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Abstract. We discuss the setting of information-theoretically secure
channel protocols where confidentiality of transmitted data should hold
against unbounded adversaries. We argue that there are two possible
scenarios: One is that the adversary is currently bounded, but stores
today’s communication and tries to break confidentiality later when ob-
taining more computational power or time. We call channel protocols
protecting against such attacks future-secure. The other scenario is that
the adversary already has extremely strong computational powers and
may try to use that power to break current executions. We call channels
withstanding such stronger attacks unconditionally-secure.
We discuss how to instantiate both future-secure and unconditionally-
secure channels. To this end we first establish according confidentiality
and integrity notions, then prove the well-known composition theorem to
also hold in the information-theoretic setting: Chosen-plaintext security
of the channel protocol, together with ciphertext integrity, implies the
stronger chosen-ciphertext notion. We discuss how to build future-secure
channel protocols by combining computational message authentication
schemes like HMAC with one-time pad encryption. Chosen-ciphertext se-
curity follows easily from the generalized composition theorem. We also
show that using one-time pad encryption with the unconditionally-secure
Carter-Wegman MACs we obtain an unconditionally-secure channel pro-
tocol.

1 Introduction

In today’s information infrastructure the time intervals over which sensitive data
are stored increase rapidly. Striking examples are digital tax data or electronic
medical records which need to be kept for years or even decades according to legal
stipulations, requiring also to uphold the involved individuals’ right to privacy
for such time periods. In some cases the protection time span is quasi indefinite,
if one considers for example genetic data which descendants (partially) inherit
from their ancestors.

The cryptographic challenge here is that the long-term protecting schemes
must be able to withstand unexpected cryptanalytic advances, but also pre-
dictable advances in computational power. An adversary may store digital data



and aim to break the underlying cryptographic scheme later with new meth-
ods or by pure advances in technology. Remarkably, this does not only hold
for data-at-rest but also for data in transmission: An adversary may record en-
crypted communication today and try to break confidentiality tomorrow. If we
talk about transmissions over unreliable networks then the adversary may also
use additional means to attack schemes, such as omission, injection or modifica-
tion of transmitted ciphertexts.

The above challenge is the starting point of our work. We consider security
of cryptographic channels against potentially unbounded adversaries, denoted
as information-theoretically secure channels.1 The question we address is what
kind of channel security can we achieve in settings with unbounded adversaries,
and how can we accomplish this.

1.1 Modeling Information-Theoretically Secure Channels

If we look at the long-term security of channel protocols, in order to completely
rule out unforeseen cryptanalytic advancements, this boils down to uncondi-
tional security. In this context Shannon’s famous result [25] tells us that we need
keying material as long as the cumulative size of transmitted messages which
should be protected. Ensuring that sufficient keying material is available when
required is beyond our scope; the most prominent option today would be to use
quantum key distribution (QKD) [17]. Clearly, this attaches a high-price tag
to information-theoretic security in practical deployment. When securing high-
stake data transmission, truly long-term security however is and will be called
for, and hence ought to be formally understood. Focusing on the channel proto-
col, we make the simplifying assumption that sender and receiver readily have
secure shared keys K available with each operation; our channel notions will al-
low to precisely quantify the amount of required keying material per operation.

For modeling unconditional security of channels we use a two-stage adver-
sary model similar to the one introduced by Bindel et al. [9]. They consider
signature-based public-key infrastructures and the question how security is af-
fected by quantum adversaries. Among other, they distinguish adversaries which
are classical when interacting with the certificate authority and gain quantum
power only much later in the future, versus adversaries which have quantum ca-
pabilities even when interacting with the signer. The idea has also been adapted
in subsequent works like [8].

In our setting we distinguish between adversaries which are bounded or un-
bounded in the first phase, during the channel protocol execution, but definitely
become unbounded in the second phase, after the receiver closed the connection:

– For future-secure channels the first-stage adversary is bounded in compu-
tational resources when the channel protocol is running, but may store the

1 Our notion of (cryptographic) channels should not be confused with other con-
cepts like Wyner’s wire-tap channels [28] or other measures to generate information-
theoretically secure keys from physical assumptions. We are interested in how to
transmit data securely once the sender and the receiver already share a key.
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communication data and later try to decrypt when having more computa-
tional power or more time.

– For unconditionally-secure channels the first-stage adversary already has ex-
treme computational power when the channel protocol is executed, such that
we need to protect against unbounded adversaries immediately.

In both cases we assume an active adversary which can tamper with the net-
work communication, thereby capturing (and preventing) re-ordering and replay
attacks. This in particular distinguishes our setting from prior works concerned
with the unconditional security of individual messages (but without ordering
requirements), e.g., aiming at everlasting privacy in e-voting [21].

1.2 Achieving Information-Theoretically Secure Channels

We next show how one can build future-secure and unconditionally-secure chan-
nel protocols. We follow the common paradigm to encrypt and authenticate the
data in transmission. For encryption we need unconditional security for both
channel types, because any break of confidentiality, during the protocol execu-
tion or afterwards, violates long-term secrecy of the data. This suggests to use
the one-time pad encryption.

Authenticity, on the other hand, is a property which has to hold only dur-
ing the channel’s life time, in order to decide if a transmission comes from
the expected sender. This is also remarked in [22] where the authors combine
quantum key distribution with short-term authentication methods. In our chan-
nel instantiation aiming at future security we can thus use computationally-
secure authentication methods like HMAC [4]. For unconditionally-secure chan-
nels we need information-theoretically secure authentication schemes like Carter-
Wegman MACs [27].

Before diving into the construction we first carefully adapt the classic com-
position theorem of Bellare and Namprempre [7] to the setting of information-
theoretically secure channels: we show that an IND-CPA secure protocol which
additionally provides INT-CTXT integrity of ciphertexts is also IND-CCA se-
cure. As we will see, in our setting IND-CPA (even against unbounded adver-
saries) holds based on using one-time pad encryption; the composition result
hence elegantly allows us to focus on establishing INT-CTXT (computation-
ally or unconditionally) via appropriate authentication methods. This way, we
obtain IND-CCA future-secure channels if we use computational authentica-
tion, and even IND-CCA unconditionally-secure channels if we use information-
theoretically secure authentication.

We then give two concrete channel protocols, combining one-time pad en-
cryption with computationally-secure MACs like HMAC, resp. with information-
theoretically secure schemes like Carter-Wegman MACs. For the future-secure
channel we use a counter to prevent repetition and out-of-order attacks, and
show that the channel is IND-CPA secure and (computationally) INT-CTXT
secure. Our general composition theorem therefore shows that the channel is
IND-CCA future-secure. For the unconditional case it turns out that we do not
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need counters since we use a one-time key in each authentication step. We show,
applying once more the composition theorem, that we achieve unconditional se-
curity of the channel if we apply Carter-Wegman MACs to the (plain) one-time
pad encryption. Due to unforgeability of Carter-Wegman MACs linearly degrad-
ing with the number of transmitted messages, our results exhibit a noteworthy
trade-off between the future- and unconditionally secure constructions.

1.3 Further Related Work

Alternative approaches to unconditionally-secure encryption include limiting the
adversary’s memory capacity in the bounded-storage model [20,12]. As such
restriction may regularly not apply in practice for small-bandwidth, but highly-
critical communication data, we in contrast consider fully-unbounded adversaries
(and hence have to resort to the one-time pad for confidentiality).

Künzler et al. [19] consider which functions are securely computable in the
long-term scenario when one assumes short-term authenticated channels, i.e.,
channels which are only computationally secure during the computation. In a
similar vein, Müller-Quade and Unruh [23] define a statistical version of the
universal composition framework, enabling long-term security considerations.
The work shows how to build commitments and zero-knowledge protocols in
this setting, again assuming that secure channels are available.

2 Security of Information-Theoretically Secure Channels

2.1 Channels

We first define the notion of a channel protocol. It consists of an intialization
step in which some shared key material KI is generated, usually for authentica-
tion purposes, and the sender’s and receiver’s states are initialized. The OTKey
algorithm lets the sender and receiver generate fresh key material, e.g., through
authenticated quantum key distribution, to be used only once and in a pre-
determined sequence (e.g., the order they are established in QKD). We do not
specify in our abstract model how this is accomplished. Finally, the Send and
Recv algorithms allow to process data for the communication.

Definition 1. A channel Ch = (Init, OTKey, Send, Recv) with associated sending
and receiving state space SS, resp. SR, message space M ⊆ {0, 1}≤M for some
maximum message length M ∈ N, initialization key space Kinit = {0, 1}Ninit and
per-message key space Kmsg = {0, 1}N for some key lengths Ninit, N ∈ N, error
space E with E ∩ {0, 1}∗ = ∅, consists of four efficient algorithms defined as
follows.

– Init() $−→ (KI , stS , stR). This probabilistic algorithm outputs an initial key
KI ∈ Kinit and initial sending and receiving states stS ∈ SS, resp. stR ∈ SR.

– OTKey() $−→ K ∈ {0, 1}N . This algorithm generates the next per-message
key K for both parties, to be used only once.
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– Send(stS , KI , K, m) $−→ (stS , c). On input a sending state stS ∈ SS, an initial
key KI ∈ Kinit, a per-message key K ∈ Kmsg, and a message m ∈ M, this
(possibly) probabilistic algorithm outputs an updated state stS ∈ SS and a
ciphertext (or error symbol) c ∈ {0, 1}∗ ∪ E.

– Recv(stR, KI , K, c) → (stR, m). On input a receiving state stR ∈ SR, an
initial key KI ∈ Kinit, a per-message key K ∈ Kmsg, and a ciphertext c ∈
{0, 1}∗, this deterministic algorithm outputs an updated state stR ∈ SR and
a message (or error symbol) m ∈M∪ E.

We say that a channel is correct if for any i ∈ N, any (KI , stS,0, stR,0)←$ Init(),
any (K1, . . . , Ki) ∈ (Kmsg)i with Kj ←$ OTKey() in sequence for j = 1 to j = i,
any (m1, . . . , mi) ∈Mi, any sequence (stS,1, c1)←$ Send(stS,0, KI , K1, m1), . . . ,
(stS,i, ci)←$ Send(stS,i−1, KI , Ki, mi), and (stR,1, m′1)← Recv(stR,0, KI , K1, c1),
. . . , (stR,i, m′i) ← Recv(stR,i−1, KI , Ki, ci), it holds that (m1, . . . , mi) = (m′1,
. . . , m′i).

2.2 Channel Security

Our core security notion follows the common ones for channels (or stateful au-
thenticated encryption) by Bellare, Kohno, and Namprempre [6], but combines
confidentiality and integrity in a single game, following what is sometimes re-
ferred to as CCA3 security [26]. The adversary A can repeatedly ask the sender
(oracle) to encrypt one of two messages. The choice of which message to encrypt
is based on a secret bit b which the adversary tries to predict eventually. On
the receiver’s side the adversary may submit arbitrary ciphertexts C in order
to learn something about the bit b. Indeed, if the adversary manages to forge a
ciphertext (decrypting to a non-error) on the receiver’s side, either by creating a
fresh valid ciphertext or by changing the order of the sender’s ciphertexts, then
we give the adversary enough information to predict b. The latter is achieved for
a ciphertext forgery by returning the encapsulated message m if b = 0, and ⊥
otherwise.

In more detail, the corresponding security experiment (in Figure 1) works as
follows: The adversary can call the sending oracle OSend about two equal-length
messages m0, m1, then the sender encapsulates mb (and updates its state stS)
and returns the ciphertext. We keep track of the order of ciphertexts by a
counter i. The receiver’s oracle ORecv is more involved. When called with a
ciphertext C it first increments its counter j and then decapsulates the message
and updates its state stR. There are now various cases to distinguish, relating
to the question whether the ciphertext C is a forgery or not:

– If j > i or C 6= Cj , i.e., if this is a new ciphertext or one which has not
been produced by the sender as the i-th ciphertext before, then we say that
the ciphertext sequences are not in-sync anymore. This is captured by a flag
out-of-sync.

– If we have reached an out-of-sync situation, either in this call to ORecv
or an earlier one, then we provide the adversary with the received message
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Expind-sfcca
Ch (A)

1 : b←$ {0, 1}
2 : (KI , stS , stR)←$ Init()
3 : K1, K2, K3, . . . ←$ OTKey()
4 : out-of-sync← false
5 : i, j ← 0
6 : stA ←$AOSend(stS ,KI ,·,·),ORecv(stS ,KI ,·)

1 ()
7 : b′ ←$AOSend(stS ,KI ,·,·)

2 (stA)
8 : return b == b′

OSend (stS , KI , m0, m1)

1 : assert |m0| = |m1|
2 : i← i + 1
3 : (Ci, stS)← Send (stS , KI , Ki, mb)
4 : return Ci

ORecv (stR, KI , C)

1 : j ← j + 1
2 : (m, stR)← Recv (stR, KI , Kj , C)
3 : if (j > i or C 6= Cj) then
4 : out-of-sync← true
5 : endif
6 : if (out-of-sync and b == 0) then
7 : return m
8 : endif
9 : return ⊥

Fig. 1: Experiment Expind-sfcca
Ch (A)

in case b = 0. This enforces that, for a scheme to be secure, whenever the
received ciphertext sequences goes out of sync, the output of Recv must be ⊥,
as otherwise it would be easily distinguishable from the case b = 1 always
outputting ⊥.

The overall goal of the adversary is to predict b, either by distinguishing the
messages encapsulated by the sender, or by breaking integrity and learning about
b through a receiver’s reply.

To capture unconditionally-secure channels and future-secure ones in a single
game we divide the adversary A in two phases, A1 and A2. In the first phase
the adversary has access to both the sender and receiver oracle. In this first
stage the adversary may still be bounded in running time (for future-secure
channels), resp. already be unbounded (for unconditionally-secure channels). In
the second stage the adversary is in both cases unbounded but can no longer
access the receiver oracle. This allows us to model future-secure channels where
A1 is restricted and the authentication only needs to be temporarily secure,
and in the second phase of the unbounded A2 past and future sender messages
remain confidential (but computational authentication may now be broken). For
unconditionally-secure channels we allow already A1 to be unbounded such that
A2 merely acts as a dummy.

We stress, however, that we do not formalize the notion of being bounded
or unbounded in our concrete security analysis. Instead, we give reductions to
underlying problems, e.g., if A1 breaks integrity of the channel then we break
some underlying primitive with (roughly) the same running time. By this we
get a reasonable security guarantee from computationally secure authentication
schemes such as HMAC, as well as from unconditionally secure ones such as
Carter-Wegman MACs.
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Expint-sfctxt
Ch (I)

1 : (KI , stS , stR)←$ Init()
2 : K1, K2, K3, . . . ←$ OTKey()
3 : out-of-sync← false
4 : int-broken← false
5 : i, j ← 0
6 : IOSend(stS ,KI ,·),ORecv(stR,KI ,·)

7 : return int-broken

OSend (stS , KI , m)

1 : i← i + 1
2 : (Ci, stS)← Send (stS , KI , Ki, m)
3 : return Ci

ORecv (stR, KI , C)

1 : j ← j + 1
2 : (m, stR)← Recv (stR, KI , Kj , C)
3 : if (j > i or C 6= Cj) then
4 : out-of-sync← true
5 : endif
6 : if (m 6= ⊥ and out-of-sync)
7 : int-broken← true
8 : endif
9 : return ⊥

Fig. 2: Experiment Expint-sfctxt
Ch (I)

Definition 2 (Chosen-Ciphertext Security). For an adversary A = (A1,A2)
define its advantage in Experiment Expind-sfcca

Ch (A) (Figure 1) as

Advind-sfcca
Ch (A) = Pr

[
Expind-sfcca

Ch (A) == true
]

. (1)

Note that for a secure channel we expect the advantage to be close to the
pure guessing probability 1

2 .
We argue below that one can achieve the CCA notion by considering a weaker

CPA requirement on confidentiality, and combining it with an integrity notion.
The CPA indistinguishability game is identical to the CCA game but does not
give the two-stage adversary access to the receiver oracle ORecv (cf. Appendix A
for its formal definition). The integrity experiment allows the adversary to see ci-
phertexts of chosen messages via oracle OSend, and merely checks if the adversary
manages to send a new or out-of-order ciphertext which decrypts correctly.

Finally we define integrity by demanding that the adversary is able to forge
a valid ciphertext with negligible probability only:

Definition 3 (Ciphertext Integrity). For an adversary I define the advan-
tage in Experiment Expint-sfctxt

Ch (I) (Figure 2) as:

Advint-sfctxt
Ch (I) = Pr

[
Expint-sfctxt

Ch (I) == true
]

. (2)

3 Composition Theorem

We next show that for any channel protocol Ch chosen-ciphertext security follows
from chosen-plaintext security and integrity, similar to the composition result for
classical channels [6]. The security reduction shows that the derived attackers
B against ind-cpa and I against int-sfctxt have roughly the same running time
characteristics as the adversary against ind-sfcca. In particular, if the first-stage
adversary A1 against ind-sfcca is bounded (or unbounded) then so is the first-
stage adversary B1 against ind-cpa and also I.
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Theorem 1 (ind-cpa∧ int-sfctxt⇒ ind-sfcca). For any channel protocol Ch and
any ind-sfcca adversary A = (A1,A2), we can construct and int-sfctxt adversary
I and an ind-cpa adversary adversary B = (B1,B2) such that

Advind-sfcca
Ch (A) ≤ Advint-sfctxt

Ch (I) + Advind-cpa
Ch (B) . (3)

Here, B1 and I use approximately the same resources as A1.

Proof. The proof follows the common game-hopping technique, where Game0
denotes A’s attack in experiment Expind-sfcca

Ch . In Game1 we modify the receiver
oracle ORecv by letting it return ⊥ instead of m for an out-of-sync query (for
which in addition b == 0). This is depicted in Figure 7 in Appendix B. The
other steps of the experiment remain unchanged.

We argue that the difference of A’s advantage between the two games lies in
a potential first-stage query of A1 to the receiver oracle which returns a message
m 6= ⊥ in Game0 but not in Game1. We show that the probability of this
happening is bounded by the integrity guarantees of the channel. To this end we
build a reduction I mounting an attack according to experiment Expint-sfctxt

Ch (I).
This algorithm I runs a black-box simulation of A1 (in Game0). Any oracle call
ORecv of A1 is forwarded directly to the corresponding oracles of I. Algorithm
I initially also picks a random bit b←$ {0, 1} and whenever A1 makes an oracle
call m0, m1 to OSend, then I first checks that |m0| = |m1| and returns ⊥ if not;
else it forwards mb to its own oracle OSend to receiver a ciphertext Ci. Algorithm
I returns Ci in the simulation of A1. Algorithm I stops if A1 stops.

Note that the only difference between the two games from A’s perspective is
that Game0, in case b = 0, returns an actual message m in a call to ORecv if (a)
m 6= ⊥, and (b) out-of-sync has been set to true (in this call or a previous call).
This, however, means that all prerequisites in the ORecv oracle of the integrity
experiment are satisfied, causing int-broken to become true and to make I
win the game. Hence, any difference between the games can be bounded by the
advantage against integrity.

A careful inspection of the modified ORecv oracle now shows that this oracle
always returns ⊥ and only changes the state of the out-of-sync variable. The
latter only affects the ORecv oracle itself. It follows that we can simulate this
oracle by returning ⊥ immediately for any query to ORecv. Formally, this is a
black-box simulation B of A, where B1 relays all communication of A1 with
oracle OSend, but returns ⊥ to A1 for any call of A1 to ORecv. Algorithm B2
relays all communication of A2 to the only oracle OSend without modification.
Hence, in the next game hop we can eliminate the ORecv oracle altogether,
obtaining the CPA-game Game2. For this game we can bound the advantage by
the CPA-security of the channel.

4 Instantiations

In this section we discuss that instantiations combining the one-time pad en-
cryption scheme with a computationally-secure MAC like HMAC, and with an
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Expseuf-cma
M (F)

1 : KMAC ←$ MKGen()
2 : Q← ∅
3 : (m∗, t∗)←$FOMAC(KMAC,·)

4 : if Verify(KMAC, m∗, t∗) == true
5 : and (m∗, t∗) /∈ Q then
6 : return true
7 : else
8 : return false

OMAC (KMAC, m)

1 : t←$ MAC (KMAC, m)
2 : Q← Q ∪ {(m, t)}
3 : return t

Fig. 3: Experiment Expseuf-cma
M (F)

unconditionally-secure one like Carter-Wegman MACs, provide future security,
resp. unconditional security for the channel protocol. This of course requires
additional steps to prevent replay attacks or protection against omission of ci-
phertext. For the computational case we choose here for the sake of concreteness
a sequence number on the sender’s and receiver’s side. For the unconditional
MAC we can omit the sequence number because we use a fresh key portion with
each message anyway.

In both cases we use our composition result from Theorem 1 to argue se-
curity. ind-cpa security of the encryption scheme follows by the perfect secrecy
of the one-time pad encryption and the fact that we use a fresh key for each
ciphertext. This holds even against unbounded adversaries. It hence suffices to
argue int-sfctxt security to conclude ind-sfcca security of the channel protocol.
For this we need the strong unforgeability of the authentication algorithm.

4.1 Message Authentication

We first define message authentication codes and their security:

Definition 4 (Message Authentication Codes). A MAC scheme M =
(MKGen, MAC, Verify) with associated message space M consists of three algo-
rithms such that

– MKGen() $−→ KMAC. The key generation algorithm outputs a key KMAC.
– MAC(KMAC, m) $−→ t. The (possibly probabilistic) MAC algorithm maps the

key KMAC and a message m ∈M to a tag t.
– Verify(KMAC, m, t) → {true, false}. The verification algorithm takes a key, a

message, and a tag as input, and outputs a decision.

Correctness says that for all keys KMAC ← MKGen(), any message m ∈M, any
tag t←$ MAC(KMAC, m) we always have Verify(KMAC, m, t) == true.

As mentioned earlier we require strong unforgeability of the MAC, demand-
ing that is not only infeasible to find a valid tag for a previously untagged mes-
sage, but that one also cannot find a different valid tag to a previously tagged
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message. Strong unforgeability follows for example for unforgeable MACs where
authentication is deterministic and verification is done by recomputing the tag
and checking the result against the given tag [5].

Definition 5 (Strong Unforgeability). For an adversary F define the ad-
vantage in Experiment Expseuf-cma

M (F) (Figure 3) as:

Advseuf-cma
M (F) = Pr

[
Expseuf-cma
M (F) == true

]
. (4)

We say that F is q-query bounded if |Q| ≤ q in the experiment.

Note that here adversary F may be bounded or unbounded in computation
time. For unbounded F we usually assume that the adversary can only make a
single query to oracle during the attack OMAC and is thus 1-query bounded.

Two possible instantiations which are relevant for us here are the HMAC
algorithm which provides strong unforgeability under reasonable assumptions
about the compression function in the underlying hash function [4,3], and Carter-
Wegman MACs which are unconditionally secure for 1-bounded adversaries [27]
and also follow the verification-through-recomputation paradigm.

4.2 Future-Secure Channels

For a future-secure channel we define the sender and receiver algorithms as fol-
lows. We initialize counters for the sender and the receiver, respectively, both as
zero. Algorithm Send first generates a ciphertext c via one-time pad encryption
OTP.Enc (K, m) = m ⊕K under the fresh per-message key K. It then authen-
ticates the ciphertext c, prepended with a fixed-length encoding of the counter
value in stS , under a computationally-secure MAC, using the steady key KI .2
The sender then increments its counter to be stored in the updated state stS ,
and outputs the full ciphertext consisting of the OTP ciphertext and MAC tag.

The receiver algorithm Recv, when receiving a ciphertext C = (c, t), first
checks if the state stR indicates a previous failed decryption or if the MAC is
invalid. If so, Recv returns the error symbol ⊥ and keeps this information in its
state. Otherwise Recv decrypts the ciphertext part c with the per-message key,
OTP.Dec (K, c) = c ⊕K, increments the counter, and stores the updated value
in its state stR.

Construction 2 (Future-Secure Channel). Define the protocol FSCh = (Init,
OTKey, Send, Recv) for message spaceM = {0, 1}≤M and key space K = {0, 1}M

by the algorithms in Figure 4.

We next argue int-sfctxt security of the channel protocol, assuming that the
underlying MAC schemeM is strongly unforgeable:
2 Technically, the encoded counter restricts the number of messages that can be sent.
If there are n bits reserved for the counter value then one can transmit at most
2n messages. In practice this is not an issue and deployed channel protocools today
commonly have such restrictions as well (e.g., TLS 1.3 [24] uses an n = 64 bit
sequence number).
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Init()

1 : KI ←$ MKGen()
2 : stS ← 0
3 : stR ← (>, 0)
4 : return (KI , stS , stR)

OTKey()

1 : K ←$K
2 : return K

Send (stS , KI , K, m)

1 : c← OTP.Enc (K, m)
2 : t← MAC (KI , stS ||c)
3 : C ← (c, t)
4 : stS ← stS + 1
5 : return (C, stS)

Recv (stR, KI , K, C)

1 : parse stR = (b, j) and C = (c, t)
2 : d← Verify(KI , c, t)
3 : if b == ⊥ or d == false then
4 : m← ⊥
5 : stR ← (⊥, 0)
6 : else
7 : m← OTP.Dec (K, c)
8 : stR ← (>, j + 1)
9 : fi

10 : return (m, stR)

Fig. 4: Future-Secure Channel Protocol FSCh

Lemma 1. For any int-sfctxt adversary I there exists an adversary F such that

Advint-sfctxt
FSCh (I) ≤ Advseuf-cma

M (F) . (5)

Furthermore, F uses approximately the same resources as I.

Proof. We show that if I at some point during the integrity experiment sets
int-broken to true, then we can break (strong) unforgeability of the MAC
scheme. To this end we let a forger F run a black-box simulation of I, simulating
the other steps of the channel protocol FSCh like encryption locally, and only
using the oracle access to OMAC(KI , ·) to compute MACs when required. For
the simulated receiver oracle F always answers ⊥. Algorithm F also keeps track
of sent and received ciphertexts in the simulation, including the values i and j.
When I sends the first ciphertext C∗ = (c∗, t∗) to the receiver oracle such that
C∗ has not been the next ciphertext prepared by the sender (i.e., C∗ is entirely
new or a modification of the j-th sent ciphertext Cj = (cj , tj)), then F outputs
(j||c∗, t∗) as its forgery attempt.

Note that the simulation is perfect, as the receiver oracle always returns ⊥.
Furthermore, F outputs a forgery as soon as int-broken is set to true. This
can only happen if out-of-sync has become true (according to the model) but
the MAC verification has returned true (according to the protocol). The former
implies that the ciphertext C∗ must have been new or reordered (j > i or
C∗ 6= Cj). And since the channel starts returning error symbols ⊥ whenever it
has encountered an invalid MAC, it must be the first such out-of-sync ciphertext
C∗ which, too, carries a valid MAC, to get some output m 6= ⊥ from the receiver
oracle.

Assume that j > i for the first valid out-of-sync ciphertext C∗ = (c∗, t∗). In
this case, since the receiver in the protocol holds the same counter value j in
stR up to this point, the receiver verifies t∗ with regard to j||c∗. Since j > i the
sender oracle (and thus the MAC oracle in the simulation) has not issued any
MAC for this counter value yet, such that the “message” j||c∗ for valid tag t∗ in
F ’s output constitutes a fresh forgery. Analogously, if j ≤ i and C∗ = (c∗, t∗) is
different from Cj = (cj , tj), then the pair (j||cj , tj) is a successful strong forgery
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for F because the sender oracle (and thus MAC oracle) has only issued one tag
for value j, with a different result (j||cj , tj) 6= (j||c∗, t∗).

It follows that whenever I breaks integrity of the channel protocol we have
a forgery for the underlying MAC scheme. For efficient I the resulting forger F
is also efficient.

We can now apply the composition theorem (Theorem 1), noting that the one-
time-pad encryption ensures perfect ind-cpa security (such that independently of
the adversarial resources the advantage is 1

2 ), and using that integrity is bounded
by the security of the strong unforgeability of the MAC scheme:

Theorem 3 (Future-Secure Channel). For the channel protocol FSCh in
Construction 2 and any ind-sfcca adversary A = (A1,A2), we can construct and
seuf-cma adversary F such that

Advind-sfcca
FSCh (A) ≤ 1

2 + Advseuf-cma
M (F) . (6)

Here, F uses approximately the same resources as A1.

For an unbounded A1 —and hence an unbounded I in the proof— however,
equation (6) may become void, since I may win Experiment Expseuf-cma

M (F) with
significant probability.

4.3 Unconditionally-Secure Channels
For an unconditionally-secure channel we assume that both adversarial stages
A1 and A2 in Experiment Expind-sfcca

Ch (A) are unbounded, that is, we consider
an unbounded adversary throughout the entire Experiment Expind-sfcca

Ch (A). Our
construction therefore asks for a fresh authentication key (part) with each send
operation: we first split the per-message key K into two parts, K1 and K2. The
former, K1, is used for encryption via OTP, the latter, K2, is used for authen-
tication via an unconditionally-secure Carter-Wegman-MAC. For messages of
length M bits we typically need M bits for the one-time pad and 2M bits for
the Carter-Wegman MAC. More abstractly we consider a 1-query bounded MAC
M in the construction below:

Construction 4 (Unconditionally-Secure Channel). Define the channel
protocol USCh = (Init, OTKey, Send, Recv) for message space M = {0, 1}≤M

by the algorithms in Figure 5.

Once more we first argue int-sfctxt security of the channel protocol, assuming
that the underlying MAC schemeM is strongly unforgeable against unbounded
adversaries. The noteworthy fact here is that we lose a factor of qSend + 1 of
sender queries in the security bound:

Lemma 2. For any int-sfctxt adversary I making at most qSend sender oracle
queries there exists a 1-query bounded adversary F such that

Advint-sfctxt
USCh (I) ≤ (qSend + 1) · Advseuf-cma

M (F) . (7)

Furthermore, F uses the same resources as I.
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Init()

1 : KI ← ⊥
2 : stS ← >
3 : stR ← >
4 : return (KI , stS , stR)

OTKey()

1 : K1 ←$ {0, 1}M

2 : K2 ←$ MKGen()
3 : return K1||K2

Send (stS , KI , K, m)

1 : // let K = K1||K2

2 : c← OTP.Enc (K1, m)
3 : t← MAC (K2, c)
4 : C ← (c, t)
5 : return (C, stS)

Recv (stR, KI , K, C)

1 : // let K = K1||K2

2 : d← Verify(K2, c, t)
3 : if stR == ⊥ or d == false then
4 : m← ⊥
5 : stR ← ⊥
6 : else
7 : m← OTP.Dec (K1, c)
8 : fi
9 : return (m, stR)

Fig. 5: Unconditionally-Secure Channel Protocol USCh

Note that a Carter-Wegman MAC satisfies Advseuf-cma
M (F) ≤ 2−M if we au-

thenticate messages of at most M bits with 2M key bits [27]. This means that, as
long as the number qSend of sent ciphertexts is limited, the bound in the lemma
is still reasonably small. Interestingly, for small message sizes M though and
with a focus on “only” future-secure protection, an HMAC-based instantiation
of Construction 2 can provide better concrete security.

Proof. The proof follows the one for the computational case closely. Only this
time F guesses in advance, with probability 1

qSend+1 , the number i of the sender
query for which I sends the first modified ciphertext C∗ 6= Ci to the receiver
oracle, where we account for the possibility that j > i with the additional choice
i = qSend + 1. Algorithm F simulates an execution of I by doing all steps locally,
and answering each receiver request with ⊥. Only in the i-th sender oracle query
F uses the external MAC oracle to compute the tag (still using a self-chosen,
independent key part K1 to encrypt the message before). When the integrity
adversary I outputs the first modified ciphertext C∗ = (c∗, t∗) to the receiver
oracle then F returns the pair (c∗, t∗) as its forgery attempt.

Given that the guess i is correct it follows as in the computational case that
F wins the 1-query bounded unforgeability game if I wins the integrity game.
Here we use that F at most makes a single external MAC query—or none if
i = qSend + 1—and creates a (strong) forgery against the MAC scheme, because
the pair (c∗, t∗) must be distinct from the MAC query (for i ≤ qSend) or even
new (for i = qSend + 1).

It follows as in the computational case that Theorem 1 yields overall security.

Theorem 5 (Unconditionally-Secure Channel). For the channel protocol
USCh in Construction 4 and any ind-sfcca adversary A = (A1,A2) where A1
makes at most qSend sender oracle queries, we can construct an int-sfctxt adver-
sary F such that

Advind-sfcca
FSCh (A) ≤ 1

2 + (qSend + 1) · Advseuf-cma
M (F) . (8)

Here, F uses the same resources as A1 and is 1-query bounded.
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5 Conclusion

We have shown how to achieve long-term confidentiality for channels, modeling
security along the common notions for the computational setting like [7,6] and
adopting the two-stage adversaries of [9] to account for unbounded adversarial
resources. We have shown how one-time pad encryption with authentication can
be used to achieve the notion, where the proof is simplified through our translated
general composition theorem that chosen-plaintext confidentiality and integrity
gives chosen-ciphertext confidentiality in this setting. This provides fundamental
security guarantees for such channels from which one can extend the result in
several directions, as we discuss next.

We considered atomic channel protocols in which it is assumed that a trans-
mitted ciphertext is fully received on the other side. Depending on the network,
however, ciphertexts may be fragmented. It has been shown in attacks on actual
channel protocols like SSH and IPSec [2,15] that this fragmentation behavior
could potentially be exploited. A more formal treatment of ciphertext fragmen-
tation can be found in [10,1]. One can also consider, on top, the possibility that
the channel protocol itself may distribute input messages arbitrarily over cipher-
texts, leading to the notion of stream-based channels [16]. It would be interesting
to see how the requirement of unconditional security affects such models.

A possible extension in regard of security may be to allow exposure of some
per-message keys, in which case these messages would not be confidential any-
more. Still, the “fresh” keys should uphold security for the other messages. This
is similar to key updates in (computationally-secure) channel protocols where
leakage of keys should not affect other keys and phases [18]. It would be inter-
esting to augment the model here by similar considerations.

We followed earlier work and used a game-based definition for the security
of channels, where keying material is provided by external means. If one now
uses, say, a secure QKD protocol to generate the keys, then it remains yet to
prove formally that the combined protocol is secure (albeit no attack on the
joint execution is obvious). This is called compositional security. In stronger,
simulation-based notions for key exchange and channels such as [13,14] composi-
tional guarantees usually follow immediately. Compositional security for game-
based notions of key exchange, as here, have been discussed in [11]. Again, both
types, simulation-based and game-based models, usually only consider computa-
tionally bounded adversaries, leaving open the question if they still hold in the
information-theoretic setting.
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Appendix

A Chosen-Plaintext Security

Expind-cpa
Ch (B)

1 : c←$ {0, 1}
2 : (KI , stS , stR)←$ Init()
3 : K1, K2, K3, . . . ←$ OTKey()
4 : i← 0
5 : c′ ←$BOSend(stS ,KI ,·,·)

6 : return c == c′

OSend (stS , KI , Ki, m0, m1)

1 : assert |m0| = |m1|
2 : i← i + 1
3 : (Ci, stS)← Send (stS , KI , Ki, mc)
4 : return Ci

Fig. 6: Experiment Expind-cpa
Ch (B)

Definition 6 (Chosen-Plaintext Security). For an adversary B = (B1,B2)
define the advantage in Experiment Expind-cpa

Ch (B) (Figure 6) as:

Advind-cpa
Ch (B) = Pr

[
Expind-cpa

Ch (B) == true
]

. (9)

B Composition Game Hop

Expind-sfcca
Ch (A)

1 : b←$ {0, 1}
2 : (KI , stS , stR)←$ Init()
3 : K1, K2, K3, . . . ←$ OTKey()
4 : out-of-sync← false
5 : i, j ← 0
6 : stA ←$AOSend(stS ,KI ,·,·),ORecv(stS ,KI ,·)

1 ()
7 : b′ ←$AOSend(stS ,KI ,·,·)

2 (stA)
8 : return b == b′

OSend (stS , KI , m0, m1)

1 : assert |m0| = |m1|
2 : i← i + 1
3 : (Ci, stS)← Send (stS , KI , Ki, mb)
4 : return Ci

ORecv (stR, KI , C)

1 : j ← j + 1
2 : (m, stR)← Recv (stR, KI , Kj , C)
3 : if (j > i or C 6= Cj) then
4 : out-of-sync← true
5 : endif
6 : if (out-of-sync and b == 0) then
7 : return ⊥ // instead of m

8 : endif
9 : return ⊥

Fig. 7: Modified receiver oracle experiment Expind-sfcca
Ch (A) for Game1 in the proof

of Theorem 1.
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