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Abstract

Climate change increases the need for better insurance solutions that enable farmers

to cope with drought risks. We design weather index insurance using drought indices

based on precipitation, soil moisture and evapotranspiration as underlying drought

index and compare their risk-reducing potential for winter wheat producers in Eastern

Germany. In general, we find that all drought indices can reduce financial risk exposure.

However, the largest risk reduction can be achieved if the underlying drought index is

tailored individually for each farm. This implies that insurers should offer insurance

with farm-specific underlying drought index.

Keywords: index-based insurance, drought risks, index design, drought indices, quan-

tile regression

JEL classification: G22, Q14, Q54

1. Introduction

Drought is a major driver of crop yield volatility and, in particular, causes
low yields that can lead to substantial financial losses (Chavas et al., 2018;
Webber et al., 2018). Climate change is likely to increase these financial losses
in many regions and thus improved drought risk management is essential
(Lobell, Schlenker and Costa-Roberts, 2011; Trnka et al., 2014; Yang et al.,
2014; Pirttioja et al., 2015; Grillakis, 2019). Whilst on-farm measures, such as
using drought tolerant crops, installing irrigation systems or practicing water-
conserving tillage, mitigate some drought risks, they might still fail to absorb
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2 J. Bucheli et al.

losses from extreme droughts (Olesen et al., 2011). Insurance solutions can
therefore be a viable complementary risk management tool to compensate
for the remaining downside risks and improve farmers’ financial well-being
(Breustedt, Bokusheva and Heidelbach, 2008; Musshoff, Odening and Xu,
2011; Di Falco et al., 2014). Weather index solutions where indemnification is
based on a weather index, such as precipitation, and not on actual crop yields
are particularly suitable to cope with drought risks (e.g. Turvey, 2001; Vedenov
and Barnett, 2004).
In this paper, we systematically test and compare the ability of different

drought indices to reduce basis risk in weather index insurance, i.e. differences
between the index-dependent payout and actual losses. To achieve this, we
use an empirical example of wheat production in Eastern Germany and test
potential gains from farm-specific tailoring of the underlying drought index.
As weather index insurance1 provides protection against systemic risks in

particular, and at a low administrative cost, it is a complementary tool for
classical indemnity insurance products (Barnett andMahul, 2007). The amount
of indemnification in weather index insurance depends on a realised value
of a weather index, such as cumulative precipitation, officially reported by
a weather station or other data sources (Turvey, 2001; Vedenov and Barnett,
2004). This means there is no on-field damage assessment, which allows fast
payouts to farmers within the growing period. In addition, historical data
of the weather index permits the calculation of farm-specific premiums and
thereby mitigate adverse selection problems (Odening, Mußhoff and Xu, 2007;
Barnett, Barrett and Skees, 2008). Moreover, weather index insurance can
also compensate for additional expenditures, such as increased irrigation costs
during drought occurrence and therefore does not distort farmers’ incentives
to reduce losses (Miranda and Vedenov, 2001). Basis risk, i.e. the difference
between the index-dependent payout and actual losses, is a drawback as it limits
the risk-reducing potential of weather index insurance (Woodard and Garcia,
2008). Therefore, it is crucial that the weather data input predicts low yields
accurately to ensure optimal risk reduction.
Previous studies addressing the protection of drought risks with weather

index insurance2 have used precipitation-based indices (Martin, Barnett and
Coble, 2001; Berg, Quirion and Sultan, 2009; Musshoff, Odening and Xu,
2011; Norton, Turvey and Osgood, 2012; Leblois et al., 2014a; Dalhaus
and Finger, 2016), mixed indices based on precipitation and temperature
(Vedenov and Barnett, 2004; Breustedt, Bokusheva and Heidelbach, 2008;
Pelka and Musshoff, 2013), a soil moisture index (Kellner and Musshoff,
2011) and the water requirement satisfaction index (Meze-Hausken, Patt and
Fritz, 2009; Leblois and Quirion, 2013) as well as its standardised form, the

1 Alternative terms are parametric weather insurance or weather derivative (e.g. Musshoff,

Odening and Xu, 2011).

2 Note, here we focus solely on weather index insurance. Other index insurance products use area

yield statistics (e.g. Skees, Black and Barnett, 1997) or vegetation health indices (Bokusheva et al.,

2016) as the underlying index. See also Vroege et al. (2019) for an overview.
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The optimal drought index for designing weather index insurance 3

evaporative stress index (Enenkel et al., 2019).3 There are also alternative
drought indices that are frequently used to monitor agricultural droughts. Two
prominent examples of such alternatives are the standardised precipitation
index (Vicente-Serrano, Cuadrat-Prats and Romo, 2006; Okpara et al., 2017)
and the standardised precipitation evapotranspiration index (Vicente-Serrano
et al., 2012; Bozzola, Smale and Di Falco, 2018; Tian, Yuan and Quiring, 2018;
Peña-Gallardo et al., 2019). However, these two standardised indices have not
been applied to the design of weather index insurance.
We provide two key contributions to the literature. Firstly, instead of adher-

ing rigidly to a single drought index to calculate insurance payouts, or compar-
ing only two indices against each other, we systematically evaluate five promi-
nently used drought indices of index insurance and relevant climate impact
literature to assess their ability to reduce farmers’ financial downside risk
exposure. Secondly, we go a step further and identify the farm-specific ‘BEST’
index to maximise index insurances’ risk-reducing capacity. Therefore, we
extend previous literature by suggesting tailor-made weather index insurance
products based on a farm-specific risk assessment rather than using the same
underlying index for all insured farms.
In our analysis, we provide an ex-ante simulation of the risk-reducing

capacity of weather index insurance using five prominent drought indices
for 85 representative large-scale winter wheat farms in Eastern Germany.
More specifically, these indices form a complexity gradient that considers
further soil-plant-atmosphere interactions in the following increasing order:
(i) cumulative precipitation index, (ii) standardised precipitation index, (iii)
standardised precipitation evapotranspiration index, (iv) soil moisture index
and (v) evaporative stress index. We test whether the risk-reducing potential
of weather index insurance increases when the underlying index is tailored
individually for each farm. The index design is based on the latest research,
phenology data are used to tailor the optimal index measurement period and
quantile regression serves to tailor payout formulas that minimise basis risk
(e.g. Conradt, Finger and Bokusheva, 2015a; Dalhaus, Musshoff and Finger,
2018). This means that meteorology and phenology data are combined with
unique historical yield data at the farm-level, and farm-specific downside risk
removals can be simulated using risk premiums and lower partial moments.
Wheat production in Eastern Germany is an excellent case study because this
region is one of Europe’s major breadbaskets, where farmers face compara-
tively high and increasing drought risks and show interest in improved risk
management tools (Gornott and Wechsung, 2016; Lüttger and Feike, 2018).
We find that all of the drought indices considered here can significantly

reduce farmers’ financial exposure to drought risks. On average, the evapo-
rative stress index causes the largest reduction in financial exposure to drought
risks in our case study. Most importantly, our results show that ‘the most

3 The study of Enenkel et al. (2019) does not design farm-specific weather index insurance

contracts but they show a strong correlation between the evaporative stress index and the

(lagged) NDVI. Moreover, by comparing the index to reported losses in Africa, they show that

the evaporative stress index is a good indicator of low yields.
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4 J. Bucheli et al.

suitable’ underlying drought index has not yet been identified and that each of
the five drought indices can generate the largest risk reduction for at least some
farms. Hence, our results indicate a need for farm-specific risk assessment and
tailor-made insurance contracts for each farm.
The remainder of the paper is structured as follows. We first provide a

conceptual framework for designing weather index insurance and reducing
basis risk. In this section, we also introduce the five drought indices applied
in the study. Next, we present the empirical risk analysis framework, followed
by the presentation of our case study and data. We then put forward our results
and summarise the robustness checks. This is followed by a discussion, and
finally, we end this paper with concluding remarks.

2. Conceptual framework of weather index insurance

and basis risk

We assume that crop yield
∼
y is a random variable that stochastically depends

on random weather conditions. The realised value of an underlying weather

index,
∼

I represents these conditions. Following Elabed et al. (2013), we

further assume that
∼
y is a function of

∼

Iwhose impact is approximated with

g(
∼

I ) as illustrated in Equation (1). Since the measured weather
∼

I only partly

captures the general impact of weather on
∼
y, the error term

∼

ϑ accounts for

weather induced impacts outside
∼

I . In addition, the error term
∼
η represents

any other random factors that are uncorrelated with
∼

I but influence
∼
y (e.g.

weather-independent changes in management).

∼
y = g

(

∼

I

)

+
∼

ϑ +
∼
η (1)

The estimated parameters of g
(∼

I
)

determine critical parameters in insur-

ance design and both error terms together represent basis risk, whereby

the approximation error
∼

ϑ can be reduced by improving the weather index

insurance design, i.e. increasing the predictive power of
∼

I (Conradt, Finger and
Bokusheva, 2015a). More specifically, insurance design should use an estimate

of g(.) that is tailored to yield losses and apply an underlying index
∼

I that best
captures the yield reducing weather events.

2.1. A set of weather indices for drought insurance

In this section, we first introduce the five drought indices that serve as
underlying index in this study4 and subsequently discuss the optimal index

4 The set of indices chosen here reflects a subjective set of possibilities that are prominently used

in weather index insurance and drought impact studies. Due to the large range of alternatives

(e.g. Zargar et al., 2011), we do not claim that this list is complete.
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The optimal drought index for designing weather index insurance 5

measurement period to minimise basis risk. We arrange them in an order
that reflects increasing soil-plant-atmosphere interactions and provide more
technical details in Section 1 of the online supplement.

2.1.1. Cumulative precipitation index (CPI). The cumulative precipitation
index is the absolute sum of precipitation within a certain time period and can
therefore indicate an inadequate water supply. It is the most frequently applied
underlying index in weather index insurance publications (e.g. Martin, Barnett
and Coble, 2001; Berg, Quirion and Sultan, 2009; Pelka, Musshoff and Finger,
2014; Conradt, Finger and Spörri, 2015b; Dalhaus, Musshoff and Finger,
2018), probably due to its simplicity, the general availability of precipitation
data and verified risk-reducing potential.

2.1.2. Standardised precipitation index (SPI). The standardised precipitation
index shows standardised anomalies in the cumulative precipitation index
with respect to the site-specific, long-term average so that negative values
indicate below-average precipitation amounts (McKee, Doesken and Kleist,
1993; Vicente-Serrano, Cuadrat-Prats and Romo, 2006). Standardised values
reflect location-specific climates, which improves comparisons in drought
severity across space and time versus the use of absolute precipitation amounts.

2.1.3. Standardised precipitation evapotranspiration index (SPEI). The
standardised precipitation evapotranspiration index represents standardised
anomalies in the climatic water balance (precipitation minus potential
evapotranspiration) with respect to the site-specific, long-term average
(Vicente-Serrano, Beguería and López-Moreno, 2010). Negative values
indicate comparatively dry conditions because the atmospheric water demand,
represented by potential evapotranspiration, exceeds the atmospheric water
supply represented by precipitation. Temperature is the main driver of potential
evapotranspiration, which is the sum of potential water evaporation and
potential plant transpiration from a well-watered reference surface (Beguería
et al., 2014).5 The advantage of the SPEI is its ability to reflect the joint
effect of insufficient precipitation amounts and high temperatures on drought
occurrence without the need of comprehensive weather data.

2.1.4. Soil moisture index (SMI). The soil moisture index is the average
plant available soil moisture during the index measurement period (Kellner
and Musshoff, 2011). Soil moisture depends on site-specific characteristics
(e.g. water retention capacity, topography), management decisions (e.g. tillage,
cover) and weather conditions (Friesland and Löpmeier, 2007; Zhang et al.,
2009; Mozny et al., 2012). Changes in the stock of soil moisture result mainly

5 Simple estimation models of potential evapotranspiration only require temperature data (e.g.

Hargreaves method), whereas more complex models also consider solar radiation, air humidity

and wind speed (Penman-Monteith model). See Beguería et al. (2014) for details.
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6 J. Bucheli et al.

from an imbalance between precipitation and temperature-driven evapotran-
spiration. The advantage of soil moisture is its direct indication of inadequate
water supply within the root zone and memory of weather conditions prior to
the start of index measurement period.

2.1.5. Evaporative stress index (ESI). The evaporative stress index (ESI)
shows the standardised anomaly in the ratio of actual to potential evapo-
transpiration6 with respect to the site-specific, long-term average (Anderson
et al., 2016; Enenkel et al., 2019). Negative values indicate dry conditions
resulting from a below-average satisfaction of the atmospheric water demand
(i.e. potential evapotranspiration) with actual evapotranspiration.7 As the actual
evapotranspiration depends on water supply in the soil-plant system, the ESI
is closely interrelated to the soil moisture index but focuses on water fluxes
instead of water stocks.

2.1.6. Period of index measurement. The indices presented above measure
drought over a certain period of time. A suitable weather index insurance
specification should ensure that the index measurement period covers the
critical growth phases in which crops are especially vulnerable to drought
stress. Temperature is the main driver of crop growth in temperate regions,
but other weather variables and management decisions (e.g. sowing date) can
also have an influence (Porter and Gawith, 1999; Rezaei, Siebert and Ewert,
2015). Since the timing of growth phases varies across space and time, an
index measurement period based on fixed calendar dates is unlikely to coincide
with the actual timing of certain growth phases. Therefore, we follow Dalhaus,
Musshoff and Finger (2018) and use phenology observations to define farm-
specific index measurement periods covering the growth phases from stem
elongation to the beginning of milk ripeness. Drought occurrence during these
growth phases of winter wheat causes the greatest losses in absolute yield
potentials (Barnabás, Jäger and Fehér, 2008; Farooq, Hussain and Siddique,
2014; Varga et al., 2015).

2.2. Definition of contract specifics

Low values of the above-mentioned indices represent drought occurrence. The
payout determination of weather index insurance thus follows the design of a
European put option as illustrated in Equation (2) (Martin, Barnett and Coble,

6 This ratio shows the amount of actual evapotranspiration relative to the maximum possible

amount of evapotranspiration.

7 Lysimeter, remote-sensing technology or agrometeorological models can derive actual evapo-

transpiration and soil moisture (e.g. Friesland and Löpmeier, 2007; Enenkel et al., 2019). Note that

the potential evapotranspiration is the evaporative (i.e. the water) demand of the atmosphere,

independent of current soil moisture supply and only under well-watered conditions equal to

actual evapotranspiration.
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The optimal drought index for designing weather index insurance 7

2001; Turvey, 2001).8 More specifically, farmer i has a weather index insurance
with underlying index k and receives a payoutπk

it in year twhenever the realised
value of the underlying index Ikit falls below a strike level Ski at the end of
the index measurement period. The strike level Ski is a predefined threshold
value of the underlying index and is farm-specific to reflect different drought
vulnerabilities. The tick size Tki represents the expected yield loss per missing
unit of the underlying index and is monetarised with a predefined price P,
whilst the tick size represents the payout per index unit.

πk
it = P ∗Tki

∗argmax
{(

Ski − Ikit
)

, 0
}

(2)

We tailor farm- and index-specific tick sizes and strike levels based on empir-
ical index-yield9 relationships to reflect individual drought vulnerability.10 We
therefore transform Equations (1)–(3) where the slope coefficient βk

i shows the
expected yield loss per missing unit of the underlying index k, i.e. the slope
coefficient in Equation (3) is the tick size in Equation (2). As we estimate
Equation (3) for each farm individually, we account for differences in yield
potentials and time invariant farm characteristics (e.g. soil conditions).

yit = cki + βk
i

∗Ikit + ε̃
k
it (3)

We use the quantile regression estimator illustrated in Equation (4) to
estimate Equation (3) because it results in lower basis risk than the mean-based
ordinary least square estimator (Conradt, Finger and Bokusheva, 2015a).11

The quantile regression estimator focuses on a quantile of interest τ by asym-
metrically weighting positive and negative residuals. Moreover, it is robust to
outlier values because it minimises the absolute rather than the squared residual
(Koenker and Bassett Jr., 1978). This allows the slope coefficient (tick size) to
be conditioned on lower yield observations, i.e. the estimated slope coefficients
are quantile specific and tailor the insurance design on a quantile of interest,
whilst the ordinary least square estimator focuses on mean responses rather
than downside risks. We set τ = 0.3 to derive tick sizes that best capture the
marginal impact of the underlying index on the lowest 30 per cent of yield

8 In practice, insurance provider and farmer would agree on a maximum yearly payout to plan

the farmer’s coverage, the insurer’s geographical spread of potential claims and need for

reinsurance. In Equation (2), farmers have full coverage after the strike level.

9 We use detrended yields to account for technological progress. Earlier yield observationswithout

detrending can be comparatively low even under good weather conditions and thus bias

empirical index-yield relationships and our risk analysis. See Section 2 of the online supplement

for details of detrending yield data.

10 Farm-individual contract calibration is available in practice (e.g. USDA-RMA, 2020; Vroege et al.,

2019).

11 As a sensitivity analysis, we also calculate contract specifics (tick size and strike level) with the

ordinary least square (OLS) estimator.
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8 J. Bucheli et al.

observations.

β̂k
i (τ )=argminβk

i
∈R



τ ∗
∑

yit≥βki
∗Ikit

∣

∣yit−βk
i
∗Ikit

∣

∣+ (1−τ) ∗
∑

yit<βki
∗Ikit

∣

∣yit − βk
i

∗Ikit
∣

∣





(4)

We derive the farm-specific strike level Ski from the estimated Equation (3)
by inserting the 30 per cent quantile of yield observations of farm i for yi
and solve for the realised value of the underlying index Iki that is then equal
to the strike level Ski . Importantly, we use farm-individual yield data to tailor
the parameters tick size and strike level to farm-individual drought risks, but
the yearly payout is independent of crop yields as shown in Equation (2).12

As a robustness check, we design insurances protecting against more extreme
droughts by setting τ = 0.2 and insert the 20 per cent quantile of yield of farm
i to derive the strike level.

3. Empirical risk analysis

We assume that farmers secure forward contracts to guarantee a commercial
buyer for their produce and to eliminate price risks. Moreover, we assume
that production costs and other revenues (e.g. governmental support) are
constant and uncorrelated with drought occurrence during our period of index
measurement.13 Thus, the differences inwealth depend solely on revenues from
wheat production, comprising priceP times yield yit, as well as the net revenues
from the weather index insurance, comprising the payout π k

it and the insurance
premium Γ k

i so that the realised wealth Wk
it is

Wk
it = P ∗yit + π k

it − Γ k
i (5)

We assume the price P to be fixed at EUR 15.80 per deci-ton in both the
forward contracts and weather index insurance. This was the price farmers
received in 2015 (KTBL, 2019; FAO, 2019a), which is the last year of our yield
panel and from which we detrend yields. We use farm-individual actuarially
fair insurance premiums, which equal the yield-independent expected payout

of farm i and underlying index k (Γ k
i = E

(

π k
it

)

) to reflect farm-specific drought

exposure. Whilst this is a simplistic pricing method, it allows the risk-reducing
potential of the drought indices to be identified without being inhibited by any

12 In a cross-validation, we calibrate contract specifics (tick size and strike level) with pooled quantile

regression to avoid overfitting. See Section 10 of the online supplement.

13 The consideration of input use and input prices, which we are unable to observe in this study,

might influence risk-reducing potentials. Especially if farmers use irrigation, the here-considered

relationship between crop yields and droughts as a proxy for shocks in farmers’ realised wealth

may be biased. However, irrigation is not common in our case study (Siebert et al., 2015).

Moreover, we assume that biases due to adjustments in other input-applications such as nitrogen

or pesticides are limited.
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The optimal drought index for designing weather index insurance 9

mis-specified insurance premiums. As a robustness check, we add loadings on
the actuarially fair premium.

3.1. Measuring risk with the expected utility model

We use an expected utility maximisation framework in our analysis (e.g. Di
Falco and Chavas, 2009),14 where a risk-averse farmer prefers the underlying
index with the lowest basis risk, equivalent to resulting in the highest expected

utility EU
(

Wk
it

)

. Following Equation (6), this is equivalent to preferring the

underlying drought index with the lowest risk premium Rki , which reflects the
implicit costs of the risk burden (Di Falco and Chavas, 2006). The risk premium
is calculated by solving Equation (6) for Rki yielding in Equation (7).

EU
(

Wk
it

)

= U
[

E
(

Wk
it

)

− Rki
]

(6)

Rki = E
(

Wk
it

)

− (U)−1
(

EU
(

Wk
it

))

(7)

In Equation (8) we present a power utility function used to map farmers’
risk preferences and which is especially suitable to reflect aversion against
downside risks (Menezes, Geiss and Tressler, 1980). This is of particular
importance for our analysis, because weather index insurance should aim at
reducing lowest possible wealth realisations.

U
(

Wk
it

)

= (1 − α)−1
(

Wk
it

)1−α
(8)

More specifically, we assume moderately risk-averse farmers represented
by a coefficient of constant relative risk-aversion α equal to 2 (Chavas,
2004). Other coefficients of constant relative risk-aversion are considered as
robustness checks to reflect existing evidence that German farmers are risk-
averse but that the heterogeneity of risk preferences is large (Maart-Noelck
and Musshoff, 2014; Iyer et al., 2019; Meraner and Finger, 2019).
Finally, we test whether different underlying indices result in significant

variations in the risk premium. More specifically, we first test the different
underlying indices against the ‘uninsured’ status to identify their suitability for
weather index insurance design. Secondly, we test the risk-reducing potentials
of the underlying indices against each other. This allows us to test whether one

14 The risk premium is the amount of money an expected utility maximiser is willing to pay on

top of the actuarially fair premium for an insurance that completely eliminates risks. We use

the risk premium as a monetarised risk measure to indicate improvements in the ability to

reduce financial losses. In addition, a positive risk premium indicates preferences for insurance

uptake of risk-averse decision-makers. However, it is known that farmers’ insurance uptake

does not always conform to EU maximising behaviour and therefore we do not claim to be

able to estimate final insurance demand. We refer to Babcock (2015), Du, Feng and Hennesy

(2016), Luckstead and Devadoss (2019) and Cao, Weersink, and Ferner (2019), who find that under

specific framing, cumulative prospect theory could deliver better insights on how to predict crop

insurance demand.
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10 J. Bucheli et al.

index has a lower average basis risk (i.e. larger risk reduction) than another,
resulting in it being preferentially applied in a uniform drought insurance
product in which each farm receives the same underlying index.15 Thirdly,
we design weather index insurance contracts where each farm receives its
‘superior’ underlying drought index (i.e. the underlying index with lowest
risk premium) and test this non-uniform set against the uninsured status and
against the five uniform insurance products. We use non-parametric one-sided
paired Wilcoxon signed rank tests to investigate significant differences in the
risk premium and apply Bonferroni corrections to account for the multiple
hypotheses tested with the same data.16 In addition, we conduct robustness
checks using lower partial moments as another coherent risk measure. Lower
partial moments show removals of downside risks and therefore complement
the risk premium that monetarises overall gains of insurance use. See Section
9 of the online supplement for an explanation of lower partial moments.

4. Case study and data

Figure 1 illustrates our case study consisting of 85 winter wheat producers.
These are large-scale crop farms with more than 1,000 hectares of arable
land each so that insurance premiums can cover the costs for farm-individual
insurance calibration. The spatial heterogeneity of farm locations accounts
for the heterogeneity of site conditions throughout Eastern Germany, a major
European granary facing a high and growing drought risk due to increasing
temperatures and changing precipitation patterns (Gornott and Wechsung,
2016; Lüttger and Feike, 2018). One of the severest drought events took place
in 2003 when the combination of abnormally high temperatures and a lack of
precipitation during the reproductive growth phases caused substantial finan-
cial losses in crop production (Ciais et al., 2005; Odening, Mußhoff and Xu,
2007; Rebetez et al., 2006). In Eastern Germany, irrigation in wheat production
is uncommon (Siebert et al., 2015; FAO, 2019b) and drought insurance is
not widespread, but some new solutions have been launched onto the market
recently (Topagrar, 2018).17 German farmers often use forward contracts to
mitigate price risks (Anastassiadis et al., 2014), which amplifies drought risks
because farmers have to buy additional winter wheat if their harvest does not
meet the contractually agreed quantity. Table 1 shows summary statistics of

15 The weather index insurance contracts still specify farm-specific tick sizes and strike levels to

reflect the farm-specific index-yield relationship.

16 Note that relative changes in the risk premium are constant across different price levels as long

as prices in forward contracts and weather index insurance are the same. Therefore, a change in

price levels does not change the results of the Wilcoxon signed rank test.

17 Some insurers offer weather index insurance based on precipitation or soil moisture, but these

insurance products have so far only marginal market penetration. We are not aware of any

insurer that offers several drought indices and identifies the one with the largest risk-reducing

potential for each farm individually, or of any insurer that offers indemnity-based drought

insurance.
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The optimal drought index for designing weather index insurance 11

Fig. 1. Location of farms in our case study.

Table 1. Descriptive statistics of detrended yields, index measurement period and drought

indices

Min Median Mean Max SD

Yield [dt/ha] 19.92 73.92 73.39 116.53 14.43

Index measurement period [days] 20 67 67 113 14

CPI [mm] 8.50 126.30 131.30 400.80 56.17

SPI [SD] −3.90 0.06 0.00 3.31 1.00

SPEI [SD] −2.35 0.00 0.00 2.64 0.97

SMI [%] 47.66 68.24 68.84 96.48 8.82

ESI [SD] −2.78 0.16 0.00 1.98 0.98

Notes. Square brackets show units. dt is deci-ton, ha hectare, mm millimeter and sd standard deviations. CPI is

the cumulative precipitation index, SPI the standardised precipitation index, SPEI the standardised precipitation

evapotranspiration index, SMI the soil moisture index and ESI the evaporative stress index.

detrended yields, the length of the index measurement period and the values of
the five drought indices for our panel.
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4.1. Yield data

We use an unbalanced yield panel of 85 farms with yield records ranging
from 1995 to 2015 and involving a total of 1,277 yield observations18 that
were provided by the German insurance broker ‘gvf VersicherungsMakler
AG’. The median number of yield records per farm is 16. We account for
technological progress and use the outlier robust M-estimator to linearly
detrend historical yields (Finger, 2013). See Section 2 of the online supplement
for more information regarding the detrending procedure and results.

4.2. Phenology data

The German meteorological service (Deutscher Wetterdienst, DWD) provides
public access to a dataset with observed occurrence dates of winter wheat
growth phases reported by a network of approximately 1,200 reporters all over
Germany (Kaspar, Zimmermann and Polte-Rudolf, 2015; DWD, 2018a). The
index measurement period is defined by using phenology data captured as
close as possible to the insured farm by a phenology reporter located in the
same natural region. The average distance between the insured farm and the
phenology reporter is 17.68 km with a standard deviation of 13.88 km. On
average, the index measurement period begins on the 117th day of year (27
April) with the start of the stem elongation growth phase and ends on the 184th
day of year (3 July) before the start of the milk ripeness growth phase. The
timing of stem elongation depends mainly on the completion of vernalisation19

(Gerstmann et al., 2016) and, in our panel, occurs on average 194 days after the
sowing date on 15 October. See Section 1 of the online supplement for further
information on phenology and the index measurement period.

4.3. Meteorological data

We use daily records of precipitation (DWD, 2018b), plant available soil
moisture (DWD, 2018c), potential evapotranspiration (DWD, 2018d) and
actual evapotranspiration (DWD, 2018e). These gridded datasets are publicly
accessible via the German meteorological service (Deutscher Wetterdienst,
DWD). They have a spatial resolution of 1 × 1 km and consist of inter-
polated weather station data. Rauthe et al. (2013) give an overview of the
precipitation dataset based on approximately 5,000 ground weather stations. In
addition, Löpmeier (1994) and Friesland and Löpmeier (2007) describe how
the potential evapotranspiration, actual evapotranspiration and plant available
field capacity data are interpolated from a network of 280 weather stations.

18 Yearly yields were reported as the average yield per hectare. Focusing on farm-level data

prevents biased results from spatial aggregation (e.g. to average county or country yields per

hectare) that smoothens yield volatility and thereby underestimates risk exposure, i.e. farm-level

data reflects idiosyncratic shocks better than more aggregated yield levels (Leblois et al., 2014a,

2014b; Marra and Schurle, 1994).

19 Vernalisation is the accumulation of winter and spring temperatures of winter crops before the

start of reproductive growth phases.
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These 280 stations are set up on sandy loam soil covered with grass and a
simulation model (AMBAV—agrometeorological model for calculating actual
evapotranspiration) estimates the variables based on various assumptions on
site characteristics.20

Note that by basing our analysis on publicly available meteorological and
phenology datasets, we ensure its transparency and reproducibility so that
it can be translated directly into practice. We use the statistical software
environment R (R Core Team, 2018) for data handling, computations and
creating illustrations. The package ‘SPEI’ (Beguería and Vicente-Serrano,
2017) calculates the standardised indices and the package ‘quantreg’ (Koenker,
2018) contains the quantile regression estimator. All codes are available in a
supplementary R file.

5. Results

This section presents the results of the expected utility model assuming
moderately risk-averse farmers (α = 2 in Equation (8)). A lower risk premium
reflects a higher effectiveness of the underlying drought index to reduce the
financial exposure to drought risks, i.e. reflects lower basis risk. In addition,
we summarise various robustness checks at the end of this section. We define
uniform insurance as the product in which each farm receives the same
underlying index. The non-uniform insurance product, i.e. where each farm
receives the underlying indexwith the lowest risk premium, is defined as BEST.
This non-uniform insurance with a tailored underlying index has an average
actuarially fair premium of EUR 32.35 per hectare. On average, this reflects
2.94 per cent of expected revenues per hectare. See Section 3 of the online
supplement for further details on premiums, contract specifics (e.g. tick size,
strike level) and historical payouts of all indices.

5.1. Changes in the risk premium

Table 2 illustrates the average absolute (RPm − RPn) and relative ((RPm −

RPn)/RPn) changes in the risk premium, where RPm denotes the risk premiums
for the index in row m and RPn the risk premiums for the index in column n.
For example, the evaporative stress index (ESI) has, on average, a significantly
lower risk premium of EUR −2.40 per hectare (−6.55 per cent) compared to a
uniform insurance where each farm has the cumulative precipitation index as
the underlying drought index. The significance levels of differences evaluated
with Wilcoxon signed rank tests stand for the null hypotheses that the risk
premiums RPm are equal to, or larger than, the risk premiums RPn. See Section
5 of the online supplement for the p-values of the Wilcoxon signed rank tests.
The first five rows of Table 2 show the results for uniform insurance

products, i.e. when each farm receives the same underlying index. The last

20 Interpolated data for winter wheat over various soil types is not available from the German

meteorological service’s climate data centre (https://cdc.dwd.de/portal).
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Table 2. Absolute (in e/ha) and in parentheses relative (in %) average differences in the risk premium (RP) and their significance for moderately

risk-averse farmers (α = 2)

m/n CPI RPn

SPI SPEI SMI ESI Uninsured

RPm CPI — −2.56∗∗∗ (−7.30)

SPI −0.15 (−0.38) — −2.72∗∗∗ (−8.10)

SPEI 0.22 (2.16) 0.37 (2.63) — −2.35∗∗∗ (−6.25)

SMI −0.53 (1.08) −0.38 (1.48) −0.76 (1.00) — −3.10∗∗∗ (−7.92)

ESI −2.40∗∗∗ (−6.55) −2.25∗∗∗ (−6.09) −2.61∗∗∗ (−7.65) −1.87∗∗∗ (−6.43) — −4.96∗∗∗ (−13.41)

BEST −3.40∗∗∗ (−10.55) −3.24∗∗∗ (−10.13) −3.61∗∗∗ (−11.41) −2.87∗∗∗ (−10.36) −1.00∗∗∗ (−3.87) −5.96∗∗∗ (−16.88)

Notes. Numbers without brackets display the absolute average reduction in the risk premium (RPm − RPn) in Euros per hectare (e/ha) of winter wheat. Numbers in brackets display the relative

average reduction in the risk premium in percentage ((RPm − RPn)/RPn). Numbers are rounded to two decimal places. Asterisks show the Bonferroni-adjusted significance level derived from

one-sided paired Wilcoxon signed rank tests: ∗at the 1 per cent level, ∗∗at the 0.2 per cent level and ∗∗∗at the 0.02 per cent level. Null hypotheses tested are RPm ≥RPn. Significant differences

are highlighted in bold. α is the coefficient of relative risk aversion used in Equation (8), CPI the cumulative precipitation index, SPI the standardised precipitation index, SPEI the standardised

precipitation evapotranspiration index, SMI the soil moisture index and ESI the evaporative stress index.
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column shows that, on average, farmers with an insurance based on the cumu-
lative precipitation index (CPI), the standardised precipitation index (SPI), the
standardised precipitation evapotranspiration index (SPEI), the soil moisture
index (SMI) or the evaporative stress index (ESI) have a significantly lower risk
premium (lower risk exposure) compared to being uninsured. Consequently,
in general all drought indices have a significant risk-reducing potential, i.e.
they reduce the financial exposure to drought risks on average. An insurance
based on the evaporative stress index has with an average risk reduction of
EUR −4.96 per hectare (−13.41 per cent) the largest risk-reducing potential
compared to being uninsured. Moreover, the evaporative stress index is gener-
ally superior to the other drought indices in terms of basis risk reduction. No
further significant differences between uniform insurance products have been
identified.
The last row of Table 2 shows the results for the non-uniform insurance

product (BEST), i.e. when each farm receives the underlying index resulting
in the lowest risk premium (largest risk reduction). This BEST option is: the
evaporative stress index for 30 farms (out of 85 farms), the soil moisture index
for 13 farms, the standardised precipitation index for 11 farms, the standard-
ised precipitation evapotranspiration index for 8 farms and the cumulative
precipitation index for 6 farms. 16 farms do not reveal a substantial drought
risk for any of the five drought indices, i.e. they do not benefit from a lower
risk premium with any underlying drought index and, in terms of expected
utility, are no better off by holding a weather index insurance. However, an
insurance is attractive for the majority of the farms analyzed here. Hence, for
individual farmers each of the five drought indices can provide the lowest risk
premium (lowest basis risk). The average risk premium reduction of BEST
compared to being uninsured is EUR −5.96 per hectare (−16.88 per cent) and
significantly lower. Moreover, designing a non-uniform insurance product has
a significantly lower risk premium than offering uniform insurance products
based on one of the five drought indices. In comparison to a uniform insurance
product based on the evaporative stress index (i.e. the underlying drought
index with, on average, the largest risk reduction), BEST further reduces the
risk premium, on average, by EUR −1.00 per hectare (−3.87 per cent). See
Section 4 of the online supplement for the spatial distribution, risk-reducing
potentials and actuarially fair premiums of BEST across natural regions in
Eastern Germany. There is no spatial clustering of the most risk-reducing
drought index, but there is a tendency to an increased risk-reducing potential
(and increased actuarially fair premium that reflects farm-specific drought
risks) towards the eastern parts of Eastern Germany. See Section 5 of the online
supplement for further descriptive statistics on changes in the risk premiums
for each index.

5.2. Summary of robustness checks

Firstly, we change the coefficient of constant relative risk-aversion, denoted as
α in Equation (8), to investigate differences in the risk premium for slightly
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risk-averse farmers (α = 0.5) and extremely risk-averse farmers (α = 4)
(Chavas, 2004; Iyer et al., 2019). The results provided in Section 5 of the online
supplement reveal that our key-findings in Table 2 are robust across different
levels of risk-aversion.
Secondly, we add a loading of 10 and 20 per cent, respectively, on the

actuarially fair premium to account for internal expenses, taxes and profit
margins of insurance providers. Loading the actuarially fair premium reduces
the risk-reducing potential so that less farmers are better off if they take out
insurance. However, the BEST still outperforms both the uninsured alternative
and uniform insurance products. See Section 6 of the online supplement for the
results.
Thirdly, we tailor tick sizes and strike levels to more extreme droughts by

using the 20 per cent quantile of interest in the quantile regression estimator
shown in Equation (4) and for strike level derivation. Our key-findings are
robust to this change. Section 7 of the online supplement shows descriptive
statistics and the results.
Fourthly, we find that the risk-reducing potential decreases when we derive

tick sizes and strike levels with the ordinary least square estimator. This finding
is in line with Conradt, Finger and Bokusheva (2015a) who show that using
quantile regression to derive tick sizes and strike levels is superior in terms
of risk reduction. Other key-findings are robust to a change in the estimator.
Results are shown in Section 8 of the online supplement.
As a fifth robustness check, we evaluate downside risk reductions with the

lower partial moments of first (expected shortfall) and second order (downside
variance). The results of expected shortfall and downside variance confirm the
findings in Table 2. The only exception is that the evaporative stress index (ESI)
does not have a significantly lower expected shortfall than the soil moisture
index (SMI), but it still has a significantly lower downside variance. See
Section 9 of the online supplement for the results.
In the sixth robustness check, we run a cross-validation to avoid the risk of

overfitting. In this cross-validation, we run pooled quantile regression leaving-
out data from farm i and subsequently we test these contracts on the left-out
farm i. The results of this cross-validation confirm the findings in Table 2.21

See Section 10 of the online supplement for more information and results.
To summarise, the robustness checks confirm our key-findings that (i) all of

the here-applied drought indices have, on average, risk-reducing potential, (ii)
the evaporative stress index (ESI) has, on average, the largest risk-reducing
potential in a uniform insurance product and (iii) a non-uniform insurance
that tailors the underlying index (BEST) results in the largest risk-reducing
potential. Moreover, the composition of the set of BEST indices only changes
marginally across robustness checks. Finally, the reduction of lower partial
moments of revenue margins due to the use of weather index insurance show

21 Results indicate that some farms experience an increased risk-reducing potential when their

insurance contracts are calibrated with data from similar farms.
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that the removal of downside risks is indeed the main reason for risk reductions
in the expected utility model.

6. Discussion

This paper shows the risk-reducing potential of weather index insurance based
on different drought indices, i.e. the cumulative precipitation index, the stan-
dardised precipitation index, the standardised precipitation evapotranspiration
index, the soil moisture index and the evaporative stress index. Whilst these
results confirm and add to previous studies on the risk-reducing potential of
single weather indices (e.g. Martin, Barnett and Coble, 2001; Kellner and
Musshoff, 2011; Leblois, Quirion and Sultan, 2014b; Dalhaus and Finger,
2016), our findings show that indices perform differently when compared to
each other and that tailoring the underlying index to each farm can result
in large economic benefits. Therefore, we reject the practice of using one
single uniform index for all farms (e.g. Conradt, Finger and Spörri, 2015b) and
find that when dealing with a whole agricultural system, a maximum in risk
reduction can be achieved by providing each farm with a tailored insurance
using the particular index that offers the greatest reduction of the individual
farm’s risk. Thus, weather index insurance must essentially be tailored to the
individual farm by choosing the drought index based on which the insurance
delivers the highest risk reduction. This finding is in line with previous studies
in drought impact literature that suggest a crop and location specific application
of drought indices (Tian, Yuan and Quiring, 2018).
There are several explanations for the absence of a single superior drought

index. Firstly, drought-farm interactions are unique and dependent on both
site-specific characteristics and farm management (Reidsma et al., 2010; Lesk,
Rowhani and Ramankutty, 2016). As drought indices differ in their measure-
ment of drought occurrence, they also differ in their ability to capture different
drought-farm interactions. Secondly, data quality differs across indices due to
different methods of data collection and interpolation as well as the varying
density of weather stations (Auffhammer et al., 2013). In our study, we use
interpolated measurements of precipitation from a dense station network,
whilst values for soil moisture and evapotranspiration were modelled from
a station network of lower density and using a model calibration for grass
over sandy loam instead of winter wheat over different soil types. Thirdly,
accelerated crop growth resulting in a shortened period of index measurement
means fewer daily observations to calculate drought indices and can lead to
potentially biased drought indications. In particular, this can occur when the
drought index is a (standardised) sum or difference of weather variables.
Our case study taking place in Eastern Germany shows that weather index

insurance can reduce farmers’ drought risk exposure by particularly removing
downside risks. At the actuarially fair premium, the average risk reduction
of a tailored contract is approximately 16 per cent for moderately risk-averse
farmers (α = 2), but risk-reductions vary considerably across farms. Yet, the
risk-reducing potential of weather index insurance is likely to increase with
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climate change in Eastern Germany (Gornott and Wechsung, 2016; Lüttger
and Feike, 2018).
There is only little room to load the actuarially fair premium and farm-

specific tailoring of insurance contracts might raise concerns about additional
transaction costs for data collection, risk assessment and maintenance and even
lead to market failure (Barnett, Barrett and Skees, 2008). However, digital
underwriting tools22 allow cost-efficient tailoring of insurance contracts, also
for smaller farms that generate a lower premium volume than large-scale
producers. Moreover, free access to open data and tools to assess drought
risks for each individual farm and index should be declared a public good and
provided by independent state institutions (see also Thomson et al., 2011). For
our study, we publish a programming code together with the paper. This not
only permits the replication of the results but also the reduction of transaction
costs of insurance design in practice.
Using historical yield data of the insured farm for contract calibration

accounts for farm-individual drought vulnerability (Reidsma et al., 2010), but
requires rich yield data.23 New data sources (e.g. due to the digitalisation of
agriculture, Finger et al., 2019; Woodard et al., 2018) and combinations of
data sources from different aggregation levels (e.g. Dalhaus, 2018) will help to
reduce problems of data scarcity. Moreover, our cross-validation suggests that
data from similar farms can improve insurance calibration under data scarcity.
When to calibrate insurance contracts with data from the insured farm only
(e.g. Conradt, Finger and Bokusheva, 2015a) and when to include data from
similar farms (e.g. Leblois, Quirion and Sultan, 2014b) is a promising field for
future research but beyond the scope of this paper. Continuous recalibration of
tick size, strike level, optimal drought index and the insurance premium will
account for changing index-yield relationships due to technological progress
and ongoing climate change (Fuchs and Wolff, 2011; Tack, Coble and Barnett,
2018).
The risk-reducing potential of weather index insurance and its demand do

not only depend on the farm’s drought vulnerability, but also on the farmer’s
level of risk-aversion. The heterogeneity of farmers’ risk preferences is large
(Maart-Noelck and Musshoff, 2014; Iyer et al., 2019; Meraner and Finger,
2019) and usually not observable at low costs so that insurance calibration
based on risk preferencesmight be limited in practice. Yet, our results show that
themost risk-reducing underlying index is relatively stable across levels of risk-
aversion and between the expected utility model and lower partial moments,
which are independent of risk preferences.
In summary, tailored weather index insurance can be a viable risk man-

agement tool to cover systemic drought risks in the here-analyzed case study

22 For instance, the gvf Versicherungsmakler AG developed the tool ‘Crop Yield Analysis’ and Swiss

Re the tool ‘opti-crop’ to calculate premiums of tailored contracts. See https://www.youtube.com/wa

tch?v=BHfBOlMey9M (gvf) and https://www.youtube.com/watch?v=K7TQn6bPsMI (Swiss Re) for short

descriptions. Last accessed: 18 February 2020.

23 World Bank (2011) suggests 30 years of daily weather records.
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of wheat production in Eastern Germany, particularly because weather index
insurance avoids asymmetric information problems, can be provided at low
costs and triggers immediate payouts after risk exposure.
Our set of applicable drought indices is extendable and could for instance

include the rainfall deficit index (Musshoff, Odening and Xu, 2011) or mixed
indices based on precipitation and temperature (Vedenov and Barnett, 2004).
Offering a wider spectrum of drought indices is likely to contribute to a higher
resilience in the insured agricultural system as the overall financial exposure to
drought risks can be reduced (see alsoMeuwissen et al., 2019). Yet, lack of data
and access to digital underwriting tools currently limit the provision of highly
tailored weather index insurance to smallholders in developing countries and
requires further research.

7. Conclusion

In this paper, we examined the risk-reducing potential of the cumulative pre-
cipitation index, standardised precipitation index, standardised precipitation
evapotranspiration index, soil moisture index and evaporative stress index
as underlying index in weather index insurance. We find a statistically and
economically significant risk-reducing potential of weather index insurance
based on each of these drought indices for a case study of winter wheat
production in Eastern Germany. On average, the evaporative stress index has
the significantly greatest risk-reducing potential. Most importantly, this study
provides evidence that each farm has an individual ‘best’ underlying drought
index to minimise basis risk, i.e. there is no single universally best underlying
drought index for weather index insurance.
Insurers should offer tailored weather index insurance because it can cover

systemic drought risks at low administrative costs and keeps basis risk low.
Tailoring insurance contracts should not only include the definition of farm-
specific tick size and strike level, but also the identification of the most
risk-reducing underlying drought index. Such tailoring of insurance contracts
requires rich farm-specific yield records. Recalibration of insurance contracts
at every renewal will progressively reduce potential biases of currently short-
time series and account for ongoing climate change. New data sources (e.g. due
to the digitalisation of agriculture) and inclusion of data from similar farms can
help to improve insurance calibration.
Our results underline that policy-makers should support the public provision

of better drought, weather and phenology data because it improves the via-
bility of insurance systems, without providing premium subsidies. Moreover,
tailored weather index insurance should be considered as a viable market-
based risk management tool that complements other insurance products and
increases the insurability of drought risks. If this part of the risk management
toolbox is strengthened, more farms would be able to take out insurance
against drought risks, thereby improving farmers’ financial well-being, making
farming systems more resilient and enhancing the ability to adapt to climate
change.
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Future research should investigate the potential of using different data
sources for farm-individual insurance calibration and tailoring of weather index
insurance for other climate conditions and production systems. Moreover,
research should develop measures to facilitate the provision of tailored weather
index insurance to smallholders in developing countries.

7. Supplementary data

Supplementary data are available at ERAE online.
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