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Abstract We consider parabolic subgroups of a general linear group over an algebraically
closed field k whose Levi part has exactly t factors. By a classical theorem of Richardson,
the nilradical of a parabolic subgroup P has an open dense P-orbit. In the complement to
this dense orbit, there are infinitely many orbits as soon as the number t of factors in the
Levi part is ≥6. In this paper, we describe the irreducible components of the complement. In
particular, we show that there are at most t − 1 irreducible components. We are also able to
determine their codimensions.
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1 Introduction and notations

Let P be a parabolic subgroup of a reductive algebraic group G over an algebraically closed
field k. Let p be its Lie algebra and let p = l ⊕ n be the Levi decomposition of p, i.e.
n is the nilpotent radical of p. A classical result of Richardson [13] says that P has an open
dense orbit in the nilradical. We will call this P-orbit the Richardson orbit for P . However,
in general there are infinitely many P-orbits in n.

For classical G, the cases where there are finitely many P-orbits in n have been classified
in [12]. Also, the P-action on the derived Lie algebras of n have been studied in a series of
papers, and the cases with finitely many orbits have been classified, cf. [3–5,7].

If G is a general linear group, G = GLn , then the parabolic subgroup P can be described
by the lengths of the blocks in the Levi factor: write P = L N where L is a Levi factor and
N is the unipotent radical of P . Then we can assume that L consists of matrices which have
non-zero entries in square blocks on the diagonal. Similarly, the Levi factor l of p consists
of the n × n-matrices with non-zero entries lying in squares of size di × di (i = 1, . . . , t) on
the diagonal and n are the matrices which only have non-zero entries above and to the right
of these square blocks.

Let t be the number of such blocks and d1, . . . , dt the lengths of them,
∑

di = n (with
di > 0 for all i). So d is a composition of n. We will call such a d = (d1, . . . , dt ) a dimension
vector. We write P(d) for the corresponding parabolic subgroup and n(d) for the nilpotent
radical of P(d), the Richardson orbit of P(d) is denoted by O(d). Its partition will be λ(d).
Once d is fixed, we will often just use P, n and λ if there is no ambiguity. Recall that the
nilpotent GLn-orbits are parametrised by partitions of n. We will use C(μ) to denote the nil-
potent GLn-orbit for the partition μ(μ a partition of n). And we will usually denote P-orbits
in n by a calligraphic O, i.e. we will write O or O(μ) if μ is the partition of the nilpotency
class of the P-orbit.

Now, the nilradical n is a disjoint union of the intersections n ∩ C(μ) of the nilradical
with all nilpotent GLn-orbits. By Richardsons result, n ∩ C(λ) = O(λ) is a single P-orbit.
In particular, the Richardson orbit consists exactly of the elements of the nilpotency class λ.
However, for μ ≤ λ, the intersection n ∩ C(μ) might be reducible (cf. Proposition 3.3).

In the case where n is the nilradical of a Borel subalgebra of the Lie algebra of a simple
algebraic group G, Spaltenstein has first studied the varieties n ∩ (G · e) for G · e a nilpotent
orbit under the adjoint action [14]. In [9], the authors study the action of a Borel subgroup B
of a simple algebraic group on the closure n∩C(μ) for the subregular nilpotency class C(μ)

and characterize the cases where B has only finitely many orbits under the adjoint action.
The main goal of this article is to describe the irreducible components of the complement

Z := n\O(d) of the Richardson orbit in n. They occur in intersections n ∩ C(μ) for certain
partitions μ = μ(i, j) ≤ λ.

We have two descriptions of the irreducible components of Z . On one hand, we give rank
conditions on the matrices of n, on the other hand, we use tableaux T (i, j) for certain (i, j)
with 1 ≤ i < j ≤ t and associate irreducible components n(T (i, j)) of the intersections
n ∩ C(μ(i, j)) to them. Before we can state the two results we now introduce the necessary
notation.
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On the complement of the Richardson orbit 33

Fig. 1 The block decomposition
of the matrix A for d = (2, 4, 7)

Let d = (d1, . . . , dt ) be a dimension vector, n the nilradical of the corresponding parabolic
subalgebra. For A ∈ n and 1 ≤ i, j ≤ t we write Ai j to describe the matrix formed by taking
the entries of A lying in the rectangle formed by rows d1 +· · ·+ di−1 + 1 up to d1 +· · ·+ di

and columns d1 + · · · + d j−1 + 1 up to d1 + · · · + d j and with zeroes everywhere else. For
i ≥ j , this is just the zero matrix. Figure 1 shows the blocks Ai j for d = (2, 4, 7).

We set A[i, j] to be the matrix formed by the (Akl)i≤k≤ j,i≤l≤ j , i.e. by the rectangles
right to and below of Aii and left to and above of A j j . For instance, A[i, i] is just Aii

and A[1, t] has the same entries as A. More generally, A[i j] is a square matrix of size
(di + · · · + d j ) × (di + · · · + d j ) with Aii , . . . , A j j on its diagonal.

We are now ready to explain the rank conditions. For the rest of this section, we will
always assume that a pair (i, j) satisfies 1 ≤ i < j ≤ t . We write X (d) for an element of
O(d). For k ≥ 1 define

rk
i j := rk(X (d)[i, j] k)

κ(i, j) := 1 + #{l | i < l < j, dl ≥ min(di , d j )}.
Observe that the numbers rk

i j are independent of the choice of an element of the Richardson
orbit. With this, we can define two subsets of n as our candidates for irreducible components
of Z .

Definition 1.1 Let d = (d1, . . . , dt ) be a dimension vector and n the nilradical of the para-
bolic subgroup P of GLn . We set

Zk
i j := {A ∈ n | rk A[i j]k < rk

i j }
Zi j := Zκ(i, j)

i j

to be the elements A of n for which the rank of kth power of the matrix A[i j] is defective,
respectively, the A for which the rank of the κ(i, j)th power is defective.

To any dimension vector d = (d1, . . . , dt ) we associate subsets �(d) and �(d) of the set
{(i, j) | 1 ≤ i < j ≤ t}. In Sect. 2 we will show that the complement Z of the open dense
orbit is the union of the sets Zi j for (i, j) ∈ �(d).

�(d) := {(i, j) | dl < min(di , d j ) or dl > max(di , d j ) ∀ i < l < j},
�(d) := {

(i, j) ∈ �(d) | di = d j
} ∪
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34 K. Baur, L. Hille

{
(i, j) ∈ �(d) | di 	= d j and

(i) dk ≤ min(di , d j ) or dk ≥ max(di , d j ) ∀ k
(ii) dk 	= d j for k < i
(iii) dk 	= di for k > j

⎫
⎬

⎭
,

Let us describe the latter in words: for (i, j) to be in �(d), we require that the dl with
i < l < j are smaller than the minimum of di and d j or larger than the maximum of them.
Furthermore, the dk have to be smaller or larger than the minimum min(di , d j ) resp. the max-
imum max(di , d j ) (for all k) and, if di 	= d j , then di is different from d j+1, . . . , dt and d j is
different from d1, d2, . . . , di−1. In general, �(d) is different from �(d) as we illustrate now.

Example 1.2 (a) If d = (1, 3, 4, 2) then �(d) = {(1, 2), (2, 3), (3, 4), (2, 4), (1, 4)} and
�(d) = {(2, 3), (2, 4), (1, 4)}.

(b) For d = (1, 2, 3, 2), �(d) = {(1, 2), (2, 3), (3, 4), (2, 4)}, �(d) = {(1, 2), (2, 4)}.
(c) If d = (d1, . . . , dt ) is increasing or decreasing, then

�(d) = �(d) = {(1, 2), (2, 3), . . . , (t − 1, t)}.
(d) The fourth example will be our running example throughout the paper: if

d = (7, 5, 2, 3, 5, 1, 2, 6, 5) then we have �(d) = {(i, i + 1) | 1 ≤ i ≤ 8}
∪ {(1, 8), (2, 4), (2, 5), (3, 6), (3, 7), (4, 6), (4, 7), (5, 7), (5, 8), (5, 9), (7, 9)} and
�(d) = {(1, 8), (2, 5), (3, 7), (5, 9)}.

We claim that the irreducible components of Z = n\O(d) are the Zi j with (i, j) from the
parameter set �(d):

Theorem (Theorem 4.1) Let d = (d1, . . . , dt ) be a composition of n, λ = λ(d) the partition
of the Richardson orbit corresponding to d. Then

Z =
⋃

(i, j)∈�(d)

Zi j

is the decomposition of Z into irreducible components.

For the second description of the irreducible components we let T (d) be the unique Young
tableau obtained by filling the Young diagram of λ with d1 ones, d2 twos, etc. (for details,
we refer to Sect. 3.1). Now for each pair (i, j) we write s(i, j) for the last row of T (d)

containing i and j and we let T (i, j) be the tableau obtained from T (d) by removing the
box containing the number j from row s(i, j) and inserting it at the next possible position in
order to obtain another tableau. The tableau T (i, j) corresponds to an irreducible component
of the intersection of n with a nilpotent GLn-orbit as is explained in Sect. 3 (Proposition 3.3).
We write n(T (i, j)) ⊆ n for the irreducible component in n ∩ C(μ(i, j) of tableau T (i, j).
We claim that they correspond to irreducible components of Z exactly for the (i, j) ∈ �(d).

Theorem (Corollary 4.4) Let d = (d1, . . . , dt ) be a dimension vector, λ = λ(d) the partition
of the Richardson orbit corresponding to d. Then

Z =
⋃

(i, j)∈�(d)

n(T (i, j))

is the decomposition of Z into irreducible components.

As a consequence, we obtain that Z has at most t − 1 irreducible components (cf. Corol-
lary 4.2) and we can describe their codimensions in n (Corollary 4.3). To be more precise, if d
is increasing or decreasing or if all the di are different, then Z has t−1 irreducible components.
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On the complement of the Richardson orbit 35

In particular, this applies to the Borel case where d = (1, . . . , 1). An example with t = 9 and
where we only have four irreducible components is our running example, see Example 3.8.

Note that the techniques we use are similar to the ones of [2] where we describe the
complement to the generic orbit in a representation space of a directed quiver of type At .
However, the indexing sets are different and cannot be derived from each other.

The paper is organised as follows: in Sect. 2 we explain how to obtain the rank conditions.
We first describe line diagrams associated to a composition d of n. Line diagrams will be
used to describe elements of the corresponding nilradical n. In Sect. 2.3 we prove that the
elements of �(d) give the irreducible components. For this, we show that if (i, j) does not
belong to �(d) then the variety Zi j is contained in a union of Zksls for a subset of elements
(ks, ls) of �(d) (Lemma 2.11). Next, if (i, j) is in �(d)\�(d), then we can find (k, l) ∈ �(d)

such that Zi j is contained in Zkl (Corollary 2.13). In Sect. 3, we recall Young diagrams and
their fillings. Then we consider Young tableaux associated to a composition d of n and a
nilpotency class μ ≤ λ(d). In a next step, we consider Young tableaux T (i, j) associated to
the elements of the parameter set �(d). To each of these tableaux T (i, j) we associate an
irreducible variety n(T (i, j)): it is defined as the irreducible component in n ∩ C(μ(i, j))
corresponding to the tableau T (i, j). The n(T (i, j)) are known to be irreducible by work of
the second author [10]. By showing that n(T (i, j)) is equal to Zi j from Sect. 2 for elements
(i, j) of the parameter set �(d) we can complete the description of the complement of the
Richardson orbit in n into irreducible components.

2 Components via rank conditions

2.1 Line diagrams

Let d = (d1, . . . , dt ) be a dimension vector for a parabolic subalgebra of gln, n the corre-
sponding nilradical. We recall a pictorial way to represent elements of n and in particular,
to obtain an element of the Richardson orbit O(d). This can be found in [6, Section 2] and
in [1, Section 3]. We draw t top-adjusted columns of d1, d2, . . . , dt vertices. The vertices are
connected using edges between vertices of different columns. If two vertices lie on the same
height and there is no third vertex between them on that height then we call the two vertices
neighbors. The complete line diagram for d, L R(d), is the diagram with horizontal edges
between all neighbored vertices (as the second and the third diagram of Example 2.1). A line
diagram L(d) for d is a diagram with arbitrary edges between different columns (possibly
with branching). A collection of connected edges is called a chain of edges (see the example
below). If no branching occurs in a line diagram then a chain consisting of l edges connects
l + 1 vertices. In that case we can define the length of a chain: the length of a chain of edges
in a line diagram (without branching) is the number of edges the chain contains. A chain of
length 0 is a vertex that is not connected to any other vertex.

In Example 2.1, we show two complete and a branched line diagram for d = (3, 1, 2, 4)

resp. for d = (3, 1, 6, 1, 2, 5, 4).

Example 2.1 (a) A line diagram with branching and the complete line diagram L R(d) for
d = (3, 1, 2, 4) are here. To the right of the latter we give the lengths of the chains in
the diagram.

3
2
1
0
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36 K. Baur, L. Hille

(b) Now we consider our running example d = (7, 5, 2, 3, 5, 1, 2, 6, 5). Its complete line
diagram L R(d) is here, with the lengths of the chains to the right.

0

8
7
5
4
4
1

We will see in the next subsection that the line diagram L R(d) determines an element of
the Richardson orbit of n. In general, line diagrams give rise to elements of the nilradical of
nilpotency class smaller than λ = λ(d) with respect to the Bruhat order.

Any line diagram (complete or not) gives rise to an element A of n:
The sizes of the columns of a line diagram correspond to the sizes of the square blocks in

the Levi factor of p. An edge between column i and column j (with i < j) of the diagram
corresponds to a non-zero entry in the block Ai j of the matrix A. A chain of two joint edges
between three columns i0 < i1 < i2 gives rise to a non-zero entry in block A2

(i0,i2) of the

matrix A2, etc. This can be made explicit, as we explain in the next subsection.

2.2 From line diagrams to the nilradical

The elements of the nilradical n for the dimension vector d = (d1, . . . , dt ) are nilpotent
endomorphisms of kn , for n = ∑

di . In particular, if we write e1, . . . , en for a basis of kn ,
then the elements of n are sums

∑
i< j ai j Ei j for some ai j ∈ k where the elementary matrix

Ei j sends e j to ei .
We now describe a map associating an element of the nilradical to a given line diagram.

We view the vertices of a line diagram L(d) as labelled by the numbers 1, 2, . . . , n, starting
at the top left vertex, with 1, 2, . . . , d1 in the first column, d1 + 1, . . . , d1 + d2 in the second
column, etc. Now if two vertices i and j (with i < j) are joint by an edge, we associate to
this edge the matrix Ei j .

We denote an edge between two vertices i and j (i < j ≤ n) of the diagram by e(i, j).
Then we associate to an edge e(i, j) of L(d) the elementary matrix Ei j ∈ n. This can be
extended to a map from the set of line diagrams for d to the nilradical n by linearity.

For later use, we denote this map by �:

� : {line diagrams for d} −→ n, L(d) �→
∑

e(i, j)∈L(d)

Ei j .

If L(d) is a line diagram without branching, then the partition of the image under � of the
line diagram L(d) can be read off from it directly as follows: if L(d) has s chains of lengths
c1, c2, . . . , cs (all ≥ 0). Then

∑s
j=1(c j + 1) = ∑t

i=1 di = n.

Remark 2.2 Let L(d) be a line diagram without branching and let c1, . . . , cs be the lengths of
the chains of L(d). Let μ = (μ1, . . . , μs) be the partition obtained by ordering the numbers
c j + 1 by size. Then μ is the partition of �(L(d)).

In particular, �(L R(d)) is an element of the Richardson orbit O(d) since the partition
of L R(d) is just the dual of the dimension vector d and this is equal to λ(d) (cf. Section
3 in [1]). If L(d) is any other line diagram for d L(d) (without branching), with lengths of
chains c1, . . . , cs and μi := ci + 1 then we always have

∑k
j=1 μ j ≤ ∑k

j=1 λ j (d) and so the
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On the complement of the Richardson orbit 37

partition of �(L(d)) is smaller than or equal to the partition of �(L R(d)) under the Bruhat
order.

To summarize, we have the following:

Lemma 2.3 Let d be a dimension vector. Then, �(L(d)) is an element of the nilradical n of
nilpotency class μ ≤ λ(d). In other words, �(L(d)) lies in n ∩ C(μ).

Example 2.4 Let d = (3, 1, 2, 4) as in Example 2.1(a). The lengths of the chains of L R(d)

are 3, 2, 1, 0, the Richardson orbit has partition (4, 3, 2, 1). We compute the matrix of the
complete line diagram L R(d), and the powers of this matrix. Let X (d) := �(L R(d)). Then
X (d) and its powers are

X (d) = E14 + E45 + E57 + E26 + E68 + E39

X (d)2 = E15 + E47 + E28

X (d)3 = E17

X (d)k = 0 for k > 3.

Recall that we have defined the varieties Zk
i j by comparing the ranks of certain submatri-

ces of elements in the nilradical n to the corresponding rank rk
i j of a Richardson element, cf.

Definition 1.1. We thus need to be able to compute the rank of the submatrix X (d)[i j] of an
element X (d) of the Richardson orbit O(d) and of its powers. For this, we can use the line
diagram L R(d). Let X (d) = ∑

e(k,l)∈L R(d) Ekl be the Richardson element given by L R(d).

To compute the rank rk
1t of X (d)k , it is enough to count the chains of length ≥ k in the line

diagram L R(d). Analogously, to find the rank rk
i j of the kth power of the submatrix X (d)[i j],

one has to count the chains of length ≥ k between the i th and j th column in L R(d):
Let 1 ≤ k < l ≤ n be such that the image �(e(k, l)) of the edge e(k, l) is in X (d)[i j].

That means we are considering edges e(k, l) starting in some column i1 ≥ i and ending in
some column i2 ≤ j . Thus, in computing rk

i j , we really consider the kth power of the matrix
which arises from columns i, i +1, . . . , j of L R(d). We now introduce the notation to refer to
the subdiagram consisting of these columns. We denote by L R(d)[i j] subdiagram of L R(d)

of all vertices from the i th up to the j th column and of all edges starting strictly after the
(i −1)st column resp. ending strictly before the ( j +1)st column. In other words, we remove
columns 1, 2, . . . , i −1 and columns j +1, . . . , t together with all edges incident with them.

With this notation we have

rk
i j = #{chains in L R(d)[i j] with at least k edges} (2.1)

for 1 ≤ i < j ≤ t, k ≥ 1.
Similarly, if L(d) is a line diagram for d , we write L(d)[i j] to denote the subdiagram of

L(d) of rows i to j .

Example 2.5 The subdiagram L R(d)[47] for d = (7, 5, 2, 3, 5, 1, 2, 6, 5) of the diagram
L R(d) from (b) of Example 2.1 is shown here (dotted lines and empty circles are thought to
be removed):
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38 K. Baur, L. Hille

Fig. 2 Our running example has
d<[26] = ∅, so κ(2, 6) = 4

62

2.3 The varieties Zi j

As explained earlier, we want to show that the irreducible components of Z are indexed by
the parameter set �(d). With this in mind, we now discuss the properties of the varieties
Zk

i j . We will prove that for l 	= κ(i, j), Zl
i j is either empty or contained in Zi j or in the

union Zi j0 ∪ Zi0 j for some i0 ≤ j0. Later in this section we will see that not all (i, j) with
1 ≤ i < j ≤ t are needed to describe the complement Z .

The following notations will be useful:

d<[i j] := |{l | i < l < j, dl < min(di , d j )}|
d≥[i j] := |{l | i < l < j, dl ≥ min(di , d j )}|.

If d = (7, 5, 2, 3, 5, 1, 2, 6, 5), then d<[25] = 2, d<[26] = ∅ and d≥[26] = 3.

Remark 2.6 Observe that

κ(i, j) = 1 + #d≥[i j]
= j − i − #d<[i j].

In particular, κ(i, j) = j − i if and only if d<[i j] = ∅. Figure 2 illustrates this.

Lemma 2.7 Let d = (d1, . . . , dt ) be a dimension vector and 1 ≤ i < j ≤ t . Then for k > 0
we have

Zk
i j = ∅ if and only if k > j − i.

Proof One has rk
i j = rk X (d)[i j]k > 0 exactly for k ≤ j − i and 0 ∈ Zk

i j if and only if

rk
i j > 0. ��

It remains to consider the cases where l is smaller than κ(i, j) or when l lies between
κ(i, j) and j − i . This is covered by the next two statements.

Lemma 2.8 For 1 ≤ l < κ(i, j) the following holds:

Zl
i j � Zi j .

Proof We may assume di ≤ d j . For any B ∈ n the rank of B[i j]l is independent of the order
of di , di+1, . . . , d j : in computing the rank, we need to know the number of (independent)
chains of length l in the line diagram of b[i j]. Hence we may reorder di , . . . , d j to obtain
ds1 , . . . , ds j−i+1 with dsk ≤ dsk+1 for k = 1, . . . , j − i . One computes rl

i j = rk X (d)[i j]l as

the sum
∑ j−i−l

k=0 di+k .
Let A belong to Zl

i j for some l < κ(i, j). Thus rk A[i j]l < rl
i j = rk X (d)[i j]l . But then

also the rank of A[i j]k is smaller than rk
i j for k = l + 1, . . . , κ(i, j). In particular, A ∈ Zi j .

The inequality is clear. ��
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On the complement of the Richardson orbit 39

Fig. 3 The case |d<[i j]| = 1: in
the running example, we have
d<[47] = {6} and κ(i, j) = 2

74 6

Fig. 4 The case
i0 	= j0 ∈ d<[i j]: our running
example has d<[48] = {6, 7} and
so κ(4, 8) = 2

864 7

Let A belong to Zl
i j for some l < κ(i, j). Thus rk A[i j]l < rl

i j . But then also the rank of

A[i j]k is smaller than rk
i j for k = l + 1, . . . , κ(i, j). In particular, A ∈ Zi j .

Lemma 2.9 For κ(i, j) < l ≤ j − i the following holds: there exist i0 ≤ j0 ∈
d<[i j], di0 , d j0 < min(di , d j ) maximal, such that

Zl
i j ⊆ Zi j0 ∪ Zi0 j .

Proof We first observe that for elements of the Richardson orbit, the rank rl
i j is

rl
i j =

j−l∑

i0=i

max
i0<···<il≤ j

min{di0 , . . . , dil }

(1) Let us first consider the case where d<[i j] only has one element, say d<[i j] = {i0},
see Fig. 3. Then κ(i, j) = j − i − 1 and so l = j − i .
For A ∈ n to be an element of Zl

i j , the rank of A[i j]l is smaller than rl
i j . Since di0 is

minimal among all di , . . . , d j , this implies rk A[i i0]l < rl
i j or rk A[i0 j]l < rl

i j and we
are done.

(2) The case where d<[i j] has at least two elements only needs a slight modification of
the argument. Take i0, j0 from d<[i j] with di0 , d j0 maximal with i0 being the smallest
among these indices, j0 the largest one (we do not distinguish between the two possi-
bilities di0 = d j0 and di0 	= d j0 ), see Fig. 4. With a similar reasoning as in part (1) of
the proof, A then lies in Zi, j0 or in Zi0, j . ��

Lemma 2.10 The complement Z decomposes as follows:

Z = ∪1≤i< j≤t Zi j = ∪i j ∪k≥1 Zk
i j .

Proof The inclusion ⊆ of the second equality is clear. To obtain the inclusion ⊇, one uses
Lemmata 2.7–2.9. Consider the first equality: by definition, A ∈ Z if and only if A /∈ O(d).
The latter is the case if and only if there exist 1 ≤ i < j ≤ t, k ≤ j − i , such that A ∈ Zk

i j :
to see this, one uses the formula for the dimension of the stabilizer of A ∈ gln , see [11]. This
formula uses the dimensions of the kernels of the maps Ak, k ≥ 1. The stabilizer of A has
dimension 0 if and only if A is an element of O(d). ��
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3 6 8 3 6 8

Fig. 5 Examples for A ∈ Zil resp. for A ∈ Zl j for d = (7, 5, 2, 3, 5, 1, 2, 6, 5), with i = 3, j = 8 and l = 6

It now remains to see that the (i, j) ∈ �(d) are enough to describe the irreducible com-
ponents of Z . In a first step (Lemma 2.11), we start with (i, j) /∈ �(d) and show that in that
case Zi j is contained in a union of Zkl ’s such that the corresponding (k, l) all lie in �(d).

Then we consider an element (i, j) of �(d)\�(d) and show that we can find (k, l) ∈ �(d)

with Zi j ⊆ Zkl (Lemma 2.12 and Corollary 2.13). As always, we assume that 1 ≤ i < j ≤ t
and 1 ≤ k < l ≤ t .

Lemma 2.11 Assume that (i, j) does not belong to �(d). Then there exists �′(d) ⊆ �(d)

such that

Zi j ⊆
⋃

(k,l)∈�′(d)

Zkl .

Proof It is enough to show that we can find an l, i < l < j , with min(di , d j ) ≤ dl ≤
max(di , d j ), such that

Zi j ⊆ Zil ∪ Zl j .

By iterating this, we will eventually end up with a subset �′(d) ⊂ �(d) as in the statement
of the lemma.

So choose an l, 1 < l < t , with min(di , d j ) ≤ dl ≤ max(di , d j ) (such an l exists
since (i, j) /∈ �(d)). Take A ∈ Zi j arbitrary. By assumption, A[i j]κ(i, j) is defective, i.e.

rk A[i j]κ(i, j) < rκ(i, j)
i j . Since dl ≥ di , d j , the defectiveness is inherited from A[il] or from

A[l j] and A ∈ Zil or A ∈ Zl j accordingly. ��
Let us remark that when removing an edge of a chain of L R(d) in the proof above, we

ensured that the matrix A has a zero entry at the corresponding position. In general, the
diagram of a matrix in Zil resp. in Zl j has more non-zero entries than the ones obtained after
removing one edge from L R(d): this is illustrated by the dashed lines in Fig. 5.

The following lemma states that for any (i, j) from �(d)\�(d) there exists (k, l) from
�(d) with k ≤ i < j ≤ l such that Zi j ⊆ Zkl .

Lemma 2.12 Assume that (i, j) ∈ �(d)\�(d). Then one of the following holds:

there exists k > j with Zi j ⊆ Zik

or there exists l < i with Zi j ⊆ Zl j .

Proof First observe that di 	= d j since (i, j) belongs to �(d) otherwise. Without loss of
generality, we assume di < d j . We have three cases to consider:

(i) There is k1 ∈ {1, . . . , i − 1} ∪ { j + 1, . . . , t} with di < dk1 < d j .
(ii) There exists k2 < i with dk2 = d j .

(iii) There exists k3 > j with dk2 = di .
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Fig. 6 For the running example,
(7, 8) is in �(d)\�(d), as for all
i, dmi violates the assumptions
on �(d)

87

The three cases are illustrated in Fig. 6: if (i, j) ∈ �(d) but not in �(d) then one of the
following has to occur: there has to be a k with dk inside the shaded area or with dk lying on
the same height as d j (if k < i) resp. on the same height as di (if k > j).

Case (i) with k1 > j : among the k1 > j with di < dk1 < d j choose one with dk1 − di

minimal, and k1 minimal (i.e. as close to j as possible). Note that we have κ(i, j) ≤ κ(i, k1).
Now A ∈ Zi j means that A[i j]κ(i, j) is defective. Since di < dk1 , this defectiveness has to be

inherited from A[i, k1], i.e. rk A[i, k1]κ(i,k1) < rκ(i,k1)
i,k1

and so, Zi j ⊆ Zi,k1 .
Case (i) with k1 < i : here, we choose k1 accordingly to be such that d j − dk1 is min-

imal and k1 < i maximal among those (i.e. as close to i as possible). One checks that
κ(i, j) ≤ κ(k1, j). Similarly as before, one gets Zi j ⊆ Zk1, j .

Case (ii): among the k2 < i with dk2 = d j , choose the maximal one (i.e. the one closest
to i). We have κ(i, j) ≤ κ(k2, j) and we get Zi j ⊆ Zk2, j . Case (iii) is completely analogous
to case (ii). ��

Observe that (k2, j) and (i, k3) from cases (ii) and (iii) above are elements of �(d).

Corollary 2.13 For any (i, j) ∈ �(d)\�(d) there exists (k, l) ∈ �(d) such that

Zi j ⊆ Zkl .

Proof Without loss of generality, we can assume di < d j . By the observation after the
proof of Lemma 2.12, we are done if there exists k′ < i with dk′ = d j or k′′ > j with
dk′′ = di . Using similar arguments, one sees that if there exist k′ < i and k′′ > j with
di < dk′ = dk′′ < d j then (k′, k′′) ∈ �(d) and Zi j ⊆ Zk′,k′′ . Thus, assume that there exists
k ∈ {1, . . . , i − 1} ∪ { j + 1, . . . , t} with di < dk < d j and such that there is no k′ < i with
dk′ = d j and no k′′ > j with dk′′ = di .

If k > j , we choose k such that dk − di is minimal and take the minimal k > j among
these (i.e. k is as close to j as possible). There are two possibilities: either we have dk′ > dk

for all k′ < i . Then, (k′, k) ∈ �(d) and one checks that Zi j ⊆ Zk′,k .
Or there exists is k′ < i with di < dk′ < dk . In that case, among the k′ < i with this

property, we choose one with dk − dk′ minimal and such that k′ < i is maximal (i.e. k′ is as
close to i as possible). Again, we get (k′, k) ∈ �(d) and Zi j ⊆ Zk′,k .

The case k < i is analogous. ��

3 Components via tableaux

Let d = (d1, . . . , dt ) be a composition of n and O(d) be the corresponding Richardson orbit
in n, let λ = λ(d) be the partition of the Richardson orbit. The second description of the
irreducible components of Z = n\O(d) uses partitions μi j , for (i, j) ∈ �(d) and tableaux
corresponding to them. Observe that λ1 = t , that λ2 is the number of di ≥ 2 appearing in
d, λ3 = #{di | di ≥ 3}, and so on.

123



42 K. Baur, L. Hille

Let us introduce the necessary notation. If λ = λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 1 is a partition of n
we will also use λ to denote the Young diagram of shape λ. It has s rows, with λ1 boxes in
the top row, λ2 boxes in the second row, etc., up to λs boxes in the last row. That means that
we view Young diagrams as a number of right adjusted rows of boxes, attached to the top
left corner, and decreasing in length from top to bottom. A standard reference for this is the
book [8] by Fulton.

3.1 The Young tableaux T (μ, d)

Let μ ≤ λ(d) be a partition of n (unless mentioned otherwise, we will always deal with
partitions of n).

Definition 3.1 We define a Young tableau of shape μ and of dimension vector d to be a
filling of the Young diagram of μ with d1 ones, d2 twos, etc. We write T (μ, d) for the set of
all Young tableaux of shape μ and for d .

Recall that the rules for fillings of a Young diagram are that the numbers in a row strictly
increase from left to right and that the numbers in a column weakly increase from top to
bottom. In general, there might be several Young tableaux of a given shape for a given d .
There is exactly one Young tableau of shape λ = λ(d) and for d , so T (λ(d), d) only has one
element. To abbreviate, we will just call it T (d). The entries of the boxes of its first row are
1, 2, . . . , t .

Example 3.2 The partition of the composition d = (7, 5, 2, 3, 5, 1, 2, 6, 5) of 36 is λ(d) =
(9, 8, 6, 5, 5, 2, 1). The partition μ = (9, 8, 6, 5, 4, 3, 1) is smaller than λ(d) and T (μ, d)

consists of one element T (μ, d). We include T (d) and T (μ, d) here.

In order to understand the irreducible components of the complement Z = n\O(d), we
have to consider the intersections n ∩ C(μ) for μ < λ(d). Each irreducible component of Z
corresponds to an irreducible component in such an intersection. Here, we can use a result
of the second author (cf. Section 4.2 of [10]). First, one observes that the irreducible compo-
nents of n∩C(μ) are given by sequences μ1, . . . , μt where μi is a partition of

∑i
j d j where

μt = μ and such that 0 ≤ μi+1
j −μi

j ≤ 1 (for all j , for 1 ≤ i < t). And the latter correspond
to tableaux of shape μ with di entries i , i.e. the elements of T (μ, d) in our notation.

Proposition 3.3 Let μ ≤ λ(d) be a partition of n. Then the irreducible components of
n ∩ C(μ) are in natural bijection with with the tableaux in T (μ, d).

Proof This is Satz 4.2.8 in [10]. ��
Example 3.4 Let d = (d1, . . . , dt ) be a dimension vector and λ = λ(d). We know that
n ∩ C(λ) = O(d) is the Richardson orbit. On the other hand, T (λ, d) = T (d) has exactly
one tableau. We now explain how to relate the complete line diagram L R(d) to the tableau
T (d). The lengths of the chains in L R(d) are the entries of the partition of λ and hence give
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the shape of T (d). The filling of T (d) can now be obtained from L R(d) by labelling each
vertex of the i th column in L R(d) by an i . These numbers are then copied row by row, from
left to right into the Young diagram of shape λ to get T (d).

From this connection between the line diagram L R(d) and T (d) one deduces the follow-
ing useful observation. Every pair (i, j) with 1 ≤ i < j ≤ t determines a unique row of
T (d) namely the last row of T (d) containing i and j . Such a row always exists as the first
row just consists of the boxes with numbers 1, 2, 3, . . . , t . We denote this row by s(i, j).

Lemma 3.5 The number of boxes between i and j in row s(i, j) of T (d) is equal to κ(i, j)−1.

Proposition 3.3 describes the irreducible components of the intersections n ∩ C(μ) for
μ ≤ λ: they are given by the Young tableaux in T (μ, d), i.e. by all possible fillings of the
diagram μ by the numbers given by d .

Clearly, not all irreducible components of the different intersections n ∩ C(μ) give rise to
an irreducible component of Z . If μ2 ≤ μ1 and Ti ∈ T (μi , d) are tableaux such that T2 can
be obtained from T1 by moving down boxes successively, then the irreducible component
corresponding to T2 is already contained in the irreducible component corresponding to T1

and thus does not give rise to a new irreducible component of the complement Z of the
Richardson orbit. This is in particular the case, if T1 is obtained from the tableau T (d) of the
Richardson orbit by moving down a single box and T2 is a degeneration of T1 (obtained by
moving down boxes from T1). Thus, the only candidates for irreducible components are the
ones given by tableaux which can be obtained from T (d) by moving down a single box to
the closest possible row. We call such a degeneration a minimal movement.

3.2 The Young tableaux T (i, j)

To describe minimal movements, we now define certain tableaux T (i, j).

Definition 3.6 The tableau T (i, j) is the tableau obtained from T (d) by removing the box
containing the number j from row s(i, j) and inserting it in the nearest row in order to obtain
another tableau. In other words: among the possible rows where this box could be inserted,
we choose the one that is closest to row s(i, j). We denote the partition of the resulting
tableau T (i, j) by μ(i, j).

Definition 3.7 For a tableau T (i, j) we define n(T (i, j)) ⊆ n to be the irreducible compo-
nent of n ∩ C(μ(i, j)) whose tableau is T (i, j).

We claim that n(T (i, j)) gives rise to an irreducible component of the complement Z exactly
when (i, j) belongs to the parameter set �(d).

For completeness, we recall the definition of a the tableau T for a an irreducible com-
ponent in C(μ) ∩ n. Consider a maximal flag V0 ⊂ V1 ⊂ · · · ⊂ Vt of vector spaces that
is stabilized by P(d). Take any matrix A in the open subset of an irreducible component
of C(μ) ∩ n where A restricted to Vi has constant Jordan type. Then the Young diagram
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Fig. 7 The tableaux T (d), T (i, j) and L R(d) for Example 3.8

of A|Vi is the partition obtained from T by deleting all boxes with entries i + 1, . . . , t . So
the subdiagram consisting of all boxes with entries at most i measures the generic Jordan
type of A restricted to the subspace Vi . In particular, the equation defining the component
corresponding to T (i, j) can involve only equations in the entries of A[1, j]. Even stronger,
we will see in Lemma 3.9 that the equations involve only entries in A[i, j] for (i, j) in �(d).

To prepare for Lemma 3.9 we observe that for (1, t) ∈ �(d) the component n(T (1, t))
coincides with C(μ(1, t)) ∩ n since there is only one tableau for the partition μ(1, t)
with dimension vector d . Consequently, this component is defined by the equation
rk A[1, t]κ(1,t) < rκ(1,t)

1,t defining C(μ(1, t)) ∩ n inside n.
By definition, the tableau T (i, j) is obtained from T (d) through a minimal movement. Its

partition μ(i, j) is clearly smaller than λ = λ(d) as the lengths of the rows of a tableau are the
parts of the corresponding partition. In particular, these lengths form a decreasing sequence
of positive numbers. Thus, moving down a box from a row of length k to a lower row of length
at most k −2 results in a partition which is smaller than the original partition. Note, however,
that different elements (i, j) and (k, l) can lead to the same partition μ(i, j) = μ(k, l), e.g.
μ(2, 5) = μ(5, 9) in Example 3.8 below.

Example 3.8 Let d = (7, 5, 2, 3, 5, 1, 2, 6, 5) be a dimension vector, n = 36. To illus-
trate the construction of T (i, j) we compute these tableaux for all (i, j) ∈ �(d) =
{(1, 8), (2, 5), (3, 7), (5, 9)}. They are presented in Fig. 7. In the picture showing the line
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diagram L R(d) we have indicated the connections between the columns i and j for all
(i, j) ∈ �(d) by shaded areas.

Lemma 3.9 Let d = (d1, . . . , dt ) be a dimension vector, (i, j) ∈ �(d). Then

n(T (i, j)) = Zi j .

In particular, Zi, j is irreducible.

Proof We show that n(T (i, j)) = {A ∈ n | rk A[i j]κ(i, j) < rκ(i, j)
i j } = Zi j . The second

equation holds as it is the definition of Zi j .
We first prove the lemma for a special case: replace d1, . . . , di−1 and d j+1, . . . , dt by zero,

thus we get a new shorter dimension vector e := (di , . . . , d j ) = (e1, . . . , e j−i+1). Note that
(i, j) is in �(d) precisely when (1, j − i + 1) is in �(e). Also note that the codimension
of Zi, j for d coincides with the codimension of Z1, j−i+1 for e, the first variety is just a
product of the latter with an affine space. Consequently, Zi, j for d is irreducible precisely
when Z1, j−i+1 is irreducible for e. Finally, we compare the component n(T (i, j)) for d with
the unique component n(T (1, j − i + 1)) for e that coincides with n ∩ C(μ(1, j − i + 1))

for e. Again, both are just given by the equation rk A[i, j]κ(i, j) < rκ(i, j)
i, j for d , respec-

tively, rk A[1, j − i + 1]κ(1, j−i+1) < rκ(1, j−i+1)
1, j−i+1 for e. This finally shows that both varieties

coincide. ��

4 The irreducible components of Z

We are now ready to finish the proof of the descriptions of the decomposition of the com-
plement Z = n\O(d) of the Richardson orbit into irreducible components. Again, let d =
(d1, . . . , dt ) be a dimension vector, λ = λ(d) the partition of the Richardson orbit and
(i, j) a pair with 1 ≤ i < j ≤ t . Recall that the T (i, j) are elements of T (μ(i, j), d). By
Proposition 3.3 the T (i, j) correspond to irreducible components of n ∩ C(μ(i, j)). So the
corresponding n(T (i, j)) are irreducible.

Theorem 4.1

Z =
⋃

(i, j)∈�(d)

Zi j

is the decomposition of Z into irreducible components.

Proof We know that Z is the union of all Zi j over all (i, j) with 1 ≤ i < j ≤ t from
Lemma 2.10. By Lemma 2.11,

Z =
⋃

(k,l)∈�′(d)

Zkl

for some subset �′(d) ⊆ �(d). And finally, Corollary 2.13 tells us that for each (k, l) in this
subset �′(d), there exists (i, j) ∈ �(d) such that Zkl is contained in Zi j .

It remains to see that Zi j � Zkl and Zi j � Zkl for all (i, j) 	= (k, l) ∈ �(d). This
follows as for (i, j) 	= (k, l) from �(d), one can find matrices A in Zi j which do not satisfy
the conditions for Zkl and vice versa: assume (i, j) 	= (k, l) ∈ �(d). From the line diagram
L R(d) we remove one edge of the lowest chain connecting columns i and j , connecting the
resulting edges if possible with lower rows to the left and right (as with the dashed lines in
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Fig. 5) produces an element A of Zi j (under �) with A /∈ Zkl . It is completely analogous to
find B ∈ Zkl , B /∈ Zi j The irreducibility follows now since Zi j = n(T (i, j)) (Lemma 3.9).

��

Corollary 4.2 The complement Z = n\O(d) has at most t − 1 irreducible components.

Proof If d is increasing or decreasing then clearly, �(d) has size t − 1, cf. Example 1.2. The
same is true if the di are all different. In all other cases there are di = d j with | j − i | > 1,
and such that there exists an index i < l < j with dl 	= di . If dl > di is minimal among
these, then neither (i, l) nor (l, j) belong to �(d) and thus �(d) has at most t − 2 elements.
The same is true for dl < di , dl maximal among such. ��

Furthermore, we can describe the codimension of Zi j in n as follows. Recall that
T (i, j) is obtained from T (d) through a minimal movement (see Sect. 3.1). Let c(i, j)
be the number of rows the box with label j moves down, i.e. j goes from row
s(i, j) to row s(i, j) + c(i, j). It is known that for every row a box in a Young
diagram is moved down, the dimension of the GLn-orbit of the corresponding nilpo-
tent elements decreases by two. This can be seen using the formula for the dimen-
sion of the stabilizer from [11]. The change in dimension in the nilradical is half of
this. Thus, the resulting n(T (i, j)) then has codimension c(i, j) in the nilradical n and
we get:

Corollary 4.3 For (i, j) ∈ �(d), Zi j has codimension c(i, j) in n.

The second description of the irreducible components of Z is now an immediate conse-
quence of Theorem 4.1 and Lemma 3.9:

Corollary 4.4

Z =
⋃

(i, j)∈�(d)

n(T (i, j))

is the decomposition of Z into irreducible components.

5 An application

In the last section, we illustrate our work on an example. We work with G = GL5 and
consider the parabolic subgroups of different dimension vectors.

(A) If d = (1, 1, 1, 1, 1) then P = B is a Borel subgroup. Note that �(d) = �(d) =
{(1, 2), (2, 3), (3, 4), (4, 5)}, so Theorem 4.1 describes the complement Z as the union

Z = Z12 ∪ Z23 ∪ Z34 ∪ Z45

of four irreducible components.
In this example, we have that Ai j = ai j are all 1×1-matrices. The Richardson orbit is
the intersection of the regular nilpotent orbit with the set of upper triangular matrices
in gl5. The regular nilpotent elements are the nilpotent 5 × 5-matrices whose fourth
power is non-zero. So the Richardson orbit consists of the strictly upper triangular
matrices A = (ai j )i j with
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A[1, 5]4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 a12a23a34a45
0 0 0 0

0 0 0
0 0

0

⎞

⎟
⎟
⎟
⎟
⎠

with a12a23a34a45 	= 0.

For A to be in the complement Z of the Richardson orbit, the product a12a23a34a45
has to be zero, i.e. A[1, 5]4 = 0. Then clearly, A ∈ Zi,i+1 for an i ≤ 4 as Zi,i+1 is
the set of matrices with Ai,i+1 = 0. Thus, A lies in one of the components Zi j with
(i, j) ∈ �(d).

(B) If d = (1, 1, 1, 2) then �(d) = �(d) = {(1, 2), (2, 3), (3, 4)}. The Richardson orbit
is determined by the conditions rk A[12] = rk A[23] = rk A[34] = 1, rk A[13]2 =
rk A[24]2 = 1, rk A[14]3 = 1 (for A ∈ n). For A to be in the complement, one of
these ranks has to be zero. By Theorem 4.1, we should have

Z = Z12 ∪ Z23 ∪ Z34

where the component Z12 consists of the matrices A ∈ n with a12 = 0, the compo-
nent Z23 of the A with a23 = 0 and Z34 of the A with a34 = a35 = 0. Let us first
compute A2, and A3 for A ∈ n (we omit the zero entries in the opposite nilradical):

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 a12 a13 a14 a15

0 a23 a24 a25

0 a34 a35

0 0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 a12a23 a12a24 + a13a34 a12a25 + a13a35

0 0 a23a34 a23a35
v 0 0 0

0 0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

A3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 a12a23a34 a12a23a35

0 0 0 0
v 0 0 0

0 0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Then we see that A[14]3 = A3 = 0 if and only if a12a23a34 = 0 and a12a23a35 = 0.
Thus, A clearly belongs to one of the three components described above. Now,
A[13]2 = 0 if and only if a12a23 = 0 as this is the only non-zero entry of A[13]2.
Similarly, A[24]2 = 0 if and only if a23a34 = 0 and a23a35 = 0. In all cases, A is
contained in one of the three components. The case of d = (2, 1, 1, 1) is completely
analogous.

(C) The first interesting case appears for d = (1, 1, 2, 1). Here, �(d) = {(1, 2), (2, 4)} 	=
�(d). So we expect two irreducible components, Z12 as the matrices A with a12 = 0
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and Z24 as the A with rk A[24]2 = 0. We first compute A, A2 and A3 for A ∈ n:

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 a12 a13 a14 a15
0 a23 a24 a25

0 0 a35
0 a45

0

⎞

⎟
⎟
⎟
⎟
⎠

A2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 a12a23 a12a24 a12a25 + a13a35 + a14a45
0 0 a23a35 a24a45

0 0 0
0 0

0

⎞

⎟
⎟
⎟
⎟
⎠

A3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 a12(a23a34 + a24a45)

0 0 0 0
0 0 0

0 0
0

⎞

⎟
⎟
⎟
⎟
⎠

The elements A of the Richardson orbit have non-zero a12, and rk A[23] = rk
A[34] = 1, rk A[13]2 = rk A[24]2 = rk A[14]3 = rk A3 = 1. Clearly, when a12 = 0,
then A ∈ Z12. And when rk A[23] rk A[34] = 0, A belongs to Z24. Now A[14]3 = 0
if and only if a12 = 0 or a23a34 + a24a34 = 0 which is equivalent to A ∈ Z12

or A ∈ Z24, respectively. Furthermore, A[13]2 = 0 if and only if a12a23 = 0 and
a12a24 = 0, which is equivalent to A ∈ Z12 ∪ Z24. The matrices A satisfying A[24]2

are by definition Z24. The case d = (1, 2, 1, 1) is analogous.
(D) Let d = (2, 2, 1), with �(d) = �(d) = {(1, 2), (2, 3)}, the complement should be

Z12 ∪ Z23. The Richardson orbit is given as the matrices A with rk A[12] = 2 and
rk A[23] = rk A[13]2 = 1. We compute A and A2:

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 a13 a14 a15
0 a23 a24 a25

0 0 a35
0 a45

0

⎞

⎟
⎟
⎟
⎟
⎠

A2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 a13a35 + a14a45
0 0 0 a23a35 + a24a45

0 0 0
0 0

0

⎞

⎟
⎟
⎟
⎟
⎠

If A is a matrix with A[13]2 = 0 then if a35 = a45 = 0, A is an element of Z23. So let
rk A[23] 	= 0. Solving the two equations a13a35 + a14a45 = 0 a23a35 + a24a45 = 0
then shows that the rank of A[12] is one. Thus Z13 is already contained in Z12.
The case d = (1, 2, 2) is analogous.

(E) The second interesting case is d = (2, 1, 2), with �(d) = {(1, 3)} and �(d) =
{(1, 3), (1, 2), (2, 3)}. Here we only obtain one irreducible component in the comple-
ment! The Richardson orbit is defined by rk A[13]2 = rk A2 = 1 and rk A = 3: the
dimension of its stabilizer has to be equal to the dimension of the Levi factor. Using
the formulae from [11] then gives this description of the Richardson orbit. For the
complement, we are looking at matrices A with rk A[12] = 0 or rk A[23] = 0 or
rk A[13]2 = 0. If A satisfies A[12] = 0 then A2 is also zero, so A ∈ Z13 by definition.
Similarly, matrices with A[23] = 0 square to zero and hence lie in Z13.

(F) The case d = (1, 3, 1) with �(d) = {(1, 3)}, so again, we only have one component
in the complement of the open dense orbit. For matrices of the Richardson orbit, we
have rk A[12] = rk A[23] = rk A[13]2 = 1. For the complement, we take matrices
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where one of these ranks is zero. If it is rk A[12] = 0 or rk A[23] = 0 then clearly,
A[13]2 = 0, so A ∈ Z13. The cases d = (3, 1, 1) and d = (1, 1, 3) behave similarly
as d = (2, 1, 1, 1) and d = (1, 1, 1, 2). We omit them here.

(G) The remaining cases are d = (4, 1), d = (1, 4). Here, the complement to the Rich-
ardson orbit is given by A[12] = 0, i.e. it is the zero matrix.
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