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Abstract

Feature tracking using event cameras has experienced significant progress lately, with
methods achieving comparable performance to feature trackers using traditional frame-
based cameras, even outperforming them on certain challenging scenarios. Most of the
event-based trackers, however, still operate on intermediate, frame-like representations
generated from accumulated events, on which traditional frame-based techniques can
be adopted. Attempting to harness the sparsity and asynchronicity of the event stream,
other approaches have emerged to process each event individually, but they lack both in
accuracy and efficiency in comparison to the event-based, frame-like alternatives.

Aiming to address this shortcoming of asynchronous approaches, in this paper, we
propose an asynchronous patch-feature tracker that relies solely on events and processes
each event individually as soon as it gets generated. We report significant improvements
in tracking quality over the state of the art in publicly available datasets, while performing
an order of magnitude more efficiently than similar asynchronous tracking approaches.

Code – https://github.com/ialzugaray/haste
Video – https://youtu.be/6DZxIzrVLcI

1 INTRODUCTION
Visual feature tracking is a core component of most Visual Odometry (VO) systems (e.g. [10], [16]).
Despite its crucial role on maintaining an accurate odometry estimation, visual tracking performance
is severely compromised with degrading quality of the input images, e.g. blurry images captured dur-
ing high-speed motion or poorly contrasted images in scenes with High Dynamic Range (HDR) of
illumination. Event cameras have been demonstrated to cope well in some of these scenarios by en-
abling independent pixel reactions to small intensity changes. Specifically, the instant that the intensity
perceived at a particular pixel varies beyond a pre-specified threshold, a new event gets generated at
that pixel along with a highly accurate time-stamp. Events encode only binary information, indicat-
ing whether the intensity at a pixel has increased or decreased (referred to as the event’s polarity)
discarding any information on the absolute intensity values. Consequently, the output of event cam-
eras is a sparse, asynchronously generated stream of time-stamped events encoding small, binary and
incremental intensity changes on the scene at individual pixels as illustrated in Fig. 1a.

Event cameras have not only been disruptive for their sensing capabilities, but they have also stim-
ulated research into an emerging event-driven paradigm that has the potential to overcome traditional
frame-based vision in a variety of tasks. Early event-vision research, however, resulted in several meth-
ods that discretize the event stream into small batches, on which approaches similar to those applied in
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(a) Event Stream (b) Spatio-Temporal Feature Tracks (c) In-plane Feature Tracks

Figure 1: Illustrative example in which each event in the stream (a) from the dataset
hdr_poster [15] is asynchronously processed into high-quality tracks (b-c) despite the
poor lighting conditions.

traditional frame-based vision can be adapted to, partially defying the distinctive characteristics of the
event cameras. With this in mind, a handful of recent methods, including this work, advocate for the
asynchronous processing of each event as soon at is generated, i.e. refraining from any form of batch
processing, and thus exploiting the natural asynchronicity and sparsity of the event stream, defining
what we refer to as ‘event-driven’ algorithms.

This paper proposes a novel event-driven tracking methodology for patch features that only relies
on raw event data. In general, event-driven tracking algorithms lag both in efficiency and tracking qual-
ity with respect to their batch-processing counterparts. This work explicitly addresses the efficiency
of event-driven tracking of features by reusing most of the available information between consecutive,
asynchronously processed events. Specifically, we revisit the tracker described in [3] and propose a
novel methodology that accounts for a speed-up by an order of magnitude without compromising the
tracking quality. Inspired by this improvement, we go a step further to also propose a novel event-
driven tracking formulation that retrieves more stable tracks as seen in Fig. 1, while retaining the boost
in computational performance. All the proposed approaches are also compared against the most related,
publicly available, event-based patch tracker in the state-of-the-art [23] on benchmarking datasets [15].

2 RELATED WORK
While some event-based VO pipelines conveniently circumvented the definition of explicit features
[8, 17, 21], most of them include diverse feature tracking modules. Zhu et al. [23] propose a method
to locally correct the event pixel location by compensating the motion of the camera based on locally
estimated optical flow. This method generates a frame-like patch representation of each feature using
batches of motion-compensated events, which is subsequently tracked posing a template aligning prob-
lem. The same authors extend their method in [22] to use an Inertial Measurement Unit (IMU) and
perform filter-based VO. Similarly, Rebecq et al. [18] also compensate for the motion of the camera
in the event stream but relying on an IMU and applied to the whole field of view, generating motion-
compensated frame-like images, on which traditional KLT [12] is applied. Combining both event- and
intensity-based sensing modalities, Kueng et al. [9] detect Canny edges on intensity images that are
used to generated per-feature templates and matched to batches of events via Iterative Closest Point
(ICP) optimization. Likewise, the authors in [6] employ a generative model to optimize for the align-
ment of batches of events to intensity-based template patches.

The aforementioned approaches discretize the event stream into small batches between tracking
iterations that are often processed via expensive iterative optimization schemes, defying the natural
asynchronicity of the event cameras. With the emergence of asynchronous, event-driven corner features
detection algorithms [2, 11, 13, 14, 20], several other works have attempted to perform feature tracking
by establishing data association between those feature detections in an event-driven fashion [1, 5], but
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their accuracy is yet to match previously referenced event-batching tracking methods. Without relying
on a stream of finely detected feature detections, the work in [3] describes a novel generic framework
that circumvents the need for expensive iterative optimization schemes and proposes a novel patch-
feature tracking methodology that operates in a event-driven fashion.

In this paper, we build on top of the framework described in [3] (briefly summarized in Section 3.1)
to firstly propose key modifications of the tracking method (Section 3.2) shown to achieve substantial
computational advantage over the original method in Section 3.3. Based on similar assumptions, an-
other tracking formulation is then proposed in Section 3.4 and within the same framework this is shown
to improve even further the performance in tracking quality while achieving competitive results with
respect to event-batching feature tracking approaches.

3 METHODOLOGY

3.1 Multi-Hypothesis Event-based Feature Tracking
The generic optimization framework described in [3] serves as the basis for this work and thus, we
provide a brief description of it applied to feature tracking.

Each feature at time tk is completely defined by an n× n template patch T (k) ∈ Rn×n and a state
x(k) = {x,y,θ} ∈X , specifying its xy-pixel coordinates and its orientation θ in the image plane. While
the complete event stream could be used to determine the optimal feature state at each time, we assume
that only a small set of spatially and temporally neighboring events is sufficient for this. Thus, each
feature is associated to a small window of the latest m events E(k) = {ek−m+1,ek−m+2, . . . ,ek} sorted
in ascending order of time-stamps (m is tuned as in [3]), generated within the feature’s range until tk,
i.e. within a maximum of n pixels away from the current feature’s position. An event occurring at
time-stamp tk is defined as ek = {tk,pk}, indicating its 2D pixel location pk ∈ R2 (the event’s polarity
is ignored). Each such event location pk is transformed to the feature’s reference frame indicating the
so-called ‘template location’ as p′k(x) = p′(pk,x) = RT (θ)(pk−

[
x,y
]T

), such that the rotation matrix
R ∈ SO(2).

Every time a new event ek+1 gets generated within the range of a particular feature, its fixed-
size event window gets updated as E(k+1) = {ek−m+2, . . . ,ek,ek+1}, i.e. the oldest event ek−m+1 is
replaced by the newest one ek+1. On each new event the feature template T is also locally refined.
The template value T [p′mid(x

(k))], located on the template coordinates p′mid(x
(k)) = p′(pk−m/2,x(k)) of

the middle event ek−m/2 in the event window E(k), is increased by a predefined scalar value α so that
T (k)[p′mid(x

(k))] = T (k−1)[p′mid(x
(k))]+α . Consequently, T and E get updated as soon as an event is

generated within this feature’s range, leading to a new optimal feature state according to an alignment
score function f of choice, described generically as

x(k+1) = argmax
x∈X

f (E(k+1),T (k+1),x) . (1)

Each event conveys such a reduced amount of information that the difference between consecutive
optimal states x(k) and x(k+1) is negligible. Event-batching methods explicitly exploit this, delaying
the evaluation of the optimization problem until enough events are aggregated to perform a ‘track-
ing iteration’. An event-driven alternative approach, i.e. without event-batching, is proposed in [3],
approximating the optimization problem over a discretized space of solutions or states X instead.

x(k+1) = argmax
x∈H(x(k))

f (E(k+1),T (k+1),x) , (2)

where H(x(k))⊂X is a set of discrete hypothetical states or hypotheses spawning from the previously
known optimum x(k). The simplest set of discrete hypotheses is computed by slightly perturbing each
dimension of a given state x in the following form H(x) = {(x = {x,y,θ})∪{x±∆x,y±∆y,θ ±∆θ}}
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(b) Template T and model M.

Figure 2: In (a), each event updates the score of each hypothesis, where the top scoring hy-
pothesis (in blue) is equivalent to the state of the tracker, i.e. the null hypothesis. The tracker
state changes when the null hypothesis is outscored, generating a new set of hypotheses
(5-hypotheses in this example). In (b), the feature’s template T and modelM are illustrated.

(see [3] for further details). Note that H(x) also includes the state x, referred to as the null hypothesis
(∆x = ∆y = 0, ∆θ = 0◦). In this paper, we consider the 8-neighbouring locations (∆x = ∆y = ±1,
∆θ = 0◦) and centered rotations (∆x = ∆y = 0, ∆θ =±4◦) as hypothetical states, accounting for a total
of 11 hypotheses.

Considering a discretized space of solutions, most newly generated events within the feature range
will not result in a state transition in Eq. (2), i.e. x(k) = x(k+1), and they are referred to here as
‘regular’ events. The alignment score f of each hypothesis is tracked (see Fig. 2a) and simultaneously
updated on each regular event generated within the feature’s range. When a hypothesis outscores the
null hypothesis, i.e. the previously known optimum, it becomes the new optimal state, generating new
set of hypotheses and effectively tracking the feature in the discrete space of solutions. In this paper,
we consider the null hypothesis outscored if another one scores higher by at least 5%. The events
that finally lead to a state transition, i.e. x(k) 6= x(k+1), are referred to as ‘state’ events. Note that the
discretized states retrieved can potentially be further refined on-demand using the original continuous
formulation. The main motivation of this paper is to provide an efficient, event-driven approach to
evaluate the alignment score function f for each hypothesis.

3.2 Alignment Score based on Correlation
The alignment score function f proposed in [3] is as follows,

f (E ,T ,x) = ∑
ei∈E

wiT [p′i(x)] , (3)

where each event ei ∈ E is projected into its template location p′i(x) for each hypothesis x. The value of
the template at this location denoted by T [p′i(x)] is sampled via bilinear interpolation. The alignment
score is the sum of sampled values weighted according to a Gaussian-like scheme wi =

1
N exp(− 1

2 ((i−
m
2 )/(

m
6 ))

2), where i= {1, . . . ,m} indicates the relative order of each event in E and N is a normalization
factor such that ∑

m
i wi = 1.

We rewrite the sampling operation as T [p′i(x)] = ∑ΩT � Si(x), using the operator � to denote
element-wise multiplication of the template values in T with a sparse sampling kernel Si(x) ∈ Rn×n.
Then all the template locations, i.e. the domain Ω, are summed up. All the entries in the kernel Si are
zero except for those required for the interpolation of T [p′i(x)] (only four non-zero entries when using
bilinear interpolation). As a result, Eq. (3) is reformulated as follows,

f (E ,T ,x) = ∑
ei∈E

wi ∑
Ω

T �Si(x) = ∑
Ω

T � ∑
ei∈E

wiSi(x) = ∑
Ω

T �M(E ,x) , (4)
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where M(E ,x) = ∑ei∈E Mi(x) = ∑ei∈E wiSi(x) corresponds to the model, i.e. an approximation of
the template T generated solely from events in E according to a hypothesis x. Eq. (4) reveals that
method described in [3] boils down to a tracker based on cross-correlation between T and E and for
this reason, it is referred here as the ‘Correlation’ tracker.

3.3 Incremental Alignment Score based on Correlation

In [3], Eq. (3) is fully re-evaluated with the arrival of each regular event generated within the feature’s
range to update the score of each tracked hypothesis, making this a costly operation and unsuitable for
application to high event-rate streams. More efficient alternatives relying on a set of carefully selected
approximations are described below, enabling the reuse of most of the available information between
consecutive events and achieving significantly better efficiency.

Eq. (3) is formulated as a vector product f (E ,T ,x) =W TV (E ,T ,x) of the weighting scheme W =[
w1 . . . wm

]T , which is constant as E is fixed-size, and a vector V that aggregates sampled values

from T . This vector at time-instant tk is V (k) = V (E(k),T (k),x(k)) =
[
v(k)k−m+1 . . . v(k)k−1 v(k)k

]T
,

aggregating the template-sampling elements v(k)i = vi(T (k),x(k)) = T (k)[p′i(x
(k))].

The alignment score f of each hypothesis is concurrently tracked in this paper (see Fig. 2a). For
each of these hypotheses, x is constant and thus each i-event is always projected into the same template
location p′i(x). Each event remains in the event-window E and influences V , only until m new events
are generated within the feature’s range. For such a short lifespan, we assume the values of T remain
invariant and thus, here each i-event only samples T at the location p′i(x) when they are first included

in E , effectively approximating v(k)i ≈ vi = vi(T (i),x) = T (i)[p′i(x)] as a constant. After event ek+1 gets
included in E , the alignment score can be computed as follows,

f (k+1) = f (E(k+1),T (k+1),x(k+1)) =W TV (k+1) =W T g(V (k),ek+1) , (5)

with g the function that updates the approximated vector V (k)≈
[
vk−m+1 vk−m+2 . . . vk−1 vk

]T
into V (k+1)≈

[
vk−m+2 . . . vk−1 vk vk+1

]T by just replacing the contribution of the oldest event
ek−m+1 with the one related to the newest event ek+1 in the fixed-size E .

Eq. (5) enables an efficient re-evaluation of the score of each individual hypothesis after each new
event by only retaining the most recent vector of sampled values V for each hypothesis. This approach
is referred to as the ‘HasteCorrelation’ tracker, denoting the use of multi-Hypothesis Asynchronous
Speeded-up Tracking of Events (HASTE) for superior computational efficiency over the original Cor-
relation tracker. Note that, when the feature’s state changes (i.e. after a state event) and a new set of
hypotheses is initialized, all elements in V must be sampled from the most recent template values T
for each hypothesis, essentially reverting to the original approach described in [3].

HasteCorrelation is designed to perform similarly to the original Correlation tracker [3]. However,
both approaches rely on an underlying cross-correlation comparing the unnormalized template T to
the model M, potentially leading to poor tracking performance while being computationally expensive
due to the employed Gaussian-like weighting scheme. Addressing these issues, here we propose the
‘HasteCorrelation*’ variant. On the initialization of a new tracked hypothesis, a constant normalized
template T̂ = T /(∑ΩT ) is computed. For each event in E , T̂ is sampled as v̂i = vi(T̂ ,x) and weighted
uniformly wi =

1
m , so that Eq. (5) can be written as follows,

f (k+1) = f (k)+wi(v̂k+1− v̂k−m+1) , initially f (m) = wi ∑
ei∈E (m)

v̂i , (6)

providing an even more efficient way to update the score while using normalized data for T̂ and M.
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3.4 Incremental Alignment Score based on Differences
Building on the approximations introduced for HasteCorrelation*, we also propose ‘HasteDiffer-
ence*’ that employs an alignment score function based on the sum of the differences between nor-
malized template T̂ and model M as follows,

f (E ,T ,x) =−∑
Ω

|T̂ −M|γ =−∑
Ω

|T̂ − ∑
ei∈E

Mi|γ =−∑
Ω

|D|γ , (7)

where all the involved operations (subtraction, absolute value and exponentiation) are element-wise.
Here events are also equally weighted, i.e. wi =

1
m , so that the model M= ∑ei∈E Mi = ∑ei∈E wiSi is

normalized. The absolute differences in patch D ∈Rn×n are penalized using a factor γ = 2 and summed
to compute the score. The negative sign preceding the expression aims to minimize the differences in
D in the score maximization framework of Eq. (2).

Tracking each hypothesis x independently and concurrently, each of their respective models M(k)=
M(E(k),x) can be locally and incrementally updated as follows,

M(k+1) = ∑
ei∈E (k+1)

Mi =Mk−m+2 + · · ·+Mk+1 =M(k)−Mk−m+1 +Mk+1 . (8)

The normalized template T̂ , obtained upon the generation of each new hypothesis, is assumed constant
and thus the difference patch D can be locally updated as follows,

D(k+1) =D(k)+Mk−m+1−Mk+1 , (9)

which allows the incremental update of the alignment score from the previous score as

f (k+1) = f (k)+ |D(k)[p′k−m+1]|
γ + |D(k)[p′k+1]|

γ −|D(k+1)[p′k−m+1]|
γ −|D(k+1)[p′k+1]|

γ , (10)

where D[p′i] is the value (or values, when using bilinear interpolation) of the location p′i in the patch
of differences D. This procedure is equivalent to the one proposed for HasteCorrelation where, upon
the update of the event window to E(k+1), the influence of the newest event ek+1 replaces the influence
of the oldest one ek−m+1, enabling an efficient score update by retaining the most recent D for each
hypothesis. As for HasteCorrelation*, when the feature’s state changes, i.e. x(k) 6= x(k+1), after a state
event ek+1 and a set of hypotheses is newly generated, the template T̂ is generated from the most recent
values of T and D is then re-computed from scratch for each hypothesis.

The alignment score function in Eq. (7) and its variants have widespread application in both event
and non-event feature tracking approaches (e.g. [7, 12]). The incremental score update proposed here
allows such methods to be adapted to the hypothesis-based optimization framework described in [3]
while remaining computationally competitive.

4 EXPERIMENTAL EVALUATION
We compare the proposed HASTE trackers with our re-implementation of the original Correlation
tracker [3]. Aside from these event-driven methods, we compare against the most related, event-based
tracking method [23] for patch features with a publicly available implementation1 that is referred to
as the Event-based Optical-Flow (‘EOF’) tracker. In contrast to other alternatives that employ IMU
[18, 22] or intensity images [7, 9, 19], the EOF tracker operates directly on raw events only and process
them in batches in consecutive tracking iterations. The default parameters of the EOF tracker are used,
except from the patch size, which is adapted to match all the compared methods (i.e. 31×31 px), and
the number of tracked features in each iteration, which is set to 15.

All approaches are benchmarked on the Event Camera Dataset [15] and, specifically, on the
shapes, poster and boxes scenes (sorted by increasing order of visual clutter and complexity).

1https://github.com/daniilidis-group/event_feature_tracking
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These scenes were recorded under a wide range of handheld camera motions. Here, we choose to
illustrate the tracking results on mainly translational (trans) and mainly rotational motions (rot) or
a combination of both (6dof) as well as in adverse lighting conditions (hdr). The recording sensor is
a DAVIS240 [4] that captures both events and intensity images at fixed rate. Here, intensity images are
only shown for illustration purposes and are not used in any of the compared methods. The selected
datasets last for approximately one minute and come with 6-Degrees of Freedom (DoF) camera poses
captured at 200Hz using an indoor positioning system.

4.1 Tracking Quality
In previous works [2, 7, 23], event-based tracks were evaluated in comparison to intensity-based tracks
and thus, in practice, such evaluations are only possible with datasets exhibiting no substantial image
degradation, e.g. no motion blur and good illumination, which only accounts for a minimal part of the
selected datasets. Finally, while various event-based tracking strategies could be have been compared
as part of the same VO pipeline here, no asynchronous event-driven VO system is publicly available at
submission time to enable this.

Following these considerations, we opt for the evaluation methodology described in [1, 3], where
each instance of a particular feature in image space is combined with the ground-truth camera poses to
triangulate a potential 3D point in space giving rise to this feature track. The quality of each track is
measured as the mean reprojection error of such 3D triangulated points over all the track. Note that,
while a 3D point might not be accurately triangulated (e.g. due to low parallax), the mean reprojection
error would still indicate how well its track conveys the camera motion according to ground-truth. As
all compared methods are prone to drift, the mean error is evaluated as a function of a feature’s lifetime
(i.e. the length of time that its track is alive) and consider that a track becomes an outlier as soon as
the mean reprojection error exceeds 5px. Following a buffer time of 0.1s from the initialisation of a
new feature track, this track enters the evaluation process, such that noisy results of short-lived feature
tracks are minimized. Fig. 3 illustrates the evolution of the mean reprojection error of all the inlier
tracks and the number of inlier tracks with respect to track lifetime.

In contrast to the event-driven trackers compared here, the EOF tracker comprises a complete vi-
sual front end capable of detecting new features and pruning failing tracks. As a result, all methods
compared here get initialized with the same set of feature detections as used in the EOF tracker for
fairness. The compared event-driven approaches do not currently implement any strategy to remove
features that are failing and thus they track them until they leave the field instead. Since in our eval-
uation we only consider each tracked feature until it becomes an outlier, the reported results for the
event-driven methods present the maximum potential that could be achieved with the same set of de-
tected features as in the EOF tracker in a real setup.

All compared methods exhibit generally similar mean reprojection error levels on short-lived
tracks. Notably, the EOF tracks degrade faster leaving only a handful of features to be tracked for
longer lifetimes, which, in general, perform worse in terms of error than the event-driven alterna-
tives. Contrary to our expectation that HasteCorrelation would exhibit significantly worse tracking
quality than the original Correlation tracker [3] due the several approximations that were required for
its definition, we observe no significant differences in the mean inlier track error nor the features’
lifetime. Similarly, the reported performance for HasteCorrelation* matches that of the original Cor-
relation tracker and the proposed HasteCorrelation, which is evidence that HasteCorrelation* can still
perform competitively even when removing the smooth weighting scheme, while being significantly
more efficient. Interestingly, HasteDifference* is, in general, capable of retrieving more stable tracks,
consistently achieving longer lifetimes than the rest of the methods in the most cluttered and complex
datasets while achieving competitive mean reprojection errors even on the long-lived tracks. We be-
lieve that the superior performance of HasteDifference* over the other event-driven alternatives arise
from using the information of all the locations in the template T when comparing it to the model M
(see Eq. (7)), whereas the proposed correlation-based methods only consider the locations where events
are being projected (see Eq. (3)).

Citation
Citation
{Brandli, Berner, Yang, Liu, and Delbruck} 2014

Citation
Citation
{Alzugaray and Chli} 2018

Citation
Citation
{Gehrig, Rebecq, Gallego, and Scaramuzza} 2020

Citation
Citation
{Zhu, Atanasov, and Daniilidis} 2017{}

Citation
Citation
{{Alzugaray} and {Chli}} 2018

Citation
Citation
{{Alzugaray} and {Chli}} 2019

Citation
Citation
{{Alzugaray} and {Chli}} 2019



8 ALZUGARAY & CHLI: MULTI-HYPOTHESIS ASYNCHRONOUS SPEEDED-UP TRACKING

0 1 2 3 4
1.5

2

2.5

3

3.5

R
ep

ro
je

ci
to

n
 E

rr
o

r 
[p

x]

shapes_rotation

0 1 2 3 4
1.5

2

2.5

3

3.5
shapes_translation

0 1 2 3 4
1.5

2

2.5

3

3.5
shapes_6dof

0 1 2 3 4

Lifetime [s]

10 1

10 2

10 3

N
u

m
. I

n
lie

r 
T

ra
ck

s 
[#

]

0 1 2 3 4

Lifetime [s]

10 1

10 2

10 3

0 1 2 3 4

Lifetime [s]

10 1

10 2

10 3

EOF
Correlation
HasteCorrelation
HasteCorrelation*
HasteDifference*

(a) shapes scene.

0 1 2 3 4
1.5

2

2.5

3

3.5

R
ep

ro
je

ci
to

n
 E

rr
o

r 
[p

x]

poster_rotation

0 1 2 3 4
1.5

2

2.5

3

3.5
poster_translation

0 1 2 3 4
1.5

2

2.5

3

3.5
poster_6dof

0 1 2 3 4
1.5

2

2.5

3

3.5
hdr_poster

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

N
u

m
. I

n
lie

r 
T

ra
ck

s 
[#

]

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

EOF
Correlation
HasteCorrelation
HasteCorrelation*
HasteDifference*

(b) poster scene.

0 1 2 3 4
1.5

2

2.5

3

3.5

R
ep

ro
je

ci
to

n
 E

rr
o

r 
[p

x]

boxes_rotation

0 1 2 3 4
1.5

2

2.5

3

3.5
boxes_translation

0 1 2 3 4
1.5

2

2.5

3

3.5
boxes_6dof

0 1 2 3 4
1.5

2

2.5

3

3.5
hdr_boxes

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

N
u

m
. I

n
lie

r 
T

ra
ck

s 
[#

]

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

0 1 2 3 4
Lifetime [s]

10 1

10 2

10 3

EOF
Correlation
HasteCorrelation
HasteCorrelation*
HasteDifference*

(c) boxes scene.

Figure 3: Mean reprojection error and number of inlier tracks relative to the feature lifetime.
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(a) shapes_6dof (b) poster_6dof (c) boxes_6dof

Figure 4: Example feature tracks with the HasteDifference* tracker over 40ms.

Regular Event State Event All
Tracker Num. [%] Time [µs/ev] Num. [%] Time [µs/ev] Time [µs/ev]

Correlation [3] 98.88 47.91 1.12 95.79 48.45
HasteCorrelation 98.77 2.98 1.23 56.15 3.64
HasteCorrelation* 99.05 1.51 0.95 40.47 1.88
HasteDifference* 98.18 1.99 1.82 61.36 3.07

Table 1: Timings for ‘regular’ and ‘state’ events, and their combined performance, indicating
the percentage of the events used for the computation. The best figure is shown in boldface.

Visual examples of tracks retrieved with HasteDifference* are presented in Fig. 1 and 4, explicitly
choosing challenging instants, where traditional frame-based vision is likely to fail.

4.2 Computational Performance
The main contribution of this work is the drastic drop in computational cost of event-driven tracking as
reported in Table 1, enabling its use in practical applications. These timings are generated by running
all methods on an Intel Xeon E3-1505m CPU at 2.8GHz with 16GB using a single-threaded C++
implementation. No computational performance metric is provided for the EOF tracker as the only
publicly available implementation is coded in MATLAB, taking up to several hours to complete a single
dataset using multi-threading. For completeness, we refer the reader to the IMU-based EOF tracker’s
successor in [22], where the authors claim that a non-public C++ implementation is able to track up
to 15 features (same as specified in this manuscript) in real-time on a 6 core CPU, but only under
moderate optical flow, signifying an overall high computational cost.

In Table 1, processed events within the feature’s range are distinguished as either regular or state
events, as the latter involve a significant computational overhead derived from the initialization of new
hypotheses. The average processing time per event and the percentage of their occurrence in the stream
are reported (‘All’ including both regular and state events). We observe that all the HASTE variants
computationally outperform the original Correlation tracker [3] by an order or magnitude. The main
advantage arises from the efficient processing of regular events, which account for the vast majority of
the processed events, in a far more efficient manner by re-using most information between consecutive
events. Among the HASTE variants, HasteCorrelation perform computationally the worst as it retain
the original Guassian-like weighting scheme and it needs to be applied in the dot product of Eq. (5). The
computational differences between HasteCorrelation* and HasteDifference* arise from the fact that the
former must retain and access only a vector of sampled values V of m elements for each hypothesis
whereas the latter requires the retaining and accessing of a full n×n patch D for each hypothesis. The
reported results indicate that HasteCorrelation* could be a valid alternative to HasteDifference* for
systems with constrained resources at expenses of a diminished tracking quality.
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Although the average event-rate of these datasets ranges between 300K-3M events per second, only
the events within the range of an active feature are processed, and thus, real-time performance depends
on the number of concurrently tracked features and their overlap. The presented results indicate that
the strategy proposed here is, to the best of our knowledge, the most efficient, event-driven patch-based
feature tracking methodology to date.

5 Conclusions
This paper extends the capabilities of the hypothesis-based patch tracking methods relying solely on
events, by revisiting the tracker described in [3] and proposing two novel variants, HasteCorrelation and
HasteCorrelation*, that achieve over an order of magnitude speed-up without any significant trade-off
in tracking quality.

Building on the approximations introduced for the correlation-based HASTE trackers, we also
propose the novel the HasteDifference* tracker, exhibiting even better tracking quality than the afore-
mentioned methods while retaining the computational advantage of the HASTE variants.

The contributions of this paper represent key advances that enable the application of event-driven
methods in realistic, high-speed scenarios, opening up interesting research directions towards the de-
velopment of a completely event-driven VO pipeline in the future.
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