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Abstract It has been suggested that low energy effective
field theories should satisfy given conditions in order to be
successfully embedded into string theory. In the case of a
single canonically normalized scalar field this translates into
conditions on its potential and the derivatives thereof. In this
Letter we revisit small field hilltop models of eternal inflation
including stochastic effects and study the compatibility of
the swampland constraints with entropy considerations. We
show that these stochastic inflation scenarios either violate
entropy bounds or the swampland criterion on the slope of
the scalar field potential. Furthermore, we illustrate that such
models are faced with a graceful exit problem: any patch of
space which exits the region of eternal inflation is either not
large enough to explain the isotropy of the cosmic microwave
background, or has a spectrum of fluctuations with an unac-
ceptably large red tilt.

1 Introduction

The inflationary scenario [1–5] is the current paradigm of
early universe cosmology. In addition to explaining the
homogeneity, spatial flatness and large size of our universe,
the accelerated expansion of space provided by inflation
yields a mechanism to explain the origin of structure in the
universe [6,7]. However, inflation is not the only scenario of
early universe cosmology which is consistent with current
cosmological observations. Alternatives include a bouncing
cosmology with a matter-dominated phase of contraction [8],
models based on Born-Infeld inspired modifications of grav-
ity [9], the Ekpyrotic scenario [10] or an emergent cosmol-
ogy with initial thermal fluctuations with holographic scal-
ing [11], such as in String Gas Cosmology [12] (see e.g.
[13] for a review of alternatives to cosmological inflation
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and [14] for alternatives of gravity theories relevant for early
universe cosmology). Assuming that superstring theory is
the fundamental theory which unifies all forces of Nature
at a quantum level, it is interesting to ask which (if any)
of the currently discussed early universe scenarios emerges
from string theory. Observations indicate that our universe
is entering another stage of accelerated expansion, the so-
called Dark Energy phase. Another interesting question is
how string theory might explain this phase.

Over the past thirty years there has been a lot of work
attempting to realize inflation in the context of string the-
ory (see e.g. [15] for an in-depth review). Assuming that
space-time is described by General Relativity, scalar field
matter is usually used in order to obtain accelerated expan-
sion of space. However, if superstring theory yields the cor-
rect ultraviolet completion of physics at high energy scales,
then there are constraints on any effective scalar field model
emerging as a low energy description of physics. The cri-
teria on an effective field theory consistent with string the-
ory are called the swampland criteria (see e.g. [16,17] for
reviews). Models which do not obey these conditions are said
to be in the swampland. It has been shown that these criteria
severely constrain inflationary models [18] (see also [19–
29]). Quintessence models [30] of Dark Energy are, at the
moment, still viable [18,28,31–38] but will also be severely
constrainable using upcoming observations [31,32] (see also
[39]).

The constraints on inflation provided by the swampland
criteria have been in general obtained using the classical
evolution of scalar fields during inflation. However, quan-
tum fluctuations may have an important effect on scalar field
dynamics. According to the stochastic inflation formalism
[40], quantum fluctuations may counteract the classical force
and locally drive the scalar field up the potential, i.e. to larger
values of the potential energy density. This is the basis for
the eternal inflation scenario [41,42]. Both in the context of
large field inflation [43,44] and small field inflation [45] it
has recently been studied whether these quantum effects can
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save inflation from the swampland constraints. In the case
of large field inflation it was shown that eternal inflation can
only be realized if the constant parameter which appears in
the swampland constraint for a slowly rolling scalar field
(see below) is much smaller than unity, and even in this case
only for values of the Hubble expansion rate which are close
to the Planck scale, while in the case of small field inflation
occuring near a local maximum of the potential a window for
eternal inflation consistent with the swampland conjectures
was claimed [45].

In this Letter we study constraints on small field stochastic
inflation obtained by combining the swampland constraints
with entropy considerations. In analogy to the entropy of a
black hole which is given by the area of the event horizon,
one can associate an entropy with the Hubble horizon H−1

(where H is the Hubble expansion rate) of an accelerating
universe. In a phase of inflation when stochastic effects dom-
inate the entropy associated with the event horizon decreases
in regions where the scalar field moves up the potential. Using
a bound on the magnitude of allowed entropy decrease from
[46] we show that hilltop models of eternal inflation either
violates this entropy bound, or it violates the swampland cri-
terion on the slope of the scalar field potential. This result
reinforces the conclusion that there is tension between the
principles of string theory and cosmological inflation.

Attempts to reconcile small field models of hilltop eternal
inflation (including stochastic effects) with the swampland
criteria face another problem, the graceful exit problem. The
density fluctuations which exit the Hubble radius during the
period of inflation when stochastic effects dominate are too
large in amplitude. Hence, a patch of space in which inflation
comes to an end must have undergone a period of slow-roll
inflation between when stochastic effects become subdomi-
nant and the end of inflation. In the case of large field inflation,
the existence of such a phase is inconsistent with the swamp-
land criteria. In the case of small field stochastic inflation
[45] we must analyze the problem more carefully. Here we
show that for large values of the energy density during the
inflationary phase, the rolling phase in islands which exit
the eternal inflation region is too short for one Hubble patch
exiting the eternal inflation region to become large enough to
encompass a universe of our current size. In addition, fluctu-
ations on smaller scales are nonlinear. If the energy density
in the inflationary period is lower than a given critical value,
a sufficiently long period of evolution of a Hubble patch after
it leaves the phase of eternal inflation can be obtained, but the
resulting spectrum of fluctuations is far from scale-invariant.

While our manuscript was being completed, two papers
appeared which have a large overlap with our work. A first
paper [47] also demonstrated that stochastic eternal infla-
tion is in the swampland, focusing on slightly different prob-
lems than those we concentrate on. Similar conclusions were

reached in [48] which presented a detailed discussion of the
Fokker–Planck equation for stochastic inflation.

2 Review of the swampland criteria

We will assume that superstring theory is the correct theory
of Nature. In this context, scalar fields which arise in the
low-energy effective field theory of physics consist of the
dilaton, moduli fields and axions. There are many scalar fields
which can appear in the low energy effective action, which
at first sight appears as good news for scalar field-driven
inflation. However, since they all have a particular origin
in string theory, their potentials and field ranges in the low
energy effective field theory cannot be arbitrary.

The first condition on a scalar field φ in a low energy
effective field theory description of string theory is the field
range condition known as distance conjecture [49] which
states that a particular effective field theory has a field range
�φ which is restricted to

�φ

mpl
< d , (1)

where d is a positive constant of the order 1 and mpl is the
four space-time dimensional Planck mass. If we start at a
point in field space and move a distance greater than the
above one, then new string states will become low mass and
have to be included in the low energy effective field the-
ory, thus changing the theory. This condition clearly conflicts
with the condition to obtain large-field inflation in canoni-
cal scalar field models of inflation since in these models the
inflaton field has to move a larger distance in order to obtain
a sufficient period of inflation [18]. On the other hand, since
Quintessence does not require a large number of e-foldings
of accelerated expansion, Quintessence models are not ruled
out from the outset [18,31,32].

The second swampland condition [50] applies to situa-
tions where a scalar field is rolling while dominating the
cosmology. It is a constraint on the slope of the potential of
an effective scalar field and states that

|V
′

V
|mpl > c1 , (2)

where c1 is a positive constant of order unity (the prime indi-
cates the derivative with respect to φ). This condition clearly
rules out slow roll inflation models with canonical kinetic
terms (models with extra friction, e.g. warm inflation [51],
can be consistent with this condition [52,53]). This condition
can be derived [54] by demanding that the entropy obtained
by the extra string degrees of freedom which become mass-
less is less than the Gibbons-Hawking entropy [55] of an
accelerating Hubble patch of space. It is applicable provided
that the scalar field is in uniform motion, in particular during
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an epoch of slow roll inflation. However, it is not directly
applicable if the scalar field is undergoing stochastic fluctu-
ations without overall slow rolling.

There is a refined version of this swampland condition [54]
(see also [56–69]) according to which models of effective
scalar fields can be consistent with string theory even if the
condition (2) is not satisfied or applicable in the region of
field space where the dynamics is taking place as long as in
this region

V ′′

V
m2

pl < −c2 , (3)

where c2 is another positive constant of order unity. This
condition is applicable if the scalar field starts very close to a
local maximum of the potential, or if it undergoes stochastic
fluctuations without net rolling. For some applications of this
condition to cosmology see e.g. [23,70–77]. Note that these
conditions rule out de Sitter solutions, in particular de Sitter
solutions for Dark Energy (see also [78–80] for other argu-
ments for the inconsistency between quantum gravity and de
Sitter).

Finally, effective field theories coming from string theory
should also obey the weak gravity conjecture which states
that at any point in field space, gravity is the weakest force
[81].

The reason why the swampland conditions cannot be seen
in the context of pure effective field theory is that at the
level of an effective field theory, important string degrees of
freedom associated with the string oscillatory and winding
modes are not taken into account (see e.g. the detailed dis-
cussion in [17]). These modes do, indeed, play a crucial role
in String Gas Cosmology [12], a model of a stringy early uni-
verse based on the new fundamental degrees of freedom and
symmetries of string theory which are lost at the level of an
effective field theory, and which yields an alternative to the
inflationary paradigm of structure formation [11] (see [82]
for a review and [83] for specific predictions for upcoming
observations). A characteristic example of a scalar field in an
effective field theory emerging from string theory is a Kähler
modulus field, which in the simple setup of a toroidal com-
pactification of the extra spatial dimension can be viewed
as the radius of an extra cycle. As discussed in [84–86], the
interplay of string winding and oscillatory modes leads to a
minimum of the effective potential for this field which is at
the string scale. This is an example of how the field distance
constraint arises in a particular example. In this same exam-
ple, the value of the potential at its minimum is zero, and the
potential is quadratic about the minimum, thus showing that
the criteria (2) and (3) are satisfied.

At first sight, it appears that in the derivation of the swamp-
land conditions on the scalar field potential V (φ) it was
assumed that φ obeys the classical equation of motion with-
out any quantum fluctuations. However, it is known that the

effective scalar field φ in any given Hubble patch obtains
quantum fluctuations from inhomogeneities of larger wave-
length which contribute to the local background. This gives
rise to a source term in the effective equation of motion for
φ whose magnitude is given by the Hubble expansion rate
H [40]. As shown in [43,44], inclusion of this stochastic
term does not help rescue large-field eternal inflation from
the swampland. In [45], however, it was suggested that the
stochastic term may save small-field eternal inflation. This is
the claim which we study in the following.

3 Stochastic effects

In the presence of stochastic effects, the equation of motion
for the effective homogeneous component of a scalar field in
a given Hubble patch is

φ̈ + 3H φ̇ + V ′ = N (t, x) , (4)

and the amplitude of N is determined by having the stochas-
tic term lead to a change 〈δφ2〉 = H2

4π2 in one Hubble time
step [40] ( finite mass corrections can be taken into accout,
but it turns out that they cancel out in the condition 18 below).

The classical field variation over one Hubble expansion
time H−1 is given by

δφc = φ̇

H
, (5)

while the change in φ induced by the noise over the same
time interval is

δφq = H

2π
. (6)

The given Hubble patch will remain in the eternal inflation
region if the field value satisfies

|δφq | > |δφc| (7)

(eternal inflation itself can also occur in the case that δφq

is somewhat smaller than δφc if we take into account that
regions in which the scalar field moves up the potential
expand faster than those in which it moves downward - see
[87] for a detailed study), and if the field range where this
is satisfied is greater than the size of the quantum fluctua-
tions. Making use of the slow-roll equation of motion for φ

to determine the classical movement of φ and of the Fried-
mann equation, coupled with the assumption that the energy
density is dominated by the scalar field potential energy in
order to solve for H in (6), the condition (7) becomes

V ′

V
mpl <

1

2π

V 1/2

m2
pl

. (8)

In the range of field values where this condition is satisfied,
φ undergoes stochastic fluctuations without net rolling, and
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hence the condition (2) is not directly applicable. In contrast,
(3) can be applied.

In the case of a simple quadratic potential

V (φ) = 1

2
m2φ2 , (9)

where m is some mass which must be much lower than the
Planck mass in order that the induced cosmological fluctua-
tions are compatible with observational bounds, the condition
(8) becomes

|φ| >
√

2π
(mpl

m

)1/2
mpl . (10)

For a more general potential for large field inflation of the
form

V (φ) = m4
pl f (φ) , (11)

where f (φ) is a dimensionless function, the condition (8)
reads

f ′

f
m pl <

1

2π
f 1/2 . (12)

The condition for the scalar field potential obeying the
swampland condition (2) in the field region where stochastic
effects are important becomes

c1 <
V ′

V
mpl < V 1/2m−2

pl , (13)

which for values of c1 of order 1 excludes inflation in field
regions where effective field theory can be applied (since
effective field theory breaks down when V approaches the
Planck scale).

In the following, to be specific, we will consider the fol-
lowing potential

V (φ) = V0 cos(φ/μ) , (14)

where μ determines the curvature of the potential, and V0

its absolute value. Small field inflation takes place while φ

is close to a local maximum of the potential (e.g. φ = 0).
When expanded about that point we get the same potential
as was considered in [45]), namely

V (φ) � V0
(
1 − 1

2
(
φ

μ
)2) (15)

(for |φ| � μ). The swampland condition (3) is satisfied
provided that

μ <
( 1

c2

)1/2
mpl . (16)

The field region where eternal inflation is possible is given
by (see (8))

|φ| < φc ≡ 3

2
V 1/2

0 μ2 , (17)

(in Planck units). For eternal inflation to work, this field range
needs to be larger than the size of the quantum field fluctua-
tion. Making use of (6) this implies

μ >
( 2

6π

)1/2
, (18)

(again in Planck units). Comparing (16) and (18) we see that
for c2 < 6π there is a small region for μ in which both
conditions can be satisfied. In the following we will assume
that we are in this region of μ space.

In order to obtain a period of slow-roll inflation for |φ| >

φc there is an additional lower bound on μ

μ >

√
2

3
, (19)

which can be derived by solving the slow-roll equation of
motion for φ (in the approximation when H is treated as
constant) and checking for self-consistency.

4 Entropy bounds, inflation and the swampland

Another way to see the incompatibility of large field inflation
and the swampland constraints is by applying entropy argu-
ments of [46] where it was argued that the entropy decrease
of any given Hubble patch cannot exceed the value one. The
entropy of a local Hubble patch of an accelerating cosmol-
ogy was first discussed by Gibbons and Hawking [55] and is
given by the area of the Hubble horizon in Planck units, i.e.

SGH = 4πH−2m2
pl . (20)

During a time interval in a phase where stochastic effects
dominate and when the scalar field can move up the poten-
tial due to quantum fluctuation, H increases and hence the
entropy bounded by the area of the horizon decreases [46].
This process may violate the second law of thermodynamics
(applied locally). It was argued [46] that, even taking quan-
tum effect of gravity into consideration, the decreases should
not be larger than O(1) in Planck units, i.e.

δS > −1 . (21)

Let us consider a patch in which the scalar field is mov-
ing up the potential. In this case, the field jump induced by
quantum fluctuations is larger in magnitude than the jump
induced by the classical force, and we can estimate the mag-
nitude of the field jump by taking the quantum jump (6). The
change in the entropy of the patch in one Hubble interval
(the coherence time of the quantum fluctuations) can hence
be bounded by

δS ∼ δ
( 1

H2

)
m2

pl = δ
(3m4

pl

V

)
, (22)
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where in the last step we have used the Friedmann equation.
Taking the variation of the last term yields

δS ∼ −3m4
pl

V

|V ′|
V

δφ . (23)

Considering the change of the entropy in a coherence time
during which δφ = H/(2π), the entropy condition (21) then
yields

|V ′|
V

mpl <
H

mpl
, (24)

which again shows that inflation at sub-Planckian densities
is inconsistent with the swampland condition (2) for values
of the constant c1 of the order 1.

A problem with this derivation is that it is not clear why the
entropy condition should be applied locally. From a global
perspective there are Hubble regions where H will decrease,
and those where H will increase. It is unclear how a global
entropy condition should be imposed. Hence, we will turn to
a more serious problem for a small-field model of inflation
marginally consistent with the swampland criteria, namely
the graceful exit problem.

5 Graceful exit problem for small field eternal inflation

In the following, we recall that our goal is to show that models
where small field eternal inflation is possible have a graceful
exit problem.

We are interested in the dynamics of a Hubble patch which
is exiting the eternal inflation regime, i.e. a region where
φ is becoming larger than the value given by (7). In this
regime, we can approximate the derivative of the potential by
its leading term in the Taylor expansion about the origin. Our
aim is to show that the period of evolution after exiting the
eternal inflation region is short. Since the scalar field rapidly
accelerates when it approaches φ = μ, the time interval of
evolution will be short on a Hubble time scale once the field
value approaches a fraction of order unity of μ. Hence, for
our question the use of the approximate expression for V ′ is
justified. On the other hand, since for μ ∼ mpl both modes of
the Klein–Gordon equation can be important, we do not drop
the acceleration term. We are interested both in the effects
of the second mode, and in the effects of the stochastic term
in the Klein–Gordon equation in the field range where the
classical force dominates.

Expressed in tems of the e-folding number N , the stochas-
tic equation which we consider takes the form

H2φ′′(N ) + 3H2φ′(N ) − V0
φ

μ2 = 3H3

2π
ξ(N ) , (25)

4 6 8 10 12
Ne0.0

0.2

0.4

0.6

0.8

1.0

p(Ne)

Fig. 1 Probablity distribution of the duration of the period of slow-
roll inflation based on a set of 1000 simulations with the parameters

V0 = 10−8, μ =
√

2
31/4 , φ(0) = 10−3. The value of H was computed

assuming that the potential energy dominates. The purple line indicates
the value obtained neglecting the stochastic term

where ξ(N ) is a Gaussian random variable with mean zero
and unit variance, i.e.

< ξ(N ) >= 0 , < ξ(N )ξ(N ′) >= δ(N − N ′) . (26)

We performed simulations of the time evolution of the
scalar field φ in the presence of the stochastic noise we have
described. The parameters chosen were V0 = 10−8, μ =√

2/31/4 andφ(0) = 10−3 (all in Planck units). By numerical
solving the differential Eq. (25) with a stochastic source term
in discrete time steps, we may compute the distribution of
physical observables. Our results are based on a set of 1000
simulations. The results are scattered about the value which
would be obtained without the stochastic term. In Fig. 1 we
show the distribution of number of e-foldings until the end
of inflation

We can analytically estimate the period of evolution in
the post-eternal phase, i.e. for |φ| > φc. In this phase we
can neglect the stochastic term. We treat H as constant (thus
obtaining an upper bound on the period of evolution since we
are taking an upper bound on the friction coefficient). In this
approximation, the equation of motion for φ has exponential
solutions

φ(t) ∼ eα(t−tc) , (27)

where tc is the initial time in this period (when |φ| = φc),
and the two solutions for the index α are

α± = V 1/2
0

[±
√

9

4
+ 2

1

μ2 − 3

2

]
. (28)

The dominant solution has index

α+ = 3

2
V 1/2

0 γ , (29)
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Fig. 2 Time evolution of the scalar field once it exits the region of
eternal inflation. The horizontal axis is time as measured in terms of
e-folding number, the vertical axis gives the field value in Planck units.
The bue curve (the one that hits the upper dashed line the fifth from the
left) is the result of the analytical calculation using the slow-roll approx-
imation. The other curves show the results of 100 numerical simulations

which solve for the evolution with the same initial conditions including
the stochastic terms. The horizontal dashed lines indicate the field val-
ues where inflation ends and reheating occurs. As is evident, the time
duration until the field hits these surfaces is clustered about what is
obtained using the analytical approximation described in the text

where

γ = (
√

1 + 8

9

1

μ2 − 1
)
. (30)

To obtain an upper bound on the duration of this phase, we
can compute the time �t = t − tc it takes for the field to
evolve from φ = φc to φ = μ, assuming that it evolves by
the dominant mode. The result is

N ≡ �t H = 1

γ
ln

( 2

3μV 1/2
0

)
, (31)

(where H is taken to be the initial value of H ). This gives
the location of the purple line in Fig. 1.

Figure 2 shows the time evolution of the scalar field once
it exits the region of eternal inflation and stochastic terms are
subdominant compared to the classical force in the equation
of motion. The horizontal axis is time (measured in terms of
N (t), the vertical axis gives the field value in Planck units.
The results of 100 simulations are shown and compared to
what is obtained analytically by using the slow-roll approx-
imation described above. The initial conditions are taken to
be at the field value ϕ = ϕc. Note that there are a few realiza-
tions in which the stochastic terms are strong enough to push
the field back up the potential and down the other side. We see
that in all cases the number of e-foldings is clustered close
to the value which is obtained using the slow-roll analytical
equation. The dashed horizontal lines indicate the field value
where we expect the potential to turn over and reheating to
occur.

We see that for values of V0 similar to those which are usu-
ally used to obtain inflationary evolution (those close to the

scale of Grand Unification), the period is less than N = 50.
Hence, modes which are observed today in the microwave
background and in the large-scale structure crossed the Hub-
ble radius during the period when stochastic terms dominate
the dynamics. This leads to a serious problem for the ampli-
tude of cosmological fluctuations. The amplitude of the cur-
vature power spectrum is given by (see e.g. [88] for a review,
and [89] for a summary discussion)

P(k) = ( H2

2πφ̇(tk)

)2
, (32)

where k is the wavenumber and t (k) is the time when the
wavelength crosses the Hubble radius. However, during the
stochastic phase this quantity is comparable or larger than
unity. Note that deep in the stochastic regime, the ampli-
tude of fluctuations is smaller than that given by the above
classical value. This issue has been studied in detail in [87].
In that paper, a potential similar to the one we are using but
with a value of μ one order of magnitude larger was cho-
sen. In that case, it was found that the smaller the field value
|φ|, the smaller the amplitude of the fluctuations. However,
the amplitude remains larger than the observed one. For our
value of μ the stochastic effects on the amplitude of the power
spectrum will be smaller than what was found in [87] since
the quantum effects are less important relative to the classi-
cal effects compared to the situation in the model studied in
[87]. Hence, the amplitude of the power spectrum, corrected
by stochastic effects, will be larger than what was found in
[87], and hence inconsistent with observations.Thus, our con-
clusion concerning the graceful exit problem is robust. The
fact that the quantum corrections to the amplitude of the fluc-
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tuations is smaller in our case then in the model studied in
[87] can also be seen by considering the leading order correc-
tions to the classical power spectrum computed in Eq. (4.4)
of [87]. In the case of our potential, the two correction terms
are positive, and the amplitude of the enhancement term is
of the order (μ/mpl)

2 which is of the order one in our case,
but much larger than one in the case studied in [87].

For values of V0 small enough such that the value of N
from (31) is larger than about 50, i.e. for

V 1/2
0 < e−50γ 2

3μ
, (33)

the amplitude of P(k) can be made sufficiently small. How-
ever, the spectrum is not scale-invariant. It is given by

P(k) = 1

μ2 (3πγ )−2e2γ N (k)

= 1

μ2 (3πγ )−2(H
k

)2γ
, (34)

where N (k) is the number of e-foldings of evolution before
the mode k exits the Hubble radius, and we are working in
the approximation that H is constant (if we drop this approx-
imation, then the spectrum will be even farther from scale-
invariant). Since γ is of the order one, the slope of the spec-
trum is inconsistent with observations.

Note that there is a more serious problem in the above
case of small V0: during the post-stochastic period of slow
roll inflation the entropy criterion of [54] can be applied, and
we conclude that the model lies in the swampland provided
that (2) is violated, which is the case if V0 < 1 in Planck
units.

6 Conclusions and discussion

We have considered the possibility that eternal inflation might
be consistent with the swampland conditions. In the case of
large field inflation we have shown using several arguments,
in particular a quantum bound on the magnitude of allowed
entropy decrease in a Hubble patch, that inflation is in con-
flict with the swampland conjectures. In the case of small
field inflation there is a small window in parameter space of
typical potentials such as (15) where a phase of eternal accel-
erated expansion could be made consistent with the swamp-
land constraints. However, such a scenario suffers from the
graceful exit problem: typically the size of the patch of the
universe which exits the eternal inflation region is too small
to be compatible with observations, a similar problem to the
one which the original scalar field-driven model of inflation
suffered from [90]. This problem can be avoided if the energy
scale of the eternal inflation region is sufficiently small, as
given by (33). However, in this case the induced spectrum
of cosmological perturbations is red and inconsistent with

observations. Furthermore, the constraint (2) can be applied
during the phase of slow rolling and the model can then be
shown to lie in the swamp for V0 < 1.
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