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Abstract

We consider generalized linear transient advection-diffusion problems for differential
forms on bounded domains in R

n. These involve Lie-derivatives with respect to a pre-
scribed smooth vector field. We construct both, new Eulerian and Semi-Lagrangian
approaches for the discretization of the Lie-derivative in the context of a Galerkin ap-
proximation based on discrete differential forms.

While the discretization of scalar advection-diffusion has attracted immense atten-
tion in numerical analysis, there has been little research on the non-scalar case, even
though the non-scalar advection-diffusion problems are relevant for numerical modeling.
The so-called magnetic advection-diffusion problem in quasistatic electromagnetism, the
main motivation of this thesis, is an important example for such a non-scalar advection-
diffusion problem.

It is the language of differential forms and in particular the notion of exterior deriva-
tives and Lie derivatives that allows for a unified treatment of many different advection-
diffusion problems, including the scalar case and the magnetic advection-diffusion prob-
lem. The calculus of differential forms reveals the intrinsic structure of such problems,
that might be blurred by the “metric overhead” carried by vector calculus.

Our main interest will be robustness of the methods, that is sustained performance for
very small and even vanishing diffusion. Thus, the core part of the thesis is devoted to
convergence analysis and numerical studies of the Eulerian and semi-Lagrangian methods
for the generalized advection problems. For fully discrete schemes and fixed polynomial
degree of discrete forms we prove a priori error estimates in terms of mesh width h and
timestep size τ . While for the Eulerian schemes the proofs of the estimates are adapted
from the scalar case we present an entirely new approach for the analysis of fully discrete
semi-Lagrangian methods. Thereby we can give convergence results that account for all
discretization steps involved in the derivation of fully discrete semi-Lagrangian schemes.
We even get convergence results for lowest order approximation spaces.
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Zusammenfassung

Wir betrachten verallgemeinerte lineare zeitabhänginge Advektions-Diffusions-Probleme
für Differentialformen auf beschränkten Gebieten im R

n. Die Formulierung dieser Prob-
leme basiert auf sogenannten Lie-Ableitungen zu einem vorgegebenen glatten Vektorfeld.
Wir präsentieren neue Methoden zur Diskretisierung der Lie-Ableitung im Rahmen von
Galerkin Approximationen mit diskreten Differentialformen. Diese beinhalten sowohl
Eulersche als auch semi-Lagrangesche Ansätze.

Während die Diskretisierung des skalaren Advektions-Diffusions-Problems ein grosses
und vielbeachtetes Forschungsgebiet in der Numerik ist und obwohl auch die nicht-
skalaren Advektions-Diffusions-Probleme in der numerischen Modellierung wichtig sind,
gibt es relativ wenig Forschung zu diesen nicht-skalaren Problemen. Das magnetische
Advektions-Diffusions-Problem im quasistatischen Elektromagnetismus, die Hauptmoti-
vation dieser Arbeit, ist ein wichtiges Beispiel für ein solches nicht-skalares Advektions-
Diffusions-Problem.

Dank dem Formalismus der Differentialformen, und hier insbesondere dank den Be-
griffen der äusseren Ableitung und der Lie Ableitung, ist eine einheitliche Behandlung
verschiedener Advektion-Diffusion-Probleme, einschließlich des skalaren Problems und
des magnetischen Advektions-Diffusions-Problems, möglich. Das Kalkül der Differen-
tialformen verdeutlicht die solchen Problemen gemeinsame innere Struktur, die durch
den “metrische Overhead” von Vektorrechnung verwischt werden könnte.

Unser Hauptinteresse gilt der Robustheit der Methoden, d.h. gleichbleibend gute
Ergebnisse und gute Effizienz bei Problemen mit sehr kleinem oder sogar verschwinden-
dem Diffusionsterm. Das Kernstück der Arbeit sind daher Konvergenzaussagen und
numerische Experimente zu den Eulerschen und semi-Lagrangeschen Methoden für ve-
rallgemeinerte Advektions-Probleme. Für komplett diskrete Methoden und Approxi-
mationsräume mit festem Polynomgrad beweisen wir a priori Fehlerabschätzungen in
Abhängigkeit der Diskretisierungsparameter Gitterweite h und Zeitschrittweite τ . Wäh-
rend bei den Eulerschen-Methoden die Beweise der Abschätzungen eine Verallgemei-
nerung der Beweise für den skalaren Fall sind, stellen wir bei der Analyse von semi-
Lagrangeschen Verfahren einen völlig neuen Ansatz dar. Damit sind wir zum Einen
in der Lage sämtliche Diskretisierungsschritte bei semi-Lagrangeschen Methoden in der
Konvergenzanalyse explizit zu berücksichtigen. Zum Anderen erhalten wir sogar für
Approximationsräume mit niedrigstem Polynomgrad Konvergenzaussagen.

vii



viii



Contents

List of Symbols xi

1 Introduction 1

2 Preliminaries 3

2.1 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Discrete Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Conforming Discrete Differential Forms . . . . . . . . . . . . . . . 13

2.2.2 Non-Conforming Discrete Differential Forms . . . . . . . . . . . . . 22

2.2.3 Constraint Preserving Finite Volume Schemes . . . . . . . . . . . . 24

3 Generalized Advection-Diffusion Problem 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Magnetoquasistatic Electrodynamic Equations in Moving Conductors . . 38

3.2.1 Perfect Conductor Limit . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Functional Analytic Framework for Variational Problems . . . . . . . . . 41

3.3.1 Stationary Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Non-Stationary Problems . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Variational Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Well-Posedness: Case ε > 0, γ1 = 0, γ2 = 0 . . . . . . . . . . . . . 43

3.4.2 Well-Posedness: Case ε > 0, γ1 = ε, γ2 = 1 . . . . . . . . . . . . . 44

3.4.3 Well-Posedness: Case ε = 0, γ1 = 0, γ2 = 1 . . . . . . . . . . . . . 46

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Numerical Methods for the Scalar Problem . . . . . . . . . . . . . . . . . 51

4 Stationary Advection Problem 59

4.1 Stabilized Galerkin Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Derivation of the Method . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 Convergence: Non-Conforming Discrete Differential Forms in R
n . 65

4.1.3 Convergence: Conforming Discrete Differential Forms in R
3 . . . . 67

4.1.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Characteristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



Contents

5 Non-Stationary Advection Problem 95

5.1 Eulerian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.1 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Semi-Lagrangian Formulations . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.1 Semi-Lagrangian Galerkin Methods . . . . . . . . . . . . . . . . . 104
5.2.2 Semi-Lagrangian Interpolation Methods . . . . . . . . . . . . . . . 112
5.2.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Conclusions 133

6.1 Galerkin Methods for MagnetoquasistaticEquations in MovingConductors 133
6.2 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

References 137

x



List of Symbols

Altk(V ) space of alternating real-valued k-linear forms on V . . . . . . . . . . . . . . . . . . . . . 3
dimV dimension of vector space V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
vol volume form, element in Altn V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
R real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(·, ·) inner product on Altk V : Altk V × Altk V 7→ R . . . . . . . . . . . . . . . . . . . . . . . . . . 3
⋆ Hodge operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Λk (Ω) space of smooth diffential forms of degree k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
C∞ (Ω) space of smooth scalar functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(·, ·) inner product on Λk (Ω): Λk (Ω) × Λk (Ω) 7→ R . . . . . . . . . . . . . . . . . . . . . . . . . . 4
L2Λk (Ω) space of L2 integrable differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
‖·‖L2Λk(Ω) norm for space L2Λk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Wm,p (Ω) Sobolev spaces based on Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Hm (Ω) Sobolev spaces based on L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
W m,p (Ω) vectorial Sobolev spaces based on Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Wm,pΛk (Ω) Sobolev spaces of differential forms based on Lp . . . . . . . . . . . . . . . . . . . . . . . . . 4
HmΛk (Ω) Sobolev spaces of differential forms based on L2 . . . . . . . . . . . . . . . . . . . . . . . . . 4
‖·‖HmΛk(Ω) norm for Sobolev space HmΛk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

|·|HmΛk(Ω) semi-norm for Sobolev space HmΛk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

‖·‖W m,pΛk(Ω)norm for Sobolev space Wm,pΛk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

|·|W m,pΛk(Ω) semi-norm for Sobolev space Wm,pΛk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

‖·‖Wm,p(Ω) norm for Sobolev space W m,p (Ω) k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

|·|Wm,p(Ω) semi-norm for Sobolev space W m,p (Ω) k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

d exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
HΛk (Ω) differential forms ω in L2Λk (Ω) with dω in L2Λk (Ω) . . . . . . . . . . . . . . . . . . . . 5
‖·‖HΛk(Ω) norm for Sobolev space HΛk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

HΛk (Ω, ψ) space of elements HΛk (Ω) with trace value ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
H∗Λk (Ω) differential forms ω in L2Λk (Ω) with δ ω ∈ L2Λk (Ω) . . . . . . . . . . . . . . . . . . . . 9
‖·‖H∗Λk(Ω) norm for Sobolev space H∗Λk (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

H∗Λk (Ω, ψ) space of elements H∗Λk (Ω) with trace value ψ . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Range(·) range of an operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ker(·) kernel of an operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
tr trace operator of a form onto ∂Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
iβ contraction operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Lβ Lie derivative operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Xt flow induced by velocity field β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
extr(M,Xt) extrusion of manifold M by flow field Xt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

xi



Contents

δ formal adjoint of exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
jβ formal adjoint of contraction operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Lβ formal adjoint of Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
(·, ·)∂Ω,tr bilinear mapping Λj (Ω) × Λk (Ω) 7→ R on ∂Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
(·, ·)∂Ω,β β-parametrized bilinear form Λk (Ω) × Λk (Ω) 7→ R on ∂Ω . . . . . . . . . . . . . . . 8
nΩ outward pointing normal vector field at ∂Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
nf normal vector field of n− 1 dimensional oriented manifold f . . . . . . . . . . . 60
Pr(R

n) polynomials with degree at most r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Hr(R

n) homogeneous polynomials with degree r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
PrΛ

k(Rn) polynomial differential forms of degree r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
HrΛ

k(Rn) homogeneous polynomial differential forms of degree r . . . . . . . . . . . . . . . . . 13
κ Koszul differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
P−

r Λk(Rn) reduced polynomial differential forms of degree r . . . . . . . . . . . . . . . . . . . . . . . 13
T simplicial triangulation, mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
T element, n-dimensional simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PrΛ

k(f) polynomial differential forms of degree r on simplex f . . . . . . . . . . . . . . . . . . 14
P−

r Λk(f) polynomial differential forms of degree r on simplex f . . . . . . . . . . . . . . . . . . 14
∆d(T ) set of d-dimensional subsimplices of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
∆d(T ) set of d-dimensional subsimplices of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
∆(T ) set of all subsimplices of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
∆(T ) set of all subsimplices of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
W k

r (T, f) span of the degrees of freedom of PrΛ
k(T ) that are asscociated to f . . . . 15

W k,−
r (T, f) span of the degrees of freedom of P−

r Λk(T ) that are asscociated to f . . . 15
P−

r Λk(T ) first family of differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PrΛ

k(T ) second family of differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Πk

r canonical projection operator from Λk (Ω) to PrΛ
k(T ) . . . . . . . . . . . . . . . . . 17

Πk,−
r canonical projection operator from Λk (Ω) to PrΛ

k,−(T ) . . . . . . . . . . . . . . . .17
h mesh size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Nk cardinality of ∆k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
lki degrees of freedoms of Whitney k-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
λ barycentric coordinate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
bki = bfk

i
basis forms of Whitney k-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

(Dk)i,jD
fk

j

fk+1
i

matrix representation of d for Whitney forms . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Pd
r Λk(T ) space of non-conforming discrete differential forms . . . . . . . . . . . . . . . . . . . . . 23

dT exterior derivative restricted to n-simplices of the mesh . . . . . . . . . . . . . . . . 23
µx, µy, µz averaging operators on Cartesian meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
δx, δy, δz difference operators on Cartesian meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
∂h,x, ∂h,y, ∂h,zapproximation of partial derivatives on Cartesian meshes . . . . . . . . . . . . . . . 25
Sc, Sv scalar finite volume spaces associated to cell centers and vertices . . . . . . . 26
Vc, Vv vectorial finite volume spaces associated to cell centers and vertices . . . . 26
Ah Averaging operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

dh approximations of exterior derivative for finite volume schemes . . . . . . . . . 30

xii



Contents

|ω|Γin,−β semi-norm on inflow boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

|ω|Γout,β
semi-norm on outflow boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

[ω]f jump across n− 1 simplex (facet) f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

{ω}f average across n− 1 simplex (facet) f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F◦,F∂ sets interior and exterior facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
F∂
−,F∂

+ sets of facets at inflow and outflow part of boundary . . . . . . . . . . . . . . . . . . . 60
(·, ·)f,β β-parametrized bilinear form Λk (Ω) × Λk (Ω) 7→ R on f . . . . . . . . . . . . . . . . . 8
‖·‖h a particular mesh dependent norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

‖·‖f,β ‖·‖2
f,β = (·, ·)f,β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

‖·‖h,τ a mesh dependent norm for characteristic methods . . . . . . . . . . . . . . . . . . . . . 86

dt distributional time derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



Contents

xiv



1 Introduction

The topic of this thesis is the efficient and stable numerical solution of transient general-
ized advection-diffusion problems. The problem is studied mainly with the intention to
solve the so-called magnetic advection-diffusion problem encountered in magnetohydrody-
namics. Magnetohydrodynamics describes the motion of fluids in electromagnetic fields
and has important applications in geophysics, astrophysics and engineering. Magneto-
hydrodynamic theories describe for example the Earth’s magnetic field, astrophysical
plasmas or high-voltage circuit-breakers.

In classical scalar advection-diffusion problems a weighted Laplace operator models
the diffusion, while a transport operator, a first order differential operator parametrized
by a given velocity field, models the advection part. When the scale of the diffusion
operator is very small compared to the transport operator, standard numerical methods
for elliptic and parabolic problems fail. The stable discretization of such singularly
perturbed problems is very challenging and has attracted immense attention in numerical
analysis.

We use the language of differential forms to generalize the scalar advection-diffusion
problem. In these generalized advection-diffusion problems for differential formsm, the
so-called Hodge-Laplacian models the diffusion and the Lie-derivative models the advec-
tion. This model not only includes the classical scalar problem but also the magnetic
advection-diffusion problem. As in the classical case, the problem type of the generalized
problems changes in the limit of vanishing diffusion and numerical algorithms specifically
designed for the Hodge-Laplace operators fail.

The intention of placing magnetic convection-diffusion problems in the abstract frame-
work of differential forms is twofold. First we can treat many different problems at once.
Second, the formulation in terms of differential forms accentuates the common structure
inherent in advection-diffusion models. We can take advantage of the numerous works on
the scalar problem to find new methods. One example is the idea of upwinding, which
forms the basis of most stable methods for the scalar problem. Due to the unifying
language of differential forms we can introduce a natural notion of upwind discretiza-
tion for generalized transport operators [33]. The discontinuous Galerkin method and
the so-called semi-Lagrangian time-stepping schemes are other classical techniques that
we could extend to the general case. While the formulation and the implementation of
such algorithms is straightforward to deduce from the scalar ones, the numerical anal-
ysis required the development of novel techniques to prove for example a priori error
estimates.

The outline of this thesis is the following: In Chapter 2 we introduce first the basic
concepts related to differential forms. The presentation follows basically the presentation
in [3] supplemented by detailed explanations on the Lie derivatives and the contraction
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operators that are related to advection models. Afterwards, we summarize the known
results on finite element discrete differential forms spaces, that will later be the major
approximation spaces for solving advection-diffusion problems. While the elements of
these spaces inherit certain global continuity properties, there is a second important
class of approximation spaces, introduced in Section 2.2.2, with elements with no global
continuity. We close this chapter with a discussion on so-called constraint preserving
finite volume schemes and accentuate the advantages of discrete differential forms spaces
for designing such schemes.

The next chapter, Chapter 3, is devoted to the formulation of advection-diffusion of
differential forms. We also show that the magnetic advection-diffusion problem, more
precisely the magnetoquasistatic equations in moving conductors, is such an advection-
diffusion problem for differential forms. Then in Section 3.4, we elaborate well-posedness
of advection-diffusion problems for various parameter regimes. The chapter concludes
with a short review of numerical methods for the scalar problem.

Since the approximation of diffusion of differential forms is standard, in the subsequent
two Chapters 4 and 5, the main chapters of this thesis, we focus on the limiting problem,
i.e. the advection problem for differential forms.

Chapter 4 deals with the stationary case. We present stabilized Galerkin methods
that can be considered as a generalization of standard stabilized discontinuous Galerkin
methods for classical scalar advection problems. While the convergence analysis for ap-
proximation spaces with no global continuity (Section 4.1.2) is fairly standard, the con-
vergence analysis for the finite element differential forms spaces in Section 4.1.3 requires
subtle approximation results. Another interesting method, at least from a theoretical
point of view, are the characteristic methods presented thereafter in Section 4.2. For
these we can also give a rigorous convergence results for general advection of differential
forms.

Finally, Chapter 5 presents Eulerian and semi-Lagrangian methods for the non-station-
ary advection problem. We prove conditional stability of an explicit and unconditional
stability of an implicit timestepping scheme. The fully discrete semi-Lagrangian schemes,
defined in Section 5.2.1 for the advection of differential forms, allow for convergence
results that reflect explicitly the various approximation parameters. Such results are
rare even for the classical scalar problem. Moreover, we present in Theorem 5.2.6 a
convergence result for lowest order approximation spaces and for timesteps in the order
of the meshsize. For the scalar case, these assertions have been proved only for very
special problems, e.g. for constant velocity.

A short discussion on the implication of the obtained results for the magnetic advec-
tion-diffusion problem is given in the last Chapter 6.

2



2 Preliminaries

Large parts of this thesis take advantage of the language of differential forms to present
the different methods for solving advection problems. The notion of differential forms
enables us to accentuate the main ideas of discretization methods [35, p. 266] in hid-
ing technical details such as partial integration in a unifying notation. By now it is
widely appreciated that thinking in terms of co-ordinate free differential forms offers
considerable benefits as regards the construction of structure preserving spatial dis-
cretizations, cf. [64, Sect. 1.2]. The so-called discrete exterior calculus (DEC) [3,24,37],
or, equivalently, the mimetic finite difference approach [14, 44–46], or discrete Hodge-
operators [11,35] have shed new light on existing discretizations and paved the way for
new numerical methods. Therefore, we first give in section 2.1 a short introduction
to the concept of differential forms and establish the notation. Table 2.1, 2.2 and 2.3
summarize correspondences of operations on differential forms and operations on scalar
or vectorial functions. Afterwards a summary of candidate finite element approxima-
tion spaces for differential forms is given in section 2.2. These are piecewise polynomial
spaces with different global continuity properties.

2.1 Differential Forms

We refer to the books [17] and [48] for an comprehensive introduction to differential
forms. Here, the presentation and the notation is adapted from [3] and [4].

For a vector space V , dimV = n , and a non-negative integer k, Altk V denotes the(
n
k

)
-dimensional set of alternating real-valued k-linear forms on V . For ω ∈ Altj V and

η ∈ Altk V the wedge product ω ∧ η ∈ Altj+k V is given as:

(ω ∧ η)(v1, . . . vj+k) =
∑

σ

sign(σ)ω(vσ(1), . . . ,vσ(j))η(vσ(j+1) . . . ,vσ(j+k)),

where the sum runs over all permutations σ of {1, . . . j + k}, for which σ(1) < σ(2) <
. . . σ(j) and σ(j + 1) < σ(j + 2) . . . σ(j + k). sign(σ) is the sign of permutation σ. The
wedge product is anti-commutative in the following sense:

ω ∧ η = (−1)jkη ∧ ω, ω ∈ Altj V, η ∈ Altk V. (2.1)

If V is an oriented vector space with inner product, there exists a unique alternating
n-linear form vol ∈ Altn V , called volume form, such that vol(e1, . . . , en) = 1 for all
orthonormal, positively oriented bases {ei}n

i=1 of V . Further, the inner product on V
gives rise to an inner product on Altk V :

(ω, η) :=
∑

σ

ω(vσ(1), . . . ,vσ(k))η(vσ(1), . . . ,vσ(k)), (2.2)

3
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where the sum is over increasing sequences σ : {1, . . . , k} 7→ {1, . . . n} and {vi}n
i=1 is

an arbitrary orthonormal basis. For a fixed ω ∈ Altk V the wedge product ω ∧ η, η ∈
Altn−k V induces a linear map Altn−k 7→ R. The Riesz representation Theorem then
ensures, that there exists a ⋆ω ∈ Altn−k V such that:

ω ∧ η = (⋆ω, η) vol, ∀η ∈ Altn−k V. (2.3)

The linear map ω 7→ ⋆ω mapping alternating k-linear forms to alternating (n− k)-linear
forms is called the Hodge star operator. The definitions of the volume form vol and inner
product (2.2) give

ω(eσ(1), . . . , eσ(k)) = sign(σ) ⋆ ω(eσ(k+1), . . . , eσ(n)) (2.4)

for positively oriented bases {ei}n
i=1 and permutations σ, thus the Hodge star operator

is an isometry. As a consequence we derive

⋆ (⋆ω) = (−1)k(n−k)ω, ω ∈ Altk V. (2.5)

Now, let Ω ⊂ R
n be a smooth Riemannian n-dimensional oriented manifold. At each

point x ∈ Ω the tangent space TxΩ is an n-dimensional vector space and we can define
alternating forms Altk TxΩ. A differential k-form ω is then the map, assigning to each
x ∈ Ω an element ωx ∈ Altk TxΩ. A differential k-form ω is called smooth if the map

x 7→ ωx(v1(x), . . . ,vk(x)) (2.6)

is smooth for smooth vector fields v1(x), . . . vk(x), with vi(x) ∈ TxΩ. Then Λk (Ω)
denotes the set of smooth differential k-forms on Ω, in particular Λ0 (Ω) = C∞ (Ω) .
The definition of the wedge product of alternating forms can be extended to differential
forms by a pointwise definition:

(ω ∧ η)x = ωx ∧ ηx, ω ∈ Λj (Ω) , η ∈ Λk (Ω) (2.7)

Since we assume Ω ⊂ R
n to be a smooth Riemannian manifold, i.e. the spaces Altk Txω

are endowed with an inner product, there exists a measure on Ω and we can define
integrals of 0-forms ω ∈ Λ0 (Ω):

∫
Ω ω vol and L2-inner products on Λk (Ω):

(ω, η)Ω =

∫

Ω
(ωx, ηx) vol =

∫

Ω
ω ∧ ⋆η, ω, η ∈ Λk (Ω) . (2.8)

Completion of Λk (Ω) in the norm ‖ω‖2
L2Λk(Ω) = (ω, ω)Ω yields the Hilbert space L2Λk (Ω).

Due to the assumptions on Ω, we can define the Sobolev spacesHm (Ω) andWm,p (Ω) for
functions with m > 0 derivatives in L2 (Ω) and Lp (Ω) [81, Section 1.3]. Analogously we
define Sobolev-spaces Wm,pΛk (Ω) and HmΛk (Ω) of differential forms by requiring that
the map (2.6) is in Wm,p (Ω) and Hm (Ω). In the following ‖·‖W m,pΛk(Ω) (|·|W m,pΛk(Ω))
and ‖·‖HmΛk(Ω) (|·|HmΛk(Ω)) will denote the corresponding (semi)-norms. Another im-
portant family of Hilbert spaces is defined via the notion of the exterior derivatives. For
Ω ⊂ R

n the exterior derivative dω of a k-form ω ∈ Λk (Ω) is given as [3, page 15]:

dωx(v1(x), . . . vk+1(x)) =

k+1∑

j=1

(−1)j∂vj
ωx(v1(x), . . . , v̂j(x), . . . ,vk+1(x)), (2.9)
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where the hat shall indicate a suppressed argument. ∂vj
is the partial derivative in

direction vj. Then we define the spaces HΛk (Ω) containing differential forms ω ∈
L2Λk (Ω) with exterior derivatives in L2Λk+1 (Ω):

HΛk (Ω) = {ω ∈ L2Λk (Ω) , dω ∈ L2Λk+1 (Ω)}. (2.10)

The spaces HΛk (Ω) are Hilbert space with norm ‖·‖2
HΛk(Ω) := ‖·‖2

L2Λk(Ω) + ‖d ·‖2
L2Λk(Ω).

In particular HΛ0 (Ω) and HΛn (Ω) are equal to H1Λ0 (Ω) and L2Λn (Ω), respectively.
For 0 < k < n the spacesHΛk (Ω) are strictly between the spaces L2Λk (Ω) andH1Λk (Ω)
[22]. The exterior derivative satisfies a Leibniz rule with respect to the wedge product:

d(ω ∧ η) = dω ∧ η + (−1)jω ∧ d η, ω ∈ Λj (Ω) , η ∈ Λk (Ω) , (2.11)

and the exterior derivative of an exterior derivative vanishes:

d ◦ d = 0. (2.12)

This second property ensures that the range of the exterior derivative of differential
k-forms is contained in the kernel of the exterior derivative of k + 1-forms:

Range(d : Λk (Ω) 7→ Λk+1 (Ω)) ⊂ Ker(d : Λk+1 (Ω) 7→ Λk+2 (Ω))

Therefore the de Rham sequence, i.e. the sequence of mappings:

0 −→ Λ0 (Ω)
d−→ Λ1 (Ω)

d−→ · · · d−→ Λn (Ω) −→ 0 (2.13)

is a so-called cochain complex. For our oriented Riemannian manifold Ω this extends to
the L2 de Rham complex:

0 −→ HΛ0 (Ω)
d−→ HΛ1 (Ω)

d−→ · · · d−→ HΛn (Ω) −→ 0. (2.14)

The quotient spaces Ker(d : Λk+1 (Ω) 7→ Λk+2 (Ω))/Range(d : Λk (Ω) 7→ Λk+1 (Ω)), the
de Rham cohomology spaces, are finite dimensional vector spaces, whose dimension is
given by the Betti numbers of the domain Ω [81, Section 2.6]. For contractible Ω the
quotient spaces vanish.

It is this de Rham cohomology technique, a tool belonging to algebraic and differential
topology that has become more and more important also in numerics. It turned out that
a rigorous translation to a finite dimensional setting paves the way to superior numerical
methods [3, 4]. We will present these ideas in detail in the next chapter.

Another remarkable property of differential k-forms is the possibility to define integra-
tion on k-dimensional manifolds without additional structures such as measure or metric.
For a continuous differential k-form ω and an oriented, piecewise smooth, compact k-
dimensional submanifold f ⊂ Ω the integral

∫
f
ω is well-defined. Further, if φ : Ω 7→ Ω′

is a smooth map between the manifolds Ω and Ω′, the pullback φ∗ : Λk (Ω′) 7→ Λk (Ω)
maps differential forms on Ω′ to differential forms on Ω:

(φ∗ω)x(v1(x), . . . ,vk(x)) = ωφ(x)(Dφx(v1(x)), . . . ,Dφx(vk(x))). (2.15)
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The Jacobian Dφx is a linear map TxΩ 7→ Tφ(x)Ω
′. If (Dφx)1≤i,j≤n ∈ R

n×n is the
matrix representation of Dφx with respect to a basis {ei}n

i=1 of TxΩ and a basis {e′i}n
i=1

of Tφ(x)Ω
′, and (Dφx)σ′,σ ∈ R

k×k denotes that submatrix that consists of the rows
σ′(1), . . . , σ′(k) and the columns σ(1), . . . , σ(k) then [77, Page 610]

(φ∗ω)x(eσ(1), . . . , eσ(k)) =
∑

σ′

det
(
(Dφx)σ′,σ

)
ωφ(x)(e

′
σ′(1), . . . , e

′
σ′(k)), (2.16)

where σ and σ′ are increasing sequences {1, . . . , k} 7→ {1, . . . , n}. The quantities

det
(
(Dφx)σ′,σ

)
are refered to as the k-minors of Dφx. For convenience we introduce

for φ and x fixed the operator Mk(φx) : Altk Tφ(x)Ω
′ 7→ Altk TxΩ such that for ω ∈

Altk Tφ(x)Ω
′

(Mk(φx)ω) (eσ(1), . . . , eσ(k)) =
∑

σ′

det
(
(Dφx)σ′,σ

)
ω(e′σ′(1), . . . , e

′
σ′(k)). (2.17)

If φ is an orientation-preserving diffeomorphism we have for all oriented, piecewise
smooth, k-dimensional submanifolds f :

∫

f

φ∗ω =

∫

φ(f)
ω, ω ∈ Λk

(
Ω′
)
. (2.18)

For the pullback of the inclusion map ∂Ω 7→ Ω, the trace onto ∂Ω, we use the symbol
tr, thus Stokes law reads [3, page 16]:

∫

Ω
dω =

∫

∂Ω
trω. (2.19)

For the more general case of inclusion maps ı : Ω′ 7→ Ω, with dim(Ω′) < dim(Ω) − 1,
Ω′ ⊂ Ω we introduce the notation

trΩ,Ω′ := ı∗. (2.20)

The pullback and in particular the trace respect both the wedge product and exterior
derivative:

d(φ∗ω) = φ∗(dω), φ∗(ω ∧ η) = φ∗ω ∧ φ∗η, (2.21)

and
d(trΩ′,Ω ω) = trΩ′,Ω(dω), trΩ′,Ω(ω ∧ η) = trΩ′,Ω ω ∧ trΩ′,Ω η. (2.22)

Further, we need to define the so-called contraction or interior product iβ : Λk+1 (Ω) 7→
Λk (Ω) parametrized by a Lipschitz continuous velocity field β : Ω 7→ R

n, i.e. β(x) ∈
TxΩ:

(iβ ω)x(v1(x), . . . ,vk(x)) := ωx(β(x),v1(x), . . . ,vk(x)). (2.23)

A standard density argument shows that iβ : L2Λk+1 (Ω) 7→ L2Λk (Ω) is bounded map.
We use the standard notations W m,p (Ω), |β|Wm,p(Ω) and ‖β‖Wm,p(Ω) to denote Sobolev
spaces, Sobolev semi-norms and Sobolev norms of vector valued functions with m > 0
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derivatives in Lp (Ω). The contraction operator together with the exterior derivative
forms the so called Lie derivative Lβ : Λk (Ω) 7→ Λk (Ω):

Lβ ω := iβ dω + d iβ ω. (2.24)

Since the contraction iβ satisfies similar to the exterior derivative a Leibniz rule:

iβ(ω ∧ η) = iβ ω ∧ η + (−1)jω ∧ iβ η, ω ∈ Λj (Ω) , η ∈ Λk (Ω) , (2.25)

we get a Leibniz rule also for Lie derivatives:

Lβ(ω ∧ η) = Lβ ω ∧ η + ω ∧ Lβ η, ω ∈ Λj (Ω) , η ∈ Λk (Ω) . (2.26)

Instead of (2.24) we could equivalently define the Lie derivative by means of the flow
function Xt(x) := X(t, x) induced by velocity β. Here, X : Ω × R 7→ Ω is the flow
function if

∂Xt(x)

∂t
= β(Xt(x)), X0(x) = x. (2.27)

One can then show that [50, p. 142, prop. 5.3]

Lβ ω =
∂X∗

t ω

∂t
|t=0. (2.28)

This definition of the Lie derivative gives rise to a new perspective on the contraction
operator. To motivate this we apply (2.28) to some k-form ω and integrate over some
k-dimensional manifold M :

∫

M

Lβ ω = lim
τ→0

1

τ

∫

M

X∗
τω − ω

= lim
τ→0

1

τ

(∫

Xτ (M)
ω −

∫

M

ω

)
.

We define a k + 1-dimensional manifold

extr(M,Xτ ) =

τ⋃

s=0

Xs(M), (2.29)

and orient extr(M,Xτ ) such that the orientation of

∂ extr(M,Xτ )|Xτ (M) and Xτ (M)

coincide. Then the orientations

∂ extr(M,Xτ )|M and M,

∂ extr(M,Xτ )| extr(∂M,Xτ ) and extr(∂M,Xτ )

do not coincide and this yields

∫

M

Lβ ω = lim
τ→0

1

τ

(∫

extr(M,Xτ )
dω +

∫

extr(∂M,Xτ )
ω

)
.
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Comparing this with (2.24) we find
∫

M

iβ ω = lim
τ→0

1

τ

∫

extr(M,Xτ )
ω. (2.30)

We will later use this characterization in order to derive semi-Lagrangian time stepping
schemes.

Since the inner product (2.8) makes the space of differential forms to a Hilbert space,
we introduce here also the formal adjoint of the exterior derivative

⋆ δ ω = (−1)k d ⋆ω, ω ∈ Λk (Ω) , (2.31)

the formal adjoint of the contraction:

⋆ jβ ω = (−1)k iβ ⋆ω, ω ∈ Λk (Ω) , (2.32)

and the formal adjoint of the Lie derivative:

⋆ (δ jβ + jβ δ)ω = ⋆Lβ ω = − Lβ ⋆ω, ω ∈ Λk (Ω) . (2.33)

With these definitions we derive the following integration by parts formulas from the
Leibniz rules (2.11), (2.25) and (2.26) for ω ∈ Λj (Ω) and η ∈ Λk (Ω):

d(ω ∧ ⋆η) = dω ∧ ⋆η + (−1)j+kω ∧ ⋆ δ η,
iβ(ω ∧ ⋆η) = iβ ω ∧ ⋆η + (−1)j+kω ∧ ⋆ jβ η,

Lβ(ω ∧ ⋆η) = Lβ ω ∧ ⋆η − ω ∧ ⋆Lβ η.

Note that these formulas are valid for j+n− k > n, by the convention that dω and iβ ω
are set to zero whenever ω ∈ Λj (Ω) with j > n. Later, the cases k = j + 1, k = j and
k = j− 1 will be of particular importance. For convenience, we write these cases here in
terms of bilinear forms (·, ·)∂Ω,β : Λk (Ω)×Λk (Ω) 7→ R and (·, ·)Ω : Λk (Ω)×Λk (Ω) 7→ R

and bilinear mappings (·, ·)∂Ω,tr : Λk−1 (Ω) × Λk (Ω) 7→ R.

Proposition 2.1.1. Let ω ∈ Λk−1 (Ω) , η ∈ Λk (Ω), then

(ω, η)∂Ω,tr :=

∫

∂Ω
tr(ω ∧ ⋆η) = (dω, η)Ω − (ω, δ η)Ω . (2.34)

Let ω ∈ Λk (Ω) , η ∈ Λk (Ω), then

(ω, η)∂Ω,β :=

∫

∂Ω
tr iβ(ω ∧ ⋆η) = (iβ ω, η)∂Ω,tr +

(
ω, jβ η

)
∂Ω,tr

(2.35)

and
(ω, η)∂Ω,β = (Lβ ω, η)Ω − (ω,Lβ η)Ω . (2.36)

Let ω ∈ Λk+1 (Ω) , η ∈ Λk (Ω), then

0 = (iβ ω, η)Ω −
(
ω, jβ η

)
Ω
. (2.37)
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k correspondence

0 x 7→ ω(x) u(x) := ω(x)

1 x 7→ {v 7→ ω(x)(v)} u(x) · v := ω(x)(v)

2 x 7→ {(v1,v2) 7→ ω(x)(v1,v2)} u(x) · (v1 × v2) := ω(x)(v1,v2)

3 x 7→ {(v1,v2,v3) 7→ ω(x)(v1,v2,v3)} u(x) det(v1,v2,v3) := ω(x)(v1,v2,v3)

Table 2.1: Correspondences of forms ω with scalar functions u or vectorial functions u.

Proof. The proof follows by direct calculations from the Leibniz rules (2.11), (2.25) and
(2.26) and the definitions of the adjoint operators (2.31), (2.32) and (2.33).

Remark 2.1.2. The bilinear form (·, ·)∂Ω,β introduced in (2.35) is in general not positive

semidefinite. By defining a velocity β̂:

β̂|∂Ω
:=





(
β β·nΩ

|β·nΩ|

)
|∂Ω

β · nΩ 6= 0

0 β · nΩ = 0

with nΩ(x) ∈ TxΩ outward pointing normal of ∂Ω, the bilinear form (·, ·)
∂Ω,β̂

is positive
semidefinite. To see that property, we recall that ω∧⋆ω is proportional to the volume form
vol of Ω (follows from (2.8)) and that the volume form on ∂Ω is given by inΩ

vol|∂Ω
[81, p.

26]. Hence linearity of iβ in β yields:

(ω, ω)∂Ω,β =

∫

∂Ω
β · nΩ tr inΩ

(ω ∧ ⋆ω).

The sign of (β · nΩ)|∂Ω
determines the sign of (ω, ω)∂Ω,β and (β̂ · nΩ)|∂Ω

≥ 0.

For completeness we also introduce the Sobolev space for the adjoint exterior derivative
δ:

H∗Λk (Ω) = {ω ∈ L2Λk (Ω) , δ ω ∈ L2Λk−1 (Ω)}. (2.38)

The space H∗Λk (Ω) is a Hilbert space with the norm ‖·‖2
H∗Λk(Ω) := ‖·‖2

L2Λk(Ω) +

‖δ ·‖2
L2Λk−1(Ω). Finally we will need Sobolev spaces of differential forms with prescribed

traces:
HΛk (Ω, ψ) = {ω ∈ HΛk (Ω) trω = ψ},
H∗Λk (Ω, ψ) = {ω ∈ H∗Λk (Ω) tr ⋆ω = ψ}.

Another important entity will be the operator Lβ +Lβ. This operator is obviously
symmetric:

(ω,Lβ +Lβ η) = (Lβ +Lβ ω, η), ω, η ∈ Λk (Ω) . (2.39)

In Table 2.2 and 2.3 we listed the correspondences of Lβ +Lβ for the forms in R
3 and

R
2. From these representations we easily infer

∣∣ (η,Lβ ω + Lβ ω)Ω
∣∣ ≤ C |β|W1,∞(Ω) ‖ω‖L2Λk(Ω) ‖η‖L2Λk(Ω) (2.40)

and it can be shown that this results holds also in the general case of R
n.
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k HΛk (Ω) tr φ∗

0 H1 (Ω) u(x) u(φ(x))

1 H (curl,Ω) nΩ(x) × u(x) Dφ(x)T u(φ(x))

2 H(div,Ω) u(x) · nΩ(x) detDφ(x)Dφ(x)−1u(φ(x))

3 L2 (Ω) detDφ(x)u(φ(x))

k dω iβ ω δ ω jβ ω

0 grad u uβ

1 curl u β · u − divu −u× β

2 divu u × β curl u β · u
3 uβ −gradu

k Lβ ω Lβ ω Lβ ω + Lβ ω

0 β · gradu − div(uβ) −udiv β

1 grad(β · u) + curl u× β curl(β × u) − β divu Dβu + (Dβ)T u− udiv β

2 curl(u × β) + β divu β × curl u − grad(β · u) udiv β −Dβu − (Dβ)Tu

3 div(uβ) −β · gradu udiv β

Table 2.2: Correspondences of spaces and operations on forms ω with spaces and opera-
tions on scalar functions u or vectorial functions u in R

3. φ is a diffeomorphism
and Dβ is the Jacobi matrix. The correspondences of Lβ +Lβ follow from
standard vector calculus identities, see e.g. [47, cover page].
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2.1 Differential Forms

k HΛk (Ω) tr φ∗

0 H1 (Ω) u(x) u(φ(x))

1 H(div,Ω) u(x) · nΩ(x) detDφ(x)Dφ(x)−1u(φ(x))

2 L2 (Ω) not defined detDφ(x)u(φ(x))

k dω iβ ω δ ω jβ ω

0 Rgrad u uRβ

1 divu u ·Rβ div Ru β · u
2 uβ −gradu

k Lβ ω Lβ ω Lβ ω + Lβ ω

0 β · gradu − div(uβ) −udiv β

1 Rgrad(u · Rβ) + β divu div(Ru)Rβ − grad(β · u) udiv β −Dβu − (Dβ)Tu

2 div(uβ) −β · gradu udiv β

Table 2.3: Correspondences of spaces and operations on forms ω with spaces and op-
erations on scalar functions u or vectorial functions u in R

2. φ is a diffeo-
morphism, Dβ is the Jacobi matrix and R ∈ R

2×2 is a rotation matrix with
entries (R)11 = 0, (R)12 = 1, (R)21 = −1 and (R)22 = 0.

11
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Proposition 2.1.3. Let β ∈ W 1,∞ (Ω), then (2.40) holds for any ω, η ∈ L2Λk (Ω) and
Ω ⊂ R

n.

Proof. Let η, ω ∈ Λk (Ω). If ω̄ denotes an extension of ω to Λk (Rn) we deduce from
(2.28) and (2.18):

(η, (Lβ +Lβ)ω)Ω = lim
τ→0

1

τ

∫

Ω
η̄ ∧ ⋆

(
ω̄ −X∗

−τ ω̄
)
− 1

τ

∫

Ω
η̄ ∧

(
⋆ω̄ −X∗

−τ ⋆ ω̄
)

= lim
τ→0

1

τ

∫

Ω
η̄ ∧

(
X∗

−τ ⋆ ω̄ − ⋆X∗
−τ ω̄

)

= lim
τ→0

1

τ

(∫

X−τ (Ω)
X∗

τ η̄ ∧ ⋆ω̄ −
∫

Ω
η̄ ∧ ⋆X∗

−τ ω̄

)
.

By formulas (2.8) and (2.17) we find for the second term in the last line

∫

Ω
η̄ ∧ ⋆X∗

−τ ω̄ =

∫

Ω
(η̄x,Mk(X−τ,x)ω̄X−τ (x)) vol .

From the expansion DXτ,x = idx + τDβx + O(τ2), the definition of Mk(·) and Taylor
expansion of det() we infer

∫

Ω
η̄ ∧ ⋆X∗

−τ ω̄ =

∫

Ω
(η̄x, ω̄X−τ (x) − τM′

k(X−τ,x)ω̄X−τ (x)) vol +O(τ2),

where M′
k(X−τ,x) : Altk TX−τ (x)X−τ (Ω) 7→ Altk TxΩ is defined for an alternating form

ω ∈ Altk TX−τ (x)X−τ (Ω) by

(
M′

k(X−τ,x)ω
)
(eσ(1), . . . , eσ(k)) =

∑

σ′

tr
(
Adj((In)σ′,σ)(Dβx)σ′,σ

)
ω(e′σ′(1), . . . , e

′
σ′(k)),

with Adj and tr the adjunct and trace operator for matrices, In ∈ R
n×n unit matrix and

σ and σ′ increasing sequences {1, . . . , k} 7→ {1, . . . , n} and {ei}n
i=1 and {e′i}n

i=1 basis of
TxΩ and TX−τ (x)X−τ (Ω). Similarly we deduce

∫

X−τ (Ω)
X∗

τ η̄ ∧ ⋆ω̄ =

∫

X−τ (Ω)
(η̄Xτ (x) + τM′

k(Xτ,x)η̄Xτ (x), ω̄x) vol +O(τ2).

where M′
k(Xτ,x) : Altk TXτ (x)Xτ (Ω) 7→ AltTxΩ is defined for η ∈ Altk TXτ (x)Xτ (Ω) by

(
M′

k(Xτ,x)η
)
(eσ(1), . . . , eσ(k)) =

∑

σ′

tr
(
Adj((In)σ′,σ)(Dβx)σ′,σ

)
η(e′σ′(1), . . . , e

′
σ′(k)).

12



2.2 Discrete Differential Forms

where here {e′i}n
i=1 is a basis of TXτ (x)Xτ (Ω). Collecting all these results we get:

(η, (Lβ +Lβ)ω)Ω = lim
τ→0

1

τ

(∫

X−τ (Ω)
(η̄Xτ (x), ω̄x) vol−

∫

Ω
(η̄x, ω̄X−τ (x)) vol

)

+ lim
τ→0

(∫

X−τ (Ω)
(M′

k(Xτ,x)η̄Xτ (x), ω̄x) vol +

∫

Ω
(η̄x,M

′
k(X−τ,x)ω̄X−τ (x)) vol

)

= lim
τ→0

1

τ

∫

Ω
(η̄x, ω̄X−τ (x))(X

∗
−τ vol− vol)

+

(∫

Ω
(M′

k(X0,x)ηx, ωx) vol +

∫

Ω
(ηx,M

′
k(X0,x))ωx) vol

)

=

(∫

Ω
(M′

k(X0,x))ηx, ωx) vol +

∫

Ω
(ηx,M

′
k(X0,x)ωx) vol

)

−
∫

Ω
(ηx, ωx)M′

n(X0,x) vol .

This result holds for any extension of ω and η and the assertion follows by density of
Λk (Ω) in L2Λk (Ω), since M′

k(·) depends only on the Jacobian of β.

2.2 Discrete Differential Forms

To live up to their name, discrete differential forms spaces Λk
h (T ) should inherit the prin-

cipal mathematical structure of differential forms spaces HΛk (Ω), namely the de Rham
complex (2.14). The first spaces of discrete differential forms, also called Whitney forms
were introduced by Whitney [87] as a tool in algebraic topology. Later, these low order
polynomial spaces were rediscovered by many different authors as finite element spaces
in computational electromagnetism [1,6,9,10,52,66] or mixed problem formulations [73].
Here, we will stay with the systematic presentation in [3] and [4], giving conforming dis-
crete differential forms spaces, i.e. Λk

h (T ) ⊂ HΛk (Ω), with arbitrary local polynomial
degree. For the sake of completeness we also present some non-conforming approxima-
tion spaces, that yield de Rham complexes with approximative exterior derivatives. Such
spaces are of particular interest in finite volume schemes.

2.2.1 Conforming Discrete Differential Forms

Let Pr(R
n) and Hr(R

n) be spaces of polynomials in n variables of degree at most r and
of homogeneous polynomial degree r respectively, with the convention that Pr(R

n) and
Hr(R

n) are the empty space for r < 0. We then define polynomial differential forms,
PrΛ

k(Rn) and HrΛ
k(Rn), as those elements ω ∈ Λk (Rn) such that the map

x 7→ ωx(v1, . . . ,vk), v1, . . . vk ∈ R
n

is in Pr(R
n) and Hr(R

n), respectively. The L2 de Rham complex (2.13) extends to
polynomial subcomplexes:

0 −→ HrΛ
0(Rn)

d−→ Hr−1Λ
1(Rn)

d−→ · · · d−→ Hr−nΛn(Rn) −→ 0

13
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and
0 −→ PrΛ

0(Rn)
d−→ Pr−1Λ

1(Rn)
d−→ · · · d−→ Pr−nΛn(Rn) −→ 0.

Later, we will use some of these polynomial differential forms for constructing piecewise
polynomial finite element spaces on simplicial decompositions that inherit the continuity
conditions of piecewise smooth elements in HΛk (Ω). However, it has turned out that
there is another important space of polynomial differential forms between Pr−1Λ

k(Rn)
and PrΛ

k(Rn), for such constructions. To characterize this space we introduce the Koszul
differential [3, p. 29]κ : Λk+1 (Rn) 7→ Λk (Rn) :

(κω)x(v1, . . . ,vk) := ωx(x(x),v1, . . .vk), (2.41)

where x(x) is a vector of length |x| located at x and pointing opposite to the origin. The
Koszul differential is an instance of the contraction operator (2.23). Concrete realization
in R

3 can be translated from the corresponding realization in Table 2.1. In contrast to
the exterior derivatives d, the Koszul differential increases the polynomial degree and
decreases the form degree when applied to homogeneous polynomial forms [3, page 30]:

κ : HrΛ
k(Rn) 7→ Hr+1Λ

k−1(Rn).

In particular, a simple calculation with (2.28) gives the identity [3, p.31]:

(dκ+ κ d)ω = (r + k)ω, ω ∈ HrΛ
k(Rn). (2.42)

With this identity it is easy to establish a direct sum decomposition of HrΛ
k(Rn) for

r, k ≥ 0 with r + k > 0 [3, p. 32]:

HrΛ
k(Rn) = κHr−1Λ

k+1(Rn) ⊕ dHr+1Λ
k−1(Rn). (2.43)

But since the space PrΛ
k(Rn) obviously permits the decomposition:

PrΛ
k(Rn) = Pr−1Λ

k(Rn) + HrΛ
k(Rn)

it is clear that the space

P−
r Λk(Rn) := Pr−1Λ

k(Rn) + κHr−1Λ
k+1(Rn)

lies between Pr−1Λ
k(Rn) and PrΛ

k(Rn). Before we present now the finite element spaces
based on PrΛ

k(Rn) and P−
r Λk(Rn) we remark two important properties. First both

spaces are invariant under pullbacks of affine maps. Second the construction of the
reduced spaces applies also to polynomial spaces defined on affine subsets of R

n [4, p.
331].

Let now T be a finite set of n-simplices determining a simplicial decomposition of Ω. A
set of n-simplices is a simplicial decomposition if the union of all elements is the closure
of Ω and if the intersection of any two elements is either empty or a common subsimplex.
d-simplices f are the image of affine subsets of R

n under affine maps, hence we can define
polynomial differential forms PrΛ

k(f) and P−
r Λk(f) on d-simplices. ∆d(T ) is the set

14



2.2 Discrete Differential Forms

of d-subsimplices of any simplex T and similar ∆d(T ) the set of all such subsimplices
in T . ∆(T ) and ∆(T ) denote the sets of all subsimplices of simplex T and mesh T .
Then, we tend to define finite element spaces PrΛ

k(T ) and P−
r Λk(T ) on the mesh T

in choosing PrΛ
k(T ) and P−

r Λk(T ) as the local spaces on all n-simplices T . The only
missing part for a proper definition of the finite element space is a choice of degrees of
freedom associated with particular subsimplices. The keystep in there is the following
characterization of the dual spaces PrΛ

k(T )∗ and P−
r Λk(T )∗ stated in [4, Theorem 5.5]

and proved in [3, Sections 4.5 and 4.6]. See also [34].

Theorem 2.2.1. Let r, k, and n be integers with 0 ≤ k ≤ n and r > 0, and let T be an
n-simplex in R

n.

1. To each f ∈ ∆(T ), associate a space W k
r (T, f) ⊂ PrΛ

k(T )∗:

W k
r (T, f) =

{
ω 7→

∫

f

trT,f ω ∧ η | η ∈ P−
r+k−dim fΛdim f−k(f)

}
.

Then W k
r (T, f) ∼= P−

r+k−dim fΛdim f−k(f) and

PrΛ
k(T )∗ =

⊕

f∈∆(T )

W k
r (T, f).

2. To each f ∈ ∆(T ), associate a space W k,−
r (T, f) ⊂ P−

r Λk(T )∗:

W k,−
r (T, f) =

{
ω 7→

∫

f

trT,f ω ∧ η | η ∈ Pr+k−dim f−1Λ
dim f−k(f)

}
.

Then W k,−
r (T, f) ∼= Pr+k−dim f−1Λ

dim f−k(f) and

P−
r Λk(T )∗ =

⊕

f∈∆(T )

W k,−
r (T, f).

For k = 0 this is a standard result of H1 (Ω)-conforming finite elements [80]: an
element of PrΛ

0(T ) vanishes if it vanishes at the vertices, its moments of degree at most
r−2 vanish on each edge, its moments of degree at most r−3 vanish on each 2-subsimplex
and so on. Since the space P−

r+k−dim fΛdim f−k(f) is defined for 1 ≤ r + k − dim f and

0 ≤ dim f − k ≤ dim f we find that the dual space of PrΛ
k(T ) is the span of certain

moments on all k- to r+k−1-subsimplices of T . And similar the dual space of P−
r Λk(T )

is the span of certain moments on all k- to r + k − 1-subsimplices.

Theorem 2.2.1 shows that the dual spaces PrΛ
k(T )∗ and P−

r Λk(T )∗ are direct sums of
certain spaces of functionals, whose definition is completely local, i.e. it depends only on
specific subsimplices f . By requiring these functionals to be single valued for elements
sharing the same subsimplex f we obtain global finite element spaces.
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Definition 2.2.2. The first family of finite element differential forms P−
r Λk(T ) is:

P−
r Λk(T ) :=

{
ω ∈ L2Λk (Ω) ,

ω|T ∈ P−
r Λk(T ) and

l(ω|T1
) = l(ω|T2

)∀l ∈ P−
r Λk(T1)

∗ ∩ P−
r Λk(T2)

∗

}
.

The second family of finite element differential forms PrΛ
k(T ) is:

PrΛ
k(T ) :=

{
ω ∈ L2Λk (Ω) ,

ω|T ∈ PrΛ
T (T ) and

l(ω|T1
) = l(ω|T2

)∀l ∈ PrΛ
k(T1)

∗ ∩ PrΛ
k(T2)

∗

}
.

To conclude that the two spaces P−
r Λk(T ) and PrΛ

k(T ) are conforming, i.e. that
P−

r Λk(T ) ⊂ HΛk (Ω) and PrΛ
k(T ) ⊂ HΛk (Ω), we recall the following characterization

of piecewise smooth differential forms due to Stokes’ law (2.19) [3, Lemma 5.1]:

Lemma 2.2.3. Let ω ∈ L2Λk (Ω) be piecewise smooth with respect to the triangulation
T . The following statements are equivalent:

1. ω ∈ HΛk (Ω),

2. trΩ,f ω is single valued for all f ∈ ∆n−1(T ),

3. trΩ,f ω is single valued for all f ∈ ∆j(T ), k ≤ j ≤ n− 1.

As a corollary, we get the following Theorem stated and proved in [3, p. 59]:

Theorem 2.2.4.

PrΛ
k(T ) =

{
ω ∈ HΛk (Ω) , ω|T ∈ PrΛ

k(T )
}
,

P−
r Λk(T ) =

{
ω ∈ HΛk (Ω) , ω|T ∈ P−

r Λk(T )
}
.

Further, since

dP−
r+1Λ

k−1(T ) ⊂ dPr+1Λ
k−1(T ) ⊂ PrΛ

k(T ) ⊂ P−
r+1Λ

k

or 



Pr+1Λ
k−1(T )
or

P−
r+1Λ

k−1(T )





d−→





P−
r+1Λ

k(T )
or

PrΛ
k(T )



 ,

we get several different polynomial subcomplexes of the de Rham complex. That poly-
nomial subcomplex that is built from the first family

0 −→ P−
r Λ0(T )

d−→ P−
r Λ1(T )

d−→ · · · d−→ P−
r Λn(T ) −→ 0,

is called higher order Whitney complex, because it coincides for r = 1 with the one
introduced by Whitney [87].

Finally we have to show, that our finite element differential forms spaces PrΛ
k(T )

and P−
r Λk(T ) not only inherit the de Rham complex, but also approximate HΛk (Ω).
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This means, for every ω ∈ HΛk (Ω) we need to give approximations ωh ∈ PrΛ
k(T ) or

ωh ∈ P−
r Λk(T ), such that the error, measured in a certain norm, tends to zero, when we

refine the mesh T successively. As usually, we will define a global projection operator by
means of local elementwise operators. The characterization of the dual spaces PrΛ

k(T )∗

and P−
r Λk(T )∗ in Theorem 2.2.1 shows that for 0 ≤ k ≤ n, r > 0, ω ∈ PrΛ

k(T ) is
uniquely determined by the quantities

∫

f

trT,f ω ∧ η, η ∈ P−
r+k−dim fΛdim f−k(f), f ∈ ∆T (2.44)

and ω ∈ P−
r ΛK(T ) is uniquely determined by the quantities

∫

f

trT,f ω ∧ η, η ∈ Pr+k−dim f−1Λ
dim f−k(f), f ∈ ∆T. (2.45)

Therefore we can define local projection operators Πk
r : Λk (T ) 7→ PrΛ

k(T ) and

Πk,−
r : Λk (T ) 7→ P−

r Λk(T ) by requiring:

∫

f

trT,f (ω − Πk
rω) ∧ η = 0, η ∈ P−

r+k−dim fΛdim f−k(f), f ∈ ∆T

and ∫

f

trT,f (ω − Πk,−
r ω) ∧ η = 0, η ∈ Pr+k−dim f−1Λ

dim f−k(f), f ∈ ∆T.

This gives the global projection operators, called canonical projection operators, again
denoted with Πk

r and Πk−
r :

(Πk
rω)|T = Πk

rω|T and (Πk,−
r ω)|T = Πk,−

r ω|T . (2.46)

For these we can prove standard interpolation error estimates [3, Theorem 5.3].

Theorem 2.2.5. Let Th be a family of triangulations of Ω indexed by the discretization
parameter

h = max
T∈T

diamT.

We assume mesh regularity, i.e. there exists a constant Cr > 0 such that

|h|n ≤ Cr|T |, ∀T ∈ Th.

Denote by Πh the canonical projection for Λk (Ω) onto either PrΛ
k(T ) or P−

r+1Λ
k(T ).

Let 1 ≤ p ≤ ∞ and n−k
p

< r + 1. Then Πh extends boundedly to W s,pΛk (Ω), and there
exists a constant C independent of h, such that

‖ω − Πhω‖L2Λk(Ω) ≤ Chmin(s,r+1) ‖ω‖W s,pΛk(Ω) .
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The larger the degree k of the form the less smoothness need to be assumed. As
in the standard finite element theory we get best approximation results without such
smoothness assumption by using Clement interpolation operators [21]. This yields the
following approximation estimate (see [4, page 338] and [4, Theorem 5.8]).

Theorem 2.2.6. Let Th be a family of triangulations of Ω indexed by the discretization
parameter

h = max
T∈T

diamT.

We assume mesh regularity, i.e. there exists a constant Cr > 0 such that

|h|n ≤ Cr|T |, ∀T ∈ Th.

Assume the Λk
h (T ) is either PrΛ

k(T ) or P−
r+1Λ

k(T ). Let 1 ≤ p ≤ ∞ and n−k
p

< r + 1.
Then there is a constant C independent of h, such that

inf
ω∈Λk

h(T )
‖ω − ωh‖L2Λk(Ω) ≤ Chmin(s,r+1) ‖ω‖W s,pΛk(Ω) .

Since the Hodge operator is an isometry we obtain from Theorem 2.2.6 an approxima-
tion result for the approximations of n − k-forms in the finite element differential form
spaces PrΛ

n−k and P−
r Λn−k.

Corollary 2.2.7. Let Th be a family of triangulations of Ω indexed by the discretization
parameter

h = max
T∈T

diamT.

We assume mesh regularity, i.e. there exists a constant Cr > 0 such that

|h|n ≤ Cr|T |, ∀T ∈ Th.

Assume the Λk
h (T ) is either ⋆PrΛ

n−k(T ) or ⋆P−
r+1Λ

n−k(T ). Let 1 ≤ p ≤ ∞ and n−k
p

<
r + 1. Then there is a constant C independent of h, such that

inf
ωh∈Λk

h(T )
‖ω − ωh‖L2Λk(Ω) ≤ Chmin(s,r+1) ‖ω‖W s,pΛk(Ω) .

More explicit definitions of interpolation operators rest upon certain choices of ba-
sis functionals spanning the local degrees of freedom spaces W k

r (T, f) and W k,−
r (T, f).

By Theorem 2.2.1 this is equivalent to fixing a basis of the local polynomial spaces
P−

r+k−dim fΛdim f−k(f) and Pr+k−dim f−1Λ
dim f−k(f). We can conclude that the defini-

tion of the finite element differential forms (2.2.2) allow to choose between different basis
functions. Examples are hierarchical basis functions or problem adapted basis functions
that give small condition numbers for the stiffness matrices.

Another important property of these canonical interpolation operators is the commu-
tativity with exterior derivatives [3, Lemma 5.2]:
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2.2 Discrete Differential Forms

Lemma 2.2.8. The following four diagrams commute:

Λk (Ω)
d−−−−→ Λk+1 (Ω)

Πk
r

y
yΠk+1

r−1

PrΛ
k(T )

d−−−−→ Pr−1Λ
k+1(T )

Λk (Ω)
d−−−−→ Λk+1 (Ω)

Πk
r

y
yΠk+1,−

r

PrΛ
k(T )

d−−−−→ P−
r Λk+1(T )

Λk (Ω)
d−−−−→ Λk+1 (Ω)

Πk,−
r

y
yΠk+1,−

r

P−
r Λk(T )

d−−−−→ P−
r Λk+1(T )

Λk (Ω)
d−−−−→ Λk+1 (Ω)

Πk,−
r

y
yΠk+1

r−1

P−
r Λk(T )

d−−−−→ Pr−1Λ
k+1(T )

It is Theorem 2.2.5 and Lemma 2.2.8 that finally justify the name finite element
differential form spaces for the spaces PrΛ

kT and P−
r ΛkT . Theorem 2.2.5 establishes

standard finite element approximation estimates. A “corollary” of Lemma 2.2.8 says that
the finite element differential forms spaces PrΛ

kT and P−
r ΛkT are not only contained in

the Sobolev spaces of differential forms HΛk (Ω), but also that the cohomology spaces
of differential forms and finite element differential forms have the same dimensions [4,
Section 5.5]. The proof is based on so-called smoothed projection operators that are
defined for the spaces HΛk (Ω) and commute with the exterior derivative [4, Theorem
5.9]. With these one deduces the isomorphy of the cohomology spaces of differential
form and finite element differential forms from the classical result for Whitney forms.
We refer to [4, Section 5.5] for the detailed argumentation. Both PrΛ

k(T ) and P−
r Λk(T )

deserve the name conforming discrete differential forms. One recognized advantage of
this abstract treatment of finite element spaces is a unifying convergence analysis for
general second order boundary value problems, including Poisson-type and Maxwell-
type problems [35]. It is the notion of the Hodge Laplacian d δ+ δ d, that unifies many
common second order differential operators. Hence, studying source problems, eigenvalue
problems and preconditioning for this Hodge Laplacian simultaneously shall cover many
different problems. We refer to [3] for a detailed discussion. Many Hodge Laplacian
problems in R

2 and R
3 have been subject to intensive research before. It is thus not

surprising that in the cases R
2 and R

3 the finite element differential forms PrΛ
k and

P−
r Λk correspond to classical finite element spaces (see Tables 2.4 and 2.5).

Furthermore, there exist finite element differential forms spaces on hexahedral triangu-
lations [36, page 276] and finite element differential forms spaces with non-homogeneous
polynomial degree [36, page 273]. All these spaces can be considered as name finite
element differential form spaces, since they feature both finite element approximation
properties, like those in Theorem 2.2.5, and the de Rham cohomolgy (2.14) of smooth
differential forms. We close this section with a discussion of lowest order finite element
differential forms spaces P−

1 Λk also called Whitney forms, due to Whitney [87].
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k Λk
h (T ) Classical finite element space

0 PrΛ
0(T ) Lagrange elements of degree ≤ r [19]

1 PrΛ
1(T ) Brezzi-Douglas-Marini H(div,Ω) elements of degree ≤ r [15]

2 PrΛ
2(T ) discontinuous elements of degree ≤ r

0 P−
r Λ0(T ) Lagrange elements of degree ≤ r [19]

1 P−
r Λ1(T ) Raviart-Thomas H(div,Ω) elements of degree ≤ r − 1 [73]

2 P−
r Λ2(T ) discontinuous elements of degree ≤ r − 1

Table 2.4: Correspondence between finite element differential forms and classical finite
element spaces for R

2.

k Λk
h (T ) Classical finite element space

0 PrΛ
0(T ) Lagrange elements of degree ≤ r [19]

1 PrΛ
1(T ) Nédélec 2nd kind H (curl,Ω) elements of degree ≤ r [67]

2 PrΛ
2(T ) Nédélec 2nd kind H(div,Ω) elements of degree ≤ r [67]

3 PrΛ
3(T ) discontinuous elements of degree ≤ r

0 P−
r Λ0(T ) Lagrange elements of degree ≤ r [19]

1 P−
r Λ1(T ) Nédélec 1st kind H (curl,Ω) elements of degree ≤ r − 1 [66]

2 P−
r Λ2(T ) Nédélec 1st kind H(div,Ω) elements of degree ≤ r − 1 [66]

3 P−
r Λ3(T ) discontinuous elements of degree ≤ r − 1

Table 2.5: Correspondence between finite element differential forms and classical finite
element spaces for R

3.
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d-simplex fd basis forms

(f0
i ) λi

(f0
i , f

0
j ) λi gradλj − λj gradλi

(f0
i , f

0
j , f

0
k ) λi gradλj × gradλl − λj gradλi × gradλl + λl gradλi × gradλj

(f0
i , f

0
j , f

0
k , f

0
l ) vol(f3)−1, f3 = (f0

i , f
0
j , f

0
k , f

0
l )

Table 2.6: Vector correspondences of basis forms of Whitney forms in R
3, k-simplices

are specified by their k vertices.

Whitney Forms

Recall that ∆k(T ) is the set of all k-simplices of T . In words, ∆0(T ) is the set of vertices,
∆1(T ) the set of edges etc. Additionally, Nk denotes the cardinality of ∆kT , i.e. N0 is
the number of vertices, N1 the number of edges etc. We impose an arbitrary numbering
on k-simplices of the mesh T , i.e.

∆k(T ) = (fk
i )Nk

i=1, fk
i k-simplex.

The dual space P−
1 Λk(T )∗ is then spanned by the integral values on all k-simplices:

P−
1 Λk(T )∗ ∼= (lki )Nk

i=1, with lki (ω) :=

∫

fk
i

ω fk
i ∈ ∆k(T ). (2.47)

The degrees of freedom l0i of P−
1 Λ0(T ) are point evaluations on all vertices, the degrees

of freedom l1i of P−
1 Λ1(T ) are line integrals on all edges etc. The basis form bki ∈

P−
1 Λk(T ) ⊂ HΛk (Ω) dual to the degrees of freedom lki can be expressed in terms of

the barycentric coordinate functions λi of n-simplices T and their gradients dλi. If I =
(I0, . . . Ik) denotes the index set of the vertices f0

I0
, . . . f0

Ik
of some k-simplex fk

i ∈ ∆k(T ),
then [4, Formula 4.3]:

bfk
i

:= bki :=

k∑

j=0

(−1)jλIj

k∧

l=1,l 6=j

dλIl
. (2.48)

The basis forms b0i , associated to vertices f0
i , are the barycentric coordinate functions

λi. For a basis form b1i , associated to an edge f1
i that is oriented from vertex f0

I1
to f0

I2
we get:

b1i = λI1 dλI2 − λI2 d λI1.

In table 2.6 we list the corresponding vector representations of basis forms in R
3. With

this it follows directly from Stokes law that the restriction of the discrete exterior derivate
to Whitney forms

d : P−
1 Λk(T ) 7→ P−

1 Λk+1(T )
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can be represented as incidence matrix Dk ∈ R
Nk+1×Nk :

(Dk)i,j := D
fk

j

fk+1
i

:=

∫

∂fk+1
i

bkj =





0 fk
j 6⊂ ∂fk+1

i

1 fk
j ⊂ ∂fk+1

i , induced orient. coincide

−1 fk
j ⊂ ∂fk+1

i , induced orient. don’t coincide

.

(2.49)
These incidence matrices can be used to find a recursive definition of the basis forms.
For a k-simplex fk and a k − 1-simplex fk−1 with fk−1 ⊂ ∂fk let λfk−fk−1

denote the
barycentric coordinate function associated to that vertex of fk that is not in fk−1. Then
we have [12, Definition 23.1]:

bf0
i

= b0i = λi,

bf1
i

= b1i =

N0∑

j=1

(D0)i,j dλf1
i −f0

j d b0j =
∑

f0∈∆0(T )

Df0

f1
i

λf1
i −f0

d bf0 ,

bf2
i

= b2i =

N1∑

j=1

(D1)i,jλ
f2

i −f1
j d b1j =

∑

f1∈∆1(T )

Df1

f2
i

λf2
i −f1

d bf1 ,

bf3
i

= b3i = . . .

and in general

bfk
i

= bki =

Nk−1∑

j=1

(Dk)i,jλ
fk

i −fk−1
j d bk−1

j =
∑

fk−1∈∆k−1(T )

Dfk−1

fk
i

λfk
i −fk−1

d bfk−1 . (2.50)

By the definition of the incidence matrices the summation over all k−1 simplices reduces
to a summation over those k−1-simplices that are adjacent with k-simplex fk

i , i.e (2.50)
is a well determined formula. See Figure 2.1 for a sketch. In essence the lowest order
differential forms P−

1 Λk(T ) are represented by numbers associated to each k-simplex
while exterior derivatives are represented as incidence matrices. This idea appears very
frequently in the literature when it comes to discretization of problems formulated in
terms of grad, curl or div-operators. Certain finite volume schemes [88], the mimetic
finite differences [45,46], the cell method [54], the finite integration technique [20,79,86]
and the discrete exterior calculus [24] are very closely related to Whitney forms, even
though some of these methods are derived completely decoupled from the differential
forms or the finite element framework.

2.2.2 Non-Conforming Discrete Differential Forms

Conforming finite element spaces for 0-forms exhibit global continuity. On the other hand
there exist competitive Galerkin methods for scalar problems that are based on approxi-
mation spaces that do not enforce any kind of global continuity [2]. Such Discontinuous
Galerkin methods have been successfully applied to various kinds of second order bound-
ary value problems including source and eigenvalue problems for Maxwell [16,38,40].
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f0
i

f0
j

f0
k

f0
l

f1
k

Figure 2.1: Sketch on recursive definition of Whitney basis forms: bf1
k

= λi dλj − λj dλi

according to (2.48) or bf1
k

= bf0
i

dλf1
k
−f0

i − bf0
j

dλf1
k
−f0

j according to (2.50).

In light of these results we define non-conforming approximation spaces for differential
forms.

Definition 2.2.9. Let r ≥ 0. The space of non-conforming discrete differential forms is

Pd
r Λk(T ) := {ω ∈ L2Λk (Ω) , ω|T ∈ PrΛ

k(T )}.

In contrast to conforming discrete differential forms the case r = 0, i.e. piecewise
constant approximation, is included here. As for the conforming spaces we have standard
approximation estimates for non-conforming discrete differential forms as well:

Theorem 2.2.10. Let Th be a family of triangulations of Ω indexed by the discretization
parameter

h = max
T∈T

diamT.

We assume mesh regularity, i.e. there exists a constant Cr > 0 such that

|h|n ≤ Cr|T |, ∀T ∈ Th. (2.51)

Let 1 ≤ p ≤ ∞ and n−k
p

< r + 1. There is a constant C independent of h, such that

inf
ωh∈Pd

r Λk(T )
‖ω − Πhω‖L2Λk(Ω) ≤ Chmin(s,r+1) ‖ω‖W s,pΛk(Ω) .

Proof. The assertion follows directly from Theorem 2.2.5 and Corollary 2.2.7.

Note that the elements of Pd
r Λk(T ) do not have a well-defined exterior derivative.

Only its restriction to n-simplices is well-defined

(dT ωh)|T := dωh|T
. (2.52)
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Further, we get a commuting diagram for r ≥ 2:

PrΛ
k(T )

d−−−−→ Pr−1Λ
k+1(T )

i

y
yi

Pd
r Λk(T )

dT−−−−→ Pd
r−1Λ

k+1(T ),

where i denotes the inclusion map PrΛ
k 7→ Pd

r Λk. Since PrΛ
k(T ) is subset of Pd

r Λk(T )
we can not use the cohomology groups of conforming discrete differential forms to char-
acterize those of non-conforming discrete differential forms. Nevertheless we deduce
dT dT = 0, which justifies the name non-conforming discrete differential forms. In Chap-
ter 4, we define exterior derivatives of non-conforming discrete differential forms in the
sense of distributions. Thereby the de Rham complex is lost but better approximation
properties are attained.

2.2.3 Constraint Preserving Finite Volume Schemes

For the sake of completeness we attach here a discussion on so-called constraint preserv-
ing finite volume schemes. Such schemes are of great importance for the treatment of
conservation laws.

We consider the following generic model problem for some time dependent k-form
ω ∈ Λk (Ω):

∂tω + d g(ω) = 0, (2.53)

where g is a mapping Λk (Ω) 7→ Λk−1 (Ω). For simplicity we consider here only the
Cauchy problem and assume that ω(t) is compactly supported. In many applications,
g is defined in a pointwise sense and for k = n our model problem (2.53) is a standard
conservation law, corresponding to

∂tu + div g(u) = 0.

We readily deduce that the evolution of the exterior derivative of the solution ω is
constant:

dω(t) = dω(0) ∀t. (2.54)

Moreover, by the common assumption of compactly supported ω(t) and an application
of the Leibniz rule (2.11), we get for any constant c ∈ P0Λ

n−k(Rn):
∫

Rn

ω(t) ∧ c =

∫

Rn

ω(0) ∧ c ∀t. (2.55)

In R
3 the property (2.54) corresponds either to the curl constraint (k = 1) or the div-

constraint (k = 2). The property (2.55) corresponds to a preservation of total mass of
each component of a vector representation of ω. Since this holds for any representation,
i.e. choice of basis of R

3, this is a global metric independent constraint.
Finding approximations to (2.53) that preserve both the constraints (2.55) and (2.54)

has attracted considerable attention in the finite volume literature [23,28,44,59,62,84,85].
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2.2 Discrete Differential Forms

In classical finite volume schemes, both scalar and vector valued functions are represented
by degrees of freedom associated to cell centers. While the preservation of total mass is
the standard feature of finite volume schemes, the preservation of the constraint (2.54)
requires sophisticated modifications of standard finite volume schemes. Finite volume
schemes that preserve certain approximated values of the exterior derivative are called
constraint preserving finite volume schemes.

Constraint Preserving Finite Volume Schemes on Cartesian Meshes

In order to get a rough idea on constraint preserving finite volume schemes the main
principles of such schemes shall be sketched here. In contrast to earlier presentations,
e.g. those in [59,62,84], we provide here a unifying framework, that allows for constraint
preserving finite volumes schemes for k-forms in R

n. An appropriate counterpart of
the de Rham complex (2.13) is at the bottom of this unifying framework. To keep the
presentation simple we will nevertheless stick to the case n = 3. But it will be clear that
this framework extends straight forwardly to the general case.

We consider a uniform Cartesian mesh in R
3 with mesh sizes ∆x, ∆y and ∆z in x, y

and z-directions respectively. It consists of cells [xi− 1
2
, xi+ 1

2
)×[yj− 1

2
, yj+ 1

2
)×[zk− 1

2
, zk+ 1

2
),

centered at mesh points (xi, yj, zk) = (i∆x, j∆y, k∆z), (i, j, k) ∈ Z
3. We introduce the

averaging operators

µxaI,J,K :=
aI+ 1

2
,J,K + aI− 1

2
,J,K

2
,

µyaI,J,K :=
aI,J+ 1

2
,K + aI,J− 1

2
,K

2
,

µzaI,J,K :=
aI,J,K+ 1

2
+ aI,J,K− 1

2

2

(2.56)

and difference operators:

δxaI,J,K :=
aI+ 1

2
,J,K − aI− 1

2
,J,K

∆x
,

δyaI,J,K :=
aI,J+ 1

2
,K − aI,J− 1

2
,K

∆y
,

δzaI,J,K :=
aI,J,K+ 1

2
− aI,J,K− 1

2

∆z
.

(2.57)

With these we define the following approximation ∂h,x, ∂h,y and ∂h,z to ∂x, ∂y and ∂z:

∂h,x := δxµyµz,

∂h,y := µxδyµz,

∂h,z := µxµyδz.

Next, we need to introduce scalar and vectorial finite volume spaces with degrees of
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freedoms associated to cell centers (xi, yj , zk) or vertices (xi+ 1
2
, yj+ 1

2
, zk+ 1

2
):

Sc := {ui,j,k ∈ R, (i, j, k) ∈ Z
3},

Sv := {ui,j,k ∈ R, (i+
1

2
, j +

1

2
, k +

1

2
) ∈ Z

3},

Vc := {ui,j,k = (u1
i,j,k, u

2
i,j,k, u

3
i,j,k) ∈ R

3, (i, j, k) ∈ Z
3},

Vv := {ui,j,k = (u1
i,j,k, u

2
i,j,k, u

3
i,j,k) ∈ R

3, (i+
1

2
, j +

1

2
, k +

1

2
) ∈ Z

3}.

(2.58)

There are two important remarks on the previous definitions. First we see that

∂h,x, ∂h,y, ∂h,z : Sc 7→ Sv,

∂h,x, ∂h,y, ∂h,z : Sv 7→ Sc

and second, we have a commuting property:

∂h,x∂h,y = ∂h,y∂h,x,

∂h,z∂h,x = ∂h,x∂h,z,

∂h,y∂h,z = ∂h,z∂h,y.

Finally, we define the discrete counterparts of div, curl and grad:

divh uI,J,K := ∂h,xu
1
I,J,K + ∂h,yu

2
I,J,K + ∂h,zu

3
I,J,K,

curlh uI,J,K :=



∂h,yu

3
I,J,K − ∂h,zu

2
I,J,K

∂h,zu
1
I,J,K − ∂h,xu

3
I,J,K

∂h,xu
2
I,J,K − ∂h,yu

1
I,J,K


 ,

gradh uI,J,K :=



∂h,xuI,J,K

∂h,yuI,J,K

∂h,zuI,J,K


 .

(2.59)

With these we get the two cochain complexes:

Sc
gradh−→ Vv

curlh−→ Vc
divh−→ Sv (2.60)

and

Sv
gradh−→ Vc

curlh−→ Vv
divh−→ Sc. (2.61)

Analogue sequences can be found in R
2. From the cochain complexes (2.60) and (2.61)

we get the appropriate finite volume spaces and definitions of approximative exterior
derivatives for the discretization of our generic model problem (2.53). If we approximate,
e.g. in the case k = 1, ω by degrees of freedom associated to vertices (cell centers), we
need to represent the discrete counterpart gh of g by degrees of freedoms on the cell
centers (vertices). Then, the quantity curlh ωh is automatically preserved during the
evolution. Note, that a proper definition of the discrete counterpart of g builds on a
proper choice of so-called numerical flux functions [53], since the approximation of ω
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has no well defined values at vertices (cell centers). Because we concentrate here on
the preservation of constraints, we do not discuss numerical flux functions in detail and
refer to [55–58] for an extensive study of numerical flux functions within the presented
framework.

Averaging and difference operators (2.56) and (2.57) have been introduced in [62] for
curl-preserving finite volume methods. In [59] this idea is extended to div-preserving
schemes. Similar ideas appeared elsewhere [84]. A comprehensive treatment of constraint
preserving finite volume schemes with average and difference operators seems to be
limited to tensor-product meshes.

Discrete Differential Forms and Preservation of Total Mass

To overcome these limitations we move on to the discretization of our model problem
(2.53) in terms of the Whitney forms introduced in Section 2.2.1. We stay here with
the Whitney forms introduced for simplical triangulations. However, the results hold
for any other triangulation, e.g. quadrilateral meshes for which one can define Whitney
forms.

We consider a simplicial triangulation T and approximate ω and g with Whitney k-
and k − 1-forms ωh ∈ P−

1 Λk(T ) and gh ∈ P−
1 Λk−1(T ). ωh is non-smooth on k − 1-

simplices. Thus, to define gh one has to adapt the idea of numerical fluxes [53] of finite
volume schemes: gh is an expansion in basis forms bk−1

i :

gh =

Nk−1∑

i=1

gib
k−1
i

with coefficients gi ∈ R, associated to k − 1-simplices fk−1
i . Ideally we would take gi to

be
∫
fk−1

i
g(ωh). But since

∫
fk−1

i
g(ωh) is not well-defined, one defines the coefficients gi

as functions of the values
∫
fk−1

i
g(ωh|fn

j
) instead:

gi = gi

(∫

fk−1
i

g(ωh|fn
1
), . . .

∫

fk−1
i

g(ωh|fn
Nn

)

)
,

which indeed are well defined. For pointwise defined g the value
∫
fk−1

i
g(ωh|fn

j
) is non-

zero only if n-simplex fn
j is adjacent with fk−1

i . For k = n this gives the standard finite

volume scheme with numerical flux functions gi associates to n − 1 simplices fn−1
j . A

clever choice of flux functions gi for given g is subject to intensive research and shall not
discussed in detail here.

Finally we end up with the discrete problem for ωh ∈ P−
1 Λk(T ):

∂tωh + d gh(ωh) = 0. (2.62)

The solution ωh to the discrete problem (2.62) has the property dωh(t) = dωh(0) since
P−

1 Λk(T ) ⊂ HΛk (Ω) and d d = 0. To show that also the total mass is preserved we
prove the following Lemma.
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Lemma 2.2.11. We consider simplicial triangulations T of Ω ⊂ R
n. T denotes n-

simplices, s is a fixed k − 1-simplex with k ≤ n and s 6⊂ ∂Ω. Let bs denote the Whitney
basis-form (2.48) associated to s, then for all c ∈ P0Λ

k(Rn)

∑

T

∫

T

d bs ∧ c = 0.

Proof. Let Ωs = ∪T :s∈∆k−1(T )T denote the union of all n-simplices that share the k− 1-
simplex s. Then we deduce:

∑

T

∫

T

d bs ∧ c 1.
=

∑

T : s∈∆k−1(T )

∫

T

d bs ∧ c

2.
=

∑

T : s∈∆k−1(T )

∫

∂T

tr∂T (bs ∧ c)

3.
= 0.

See Figure 2.2 for an illustration of the three steps.

1. The support of d bs consists of all n-simplices T with s ∈ ∆k−1(T ).

2. Leibniz rule (2.11) on each n-simplex T and d c = 0.

3. The sum over all n-simplices T can be written as a sum over all (n − 1)-simplices
f with f ⊂ Ωs.

• f ⊂ ∂Ωs: For those facets f with f ⊂ ∂Ωs we have trf bs = 0, since for
Whitney basis forms trf bs = 0 for all f that do not contain s. This follows
because Ωs is the support of bs and trf is single valued for Whitney k−1-forms,
k ≤ n.

• f ⊂ Ω, f 6⊂ ∂Ωs: The integrals over facets f with f ⊂ Ωs, f 6⊂ ∂Ω appear
twice with different signs, since the induced orientations are different for the
two adjacent elements. But since trf (bs ∧ c) = trf bs ∧ trf c is single valued
by the continuity of trf bs and c these integrals vanish as well.

Remark 2.2.12. By the geometrical decomposition of the dual space of the space of local
high order finite element differential forms [3, page 53–54] we have more generally:

∑

T

∫

T

d bs ∧ c = 0,

for all local basis forms bs ∈ PrΛ
k(T ) or bs ∈ P−

r Λk(T ) associated to simplex s and
c ∈ Pd

0 Λn−k(Rn).

28



2.2 Discrete Differential Forms

Ωs

s

Figure 2.2: Illustration for the proof of Lemma 2.2.11. In this situation, k = 1 and n = 2,
the k − 1-simplex s is a vertex and bs is the barycentric coordinate function
associated to vertex s. The gradients in the surrounding elements scaled by
the volumes of the elements sum up to zero. The gradients are depicted with
black arrows.

As a corollary we get mass preservation for the Whitney form discretization (2.62).
We only need to show ∑

T

∫

T

d gh(ωh) ∧ c = 0,

for arbitrary constant n− k forms c ∈ P0Λ
n−k(Rn). By the definition of gh we have the

expansion gh(ωh) =
∑

s∈∆k−1(T ) asbs with real valued coefficients as = as(ωh, g). Then
we see immediately

∑

T

∫

T

d gh(ωh) ∧ c =
∑

T

∫

T

∑

s

as d bs ∧ c =
∑

s

as

∑

T

∫

T

d bs ∧ c = 0.

Since only a Cauchy problem has been considered we do not encounter the case s ∈ ∂Ω.
For boundary value problems we will obtain preservation of mass modulo an in- and
outflow flux of mass across the boundary.

Remark 2.2.13. The proof of Lemma (2.2.11) uses canonical properties of lowest or-
der Whitney forms. Therefore the assertion on automatic mass preservation of the
discretization of (2.53) with Whitney forms holds also for other than simplicial triangu-
lations.

In light of these results, a discretization of (2.53) in terms of conforming differen-
tial forms seems to be the method of choice when it comes to constraint preservation.
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Obviously, a big drawback is the non-standard degrees of freedom, that are difficult to
implement in usual finite volume codes.

Constraint Preserving Finite Volume Schemes and Discrete Differential Forms

Now, we will explain how to deduce finite volume schemes from our Whitney forms
discretization (2.62), that allow for a notion of exterior derivatives. This gives finite
volume schemes preserving an approximation of the constraint (2.54).

In light of remark 2.2.13, here and in the subsequent discussion, T stands for finite
volume cells of the triangulation T . On simplicial meshes cells are the n-simplices. Our
discrete differential forms spaces Pd

0 Λk(T ) are the counterparts to the cell centered finite
volume spaces introduced in (2.58).

Let Ah : Λk (Ω) 7→ Pd
0 Λk(T ) denote the standard finite volume averaging operator that

assigns a piecewise discontinuous differential form ω̃h ∈ Pd
0 Λk(T ) to each differential form

ω such that
∫
T
ω̃h :=

∫
T
Ahω =

∫
T
ω, for all cells T . Applying the averaging operator

Ah to both sides of equation (2.62), yields the following scheme for ωh ∈ P−
1 Λk(T ):

∂tω̃h +Ah d gh(ωh) = 0.

If we assume further, that the numerical flux gh ∈ P−
1 Λk−1(T ) is not a function of

ωh ∈ P−
1 Λk−1(T ) but a function of ω̃h ∈ Pd

0 Λk(T ), i.e. gh(ωh) = gh(ω̃h), we get a
finite volume scheme for ω̃h ∈ Pd

0 Λk(T ) formulated entirely in terms of cell centered
unknowns:

∂tω̃h +Ah d gh(ω̃h) = 0. (2.63)

Clearly, the averaging procedure does not destroy the preservation of constraint (2.55):
the scheme (2.63) preserves the total mass of the solution ω̃h. Moreover, we can find
approximations dh of exterior derivatives d such that even dh ω̃h(t) is constant: We call
an operator dh defined on Pd

0 Λk(T ) approximative exterior derivative, if there exists a
linear operator Ch defined on P−

1 Λk+1(T ) such that:

dhAhωh = Ch dωh, ∀ωh ∈ P−
1 Λk(T ). (2.64)

For ω̃h ∈ Pd
0 Λk(T ) solving (2.63) we deduce that dh ω̃h(t) is constant in time, since

dhAh d gh(ω̃h) = Ch d d gh(ω̃h) = 0. (2.65)

If there exists a right inverse A+
h : Pd

0 Λk(T ) 7→ P−
0 Λk(T ) of Ah, i.e. AhA

+
h = id, then

we have for ω̃h ∈ Pd
0 Λk

dh ω̃h = Ch dA+
h ω̃h. (2.66)

The right inverse A+
h permits the identity AhA

+
hAh = Ah, hence A+

h is a mass preserving
reconstruction operator:

∫

T

ω̃h =

∫

T

Ahω̃h =

∫

T

AhA
+
hAhω̃h =

∫

T

A+
h ω̃h.
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From that perspective the representation (2.66) reads as: The approximative exterior
derivative dh of ω̃h is a linear operator of the well defined exterior derivative of a re-
construction of ω̃h in the space P−

1 Λk(T ). How such approximative exterior derivatives
can be actually constructed is indicated by (2.66). Provided that a right inverse of A+

h

is found, we could choose any Ch, define dh by (2.66) and try to show that (2.64) holds
true. Note that this procedure simplifies a lot, if we restrict the definition of dh to dis-
crete forms on submeshes. Since dωh is piecewise constant, a submesh should contain
at least two elements.

Let us illustrate this last idea for structured Cartesian and unstructured triangular
meshes.

1. Discrete divergence on Cartesian meshes
Assume a Cartesian mesh in R

2. The submesh for which we define an approxi-
mative exterior derivative consists of the four cells sharing the same vertex. The
submesh and the numbering schemes are depicted in figure 2.3. The degrees of

1 2

3 4 5

6 7

8 9 10

11 12

1 2

3 4

Figure 2.3: Numbering of edges and cells.

freedom of discrete differential 2-forms are associated to the cells, those of 1-forms
to the edges. The matrix representation D2 of div reads:

D2 =




1 0 −1 1 0 −1 0 0 0 0 0 0
0 1 0 −1 1 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 −1 1 0 −1 0
0 0 0 0 0 0 1 0 −1 1 0 −1


 .

The degrees of freedom of averaged 1-forms are associated to the cells as well. In
here we first list all the second components sorted according to the corresponding
square number and then the first components. The matrix A representing the
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averaging Ah is:

A =
1

2




−1 0 0 0 0 −1 0 0 0 0 0 0
0 −1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 0 −1
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0




.

From this, one computes a right inverse:

A+ = AT (AAT )−1 =
1

3




−4 0 2 0 0 0 0 0
0 −4 0 2 0 0 0 0
0 0 0 0 4 −2 0 0
0 0 0 0 2 2 0 0
0 0 0 0 −2 4 0 0
−2 0 −2 0 0 0 0 0
0 −2 0 −2 0 0 0 0
0 0 0 0 0 0 4 −2
0 0 0 0 0 0 2 2
0 0 0 0 0 0 −2 4
2 0 −4 0 0 0 0 0
0 2 0 −4 0 0 0 0




.

The first column says that a discontinuous function that has vanishing first com-
ponent everywhere and non-vanishing second component only on the first cell is
reconstructed as discrete differential form that has non-vanishing first components
on the first and third cell. Nevertheless the averages of the reconstruction are the
same. Next, we compute the matrix representation of divA+

h :

D2A
+ =

1

3




−2 0 4 0 −2 4 0 0
0 −2 0 4 −4 2 0 0
−4 0 2 0 0 0 −2 4
0 −4 0 2 0 0 −4 2


 .

Recall that the ith line corresponds to the divergence on the ith square. The
divergence on the 1st line for example is a finite difference stencil using the second
components on cells 1 and 3 and the first components on 1 and 2. It is now
very natural to assign the average of the four divergence values to the vertex
that is shared by all four cells, i.e. we propose a Ch with the following matrix
representation:

C =
1

4

(
1 1 1 1

)
.
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2.2 Discrete Differential Forms

Next, we define the matrix representation of dh:

Dh = CD2A
+ =

1

2

(
−1 −1 1 1 −1 1 −1 1

)

and check that indeed
DhA = CD2.

We want to emphasize, that this is exactly the same stencil we would get in terms
of averaging and difference operators in (2.59). Such calculations can be done in
principle for any kind of mesh, once we have finite element like discrete differential
forms on such meshes.

In the general case of unstructured grids the explicit computation of the right
inverse A+

h does not seem to be very satisfactory albeit realizable.

2. Discrete divergence on triangular meshes
Let T , f and e denote the oriented n-, n − 1-, and n − 2-simplices (cells, faces,
edges) of a simplicial mesh. In light of the previous example we would like to define
approximative exterior derivatives dh that assign values to vertices on the basis of
the discrete form values on surrounding cells. For a fixed vertex v we therefore
consider Ch to be the average value over all cells that share v, i.e.

Ch div ωh :=

∑
T : v∈∆(T )

∫
T

divωh∑
T : v∈∆(T ) |T |

, ωh ∈ P−
1 Λn−1(T ).

Then Gauss law and normal continuity of ωh ∈ P−
1 Λn−1(T ) give

Ch div ωh =

∑
T : v∈∆(T ) D

ft,v

T

∫
fT,v

ωh|T∑
T : v∈∆(T ) |T |

, (2.67)

where fT,v is that face of T that is opposite to vertex v and D
fT,v

T the incidence
matrix of cells and faces (2.49). |T | is the volume of n-simplex T . We observe
that the right hand side of (2.67) is also well-defined for ωh ∈ Pd

0 Λk(T ). However,
because of (2.48) and the midpoint quadrature rule

∫

f eT,v

(
AhbfT,v

)
| eT

=

{
n

n+1 T = T̃

0 T 6= T̃

this suggests to define

divh ω̃h :=
n+ 1

n
∑

T : v∈∆(T ) |T |
∑

T :v∈∆(T )

D
fT,v

T

∫

fT,v

ω̃h|T .

So far, divh is just a candidate definition for the discrete divergence. It remains to
prove

divh Ahωh = Ch div ωh, ∀ωh ∈ P−
1 Λn−1(T ).

The crucial step is the following Lemma.
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Lemma 2.2.14. For a fixed vertex v and n− 1-form ωh ∈ P−
1 Λn−1(T ):

∑

T : v∈∆(T )

∫

T

div ωh =
n+ 1

n

∑

T : v∈∆(T )

D
fT,v

T

∫

fT,v

Ahωh|T

Proof. Let xT denote the barycenter of a n-simplex T , then Ahωh|T = ωh(xT )χT ,

with χT the characteristic function of T . The discrete n−1-form ωh ∈ P−
1 Λn−1(T )

is an expansion in basis forms bf associated to n − 1-simplices f with coefficients
(ωh)f :

ωh =
∑

f

(ωh)f bf .

For barycentric coordinate functions λf−e associated to the vertex in f that is
opposite to e we can write

bf =
∑

e

De
fλ

f−e d be,

with incidence matrix De
f of edges and faces and basis forms be associated to edges

e (2.50). Then we compute:

∫

fT,v

χTωh(xT ) =
∑

f∈∆(T )

(ωh)f

∫

fT,v

χT bf (xT )

= (ωh)fT,v

n

n+ 1
+

∑

f∈∆(T ),f 6=fT,v

(ωh)f

∫

fT,v

χT bf (xT )

= (ωh)fT,v

n

n+ 1
+

∑

f∈∆(T ),f 6=fT,v

(ωh)f
∑

e

∫

fT,v

1

n+ 1
De

f d be

= (ωh)fT,v

n

n+ 1
+

∑

f∈∆(T ),f 6=fT,v

(ωh)f
∑

e

1

n+ 1
De

fT,v
De

f .

For each n− 1-simplex f in the last sum exists only one n− 2-simplex e such that

De
fT,v

De
f 6= 0. Further, if we multiply this equality with D

fT,v

T and sum over all

n-simplices T sharing vertex v, there is exactly one other n-simplex T̃ that shares
both f and e, i.e. De

f eT,v
De

f 6= 0. But for these we deduce (see Figure 2.4).

(
D

fT,v

T De
fT,v

+ D
f eT,v

eT
De

f eT,v

)
=
(
D

fT,v

T De
fT,v

+ D
f eT ,v

eT
De

f eT,v

)
+
(
Df

T + Df
eT

)
De

f

=
(
D

fT,v

T De
fT,v

+ Df
TDe

f

)
+
(
D

f eT,v

eT
De

f eT ,v
+ Df

eT
De

f

)

=
∑

f

Df
TDe

f +
∑

f

Df
eT
De

f = 0,
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where we used first that positive orientation of n-simplices T implies
(
Df

T + Df
eT

)
=

0 and second that d ◦ d = 0 and that any a n− 2 subsimplex e of an n-simplex T
is subsimplex of exactly two n− 1 subsimlices of T . That gives:

∑

T : v∈∆(T )

D
fT,v

T

∫

fT,v

χTωh(xT ) =
n

n+ 1

∑

T : v∈∆(T )

D
fT,v

T (ωh)fT,v
.

Hence we can conclude:

∑

T : v∈∆(T )

∫

T

div ωh =
∑

T : v∈∆(T )

D
fT,v

T (ωh)fT,v

=
n+ 1

n

∑

T : v∈∆(T )

D
fT,v

T

∫

fT,v

Ahωh.

T

T̃

fT,v

f

e

f eT,v
v

Figure 2.4: Illustration for the proof of Lemma 2.2.14.
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3 Generalized Advection-Diffusion Problem

3.1 Introduction

In this chapter we introduce the generalized advection-diffusion problem for differen-
tial forms and show that the eddy current model in moving conductors can be formu-
lated within this framework. We also illustrate the main challenges on approximation
of advection-diffusion problems for the example of the well studied scalar advection-
diffusion problems. In light of our motivating example of the eddy current problem
with high magnetic Reynolds number we focus on the case of small diffusion, or equiv-
alently large advection. We conclude that viable numerical methods for such singular
perturbed problems build on practical numerical methods for the limiting case. We
derive adequate boundary conditions and show well-posedness in appropriate spaces.
The following chapters will deal with different discretization strategies of such advection
problems.

Recall the two classical linear transient 2nd-order advection-diffusion problems for an
unknown scalar function u = u(x, t) on a bounded domain Ω ⊂ R

n:

∂tu− εdiv grad u+ β · grad u = f in Ω ,
u = gD on ΓD ,

nΩ · grad u = gN on ΓN ,
u(·, 0) = u0

(3.1)

and

∂tu− εdiv grad u+ div(uβ) = f in Ω ,
u = gD on ΓD ,

nΩ · gradu = gN on ΓN ,
u(·, 0) = u0 .

(3.2)

The non-negative parameter ε ∈ R will be called diffusion constant, β : Ω 7→ R
n stands

for a given smooth vector field and f : Ω 7→ R is a given source function. For div β = 0
problems (3.1) and (3.2) coincide. The boundary splits into two disjoint parts ΓN ∪ΓD =
∂Ω, with ΓN ∩ΓD = { }. gD and gN are the boundary data on ΓD and ΓN . Note that the
advection operators β ·grad u in (3.1) and div(uβ) in (3.2) are the vector representation
of Lie derivatives of 0-forms and n-forms (Table 2.3).

Solving the advection-diffusion problems numerically is usually challenging in the case
of dominant advection, because we encounter a singular perturbation. In the limit
of vanishing diffusion the problem type changes from parabolic to hyperbolic and the
standard methods for parabolic problems usually fail. We refer to [76] and the many
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3 Generalized Advection-Diffusion Problem

references cited therein for an overview of numerical methods for the stationary singularly
perturbed advection-diffusion problems.

It is the notion of the Lie derivative (2.24) that permits generalizations of scalar
advection operators to differential forms. The generalized advection-diffusion problems
for time dependent differential forms are:

∂tω(t) + ε δ dω(t) + γ1 d δ ω(t) + iβ dω(t) + γ2 d iβ ω(t) = ϕ(t) in Ω ⊂ R
n,

trω = ψD on ΓD ,

tr(⋆ dω) = ψN on ΓN ,

ω(0) = ω0

(3.3)

and

∂tω(t) + ε δ dω(t) + γ1 d δ ω(t) − δ jβ ω(t) − γ2 jβ δ ω(t) = ϕ(t) in Ω ⊂ R
n,

trω = ψD on ΓD ,

tr(⋆ dω) = ψN on ΓN ,

ω(0) = ω0 .

(3.4)

These are equations for an unknown time dependent k-form ω(t) ∈ Λk (Ω), 0 ≤ k ≤ n, on
the domain Ω ⊂ R

n. d and iβ are the exterior derivative (2.9) and contraction operator
(2.23). δ and jβ are there formal adjoints (2.31) and (2.32) and ⋆ is the Hodge operator

(2.3). The source term ϕ is a n−k-form. The boundary data ψD and ψN are in Λk (ΓD)
and Λn−k−1 (ΓN ). γ1 and γ2 are non-negative scalar parameters. Depending on the
choice of γ1 and γ2 well-posedness will require additional boundary conditions.

Equations (3.3) and (3.4) are identical if γ2 = 1 and Lβ ω + Lβ ω = 0, compare
(2.33). In Tables 2.2 and 2.3 we listed the operators corresponding to Lβ +Lβ in R

3 and
R

2. Clearly, since δ ω = 0 for ω ∈ Λ0 (Ω) problems (3.1) and (3.2) are generalizations
of problems (3.3) and (3.4). Before we proceed in discussing well-posedness of certain
variational formulations of problems (3.3) and (3.4) we show that the magnetoquasistatic
electrodynamic equations in moving conductors can be formulated as (3.3) and (3.4).

3.2 Magnetoquasistatic Electrodynamic Equations in Moving

Conductors

We consider Ω ⊂ R
3 and Maxwell’s system in the magnetoquasistatic approximation.

This reduced model, also called eddy current model, is a system of equations for the
magnetic field h ∈ Λ1 (Ω), the electric field e ∈ Λ1 (Ω), the magnetic induction b ∈ Λ2 (Ω),
the current density j ∈ Λ2 (Ω) and imposed current density f ∈ Λ2 (Ω):

d e = −∂tb curlE = −∂tB in Ω , (3.5a)

dh = j + f curlH = J + F in Ω , (3.5b)

j = ⋆σ(e− iβ b) J = σ(E + β ×B) in Ω , (3.5c)

⋆µh = b µH = B in Ω . (3.5d)
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Commonly the boundary ∂Ω splits into two disjoint parts Γe ∪ Γh = ∂Ω, Γe ∩ Γh = { }
and one imposes the boundary conditions

tr e = ge n× E = Ge on Γe,

trh = gh n × H = Gh on Γh.
(3.6)

By (3.5a)-(3.5d) these conditions imply

tr(⋆σ−1 d h) + tr(iβ b) = ge + tr(⋆σ−1f) on Γe,

tr(⋆µ−1 d e) = −∂tgh on Γh.

For simplicity we assume in the sequel that the Hodge operator ⋆σ and ⋆µ encodes linear
scalar material laws, i.e. ∫

Ω
e ∧ ⋆σe

′ =
(
e, σ e′

)
Ω

for a uniformly positive σ : Ω 7→ R. Eliminating in system (3.5a)-(3.5d) all fields except
h yields:

∂tµh+ δ σ−1 dh− δ jβ µh = δ σ−1f in Ω,

tr(σ−1 ⋆ dh) − tr(⋆ jβ µh) = ge + trσ−1 ⋆ f on Γe,

trh = gh on Γh,

(3.7)

where we used that iβ b = iβ ⋆µh = − ⋆ jβ µh by (2.32). Solenoidal initial magnetic
induction d b(0) = 0 implies d b(t) = 0 by (3.5a). Hence a solution of the system (3.5a)-
(3.5d) with solenoidal initial magnetic induction d b(0) = 0 is also a solution to the
problem:

∂tµh+ δ σ−1 dh+ γ1 dσ−1 δ h− δ jβ µh− γ2 jβ δ µh = δ σ−1f in Ω,

tr(σ−1 ⋆ dh) − tr(⋆ jβ µh) = ge + trσ−1 ⋆ f on Γe,

trh = gh on Γh,

(3.8)

which is a problem of type (3.4) for the 1-form h.

On the other hand we could introduce a vector potential a ∈ Λ1 (Ω) and scalar poten-
tial φ ∈ Λ0 (Ω) with b = d a and e = −∂ta − dφ. Eliminating all fields except a and φ
yields:

∂ta+ σ−1 δ µ−1 d a+ iβ d a+ dφ = σ−1 ⋆ f in Ω,

− tr(∂ta+ dφ) = ge on Γe,

tr(⋆µ−1 d a) = gh on Γh.

(3.9)

But since for arbitrary λ ∈ Λ0 (Ω) also a′ = a+ dλ and φ′ = φ− ∂tλ yield d a′ = b and
−∂ta

′ − dφ′ = e we could choose here φ = γ1µ
−1 δ a+ γ2 iβ a: if φ 6= γ1µ

−1 δ a+ γ2 iβ a
we could find λ solving the scalar advection-diffusion problem:

∂tλ+ γ1µ
−1 δ d λ+ γ2 iβ dλ = φ− γ1µ

−1 δ a− γ2 iβ a (3.10)
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and get φ′ = γ1µ
−1 δ a′ + γ2 iβ a

′. Hence gauging allows for a problem formulation of
type (3.3):

∂ta+ σ−1 δ µ−1 d a+ iβ d a+ γ1 dµ−1 δ a+ γ2 d iβ a = σ−1f in Ω,

− tr(∂ta+ γ1 dµ−1 δ a+ γ2 d iβ a) = ge on Γe,

tr(⋆µ−1 d a) = gh on Γh.

(3.11)

Once again we would like to stress that different choices for γ1 and γ2 in (3.8) and
(3.11) will require different boundary conditions in order to establish well-posedness in
certain Sobolev-spaces. Actually the boundary conditions (3.6) stated here imply certain
additional conditions. The trace tr commutes with exterior derivative d and we deduce:

tr(d e) = d ge on Γe,

−∂t tr(b) = d ge on Γe,

tr(dh) = d gh on Γh,

tr(⋆σe− ⋆σ iβ b+ f) = d gh on Γh.

(3.12)

We will see that in some cases some of these conditions need to be imposed explicitly.

3.2.1 Perfect Conductor Limit

In the limit σ → ∞ both the formulation (3.8) for the magnetic field h with γ2 = 1 and
the formulation (3.11) for the vector potential a with γ1 = 0 and γ2 = 1 reduce to first
order transport problems:

∂t ⋆µ h+ Lβ ⋆µh = 0 in Ω,

tr(iβ ⋆µh) = ge on Γe,

trh = gh on Γh,

(3.13)

and
∂ta+ Lβ a = 0 in Ω,

− tr(∂ta+ d iβ a) = ge on Γe,

tr(⋆µ−1 d a) = gh on Γh.

(3.14)

The Lie derivative Lβ (2.28) is the derivative of the pullback X∗
t ω(t0) with respect to t

at t = 0, where Xt is the flow induced by β. Hence, the formal solution to a transport
problem on entire R

n, ω ∈ Λk (Rn):

∂tω + Lβ ω(t) = 0 in R
n (3.15)

is given as:
ω(t) = X∗

−tω(0). (3.16)

In the case of a bounded domain Ω ⊂ R
n, the solution also depends on the boundary

values:

(ω(t))x =





(
X∗

−tω(0)
)
x
, Xτ−t(x) /∈ ∂Ω ∀ τ ∈ [0, t];(

X∗
t(x)−t

ω(t(x))
)

x
, Xt(x)−t(x) ∈ ∂Ω.

(3.17)
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If a trajectory through a point x hits the boundary at some time 0 < t(x) ≤ t, the
solution ω at x depends on the values on the boundary. Since tr and pullback X∗

−t do
not commute, we see that the well-posedness of transport problems cannot be guaranteed
by prescribing only the traces: traces determine only the tangential components forms.

3.3 Functional Analytic Framework for Variational Problems

In this section we will give a short review of the functional analytic framework, which
is used to establish existence and uniqueness of solutions to variational formulations of
boundary value problems. The main reference is the textbook [27].

3.3.1 Stationary Problems

LetW and V be normed vector spaces with norms ‖·‖W and ‖·‖V . Further a : W×V 7→ R

is a bounded sesquilinear form, i.e. it satisfies the continuity estimate:

|a (u, v) | ≤ C ‖u‖W ‖v‖V ∀u ∈W,v ∈ V,

and f is a continuous linear form on V , i.e. f ∈ V ′. The following Theorem [27, Theorem
2.6] establishes well-posedness of the variational problem: Find u ∈W such that

a (u, v) = f(v), ∀v ∈ V. (3.18)

Theorem 3.3.1 (Banach-Nečas-Babuška). Let W be a Banach space and let L be a re-
flexive Banach space. L′ is the dual space of L. Let a : W ×L 7→ R be a bounded bilinear
form and let f ∈ L′. Then problem (3.18) is well-posed if and only if:

∃α > 0, inf
u∈W

sup
v∈L

a (u, v)

‖u‖W ‖v‖L

≥ α,

(∀u ∈W, a (u, v) = 0) ⇒ (v = 0).

This Theorem is basically a rephrasing of the open range Theorem and open mapping
Theorem from functional analysis. For the special case W = L the Theorem is also
known as the Lax-Milgram-Lemma [27, Lemma 2.2].

Lemma 3.3.2 (Lax-Milgram). Let V in (3.18) be a Hilbert space, let a : V × V 7→ R be a
bounded bilinear form and let f ∈ V ′. Assume that the bilinear form a is coercive, i.e.
there exists α > 0 such that

a (v, v) ≥ α ‖v‖2
V , ∀v ∈ V. (3.19)

Then, the problem (3.18) is well-posed with a priori estimate:

‖u‖V ≤ 1

α
‖f‖V ′
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3.3.2 Non-Stationary Problems

The well-posedness results for time dependent problems distinguish again between a sym-
metric and a non-symmetric setting. If V denotes a Banach space we define Ck ([0, T ];V )
to be the set of V -valued functions u(t) ∈ V that are k-times continuously differentiable
with respect to t. Similarly we define the space L2 (]0, T [;V ) to be the set of V -valued
functions u(t) ∈ V , whose norm in V is in L2(]0, T [). dtu denotes the distributional
time-derivative of u ∈ L2 (]0, T [;V ).

We start with the non-symmetric setting. Let L be a separable Hilbert space with
inner product (·, ·)L. Let A : D(A) ⊂ L 7→ L be a linear, maximal and monotone
operator, i.e.

∀f ∈ L,∃v ∈ D(A), v +Av = f (3.20)

and
∀v ∈ D(A), (Av, v)L ≥ 0. (3.21)

It can be shown that in this case the space W = D(A), equipped with the scalar product
(u, v)L+ (Au,Av)L is a Hilbert space. We define a bilinear form a as a (u, v) = (Au, v)L

for all u ∈W and v ∈ L and consider the following model problem:
For f ∈ C1 ([0, T ];L) and u0 ∈W , find u ∈ C1 ([0, T ];L) ∩C0 ([0, T ];W ) such that

(dtu, v)L + a (u, v) = (f, v)L , ∀v ∈ L,∀t > 0,

(u(0), v)L = (u0, v)L , ∀v ∈ L.
(3.22)

The Hille-Yosida Theorem [27, Theorem 6.52] gives existence and uniqueness:

Theorem 3.3.3 (Hille-Yosida). Let L be a separable Hilbert space with inner product
(·, ·)L. Let A : D(A) ⊂ L 7→ L be a linear, maximal and monotone operator and
a (u, v) = (Au, v)L for all u ∈ D(A) and v ∈ L. For all f ∈ C1 ([0, T ];L) and u0 ∈ D(A)
the problem (3.22) has a unique solution.

In the symmetric case we assume a (·, ·) to be a bilinear form on V × V , where V is
a Hilbert space such that V ⊂ L ≡ L′ ⊂ V ′. Hence the duality pairing 〈·, ·〉V ′,V can be
viewed as an extension of the scalar product on L. We consider the following problem:

For f ∈ L2 (]0, T [;V ′) and u0 ∈ L, find u ∈ L2 (]0, T [;V ) with dtu ∈ L2 (]0, T [;V ′)
such that

〈dtu, v〉V ′,V + a (u, v) = 〈f, v〉V ′,V , ∀v ∈ V,∀t > 0,

u(0) = u0.
(3.23)

Existence and uniqueness are due to a result of J.L. Lions [27, Theorem 6.6].

Theorem 3.3.4 (J.L. Lions). Let V ⊂ L be two Hilbert spaces, V dense in L, with norms
‖·‖V and ‖·‖L. Let a : V × V 7→ R be a bounded bilinear form. Assume that there exists
α > 0 and γ > 0 such that

a (u, u) + γ ‖u‖2
L ≥ α ‖u‖2

V , ∀u ∈ V.

Let f ∈ L2 (]0, T [;V ′) and u0 ∈ L, then problem (3.23) has a unique solution.
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3.4 Variational Formulations

Now, we state variational formulations of the generalized advection problems (3.3) and
(3.4). We will differentiate between

• ε > 0 and ε = 0;

• γ1 = 0, γ2 = 0 and γ1 6= 0, γ2 6= 0.

The key formulas in the derivation of the variational formulations are the various in-
tegration-by-parts formulas (2.34)-(2.37). We will not discuss in detail admissible sets
of boundary conditions but accentuate the stability properties of different formulations
with respect to ε. The main result will be the observation that in the limit ε = 0 well-
posedness requires a different set of boundary conditions than the case ε > 0. We will
see that as in the scalar case one only has to impose boundary conditions in the inflow
part of the boundary. Further, and this is a distinctive property of the non-scalar case,
it is not enough to prescribe the standard Dirichlet data, i.e. the trace of the unknown
form. This is in perfect agreement with the solution formula (3.17): the traces fix only
tangential components. For advection problems with velocity fields, that have vanishing
normal component everywhere on the boundary, we do not face this special feature.

3.4.1 Well-Posedness: Case ε > 0, γ1 = 0, γ2 = 0

We consider the Dirichlet problems (3.3) and (3.4) with ΓD = ∂Ω, ε > 0, γ1 = 0 and
γ2 = 0. We set V = HΛk (Ω, ψD) and V0 = HΛk (Ω, 0) and assume that ψD can be
extended to HΛk (Ω). A variational formulation for a problem of type (3.3) is:

For ϕ ∈ L2 (]0, T [;V ′
0) and ω0 ∈ V , find ω ∈ L2 (]0, T [;V ) with dtω ∈ L2 (]0, T [;V ′

0)
such that for all η ∈ V0:

〈dtω, η〉V ′,V + ε (dω, d η)Ω + (iβ dω, η)Ω = 〈ϕ, η〉V ′,V ,

ω(0) = ω0.
(3.24)

This corresponds to the initial value problem: Find ω such that:

∂tω + δ ε dω + iβ dω = ϕ in Ω, trω = ψD on ∂Ω, ω(0) = ω0.

Similar a variational formulation for a problem of type (3.4) with is ΓD = ∂Ω, ε > 0,
γ1 = 0 and γ2 = 0:

For ϕ ∈ L2 (]0, T [;V ′
0) and ω0 ∈ V , find ω ∈ L2 (]0, T [;V ) with dtω ∈ L2 (]0, T [;V ′

0)
such that for all η ∈ V0:

〈dtω, η〉V ′,V + ε (dω, d η)Ω − (ω, iβ d η)Ω = 〈ϕ, η〉V ′,V ,

ω(0) = ω0.
(3.25)

This corresponds to the initial value problem: Find ω such that:

∂tω + δ ε dω − δ jβ ω = ϕ in Ω, trω = ψD on ∂Ω, ω(0) = ω0.

Lemma 3.4.1 proves coercivity for the bilinear form in (3.24) and (3.25).
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Lemma 3.4.1. If ε > 0, there are γ > 0 and κ(ε) > 0 such that for all ω ∈ V0

ε (dω, dω)Ω + (iβ dω, ω)Ω + γ (ω, ω)Ω ≥ κ‖ω‖2
HΛk(Ω).

Proof. The proof is based on a generalization of the proof of a Lemma in [30, Lemma
2.1]. We set γ = ε−1 ‖β‖2

W0,∞(Ω) and κ = 1
2 min(ε, γ). Then for all ω ∈ V0

ε (dω, dω)Ω + (iβ dω, ω)Ω + γ (ω, ω)Ω

≥ ε ‖dω‖2
L2Λk+1(Ω) −

√
γε ‖ω‖L2Λk(Ω) ‖dω‖L2Λk+1(Ω) + γ ‖ω‖2

L2Λk(Ω)

≥ ε

2
‖dω‖2

L2Λk+1(Ω) +
γ

2
‖ω‖2

L2Λk(Ω)

≥ κ‖ω‖2
HΛk(Ω)

.

Theorem 3.4.2. Problems (3.24) and (3.25) are well-posed if ε > 0.

Proof. This follows directly from Lemma 3.4.1 and Theorem 3.3.4.

Remark 3.4.3. Note that the result of Theorem 3.4.2 is particularly weak when ε is small.
We encounter γ → ∞ and κ→ 0 for ε→ 0.

3.4.2 Well-Posedness: Case ε > 0, γ1 = ε, γ2 = 1

We consider the advection-diffusion problems (3.3) and (3.4) with ΓD = ∂Ω, ε > 0,
γ1 = ε, γ2 = 1 and assume that ψD can be extended to a function in HΛk (Ω). We
set V = HΛk (Ω, ψD) ∩ H∗Λk (Ω) and V0 = HΛk (Ω, 0) ∩ H∗Λk (Ω). The variational
formulation of an advection-diffusion problem of type (3.3) is:

For ϕ ∈ L2 (]0, T [;V ′
0) and ω0 ∈ V , find ω ∈ L2 (]0, T [;V ) with dtω ∈ L2 (]0, T [;V ′

0)
such that for all η ∈ V0:

〈dtω, η〉V ′,V + ε (dω, d η)Ω + ε (δ ω, δ η)Ω + (iβ dω, η)Ω +
(
ω, jβ δ η

)
Ω

= 〈φ, η〉V ′,V ,

ω(0) = ω0.
(3.26)

This formulation corresponds to the initial boundary value problem:

∂tω + δ ε dω + d ε δ ω + iβ dω + d iβ ω = ϕ, in Ω,

trω = ψD, on ∂Ω,

tr(ε δ ω − iβ ω) = 0, on ∂Ω,

ω(0) = ω0.

Similar, the variational formulation of problem of type (3.4) for the setting ΓD = ∂Ω,
ε > 0, γ1 = ε and γ2 = 1 is:

44



3.4 Variational Formulations

For ϕ ∈ L2 (]0, T [;V ) and ω0 ∈ V , find ω ∈ L2 (]0, T [;V ) with dtω ∈ L2 (]0, T [;V ′
0)

such that for all η ∈ V0:

〈dtω, η〉V ′,V + ε (dω, d η)Ω + ε (δ ω, δ η)Ω − (ω, iβ d η)Ω −
(
jβ δ ω, η

)
Ω

= 〈ϕ, η〉V ′,V ,

ω(0) = ω0.
(3.27)

This is a variational formulation of the initial boundary value problem:

∂tω + δ ε dω + d ε δ ω − jβ δ ω − δ jβ ω = ϕ, in Ω,

trω = ψD, on ∂Ω,

tr δ ω = 0, on ∂Ω,

ω(0) = ω0.

Lemma 3.4.4 proves coercivity for the bilinear forms in (3.26) and (3.27).

Lemma 3.4.4. If ε > 0, there are γ > 0 and κ(ε) > 0 such that for all ω ∈ V0

ε (dω, dω)Ω + ε (δ ω, δ ω)Ω + (iβ dω, ω)Ω +
(
ω, jβ δ ω

)
Ω

+ γ (ω, ω)Ω

≥ κ
(
‖ω‖2

HΛk(Ω) + ‖ω‖2
H∗Λk(Ω)

)
.

Proof. The proof is based on a generalization of the proof of a Lemma in [30, Lemma
2.1]. We set γ = ε−1 ‖β‖2

W0,∞(Ω) and κ = 1
2 min(ε, γ). Then for all ω ∈ V0

(iβ dω, ω)Ω ≤ √
γε ‖ω‖L2Λk(Ω) ‖dω‖L2Λk+1(Ω)

and (
jβ δ ω, ω

)
Ω
≤ √

γε ‖ω‖L2Λk(Ω) ‖δ ω‖L2Λk−1(Ω) ,

hence

ε ‖dω‖2
L2Λk+1(Ω) + ε ‖δ ω‖2

L2Λk−1(Ω) + (iβ dω, ω)Ω −
(
ω, jβ δ ω

)
Ω

+ γ (ω, ω)Ω

≥ ε

2
‖dω‖2

L2Λk+1(Ω) +
ε

2
‖δ ω‖2

L2Λk−1(Ω) + γ ‖ω‖2
L2Λk(Ω)

≥ κ
(
‖ω‖2

HΛk(Ω) + ‖ω‖2
H∗Λk(Ω)

)
.

Theorem 3.4.5. Problems (3.26) and (3.27) are well-posed if ε > 0.

Proof. This follows directly from Lemma 3.4.4 and Theorem 3.3.4.

Remark 3.4.6. Note that the assertion of Theorem 3.4.5 is particularly weak when ε is
small. We encounter γ → ∞ and κ→ 0 for ε→ 0.
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3.4.3 Well-Posedness: Case ε = 0, γ1 = 0, γ2 = 1

In this case the boundary ∂Ω splits into inflow part Γin with β|∂Ω ·nΩ < 0, outflow part
Γout with β|∂Ω · nΩ > 0 and characteristic part Γ0 with β|∂Ω · nΩ = 0. We consider
advection problems (3.3) and (3.4) with ε = 0, γ1 = 0, γ2 = 1 and impose the boundary
conditions trω = trψD, tr iβ ω = tr iβ ψD on the inflow part Γin with ψD ∈ Λk (Rn \ Ω).
The two bilinear forms (·, ·)Γin,β and (·, ·)Γout,β

introduced in (2.35) are negative and
positive definite since (β · nΩ)|Γin

< 0 and (β · nΩ)|Γout
> 0. This gives rise to two

semi-norms |ω|2Γin,−β := 1
2 (ω, ω)Γin,−β and |ω|2Γout,β

:= 1
2 (ω, ω)Γout,β

. We set W = {ω ∈
L2Λk (Ω) ,Lβ ω ∈ L2Λk (Ω) , |ω|Γin,−β < ∞} and L = L2Λk (Ω) and equip W with the
norm

‖ω‖2
W := ‖ω‖2

L2Λk(Ω) + ‖Lβ ω‖2
L2Λk(Ω) .

Without loss of generality we can assume ψD = 0. We set V = {ω ∈ W, trω =
0, tr iβ ω = 0}. The variational formulation of an advection problem of type (3.3) is:

For ϕ ∈ C1 ([0, T ];L) and ω0 ∈ V , find ω ∈ C1 ([0, T ];L) ∩C0 ([0, T ];V ) such that for
all η ∈ L:

(dtω, η)Ω + (iβ dω, η)Ω + (d iβ ω, η)Ω = (ϕ, η)Ω ,

(ω(0), η)Ω = (ω0, η)Ω .
(3.28)

This is a variational formulation of the initial boundary value problem:

∂tω + iβ dω + d iβ ω = ϕ, in Ω,

trω = 0, on Γin,

tr iβ ω = 0, on Γin,

ω(0) = ω0.

Since we can always introduce a rescaling ω′ = e−αtω in (3.28) the following Lemma
establishes the crucial step for proving well-posedness.

Lemma 3.4.7. Assume that there exists α ∈ Λ0 (Ω), α > 0, such that

αω ∧ ⋆ω +
1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) . (3.29)

The operator A : V ⊂ L 7→ L, defined as

(Aω, η)Ω := (αω, η)Ω + (Lβ ω, η)Ω , ∀η ∈ L

is a maximal monotone operator.

Proof. The operator A is monotone and it only remains to prove maximality (3.20),
which is equivalent to existence and uniqueness of solutions of the following variational
formulation:

For f ∈ L find ω ∈ V such that

((α+ 1)ω, η)Ω + (Lβ ω, η)Ω = (f, η)Ω , ∀η ∈ L.

To prove existence and uniqueness we verify the assumptions of Theorem 3.3.1:
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• The bilinear form

a (ω, η) := ((α+ 1)ω, η)Ω + (Lβ ω, η)Ω

is continuous on V × L.

• We continue in proving the inf-sup-condition in Theorem 3.3.1. First the positivity
conditions and the Leibniz rule for Lie derivatives (2.36) imply L2-stability:

a (ω, ω) = ((α+ 1)ω, ω)Ω + (Lβ ω, ω)Ω

= ((α+ 1)ω, ω)Ω +
1

2
((Lβ +Lβ)ω, ω)Ω +

1

2

(
(ω, ω)Γout,β

+ (ω, ω)Γin,β

)

≥2 ‖ω‖2
L .

The last inequality follows from (β · nΩ)|Γout
> 0 and the imposed boundary con-

ditions, since

(ω, ω)Γin,β =

∫

Γin

tr iβ ω ∧ tr ⋆ω + (−1)k
∫

Γin

trω ∧ tr iβ ⋆ω, (3.30)

by (2.35), (2.32) and (2.21). The L2-stability implies

sup
η∈L

a (ω, η)

‖η‖L

≥ a (ω, ω)

‖ω‖L

≥ 2 ‖ω‖L .

We set α1 = ‖α+ 1‖L∞(Ω) and deduce

sup
η∈L

a (ω, η)

‖η‖L

= sup
η∈L

((α+ 1)ω, η)Ω + (Lβ ω, η)Ω
‖η‖L

≥ sup
η∈L

(Lβ ω, η)Ω
‖η‖L

− sup
η∈L

((α+ 1)ω, η)Ω
‖η‖L

≥ sup
η∈L

(Lβ ω, η)Ω
‖η‖L

− α1 ‖ω‖L

≥ ‖Lβ ω‖L2Λk(Ω) −
α1

2
sup
η∈L

a (ω, η)

‖η‖L

.

This yields

((
1 +

α1

2

)2
+

1

4

)(
sup
η∈L

a (ω, η)

‖η‖L

)2

≥ ‖Lβ ω‖2
L2Λk(Ω) + ‖ω‖2

L ,

i.e. the inf-sup-inequality

inf
ω∈V

sup
η∈L

a (ω, η)

‖ω‖W ‖η‖L

≥ 2
(
1 + (2 + α1)

2
)− 1

2 .
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• Next we establish the injectivity condition in Theorem 3.3.1. Let η ∈ L such that
a (ω, η) = 0 for all ω ∈ V . A density argument gives (α + 1)η + Lβ η = 0, which
implies in particular η ∈ W . Testing with ω ∈ Λk (Ω) ∩ V we find tr ⋆η = 0 and
tr iβ ⋆η = 0 at Γout and deduce

0 = (αη, η)Ω + (η,Lβ η)Ω

= (αη, η)Ω +
1

2

(
(η,Lβ η)Ω + (η,Lβ η)Ω

)
− 1

2

(
(η, η)Γin,β + (η, η)Γout,β

)

≥ ‖η‖2
L2Λk(Ω) ,

i.e. η = 0.

Remark 3.4.8. The identity (3.30) shows that we could impose the boundary conditions
differently. For the following four conditions we can show well-posedness:

1. tr iβ ω = tr iβ ψD and trω = trψD on Γin;

2. tr iβ ω = tr iβ ψD and tr iβ ⋆ω = tr iβ ⋆ψD on Γin;

3. tr ⋆ω = tr ⋆ψD and trω = trψD on Γin;

4. tr ⋆ω = tr ⋆ψD and tr iβ ⋆ω = tr iβ ⋆ψD on Γin;

Theorem 3.4.9. Problem (3.28) is well-posed.

Proof. In introducing ν = exp(−αt)ω we can always write (3.28) in terms of the operator
α + Lβ instead of Lβ, hence well-posedness follows from Lemma 3.4.7 and Theorem
3.3.3.

Next we consider the advection problem of type (3.3) for the adjoint Lie derivative Lβ.
We impose the boundary conditions trω = trψD, tr iβ ω = tr iβ ψD on the inflow part Γin

with ψD ∈ Λk (Rn \ Ω). We set W = {ω ∈ L2Λk (Ω) ,Lβ ω ∈ L2Λk (Ω) , |ω|Γin,−β < ∞}
and L = L2Λk (Ω) and equip W with norm

‖ω‖2
W := ‖ω‖2

L2Λk(Ω) + ‖Lβ ω‖2
L2Λk(Ω) .

We assume again homogeneous boundary conditions and set again V = {ω ∈W, trω =
0, tr iβ ω = 0}. The variational formulation of (3.4) is:

For ϕ ∈ C1 ([0, T ];L) and ω0 ∈ V find ω ∈ C1 ([0, T ];L) ∩ C0 ([0, T ];V ) such that for
all η ∈ L:

(dtω, η)Ω −
(
δ jβ ω, η

)
Ω
−
(
jβ δ ω, η

)
Ω

= (ϕ, η)Ω ,

(ω(0), η)Ω = (ω0, η)Ω .
(3.31)
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This is a variational formulation of the initial boundary value problem:

∂tω − jβ δ ω − δ jβ ω = ϕ, in Ω,

trω = 0, on Γin,

tr jβ ω = 0, on Γin,

ω(0) = ω0.

Analogue to Lemma 3.4.7 we get the following result on existence and uniqueness for
the stationary problem.

Lemma 3.4.10. If there exists α ∈ Λ0 (Ω), α > 0, such that

αω ∧ ⋆ω − 1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) .

The operator A : V ⊂ L 7→ L, defined as

(Aω, η)Ω := (αω, η)Ω − (Lβ ω, η)Ω , ∀η ∈ L

is a maximal monotone operator.

Theorem 3.4.11. Problem (3.31) is well-posed.

Proof. Follows from Lemma 3.4.10 and Theorem 3.3.3.

Remark 3.4.12. The positivity conditions in Lemmas 3.4.7 and 3.4.10 are conditions
on β and partial derivatives of β, since Lβ +Lβ = C(β,Dβ)id by (2.40). Table 2.2
summarizes explicit values of C(β,Dβ) for the different forms in R

3.

Remark 3.4.13. If β has vanishing normal components everywhere on the boundary we
do not need to impose boundary conditions.

3.4.4 Discussion

In light of the results of Theorems 3.4.9 and 3.4.11 we change in the variational formula-
tions (3.26) and (3.24) the boundary conditions. Instead of V = HΛk (Ω, ψD)∩H∗Λk (Ω)
and V0 = HΛk (Ω, 0) ∩ H∗Λk (Ω) we set V = HΛk (Ω, ψD) ∩ H∗Λk (Ω, 0) and V0 =
HΛk (Ω, 0)∩H∗Λk (Ω, 0). Then the variational formulation (3.26) for advection-diffusion
problems of type (3.3) corresponds to the initial boundary value problem:

∂tω + δ ε dω + d ε δ ω + iβ dω + d iβ ω = ϕ, in Ω,

trω = ψD, on ∂Ω,

tr(⋆ω) = 0, on ∂Ω,

ω(0) = ω0.
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The variational formulation (3.27) for advection-diffusion problems of type (3.4) corre-
sponds to the initial boundary value problem

∂tω + δ ε dω + d ε δ ω − jβ δ ω − δ jβ ω = ϕ, in Ω,

trω = ψD, on ∂Ω,

tr ⋆ω = 0, on ∂Ω,

ω(0) = ω0.

Under the positivity assumption of Lemmas 3.4.7 and 3.4.10 we can prove uniform
L2-stability for the bilinear forms in the variational formulations (3.26) and (3.27).

Lemma 3.4.14. If there exists α ∈ Λ0 (Ω), α > 0, such that

αω ∧ ⋆ω +
1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) ,

then for ω ∈ HΛk (Ω, 0) ∩H∗Λk (Ω, 0)

ε (dω, dω)Ω + ε (δ ω, δ ω)Ω + (iβ dω, ω)Ω +
(
ω, jβ δ ω

)
Ω

+ α (ω, ω)Ω

≥ ε ‖dω‖2
L2Λk(Ω) + ε ‖δ ω‖2

L2Λk(Ω) + ‖ω‖2
L2Λk(Ω) .

If there exists α ∈ Λ0 (Ω), α > 0, such that

αω ∧ ⋆ω − 1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) ,

then for ω ∈ HΛk (Ω, 0) ∩H∗Λk (Ω, 0)

ε (dω, dω)Ω + ε (δ ω, δ ω)Ω −
(
jβ δ ω, ω

)
Ω
− (ω, iβ dω)Ω + α (ω, ω)Ω

≥ ε ‖dω‖2
L2Λk(Ω) + ε ‖δ ω‖2

L2Λk(Ω) + ‖ω‖2
L2Λk(Ω) .

Proof. The proof follows by (2.34), (2.36) and (2.37) from

(iβ dω, ω)Ω +
(
ω, jβ δ ω

)
Ω

=
1

2
(Lβ +Lβ ω, ω) − 1

2

∫

∂Ω
tr iβ ω ∧ ⋆ω +

1

2

∫

∂Ω
trω ∧ ⋆ jβ ω

.

For k = 0 we find from Table 2.2 that Lβ +Lβ corresponds to − div β, hence we have
found a generalization of the scalar advection-diffusion problem. It is somehow irritating
that we need to impose boundary conditions on both trω and tr ⋆ω which is different
from the pure diffusion problem. There well-posedness can be guaranteed by imposing
conditions on either of these two.

It well is well known that Galerkin discretizations for variational problems in the spaces
HΛk (Ω) ∩ H∗Λk (Ω) need to be formulated with caution. At first glance the simplest
choice for approximation spaces would be some H1Λk (Ω)-conforming space. But there
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are situations [22], e.g. Ω non-convex, where the complement of HΛk (Ω) ∩H∗Λk (Ω) ∩
H1Λk (Ω) in HΛk (Ω) ∩H∗Λk (Ω) is non-trivial. In that case there are ω in HΛk (Ω) ∩
H∗Λk (Ω) that can not be approximated by H1Λk (Ω)-conforming approximation spaces
and we can not guarantee that the solution of a Galerkin scheme based on such spaces
will converge to the right solution.

In the following chapters we will therefore present Galerkin discretizations with ei-
ther HΛk (Ω)-conforming approximation spaces, H∗Λk (Ω)-conforming approximations
spaces or L2Λk (Ω)-conforming approximation spaces.

3.5 Numerical Methods for the Scalar Problem

To motivate the subsequent chapters we recall here a few important issues for solving non-
stationary advection-diffusion methods and give short references to the main methods.

The numerical methods for the scalar advection-diffusion problems (3.1) and (3.2)
have to deal with two main difficulties when the diffusion parameter ε is small:

1. The analytical solution of the stationary advection-diffusion problem can have very
steep layers along characteristic lines or at the outflow boundary. In such cases
the standard numerical methods for elliptic problems usually suffer from so-called
spurious oscillations: the numerical solution is highly oscillatory on the entire
domain. Only very fine discretizations, meaning very expensive discretizations, can
yield reasonable numerical solutions. If one uses the methods of lines approach with
implicit numerical integrators for the non-stationary problem, it will be crucial to
have cheap and stable methods for the stationary problem.

2. Explicit time-stepping schemes on the other hand, that would circumvent the suc-
cessive solution of stationary advection-diffusion problems, face serious stability
issues when the diffusion parameter tends to zero. Is is for example well known
that the explicit Euler method and spatial discretization with central finite differ-
ences will be unconditionally unstable for the limit problem.

This first issue is addressed in designing numerical methods that work even in the limit
case of advection problems. Here the methods of choice are the Discontinuous Galerkin
methods [42,51,74], Galerkin/Least-Squares methods [43] or subgrid viscosity techniques
[27]. We also refer to the monograph [76] for a detailed discussion of such methods.
Compared to standard Galerkin methods the non-standard methods permit stability
and error estimates in certain mesh dependent norms ‖·‖h that are stronger than the
L2-norm, even for ε = 0. Although numerical experiments confirm the superior quality
of solutions of non-standard methods the usual error estimates of type:

‖ω − ωh‖h ≤ Chs

do not justify this rigorously. As for the standard Galerkin methods the constant C
depends here on higher order derivatives of the solution ω. In the case of layers this
constant can be very large. The ultimate justification of non-standard methods are lo-
calized error estimates that bound the error on subdomains by constants that depend
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3 Generalized Advection-Diffusion Problem

only on slightly larger subdomains. This proves that steep layers of the analytical so-
lution do have very little influence on the approximation quality in regions away from
these layers. We refer to [31] for such estimates for Discontinuous Galerkin methods and
to [65] and [76, Theorem 3.41] for a Galerkin/Least-Squares method.

Another issue that is frequently neglected are the different boundary conditions for
the limit problem. While for ε > 0 well-posedness requires boundary conditions on the
entire boundary, the limiting advection problem needs boundary conditions only on the
inflow part of the boundary. It is shown in [7] that an appropriate treatment of boundary
conditions can improve the quality of the numerical solutions of non-standard schemes.
Here, the key technique is to enforce the boundary conditions weakly such that in the
limit ε = 0 only those on the inflow part remain. This basic idea goes goes back to [68]
and is related a Lagrange multiplier technique for enforcing boundary conditions [82].
In Discontinuous Galerkin methods for advection-diffusion problems such a treatment
of boundary conditions appears naturally in the derivation [42].

A recent result [78] shows even that Galerkin methods that are non-standard only in
the treatment of the boundary conditions yield numerical solution that do not suffer from
spurious oscillations. To illustrate this we consider the following Galerkin formulation/
of the stationary advection-diffusion problem: Find uh ∈ Vh ⊂ H1Λ0 (Ω), where Vh is
finite dimensional, such that

εa1(uh, v) + a2(uh, v) = (f, v)Ω + εl1(v) + l2(v), ∀v ∈ Vh, (3.32)

where

a1(u, v) := (gradu,grad v)Ω − (nΩ · gradu, v)∂Ω − (u,nΩ · grad v)∂Ω + (αu, v)∂Ω ,

a2(u, v) = (β · gradu, v)Ω − (β · nΩu, v)Γin
,

l1(v) = (αg, v)∂Ω ,

l2(v) = − (β · nΩg, v)Γin
.

The stabilization parameter α is anti-proportional to the local mesh size h. For ε > 0
the variational formulation (3.32) is a discretization of the boundary value problem:

− εdiv gradu+ β · grad u = f, u = g on ∂Ω. (3.33)

In the limiting case ε→ 0 we get a variational formulation for the advection problem with
weakly enforced Dirichlet boundary conditions on the inflow part Γin of the boundary.
Then (3.32) is a discretization of the boundary value problem:

β · grad u = f, u = g on Γin. (3.34)

For the solutions of (3.32) we can prove the following local estimates [78, Theorem 5.1].

Theorem 3.5.1 (Schieweck). Let Vh ⊂ H1Λ0 (Ω) be the standard Lagrangian finite ele-
ment space with local polynomial degree r > 0 on some uniform mesh with mesh size h
and uh the solution of the discrete problem (3.32). Assume div β > 0, ũ ∈ Hr+1Λ0 (Ω)
for the solution ũ of (3.34) and u ∈ H2 (Ω) for the solution u of (3.33). Furthermore,
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3.5 Numerical Methods for the Scalar Problem

let Ω0 ⊂ Ω be a subdomain excluding all boundary layers in the sense that there exists a
constant C independent of ε such that:

ε−
1
2 |u− ũ|H1Λ0(Ω0) + ‖u− ũ‖L2Λ0(Ω0) ≤ Cε.

Then for ε ≤ h and m := 2 − n
2 , it holds

‖u− uh‖L2Λ0(Ω0) ≤ C
(
εh−m + hr

)
‖ũ‖Hr+1Λ0(Ω). (3.35)

The original results in [78] apply also to non-uniform meshes. The convergence es-
timate (3.35) states that in the case when h is sufficiently larger than ε the error in a
domain excluding the boundary layer is independent of ε and converges with rate r.

Let us illustrate this result for the data Ω = [0, 1], f(x) = sin(11πx), g(0) = 0,
g(1) = 0, β = 1 and piecewise linear approximation r = 1. For small ε the analytical
solution has a steep boundary layer at x = 1. The standard method, i.e. formulation
(3.32) with strongly imposed boundary conditions will yield numerical solutions with
large oscillations on the entire domain. For moderate diffusion, i.e. ε = 1 the L2-error of
the numerical solution with weakly imposed boundary conditions does not differ much
from the error of the solution with strongly imposed boundary conditions (Figure 3.1).
This changes dramatically when we decrease ε to 10−6 (Figure 3.2) and 10−12 (Figure
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Figure 3.1: L2-error on [0, 0.889] of the numerical solutions with weakly imposed and
strongly imposed boundary conditions, ε = 1.

3.3). Figures 3.2 and 3.3 illustrate the L2-error for solutions of the different methods on
the interval [0, 0.889] excluding the boundary layer. For both methods we see convergence
of second order for h large enough, but the error of the solution with weakly imposed
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boundary conditions is orders of magnitude smaller. The numerical solution does not
suffer form spurious oscillations. Figure 3.4 shows the typical numerical solutions for
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Figure 3.2: L2-error on [0, 0.889] of the numerical solutions with weakly imposed and
strongly imposed boundary conditions, ε = 10−6.

ε = 10−6 on three different meshes. When the mesh size h is larger than ε the solution
with strongly imposed boundary conditions is highly oscillatory, while the solution with
weakly imposed boundary conditions yields quite accurate approximations.

The difference between the two methods is the ε-dependency of the error for fixed
h. In case h > ε the error of the method with strongly imposed boundary conditions
increases dramatically when ε decreases (Figure 3.5).

In conclusion we find that the method of lines with implicit numerical integrators yields
valuable methods for the non-stationary problem if the spatial discretization accounts
for a proper treatment of the limit problem.

An entirely different approach that circumvents both the stability constraint of ex-
plicit numerical integrators and the difficult treatment of stationary advection-diffusion
problems are the so-called semi-Lagrangian methods. Semi-Lagrangian methods com-
bine the partial time derivative and the advection operator as one operator. For the
limiting problem, the advection problem, the Lagrangian methods are known to be un-
conditionally stable. Further, in the advection-diffusion case we only need to solve sta-
tionary parabolic problems, that do not cause the difficulties encountered for stationary
advection-diffusion problems.

In view of the rationale that good numerical methods for singularly perturbed advec-
tion-diffusion problems should provide also good solutions for the limit problem we will
focus in the following chapters on stationary and non-stationary advection problems.
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Figure 3.3: L2-error on [0, 0.889] of the numerical solutions with weakly imposed and
strongly imposed boundary conditions, ε = 10−6.

In Chapter 4 we present stabilized methods for the generalized stationary advection-
diffusion problem for differential forms. In the next chapter, Chapter 5, we use these
stabilized methods to introduce Eulerian methods for the non-stationary problem and
present the semi-Lagrangian methods, as an alternative method.
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Figure 3.4: Numerical solutions with strongly (left) and weakly (right) imposed bound-
ary conditions on three different meshes with 1.) h = 7.8125 10−3 (top),
2.) h = 4.8828 10−4 and 3.) h = 3.0518 10−5 (bottom) for problem (3.33)
with right-hand side f = sin(11πx), velocity β = 1 and boundary data
u(0) = u(1) = 0. The analytical solution has a steep layer in the vicinity of
x = 1. The solution with strongly imposed boundary conditions is highly os-
cillatory for larger mesh size h. The solution with weakly imposed boundary
conditions yields good solutions for small and large mesh sizes.
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4 Stationary Advection Problem

The method of lines is a popular method to solve non-stationary problems. If we use such
methods with implicit time integrators for the generalized advection-diffusion problem of
type (3.3) or (3.3), we have to solve iteratively stationary advection-diffusion problems.
Since we focus here on advection-diffusion problems with dominating advection, we have
to solve iteratively singularly perturbed stationary advection-diffusion problems. In the
scalar case this is known to be a difficult task as outlined in Section 3.5.

Good numerical methods for the scalar stationary advection-diffusion problem, like the
SUPG/SDFEM-method [43] or discontinuous Galerkin method with upwind fluxes [42,
51,74], yield admissible solutions even for the limiting problem, the advection problem.
Further, since discretization of generalized diffusion problems for differential forms is
well established nowadays [3, 36] we can focus here as well on numerical methods for
stationary advection problems.

In this chapter we present two different stabilized Galerkin methods for the stationary
advection problems

αω + Lβ ω = ϕ, in Ω,

trω = trψD, on Γin,

tr iβ ω = tr iβ ψD, on Γin

(4.1)

and
αω̃ −Lβ ω̃ = ϕ̃, in Ω,

tr ω̃ = tr ψ̃D, on Γin,

tr iβ ω̃ = tr iβ ψ̃D, on Γin

(4.2)

with data ϕ, ϕ̃ ∈ L2Λk (Ω) and ψD, ψ̃D ∈ Λk (Rn \ Ω). α ∈ Λ0 (Ω) is a given scalar
parameter and β : Ω 7→ R

n is a given Lipschitz continuous velocity field. The advection
problem (4.1) is the limiting problem of an advection-diffusion problem of type (3.3).
Problem (4.2) is the limiting problem of a generalized advection-diffusion problem of
type (3.4).

We have shown in Lemma 3.4.7 that (4.1) is well-posed for ω ∈ W , with W = {ω ∈
L2Λk (Ω) ,Lβ ω ∈ L2Λk (Ω) , |ω|Γin,−β < ∞} under the assumption that there exist α0 ∈
R, α0 > 0 with

αω ∧ ⋆ω +
1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) . (4.3)

Similar Lemma 3.4.10 proves well-posedness of (4.1) for ω̃ ∈ W̃ = {ω ∈ L2Λk (Ω) ,Lβ ω ∈
L2Λk (Ω) , |ω|Γin,−β <∞} if there exist α0 ∈ R, α0 > 0 with

αω ∧ ⋆ω − 1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) . (4.4)
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By (2.39) and Proposition 2.1.3 we know that Lβ +Lβ is a self-adjoint operator on
L2Λk (Ω), i.e. (4.3) and (4.4) are positivity assumptions on the self-adjoint operators
αid + 1

2 (Lβ +Lβ) and αid − 1
2 (Lβ +Lβ). In particular the assumption (4.3) and (4.4)

are assumption on the problem parameters α and β. We refer to the Tables 2.2 and
2.3 for concrete representation of Lβ +Lβ as non-differential operator for forms in R

2

and R
3. For the cases k = 0 and k = n we recover the standard positivity assumptions

α − 1
2 div β ≥ α0 and α + 1

2 div β ≥ α0. In introducing in (3.3) and (3.4) a scaling

ω′ = eα
′
ω with appropriate α′ ∈ R we can always take the positivity assumptions (4.3)

and (4.4) for granted.

Note that problems (4.1) and (4.2) are two different advection problems for k-forms.
Replacing in problem (4.2) the k-form ω̃ with the k-form ⋆ω, where ω is a n − k form
we obtain a problem of type (4.1) for ω. This means that it is enough to study problem
(4.1), if we consider both discrete differential k- and n−k forms as approximation spaces
for the advection problem (4.1) for k-forms.

We will first introduce a family of stabilized Galerkin methods for advection problems
of k-forms that include the Discontinuous Galerkin methods for scalar advection prob-
lems. The second family of methods, so-called characteristic methods, presented there-
after is inspired by semi-Lagrangian time-stepping schemes. Here the ”time”-parameter
τ appears as an artificial, user-defined parameter. We show that our stabilized Galerkin
methods are the limit of the characteristic methods when τ → 0.

4.1 Stabilized Galerkin Methods

The derivation of the method for k-forms corresponds to the derivation of the Discon-
tinuous Galerkin method for scalar advection in [13]. Accordingly we get stability and
consistency of the method in the general case. The convergence proofs we give afterwards
will cover only the different cases in R

3. The proofs involve certain technicalities that
can not be expressed with the limited notations from exterior calculus introduced here.
Since R

3 is our main interest this is no severe limitation. Apparently, similar results for
the lower-dimensional cases R

2 and R
1 follow by identical arguments.

4.1.1 Derivation of the Method

Let T be a simplicial triangulation of Ω. We will call the oriented n-simplices T ∈ ∆n(T )
and n−1-simplices f ∈ ∆n−1(T ) elements and facets of the mesh T . An oriented facet f
has a distinguished normal nf . If a facet f is contained in the boundary of some element
T then either nf = nΩ|f or nf = −nΩ|f . Then ω+ and ω− denote the two different

restrictions of ω ∈ Λk (Ω) to f , e.g. ω+ := ω|
T+

where element T+ has outward normal

nf . With these restriction we define also the jump [ω]f = ω+ − ω− and the average

{ω}f = 1
2(ω+ + ω−). For f ⊂ ∂Ω we assume f to be oriented such that nf points

outwards. Let F◦ and F∂ be the set of interior and boundary facets. F∂
−,F∂

+ ⊂ F∂ is
the set of facets on the inflow and outflow boundary.
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Further let Λk
h (T ) denote some piecewise polynomial approximation space for differ-

ential k-forms. Here Λk
h (T ) could be either one of the conforming approximation spaces

PrΛ
k(T ) or P−

r Λk(T ) but also the non-conforming space Pd
r Λk(T ) or even ⋆PrΛ

n−k(T )
or ⋆P−

r Λn−k(T ).
We fix some element T , test (4.1) with ⋆η, η ∈ Λk

h (T ), integrate the product over T
and apply the Leibniz rule for Lie derivatives (2.36):

(αω, η)T + (ω,Lβ η)T + (ω, η)∂T,β = (ϕ, η)T .

Summing this equation over all elements yields:

(αω, η)Ω +
∑

T

(ω,Lβ η)T +
∑

T

(ω, η)∂T,β = (ϕ, η)Ω ,

or, if we write the sum over boundaries of elements as sum over facets:

(αω, η)Ω +
∑

T

(ω,Lβ η)T
+
∑

f∈F◦

(
ω+, η+

)
f,β

−
(
ω−, η−

)
f,β

+
∑

f∈F∂

(ω, η)f,β = (ϕ, η)Ω .

The identity

(
ω+, η+

)
f,β

−
(
ω−, η−

)
f,β

=
(
[ω]f , {η}f

)
f,β

+
(
{ω}f , [η]f

)
f,β

(4.5)

shows (
ω+, η+

)
f,β

−
(
ω−, η−

)
f,β

=
(
{ω}f , [η]f

)
f,β

for solutions ω ∈ W of the advection problem (4.1), since ω is non-smooth only across
characteristic faces, i.e. those faces f with nf ·β = 0. But for f with nf ·β = 0 we have
(·, ·)f,β = 0, anyway. We are now in the position to define a stabilized Galerkin scheme
for the advection problem (4.1):

Find ωh ∈ Λk
h (T ) such that:

a (ωh, η) = l (η) , ∀η ∈ Λk
h (T ) , (4.6)

with
l (η) := (ϕ, η)Ω −

∑

f∈F∂
−

(ψD, η)f,β (4.7)

and
a (ω, η) := (αω, η)Ω +

∑

T

(ω,Lβ η)T +
∑

f∈F∂\F∂
−

(ω, η)f,β

+
∑

f∈F◦

(
{ω}f , [η]f

)
f,β

+
(
cf [ω]f , [η]f

)
f,β

,
(4.8)

where cf is a stabilization parameter that need to be specified later. Since the stabiliza-

tion terms
(
cf [ω]f , [η]f

)
f,β

vanish for ω ∈ W solution to (4.1), the derivation proves

consistency.
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Lemma 4.1.1. The variational formulation (4.6) is consistent with problem (4.1).

Remark 4.1.2. The choice cf = 1
2

β·nf

|β·nf |
yields a scheme with so-called upwind fluxes:

(
{ω}f , [η]f

)
f,β

+
(
cf [ω]f , [η]f

)
f,β

=
(

1

2

(
1 +

β · nf

|β · nf |

)
ω+ +

1

2

(
1 − β · nf

|β · nf |

)
ω−, [η]f

)

f,β

.

When we want to implement our variational formulation we realize that the evaluation
of the terms (ω,Lβ η)T

requires knowledge of first order derivatives of β due to Lβ =
δ jβ + jβ δ. Therefore, the representation of a (ω, η) in the following proposition is much
more convenient for implementation. See also the Appendix 4.1.5 for a representation
of a (ω, η) in vector proxies in R

3.

Proposition 4.1.3. The following equality holds for all ω, η ∈ Λk
h (T ):

a (ω, η) = (αω, η)Ω +
∑

T

(iβ dω, η)
T

+
(
ω, jβ δ η

)
T

+
∑

f∈F◦

(
iβ {ω}f , [η]f

)
f,tr

−
(
[ω]f , jβ {η}f

)
f,tr

+
(
cf [ω]f , [η]f

)
f,β

+
∑

f∈F∂\F∂
−

(iβ ω, η)f,tr −
∑

f∈F∂
−

(
ω, jβ η

)
f,tr

.

Proof. The proof follows from the Leibniz rules for exterior derivatives (2.11) and con-
tractions (2.25) and the identity ω+ ∧ η+ − ω− ∧ η− = [ω]f ∧ {η}f + {ω}f [η]f :

∑

T

(
ω, δ jβ η

)
T

(2.34)
=
∑

T

(
dω, jβ η

)
T
−
(
ω, jβ η

)
∂T,tr

(2.37)
=
∑

T

(iβ dω, η)
T
−
(
ω, jβ η

)
∂T,tr

=
∑

T

(iβ dω, η)
T
−
∑

f∈F∂

(
ω, jβ η

)
f,tr

−
∑

f∈F◦

(
ω+, jβ η

+
)
f,tr

−
(
ω−, jβ η

−
)
f,tr

=
∑

T

(iβ dω, η)
T
−
∑

f∈F∂

(
ω, jβ η

)
f,tr

−
∑

f∈F◦

(
[ω]f , jβ {η}f

)
f,tr

+
(
{ω}f , jβ [η]f

)
f,tr

.
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Then we get

a (ω, η) = (αω, η)Ω +
∑

T

(
ω, jβ δ η

)
T

+ (iβ dω, η)
T

+
∑

f∈F∂\F∂
−

(ω, η)f,β

+
∑

f∈F◦

(
{ω}f , [η]f

)
f,β

+
(
cf [ω]f , [η]f

)
f,β

−
∑

f∈F∂

(
ω, jβ η

)
f,tr

−
∑

f∈F◦

(
[ω]f , jβ {η}f

)
f,tr

+
(
{ω}f , jβ [η]f

)
f,tr

and the assertion follows from (2.35).

If we use conforming discrete differential forms spaces as approximation spaces the
bilinear form in proposition 4.1.3 simplifies further.

Proposition 4.1.4. For ω, η ∈ PrΛ
k(T ) and ω, η ∈ P−

r Λk(T ) it holds:

a (ω, η) = (αω, η)Ω +
∑

T

(iβ dω, η)
T

+
(
ω, jβ δ η

)
T

+
∑

f∈F◦

(
iβ {ω}f , [η]f

)
f,tr

+
(
cf iβ [ω]f , [η]f

)
f,tr

+
∑

f∈F∂\F∂
−

(iβ ω, η)f,tr −
∑

f∈F∂
−

(
ω, jβ η

)
f,tr

.

For ω, η ∈ ⋆PrΛ
n−k(T ) and ω, η ∈ ⋆P−

r Λn−k(T ) it holds:

a (ω, η) = (αω, η)Ω +
∑

T

(iβ dω, η)
T

+
(
ω, jβ δ η

)
T

−
∑

f∈F◦

(
[ω]f , jβ {η}f

)
f,tr

−
(
cf [ω]f , jβ [η]f

)
f,tr

+
∑

f∈F∂\F∂
−

(iβ ω, η)f,tr −
∑

f∈F∂
−

(
ω, jβ η

)
f,tr

.

Proof. Recall that (ω, η)f,tr =
∫
f

tr(ω) ∧ tr(⋆η), tr([ω]f ) = 0 for ω ∈ PrΛ
k(T ) or ω ∈

P−
r Λk(T ) and tr(⋆ [ω]f ) = 0 for ω ∈ ⋆PrΛ

n−k(T ) or ω ∈ ⋆P−
r Λn−k(T ).

We proceed by proving stability in the mesh dependent norm:

‖ω‖2
h := ‖ω‖2

L2Λk(Ω) +
∑

f∈F◦

∥∥∥[ω]f

∥∥∥
2

f,cfβ
+

∑

f∈F∂\F∂
−

‖ω‖2
f, 1

2
β

+
∑

f∈F∂
−

‖ω‖2
f,− 1

2
β
, (4.9)

with the obvious definition ‖·‖2
f,β := (ω, ω)f,β. ‖·‖h is a norm for any choice cf with

cfβ · nf ≥ 0, because then (cfω, ω)
f,β

is non-negative according to remark 2.1.2.
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Lemma 4.1.5. Assume the parameter cf satisfies for all faces f the non-negativity con-
dition

cfβ · nf ≥ 0

and (4.3), i.e. that α and β are such that there is a positive constant α0 with

αω ∧ ⋆ω +
1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) .

Then we have for all ω ∈ Λk
h (T ):

a (ω, ω) ≥ min(α0, 1) ‖ω‖2
h .

Proof. This follows from the Leibniz rule (2.36), starting from (4.8):

a (ω, ω) = (αω, ω)Ω +
∑

T

(ω,Lβ ω)
T

+
∑

f∈F∂\F∂
−

(ω, ω)f,β

+
∑

f∈F◦

(
{ω}f , [ω]f

)
f,β

+
(
cf [ω]f , [ω]f

)
f,β

= (αω, ω)Ω +
∑

T

(
ω,

1

2
(Lβ +Lβ)ω

)

T

+
∑

f∈F∂\F∂
−

(ω, ω)f,β

+
∑

f∈F◦

(
{ω}f , [ω]f

)
f,β

+
(
cf [ω]f , [ω]f

)
f,β

− 1

2

∑

f∈F◦

(
{ω}f , [ω]f

)
f,β

+
(
[ω]f , {ω}f

)
f,β

− 1

2

∑

f∈F∂

(ω, ω)f,β

=
∑

T

(
ω,α+

1

2
(Lβ +Lβ)ω

)

T

+
∑

f∈F◦

(
cf [ω]f , [ω]f

)
f,β

+
1

2

∑

f∈F∂\F∂
−

(ω, ω)f,β − 1

2

∑

f∈F∂
−

(ω, ω)f,β

≥min(α0, 1)‖ω‖2
h,

since (ω, ω)f,β ≥ 0 for f ∈ F∂ \ F∂
−.

Remark 4.1.6. If we have in Lemma 4.1.5 that cf = 0 then

a (ω, ω) ≥ min(α0, 1) ‖ω‖2
L2Λk(Ω) .

Remark 4.1.7. All assertions on convergence of Galerkin schemes, e.g. Theorems 4.1.8-
4.1.16 will be based on Lemma 4.1.5. That means they will assume (4.3). For concrete
problems with solution ω and Galerkin solution ωh it would be enough to assume L2-
stability of a (ω̄h − ωh, ω̄h − ωh), where ω̄h is the L2-orthogonal projection of ω.
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4.1.2 Convergence: Non-Conforming Discrete Differential Forms in R
n

Now, we prove convergence of our formulation (4.6) for the non-conforming discrete
differential forms space Λk

h (T ) = Pd
r Λk(T ).

Theorem 4.1.8. Assume that (4.3) holds for α and β in (4.1) and that cf in (4.6) is
such that

cfβ · nf > 0 ∀f ∈ F◦.

Let ω ∈ W and ωh ∈ Λk
h (T ) be the solutions to the advection problem (4.1) and its

variational formulation (4.6). If additionally Λk
h (T ) = Pd

r Λk(T ) and ω ∈ Hr+1Λk (Ω),
r ≥ 0, we get with C > 0 independent of mesh size h := maxT (hT )

‖ω − ωh‖h ≤ Chr+ 1
2‖ω‖Hr+1Λk(Ω).

Proof. Let ω̄h denote the L2-projection of ω on Pd
r Λk(T ). Then stability (Lemma 4.1.5)

and consistency (Lemma 4.1.1) show

min(α0, 1) ‖ωh − ω̄h‖2
h ≤ a (ωh − ω̄h, ωh − ω̄h) = a (η, γh)

with η := ω − ω̄h and γh = ωh − ω̄h. Let βh denote the L2-projection of β onto(
Pd

0 Λ0(T )
)n

, then Lβh
γh ∈ Pd

r Λk(T ), i.e.
(
η,Lβh

γh

)
T

= 0, and

a (η, γh) = (αη, γh)Ω +
∑

T

(
η, (Lβ −Lβh

)γh

)
T

+
∑

f∈F∂\F∂
−

(η, γh)f,β

+
∑

f∈F◦

(
{η}f , [γh]f

)
f,β

+
(
cf [η]f , [γh]f

)
f,β

.
(4.10)

The pairing
(
[η]f , [γh]f

)
f,cfβ

=
(
cf [η]f , [γh]f

)
f,β

is a semi-definite bilinear form by the

assumption cfβ · nf ≥ 0. Hence Cauchy-Schwarz inequalities yield:

(η, γh)f,β ≤ ‖η‖f,β ‖γh‖f,β , for f ∈ F∂ \ F∂
−,(

c−1
f {η}f + [η]f , [γh]f

)
f,cfβ

≤
∥∥∥c−1

f {η}f + [η]f

∥∥∥
f,cfβ

∥∥∥[γh]f

∥∥∥
f,cfβ

, for f ∈ F◦

(
η, (Lβ −Lβh

)γh

)
T
≤ ‖η‖L2Λk(T )

∥∥(Lβ −Lβh
)γh

∥∥
L2Λk(T )

,

(αη, γh)Ω ≤ ‖α‖W 0,∞Λ0(Ω) ‖η‖L2Λk(Ω) ‖γh‖L2Λk(Ω) .

Analogous to the scalar case, we find

• the multiplicative trace inequality [2]

‖η‖2
f,cfβ ≤ C(h−1

f ‖η‖2
L2Λk(T ) + hf |η|2H1Λk(T )),

with diameter hf of face f and C > 0 depending on the minimum angle of T and
β,
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• the estimate

∥∥(Lβ −Lβh
)γh

∥∥
L2Λk(T )

≤ |β − βh|W1,∞(T ) ‖γh‖L2Λk(T ) + ‖β − βh‖L∞(T ) |γh|H1Λk(T ),

• the inverse inequality,

|γh|H1Λk(T ) ≤ Ch−1
T ‖γh‖L2Λk(T ) ,

with element diameter hT and C > 0 independent of hT .

These results follow from those for the scalar case by an argument for vector proxies.
In conclusion we find with C > 0 independent of h

‖ωh − ω̄h‖2
h ≤ Cmax

T

(
h−

1
2 ‖ω − ω̄h‖L2Λk(T ) + h

1
2‖ω − ω̄h‖H1Λk(T )

)
‖ωh − ω̄h‖h .

Then triangle inequality and the approximation estimates in Theorem 2.2.10 yield the
assertion.

For the particular choice Λk
h (T ) = Pd

0 Λk the formulation (4.6) can be seen as finite
volume scheme. In the case k = 2 and n = 3 we discover an upwind finite volume scheme
that reduces to the one in [29] for Cartesian grids.

Remark 4.1.9. Consider the variational formulation (4.6) with cf = 1
2

β·nf

|β·nf | , n = 3,

k = 2 and Λ2
h (T ) = Pd

0 Λ2(T ). Let B denote the vector correspondence to ω ∈ Pd
0 Λ2(T ).

B has three components Bi that are piecewise constant on the elements T . A simple
calculation shows that Lβ ω corresponds to −DβTB. We introduce the coefficients

β−f,T := min

(
0,

∫

∂T

β|f
· nT dS

)

β+
f,T := max

(
0,

∫

T

β|f
· nT dS

)

and find that the variational formulation (4.6) is

αBi
|T

− (Dβ B)i
|T

+
1

|T |
∑

f∈F\F∂
−

(
β+

f,TBi
|T

− β−f,TBi
|
T−

)
= Fi

|T
, ∀i and ∀T,

where T− 6= T is the other adjacent element of fT if fT 6⊂ ∂Ω and Bi
|
T−

= 0 otherwise.

Note that the coefficients β+
f,T and β−f,T select the upwind values of B and follow from

our particular choice of cf (see Remark 4.1.2). Lemma 4.1.5 and Theorem 4.1.8 prove
stability and convergence of such finite volume schemes.

For the non-stabilized scheme, i.e. cf = 0 in (4.6), we get a sub-optimal convergence
estimate, since we have to use another inverse inequality to bound the facet integrals
‖γh‖f,β by L2-norms on elements [13, p. 1902].
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Remark 4.1.10. Assume that (4.3) holds for α and β in (4.1) and that cf = 0 in (4.6).
Let ω ∈ W and ωh ∈ Λk

h (T ) be the solutions to the advection problem (4.1) and its
variational formulation (4.6). If additionally ω ∈ Hr+1Λk (Ω) and Λk

h (T ) = Pd
r Λk(T ),

r ≥ 0 for we get with C > 0 independent of mesh size h

‖ω − ωh‖L2Λk(Ω) ≤ Chr‖ω‖Hr+1Λk(Ω).

In particular we have no convergence for r = 0: If we work with piecewise constant
approximation spaces Pd

0 Λk we can not prove that the numerical solution of the non-
stabilized scheme converges.

The crucial step (4.10) in the proof of Theorem 4.1.8 is based on the property Lβh
γh ∈

Λk
h (T ) for γh ∈ Λk

h (T ) and piecewise constant velocity fields βh ∈
(
Pd

0 Λ0(T )
)n

. For ap-

proximation spaces Λk
h (T ) with global continuity properties this will not follow straight

forwardly. At first, we can only give a suboptimal estimate.

Theorem 4.1.11. Assume that (4.3) holds for α and β in (4.1) and that cf in (4.6) is
such that

cfβ · nf ≥ 0, ∀f ∈ F◦.

Let ω ∈ Hr+1Λk (Ω) and ωh ∈ Λk
h (T ) be the solutions to the advection problem (4.1) and

its variational formulation (4.6). If additionally either Λk
h (T ) = PrΛ

k(T ), Λk
h (T ) =

P−
r+1Λ

k(T ), Λk
h (T ) = ⋆PrΛ

n−k(T ) or Λk
h (T ) = ⋆P−

r+1Λ
n−k(T ) we get with C > 0

independent of the mesh size h := maxT (hT )

‖ω − ωh‖h ≤ Chr‖ω‖Hr+1Λk(Ω).

Proof. The proof is similar to the proof of Theorem (4.1.8), but without step (4.10).
This means that we need an additional inverse estimate that causes the non-optimal
rate.

This result is very unsatisfactory, because it does not prove convergence for lowest
order conforming discrete differential forms. In the next section we show therefore how
to establish optimal convergence estimates for conforming discrete differential forms
spaces in R

3. As explained earlier, the proofs involve certain technicalities that can not
be expressed with the limited notations from exterior calculus introduced here.

4.1.3 Convergence: Conforming Discrete Differential Forms in R
3

Notation: We use here boldface letters to denote the vector proxies of 1-form and 2-
forms. Non-boldface letters stand for 0-forms or 3-forms. While we keep the introduced
notion for the various spaces, e.g. HΛ1 (Ω) instead of H (curl,Ω), we use now ‖·‖L2(Ω)

(‖·‖L2(Ω)) and ‖·‖Hr(Ω) (‖·‖Hr(Ω)) to denote L2 and Sobolev norms of scalar (vectorial)
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functions. Besides the obvious correspondences to L2 and Sobolev norm for differen-
tial forms we have e.g. that

∥∥√cfβ · nf ·
∥∥

L2(f)
and

∥∥√cfβ · nf ·
∥∥

L2(f)
corresponds to

‖·‖f,cfβ, compare (2.35).

The convergence results for the advection problems for 3-form and 0-forms are classical
results in numerical analysis. The approximation spaces are either piecewise polynomial
globally discontinuous or piecewise polynomial globally continuous approximation spaces
and the convergence proofs are standard theory of either discontinuous or continuous
Galerkin methods (see [27, page 265] and [13]). To adapt to the proof of Theorem 4.1.8 we
need to introduce so-called averaging interpolations operators mapping non-conforming
discrete differential forms to conforming discrete differential forms. Such interpolation
operators have been used previously in the analysis of Discontinuous Galerkin meth-
ods ( [41, Appendix], [39, Appendix] and [49]). Here, we need averaging interpolation
operators for discrete 0-forms, 1-forms and 2-forms. As a result we get the following ap-
proximation results on conforming approximation for discontinuous scalar and vectorial
functions.

Proposition 4.1.12. Let u ∈ Pd
r Λ1(T ) = ⋆Pd

r Λ2(T ) and u ∈ Pd
r Λ0(T ) = ⋆Pd

r Λ3(T ) =
⋆PrΛ

3(T ). Then there exist uc,1 ∈ PrΛ
1(T ) ⊂ P−

r+1Λ
1(T ), uc,2 ∈ PrΛ

2(T ) ⊂ P−
r+1Λ

2(T )
and uc,0 ∈ PrΛ

0(T ) ⊂ P−
r+1Λ

0(T ) such that

∥∥u− uc,1
∥∥2

L2(Ω)
≤ C1


∑

f∈F◦

hf

∫

f

∣∣∣[u]f × nf

∣∣∣
2

dS +
∑

f∈F∂

hf

∫

f

|u× nf |2 dS


 , (4.11)

∥∥u− uc,2
∥∥2

L2(Ω)
≤ C2


∑

f∈F◦

hf

∫

f

∣∣∣[u]f · nf

∣∣∣
2

dS +
∑

f∈F∂

hf

∫

f

|u · nf |2 dS


 , (4.12)

and

∥∥u− uc,0
∥∥2

L2(Ω)
≤ C3


∑

f∈F◦

hf

∫

f

∣∣∣[u]f
∣∣∣
2

dS +
∑

f∈F∂

hf

∫

f

|u|2 dS


 , (4.13)

where hf is the diameter of facet f and C1, C2 and C3 are independent of the mesh size.

Proof. The proof of (4.11) can be found in [41, Proposition 4.5]. We give here only a
sketch of the proof. By Theorem 2.2.1 the dual space of polynomial differential forms
PrΛ

1(T ) on elements T is the span of degrees of freedoms lT associated to T , degrees
of freedom lf associated to faces f ∈ ∆2(T ) and degrees of freedom le associated to
edges e ∈ ∆1(T ). Since a v ∈ PrΛ

1(T ) satisfies for any face f with f ∈ ∆2(T1) and
f ∈ ∆2(T2) lf (v|T1

) = lf (v|T2
) and for any edge e with e ∈ ∆1(T1) and e ∈ ∆1(T2)
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le(v|T1
) = le(v|T2

), we can define uc,1 ∈ PrΛ
1(T ) to be that function with

lT (uc,1) = lT (u), ∀lT ∈
(
PrΛ

1(T )
)∗
,

lf (uc,1) =

∑
T : f∈∆2(T ) lf (u|T )
∑

T : f∈∆2(T ) 1
, ∀lf ∈

(
PrΛ

1(T )
)∗
,

le(u
c,1) =

∑
T : e∈∆2(T ) le(u|T )
∑

T : e∈∆2(T ) 1
, ∀le ∈

(
PrΛ

1(T )
)∗
.

(4.14)

The averages of the local degrees of freedom of u define the conforming approximation
uc,1. Norm equivalence on finite dimensional spaces and a technical scaling argument
proves the assertion. The proof of (4.12) and (4.13) follows similarly.

1-Forms in R
3

The advection problem (4.1) for 1-forms corresponds to

αu + curl u× β + grad (u · β) = f , in Ω,

u|Γin
= g, in Γin.

(4.15)

For convenience we rewrite also the discrete variational formulation (4.6) in vector proxy
notation: Find u ∈ Λ1

h (T ), such that:

a (u,v) = l (v) , ∀v ∈ Λ1
h (T ) , (4.16)

with
l (v) := (f ,v)Ω −

∑

f∈F∂
−

(g,v)f,β (4.17)

and

a (u,v) := (αu,v)Ω −
∑

T

(u, curl (v × β) + β divv)T +
∑

f∈F∂\F∂
−

(u,v)f,β

+
∑

f∈F◦

(
{u}f , [v]f

)
f,β

+
(
cf [v]f , [u]f

)
f,β

.
(4.18)

The stability assumption (4.3) of Lemma 4.1.5 corresponds by Table 2.2 to positive
definiteness of (2α − 2α0 − div β)id +Dβ +DβT and we have stability

a (u,u) ≥ min(α0, 1) ‖u‖2
h , ∀u ∈ Λ1

h (T ) .

for a choice cf , such that cfβ · nf > 0. We get the following convergence result for
H (curl,Ω)-conforming approximation spaces PrΛ

1(T ) or P−
r+1Λ

1(T ).

Theorem 4.1.13. Assume that (4.3) holds for α and β in (4.15), i.e. there exists α0 > 0
such that (2α − 2α0 + div β)id −Dβ −DβT is positive definite and assume that cf in
(4.18) is such that

cfβ · nf ≥ 0.
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Let u ∈ W and uh ∈ Λ1
h (T ) be the solutions of (4.15) and (4.18). Then if u ∈

Hr+1Λ1 (Ω) and Λ1
h (T ) = PrΛ

1(T ) or Λ1
h (T ) = P−

r+1Λ
1(T ) we get with C > 0 indepen-

dent of the mesh size h = maxT (hT )

‖u− uh‖h ≤ Chr+ 1
2‖u‖Hr+1(Ω).

Proof. Let ūh denote the L2-projection of u onto the Λ1
h (T ) and define η := u− ūh and

γh := uh − ūh. At first we recall that by Theorem 2.2.6

‖η‖L2(Ω) ≤ Chr+1‖u‖Hr+1(Ω).

Then by stability, consistency and γh ∈ Λ1
h (T ):

min(α0, 1) ‖u− uh‖2
h ≤ a (η,γh) .

Let βh be the L2-projection of β onto
(
Pd

0 Λ0(T )
)n

. As in the proof of Theorem 4.1.8
we add and subtract the Lie-derivative with respect to the projected velocity field βh.
But since this time

∑
T

(
η,Lβh

γh

)
T
6= 0 we need to prove additionally

∣∣∣∣∣
∑

T

(η, curl(γh × βh) + βh div γh)T

∣∣∣∣∣ ≤ Ch−
1
2 ‖η‖L2(Ω) ‖γh‖h .

Since we have by Table 2.3 for piecewise constant βh the local identity Lβh
= −Lβh

this
is implied by ∣∣∣∣∣

∑

T

(η,βh × curlγh)T

∣∣∣∣∣ ≤ Ch−
1
2 ‖η‖L2(Ω) ‖γh‖h (4.19)

and ∣∣∣∣∣
∑

T

(η,grad (βh · γh))T

∣∣∣∣∣ ≤ Ch−
1
2 ‖η‖L2(Ω) ‖γh‖h . (4.20)

We use the approximation results of Proposition 4.1.12 to prove the two assertions (4.19)
and (4.20). Let wc,1 ∈ PrΛ

1(T ) and wc,0 ∈ Pr+1Λ
0(T ) be the conforming approxima-

tions of βh × curlγh ∈ Pd
r Λ1(T ) and βh · γh ∈ Pd

r+1Λ
0(T ). Since η = u− ūh and both

wc,1 ∈ PrΛ
1(T ) and gradwc,0 ∈ PrΛ

1(T ) we find

∣∣∣∣∣
∑

T

(η,βh × curlγh)T

∣∣∣∣∣ =
∣∣∣∣∣
∑

T

(
η,βh × curlγh − wc,1

)
T

∣∣∣∣∣

≤ ‖η‖L2(Ω)

∥∥βh × curlγh − wc,1
∥∥

L2(Ω)

and ∣∣∣∣∣
∑

T

(η,grad (βh · γh))T

∣∣∣∣∣ =

∣∣∣∣∣
∑

T

(
η,grad

(
βh · γh − wc,0

))
T

∣∣∣∣∣

≤ C0h
−1 ‖η‖L2(Ω)

∥∥βh · γh −wc,0
∥∥

L2(Ω)

.
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The approximation results (4.11) and (4.13) give

∥∥βh × curlγh − wc,1
∥∥2

L2(Ω)
≤

C1h


∑

f∈F◦

∥∥∥[βh × curlγh]f × nf

∥∥∥
2

L2(f)
+
∑

f∈F∂

‖(βh × curlγh) × nf‖2
L2(f)




and

∥∥βh · γh − wc,0
∥∥2

L2(Ω)
≤ C2h


∑

f∈F◦

∥∥∥[βh · γh]f

∥∥∥
2

L2(f)
+
∑

f∈F∂

‖(βh · γh)‖2
L2(f)


 .

Further we have by inverse inequalities, approximation properties of βh and normal
continuity of curlγh ∈ HΛ2 (Ω):

∥∥∥[βh × curlγh]f × nf

∥∥∥
L2(f)

≤
∥∥∥[(βh − β) × curlγh]f × nf

∥∥∥
L2(f)

+
∥∥∥[β × curlγh]f × nf

∥∥∥
L2(f)

≤ C3h
1
2 ‖curlγh‖L2(T1∪T2) +

∥∥∥[curlγh]f · nfβ − β · nf [curlγh]f

∥∥∥
L2(f)

≤ C3h
− 1

2 ‖γh‖L2(T1∪T2) +C4

∥∥∥β · nf [curlγh]f

∥∥∥
L2(f)

≤ C3h
− 1

2 ‖γh‖L2(T1∪T2) +C4h
−1
∥∥∥β · nf [γh]f

∥∥∥
L2(f)

and similar by tangential continuity of γh ∈ HΛ1 (Ω):

∥∥∥[βh · γh]f

∥∥∥
L2(f)

≤
∥∥∥[(βh − β) · γh]f

∥∥∥
L2(f)

+
∥∥∥[β · γh]f

∥∥∥
L2(f)

≤ C5h
1
2 ‖γh‖L2(T1∪T2) +

∥∥∥β · nf [γh]f

∥∥∥
L2(f)

,

with constants C3, C4 and C5 independent of h, and T1 and T2 those elements that share
f . Hence we have proved

∥∥βh × curlγh − wc,1
∥∥

L2(Ω)
≤ C6h

− 1
2 ‖γh‖h

and ∥∥βh · γh − wc,0
∥∥

L2(Ω)
≤ C7h

1
2 ‖γh‖h ,

which yields estimates (4.19) and (4.20).

A similar convergence result is obtained for H(div,Ω)-conforming approximation
spaces PrΛ

2(T ) or P−
r Λ2(T ).
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Theorem 4.1.14. Assume that (4.3) holds for α and β in (4.15), i.e. there exists α0 > 0
such that (2α− 2α0 − div β)id +Dβ +DβT is positive definite and that cf in (4.18) is
such that

cfβ · nf > 0.

Let u ∈ W and uh ∈ Λ1
h (T ) be the solutions of (4.15) and (4.18). Then if u ∈

Hr+1Λ1 (Ω) and Λ1
h (T ) = ⋆PrΛ

2(T ) or Λ1
h (T ) = ⋆P−

r+1Λ
2(T ) for we get with C > 0

independent of h := maxT (hT )

‖u− uh‖h ≤ Chr+ 1
2‖u‖Hr+1(Ω).

Proof. As in the proof of Theorem 4.1.13 the crucial step is a proof of the estimate
∣∣∣∣∣
∑

T

(η, curl(γh × βh) + βh div γh)T

∣∣∣∣∣ ≤ Ch−
1
2 ‖η‖L2(Ω) ‖γh‖h . (4.21)

This time η := u − ūh, ūh ∈ Λ1
h (T ) ⊂ ⋆HΛ2 (Ω), is the L2-projection error for

H(div,Ω)-conforming approximation spaces and we can work directly with the adjoint
Lie-derivative curl(γh × βh) + βh div γh. We recall that by Corollary 2.2.7

‖η‖L2(Ω) ≤ Chr+1‖u‖Hr+1(Ω).

Let wc,1 ∈ Pr+1Λ
1(T ) and wc,2 ∈ PrΛ

2(T ) be the conforming approximations of βh ×
γh ∈ Pd

r+1Λ
1(T ) and βh div γh ∈ Pd

r Λ2(T ). Since η = u − ūh and both curlwc,1 ∈
PrΛ

2(T ) and wc,2 ∈ PrΛ
2(T ) we find

∣∣∣∣∣
∑

T

(η, curl(γh × βh))T

∣∣∣∣∣ ≤ C0h
−1 ‖η‖L2(Ω)

∥∥γh × βh − wc,1
∥∥

L2(Ω)

and ∣∣∣∣∣
∑

T

(η,βh div γh)T

∣∣∣∣∣ ≤ ‖η‖L2(Ω)

∥∥βh div γh − wc,2
∥∥

L2(Ω)
.

The approximation results (4.11) and (4.12) give

∥∥γh × βh − wc,1
∥∥2

L2(Ω)

≤ C1h


∑

f∈F◦

∥∥∥[γh × βh]f × nf

∥∥∥
2

L2(f)
+
∑

f∈F∂

‖(γh × βh) × nf‖2
L2(f)




and

∥∥βh div γh − wc,2
∥∥2

L2(Ω)
≤

C2h


∑

f∈F◦

∥∥∥[βh div γh]f · nf

∥∥∥
2

L2(f)
+
∑

f∈F∂

‖(βh div γh) · nf‖2
L2(f)


 .
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4.1 Stabilized Galerkin Methods

Inverse inequalities, approximation properties of βh, normal continuity of γh and tan-
gential continuity yield:
∥∥∥[γh × βh]f × nf

∥∥∥
L2(f)

≤
∥∥∥[γh × (βh − β)]f × nf

∥∥∥
L2(f)

+
∥∥∥[γh × β]f × nf

∥∥∥
L2(f)

≤ C3h
1
2 ‖γh‖L2(T1∪T2) +

∥∥∥β · nf [γh]f − [γh]f · nfβ

∥∥∥
L2(f)

≤ C3h
1
2 ‖γh‖L2(T1∪T2) +

∥∥∥β · nf [γh]f

∥∥∥
L2(f)

and
∥∥∥[βh div γh]f · nf

∥∥∥
L2(f)

≤
∥∥∥[(βh − β) div γh]f · nf

∥∥∥
L2(f)

+
∥∥∥β · nf [div γh]f

∥∥∥
L2(f)

≤ C4h
− 1

2 ‖γh‖L2(T1∪T2) + C5h
−1
∥∥∥β · nf [γh]f

∥∥∥
L2(f)

,

with constants C3, C4 and C5 independent of h, and T1 and T2 those elements that share
f . Hence we deduce (4.21).

2-Forms in R
3

The advection problem (4.1) for 2-forms corresponds to

αu + curl (u× β) + β divu = f , in Ω,

u|Γin
= g, in Γin.

(4.22)

The discrete variational formulation (4.6) in vector proxy notation is: Find u ∈ Λ2
h (T )

such that:
a (u,v) = l (v) , ∀v ∈ Λ2

h (T ) , (4.23)

with
l (v) := (f ,v)Ω −

∑

f∈F∂
−

(g,v)f,β (4.24)

and

a (u,v) := (αu,v)Ω −
∑

T

(u, curl v × β + grad (β · v))T +
∑

f∈F∂\F∂
−

(u,v)f,β

+
∑

f∈F◦

(
{u}f , [v]f

)
f,β

+
(
cf [v]f , [u]f

)
f,β

.
(4.25)

The stability assumption of Lemma (4.4) corresponds by Table 2.2 to positive definiteness
of (2α − 2α0 + div β)id −Dβ −DβT and we have stability

a (u,u) ≥ C ‖u‖2
h , ∀u ∈ Λ2

h (T )

for a choice cf , such that cfβ · nf > 0.
As for the advection problem for 1-forms we can prove convergence for both H (curl,Ω)

and H(div,Ω)-conforming approximations. We omit the proofs, because they build on
exactly the same arguments as the proofs of Theorems 4.1.13 and 4.1.14.
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Stationary Advection Problem

Theorem 4.1.15. Assume that (4.3) holds for α and β in (4.22), i.e. there exists α0 > 0
such that (2α− 2α0 + div β)id −Dβ −DβT is positive definite and that cf in (4.25) is
such that

cfβ · nf > 0.

Let u ∈ W and uh ∈ Λ2
h (T ) be the solutions of (4.22) and (4.25). Then if u ∈

Hr+1Λ2 (Ω) and Λ2
h (T ) = PrΛ

2(T ) or Λ2
h (T ) = P−

r+1Λ
2(T ) for we get with C > 0

independent of the mesh size h := maxT (hT )

‖u − uh‖h ≤ Chr+ 1
2 ‖u‖Hr+1(Ω). (4.26)

Theorem 4.1.16. Assume that for α and β in (4.22) there exists α0 > 0 such that
(α− α0 − 1

2 div β)id +Dβ +DβT positive definite and that cf in (4.25) is such that

cfβ · nf > 0.

Let u ∈ W and uh ∈ Λ2
h (T ) be the solutions of (4.22) and (4.25). Then if u ∈

Hr+1Λ2 (Ω) and Λ2
h (T ) = ⋆PrΛ

1(T ) or Λ2
h (T ) = ⋆P−

r+1Λ
1(T ) for we get with C > 0

independent of the mesh size h := maxT (hT )

‖u − uh‖h ≤ Chr+ 1
2 ‖u‖Hr+1(Ω). (4.27)

4.1.4 Numerical Experiments

In this section we set Ω ⊂ R
2 and look at the advection problem

αω − Lβ ω = ϕ, in Ω ⊂ R
2,

ω|Γin
= ψD, on Γin,

(4.28)

for 1-forms ω ∈ Λ1 (Ω). From Table 2.3 we find that this corresponds to

αu + grad(β · u) − Rdiv(Ru)β = f , in Ω,

u|Γin
= g, on Γin

(4.29)

with R =

(
0 1
−1 0

)
and u doubling for ω. We consider approximation spaces Λ1

h (T ) =

Pd
r Λ1(T ) with no global continuity, approximation spaces Λ1

h (T ) = P−
r Λ1(T ) with

global normal continuity and approximation spaces

Λ1
h (T ) =

(
P−

r Λ1(T )
)⊥

:= RP−
r Λ1(T )

with tangential global continuity. The case Λ1
h (T ) = P−

r Λ1(T ) corresponds to that
setting, where we use conforming discrete n− k-forms to approximate Lie derivatives of
k-forms.
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4.1 Stabilized Galerkin Methods

Experiment 1: Smooth Data

We set Ω = [0, 1]2, α = 2 and take:

β =

(
0.66(1 − x2)(1 − y2)
0.2 + sin(πx) cos(πx)

)
,

and chose f and g such that

u =

(
sin(πx)(1 − y2)
(1 − x2)(1 − y2)

)

is the solution.
With this data we compute

Dβ + (Dβ)T − (div β − α)(id)

=

(
4 − 33

25x(1 − y2) + π sin(πx) sin(πy) −33
25(1 − x2)y + π cos(πx) cos(πy)

−33
25(1 − x2)y + π cos(πx) cos(πy) 4 + 33

25x(1 − y2) − π sin(πx) sin(πy),

)

i.e. the stability assumption (4.4) requires this matrix to be positive definite. The sketch
of the values of the eigenvalues on Ω in Figure 4.1 shows that for our choice of parameters
the assumption holds true.

Figure 4.1: Sketch of two eigenvalues of the matrix Dβ + (Dβ)T − (div β −α)(id). The
blue plane is the (x, y)-plane. In the entire domain Ω both eigenvalues are
positive.

We first determine numerical convergence rates for stabilized schemes with stabiliza-

tion cf
1
2

β·nf

|β·nf |
. Figures 4.2, 4.3 and 4.4 show the error in the semi-norm

|ω|2h :=
∑

f∈F◦

∥∥∥[ω]f

∥∥∥
2

f,cfβ
+

∑

f∈F∂\F∂
−

‖ω‖2
f, 1

2
β

+
∑

f∈F∂
−

‖ω‖2
f,− 1

2
β
.
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Stationary Advection Problem

The rates of convergence confirm the theoretical results of Theorems 4.1.8, 4.1.13 and
4.1.14. Figures 4.5, 4.6 and 4.7 show the error in the L2-norm. The rates of convergence
improve by 1

2 compared to the theoretical results. This phenomenon has also been
observed for stabilized Galerkin methods for scalar advection. Only on certain very
special meshes one could find there that the theoretical results are also sharp for the
L2-norm [70,89].

10−2 10−1

10−9

10−7

10−5

10−3

10−1

h

|·|
h
-e

rr
or

r = 0
r = 1
r = 2
r = 3
r = 4

O(hr+ 1
2 )

Figure 4.2: Experiment 1: Discontinuous approximation spaces Λ1
h (T ) = Pd

r Λ1(T ) and
stabilization. The results coincide with the assertions of Theorem 4.1.8.

Second we determine numerical convergence rates for the non-stabilized schemes, i.e.
cf = 0. Figures 4.8, 4.9 and 4.10 show the error in the L2-norm. For Λ1

h (T ) = Pd
r Λ1(T )

and r odd the experiments confirm the theoretical results in Remark 4.1.10, while for r
even we observe even higher rates (see 4.8). This is also known from the scalar problem.

For Λ1
h (T ) = P−

r+1Λ
1(T ) and Λ1

h (T ) =
(
P−

r+1Λ
1(T )

)⊥
the results coincide with Theorem

4.1.11 (see Figures 4.9 and 4.10).

Experiment 2: Non-Smooth Data

We set in problem (4.29) Ω = [−1, 1]2, α = 0

β =

(
4(4 + y)
4 + x

)
, (4.30)

f = 0 and

g =

(
1 + sin(0.5πx) sin(0.5πy)

−0.5 + cos(0.5πx) cos(0.5πy)

)
. (4.31)
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4.1 Stabilized Galerkin Methods
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Figure 4.3: Experiment 1: Conforming approximation spaces Λ1
h (T ) = P−

r+1Λ
1(T ) and

stabilization. The results coincide with the assertions of Theorem 4.1.15.
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Figure 4.4: Experiment 1: Non-conforming approximation spaces Λ1
h (T ) =(

P−
r+1Λ

1(T )
)⊥

and stabilization. The resultes coincide with the assertions
of Theorem 4.1.16.
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Figure 4.5: Experiment 1: Discontinuous approximation spaces Λ1
h (T ) = Pd

r Λ1(T ) and
stabilization. As for the scalar problems we observe on ad-hoc meshes super-
convergence for the L2-error compared to the theoretical results.
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Figure 4.6: Experiment 1: Conforming approximation spaces Λ1
h (T ) = P−

r+1Λ
1(T ) and

stabilization. As for the scalar problems we observe on ad-hoc meshes super-
convergence for the L2-error compared to the theoretical results.
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Figure 4.7: Experiment 1: Non-conforming approximation spaces Λ1
h (T ) =(

P−
r+1Λ

1(T )
)⊥

and stabilization. As for the scalar problems we observe on
ad-hoc meshes super-convergence for the L2-error compared to the theoreti-
cal results.
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Figure 4.8: Experiment 1: Discontinuous approximation spaces Λ1
h (T ) = Pd

r Λ1(T ) and
no stabilization. For r odd the results coincide with the assertions of Remark
4.1.10.
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Figure 4.9: Experiment 1: Conforming approximation spaces Λ1
h (T ) = P−

r+1Λ
1(T ) and

no stabilization. The results coincide with the assertions of Theorem 4.1.11.
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Figure 4.10: Experiment 1: Non-conforming approximation spaces Λ1
h (T ) =(

P−
r+1Λ

1(T )
)⊥

and no stabilization. The results coincide with the asser-
tions of Theorem 4.1.11.

Since β is linear we can derive a closed form expression of the solution. This time
the stability assertion (4.4) is violated. Since we observe convergence for our Galerkin
schemes we can be confident to have the situation outlined in Remark 4.1.7. Figure
4.11, 4.12 and 4.13 show the numerical convergence rates for stabilized schemes, where

cf
1
2

β·nf

|β·nf |
. Since the analytic solution is in this case non-smooth along the trajectory

of the vertex (−1, 1) we observe reduced convergence rates. Figure 4.14 visualizes a
characteristic error distribution.

4.1.5 Appendix

For convenience we write here explicitly the representation of the bilinear form a (·, ·)
for forms in R

3 stated on proposition 4.1.3. For these cases an implementation does not
require partial derivatives of β.
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Figure 4.11: Experiment 2: Discontinuous approximation spaces Λ1
h (T ) = Pd

r Λ1(T )
with stabilization.

10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

h

|·|
h
-e

rr
or

r = 0
r = 1
r = 2
r = 3

O(hr+ 1
2 )

Figure 4.12: Experiment 2: Conforming approximation spaces Λ1
h (T ) = P−

r+1Λ
1(T ) with

stabilization.
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Figure 4.13: Experiment 2: Non-conforming approximation spaces Λ1
h (T ) =(

P−
r+1Λ

1(T )
)⊥

with stabilization.
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Figure 4.14: Experiment 2: Characteristic distribution of the error.
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Stationary Advection Problem

• k = 0:

a (u, v) =

∫

Ω
αuv dx +

∑

T

∫

T

β · grad uv dx

−
∑

f∈F◦

∫

f

β · nf [u]f{v}f dS −
∫

f

β · nfcf [u]f [v]f dS

−
∑

f∈F∂
−

∫

f

β · nfuv dS,

l (v) =

∫

Ω
fv dx −

∑

f∈F∂
−

∫

f

β · nfgv dS

• k = 1:

a (u,v) =

∫

Ω
αuv dx +

∑

T

∫

T

(curl u× β) · v dx −
∫

T

u · βdivv dx

+
∑

f∈F◦

∫

f

β · {u}f [v]f · nf dS −
∫

f

(
[u]f × nf

)
·
(
{v}f × β

)
dS

+
∑

f∈F◦

∫

f

cfβ · nf [u]f · [v]f dS

+
∑

f∈F∂\F∂
−

∫

f

β · uv · nf dS −
∑

f∈F∂
−

∫

f

(u× nf ) · (v × β) dS,

l (v) =

∫

Ω
f · v dx −

∑

f∈F∂
−

∫

f

(g × nf ) · (v × β) dS

• k = 2:

a (u,v) =

∫

Ω
αuv dx +

∑

T

∫

T

β · v div udx −
∫

T

u · (curl v × β) dx

+
∑

f∈F◦

∫

f

(
{u}f × β

)
·
(
[v]f × nf

)
dS −

∫

f

[u]f · nf {v}f · β dS

+
∑

f∈F◦

∫

f

cfβ · nf [u]f · [v]f dS

+
∑

f∈F∂\F∂
−

∫

f

(u× β) · (v × nf ) dS −
∑

f∈F∂
−

∫

f

u · nfv · β dS,

l (v) =

∫

Ω
f · v dx −

∑

f∈F∂
−

∫

f

g · nfv · β dS
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4.2 Characteristic Methods

• k = 3:

a (u, v) =

∫

Ω
αuv dx −

∑

T

∫

t

uβ · grad v dx

+
∑

f∈F◦

∫

T

β · nf {u}f [v]f dS +

∫

T

cfβ · nf [u]f [v]f dS

+
∑

f∈F∂\F∂
−

∫
β · nfuv dS,

l (v) =

∫

Ω
fv dx −

∑

f∈F∂
−

∫

f

β · nfgv dS

4.2 Characteristic Methods

Recall the identity (2.28)

Lβ ω =
∂tX

∗
t ω

∂t
|t=0

for the pullback X∗
t induced by the flow of the velocity field β, i.e.

∂Xt(x)

∂t
= β(Xt(x)), X0(x) = x. (4.32)

We will use this identity to introduce so-called characteristic methods for the advection
problem of differential forms. Characteristic methods for scalar stationary advection
problems have been introduced in [8], convergence for scalar advection problems in R

2

was proven in [5]. Although we do prove convergence for characteristic methods for
k-forms in R

n we do not consider these characteristic methods as practical methods for
the stationary advection problem (4.1). But, we will show that the characteristic meth-
ods are closely related to our stabilized Galerkin methods, which will be an important
property for the analysis of non-stationary problems. For the scalar problems such close
relationship has been recognized earlier [5].

Let Xt be the flow of the velocity field β and τ a fixed parameter. Here we assume that
β is defined on an open neighbourhood of Ω. The flow X−τ induces the decomposition
Ω = Ωin ∪ Ω0, with X−τ (Ωin) ∩ Ω = {} and X−τ (Ω0) ⊂ Ω. Further we have Xτ (Ω) =
Ω0 ∪ Ωout with Ωout = Xτ (Ω) \ Ω0 (see Figure 4.15).

Here again Λk
h (T ) denotes some piecewise polynomial approximation space on the

triangulation T for k-forms in Ω.
We then define the characteristic Galerkin scheme for the advection problem (4.1):

Find ωh ∈ Λk
h (T ) such that:

aτ (ωh, η) = lτ (η) , ∀η ∈ Λk
h (T ) , (4.33)

with

aτ (ω, η) := (αω, η)Ω +
1

τ
(ω, η)Ω − 1

τ

(
X∗

−τω, η
)
Ω0
, ω ∈ L2Λk (Ω) , (4.34)
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β

Figure 4.15: Illustration for definition of the domains Ω0, Ωin and Ωout: the black lines
and the light blue lines bound Ω and Xτ (Ω), respectively. The black shaded
area is Ωin and the light blue shaded area is Ωout.

and

lτ (η) := (φ, η)Ω +
1

τ

(
ψ̃D, η

)
Ωin

, (4.35)

where ψ̃D(x) is an extension of ψD onto Ωin, that is constant along the characteristic lines
of β. More precisely, if we define for x ∈ Ωin the time t(x) such that Xt(x)−τ (x) ∈ Γin

we set

ψ̃D(x) =
(
X∗

t(x)−τψD

)
(x).

To evaluate the bilinear form aτ (ω, η) one needs to solve the ordinary differential
equation (4.32) to determine Xτ . We postpone the details of an implementation to the
Chapter 5 on Lagrangian methods.

Convergence

As for the stabilized Galerkin methods we prove convergence in a mesh dependent norm,
but here the natural norm depends also on τ . We define

‖ω‖2
h,τ := ‖ω‖2

L2Λk(Ω) +
1

2τ

∥∥ω −X∗
−τω

∥∥2

L2Λk(Ω0)

+
1

2τ
‖ω‖2

L2Λk(Ωin) +
1

2τ

∥∥X∗
−τω

∥∥2

L2Λk(Ωout)

(4.36)

and prove stability of the formulation (4.33) in this norm.
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4.2 Characteristic Methods

Lemma 4.2.1. Assume that α and β in (4.1) are such that there is a positive constant
α0 with

αω ∧ ⋆ω +
1

2τ

(
ω ∧ ⋆ω − ω ∧X∗

τ ⋆ X
∗
−τω

)
≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) . (4.37)

Then we have for all ω ∈ Λk
h (T ):

aτ (ω, ω) ≥ min(α0, 1) ‖ω‖2
h,τ .

Proof.

aτ (ω, ω) = (αω, ω)Ω +
1

τ
(ω, ω)Ω − 1

τ

(
X∗

−τω, ω
)
Ω0

=(αω, ω)Ω +
1

2τ
(ω, ω)Ω0

− 1

2τ

(
X∗

−τω,X
∗
−τω

)
Ω0

+
1

2τ

(
ω −X∗

−τω, ω −X∗
−τω

)
Ω0

+
1

τ
(ω, ω)Ωin

=(αω, ω)Ω +
1

2τ
(ω, ω)Ω − 1

2τ

(
X∗

−τω,X
∗
−τω

)
Ω0∪Ωout

+
1

2τ

(
ω −X∗

−τω, ω −X∗
−τω

)
Ω0

+
1

2τ
(ω, ω)Ωin

+
1

2τ

(
X∗

−τω,X
∗
−τω

)
Ωout

≥min(α0, 1) ‖ω‖2
h,τ ,

where the last estimate follows from the positivity assumption (4.37) by the following
identity:

(ω, ω)Ω −
(
X∗

−τω,X
∗
−τω

)
Ω0∪Ωout

=

∫

Ω
ω ∧ ⋆ω −

∫

Ω
ω ∧X∗

τ ⋆ X
∗
−τω. (4.38)

The identity

ω ∧ ⋆ω − ω ∧X∗
τ ⋆ X

∗
−τω = ω ∧ (⋆ω −X∗

τ ⋆ ω) + ω ∧
(
X∗

τ ⋆ ω −X∗
τ ⋆ X

∗
−τω

)

= τω ∧ ⋆ (Lβ +Lβ)ω +O(τ2),
(4.39)

ω ∈ Λk (Ω), shows that the stability assumption (4.37) in Lemma 4.2.1 is very similar to
the stability assumption of the stabilized Galerkin methods in Lemma 4.1.5:

αω ∧ ⋆ω +
1

2
(Lβ +Lβ)ω ∧ ⋆ω ≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) .

The next Lemma gives a continuity estimate for aτ (ω, η).

Lemma 4.2.2. For ω ∈ L2Λk (Ω) and η ∈ Λk
h (T ), τ sufficiently small we have

aτ (ω, η) ≤ C√
τ
‖ω‖L2Λk(Ω) ‖η‖h,τ

with C = C(β) ≥ 0 independent of τ and mesh size h.
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Stationary Advection Problem

Proof. First we rewrite aτ :

aτ (ω, η) = (αω, η)Ω +
1

τ
(ω, η)Ω +

1

τ

(
X∗

−τω,X
∗
−τη − η

)
Ω0

− 1

τ

(
X∗

−τω,X
∗
−τη

)
Ω0

= (αω, η)Ω +
1

τ

(
X∗

−τω,X
∗
−τη − η

)
Ω0

+
1

τ
(ω, η)Ω

− 1

τ

(
X∗

−τω,X
∗
−τη

)
Ω0∪Ωout

+
1

τ

(
X∗

−τω,X
∗
−τη

)
Ωout

and estimate then the individual terms in the last sum:

| (αω, η)Ω| ≤ ‖α‖L∞Λ0(Ω) ‖ω‖L2Λk(Ω) ‖η‖L2Λk(Ω) ,
∣∣∣∣
1

τ

(
X∗

−τω,X
∗
−τη − η

)
Ω0

∣∣∣∣ ≤
√

1 + Cτ

τ
‖ω‖L2Λk(Ω)

1√
τ

∥∥η −X∗
−τη

∥∥
L2Λk(Ω0)

,

∣∣∣∣
1

τ
(ω, η)Ω − 1

τ

(
X∗

−τω,X
∗
−τη

)
Ω0∪Ωout

∣∣∣∣ ≤ C(β) ‖ω‖L2Λk(Ω) ‖η‖L2Λk(Ω) ,

∣∣∣∣
1

τ

(
X∗

−τω,X
∗
−τη

)
Ωout

∣∣∣∣ ≤
√

1 + Cτ

τ
‖ω‖L2Λk(Ω)

1√
τ

∥∥X∗
−τη

∥∥
L2Λk(Ωout)

.

The third estimate is based on the identities (4.38), (4.39) and the bound (2.40). The
second and fourth estimate use boundedness of the pullback for sufficiently small τ (see
Proposition 4.2.3):

∥∥X∗
−τω

∥∥
L2Λk(Ω0∪Ωout)

≤
√

1 +Cτ ‖ω‖L2Λk(Ω) .

For sufficiently small τ we have both ‖α‖L∞(Ω) ≤ τ−
1
2 and C(β) ≤ τ−

1
2 and we deduce

the assertion.

Proposition 4.2.3. For sufficiently small τ there exists C = C(β) ≥ 0 independent of τ
such that ∥∥X∗

−τω
∥∥

L2Λk(Ω0∪Ωout)
≤

√
1 +Cτ ‖ω‖L2Λk(Ω) .

Proof. For n = 2 and n = 3 the assertion follows immediately from the explicit repre-
sentation of the pullbacks in Tables 2.2 and 2.3. We find e.g. for differential forms ω in
R

3 with vector correspondences u or u:

k = 0 : (X∗
τ ∗X∗

−τω)(x) ∼ det(DXτ (x))u(x),

k = 1 : (X∗
τ ∗X∗

−τω)(x) ∼ det(DXτ (x))DX
−1
τ (x)DX−T

τ (x)u(x),

k = 2 : (X∗
τ ∗X∗

−τω)(x) ∼ det(DXτ (x))
−1DXT

τ (x)DXτ (x)u(x),

k = 3 : (X∗
τ ∗X∗

−τω)(x) ∼ det(DXτ (x))
−1u(x).

(4.40)
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4.2 Characteristic Methods

and compute ∥∥X∗
−τω

∥∥2

L2Λk(Ω0∪Ωout)
=
(
X∗

−τω,X
∗
−τω

)
L2Λk(Ω0∪Ωout)

=

∫

Ω
ω ∧X∗

τ ⋆ X
∗
−τω

≤ (1 + C(β)τ)

∫

Ω
ω ∧ ⋆ω,

since DXτ = id + τDβ +O(τ2).
The proof for the general case uses the notion of k-minors introduced in (2.17). By

density of Λk (Ω) in L2Λk (Ω) it is enough to consider ω ∈ Λk (Ω). Recall that vol is the
volume form on Ω and that we have by (2.8)

∥∥X∗
−τω

∥∥2

L2Λk(Ω0∪Ωout)
=

∫

Ω0∪Ωout

((
X∗

−τω
)
x
,
(
X∗

−τω
)
x

)
vol .

Then by (2.17) for ω and vol we find:

∥∥X∗
−τω

∥∥2

L2Λk(Ω0∪Ωout)
=

∫

Ω0∪Ωout

(
Mk(X−τ,x)ωX−τ (x),Mk(X−τ,x)ωX−τ (x)

)
vol,

≤ sup
x∈Ω

ρ (Mk(X−τ,x))2
∫

Ω0∪Ωout

(
ωX−τ (x), ωX−τ (x)

)
vol,

≤ sup
x∈Ω

(
ρ (Mk(X−τ,x))2 ρ (Mn(X−τ,x))

)∫

Ω
(ωx, ωx) vol,

where ρ denotes the spectral radius. The assertion follows, since we have Mk(X−τ,x) =
id+ τM′

k(X0,x), with M′
k(X0,x) = M′

k(Dβ(x)) defined in the proof of Proposition 2.1.3.

This time we do not have consistency of the methods. But we can control the consis-
tency error and prove convergence.

Theorem 4.2.4. Assume that α, β and τ in (4.1) are such that there is a positive constant
α0 with

αω ∧ ⋆ω +
1

2τ

(
ω ∧ ⋆ω − ω ∧X∗

τ ⋆ X
∗
−τω

)
≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) . (4.41)

Let ω ∈ Hr+1Λk (Ω) and ωh ∈ Λk
h (T ) be the solutions to the advection problem (4.1)

and its variational formulation (4.33). If additionally Λk
h (T ) permits the approximation

property
inf

η∈Λk
h(T )

‖ω − η‖L2Λk(Ω) ≤ Chr+1‖ω‖Hr+1Λk(Ω),

we get with C > 0 independent of mesh size h := maxT (hT ) and τ :

‖ω − ωh‖h,τ ≤ C
(
hr+1τ−

1
2 + τ

1
2

)
‖ω‖Hr+1Λk(Ω).
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Stationary Advection Problem

Proof. Let ω̄h denote the L2-projection of ω onto Λk
h (T ), then:

‖ω − ωh‖2
h,τ ≤ ‖ω − ω̄h‖2

h,τ + ‖ω̄h − ωh‖2
h,τ .

The stability estimate in Lemma 4.2.1 yields

min(α0, 1) ‖ω̄h − ωh‖2
h,τ ≤ aτ (ω̄h − ω, ω̄h − ωh) + aτ (ω − ωh, ω̄h − ωh) .

We find for the consistency error aτ (ω − ωh, ηh), ηh ∈ Λk
h (T ) by the definition of aτ (·, ·),

lτ (·) and αω + Lβ ω = ϕ

|aτ (ω − ωh, ηh)| = |aτ (ω, ηh) − lτ (ηh)|

=

∣∣∣∣
1

τ
(ω, ηh)Ω − 1

τ

(
X∗

−τω, ηh

)
Ω0

− 1

τ

(
ψ̃D, ηh

)
Ωin

− (Lβ ω, ηh)Ω

∣∣∣∣

=

∣∣∣∣∣

(
1

τ

(
ω −X∗

−τω
)
− Lβ ω, ηh

)

Ω0

+

(
1

τ

(
ω − ψ̃D

)
− Lβ ω, ηh

)

Ωin

∣∣∣∣∣ .

A bound for the first term in the last inequality follows from Taylor expansion

1

τ

(
ω −X∗

−τω
)
− Lβ ω =

1

τ

∫ τ

0
(−s)∂

2X∗
t ω

∂t2 |t=s

ds

and we find∣∣∣∣∣

(
1

τ

(
ω −X∗

−τω
)
− Lβ ω, ηh

)

Ω0

∣∣∣∣∣ ≤ Cτ ‖β‖W2,∞(Ω) ‖ω‖H2Λk(Ω) ‖ηh‖L2Λk(Ω)

with C independent of h. Recall that ψ̃D(x) =
(
X∗

t(x)−τ
ψD

)
(x) with Xt(x)−τ (x) ∈ Γin

and ψD = ω on Γin. Whence Taylor expansion for the second term yields
∣∣∣∣∣

(
1

τ

(
ω − ψ̃D

)
− Lβ ω, ηh

)

Ωin

∣∣∣∣∣ ≤ C ‖Lβ ω‖L2Λk(Ωin) ‖ηh‖L2Λk(Ωin)

≤ Cτ
1
2 ‖β‖W1,∞(Ω) ‖ω‖H1Λk(Ω) ‖ηh‖h,τ ,

since (2τ)−
1
2 ‖ηh‖L2Λk(Ωin) ≤ ‖ηh‖h,τ . That means that we have the following bound for

the consistency error:

|aτ (ω − ωh, ω̄h − ωh)| ≤ Cτ
1
2 ‖β‖W2,∞(Ω) ‖ω‖H2Λk(Ω) ‖ω̄h − ωh‖h,τ .

The continuity estimate in Lemma 4.2.2 gives:

aτ (ω̄h − ω, ω̄h − ωh) ≤ Cτ−
1
2 ‖ω̄h − ω‖L2Λk(Ω) ‖ω̄h − ωh‖h,τ .

In summary we find

min(α0, 1) ‖ω̄h − ωh‖h,τ ≤ C
(
hr+1τ−

1
2 + τ

1
2

)
‖ω‖Hr+1Λk(Ω)

and
‖ω̄h − ω‖h,τ ≤ Chr+1τ−

1
2 ‖ω‖Hr+1Λk(Ω),

which yields the assertion.
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4.2 Characteristic Methods

The proof of the Theorem 4.2.4 assumes that the bilinear form aτ (ω, η) can be eval-
uated exactly for discrete forms ω, η ∈ Λk

h (T ). Real implementations will barely match
this assumption. The standard technique to evaluate bilinear forms for piecewise smooth
finite element functions is the use of local, i.e. elementwise, quadrature rules of sufficient
accuracy. This simple approach will fail for our characteristic methods due to the term(
X∗

−τω, η
)
Ω0

. While η is piecewise smooth on the mesh T , the pullback X∗
−τω of ω is

picewise smooth on Xτ (T ). Xτ (T ) is the image mesh of mesh T (see Figure 4.16). A
sound approximation of

(
X∗

−τω, η
)
Ω0

must split integration over Ω0 in a sum of inte-

grals over intersections of elements of T with elements of Xτ (T ). This might be very
expensive.

Figure 4.16: A mesh T (blue, solid lines) on Ω = [0, 1]2 and its image mesh Xτ (T ) under
the flow induced by β =

(
1
16 sin(2πx) sin(2πy), 1

16 sin(2πx) sin(2πy)
)
.

Characteristic Methods and Stabilized Methods

As mentioned earlier there is a very close relationship between these characteristic meth-
ods and the stabilized Galerkin methods. The stabilized Galerkin methods are the limit
case of characteristic methods when the parameter τ tends to zero.

Theorem 4.2.5. Let Λk
h (T ) be a piecewise polynomial approximation space of k-forms.

Let a (ω, η) and aτ (ω, η) be the two bilinear forms defined in (4.8) and (4.34). Further
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Stationary Advection Problem

assume that cf = 1
2

nf ·β

|nf ·β| . The limit limτ→0 aτ (ω, η) exists and

lim
τ→0

aτ (ω, η) = a (ω, η) , ω, η ∈ Λk
h (T ) .

Proof. By Leibniz rule (2.36) we find

a (ω, η) = (αω, η)Ω +
∑

T

(Lβ ω, η)T
−
∑

f∈F∂
−

(ω, η)f,β

+
∑

f∈F◦

(
[ω]f , cf [η]f − {η}f

)
f,β

.
(4.42)

We first prove

lim
τ→0

1

τ
(ω −X∗

τω, η)Ω0
=
∑

T

(Lβ ω, η)T
+
∑

f∈F◦

(
[ω]f , cf [η]f − {η}f

)
f,β

, (4.43)

with cf = 1
2

nf ·β

|nf ·β| . T and f denotes n-simplices and n−1-simplices of the mesh. ω and η

are picewise smooth on the mesh T and X∗
−τω is piecewise smooth on the mesh Xτ (T ).

For any two elements T, T ′ ∈ ∆n(T ) we define the patches

P0(T, T
′) := T ∩Xτ (T ′) ∩ Ω0.

Then we split the integration over Ω0 in a sum of intgrals over the patches:

1

τ

(
ω −X∗

−τω, η
)
Ω0

=
∑

P0(T,T ′)

1

τ

(
ω −X∗

−τω, η
)
P0(T,T ′)

.

Each of the integrals in the last sum has smooth integrands. We distinguish now three
different cases (see Figure 4.17):

• T 6= T ′ and ∆n−1(T ) ∪ ∆n−1(T
′) = {}, i.e. the elements T and T ′ do not share

any facet f : Since |P0(T, T
′)| = O(τ2) we find by the Lebesgue’s dominated con-

vergence theorem:

lim
τ→0

1

τ

(
ω −X∗

−τω, η
)
P0(T,T ′)

= 0.

• T 6= T ′ and ∆n−1(T ) ∪ ∆n−1(T
′) = {f}: Here |P0(T, T

′)| = | extr(f,Xτ )| +O(τ2)
and the orientations of P0(T, T

′) and extr(f,Xτ ) coincide if β · nf > 0. We use
the coefficent cf to reflect the change of orientation. Let c̃f denote the piecewise
constant extension of cf to extr(f,Xτ ) (see Figure 4.18), then we find:

lim
τ→0

1

τ

(
ω −X∗

−τω, η
)
P0(T,T ′)

= lim
τ→0

2

τ

(
ω −X∗

−τω, c̃fη
)
extr(f,Xτ )

= lim
τ→0

2

τ

(∫

extr(f,Xτ )
c̃fω ∧ ⋆η −

∫

extr(f,Xτ )
c̃fX

∗
−τω ∧ ⋆η

)
.
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4.2 Characteristic Methods

To determine the limit values of the last two terms we recall that ω and η are
discontinuous across facet f . But because the extrusion extr(f,Xτ ) is an extrusion
of f in the direction of the flow, the limit selects the values from the downwind
side for ω and η and the values from the upwind side for X−τω (see Figure 4.17).
According to Remark 4.1.2 the downwind and upwind values of ω are given as
{ω}f − cf [ω]f and {ω}f + cf [ω]f . We get by (2.30)

lim
τ→0

1

τ

(
ω −X∗

−τω, η
)
P0(T,T ′)

=2

∫

f

cf iβ

((
{ω}f − cf [ω]f

)
∧ ⋆
(
{η}f − cf [η]f

))

− 2

∫

f

cf iβ

((
{ω}f + cf [ω]f

)
∧ ⋆
(
{η}f − cf [η]f

))

=
(
[ω]f , cf [η]f − {η}f

)
f,β

.

Note that for any f the existence of T , T ′ with ∆n−1(T ) ∪ ∆n−1(T
′) = {f} and

f ∈ P0(T, T
′) imply f ∈ F◦.

• T = T ′: Since |P0(T, T )| = O(τ0) we find by the Lebesgue’s dominated convergence
theorem:

lim
τ→0

1

τ

(
ω −X∗

−τω, η
)
P0(T,T )

= (Lβ ω, η)T
.

This proves (4.43). Similarly we deduce

lim
τ→0

(ω, η)Ωin
= −

∑

f∈F∂
−

(ω, η)f,β .

and get the assertion.

A corollary of Theorem 4.2.5 says that the norm ‖·‖h is the limit of the norm ‖·‖h,τ .

Lemma 4.2.6. Let Λk
h (T ) be a piecewise polynomial approximation space of k-forms and

assume cf = 1
2

nf ·β

|nf ·β| in (4.9) then

lim
τ→0

‖ω‖h,τ = ‖ω‖h , ∀ω ∈ Λk
h (T ) .

Proof. The same arguments as in the proof of Theorem 4.2.5 show:

lim
τ→0

1

2τ

∥∥ω −X∗
−τω

∥∥2

L2Λk(Ω0)
=
∑

f∈F◦

∥∥∥[ω]f

∥∥∥
2

f,cfβ
,

lim
τ→0

1

2τ
‖ω‖2

L2Λk(Ωout)
=

∑

f∈F∂\F∂
−

‖ω‖2
f, 1

2
β
,

and

lim
τ→0

1

2τ
‖ω‖2

L2Λk(Ωin) =
∑

f∈F∂
−

‖ω‖2
f,− 1

2
β
.
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Stationary Advection Problem

Xτ (T )

Xτ (T ′)

T

T ′

a

Xτ (a)

Figure 4.17: Illustration for proof of Theorem 4.2.5. Discrete k-forms ω ∈ Λk
h (T ) , k > 0

are discontinuous across edges of the triangulation T (black, solid lines).
Their pullbacks X∗

−τω are discontinuous across edges of the triangulation
Xτ (T ) (blue, dashed lines), the image of T .

c̃f = −1
2

c̃f = −1
2 c̃f = 1

2

c̃f = 1
2

f

Xτ (f)
nf

β

β

Figure 4.18: Illustration for the definition of c̃f in the proof of Theorem 4.2.5.
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5 Non-Stationary Advection Problem

In this chapter we will present numerical methods for the non-stationary advection
problems

∂tω + αω + Lβ ω = ϕ, in Ω,

trω = trψD, on Γin,

tr iβ ω = tr iβ ψD, on Γin,

ω(0) = ω0, in Ω,

(5.1)

and
∂tω̃ + αω̃ − Lβ ω̃ = ϕ̃, in Ω,

tr ω̃ = tr ψ̃D, on Γin,

tr iβ ω̃ = tr iβ ψ̃D, on Γin,

ω̃(0) = ω0, in Ω

(5.2)

with data ϕ, ϕ̃ ∈ L2Λk (Ω) and ψD, ψ̃D ∈ Λk (Rn \ Ω). α ∈ Λ0 (Ω) is a given scalar
parameter and β : Ω 7→ R

n is a given Lipschitz continuous velocity field.

Again we consider (5.1) and (5.2) as the limiting problems of advection-diffusion prob-
lems of type (3.3) and (3.4). We have shown in Theorems 3.4.9 and 3.4.11 that (5.1)
and (5.2) are well-posed in appropriate spaces.

As for the stationary problem in Chapter 4 it is enough to study the problem (5.1).
We will present two different families of timestepping methods for tackling the advection
problem (5.1). These are the Eulerian methods and the Lagrangian methods. The former
are based on spatial discretization to which some numerical timestepping procedure is
applied. In our case we use the stabilized Galerkin methods from Chapter 4 for the spatial
discretization and explicit and implicit Euler timestepping methods as timestepping
procedures. Lagrangian methods dispense with a fixed mesh and approximately track
the flow induced by the velocity field β.

5.1 Eulerian Methods

Eulerian methods for the non-stationary advection problem (5.1) build on semi-discre-
tization in space. The resulting system of ordinary differential equations is solved with
standard numerical integrators. Here, we will use the stabilized Galerkin discretization
from Chapter 4 for the semi-discretization in space and simple lowest order one step
Euler methods as numerical integrator. Since the main objective is a comparison with
the semi-Lagrangian methods from the next section we do not provide an analysis for
higher order numerical integrators, even though the formulations are straight forward.
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In the following Λk
h (T ) denotes again some piecewise polynomial approximation space

of differential k-forms on a triangulation T of Ω, i.e. Λk
h (T ) ⊂ L2Λk (Ω), Λk

h (T ) ⊂
HΛk (Ω) or Λk

h (T ) ⊂ ⋆HΛn−k (Ω).
The semi-discrete variational formulation of (5.1) is: Find ωh ∈ C1

(
[0, T ]; Λk

h (T )
)

such that
(∂tωh, η)Ω + a (ωh, η) = l (η) , ∀t ∈ [0, T ], ∀η ∈ Λk

h (T )

ωh(0) = ω0,
(5.3)

where a (ωh, η) and l (η) are defined in (4.7) and (4.8).
The stability estimate for a (ωh, η) in Lemma 4.1.5 and convergence estimates as in

Theorems 4.1.8 and 4.1.13-4.1.16 show that the solutions ωh(t) of (5.3) are accurate
approximations to ω(t):

Theorem 5.1.1. Let ω and ωh be the solution to (5.1) and (5.3). Assume that (4.3)
holds for α and β in (5.1). Assume in the definition (4.7) of a (·, ·) that the parameter
cf satisfies for all faces f the positivity condition

cfβ · nf > 0.

Further assume that the Ritz-Galerkin projection Phω(t) ∈ Λk
h (T ) with

a (Phω(t), η) := a (ω(t), η) , ∀η ∈ Λk
h (T )

fulfills the estimate

‖ω(t) − Phω(t)‖L2Λk(Ω) ≤ Cch
r+ 1

2‖ω‖Hr+1Λk(Ω) (5.4)

for ω ∈ Hr+1Λk (Ω) and Cc > 0 independent of h. Then we have

max
t∈[0,T ]

‖ω(t) − ωh(t)‖L2Λk(Ω) ≤ ‖ω(0) − ωh(0)‖L2Λk(Ω) e
−min(α0,1)T

2 + hr+ 1
2 c(ω),

where c(ω) = Cc maxt∈[0,T ]

(
1

min(α0,1)‖∂tω(t)‖Hr+1Λk(Ω) + ‖ω(t)‖Hr+1Λk(Ω)

)
.

Proof. We set γh(t) := Phω(t) − ωh(t) and find

(∂tγh(t), η)Ω + a (γh(t), η) = (∂tPhω(t) − ∂tω(t), η)Ω ,

because a (Phω(t) − ω(t), η) = 0. Let ᾱ0 = min(α0, 1) for the constant α0 in (4.3).
Setting η = γh the stability in Lemma 4.1.5 and Young’s inequality yield:

∂t
1

2
‖γh(t)‖2

L2Λk(Ω) + ᾱ0 ‖γh(t)‖2
L2Λk(Ω)

≤ ᾱ0

2
‖γh(t)‖2

L2Λk(Ω) +
1

2ᾱ0
‖∂tPhω(t) − ∂tωh(t)‖2

L2Λk(Ω) ,

or

∂t ‖γh(t)‖2
L2Λk(Ω) + ᾱ0 ‖γh(t)‖2

L2Λk(Ω) ≤
1

ᾱ0
‖∂tPhω(t) − ∂tωh(t)‖2

L2Λk(Ω) .
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The Gronwall’s Lemma [27, Lemma 6.9] gives then:

‖γh(t)‖2
L2Λk(Ω) ≤ ‖ωh(0)‖2

L2Λk(Ω) e
−ᾱ0t + C2

c

1 − e−ᾱ0t

ᾱ2
0

h2r+1 max
t∈[0,T ]

‖∂tω(t)‖2
Hr+1Λk(Ω)

and

‖ω(t) − ωh(t)‖L2Λk(Ω) ≤ ‖ωh(0)‖L2Λk(Ω) e
−ᾱ0

t
2

+ Cch
r+ 1

2 max
t∈[0,T ]

(
1

ᾱ0
‖∂tω(t)‖Hr+1Λk(Ω) + ‖ω(t)‖Hr+1Λk(Ω)

)
.

Remark 5.1.2. In Chapter 4 we have proved (5.4) for the following cases:

• Λk
h (T ) = Pd

r Λk(T ) (Theorem 4.1.8),

• n = 3, k = 1 and Λk
h (T ) = PrΛ

k or Λk
h (T ) = P−

r+1Λ
k, (Theorem 4.1.13),

• n = 3, k = 1 and Λk
h (T ) = ⋆PrΛ

n−k or Λk
h (T ) = ⋆P−

r+1Λ
n−k, (Theorem 4.1.14),

• n = 3, k = 2 and Λk
h (T ) = PrΛ

k or Λk
h (T ) = P−

r+1Λ
k, (Theorem 4.1.15),

• n = 3, k = 2 and Λk
h (T ) = ⋆PrΛ

n−k or Λk
h (T ) = ⋆P−

r+1Λ
n−k, (Theorem 4.1.16).

Given a positive number N , we set τ = T
N

, tn = τn for 0 ≤ n ≤ N and con-

sider a partitioning of the time interval in the form [0, T ] =
⋃N−1

n=0 [tn, tn+1]. We intro-
duce ln (η) := (ϕ(tn), η)Ω −∑f∈F∂

−
(ψD(tn), η)f,β. and consider now two different time

stepping schemes for constructing sequences (ωn
h)N

n=0, ω
n
h ∈ Λk

h (T ), that approximate

(ω(tn))N
n=0.

• Explicit Euler time stepping scheme:
Find (ωn

h)N
n=0, ω

n
h ∈ Λk

h (T ), such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω(0), η)Ω ,

1

τ

(
ωn+1

h − ωn
h , η
)
Ω

+ a (ωn
h , η) = ln+1 (η) .

(5.5)

• Implicit Euler time stepping scheme:
Find (ωn

h)N
n=0, ω

n
h ∈ Λk

h (T ), such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω(0), η)Ω ,

1

τ

(
ωn+1

h − ωn
h , η
)
Ω

+ a
(
ωn+1

h , η
)

= ln+1 (η) .
(5.6)

Note that in any case the two schemes (5.6) and (5.5) treat the right hand sides implicitly.
Similar to the analysis of parabolic problems we can prove convergence of these schemes.
We give here only the proof for the explicit scheme, the proof for the implicit scheme
follows analogue.
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Theorem 5.1.3. Let (ω(tn))N
n=0, (ωn

h)N
n=0 be the solution to (5.1) and (5.5). Assume

that (4.3) holds for α and β in (5.1). Assume in the definition (4.7) of a (·, ·) that the
parameter cf satisfies for all faces f the positivity condition

cfβ · nf > 0.

Further assume that the Ritz-Galerkin projection Phω(t) ∈ Λk
h (T ) with

a (Phω(t), η) := a (ω(t), η) , ∀η ∈ Λk
h (T )

fulfills the estimate

‖ω(t) − Phω(t)‖L2Λk(Ω) ≤ Cch
r+ 1

2 ‖ω‖Hr+1Λk(Ω)

for ω ∈ Hr+1Λk (Ω) and Cc > 0 independent of h. Let C(h) be a positive function of the
mesh size h such that

a (ω, η) ≤ C(h) ‖ω‖L2Λk(Ω) ‖η‖h , ∀ω, η ∈ Λk
h (T ) . (5.7)

Then if τ ≤ κmin(α0, 1)C(h)−2, 0 ≤ κ < 1, we have

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ C

(
hr+ 1

2 + τ
)
,

with C > 0 independent of τ and h.

Proof. The proof is similar to the proof of Theorem 7.1.15 in [26]. Let ω̄n
h := Phω(tn),

then
1

τ

(
ω̄n+1

h − ω̄n
h , η
)
Ω

+ a (ω̄n
h , η) = ln+1 (η) +

(
Rn+1, η

)
Ω

with
(
Rn+1, η

)
Ω

=

(
1

τ

(
ω̄n+1

h − ω̄n
h

)
− ∂tω(tn), η

)

Ω

+ ln (η) − ln+1 (η) .

We define γn
h := ω̄n

h − ωn
h and find:

1

τ

(
γn+1

h − γn
h , η
)
Ω

+ a (γn
h , η) =

(
Rn+1, η

)
Ω
.

We take η = 2τγn+1
h and use 2p(p− q) = p2 + (p− q)2 − q2:

∥∥γn+1
h

∥∥2

L2Λk(Ω)
+
∥∥γn+1

h − γn
h

∥∥2

L2Λk(Ω)
+ 2τa

(
γn

h , γ
n+1
h

)

≤ ‖γn
h‖2

L2Λk(Ω) + 2τ
∥∥Rn+1

∥∥
L2Λk(Ω)

∥∥γn+1
h

∥∥
L2Λk(Ω)

≤ ‖γn
h‖2

L2Λk(Ω) +
τ

ᾱ0

∥∥Rn+1
∥∥2

L2Λk(Ω)
+ ᾱ0τ

∥∥γn+1
h

∥∥2

L2Λk(Ω)
,
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where ᾱ0 = min(α0, 1) with α0 the constant in (4.3). Continuity and stability of a (·, ·)
and Young’s inequality give for κ > 0:

a
(
γn

h , γ
n+1
h

)
= a

(
γn+1

h , γn+1
h

)
+ a

(
γn

h − γn+1
h , γn+1

h

)

≥ ᾱ0

∥∥γn+1
h

∥∥2

h
− C(h)

∥∥γn
h − γn+1

h

∥∥
L2Λk(Ω)

∥∥γn+1
h

∥∥
h

≥ ᾱ0

∥∥γn+1
h

∥∥2

h
− C(h)2

2κᾱ0

∥∥γn
h − γn+1

h

∥∥2

L2Λk(Ω)
− κᾱ0

2

∥∥γn+1
h

∥∥2

h
.

Combining the last two results we get:

∥∥γn+1
h

∥∥2

L2Λk(Ω)
+

(
1 − C(h)2τ

κᾱ0

)∥∥γn+1
h − γn

h

∥∥2

L2Λk(Ω)
+ τᾱ0(1 − κ)

∥∥γn+1
h

∥∥2

h

≤ ‖γn
h‖2

L2Λk(Ω) +
τ

ᾱ0

∥∥Rn+1
∥∥2

L2Λk(Ω)
,

and in particular for τ ≤ κᾱ0
C(h)2 :

(1 + τᾱ0(1 − κ))
∥∥γn+1

h

∥∥2

L2Λk(Ω)
≤ ‖γn

h‖2
L2Λk(Ω) +

τ

ᾱ0

∥∥Rn+1
∥∥2

L2Λk(Ω)
.

A discrete Gronwall’s Lemma [26, Lemma 7.1.12] yields for this recursion and κ > 0

‖γn
h‖L2Λk(Ω) ≤ e−ᾱ0(1−κ)tn

∥∥γ0
h

∥∥
L2Λk(Ω)

+
1

ᾱ0

√
1 − κ

max
0≤i≤N

∥∥Ri
∥∥

L2Λk(Ω)
.

From the definitions of Rn and ln (η) we infer

∥∥Rn+1
∥∥

L2Λk(Ω)
≤Cc max

t∈[0,T ]

(
hr+ 1

2 ‖∂tω(t)‖L2Λk(Ω) + τ
∥∥∂2

t ω(t)
∥∥

L2Λk(Ω)

)

+ C1τ max
t∈[0,T ]

(
‖∂tϕ(t)‖L2Λk(Ω) + ‖∂tψD(t)‖L2Λk(∂Ω)

)
.

This proves the assertion.

It remains to specify C(h) in (5.7).

Remark 5.1.4. From the definition (4.8) of a (ω, η), ω, η ∈ Λk
h (T ) we deduce by inverse

inequalities:

a (ω, η) = (ᾱω, η)Ω +
∑

T

(ω,Lβ η)T
+

∑

f∈F∂\F∂
−

(ω, η)f,β

+
∑

f∈F◦

(
{ω}f , [η]f

)
f,β

+
(
cf [ω]f , [η]f

)
f,β

≤C ‖ω‖L2Λk(Ω)

(
‖η‖L2Λk(Ω) + h−1 ‖η‖L2Λk(Ω)

)

+ Ch−
1
2 ‖ω‖L2Λk(Ω)




∑

f∈F∂\F∂
−

‖ω‖f,cfβ +
∑

f∈F◦

∥∥∥[ω]f

∥∥∥
f,cfβ




≤Ch−1 ‖ω‖L2Λk(Ω) ‖η‖h .
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If we have Λk
h (T ) = Pd

0 Λk(T ) then

(ω,Lβ η)T ≤ C(Dβ) ‖ω‖L2Λk(Ω) ‖η‖L2Λk(Ω) ,

hence

a (ω, η) ≤ Ch−
1
2 ‖ω‖L2Λk(Ω) ‖η‖h .

By remark 5.1.4 we have in the general case C(h) = Ch−1 in (5.7) which yields
the timestep constraint τ = O(h2). Only for piecewise constant approximation space

Λk
h (T ) = Pd

0 Λk(T ) we find C(h) = Ch−
1
2 , i.e. τ = O(h). This is the standard timestep

constraint for upwind finite volume or finite difference schemes for scalar advection
problems. That result means that for explicit Euler timestepping and for lowest order
approximation spaces Λk

h (T ) = P−
1 Λk or Λk

h (T ) = ⋆P−
1 Λn−k, k > 0, we have to impose

the strict timestep constraint τ = O(h2).

For the implicit scheme (5.6), on the other hand, we have stability and convergence
for timestep sizes τ independent of the mesh size h.

Theorem 5.1.5. Let (ω(tn))Nn=0, (ωn
h)N

n=0 be the solution to (5.1) and (5.6). Assume in
the definition (4.7) of a (·, ·) that the parameter cf satisfies for all faces f the positivity
condition

cfβ · nf > 0.

Further assume that the Ritz-Galerkin projection Phω(t) ∈ Λk
h (T ) with

a (Phω(t), η) := a (ω(t), η) , ∀η ∈ Λk
h (T )

fulfills the estimate

‖ω(t) − Phω(t)‖L2Λk(Ω) ≤ Cch
r+ 1

2 ‖ω‖Hr+1Λk(Ω)

for ω ∈ Hr+1Λk (Ω) and Cc > 0 independent of h. Then we have

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ C

(
hr+ 1

2 + τ
)
,

with C > 0 independent of τ and h.

5.1.1 Numerical Experiments

In this section we set Ω = [−1, 1]2 ⊂ R
2 and look at the non-stationary advection

problem for a vector u

∂tu + grad(β · u) − Rdiv(Ru)β = f , in Ω,

u|Γin
= g, on Γin

u(0) = u0, in Ω

(5.8)
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with R =

(
0 1
−1 0

)
. We consider approximation spaces Λ1

h (T ) =
(
P−

1 Λ1(T )
)⊥

:=

RP−
1 Λ1(T ) that are globally tangential continuous. The velocity field

β =

(
0.66(1 − x2)(1 − y2)

sin(πx) sin(πy)

)

has vanishing normal components on the boundary, i.e. we have no inflow boundary
Γin = {}. The data f and u0 is such that

u = cos(2πt)

(
sin(πx) sin(πy)
(1 − x2)(1 − y2)

)

is the solution. For a timestep τ = 0.8h2 we observe convergence for both the explicit and
the implicit schemes (see Figure 5.1). For a timestep τ = 0.8h we do observe convergence
only for the implicit scheme (see Figure 5.2). In contrast to instability phenomena
with parabolic problems, the instability appears only after sufficient refinements. For a
timestep τ = 0.2h we do not reach this limit (see Figure 5.3), but we can not guarantee
that for even smaller meshes the error will not explode.

10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4 10−0.2

10−1

100

h

L
2
-e

rr
or

explicit
implicit

O(h)

Figure 5.1: Experiment: Convergence rate of the L2-error at t = 0.4 for simulations on
interval [0, 0.4] for timestep size τ = 0.8h2.

101



Non-Stationary Advection Problem
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h

L
2
-e

rr
or

explicit
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Figure 5.2: Experiment: Convergence rate of the L2-error at t = 0.4 for simulations on
interval [0, 0.4] for timestep size τ = 0.8h.
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h
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2
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rr
or
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Figure 5.3: Experiment: Convergence rate of the L2-error at t = 0.4 for simulations on
interval [0, 0.4] for timestep size τ = 0.2h.
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5.2 Semi-Lagrangian Formulations

Throughout this section we will assume for simplicity that the velocity β has vanishing
normal components on the boundary ∂Ω of the domain. The formal solution of our
advection problem (5.1) with α = 0 is

ω(t) = X∗
−tω0 +

∫ t

0
X∗

τ−tϕ(τ)dτ.

Semi-Lagrangian methods are based on such a representation of the solution. Let Ph :
L2Λk (Ω) 7→ Λk

h (T ) denote an abstract projection operator, where Λk
h (T ) denotes again

some piecewise polynomial approximation space of differential k-forms on a triangulation
T of Ω, i.e. Λk

h (T ) ⊂ L2Λk (Ω), Λk
h (T ) ⊂ HΛk (Ω) or Λk

h (T ) ⊂ ⋆HΛn−k (Ω).

We consider again a partitioning of the time interval of the form [0, T ] =
⋃N−1

n=0 [tn, tn+1]
with tn = τn and τ = T

N
. The semi-Lagrangian timestepping scheme for constructing

sequences (ωn
h)N

n=0, ω
n
h ∈ Λk

h (T ), that approximate (ω(tn))N
n=0 is:

• abstract semi-Lagrangian timestepping:
Find (ωn

h)N
n=0, ω

n
h ∈ Λk

h (T ), such that:

ω0
h = Phω(0)

ωn+1
h = PhX

∗
−τω

n
h +

∫ tn+1

tn
PhX

∗
τ−tn+1ϕ(τ) dτ.

(5.9)

For the scalar advection problem such methods have been formulated and analysed
in [25, 61, 63, 71, 72, 83]. For L2-continuous projections we can prove convergence of our
abstract semi-Lagrangian scheme for k-forms in R

n.

Theorem 5.2.1. Let Λk
h (T ) be a piecewise polynomial space of discrete differential k-

forms such that for Ph in (5.9) and for r ≥ 0:

‖ω − Phω‖L2Λk(Ω) ≤ Cch
r+1‖ω‖Hr+1Λk(Ω) (5.10)

with Cc independent of h. Let ω and ωh be the solutions to (5.1) and (5.9). Additionally
we assume

‖Phω‖L2Λk(Ω) ≤ ‖ω‖L2Λk(Ω) . (5.11)

Then we have

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ Chr+1(τ−1 + 1) max

0≤n≤N
‖ω(tn)‖Hr+1Λk(Ω), (5.12)

with C > 0 independent of h and τ .

Proof. To bound the error ‖ω(tn) − ωn
h‖L2Λk(Ω) we add and subtract the projection

Phω(tn), use Cauchy-Schwarz inequality, formulas (5.1) and (5.9) and the assumption
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(5.11):

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ ‖ω(tn) − Phω(tn)‖L2Λk(Ω) + ‖Phω(tn) − ωn

h‖L2Λk(Ω)

≤ ‖ω(tn) − Phω(tn)‖L2Λk(Ω) +
∥∥X∗

−τω(tn−1) −X∗
−τω

n−1
h

∥∥
L2Λk(Ω)

≤ ‖ω(tn) − Phω(tn)‖L2Λk(Ω) + Ce

∥∥ω(tn−1) − ωn−1
h

∥∥
L2Λk(Ω)

.

In the last inequality we have Ce =
√

1 + Cτ according to Proposition 4.2.3. Then a
discrete Gronwall-like inequality (see Appendix 5.2.4) and the approximation assumption
(5.10) yield:

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤

eCτn − 1

Cτ
max

1≤j≤n

∥∥ω(tj) − Phω(tj)
∥∥

L2Λk(Ω)

+ eCτn
∥∥ω(t0) − ω0

h

∥∥
L2Λk(Ω)

≤Cc
eCτn − 1

Cτ
hr+1 max

1≤j≤n

∥∥ω(tj)
∥∥

Hr+1Λk(Ω)

+ Cce
Cτnhr+1

∥∥ω(t0)
∥∥

L2Λk(Ω)

and the assertion follows by (5.10).

Remark 5.2.2. For τ = O(h) the estimate in Theorem 5.2.1 is suboptimal in compari-
son with the approximation assumption (5.10). In particular for r = 0, e.g. the cases
Λk

h (T ) = P−
1 Λk, Λk

h (T ) = Pd
0 Λk and Λk

h (T ) = ⋆P−
1 Λn−k, we can not prove convergence.

This phenomenon is also observed for semi-Lagrangian methods of scalar transport prob-
lems. Up to our knowledge there exists no proof of convergence for the case r = 0, except
for certain simplified problems in R

1 and R
2 with constant velocity [63].

We present now two different concrete choices for the projection operator Ph. The L2-
orthogonal projection gives rise to the so-called semi-Lagrangian Galerkin method. The
canonical approximation operators associated with the finite element like approximation
spaces Λk

h (T ) yield semi-Lagrangian interpolation methods. While the L2-projection is
L2-continuous most practical interpolation operators lack this property. Hence Theorem
5.2.1 will not give convergence for such semi-Lagrangian interpolation schemes.

5.2.1 Semi-Lagrangian Galerkin Methods

Let Πh denote the L2-projection operator onto Λk
h (T ):

(Πhω, η)Ω := (ω, η)Ω , ∀η ∈ Λk
h (T ) .

An actual implementation of (5.9) will require more approximations than simply spec-
ifying Ph = Πh. This needs to be done very carefully [61] to preserve the nice stability
properties of semi-Lagrangian schemes established in Theorem 5.2.1.

(i) Approximate flow map. First we would like to introduce approximations X̄τ

of the flow map Xτ that depend on both Ωh and the timestep τ . Since we have Ω ⊂ R
n

we can consider the difference Xτ (x) − X̄τ (x) and require consistency in the following
sense:
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5.2 Semi-Lagrangian Formulations

• X̄τ : Ω 7→ Ω is T -piecewise smooth,

• there are l1, l2 ≥ 1 such that for h→ 0 and τ → 0

∥∥Xτ − X̄τ

∥∥
W0,∞(Ω)

≤ O(hl1+1τ+τ l2) and
∥∥Xτ − X̄τ

∥∥
W1,∞(Ω)

≤ O(hl1τ+τ l2).

(5.13)

A simple construction of approximate flow maps relies on the nodal basis functions
λi spanning the space Pl1Λ

0(T ) of continuous piecewise polynomial Lagrangian finite
element functions of degree l1. The degrees of freedom associated to these basis functions
are point evaluations at particular nodal points ai defined by affine coordinates inside
the simplices of the mesh. Then we define

X̄τ (x) :=
∑

i

X̄τ,iλi(x), (5.14)

where the coefficients X̄τ,i are approximations to the trajectories Xτ (ai) of the degrees
of freedoms ai with

‖Xτ (ai) − X̄τ,i‖ ≤ O(τ l1) for τ → 0 , (5.15)

see figure 5.4 for an illustration. This approximation is consistent by construction. The

Figure 5.4: Illustration of the approximation of the trajectories Xτ . Left: The fixed
mesh T (blue solid lines) and its image Xτ (T ) under the exact flow. In the
general case Xτ (T ) consists of non-polynomial curved polygons. Right: A
low order consistent approximation X̄τ (T ) (black solid lines) of Xτ (T ). Here
we used linear Lagrangian elements and exact trajectories for the vertices,
hence X̄τ (T ) has again straight edges and the vertices of Xτ (T ) and X̄τ (T )
coincide.
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errors
∥∥Xτ − X̄τ

∥∥
W0,∞(Ω)

and
∥∥Xτ − X̄τ

∥∥
W1,∞(Ω)

split into an error due to approxima-

tions of the trajectories of the degrees of freedom, which is assumed to be of order O(τ l2),
and an error due to interpolation in Lagrangian finite element functions. The bound on
the interpolation error follows from standard interpolation estimates for Lagrangian fi-
nite elements [18]. If Πh denotes the interpolation operator onto Pl1Λ

0(T ) we have for
s = 0, 1:

‖Xτ − ΠhXτ‖Ws,∞(Ω) = ‖Xτ − id−Πh(Xτ − id)‖Ws,∞(Ω)

≤ Chl1+1−s |Xτ − id|W l1+1,∞(Ω)

≤ Chl1+1−sτ |β|W l1+1,∞(Ω) ,

where the last inequality follows from (2.27).
(ii) Approximation of source. We have to approximate the time integration of the

right-hand side in (5.9). Since ϕ does not depend on ω it is reasonable to choose some
quadrature method for the approximation Q(ϕ, t, t + τ) ≈

∫ t+τ

t
ϕ(s)ds which satisfies

∣∣∣∣
∫ t+τ

t

ϕ(s)ds−Q(ϕ, t, τ)

∣∣∣∣ ≤ Cτm max
t≤s≤t+τ

∣∣∣∣
dm

dtm
ϕ(s)

∣∣∣∣ , m ≥ 1 . (5.16)

Now we are in a position to formulate fully discrete semi-Lagrangian timestepping
schemes.

• Semi-Lagrangian Galerkin method
Find (ωn

h)N
n=0, ω

n
h ∈ Λk

h (T ), such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω0, η)Ω ,(
ωn+1

h , η
)
Ω

=
(
X̄∗

−τω
n
h , η
)
Ω

+
(
Q(X̄∗

s−tn+1ϕ(s), tn, tn+1), η
)
Ω
.

(5.17)

For k = 0 and continuous piecewise linear approximation spaces this is exactly the
scheme in [72].

Now the pullbacks are represented as piecewise polynomials. The right-hand side in
(5.17) can be computed exactly, by determining the intersection of all elements T of the
mesh T with all elements X̄τ (T

′) of the transported mesh X̄τ (T ) (see Figure 5.5 for
illustration). At a first glance this seems to be very expensive. Nevertheless we think
that at least for the case of low order approximations such schemes are competitive
methods, since semi-Lagrangian schemes enjoy unconditional stability. Moreover, for
discontinuous finite element approximation spaces, i.e. the natural approximation spaces
for k-forms, k > 0, there is hardly any other choice.

Remark 5.2.3. Inspired from standard finite element techniques one could be tempted to
split the inner product

(
X̄∗

−τωh, η
)
Ω

in a sum of integrals over elements of T and apply
some quadrature rule there. We will call this scheme the quadrature-based scheme:

Find ωn
h ∈ Λk

h (T ) such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω0, η)Ω ,(
ωn+1

h , η
)
Ω,h

=
(
X̄∗

−τω
n
h , η
)
Ω,h

+
(
Q(X̄s−tn+1ϕ̃(s), tn, tn+1), η

)
Ω,h

,
(5.18)
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Figure 5.5: The inner products on the right-hand side of the Galerkin projection scheme
(5.17) pair finite element functions defined on two different meshes, namely
the fixed mesh (blue dashed lines) and the approximated transported mesh.
Since in both meshes the facets are polynomial, we can algorithmically de-
termine a partitioning of Ω such that all appearing finite element functions
are smooth on each part. The finite element functions and the pullbacks are
polynomials, hence the inner products can computed exactly.

with
(ω, η)Ω,h =

∑

T

∑

i

wi,Tω(xi,T ) ∧ ⋆η(xi,T ) (5.19)

for suitable quadrature points (xi,T )i and quadrature weights (wi,T )i. Compared to the
projection scheme this reduces the computational cost, since only the flows for the quadra-
ture points need to be computed. Nevertheless this scheme is questionable since we apply
quadrature on domains with discontinuous integrands. Our numerical experiments sup-
port these doubts.

In analogy to Theorem 5.2.1 we can prove convergence for the solutions of the Galerkin
projection scheme (5.17). A crucial step is the following Proposition:

Proposition 5.2.4. Let X̄τ be a consistent approximation to Xτ according to (5.13).
Then ∥∥X∗

−τω − X̄∗
−τω

∥∥
L2Λk(Ω)

≤ Cl(h
l1τ + τ l2)‖ω‖H1Λk(Ω), (5.20)

with Cl independent of τ and h.

Proof. The proof follows the lines of the proof of Proposition 4.2.3. By the definition
(2.8) we have

∥∥X∗
−τω − X̄∗

−τω
∥∥2

L2Λk(Ω)
=

∫

Ω

((
X∗

−τω − X̄∗
−τω

)
x
,
(
X∗

−τω − X̄∗
−τω

)
x

)
vol,
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where (·, ·) is the inner product on alternating forms defined in (2.2). In what follows σ
and σ′ are increasing sequences {1, . . . , p} 7→ {1, . . . , n} and e1, . . . , en is a basis of R

n.
For fixed x ∈ Ω and τ we introduce the abbreviations ωx (eσ) := ωx

(
eσ(1), . . . , eσ(p)

)
,

ωX := ωX−τ (x) and Xx := X−τ (x). Then we find

(
X∗

−τω
)
x
(eσ) = Mk(Xx)ωX (eσ) and

(
X̄∗

−τω
)
x
(eσ) = Mk(X̄x)ωX̄ (eσ)

where Mk(·) is the operator introduced in (2.17). Together this yields

(
X∗

−τω − X̄∗
−τω

)
x
(eσ) =

(
Mk(Xx)ωX − Mk(X̄x)ωX

)
(eσ)

+
(
Mk(X̄x)ωX − Mk(X̄x)ωX̄

)
(eσ) .

For each σ′ we have that ωX(eσ′) is a function of X, i.e. for smooth differential forms
Taylor expansion yields

ωX(eσ′) = ωX̄(eσ′) + (X − X̄)∂xωx(eσ′)|x=X+s(X−X̄)

for some s with 0 ≤ s ≤ 1. We find

∥∥X∗
−τω − X̄∗

−τω
∥∥2

L2Λk(Ω)
≤ a1 + a2,

with

a1 = sup
x
ρ
(
Mk (Xx) − Mk

(
X̄x

))2
sup

x
|Mn (X−τ,x)| ‖ω‖2

L2Λk(Ω)

and

a2 = sup
x
ρ
(
Mk

(
X̄x

))2
sup

x
|Mn(X−τ,x)|

∥∥X − X̄
∥∥

W0,∞(Ω)
|ω|2H1Λk(Ω),

where ρ(·) denotes the spectral radius. We get the bound

∥∥X∗
−τω − X̄∗

−τω
∥∥2

L2Λk(Ω)
≤

C
∣∣X−τ − X̄−τ

∣∣2
W1,∞(Ω)

‖ω‖2
L2Λk(Ω) + C

∥∥X−τ − X̄−τ

∥∥2

W0,∞(Ω)
|ω|2H1Λk(Ω)

and the assertion follows by (5.13).

Theorem 5.2.5. Let ω(t) and (ωn
h)N

n=0 be the solution of (5.1) and (5.17). Further
assume, that the approximation X̄τ is consistent with Xτ according to (5.13). The ap-
proximation of the time integration of the right-hand side in (5.17) is assumed to be of
order m according to (5.16) Then for h and τ sufficiently small

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤C

((
1 +

1

τ

)
hr+1 + hl1 + τ l2−1

)
max

0≤n≤N
‖ω(tn)‖Hr+1Λk(Ω)

+ C
(
τm−1 + τhl1 + τ l2

)
C(ϕ).

(5.21)
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Proof. The proof is similar to the proof of Theorem 5.2.1. The additional approximations
give additional consistency errors in the recursion for the error ‖ω(tn) − ωn

h‖L2Λk(Ω):

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤‖ω(tn) − Πhω(tn)‖L2Λk(Ω) + ‖Πhω(tn) − ωn

h‖L2Λk(Ω)

≤‖ω(tn) − Πhω(tn)‖L2Λk(Ω)

+
∥∥ΠhX

∗
−τω(tn−1) − ΠhX̄

∗
−τω

n−1
h

∥∥
L2Λk(Ω)

+

∥∥∥∥Πh

∫ tn

tn−1

X∗
s−tnϕ(s)ds− ΠhQ(X̄∗

s−tnϕ(s), tn−1, tn)

∥∥∥∥
L2Λk(Ω)

=E1 + E2 + E3

For the second term in the last line we find by L2-stability, Proposition 4.2.3 and Propo-
sition 5.2.4 and l ≥ 1:

E2 ≤
∥∥X∗

−τω(tn−1) − X̄∗
−τω

n−1
h

∥∥
L2Λk(Ω)

≤
∥∥X̄∗

−τω(tn−1) − X̄∗
−τω

n−1
h

∥∥
L2Λk(Ω)

+
∥∥(X∗

−τ − X̄∗
−τ

)
ω(tn−1)

∥∥
L2Λk(Ω)

≤(1 + Cτ)
∥∥ω(tn−1) − ωn−1

h

∥∥
L2Λk(Ω)

+ Cl(h
l1τ + τ l2)

∥∥ω(tn−1)
∥∥

H1Λk(Ω)
.

For the term E3 we get by Proposition 5.2.4:

E3 ≤
∥∥∥∥∥

∫ tn

tn−1

X∗
s−tnϕ̃(s)ds−Q(X̄∗

s−tn ϕ̃(s), tn−1, tn)

∥∥∥∥∥
L2Λk(Ω)

≤
∥∥∥∥
∫ tn

tn−1

X̄∗
s−tnϕ̃(s)ds−Q(X̄∗

s−tn ϕ̃(s), tn−1, tn)

∥∥∥∥
L2Λk(Ω)

+

∥∥∥∥
∫ tn

tn−1

X̄∗
s−tnϕ̃(s)ds−

∫ tn

tn−1

X∗
s−tnϕ̃(s)ds

∥∥∥∥
L2Λk(Ω)

≤(τm + τ2hl1 + τ l2+1)C(ϕ).

We can use a discrete Gronwall-like inequality (see Appendix 5.2.4):

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤

e(C+Cl)τn − 1

(C + Cl)τ
max

1≤j≤n

(∥∥ω(tj) − Πhω(tj)
∥∥

L2Λk(Ω)
+ Cl(h

l1τ + τ l2)
∥∥ω(tj−1)

∥∥
H1Λk(Ω)

)

+
e(C+Cl)τn − 1

(C + Cl)τ
(τm + τ2hl1 + τ l2+1)C(ϕ) + e(C+Cl)τn−1

∥∥ω(t0) − ω0
h

∥∥
L2Λk(Ω)

and the assertion follows.

Although we have now a proof of convergence that reflects explicitly the various dis-
cretization parameters, still, we do not have convergence for lowest order polynomial
approximations spaces. In the next section we will give a proof of convergence of such
schemes. This proof is very much inspired by the convergence proof for the explicit
Eulerian scheme.
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Convergence of Lowest Order Method

Since we focus on low order approximation spaces we use now lowest order collocation
methods and consider the following semi-Lagrangian scheme for problem (5.1):

• Low order semi-Lagrangian Galerkin time stepping scheme:
Find (ωn

h)N
n=0, ω

n
h ∈ Λk

h (T ), such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω0, η)Ω ,(
ωn+1

h , η
)
Ω

=
(
X∗

−τω
n
h , η
)
Ω

+ τ
(
ϕn+1, η

)
Ω
.

(5.22)

This is basically the semi-Lagrange Galerkin method in (5.17) where we assume here
that

(
X∗

−τω
n
h , η
)
Ω

can be evaluated exactly and choose a low order quadrature (5.16)
for the evaluation of the right hand side. These simplifications are made to accentuate
the main arguments. Recall that we assumed vanishing normal components of β at the
boundary ∂Ω. Hence we can rewrite the semi-Lagrangian scheme (5.22) in terms of the
bilinear form

aτ (ω, η) = (αω, η)Ω +
1

τ
(ω, η)Ω − 1

τ

(
X∗

−τω, η
)
Ω

introduced in (4.34) for the characteristic methods, where in this case α = 0. We find
an equivalent formulation that resembles the explicit Eulerian schemes (5.5):

• Find (ωn
h)N

n=0, ω
n
h ∈ Λk

h (T ), such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω0, η)Ω ,

1

τ

(
ωn+1

h − ωn
h , η
)
Ω

+ aτ (ωn
h , η) =

(
ϕn+1, η

)
Ω
.

(5.23)

In light of Theorems 4.2.5 and 5.1.3 it is very likely that this scheme converges at least
for sufficiently small timesteps τ also for lowest order spatial approximations. Moreover,
we can even prove convergence for sufficiently small timesteps under the assumption that
aτ (·, ·) allows for a Ritz-Galerkin projector.

Theorem 5.2.6. Let (ω(tn))N
n=0, (ωn

h)N
n=0 be the solution to (5.1) and (5.23). Assume

that β is such that there is a constant α0 > 0 with

1

2τ

(
ω ∧ ⋆ω − ω ∧X∗

τ ⋆ X
∗
−τω

)
≥ α0ω ∧ ⋆ω, ∀ω ∈ Λk (Ω) . (5.24)

If additionally Λk
h (T ) permits the approximation property:

inf
η∈Λk

h(T )
‖ω − η‖L2Λk(Ω) ≤ Chr+1‖ω‖Hr+1Λk(Ω)

we get for sufficiently small τ

max
0≤n≤N

‖ω(tn) − ωn
h‖L2Λk(Ω) ≤ C

(
hr+1τ−

1
2 + τ

1
2 + τ

)
,

with C > 0 independent of τ and h.
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Proof. By Theorem 4.2.4 we have a Ritz-Galerkin projection Phω(t) ∈ Λk
h (T ) with

aτ (Phω(t), η) := a (ω(t), η) , ∀η ∈ Λk
h (T )

that fulfills the estimate

‖ω(t) − Phω(t)‖L2Λk(Ω) ≤ C1

(
hr+1τ−

1
2 + τ

1
2

)
‖ω‖Hr+1Λk(Ω)

for ω ∈ Hr+1Λk (Ω) and C1 > 0 independent of h.
Let ω̄n

h := Phω(tn), then

1

τ

(
ω̄n+1

h − ω̄n
h , η
)
Ω

+ aτ (ω̄n
h , η) =

(
ϕ(tn+1), η

)
Ω

+
(
Rn+1, η

)
Ω

with

(
Rn+1, η

)
Ω

=

(
1

τ
(ω̄n+1

h − ω̄n
h) − ∂tω(tn), η

)

Ω

+ (ϕ(tn), η)Ω −
(
ϕ(tn+1), η

)
Ω
.

We define γn
h := ω̄n

h − ωn
h and find:

1

τ

(
γn+1

h − γn
h , η
)
Ω

+ aτ (γn
h , η) =

(
Rn+1, η

)
Ω
,

or, equivalently
1

τ

(
γn+1

h −X∗
−τγ

n
h , η
)
Ω

=
(
Rn+1, η

)
Ω
.

We take η = 2τγn+1
h and use 2p(p− q) = p2 + (p− q)2 − q2:

∥∥γn+1
h

∥∥2

L2Λk(Ω)
+
∥∥γn+1

h −X∗
−τγ

n
h

∥∥2

L2Λk(Ω)

≤
∥∥X∗

−τγ
n
h

∥∥2

L2Λk(Ω)
+ 2τ

∥∥Rn+1
∥∥

L2Λk(Ω)

∥∥γn+1
h

∥∥
L2Λk(Ω)

≤
∥∥X∗

−τγ
n
h

∥∥2

L2Λk(Ω)
+
τ

κ

∥∥Rn+1
∥∥2

L2Λk(Ω)
+ κτ

∥∥γn+1
h

∥∥2

L2Λk(Ω)
,

for κ > 0. By Proposition 4.2.3 we deduce

∥∥γn+1
h

∥∥2

L2Λk(Ω)
≤ 1 + C2τ

1 − κτ
‖γn

h‖2
L2Λk(Ω) +

τ

(1 − κτ)κ

∥∥Rn+1
∥∥2

L2Λk(Ω)
.

From the definition of Rn we infer

∥∥Rn+1
∥∥

L2Λk(Ω)
≤

C3 max
t∈[0,T ]

(
(hr+1τ−

1
2 + τ

1
2 ) ‖∂tω(t)‖L2Λk(Ω) + τ

∥∥∂2
t ω(t)

∥∥
L2Λk(Ω)

+ τ ‖∂tϕ(t)‖L2Λk(Ω)

)

hence the assertion follows from the discrete Gronwall-like inequality (see Appendix
5.2.4).
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Remark 5.2.7. Theorem 5.2.6 gives convergence for τ = O(h) and lowest order spatial
approximation spaces. The assumption (5.24) here is stricter than the assumption (4.37)
for the characteristic methods. While the assumption (4.37) can always be taken for
granted due to rescaling ω′ = eα

′
ω the assumption (5.24) is an explicit assumption on

the velocity field β. However, a proof of convergence for the semi-Lagrangian scheme for
the rescaled variables follows the same lines as the proof of Theorem 5.2.6, and we can
in particuar establish convergence for τ = O(h) and lowest order approximation spaces.

Remark 5.2.8. For non-vanishing normal components of β at the boundary we can prove
the same results as in Theorem 5.2.6 without any additional technicalities for the follow-
ing formulation:

• Find (ωn
h)N

n=0, ω
n
h ∈ Λk

h (T ), such that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (ω0, η)Ω ,

1

τ

(
ωn+1

h , η
)
Ω
− 1

τ

(
X∗

−τω
n
h , η
)
Ω0

=
(
ϕn+1, η

)
Ω
−
(
ψn+1

D , η
)
Ωin

.

5.2.2 Semi-Lagrangian Interpolation Methods

Without doubt, the semi-Lagrangian Galerkin methods have apparent advantages com-
pared to the Eulerian methods. They do not have the strict timestep constraints of
explicit Eulerian methods, while the algebraic systems remain positive definite. For
very large problems the positive definiteness is important to speedup the simulation
time with appropriate linear solvers. The disadvantage of semi-Lagrangian methods is
the need to evaluate inner products of finite element functions that are defined on two
different meshes.

We present here another family of semi-Lagrangian methods that decimates this dis-
advantage for low order approximation spaces. They build on the interpolation oper-
ators (2.46) that are defined via the degrees of freedom of the differential form finite
element spaces Λk

h (T ). In case of the non-conforming discrete differential form spaces
Λk

h (T ) = Pd
r Λk(T ) the degrees of freedom could be simple point evaluations. Such

schemes would strongly resemble the quadrature-based Galerkin schemes in Remark
5.2.3. But since the quadrature-based schemes are dubious we will exclude the spaces
Pd

r Λk in the following discussion. Second we will treat the two problems (5.1) and (5.2)
separately. If Πh is a canonical projection operator (2.46) for P−

r+1Λ
k or PrΛ

k based
on the canonical degrees of freedom of type (2.45) and (2.44), then ΠhX

∗
−τ ⋆ ωh with

ωh in P−
r+1Λ

k or PrΛ
k is not well-defined for k ≤ n

2 : the degrees of freedom contain
the functionals ω 7→

∫
f
ω, with f k-subsimplices of the mesh, that are not defined for

n − k-forms like X∗
−τ ⋆ ωh. Rephrasing this for the case R

3: line integrals are not well
defined for 2-forms.

In what follows we assume again that the velocity has vanishing normal components
on the boundary of Ω. Let X̄τ be an approximation to the flow Xτ that is consistent
according to (5.13) and Q(ϕ, t, s) a quadrature method as in (5.16). Let now Πh denote
a canonical approximation operator (2.46) that is based on the degrees of freedom of the
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approximation space Λk
h (T ). The degrees of freedoms are certain moments associated

to subsimplices of the mesh. We define then a fully discrete interpolation based semi-
Lagrangian method.

• semi-Lagrangian interpolation method for problem (5.1)
Set Λk

h (T ) = PrΛ
k(T ) or Λk

h (T ) = P−
r+1Λ

k. Find (ωn
h)N

n=0, ω
n
h ∈ Λk

h (T ), such

that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (Πhω0, η)Ω(
ωn+1

h , η
)
Ω

=
(
ΠhX̄

∗
−τω

n
h , η
)
Ω

+
(
Q(ΠhX̄

∗
s−tn+1ϕ(s), tn, tn+1), η

)
Ω
.

(5.25)

• semi-Lagrangian interpolation method for problem (5.2)
Set Λk

h (T ) = PrΛ
k(T ) or Λk

h (T ) = P−
r+1Λ

k. Find (ω̃n
h)N

n=0, ω̃
n
h ∈ Λk

h (T ), such

that for all η̃ ∈ Λk
h (T ):

(
ω̃0

h, η̃
)
Ω

=(Πhω̃0, η̃)Ω(
ω̃n+1

h , η̃
)
Ω

=
(
X̄∗

τ ΠhX̄
∗
−τ ω̃

n
h , X̄

∗
τ η̃
)
Ω

+Q
( (
X̄∗

tn+1−sΠhX̄
∗
s−tn+1ϕ̃(s), X̄∗

tn+1−sη̃
)
Ω
, tn, tn+1

)
.

(5.26)

To motivate the definition of the semi-Lagrangian scheme (5.26) for problem (5.2) we
prove a consistency result in the following proposition.

Proposition 5.2.9. For smooth ω ∈ Λk (Ω) and piecewise smooth η ∈ Λk
h (T ) we have

∣∣∣∣
1

τ

(
(Πhω, η)Ω −

(
X∗

τ ΠhX
∗
−τω,X

∗
τ η
)
Ω

)
+ (Lβ ω, η)Ω

∣∣∣∣→ 0 for h, τ → 0.

Proof. Due to X−τ (Ω) = Ω we compute

(Πhω, η)Ω −
(
X∗

τ ΠhX
∗
−τω,X

∗
τ η
)
Ω

=

∫

Ω
η ∧ ⋆Πhω −

∫

Ω
X∗

τ η ∧ ⋆X∗
τ ΠhX

∗
−τω

=

∫

Ω
η ∧ ⋆Πhω −

∫

Ω
X∗

τ η ∧ ⋆Πhω

+

∫

Ω
X∗

τ η ∧ ⋆Πhω −
∫

Ω
X∗

τ η ∧ ⋆ΠhX
∗
−τω

+

∫

Ω
X∗

τ η ∧ ⋆ΠhX
∗
−τω −

∫

Ω
X∗

τ η ∧ ⋆X∗
τ ΠhX

∗
−τω

=A1 +A2 +A3

As in the proof of Theorem 4.2.5 we find with T and f denoting n- and n− 1 simplices

and cf = 1
2

β· nf

|β·nf |
,

lim
τ→0

1

τ
A1 = −

∑

T

(Lβ η,Πhω)
T
−
∑

f

(
[η]f , cf [Πhω]f − {Πhω}f

)
f,β

,
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or using Leibniz rule (2.36) and formula (4.5) we get

lim
τ→0

1

τ
A1 = −

∑

T

(η,Lβ Πhω)
T
−
∑

f

(
cf [η]f + {η}f , [Πhω]f

)
f,β

.

By introducing η̃ := X∗
τ η and ω̃ := X∗

τ ΠhX
∗
−τω we find for A3 by the same arguments

as in the proof of Theorem 4.2.5:

lim
τ→0

1

τ
A3 = −

∑

T

(Lβ Πhω, η)T
−
∑

f

(
[Πhω]f , cf [η]f − {η}f

)
f,β

.

Since ω is smooth we find also:

lim
τ→0

1

τ
A2 =

∑

T

(Πh Lβ ω, η)T

Collecting the results for A1, A2 and A3 we get:

lim
τ→0

∣∣∣∣
1

τ

(
(Πhω, η)Ω −

(
X∗

τ ΠhX
∗
−τω,X

∗
τ η
)
Ω

)
+ (Lβ ω, η)Ω

∣∣∣∣ =

∣∣∣∣∣∣
(Πh Lβ ω − Lβ Πhω, η)Ω + (Lβ ω − Lβ Πhω, η)Ω − 2

∑

f

(
[Πhω]f , cf [η]f

)
f,β

∣∣∣∣∣∣

and the assertion follows, since for smooth ω all Πh Lβ ω−Lβ Πhω → 0, Lβ ω−Lβ Πhω →
0 and [ω]f → 0 when h→ 0.

Remark 5.2.10. At first glance there seems to be a simpler way to define semi-Lagrangian
interpolation schemes for problem (5.2):

• wrong semi-Lagrangian interpolation method for problem (5.2)
Set Λk

h (T ) = PrΛ
k(T ) or Λk

h (T ) = P−
r+1Λ

k. Find (ωn
h)N

n=0, ω
n
h ∈ Λk

h (T ), such

that for all η ∈ Λk
h (T ):

(
ω0

h, η
)
Ω

= (Πhω0, η)Ω
(
ωn+1

h , η
)
Ω

=
(
ωn

h ,ΠhX̄
∗
τ η
)
Ω

+Q
((

ϕ(s),ΠhX̄
∗
ti+1−sη

)
Ω
, ti, ti+1

)
.

(5.27)

Note that the consistency result of proposition 5.2.9 will not apply for this scheme since
X∗

τ η is non-smooth in any case.

As we mentioned earlier we can not prove convergence of such interpolation schemes,
since the interpolation operators lack of L2-stability. We think that it might be possible
to give convergence results analogue to the proof of Theorem 5.2.6. The difficult part
here is the analysis of the stationary problem that would establish the appropriate Ritz-
Galerkin projections.

Nevertheless it is worth to consider such semi-Lagrangian interpolation-schemes. This
is mainly for two reason:

114



5.2 Semi-Lagrangian Formulations

• In accurate semi-Lagrangian Galerkin schemes we have to determine in each it-
eration all intersections of n-simplices of the fixed mesh with n-simplices of the
transported mesh. The canonical interpolation operators (2.46) are based on mo-
ments of subsimplices. Hence in accurate semi-Lagrangian interpolation schemes
we only need to find intersections of n-simplices of the fixed mesh with l-simplices
of the transported mesh, where by Theorem 2.2.1 k ≤ l ≤ r + k − 1 for Λk

h (T ) =
PrΛ

k(T ) or Λk
h (T ) = ⋆PrΛ

n−k(T ) and k ≤ l ≤ r + k for Λk
h (T ) = P−

r+1Λ
k(T ) or

Λk
h (T ) = ⋆P−

r+1Λ
n−k(T ). For low order approximation spaces the interpolation

schemes are cheaper.

• We know that for ϕ = 0 in (5.1) the exterior derivative of the initial data is pre-
served during the evolution. Since exterior derivative commutes with a canon-
ical approximation operator (Lemma 2.2.8) the same holds true for the semi-
Lagrangian interpolation scheme (5.25).

There is a remarkable difference between the two methods (5.25) and (5.26). While
the first method is basically a non-variational method, the second scheme (5.26) is again
a Galerkin method. But still the use of a canonical approximation operator simplifies
the algorithmic treatment compared to the semi-Lagrangian Galerkin methods (5.17)
introduced previously.

We close the presentation of semi-Lagrangian interpolation schemes with algorithmic
details on an efficient implementation for lowest order conforming discrete 0- and 1-forms.

Nodal interpolation of transported Whitney 0-forms

To determine the interpolation ΠhX̄
∗
τωh ∈ P1Λ

0(T ) for a transported conforming dis-
crete 0-form X̄∗

τωh, ωh ∈ P1Λ
0(T ) it is by linearity enough to consider the basis functions

λi defined in (2.48). The canonical degrees of freedom of Whitney 0-forms are point
evaluations at the vertices f0

i ∈ ∆0(T ) of the triangulation. Hence we can represent the
mapping ΠhX̄

∗
τ : P1Λ

0(T ) 7→ P1Λ
0(T ) by a matrix operator P0

τ with entries

(
P0

τ

)
ij

:= λj(X̄τ (f0
i )) (5.28)

that maps the expansions coefficients of ωh to the coefficients of ΠhX̄
∗
τωh. This means

that in each time step we need the points X̄τ (f
0
i ) ∈ Ω that are determined by the

approximation of the flow. When we use in (5.14) linear Lagrangian elements it is
enough to solve (2.27) approximatively for the vertices f0

i . We not only need to find the
position but also the location within the mesh. To find the element, in which X̄τ (f

0
i ) is

located we trace the path of the trajectory from one element to the next. Based on this
data the matrix entries (5.28) can be assembled element by element (see Figure 5.6).

Nodal interpolation of transported Whitney 1-forms

The canonical degrees of freedom of lowest order conforming discrete 1-forms are line
integrals over all oriented 1-subsimplices of the triangulation. Hence, the interpola-
tion of a transported discrete 1-form X̄∗

τωh, ωh ∈ P−
1 Λ1(T ) is determined through the
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ai = X̄t(f
0
i )

f0
k

f0
l

f0
m

T1

T2

T3

T4 X̄τ (f
0
i )

Figure 5.6: To determine the location of X̄τ (f0
i ) we move along the trajectory X̄·(f

0
i )

starting from f0
i and identify the crossed elements T1, T2, T3 and T4. In this

case
(
P0

τ

)
ik
,
(
P0

τ

)
il

and
(
P0

τ

)
im

are the only non-zero entries in the i–th row
of P0

τ .

interpolation of transported basis forms X̄∗
τ bf1

j
, where bf1

j
are the basis forms asso-

ciated to edges f1
j ∈ ∆1(T ) and defined in (2.48). By the interpolation condition∫

f1
i
(ΠX̄∗

τωh − X̄∗
τωh) = 0,∀f1

i ∈ ∆1(T ) we find for ΠhX̄
∗
τ : P−

1 Λ1(T ) 7→ P−
1 Λ1(T ) a

matrix representation P1
τ , mapping the expansion coefficients of ωh to those of ΠhX̄

∗
τωh.

The matrix entries

(
P1

τ

)
ij

:=

∫

f1
i

X̄∗
τ bf1

j
=

∫

X̄τ (f1
i )
bf1

j
(5.29)

are path integrals of basis forms bf1
j

associated to 1-subsimplices f1
j ∈ ∆1(T ) along

the transported 1-subsimplex X̄τ (f1
i ) (see Figure 5.7). When we use linear Lagrangian

elements to define the approximative flow X̄τ in (5.14) the transported 1-simplex X̄τ (f1
i )

is again a straight line. To determine the entries of the i-th row, where f1
i ∈ ∆1(T ) is

oriented from vertex f0
1 to vertex f0

2 , we trace the path from Xτ (f0
1 ) to Xτ (f0

2 ) and
calculate for each crossed element the line integrals for the attached basis functions. If
e.g. the line crosses an element from point a to point b and if this element contains
an edge f1

j , that is oriented from vertex f0
l to f0

m, (see Figure 5.8), then the element

contribution to
(
P1

τ

)
ij

is:

∫

Xτ (f1
i )∩T

bf1
j

= λf0
l
(a)λf0

m
(b) − λf0

m
(a)λf0

l
(b).
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f0
k

f0
l

T1 T2

T3

X̄τ (f0
k )X̄τ (f0

l )

Figure 5.7: The transported 1-subsimplex X∗
τ (f1

i ) (black curved line) is approximated
by a straight line X̄∗

τ (f1
i ) (black dashed line). In the case depicted here all

basis function associated with 1-subsimplices f1
j of elements T1, T2 and T3

yield a nonzero entry
(
P1

τ

)
i,j

.

a b

f0
lT

f0
m

e

Figure 5.8: The line from a to b is the intersection of the approximation of the trans-
ported edge with element T .
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5.2.3 Numerical Experiments

In this section we take Ω ⊂ R
2 and look at the advection problem for u

∂tu + grad(β · u) − Rdiv(Ru)β = f in Ω,
u(0) = u0 in Ω,

(5.30)

with R =

(
0 1
−1 0

)
.

We approximate u by lowest order discrete 1-forms uh ∈
(
P−

1 Λ1(T )
)⊥

= RP−
1 Λ1(T )

on a triangular mesh T . In the following we will study the performance of the semi-
Lagrangian Galerkin schemes 5.17 and the semi-Lagrangian interpolation schemes 5.25.

The discrete space
(
P−

1 Λ1(T )
)⊥

consists of tangentially continuous, piecewise polyno-
mial functions, with piecewise constant exterior derivatives. The basis functions are
associated to the edges of the mesh and the degrees of freedom are line integrals on
edges. We further use in (5.14) continuous piecewise linear Lagrangian finite elements
to approximate the flow function Xτ . To this end we use, if not stated differently, ex-
plicit Euler timesteps to determine the flow of the vertices. Thus, the transported mesh
X̄τ (T ) is again a mesh with straight edges. The collocation method in (5.16) for evalu-
ating the right-hand sides uses the end point of the integration interval. In the following
experiments we link the timestep size τ to the mesh size h by :

τ = γ
h

‖β‖ , (5.31)

where γ is some constant. Mostly, we will take γ < 1, since solving an entire advection-
diffusion problem with non-vanishing diffusion would dictate such a timestep restriction.

Example 1: Generic right-hand side

We consider Ω = [−1, 1]2 and choose in (5.30) the velocity

β = (1 − x2
1)(1 − x2

2)

(
0.66
1

)
.

That data f and u0 is chosen such

u = cos(2πt)

(
sin(πx1) sin(πx2)
(1 − x2

1)(1 − x2
2)

)
.

is the solution. With this choice we have in (5.30) a non-zero right-hand side f .
In Figures 5.9 we monitor the convergence for different γ values. We observe here

convergence of order 1 in the L2-norm for both the Galerkin and the interpolation
scheme. In Theorem 5.2.6 we have proved convergence of order 1

2 for the semi-Lagrangian
Galerkin scheme. We believe that this discrepancy is due to super convergence effects.
Although we could not prove convergence for the interpolation scheme, our experiments
underpin the hypothesis that the interpolation schemes are only perturbations of the
Galerkin schemes, hence have similar approximation properties.
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10−1 100

10−1

100

h

L
2
-e

rr
or

IS(γ = 0.25)

GS(γ = 0.25)

IS(γ = 0.5)

GS(γ = 0.5)

IS(γ = 0.8)

GS(γ = 0.8)

O(h)

Figure 5.9: Example 1: Convergence rates of the L2-error at t = 0.4 for the semi-
Lagrangian interpolation scheme (IS) and the semi-Lagrangian Galerkin
scheme (GS) on time interval [0, 0.4] for γ = 0.25, γ = 0.5 and γ = 0.8.
The convergence is of order O(h), while we proved convergence of order

O(h
1
2 ).
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Example 2: A non-convergent fully-discrete scheme

The drawback of the Galerkin projection scheme is obviously the requirement to calculate
the inner products

(
X̄∗

−τωh, η
)
Ω

exactly. A cheaper remedy, similar to standard finite
element techniques, would be the quadrature-based scheme introduced in remark 5.2.3.

We consider the same data for problem (5.30) as in Example 1. Figure 5.10 shows the

10−1.810−1.610−1.410−1.2 10−1 10−0.810−0.610−0.410−0.2

10−1

100

h

L
2
-e

rr
or

γ = 0.2
γ = 0.4
γ = 0.6
γ = 0.8

O(h)

Figure 5.10: Example 2: Convergence rate of the L2-error at t = 0.4 for a quadrature-
based semi-Lagrangian scheme (5.18) on the time interval [0, 0.4] with low
order quadrature and γ = 0.2, γ = 0.4, γ = 0.6 and γ = 0.8.

convergence rate of a quadrature-based scheme build on the barycenters as quadrature
points. Only for a few first refinements we see some sort of convergence, breaking
down when we refine further. We observe the same phenomena if we use higher order
quadrature rules to approximate the inner products. This result is as expected, since the
quadrature-based scheme applies quadrature on domains with discontinuous integrands.

Example 3: Vanishing right-hand side and closed initial data

If we choose β in (5.30) such that div β = 0 and u(0) = Rβ, then u = Rβ is a valid and
a closed solution, i.e. divRu = 0. Table 5.1 shows the values of the exterior derivatives
of solutions of the interpolation scheme and the Galerkin scheme on a series of refined
meshes. As expected, the interpolation schemes preserve the closedness of the initial
data. The Galerkin scheme in contrast fails. Note that for the Galerkin projection
schemes the error not even decreases if the mesh is refined.
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meshwidth interpolation Galerkin

0.7995 1.110−15 0.63

0.4257 2.710−15 0.76

0.2120 5.910−15 0.97

0.1077 1.310−15 1.35

Table 5.1: Example 3: L2-norm of the exterior derivative div Ru(0.4) for the semi-
Lagrangian interpolation scheme and the Galerkin scheme in time interval
[0, 0.4] on a series of refined meshes.

Example 4: Rotating hump problem 1

Here, we would like to study the behaviour of the interpolation scheme for the rotating
hump problem. We consider problem (5.30) on a circular domain Ω := {(x1, x2) :
x2

1 + x2
2 ≤ 1} with source term f = 0, the velocity field:

β =

(
y
−x

)

and initial data

u0(x) =

{
grad f(x)

√
x2

1 + (x2 − 0.25)2 ≤ 0.5

(0, 0)
√
x2

1 + (x2 − 0.25)2 > 0.5
.

with

f(x) = cos

(
π
√
x2

1 + (x2 − 0.25)2
)4

. (5.32)

The exact solution is

u(t,x) = (R(t))−1u0(R(t)x), R(t) :=

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

Figure 5.11 shows an example of a triangulation of Ω and a plot of the modulus of
u(0). In order to study the impact of the approximation of the flow map, we use both (i)
the explicit Euler method, and (ii) the explicit midpoint method in order to determine
the positions of the vertices of the advected mesh. In Figure 5.12 we see that the global
rate of convergence is not affected by these methods. Tables 5.2 and 5.3, list the L2-
errors of numerical solutions at t = 2π for different mesh sizes h and timestep sizes τ .
The numbers convey the need for balancing h and τ , with higher order integration of
trajectories allowing larger timesteps. For fixed meshsize h we observe that the minimal
error is not attained for the minimal timestep size, but for some medial values of τ .
This observation is due to the negative power of τ in the estimate of Theorem 5.2.5.
Second, when comparing the numbers of the two schemes, we see that the minimal error
of the scheme with explicit midpoint method is attained for larger values of τ than for

121



Non-Stationary Advection Problem
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Figure 5.11: Example 4: A triangulation of the unit circle (left) and the plot of the
modulus of the initial data (5.2.3).

10−2 10−1
10−1

100

h

L
2
-e

rr
or

EM (γ = 0.8)

EM (γ = 0.6)

EM (γ = 0.4)

EM (γ = 0.2)

EE (γ = 0.8)

EE (γ = 0.6)

EE (γ = 0.4)

EE (γ = 0.2)

O(h)

Figure 5.12: Example 4: Convergence rates of L2-error at t = 0.5π for the interpolation
scheme with explicit midpoint rule (MM) and explicit Euler method (EE)
on time interval [0, 0.5π] for γ = 0.2, γ = 0.4, γ = 0.6 and γ = 0.8.
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τ\h 0.420 0.210 0.105 0.052 0.026

1.5707 1.86 1.89 1.86 1.88 2.33

0.7853 1.86 1.88 1.88 2.01 2.36

0.3926 1.84 1.82 1.80 2.01 2.32

0.1963 1.85 1.79 1.52 1.51 1.79

0.0997 1.85 1.80 1.54 1.05 1.02

0.0498 1.85 1.81 1.59 1.18 0.63

0.0249 1.85 1.81 1.61 1.26 0.79

0.0124 1.85 1.81 1.62 1.30 0.88

0.0062 1.85 1.81 1.63 1.31 0.92

Table 5.2: Example 4, rotating hump: L2-error at t = 2π of the solution of the interpo-
lation scheme (5.25) with explicit Euler method for different discretization
parameters timestep τ (rows) and mesh size h (columns).

the scheme with explicit Euler method. This reflects the higher order approximation
properties of the explicit midpoint method, that appear explicitly in the estimate of
Theorem 5.2.5.

For our choice of data we find that the solution fulfills divRu = 0 for all times,
which we expect to hold also for the numerical solution produced by the interpolation
scheme. Yet, Table 5.4 confirms this only for small times and fine meshes. We blame
this on the approximate flow maps that will not map Ω exactly onto itself; backward
trajectories may leave the domain and there may be edges, whose image under the flow
will be at least partly outside the fixed mesh. In our implementation of the interpolant
ΠhX̄

∗
−τωh we simply ignore the contribution of such edges, thus destroying the closedness

property, see Figures 5.13. As long as ωh has compact support away from ∂Ω this effect
remains invisible. Yet, inevitable artificial diffusion will make suppωh spread, reach ∂Ω,
and interpolation errors will pollute dωh, see Figures 5.14 and 5.15. Perversely, this
happens earlier for the midpoint rule than the Euler method, because for the rotating
flow the latter introduces a stronger drift towards the center, which partly offsets outward
numerical diffusion.

Example 5: Rotating hump problem 2

We consider again the rotating hump problem, i.e. (5.30) on a circular domain Ω :=
{(x, y) : x2 + y2 ≤ 1} with source term f = 0, the velocity field:

β =

(
y
−x

)
.
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τ\h 0.420 0.210 0.105 0.052 0.026

1.5707 1.85 1.86 1.91 2.12 2.47

0.7853 1.79 1.53 1.51 1.70 1.80

0.3926 1.83 1.56 0.99 0.55 0.50

0.1963 1.84 1.72 1.23 0.60 0.22

0.0997 1.84 1.77 1.49 0.85 0.33

0.0498 1.85 1.79 1.56 1.15 0.52

0.0249 1.85 1.80 1.59 1.24 0.79

0.0124 1.85 1.81 1.61 1.28 0.87

0.0062 1.85 1.81 1.62 1.31 0.92

Table 5.3: Example 4, rotating hump: L2-error at t = 2π of the solution of the interpo-
lation scheme (5.25) with explicit midpoint method for different discretiza-
tion parameters timestep τ (rows) and mesh size h (columns).

‖div Ruh(0.25π)‖0,1 ‖div Ruh(0.5π)‖0,1 ‖div Ruh(π)‖0,1
h

Euler Midpoint Euler Midpoint Euler Midpoint

0.21 1.5 · 10−14 1.7 · 10−3 1.5 · 10−14 4.6 · 10−3 6.2 · 10−15 1.1 · 10−2

0.11 4.1 · 10−14 7.3 · 10−6 3.1 · 10−14 4.6 · 10−5 3.1 · 10−14 5.3 · 10−4

0.52 8.2 · 10−14 5.9 · 10−10 9.2 · 10−14 4.5 · 10−8 9.1 · 10−14 2.1 · 10−6

0.26 1.9 · 10−13 1.9 · 10−13 2.1 · 10−13 1.8 · 10−13 2.1 · 10−13 1.2 · 10−10

Table 5.4: Example 4, interpolation scheme, with γ = 0.8: The error
‖divRuh(0.25π)‖0,1, ‖div Ruh(0.5π)‖0,1 and ‖div Ruh(π)‖0,1 for solutions
uh of the interpolation scheme with explicit Euler and explicit midpoint meth-
ods for different mesh sizes h.
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Figure 5.13: Example 4: Plot of the modulus of uh(0.5π) (left) and divRuh(0.5π)
(right), with uh obtained by the interpolation scheme with explicit mid-
point rule on a mesh with mesh size h = 0.0521 and γ = 0.8.
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Figure 5.14: Example 4: Behavior of ‖divRuh‖0,1 as a function of t, with uh produced
by the interpolation scheme with explicit midpoint rule (EM) and explicit
Euler (EE) on meshes with different mesh sizes for the time intervall [0, 0.5π]
and γ = 0.8.
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Here we take very smooth initial data (see Figure 5.19)

u0 = e−
(x−0.5)2+y2

0.02

(
1
1

)
. (5.33)

Although semi-Lagrangian methods in principle permit very large timesteps, there are
some subtle details to be considered. In each timestep there is a huge number of ordinary
differential equations to be solved approximately up to some accuracy. We would like
to stress here that the choice of the numerical integrator strongly affects the numerical
solution. To examine the influence we use one timestep of

• explicit Euler method

• implicit Euler method

• implicit midpoint method

to determine the vertices of the transported mesh at t = π
4 . For our specific choice of

the velocity function β, in all three cases the update can be computed explicitly. See
Figures 5.16, 5.17 and 5.18 (left) for the corresponding transported meshes. It is well
known [32, p. 12] that for our rotating problem

• the explicit Euler method gives an expanding solution;

• the implicit Euler method gives a collapsing solution;

• the midpoint rule gives a norm preserving solution.

We therefore encounter here that in comparison to the given circular domain the trans-
ported mesh covers

• a larger domain with the explicit Euler;

• a smaller domain with the implicit Euler;

• a domain of similar size with the midpoint rule.

These differences explain the quantitative differences of the solutions in Figures 5.16,
5.17 and 5.18. We could of course increase the number of timesteps to obtain more
accurate solutions for the two Euler methods. Nevertheless we will encounter problems
on the boundary of the domain. Even if the velocity β has vanishing normal components
on the boundary on the domain, the approximate flow X̄τ , used in any semi-Lagrangian
methods doesn’t need to map the domain Ω onto itself, i.e. in general X̄−τ (Ω) 6= Ω.

Finally we would like to stress, that it is mainly the projection onto the fixed initial
mesh, that introduces numerical diffusivity. Therefore, we consider

u0 = e−
(x−0.5)2+y2

0.08

(
1
1

)
(5.34)
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Figure 5.16: Example 5 with one explicit Euler step. Left: Mesh (blue) and transported
mesh (red). The solid segments indicate the rotation. Right: Solution
at t = π

4 , for one Lagrangian time step. The black circle indicates the
trajectory of the analytical solution.
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Figure 5.17: Example 5 with one implicit Euler step. Left: Mesh (blue) and transported
mesh (red). The solid segments indicate the rotation. Right: Solution
at t = π

4 , for one Lagrangian time step. The black circle indicates the
trajectory of the analytical solution.
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Figure 5.18: Example 5 with one step of the midpoint rule. Left: Mesh (blue) and
transported mesh (red). The solid segments indicate the rotation. Right:
Solution at t = π

4 , for one Lagrangian time step. The black circle indicates
the trajectory of the analytical solution.

as initial data (see Figure 5.19), take the implicit midpoint rule with very small local
timesteps to compute the transported meshes and determine the solution at t = π with
1, 4, 16 and 64 Lagrangian timesteps. Since each Lagrangian timestep maps the iterated
solution back onto the initial mesh, it is the solution with just one Lagrangian timestep
that suffers least from numerical diffusion (see figure 5.20).
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Figure 5.19: Example 5: Modulus of the initial solutions 5.33 (left) and (5.34).
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Figure 5.20: Example 5: Numerical solutions at t = π for initial data as in figure 5.19,
computed with 1.) upper left: 1 timestep (γ ≈ 68), 2.) upper right: 4
timesteps (γ ≈ 17), 3.) lower left: 16 timesteps (γ ≈ 4) and 4.) lower right:
64 timesteps (γ ≈ 1).
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5.2.4 Appendix

A Discrete Gronwall Inequality

The recursion
b0 = a0

bi+1 ≤ ai+1 + (1 + Cτ)bi, C > 0

implies

bN ≤ eCNτ − 1

Cτ
max

1≤i≤N
ai + eCNτ b0.

Proof by induction:

bN+1 ≤ aN+1 + (1 + τC)bN

≤ aN+1 + (1 + τC)

(
eCNτ − 1

Cτ
max

1≤i≤N
ai + eCNτ b0

)

= aN+1 + (1 + τC)

(
eCNτ − 1

Cτ
max

1≤i≤N
ai

)
+ (1 + τC)eCNτb0

≤ max
1≤i≤N+1

ai

(
1 − 1 +Cτ

Cτ
+

1 + Cτ

Cτ
eCNτ

)
+ (1 + Cτ)eCNτb0

≤ eC(N+1)τ − 1

Cτ
max

1≤i≤N+1
ai + eC(N+1)τ b0.
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6 Conclusions

6.1 GalerkinMethods for Magnetoquasistatic Equations in

MovingConductors

With the tools presented in the preceding chapters we are now in the position to state
fully discrete Eulerian and Lagrangian timestepping schemes for the magnetoquasistatic
equations in moving conductors (3.5a)-(3.5d).

For the sake of better readability, we stick here to an entirely vectorial notation.
Electromagnetic fields are denoted by bold face capital letters, so that the eddy current
model reads:

curlE = −∂tB in Ω, (6.1a)

curlH = J + F in Ω, (6.1b)

J = σ(E + β × B) in Ω, (6.1c)

µH = B in Ω. (6.1d)

In Section 3.2 we have shown that this can be reformulated as a second order advection-
diffusion problem for either the magnetic field H (3.8):

∂tµH + curlσ−1 curlH + gradσ−1 divH + β div(µH) + curl(µH × β) = curl σ−1F

or for the vector potential A (3.11):

∂tσA + curlµ−1 curlA + gradµ−1 divA + σ curlA× β + σ grad(β ·A) = F.

We aim to find numerical solutions {Hi
h}N

i=0, Hi
h ∈ Vh or {Ai

h}N
i=0, Ai

h ∈ Vh approxi-
mating {H(ti)}N

i=0 and {A(ti)}N
i=0 at discrete time points ti = iτ and τ = T

N
, where Vh

is a finite dimensional approximation space. The most important candidates for Vh are
the H (curl,Ω)-conforming spaces PrΛ

1(T ) and P−
r Λ1(T ) and the L2 (Ω)-conforming

spaces Pd
r Λ1(T ). The discretization of the diffusion part curl curl+graddiv in such

spaces is known and we refer to [60, Page 191] for H (curl,Ω)-conforming spaces and
to [69] for L2 (Ω)-conforming spaces.

Combining these discretizations of curl curl+grad div with the explicit Eulerian
schemes (5.5) or implicit Eulerian schemes (5.6) for the advection problem, one obtains
Eulerian timestepping schemes for the complete advection-diffusion problem. Since we
have proved convergence of the schemes (5.5) and (5.6), we get timestepping schemes
for the advection-diffusion problem that are stable even for small diffusion coefficients.
Moreover we can even choose whether we want to treat the diffusion part explicitly or
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implicitly. Since stability of explicit timestepping schemes for parabolic problems re-
quires strong restrictions on the timestep size an implicit treatment appears preferable.
Still it might be beneficial to consider a semi-implicit setting where only the advection
part is treated explicitly. The resulting algebraic system is symmetric positive definite
and there are fast solvers for such systems available. However, in this case the timestep
size is limited by the stability constraint in Theorem 5.1.3. For the space Vh = P−

0 Λ1(T )
we could prove stability for τ = O(h). For the H (curl,Ω)-conforming approximation
spaces, in contrast, the result of Remark 5.1.4 and the numerical experiments in Section
5.1.1 indicate that the timestep choice τ = O(h) will not guarantee stability. Hence,
in view of timestep constraints, the semi-implicit scheme is in general not advantageous
compared to fully explicit timestepping schemes.

Another possibility to solve the complete advection-diffusion problems is to combine
the discretization of curl curl+graddiv with one of the semi-Lagrangian timestep-
ping schemes in Chapter 5.2. Semi-Lagrangian schemes have the advantage that they
are unconditionally stable, while the algebraic systems that need to be solved in each
timestep remain positive definite. A disadvantage is definitely the expensive evaluation
of the right-hand side. Only for low-order approximation spaces we might use the semi-
Lagrangian interpolation schemes (5.25) and (5.26), that are then less expensive than
the semi-Lagrangian Galerkin schemes (5.17).

Finally it will strongly depend on the concrete problem setting whether an Eulerian
timestepping scheme or a semi-Lagrangian scheme has an overall better performance.

6.2 Summary and Outlook

In Section 2.2.2 we presented a unifying framework to derive finite volume schemes from
schemes for discrete differential forms. In doing so, constraints, that are preserved on
the continuous level, can be consistently replaced in finite volume schemes by approxi-
mations. We think, that within this framework it is possible to define approximations
of exterior derivatives for very general triangulations, such that (2.64) is fulfilled. This
means one finds finite volumes spaces and discrete exterior derivatives that build a
cochain complex similar to the complexes (2.60) and (2.61).

We believe that the convergence order O(hr+ 1
2 ) given for the stabilized Galerkin meth-

ods in Theorems 4.1.8, 4.1.13, 4.1.14, 4.1.15 and 4.1.16 are sharp for estimates in L2-
norms. For the scalar case this has already been shown in [70, 75, 89]. Although the
experiments in Section 4.1.4 show convergence rates of order O(hr+1), we expect that
on special meshes, meshes that are adapted to the velocity field, a convergence of order
O(hr+ 1

2 ) would be observed.

The analysis of the semi-Lagrangian interpolation schemes introduced in Section 5.2.2
seems to be much harder than the analysis of the semi-Lagrangian Galerkin schemes in
5.2.1. The standard analysis as in Theorems 5.2.1 and 5.2.5 fails, because of the lack of
continuity of most interpolation operators in L2. In Theorem 5.2.6 we have presented
a new approach to analyse semi-Lagrangian methods and proved convergence even for
lowest order approximations spaces. This approach is inspired by the analysis of the
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Eulerian methods in Section 5.1 and uses so-called Ritz-Galerkin projectors defined via
spatial discretizations of the stationary problem. For the case of the semi-Lagrangian
Galerkin methods we used the characteristic method in Section 4.2 to define such Ritz-
Galerkin methods. If it would be possible to define and analyse characteristic methods
for the interpolation scheme this would allow a different kind of convergence analysis for
semi-Lagrangian interpolation schemes.
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