
work is based on current approaches in 3D scene flow estimation when we
learn the scene flow directly on 3D point clouds [30, 46, 16] with an end-
to-end pipeline rather than utilizing stereo or RGB-D inputs [19, 21] and
learning the motion in form of optical flow and depth separately [31, 28, 32].
To obtain large amounts of training data researchers have been employing
mostly synthetic datasets [33, 31, 36, 35] and went from the stereo or RGB-D
format into the point cloud format.

Point cloud based methods [30, 39, 40, 16] which learn scene flow from point
clouds share a common pattern. Specifically, this patter consists of taking a
pair of point clouds, optionally fusing [58] the information from both frames,
encoding them into a feature vector and then up-sampling them to get a per-
point scene flow output.

A group of approaches has proposed to learn scene flow with a hierarchical
permutohedral lattice [16, 46, 23], in contrast to learning on a regular 3D

7

2. Related Work

grid or voxels, which are known to be computationally restrictive if one is
to go into more than three dimensions or to increase the density of input
point clouds. Approaches based on permutohedral lattice additionally put
a focus on efficiency and aim to process as many points as possible in one
forward pass to avoid chunking. The majority of them take their inspiration
from earlier works which had success in high-dimensional image filtering
using permutohedral lattices [2, 5, 1], which latter adopted a learning based
path with a rise of deep learning and evolved into permutohedral networks
[25, 22].

2.2 Self-Supervised Learning

Work by Wang et. al [49] has demonstrated how cycle-consistency of time
and its special case forward-backward consistency can serve as a power-
ful source of self-supervision for a wide variety of visual correspondence
tasks. These techniques found their applications in the realm of optical flow
[29, 52]. Liu et. al [30] proposed to use cycle-consistency for scene flow esti-
mation in their self-supervised loss which was used in a combination with
a supervised part.

Self-supervision for scene flow learning is an active field of research and
there are concurrent works [37, 54, 50] to ours. Our method is largely in-
fluenced by findings of Mittal et. al [37], where they proposed to extend
the idea of cycle-consistency [30, 49] with the nearest neighbour anchoring
and the nearest neighbour constraint inspired by ICP [7], which employs
distance metrics between point sets as a source of self-supervision. Similar
idea was previously utilized by Fan et. al [13] in their Earth Mover’s Dis-
tance (EMD) constraint, which essentially forced the points of one set to be
close to the points in the other set. Some works [54, 13] extended the idea of
nearest neighbour loss used in [37] to both forward and backward directions
in form of Chamfer Distance (CD) constraint.

An alternative source of self-supervision was investigated by Wang et. al
[50], where they exploited geometric structural properties of 3D data such
as surface normals in order to to pose a point-to-plane error constraint and
additionally used a cosine similarity constraint for the flow vector along
with their supervised part of the loss. Constructing of self-supervision con-
straints based on surface properties were also investigated by Wu et. al [54].
In their approach they proposed to use a smoothness constraint to enforce
local spatial smoothness along with the Laplacian regularization [45] to en-
force that the Laplacian coordinate vector is similar across a pair of frames.
In this case Laplacian coordinate vector acts as a local descriptor of the sur-
face.

Overall, the best performance is achieved in case when a supervised loss

8

2.3. Ego-Motion and Relative Camera Pose Estimation

is used along with self-supervisory constraints [50, 54]. However, it is also
possible to train with pure self-supervision, in this case it is important to se-
lect the constraints which would accurately approximate the supervised loss
and naturally reflect the properties of 3D data such as the shape differences
[13, 37].

2.3 Ego-Motion and Relative Camera Pose Estimation

Most of scene flow methods model scene flow as a 3D translation vector
[16, 30, 46]. An alternative view on scene flow is to disentangle camera
motion from the object motion in real world dynamic scenes. In this kind
of approach, one generally models camera motion as a rigid transformation
and the rest of the motion as non-rigid per point translation [31, 28, 12, 41].
Behl et. al [6] proposed to jointly learn per-point rigid transformation along
with ego-motion and bounding boxes in an end-to-end learning pipeline on
point clouds.

Camera pose estimation with deep learning originally started from learning
with CNNs on RGB images [24, 43, 34, 10]. These works proposed to learn
an absolute camera pose transform or a relative camera pose transform with
drop-in replacement modifications of popular CNNs, where the networks
were adapted from classification to pose regression by modifying the final
layers. Most of these approaches encode the information from two frames
with a pair of Siamese branches, which share the weights and regress the
pose either as a 7 dimensional vector in case when the rotation is modelled
with quaternions [34, 24], or a 6 dimensional vector if Euler angles are used
for the rotation portion of the pose [31].

Several RGB and RGB-D based methods applied similar techniques for the
relative camera pose part [8, 31]. Similar ideas have been also used for opti-
cal flow and ego-motion learning [27, 56, 26]. Sattler et. al [42] have showed
that estimating the pose only from 2D images is prone to poor generaliza-
tion. In contrast to image based pose estimation with CNNs, our approach
is more closely related to [6, 14, 20] where we learn the relative pose from
point clouds with a 3D neural network.

Another area of research closely related to our work is iterative point cloud
registration with 3D deep neural networks [57, 3, 15]. The learning based
part of these approaches is similar to [6, 14] if one considers an estimation
of a rigid transformation. When it comes to the algorithmic idea, they are
inspired by iterative registration of point clouds with ICP [4, 7]. Specifically,
they estimate an initial rigid transformation with a point based network and
then apply that transformation to the inputs. Afterwards, the same process
is repeated K times. At the end they obtain a final pose, which is a matrix
product of K intermediate steps.

9

2. Related Work

The downside of applying a similar idea to our approach is the computa-
tional bottleneck. Most of these methods use less powerful and smaller
networks such as [39, 40]. Another point to consider is the fact that it might
be intractable in terms of GPU memory and time to unroll the computation
into K steps with the network [16] we base our model on. Furthermore, if
one is to include self-supervision the computational burden will additionally
increase. Finally, in our work we aim to learn the pose and non-rigid flow
with an end-to-end pipeline, unrolling the computation of camera pose into
K steps would mean that we have to separate a network into two sequential
networks, one for the camera pose and one for the flow.

2.4 Feature Comparison

We present a feature comparison of our work and approaches of other au-
thors in order to summarize an overview of the related literature along with
the contribution from chapter 1. Feature comparison of our work and most
related approaches is demonstrated in table 2.1.

Approach Scene representation Self-supervision Ego-motion End-to-end

HPLFlowNet [16] Point clouds - - +

FlowNet3D [30] Point clouds + - +

Learning Rigidity [31] RGB-D - + -

PointFlowNet [6] Point clouds - + +

Just Go with the Flow [37] Point clouds + - +

PointPWC-Net [54] Point clouds + - +

FlowNet3D++ [50] Point clouds + - +

Ours Point clouds + + +

Table 2.1: Comparison to related work.

We can deduce from the table that our approach meets project’s require-
ments the best by combining self-supervision and the ability to learn ego-
motion into an end-to-end point cloud based network.

10

Chapter 3

Theory

In this chapter we introduce the reader to the theoretical background needed
to comprehend our work. Section 3.1 explains the scene flow model crucial
for understanding of our method and all of the experiments. In section 3.2
we motivate the choice of our selected architecture and compare learning
in 3D against learning in 2.5D. Section 3.3 provides the theory on various
ways for processing point clouds. In section 3.4 we describe the theory of
self-supervision we used in our method.

3.1 3D Motion Model

Continuing the discussion from chapter 1 we present the scene flow motion
model, its relation to optical flow and how we can differentiate between the
ego-motion and the actual motion of the scene. Full scene flow model with
its relation to optical flow is illustrated in figure 3.1.

In this setup we have two camera poses T1 ∈ R4×4 and T2 ∈ R4×4 from two
time steps which describe a rigid transformation from the corresponding
camera coordinate system into the world coordinate system:

T1 =

[
R1 t1
0T 1

]
T2 =

[
R2 t2
0T 1

]
(3.1)

In our case 1 the centers in world coordinates of coordinate systems of a pair
of cameras corresponding to T1 and T2 are located at C1 = t1 and C2 = t2.
The orientations of cameras in world coordinates are simply given by R1
and R2.

1Please note that some of the data-set and rendering software may follow the world to
camera transformation convention when it comes to camera poses. In that case the equations
for camera centers, relative pose etc. will a have a different form. For more detail we refer
the reader to [18], which one of the examples where the opposite convention is used.

11

3. Theory

X’

Y’

Z’

Z

Y

X
World

C1 = (X1, Y1, Z1)

u
′
1

x’
y’

X’

Y’

Z’

x’

y’

~x1

~d

~dnr

~dcm

C2 = (X2, Y2, Z2)

u
′
2

Trel = [Rrel trel]

~x2

~vnr

~v

~vcm u1

u2u
′
1

~x0

Figure 3.1: Full scene flow model and its relation to optical flow. The legend is the following.
Dashed lines represent 2D optical flow vectors, solid lines represent 3D scene flow vectors. Ego-
motion of both optical flow and scene flow are depicted in blue. Non-rigid residual optical flow
and non-rigid residual scene flow are depicted in red. The total scene flow and optical flow are
indicated in green. Projections of 3D points onto a 2D plane are notated as u ∈ R2.

Figure 3.1 contains three 3D points in homogeneous coordinates ~x0 ∈ R4,
~x1 ∈ R4 and ~x2 ∈ R4, where ~x0 and ~x2 represent the same point cloud
correspondence in a pair of frames. Point ~x1 represents where the original
point ~x0 will be located after adding the ego-motion part to it.

To transform a 3D point from a coordinate system with a center C1 into a
coordinate system with a center C2 we use a rigid transformation Trel =[
Rrel trel

]
∈ R4×4. Since we work with camera to world convention, the

basic principle to derive the relative pose is to take an arbitrary point in the
coordinate system of camera with a center C1, then transom it into the world
coordinates and finally transform from world into the coordinate system of
the second camera. The formula for the relative rotation becomes:

Rrel = RT
2 R1 (3.2)

The realtive translation is computed as:

trel = RT
2 (t1 − t2) (3.3)

12

3.1. 3D Motion Model

By combining Rrel and trel we obtain a relative rigid transformation in homo-
geneous coordinates:

Trel =

[
Rrel trel
0T 1

]
(3.4)

Now we can use the above relative transformation to model camera motion.
For this we take the input from the first frame ~x0 transform it with Trel and
then subtract the original ~x0. The result of it will be a 3D ego-motion flow
vector, which presented in homogeneous coordinates is ~dcm ∈ R4:

~dcm = (Trel − I4)~xt (3.5)

If we are to apply ~dcm to ~x0 we would get ~x1, which is essentially the same
point with ego-motion included. The actual motion of an object is modelled
by a non-rigid residual flow described as ~dnr ∈ R4. Thus, we can construct
the total scene flow vector using vector summation rule:

~d = ~dnr + ~dcm (3.6)

3D point’s total flow would have a different ratio of non-rigid and ego-
motion flow depending on the level of rigidity. For points of static objects
in a scene, non-rigid residual flow ~dnr will be equal to ~0 and the total flow
would only be induced by ego-motion flow ~dcm. In the case of scenes with
a static observer the total flow will be purely induced by ~dnr. Figure 3.2
summarizes our ideas in 3D.

(a) Mostly rigid cluster (b) High non-rigidity cluster

Figure 3.2: Visualization of the full scene flow model. Points in red are representing X1.
Points in green represent X2. Blue points are X1 transformed with Trel . (a) and (b) represent
different clusters of the same scene. In (a) we can see that Trel is able to align static points.
In (b) Trel brings X1 closer to X2 and rest of the motion is non-rigid and thus is modelled by

per-point non-rigid flow ~dnr.

13

3. Theory

If we now consider 2D image planes of figure 3.1, there are 2D points u ∈ R2,
which represent a projection of 3D points into an image plane. A pair of
points u

′
1, u

′
2 and u1, u2 represent the projection of the same 3D point onto

the corresponding image plane. For illustration purposes we also show a
point from the left plane u

′
1 on the right plane.

On the right image plane we can find a vector ~v ∈ R2, which represents opti-
cal flow. Optical flow can be viewed as a 2D analog of total scene flow. Con-
cretely, to obtain optical flow ~v we can just project 3D total scene flow ~d onto
the plane. Hence, networks which learn total scene flow can also be used
for optical flow estimation if the projection matrix is known. Analogously
to total scene flow we decompose optical flow using vector summation rule
into:

~v = ~vnr +~vcm (3.7)

where ~vnr ∈ R2, ~vcm ∈ R2 represent the non-rigid and rigid components of
the optical flow respectively. Similarly to the whole optical flow ~v, we can
obtain ~vnr and ~vcm by projecting 3D vectors ~dnr and ~dcm into an image plane.

3.2 Learning in 3D Space

It is possible to estimate total scene flow from 2D/2.5D data such as RGB,
stereo or RGB-D. These kind of approaches generally follow the following
steps. For plain RGB we need to learn the depth first. In case of stereo
inputs, one has to learn disparity maps. Once we have disparities D, we can
get the depth Z of each pixel by using baseline B and focal length f with a
classical depth formula:

Z = f
B
D

(3.8)

Once we have the depth the process for all 2D/2.5D formats is similar. Con-
cretely, one takes a pixel u1 projects it into 3D to obtain a point p1 by using
the standard projection formula:

p = (Z
(x− cx)

f
, Z

(y− cy)

f
, Z) (3.9)

Then we have to learn optical flow in a separate network. Further, we warp
a pixel u1 with an estimate of optical flow which would give us a warped
pixel u2. To obtain a 3D point p2 from u2 we again use the formula 3.9. Once
we have both points, the total scene flow ~d is just a difference between p2
and p1.

As it was noted in [16] these multi-step 2D/2.5D approaches generally do
not outperform 3D approaches. The reason is that we have multiple sources

14

3.3. Neural Networks for Point Clouds

of error accumulation such as depth estimation, optical flow estimation and
then projection into 3D. Another reason is that optimization in such case is
indirect because the networks learn on 2D metrics, while scene flow evalua-
tion metrics are all in 3D.

Therefore, most of the modern approaches learn scene flow directly on point
clouds since they preserve more information about 3D geometry. Unlike
2D/2.5D methods, most of 3D methods take point clouds as inputs, encode
them into a compact latent representation and finally decode it to get a 3D
per point scene flow.

The computational advantage is that one can learn scene flow directly within
one single network. This way we also avoid multi-step error accumulation,
which we had in the case of 2D/2.5D. Additionally, training metrics are in
3D, which avoids indirect optimization. Furthermore, in some scenarios the
data is only available in form of 3D point clouds, which cannot be processed
by 2D/2.5D based methods.

3.3 Neural Networks for Point Clouds

The most naive way to learn from point clouds is to learn with standard
2D/3D CNNs by adding a heuristic pre-processing step. In a pre-processing
step we can voxelize the point clouds i.e. convert point clouds into voxels
(e.g. [55]). An alternative way is to go from 3D into 2D. To convert point
clouds into 2D images multi-view projections of a point clouds can be used
(e.g. [47]). By doing either one of these two steps one essentially discretizes
the input signal into a 2D/3D grid and thus standard 2D/3D convolution
operations can be applied. However, in this case we lose natural geometric
invariances from our learning signal when we convert them to grids. Fur-
thermore, prepossessing step requires extra computation and using a dense
grid is restrictive in terms of GPU memory.

Therefore, direct learning on point clouds requires a special type of neural
architecture other than traditional 2D/3D CNNs. Point based networks offer
a viable alternative to their voxel based counterparts. First attempts of point
based networks were essentially point-based encoders (e.g. [39, 40, 30]).
These type of networks encode each point or alternatively a neighbourhood
of points individually using a shared multi-layer perceptron (MLP) and then
form a global aggregated feature by using global pooling. The downside of
these methods is that they do not utilize structural information of multi-
ple points in a patch or they lose spatial relationship between points when
performing the aggregation step during global pooling.

15

3. Theory

3.3.1 Permutohedral Lattice Networks

Another branch of architectures, which are able to process point clouds di-
rectly are inspired by high dimensional image filtering [1, 2] and are based
on mathematical structures called permutohedral lattices as opposed to reg-
ular integer grids. These type of architectures called permutohedral lattice
networks preserve structural information while also focusing on scalability
and computational efficiency for sparse and high-dimensional signals.

While it’s possible to use sparse convolutions to make learning on regular
3D integer grids more efficient by avoiding unnecessary computations, they
are still inefficient in terms of scalability. Specifically, if input feature di-
mension d is to increase by for example adding RGB, normal and intensity
information to spatial location, the number of neighbourhood vertices en-
closing a input point will respectively increase exponentially O(2d) in d. On
the other hand, if we are to use permutohderal lattice the number of enclos-
ing vertices will grow linearly O(d) in d. The scalability aspect of regular
integer grid and permutohhedral lattice is illustrated in 3.3 with the help of
Delaunay tessellations.

(a) Integer grid (b) Permutohedral lattice

Figure 3.3: Delaunay tessellation for two dimensional permutohedral lattice. (a) the number
of vertices of a simplex is 2d (b) the number of vertices of a simplex is d + 1. Image from [5].

Permutohedral Lattice

Permutohedral lattice is the mathematical structure which all permutohe-
dral lattice networks have in common. As proposed by Baek and Adams [5],
permutohedral lattice A∗d of dimension d is defined as:

A∗d := {T(~x) | ~x ∈ (d + 1)Zd+1} (3.10)

where T(~x) is the projection of a regular scaled grid Zd+1 onto the hyper-
plane Hd along vector ~1 the diagonal of a unit cube, in which the sum of
coordinates is 0.

16

3.3. Neural Networks for Point Clouds

Projection T(~x) is a map defined as:

T : ~x 7→ ~x−
(
~x ·~1
‖~1‖2

)
~1 (3.11)

And hyperplane Hd is:

Hd = {~x | ~x ·~1 = 0} ⊂ Rd+1 (3.12)

Figure 3.4 illustrates the construction of A∗d with d = 1. We can deduce from
the figure that permutohedral lattice is a more sparce representation than
regular grid because some points of the original grid are projected into the
same point on the lattice.

(0, 0) 1 2

3

3

2

1

x

y

~w

Hd

Figure 3.4: Constriction of a permutohedral lattice. We construct A∗d with d = 1 by projecting
the regular 2D integer grid of xy plane onto the hyperplane Hd along the vector ~w = (1, 1). The
points projected onto the hyperplane form the lattice. The direction of projection is showed with
light-gray dashed lines. Grid points of the same color are projected into the same point on a
hyperplane.

Bilateral Convolutions

The basic building blocks of any lattice network are Bilateral Convolution
Layers (BCL), which are essentially learnable extensions of high-dimensional

17

3. Theory

bilateral filters [22, 25]. In case of BCL each point of a point cloud is de-
scribed by a position p ∈ Rd and has a signal v ∈ Rk. As in [16] our signal
is equal to the position vector v = p, however it possible for a signal vector
to also contain colors, normals and intensities. The properties of a permu-
tohedral lattice allow us to embed a position vector into a high-dimensional
subspace Hd and then efficiently perform a Splat-Blur-Slice operation.

We start with embedding the position vector p into Hd which can be per-
formed by basis change in O(d) [1]. Then we splat a signal of a point
onto lattice vertices. For this we need to find an enclosing simplex of a
point. Since permutohedral lattices tessellate high-dimensional subspace
Hd with uniform simplices we can efficiently find an enclosing simplex. It
was formally proven [5] that each simplex of a lattice is a permutation and
translation of d + 1 vertices in a canonical simplex which are identified by
k-remainder. Due to this property, each lattice simplex is uniquely identi-
fied by the distance to closest zero remainder ~l0 and the ordering of d + 1
coordinates of a relative point position ~x−~l0.

Adams [1] proposed an efficient algorithm to find an enclosing simplex of a
point in O(d2) time. Once the enclosing simplex is found we can splat the
signal onto vertices using barycentric interpolation since all simpleces are
uniform. The blur step is essentially a sparse version of traditional CNN
convolution operation but preformed on a fixed neighbourhood of lattice
points which gathered a signal. Finding the neighbours for blurring is de-
terministic and can be performed in O(d2) [1]. The number of neighbours
for a blur step for a point with position p will be (r + 1)d+1 − rd+1, where r
is the radius of a convolution. We can change the receptive field of a convo-
lution operation by scaling the entire lattice. Furthermore, scaling allows us
to build a hierarchical representation of the input similar to CNNs, where
we first capture coarse features in the beginning of the network and finer
features in the later layers. The final step is slicing, which the inverse of
splatting. The same barycentric coordinates from the splatting step are used
to return the filtered signal to it’s original spatial position. Embedding into
Hd and a Splat-Blur-Slice operation are summarized in figure 3.5.

3.4 Self-Supervised Learning

Currently scene-flow estimation is mostly formulated as a supervised learn-
ing problem [16, 6]. To enable supervised learning we first need to obtain a
dataset with scene flow ground-truth. In general to achieve that researchers
take a stereo or RBG-D dataset and use optical flow to project that informa-
tion into point clouds. Since optical flow captures correspondences between
pixels the same correspondence also holds for points after projection into
3D. Taking a difference between two order set of point clouds allows us to

18

3.4. Self-Supervised Learning

(a) Embedding (b) Splat (c) Blur (d) Slice

Figure 3.5: Illustration of position vector embedding and a Splat-Blur-Slice operation. In
this illustration dimension d = 2 and the lattice is a subspace of R3. Stacked cubes represent
the signal vector. (a) position vectors are embedded onto Hd, (b) scatter signals onto lattice
vertices according to barycentric weights, (c) blurring with a learnable filter with radius r = 1,
(d) gathering of filter signals into the original positions using barycentric weights computed in
(a). Image from [23].

obtain the ground truth for the scene flow and learn the scene flow with
supervised learning. On the other hand, self-supervised learning offers a
viable alternative for training on unlabelled real world datasets.

The main idea of self-supervision is to extract the learning signal from us-
ing the correspondences in the data itself without relying on ground-truth.
Utilizing the consistency of temporal, geometric, structural and photomet-
ric properties between frames of point clouds provides rich sources of self-
supervision. We can construct loss constraints as a proxy for the supervised
loss based on the before-mentioned properties of the data. It is important
to balance such constraints with weights or other constraints to avoid de-
generate or trivial solutions. Once the self-supervised proxy of the loss is
constructed we can either train it in a full-supervision mode or add it to
the supervised loss term. The former can be used it form of fine-tuning on
unlabelled data after supervised training [37] or for training where there is
no labelled data at all in full self-supervision. The later is used to improve
supervised methods in form of implicit regularization [30]. In our work
we mostly rely on temporal and geometric consistency of a point cloud se-
quence.

3.4.1 Forward-Backward Consistency

Forward-backward consistency is inspired by 2D computer vision where it
was successfully applied to optical flow [29], tracking [49] etc. Forward-
backward consistency utilizes the temporal continuity of a pair of neigh-
bouring image frames or if extended into 3D of a point cloud pair.

The general idea of a forward-backward consistency constraint is to take a
point cloud Xt in time step t and Xt+δ in time step t+ δ and predict the total

19

3. Theory

forward scene flow ~d f for each point with a 3D deep neural network. Once
we have the per-point forward scene flow we can apply them to points of Xt

to get an estimate X̂t+δ to where the points from frame t will be translated
into frame t + δ. From there we can once again estimate the per-point total
scene flows ~db with the same network but this time in a reverse direction
going from points X̂t+δ to Xt. Once we have the backward scene flows ~db for
each point we can apply them to X̂t+δ and obtain X̂t, which is supposed to
be close to the original starting point cloud Xt. To measure the consistency
standard per-point euclidean distance can be used to construct a loss con-
straint. We can now either use it as a proxy for the supervised loss or use it
in a combination with the supervised loss. Figure 3.6 contains an illustration
of the forward-backward consistency principle.

~d f

~db

Xt Xt+δ

ε

Figure 3.6: Demonstration of forward-backward consistency. Xt and Xt+δ are point clouds

in subsequent frames. Forward flow ~d f , which was predicted by the network is applied to a point

in Xt get an expected position in Xt+δ. We then predict and apply the flow ~db backwards. The
residual ε is the learning signal.

It is easy show that forward-backward property holds in the following exper-
iment. If we apply the ground truth scene flow to some non-occluded point
p in forward direction from time step t into t + δ and then apply the ground
truth scene flow in reverse direction from t+ δ back to t, the result will align
with the original point p with zero error. Despite the fact that points in real
point clouds are often occluded or not even represented in the neighbouring
frame, the property still holds for our scene flow estimation formulation be-
cause we do not necessarily assume point to point correspondence between
time steps.

20

3.4. Self-Supervised Learning

3.4.2 Cycle Consistency

Forward-backward consistency is a special case of cycle consistency, where
the size of a cycle K = 1. The motivation of cycle consistency is to gener-
alize to arbitrary cycle size K in order to harvest learning signal from long
sequences.

In order to obtain the learning signal we first predict total scene flow in
forward direction and apply them to current point cloud at time step t, at
time step t + 1 we have a transformed point cloud, from there we repeat
the same procedure. We keep propagating the prediction and the warp
procedure for the next steps t0, ..., tK. Overall, we would need to perform
K network predictions. To propagate the signal in the reverse direction,
we start from the corresponding transformed point cloud at steps t1, ...tk.
Then from each of these K time steps we perform backward flow prediction
and then apply it to the transformed point clouds iteratively until we reach
the beginning of a cycle at step t0. The amount of network predictions
for the reverse direction would be K(K+1)

2 . Therefore, the total amount of
network predictions for cycle-consistency is K(K+3)

2 , which grows in O(k2).
The principle of cycle consistency is illustrated in figure 3.7. The learning

signal ε is the sum of residuals from each of K cycles ε =
k

∑
i=1

εk.

X0 X1 X2 X3

ε
~x

Figure 3.7: Demonstration of cycle consistency. In this case cycle size K = 3. We start
from point ~d. Solid lines indicate forward flow predicted by the network. On the other hand,
dashed arrows represent the revers flow predicted by the network. Orange displacements show
the intermediate residuals. The learning signal is the sum of K residuals shown in red.

Furthermore, skipping frames in a sequence is advantageous for capturing
different magnitudes of the scene flow. One way to implement this strategy
is to to do augmentation where the frames are dropped in the middle of
the sequence. Alternatively, skip connections can be applied to circumvent
time steps in both forward and backward direction. The downside of cycle
consistency is that it can be restrictive in terms of speed of computation and
GPU memory, especially if used with large networks.

21

Chapter 4

Method

This chapter introduces our method for solving the problem presented in
chapter 1. Section 4.1 starts the chapter with a high-level overview of the
entire pipeline starting from the inputs, intermediate steps going up to the
output. In section 4.2 we go into details of our implementation of forward
backward consistency. Section 4.3 goes into details of our neural network
architecture. Finally, in section 4.4 we introduce the loss functions used to
train our models.

4.1 Overview

As it was defined in chapter 1 our main goal is given a pair of point clouds
Xt ∈ Rn×d and Xt+δ ∈ Rm×d to estimate total scene flow ~d ∈ R3 for each
n points of Xt. Additionally our goals are to estimate n per-point non-rigid
flows ~dnr ∈ R3 and ego-motion in form of a rigid relative camera pose
transformation Trel ∈ R4×4.

Figure 4.1 provides a high level overview of the proposed pipeline. A pair
of point clouds Xt and Xt+δ are fed to the encoder. The encoder consists
of two identical Siamese branches, which share the weights. Periodically,
the information from each Siamese branch is fused into an unified represen-
tation. The main task of an encoder is to learn a low dimensional latent
representation vector to describe 3D motion.

Afterwards the network branches in two separate components, namely into
a pose regressor network and into a flow decoder. Pose regressor’s task it
to learn a relative camera pose between a pair of point clouds. Then the
relative pose is combined with the first input of the pipeline Xt to obtain an
ego-motion motion flow for each point of the point cloud Xt. Flow decoder’s
task is to up-sample the latent vector into a per-point non-rigid flow. Once

23

4. Method

the non-rigid flows and ego-motion flows are ready we can combine the two
to obtain total scene flow vectors for each point.

~xt

~xt+δ

~d

Encoder
Flow decoder

Pose regressor

~dcmTrel

~dnr

Figure 4.1: High-level overview of the learning pipeline. Points of a pair of point clouds ~xt
~xt+δ depicted in red and green respectively goes through an encoder and splits up into a pose

regressor and a decoder. The final output is total scene flow ~d, which is depicted as yellow
vectors between a pair of point clouds. Intermediate outputs are relative camera pose Trel , non-
rigid scene flow ~dnr and ego-motion scene flow ~dcm. The functions which combine different
components to output the corresponding scene flow components are depicted in purple.

4.2 Self-Supervisory Signals

Our self-supervisory signals are implemented based on forward-backward
consistency, the theory of which was described in section 3.4. A naive al-
gorithm to implement forward-backward consistency is to take two tensors
X1 and X2 and to predict a tensor of total scene flows D with the same
size as X1. Then D and X1 are summed to get a tensor of warped points
X̃2 = X1 + D. Afterwards, we again predict a tensor of flows, but this time
in reverse direction D̃ from X̃2 to X1. Our learning signal in this case are Eu-
clidean distances of points in the starting point cloud X1 and the alignment
at the end of a cycle X̃2 + D̃.

However, in practice we found that it’s hard to optimize a loss function
based on the naive algorithm. The overall loss function containing the naive-
self supervision term was failing to converge and qualitative evaluation re-
vealed that the magnitude of total scene flow vectors was close to 0. There-
fore, we came to the conclusion that the main cause of failing optimization
are degenerate solutions, since the forward-backward consistency loss is at

24

4.2. Self-Supervisory Signals

its minimum when the network predicts the flow of~0. One measure to alle-
viate the issue was to introduce linear weight scaling, where loss weight of
self-supervision w was set to 0 at the beginning of training and then linearly
increased later. Nevertheless, the loss function was still failing to converge
once we added the naive constraint.

The same issue was also encountered in a concurrent work by Mittal et. al
[37]. We adopt their proposed strategy with the nearest neighbour anchor-
ing to tackle degenerate solutions by balancing the loss function with an
additional constraint allowing it to converge. Instead of just predicting a
tensor of reverse flows from warped points X̃2, on the other hand the idea
of nearest neighbour anchoring is to predict reverse flows D̃ from X ∗2 :

X ∗2 =
(X̃2 +Xnn)

2
(4.1)

where Xnn is a tensor of nearest neighbours for each point of X̃2 to points
inside X2.

Furthermore, we balance an anchored version of a forward-backward con-
sistency constraint to prevent degenerate solutions by posing an additional
nearest neighbour constraint proposed in [37, 13]. The nearest neighbour
constraints aims at minimizing the Euclidean distance between the points of
a warped point cloud X̃2 and their corresponding nearest neighbours Xnn
inside a point cloud X2.

4.2.1 Nearest Neighbour Search

We need to implement an algorithm for finding the nearest neighbour for
each point of a warped point cloud X̃2 to points inside a target point cloud
X2, in order to implement an anchored version of a forward backward-
consistency constraint along with a nearest neighbour constraint. Since most
of our computation is performed on a GPU our algorithm should be easily
parallelizable.

When it comes to nearest neighbour search on the CPU many machine learn-
ing libraries rely on k-d trees, the run time complexity of which is O(n log n).
However, making efficient parallel computation with k-d trees on GPUs is
non trivial due to that fact that nearest neighbour search algorithm based
on k-d trees is naturally sequential.

In contrast to k-d trees, our nearest neighbour search approach based on
building a similarity matrix for two sets of points due to the following
reasons. While the asymptotic run-time of similarity matrix based algo-
rithm is O(n2), it is trivial to vectorize to enable efficient parallelization on
both a GPU and a CPU. Furthermore, it additionally saves us data transfer

25

4. Method

of outputs from the GPU to the CPU when computing the nearest neigh-
bours. A similarity matrix between two sets of point clouds X1 ∈ Rm×d and
X2 ∈ Rn×d is a matrix Σ ∈ Rm×n which contains m× n Euclidean distances
‖x1 − x2‖2

2 between all points from the first set x1 ∈ Rd to all the points in
the second set x2 ∈ Rd. Once the similarly matrix Σ is computed, we just
need to find a minimum in n column for each of m rows to get the indices
which indicate the nearest neighbours.

Finally, if further speed up of execution is desirable, algorithms based on
parallelization of k-d trees [38] can be adapted to our problem. Alterna-
tively Approximate Nearest Neighbor (ANN) search algorithms can also be
utilized to speed up the computation [51, 59]. We leave the exploration of
algorithmic aspects of nearest neighbour search for future work.

4.3 Model’s Architecture

Our model contains three main components, which are an encoder, pose
regressor and a decoder. An encoder and decoder part of our model are
based on HPLFlowNet proposed by Gu et. al [16]. HPLFlowNet is a state
of the art architecture based on permutohedral lattice for estimating scene
flow. Our relative pose regression network is inspired by [8, 31, 34, 24, 10].
The overall number of trainable parameters for the modified architecture
is 23,645,609. Inference on a pair of point cloud with 8192 points takes
approximately a third of a second. We describe the individual components
of the pipeline and their relation to each other in the following subsections.

4.3.1 Encoder

An encoder of HPLFlowNet consist of a pair of Siamese branches, which
share the weights. An encoder starts with 1D convolutions, which gradually
increase the number of channels of input point clouds keeping the num-
ber of points the same. Each branch builds a representation by embedding
and splatting of point clouds onto a permutohedral lattice. The representa-
tions are gradually down sampled by using a Splat-Blur layer (DownBCL)
based on the steps of Splat-Blur-Slice operation, which was described in
section 3.3. The splatting step is using barycentric interpolation to place
the signal vectors onto simplex vertices. Once the signals are in place a
standard convolution operation is applied to a lattice neighborhood of size
f = (r + 1)d+1 − rd+1, where r is the number of hops from the lattice vertex,
d is a dimension of a permutohedral lattice, which is implemented by using
a standard 2D convolution known from CNN. Convolution’s filter size is
f × 1 and it is applied on the tensor of point neighborhoods of size f × n,
where n is the number of points, which gathered a signal after splatting.
Once the blurring is performed, the same procedure is repeated again but

26

4.3. Model’s Architecture

on a scaled down lattice, which gradually reduces the number of splatted
points after each Splat-Blur layer.

The information from each branch is fused together periodically by using
a correlation layer (CorrBCL). A correlation layer takes a point neighbour-
hood with size g = (r + 1)d+1 − rd+1 from one branch and aligns it with a
neighborhood of the same size g in the other branch, where r is the number
of hops from the lattice point and d is the dimension of a permutohedral
lattice. Afterwards, each vertex inside a pair of aligned neighbourhoods be-
comes a center of an offset neighbourhood with a size h = (r + 1)d+1 − rd+1.
A pair of patches from each branch of a total size g × h × n, where n is
the chuck size common for both branch, are concatenated together across
channels into one tensor, on which a blur operation is performed. The blur
operation is implemented in two stages with a 3D convolution followed by
a 2D convolution. The filter size of a 3D convolution is 1× h × 1 and for
2D convolution it is g × 1. After the correlation layer the information of
two branches is fused into one representation and passed down to the sub-
sequent correlation layers.

4.3.2 Relative Pose Regressor

HPLFlowNet’s authors did not assume any prior on rigidity for the output
of an encoder, we on the other hand use the same encoder to learn a joint
latent representation for both non-rigid and rigid parts of the motion. As it
was described in section 3.1, our rigid part of flow is modelled by a relative
camera pose transformation Trel . To regress the pose we take the output of
an encoder with the shape 64× n and feed it into a pose regression network.
At the beginning of the network the outputs are aggregated over n points.
We selected global average pooling for our aggregation operation, since it
demonstrated better experimentation results compared to global maximum
pooling and spatial average/maximum pyramid pooling. Afterwards we
connect a vector of 64 values to a fully connected layer (FC1) with 2048
neurons and then to a second fully connected layer (FC2) with the same
number of neurons. Both FC1 and FC2 used ReLU as an activation function
and have a dropout rate p = 0.5. We learn the relative pose jointly as a 6
dimensional vector, where the rotation part is modelled with 3 Euler angles
and translation contains 3 XYZ coordinates. Hence, the final regression layer
contains 6 neurons with linear activation functions, since we require real val-
ued outputs. We did not encounter any issues due to Gimbal lock caused by
using Euler angles, since the relative camera rotation is very small for most
of the datasets. Furthermore, we also experimented with learning the rota-
tion part in form of quaternions but Euler angles gave better stability during
optimization and slightly better results overall. A possible explanation for
this behaviour could be that quaternion q and −q represent the same rota-

27

4. Method

tion [53, 43]. We have also tried splitting up a pose regresssor network into
two separate branches for rotation and translation, however we experimen-
tally found that it gives worse performance, since often either rotation or
translation was ignored buy the network and did not converge. Moreover, a
slightly better performance was achieved when the values for the translation
and rotation parts of the loss were kept in similar ranges by balancing with
a scalar.

4.3.3 Decoder

An encoder part of the network is aimed at up-sampling of a latent rep-
resentation into per-point non-rigid flows. The representation is increased
in dimensions by utilizing Blur-Slice layer (UpBCL), which is essentially a
reverse operation for DownBCL. After blurring a neighbourhood of size
f = (r + 1)d+1 − rd+1 by using a 2D convolution with a filter size f × 1,
the signals are being distributed to the original position by using the same
barycentric weights, which were computed for the corresponding DownBCL
layer. The scales of the lattice are also the same as during the down-sampling
stage but come in reverse order, which allows us to go from lattices with
coarse simplices to finer lattices while increasing the number of points. In-
puts to UpBCLs consist of a concatenated representations of symmetrical
DownBCL and the results of a previous UpBCL or from a correlation layer.

Similarly to an encoder, the authors of the HPLFlowNet architecture do not
reason about rigidity of the flow in the decoder. On the other hand, we
propose to decode the non-rigid part of the scene flow instead of decoding
the total scene flow. After obtaining an estimate of a camera pose from the
pose regression network we can compute the ego motion flow by combining
the relative camera pose and X1 using the equation 3.6. Finally, the total flow
is obtained by summing up the the non-rigid flow predicted by a decoder
and an ego-motion flow build with the help of a pose regression network.

4.4 Loss Functions

Overall, all of our loss functions are based on the Euclidean distance. Most
of our models used a total loss function, which consisted of terms to penalize
different part of the motion or to constrain our optimization problem. Please
note that for the convenience of loss presentation, we will omit the vector
symbol notation for different components of the flow in contrast to chapter
3.

Our main supervised loss measures an average of the Euclidean distance
over n points between the ground truth total scene flow vector d ∈ R3 and

28

4.4. Loss Functions

the estimate of total scene flow vector d ∈ R3 and is defined as:

Lepe3d = ‖d− d̂‖2 (4.2)

Our self-supervised signals are formed by the forward-backward consis-
tency loss L f b and the nearest neighbour loss Lnn:

Lss = w f bL f b + wnnLnn (4.3)

where scalars w f b, wnn are used to weight the self-supervised terms. Ad-
ditionally, we have experimented with modelling w f b as a piecewise linear
function w f b(x):

w f b(x) =

0 x < 21
0.1x 21 ≤ x < 41
2 x ≥ 41

where argument x represents epoch number. The motivation behind it is to
alleviate degenerate solutions, when the network predicts ~0 for scene flow
in the earlier epochs. However, we found in practice that this heuristic has
low influence, if we are to complement L f b with Lnn. Nevertheless, this
rule could be useful in a weakly supervised setting, where we still have the
labels but they might be inaccurate and thus more weight is put on to the
self-supervised parts of the loss.

Let x1 ∈ R3 be the point inside a point cloud X1 ∈ Rn×3 and x2 ∈ R3 be the
point belonging to the second point cloud X2 ∈ Rn×3. As described in sec-
tion 4.2, we define the forward-backward consistency loss as the Euclidean
distance between the input point x1 and the alignment to the original point
x̃1. The final formula for forward-backward consistency, which we average
over all the n points of X1 is:

L f b = ‖x1 − x̃1‖2 (4.4)

The alignment x̃1 ∈ R3 to the original point at the end of the cycle is defined
as warping of an anchor point x∗2 with the predicted reverse flow d̃ ∈ R3

from the anchor to the original position:

x̃1 = x∗2 + d̃ (4.5)

An anchor point x∗2 ∈ R3 is defined as the average between x̃2 ∈ R3, which is
the original point x1 warped with forward flow d and its nearest neighbour
xnn ∈ R3:

x̃2 = x1 + d x∗2 =
x̃2 + xnn

2
(4.6)

29

4. Method

The second self-supervised loss term is the Euclidean distance between the
warped point x̃2 and its nearest neighbour xnn, which we also average over
n points:

Lnn = ‖x̃2 − xnn‖2 (4.7)

Up to this points the losses we defined can be used to train both categories
of models, the ones where we learn the total scene flow holistically and the
one where we learn learn the non rigid and rigid parts jointly. The total loss
to train the models without scene flow decomposition is the combination of
4.2 and 4.3:

L = wepe3dLepe3d + Lss (4.8)

Where wepe3d is the weight to control the degree of supervision in the total
loss. We set wepe3d = 0 for the experiments with full self-supervision. We
need to extend the total loss from the above if we are to train the model,
which jointly learns the non-rigid flow and ego-motion. Since non-rigid
flow is modelled as a displacement vector, we can also adapt a similar loss
as in equation 4.2 to estimate the deviation of the estimate of non-rigid flow
vector d̂nr ∈ R3 and the ground truth non-rigid flow vector dnr ∈ R3. Hence,
the loss for the non-rigid part of the flow, which we average over n points,
is defined as:

Lnr = ‖dnr − d̂nr‖2 (4.9)

When it comes to the relative camera pose loss we have two separate losses
for translation and rotation, which define the relative camera pose loss:

Lr = wrotLrot + Lt (4.10)

Similarly to [31, 34, 24] we balance the magnitudes of a rotation and a trans-
lation with the weight wrot = 10. The translation loss Lt is the Euclidean
distance between the ground truth relative translation t ∈ R3 and the pre-
diction t̂ ∈ R3:

Lt = ‖t− t̂‖2 (4.11)

We used Euler’s angles to model the rotation. Therefore, the loss for rotation
is:

Lrot = ‖r− r̂‖2 (4.12)

Similarly to [31, 24] we decided not to enforce any constraint to normaliza-
tion of rotation in order not to complicate the optimization problem with
one additional constraint. Furthermore, we confirmed in experimentation
that the prediction rotations become close to the ground truth even without
normalization.

30

4.4. Loss Functions

Finally, we can combine the loss in 4.8 with the rigid loss in 4.10 and non-
rigid loss in 4.9 to formulate the total loss for the case of decomposition of
total flow into rigid and non-rigid parts:

L = wepe3dLepe3d + wnrLnr + wrLr + Lss (4.13)

where weights wepe3d, wnr, wr are used to balance different components of
the flow and which we all set to zero in case of full self-supervision.

Please not that in case of flow decomposition we used the formulas 3.5, 3.6
we defined in the motion model to assemble the total scene flow from the
non-rigid and rigid parts:

d̂ = d̂nr + (R̂− I3)x1 + t̂ (4.14)

where R̂ is the rotation matrix obtrained from the estimate of Euler angles r̂.
Once we have an estimate of total flow d̂ we cam compute the lose for total
scene flow Lepe3d as in 4.2.

31

Chapter 5

Experiments

5.1 Datasets

This section gives an overview of datasets used in further experiments. Table
5.1 contains the statistics of all datasets used in this work.

Similarly to [16, 33], we use a subset of FlyingThings3D where extremely
hard samples were omitted. The ground-truth for camera pose for each
frame can be obtained from the full dataset. Additionally RefRESH Ren-
dering Toolkit [31] was used to render a dataset with all the necessary
ground-truth. The rendered dataset has a large number of observations
and the ground truth for camera poses, which makes it useful in both self-
supervision and scene flow decomposition experiments. We can exclude
KITTI Scene Flow 2015 [35, 36] as a candidate for training based on the low
number of images and only used it for evaluation to test model’s ability to
generalize on real world data from a different domain.

Dataset Observations Camera pose Optical flow Realism

FlyingThings3D 23402 + + Synthetic

RefRESH 44027 + + Semi-synthetic

KITTI 200 - + Realistic

Table 5.1: Overview of scene flow datasets.

5.1.1 Input Data and Ground Truth

Point Cloud Generation

As we mentioned in section 3.2, point cloud representations X ∈ RN×3 con-
sisting of N points p ∈ R3 of the scene are obtained from the intrinsic cam-

33

5. Experiments

era matrix, optical flow and the corresponding depth values. Obtaining the
depth value varies on the dataset. It is either taken directly from depth maps
(RefRESH) or calculated using the projection formula in case of stereo data
(FlyingThings3D, KITT):

Z = f
B
D

(5.1)

where D stands for disparity (taken from a disparity map), f is camera’s
focal length, B is the baseline, cx and cy is the principal point (all taken from
the camera’s extrinsic matrix).

Hence, the final point cloud p for all datasets we used in our experiments is
computed as:

p = (Z
(x− cx)

f
, Z

(y− cy)

f
, Z) (5.2)

Relative Camera Pose

Since the ground truth for the camera poses of both FlyingThings3D and
RefRESH uses the convention camera to world, we can use the following
equations from section 3.1 to construct the ground truth for relative camera
pose:

Rrel = RT
2 R1 trel = RT

2 (t1 − t2) (5.3)

By combining Rrel and trel we obtain the relative pose:

Trel =

[
Rrel trel
0T 1

]
(5.4)

5.1.2 FlyingThings3D

Since the subset dataset of FlyingThings3D does not have any camera pose
ground truth, we match the frames of the subset dataset with the frames in
the full dataset. However, in the process we discovered that some frames
even in the original data-sets are missing the ground-truth for camera pose.
Hence, we remove 64 observations, which are missing the corresponding
camera poses from the experiments which involve camera pose estimation.
In this case the size of the dataset becomes 19586 observations for training
and 3816 observations for validation. In all experiments, where we do not
learn the camera pose, the original subset is used with 19640 observations
for training and 3824 observations for validation. In practice we found that
removing missing camera pose observations does not affect model’s gener-
alization ability because the distribution of both dataset is the still the same.
Similarly to [16] we use one quarter of the validation set for validation and
the entire validation set for testing.

34

5.1. Datasets

5.1.3 RefRESH

We have decided to render our own dataset using RefRESH rendering toolkit
[31], since the authors provided dataset did not contain the bidirectional
optical flow needed for occlusion map estimation. We limited ourselves to
keyframe rate k = 1. Similarly to [31] we use scenes apt0, apt1, apt2, copyroom,
office0, office1, office2 for training and scene office3 for validation (one quarter)
and testing (entire scene).

Optical Flow Occlusion Maps

Occlusion maps are a crucial component for creating an appropriate scene
flow ground truth. Points at time step t which will become occluded at
time step t + δ need to be removed from the point clouds. Otherwise, incor-
respondence between points in two frame will provide invalid scene flow,
which makes learning impossible for the network.

Unlike FlyingThings3D, RefRESH toolkit does not provide occlusions masks
explicitily. Therefore, following [31, 44, 9] the algorithm based on forward-
backward consistency property of the optical flow was used.

Specifically, point x at step t is considered occluded in t + δ if the difference
between the forward flow f f and backward flow fb mapped into the coordi-
nates of x + f f by interpolation is larger than some threshold T = 0.1 and
not occluded otherwise.

Post Processing

Because the aforementioned algorithm is an approximation of the true oc-
clusion maps further post processing needed to be applied. Following [31]
we use mathematical morphology with window size 10 to erode the outliers
on the borders. However, this procedure still misses a lot of outliers on the
edges. To cope with this, we additionally apply the forward-backward con-
sistency algorithm in the opposite direction, which removes more points on
the edges. Finally, to eliminate the remaining outliers we remove the pair
of points whose flow magnitude is larger than µmag + 2σmag, where µmag is
the mean of euclidean distances between a pair of corresponding points and
σmag are their standard deviation. The dataset was scaled by 10 to match
FlyingThings3D in the number of splatted lattice points.

5.1.4 KITTI

Due to low number of observations in the scene flow dataset, we only use
the dataset for evaluation purposes. KITTI is a good candidate, which allows
us to test model’s ability to generalize on real-world data from an unseen

35

5. Experiments

domain acquired directly from a LiDAR scanner. Following [30, 16] we use
142 observations of KITTI omitting some incomplete observations.

5.2 Evaluation Metrics

When it comes to estimating the total scene flow and non-rigid flow in 3D we
rely on metrics as in [16, 37, 54]. We also evaluate 2D optical flow similar to
[16]. Overall, 2D and 3D metrics employ the Euclidean Distance to measure
the deviation from the ground truth vector.

To evaluate relative camera pose we use metrics similar to [34, 24, 43]. For
estimating rotations we use Relative Orientation Error (ROE) sometimes re-
ferred as Geodesic Distance [14]. We derive ROE by exploiting the property
of the trace for the rotation matrices and the distance between two rotations
[17]. The minimum angle α to align an estimated R̂ and ground truth rota-
tion R is:

α = arccos
(

trace(R̂RT)− 1
2

)
180
π

(5.5)

For evaluating relative camera pose translation we use the Euclidean Dis-
tance, which we measures the deviation in meters of the predicted camera
pose location and ground truth vector.

Full list of evaluation metrics we are using in our qualitative studies are:

• EPE3D (m). Mean of Euclidean Distances between the predicted and
ground truth pair of 3D vectors over all points.

• Acc3D(0.05). Strict notion of accuracy. Percentage of points with an
EPE3D < 0.05m or relative error < 5%.

• Acc3D(0.1). Relaxed notion of accuracy. Percentage of points with
EPE3D < 0.1m or relative error < 10%.

• Outliers3D. Percentage of points with EPE3D > 0.3m or relative error
> 10%.

• EPE2D (px). Mean of Euclidean Distances between the scene flow and
the ground truth projected into 2D over all points.

• Acc2D. Percentage of points with EPE2D < 3px or relative error < 5%.

• RLE (m). Mean of Euclidean Distances between the relative translation
of the camera pose.

• ROE (degrees). Mean of minimum rotation angles needed for aligning
an estimated and ground truth rotations.

36

5.3. Training Setup

5.3 Training Setup

This section describes experimental setup common to all of the experiments.
We used batch size B = 1, dimensions of input point clouds X1 and X2 were
set to R8192×3. The initial learning rate for FlyingThings3D datasets were
set to 10−4 and scaled by s = 0.7 after 85 epochs and then after every 35
epochs. Identical decay procedure of the learning rate was also used while
training on RefRESH but with the initial learning rate of 10−5, because we
found through the experimentation that the loss was not converging in the
beginning of training with a larger learning rate. All models trained in the
experiments section are optimized using the Adam optimizer. All models
were trained on GPUs of bare metal servers provided by ISG, Leonhard
cluster and Microsoft Azure.

5.4 Quantitative Study

Our quantitative study consists of two experiments groups, which follow the
same structure. In each group, we first describe the goal of an experiment
and its setup. Afterwards we present the experiment results in form of an
internal comparison. Finally, we select the best models from two groups and
compare them with other methods in subsection 5.4.3.

5.4.1 Self-Supervision in Total Scene Flow Learning

This experiment group investigates the effects of self-supervision on a model
in different configurations, which learn total scene flow directly and do not
assume any decomposition of scene flow into a rigid and a non-rigid part.
We make a comparison of all experiments and select the best one for evalua-
tion with alternative methods. The loss function for optimization for experi-
ments in this group is defined in equation 4.8.

Supervised Baseline

The goal of this experiment is to obtain the supervised baseline we can com-
pare our self-supervised models to. The supervised baseline is HPLFlowNet
[16] trained for 500 epochs. We observed that training on FlyingThings3D al-
lowed our model generalize better to other domains and real-world data
compared to training on other datasets such as RefRESH. Better generaliza-
tion of models trained on FlyingThings3D could be accredited to low degree
of noise in the point clouds, which a result of accurate raw input data such
as optical-flow, disparities and occlusion masks, which we used to build
input point clouds. Large number of observations is also a factor which con-
tributes to better generalization. Therefore we chose training on FlyingTh-
ings3D for the baseline. We evaluate on all 3 datasets.

37

5. Experiments

Self-Supervisory Signals

The purpose of this experiment is to show that adding self-supervisory sig-
nals in form of additional loss terms to main supervised loss lets us outper-
form the baseline. Specifically, we achieved an approximately 13% decrease
in EPE3D. An explanation for better for better performance compared to the
supervised baseline are self-supervision terms, which act regularizers when
training the model. Due to time constraints, we train the model on FlyingTh-
ings3D for a total of 400 epochs. However, even after 400 epochs our model
outperforms the baseline trained for 500 epochs and training until full con-
vergence will demonstrate the same effect. Evaluation is performed on all
three datasets.

Full Self-Supervision

In this experiment we demonstrate that our model can learn in fully self-
supervised mode from scratch. This could be useful for training the network
on datasets where the ground-truth of scene flow is not available at all. We
set the weight for supervised loss term to zero to simulated the situation
where there is no ground-truth i.e. ground-truth is not used for optimiza-
tion in training and for model selection in validation. In fully-supervised
case we have to rely on LFB + LNN term which acts as a proxy of LEPE3D
in order to select the best model during validation after each epoch. We
trained the model on FlyingThings3D for 100 epochs and evaluated on all 3
datasets. Our method is able to outperform some other self-supervised clas-
sical methods such as ICP [7] and perform close to some of the supervised
learning methods. Although our method did not outperform state of the art
supervised learning methods it can be used in situations where there is no
ground-truth at all where fair qualitative results are sufficient.

Fine Tuning with Self-Supervision

The goal of this experiment is to pre-train a model on a dataset with ground-
truth in a supervised way with self-supervisory signals and then fine tune
that model on unseen data which doesn’t have any ground-truth. We initial-
ize the network trained in a supervised way with self-supervisory signals
for 300 epochs on FlyingThings3D. Further, we fine-tune the weights on Re-
fRESH for another 40 epochs in a fully self-supervised way. We test the
model on all three datasets to investigate the effects of fine tuning.

Summary

To investigate the convergence we present figure 5.1, which demonstrates
the loss curves for both training and validation on FlyingThings3D. Fine
tuning on RefRESH was omitted from the plots because of different x-axis

38

5.4. Quantitative Study

and different magnitudes of loss. We only present quantitative evaluation
in this case. Due to very lengthy training times, not all models could be
trained to their full convergence. Nevertheless, we can distinctly see that
the self-supervisory signals model consistently outperforms the baseline by
a margin and that the same trend is to hold if we are to train further. Simi-
larly, we see that the fully-supervised model demonstrates higher loss values
than the supervised model and the supervised model with self-supervisory
signals. From the convergence plots we can conclude that the best configu-
ration is the supervised model with self-supervisory signals.

Table 5.2 shows evaluation results from the conducted experiment group for
self-supervision investigation. We evaluate on all three datasets.

Dataset Configuration EPE3D Acc3D(0.05) Acc3D(0.1) Outliers3D EPE2D Acc2D

Supervised 0.0853 0.5863 0.8399 0.4562 4.9491 0.6586

FlyingThings3D Self-supervisory signals 0.0753 0.6293 0.8749 0.4199 4.3328 0.6914

Full Self-supervision 0.2534 0.1323 0.3691 0.9099 12.5009 0.2229

Fine tuning 0.1184 0.3979 0.6998 0.6458 6.5231 0.5249

Supervised 0.1826 0.2045 0.4829 0.9271 8.3610 0.2519

RefRESH Self-supervisory signals 0.1795 0.2143 0.4932 0.9209 8.3073 0.2500

Full self-supervision 0.2111 0.1219 0.3587 0.9694 11.2949 0.1477

Fine tuning 0.1556 0.3038 0.5812 0.8715 7.0802 0.3496

Supervised 0.1409 0.4022 0.7054 0.4880 5.6305 0.5374

KITTI Self-supervisory signals 0.1172 0.4699 0.7720 0.4164 4.9085 0.5950

Full self-supervision 0.4641 0.1863 0.3353 0.8417 16.4514 0.2665

Fine tuning 0.2309 0.2631 0.4837 0.7136 8.6720 0.4173

Table 5.2: Evaluation of total scene flow in self-supervision experiments on FlyingThings3D,
RefRESH and KITTI. The best results of a combination of a metric and a dataset are shown
in bold.

From the table we can conclude that introducing self-supervisory signals
into the supervised model has consistently improved the performance com-
pared to the supevised configuration on all datasets for the vast majority of
the metrics. We can also conclude the effectiveness of fully self-supervised
fine-tuning on RefRESH because it has improved the performance on all
metrics for the same dataset. Notably, the cost of increased performance for
pretraining on one dataset and fine-tuning on a different dataset carried a de-
crease in a generalization ability for other datasets. A possible explanation
for this behaviour could be different data distributions of RefRESH and the
other two datasets, which are more similar in data distribution. Furthermore,
we confirmed that fully self-supervised learning demonstrated worse results
than the configurations, which contained the supervised part. Longer train-
ing time is expected to improve the performance of a self-supervised model,
however it could it be restrictive in terms of training times.

39

5. Experiments

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
EP

E3
D

Supervised
Self-supervisory signals
Full self-supervision

(a) Training

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

EP
E3

D

Supervised
Self-supervisory signals
Full self-supervision

(b) Validation

Figure 5.1: Convergence of loss functions in self-supervision experiments.. The loss function
for both training (a) and validation (b) is EPE3D. The experiments are trained and validated
on FlyingThings3D. For the purpose of visualization we present the region of 300 epochs on the
x-axis and the size of one epoch is 4910. The supervised baseline was trained for 500 epochs.
Combined training with a supervised loss and self-supervisory signals was trained for 400 epochs.
A fully self-supervised model was trained for 100 epochs.

40

5.4. Quantitative Study

5.4.2 Non-Rigid Flow and Ego-Motion

This experiment group studies the effect of self-supervision on a model,
which is learning a non-rigid residual scene flow and relative camera pose
jointly. We perform an internal comparison and select the best configuration
for the comparison with other methods. The loss function for optimization
for experiments in this group is defined in equation 4.13.

Joint Supervised Learning

In this experiment we obtain the supervised baseline for joint learning of
non-rigid and rigid parts of the flow. We train the model on the subset of
FlyingThings3D with available camera pose data for a total of 500 epochs.
The rotation part of the camera pose loss is balances with the correspond-
ing weight wrot = 10 to keep the translation and rotation errors in the same
range. We evaluate the model on all three datasets for 3D scene flow and 2D
optical flow metrics. To evaluate camera pose metrics we only use FlyingTh-
ings3D and RefRESH.

Self-Supervisory Signals

So far we only investigated how self-supervision and decomposition of total
flow into rigid and non-rigid parts could be beneficial individually. The goal
of this experiment is to combine self-supervisory signals with joint learning
of non-rigid and rigid parts of the flow. We trained the model on FlyingTh-
ings3D for 230 epochs. The evaluation is performed on all three datasets.

Full Self-Supervision

The purpose of the experiment is to study the effect of full self-supervision,
similarly as in the experiment group without scene flow decomposition. In
this experiment we learn non-rigid flow and ego-motion jointly without any
ground-truth from scratch. We trained the model on FlyingThings3D for a
total of 70 epochs and evaluate it on all three datasets.

Summary

Figure 5.2 presents the convergence of EPE3D for scene flow decomposition
experiments. From the convergence we can deduce that the best configu-
ration is supervised training with self-supervisory signals as it was in the
experiments with no decomposition of total flow into non-rigid and rigid
parts. Note that not all models could be trained until full convergence due
to time constraints of lengthy training. Nevertheless, we can confirm once
again that introduction of self-supervisory signals to the supervised part
improves the validation performance as it was previously the case in the
experiments with no scene flow decomposition. In constant to models with

41

5. Experiments

no scene flow decomposition, a fully supervised model demonstrated better
results and even performed on par with the supervised version in case of
scene flow decomposition.

Quantitative evaluation for joint learning of non-rigid flow and ego-motion
are evaluated separately as total scene flow, non-rigid flow and relative cam-
era pose. We start by presenting the qualitative evaluation of total scene
flow in table 5.3. These metrics are similar and comparable to the ones from
the total flow learning experiments in table 5.2.

Dataset Configuration EPE3D Acc3D(0.05) Acc3D(0.1) Outliers3D EPE2D Acc2D

Supervised 0.1333 0.3062 0.6500 0.7274 7.6906 0.4703

FlyingThings3D Self-supervisory signals 0.1232 0.2769 0.6722 0.7388 6.8230 0.4588

Full self-supervision 0.2150 0.1759 0.4538 0.8735 10.7544 0.2991

Supervised 0.2421 0.0330 0.1921 0.9871 6.1629 0.3078

RefRESH Self-supervisory signals 0.2007 0.0764 0.3375 0.9724 4.9052 0.4326

Full self-supervision 0.2009 0.1297 0.3901 0.9640 5.5907 0.3868

Supervised 0.3252 0.0522 0.2461 0.8764 12.2543 0.1980

KITTI Self-supervisory signals 0.2493 0.0896 0.3553 0.8001 9.1295 0.2553

Full self-supervision 0.4488 0.1888 0.3510 0.8283 15.8564 0.2825

Table 5.3: Evaluation of total flow on FlyingThings3D and RefRESH and KITTI. Total
flow evaluated in this table is obtained from jointly learned non-rigid flow and ego-motion. We
evaluated our models on the entire subset of FlyingThings3D regardless of availability of camera
poses. The best results of a combination of a metric and a dataset are shown in bold.

From the table we can conclude that self-supervisory signals improved the
supervised version for most of the metrics. In some cases such as Acc3D(0.05),
Outliers3D on FlyingThings3D, supervised training with self-supervisory
signals performed slightly worse than purely supervised version. This is
explained by the fact that supervised training with self-supervisory signals
configuration was trained for a significantly shorter period of time. We ex-
pect this configuration to outperform the supervised one with longer train-
ing, similarly as it was the case with no scene flow decomposition.

Notably, a fully self-supervised model performed significantly better after
introducing scene flow decomposition even at 70 epochs compared to 100
epoch in the version with no scene flow decomposition. Furthermore, a fully
self-supervised prototype showed better generalization ability on RefRESH
performing on par with the models, which had some degree of supervision
in the loss function. This could be accredited to the rigid part of flow in
the total loss function, which models the motion between the point cloud
in form of a rigid transformation. Rigid transformation of the entire point
cloud along with nearest neighbour search implicitly resemble the ICP algo-
rithm.

42

5.4. Quantitative Study

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

EP
E3

D

Supervised
Self-supervisory signals
Full self-supervision

(a) Training

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

EP
E3

D

Supervised
Self-supervisory signals
Full self-supervision

(b) Validation

Figure 5.2: Convergence of loss functions in non-rigid flow and ego-motion experiments..
The loss function for both training (a) and validation (b) is EPE3D. The experiments are trained
and validated on a subset of FlyingThings3D with available camera pose data. For the purpose
of visualization we present the region of 300 epochs on the x-axis and the size of one epoch is
4897. The supervised baseline was trained for 500 epochs. Combined training with a supervised
loss and self-supervisory signals was trained for 230 epochs. Fully self-supervised model was
trained for 70 epochs.

43

5. Experiments

Overall, the performance for models, which contained the supervised loss
term in the total loss, performed slightly below the level of the same mod-
els without scene flow decomposition. Nevertheless, scene flow decomposi-
tion could still be beneficial because we obtain more information about the
motion in one single forward pass. In case of self-supervision scene flow
decomposition demonstrated better results contrasting the supervised con-
figurations. To evaluate scene flow decomposition beyond the total flow we
propose to consider the same metrics but for the non-rigid flow along with
the relative camera pose evaluation.

Tables 5.4 presents the evaluation for non-rigid part of the flow on the
datasets, which had the ground truth of camera poses.

Dataset Configuration EPE3Dnr Acc3D(0.05)nr Acc3D(0.1)nr Outliers3Dnr EPE2Dnr Acc2Dnr

Supervised 0.1210 0.5904 0.6815 0.9483 8.6211 0.6042

FlyingThings3D Self-supervisory signals 0.1172 0.5782 0.6871 0.9469 8.2311 0.5979

Full self-supervision 0.5000 0.0210 0.0982 0.9843 25.2101 0.0666

Supervised 0.2423 0.1823 0.3407 0.9995 3.7163 0.7575

RefRESH Self-supervisory signals 0.2369 0.1671 0.3417 0.9995 4.4170 0.6759

Full self-supervision 0.3704 0.0174 0.0929 0.9998 12.5493 0.1169

Table 5.4: Evaluation of non-rigid flow on FlyingThings3D, RefRESH Similarly to total flow,
the same 3D and 2D evaluation metrics are also applicable to non-rigid component of the flow
and are indicated with an underscript (nr). The best results of a combination of a metric and a
dataset are shown in bold.

Overall, we can see that self-supervisory signals have once again improved
the supervised model. Full self-supervision on the hand, demonstrated
worse results compared to the models with some degree of supervision. A
possible explanation could be that our self-supervised losses are more suited
for rigid motion prediction.

Finally, we conclude the quantitative evaluation with the results of relative
camera pose estimation on FlyingThings3D and RefRESH, which are pre-
sented in table 5.5.

From the table we can conclude that a supervised model and a supervised
model with self-supervisory signals performed similarly in terms of ROE
and RLE. This could be explained by the fact that later was trained for a
shorter period of time. We expect to get better performance of self-supervisory
signals model, if we are to increase the training time. Fully self-supervised
model performed similarly to the supervised counterparts on RefRESH for
ROE and even outperformed them for RLE. A possible explanation is a rel-
atively high ratio of rigid to non-rigid motion and low magnitudes of rota-
tions in RefRESH as opposed to FlyingThings3D.

44

5.4. Quantitative Study

Dataset Configuration ROE RLE

Supervised 0.5793 0.1837

FlyingThings3D Self-supervisory signals 0.6209 0.1862

Full self-supervision 2.4788 0.3661

Supervised 1.1107 0.4047

RefRESH Self-supervisory signals 1.1111 0.3349

Full self-supervision 1.1896 0.1781

Table 5.5: Evaluation of relative camera pose estimation on FlyingThings3D and RefRESH.
Camera poses for KITTI are not available. The best results of a combination of a metric and a
dataset are shown in bold.

5.4.3 Comparison to Related Methods

In previous experiments we investigated approaches and configurations of
our method relative to each other in an internal evaluation. In contrast, this
section aims to compare our method to alternative scene flow evaluation
methods from the related work mentioned in chapter 2. Our main parameter
for comparison is total scene flow and its 2D counter part optical flow since
most of the scene flow methods do not decompose the total flow. Table
5.6 shows the comparison with a variety of supervised, hybrid and self-
supervised scene flow estimation methods.

Dataset Method Sup. EPE3D Acc3D(0.05) Acc3D(0.1) Outliers3D EPE2D Acc2D

ICP [7] Self. 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913

Ours Self. 0.2149 0.1750 0.4531 0.8736 10.7544 0.2981

FlowNet3D [30] Hyb. 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692

FlyingThings3D SPLATFlowNet [46] Full. 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512

Original BCL [16] Full. 0.1111 0.4279 0.7551 0.6054 6.3027 0.5669

HPLFlowNet [16] Full. 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764

Ours Hyb. 0.0753 0.6293 0.8749 0.4199 4.3328 0.6914

ICP [7] Self. 0.5181 0.0669 0.1667 0.8712 27.6752 0.1056

Ours Self. 0.4488 0.1888 0.3510 0.8283 15.8564 0.2825

FlowNet3D [30] Hyb. 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093

KITTI SPLATFlowNet [46] Full. 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189

Original BCL [16] Full. 0.1729 0.2516 0.6011 0.6215 7.3476 0.4411

HPLFlowNet [16] Full. 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938

Ours Hyb. 0.1172 0.4699 0.7720 0.4164 4.9085 0.5950

Table 5.6: Quantitative comparison to other methods evaluated on FlyingThings3D and
KITTI. Column Sup. describes model’s degree of supervision, where Self. stands for self-
supervised, Full. means fully-supervised and Hyb. means hybrid training i.e. supervised with
self-supervisory signals. The best results of a combination of a metric and adataset are shown
in bold. Evaluation data is adapted from [16].

From the table we can conclude that the best model in the supervised cat-

45

5. Experiments

egory for FlyingThings3D is a our supervised model with self-supervisory
signals without scene flow decomposition. Our supervised model with self-
supervisory signals trained for 400 epochs was able to outperform the su-
pervised HPLFlowNet trained by the authors for 600 epochs. Concretely,
our main metric EPE3D decreased by more than 6%. The secondary metrics
Acc3D(0.05), Acc3D(0.1), Outliers3D improved by more than 2% each. When
it comes to 2D metrics, EPE2D decreased by almost 8% and Acc2D improved
by more than 2%. On the other hand, it can be seen that the performance
of our model on KITTI is similar to the one of supervised HPLFlowNet. To
improve the performance on that particular dataset fine-tinning can be used.

We expect the gap to increase further, if we are to continue to train our
model further and a more accurate comparison would be to compare both
models at 400 epochs. For example, at the mark of 400 epochs the supervised
HPLFlowNet demonstrated EPE3D equal to 0.0866 on FlyingThings3D and
0.1434 on KITTI. If we are to compare it to our model, the improvement in
EPE3D for FlyingThings3D is 13% and for KITTI it is 18%.

When it comes to self-supervised category a clear winner is a fully super-
vised model, which relies on scene flow decomposition. Notably, scene
flow decomposition was less useful in the supervised case than in the self-
supervised one. We anticipate better performance with longer training times
for this prototype.

5.5 Qualitative Study

This section presents qualitative results for some selected models, which we
previously investigated quantitatively in the previous sections. The visual-
izations of scene flow predictions on FlyingThings3D are presented in figure
5.3, evaluations on RefRESH are contained in figure 5.4 and finally evalua-
tion on KITTI is in figure 5.5. In qualitative evaluation we aim to compare
two group of experiments in terms of visual quality of scene flow prediction.
The group is the one with no assumption on rigidity of the motion and the
second group learns total scene flow by learning non-rigid and rigid parts of
the flow jointly. For each of the two groups we decided to present the visu-
alizations for the supervised training with self-supervisory signals because
it consistently outperformed the purely supervised approach on most of the
metrics. Furthermore, we visualize our fully self-supervised models since
qualitative evaluation could offer us insights on closing the gap between the
supervised models.

Visualizations have the following convention: an input point cloud X1 is
shown in blue, the points of an input point cloud X1 warped with the cor-
responding total scene flow estimates are shown in green, an input point
cloud X2 is shown in red and yellow residuals indicate the error of total

46

5.5. Qualitative Study

scene flow estimation. We set the number of points N = 8192 for both point
clouds.

From figure 5.3 we can conclude that the models, which had a supervised
component along with self-supervisory signals in their total losses performed
the best in terms of qualitative results on FlyingThings3D. The best among
them was the one without total scene flow decomposition because the one
with scene flow decomposition demonstrated noise on small clusters. Longer
training could potentially help to tackle this issues. When it comes to
fully self-supervised models, the model with scene flow decomposition has
demonstrated better qualitative results than the model without a decomposi-
tion. One can see that the overall magnitude of scene flow errors was lower
in case of joint learning of non-rigid flow and ego-motion, although it has
a few outliers possibly induced by the non-rigid part of the decomposition.
Overall, we can conclude that fully self-supervised methods perform on par
with their supervised counterparts on simpler scene with distinct objects
and edges but fail to give more accurate results on incomplete or cluttered
parts of the scene.

Figure 5.4 presents qualitative evaluation on a dataset from a different do-
main the models were trained on. We can see tha the dataset has a clear dis-
tinction of the rigid and non-rigid parts and also some noise in the ground
truth despite post-processing. We can see that all models performed simi-
larly in terms of qualitative results. Similarly to FlyingThings3D, the super-
vised learning model with self-supervisory signals demonstrated the best
performance and had the least magnitude of error in the predictions. Over-
all, self-supervised models performed similarly to supervised models with
self-supervisory signals but have demonstrated larger magnitude of errors.
We can concluded again that scene flow decomposition introduced a slight
improvement in qualitative results in case of self-supervision.

Finally, we conclude our qualitative evaluation with predictions on a real
world dataset captured with a LiDAR device in figure 5.5. From the visu-
alizations we can see that the overall magnitude of the flow is small as it
was the case with RefRESH. Hence, the self-supervised models performed
similarly to supervised models with self-supervisory signals. Nevertheless,
self-supervised models have struggled with some incomplete shapes and
have an overall larger magnitude of error. Similarly to RefRESH, scene flow
decomposition contributed to slightly better qualitative results in case of
self-supervision.

47

5. Experiments

(a) Supervised learning with self-supervisory signals

(b) Full self-supervision

(c) Supervised joint learning of non-rigid flow and ego-motion with self-supervisory signals

(d) Fully self-supervised joint learning of non-rigid flow and ego-motion

Figure 5.3: Qualitative evaluation on FlyingThings3D. The first column contains a challenging
scene with large degree of cluttering and incomplete shapes, on which (b) and (d) have performed
worse than (a) and (c). On the other hand, (b) and (d) were able to perform close to (a) and
(c) on scenes with distinct edges and shapes.

48

5.5. Qualitative Study

(a) Supervised learning with self-supervisory signals

(b) Full self-supervision

(c) Supervised joint learning of non-rigid flow and ego-motion with self-supervisory signals

(d) Fully self-supervised joint learning of non-rigid flow and ego-motion

Figure 5.4: Qualitative evaluation on RefRESH. The first two scene have a clear separation
of rigid and non-rigid parts and thus the performance for all models is similar. The last column
contains an observation with noise in it and all models have struggled on a noise part.

49

5. Experiments

(a) Supervised learning with self-supervisory signals

(b) Full self-supervision

(c) Supervised joint learning of non-rigid flow and ego-motion with self-supervisory signals

(d) Fully self-supervised joint learning of non-rigid flow and ego-motion

Figure 5.5: Qualitative evaluation on KITTI. Overall, all of our models including the self-
supervised ones were able to generalize to real world data. (b) and (d) show larger magnitude
of error on incomplete shapes.

50

Chapter 6

Conclusion

This chapter concludes the thesis and outlines the directions of future work.
In this thesis, we presented a novel way to scene flow estimation, which
investigated and unified three core ideas in our approach. These main ar-
eas are 3D deep learning from point clouds, self-supervised learning and
decomposition of total flow into non-rigid residual flow and ego-motion.

Our approach employed temporal consistency property of a sequence of
point clouds to design self-supervisory learning signals. Self-supervision
was investigated in form of hybrid training, fully self-supervised training
and fine tuning, which we contrasted and compared to purely supervised
mode. Implemented method allows training on datasets with complete avail-
ability of ground-truth, on datasets with incomplete labels and on real world
datasets with no ground-truth at all. We performed an internal comparison
of different configurations of the method along with an external comparison
with current state of the art supervised approaches to determine the best ap-
proach. We tested our models across different domains on the synthetic
dataset FlyingThings3D, on the semi-synthetic dataset RefRESH and on the
real world dataset KITTI.

Through experimentation we confirmed our initial hypothesis that hybrid
training can outperform purely supervised training on most of the metrics
we defined. In hybrid training we complemented the supervised loss with
our self-supervisory loss terms, which allowed us to outperform the current
state of the art supervised methods. For example we reduced EPE3D on Fly-
ingThings3D by more than 6%, despite being trained for 2/3 of the epochs
the supervised baseline [16] was trained on (table 5.6). Furthermore, our
internal comparison showed that supervised training with self-supervisory
signals consistently outperforms purely supervised configurations.

We investigated the potential of self-supervised applied to scene flow esti-
mation. Although self-supervised configurations were not able to outper-

51

6. Conclusion

form the supervised baselines in terms of quantitative results, they never-
theless showed promising results especially in terms of qualitative assess-
ment. Our observation was that self-supervision was able to perform close
to supervised methods in terms of qualitative results on simpler scene with
for example complete shapes and distinct edges but struggled with incom-
plete shapes or cluttered regions of the scene. Self-supervised training from
scratch can especially be useful in scenarios with real world data where
there was no ground truth at all and where qualitative results is the main
evaluation criteria. We demonstrated that supervised pre-training and self-
supervised fine tuning could be a viable alternative to self-supervised train-
ing from scratch. Concretely, we achieved an improvement of 13% in EPE3D
when fine tuned on RefRESH using pre-training in supervised mode with
self-supervisory signals on FlyingThings3D (table 5.2).

When it comes to decomposition of total scene flow into a rigid and non-
rigid parts, fully self-supervised configuration was the one, which bene-
fited the most. Concretely, we have observed better performance on the
majority of the metrics when using decomposition of the flow during fully-
supervised training. For example an improvement in EPE3D trained on
FlyingThings3D was 15% (tables 5.2, 5.3). Additionally, we observed a
slight qualitative improvement when using scene flow decomposition for
self-supervision. On the hand, introducing scene flow decomposition de-
creased the performance for configurations, which contained the supervised
part in them. Nevertheless, one can still benefit from using scene flow de-
composition perspective of the flow because we get more information about
static and moving parts of the scene along with the total flow after perform-
ing an inference pass.

6.1 Future Work

There are several directions to extend the work of this thesis. The main
direction of scene flow decomposition is to investigate sequential learning
of the rigid and non-rigid parts of the flow. One of the goals for our work
was to learn the relative pose and non-rigid flow together with one single
network. An alternative path to our approach could be to first estimate the
relative pose separately and then transform the input and learn the non-rigid
flow only. For learning the relative pose one could potentially employ either
a classical point cloud registration algorithm such as [60] or a deep learning
based point cloud registration [11]. To obtain a theoretical improvement we
applied the ground truth of relative camera pose, applied it to the inputs and
obtained the predictions for total flow, which we compared to the algorithm,
which predicts the total flow directly. The limit for training and validation
loss functions if we are to have the perfect relative camera pose estimation
is shown in figure 6.1.

52

6.1. Future Work

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

EP
E3

D

Total flow prediction
Theoretical limit

(a) Training

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

EP
E3

D

Total flow prediction
Theoretical limit

(b) Validation

Figure 6.1: Lower bound for total flow estimation. The red curve demonstrates the total
scene flow losses if we can achieve zero error relative camera pose predictions. Both runs were
trained on RefRESH.

53

6. Conclusion

Including self-supervisory signals to our self-supervised loss proposed in
concurrent works [50, 54] could be an effective way to complement our tem-
poral self-supervisory signals with the geometric self-supervisory signals
and potentially help in both hybrid and fully-supervised training. Includ-
ing the colors to the signal vector of a point cloud can provide a foundation
for posing a photometric consistency constraint between point cloud frames.

Another direction for improvement is computational speed and efficiency.
Original implementation of the network we used contains some parts, which
are computed on the CPU, which makes the computation of forward and
backward passes slow, which significantly increases the training time. We
implemented the GPU based version of permutohedral layers, which al-
lowed for our preliminary design to reduce the training time per epoch
epoch by roughly 12%. Furthermore, unlike the original implementation,
our implementation allowed us to train with batch size more than 1, which
can significantly speed up the computation. Nevertheless, future investiga-
tion in avoiding anomalies during cycle consistency is needed to show the
benefit of self-supervision. A further computational improvement is imple-
menting a GPU based k-d trees [38] to allow an efficient nearest neighbour
search then the one with similarity matrices. Furthermore, speeding up the
computation will also allow a deeper investigation of larger cycle sizes k
beyond 1 for the cycle consistency loss.

54

Appendix A

Additional Qualitative Results

A.1 FlyingThings3D

Figure A.1 provides more examples of prediction results on FlyingThings3D.

A.2 RefRESH

Figure A.2 provides more examples of prediction results on RefRESH.

A.3 KITTI

Figure A.3 provides more examples of prediction results on KITTI.

55

A. Additional Qualitative Results

(a) Supervised learning with self-supervisory signals

(b) Full self-supervision

(c) Supervised joint learning of non-rigid flow and ego-motion with self-supervisory signals

(d) Fully self-supervised joint learning of non-rigid flow and ego-motion

Figure A.1: Additional qualitative evaluation on FlyingThings3D. The number of points is
8192.

56

A.3. KITTI

(a) Supervised learning with self-supervisory signals

(b) Full self-supervision

(c) Supervised joint learning of non-rigid flow and ego-motion with self-supervisory signals

(d) Fully self-supervised joint learning of non-rigid flow and ego-motion

Figure A.2: Additional qualitative evaluation on RefRESH. The number of points is 8192.

57

A. Additional Qualitative Results

(a) Supervised learning with self-supervisory signals

(b) Full self-supervision

(c) Supervised joint learning of non-rigid flow and ego-motion with self-supervisory signals

(d) Fully self-supervised joint learning of non-rigid flow and ego-motion

Figure A.3: Additional qualitative evaluation on KITTI. The number of points is 8192.

58

Bibliography

[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis. Fast high-
dimensional filtering using the permutohedral lattice. In Computer
Graphics Forum, volume 29, pages 753–762. Wiley Online Library, 2010.

[2] Andrew B Adams. High-dimensional gaussian filtering for computa-
tional photography. 2011.

[3] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Si-
mon Lucey. Pointnetlk: Robust & efficient point cloud registration us-
ing pointnet. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7163–7172, 2019.

[4] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-
squares fitting of two 3-d point sets. IEEE Transactions on pattern analysis
and machine intelligence, (5):698–700, 1987.

[5] Jongmin Baek and Andrew Adams. Some useful properties of the per-
mutohedral lattice for gaussian filtering. In Technical report. Stanford
University, 2009.

[6] Aseem Behl, Despoina Paschalidou, Simon Donné, and Andreas Geiger.
Pointflownet: Learning representations for rigid motion estimation
from point clouds. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7962–7971, 2019.

[7] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes.
In Sensor fusion IV: control paradigms and data structures, volume 1611,
pages 586–606. International Society for Optics and Photonics, 1992.

[8] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua
Shen, Ming-Ming Cheng, and Ian Reid. Unsupervised scale-consistent

59

Bibliography

depth and ego-motion learning from monocular video. In Advances in
Neural Information Processing Systems, pages 35–45, 2019.

[9] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A
naturalistic open source movie for optical flow evaluation. In European
conference on computer vision, pages 611–625. Springer, 2012.

[10] Jorge L Charco, Boris X Vintimilla, and Angel D Sappa. Deep learn-
ing based camera pose estimation in multi-view environment. In 2018
14th International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), pages 224–228. IEEE, 2018.

[11] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global regis-
tration. arXiv preprint arXiv:2004.11540, 2020.

[12] Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, and Wolfram Burgard.
Rigid scene flow for 3d lidar scans. In 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 1765–1770. IEEE,
2016.

[13] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation
network for 3d object reconstruction from a single image. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
605–613, 2017.

[14] Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang, and
Simone Frintrop. 6d object pose regression via supervised learning on
point clouds. arXiv preprint arXiv:2001.08942, 2020.

[15] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas, and Tolga
Birdal. Learning multiview 3d point cloud registration. arXiv preprint
arXiv:2001.05119, 2020.

[16] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang.
Hplflownet: Hierarchical permutohedral lattice flownet for scene flow
estimation on large-scale point clouds. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 3254–3263, 2019.

[17] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Ro-
tation averaging. International journal of computer vision, 103(3):267–305,
2013.

[18] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2 edition, 2004.

60

Bibliography

[19] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas Brox. Occlu-
sions, motion and depth boundaries with a generic network for dispar-
ity, optical flow or scene flow estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 614–630, 2018.

[20] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised learning of
shape and pose with differentiable point clouds. In Advances in neural
information processing systems, pages 2802–2812, 2018.

[21] Mariano Jaimez, Christian Kerl, Javier Gonzalez-Jimenez, and Daniel
Cremers. Fast odometry and scene flow from rgb-d cameras based on
geometric clustering. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 3992–3999. IEEE, 2017.

[22] Varun Jampani, Martin Kiefel, and Peter V Gehler. Learning sparse
high dimensional filters: Image filtering, dense crfs and bilateral neural
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4452–4461, 2016.

[23] Samuel Joutard, Reuben Dorent, Amanda Isaac, Sebastien Ourselin,
Tom Vercauteren, and Marc Modat. Permutohedral attention module
for efficient non-local neural networks. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 393–
401. Springer, 2019.

[24] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A con-
volutional network for real-time 6-dof camera relocalization. In Proceed-
ings of the IEEE international conference on computer vision, pages 2938–
2946, 2015.

[25] Martin Kiefel, Varun Jampani, and Peter V Gehler. Permutohedral lat-
tice cnns. arXiv preprint arXiv:1412.6618, 2014.

[26] Seokju Lee, Sunghoon Im, Stephen Lin, and In So Kweon. Learning
residual flow as dynamic motion from stereo videos. arXiv preprint
arXiv:1909.06999, 2019.

[27] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep
iterative matching for 6d pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 683–698, 2018.

[28] Liang Liu, Guangyao Zhai, Wenlong Ye, and Yong Liu. Unsupervised
learning of scene flow estimation fusing with local rigidity. In Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence, pages
876–882. AAAI Press, 2019.

61

Bibliography

[29] Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. Selflow: Self-
supervised learning of optical flow. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4571–4580, 2019.

[30] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d: Learning
scene flow in 3d point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 529–537, 2019.

[31] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M
Rehg, and Jan Kautz. Learning rigidity in dynamic scenes with a mov-
ing camera for 3d motion field estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 468–484, 2018.

[32] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and Raquel Urta-
sun. Deep rigid instance scene flow. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3614–3622, 2019.

[33] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cre-
mers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene flow es-
timation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4040–4048, 2016.

[34] Iaroslav Melekhov, Juha Ylioinas, Juho Kannala, and Esa Rahtu. Rel-
ative camera pose estimation using convolutional neural networks. In
International Conference on Advanced Concepts for Intelligent Vision Systems,
pages 675–687. Springer, 2017.

[35] Moritz Menze and Andreas Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[36] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint 3d estima-
tion of vehicles and scene flow. In ISPRS Workshop on Image Sequence
Analysis (ISA), 2015.

[37] Himangi Mittal, Brian Okorn, and David Held. Just go with the flow:
Self-supervised scene flow estimation. arXiv preprint arXiv:1912.00497,
2019.

[38] Naohito Nakasato. Implementation of a parallel tree method on a gpu.
Journal of Computational Science, 3(3):132–141, 2012.

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 652–660, 2017.

62

Bibliography

[40] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric
space. In Advances in neural information processing systems, pages 5099–
5108, 2017.

[41] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James Crowley.
Dense semi-rigid scene flow estimation from rgbd images. In European
Conference on Computer Vision, pages 567–582. Springer, 2014.

[42] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixe. Un-
derstanding the limitations of cnn-based absolute camera pose regres-
sion. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3302–3312, 2019.

[43] Yoli Shavit and Ron Ferens. Introduction to camera pose estimation
with deep learning. arXiv preprint arXiv:1907.05272, 2019.

[44] Maria Shugrina, Ziheng Liang, Amlan Kar, Jiaman Li, Angad Singh,
Karan Singh, and Sanja Fidler. Creative flow+ dataset. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5384–5393, 2019.

[45] Olga Sorkine. Laplacian mesh processing. Eurographics (STARs), 29,
2005.

[46] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos
Kalogerakis, Ming-Hsuan Yang, and Jan Kautz. Splatnet: Sparse lat-
tice networks for point cloud processing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2530–2539,
2018.

[47] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. Multi-view convolutional neural networks for 3d shape recogni-
tion. In Proceedings of the IEEE international conference on computer vision,
pages 945–953, 2015.

[48] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo
Kanade. Three-dimensional scene flow. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, volume 2, pages 722–
729. IEEE, 1999.

[49] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning correspon-
dence from the cycle-consistency of time. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2566–2576,
2019.

63

Bibliography

[50] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor Prisacariu, and
Min Chen. Flownet3d++: Geometric losses for deep scene flow estima-
tion. In The IEEE Winter Conference on Applications of Computer Vision,
pages 91–98, 2020.

[51] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and
Hendrik Lensch. Efficient large-scale approximate nearest neighbor
search on the gpu. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2027–2035, 2016.

[52] Sascha Wirges, Johannes Gräter, Qiuhao Zhang, and Christoph Stiller.
Self-supervised flow estimation using geometric regularization with ap-
plications to camera image and grid map sequences. In 2019 IEEE In-
telligent Transportation Systems Conference (ITSC), pages 1782–1787. IEEE,
2019.

[53] Jian Wu, Liwei Ma, and Xiaolin Hu. Delving deeper into convolutional
neural networks for camera relocalization. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 5644–5651. IEEE,
2017.

[54] Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin.
Pointpwc-net: A coarse-to-fine network for supervised and self-
supervised scene flow estimation on 3d point clouds. arXiv preprint
arXiv:1911.12408, 2019.

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

[56] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learning of dense
depth, optical flow and camera pose. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1983–1992, 2018.

[57] Wentao Yuan, David Held, Christoph Mertz, and Martial Hebert.
Iterative transformer network for 3d point cloud. arXiv preprint
arXiv:1811.11209, 2018.

[58] Jure Žbontar and Yann LeCun. Stereo matching by training a convolu-
tional neural network to compare image patches. The journal of machine
learning research, 17(1):2287–2318, 2016.

[59] Jialiang Zhang, Soroosh Khoram, and Jing Li. Efficient large-scale ap-
proximate nearest neighbor search on opencl fpga. In Proceedings of the

64

Bibliography

IEEE Conference on Computer Vision and Pattern Recognition, pages 4924–
4932, 2018.

[60] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registra-
tion. In European Conference on Computer Vision, pages 766–782. Springer,
2016.

65

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor .

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work .

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Self-Supervised Learning of Non-Rigid Residual Flow and Ego-Motion in Dynamic 3D Scenes

Tishchenko Ivan

Zurich, 29.05.2020

