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Abstract Ferroelectric phase field models based on the Ginzburg–Landau–Devonshire theory are character-
ized by a large number of material parameters with problematic physical interpretation. In this study, we
systematically address the relationship between these parameters and the main properties of ferroelectric
domain walls. A variational approach is used to derive closed form solutions for the polarization fields at the
phase transition regions as well as for the propagation velocities of the domain walls. Introducing a modified
set of material parameters, which appropriately scales different contributions to the free energy, we are able
to accurately calibrate these parameters based on domain wall thickness and energy of both 180◦ and 90◦
domain walls. Moreover, the mobility parameter appearing in the Ginzburg–Landau evolution equation can be
accurately calibrated based on the propagation velocity of the domain walls.

Keyword Ferroelectric · Domain wall · Phase field · Analytical solution

1 Introduction

Due to their non-centrosymmetric ionic structure, ferroelectric materials exhibit a spontaneous polarization,
whose direction can be changed by applying mechanical or electrical stimuli. The bulk material of polycrys-
talline ferroelectrics is composed of grains with different crystal lattice orientations, which moreover consist of
different regions with homogeneous direction of polarization. These regions are called ferroelectric domains
and interfaces between the domains are known as domain walls. A detailed review on ferroelectricity is given,
for example, by Kamlah [1], and more details regarding ferroelectric domain walls are provided by Guyonnet
[2].

The materials studied in this article are characterized by six energetically stable directions of polarization,
and examples are barium titanate or lead zirconate titanate in the tetragonal phase. This implies that the
polarization at the domain walls either changes by 180◦ or 90◦. The domain walls can be classified into
Ising-type, Bloch-type or Néel-type domain walls, or mixtures of those, see Ref. [3]. In contrast to Bloch type
or Néel type, Ising-type domain walls have the property that the magnitude of polarization changes over the
domain wall, while the direction of polarization remains on the same line. In Bloch-type and Néel-type domain
walls, however, the direction of polarization rotates either in the plane parallel or normal to the domain wall,
respectively. Furthermore, ferroelectric domain walls can be neutral or charged, depending on whether they
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carry bound charges resulting from jumps in the polarization component normal to the domain wall, see Ref.
[4].

The phenomenon that certain directions and magnitudes of polarization are more favorable than others can
be modeled by introducing a polarization-dependent potential energy, the so-called Landau energy. Such type
of energy, originally applied to the theory of superconductivity, has been used by Devonshire [5–7] to model
the behavior of ferroelectric phase transitions phenomenologically. Extending the Landau energy by a term
that depends on the gradient of the polarization yields the Ginzburg–Landau–Devonshire theory, which allows
the modeling of stable domain walls.

In order to obtain more than one energetically stable state of polarization, the polynomial expansion of
the Landau energy needs to be of at least fourth order. For such an energy expansion, Ishibashi [8,9] derives
analytical solutions for the polarization fields at 90◦ domain walls based on a variational approach. However,
these solutions are not expressed in a closed form dependent on the material parameters. Since fourth-order
polynomial expansions of the Landau energy fail to model the first-order transitions between the ferroelectric
and paraelectric phase, the Landau energy is generally described by a polynomial of sixth order, see, for
example, Refs. [10–12]. Analytical solutions for the polarization fields at 180◦ and 90◦ domain walls for a
sixth-order energy expansion are given by Cao and Cross [13] and Refs. [14–16]. More recently, some authors
suggested to use eighth-order polynomial expansions to capture more complex material behavior [17–20],
which leads to increasing difficulties in finding analytical solutions in a closed form.

In the multidimensional setup, the derivation of analytical solutions becomes a cumbersome or even
impossible task, leading to an increasing interest in the numerical solution of ferroelectric phase field models.
These models couple the Ginzburg–Landau–Devonshire theory with the theory of linear piezoelectricity. The
resulting set of field equations can then be solved on a computational domain by choosing suitable numerical
methods, such as the finite difference method [21,22], the finite element method [23,24] or the Fourier spectral
method [25–28]. Although the phase field model can be formulated in three dimensions, see, for example,
Ref. [25], a two-dimensional model is used in this article for the sake of comprehensibility. All presented
derivations could be, however, applied to three dimensions in an analogous manner.

Coming from the phenomenological Ginzburg–Landau–Devonshire theory, the large number of material
parameters in ferroelectric phase field models and their influence on the properties of domain walls cannot
be interpreted easily. This is the reason why these parameters are calibrated, for example, through atomic
level simulations [29] or uncertainty analysis [30]. Schrade et al. [31–34] propose a calibration of some model
parameters based on 180◦ domain wall properties but do not address 90◦ domain walls in detail.

In this paper, we aim at addressing the relation between the material parameters in ferroelectric phase field
models and the properties of both 180◦ and 90◦ domain walls. In contrast to previous studies, we adopt a
variational approach, which has the advantage of being extendable to higher-order polynomial expansions of
the Landau energy, and introduce a modified set of material parameters, which appropriately scales different
components of the free energy. Two variational formulations of the phase field model are presented in Sect. 2,
namely a “static” and a “dynamic” variational formulation. Through the former, analytical solutions are derived
as closed form expressions for the polarization fields at 180◦ and 90◦ domainwalls in Sect. 3 and 4 , respectively.
In Sect. 5, based on the dynamic variational formulation and in the presence of an applied electric field, we
aim at improving the analytical solutions for the velocity of the domain walls available in the literature [31].
The new analytical solutions are finally used for the calibration of the mobility parameter appearing in the
phase field model.

In the following, in contrast to scalars, vectors and second-order tensors are denoted by bold symbols,
see, e.g., the second-order identity tensor I , with components Ii j = δi j , where δi j is the Kronecker delta.
The tensors of order higher than two are denoted by blackboard bold symbols, e.g., the fourth-order elastic
stiffness tensor and the third-order piezoelectric tensor are denoted by c and e, respectively. Taking symmetry
considerations into account, c and e can be alternatively written in Voigt notation as matrices c and e. Two
consecutive tensors denote a tensor product with summation over all indices of the right tensor. Scalar products
are denoted by a dot and imply the summation over all indices of the tensors. In some formulas, the comma
convention is used to abbreviate partial derivatives

∂(·)
∂xi

= (·),i . (1)

Variations are denoted by δ, e.g., δu is the variation of the field u. Partial variations are labeled by a cor-
responding subscript, e.g., the partial variation of the functional F with respect to the field u is denoted
by δuF .
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2 Phase field model

2.1 Spontaneous polarization and strain

The idea of ferroelectric phase field models is to describe the varying material properties of the domain
structure by introducing a continuous field, the so-called phase field. Ferroelectric domains are then modeled
by regions with a constant phase field, and domain walls are represented by continuous changes in the phase
field. Following Schrade et al [31], the phase field is chosen to be the spontaneous polarization P caused by the
non-centrosymmetric ionic structure of ferroelectric materials. For the sake of simplicity, P is shortly denoted
as polarization in the following. At a fixed temperature, the magnitude of polarization in a ferroelectric domain
free from external influences is denoted by P0. In some of the following formulas, the polarization is scaled
or normalized such that

p = P
P0

, P̂ = P
|P | . (2)

Besides the polarization, the non-centrosymmetric atomic structure results in non-cubic unit cells in the fer-
roelectric crystals. This effect is described by introducing the so-called spontaneous strain. In an unloaded
ferroelectric domain, the magnitude of the normal spontaneous strain in the direction of polarization is denoted
by ε0. The normal spontaneous strain perpendicular to the direction of polarization is assumed to be −νε0,
where ν is a material parameter. For a material polarized in x2-direction, this results in the following sponta-
neous strain in the two-dimensional case

ε0(p1 = 0, p2 = 1) = ε0

(−ν 0
0 1

)
. (3)

According to Ref. [1], the spontaneous strain can be assumed to be volume preserving, resulting in ν = 0.5
in the three-dimensional case. Assuming volume preserving spontaneous strain in the two-dimensional plane
strain case, ν = 1 is chosen in all simulations. Based on the experience of the authors, however, the influence
of the choice of ν on the calibration process and the resulting calibration errors is marginal. For other states of
polarization, the spontaneous strain is calculated by

ε0 = ε0| p|2
(
2 P̂ ⊗ P̂ − I

)
. (4)

The term written in brackets in the equation above describes a tensor rotation with respect to the direction of
polarization of the spontaneous strain state given in Eq. (3) with ν = 1 and the factor in front of the brackets
scales the spontaneous strain such that a larger magnitude of polarization leads to larger strains and vice versa.
More information regarding the spontaneous strain can be found in Sect. B of the Supplemental Material and
Ref. [1].

2.2 Energy contributions

Ferroelectric phase field models couple the Ginzburg–Landau–Devonshire theory with the theory of linear
piezoelectricity, resulting in two primary variables in addition to the phase field, which are the displacement u
and the electric potential φ. Their gradients define the infinitesimal strain tensor ε and the electric field E

ε = 1

2
[∇u + (∇u)T ], E = −∇φ. (5)

Dependent on the primary variables and their gradients, the free energy density f free is formulated. It can be
written as the sum of five contributions

f free = f mech + f piezo + f elec + f land + f grad, (6)

which are the mechanical, piezoelectric, electrical, Landau and gradient energy density, respectively.
The mechanical, piezoelectric and electrical energy density describe the energy stored in the mechanical

and electrical fields and are given by Schrade et al. [31] as

f mech =1

2
(ε − ε0) · [c(ε − ε0)], (7)
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f piezo = − E · [e(ε − ε0)], (8)

f elec = − 1

2
E · (εE) − P · E, (9)

where the spontaneous strain is incorporated as eigenstrain in the mechanical energy density. The tensors
c, e and ε are the fourth-order elastic stiffness tensor, the third-order piezoelectric tensor and the second-
order absolute permittivity tensor, respectively. In general, the material behavior described by these tensors
is anisotropic with respect to the direction of polarization, suggesting a dependence of the tensors on the
polarization vector p as, for example, successfully implemented in Ref. [32]. However, in order to reduce
the complexity of the numerical simulations and motivated by the circumstance that the effect of anisotropy
is large on the piezoelectric tensor but comparatively small on the elastic stiffness tensor and the absolute
permittivity tensor, c and ε are here assumed to be isotropic, i.e., independent on the polarization or the crystal
orientation. Due to its symmetry properties, the fourth-order elastic stiffness tensor can be written as a matrix
using Voigt notation

c =
⎛
⎝c11 c12 0
c12 c11 0
0 0 c44

⎞
⎠ . (10)

The absolute permittivity tensor is given by

ε =
(

ε11 0
0 ε11

)
. (11)

In contrast to the elastic stiffness tensor and the absolute permittivity tensor, the dependence of the piezoelectric
tensor on both the magnitude and direction of polarization is not negligible. If the magnitude of polarization
equals P0 and the direction of polarization is the x2-direction, the piezoelectric tensor is expressed in Voigt
notation as the following matrix

e(p1 = 0, p2 = 1) =
(

0 0 e15
e31 e33 0

)
. (12)

Rotation and scaling of the piezoelectric tensor given above yields

eki j =| p|3[e33 P̂i P̂j P̂k + e31(δi j − P̂i P̂j )P̂k

+ e15(δki − P̂k P̂i )P̂j + e15(δk j − P̂k P̂j )P̂i ]. (13)

For more information on the piezoelectric tensor, the reader is referred to Sect. C of the Supplemental Material
and Ref. [1].

As the Landau and gradient energy density depends on the crystal orientation, a rotation tensor is defined
as

Q =
(
cosψ − sinψ
sinψ cosψ

)
, (14)

which maps the phase field and its gradient from the coordinate system of interest x to the coordinate system x̄
that is aligned with the crystal lattice, ψ being the angle between the two systems. Applying the coordinate
transformation results in

x̄ = Qx, p̄ = Q p,
∂ p̄
∂ x̄

= Q
∂ p
∂x

Q−1. (15)

The Landau and gradient energy density is taken from Schrade et al. [31], who introduced two parameters
related to the thickness and energy of 180◦ domain walls. For the purpose of relating the energy parameters
to the properties of both types of domain walls, two additional parameters are introduced in this paper. This
results in a total number of four parameters denoted by κ land

180 , κ
land
90 , κgrad

180 and κ
grad
90 , whose subscripts indicate

whether they are related to quantities concerning 180◦ or 90◦ domain walls. In particular, the choice of κ land
180

and κ
grad
180 influences both types of domain walls, while κ land

90 and κ
grad
90 have no influence on 180◦ domain walls.
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The Landau energy density, whichmodels the potential energy density associated with the state of polariza-
tion, is described by a sixth-order polynomial dependent on the polarization. Due to symmetry requirements,
i.e., f land( p̄) = f land(− p̄), only polynomial terms with even exponents are considered. Furthermore, follow-
ing Schrade et al. [31], the polynomial terms p̄41 p̄

2
2 and p̄21 p̄

4
2 are not considered in order to keep the calibration

process feasible, resulting in

f land = κ land
180 [1 + α1( p̄

2
1 + p̄22) + α11( p̄

4
1 + p̄42) + α111( p̄

6
1 + p̄62)] + κ land

90 α12 p̄
2
1 p̄

2
2 . (16)

The parameters α1, α11, α111 and α12 are chosen in such a way that the polynomial has four minima corre-
sponding to the four energetically stable directions of polarization in the two-dimensional setting, i.e.,

2α1 + 4α11 + 6α111 = 0. (17)

Further, choosing

α1 + α11 + α111 = −1, (18)

yields zero Landau energy density at the energetically stable states, see Ref. [31]. For 180◦ Ising-type domain
walls, the term p̄21 p̄

2
2 in the Landau energy vanishes. Therefore, the parameter κ land

90 can be used to calibrate
the 90◦ domain wall properties without influencing the 180◦ domain wall properties.

Finally, the gradient energy density penalizes gradients in the phase field and is taken as dependent on the
partial derivatives of the polarization

f grad = κ
grad
180

1

2
( p̄21,2 + p̄22,1) + κ

grad
90

1

2
( p̄21,1 + p̄22,2), (19)

in which the partial derivatives are taken with respect to the coordinate system x̄. In contrast to Schrade et
al. [31], who assumed κ

grad
180 = κ

grad
90 , the partial derivatives p̄1,2 and p̄2,1 are penalized differently than p̄1,1

and p̄2,2. A similar treatment can be found in Ref. [15]. During the calibration process presented in this paper,
180◦ domain walls are assumed to be charge neutral, as this is the energetically favorable configuration, see
Ref. [4]. Neutral 180◦ domain walls are aligned with the crystal lattice, resulting in p̄1,1 = p̄2,2 = 0. The
parameter κ

grad
90 can hence be used to calibrate the 90◦ domain wall properties without influencing the 180◦

domain wall properties.
Integrating the free energy density over the domain of interest � yields the free energy

F free =
∫
�

f free dA. (20)

The body force density b and free charge density ρ f acting on the computational domain as well as the surface
traction t and free surface charge σ f acting on the Neumann boundaries, see Sect. 2.3, are contributing to the
external energy

Fext =
∫
�

(−b · u + ρ f φ) dA −
∫

∂�t

t · u ds +
∫

∂�σ

σ f φ ds, (21)

Polarization switching in ferroelectric materials is a thermodynamically irreversible process, resulting in dis-
sipation of energy. Dependent on the time derivative of the polarization Ṗ , the dissipation rate is given by

Ḟdiss =
∫
�

1

2
Ṗ · (β Ṗ) dA. (22)

As the time-dependent evolution of the phase field is assumed to be isotropic, the mobility parameter β is
scalar.
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2.3 Initial and boundary conditions

Initial and boundary conditions are imposed on the primary variables and their gradients. In the initial state,
the primary variables are prescribed at every point of the domain. In order to formulate mechanical boundary
conditions, the boundary of the computational domain ∂�, with outer normal unit vector n, is split into the
Dirichlet boundary ∂�u with prescribed displacement u∗ and the Neumann boundary ∂�t with prescribed
surface traction t∗

u = u∗ ∀x ∈ ∂�u, t = t∗ ∀x ∈ ∂�t . (23)

It is ∂�u ∪ ∂�t = ∂� as well as ∂�u ∩ ∂�t = ∅. Similarly, ∂� is split into two parts in order to impose the
electrical boundary conditions. The electric potential φ∗ is prescribed on the Dirichlet boundary ∂�φ , and the
free surface charge σ ∗

f is prescribed on the Neumann boundary ∂�σ

φ = φ∗ ∀x ∈ ∂�φ, σ f = σ ∗
f ∀x ∈ ∂�σ , (24)

where ∂�φ ∪ ∂�σ = ∂� and ∂�φ ∩ ∂�σ = ∅. For the phase field, homogeneous Neumann boundary
conditions are assumed

(∇ P)n = 0 ∀x ∈ ∂�. (25)

2.4 Variational formulations

Based on the energy contributions presented in Sect. 2.2, two variational formulations are introduced in the
following. More details can be found in Miehe et al. [35]. In the first variational formulation, in the following
referred to as static variational formulation, the energy of the system is defined as the sum of the free energy
and the external energy

F stat = F free + Fext. (26)

The objective is to find the fields u, φ and P satisfying the given Dirichlet boundary conditions such that the
static energy F stat is stationary, which leads to the necessary conditions

δuF stat = δφF stat = δPF stat != 0. (27)

However, due to the non-convexity of the Landau energy density, this energy has multiple stationary points
and hence the problem is ill-posed. A well-posed variational problem is formulated by defining the dynamic
energy rate as

Ḟdyn = Ḟdiss + d

dt
F free + d

dt
Fext. (28)

The aim of the dynamic variational formulation is then to find the stationary point of the dynamic energy rate
with respect to the rates of the fields u̇, φ̇ and Ṗ satisfying the given initial conditions and Dirichlet boundary
conditions. This leads to the necessary conditions

δu̇Ḟdyn = δφ̇Ḟdyn = δ Ṗ Ḟdyn != 0. (29)

2.5 Discretization

In general, the stationary points of the presented energy functionals cannot be found analytically. Therefore,
numerical solution strategies are required, one of which is described in this section. The numerical approach
requires discretization in time and space. For the discretization in time, the time interval of interest is split into
a finite number of equally sized intervals [tn, tn+1]. The time step is then defined by �t = tn+1 − tn , and the
time derivative of the polarization is discretized by using the implicit Euler scheme

Ṗn+1 ≈ 1

�t
(Pn+1 − Pn). (30)
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Table 1 Material parameters for PZT-5H

Parameter Value Unit Parameter Value Unit

P0 0.32 C
m2 c11 13 × 1010 N

m2

ε0 0.0057 – c12 5 × 1010 N
m2

α1 −1.125 – c44 4 × 1010 N
m2

α11 −0.75 – e31 −6.5 C
m2

α111 0.875 – e33 23.3 C
m2

α12 3.3 – e15 17 C
m2

ε11 1.3 × 10−8 C
Vm

For the discretization in space, the finite element method is chosen. The computational domain is divided into
a finite number of elements and at each element the unknown fields and their variations are approximated by
a linear combination of nodal unknowns and ansatz functions. Here, the Bubnov–Galerkin ansatz is chosen,
in which the unknown fields are approximated in each element by

ue ≈
n∑

i=1

Ni ũi , φe ≈
n∑

i=1

Ni φ̃i , Pe ≈
n∑

i=1

Ni P̃ i , (31)

where n is the number of nodes per element, Ni are the ansatz functions and ũi , φ̃i and P̃ i are the nodal
unknowns. The variations of the unknown fields δue, δφe and δPe are discretized in the same manner. In the
simulations presented in this article, quadrilateral elements with bilinear ansatz functions are used.

As the static variational formulation is ill-posed, the finite element method is applied to the well-posed
dynamic variational formulation. Discretization of the necessary conditions in Eq. (29) in time and space as
shown in Eqs. (30) and (31) leads to a nonlinear algebraic system of equations at every time step, that is
solved iteratively by using the Newton–Raphson method. The integrals are computed numerically by applying
Gaussian quadrature with two integration points per element in each parametric direction. More information
on the numerical solution strategy can be found in Refs. [23,24,31–34].

2.6 Material parameters

For the comparison between the analytical solutions derived in this paper and the corresponding numerical
simulations, the ferroelectric material lead zirconate titanate PZT-5H is considered exemplarily. All material
parameters, except the mobility parameter and the parameters to be calibrated, are taken from Schrade et al.
[31], see Table 1.

3 180◦ domain wall

3.1 Numerical Solution

The region of continuous change in polarization between two ferroelectric domains polarized in opposite
directions is known as a 180◦ domain wall. In this section, the formation of a 180◦ domain wall is simulated
numerically by applying the finite elementmethod to the dynamic variational formulation. Although it has been
shown that 180◦ domain walls exhibit mixed Ising–Bloch–Néel-type character, see Ref. [3], the Bloch- and
Néel-type characteristics are assumed to be small throughout this work and are not captured by the presented
phase field model, i.e., both the numerical treatment presented in this section and the analytical treatment
presented in the following section result in pure Ising-type domain walls.

A square computational domain with a side length of 30 nm is discretized by using 301 × 10 equally
sized quadrilateral elements. Over the whole domain, the crystal lattice orientation is assumed to be aligned
with the coordinate system, i.e., ψ = 0◦. In the initial state, the fields u and φ are set to zero at all nodes.
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Fig. 1 Polarization field for the 180◦ domain wall problem obtained from the finite element simulation. The direction of polar-
ization is illustrated by black arrows, and the color represents the second component of the polarization. (Color figure online)

Subsequently, two ferroelectric domains are generated by assuming opposite initial polarization directions in
the left and right half of the computational domain. The mechanical boundary conditions are chosen to be
statically determinate, i.e., u is set to zero at the node in the lower left corner and u2 is set to zero at the node
in the lower right corner. Homogeneous Dirichlet boundary conditions are chosen for the electrical potential.
No body force or free charge density is considered.

The material parameters shown in Table 1 are considered, and the remaining parameters of the Landau and
gradient energy density as well as the mobility parameter are chosen as

κ land
180 = 4.5106 × 107

J

m
, κ

grad
180 = 9.0211 × 10−11 J

m
, (32a)

κ land
90 = 4.2432 × 107

J

m
, κ

grad
90 = 6.8250 × 10−10 J

m
, (32b)

β = 4.3371 × 10−3 Vms

C
. (32c)

More information on the choice of these parameters follows in Sect. 3.3, 4.3 and 5.1 .
The simulation is executed with �t = 2 × 10−11s until a steady state is reached. In the converged state,

the first component of the polarization P1 is close to zero and the second component P2 is smoothly changing
between the two ferroelectric domains, see Fig. 1. For more information on u and φ, the reader is referred to
Sect. D of the Supplemental Material.

3.2 Analytical solutions

Analytical solutions for the polarization field at the 180◦ domain wall can be found in a quasi-one-dimensional
setup, i.e., the solution field is assumed to be only dependent on x1, see Fig. 1. In contrast to the finite element
setting, an infinite domain is assumed. No external forces are considered and the influence of the mechanical,
piezoelectric and electrical energy density on the solution is neglected. Under these assumptions, the exact
solution for the polarization field is given by [13] as

p1 = 0, p2 = sinh(λ̌180x1)√
α̌ + sinh2(λ̌180x1)

, (33)

in which

λ̌2180 = κ land
180

κ
grad
180

(2α11 + 6α111), α̌ = α11 + 3α111

α11 + 2α111
. (34)
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As an alternative toCao andCross’ solution, another analytical solution based on a slightly simplified ansatz
is derived in the following by making use of the static variational formulation. The motivation is twofold: first,
Cao and Cross’ solution is restricted to sixth-order polynomial expansions of the Landau energy density, and
second, using Cao and Cross’ solution for the parameter calibration in the later sections of this paper leads to
very complex mathematical expressions. Under the introduced assumptions, the static energy becomes

F stat =
∫ ∞

−∞
( f land + f grad) dx1. (35)

The objective is to find a polarization field such that the static energy is stationary. Instead of searching in the
space of all functions, a smaller ansatz space is considered, namely the space of all polarization fields that can
be expressed by

p1 = 0, p2 = tanh(λ180x1), (36)

where λ180 is a real-valued parameter. It follows that the gradient of the polarization field has only one nonzero
component

p2,1 = λ180 sech
2(λ180x1). (37)

Inserting the ansatz into the static energy and using Eq. (18) yields

F stat =
∫ ∞

−∞
κ land
180 α1[tanh2(λ180x1) − 1] dx1

+
∫ ∞

−∞
κ land
180 α11[tanh4(λ180x1) − 1] dx1

+
∫ ∞

−∞
κ land
180 α111[tanh6(λ180x1) − 1] dx1

+
∫ ∞

−∞
1

2
κ
grad
180 λ2180sech

4(λ180x1) dx1. (38)

The integrals in the expression above can be calculated analytically, which yields an energy expression depen-
dent on the parameter λ180. The necessary condition for stationarity thus reads

∂F stat

∂λ180

!= 0, (39)

The resulting algebraic equation is finally solved for the unknown parameter

λ2180 = −κ land
180

κ
grad
180

(3α1 + 4α11 + 23

5
α111). (40)

The derived solution is not unique. Depending on the sign of the parameter λ180, the polarization of the domain
wall changes from a positive to a negative value or vice versa.

In Fig. 2, Cao and Cross’ and the new analytical solution as well as the numerical solution from the previous
section are plotted. It can be seen that both analytical solutions are very similar to the finite element results.
Cao and Cross’ solution is based on the assumption that the mechanical, piezoelectric and electrical energy
densities are zero. These energy densities, however, are considered in the numerical simulation, leading to
small discrepancies between Cao and Cross’ solution and the numerical results. The new analytical solution
deviates slightly from the other solutions because of the chosen simplified ansatz.
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Fig. 2 Comparison between the numerical and the two analytical solutions for the 180◦ domain wall problem. The black dotted
lines indicate the definition of the domain wall thickness. (Color figure online)

3.3 Calibration

Running the finite element simulation based on the phase field model yields a 180◦ domain wall that is
characterized by a certain output domainwall thickness �out180 and output domainwall energyFout

180. The objective
of this section is to calibrate the parameters in the model in such a way that these two output parameters can
be directly regulated by two input quantities �in180 and F in

180. As the first component of the polarization is zero
at the 180◦ domain wall, the rightmost contributions of the Landau and gradient energy density vanish. This
means, κ land

180 and κ
grad
180 are the only parameters that influence the domain wall, which can also be seen in the

analytical solutions in Eqs. (34) and (40). These parameters are calculated based on the requirement that the
output quantities be equal to the corresponding input ones.

The domain wall thickness is typically defined by taking the tangent to the phase field profile at the center
of the domain wall and measuring the distance between the intersections of the tangent with the limits −P0
and P0 (Fig. 2)

�in180
!= �out180 = 2P0

P2,1(x1 = 0)
. (41)

Further, the domain wall energy is defined by the integral of the Landau and gradient energy density over the
domain wall

F in
180

!= Fout
180 =

∫ ∞

−∞
( f land + f grad) dx1. (42)

The derivative of the polarization in Eq. (41) as well as the Landau and gradient energy density in Eq. (42) can
be evaluated by using the two analytical solutions presented in the previous section.

If the new analytical solution, see Eqs. (36) and (40), is chosen for calibration, Eq. (41) yields the following
relation between the calibration parameters

κ
grad
180

κ land
180

= −
(
3

4
α1 + α11 + 23

20
α111

)
(�in180)

2. (43)

Through the previous equation along with Eq. (43), the parameters are calculated as

κ land
180 = −

(
2α1 + 8

3
α11 + 46

15
α111

)−1 F in
180

�in180
, (44a)

κ
grad
180 = 3

8
�in180F in

180. (44b)
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However, if Cao and Cross’ solution, see Eqs. (33) and (34), is chosen for calibration, Eq. (41) results in

κ̌
grad
180

κ̌ land
180

=
(
1

2
α11 + α111

)
(�in180)

2, (45)

which yields together with Eq. (42) the parameters

κ̌ land
180 = −α̌I

F in
180

�in180
, (46a)

κ̌
grad
180 = −

(
1

2
α11 + α111

)
α̌I�

in
180F in

180, (46b)

where α̌I is given in “Appendix A.”
If, for example, the material in Table 1 is considered and the input domain wall thickness and energy are

chosen as �in180 = 2nm and F in
180 = 0.13 J

m2 , Eqs. (44) yield

κ land
180 = 4.1489 × 107

J

m
, κ

grad
180 = 9.7500 × 10−11 J

m
, (47)

and Eqs. (46) yield

κ̌ land
180 = 4.5106 × 107

J

m
, κ̌

grad
180 = 9.0211 × 10−11 J

m
. (48)

The equations above contain information on how the calibration parameters need to be chosen such that the
new analytical solution or Cao and Cross’ solution exhibits the desired domain wall thickness and energy. Due
to the discrepancies between the analytical and numerical solution, however, the output domain wall thickness
and energy of the numerical solution might deviate from the corresponding input quantities. The calibration
accuracy is estimated by defining a calibration error

E(·) = (·)out − (·)in
(·)in . (49)

For the parameters in Eqs. (47), calibration errors of E(�180) = 7.15% and E(F180) = 0.97% are calculated
for the domain wall thickness and energy, respectively. Using in contrast the parameters from Eqs. (48) yields
E(�180) = −1.03% and E(F180) = 1.20%.

In order to study the influence of the choice of the input quantities �in180 and F in
180 on the calibration error,

multiple simulations with input thickness varying between 1nm and 3nm and input energy varying between
0.05 J

m2 and 0.2 J
m2 are carried out. It is observed that the calibration errors have the same order of magnitude

in all simulations.

4 90◦ domain wall

4.1 Numerical Solution

By slightly changing the setup of the simulation presented in Sect. 3.1, the formation of a 90◦ domain wall
is simulated numerically. To this end, the crystal orientation angle is assumed to be ψ = 45◦ and the initial
directions of polarization in the left and right half of the computation domain are chosen such that they differ
by an angle of 90◦. The initial u and φ are set to zero. Running the simulation with the same discretization,
boundary conditions, external loadings, parameters and time step as explained inSect. 3.1 result in a polarization
field that is continuously changing its values at the domain wall, see Fig 3. More information on u and φ can
be found in Sect. D of the Supplemental Material.
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Fig. 3 Polarization field for the 90◦ domainwall problem obtained from the finite element simulation. The direction of polarization
is illustrated by black arrows, and the color represents the second component of the polarization. (Color figure online)

4.2 Analytical solutions

For the quasi-one-dimensional setting, analytical solutions for the polarization field at the 90◦ domain wall
are given by Cao and Cross [13] as well as Ishibashi [8]. However, as Cao and Cross’ solution is restricted to
certain choices of the parameters in the Landau energy density and Ishibashi’s solution is not expressed in a
closed form, a new analytical solution is derived in the following by using the static variational formulation.
The derivation is based on the same assumptions as explained in Sect. 3.2. Throughout the derivation, the first
component of the polarization is assumed to be constant over the domain wall. The ansatz space is chosen to
be the space of all polarization fields that can be described by

p1 = 1√
2
, p2 = 1√

2
tanh(λ90x1). (50)

The only nonzero component of the gradient of the polarization is thus

p2,1 = 1√
2
λ90 sech

2(λ90x1). (51)

The crystal lattice orientation is not aligned with the coordinate system. Therefore, a rotation of 45◦ needs to
be applied to the input arguments of the Landau and gradient energy density as shown in Sect. 2.2. This yields
under consideration of the chosen ansatz and Eq. (18) the following static energy

F stat =
∫ ∞

−∞
ᾱ1[tanh2(λ90x1) − 1] dx1

+
∫ ∞

−∞
ᾱ11[tanh4(λ90x1) − 1] dx1

+
∫ ∞

−∞
ᾱ111[tanh6(λ90x1) − 1] dx1

+
∫ ∞

−∞
1

8
(κ

grad
180 + κ

grad
90 )λ290sech

4(λ90x1) dx1, (52)

in which

ᾱ1 = κ land
180

(
1

2
α1 + 3

4
α11 + 15

32
α111

)
− κ land

90
1

8
α12, (53a)

ᾱ11 = κ land
180

(
1

8
α11 + 15

32
α111

)
+ κ land

90
1

16
α12, (53b)
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Fig. 4 Comparison between the numerical and analytical solution for the 90◦ domainwall problem. The black dotted lines indicate
the definition of the domain wall thickness. (Color figure online)

ᾱ111 = κ land
180

1

32
α111. (53c)

In order to find the stationary pointswith respect to the parameterλ90, the integrals are evaluated analytically
and the partial derivative with respect to the unknown parameter is set to zero

∂F stat

∂λ90

!= 0. (54)

Solving the resulting algebraic equation yields

λ290 = − 4

κ
grad
180 + κ

grad
90

(3ᾱ1 + 4ᾱ11 + 23

5
ᾱ111). (55)

Fig. 4 shows the analytical solution in comparison to the solution obtained from the finite element simulation.
It can be seen that the analytically calculated second component of the polarization is similar to the numerical
solution. The first component of the polarization, however, appears to be non-constant in the numerical simu-
lation. The analytically derived domain wall with the constant first component of the polarization hence only
serves as an approximation.

4.3 Calibration

For the 90◦ domain wall thickness and energy, two input quantities �in90 and F in
90 are introduced and the

calibration parameters κ land
90 and κ

grad
90 are chosen in such a way that the corresponding outputs equal the inputs.

The domain wall thickness and energy are defined as

�in90
!= �out90 =

√
2P0

P2,1(x1 = 0)
, (56)

F in
90

!= Fout
90 =

∫ ∞

−∞
( f land + f grad) dx1, (57)

see also Fig. 4. Inserting the calculated analytical solution into the equations above and evaluating the integrals
analytically results in two algebraic equations that are solved for the unknown calibration parameters. The
parameters κ land

180 and κ
grad
180 are already calibrated through the 180◦ domain wall quantities. If, for example,

Eqs. (44) are used, the calibration parameters for the 90◦ domain wall are obtained as

κ land
90 = 12

α12

(F in
90

�in90
− 60α1 + 110α11 + 137α111

120α1 + 160α11 + 184α111

F in
180

�in180

)
, (58a)
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Fig. 5 Calibration error of the 90◦ domain wall thickness for varying input parameters. The blue, red and green areas show
whether the numerically calculated first component of the polarization is larger than, smaller than or approximately equal to the
analytical solution, respectively. The dashed and dotted lines indicate for which input parameters the assumption of constant first
component of the polarization is fulfilled. (Color figure online)

κ
grad
90 = 3

2
�in90F in

90 − 3

8
�in180F in

180. (58b)

To give an example, for the material in Table 1 and for �in90 = 4nm and F in
90 = 0.13 J

m2 , this results in

κ land
90 = 4.2432 × 107

J

m
, κ

grad
90 = 6.8250 × 10−10 J

m
. (59)

The accuracy of the calibration can once again be estimated based on the definition of the calibration error
in Eq. (49). In contrast to the 180◦ case, the calibration error of the 90◦ domain wall quantities appears to be
highly dependent on the choice of the input parameters. Therefore, a parameter study is performed, in which
the calibration errors are calculated for multiple combinations of the input quantities �in90 andF in

90. The resulting
errors for the domain wall thickness E(�90) are illustrated by the grey bars in Fig. 5.

The errors are caused by the assumptionsmade during the derivation of the analytical solution. In particular,
the mechanical, piezoelectric and electrical energy, which are considered in the numerical simulations, were
not considered during the derivation of the analytical solution, causing errors in the calibration process.
Furthermore, the assumption that the first component of the polarization is constant does not hold true for any
choice of input quantities. Input quantities leading to a first component of the polarization that is at every point
larger or at every point smaller than assumed in the analytical solution are indicated in Fig. 5 by blue and red
squares, respectively. In this case, the errors appear to be comparatively large. However, if the first component
of the polarization is close to the one assumed in the analytical solution, i.e., at some points larger and at some
points smaller, the input quantities are indicated by green squares, resulting in comparatively smaller errors
between −3% and 3%.

The question arises if there is a way to predict analytically whether the calibration error is large or small
for a given combination of input quantities. Theoretically, the calibration error should be small if the input
quantities are chosen in such a way that the assumption of constant first component of the polarization holds
true. The assumption is expected to be approximately fulfilled if the input quantities are chosen such that, for
P1 = P0√

2
, the gradient of the Landau energy density vanishes at the center of the domain wall

∂ f land

∂ p

(
p1 = 1√

2
, p2 = 0

)
!= 0. (60)

This results in a relation between the input quantities

�in90

F in
90

= αII
�in180

F in
180

, (61)
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in which αII is a positive real-valued factor that depends on the parameters in the Landau energy density. For
the parameters shown in Eqs. (44) and (58), it is

αII = 32
15α1 + 20α11 + 23α111

320α1 + 480α11 + 563α111
. (62)

The resulting relation between the input quantities is illustrated by a dashed line in Fig. 5. Close to the line, the
errors are smaller than far away from the line. Using Eqs. (46) and (58) instead leads to the factor α̌II shown
in Eq. (A.2) in “Appendix A.” The corresponding relation between input quantities is plotted as a dotted line
in Fig. 5, showing small differences to the dashed line.

Performing an analogous analysis for the calibration error of the domain wall energy E(F90) yields similar
results. However, most of the errors are about two times smaller than the calibration errors of the domain wall
thickness.

The error analysis described above shows that the assumption of the constant first component of the polar-
ization has a large influence on the calibration error. If the parameters are chosen such that the first component
of the polarization is approximately constant, the calibration errors are marginal. This observation suggests that
neglecting the mechanical, piezoelectric and electrical energy during the derivation of the analytical solution,
while considering them in the numerical simulations, has a comparatively low impact on the calibration error.

5 Domain wall dynamics

If subjected to external stimuli, the domains in the bulk ferroelectric change in size and shape. This means that
the domain walls, which separate the ferroelectric domains, have to move. In this section, the time-dependent
behavior of a 180◦ and a 90◦ domain wall is studied both numerically and analytically. By making use of
the dynamic variational formulation, the objective is to improve the analytical solution for the domain wall
velocity and the corresponding calibration of the mobility parameter presented by Schrade et al. [31], whose
derivations are based on the Euler–Lagrange equations of the phase field model.

5.1 180◦ domain wall

An electric field pointing in x2-direction is applied to a 180◦ domain wall by changing the electrical boundary
conditions of the simulation shown in Sect. 3.1. In particular, the electric potential is chosen such that it differs
by�φ = − 0.03V between the top and bottom boundary, resulting in an electric field with E2 = 106 Vm. At the
left and right boundary, homogeneous Neumann boundary conditions are chosen. In order to reduce influences
from the boundary, the width of the computational domain is doubled while keeping its height unchanged.
Consequently, 601 × 10 finite elements are used.

During the simulation, the domain wall moves to the right until it vanishes at the boundary, which leads to
a homogeneous polarization field in the converged state, see Fig. 6. It is observed that the shape of the phase
field profile at the domain wall does not change significantly during the process.

The domain wall velocity v180 is defined as the change in time of the position of the domain wall, where this
position is conventionally chosen as the x1-coordinate of the zero of the second component of the polarization
at x2 = 0. Fig. 6 shows the domain wall velocity as a function of the position of the domain wall. The
initially assumed polarization profile at the domain wall causes a comparatively low velocity at the beginning
of the simulation. However, after taking its energetically stable profile shape, the domain wall moves with an
increased velocity, which remains approximately constant for some time, until it reaches the boundary towards
the end of the simulation, where a rapid acceleration is observed.

An analytical solution for the velocity of the 180◦ domain wall is given by Schrade et al. [31], whose
derivation is based on the Euler–Lagrange equations of the phase field model evaluated at the center of the
domain wall. However, this solution strategy results in errors that are larger than 35%. Therefore, a new
analytical solution for the domain wall velocity is derived in the following by making use of the dynamic
variational formulation, which allows a global treatment of the problem.

Since no body or surface forces are applied, the dynamic energy rate reduces to the sum of the dissipation
rate and the time derivative of the free energy

Ḟdyn = Ḟdiss + d

dt
F free. (63)
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Fig. 6 Time-dependent evolution of the 180◦ domain wall at x2 = 0 obtained from the finite element simulation. The second
component of the polarization is plotted at different times, see left axis. The dashed line illustrates the domain wall velocity as a
function of the position of the domain wall, see right axis. (Color figure online)

Considering a quasi-one-dimensional setup, the dissipation rate is given by

Ḟdiss =
∫ ∞

−∞
1

2
β Ṗ2

2 dx1, (64)

as Ṗ1 vanishes. Under the assumption that the domain wall moves with a constant velocity v180 while not
changing its profile shape over time, the time derivative of the polarization can be expressed as

Ṗ2 = v180P2,1. (65)

The dissipation rate hence becomes

Ḟdiss = 1

2
βv2180

∫ ∞

−∞
P2
2,1 dx1. (66)

Because of the assumption that the shape of the polarization profile at the domain wall does not change
over time, all contributions of the free energy, except the coupling term between the electric field and the
polarization, do not depend on the position of the domain wall in space. Hence, these contributions do not
lead to a change in free energy over time, resulting in the following time derivative of the free energy in the
quasi-one-dimensional setup

d

dt
F free = d

dt

∫ ∞

−∞
−P2E2 dx1, (67)

as both P1 and E1 vanish. The electric field is assumed to be constant in time and space. Hence, considering
Eq. (65) leads to

d

dt
F free = −E2v180

∫ ∞

−∞
P2,1 dx1 = −2P0E2v180. (68)

Finally, the dynamic energy rate is written as

Ḟdyn = 1

2
βv2180

∫ ∞

−∞
P2
2,1 dx1 − 2P0E2v180. (69)

The objective is to find a domain wall velocity v180 such that the expression above is stationary, which leads
to the necessary condition

∂Ḟdyn

∂v180

!= 0. (70)
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Solving the resulting equation leads to

v180 = 2P0E2

β
∫ ∞
−∞P2

2,1 dx1
. (71)

The integral in the equation above can be calculated, for example, by making use of the new analytical solution
given in Eqs. (37) and (40)

∫ ∞

−∞
P2
2,1 dx1 = 8P2

0

3�in180
, (72)

or by using Cao and Cross’ solution shown in Eqs. (33) and (34)

∫ ∞

−∞
P2
2,1 dx1 = P2

0

2�in180
(α̌ − 1)−

3
2 [(2α̌ − 3)(α̌2 − α̌)

1
2

+ (4α̌ − 3) sinh-1((α̌ − 1)
1
2 )], (73)

where it can be seen that α̌ ≥ 1 must hold true.
It is observed from Eq. (71) that the domain wall velocity is inversely proportional to the mobility param-

eter β. This relation can hence be used to calibrate the mobility parameter

β = 2P0E2

v180
∫ ∞
−∞P2

2,1 dx1
. (74)

For �in180 = 2nm and v180 = 1ms , this yields together with Eq. (73)

β = 4.3371 × 10−3 Vms

C
. (75)

Referring to the corresponding finite element results in Fig. 6, it is seen that the numerically calculated domain
wall velocity far away from the boundary differs by less than 1% from the one chosen during the calibration.
Hence, the calibration shows an increased accuracy compared to that given by Schrade et al., which eliminates
the need for an additional correction parameter as proposed in [31].

5.2 90◦ domain wall

As follows, the behavior of a 90◦ domainwall under an applied electric field is studied. The boundary conditions
of the simulation shown in Sect. 4.1 are changed such that the electric field points in x2-direction with E2 =
106 Vm. Further, the width of the computational domain is doubled and 301×50 finite elements are used.

Similar to the 180◦ domain wall, the 90◦ domain wall moves to the right until it vanishes, leading to a
homogeneously polarized domain in the final state. It is observed that, in contrast to the simulation of the 180◦
domain wall, the velocity of the 90◦ domain wall slightly varies over the x2-direction, leading to a change in
shape of the polarization profile at the domain wall in time. For the sake of simplicity, the behavior of the 90◦
domain wall is studied at x2 = 0 only. Fig. 7 shows the corresponding evolution of the 90◦ domain wall and
its velocity. It is observed that, after the jump caused by the initial condition, the 90◦ domain wall slightly
decelerates at the beginning of the simulation, which can be explained by the change in profile shape over
time. When approaching the boundary, the domain wall accelerates rapidly as already observed for the 180◦
case.

The domain wall velocity v90 is calculated analytically in the quasi-one-dimensional setup by using the
dynamic variational formulation. Following the same procedure as for the derivation of v180 leads to

v90 =
√
2P0E2

β
∫ ∞
−∞P2

2,1 dx1
, (76)
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Fig. 7 Time-dependent evolution of the 90◦ domain wall at x2 = 0 obtained from the finite element simulation. The second
component of the polarization is plotted at different times, see left axis. The dashed line illustrates the domain wall velocity as a
function of the position of the domain wall, see right axis. (Color figure online)

Table 2 Comparison between the different analytical solutions and their influence on the calibration errors for the material in

Table 1. The input quantities are chosen as �in180 = 2 nm, F in
180 = 0.13 Jm2, �in90 = 4 nm, F in

90 = 0.13 J
m2 and v180 = 1ms

Analytical solutions Calibration errors E [%]
180◦ domain wall 90◦ domain wall �180 F180 �90 F90 v180 v90

Schrade et al. [31] – ≈ −2 ≈ 1 – – ≈ 37 –
New solution, Eq. (36) New solution, Eq. (50) 7.15 0.97 5.89 −6.02 −0.74 2.48
Cao and Cross [13], Eq. (33) New solution, Eq. (50) −1.03 1.20 5.23 −6.14 −0.99 1.28

in which the integral is calculated by using Eqs. (51) and (55)
∫ ∞

−∞
P2
2,1 dx1 = 4P2

0

3�in90
. (77)

Choosing, for example, �in90 = 4 nm and the mobility shown in Eq. (75), a domain wall velocity of v90 =
3.0569ms would be expected in the numerical results. In the simulation, the domain wall moves 20nm in
6.46ns, leading to an average velocity of 3.0960ms , which differs by less than 2% from the expected one.

Combining the equations above with Eqs. (71) and (72), a relation between the 180◦ and 90◦ domain wall
velocity and thickness can be derived

v90

v180
= √

2
�in90

�in180
. (78)

6 Conclusions

Analytical solutions were derived for the phase field profiles at 180◦ and 90◦ domain walls and for their
propagation velocities. These solutions were used in order to calibrate the material parameters occurring in
the Landau and gradient energy as well as the mobility parameter. Table 2 gives a comparison between the
different calibration strategies for an exemplary set of input quantities. In contrast to the previous literature
that focuses on the calibration of the material parameters only based on 180◦ domain wall properties, in this
work we calibrated the parameters based on the properties of both types of domain walls, in both cases with
satisfactory accuracy. Further, the analytical solutions for the domain wall velocities derived in this paper
show an increased accuracy compared to the literature, leading to an improvement of the mobility parameter
calibration.
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Appendix A.

The parameter α̌I, introduced in Sect. 3.3, and the factor α̌II, introduced in Sect. 4.3, are given by

α̌I = 4α2
111(α11α111((α11 + 2α111)(α11 + 3α111))

1
2

+ (α111(α11 + 2α111))
1
2 (α2

11(sinh
-1((α111(α11 + 2α111)

−1)
1
2 )

− 2 tanh-1((α111(α11 + 3α111)
−1)

1
2 ))

+ 2α1α111 log((α11 + 2α111)
−1(α11 + 4α111 + 2(α111(α11 + 3α111))

1
2 ))))−1. (A.1)

α̌II = 24(15α1 + 20α11 + 23α111)(α11α111((α11 + 2α111)(α11 + 3α111))
1
2

+ (α111(α11 + 2α111))
1
2 (α2

11(sinh
-1((α111(α11 + 2α111)

−1)
1
2 )

− 2 tanh-1((α111(α11 + 3α111)
−1)

1
2 ))

+ 2α1α111 log((α11 + 2α111)
−1(α11 + 4α111 + 2(α111(α11 + 3α111))

1
2 ))))(α111(480α

2
1α111 + 138α3

111

+ 10α2
11(32α111 + 33((α11 + 2α111)(α11 + 3α111))

1
2 )

+ α11α111(488α111 + 411((α11 + 2α111)(α11 + 3α111))
1
2 )

+ 2α1(440α11α111 + 413α2
111 + 90α11((α11 + 2α111)(α11 + 3α111))

1
2 ))

+ 3(α111(α11 + 2α111))
1
2 (60α1 + 110α11 + 137α111)(α

2
11(sinh

-1((α111(α11 + 2α111)
−1)

1
2 )

− 2 tanh-1((α111(α11 + 3α111)
−1)

1
2 ))

+ 2α1α111 log((α11 + 2α111)
−1(α11 + 4α111 + 2(α111(α11 + 3α111))

1
2 ))))−1. (A.2)
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