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Abstract

The goal of this PhD thesis is to collect the results of the author in the study of
thin obstacle problems. We start by giving an introduction to the Signorini or thin
obstacle problem, summarizing some of the most relevant currently known results.
The next chapters correspond each to one paper by the author (and collaborators).
Thus, we start by studying the regularity of solutions for the fully nonlinear thin
obstacle problem, to then move to the study of the free boundary for general frac-
tional obstacle problems with drift, in the critical regime. This is followed by a
regularity result for minimizers of the perimeter with lower dimensional obstacles.
Finally, the last two chapters focus on the standard thin obstacle problem (and its
fractional counter-part) and �ne regularity and generic regularity properties for the
free boundary.

Sommario

In questa tesi di dottorato si raccolgono i risultati dell'autore nello studio dei pro-
blemi di ostacolo sottile. Iniziamo con un'introduzione al problema di Signorini
o degli ostacoli sottili, riassumendo alcuni dei risultati pi�u rilevanti attualmente
conosciuti. I capitoli successivi corrispondono ciascuno ad un articolo dell'autore e
dei collaboratori. Cominciamo con lo studio della regolarit�a delle soluzioni per il
problema degli ostacoli sottili completamente non lineari, per poi passare allo stu-
dio della frontiera libera per i problemi generali degli ostacoli frazionari con termine
di trasporto, in regime critico. Segue un risultato di regolarit�a per i minimi del
perimetro con ostacoli di dimensioni inferiori. In�ne, gli ultimi due capitoli si con-
centrano sul problema standard dell'ostacolo sottile e la sua controparte frazionaria,
e sulle propriet�a di regolarit�a �ne e regolarit�a generica per la frontiera libera.
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Summary

This thesis revolves around various aspects of the thin (or fractional) obstacle pro-
blem (also known as Signorini problem). In the introduction (Chapter 1) we present
the problem and the main known results. In the following �ve chapters (Chapter 2
to Chapter 6) we present the contributions of the author in the �eld. Each chapter
corresponds to a di�erent paper. We summarize here each of the chapters.

ˆ Chapter 1 is a general introduction to the thin obstacle problem. It is a
self-contained survey that aims to cover the main known results regarding the
thin (or fractional) obstacle problem. We present the theory with some proofs:
from the regularity of the solution to the classi�cation of free boundary points,
ending with generic regularity-type results for the free boundary.

ˆ Chapter 2 corresponds to the paper [Fer16], that is,

X. Fern�andez-Real, C1;� estimates for the fully nonlinear Signorini problem,
Calc. Var. Partial Di�erential Equations (2016), 55:94.

In this chapter we study a generalization of the Signorini problem involving
more general elliptic operators of second order in place of the Laplacian. We
consider general convex fully nonlinear operators, and show the regularity of
the solution to the fully nonlinear Signorini problem. This is a generalization
of a previous result by Milakis and Silvestre, [MS08], where they showed reg-
ularity of solutions under some extra assumptions on the operators and the
solution itself.

Given a fully nonlinear operator de�ned on the space ofn � n matrices M n ,
F : M n ! R, satisfying1

F is convex, uniformly elliptic (0.1)

with ellipticity constants 0 < � � � ; and with F (0) = 0 ;

we consider the lower dimensional obstacle problem
�

F (D 2u) = 0 in B1 n f xn+1 = 0g
minf� F (D 2u); u � ' g = 0 on B1 \ f xn+1 = 0g:

(0.2)

1Notice that, given a function w, we can express the nonlinear operatorF as F (D 2w(x)) =
sup
 2 �

�
L ij


 @x i x j w(x) + c

�

; for some family of symmetric uniformly elliptic operators with ellip-
ticity constants � and �, L ij


 @x i x j , indexed by 
 2 �. See [CC95, FR20].

1



2 Contents

(Notice that the Laplacian corresponds toF (M ) = tr M .) Then, we show that,
if ' 2 C1;1, the solution u is C1;� for some small� > 0 in either side of the
obstacle (that is, u 2 C1;� (B1=2 \ f xn+1 � 0g)).

ˆ Chapter 3 corresponds to the paper [FR18],

X. Fern�andez-Real, X.Ros-OtonThe obstacle problem for the fractional
Laplacian with critical drift , Math. Ann. 371(3) (2018), 1683-1735.

Another possible generalization of the thin obstacle problem consists in chang-
ing the normal derivative condition with a directional derivative in another
(non-tangential) direction. If we denoter n the gradient in the �rst n vari-
ables, we consider the obstacle problem with oblique derivative condition

�
� u = 0 in B +

1
minf� @xn +1 u + b� r nu; u � ' g = 0 on B1 \ f xn+1 = 0g;

(0.3)

for someb2 Rn �xed (cf. (1.6)). In this case, problem (0.3) can be interpreted
as a fractional obstacle problem of the form

min
�

(� �) s �u + b� r �u; �u � '
	

= 0 in Rn ; (0.4)

with s = 1
2 . This kind of operators appears as in�nitesimal generators of L�evy

processes with jumps (see (1.18) below), and in particular, its obstacle-type
problem models optimal stopping problems for these processes. Problems of
the type (0.4) had been previously studied in [PP15, GPPS17] in the case
s > 1

2 , where, as a general intuition, the term involving the gradient can be
treated as a lower order term. No regularity results are expected for the case
s < 1

2 , but the situation where the gradient has tocompetewith the fractional
operator (s = 1

2) was still open.

In this chapter we study the free boundary for solutions to (0.4) (or (0.3)) with
s = 1

2 , also considering more general nonlocal operators of order 1 (so that no
monotonicity formulas are available to be used). Given a solution �u to (0.4),
we establish theC1;� regularity of the free boundary around any regular point
x � , with an expansion of the form

�u(x) � ' (x) = c�
�
(x � x � ) � e

� 1+~
 (x � )

+
+ o

�
jx � x � j1+~
 (x � )+ �

�
;

~
 (x � ) =
1
2

+
1
�

arctan(b� e);

wheree 2 Sn� 1 is the normal vector to the free boundary,� > 0, and c� > 0.
In particular, we have that the growth of the solution at free boundary points
depends on the orientation of the free boundary with respect to the vectorb.

ˆ Chapter 4 corresponds to the paper [FS20],

X. Fern�andez-Real, J. Serra,Regularity of minimal surfaces with lower
dimensional obstacles, J. Reine Angew. Math., to appear.
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The Signorini problem can also be interpreted as a linearization of the problem
where we want to minimize the area of a surface with prescribed boundary,
and constrained to be above a certain lower dimensional obstacle: namely, the
Plateau problem, where we restrict the set of admissible solutions to those
that contained a �xed lower dimensional smooth manifold (the thin obstacle).

In Chapter 4, we study the regularity of solutions to the minimization problem
in Rn+1

min
�

P(E; B1) : E � O ; E n B1 = E � n B1
	

(0.5)

whereP(E; B1) denotes the (variational) perimeter ofE inside B1, and O :=
� ( f xn = 0; xn+1 � 0g) is the thin obstacle (which here is given by the smooth
di�eomorphism � of a 
at thin obstacle).

Perhaps surprisingly, we show that solutions to (0.5) areC1; 1
2 at free boundary

points (in particular, they are a graph). This is opposed to classical smoothness
of minimal surfaces, which for dimensionsn � 8 need not be regular. Thus,
the thin obstacle is actively acting at contact points and forcing a graphical
and regular solution.

The di�culty in studying (0.5) (with respect to the same problem with a
thick obstacle) lies on the fact that near a typical point of the contact set the
hypersurface@Econsists of two surfaces that intersect transversally on@O.
Therefore, @Eis typically not 
at at small scales and thus (0.5) cannot be
treated as a perturbation of the Signorini problem.

ˆ Chapter 5 corresponds to the paper [FJ20],

X. Fern�andez-Real, Y. Jhaveri, On the singular set in the thin obstacle
problem: higher order blow-ups and the very thin obstacle problem, Anal.

PDE, to appear.

The set of non-regular points of the free boundary can subdivided into the
set of singular points and the set ofother points. The set of singular points
corresponds to those points where the contact set has zero density (in the
thin space) and can be characterized also as those where the blow-up has even
homogeneity. It is contained in a countable union ofC1 manifolds. Moreover,
under a certain non-degeneracy condition on the obstacle (�' < 0), the set
of degenerate points consists only of singular points of order 2.

In this chapter we thoroughly investigate the structure of singular points for
the Signorini problem (also with weights,s 2 (0; 1), so to cover the fractional
obstacle problem of any order as well). In particular, we adapt the techniques
that had been introduced by Figalli and Serra in [FS18] in the context of
the classical obstacle problem to our setting. By means of GMT methods we
are able to deduce higher regularity properties for the singular set outside
of certain exceptional sets with lower dimension, and establish some higher
order expansions of the solutions around those points. As a consequence of
our study, we encounter a new fractional problem, what we call thevery thin
obstacle problem: an obstacle-type problem with constrains on a co-dimension
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2 domain, which only makes sense in the settings > 1
2 . Thus, we also study

the regularity properties of this new problem.

ˆ Chapter 6 corresponds to the paper [FR19],

X. Fern�andez-Real, X. Ros-Oton,Free boundary regularity for almost every
solution to the Signorini problem, preprint arXiv (2019).

For general smooth obstacles, without any extra non-degeneracy assumption,
the set of non-regular points of the free boundary can be very big, of dimension
n � " for any " > 0.

Thus, while one would expect degenerate (non-regular) points to be always
small, we already know it is not true in the context of the Signorini problem.
The next natural question is to ask howfrequently do these degenerate points
appear: even if they can exist, we expect them to appear in very particular
con�gurations, or at least, to be large in very particular con�gurations. This
is precisely what we show in this chapter by establishing a �rst result of this
kind in the context of thin obstacle problems.

In particular, we show that for almost everysolution to the Signorini prob-
lem, the set of degenerate points is (n � 2)-dimensional (where \almost every
solution" needs to be understood in the context of the theory of prevalence).
That is, if we denoteu0 the solution to

�
� u = 0 in B +

1
minf� @xn +1 u; u � ' g = 0 on B1 \ f xn+1 = 0g;

(0.6)

with a certain boundary conditiong 2 C0(@B1), and we denoteu� the solution
to (0.6) with boundary data g� = g + � , we show that

dimH
�
Deg(u� )

�
� n � 2 for a.e. � 2 [0; 1]:

In fact, our results are more precise, and are concerned with the Hausdor�
dimension of � � � (u� ), the set of points of order greater or equal than� . We
show that if 3 � � � n + 1, then � � � (u� ) has dimensionn � � + 1, while for
� > n + 1, then � � � (u� ) is empty for almost every� 2 [0; 1]. This is the �rst
result, in the context of the Signorini problem, that proves that regular points
are better, in some sense, than the rest ofdegenerate points.

We then use similar techniques in the context of the parabolic Signorini prob-
lem to show that, for almost all times, the set of non-regular points is lower-
dimensional.



Chapter 1

Introduction to the thin obstacle
problem

The Signorini problem (also known as the thin or boundary obstacle problem) is a
classical free boundary problem that was originally studied by Antonio Signorini in
connection with linear elasticity [Sig33, Sig59]. The problem was originally named
by Signorini himselfproblem with ambiguous boundary conditions, in the sense that
the solution of the problem at each boundary point must satisfy one of two di�erent
possible boundary conditions, and it is not known a priori which point satis�es which
condition.

Whereas the original problem involved a system of equations, its scalar version
gained further attention in the seventies due to its connection to many other areas,
which then lead to it being widely studied by the mathematical community. Hence,
apart from elasticity, lower dimensional obstacle problems also appear in describing
osmosis through semi-permeable membranes as well as boundary heat control (see,
e.g., [DL76]). Moreover, they often are local formulations of fractional obstacle prob-
lems, another important class of obstacle problems. Fractional obstacle problems can
be found in the optimal stopping problem for L�evy processes, and can be used to
model American option prices (see [Mer76, CT04]). They also appear in the study
of anomalous di�usion, [BG90], the study of quasi-geostrophic 
ows, [CV10], and in
studies of the interaction energy of probability measures under singular potentials,
[CDM16]. (We refer to [Ros18] for an extensive bibliography on the applications of
obstacle-type problems.)

1.1 A problem from elastostatics

Consider an elastic body 
 � R3, anisotropic and non-homogeneous, in an equilib-
rium con�guration, that must remain on one side of a frictionless surface. Let us
denote u = ( u1; u2; u3) : 
 ! R3 the displacement vector of the elastic body, 
,
constrained to be on one side of a surface � (in particular, the elastic body moves
from the 
 con�guration to 
+ u(
)). We divide the boundary into @
 = � D [ � S.
The body is free (or clamped,u � 0) at � D , whereas �S represents the part of
the boundary subject to the constraint, that is, � S = @
 \ �. Alternatively, one
can interpret � S itself as the frictionless surface that is constraining the body 
,

5
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understanding that only a subset of �S is actually exerting the constraint on the
displacement. This will be more clear below.

Let us assume small displacements, so that we can consider the linearized strain
tensor

" ij (u ) =
1
2

(ui
x j

+ uj
x i

); 1 � i; j � 3:

Considering an elastic potential energy of the formW(") = aijkh (x)" ij " kh , for some
functions aijhk (x) 2 C1 (
) (where, from now on, we are using the Einstein notation
of implicit summation over repeated indices), then the stress tensor has the form

� ij (u ) = aijhk (x)"hk (u ):

We also impose thataijhk are elliptic and with symmetry conditions

aijhk (x)� ij � hk � � j� j2 for all � 2 Rn� n such that � ij = � ji ;

aijhk (x) = ajihk (x) = aijkh (x); for x 2 
 :

Let us also assume that 
 is subject to the body forcesf = ( f 1; f 2; f 3), so that by
the general equilibrium equations we have

@�ij (u )
@xj

= f i ; in 
 ; for i = 1; 2; 3:

From the de�nitions of � (u ) and " ij (u ) above, this is a second order system, and
from the de�nition of aijhk , it is elliptic. Thus, the displacement vector satis�es
an elliptic second order linear system inside 
. We just need to impose boundary
conditions on � S (the conditions on � D are given by the problem, we can think of
u � 0 there).

Let us denote byn the outward unit normal vector to x 2 @
. Notice that,
by assumption, the stresses in the normal directionn on � S, � ij (u )n i , must be
compressive in the normal direction, and zero in the tangential direction (due to the
frictionless surface). That is,

� ij (u )n i n j � 0 on � S, (1.1)

� ij (u )n i � j = 0 on � S and for all � 2 Rn with � � n = 0.

On the other hand, we have the kinematical contact condition, encoding the fact
that there exists a surface exerting a constraint and the body cannot cross it (under
small displacements, or assuming simply that � is a plane):

u � n � 0; on � S: (1.2)

In fact, conditions (1.1)-(1.2) are complimentary, in the sense that

(u � n ) � (� ij (u )n i n j ) = 0 on � S, (1.3)

and we are dividing � S into two regions: those where the body separates from �
and those where it remains touching �. That is, if there is an active normal stress
at a point x 2 � S, � ij (u (x))n i (x)n j (x) < 0, then it means that the elastic body
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is being constrained by �S (or �) at x, and thus we are in the contact area and
there is no normal displacement,u (x) � n (x) = 0. Alternatively, if there is a normal
displacement,u (x) � n (x) < 0, it means that there is no active obstacle and thus no
normal stress,� ij (u (x))n i (x)n j (x) = 0. This is precisely what ambiguous boundary
condition means:

For eachx 2 � S we have that one of the following two conditions holds

either
�

� ij (u (x))n i (x)n j (x) � 0
u (x) � n (x) = 0 ;

or
�

� ij (u (x))n i (x)n j (x) = 0
u(x) � n (x) < 0;

(1.4)
and a priori, we do not know which of the condition is being ful�lled at each point.
The Signorini problem is afree boundary problembecause the set �S can be divided
into two di�erent sets according to which of the conditions (1.4) holds, and these
sets are, a priori, unknown. The boundary between both sets is what is known as
the free boundary.

The previous is a strong formulation of the Signorini problem, which assumed
a priori that all solutions and data are smooth. In order to prove existence and
uniqueness, however, one requires the use of variational inequalities with (convex)
constraints in the set of admissible functions.

The �rst one to approach the existence and uniqueness from a variational point
of view was Fichera in [Fic64]. We also refer to the work of Lions and Stampacchia
[LS67], where a general theory of variational inequalities was developed, which later
led to the scalar version of the Signorini problem, and its interpretation as a mini-
mization problem with admissible functions constrained to be above zero on certain
�xed closed sets. Later, in [DL76], Duvaut and Lions studied the problem and its
applications to mechanics and physics.

Finally, we refer to [Kin81, KO88] for more details into the strong and weak
formulation of the (system) Signorini problem and its properties.

1.2 The thin obstacle problem

In this work we will focus our attention to the scalar version of the Signorini problem
from elasticity: our function, u, would correspond to an appropriate limit in the
normal components of the displacement vector,u n . Our obstacle,' , adds generality
to the problem, and would correspond to the possible displacement of the frictionless
surface@
 while performing u . (We refer the interested reader to [CDV19, Example
1.5] for a deduction of this fact.) As explained above, this problem also appears in
biology, physics, and even �nance. Thus, from now on, functions are scalar.

Let us denotex = ( x0; xn+1 ) 2 Rn � R and B +
1 = B1 \ f xn+1 > 0g. We say that

u : B +
1 ! R is a solution to the Signorini problem or thin obstacle problem with

smooth obstacle' de�ned on B 0
1 := B1 \ f xn+1 = 0g, and with smooth boundary
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data g on @B1 \ f xn+1 > 0g, if u solves
8
>>>><

>>>>:

� u = 0 in B +
1

u = g on @B1 \ f xn+1 > 0g
@xn +1 u � (u � ' ) = 0 on B1 \ f xn+1 = 0g

� @xn +1 u � 0 on B1 \ f xn+1 = 0g
u � ' � 0 on B1 \ f xn+1 = 0g;

(1.5)

where we are also assuming that the compatibility conditiong � ' on @B1 \f xn+1 =
0g holds. Notice the analogy with the ambiguous compatibility conditions (1.1)-
(1.2)-(1.3) or (1.4): the set with Dirichlet conditions, � D above, is@B1 \ f xn+1 > 0g,
whereu = g is imposed; whereas the set with ambiguous boundary conditions, �S

above, is nowB 0
1. That is, at each point x = ( x0; 0) 2 B 0

1 we have that

either
�

� @xn +1 u(x) � 0
u(x) � ' (x0) = 0 ;

or
�

� @xn +1 u(x) = 0
u(x) � ' (x0) > 0:

An alternative way to write the ambiguous boundary conditions in (1.5) is by
imposing a nonlinear condition onB 0

1 involving u and @xn +1 u as
�

� u = 0 in B +
1

minf� @xn +1 u; u � ' g = 0 on B1 \ f xn+1 = 0g;
(1.6)

with u = g on @B1 \ f xn+1 > 0g. This is the strong formulation of the Signorini
problem.

In order to prove existence (and uniqueness) of solutions, we need to study the
weak formulation of the problem: a priori, we do not know any regularity for the
solution.

Consider a bounded domain 
 � Rn , and a closed setC � 
. Let, also, � :
C(C) ! R be a continuous function. In [LS67], Lions and Stampacchia prove the
existence and uniqueness of a solution to the variational problem

min
v2K

Z



jr vj2 (1.7)

whereK = f v 2 H 1
0 (
) : v � � on Cg. Moreover, they also show that such solution

is the smallest supersolution.
If C = 
, (1.7) is also known as the classical obstacle problem: �nding the

function with smallest Dirichlet energy among all those which lie above a �xed
obstacle � . This problem has been thoroughly studied in the last �fty years (see
[LS67, KN77, Caf77, CR77, Wei99, PSU12] and references therein), many times in
parallel to the thin obstacle problem, and we will sometimes refer to it also as the
thick obstacle problem.

Our problem, (1.6), corresponds to the case whenC is lower dimensional, with
codimension 1. Notice that simple capacity arguments yield that, ifC has codimen-
sion 2 or higher, then the restriction of functions inH 1

0 to C does not have any e�ect
on the minimization of the Dirichlet energy, and thus we would simply be solving
the classical Laplace equation. This means that, in this case, there is in general no
minimizer.
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Thus, (1.6) are the Euler{Lagrange equations of the following variational problem

min
v2K �

Z

B +
1

jr vj2; (1.8)

where

K � = f v 2 H 1(B +
1 ) : v = g on @B1 \ f xn+1 > 0g; v � ' on B1 \ f xn+1 = 0gg:

Notice that the expressionsv = g on @B1 \f xn+1 > 0g and v � ' on B1 \f xn+1 = 0g
must be understood in the trace sense. The existence and uniqueness of a solution,
as in [LS67], follows by classical methods: take a minimizing sequence, and by lower
semicontinuity of the Dirichlet energy, and the compactness of the trace embeddings
into H 1, the limit is also an admissible function. The uniqueness follows by strict
convexity of the functional.

In some cases, the thin obstacle problem is posed in the whole ballB1, and thus
we consider

min
v2K ��

Z

B 1

jr vj2; K �� = f v 2 H 1(B1) : v = g on @B1; v � ' on B1 \ f xn+1 = 0gg;

(1.9)
for some functiong 2 C(@B1). In this case, the Euler{Lagrange equations are for-
mally 8

<

:

u � ' on B1 \ f xn+1 = 0g
� u = 0 in B1 n (f xn+1 = 0g \ f u = ' g)
� u � 0 in B1;

(1.10)

with the added condition that u = g on @B1. Alternatively, making the parallelism
with (1.6), one could formally write

�
� u = 0 in B1 n f xn+1 = 0g

minf� � u; u � ' g = 0 on B1 \ f xn+1 = 0g;
(1.11)

understanding that � u is de�ned only in the distributional sense. Notice that ifg
is even with respect toxn+1 , the solution to (1.10) is even as well, and we recover
a problem of the form (1.6). On the other hand, for generalg, one can study the
symmetrised function �u(x0; xn+1 ) = 1

2 (u(x0; xn+1 ) + u(x0; � xn+1 )), which has the
same regularity and contact set asu. Thus, in order to study (1.10) one can always
assume thatu is even inxn+1 , and this is enough to study (1.6).

Notice, also, that in (1.10) the condition � u � 0 needs to be understood in
the sense of distributions. In fact, �u is a (non-positive) measure concentrated on
f u = 0g. We can explicitly compute it by taking any test function ' 2 C1

c (B1) even
in xn+1 ,

�h � u; ' i = 2
Z

B +
1

r u � r ' = 2 lim
"#0

Z

B +
1 \f xn +1 � " g

r u � r '

= � 2 lim
"#0

Z

B +
1 \f xn +1 = "g

@xn +1 u ' = � 2
Z

B 1 \f xn +1 =0 g
@+

xn +1
u ':

That is,
� u = 2@+

xn +1
u H n (B1 \ f xn+1 = 0g) ; (1.12)

where@+
xn +1

u = lim "#0 @xn +1 u(x0; ").
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Remark 1.1. In the derivation of (1.12), apart from (1.10), we have also used integra-
bility of r u, and that the trace of the normal derivative is well-de�ned. This follows
because, in fact, as we will show later, the solution to the thin obstacle problem is
Lipschitz, and is continuously di�erentiable up to the obstacle.

Remark 1.2. Problem (1.9) can be seen as a �rst order approximation of the Plateau
problem with a lower dimensional obstacle, originally introduced by De Giorgi
[DeG73], which has also been studied in the last years [DeA79, FoSp18b, FS20].
Indeed, the Dirichlet functional corresponds to the area functional (up to a con-
stant) for 
at graphs. (See Chapter 4 for more discussions on this topic.)

Finally, let us end this section by mentioning other possible constructions of
solutions. As mentioned above, the solution to the previous minimization problem
can also be recovered as the least supersolution. That is, the minimizeru to (1.9)
equals to the pointwise in�mum

u(x) = inf
�

v(x) : v 2 C2(B1); � � v � 0 in B1; v � ' on B1\f xn+1 = 0g;

v � g on @B1
	

;

the least supersolution above the thin obstacle. The fact that such function satis�es
(1.10) can be proved by means of Perron's method, analogously to the Laplace
equation.

As a �nal characterization of the construction of the solution, we refer to penal-
ization arguments. In this case there are two ways to penalize:

On the one hand, we canexpandthe obstacle, and work with the classical obstacle
problem. That is, we can consider as obstacle' " (x) = ' (x0) � " � 1x2

n+1 with " > 0
very small, which is now de�ned in the whole domainB1. Then, by taking the
solutions to the thick obstacle problem with increasingly thinner obstacles' " (letting
" # 0), converging to our thin obstacle, we converge to the solution to our problem.
Alternatively, we can even avoid the penalization step: the solutions to the thin
obstacle problem must coincide with the solution of the thick obstacle problem,
with obstacle �' : B +

1 ! R given by the solution to � �' = 0 in B +
1 , �' = ' on

B1 \ f xn+1 = 0g, �' = g on @B1 \ f xn+1 > 0g. Notice that �' itself is not the
solution to the thin obstacle problem since, a priori, it is not a supersolution across
f xn+1 = 0g.

On the other hand, we can penalize (1.6) by replacing the ambiguous boundary
condition on f xn+1 = 0g, by considering solutionsu" with the Neumann boundary
condition u"

xn +1
= " � 1 minf 0; u � ' g on f xn+1 = 0g. By letting " # 0, u" converges

to a solution to our problem.

1.3 Relation with the fractional obstacle problem

Let us consider the thin obstacle problem (1.6) posed in the wholeRn+1 , for some
smooth obstacle' : Rn ! R with compact support. That is, we denoteRn+1

+ =
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Rn+1 \ f xn+1 > 0g and consider a solution to
8
>>>><

>>>>:

� u = 0 in Rn+1
+

u(x0; 0) � ' (x0) for x0 2 Rn

@xn +1 u(x0; 0) = 0 if u(x0; 0) > ' (x0)
@xn +1 u(x0; 0) � 0 if u(x0; 0) = ' (x0)

u(x) ! 0 asjxj ! 1 :

(1.13)

If we denote by �u : Rn ! R the restriction of u to f xn+1 = 0g, then we can
simply reformulate the problem in terms of �u instead ofu, given that u is just the
harmonic extension (vanishing at in�nity) of �u to Rn+1

+ . That is, by means of the
Poisson kernel in the half-space,

u(x0; xn+1 ) = [ P(xn+1 ; �) � u] (x0) = cn

Z

Rn

xn+1 �u(y0) dy0

(x2
n+1 + jx0 � y0j2)

n +1
2

for some dimensional constantcn . Thus, after a careful computation and taking
limits xn+1 # 0, one obtains

� @xn +1 u(x0; 0) = cnPV
Z

Rn

�u(x0) � �u(y0)
jx0 � y0jn+1

dy0 =: ( � �)
1
2 �u(x0);

where the integral needs to be understood in the principal value sense. We have
introduced here an integro-di�erential operator, acting on �u, (� �)

1
2 , known as the

fractional Laplacian of order 1 (in the sense that (� �)
1
2 (�v(r �)) = r (( � �)

1
2 �v)(r �)).

Let us very brie
y justify the choice of notation (� �)
1
2 in terms of the discussion

above. Given a smooth (say,C2) function �u, (� �)
1
2 �u is the normal derivative of its

harmonic extension. If one repeats this procedure, and takes the harmonic extension
of (� �)

1
2 �u, it is simply @xn +1 u. Thus, (� �)

1
2 (� �)

1
2 �u = @2

xn +1
u = � � x0�u, where we

are using the fact that � u = 0 (up to the boundary), and we denote � = � 0
x + @2

xn +1
.

In all, problem (1.13) can be rewritten in terms of �u as
8
>><

>>:

�u � ' in Rn

(� �)
1
2 �u = 0 if u > '

(� �)
1
2 �u � 0 if u = '

�u(x0) ! 0 asjx0j ! 1 ;

(1.14)

which is the formulation of the classical (or thick) global obstacle problem, with
obstacle' and operator (� �)

1
2 , also referred to asfractional obstacle problem. Notice

that now, we are considering a function �u that remains above the obstacle' in the
whole domain (compared to before, where we only needed this condition imposed
on a lower dimensional manifold).

Similarly, one can consider the fractional obstacle problem in a bounded domain

 � Rn with a (smooth) obstacle ' : 
 ! R by imposing exterior boundary
conditions with su�cient decay, �g : Rn n 
 ! R,

8
>><

>>:

�u � ' in 

(� �)

1
2 �u = 0 in 
 \ f u > ' g

(� �)
1
2 �u � 0 in 
 \ f u = ' g
�u = �g in Rn n 
 :

(1.15)
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Thus, in order to study the solution to (1.15), by taking its harmonic extension �u,
it is enough to study the solutions to (1.6).

Finally, another characterization of the fractional Laplacian, (� �)
1
2 , is via Fourier

transforms. In this way, one can also characterize (up to a constant) general frac-
tional Laplacians of order 2s, with 0 < s < 1, as

F ((� �) s �u)( � ) = j� j2sF (�u)( � );

whereF denotes the Fourier transform. The operator, which now has order 2s, can
be explicitly written as

(� �) s �u(x0) = cn;sPV
Z

Rn

�u(x0) � �u(y0)
jx0 � y0jn+2 s

dy0:

In this way, one can consider general obstacle problems with nonlocal operator
L = ( � �) s

8
>><

>>:

�u � ' in 

L �u = 0 in 
 \ f u > ' g
L �u � 0 in 
 \ f u = ' g

�u = �g in Rn n 
 :

(1.16)

(See, e.g., [Sil07].) As we have seen, the fractional Laplacian (� �)
1
2 can be recovered

as the normal derivative of the harmonic extension towards one extra dimension (cf.
(1.15)-(1.6)). Ca�arelli and Silvestre showed in [CS07] that the fractional Laplacian
of order (� �) s can also be recovered by extending through suitable operators. Thus,
if one considers the operator

Lau := div( jxn+1 jar u); a = 1 � 2s 2 (� 1; 1);

then the even a-harmonic extension of the solution �u to (1.16) (that is, u with
Lau = 0 in xn+1 > 0 and u(x0; xn+1 ) = u(x0; � xn+1 )) solves locally a problem of the
type 8

<

:

u � ' on B1 \ f xn+1 = 0g
Lau = 0 in B1 n (f xn+1 = 0g \ f u = ' g)
Lau � 0 in B1;

(1.17)

that is, a thin obstacle problem with operatorLa, or a weighted thin obstacle problem
(cf. (1.10)) with A2-Muckenhoupt weight.

It is for this reason that many times one studies the weighted thin obstacle
problem (1.17) with a 2 (� 1; 1) (see [CS07, CSS08]). For the sake of simplicity and
readability, in this introduction we will always assumea = 0, but most of the results
mentioned generalize to anya 2 (� 1; 1) accordingly, and therefore, they also apply
to solutions to the fractional obstacle problem (1.16).

Fractional obstacle problems such as (1.16), as well as many of its variants (with
more general non-local operators, with a drift term, in the parabolic case, etc.), have
been a very proli�c topic of research in the last years (see [CF13, PP15, GPPS17,
DGPT17, CRS17, BFR18b, FR18] and references therein).
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1.3.1 The fractional Laplacian and L�evy processes

Integro-di�erential equations arise naturally in the study of stochastic processes with
jumps, namely, L�evy processes. The research in this area is attracting an increasing
level of interest, both from an analytical and probabilistic point of view, among oth-
ers, due to its applications to multiple areas: �nance, population dynamics, physical
and biological models, etc. (See [DL76, Mer76, CT04, Ros16, Ros18] and references
therein.) In�nitesimal generators of L�evy processes are integro-di�erential operators
of the form

Lu = b� r u + tr ( A � D 2u) +
Z

Rn
f u(x + y) � u(x) � y � r u(x)� B 1 (y)g � (dy); (1.18)

for some L�evy measure� such that
R

minf 1; jyj2g� (dy) < 1 . The simplest (non-
trivial) example of such in�nitesimal generators is the fractional Laplacian intro-
duced above, which arises as in�nitesimal generator of a stable and radially sym-
metric L�evy process.

In particular, obstacle type problems involving general integro-di�erential oper-
ators of the form (1.18) appear when studying the optimal stopping problem for a
L�evy process: consider a particle located atX t at time t � 0, moving according a
L�evy process inside a domain 
, and let ' be a pay-o� function de�ned in 
, and
�g an exterior condition de�ned in Rn n 
. At each time we can decide to stop the
process and be paid' (X t ) or wait until the particle reaches a region where' has
a higher value. Moreover, if the particle suddenly jumps outside of 
, we get paid
�g(X t ). The goal is to maximize the expected value of money we are being paid. We
refer the interested reader to the aforementioned references as well as [Pha97] and
the appendix of [BFR18] for the jump-di�usion optimal stopping problem, as well
as [LS09, Eva12, FR20] for the local (Brownian motion) case.

1.4 Regularity of the solution

Once existence and uniqueness is established for solutions to (1.6), the next question
that one wants to answer is:

How regular is the solutionu to (1.6)?

Of course, its regularity is expected to depend on how smooth is the obstacle' . We
will assume that it is as smooth as needed, so that we do not have to worry about
it at this point.

Regularity questions for solutions to the thin obstacle problem were �rst inves-
tigated by Lewy in [Lew68], where he showed, for the casen = 1, the continuity
of the solution of the Signorini problem. He also gave the �rst proof related to the
structure of the free boundary, by showing, also inn = 1, that if the obstacle ' is
concave, the coincidence setf u = ' g consists of, at most, one connected interval.

The continuity of the solution for any dimension follows from classical arguments.
One �rst shows that the coincidence setf u = ' g is closed, and then one uses the
following fact for harmonic functions: ifC � 
 is closed, and � v = 0 in 
 n Cand v
is continuous onC, then v is continuous in 
.
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Rather simple arguments also yield that, in fact, the solution is Lipschitz. Indeed,
if one considers the solutionu to the problem (1.10), and we de�neh 2 Lip( B1) as
the solution to

8
<

:

� h = 0 in B1 n f xn+1 = 0g
h = �k ukL 1 (B 1 ) on @B1
h = ' on B1 \ f xn+1 = 0g;

then u is a solution to the classical (thick) obstacle problem withh (which is Lips-
chitz) as the obstacle. In order to close the argument, we just notice that solutions
to the thick obstacle problem with Lipschitz obstacles are Lipschitz, sou is Lip-
schitz as well. This last step is not so immediate, we refer the reader to [AC04,
Theorem 1] or [Fer16, Proposition 2.1] for two di�erent ways to conclude this rea-
soning. These �rst regularity properties were investigated in the early 1970's (see
[Bei69, LS69, Kin71, BC72, GM75]).

In general, we do not expect solutions to (1.10) to be better than Lipschitz.
Indeed, acrossf xn+1 = 0g on contact points, we have that normal derivatives can
change sign, as seen by taking the even extension to (1.6). Nonetheless, we are
interested in the regularity of the solution in either side of the obstacle. The fact
that normal derivatives jump is arti�cial , in the sense that it does not come from the
equations, but from the geometry of the problem. We see that this is not observed
in (1.6), where the solution could, a priori, be better than Lipschitz, and it also does
not appear when studying the solution restricted tof xn+1 = 0g, as in the situations
with the fractional obstacle problem (1.15).

1.4.1 C1;� regularity

The �rst step to upgrade the regularity of solutions to (1.6) was taken by Frehse in
[Fre77] in 1977, where he proved that tangential derivatives ofu are continuous up
to f xn+1 = 0g, thus showing that the solution isC1 in B +

1 , up to the boundary.
Later, in 1978 Richardson proved that solutions areC1;1=2 for n = 1 in [Ric78];

whereas, in parallel, Ca�arelli showed in [Caf79] that solutions to the Signorini
problem areC1;� for some 0< � � 1

2 up to the boundary on either side (alterna-
tively, tangential derivatives are H•older continuous). In order to do that, Ca�arelli
started showing the semiconvexity of the solution in the directions parallel to the
thin obstacle. We state this result here for future convenience.

Proposition 1.1 ([Caf79]). Let u be any weak solution to(1.6), and let ' 2
C1;1(B 0

1). Let e 2 Sn be parallel to the thin space,e�en+1 = 0. Then, u is semiconvex
in the e direction. That is,

inf
B 1=2

@2
eeu � � C(kukL 2 (B 1 ) + [ r ' ]C0;1 (B 0

1 ));

for some constantC depending only onn.

As a (not immediate) consequence, Ca�arelli deduced theC1;� regularity of so-
lutions.
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Theorem 1.2 ([Caf79]). Let u be any weak solution to(1.6), and let ' 2 C1;1(B 0
1).

Then, u 2 C1;� (B +
1=2) and

kuk
C1;� (B +

1=2 )
� C

�
kukL 2 (B +

1 ) + [ r ' ]C0;1 (B 0
1 )

�
;

for some constants� > 0 and C depending only onn.

Remark 1.3. In fact, Ca�arelli in [Caf79] pointed out how to deal with other smooth
operators coming from variational inequalities with smooth coe�cients. Thus, in
(1.6) one could consider other divergence form operators other than the Laplacian,
with smooth and uniformly elliptic coe�cients.

Remark 1.4. A posteriori, one can lower the regularity assumptions on the obstacle,
the coe�cients, and the lower dimensional manifold. We refer to [RuSh17] for a
study in this direction, with C1;� obstacles,C0;� coe�cients (in divergence form),
and with the thin obstacle supported on aC1;
 manifold.

The fact that the regularity cannot be better than C1;1=2 is due to the simple
counter-example,

u(x) = Re
�
(x1 + i jxn+1 j)3=2

�
(1.19)

which in (x1; xn+1 )-polar coordinates can be written as

~u(r; � ) = r 3=2 cos
�

3
2 �

�
:

The function u is a solution to the Signorini problem: it is harmonic forjxn+1 j > 0,
the normal derivative @xn +1 vanishes at� = 0, and has the right sign at � = � .

It was not until many years later that, in [AC04], Athanasopoulos and Ca�arelli
showed the optimalC1;1=2 regularity of the solution in all dimensions. That is, in
the previous theorem� = 1

2 , and by the example above, this is optimal. We leave
the discussion of the optimal regularity for the next section, where we deal with the
classi�cation of free boundary points.

Historically, the classi�cation of the free boundary was performedafter having
established the optimal regularity. In the next section we show that this was not
needed, and in fact one can �rst study the free boundary, and from that deduce the
optimal regularity of the solution.

1.5 Classi�cation of free boundary points

The thin obstacle problem, (1.6) or (1.10), is afree boundary problem, i.e., the
unknowns of the problem are the solution itself, and the contact set

�( u) :=
�

x0 2 Rn : u(x0; 0) = ' (x0)
	

� f 0g � Rn+1 ;

whose topological boundary in the relative topology ofRn , which we denote �(u) =
@Rn �( u) = @f x0 2 Rn : u(x0; 0) = ' (x0)g � f 0g, is known as thefree boundary.

After studying the regularity of the solution, the next natural step in understand-
ing the thin obstacle problem is the study of the structure and regularity of the free
boundary. This is also related to the optimal regularity question presented above,
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since one expects that theworst points in terms of regularity lie on the boundary
of the contact set.

Let us suppose, for simplicity, that we have a zero obstacle problem,' � 0.
Notice that, if the obstacle ' is analytic, we can always reduce to this case by
subtracting an even harmonic extension of' to the solution1. This is not possible
under lower regularity properties (in particular, this does not include the case where
' 2 C1 , see Section 1.9).

Our problem is
8
<

:

u � 0 on B1 \ f xn+1 = 0g
� u = 0 in B1 n (f xn+1 = 0g \ f u = 0g)
� u � 0 in B1;

(1.20)

and the contact set is

�( u) = f (x0; 0) 2 Rn+1 : u(x0; 0) = 0g:

In order to study a free boundary point,x � 2 �( u), one considersblow-upsof
the solution u around x � . That is, one looks at rescalings of the form

ur;x � (x) =
u(x � + rx )

� R
@Br (x � ) u2

� 1
2

: (1.21)

The limit of such rescalings, asr # 0, gives information about the behaviour of
the solution around the free boundary pointx � . Thus, classifying possible blow-up
pro�les as r # 0 around free boundary points will help us better understand the
structure of the free boundary. Notice that, by construction, the blow-up sequence
(1.21) is trivially bounded in L2(@B1). To prove (stronger) convergence results, we
need the sequence to be bounded in more restrictive spaces (say, inW 1;2), by taking
advantage of the fact thatu solves problem (1.20).

In order to do that, a very powerful tool is Almgren's frequency function. If we
consider a solutionu to the Signorini problem (1.20) and take the odd extension
(with respect to xn+1 ), we end up with a two-valued map that is harmonic on
the thin space (and has two branches). Almgren studied in [Alm00] precisely the
monotonicity of the frequency function for multi-valued harmonic functions (in fact,
Dirichlet energy minimizers), and thus, it is not surprising that such tool is also
available in this setting.

Let us de�ne, for a free boundary pointx � 2 �( u),

N (r; u; x � ) :=
r

R
B r (x � ) jr uj2

R
@Br (x � ) u2

:

We will often denote N (r; u) whenever we takex � = 0. Notice that N (�; u r ) =
N (r�; u ), where ur := ur; 0 (see (1.21)). Then, we have the following.

1If the obstacle ' is analytic, then ' has a harmonic extension toB +
1 , and its even extension

in the whole B1 is harmonic as well. Thus, the function u � ' solves a thin obstacle problem with
zero obstacle. This is no longer true if' is not analytic (not even when ' 2 C1 ), and in such
situation one needs to adapt the arguments. However, the ideas are the same.
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Lemma 1.3. Let u be a solution to (1.20), and let us assume0 2 �( u). Then,
Almgren's frequency function

r 7! N (r; u) =
r

R
B r

jr uj2
R

@Br
u2

is nondecreasing. Moreover,N (r; u) is constant if and only if u is homogeneous.

Proof. We very brie
y sketch the proof. By scaling (N (�; u r ) = N (r�; u )) it is enough
to show that N 0(1; u) � 0. Let us denote

D(r; u) =
1

r n+1

Z

B r

jr uj2 = r 2
Z

B 1

jr u(r �)j2; H (r; u) =
1
r n

Z

@Br

u2 =
Z

@B1

u(r �)2;

so that N (r; u) = D (r;u )
H (r;u ) and N 0(1; u) = D (1;u)

H (1;u)

�
D 0(1;u)
D (1;u) � H 0(1;u)

H (1;u)

�
. Now notice that

D 0(1; u) = 2
Z

B 1

r u � r (x � r u) dx = 2
Z

@B1

u2
� � 2

Z

B 1

� u(x � r u) dx;

whereu� denotes the outward normal derivative toB1. Sinceu is a solution to the
Signorini problem, either � u = 0 or u = 0 and � u > 0 (in which case,x � r u = 0 by
C1 regularity of the solution). Thus, the second term above vanishes. On the other
hand, we have that

H 0(1; u) = 2
Z

@B1

uu� and D(1; u) =
Z

B 1

jr uj2 =
Z

@B1

uu� ;

where in the last equality we have used again thatu solves the Signorini problem,
u� u � 0. Thus,

N 0(1; u) = 2
D(1; u)
H (1; u)

 R
@B1

u2
�R

@B1
uu�

�

R
@B1

uu�R
@B1

u2

!

� 0;

by Cauchy-Schwarz inequality. Equality holds if and only ifu is proportional to u�

on @Br for every r (that is, u is homogeneous).

And from Lemma 1.3 we have the following.

Lemma 1.4. Let u be a solution to(1.20), and let us assume0 2 �( u). Let � :=
N (0+ ; u), and let

' (r ) :=
Z

@Br

u2:

Then, the function r 7! r � 2� ' (r ) is nondecreasing. Moreover, for every" > 0 there
exists somer � = r � (" ) such that if r < �r � r � (" ) � 1,

' (�r ) � � 2(� + " ) ' (r ):
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Proof. Notice that by Lemma 1.3,� is well-de�ned. By di�erentiating

d
dr

�
r � 2� ' (r )

�
= 2r � 2� � n� 1

�
r

Z

B r

jr uj2 � �
Z

@Br

u2

�
� 0;

where we are also using the monotonicity ofN (r; u) from Lemma 1.3.
On the other hand, chooser � (" ) such that N (r � ; u) � � + " . Then, just noticing

that

N (r; u) =
r
2

d
dr

log' (r ) � � + " (1.22)

for r < �r � r � and integrating in (r; �r ) we get the desired result.

As a consequence of Almgren's monotonicity formula we get the existence of
a (homogeneous) blow-up limit around free boundary points,u0. Notice that we
are not claiming the uniqueness of such blow-up, but its degree of homogeneity is
independent of the sequence.

Corollary 1.5. Let u be a solution to(1.20), and let us assume0 2 �( u). Let us
denote

ur (x) =
u(rx )

� R
@Br

u2
� 1=2

:

Then, for any sequencer k # 0 there exists a subsequencer k j # 0 such that

ur k j
! u0 strongly in L2

loc(R
n+1 ); (1.23)

r ur k j
* r u0 weakly in L2

loc(R
n+1 ); (1.24)

ur k j
! u0 strongly in C1

loc(R
n+1
+ ); (1.25)

for someN (0+ ; u)-homogeneous global solutionu0 to the thin obstacle problem with
zero obstacle,(1.20), and ku0kL 2 (@B1 ) = cn , for some dimensional constantcn > 0.

Proof. The proof of the strong convergence inL2 and weak convergence inW 1;2 is a
consequence of Lemma 1.3, which shows that the sequenceur k is uniformly bounded
in W 1;2(B1). Indeed, take any ball centered at the origin,BR � Rn . Then, using the
notation from Lemma 1.4,

Z

B R

jr ur j2 =
r 1� n

' (r )

Z

B rR

jr uj2 �
Rn� 1' (Rr )

' (r )
N (1; u) � C(R)N (1; u);

where in the last step we are using thatr is small enough together with the second
part of Lemma 1.4 with " = 1. Also notice that kur kL 2 (@B1 ) = cn , so ur is bounded
in W 1;2 for every compact set (again, by Lemma 1.4).

The homogeneity ofu0 comes from the fact that

N (�; u 0) = lim
r #0

N (�; u r ) = lim
r #0

N (r�; u ) = N (0+ ; u);

and Lemma 1.3.
Finally, the strong convergence inC1 follows from the C1;� regularity estimates

for the solution, Theorem 1.2.
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Hence, we obtain the following result, describing the structure of blow-ups at
free boundary points.

Theorem 1.6. Let u be a solution to(1.20), and let us assume0 2 �( u). Let u0

denote any blow-up at0. Then, u0 satis�es
8
<

:

u0 2 C1;�
loc (f xn+1 � 0g)

u0 solves the thin obstacle problem(1.20) in Rn+1

u0 is � -homogeneous, with� 2
�

3
2

	
[ [2; 1 ):

(1.26)

Moreover, if � = 3
2 , then u0 is (after a rotation) of the form (1.19).

Proof. The fact that u0 2 C1;�
loc (f xn+1 � 0g) solves the thin obstacle problem (1.20)

in Rn+1 comes directly from the strong convergence (1.25). Also, from Corollary 1.5,
u0 is a � := N (0+ ; u) homogeneous function. We just need to determine the possible
values� can take when� < 2.

Thus, from now on, let us assume that� < 2. We separate the rest of the proof
into two steps.

Step 1: Convexity ofu0. Let us start by showing that u0 is convex in the directions
parallel to the thin space, and thus, in particular, the restrictionu0j f xn +1 =0 g is convex.
We do so by means of the semiconvexity estimates from Proposition 1.1 applied to
u0. Indeed, by rescaling Proposition 1.1 to a ball of radiusR � 1 we get

R2 inf
B R= 2

@eeu0 � � CR� n
2 ku0kL 2 (B R ) = � CR� ku0kL 2 (B 1 ) ;

for some dimensional constantC, and for e � en+1 = 0, where in the last equality we
are using the� -homogeneity ofu0. That is, by letting R ! 1 ,

inf
B R= 2

@eeu0 � � CR� � 2ku0kL 2 (B 1 ) ! 0; as R ! 1 :

Hence,u0 is convex in the tangential directions to the thin space.

Step 2: Degree of homogeneity ofu0. From the C1 convergence of the blow-ups, it
is clear that � > 1. Let us now consider �(u0) � f xn+1 = 0g the contact set foru0,
which is a convex cone, from the convexity and homogeneity ofu0.

If �( u0) has empty interior (restricted to the thin space), then@xn +1 u0 is a
harmonic function in f xn+1 > 0g, identically zero on the thin space, and (� �
1)-homogeneous. In particular, from the sublinear growth at in�nity,@xn +1 u0 � 0
everywhere, and thusu0 � 0, a contradiction. Hence, �(u0) has non-empty interior
on the thin space.

Let us denotee 2 Sn� 1 a direction contained in the interior of �( u0) (in particu-
lar, e � en+1 = 0). Let us de�ne, w1 := @� eu0 and w2 := �j @xn +1 u0j, which are (� � 1)
homogeneous functions, harmonic inf xn+1 6= 0g.

Notice that w1 = 0 in �( u0). In particular, for any x � 2 f xn+1 = 0g, x � + te 2
�( u0) for t 2 R large enough (since �(u0) is a cone with non-empty interior ande is
a direction contained in it). Thus, from the convexity ofu0, w1 has to be monotone
along x � + te, and thus w1 � 0 on the thin space. Sincew1 is (� � 1)-homogeneous
(i.e., it has sublinear growth), and is non-negative on the thin space, there is a
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unique (� � 1)-homogeneous harmonic extension that coincides withw1 (by the
Poisson kernel), and it is non-negative as well. Hence,w1 � 0 in Rn+1 .

In addition, w2 � 0 on the thin space as well (sinceu0 solves the thin obstacle
problem), and it has sublinear growth at in�nity. That is, its harmonic extension is
itself, and thus w2 � 0 in Rn+1 . Moreover, notice thatw2 = 0 in f xn+1 = 0g n�( u0)
(in particular, w1w2 � 0 on f xn+1 = 0g).

On the one hand, we have that the restriction ofw1 to the unit sphere must be
the �rst eigenfunction of the Dirichlet problem for the spherical Laplacian with zero
data on @B1 \ �( u0) (since it is non-negative), and it has homogeneity� � 1. On the
other hand, the restriction ofw2 to the unit sphere must be the �rst eigenfunction
with zero data on @B1 \ (f xn+1 = 0g n �( u0)), and it has the same homogeneity
� � 1. Since �(u0) is a (convex) cone, it is contained in a half-space (off xn+1 = 0g),
and therefore, f xn+1 = 0g n �( u0) contains a half-space. Since the corresponding
homogeneities are the same (i.e.,� � 1), by monotonicity of eigenvalues with respect
to the domain we must have that, after a rotation, �(u0) and its complement are
equal, and hence, they are half-spaces themselves. The homogeneity for the half-
space in this situation is1

2 , so � = 3
2 , and the corresponding eigenfunction is

u0(x) = Re
�
(x1 + i jxn+1 j)3=2

�
;

as we wanted to see.

As a consequence of the previous result, we have a dichotomy for free boundary
points.

Proposition 1.7 (Classi�cation of free boundary points). Let u be a solution to
(1.20). Then, the free boundary can be divided into two sets,

�( u) = Reg(u) [ Deg(u):

The set of regular points,

Reg(u) :=
�

x � 2 �( u) : N (0+ ; u; x� ) = 3
2

	
;

and the set ofdegenerate points,

Deg(u) :=
�

x � 2 �( u) : N (0+ ; u; x� ) � 2
	

:

Moreover, u 2 C1;1=2(B +
1 ) with

kuk
C1;1=2 (B +

1=2 )
� CkukL 1 (B 1 ) (1.27)

for someC depending only onn, and the set of regular points is open (in the relative
topology of the free boundary).

Proof. The classi�cation result is an immediate consequence of Corollary 1.5 and
Theorem 1.6.

For the optimal regularity, we observe that by Corollary 1.5, since the sequence
ur is uniformly bounded in r , for x � 2 �( u),

kukL 1 (B r )( x � ) � C
� Z

@Br (x � )
u2

� 1
2

� CkukL 1 (B 1 )r
3
2 ; (1.28)
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where in the last inequality we are using Lemma 1.4, together with the fact that,
by Theorem 1.6,N (0+ ; u; x� ) � 3

2 . This establishes a uniform growth of the solution
around free boundary points. Combined with interior estimates for harmonic func-
tions, this yields that u is C1;1=2 on the thin space, and thusu 2 C1;1=2(B +

1 ) with
estimates inB +

1=2.
Indeed, takey 2 f xn+1 = 0g \ f u > 0g, and let r = dist( y; �( u)). Then u is

harmonic in B r (y), and by harmonic estimates together with (1.28)

kr x0ukL 1 (B r= 2 (y)) � Cr � 1kukL 1 (B r (y)) � CkukL 1 (B 1 )r
1
2 :

In particular
kr x0ukL 1 (B r (x � )) � CkukL 1 (B 1 )r

1
2 (1.29)

for x � 2 �( u), since r x0u � 0 on the contact setf xn+1 = 0g \ f u = 0g. Take now
y1; y2 2 f xn+1 = 0g, so that we want to obtain the bound

jr x0u(y1) � r x0u(y2)j � CkukL 1 (B 1 ) jy1 � y2j
1
2 (1.30)

to get C1;1=2 regularity of u on the thin space. Notice that, sincer x0u = 0 on
f xn+1 = 0g \ f u = 0g, we can assume thaty1; y2 2 f xn+1 = 0g \ f u > 0g.

Let us supposer = dist( y1; �( u)) � dist(y2; �( u)). Then, if dist( y1; y2) � r
2 , and

sinceu is harmonic in B r (y1), by harmonic estimates we have

jr x0u(y1) � r x0u(y2)j
jy1 � y2j1=2

� [r x0u]C1=2 (B r= 2 (y1 ) � Cr � 1=2kr x0ukL 1 (B r (y1 )) � CkukL 1 (B 1 )

where in the last step we have used (1.29). On the other hand, if dist(y1; y2) � r
2 ,

from (1.29) and dist(y2; �( u)) � r ,

jr x0u(y1) � r x0u(y2)j � jr x0u(y1)j + jr x0u(y2)j

� CkukL 1 (B 1 )r 1=2 � CkukL 1 (B 1 ) jy1 � y2j1=2:

In all, (1.30) always holds, andu is C1;1=2 on f xn+1 = 0g. By standard harmonic
estimates, its harmonic extension toB +

1 is also C1;1=2 with estimates up to the
boundary f xn+1 = 0g, which gives (1.27).

Finally, we note that �( u) 3 x 7! N (r; u; x ) is continuous for everyr > 0,
and is monotone nondecreasing. Thus,N (0+ ; u; x) = inf r> 0 N (r; u; x ) is the in�mum
of a family of continuous functions, and therefore, it is upper semi-continuous. In
particular, if Deg(u) 3 xk ! x � , then N (0+ ; u; x� ) � lim supk!1 N (0+ ; u; xk) � 2,
and thus x � 2 Deg(u). The set of degenerate points closed, and the set of regular
points is open (in the relative topology of the free boundary).

1.6 Regular points

We have shown that the free boundary can be divided into two di�erent sets: regular
points, and degenerate points, according to the value of the frequency.

As we will show next, the set of regular points received this name because we
can show smoothness of the free boundary around them, [ACS08].
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Let 0 be a regular free boundary point, and consider the rescalings

ur (x) =
u(rx )

� R
@Br

u2
� 1

2

:

Since 0 is a regular point, by Theorem 1.6, there exists some sequencer j # 0 such
that, up to a rotation,

ur j ! u0 := Re
�
(x1 + i jxn+1 j)3=2

�
strongly in C1(B +

1=2): (1.31)

Notice that, on the thin space,u0 is a half-space solution of the formu0(x0; 0) =
c(x1)3=2

+ . In particular, the free boundary is a hyperplane (inf xn+1 = 0g) and thus
smooth. We want to show that the smoothness of the free boundary in the limit is
inherited by the approximating sequence,ur j , for j large enough.

Let us start by showing that the free boundary is Lipschitz. In the following
proposition, C(e1; � ) denotes a cone with axise1 an opening� > 0, in the tangential
directions,

C(e1; � ) :=
�

� 2 Rn+1 : � n+1 = 0; � � e1 � cos(� )k� k
	

:

Proposition 1.8. Let u be a solution to(1.20), and let us suppose that the origin
is a regular free boundary point,0 2 Reg(u). Suppose, also, that(1.31) holds.

Then, for any �xed � � > 0, there exists some� > 0 such that

@� u � 0 in B � , for all � 2 C(e1; � � ): (1.32)

In particular, the free boundary is Lipschitz around regular points. That is, for
some neighbourhood of the origin,�( u) is the graph of a Lipschitz functionx1 =
f (x2; : : : ; xn ) in f xn+1 = 0g.

Proof. We use that @� ur j is converging to@� u0 uniformly in B1=2. Notice that, by
assumption,@� u0 � 0, and in fact, @� u0 � c(� � ; � ) > 0 in fj xn+1 j > � g.

Thus, from the uniform convergence, for any� > 0 there exists somer � =
r � (� � ; � ) such that, if r j � r � ,

@� ur j � 0 in B3=4 n fj xn+1 j � � g
@� ur j � c(� � ) > 0 in B3=4 n

�
jxn+1 j � 1

2

	
:

(1.33)

Moreover, from the optimalC1; 1
2 regularity of solutions,

@� ur j � � c�
1
2 in B3=4 \ fj xn+1 � � g: (1.34)

Combining (1.33)-(1.34) with the fact that �( @� ur j ) = 0 in B1 n �( ur j ), and
@� ur j = 0 on �( ur j ), by standard comparison principle arguments (see [ACS08,
Lemma 5]) we deduce that there exist some� � = � � (� � ) such that if � < � � ,
@� ur j � 0 in B1=2. In particular, there exists some� (depending only on� � , but also
depending on the regular point) such that@� u� � 0 in B1. Thus, (1.32) holds.
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We �nish by showing that (1.32) implies that the free boundary is Lipschitz. We
do so by considering the two (half) cones

� � := �C (e1; � � ) \ B �= 2:

Notice that, since 02 �( u), u(0) = 0, and from u � 0 on f xn+1 = 0g together
with (1.32) we must haveu � 0 on � � , so � � � f u = 0g.

On the other hand, suppose thaty� 2 � + is such thatu(y� ) = 0. Again, by (1.32)
and the non-negativity ofu on the thin space, we haveu � 0 on y� � C (e1; � � ). But
notice that, sincey� 2 � + , 0 2 y� � C (e1; � � ), that is, 0 is not a free boundary point.
A contradiction. Therefore, we have thatu(y� ) > 0, so � + � f u > 0g.

Thus, the free boundary at 0 has a cone touching from above and below, and
therefore, it is Lipschitz at the origin. We can do the same at the other points around
it, so that the free boundary is Lipschitz.

In fact, the previous proof not only shows that the free boundary is Lipschitz,
but letting � � # 0 we are showing that it is basicallyC1. In order to upgrade the
regularity of the free boundary around regular points we use the boundary Harnack
principle.

Theorem 1.9 (Boundary Harnack Principle, [ACS08, DS19]). Let 
 � f xn+1 =
0g \ B1 be a Lipschitz domain on the thin space, and letv1; v2 2 C(B1) satisfying
� v1 = � v2 = 0 in B1 n 
 . Assume, moreover, thatv1 and v2 vanish continuously
on 
 , and v2 > 0 in B1 n 
 . Then, there exists some� > 0 such that v1

v2
is � -H•older

continuous in B1=2 n 
 up to 
 .

As a consequence, we can show that the Lipschitz part of the free boundary is,
in fact, C1;� .

Theorem 1.10 (C1;� regularity of the free boundary around regular points). Let
u be a solution to(1.20). Then, the set of regular points,Reg(u), is locally a C1;�

(n � 1)-dimensional manifold.

Proof. We just need to apply Theorem 1.9 to the right functions. Notice that, by
Proposition 1.8 we already know that around regular points, the free boundary is a
Lipschitz (n � 1)-dimensional manifold.

Let us suppose 0 is a regular point. Take �� = 1p
2

(e1 + ei ) with i 2 f 2; : : : ; ng, and
notice that in B � such that (1.32) holds (with� � = �= 4) we have thatv1 := @e1 u and
v2 := @�� u are positive harmonic functions, vanishing continuously on 
 := �( u) \ B � ,
by Proposition 1.8. Thus,v1=v2 is H•older continuous, which implies that@ei u=@e1 u
is H•older continuous, up to �( u), in B � .

We �nish by noticing that, if we take x 2 f xn+1 = 0g such that u(x) = t, then
� (x) denotes the unit normal vector to the level setf u = tg on the thin space, where

� i (x) :=
@ei u

j(@e1 u; : : : ; @en u)j
=

@ei u=@e1 u

(1 +
P n

i =2 (@ei u=@e1 u)2)1=2
:

Thus, � = ( � 1; : : : ; � n ) is H•older continuous. In particular, letting t # 0 we obtain
that the normal vector to the free boundary is H•older continuous, and therefore, the
free boundary isC1;� in B �= 2.
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It is possible to keep iterating a higher order boundary Harnack principle to
obtain higher order free boundary regularity estimates around regular points. Hence,
Theorem 1.9 also has a higher order analogy.

Proposition 1.11 (Higher order Boundary Harnack Principle, [DS15]). Let 
 �
f xn+1 = 0g\ B1 be aCk;� domain on the thin space fork � 1, and let v1; v2 2 C(B1)
satisfying � v1 = � v2 = 0 in B1 n 
 . Assume, moreover, thatv1 and v2 vanish
continuously on
 , and v2 > 0 in B1 n 
 . Then, v1

v2
is Ck;� in B1=2 n 
 up to 
 .

Moreover, if U0(x0) =
p

dist(x0; 
) , and v1 is even inxn+1 , then v1
U0

is Ck� 1;� in
B 0

1=2 n 
 up to 
 .

And from the higher order Boundary Harnack Principle we can deduce higher
order regularity of the free boundary (at regular points).

Corollary 1.12 (C1 regularity of the free boundary around regular points). Let
u be a solution to(1.20). Then, the set of regular points,Reg(u), is locally a C1

(n � 1)-dimensional manifold.

Proof. Follows analogously to the proof of Theorem 1.10 by using Proposition 1.11
instead of Theorem 1.9.

As a consequence of the previous argumentation we also get an expansion around
regular points, proving that, up to lower order terms, the solution behaves like the
half-space solution. In particular, this next theorem proves the uniqueness of blow-
ups.

Theorem 1.13 (Expansion around regular points). Let u be a solution to(1.20),
and let us assume0 2 Reg(u). Then, there exists somec > 0 and some� > 0
(possibly depending on everything) such that

u(x) = cu0(x) + o
�

jxj
3
2 + �

�
;

whereu0 is the blow-up ofu at 0 (i.e., u0(x) = Re
�
(x1 + i jxn+1 j)3=2

�
up to a rotation

in the thin space).

Proof. We here use the second part of Proposition 1.11. By taking� 2 Sn \ f xn+1 =
0g and v2 = @� u (a tangential derivative to the thin space), by Proposition 1.11 we
have

@� u
U0

2 C �

in the thin space, for some� > 0 (coming from the regularity of the free boundary),
outside of the contact set and up to the free boundary. In particular,

�
�
�
�
@� u
U0

(x0) � c0

�
�
�
� � Cjx0j � =) j @� u(x0) � c0U0(x0)j � CU0(x0)jx0j � � Cjx0j

1
2 + � ;

for some constantc0 = @� u
U0

(0). We recall that U0(x0) =
p

dist(x0; 
). By the C1;� re-

gularity of the free boundary, there exists somec� such that U0� c� @� u0 = o
�

jxj
1
2 + � 0

�

for some� 0 > 0, whereu0 is the blow-up at 0. Thus, we have that

j@ei u(x0) � ci @ei ~u0(x0)j � Cjx0j
1
2 + � 0

:
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From the local uniform convergence@� ur ! @� ~u0 we must haveci = c � 0 for all
i = 1; : : : ; n in the previous expression, where

c = lim
r #0

r � 3
2

� Z

@Br

u2

� 1
2

:

Thus,
jr x0u(x0) � cr x0u0(x0)j � Cjx0j

1
2 + � 0

:

Sincer x0u(0) = r x0u0(0) = 0, by integrating the previous expression we deduce

ju(x0) � cu0(x0)j � Cjx0j
3
2 + � 0

:

By harmonic estimates, such inequality also holds outside of the thin space. Now, if
c = 0, it means that the frequency at 0 is at least32 + � 0. This contradicts 0 being
a regular point, and thus,c > 0. This concludes the proof.

We �nish by noticing the uniqueness of blow-ups at regular points.

Corollary 1.14 (Uniqueness of blow-ups at regular points). Let u be a solution to
(1.20), and let us assume0 2 Reg(u). Then, up to a rotation,

u(r �)

r
3
2

! cu0 as r # 0;

locally uniformly, for somec > 0. Here, u0(x) = Re
�
(x1 + i jxn+1 j)3=2

�
.

Proof. This is a direct consequence of Theorem 1.13.

1.7 Singular points

In the classical (or thick) obstacle problem, all points of the free boundary have
frequency 2, and thus the classi�cation of free boundary points must be performed
di�erently: regular points are those such that the contact set has positive density,
whereas singular points are those where the contact set has zero density.

This motivates the de�nition of singular point. Whereas it is not true that all
points of positive density belong to the set Reg(u) as de�ned above, one can char-
acterize the points with zero density.

Let us start de�ning the set of singular points, which was originally studied by
Garofalo and Petrosyan in [GP09]. Letu denote a solution to the thin obstacle
problem, (1.20), then we de�ne

Sing(u) :=
�

x 2 �( u) : lim inf
r #0

H n (�( u) \ B r (x))
H n (B r (x) \ f xn+1 = 0g)

= 0
�

; (1.35)

where we recall that �( u) denotes the contact set, andH n (E) denotes the n-
dimensional Hausdor� measure of a setE.

The �rst result in this direction involves the characterization of such points.
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Proposition 1.15 (Characterization of singular points, [GP09]). Let u be a solution
to (1.20). Then, the set of singular points(1.35) can be equivalently characterized
by

Sing(u) =
�

x 2 �( u) : N (0+ ; u; x) = 2 m; m 2 N
	

:

That is, singular points are those with even frequency.

Proof. Let us suppose that 02 Sing(u) according to de�nition (1.35), and take a
sequencer j # 0 such that

H n (�( u) \ B r j )
H n (B r j \ f xn+1 = 0g)

! 0: (1.36)

Consider the sequenceur j , and after taking a subsequence if necessary, let us
assumeur j ! u0 uniformly in B1. Notice that � ur j is a non-positive measure sup-
ported on �( ur j ). By assumption, H n (�( ur j ) \ B1) ! 0. Thus, sinceur j converges
uniformly to u0, u0 has Laplacian concentrated on a set with zero harmonic capacity,
and thus, it is harmonic.

By Theorem 1.6,u0 is a global homogeneous solution to the thin obstacle prob-
lem, with homogeneity � := N (0+ ; u). In particular, being homogeneous and har-
monic, it must be a polynomial. Moreover, sinceur is even with respect tof xn+1 =
0g, so is u0. Thus, u0 is a non-zero, harmonic polynomial, even with respect to
f xn+1 = 0g and non-negative on the thin space. Its homogeneity must be even, and
thus � = 2m for somem 2 N.

Suppose now that 02 �( u) is such that N (0+ ; u) = 2 m for somem 2 N. Take
any blow-up of u at zero, u0. Then u0 is a global solution to the thin obstacle
problem, with homogeneity 2m. As a consequenceu0 must be harmonic everywhere,
and thus, an homogeneous harmonic polynomial (we refer to [Mon09, Lemma 7.6]
or [GP09, Lemma 1.3.4] for a proof of this fact).

Now, sinceu0 is non-zero even homogeneous harmonic polynomial, and is non-
zero on the thin space (by Cauchy-Kovalevskaya),H n (f u0 = 0g \ f xn+1 = 0g) = 0.
Thus, from the uniform convergenceur j ! u0, we must have that (1.36) holds.

Thus, the set of singular points consists of those points with even homogeneity.
It is then natural to de�ne

� � (u) := f x 2 �( u) : N (0+ ; u; x) = � g;

so that
Sing(u) =

[

m2 N

� 2m (u) =: � even(u):

In fact, singular points present a particularly good structure. At singular points
of order 2m, the solution to the thin obstacle problem is 2m times di�erentiable (in
the sense (1.37)) and in particular, the blow-up is unique, and belongs to the set

P2m := f p : � p = 0; x � r p = 2mp; p(x0; 0) � 0; p(x0; xn+1 ) = p(x0; � xn+1 )g;

2m-homogeneous, harmonic polynomials, non-negative on the thin space. That is,
the following result from [GP09], which we will not prove, holds.
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Theorem 1.16 (Uniqueness of blow-ups at singular points, [GP09]). Let u be a
solution to (1.20). Let x � 2 � 2m (u) for somem 2 N. Then, there exists a non-zero
polynomial px � 2 P 2m such that

u(x) = px � (x � x � ) + o(jx � x � j2m ): (1.37)

In particular, the blow-up at 0 is unique. Moreover, the mapx � 3 � 2m (u) 7! px � is
continuous.

The proof of the previous theorem is based on a Monneau-type monotonicity
formula, saying that if u has a singular points of order 2m at the origin, the following
function is non-decreasing,

r 7! M k(r; u; p2m ) =
1

r n+2 m

Z

@Br

(u � p2m )2;

for all p 2 P 2m and 0 < r < 1. From here, in [GP09] they establish �rst non-
degeneracy at singular points, and then the uniqueness of a blow-up. The continuity
with respect to the point then follows by a compactness argument.

Theorem 1.16 establishes a connection between singular points and their blow-
ups. This also allows to separate between di�erent singular points according to \how
big" the contact set is around them. We already know it has zeroH n -density. In
fact, the contact set around singular points has the same \size" as the translation
invariant set of the blow-up. Thus, we can establish a further strati�cation within
the set of singular points, according to the size of the translation invariant set (which
is a subspace) of the blow-up.

Given a solution to the thin obstacle problem, (1.20),u, and givenx 2 �( u), let
us denote bypx any blow-up ofu at x. In particular, if x is a singular free boundary
point, px 2 P 2m is uniquely determined by the result above.

Let us denote byL(p) the translation invariant set for p, wherep is a blow-up,

L(p) :=
�

� 2 Rn+1 : p(x + � ) = p(x) for all x 2 Rn+1
	

=
�

� 2 Rn+1 : � � r p(x) = 0 for all x 2 Rn+1
	

;

where we recall that blow-upsp are homogeneous. Then, if we denote

� `
2m := f x 2 � 2m : dim L(px ) = `g; ` 2 f 0; : : : ; n � 1g; (1.38)

we have

Sing(u) = � even(u) =
[

m2 N

� 2m =
[

m2 N

n� 1[

`=0

� `
2m :

As a consequence of Theorem 1.16, combined with Whitney's extension theorem
and the implicit function theorem, one can prove the following result regarding the
structure of the singular set.

Theorem 1.17 ([GP09]). Let u be a solution to(1.20). Then, the set� `
2m (u) (see

(1.38)) for ` 2 f 0; : : : ; n � 1g, is contained in a countable union ofC1 `-dimension
manifolds.
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Notice that the fact that each stratum of the singular set is contained in countable
union of manifolds (rather than a single manifold) is unavoidable: there could be
accumulation of lower-order points (say, of order 2) to higher order points (say, of
order 4).

On the other hand, the previous result can also be applied to the whole singular
set: Sing(u) can be covered by a countable union ofC1 (n� 1)-dimensional manifolds.
The fact that the manifold id C1 is due to the expansion of the solution (1.37). In
[FJ20], Jhvaeri and the author show higher order expansions at singular points
x � 2 � 2m (u), analogous to (1.37), as

u(x) = px � (x � x � ) + qx � (x � x � ) + o(jx � x � j2m+1 ) (1.39)

for some (2m + 1)-homogeneous, harmonic polynomialqx � . Expansion of the form
(1.39) hold at almost every singular point, and thus, analogously to the previous
case we obtain a structure result, that holds for all singular points up to a lower
dimensional set:

Theorem 1.18 ([FJ20]). Let u be a solution to (1.20). Then, there exists a set
E � Sing(u) of Hausdor� dimension at mostn � 2 such thatSing(u)nE is contained
in a countable union ofC2 (n � 1)-dimensional manifolds.

1.7.1 The non-degenerate case

So far we have been studying the thin obstacle problem with zero obstacle. When
solving for an (even) boundary datum

g 2 C0(@B1); g(x0; xn+1 ) = g(x0; � xn+1 )

the problem looks like
8
>><

>>:

u � 0 on B1 \ f xn+1 = 0g
� u = 0 in B1 n (f xn+1 = 0g \ f u = 0g)
� u � 0 in B1

u = g on @B1;

(1.40)

We had reduced to this problem from (1.6) by subtracting the harmonic even
extension of the analytic obstacle' . Alternatively, from (1.40) we can reduce to the
case of zero boundary data by subtracting the harmonic extension ofg to the unit
ball. Thus, we obtain a problem of the form

8
>><

>>:

v � ' on B1 \ f xn+1 = 0g
� v = 0 in B1 n (f xn+1 = 0g \ f v = ' g)
� v � 0 in B1

v = 0 on @B1;

(1.41)

that is, a thin obstacle problem with obstacle' . Problems (1.40) and (1.41) are the
same when �

� ' = 0 in B1

' = � g on @B1:
and v = u + ': (1.42)
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In this setting, we say that problem (1.41) with ' 2 C3;1(B1 \ f xn+1 = 0g) is
non-degenerate if

� x0' � � c� < 0 in B1 \ f xn+1 = 0g \ f ' > 0g; ? 6= f ' > 0g; (1.43)

where � x0 denotes the Laplacian in the �rstn coordinates (Laplacian along the thin
space). The last condition above is to avoid having a non-active obstacle. Alterna-
tively, in terms of problem (1.40) we have

(1.40) is non-degenerate def.() ' g :
�

� ' g = 0 in B1

' g = � g on @B1:
satis�es (1.43): (1.44)

In particular, when we deal with concave obstacles, we say that our problem is
non-degenerate. In [BFR18], Barrios, Figalli, and Ros-Oton show that, under a non-
degeneracy assumption, we have a better characterization of free boundary points.

Theorem 1.19 ([BFR18]). Let u be a solution to(1.40), and suppose that the non-
degeneracy condition holds,(1.43). Then, there exists a constant�c (depending onc� )
such that for anyx � 2 �( u) \ B1=2,

sup
B r (x � )

u � �c r2;

for all r 2 (0; 1
4). In particular, if (1.43) holds, then

�( u) = Reg(u) [ � 2(u);

i.e., the free boundary consists only of regular points and singular points of order 2.

Proof. We prove it for v satisfying (1.41) and the proof follows by the transformation
(1.42) with ' = ' g as in (1.43).

Let us de�ne for �x = (�x0; 0) 2 B1=2 \ f xn+1 = 0g \ f u > ' g,

w�x (x0; xn+1 ) = v(x0; xn+1 ) � ' (x0) �
c�

2n + 2

�
jx0 � �x0j2 + x2

n+1

�
;

wherec� is the constant in (1.43). Notice that, since �v = 0 in outside of the contact
set �( v),

� w�x = � � x0' � c� � 0; in B r (�x) n �( v):

On the other hand, w�x (�x0; 0) > 0 and w < 0 on �( v). By maximum principle, we
must have sup@Br (�x) w�x > 0: Letting �x ! x � 2 �( u) we deduce

sup
@Br (x � )

wx � � 0;

which implies the desired result.
Finally, since the growth at the free boundary is at least quadratic, there cannot

be any blow-up at a free boundary point with homogeneity greater than 2.

In this case, therefore, the non-regular part of the free boundary consists, exclu-
sively, of singular points of order 2. In particular, in Theorem 1.17 we have instead a
singleC1 `-dimensional manifold covering the whole of �̀2m (u). We can also establish
a more re�ned version of Theorem 1.18,
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Theorem 1.20 ([FJ20]). Let u be a solution to(1.20), and suppose that the non-
degenerate condition(1.43) holds. Then,

(i) � 0
2(u) is isolated in Sing(u) = � 0

2(u) [ � � � [ � n� 1
2 (u).

(ii) There exists an at most countable setE1 � � 1
2(u) such that� 1

2(u) nE1 is locally
contained in a single one-dimensionalC2 manifold.

(iii) For each ` 2 f 2; : : : ; n � 1g, there exists a setEm � � `
2(u) of Hausdor�

dimension at most` � 1 such that � `
2(u) n E` is locally contained in a single

`-dimensionalC2 manifold.

1.8 Other points

The free boundary contains, in general, other points di�erent fromregular and
singular. Even in two dimensions (n = 1) one can perform the simple (see [FoSp18,
Proposition A.1]) task of manually classifying all the possible homogeneities that an
homogeneous solution to the thin obstacle problem (with zero obstacle) can present.

Indeed, forn = 1 homogeneous solutions to the thin obstacle problem must have
homogeneity belonging to the set

�
2m; 2m �

1
2

; 2m + 1
�

m2 N

:

Solutions with homogeneity 2m are harmonic quadratic polynomials, non-negative
on the thin space. On the other hand, homogeneous solutions with homogeneity
2m � 1

2 or 2m + 1 are of the form

Re
�

(x1 + i jx2j)2m� 1
2

�
and Im

�
(x1 + i jx2j)2m+1

�
; for m 2 N:

Notice that when the homogeneity is 2m� 1
2 we havehalf-spacesolutions on the thin

space. Indeed, in this case, restricting tox2 = 0, solutions are of the formu(x1; 0) =

(x1)
2m� 1

2
+ . On the other hand, solutions with odd homogeneity are identically zero on

the thin space (in particular, this type of homogeneous solution isnot an example
of a free boundary point with odd homogeneity, and in fact, they do not exist in
dimensionn = 1).

Given that no other homogeneities can appear in dimension 2, one can show that,
in any dimension, the previous homogeneities comprise all of the free boundary,
up to a lower dimensional set. It is for this reason that we separate the possible
homogeneities of the free boundary as

�( u) = � 3=2(u) [ � even(u) [ � odd(u) [ � half (u) [ � � (u); (1.45)

where � 3=2(u) = Reg(u) are regular points; �even(u) = Sing(u) are singular points;
� odd(u) denotes the set of points with odd homogeneity, 2m + 1 for m 2 N; � half (u)
are the points with homogeneity 2m+ 3

2 for m 2 N; and � � (u) are the rest of possible
free boundary points (in particular, � � (u) = ? if n = 1, dim H (� � (u)) � n � 2 in
general).
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1.8.1 The set � odd(u)

The free boundary points belonging to �odd(u) are those with odd homogeneity,
2m + 1 for m 2 N. They are analogous to the singular set, in the sense that in this
case, points belonging to �odd(u) can also be characterized via the density of the
contact set: these points have density 1.

They are not known to exist (no single example has been constructed so far).
Notice that the homogeneous solutions presented above are vanishing identically on
the thin space, and thus they do not have a free boundary.

In fact, in dimension n = 1, if such a point existed its blow-up would be of the
form

Im
�
(x1 + i jx2j)2m+1

�
; for m 2 N: (1.46)

(Think, for example, of the x2-even extension of the harmonic polynomialx3
2 �

3x2
1x2 for x2 � 0.) However, solutions of the form (1.46) have non-vanishing normal

derivative on the thin space, whereas a free boundary point can be approximated
by points with vanishing normal derivative. From theC1 convergence of blow-ups,
we reach a contradiction: free boundary points with odd homogeneity do not exist
in dimensionn = 1.

The set of points belonging to �odd(u) has been studied in a recent work by
Figalli, Ros-Oton, and Serra [FRS19, Appendix B].

Proposition 1.21 (Characterization of points in � odd(u), [FRS19]). Let u be a
solution to (1.20). Then, the set of points with odd homogeneity,� odd(u), can be
equivalently characterized by

� odd(u) :=
�

x 2 �( u) : lim sup
r #0

H n (�( u) \ B r (x))
H n (B r (x) \ f xn+1 = 0g)

= 1
�

; (1.47)

That is, points with odd homegeneity are those where the contact set has density 1.

Proof. Let us suppose that 02 �( u) ful�lls de�nition (1.47), that is, we can take a
sequencer j # 0 such that

H n (�( u) \ B r j )
H n (B r j \ f xn+1 = 0g)

! 1: (1.48)

Consider the sequenceur j , and after taking a subsequence if necessary, let us
assumeur j ! u0 uniformly in B1. In particular, u0 vanishes identically on the thin
space. Since it is homogeneous, and harmonic onxn+1 > 0, it must be a polyno-
mial. It cannot have even homogeneity, since by the discussion on singular points it
would have zero density. Thus, it is an homogeneous harmonic polynomial with odd
homogeneity inxn+1 � 0 (and extend evenly in the whole space). Notice also that
it cannot be linear (on each side) because the minimum possible homogeneity is3

2 .
On the other hand, suppose that 02 �( u) is such that N (0+ ; u) = 2 m + 1

for somem 2 N. Take any blow-up ofu at zero, u0. Then u0 is a global solution
to the thin obstacle problem, with homogeneity 2m + 1. Let us de�ne the global
(homogeneous) solution to the thin obstacle problem given byP,

P(x) =
nX

i =1

Im
�
(x i + i jxn+1 j

� 2m+1
;
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so that @+
xn +1

P < 0 in f xn+1 = 0g n f0g. Using (1.12), we obtain that for any test
function 	 = 	( jxj) (so that r 	 = 	 0(jxj) x

jx j ),

2
Z

f xn +1 =0 g
@+

xn +1
P 	 u0 =

Z
� P	 u0 = �

Z
(r P � r u0	 + r P � r 	 u0)

=
Z

(P� u0	 + Pr u0 � r 	 � u0r P � r 	)

=
Z �

Pr u0 � x
	 0(jxj)

jxj
� u0r P � x

	 0(jxj)
jxj

�
= 0;

where we have used thatP� u0 � 0 everywhere, andr u0 � x = (2 m +1) u0, r P � x =
(2m + 1) P. Sinceu0 � 0 on the thin space, and@+

xn +1
P < 0 outside of the origin on

the thin space, we deduceu0 � 0 on the thin space.
As a consequenceu0 must be harmonic everywhere, vanishing on the thin space.

Thus, it is an homogeneous harmonic polynomial with degree 2m + 1. In particular,
@xn +1 u0 is a non-zero 2m-homogeneous polynomial onRn+1

+ . From the C1 conver-
gence ofur j ! u0 (that is, the uniform convergence of@xn +1 ur j to @xn +1 u0) we deduce
(1.47).

We also have a result analogous to Theorem 1.16 at odd-frequency points. Let
us start by de�ning for m � 1

Q2m+1 :=
�

q : q solves the thin obstacle problem (1.20) inRn+1 ;

x � r q = (2 m + 1) q; q(x0; xn+1 ) = q(x0; � xn+1 )
	

;

namely, the set of (2m+1)-homogeneous even solutions to the thin obstacle problem
(notice that by the proof of Proposition 1.21, in particular,q(x0; 0) � 0). Then, we
have

Theorem 1.22 (Uniqueness of blow-ups at odd-frequency points, [FRS19]). Let u
be a solution to(1.20). Let x � 2 � 2m+1 (u) for some m 2 N. Then, there exists a
non-zeroqx � 2 Q 2m+1 such that

u(x) = qx � (x � x � ) + o(jx � x � j2m+1 ): (1.49)

In particular, the blow-up at 0 is unique. Moreover, the set� 2m+1 (u) is (n � 2)-
recti�able.

1.8.2 The set � half (u)

The free boundary points belonging to �half (u) are those with homogeneity 2m + 3
2

for m 2 N.
They do exist: the homogeneous solutions are themselves examples of solutions to

the thin obstacle problem with free boundary points belonging to �half (u). Whereas
they are currently not very well understood, they seem to exhibit a similar behaviour
to regular points. However, the fact that they are not an open set (in the free
boundary), makes it harder to study regularity properties of the free boundary
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around them (there could even be, a priori, singular points of order 2 converging to
a point of order 7

2).
The following proposition shows that points in �half (u) can present a behaviour

similar to that of regular points.

Proposition 1.23 ([FR19]). Given aC1 domain 
 � B1\f xn+1 = 0g, and m 2 N,
there exists' 2 C1 , and g 2 C0(@B1), such that the solutionu to the thin obstacle
problem (1.10) with obstacle' and boundary datag has contact set�( u) = 
 , and
all the points of the free boundary�( u) have frequency2m + 3

2 .

The proof of this proposition is an explicit computation based on a previous
result by Grubb, [Gru15].

1.8.3 The set � � (u)

We call � � (u) the rest of free boundary points. That is, points with homogeneity
not belonging to the setf 2m; 2m + 1; 2m � 1

2gm2 N,

� � (u) :=

(

x � 2 �( u) : N (0+ ; u; x� ) 2 (2; 1 ) n
[

m2 N

�
2m; 2m + 1; 2m �

1
2

� )

:

(1.50)
It is currently not known whether such points exist. Nowadays, the only result in

this direction is the following by Colombo, Spolaor, and Velichkov, saying that points
with order close to 2m do not exist (except for singular points themselves). Apart
from this result, the possible existence (or not) of points with these homogeneities
is still an open problem.

Theorem 1.24 ([CSV19]). Let u be a solution to the thin obstacle problem with
zero obstacle,

8
>><

>>:

u � 0 on B1 \ f xn+1 = 0g
� u = 0 in B1 n (f xn+1 = 0g \ f u = 0g)
� u � 0 in B1

u = g on @B1;

(1.51)

Let � � (u) denote the points of order� > 0. Then,

� � (u) = ? for every � 2
[

m2 N

�
(2m � cm ; 2m + cm ) n f 2mg

�
;

for some constantscm depending only onm and n.

The goal of the rest of the subsection is to prove that, if the set �� (u) existed,
then it would be lower dimensional. That is, we will show the following proposition,
stating that points of order � 2 (2; 1 )nf 2m; 2m+1; 2m+ 3

2gm2 N aren� 2 dimensional
for general solutions to the thin or fractional obstacle problem. We do that through
a dimension reduction argument due to White, [Whi97].
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Proposition 1.25. Let u be a solution to the thin obstacle problem with zero obsta-
cle, (1.51). Let us de�ne � � (u) � �( u) by (1.50). Then

dimH � � (u) � n � 2:

Moreover, if n = 2, � � (u) is discrete.

In this proposition, dimH denotes the Hausdor� dimension of a set.
In order to prove this result, we will need two lemmas. We will use the notation

ux � (x) for x � 2 �( u) to denote translations. That is, we denote

ux � (x) = u(x0+ x0
� ; xn+1 );

so that, in particular, N (r; u; x � ) = N (r; u x � ).

Lemma 1.26. Let u be a solution to the thin obstacle problem(1.51). Let � � (u) as
in (1.50).

Let y� 2 � � (u). Then, for every" > 0 there exists some� > 0 such that for every
� 2 (0; � ], there exists an(n � 2)-dimensional linear subspaceL y� ;� of Rn � f 0g such
that
�

x 2 B � (y� )\f xn+1 = 0g : N (0+ ; ux ) � N (0+ ; uy� )� �
	

� f x : dist(x; y� + L y� ;� ) < "� g:

Proof. Let us denote� = N (0+ ; uy� ) 2 (2; 1 ) n f 2m; 2m + 1; 2m + 3
2gm2 N. Let us

proceed by contradiction. Suppose that there exist" > 0, and sequences� k # 0 and
� k # 0 such that

f x 2 B � k (y� )\f xn+1 = 0g : N (0+ ; ux ) � � � � kg 6� f x : dist(x; y� + L) < "� kg (1.52)

for every (n � 2)-dimensional linear subspaceL of Rn � f 0g.
In particular, if we denoteuy�

r = uy� (r �) and dr = r � n=2kux � kL 2 (@Br ) , then uy�
� k

=d� k

converges, up to subsequences, to somev� a global solution to the thin obstacle prob-
lem with zero obstacle, homogeneous of degree� . Let us denoteL(v� ) the invariant
set in Rn � f 0g of v� . In particular, it is a subspace of dimension at mostn � 2 (this
follows since two dimensional homogeneous solutions to the thin obstacle problem
have homogeneity belonging tof 2m; 2m + 1; 2m � 1

2gm2 N). As an abuse of notation,
let us take asL(v� ) any (n � 2)-dimensional plane containing the invariant set.

Now, by assumption (1.52) and choosingL = L(v� ), for every k 2 N there exists
somexk 2 B � k (y� ) \ f xn+1 = 0g with N (0+ ; uxk ) � � � � k such that dist(xk ; y� +
L(v� )) � "� k .

Let us denotezk = � � 1
k (xk � y� ) 2 B1(0), and notice that dist(zk ; L(v� )) � " . By

scaling, we know that

N (0+ ; uxk ) = N (0+ ; uy�
� k

( � + zk)) :

Moreover,
d� 1

� k
uy�

� k
! v� uniformly in compact sets ask ! 1 :

Thus,

� � � k = N (0+ ; uxk ) = N (0+ ; uy�
� k

( � + zk)) = N (0+ ; d� 1
� k

uy�
� k

( � + zk)) ;
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and by the upper semi-continuity of the frequency function (and after taking a
subsequence such thatzk ! z 2 B1(0)) we get that

N (0+ ; v� ( � + z)) � �;

for somez 2 B1(0) such that dist(z; L(v� )) � " . Sincev� is � -homogeneous,N (0+ ; v� ( �+
z)) � � implies that z belongs to the invariant set ofv� (see, for instance, [FoSp18,
Lemma 5.2]). This contradicts dist(z; L(v� )) � " , and we are done.

The following is a very general and standard lemma. We give the proof for
completeness. We thank B. Krummel, from whom we learned this proof.

Lemma 1.27. There exists� : (0; 1 ) ! (0; 1 ) with � (t) ! 0 as t # 0, such that
the following holds true.

Let " > 0. Let A � Rn such that for eachy 2 A and � 2 (0; � � ) there exists a
j -dimensional linear subspaceL y;� of Rn for which

A \ B � (y) � f x : dist(x; y + L y;� ) < "� g:

(Note that we do not claim thatL y;� is unique.) ThenH j + � (" )(A) = 0 .

Proof. Let � (t) = n + 1 � j for t � 1=8 and observe thatH n+1 (A) = 0. Thus it
su�ces to consider " 2 (0; 1=8).

By a covering argument, after rescaling and translating, we may assume that
A � B1(0) and 0 2 A. By assumption, there exists a subspaceL0;1 such that

A \ B1(0) � f x : dist(x; y + L0;1) < " g:

CoverL0;1 by a �nite collection of balls f B2" (zk)gk=1 ;2;:::;N wherezk 2 L0;1 for eachk
and N � C(j )" � j . Observe that f B2" (zk)gk=1 ;2;:::;N coversf x : dist(x; y + L0;1) < " g
and thus coversA \ B1(0). Throw away the balls B2" (zk) that do not intersect
A. For the remaining balls, let yk 2 A \ B2" (zk). Now f B4" (yk)gk=1 ;2;:::;N covers
A \ B1(0), yk 2 A, N � C(j )" � j , and N (4") j + � � C(j )" � . Choose� = � (" ) so that
C(j )" � � 1=2.

Now observe that we can repeat this argument withB4" (yk) in place ofB1(0) to
get a new coveringf B (4" )2 (yk;l )gl=1 ;2;:::;N k of A \ B4" (yk) with Nk(4") j + � < 1=2. Thus
f B (4" )2 (yk;l )gk=1 ;2;:::;N; l =1 ;2;:::;N k covers A with yk;l 2 A and

P N
k=1 Nk(4")2�(j + � ) <

(1=2)2. Repeating this argument for a total ofp times, we get a �nite covering of
A by M balls with centers onA, radii = (4 ")p, and M (4")p(j + � ) < (1=2)p. Thus
H j + �

(4" )p (A) � ! j + � (1=2)p for every integer p = 1; 2; 3; : : :. Letting p ! 1 , we get
H j + � (" )(A) = 0.

Thus, we can directly prove Proposition 1.25.

Proof of Proposition 1.25. We want to show that � � (u) has Hausdor� dimension
at most n � 2. Let " > 0 and de�ne, for i 2 N, Gi to be the set of all points
x � 2 � � (u) such that the conclusion of Lemma 1.26 holds true with� = 1=i, so that
� � (u) =

S
i Gi . For eachq 2 N, de�ne

Gi;q = f x � 2 Gi : (q � 1)=i < N (0+ ; ux � ) � q=ig:
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Observe that � � (u) =
S

i;q Gi;q , and for everyx � 2 Gi;q ,

Gi;q � f y : N (0+ ; uy) > N (0+ ; ux � ) � 1=ig

so that, by Lemma 1.26, for every� 2 (0; 1=i] there exists a (n � 2)-dimensional
linear subspaceL x � ;� of Rn � f 0g such that

Gi;q \ B � (x � ) � f x : dist(x; x � + L x � ;� ) < "� g:

Now, thanks to Lemma 1.27 withA = Gi;q (taking � � = 1=i uniform on Si;q ),
H n� 2+ � (" )(Gi;q ) = 0. Hence H n� 2+ � (" )(� � (u)) = 0. Since " is arbitrary, for all � > 0
we haveH n� 2+ � (� � (u)) = 0, and thus � � (u) has Hausdor� dimension at mostn � 2.

The fact that for n = 2, � � (u) is discrete, follows by similar arguments in a
standard way.

1.9 C1 obstacles

Let us suppose now that the obstacle' 2 C1 (B 0
1), and therefore, we cannot reduce

the the zero obstacle situation. Our problem is then
8
<

:

u � ' on B1 \ f xn+1 = 0g
� u = 0 in B1 n (f xn+1 = 0g \ f u = ' g)
� u � 0 in B1;

(1.53)

where, as before, we are assuming that our solution is even in thexn+1 -variable.
Let us assume that 0 is a free boundary point, 02 @Rn f u = ' g. Given � 2 N� 2,

let us consider the� -order expansion of' (x0) at 0, given by Q� (x0). In particular,
(' � Q� )(x0) = O(jx0j � +1 ). Let Qh

� (x0; xn+1 ) be the unique even harmonic extension
of Q� to B1. Let us now de�ne

�u(x0; xn+1 ) := u(x0; xn+1 ) � ' (x0) + Q� (x0) � Qh
� (x0; xn+1 ):

Then, �u solves the zero thin obstacle problem with a right-hand side,
8
<

:

�u � 0 on B1 \ f xn+1 = 0g
�� u = f in B1 n (f xn+1 = 0g \ f u = ' g)

� �� u � f in B1;

where
f (x) = � x0(Q� (x0) � ' (x0)) = O(jx0j � � 1):

Sincejf j � M jx0j � � 1 and kr ukL 1 (B 1=2 ) � M for some constantM > 0, we can
consider the generalized frequency formula,

� � (r; �u) := ( r + CM r 2)
d
dr

log max
�

H (r ); r n+2 �
	

; where H (r ) :=
Z

@Br

�u2;

(cf. (1.22)) and the constantCM depends only on the dimension andM . Then,
there exists somerM > 0 such that � � (r; �u) is non-decreasing for 0< r < r M . In
particular, � � (0+ ; �u) is well-de�ned and

n + 3 � � � (0+ ; �u) � n + 2�
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(see [CSS08, GP09]). We say that the origin is a free boundary point of order� < �
if � � (0+ ; �u) = n + 2� (in particular, as before, � � 3

2). If � = � , we say that the
origin is a free boundary point of orderat least � . At this point, all the theory
developed above for regular free boundary points and singular points, also applies
to the situation where there are non-analytic (i.e., non-zero) obstacles, by using the
new generalized frequency formula. Notice that this theory can be developed even
if the obstacle' has lower regularity thanC1 .

Finally, we say that the origin is a free boundary point of in�nite order if it is of
order at least � for all � 2 N� 2. Notice that this set of free boundary points has not
appeared until now, it did not exist in the zero obstacle case.

Intuitively, in the thin obstacle problem (1.53) a point is of order � when the
solution u detaches from the obstacle at order� on the thin space.

Thus, the free boundary for solutions to the thin obstacle problem with' 2
C1 (B 0

1), (1.53), can be split as

�( u) = � 3=2(u) [ � even(u) [ � odd(u) [ � half (u) [ � � (u) [ � 1 (u);

(cf. (1.45)), where the new set �1 (u) denotes the set of free boundary points with
in�nite order.

The set of points in � 1 (u) can be very wild. In fact, the following holds.

Proposition 1.28 ([FR19]). Let C � B 0
1=2 � Rn be any closed set. Then, there

exists an an obstacle' 2 C1 (B 0
1) and non-trivial solution u to (1.53) such that

�( u) \ B1=2 = f u = ' g \ B1=2 = C.

Proof. Take any obstacle 2 C1 (Rn ) such that supp �� B1=8( 3
4e1), with  > 0

somewhere, and take the non-trivial solution to (1.53) with obstacle .
Notice that u >  in B 0

1=2 (in particular, u 2 C1 (B1=2)). Let f C : B 0
1 ! R be

any C1 function such that 0 � f C � 1 and C = f f C = 0g.
Now let � 2 C1

c (B 0
5=8) such that � � 0 and � � 1 in B 0

1=2. Consider, as new
obstacle,' =  + � (u �  )(1 � f C) 2 C1 (B 0

1=2). Notice that u � ' � 0. Notice, also,
that for x0 2 B1=2, (u � ' )(x0) = 0 if and only if x0 2 C. Thus, u with obstacle '
gives the desired result.

That is, the contact set can, a priori, be any closed set. In particular, the free
boundary can have arbitrary Hausdor� dimension (n � " for any " > 0). It is worth
mentioning that the points constructed like this are not really acting as an obstacle
(the Laplacian around them vanishes).

1.10 Generic regularity

We have seen that, in general, the non-regular (or degenerate) part of the free
boundary can be of the same size (or even larger, in the case ofC1 obstacles) than
the regular part. This is not completely satisfactory, since we only know how to
prove smoothness of the free boundary around regular points.

It is for this reason that generic regularity results are interesting: even if there
exist solutions where degenerate points are larger than regular points, this is not
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true for a generic solution. That is, foralmost everysolution, the free boundary is
smooth up to a lower dimensional set. Let us start by de�ning what we mean by
\almost every" solution.

Let ' 2 C1 (B 0
1) and let g 2 C0(@B1) even with respect toxn+1 . Let � 2 [0; 1],

and let u� be the solution to
8
>><

>>:

u� � ' on B1 \ f xn+1 = 0g
� u� = 0 in B1 n (f xn+1 = 0g \ f u = ' g)
� u� � 0 in B1

u� = g + � on @B1:

(1.54)

That is, we consider the set of solutionsf u� g� 2 [0;1] with a �xed obstacle ' by
raising the boundary datum by� . Alternatively, we could raise (or lower) the ob-
stacle, or just make small perturbations (monotone) of the boundary value. We say
that a property holds for almost everysolution if it holds for a.e. � 2 [0; 1] for any
such construction of solutions.

Now notice that since points of order� are detaching from the obstacle with
power � , when raising the boundary datum, the larger� is, the faster the free
boundary is disappearing (and thus, the less common is that type of point). As a
consequence, establishing a quantitative characterization of this fact together with
a GMT lemma (coming from [FRS19]), one can show the following proposition. We
recall that given a solutionv to a thin obstacle problem, (1.53), we denote by �� � (v)
the set of free boundary points of order greater or equal than� .

Proposition 1.29 ([FR19]). Let ' 2 C1 (B 0
1) and letg 2 C0(@B1) even with respect

to xn+1 . Let f u� g� 2 [0;1] the family of solutions to the thin obstacle problem(1.54).
Then,

ˆ If 3 � � � n + 1, the set� � � (u� ) has Hausdor� dimension at mostn � � + 1
for almost every� 2 [0; 1].

ˆ If � > n + 1, the set � � � (u� ) is empty for all � 2 [0; 1] n E� , where E� has
Hausdor� dimension at most n

� � 1 .

ˆ The set� 1 (u� ) is empty for all � 2 [0; 1]nE, whereE has Minkowski dimension
equal to 0.

On the other hand, by means of a Monneau-type monotonicity formula one can
also show that the set

S
� 2 [0;1] � 2(u� ) (union of singular points of order 2 for all

� 2 [0; 1]) is contained in a countable union of (n � 1)-dimensionalC1 manifolds.
As a consequence,

Proposition 1.30 ([FR19]). Let ' 2 C1 (B 0
1) and letg 2 C0(@B1) even with respect

to xn+1 . Let f u� g� 2 [0;1] the family of solutions to the thin obstacle problem(1.54).
Then � 2(u� ) has dimension at mostn � 3 for a.e. � 2 [0; 1].

And �nally, combining Proposition 1.29, Proposition 1.30, and Proposition 1.25,
we get the generic regularity theorem we wanted:
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Theorem 1.31 ([FR19]). Let ' 2 C1 (B 0
1) and let g 2 C0(@B1) even with respect

to xn+1 . Let f u� g� 2 [0;1] the family of solutions to the thin obstacle problem(1.54).
Then, the setDeg(u� ) has Hausdor� dimension at mostn � 2 for a.e. � 2 [0; 1].

In particular, the free boundary is smooth up to a lower dimensional set, for
almost every solution.

The previous theorem also holds true for obstacles with lower regularity. Namely,
in the proof of the result, onlyC3;1 regularity of the obstacle is really used.

1.11 Summary

Let us �nish with a summary of the known results for the solutions to the thin
obstacle problem.

Let ' 2 C1 (B 0
1) and consider an even solution to the thin obstacle problem,

with obstacle ' ,
8
<

:

u � ' on B1 \ f xn+1 = 0g
� u = 0 in B1 n (f xn+1 = 0g \ f u = ' g)
� u � 0 in B1:

(1.55)

Then, the solution u is C1;1=2 on either side of the obstacle. That is, there exists
a constantC depending only onn such that

kukC1;1=2 (B +
1=2 ) + kukC1;1=2 (B �

1=2 ) � C
�
k' kC1;1 (B 0

1 ) + kukL 1 (B 1 )

�
:

Moreover, if we denote �(u) := f u = ' g the contact set, the boundary of �(u)
in the relative topology of Rn , @Rn �( u), is the free boundary, and can be divided
into two sets

�( u) = Reg(u) [ Deg(u);

the set of regular points,

Reg(u) :=

(

x = ( x0; 0) 2 �( u) : 0 < cr 3=2 � sup
B 0

r (x0)
(u � ' ) � Cr 3=2; 8r 2 (0; r � )

)

;

and the set of non-regular points ordegenerate points

Deg(u) :=

(

x = ( x0; 0) 2 �( u) : 0 � sup
B 0

r (x0)
(u � ' ) � Cr 2; 8r 2 (0; r � )

)

;

Alternatively, each of the subsets can be de�ned according to the order of the
blow-up (the frequency) at that point. Namely, the set of regular points are those
whose blow-up is of order32 , and the set of degenerate points are those whose blow-up
is of order � for some� 2 [2; 1 ].

The free boundary can be further strati�ed as

�( u) = � 3=2 [ � even [ � odd [ � half [ � � [ � 1 ; (1.56)

where:
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ˆ � 3=2 = Reg(u) is the set of regular points. They are an open (n � 1)-dimensional
subset of �(u), and it is C1 (see [ACS08, KPS15, DS16]).

ˆ � even =
S

m� 1 � 2m (u) denotes the set of points whose blow-ups have even homo-
geneity. Equivalently, they can also be characterised as those points of the free
boundary where the contact set has zero density, and they are often called singu-
lar points. They are contained in the countable union ofC1 (n � 1)-dimensional
manifolds; see [GP09]. Generically, however, points in �2(u) have dimension at
most n � 3, and points in � 2m (u) have dimension at mostn � 2m for m � 2; see
[FR19].

ˆ � odd =
S

m� 1 � 2m+1 (u) is, a priori, at most (n � 1)-dimensional and it is (n � 1)-
recti�able (see [FoSp18, KW13, FoSp19]), although it is not known whether it
exists. Generically, �2m+1 (u) has dimension at mostn � 2m; see [FR19].

ˆ � half =
S

m� 1 � 2m+3 =2(u) corresponds to those points with blow-ups of order72 ,
11
2 , etc. They are much less understood than regular points, although in some
situations they have a similar behaviour. The set �half is an (n � 1)-dimensional
subset of the free boundary and it is a (n � 1)-recti�able set (see [FoSp18, KW13,
FoSp19]). Generically, the set �2m+3 =2(u) has dimension at mostn � 2m � 1=2.

ˆ � � is the set of all points with homogeneities� 2 (2; 1 ), with � =2 N and
� =2 2N� 1

2 . This set has Hausdor� dimension at mostn � 2, so it is alwayssmall,
see [FoSp18, KW13, FoSp19].

ˆ � 1 is the set of points with in�nite order (namely, those points at whichu � '
vanishes at in�nite order). For generalC1 obstacles it could be a huge set, even
a fractal set of in�nite perimeter with dimension exceedingn � 1. When ' is
analytic, instead, � 1 is empty. Generically, this set is empty; see [FR19].
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C1;� estimates for the fully
nonlinear Signorini problem

We study the regularity of solutions to the fully nonlinear thin obstacle problem. We
establish localC1;� estimates on each side of the smooth obstacle, for some small
� > 0.

Our results extend those of Milakis-Silvestre [MS08] in two ways: �rst, we do
not assume solutions nor operators to be symmetric, and second, our estimates are
local, in the sense that do not rely on the boundary data.

As a consequence, we proveC1;� regularity even when the problem is posed in
general Lipschitz domains.

2.1 Introduction

The aim of this work is to study the regularity of the solutions to the Signorini or
thin obstacle problem for fully nonlinear operators.

Given a domainD � Rn , the thin obstacle problem involves a functionu : D !
R, an obstacle' : S ! R de�ned on a (n � 1)-dimensional manifoldS, a Dirichlet
boundary condition given byg : @D! R, and a second order elliptic operatorL,

8
>><

>>:

Lu = 0 in D n f x 2 S : u(x) = ' (x)g
Lu � 0 in D

u � ' on S
u = g on @D:

(2.1)

Intuitively, one can think of it as �nding the shape of a membrane with pre-
scribed boundary conditions considering that there is a very thin obstacle forcing
the membrane to be above it.

When L is the Laplacian, theC1;� regularity of solutions was �rst proved in 1979
by Ca�arelli in [Caf79]. Later, the optimal value of � was found by Athanasopoulos
and Ca�arelli in [AC04], where solutions were proved to be inC1; 1

2 on either side
of the obstacle. More recently, this has been extended to linear operators withx
dependenceL =

P
aij (x)@ij u in [Gui09, GS14, KRS16].

Here, we study a nonlinear version of problem (2.1). More precisely, we study
(2.1) with Lu = F (D 2u), a convex fully nonlinear uniformly elliptic operator. Since

41
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all of our estimates are of local character, we consider the problem inB1,
8
<

:

F (D 2u) = 0 in B1 n f u = ' g
F (D 2u) � 0 in B1

u � ' on B1 \ f xn = 0g:
(2.2)

Here, ' : B1 \ f xn = 0g ! R is the obstacle, and we assume that it isC1;1. We
study the regularity of solutions on either side of the obstacle.

We assume that

F is convex, uniformly elliptic (2.3)

with ellipticity constants 0 < � � � ; and with F (0) = 0 :

When u is symmetric, this problem was studied by Milakis and Silvestre in
[MS08], and is equivalent to

�
F (D 2u) = 0 in B +

1
maxf uxn ; ' � ug = 0 on B1 \ f xn = 0g:

(2.4)

Moreover, they also implicitly assume a symmetry condition on the operatorF , in
particular, that F (A) = F ( ~A), where ~A in = ~Ani = � A in = � Ani for i < n and
~A ij = A ij otherwise. Under this assumption, they proved interiorC1;� regularity up
to the obstacle on either side by also assuming thatu � ' + " on @B1 \ f xn = 0g,
for some" > 0. Equivalently, they assume that the coincidence set is contained in
some ballB1� � for some� > 0. This assumption is important in [MS08] to prove
semiconvexity of solutions.

Our main result, Theorem 2.1 below, extends the result of [MS08] in two ways.
First, we do not assume anything on the boundary data, so that we give a local
estimate. Second, we consider also non-symmetric solutionsu to (2.2) with operators
not necessarily satisfying any symmetry assumption, and proveC1;� regularity for
such solutions.

In the linear case, one can symmetrise solutions to (2.2), and then the study of
such solutions reduces to problem (2.4). However, in the present nonlinear setting
an estimate for (2.4) does not imply one for (2.2).

Our main result is the following, stating that any solution to (2.2) isC1;� on
either side of the obstacle, for some small� > 0.

Theorem 2.1. Let F be a nonlinear operator satisfying(2.3) and let u be any
viscosity solution to (2.2) with ' 2 C1;1. Then, u 2 C1;� (B +

1=2) \ C1;� (B �
1=2) and,

kuk
C1;� (B +

1=2 )
+ kuk

C1;� (B �
1=2 )

� C
�
kukL 1 (B 1 ) + k' kC1;1 (B 1 \f xn =0 g)

�

for some constants� > 0 and C depending only onn, � , and � .

Our proof of the semiconvexity of solutions is completely di�erent from the one
done in [MS08] and follows by means of a Bernstein's technique. On the other hand,
to prove the C1;� regularity in the non symmetric case we follow [Caf79, MS08], but
new ideas are needed. We de�ne a symmetrised solution to the problem and follow



43

the steps in [Caf79] and [MS08] using appropriate inequalities satis�ed by the sym-
metrised solution. This yields the regularity of the symmetrised normal derivative
at free boundary points. Then, we show that this implies theC1;� regularity of the
original function u at free boundary points, by using the ideas from [Caf89]. Finally,
we show that the regularity of u at free boundary points yields the regularity of
the symmetrized normal derivative at all points onxn = 0, and that this yields the
regularity of u on either side of the obstacle.

As an immediate corollary it follows an estimate when the thin obstacle problem
is posed in a bounded Lipschitz domainD � Rn .

Corollary 2.2. Let D � Rn be a bounded Lipschitz domain, and letK b D. Let
F be a nonlinear operator satisfying(2.3). Let ' : D \ f xn = 0g ! R be a C1;1

function, and let u be the solution to
8
>><

>>:

F (D 2u) = 0 in D n f u = ' g
F (D 2u) � 0 in D

u � ' on D \ f xn = 0g
u = g on @D;

(2.5)

for someg 2 C0(@D). Let K + := K \ f xn > 0g and K � := K \ f xn < 0g. Then,
u 2 C1;� (K + ) \ C1;� (K � ), with

kukC1;� (K + ) + kukC1;� (K � ) � C
�
kgkL 1 (@D) + k' kC1;1 (D \f xn =0 g)

�

for some constant� > 0 depending only onn, � , and � , and C depending only on
n, � , � , D , and K .

Let us introduce the notation that will be used throughout the work. We denote
x = ( x0; xn ) 2 Rn and

B �
1 := f x0 2 Rn� 1 : (x0; 0) 2 B1g:

The obstacle' is de�ned on B �
1 seen as a subset ofRn , and problem (2.2) is written

as 8
<

:

F (D 2u) = 0 in B1 n f (x0; 0) : u(x0; 0) = ' (x0)g
F (D 2u) � 0 in B1

u(x0; 0) � ' (x0) for x0 2 B �
1:

We also denote

B +
1 := f (x0; xn ) 2 B1 : xn > 0g; (@B1)+ = @B1 \ f xn > 0g;

and analogously we de�neB �
1 and (@B1)� . On the other hand, we call the coinci-

dence set
� � = f x 2 B �

1 : u(x0; 0) = ' (x0)g; � = � � � f 0g;

and its complement inB �
1 is denoted by


 � = B �
1 n � � ; 
 = 
 � � f 0g:

Our work is organised as follows. In Section 2.2 we give a Lipschitz bound and
prove semiconvexity of solutions. Then, in Section 2.3 we prove Theorem 2.1.
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2.2 Lipschitz estimate and semiconvexity

2.2.1 Lipschitz estimate

We begin with a proposition showing that any solution to (2.2) is Lipschitz, as long
as the obstacle isC1;1.

Proposition 2.3. Let u be any solution to(2.2) with F satisfying (2.3) and ' 2
C1;1. Then u is Lipschitz in B1=2 with,

kukLip( B 1=2 ) � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
; (2.6)

for someC depending only onn and the ellipticity constants� and � .

Proof. We will extend the obstacle' to a function h de�ned in the wholeB1, and we
treat u as a solution to a classical \thick" obstacle problem. We de�neh separately
in B +

1 and B �
1 , as the solution to

8
<

:

F (D 2h) = 0 in B +
1

h = �k ukL 1 (B 1 ) in (@B1)+

h(x0; 0) = ' (x0) for x0 2 B �
1;

(2.7)

and analogously
8
<

:

F (D 2h) = 0 in B �
1

h = �k ukL 1 (B 1 ) in (@B1)�

h(x0; 0) = ' (x0) for x0 2 B �
1:

(2.8)

Notice that h is Lipschitz in B7=8; see [MS06, Proposition 2.2]. By denoting

K 0 := kukL 1 (B 1 ) + k' kC1;1 (B �
1 ) ;

we have
khkLip( B 7=8 ) � CK 0;

and by the maximum principleu � h. Moreover,u is a solution to a classical obstacle
problem in B1 with h as the obstacle. We show next that this impliesu is Lipschitz,
with a quantitative estimate.

To begin with, sinceh is Lipschitz, �xed any x0 2 B1=2 and 0 < r < 1=4, there
exists someC0 depending only onn, � , and � such that

sup
B r (x0 )

jh(x) � h(x0)j � C0K 0r: (2.9)

Notice that, by the strong maximum principle, the coincidence setf u = hg is
�, the coincidence set of the thin obstacle problem. Suppose then thatx0 2 �, i.e.,
u(x0) = h(x0). Sinceu � h, in particular we have that

inf
B r (x0 )

(u(x) � u(x0)) � � C0K 0r: (2.10)

becauseh is Lipschitz. Now let

q(x) = u(x) � u(x0) + C0K 0r:
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We already knowq � 0 in B r (x0). On the other hand, from (2.9),

q(x) � 2C0K 0r on B r (x0) \ � :

Moreover,q is a supersolution,

F (D 2q) = F (D 2u) � 0 in B r (x0):

Let �q be the viscosity solution toF (D 2 �q) = 0 in B r (x0) with �q = q on @Br (x0).
We have �q � q in B r (x0) and by the non-negativity of �q on the boundary, �q � 0 in
B r (x0).

Thus, q < �q+2C0K 0r on @Br (x0), and q � �q+2C0K 0r in B r (x0) \ �. Therefore,

q � �q+ 2C0K 0r in B r (x0):

On the other hand, we know 0� �q(x0) � q(x0) = C0K 0r , and by the Harnack
inequality, �q � CC0K 0r in B r=2(x0). Putting all together we obtain that u(x) �
u(x0) � CC0K 0r for some constantC > 0. Thus, combining this with (2.10),

sup
B r (x0 )

ju(x) � u(x0)j � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
r; (2.11)

for some constantC depending only onn, � , and �.
We have obtained that the solution is Lipschitz on points of the coincidence set.

Let us use interior estimates to deduce Lipschitz regularity insideB1=2.
Take any points x; y 2 B1=2, and let r = jx � yj. De�ne

� := min f dist(x; �) ; dist(y; �) g;

and let x � ; y� 2 �, x � = ( x0; 0), y� = ( y0; 0) for x0; y0 2 � � , be such that dist(x; �) =
jx � x � j and dist(y; �) = jy � y� j. We now separate two cases:

� If � � 4r , then

ju(x) � u(y)j � j u(x) � u(x � )j + ju(y) � u(y� )j + j' (x0) � ' (y0)j

� C� + C(r + � ) + 2 C(r + � ) � Cr

for some constantC. We are using here that' is Lipschitz and that if jx � x � j = � ,
then jy � y� j � r + � and jx � � y� j � 2(r + � ).

� If � > 4r , we can use interior estimates. Supposex is such that dist(x; �) = � ,
and noticeB �= 2(x) � B1 n �, so that in B �= 2(x), F (D 2u) = 0. We can now use the
interior Lipschitz estimates (see, for example, [CC95, Chapter 5]),

[u]Lip( B �= 4 ) �
C
�

oscB �= 2 (x)u � C

for some constantC. We are using here that the supremum and the in�mum ofu
in B �= 2(x) are controlled respectively byC� + ' (x � ) and � C� + ' (x � ).

Thus, we have proved that the solution is Lipschitz inB1=2, with the estimate
(2.6).
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2.2.2 Preliminary consideration

Before continuing to prove the semiconvexity and semiconcavity result, we introduce
a change of variables that will be useful in this section and the next one. Notice that,
given a functionw, we can express the nonlinear operatorF as

F (D 2w(x)) = sup

 2 �

�
L ij


 @x i x j w(x) + c

�

;

for some family of symmetric uniformly elliptic operators with ellipticity constants
� and �, L ij


 @x i x j , indexed by 
 2 �. Since F (0) = 0, there is some symmetric
uniformly elliptic operator from this family given by a matrix L̂ such that

tr( L̂D 2w(x)) = L̂ ij @x i x j w(x) � F (D 2w(x)):

We now change coordinates in such a way that the matrix of this operator in the
new coordinates, denoted̂LA , ful�ls L̂ in

A = L̂ni
A = 0 for i < n . More precisely, if we

denoteL̂0 the matrix in Symn� 1 given by the n � 1 �rst indices of L̂ , and we denote
L̂0

n = ( L̂ in )1� i � n� 1 the vector of Rn� 1, we change variables as

x 7! y = Ax;

whereA is the matrix given by

A :=

0

B
@

Idn� 1 � �a

0: : : 0 1

1

C
A ;

and �a = ( L̂0)� 1 � L̂0
n is a vector in Rn� 1. We de�ne the new nonlinear operator~F as

~F (N ) = F (AT NA); for all N 2 Symn ;

so that it is consistent with the change of variables, in the sense that if ~w(y) =
w(A � 1y), then F (D 2w(x)) = ~F (D 2 ~w(y)).

We trivially have that ~F is convex and~F (0) = 0. In the new coordinates we still
have that L̂ ij

A @yi yj is a symmetric uniformly elliptic operator, but now the ellipticity
constants � and � have changed depending only onn, � , and �. The same occurs
with all the operators in the family de�ning F , so that after changing coordinates,
F is still a convex uniformly elliptic operator with ellipticity constants depending
only on n, � , and �. Indeed, for any matrices N; N P 2 Symn� 1 with NP � 0 we have
that (using the de�nition of uniform ellipticity in [CC95, Chapter 2] and noticing
that AT NP A � 0),

kA � 1k� 2kNP k � � kAT NP Ak � ~F (N + NP ) � ~F (N ) � � kAT NP Ak � � kAk2kNP k;

and it is easy to boundkA � 1k and kAk from the de�nition of A, depending only on
n, � and �.

After changing variables, the regularity of the solution remains the same up to
multiplicative constants in the bounds depending only onn, � , and �.
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As an abuse of notation we will call the new variables (x0; xn ), the new operator
F , and the new ellipticity constants� and �, understanding that they might depend
on the original ellipticity constants and the dimension,n. This will not be a problem,
since in all the statements of the present workn, � , and � appear together in the
dependence of the constants.

Thus, throughout the paper we will assume that there exists a �xed symmetric
uniformly elliptic operator L̂ such that

L̂ ij @x i x j w � F (D 2w); and L̂ in = L̂ni = 0 for i < n: (2.12)

This change of variables is useful because, for any functionw,

L̂ ij @x i x j (w(x0; � xn )) = L̂ ij (@x i x j w)(x0; � xn );

which will allow us to symmetrise the solution and still have a supersolution for the
Pucci extremal operatorM � . We also use it to prove a semiconcavity result from
semiconvexity in the following proof of Proposition 2.4.

2.2.3 Semiconvexity and semiconcavity estimates

We next prove the semiconvexity of solutions in the directions parallel to the domain
of the obstacle. To do it, we use a Bernstein's technique in the spirit of [AC04].

Proposition 2.4. Let u be the solution to(2.2). Then

(a) (Semiconvexity) If � = ( � � ; 0), with � � a unit vector in Rn� 1,

inf
B 3=4

u� � � � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
;

for some constantC depending only onn, � , and � .

(b) (Semiconcavity) Similarly, in the direction normal to B �
1 � f 0g,

sup
B 3=4

uxn xn � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
;

for some constantC depending only onn, � , and � .

Proof. The second part, (b), follows from (a) using the de�nition of uniformly elliptic
operator and the fact that we changed variables (in the previous subsection) in order
to have matrix L̂ ful�lling (2.12). We denote by L̂0 and D 2

n� 1u the square matrices
corresponding to then � 1 �rst indices of L̂ and D 2u respectively. Now, from

L̂ ij @x i x j u(x) � 0; L̂ in = L̂ni = 0 for i < n;

and
D 2

n� 1u � � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
Idn� 1;

we directly obtain that

L̂nn @xn xn u � �
n� 1X

i;j =1

L̂ ij @x i x j u � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
tr L̂0:
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The desired bound follows becausêLnn is bounded below by� and tr( L̂0) is bounded
above by (n � 1)�.

Let us prove (a). As in the proof of Proposition 2.3, we de�neh as the solution
to
8
<

:

F (D 2h) = 0 in B +
1

h = �k ukL 1 (B 1 ) in (@B1)+

h(x0; 0) = ' (x0) x0 2 B �
1

8
<

:

F (D 2h) = 0 in B �
1

h = �k ukL 1 (B 1 ) in (@B1)�

h(x0; 0) = ' (x0) x0 2 B �
1:

(2.13)
Recall that h is Lipschitz and that, by the strong maximum principle,u > h in B +

1=2

and B �
1=2.

De�ne now, for " > 0,

�h" (x0; xn ) := ' (x0) �
x2

n

"

and
h" (x0; xn ) := max

�
h(x0; xn ); �h" (x0; xn )

	
:

Since,h is Lipschitz continuous andh(x0; 0) = �h" (x0; 0), this implies that there exists
a constantC > 0 depending only onn, � , and � such that

h(x0; xn ) > �h" (x0; xn ) for jxn j > CK 0"; (2.14)

where we de�ne
K 0 := kukL 1 (B 1 ) + k' kC1;1 (B �

1 ) :

In particular, h" is Lipschitz continuous inB7=8, uniformly on ".
Let u" be the solution to the \thick" obstacle problem with obstacleh" ,

8
>><

>>:

F (D 2u" ) = 0 in B1 n f u" = h" g
F (D 2u" ) � 0 in B1

u" = maxf u; �h" g on @(B +
1 )

u" � h" in B +
1 ;

(2.15)

and the analogous expression inB �
1 . By (2.14), the coincidence set satis�es

f u" = h" g � f �h" > h g � f (x0; xn ) 2 B1 : jxn j � CK 0"g

for someC > 0. We want to bound@� � u" from below independently of" .
Notice that D 2(u" � h" ) � 0 in the coincidence set, and sinceu" � h" , this also

occurs along the free boundary. By the de�nition of�h" and recalling that h" = �h"

in the coincidence set, this implies@� � u" � � CK 0 in f u" = h" g \ B7=8, for some
constant C depending only onn, � , and �. Thus, it is enough to check that @� � u"

is uniformly bounded from below outside the coincidence set. We proceed by means
of a Bernstein's technique.

Let � 2 C1
c (B7=8) be a smooth, cuto� function, with 0 � � � 1 and � � 1 in

B3=4. De�ne
f " (x) = � (x)@� � u" (x) � � jr u" (x)j2
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for some constant� to be determined later. Notice that, sinceh" is Lipschitz con-
tinuous independently of" in B7=8, then jr u" (x)j is bounded independently of" in
B7=8. If the minimum x0 in B7=8 is attained in the coincidence set, then@� � u" (x0) �
� CK 0 and we get that for everyx 2 B3=4,

@� � u" (x) � � CK 0 � � jr u" (x0)j2 + � jr u" (x)j2 � � CK 0 � � kr u" k2
L 1 (B 7=8 ) : (2.16)

If the minimum x0 is attained at the boundary,@B7=8, then for everyx 2 B3=4,

@� � u" (x) � � � jr u" (x0)j2 + � jr u" (x)j2 � � � kr u" k2
L 1 (B 7=8 ) : (2.17)

Let us assume now that the minimumx0 of f " in B7=8 is attained at some interior
point x0 outside the coincidence setf u" = h" g.

Let us also assume that the operatorF not only is convex, but alsoF 2 C1 , so
that solutions are C4 outside the coincidence set (see the end of the proof for the
general caseF Lipschitz). In this case, the linearised operator ofF at x0,

L0v = aij vij := Fij (D 2u" (x0))vij ;

is uniformly elliptic with ellipticity constants � and �. Moreover, for any � 2 Sn� 1,

L0u" (x0) � 0; L0@� u" (x0) = 0 ; L0@�� u" (x0) � 0: (2.18)

This is a standard result, which can be found in [CC95, Lemma 9.2].
For simplicity in the following computations we denotew = u" . If x0 is an interior

minimum of f " (which is a C2 function) in B7=8, then

0 = r f " (x0) = ( r �w � � + � r w� � � 2�w i r wi )(x0); (2.19)

and by (2.18) and the fact that (aij ) is elliptic,

0 � aij f ";ij (x0) � (aij � ij w� � + 2aij � i w� �;j � 2�a ij wkj wki ) (x0): (2.20)

Combining (2.19) and (2.20), we �nd

0 �
��

aij � ij � 2
aij � i � j

�

�
w� � � 2�a ij wkj wki + 4

�a ij � i wkj wk

�

�
(x0): (2.21)

Observe that jr � j2 � C� (since
p

� is Lipschitz). Therefore, for some constantsC0

and C1 depending only onn and �,

0 �
�
C0jw� � j + �C 1jD 2wjjr wj � 2�a ij wkj wki

�
(x0):

Using jw� � (x0)j � j D 2w(x0)j and the uniform ellipticity of ( aij ),

aij wki wkj � �C (n)jD 2wj2;

we obtain

jD 2w(x0)j �
C0

�
+ C1jr w(x0)j;
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for some constantsC0 and C1 depending now also on� . Now, sincex0 is a minimum
in B7=8, for any x 2 B3=4,

w� � (x) � � (x0)w� � (x0) � � jr u" (x0)j2 + � jr u" (x)j2

� �j D 2w(x0)j � � kr u" k2
L 1 (B 7=8 ) (2.22)

� �
C0

�
� C1kr u" kL 1 (B 7=8 ) � � kr u" k2

L 1 (B 7=8 ) :

We now �x � = kr u" k� 1
L 1 (B 7=8 ) . Notice that, in all three cases (2.16), (2.17), and

(2.22), we reach that for some constantC depending only onn, � , and �,

inf
B 3=4

@� � u" � � C

 

sup
B 7=8

jr u" j + K 0

!

:

We had already seen thatu" is Lipschitz continuous independently of" > 0 and
controlled by the Lipschitz norm ofu, so that by Proposition (2.3),

inf
B 3=4

@� � u" � � C
�

kukLip( B 7=8 ) + k' kC1;1 (B �
1 ) + K 0

�
� � C

�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
:

(2.23)
If F is not smooth, then it can be regularised convoluting with a molli�er in the

space of symmetric matrices, so that it can be approximated uniformly in compact
sets by a sequencef Fkgk2 N of convex smooth uniformly elliptic operators with el-
lipticity constants � and �; also, by subtracting Fk(0), we can assumeFk(0) = 0.
Note that, in B7=8 and for every" > 0 we have uniformC1;
 estimates ink for the
solutions to (2.15) with operatorsFk , since the obstacleh is in C1;1 in a neighbour-
hood of the free boundary. By Arzel�a-Ascoli there exists a subsequence converging
uniformly, and therefore, the estimate (2.23) can be extended to solutions of (2.15)
with operators not necessarily smooth. Thus, (2.23) follows for anyF not necessarily
C1 .

Note that u" converges uniformly tou, since for all� > 0, there exists some" > 0
small enough such thatu + � > u " � u in B1.

Since the right-hand side of (2.23) is independent of" , andu" converges uniformly
to u in B7=8 as " # 0, we �nally obtain

inf
B 3=4

u� � � � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
; (2.24)

as desired.

2.3 C1;� estimate

2.3.1 A symmetrised solution

By the results in the previous section we know thatr u is bounded in the interior
of B1. Moreover,uxn xn is bounded from above insideB1. In particular, the following
limit exists

� (x0) = lim
xn #0+

uxn (x0; xn ) � lim
xn " 0�

uxn (x0; xn ) = lim
xn #0+

�
uxn (x0; xn ) � uxn (x0; � xn )

�
:

(2.25)



51

A main step towards Theorem 2.1 consists of proving that� 2 C � (B �
1=2) for some

� > 0. We will prove this in this section.
We begin by noticing that � (x0) = 0 for x0 2 
 � (by the C2;� interior estimates),

where we recall that 
 � := f x0 2 B �
1 : u(x0; 0) > ' (x0)g. In general, however, we

have the following:

Lemma 2.5. The function � de�ned by (2.25) is non-positive, i.e., � � 0 in B �
1.

Proof. Suppose it is not true, and there exists some �x0 2 B �
1 such that � (�x0) > 0.

Let � > 0 be such thatB �
� (�x0) � B �

1, so that by the semiconcavity in Proposition 2.4
applied to B �= 2((�x0; 0)), uxn xn (�x0; 0) � C for some constantC, that now depends
also on� . However,

� (�x0) = lim
xn #0+

(uxn (�x0; xn ) � uxn (�x0; � xn )) > 0;

which means
uxn (�x0; xn ) � uxn (�x0; � xn )

2xn
! + 1 ; as xn # 0+ ;

a contradiction with the bound in uxn xn .

We will now adapt the ideas of [Caf79] to our non-symmetric setting. For this,
we use a symmetrised solution, de�ned as follows

v(x0; xn ) :=
u(x0; xn ) + u(x0; � xn )

2
; for (x0; xn ) 2 B1: (2.26)

Here u is any solution to (2.2).
Notice that

� (x0) = 2 lim
xn #0+

vxn (x0; xn ) � 0 (2.27)

is well de�ned, and in particular, we have that

� (x0) = 2 vxn (x0; 0) = 0; for x0 2 
 � : (2.28)

The following result follows from the results in the previous section. We will
use the notationM + and M � to refer to the Pucci's extremal operators with the
implicit ellipticity constants � and � (see [CC95, Chapter 2] for the de�nition and
basic properties of such operators).

Lemma 2.6. Let u be a solution to the nonlinear thin obstacle problem(2.2), and
let v be de�ned by(2.26). Then v is Lipschitz in B +

1=2 and satis�es
�

M � (D 2v) � 0 in B1;
maxf vxn (x0; 0); ' (x0) � v(x0; 0)g = 0 for x0 2 B �

1:
(2.29)

Moreover,

(a) (Semiconvexity) If � = ( � � ; 0), with � � a unit vector in Rn� 1,

inf
B 3=4

v� � � � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
;

for some constantC depending only onn, � , and � .
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(b) (Semiconcavity) In the direction normal toB �
1 � f 0g,

sup
B 3=4

vxn xn � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
;

for some constantC depending only onn, � , and � .

Proof. The Lipschitz regularity comes from the Lipschitz regularity inu, proved in
Proposition 2.3.

In (2.29) the �rst inequality follows thanks to the change of variables introduced
in Subsection 2.2.2. Indeed, there exists some operator given by a matrixL̂ as in
(2.12) uniformly elliptic with ellipticity constants � and � such that

L̂ ij @x i x j (u(x0; � xn )) = L̂ ij (@x i x j u)(x0; � xn ) � F ((D 2u)(x0; � xn )) � 0;

so that
M � (D 2v) � L̂ ij @x i x j v � 0;

as we wanted.
The second expression in (2.29) follows from equations (2.27)-(2.28), Lemma 2.5

and the fact that v(x0; 0) = u(x0; 0) for x0 2 B �
1.

Finally, the semiconvexity and semiconcavity follow from Proposition 2.4.

2.3.2 Regularity for � on free boundary points

The next steps are very similar to those in [Caf79] (and [MS08]), but we adapt them
to the symmetrised solutionv instead of u. For completeness, we provide all the
details. We begin with the following lemma, corresponding to [Caf79, Lemma 2] (or
[MS08, Lemma 3.3]).

In the next result, we call ' the extension of the obstacle toB1, i.e. ' (x0; xn ) :=
' (x0).

Lemma 2.7. Let v be the symmetrised solution(2.26). Let � be a constant such
that � > supj' � � j for any � a unit vector in Rn� 1 � f 0g. Let x0 2 
 �xed and  x0

denote the function

 x0 = ' (x0) + r ' (x0) � (x � x0) + � jx � x0j2 � � (n � 1)
�
�

x2
n :

Then, for any open setUx0 such thatx0 2 Ux0 � B1,

sup
@Ux 0 \f xn > 0g

(v �  x0 ) � 0:

Proof. De�ne w = v �  x0 and notice that by de�nition of  x0 and the fact that v
is a supersolution forM � , we havew(x0) � 0 and M � (D 2w) � 0. Therefore, we
can apply the maximum principle onUx0 n � (recall � is the coincidence set) and
use the symmetry ofw to obtain that

sup
@(Ux 0 n�) \f xn � 0g

(v �  x0 ) � 0:
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Now notice that on the setf v = u = ' g we have that  x0 > ' , sincex0 2 
 and
� > supj' � � j. Thus, v �  x0 < 0 on this set, so that

sup
@(Ux 0 n�) \f xn � 0g

(v �  x0 ) = sup
@Ux 0 \f xn > 0g

(v �  x0 ) � 0;

and we are done.

We now proceed with the following lemma, corresponding to [Caf79, Lemma 2]
(or [MS08, Lemma 3.4]).

Lemma 2.8. Let v be the symmetrised solution as de�ned in(2.26), and let � as
de�ned in (2.25)-(2.27). Let x0 = ( x0

0; 0) 2 
 and de�ne S
 = f x0 : � (x0) > � 
 g.
Then, for suitable positive constantsC, C, and 
 0 and for all 
 2 (0; 
 0) there exists
a ball B �

C
 (�x0) for �x0 2 B �
1 such that

B �
C
 (�x0) � B �

C
 (x0
0) \ S
 :

The constantsC, �C, and 
 0 depend only onn, � , � , k' kC1;1 (B �
1 ) , and kukL 1 (B 1 ) .

Proof. We apply Lemma 2.7 withUx0 = BC1 
 (x0) � (� C2
; C 2
 ) for some constants
to be chosenC1 � C2, and study two cases.

� Assume sup(v �  x0 ) is attained at a point (x0
1; y1) (for x0

1 2 Rn� 1, y 2 R)
on the lateral face of the cylinderUx0 , i.e. with jx0

1 � x0
0j = C1
 and 0 � y1 � C2
 .

Then we have

 x0 (x0
1; y1) � ' (x0

1) � (� � supj� � � j) jx0
1 � x0

0j2 � � (n � 1)
�
�

y2
1

� (� � supj� � � j) C2
1 
 2 � � (n � 1)

�
�

C2
2 
 2 � C3
 2;

provided that C1 � C2. The positive constantC3 depends only on� , n, the ellipticity
constants,C1, and C2. Thus,

v(x0
1; y1) �  x0 (x0

1; y1) � ' (x0
1) + C3
 2:

Now pick a x0
2 2 B �

C4 
 (x0
1) for some positive constantC4 to be chosen and (x0

2 �
x0

1) � r x0(v � ' )(x0
1; y1) � 0. We are considering here' in the whole B1 by simply

putting ' (x0; y) = ' (x0). Take � =
�

x0
2 � x0

1
jx0

2 � x0
1 j ; 0

�
, and use the semiconvexity from

Lemma 2.6 together with the fact that ' 2 C1;1 to get

(v � ' )(x0
2; y1) =

= ( v � ' )(x0
1; y1) + ( x0

2 � x0
1) � r x0(v � ' )(x0

1; y1) +
ZZ

[(x0
1 ;y1 );(x0

2 ;y1 )]
(v � ' )� �

� C3
 2 � Cjx0
2 � x0

1j2 � (C3 � CC4)
 2 > 0;

if C4 is chosen appropriately, small enough depending only onC3, k' kC1;1 and the
semiconvexity constant of Lemma 2.6. Here, and in the next steps,

RR
[a;b] denotes

the double integral over the segment between the pointsa and b,
ZZ

[a;b]
w :=

Z jb� aj

0

� Z s

0
w

�
a +

b� a
jb� aj

t
�

dt
�

ds:
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To get a contradiction, now suppose thatx0
2 =2 S
 . In particular, this means

v(x0
2; 0) = ' (x0

2), and from (2.27) and the semiconcavity in Lemma 2.6 we get

(v � ' )(x0
2; y1) = ( v � ' )(x0

2; 0) + y1
� (x0

2)
2

+
ZZ

[(x0
2 ;0);(x0

2 ;y1 )]
vxn xn

� � y1


2

+ Cy2
1 � y1


�
CC2 �

1
2

�
� 0

if C2 is small enough depending only on the semiconcavity constant of Lemma 2.6.
Thus, we have reached a contradiction.

� Assume now that sup(v �  x0 ) is attained at a point (x0
1; y1) in the base of

the cylinder Ux0 , i.e. with jx0
1 � x0

0j � C1
 and y1 = C2
 . Then, from � > supj' � � j,
we deduce

v(x0
1; y1) �  x0 (x0

1; y1) � ' (x0
1) � � (n � 1)

�
�

C2
2 
 2:

Now choosex0
2 such that jx0

2 � x0
1j < C 2
 and (x0

2 � x0
1) � r x0(v � ' )(x0

1; y1) � 0.
As before,

(v � ' )(x0
2; y1) =

= ( v � ' )(x0
1; y1) + ( x0

2 � x0
1) � r x0(v � ' )(x0

1; y1) +
ZZ

[(x0
1 ;y1 );(x0

2 ;y1 )]
(v � ' )� �

� � � (n � 1)
�
�

C2
2 
 2 � Cjx0

2 � x0
1j2 � � C2

2

�
� (n � 1)

�
�

+ C
�


 2:

Now, if x0
2 =2 S
 then v(x0

2; 0) = ' (x0
2),

(v � ' )(x0
2; y1) � � C2


 2

2
+

ZZ

[(x0
2 ;0);(x0

2 ;y1 )]
vxn xn �

�
1
2

CC2
2 � C2

�

 2:

The contradiction follows if one choosesC2 small enough, depending only on� , n,
� , �, and the semiconvexity and semiconcavity constants from Lemma 2.6.

The following lemma is useful to prove theC � regularity of � , and can be found
in [MS08, Lemma 3.5]. It follows from an appropriate use of the strong maximum
principle for M � , the Pucci's extremal operator.

Lemma 2.9 ([MS08]). Let w be a non-negative continuous function inB �
1 � (0; 1)

that solves
M � (D 2w) � 0 in B �

1 � (0; 1):

Assume
lim sup

xn #0+
w(x0; xn ) � 1 for x0 2 B �

� (�x0);

for some ballB �
� (�x0) � B �

1. Then

w(x) � " > 0 for x 2 B �
1=2 �

�
1
4

;
3
4

�
;

for some" depending only on� , and the ellipticity constants� and � .
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We now show the following lemma, analogous to [Caf79, Lemma 4] (or [MS08,
Lemma 3.6]).

Lemma 2.10. Let � as de�ned in (2.25)-(2.27), for u the solution to the thin ob-
stacle problem(2.2). Let x0

0 2 
 � , then

� (x0) � � C
�
kukL 1 (B 1 ) + k' kC1;1 (B �

1 )

�
jx0 � x0

0j � ; for x0 2 B �
1

for some� > 0 and C depending only onn, � , and � .

Proof. De�ne
K 0 := kukL 1 (B 1 ) + k' kC1;1 (B �

1 ) ;

and notice that by taking u=K0 instead ofu if necessary we can assume

kukL 1 (B 1 ) + k' kC1;1 (B �
1 ) � 1:

Indeed, if K 0 � 1 then

FK 0 (D 2u) :=
1

K 0
F (D 2(K 0u));

is a convex elliptic operator with ellipticity constants� and �, and u=K0 is a solution
to the nonlinear thin obstacle problem for the operatorFK 0 with obstacle '=K 0. In
this case,

ku=K0kL 1 (B 1 ) + k'=K 0kC1;1 (B �
1 ) = 1;

as we wanted to see. Thus, from now on we assumeK 0 � 1.
Using Lemmas 2.5, 2.6, 2.8 and 2.9, now the proof of this lemma is very similar

to the proof of [MS08, Lemma 3.6]. We give it here for completeness.
We will show

� (x0) � � Cjx0 � x0
0j � ; (2.30)

with C and � > 0 depending only onn, � , and �.
Recall that � (x0) = 2 lim xn #0+ vxn (x0; xn ), and that from Lemma 2.6, vxn is

bounded andvxn xn � C. Moreover, � is non-positive by Lemma 2.5, so thatvxn �
Cxn for xn > 0.

In order to reach (2.30) we will provevxn (x) � � � k for x 2 B �

 k (x0

0) � (0; 
 k).
Assume this has been already proved for somek with 0 < 
 � � < 1, and consider
the function

w :=
vxn + � k

� k � C�
 k
in B �

�
 k (x0
0) � (0; �
 k)

for � small enough. Notice thatw ful�ls the hypotheses of Lemma 2.9, so that using
it together with Lemma 2.8 we get

vxn (x) � � � k + "(� k � C�
 k) � � � k +
1
2

"� k

for x 2 B �
�
 k =2(x0

0) � (�
 k=4; 3�
 k=4), since
 � � . Now, by means of Lemma 2.6,
vxn xn � C, and therefore, for anyy = ( y0; yn ) 2 B �

�
 k =2(x0
0) � (0; �
 k=4],

vxn (y) � �
Z �
 k =4

yn

vxn xn (y0; s)ds+ vxn xn (y0; �
 k=4)

� � C
�

�
 k

4
� yn

�
� � k +

1
2

"� k ;
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so that we obtain
vxn (x) � � � k +

1
2

"� k �
1
4

�C
 k

for x 2 B �
�
 k =2(x0

0) � (0; 3�
 k=4). To end the inductive argument we must see

� k+1 � � k �
1
2

"� k +
1
4

�C
 k :

For this, we pick 
 � � so that the right-hand side is smaller than (1� 1
4" )� k ,

with � larger than 1� 1
4" . Then, the inductive argument is completed, and (2.30)

follows.

2.3.3 Proof of Theorem 2.1

Before proving our main result, let us show the following compactness lemma.

Lemma 2.11. Let F be a nonlinear operator satisfying(2.3), and let w be a con-
tinuous function de�ned on B1. Suppose thatw satis�es the problem

F (D 2w) = 0 in B +
1 [ B �

1 ; (2.31)

and that
kwkL 1 (B 1 ) = 1; [w]Lip( B 1 ) � 1:

Let  be the solution to
�

F (D 2 ) = 0 in B1

 = w on @B1;
(2.32)

and let us de�ne the following operator

~� (w) := lim
hn #0

((@xn w)(x0; hn ) � (@xn w)(x0; � hn )) :

Then, for every " > 0 there exists some� = � ("; n; �; �) > 0 such that if

k~� (w)kL 1 (B �
1 ) < �

then
k � wkL 1 (B 1 ) < ";

i.e.,  approximatesw as � goes to 0.

Proof. Let us argue by contradiction. Suppose that there exists some �xed" > 0,
a sequence of functionswk and a sequence of convex nonlinear operators uniformly
elliptic with ellipticity constants � and �, Fk , with Fk(0) = 0, such that

Fk(D 2wk) = 0 in B +
1 [ B �

1 (2.33)

and
kwkkL 1 (B 1 ) = 1; [wk ]Lip( B 1 ) � 1;
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with
k~� (wk)kL 1 (B �

1 ) < � k (2.34)

for some sequence� k ! 0, but such that

k k � wkkL 1 (B 1 ) � "; (2.35)

for all k, where k is the solution to
�

Fk(D 2 k) = 0 in B1

 k = wk on @B1:
(2.36)

By Arzel�a-Ascoli, up to a subsequence,wk converges to some function �w uni-
formly in B1, with k �wkL 1 (B 1 ) = 1. On the other hand, sinceFk(0) = 0 and they
are uniformly elliptic and convex, they converge up to subsequences, uniformly over
compact sets, to some convex nonlinear operator�F uniformly elliptic with ellipticity
constants � and � such that �F (0) = 0. Notice also that  k converges uniformly to
the solution � to � �F (D 2 � ) = 0 in B1

� = �w on @B1:
(2.37)

and in the limit we obtain, from (2.35),

k � � �wkL 1 (B 1 ) � " > 0: (2.38)

Now consider the functionwk + � k jxn j on B1. From (2.34), wk + � k jxn j now has
a wedge pointing down in the setB1 [ f xn = 0g, i.e.,

~� (wk + � k jxn j) � � k > 0; in B �
1:

Therefore, sinceFk(D 2wk) = 0 in B +
1 [ B �

1 , we have that, in the viscosity sense,

Fk(D 2(wk + � k jxn j)) � 0; in B1:

Now, passing to the limit, noticing that wk + � k jxn j converges uniformly to �w and
using [CC95, Proposition 2.9], we immediately reach that, in the viscosity sense,

�F (D 2 �w) � 0; in B1:

Repeating the same argument forwk � � k jxn j we reach �F (D 2 �w) � 0 in B1, to �nally
obtain

�F (D 2 �w) = 0 ; in B1:

This implies �w = � in B1, which is a contradiction with (2.38).

Using the previous results, we now give the proof of Theorem 2.1.

Proof of Theorem 2.1. We separate the proof into three steps. In the �rst step we
prove that the solution u is C1;� around points in 
 � by means of Lemmas 2.10 and
2.11. In the second step, we use the result from the �rst step to deduce that� is C �

in B �
2=3, to �nally complete the proof in the third step.
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As in the proof of Lemma 2.10 we assume

kukL 1 (B 1 ) + k' kC1;1 (B �
1 ) � 1;

to avoid having this constant on each estimate throughout the proof.

Step 1: Let us suppose that the origin is a free boundary point. Under these cir-
cumstances we will prove that there exist some a�ne functionL = a + b � x such
that

ku � LkL 1 (B r ) � Cr 1+ � ; for all r � 0; (2.39)

for some constantsC and � > 0 depending only onn, � , and �. To do so, we proceed
in the spirit of the proof of [Caf89, Theorem 2].

Notice that from Lemma 2.10 we know that there exists� > 0 such that

j� (x0)j � � jx0j � ; for all x0 2 B �
1: (2.40)

Up to replacing from the beginningu(x) by u(r0x) with r0 � 1, we can make� as
small as necessary. The choice of the value ofr0, and consequently the magnitude
in which the constant � is made small, will depend only onn, � , and �.

Let us show now that there exists� = � (�; n; �; �) < 1 and a sequence of a�ne
functions

L k(x) = ak + bk � x (2.41)

such that
ku � L kkL 1 (B � k ) � � k(1+ � ) ; (2.42)

and
jak � ak� 1j � C� k(1+ � ) ; jbk � bk� 1j � C� k� (2.43)

for some constantC depending only onn, � , and �.
We proceed by induction, takingL0 = 0. Suppose that thek-th step is true, and

consider

wk(x) =
(u � L k)( � kx)

� k(1+ � )
; for x 2 B1:

Begin by noticing that

Fk(D 2wk) = 0 in B +
1 [ B �

1

for some operatorFk of the form (2.3). On the other hand, from the induction
hypothesis,

kwkkB 1 � 1:

Moreover, if we de�ne

� k(x0) = lim
h#0

(@xn wk(x0; h) � @xn wk(x0; � h)) ; for x0 2 B �
1;

then one can check that, from (2.40),

j� k(x0)j � � jx0j � :
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We apply now Lemma 2.11. That is, given" > 0 small, we can choose� small
enough such that

kvk � wkkL 1 (B 1 ) � ";

wherevk is the solution to
�

Fk(D 2vk) = 0 in B1

vk = wk on @B1:
(2.44)

Notice that, by interior estimates, vk is C2;� in B1=2 with estimates depending
only on n, � , and �. Then, let lk be the linearisation ofvk around 0, so that up to
choosing� ,

kwk � lkkL 1 (B � ) � k wk � vkkL 1 (B � ) + kvk � lkkL 1 (B � )

� " + C� 2 � � 1+ � ;

where C depends only onn, � , and �, � is chosen small enough depending only
on � , n, � , and � so that C� 2 � 1

2 � 1+ � , and � is chosen so that" � 1
2 � 1+ � . It is

important to remark that the choice of � depends only onn, � , and �.
Now, recalling the de�nition of wk , we reach








 u � L k � � k(1+ � ) lk

�
�

� k

� 








L 1 (B � k +1 )

� � (k+1)(1+ � ) ;

so that the inductive step is concluded by taking

L k+1 (x) = L k(x) + � k(1+ � ) lk

�
x
� k

�
:

By noticing that there are bounds on the coe�cients of the linearisation ofvk

depending only onn, � , and �, the inequalities in (2.43) are obtained.
Once one has (2.41), (2.42), and (2.43), de�neL as the limit of L k as k ! 1

(which exists, by (2.43)), and notice that, given any 0< r = � k for somek 2 N,
then

ku � LkL 1 (B r ) � k u � L kkL 1 (B r ) +
X

j � k

kL j +1 � L j kL 1 (B r ) � Cr 1+ �

for someC depending only onn, � , and �; as we wanted.

Step 2: In this step we prove that the function� de�ned in (2.25)-(2.27) isC � (B �
2=3)

for some� = � (n; �; �) > 0, and

k� kC � (B �
2=3 ) � C; (2.45)

for some constantC depending only onn, � , and �.
We already know� is regular in the interior of � � (by boundary estimates) and


 � ; respectively the coincidence set and its complement inB �
1. In particular, from

the interior estimates � � 0 in 
 � . From Lemma 2.10 we also obtainC � regularity
at points in @� � . Namely, we have that given (x0

0; 0) = x0 2 @� � ,

j� (x0)j � Cjx0 � x0
0j � ; for x0 2 B �

1; (2.46)
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for some constantC depending only onn, � , and �.
Therefore, we only need to check that givenx; y 2 �, x = ( x0; 0), y = ( y0; 0),

then there exists someC depending only onn, � , and � such that, if jx � yj = r ,

j� (x0) � � (y0)j � Cr � :

Let R := dist( x; 
) and suppose that dist( x; 
) � dist(y; 
). Let z = ( z0; 0), z0 2
@� � , be such that dist(x; z) = dist( x; 
), and assume that lim xn #0+ r u(z0; xn ) = 0
and r x0' (z0) = 0 by subtracting an a�ne function if necessary. Notice that we can
do so because we already know from the �rst step thatu has aC1;� estimate around
z0. Let us then separate two cases:

� If R < 4r , then using (2.45)

j� (x0) � � (y0)j � j � (x0) � � (z0)j + j� (y0) � � (z0)j

� C (R� + ( R + r )� )

� Cr � :

� In the caseR � 4r we need to use known boundary estimates for this fully
nonlinear problem and the previous step of the proof. Notice thatx0; y0 2 B �

R=2(x0) �
B �

R(x0) � � � , and u restricted to B �
R(x0) is thus a C1;1 function, sinceu = ' there.

In particular, we use that under these hypotheses

R1+ � [u]
C1;� (B +

R= 2 (x))
� C

�
oscB +

R (x)u + R2[' ]C1;1 (B �
R (x0))

�
;

see, for example, [MS06, Proposition 2.2]. Now, remember that the gradient ofu at
z is 0, so that from the previous step using the bound (2.39) aroundz,

ju(p) � ' (z0)j � Cjp � zj1+ � � CR1+ � for p 2 B +
R (x): (2.47)

In particular, oscB +
R (x)u � CR1+ � , and thus, this yields

[u]
C1;� (B +

R= 2 (x))
� C;

from which (2.45) is proved.

Step 3: Our conclusion now follows by repeating Step 1 around every point onB �
1.

Notice that in the �rst step we only used that the origin was a free boundary point
to be able to apply Lemma 2.10 in (2.40).

Now, given any pointz0 2 B �
1=2, we can consider the functionuz given by

uz(x) := u(x) � � (z0)(xn )+ ;

where (xn )+ denotes the positive part ofxn .
Note that this function ful�ls the hypotheses of Step 1, in particular,

j� z(x0)j :=

�
�
�
� limh#0

(@xn uz(x0; h) � @xn uz(x0; � h))

�
�
�
� � Cjx0 � z0j � ; for x0 2 B �

1;

for some constantC depending only onn, � , and �.
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By repeating the exact same procedure as in Step 1, we reach that for every point
z 2 B1=2 [ f xn = 0g, and for everyx 2 B +

1 there exists someL+
z a�ne function such

that
ju(x) � L+

z j � Cjx � zj1+ � ;

and the same occurs inB �
1 for a possibly di�erent a�ne function L �

z . Therefore, in
particular,

kukC1;� (B �
1=2 ) � C

for someC depending only onn, � , and �.
To �nish the proof, we could now repeat a procedure like the one done in Step 2,

or directly notice that solutions to the nonlinear problem withC1;� boundary data
are C1;� up to the boundary (see, for example, [MS06, Proposition 2.2]).

We �nally give the:

Proof of Corollary 2.2. It is an immediate consequence of Theorem 2.1. Indeed, con-
sider balls of radiusR0 := dist( K; @D) around points on K \ f xn = 0g and apply
Theorem 2.1. To cover the rest ofK we use interior estimates, and the result follows
by noticing that kukL 1 (D ) � k gkL 1 (@D) + k' kL 1 by the maximum principle.
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Chapter 3

The obstacle problem for the
fractional Laplacian with critical
drift

We study the obstacle problem for the fractional Laplacian with drift,

min f (� �) su + b� r u; u � ' g = 0 in Rn ;

in the critical regime s = 1
2 .

Our main result establishes theC1;� regularity of the free boundary around any
regular point x0, with an expansion of the form

u(x) � ' (x) = c0
�
(x � x0) � e

� 1+~
 (x0 )

+
+ o

�
jx � x0j1+~
 (x0 )+ �

�
;

~
 (x0) =
1
2

+
1
�

arctan(b� e);

wheree 2 Sn� 1 is the normal vector to the free boundary,� > 0, and c0 > 0.
We also establish an analogous result for more general nonlocal operators of order

1. In this case, the exponent ~
 (x0) also depends on the operator.

3.1 Introduction

We consider the obstacle problem for the fractional Laplacian with drift,

min
�

(� �) su + b� r u; u � '
	

= 0 in Rn ; (3.1)

whereb2 Rn , and ' : Rn ! R is a smooth obstacle.
Problem (3.1) appears when considering optimal stopping problems for L�evy pro-

cesses with jumps. In particular, this kind of obstacle problems are used to model
prices of (perpetual) American options; see for example [CF13, BFR18] and refer-
ences therein for more details. See also [Sal12] and [KKP16] for further references
and motivation on the fractional obstacle problem.

We study the regularity of solutions and the corresponding free boundaries for
problem (3.1). Note that the value ofs 2 (0; 1) plays an essential role. Indeed, if

63



64 Chapter 3. The fractional obstacle problem with critical drift

s > 1
2 , then the gradient term is of lower order with respect to (� �) s, and thus

one expects solutions to behave as in the caseb � 0. When s < 1
2 the leading term

is b � r u and thus one does not expect regularity results for (3.1). Finally, in the
borderline cases = 1

2 there is an interplay betweenb� r u and (� �) 1=2, and one may
still expect some regularity, but it becomes a delicate issue.

In this work we study this critical regime, s = 1
2 . As explained in detail below,

we establish theC1;� regularity of the free boundary near regular points, with a �ne
description of the solution at such points.

It is important to remark that, when s = 1
2 , problem (3.1) is equivalent to the

thin obstacle problem inRn+1
+ with an obliquederivative condition on f xn+1 = 0g.

Thus, our results yield in particular the regularity of the free boundary for such
problem, too.

3.1.1 Known results

The regularity of solutions and free boundaries for (3.1) was �rst studied in [Sil07,
CSS08] whenb = 0. In [CSS08], Ca�arelli, Salsa, and Silvestre established the op-
timal C1;s regularity for the solutions and C1;� regularity of the free boundary
around regular points. More precisely, they proved that given any free boundary
point x0 2 @f u = ' g, then

(i) either
0 < cr 1+ s � sup

B r (x0 )
(u � ' ) � Cr 1+ s

(ii) or
0 � sup

B r (x0 )
(u � ' ) � Cr 2:

The set of points satisfying (i) is called the set ofregular points, and it was proved
in [CSS08] that this set is open andC1;� .

Later, the singular set | those points at which the contact set has zero density
| was studied in [GP09] in the case s = 1

2 . More recently, the regular set was proved
to be C1 in [JN17, KRS19]; see also [KPS15, DS16]. The complete structure of the
free boundary was described in [BFR18] under the assumption �' � 0. Finally, the
results of [CSS08] have been extended to a wide class of nonlocal elliptic operators
in [CRS17].

All the previous results are for the caseb= 0. For the obstacle problem with drift
(3.1), Petrosyan and Pop proved in [PP15] the optimalC1;s regularity of solutions in
the cases > 1

2 . This result was obtained by means of an Almgren-type monotonicity
formula, treating the drift as a lower order term. In [GPPS17], the same authors
together with Garofalo and Smit Vega Garc��a establishC1;� regularity for the free
boundary around regular points, again in the cases > 1

2 . They do so by means of a
Weiss-type monotonicity formula and an epiperimetric inequality. The assumption
s > 1

2 is essential in both works in order to treat the gradient as a lower order term.
In the supercritical regime,s < 1

2 , only the linear stationary and evolution prob-
lem have been studied. In [Sil12], Silvestre established immediate spatial and tempo-
ral H•older continuity for the solutions to the linear evolution problem; and in [EP16]
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Epstein and Pop studied the Sobolev regularity for the linear stationary problem by
means of a completely di�erent approach.

3.1.2 Main result

We study the obstacle problem with critical drift

min
�

(� �) 1=2u + b� r u; u � '
	

= 0 in Rn ;
lim jx j!1 u(x) = 0 :

(3.2)

Here b is a �xed vector in Rn , and the obstacle' is assumed to satisfy

' is bounded; ' 2 C2;1(Rn ); and f ' > 0g b Rn : (3.3)

The solution to (3.2) can be constructed as the smallest supersolution above the
obstacle and vanishing at in�nity.

Our main result reads as follows.

Theorem 3.1. Let u be the solution to(3.2), with ' satisfying (3.3), and b2 Rn .
Let x0 2 @f u = ' g be any free boundary point. Then we have the following

dichotomy:

(i) either

0 < cr 1+~
 (x0 ) � sup
B r (x0 )

(u � ' ) � Cr 1+~
 (x0 ) ; ~
 (x0) 2 (0; 1);

for all r 2 (0; 1),

(ii) or

0 � sup
B r (x0 )

(u � ' ) � C" r 2� " for all " > 0; r 2 (0; 1):

Moreover, the subset of the free boundary satisfying(i) is relatively open and is locally
C1;� for some� > 0.

Furthermore, ~
 (x0) is given by

~
 (x0) =
1
2

+
1
�

arctan
�
b� � (x0)

�
; (3.4)

where � (x0) denotes the unit normal vector to the free boundary atx0 pointing to-
wards f u > ' g. Finally, for every point x0 satisfying (i) we have the expansion

u(x) � ' (x) = c0

�
(x � x0) � � (x0)

� 1+~
 (x0 )

+
+ o

�
jx � x0j1+~
 (x0 )+ �

�
(3.5)

for some� > 0, and c0 > 0. The constants� and � depend only onn and kbk.
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We think it is quite interesting that the growth around free boundary points
(and thus, the regularity of the solution) depends on the orientation of the normal
vector with respect to the free boundary. To our knowledge, this is the �rst example
of an obstacle-type problem in which this happens.

The previous theorem implies that the solution isC1;
 b at every free boundary
point x0, with


 b :=
1
2

�
1
�

arctan(kbk): (3.6)

Nonetheless, the constants may depend on the pointx0 considered, so that if we
want a uniform regularity estimate foru we actually have the following corollary. It
establishes almost optimal regularity of solutions.

Corollary 3.2. Let u be the solution to(3.2) for a given obstacle' of the form
(3.3), and a givenb2 Rn . Let 
 b given by(3.6). Then, for any " > 0 we have

kukC1;
 b� " (Rn ) � C" ;

whereC" is a constant depending only onn, kbk, " , and k' kC2;1 (Rn ) .

In order to prove Theorem 3.1 we proceed as follows. First, we classify convex
global solutions to the obstacle problem by following the ideas in [CRS17]. Then, we
show the Lipschitz regularity of the free boundary at regular points, and using the
results in [RS19] we �nd that the free boundary is actuallyC1;� . Finally, to prove
(3.5)-(3.4) we need to establish �ne regularity estimates up to the boundary inC1;�

domains. This is done by constructing appropriate barriers and a blow-up argument
in the spirit of [RS16]. Notice that, since we do not have any monotonicity formula
for problem (3.2), our proofs are completely di�erent from those in [PP15, GPPS17].

3.1.3 More general nonlocal operators of order 1 with drift

We will show an analogous result for more general nonlocal operators of the form

Lu(x) =
Z

Rn

�
u(x + y) + u(x � y)

2
� u(x)

�
� (y=jyj)
jyjn+1

dy; (3.7)

with
� 2 L1 (Sn� 1) satisfying � (� ) = � (� � ) and 0 < � � � � � : (3.8)

The constants� and � are the ellipticity constants. Notice that the operators L we
are considering are of order 1.

The obstacle problem in this case is, then,

min
�

� Lu + b� r u; u � '
	

= 0 in Rn ;
lim jx j!1 u(x) = 0 :

(3.9)

Our main result reads as follows.

Theorem 3.3. Let L be an operator of the form(3.7)-(3.8). Let u be the solution
to (3.9), with ' satisfying (3.3), and b2 Rn .

Let x0 be any free boundary point,x0 2 @f u = ' g. Then we have the following
dichotomy:
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(i) either

0 < cr 1+~
 (x0 ) � sup
B r (x0 )

(u � ' ) � Cr 1+~
 (x0 ) ; ~
 (x0) 2 (0; 1);

for all r 2 (0; 1).

(ii) or

0 � sup
B r (x0 )

(u � ' ) � C" r 2� " for all " > 0; r 2 (0; 1):

Moreover, the subset of the free boundary satisfying(i) is relatively open and is locally
C1;� for some� > 0.

Furthermore, the value of~
 (x0) is given by

~
 (x0) =
1
2

+
1
�

arctan
�

b� � (x0)
� (� (x0))

�
; (3.10)

where � (x0) denotes the unit normal vector to the free boundary atx0 pointing to-
wards f u > ' g, and

� (e) =
�
2

Z

Sn � 1
j� � ej� (� )d� for e 2 Sn� 1: (3.11)

Finally, for any point x0 satisfying (i) we have the expansion

u(x) � ' (x) = c0

�
(x � x0) � � (x0)

� 1+~
 (x0 )

+
+ o

�
jx � x0j1+~
 (x0 )+ �

�

for some� > 0, and c0 > 0. The constants� and � depend only onn, the ellipticity
constants, andkbk.

This result extends Theorem 3.1, and the dependence on the operatorL is re-

ected in (3.10). For the fractional Laplacian we have� � 1, and thus (3.10) becomes
(3.4).

We will also prove an analogous result to Corollary 3.2 regarding the almost
optimal regularity of solutions; see Corollary 3.29.

3.1.4 Structure of the work

We will focus on the proof of Theorem 3.3, from which in particular will follow
Theorem 3.1. The paper is organised as follows.

In Section 3.2 we introduce the notation and give some preliminary results regard-
ing nonlocal elliptic problems with drift. In Section 3.3 we establishC1;� estimates
for solutions to the obstacle problem with critical drift. In Section 3.4 we classify
convex global solutions to the problem. In Section 3.5 we introduce the notion of reg-
ular points and we prove that blow-ups of solutions around such points converge to
convex global solutions. In Section 3.6 we proveC1;� regularity of the free boundary
around regular points. In Section 3.7 we establish estimates up to the boundary for
the Dirichlet problem with drift in C1;� domains, in particular, �nding an expansion
of solutions around points of the boundary. In Section 3.8 we combine the results
from Sections 3.6 and 3.7 to prove Theorems 3.1 and 3.3. Finally, in Section 3.9,
we establish a non-degeneracy property at all points of the free boundary when the
obstacle is concave near the coincidence set.



68 Chapter 3. The fractional obstacle problem with critical drift

3.2 Notation and preliminaries

We begin our work with a section of notation and preliminaries. Here, we recall
some known results regarding nonlocal operators with drift, and we also �nd a 1-
dimensional solution.

Throughout the work we will use the following function in order to avoid a heavy
reading, 
 : R ! (0; 1), given by


 (t) :=
1
2

+
1
�

arctan (t) : (3.12)

We next introduce some known results regarding the elliptic problem with drift
that will be used. The �rst one is the following interior estimate.

Proposition 3.4. Let L be an operator of the form(3.7)-(3.8), and let b2 Rn . Let
u solve

(� L + b� r )u = f; in B1;

for somef . Then, if f 2 L1 (B1), and for any " > 0,

[u]C1� " (B 1=2 ) � C
�

kf kL 1 (B 1 ) + kukL 1 (B 1 ) +
Z

Rn

ju(y)j
1 + jyjn+1

dy
�

;

whereC depends only onn, " , the ellipticity constants, andkbk.

The proof of Proposition (3.4) is given in [Ser15] in caseb= 0 (in the much more
general context of fully nonlinear equations). The proof of [Ser15] uses the main
result in [CD14]. The proof of Proposition 3.4 follows simply by replacing the use of
the result [CD14] in [Ser15] by [SS16, Theorem 7.2] or [CD16, Corollary 7.1].

We also need the following boundary Harnack inequality from [RS19].

Theorem 3.5 ([RS19]). Let U � Rn be an open set, letL be an operator of the
form (3.7)-(3.8), and let b2 Rn .

Let u1; u2 2 C(B1) be viscosity solutions to

�
(� L + b� r )ui = 0 in U \ B1

ui = 0 in B1 n U;
; i = 1; 2;

and such that

ui � 0 in Rn ;
Z

Rn

ui (y)
1 + jyjn+1

dy = 1; i = 1; 2:

Then,
0 < cu2 � u1 � Cu2 in U \ B1=2;

for some constantsc andC depending only onn, kbk, U, and the ellipticity constants.

We will also need the following result.
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Theorem 3.6 ([RS19]). Let U � Rn be a Lipschitz set, letL be an operator of the
form (3.7)-(3.8), and let b2 Rn .

Let u1; u2 2 C(B1) be viscosity solutions to
�

(� L + b� r )ui = gi in U \ B1

ui = 0 in B1 n U;
; i = 1; 2;

for some functionsgi 2 L1 (U \ B1), i = 1; 2. Assume also that

ui � 0 in Rn ;
Z

Rn

ui (y)
1 + jyjn+1

dy = 1; i = 1; 2:

Then, there exists� > 0 depending only onn, U, the ellipticity constants, and
kbk such that, if

kgi kL 1 (U\ B 1 ) � � in U \ B1; i = 1; 2;

then 








u1

u2










C � (U\ B 1=2 )

� C;

for some constants� and C depending only onn, U, the ellipticity constants, and
kbk.

Finally, to conclude this section we study how 1-dimensional powers behave with
respect to the operator, and in particular, we �nd a 1-dimensional solution to the
problem. This solution is the same as the one that appears as a travelling wave
solution in the parabolic fractional obstacle problem fors = 1

2 ; see [CF13, Remark
3.7].

Proposition 3.7. Let b2 R, and let u 2 C(R) be de�ned by

u(x) := ( x+ )� ;

for � 2 (0; 1). Then u satis�es

(� �) 1=2u + bu0 = �
�
bsin(�� ) + cos(�� )

�
(x+ )� � 1 in R+ ;

u � 0 in R� :

In particular, let us de�ne

u0(x) := C(x+ )
 (b) ;

where

 (t) :=

1
2

+
1
�

arctan (t) 2 (0; 1):

Then, u0 satis�es

(� �) 1=2u0 + bu0
0 = 0 in R+ ;

u0 � 0 in R� ;

i.e., u0 is a solution to the 1-dimensional non-local elliptic problem with critical drift
and with zero Dirichlet conditions inR� .
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Proof. De�ne the harmonic extension toR2
+ , �u = �u(x; y), via the Poisson kernel, so

that �u(x; 0) = u(x), and � @y �u(x; 0) = ( � �) 1=2u(x). We have that �u solves,
�

�� u = 0 in R2 \ f y > 0g
�u = 0 in f x � 0g \ f y = 0g:

(3.13)

For simplicity, de�ne the re
ected function w(x; y) = �u(� x; y), and let us con-
sider that, by separation of variables in polar coordinates,w(r; � ) = g(r )h(� ), for
r � 0, � 2 [0; � ] (we use the standard variables,x = r cos� , y = r sin� ). Notice that
we are considering homogeneous solutions, so thatg(r ) = r � . Then, from (3.13) we
get

�
g00h + r � 1g0h + r � 2gh00 = 0 in f r > 0g \ f � 2 (0; � )g

h(0) = 0
(3.14)

from which arise that w can be expressed as

w(r; � ) = r � sin(�� ):

Now notice that, for r > 0,

(( � �) 1=2u + bu0)(r ) = ( r � 1@� + b@r )w(r; � )
�
�
� = �

= � (bsin(�� ) + cos(�� )) r � � 1:

Solving for � we obtain that it is a solution for � = 
 (b). Moreover, notice that
for � < 
 (b) it is a supersolution, and for� > 
 (b) a subsolution.

3.3 C1;� regularity of solutions

In this section we proveC1;� regularity of solutions to the obstacle problem with
critical drift. For this, we use the method in [CRS17, Section 2].

Throughout this section we can consider the wider class of nonlocal operators

Lu(x) =
Z

Rn

�
u(x + y) + u(x � y)

2
� u(x)

�
a(y)

jyjn+1
dy; (3.15)

with
a 2 L1 (Rn ) satisfying a(y) = a(� y) and � � a � � ; (3.16)

so that we are dropping the homogeneity condition of the kernel.

Lemma 3.8. Let L be an operator of the form(3.15)-(3.16) and let b 2 Rn . Let '
be any obstacle satisfying(3.3), and let u be a solution to(3.9). Then,

(a) u is semiconvex, with

@eeu � �k ' kC1;1 (Rn ) for all e 2 Sn� 1:

(b) u is bounded, with
kukL 1 (Rn ) � k ' kL 1 (Rn ) :
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(c) u is Lipschitz, with
kukLip( Rn ) � k ' kLip( Rn ) :

Proof. The proof is exactly the same as in [CRS17, Lemma 2.1], since the operator
� L + b� r still has maximum principle and is translation invariant.

We next prove the lemma that will yield theC1;� regularity of solutions.

Lemma 3.9. There exist constants� > 0 and � > 0 such that the following state-
ment holds true.

Let L be and operator of the form(3.15)-(3.16), let b2 Rn , and let u 2 Lip( Rn )
be a solution to

u � 0 in Rn

@eeu � � � in B2 for all e 2 Sn� 1

(� L + b� r )(u � u(� � h)) � � jhj in f u > 0g \ B2 for all h 2 Rn ;
in the viscosity sense:

satisfying the growth condition

sup
B R

jr uj � R� for R � 1:

Assume thatu(0) = 0 . Then,

jr u(x)j � 2jxj � :

The constants� and � depend only onn, the ellipticity constants andkbk.

Proof. The proof is very similar to that of [CRS17, Lemma 2.3].
De�ne

� (r ) := sup
�r � r

�
(�r )� � sup

B �r

jr uj
�

Note that, by the growth control on the gradient, � (r ) � 1 for r � 1. Note also
that � is nonincreasing by de�nition.

To get the desired result, it is enough to prove� (r ) � 2 for all r 2 (0; 1). Assume
by contradiction that � (r ) > 2 for somer 2 (0; 1), so that from the de�nition of � ,
there will be some �r 2 (r; 1) such that

(�r )� � sup
B �r

jr uj � (1 � " )� (r ) � (1 � " )� (�r ) �
3
2

;

for some small" > 0 to be chosen later.
We now de�ne

�u(x) :=
u(�rx )

� (�r )(�r )1+ �
;

and

L �r w(x) :=
Z

Rn

�
w(x + y) + w(x � y)

2
� w(x)

�
a(�ry )
jyjn+1

dy
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Notice that L �r is still of the form (3.15)-(3.16).
The rescaled function satis�es

�u � 0 in Rn

D 2 �u � � (�r )2� 1� � � Id � � � Id in B2=�r � B2

(� L �r + b� r )(�u � �u(� � �h)) � (�r )� � � j �r �hj � � j�hj in f �u > 0g \ B2

for all h 2 Rn ;

Moreover, by de�nition of � and �r , the rescaled function �u also satis�es

1� " � sup
j �hj� 1=4

sup
B 1

�u � �u(� � �h)
j�hj

and sup
j �hj� 1=4

sup
B R

�u � �u(� � �h)
j�hj

� (R + 1=4)� (3.17)

for all R � 1.
Let � 2 C2

c (B3=2) with � � 1 in B1, � � 1 in B3=2. Then,

sup
j �hj� 1=4

sup
B 3=2

�
�u � �u(� � �h)

j�hj
+ 3"�

�
� 1 + 2":

Fix h0 2 B1=4 such that

t0 := max
B 3=2

�
�u � �u(� � h0)

jh0j
+ 3"�

�
� 1 + ":

and let x0 2 B3=2 be such that

�u(x0) � �u(x0 � h0)
jh0j

+ 3"� (x0) = t0: (3.18)

Let us denote

v(x) :=
�u(x) � �u(x � h0)

jh0j
:

Then, we have
v + 3"� � v(x0) + 3 "� (x0) = t0 in B3=2:

Moreover, if � is taken small enough then

sup
B 4

v � (4 + 1=4)� < 1 + " � t0;

so that in particular x0 is in the interior of B3=2, and

v + 3"� � t0 in B3: (3.19)

Note also thatx0 2 f �u > 0g since otherwise �u(x0)� �u(x0� h0) would be a nonpositive
number.

We now evaluate the equation forv at x0 to obtain a contradiction. To do so,
recall that D 2 �u � � � Id in B2, �u � 0 in Rn , and �u(0) = 0. It follows that, for z 2 B2

and t0 2 (0; 1),

�u(t0z) � t0�u(z) + (1 � t0)�u(0) +
� jzj2

2
t0(1 � t0) � �u(z) +

� jzj2

2
t0(1 � t0)
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and thus, for t 2 (0; 1), setting z = x(1 + t=jxj) and t0 = 1=(1 + t=jxj) we obtain, for
x 2 B1,

�u(x) � �u
�

x + t
x
jxj

�
�

�
2

(jxj + t)2 t=jxj
(1 + t=jxj)2

=
� jxjt

2
� �t:

Therefore, denotinge = h0=jh0j, t = jh0j � 1 and using that by (3.17), if� small
enough,

k�ukLip(B 1 ) �
4
3

;

we obtain

v(x) =
�u(x) � �u(x � te)

t
�

�u(x) � �u(x � te)
t

+
�u

�
x + t x

jx j

�
� �u(x)

t
+ �

�
�u

�
x + t x

jx j

�
� �u(x � te)

t
+ �

�
4
3

�
�
�
�e+

x
jxj

�
�
�
� + � �

1
4

(3.20)

in Ce \ B1 provided � is taken smaller than 1=12; whereCe is the cone,

Ce :=
�

x :

�
�
�
�e+

x
jxj

�
�
�
� �

1
8

�
:

On the other hand, we know that

v(x0 + y) � v(x0) � 3"
�
� (x0) � � (x0 + y)

�
in B3: (3.21)

This allows us to de�ne

� (x0 + y) =
�

v(x0) + 3 "
�
� (x0) � � (x0 + y)

�
in B1=8

v(x0 + y) otherwise:

Notice that � is regular aroundx0 and that � � v everywhere, and recall that
(� L �r + b� r )v(x0) � � in the viscosity sense. Therefore, we have

� L �r � (x0) � Ckbk" � (� L �r + b� r )� (x0) � �: (3.22)

Now, using
1 � 2" � v(x0) � 1 + ";

and de�ning

�� (x; y) :=
� (x + y) + � (x � y)

2
� � (x);

we can bound�� (x0; y) as

�� (x0; y) �

8
>><

>>:

C"jyj2 in B2

(jyj + 2) � � 1 + 2" in Rn n B1

� 3=8 + C" in (� x0 + Ce \ B1) n B1=4:
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The �rst inequality follows because aroundx0 and from (3.21) we have the bound
�� (x0; y) � 3

2" (2� (x0) � � (x0 + y) � � (x0 � y)) and � is a C2 function. The second
inequality follows from (3.17), and using that12

�
jx0 + yj + 1

4

� �
+ 1

2

�
jx0 � yj + 1

4

� �
�

(jyj + 2) � . For the third inequality, notice that

�� (x0; y) =
v(x0 + y) � v(x0)

2
+

v(x0 � y) � v(x0)
2

�
1
8

�
1
2

+ � + C" � �
3
8

+ C" in ( � x0 + Ce \ B1) n B1=4;

where we have used (3.20) to bound the �rst term and (3.21) to bound the second
one. The constantC depends only on the� , so it is independent of everything else.

We then �nd

L �r � (x0) � �
Z

B 1

C"jyj2jyj � n� 1dy + �
Z

Rn nB 1

�
(jyj + 2) � � 1 + 2"

	
jyj � n� 1dy

+ �
Z

(� x0+ Ce \ B 1 )nB 1=4

�
�

3
8

+ C"
�

jyj � n� 1dy

� C" + C
Z

Rn nB 1=2

�
(jyj + 2) � � 1

	
jyj � n� 1dy � c;

with c > 0 independent of� and � (for " small).
Thus, combining with (3.22) we get

c � C

 

(kbk + 1) " +
Z

Rn nB 1=2

(jyj + 2) � � 1
jyjn+1

dy

!

� � Ckbk" � ~L �r � (x0) � �: (3.23)

If " and � are taken small enough so that the left-hand side in (3.23) is greater than
c=2, we get a contradiction for� � c=4.

The following proposition implies that the solution to the obstacle problem (3.9)
is C1;� for some� > 0.

Proposition 3.10. Let L be any operator of the form(3.15)-(3.16), let b 2 Rn ,
and let u 2 Lip( Rn ) with u(0) = 0 be any function satisfying, for allh 2 Rn and
e 2 Sn� 1, and for some" > 0,

u � 0 in Rn

@eeu � � K in B2

(� L + b� r )(u � u(� � h)) � K jhj in f u > 0g \ B2

jr uj � K (1 + jxj1� " ) in Rn :

Then, there exists a small constant� > 0 such that

kukC1;� (B 1=2 ) � CK:

The constants� and C depend only onn, kbk, " , and the ellipticity constants.

Proof. The proof is standard and it is exactly the same as the proof of [CRS17,
Proposition 2.4] by means of Lemma 3.9.
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3.4 Classi�cation of convex global solutions

In this section we prove the following theorem, that classi�es all convex global solu-
tions to the obstacle problem with critical drift.

Theorem 3.11. Let L be an operator of the form(3.7)-(3.8). Let 
 � Rn be a
closed convex set, with0 2 
 . Let u 2 C1(Rn ) a function satisfying, for all h 2 Rn ,

8
>>>><

>>>>:

(� L + b� r )(r u) = 0 in Rn n 

(� L + b� r )(u � u(� � h)) � 0 in Rn n 


D 2u � 0 in Rn

u = 0 in 

u � 0 in Rn :

(3.24)

Assume also the following growth control satis�ed byu,

kr ukL 1 (B R ) � R1� " for all R � 1; (3.25)

for some" > 0. Then, either u � 0, or


 = f e � x � 0g and u(x) = C(e � x)1+ 
 (b�e=� (e))
+ ; (3.26)

for somee 2 Sn� 1 and C > 0. The value of� (e) is given by(3.11) with the kernel
� of L , and 
 is given by(3.12).

We start by proving the following proposition.

Proposition 3.12. Let � be a non-empty closed convex cone, and letL be an oper-
ator of the form (3.7)-(3.8). Let u1 and u2 be two non-negative continuous functions
satisfying Z

Rn

ui (y)
1 + jyjn+1

dy < 1 ; i = 1; 2:

Assume, also, that they are viscosity solutions to
8
<

:

(� L + b� r )ui = 0 in Rn n �
ui = 0 in �
ui > 0 in Rn n � :

Then,
u1 � Ku 2 in Rn ;

for some constantK .

Proof. The proof is the same as the proof of [CRS17, Theorem 3.1], using the bound-
ary Harnack inequality in Theorem 3.5.

Suppose, without loss of generality, that � ( R n . Take P a point with jPj = 1
and B r (P) � Rn n � for some r > 0, and assume thatui (P) = 1. We want to prove
u1 � u2.

De�ne, given R � 1,

�ui (x) =
ui (Rx)

Ci
;
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with Ci such that
R

Rn �ui (y)(1 + jyj)� n� 1dy = 1. Thus, by Theorem 3.5 there exists
somec > 0 such that

�u1 � c�u2 and �u2 � c�u1 in B1=2: (3.27)

In particular, �u1(P=R) and �u2(P=R) are comparable, so thatC1 and C2 are
comparable. Thus, from (3.27),

u1 � cu2 and u2 � cu1 in BR=2;

for any R � 1, so that the previous inequalities are true inRn .
Now take

�c := supf c > 0 : u1 � cu2 in Rng < 1 :

De�ne
v = u1 � �cu2 � 0:

Either v � 0 in Rn or v > 0 in Rn n � by the strong maximum principle. If v � 0
we are done, because in this case �c = 1 due to the fact that u1(P) = u2(P) = 1.

Let us assume then thatv > 0 in Rn n �. Apply the �rst part of the proof
to v=v(P) and u2 to deduce that, for some� > 0, v > �u 2. This contradicts the
de�nition of �c, so v � 0 as we wanted.

We can now prove the classi�cation of convex global solutions in Theorem 3.11

Proof of Theorem 3.11.First, by the same blow-down argument in [CRS17, Theo-
rem 4.1], we can restrict ourselves to the case in which 
 = � for � a closed convex
cone inRn with vertex at 0.

We now split the proof into two cases:
Case 1:When � has non empty interior there are n linearly independent unitary

vectorsei such that � ei 2 �. De�ne

vi := @ei u;

and note that, sinceD 2u � 0 and � ei 2 � = f u = 0g, we have
8
<

:

(� L + b� r )vi = 0 in Rn n �
vi = 0 in �
vi � 0 in Rn :

(3.28)

From Proposition 3.12, we must havevi = ai vk for some 1� k � n, ai 2 R, and
for all i = 1; : : : ; n, so that @ei � ai ek u � 0 in Rn for all i 6= k. Thus, there exists a
non-negative function� : R ! R, � 2 C1, such that u = � (e � x) for somee 2 Sn� 1;
so that, since 02 @�, � = f e � x � 0g.

Notice that � 0 � 0 solves (� L + ( b� e)@)(� 0) = 0 in R+ and � 0 � 0 in R� , with
the growth � 0(t) � C(1 + t1� " ). From [RS14, Lemma 2.1], we have

(� (e)( � �) 1=2 + ( b� e)@)(� 0) = 0 in R+ ;

where� (e) is given by (3.11). Now, a non-negative solution to the previous equation
is given by Proposition 3.7. Such solution is unique up to a multiplicative constant
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thanks to Proposition 3.12. Indeed, notice that the hypotheses of the lemma are
ful�lled due to the growth control of � 0 and the fact that � 0 � 0. Thus, we obtain

� (t) = ( t+ )1+ 
 (b�e)=� (e) for t 2 R;

where
 and � are given by (3.12) and (3.11) respectively.
Case 2:If � has empty interior then by convexity it must be contained in some

hyperplaneH = f x � e = 0g. From Proposition 3.10, rescaling,

[r u]C � (B R ) � C(R);

for some constantC(R) depending onR; and for any R � 1. In particular, for any
h 2 Rn , if we de�ne

v(x) = u(x) � u(x � h) for x 2 Rn ;

then v 2 C1;�
loc (Rn ). This implies that ( � L + b� r )v 2 C �

loc(R
n ), but we already knew

that ( � L + b� r )v = 0 in Rn n H , so we must have

(� L + b� r )v = 0 in Rn :

Now, from the interior estimates in Proposition 3.4 rescaled on ballsBR we have

R1� "=2[v]C1� "= 2 (B R= 2 ) � C
�

kvkL 1 (B R ) +
Z

Rn

jv(Ry)j
1 + jyjn+1

dy
�

:

On the other hand, from the growth control on the gradient, we have

kvkL 1 (B R ) � j hjR1� " :

Putting the last two expressions together we reach

[v]C1� "= 2 (B R= 2 ) �
Cjhj
R"=2

:

Now let R ! 1 to obtain that v must be constant for allh. That means that u
is a�ne, but u(0) = 0 and u � 0 in Rn , so u � 0.

3.5 Blow-ups at regular points

By subtracting the obstacle if necessary and dividing byCk' kC2;1 (Rn ) , we can assume
that we are dealing with the following problem,

8
>><

>>:

u � 0 in Rn

(� L + b� r )u � f in Rn

(� L + b� r )u = f in f u > 0g
D 2u � � Id in Rn :

(3.29)

Moreover, dividing by a bigger constant if necessary, we can also assume that

kf kC1 (Rn ) � 1; (3.30)
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and that
kukC1;� (Rn ) � 1: (3.31)

The validity of the last expression and the constant� come from Proposition 3.10
and Lemma 3.8.

Let us now introduce the notion ofregular free boundary point.

De�nition 3.1. We say that x0 2 @f u > 0g is a regular free boundary point with
exponent" if

lim sup
r #0

kukL 1 (B r (x0 ))

r 2� "
= 1

for some" > 0.

The following proposition states that an appropriate blow up sequence of the
solution around a regular free boundary point converges inC1 norm to a convex
global solution.

Proposition 3.13. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let u be a solution to(3.29)-(3.30)-(3.31). Assume that0 is a regular free boundary
point with exponent" .

Then, given� > 0, R0 � 1, there existsr > 0 such that the rescaled function

v(x) :=
u(rx )

r kr ukL 1 (B r )

satis�es
kr vkL 1 (B R ) � 2R1� " for all R � 1;
�
�(� L + b� r )(r v)

�
� � � in f v > 0g;

and
jv � u0j + jr v � r u0j � � in BR0 ;

for someu0 of the form (3.26) and with kr u0kL 1 (B 1 ) = 1.

Before proving the previous proposition, let us prove the following lemma.

Lemma 3.14. Assumeu 2 C1(B1) satis�es kr ukL 1 (Rn ) = 1, u(0) = 0 , and

sup
� � r

kukL 1 (B r )

r 2� "
! 1 as � # 0:

Then, there exists a sequencer k # 0 such thatkr ukL 1 (B r k ) � 1
2r 1� "

k , and for which
the rescaled functions

uk(x) =
u(r kx)

r kkr ukL 1 (B r k )

satisfy
jr uk(x)j � 2(1 + jxj1� " ) in Rn :



79

Proof. De�ne

� (� ) := sup
r � �

kr ukL 1 (B r )

r 1� "
:

Notice that, sinceu(0) = 0, we have

kukL 1 (B r )

r 2� "
�

kr ukL 1 (B r )

r 1� "
:

Therefore,� (� ) ! 1 as � # 0, and notice also that� is non-increasing.
Now, for everyk 2 N, there is somer k � 1

k such that

r " � 1
k kr ukL 1 (B r k ) �

1
2

� (1=k) �
1
2

� (r k): (3.32)

Sincekr ukL 1 (Rn ) = 1, then

r " � 1
k �

1
2

� (1=k) ! 1 as k ! 1 ;

so that r k ! 0 ask ! 1 . We also have� (r k) � 1, and thereforekr ukL 1 (B r k ) �
1
2r 1� "

k .
Finally, from the de�nition of � and (3.32), and for anyR � 1, we have

kr ukkL 1 (B R ) =
kr ukL 1 (B r k R )

kr ukL 1 (B r k )
�

� (r kR)(r kR)1� "

1
2(r k)1� " � (r k)

� 2R1� " ;

which follows from the monotonicity of� .

We can now prove Proposition 3.13, which follows taking the sequence of rescal-
ings given by Lemma 3.14 together with a compactness argument.

Proof of Proposition 3.13. Let r k # 0 be the sequence given by Lemma 3.14. There-
fore, the functions

vk(x) =
u(r kx)

r kkr ukL 1 (B r k )

satisfy
kr vkkL 1 (B R ) � 2R1� " for all R � 1;

and
kr vkkL 1 (B 1 ) = 1; vk(0) = 0 :

Moreover,
D 2vk =

r k

kr ukL 1 (B r k )
D 2u � �

r k

kr ukL 1 (B r k )
Id;

and, in f vk > 0g,

�
�(� L + b� r )(r vk)

�
� =

r k

kr ukL 1 (B r k )

�
�(� L + b� r )(r u)

�
�

�
r k

kr ukL 1 (B r k )
kr f kL 1 �

r k

kr ukL 1 (B r k )
:
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Notice that, from (3.32) and with the notation from the proof of Lemma 3.14,

1
� k

:=
kr ukL 1 (B r k )

r k
�

� (r k)
2r "

k

! 1 ; as r k # 0:

Thus, in all we have a sequencevk such that vk 2 C1, vk(0) = 0, and

kr vkkL 1 (B R ) � 2R1� " for all R � 1;
�
�(� L + b� r )(r vk)

�
� � � k in f vk > 0g;

D 2vk � � � k Id;

with � k # 0. From the estimates in Proposition 3.10,

kr vkkC � (B R ) � C(R) for all R � 1;

for some constant depending onR, C(R). Thus, up to taking a subsequence,vk

converges inC1
loc(R

n ) to somev1 which by stability of viscosity solutions is a convex
global solution to the obstacle problem (3.24) ful�lling (3.25).

By the classi�cation theorem, Theorem 3.11,v1 must be of the form (3.26).
Taking limits

kr v1 kL 1 (B 1 ) = 1

and v1 (0) = 0. Now the result follows because� k # 0 and vk converge inC1
loc(R

n )
to v1 .

3.6 C1;� regularity of the free boundary around
regular points

In this section we proveC1;� regularity of the free boundary around regular points.
We begin by proving the Lipschitz regularity of the free boundary, as stated in

the following proposition.

Proposition 3.15. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let u be a solution to(3.29)-(3.30)-(3.31). Assume that0 is a regular free boundary
point.

Then, there exists a vectore 2 Sn� 1 such that for any ` > 0, there exists an
r > 0 and a Lipschitz functiong : Rn� 1 ! R such that

f u > 0g \ B r =
�

yn > g(y1; : : : ; yn� 1)
	

\ B r ;

wherey = Rx is a change of coordinates given by a rotationR with Re = en , and g
ful�ls

kgkLip( B r ) � `:

Moreover, @e0u � 0 in B r for all e0 � e � `p
1+ `2 .

The following lemma will be needed in the proof, and it is analogous to [CRS17,
Lemma 6.2].
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Lemma 3.16. There exists � = � (n; � ; �; kbk) such that the following statement
holds.

Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn . Let E � B1 be
relatively closed, and assume that, in the viscosity sense,w 2 C(B1) satis�es

8
<

:

(� L + b� r )w � � � in B1 n E
w = 0 in E [ (Rn n B2)
w � � � in B2 n E;

(3.33)

and Z

B 1

w+ � 1:

Then, w is non-negative inB1=2, i.e.,

w � 0 in B1=2:

Proof. Let us argue by contradiction, and suppose that the statement does not hold
for any � > 0. De�ne  2 C2

c (B3=4) be a radial function with  � 0,  � 1 in B1=2

and with jr  j � C(n). Let

 t (x) := � � � t + � (x):

If w attains negative values onB1=2, then there exists somet0 > 0 and z 2 B3=4

such that  t0 touches w from below at z, i.e.  t0 � w everywhere and t0 (z) =
w(z) < 0. Let � > 0 be such thatw < 0 in B � (z) (recall w continuous). Let us now
de�ne

�w(x) :=
�

w(x) if x 2 Rn n B � (z)
 t0 (x) if x 2 B � (z):

(3.34)

Notice that �w is C2 around z, and is such that �w � w. By de�nition of viscosity
supersolution, we have

(� L + b� r ) �w(z) � � �:

On the one hand, this implies

(� L + b� r )( �w �  t0 )(z) � � C�;

for someC depending onn, the ellipticity constants, and kbk. On the other hand,
we can evaluate �w �  t0 classically atz,

(� L+ b� r )( �w �  t0 )(z) = � L( �w �  t0 )(z)

� � �
Z

Rn
( �w �  t0 )(z + y)jyj � n� 1dy � � c(n)�

Z

B 1nB � (z)
( �w �  t0 )dy

� � c(n)�
Z

B 1

w+ dy � � c(n)�:

We used here that ( �w �  t0 )� B 1nB � (z) � w+ in B1.
In all, for � small enough depending only onn, the ellipticity constants, and kbk,

we reach a contradiction.
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With the previous lemma and the results from the previous section, we can now
prove Proposition 3.15.

Proof of Proposition 3.15. Let � > 0 andR0 to be chosen, and consider the rescaled
function from Proposition 3.13,

v(x) =
u(rx )

r kr ukL 1 (B r )
:

Thanks to Proposition 3.13, there exists somee 2 Sn� 1 such that
�
�
�r v � (x � e)
 (b�e=� (e))

+ e
�
�
� � � in BR0 :

Recall 
 and � are given by (3.12)-(3.11).
Now let e0 2 Sn� 1 be such that (assuming̀ � 1)

e0 � e �
`

p
1 + `2

�
`
2

:

Notice that

r v � e0 �
`
2

(x � e)
 (b�e=� (e))
+ � � in BR0 ;

and �
�(� L + b� r )(r v � e0)

�
� � � in f v > 0g:

De�ne
w =

C1

`
(r v � e0)� B 2 ;

for someC1 such that Z

B 1

w+ � 1:

Notice that, if � is small enough, thenC1 depends only onn, `, kbk, and the
ellipticity constants.

Let us call E = f v = 0g. If R0 is large enough, depending only onn, `, " , kbk, � ,
and the ellipticity constants, then w satis�es

8
<

:

(� L + b� r )w � � CC1
` � � � � in B1 n E

w = 0 in E [ (Rn n B2)
w � � C1

` � � � � in B2 n E:
(3.35)

We are using here that, forx 2 B1 n E,

(� L + b� r )w(x) � �
C1

`
� � (� L + b� r )

�
C1

`
(r v � e0)� B c

2

�
(x)

� �
C1

`
� +

C1

`
L(r v � e0)� B c

2
(x)

� �
C1

`
� + �

C1

`

Z

B R 0 � 1

(r v � e0)� B c
2
(x + y) + ( r v � e0)� B c

2
(x � y)

2jyjn+1

+ �
C1

`

Z

B c
R 0 � 1

(r v � e0)� B c
2
(x + y) + ( r v � e0)� B c

2
(x � y)

2jyjn+1

� �
C1

`
� � �

C1

`
Ĉ� � ĉ � �

CC1

`
�;
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where R0 is chosen large enough so that ^c can be comparable to the other terms
(which can be done, thanks to the fact thatr v grows asR1� " ). Notice that C
depends only on� and n.

In all, we can choose� small enough so that

CC1

`
� � �

for the constant � given in Lemma 3.16.
Therefore, applying Lemma 3.16 to the functionw we get that

w � 0 in B1=2;

or equivalently,
@e0u � 0 in B r=2;

for all e0 2 Sn� 1 such that e0 � e � `p
1+ `2 . This implies that @f u > 0g is Lipschitz in

B r , with Lipschitz constant smaller than `.

Finally, combining Proposition 3.15 with the boundary regularity result in The-
orem 3.6 we show that the free boundary isC1;� around regular points.

Proposition 3.17. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let u be a solution to(3.29)-(3.30)-(3.31). Assume thatx0 is a regular free boundary
point.

Then, there existsr > 0 such that the free boundary isC1;� in B r (x0) for some
� > 0 depending only onn, kbk, and the ellipticity constants.

Proof. Without loss of generality assumex0 = 0 and that � (0) = en , where � (0)
denotes the normal vector to the free boundary at 0 pointing towardsf u > 0g.

By Proposition 3.15, we already know the free boundary is Lipschitz around
0, with Lipschitz constant 1 in a ball B � . Let v1 = 1p

2
(@i u + @nu) for any �xed

i 2 f 1; : : : ; n � 1g, and let v2 = @nu. We �rst show that for some r > 0 and � > 0,









v1

v2










C � (f u> 0g\ B r )

=
1

p
2








 1 +

@i u
@nu










C � (f u> 0g\ B r )

� C: (3.36)

De�ne w as in the proof of Proposition 3.15, i.e.,w = C1(r v � e0)� B 2 , wherev is
the rescaling given by Proposition 3.13, ande0 is such that e0 � e � `

2 (choose` = 1
for example).

From the proof of Proposition 3.15 we know thatw � 0 in B1=2 (if, using the
same notation,R0 is large enough and� is small enough; i.e., the rescaling de�ning
v is appropriately chosen). Now de�ne

~w = C1(r v � e0)+

and notice that �
�(� L + b� r ) ~w

�
� � � in B1=4 n f v = 0g

for some � > 0 that can be made arbitrarily small by choosing the appropriate
(small) � > 0 and (large)R0 in the rescaling given by Proposition 3.13. The previous
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inequality follows from the fact that (r v � e0)� � � in BR0 , (r v � e0)� � 2 (1 + jxj1� " )
in BRc

0
, and (r v � e0)� � 0 in B1=2.

Let ein := 1p
2

(ei + en ), and de�ne w1 = C (r v � ein )+ and w2 = C(r v � en )+

(taking e0 = ein and e0 = en ). Now notice that w1 and w2 ful�l the hypotheses of the
boundary regularity result in Theorem 3.6, andw1 = C(r v�ein ) and w2 = C(r v�en )
in B1=2. Thus, applying Theorem 3.6 tow1 and w2 we obtain that there exists some
� > 0 such that 









w1

w2










C � (f v> 0g\ B 1=8 )

� C:

Going back to the rescalings de�ning ~w we reach that for somer > 0, (3.36) holds.
Once we have (3.36) the procedure is standard. Notice that the components of

the normal vector to the level setsf u = tg for t > 0 can be written as

� i (x) =
@i u

jr uj
(x) =

@i u=@nu
� P n� 1

j =1 (@j u=@nu)2 + 1
� 1=2

;

� n (x) =
@nu
jr uj

(x) =
1

� P n� 1
j =1 (@j u=@nu)2 + 1

� 1=2
;

for u(x) = t > 0. In particular, from the regularity of @i u=@nu given by (3.36),
we obtain � is C � on these level sets; that is,j� (x) � � (y)j � Cjx � yj � whenever
x; y 2 f u = tg \ B r . Now let t # 0 and we are done.

3.7 Estimates in C1;� domains

Once we know that the free boundary isC1;� around regular points, we need to �nd
the expansion of the solution (3.5) around such points. To do so, we establish �ne
boundary regularity estimates for solutions to elliptic problem with critical drift in
arbitrary C1;� domains. That is the aim of this section.

The main result of this section is the following, for the Dirichlet problem with
the operator � L + b � r in C1;� domains. We will use it on the derivatives of the
solution to the obstacle problem.

Theorem 3.18. Let L be an operator of the form(3.7)-(3.8), let b 2 Rn and let 

be aC1;� domain.

Let f 2 L1 (
 \ B1), and supposeu 2 L1 (Rn ) satis�es
�

(� L + b� r )u = f in 
 \ B1

u = 0 in B1 n 
 :
(3.37)

Then, for each boundary pointx0 2 B1=2 \ @
 , there exists a constantQ with
jQj � C

�
kukL 1 (Rn ) + kf kL 1 (
 \ B 1 )

�
such that for all x 2 B1

�
�
�u(x) � Q

�
(x � x0) � � (x0)

� ~
 (x0 )

+

�
�
� � C

�
kukL 1 (Rn ) + kf kL 1 (
 \ B 1 )

�
jx � x0j~
 (x0 )+ � ;

where � > 0 and � (x0) is the normal unit vector to @
 at x0 pointing towards the
interior of 
 , and ~
 (x0) is de�ned in (3.10). The constantC depends only onn, � ,



85


 , the ellipticity constants, andkbk; and the constant� depends only onn, � , the
ellipticity constants, andkbk.

To prove Theorem 3.18 we will need several ingredients.

3.7.1 A supersolution and a subsolution

In this section we denote
d(x) := dist( x; Rn n 
) :

We will also use the following.

De�nition 3.2. Given a C1;� domain 
, we consider %a regularised distance func-
tion to C1;� ; i.e., a function that satis�es

~K � 1d � %� ~Kd;

k%kC1;� (
) � ~K and jD 2%j � ~Kd � � 1;

where the constant ~K depends only on� and the domain 
.

The existence of such regularised distance was discussed, for example, in [RS15,
Remark 2.2].

We next construct a supersolution, needed in our proof of Theorem 3.18.

Proposition 3.19 (Supersolution). Let L be an operator of the form(3.7)-(3.8),
and let b2 Rn . Let 
 be aC1;� domain for some� > 0, and suppose0 2 @
 .

Let � : @
 ! Sn� 1 be the outer normal vector at the points of the boundary of

 , let 
 be de�ned by(3.12), and � by (3.11). Let us also de�ne


 0 := 

�

b� � (0)
� (� (0))

�
;

and

� � := inf
�

� � 0 : 

�

b� � (x)
� (� (x))

�
� 
 0 � � 8x 2 @
 \ B1

�
: (3.38)

Let � := %� for a �xed 0 < � < 
 0 � 2� � , and where%is the regularised distance
given by De�nition 3.2. Then, there exist� > 0 and Ĉ > 0 such that

�
Ĉ(� L + b� r )� � 1 in B1=2 \ f x : 0 < d(x) � � g

Ĉ� � 1 in B1=2 \ f x : d(x) � � g:
(3.39)

The constants� and Ĉ depend only onn, 
 , � , the ellipticity constants, andkbk.

Proof. Pick any x0 2 B1=2 \ f x : d(x) � � g, and de�ne

l0(x) =
�
%(x0) + r %(x0) � (x � x0)

�
+

:

Notice that, wheneverl0 > 0, if we de�ne %̂0 := r %(x0 )
jr %(x0 )j and z = %̂0 � x then

(� L + b� r )l �
0 (x) =

�
� (%̂0)( � �) 1=2 + ( b� %̂0) @

� �
jr %(x0)jz + c0

� �

+

= j%(x0)j� (%̂0)c
�
�; b � %̂0=� (%̂0)

��
jr %(x0)jz + c0

� � � 1

+
;
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where c0 = %(x0) � r %(x0) � x0, and c(�; b � %̂0=� (%̂0)) is the constant arising from
Proposition 3.7. We want to check that this constant is positive, which is equivalent
to saying (again, from Proposition 3.7) that

� < 

�

b� %̂0

� (%̂0)

�
:

To see this, it is enough to check that


 0 � 2� � � 

�

b� %̂0

� (%̂0)

�
;

which will be true for some small� > 0 and for anyx0 2 B1=2 \ f x : d(x) � � g if

lim
� #0

inf
y2 B 1=2

0<d (y)� �

sup
x2 @
 \ B 3=4

r %(y)
jr %(y)j

� � (x) = 1 ;

i.e., r %normalised is close to some unit normal vector to the boundary as� goes to
zero (notice that 
 and � are continuous). But this is true since%is a C1;� function,
so in particular, its gradient is continuous, and the boundary is a level set of%; i.e.,
r %(y) = jr %(y)j� (y) for any y on the boundary. It is important to remark that the
modulus of continuity of r %depends only on 
.

Now notice that

l0(x0) = %(x0) r l0(x0) = r %(x0): (3.40)

Let ~%be aC1;� (Rn ) extension of%to the whole Rn with %� 0 in Rn n 
. Then we
have �

�%(x0) + r %(x0) � y � ~%(x0 + y)
�
� � Cjyj1+ � :

By using that ja+ � b+ j � j a � bj we �nd
�
� l0(x0 + y) � %(x0 + y)

�
� � Cjyj1+ � :

Now, also using thatjat � bt j � j a� bj(at � 1+ bt � 1) for a; b� 0, jat � bt j � Cja� bj t ,
and sayingd0 = d(x0) we get

j� � l �
0 j(x0 + y) �

8
<

:

Cd� � 1
0 jyj1+ � for y 2 Bd0=( ~K +1)

Cjyj(1+ � ) � for y 2 B1 n Bd0=( ~K +1)

Cjyj � for y 2 Rn n B1:
(3.41)

We have used here that, inBd0=( ~K +1) , l � � 1
0 � Cd� � 1

0 and %� � 1 � Cd� � 1
0 . Here, ~K

denotes the constant given in De�nition 3.2. Putting all together

(� L+ b� r )� (x0) =

= ( � L + b� r )( � � l �
0 )(x0) + ( � L + b� r )l �

0 (x0)

� L(l �
0 � � )(x0) + c(� )d� � 1

0

=
Z

Sn � 1

Z 1

0
(( l �

0 � � )(x0 + r� ) + ( l �
0 � � )(x0 � r� ))

dr
r 2

d� (� ) + c(� )d� � 1
0

� � C

 Z d0=( ~K +1)

0

d� � 1
0 r 1+ �

r 2
dr +

Z 1

d0=( ~K +1)

r (1+ � ) �

r 2
dr +

Z 1

1

r �

r 2
dr

!

+ c(� )� � � 1

� � Cd� � 1+ �
0 � Cd(1+ � ) � � 1

0 + c(� )d� � 1
0 :



87

Notice that the right-hand side tends to +1 as � # 0 independently of thex0

chosen. Thus, we can choose� small enough so that the right-hand side is greater
than 1. Then, by choosingĈ � 1 such that Ĉ� � 1 in B1=2 \ f x : d(x) > � g we are
done.

We can similarly �nd a subsolution for the problem. It will be used in the next
section.

Lemma 3.20 (Subsolution). Let L be an operator of the form(3.7)-(3.8), and let
b2 Rn . Let 
 be aC1;� domain for some� > 0, and suppose0 2 @
 .

Let � : @
 ! Sn� 1 be the outer normal vector at the points of the boundary of

 , let 
 be de�ned by(3.12), and � by (3.11). Let us also de�ne


 0 := 

�

b� � (0)
� (� (0))

�
;

and

� (2)
� := inf

�
� � 0 : 


�
b� � (x)
� (� (x))

�
� 
 0 + � 8x 2 @
 \ B1

�
: (3.42)

Let � := %� 2 for any �xed 1 > � 2 > 
 0 + 2� (2)
� . Then, there exist� > 0 and Ĉ > 0

such that
�

(� L + b� r )� � � 1 in B1=2 \ f x : 0 < d(x) � � g
� � Ĉ in B1=2 \ f x : d(x) > � g:

(3.43)

The constants� and Ĉ depend only onn, 
 , � 2, the ellipticity constants, andkbk.

Proof. The proof follows by the same steps as the proof of Proposition 3.19. Using
the same notation, one just needs to notice that when evaluating

(� L + b� r )l � 2
0 (x) = c

�
� 2; b� %̂0=� (%̂0)

��
jr %(x0)jz + c0

� � 2 � 1

+
;

now the constantc(� 2) is negative (independently of the� 2 chosen, as before). Thus,

(� L + b� r )� (x0) � Cd� 2 � 1+ �
0 + Cd(1+ � ) � 2 � 1

0 + c(� )d� 2 � 1
0 ;

for negativec(� 2), so that if d0 is small enough we obtain the desired result.

3.7.2 H•older continuity up to the boundary in C1;� domains

The aim of this subsection is to prove Proposition 3.21 below. Before doing that, let
us introduce a de�nition.

De�nition 3.3. We say that � � Rn is a C1;� graph splitting B1 into U+ and U�

if there exists somef � 2 C1;� (Rn� 1) such that

� � := f (x0; f 
 (x0)) \ B1 for x0 2 Rn� 1g;

� U+ := f (x0; xn ) 2 B1 : xn > f � (x0)g;
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� U� := f (x0; xn ) 2 B1 : xn < f � (x0)g.

Under these circumstances, we refer to theC1;� norm of � as kf � kC1;� (D 0) , where
D 0 := f x0 2 Rn : (x0; f � (x0)) 2 B1g.

Proposition 3.21. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let � be aC1;� graph splittingB1 into U+ and U� , according to De�nition 3.3, and
suppose0 2 � .

Let f 2 L1 (U+ ), let g 2 C � (U� ), and supposeu 2 C(B1) satisfying the growth
condition ju(x)j � M (1 + jxj)� in Rn for some� < 1. Assume also thatu satis�es
in the viscosity sense

�
(� L + b� r )u = f in U+

u = g in U� :
(3.44)

Then there exists some� > 0 such thatu 2 C � (B1=2) with

kukC � (B 1=2 ) � C
�
kukL 1 (B 1 ) + kgkC � (U � ) + kf kL 1 (U+ ) + M

�
:

The constantsC and � depend only onn, � , the C1;� norm of � , � , the ellipticity
constants, andkbk.

Proof. Let ~u = u� B 1 so that (� L + b � r )~u = f + L(u� B c
1
) =: ~f in U+ \ B3=4,

and ~u = g in U� . Note that k ~f kL 1 (U+ \ B 3=4 ) � C(kf kL 1 (U+ ) + M ) =: C0 for some
constant C depending only onn, �, and the ellipticity constants.

We begin by proving that for some small� > 0, and for someC, we have

k~u � g(z)kL 1 (B r (z)) � Cr � for all r 2 (0; 1); and for all z 2 � \ B1=2; (3.45)

where � > 0 and C depend only onn, C0, kukL 1 (B 1 ) , kgkC � (U � ) , the ellipticity
constants, andkbk.

Let us de�ne a C1;� domain that will be used in this proof, analogous to a �xed
ball if the surface � was C1;1.

Thus, we de�ne P as a �xed C1;� bounded convex domain with diameter 1 that
coincides with f x = ( x1; : : : ; xn ) 2 Rn : xn � j (x1; : : : ; xn� 1)j1+ � g in B1=2. Let yP

be a �xed point inside the domain, which will be treated as thecenter. Let us call
PR the rescaled version of such domain with diameterR and center yPR , and let us
de�ne

P (� )
R := f x 2 Rn : dist(x; PR) � � g:

As an abuse of notation we will also callPR any rotated and translated version that
will be given by the context.

Note that, since � is C1;� , there exists some� 0 2 (0; 1) depending on theC1;�

norm of � such that any point z 2 � \ B1=2 can be touched by someP� 0 rotated and
translated correspondingly and contained completely inU� .

Let us now consider the supersolution given by Proposition 3.19 with respect to
the domain Rn n P.
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Figure 3.1: Sketch of the ballB1=2 split into U+ and U� , and a domainPR tangen-
tially touching the boundary �.

That is, there is some function� P such that, for some constants� > 0 and C
�xed, 8

>><

>>:

(� L + b� r )� P � 1 in P (� ) n P
� P � 1 in Rn n P (� )

� P = 0 in P
� P � Cd� in Rn ;

(3.46)

whered = dist( x; P ) and 0 < � < min
n



�

b0�e
� (e)

�
: kb0k = kbk; e 2 Sn� 1

o
can also be

�xed | recall that 
 and � are given by (3.12)-(3.11).
Let P0 be a rotated version ofP, and let � P 0 be the corresponding rotated

supersolution. Notice that we can assume that� P 0 also ful�ls (3.46) (with P0 instead
of P), since while the operator (� L + b� r ) is not rotation invariant, only an extra
positive constant arises depending on the ellipticity constants andkbk.

Given a rotated, scaled and translated version of the domainP, PR , we will
denote the corresponding supersolution (the rotated, scaled and translated version
of � P ) by � PR .

Let now z 2 � \ B1=2. For any R 2 (0; � 0) there exists some rescaled, rotated and
translated domain PR � U� touching � at z. Recall that yPR is the center of the
domain PR , so that in particular jz � yPR j = CP R for some constantCP that only
depends on the domainP chosen (CP 2 (0; 1) because the domainPR has diameter
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R). See Figure 3.1 for a representation of this situation.
Recall that � PR is the supersolution corresponding to the domainPR , with the �

given by Proposition 3.19 (now, when rescaling,� becomesR� ). De�ne the function

 (x) = g(yPR ) + kgkC � (U � )

�
(1 + � )R

� �
+

�
C0 + kukL 1 (B 1 )

�
� PR :

Note that  is above ~u in U� \ P (R� )
R , since ~u = g there and the distance from

yPR to any other point in P (R� )
R is at most (1 + � )R.

On the other hand, inP (R� )
R nPR we have (� L + b�r ) � (C0 + kukL 1 (B 1 ))R� 1 �

C0 � (� L + b � r )~u sinceR � � 0 < 1; and outsideP (R� )
R we have ~u �  . In all,

~u �  everywhere by the maximum principle, and thus for anyR 2 (0; � 0)

~u(x) � g(z) � C
�
R� + ( r=R)�

�
for all x 2 B r (z) and for all r 2 (0; R� );

for some constantC that depends only onn, C0, kukL 1 (B 1 ) , kgkC � (U � ) , the ellipticity
constants, and kbk. If R is small enough we can taker = R2, and repeat this
reasoning upside down to get that

k~u � g(z)kL 1 (B r (z)) � C
�
r �= 2 + r �= 2

�
� Cr � for all r 2 (0; � 2);

for � = min
� �

2 ; �
2

	
. This yields the result (3.45) by taking a largerC if necessary.

Now let x; y 2 B1=2, and let r = jx � yj. We will show

ju(x) � u(y)j � Cr � ;

for some� > 0. If x; y 2 U� we are done by the regularity ofg. If x 2 U+ , y 2 U� ,
we can takez in the segment betweenx and y, on the boundary �, and comparex
and y to z, so that it is enough to considerx; y 2 U+ .

Let R = dist( x; �) � dist(y; �), and supposex0; y0 2 � are such that dist( x; �) =
dist(x; x0) and dist(y; �) = dist( y; y0). By interior estimates for the problem (see
Proposition 3.4),

[u]C � (B R= 2 (x)) � CR� � : (3.47)

Let r < 1, and let us separate two di�erent cases

� Supposer � R2=2. Then, using (3.45) and the regularity ofg we obtain

ju(x) � u(y)j � j u(x) � u(x0)j + ju(x0) � u(y0)j + ju(y0) � u(y)j

� CR� + C(2R + r )�

� C(r �=2 + r �= 2) � Cr �=2:

� Assumer � R2=2, so that y 2 BR=2(x). Thus, using (3.47),

ju(x) � u(y)j � CR� � r � � Cr �=2:

In all, we have foundu 2 C � (B1=2) for � = �=2.

Remark 3.1. When U is C1 , the above H•older estimate follows from the results in
[S94], [CD01]. We thank G. Grubb for pointing this out to us.
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3.7.3 A Liouville theorem

We next prove a Liouville-type theorem in the half-space for non-local operators
with critical drift, that will be used to prove Theorem 3.18.

Theorem 3.22. Let L be an operator of the form(3.7)-(3.8), and let b2 Rn . Let u
be any weak solution to

�
(� L + b� r )u = 0 in Rn

+
u = 0 in Rn

� :
(3.48)

Assume also that for some" > 0 and some constantC, u satis�es

kukL 1 (B R ) � CR1� " for all R � 1:

Then,
u(x) = C(xn )
 (bn =� )

+ ; (3.49)

for someC > 0, and wherebn is the n-th component ofb. The constant� is de�ned
by � = � (en ) where� (e) is given by(3.11), and 
 is given by(3.12).

Before proving the Liouville theorem, let us prove it in the 1-dimensional case.
Notice that from Proposition 3.12 it already follows that any non-negative solu-

tion must be either u � 0 or the one found in Proposition 3.7. Here, however, we
need the same result for solutions that may change sign.

Proposition 3.23. Let b2 R, and let u 2 C(R) be a function satisfying

(� �) 1=2u + bu0 = 0 in R+ ; u � 0 in R� ;

and ju(x)j � C(1 + jxj1� " ) for some" > 0. Then,

u(x) = C0(x+ )
 (b) ;

where
 is given by(3.12).

Proof. We �rst claim that



 u=(x+ )
 (b)






C � ([0;1])
� C (3.50)

for some� > 0.
Indeed, let

w = � [0;2]u + �� [3=2;2];

and recall that, for someĈ,

kukL 1 ([0;R]) � ĈR1� " :

Notice that w(0) = 0, and that w � C0(x)
 (b)
+ for x � 1, if C0 is big enough

depending only on� and Ĉ. Choose� so that (� �) 1=2w � 0 in [0; 1] so that by
the maximum principle u = w � C0(x)
 (b)

+ in [0; 1]. Doing the same for� u we reach
that

juj � C0(x)
 (b)
+ for x 2 [0; 1]:
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De�ne now ~u = u� (0;m) + M (x+ )
 (b) , where M = M (m) is such that ~u � 0 in
(0; m). Notice that ~u solves an equation of the form (� �) 1=2~u + b~u0 = f m (x) in
(0; 1) for some boundedf m with kf mkL 1 (0;1) # 0 as m ! 1 . We can now apply
Theorem 3.6 with ~u and (x+ )
 (b) to get that for some large enoughm,




 ~u=(x+ )
 (b)






C � ([0;1])
� C;

for some� > 0. Thus, we get (3.50).
De�ne v = u � k(x+ )
 (b) , wherek = lim x#0

u(x)
(x+ ) 
 ( b) . Then we have

jv(x)j � Cjxj1� " for x � 1; (3.51)

jv(x)j � Cjxj 
 (b)+ � for x 2 [0; 2]; (3.52)

and we can assume, without loss of generality, that 1� " > 
 (b) + � . Combining
this with the interior estimates from Proposition 3.4 we obtainv 2 C 
 (b)+ � ([0; 1]).
Indeed, takex; y 2 [0; 1], x < y . Let r = y � x and R = jyj. Now separate two cases

� If 2r � R, by (3.52)

jv(x) � v(y)j � j v(x)j + jv(y)j � C(jxj 
 (b)+ � + jyj 
 (b)+ � )

� C
�
(R � r )
 (b)+ � + R
 (b)+ �

�
� Cr 
 (b)+ � :

� If 2r < R , then x; y 2 (y � R=2; y + R=2). By rescaling the estimates from
Proposition 3.4 and using (3.51)

R
 (b)+ � [v]C 
 ( b)+ � (y� R
2 ;y+ R

2 ) � C
�
kvkL 1 (y� R;y + R) + R1� "

�
:

Now, from (3.52)
kvkL 1 (y� R;y + R) � CR
 (b)+ � ;

so that
[v]C 
 ( b)+ � (y� R

2 ;y+ R
2 ) � C:

This implies
kvkC 
 ( b)+ � ([0;1]) � C;

as desired.
Now, we claim that using the interior estimates from Proposition 3.4 we obtain

jv0(x)j � Cjxj � " for x � 1; (3.53)

and
jv0(x)j � Cjxj 
 (b)+ � � 1 for x 2 [0; 1]: (3.54)

Let us show that these last inequalities hold. The �rst one, (3.53), follows using
that jv(x)j � C(1+ jxj1� " ), and that (3.51)-(3.52) combined with the rescaled interior
estimates in Proposition 3.4 yield

[v]C 
 ( b)+ � (R;2R) � CR1� " � 
 (b)� � for R � 1: (3.55)
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Indeed, take 0< � < 
 (b) + � , and any h 2 R with jhj � R=2. Then by interior
estimates applied to the incremental quotients,

�
v(x + h) � v(x)

jhj 
 (b)+ �

�

C1� � (R;2R)

� CR� � " � 
 (b)� � for R � 1;

with C independent of theh chosen. In particular, this yields

[v0]C 
 ( b)+ � � � (R;2R) � CR� � " � 
 (b)� � for R � 1:

The inequality in (3.53) now follows comparing the value ofv0(2k) for any k 2 N
with v0(1) dyadically.

For the second inequality, (3.54), we proceed similarly. Take 0< � < 
 (b) + � ,
and for any R > 0 �xed take jhj � R=2 and notice that

�
v(x + h) � v(x)

jhj 
 (b)+ �

�

C1� � (R;2R)

� CR� � 1 for 0 < R < 1; (3.56)

with C independent ofh. This follows from the interior estimates in Proposition 3.4
and the growth of v(x+ h)� v(x)

jhj 
 ( b)+ � given by (3.55). As before, this implies

[v0]C 
 ( b)+ � � � (R;2R) � CR� � 1 for 0 < R < 1:

Finally, the inequality (3.54) follows comparing the value ofv0(2� k) with v0(1) dyad-
ically. Thus, (3.53) and (3.54) are proved.

De�ne now the function

 A (x) = A
�
(x+ )
 (b) + ( x+ )
 (b)� 1

�
;

and notice that  A and v0 solve

(� �) 1=2 A + b 0
A = 0 in x > 0; (3.57)

(� �) 1=2v0+ b(v0)0 = 0 in x > 0: (3.58)

We have that  A > v 0 in f x > 0g for some large enoughA, thanks to the growth
of v0 in (3.53)-(3.54). Choose the smallest nonnegativeA such that  A � v0. Then,
by the growth at zero and in�nity of both v0 and  A they touch at some point in
(0; 1 ). Moreover, if A > 0, then we must have A 6� v0.

Let x0 > 0 be a point where A (x0) = v0(x0). Notice that  A � v0 is a non-negative
(and non-zero) function with a minimum at x0. Thus,

�
(� �) 1=2( A � v0) + b( A � v0)0

�
(x0) = ( � �) 1=2( A � v0)(x0) < 0;

which contradicts the fact that both  A and v0 are solutions to the problem, (3.57)-
(3.58). Thus, there is no positiveA such that  A and v0 touch at at least one point,
so we must havev0 � 0. Doing the same from below we reachv0 � 0, and therefore
v0 � 0. Hence, sinceu(0) = 0 we �nd v � 0. In particular, this means that

u = k(x+ )
 (b) ;

as desired.
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We can now prove the Liouville theorem.

Proof of Theorem 3.22.Let us �rst see that the solution is 1-dimensional in the
direction en .

Given � � 1, de�ne
v� (x) = � � " +1 u(�x ):

Notice that

kv� kL 1 (B R ) = � � " +1 ku(� �)kL 1 (B R ) = � � " +1 kukL 1 (B �R ) � CR1� " :

Moreover, by the homogeneity of (� L + b� r ),
�

(� L + b� r )v� = 0 in Rn
+

v� = 0 in Rn
� :

(3.59)

De�ne now ~v� = v� � B 2 , so that ~v� 2 L1 (Rn ). We now have
�

(� L + b� r )~v� = g� in B +
1

~v� = 0 in B �
1 ;

(3.60)

for someg� with kg� kL 1 (B +
1 ) � C0 with C0 independent of� . Indeed,

(� L + b� r )~v� = ( � L + b� r )(v� � v� � B c
2
) = L(v� � B c

2
) � C0 in B +

1 ;

where the last inequality follows thanks to the uniform growth control onv� .
Now, by Proposition 3.21,

kv� kC � (B 1=2 ) = k~v� kC � (B 1=2 ) � C;

from which

[u]C � (B �= 2 ) = � � � [u(� �)]C � (B 1=2 ) = � � � +1 � " [v� ]C � (B 1=2 ) � C� � � +1 � " : (3.61)

Now, givene 2 Sn� 1 with en = 0, and for any h > 0, de�ne

w(x) =
u(x + eh) � u(x)

h�
:

By (3.61),
kwkL 1 (B R ) � CR� � +1 � " for all R � 1:

We also have �
(� L + b� r )w = 0 in Rn

+
w = 0 in Rn

� ;
(3.62)

thanks to the fact that e does not have component in then-th direction, en = 0.
Repeat the previous argument applied tow instead ofu, to get

[w]C � (B R ) � CR� 2� +1 � " for all R � 1:

Repeating iteratively we get that, form = b1� "
� + 1c, then

[wm ]C � (B R ) � CR� m� +1 � " for all R � 1;
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where wm is an incremental quotient of orderm of u. Letting R ! 1 we observe
that wm � 0.

Sincewm is any incremental quotient of orderm, this means that for any �xed
x, qx (y0) := u(x + ( y0; 0)) for y0 2 Rn� 1 is a polynomial of orderm � 1 in the y0

variables. However, from the growth condition onu the polynomial must grow less
than linearly at in�nity, and therefore it is constant. This means that for any x,
u(x + eh) = u(x) for all h 2 R and for all e 2 Sn� 1 with en = 0; i.e., u(x) = u(xn ),
as we wanted to see.

Now we can proceed as in the proof of the classi�cation theorem, Theorem 3.11,
and use the classi�cation of 1-dimensional solutions from Proposition 3.23.

3.7.4 Proof of Theorem 3.18

We now prove the following result, which will directly yield Theorem 3.18. For this,
we combine the ideas in [RS16] with Propositions 3.21 and 3.23.

Proposition 3.24. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let � be aC1;� graph splittingB1 into U+ and U� (see De�nition 3.3), and suppose
0 2 � and that � (0) = en , where� (0) is the normal vector to� at 0 pointing towards
U+ .

Let f 2 L1 (U+ ), and supposeu 2 L1 (Rn ) satis�es

�
(� L + b� r )u = f in U+

u = 0 in U� :
(3.63)

Let us denote
 := 

�

b�� (0)
� (� (0))

�
= 
 (bn=� (en )) and � = � (en ) as de�ned in

(3.12)-(3.11), and suppose that
 2
�

 0; 
 0

�
1 + �

8

��
for some 
 0 2 (0; 1) such that


 0
�
1 + �

4

�
< 1. Suppose also that� � as de�ned in (3.38) satis�es � � � �
 0

64 , and let
� = 
 0

�
1 + �

4

�
.

Then, there existsQ with jQj � C
�
kukL 1 (Rn ) + kf kL 1 (U+ )

�
such that

�
�u(x) � Q(xn )


+

�
� � C

�
kukL 1 (Rn ) + kf kL 1 (U+ )

�
jxj � for all x 2 B1;

where the constantC depends only onn, � , the C1;� norm of � , 
 0, the ellipticity
constants, andkbk.

Before proving the previous result let us state a useful lemma. It can be found
in [RS16, Lemma 5.3].

Lemma 3.25 ([RS16]). Let 1 > � > � 0 � � and � 2 Sn� 1 some unit vector. Let
u 2 C(B1) and de�ne

� r (x) := Q� (r )(x � � )�
+ ;

where

Q� (r ) := arg min Q2 R

Z

B r

�
u(x) � Q(x � � )�

+

� 2
dx =

R
B r

u(x)(x � � )�
+ dx

R
B r

(x � � )2�
+ dx

:
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Assume that for allr 2 (0; 1) we have

ku � � r kL 1 (B r ) � C0r � :

Then, there isQ 2 R with jQj � C(C0 + kukL 1 (B 1 )) such that

ku � Q(x � � )�
+ kL 1 (B r ) � CC0r �

for some constantC depending only on� and � 0.

We can now prove Proposition 3.24.

Proof of Proposition 3.24. Let us argue by contradiction. Suppose that there are
sequences �i , U+

i , U�
i , L i , bi , ui , and f i that satisfy the assumptions

� � i is a C1;� graph with bounded C1;� norm independently ofi , splitting B1

into U+
i and U�

i with 0 2 � i and with en being the normal vector at 0 pointing
towards U+

i .

� L i are of the form (3.7)-(3.8), andkbi k = kbk;

� For each � i , the corresponding� � as de�ned in (3.38) ful�ls � � � (�
 0)=64;

� k ui kL 1 (Rn ) + kf i kL 1 (U+ ) = 1;

� ui solves (� L i + bi � r )ui = f i in U+
i , ui = 0 in U�

i ;

� If we de�ne 
 i := 
 (bi � en=� i ) with 
 as in (3.12) and� i = � i (en ) as in (3.11)
with the operator L i , then 
 i 2 [
 0; 
 0(1 + �= 8)];

but they are such that for allC > 0 there exists somei such that there is no constant
Q satisfying �

�ui (x) � Q(xn )
 i
+

�
� � Cjxj � for all x 2 B1:

Step 1: Construction and properties of the blow up sequence.
Let us denote

� i;r := Qi (r )(xn )
 i
+ ;

where

Qi (r ) := arg min Q2 R

Z

B r

(ui (x) � Q(xn )
 i
+ )2dx =

R
B r

ui (x)(xn )
 i
+ dx

R
B r

(xn )2
 i
+ dx

:

From Lemma 3.25 with� = 
 i and � 0 = 
 0(1 + �= 8) we have that

sup
i

sup
r> 0

�
r � � kui � � i;r kL 1 (B r )

	
= 1 :

De�ne the monotone function

� (r ) := sup
i

sup
r 0>r

�
(r 0)� � kui � � i;r 0kL 1 (B r 0)

	
:
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Note that for r > 0, � (r ) < 1 , and � (r ) ! 1 as r # 0. Now take a sequences
rm # 0 and im such that

(rm )� � kui m � � i m ;r m kL 1 (B r m ) �
� (rm )

2
;

and denote� m = � i m ;r m .
Consider now

vm (x) =
ui m (rmx) � � m (rmx)

r �
m � (rm )

:

By de�nition of � m we have the orthogonality condition for allm � 1,
Z

B 1

vm (x)(xn )
 i
+ dx = 0: (3.64)

Note that also from the choice ofrm we have a nondegeneracy condition forvm ,

kvmkL 1 (B 1 ) �
1
2

: (3.65)

From the de�nition of � i;r , � i; 2r � � i;r =
�
Qi (2r ) � Qi (r )

�
(xn )
 i

+ so that

jQi (2r ) � Qi (r )jr 
 i = k� i; 2r � � i;r kL 1 (B r )

� k � i; 2r � ukL 1 (B 2r ) + k� i;r � ukL 1 (B r ) � Cr � � (r ):

Proceeding inductively, ifR = 2N , then

r 
 i � � jQi (Rr ) � Qi (r )j
� (r )

�
N � 1X

j =0

2j (� � 
 i ) (2j r )
 i � � jQi (2j +1 r ) � Qi (2j r )j
� (r )

� C
N � 1X

j =0

2j (� � 
 i ) � (2j r )
� (r )

� C2N (� � 
 i ) = CR� � 
 i :

(3.66)

Thus, we obtain a bound on the growth control ofvm given by

kvmkL 1 (B R ) � CR� for all R � 1: (3.67)

Indeed,

kvmkL 1 (B R ) =
1

� (rm )r �
m

kui � Qi m (rm )(xn )
 i
+ kL 1 (Rr m )

�
1

� (rm )r �
m

kui � Qi m (Rr m )(xn )
 i
+ kL 1 (Rr m )+

+
1

� (rm )r �
m

jQi m (Rr m ) � Qi m (rm )j(Rr m )
 i

�
R� � (Rr m )

� (rm )
+ CR� ;
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and the result follows from the monotonicity of� .
Notice also that the previous computation in (3.66) also gives a bound forQi (r )

given by
jQi (r )j � C� (r ); (3.68)

which follows by putting R = r � 1.
Step 2: Convergence of the blow up sequence.
In this second step we show thatvm converges locally uniformly inRn to some

function v satisfying
�

(� ~L + ~b� r )v = 0 in Rn
+

v = 0 in Rn
� ;

(3.69)

for some operator~L of the form (3.7)-(3.8), k~bk = kbk.
To do so, de�ne

U+
R;m := BR \

�
r � 1

m U+
i m

�
\ f xn > 0g;

and suppose that it is well de�ned by assumingm is large enough so thatRr m < 1=2.
Notice that in U+

R;m , vm satis�es an elliptic equation with drift,

(� L i m + bi m � r )vm (x) =
rm

r �
m � (rm )

f i m (rmx) in U+
R;m ;

since we know that (� L i + bi � r )� m = 0 in f xn > 0g. In particular, since � < 1,
the right-hand side converges uniformly to 0 asrm # 0.

We will now show that

kui m � � mkL 1 (B r \ (U �
i m

[ Rn
� ) � C� (rm )r (1+ � )� for all r < 1=4; (3.70)

and where the constantC is independent ofm, and � := 
 0
�
1 � �

16

�
. Notice that

� < 
 0 � 2� � , so that we can use the supersolution from Proposition 3.19 to get

jui m j � C
�
dist(x; U � )

� �
;

with C depending only onn, the C1;� norm of �, � , the ellipticity constants, and
kbk. On the other hand, by de�nition of � m ,

j� m (x)j � CQi m (rm )
�
dist(x; Rn

� )
� 
 i � C� (rm )

�
dist(x; Rn

� )
� �

for all x 2 B1;

where we used (3.68). Finally, since the domain isC1;� , we have that

dist(x; U �
i m

) � Cr 1+ � ; dist(x; Rn
� ) � Cr 1+ � in B r \ (U�

i m
[ Rn

� );

where the constantC depends only on theC1;� norm of the domainU+
i m

, and there-
fore, it is independent ofm. Thus, combining the last two expressions we get (3.70).

Now, from Proposition 3.21 we have

kui m kC � (B 1=8 ) � C;

uniformly in m, for some� 2 (0; 
 0).
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From the regularity of � m this yields, in particular,

kui m � � mkC � (B r \ (U � [ Rn
� )) � C� (rm ); (3.71)

where we have used again the bound (3.68).
Thus, interpolating (3.70) and (3.71) there exists some� 0 < � (depending on� ,


 0, and � ) such that

kui m � � mkC � 0 (B r \ (U �
i m

[ Rn
� )) � C� (rm )r � :

Notice that we can do so because �< � (1 + � ). Scaling the previous expression we
obtain

kvmkC � 0 (B R nU+
R;m ) � C(R) for all m with Rr m < 1=4; (3.72)

for some constantC(R) that depends onR, but is independent ofm.
We now want to apply Proposition 3.21 tovm , rescaled to ballsBR . Recall that

(� L i m + bi m � r )vm (x) =
rm

r �
m � (rm )

f i m (rmx) in U+
R;m ;

and vm is C � 0 outsideU+
R;m by (3.72). Notice also that the boundary@U+R;m hasC1;�

norm smaller than theC1;� norm of � thanks to the fact that we are rescaling with
smaller rm and Rr m < 1=4. Thus, Proposition 3.21 can be applied and we obtain
that there exists some� 0 > 0 small such that

kvmkC � 0(B R= 2 ) � C(R) for m with Rr m < 1=4:

we have again that the constantC(R) depends onR, but is independent ofm; i.e,
we have reached a uniformC � 0

bound onvm over compact subsets.
Thus, up to taking a subsequence,vm converge locally uniformly to somev.

Step 3: Contradiction.Up to taking a subsequence if necessary,L i m converges weakly
to some operator~L of the form (3.7)-(3.8), andbi m converges to some~b with k~bk =
kbk. Notice that, in particular, this means that 
 i converges to some
 � 2 [
 0; 
 0(1 +
�= 8)], and 
 � = 
 (~b� en=~� ), where ~� = ~� (en ) is the associated constant de�ned as
in (3.11) with the operator ~L.

On the other hand, the domainsU+
i m

converge uniformly to Rn
+ over compact

subsets by construction. Thus, passing all this to the limit, we reach thatv satis�es
(3.69).

Now, passing the growth control (3.67) to the limit, we reach

kvkL 1 (B R ) � CR� for all R � 1;

so that we can apply the Liouville theorem in the half space, Theorem 3.22, to get

v(x) = C(xn )
 �
+ :

Passing to the limit (3.64) and using this last expression, we obtainv � 0.
However, by passing (3.65) to the limit we get

kvkL 1 (B 1 ) �
1
2

;

a contradiction.
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Proof of Theorem 3.18.The result follows from Proposition 3.24 applied to small
enough balls so that the condition on� � is ful�lled. Notice that the constant �
cannot go to 0, because ~
 (x0) cannot be made arbitrarily small for a givenL and
b.

3.8 Proof of Theorems 3.1 and 3.3

In this section, we will prove Theorems 3.1 and 3.3. We already know that ifx0 is
a regular free boundary point, then the free boundary isC1;� in a neighbourhood.
Next, using the results of the previous section, we show that the regular set is open,
and that at any regular free boundary point we have (3.73) below.

Proposition 3.26. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let u be a solution to(3.29)-(3.30)-(3.31).

Then the set of regular free boundary points is relatively open. Moreover, around
each regular pointx0

0 < cr 1+~
 (x0 ) � sup
B r (x0 )

u � Cr 1+~
 (x0 ) for all r � 1; (3.73)

for some positive constantsc and C depending only onn, kbk, and the ellipticity
constants. Here,~
 (x0) is given by(3.10) with � (x0) being the normal vector to the
free boundary atx0 pointing towardsf u > 0g.

Proof. Suppose without loss of generality thatx0 = 0 and � (x0) = en . The free
boundary, �, is C1;� in B r 0 for some �; r 0 > 0 by Proposition 3.17. Apply now
Theorem 3.18 to the partial derivative@nu around points z 2 B r 0=2 \ �. We obtain

�
�
�@nu(x) � Q(z)

�
(x � z) � � (z)

� ~
 (z)

+

�
�
� � Cjx � zj~
 (z)+ � ; (3.74)

for some� > 0, and some constantC independent ofz.
Step 1: Q is continuous and positive at the origin.Let us �rst check that Q is
a continuous function on the free boundary at 0. Indeed, suppose it is not con-
tinuous, so that there exists a sequencezk ! 0 on the free boundary such that
limk!1 Q(zk) = �Q 6= Q(0). Then, we have

�
�
�@nu(x) � Q(zk)

�
(x � zk) � � (zk)

� ~
 (zk )

+

�
�
� � Cjx � zk j~
 (zk )+ � :

Thus, taking limits as k ! 1 , for any �xed x, we obtain
�
�
�@nu(x) � �Q(xn )~
 (0)

+

�
�
� � Cjxj~
 (0)+ � :

We have used here that� and ~
 are continuous. On the other hand, we had
�
�
�@nu(x) � Q(0)(xn )~
 (0)

+

�
�
� � Cjxj~
 (0)+ � ;

so that
j �Q � Q(0)j(xn )~
 (0)

+ � Cjxj~
 (0)+ � :
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Now take x = (0 ; t) 2 Rn� 1 � R for t 2 R+ and let t ! 0. It follows �Q = Q(0), a
contradiction; i.e., Q is continuous at 0.

We now prove that Q(0) > 0 (notice that we already know that Q(0) � 0
becauseu � 0). To do so, we proceed by creating an appropriate subsolution using
Lemma 3.20.

First of all, consider a �xed bounded strictly convexC1;� domain P � f u > 0g
touching the free boundary at 0, similar to the domains considered in the proof of
Proposition 3.21. Suppose thatP has diameter less than 1, and take anh > 0 such
that, if we denote � P (z) the normal vector to @Ppointing towards the interior of P
at z 2 @P, then

~
 h := max
�



�

b� � P (z)
� (� P (z))

�
for z 2 @P\ f xn < h g

�
� ~
 (0) +

�
4

;

where � is the small constant following from Theorem 3.18 that appears in (3.74).
Let us call

� (h)
� := ~
 h � ~
 (0) � 0

Such h > 0 exists becauseP is C1;� , and 
 and � are continuous. Take now� =
~
 (0) + 3 � (h)

� , and let %be a regularised distance toRn n P as in De�nition 3.2. In
particular, %� 0 in Rn n P. We will see that � := %� � C@nu for an appropriate C.

By Lemma 3.20 used inBh we get that for some constant� 0 < h=2,

(� L + b� r )� � � 1 in Bh=2 \ f x : 0 < d(x; Rn n P) � � 0g:

Now, sinceP is strictly convex, we have that there exists some� P with 0 < � P �
� 0 such that

(� L + b� r )� � � 1 in f 0 < x n < � P g \ P:

Now considervr as the one de�ned in Proposition 3.13 (there it is calledv),

vr (x) =
u(rx )

r kr ukL 1 (B r )
:

By the same reasoning as in the proof of Proposition 3.15 rescaling to a larger
ball we have that

~wr = C1(@nvr )� B 2 � 0

for r small enough.
From Proposition 3.13 we can chooser small enough so that for some positive

constant c,
~wr > c > 0 in P \ f xn � � P g:

Moreover, also proceeding as in the proof of Proposition 3.15, (� L+ b�r ) ~wr > � �
in B1 \ f vr > 0g for some arbitrarily small constant � , making r even smaller if
necessary. Thus, we can assume

(� L + b� r ) ~wr > �
~c
2

in B1 \ f vr > 0g;

for some 0< ~c < c to be chosen later.
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Now compare the functions� and ~c� 1 ~wr . Notice that in Rn n P, ~wr � � � 0.
In P \ f xn � � P g, ~c can be chosen small enough depending on� P and P so that
~c� 1 ~wr � � there, because ~wr > c > 0 in P \ f xn � � P g. Finally,

(� L + b� r )� � (� L + b� r ) ~wr in f 0 < x n < � P g \ P:

Thus, by the maximum principle, for this particular r �xed we have that ~wr � ~c� .
Going back to the de�nition of ~wr , this means that for some� andc positive constants

@nu(ten ) � c%(ten ) for 0 < t < �:

For � small enough,%is comparable to (xn )�
+ along the segmentten , so that we

actually have
@nu(ten ) � ct� for 0 < t < �: (3.75)

Now, if Q(0) = 0 then
j@nu(x)j � Cjxj~
 (0)+ � :

Since� < ~
 (0) + � we get a contradiction with (3.75). Thus,Q(0) > 0.

Step 2: Conclusion of the proof.For z 2 � \ B r for r small enough we have that
Q(z) > 0, becauseQ is continuous andQ(0) > 0. In particular,

�
�
�@nu(x) � Q(z)

�
(x � z) � � (z)

� ~
 (z)

+

�
�
� � Cjx � zj~
 (z)+ � :

By taking x = z + ten for t > 0 we get
�
�
�@nu(z + ten ) � Q(z)

�
� n (z)t

� ~
 (z)

+

�
�
� � Ct~
 (z)+ � :

Integrating with respect to t from 0 to t0 < 1, using that @nu(z) = 0 and
� n (z) > 1=2 for r small enough and recalling thatQ(z) > 0, we get

u(z + t0en ) � ct01+~
 (z) > 0;

so that in particular, z is a regular point; i.e., the set of regular points is relatively
open. Doing the same forz = 0 we get one of the inequalities from (3.73),

sup
B r

u � cr1+~
 (0) > 0 for all r � 1: (3.76)

On the other hand, we can also �nd the expansion at 0 for@i u for any i 2
f 1; : : : ; ng, �

�
�@i u(x) � Qi (xn )~
 (0)

+

�
�
� � Cjxj~
 (0)+ � :

Therefore,
jr u(x)j � C

�
jxj~
 (0) + jxj~
 (0)+ �

�
:

Integrating, and usingr u(0) = 0

u(x) � C
�
jxj1+~
 (0) + jxj1+~
 (0)+ �

�
;

i.e.,
sup
B r

u � Cr 1+~
 (0) for all r � 1:

Thus, combined with (3.76), this proves (3.73).
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Proposition 3.27. Let L be an operator of the form(3.7)-(3.8), and let b2 Rn . Let
u be a solution to(3.29)-(3.30)-(3.31) and let x0 be a free boundary regular point.
Then

u(x) = c0
�
(x � x0) � � (x0)

� 1+~
 (x0 )

+
+ o

�
jx � x0j1+~
 (x0 )+ �

�
(3.77)

with c0 > 0 and for some� > 0. Here ~
 (x0) is given by(3.10), with � (x0) being the
normal vector to the free boundary at0 pointing towards f u > 0g; and � depends
only on n, the ellipticity constants, andkbk.

Proof. Assume that x0 = 0 and � (x0) = en . From the expansions in the proof of
Proposition 3.26 we have

@i u(x) = Qi (xn )~
 (0)
+ + o

�
jxj~
 (0)+ �

�
; (3.78)

for someQi , with Qn > 0, and � > 0. Now, let x = ( x0; xn ), with x0 2 Rn� 1 and
xn 2 R. Integrating the expression (3.78) in the segment with endpoints 0 and (x0; 0)
we get

u(x0; 0) = o
�
jxj1+~
 (0)+ �

�
:

Then, integrating in the segment with endpoints (x0; 0) and (x0; xn ) we �nd

u(x0; xn ) =
Qn

1 + ~
 (0)
(xn )1+~
 (0)

+ + o
�
jxj1+~
 (0)+ �

�
:

Thus, (3.76) is proved.

We �nally can put all elements together to prove our main results, Theorems 3.1
and 3.3.

Proof of Theorem 3.3. After subtracting the obstacle and dividing by a constant,
we can assumeu is a solution to (3.29)-(3.30)-(3.31). Then the result we want is a
combination of Propositions 3.17, 3.26, and 3.27.

Proof of Theorem 3.1. It is a particular case of Theorem 3.3; we only need to check
that � � 1. For this, notice that the kernel is constant and given by� (� ) = cn;1=2,
where the constantcn;s is the one appearing in the de�nition of fractional Laplacian,

cn;s :=
� Z

Rn

1 � cos(x1)
jxjn+2 s

dx
� � 1

;

see for example [DPV12]. Thus, the value of� for (� �) 1=2 is

� (e) =
�c n;1=2

2

Z

Sn � 1
j� � ejd�:

Notice that, by changing variables to polar coordinates,

c� 1
n;1=2 =

Z

Rn

1 � cos(x1)
jxjn+1

dx =
Z

Sn � 1

Z 1

0

1 � cos(r� 1)
r 2

drd� =
�
2

Z

Sn � 1
j� 1jd�;

where we have used that
R1

0 (1 � cos(t)) t � 2dt = �= 2. This immediately yields that
� � 1 for (� �) 1=2, as desired.
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We next prove the almost optimal regularity of solutions. Given an operatorL
of the form (3.7)-(3.8), the associated� de�ned as in (3.11), andb2 Rn , we de�ne


 �
L;b := inf

e2 Sn � 1



�
b� e
� (e)

�
; (3.79)

where
 is given by (3.12). Notice that
 �
L;b 2 (0; 1=2].

Proposition 3.28. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn .
Let u be a solution to(3.29)-(3.30)-(3.31). Then, for any " > 0,

kuk
C

1;
 �
L;b � "

(Rn )
� C" ;

where the constantC" depends only onn, L, b, and ". The constant 
 �
L;b is given by

(3.79).

Proof. In order to prove the bound we �rst check the growth of the solution at the
free boundary, and then we combine it with interior estimates.

For simplicity, we will denote 
 " = 
 �
L;b � " .

Step 1: Growth at the free boundary.We �rst prove that, if 0 is a free boundary
point, then

sup
r> 0

kr ukL 1 (B r )

r 
 "
� C; (3.80)

for some constantC depending only onn, L, b, and ".
We proceed by contradiction, using a compactness argument. Suppose that it is

not true, so that there exists a sequence of functionsuk , f k , with kukkC1;� � 1 for
some� > 0 �xed and kf kkC1 (Rn ) � 1, such that

8
>><

>>:

uk � 0 in Rn

(� L + b� r )uk � f k in Rn

(� L + b� r )uk = f k in f uk > 0g
D 2uk � � 1 in Rn ;

(3.81)

but uk are such that

� (r ) := sup
i

sup
r 0>r

(r 0)� 
 " kr ukkL 1 (B r 0) ! 1 as r # 0:

Notice that for r > 0, � (r ) < 1 and that � is a monotone function, with
� (r ) ! 1 as r # 0. Now take sequencesrm # 0 and im such that

r � 
 "
m kr ui m k �

� (rm )
2

;

and de�ne the functions

vm (x) :=
ui m (rmx)

r 1+ 
 "
m � (rm )

:

Notice that
kr vmkL 1 (B 1 ) �

1
2

; (3.82)
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and

D 2vm � �
r 1� 
 "

m

� (rm )
in Rn ; j(L + br )(r vm )j �

r 1� 
 "
m

� (rm )
in f vm > 0g: (3.83)

On the other hand,

kr vmkL 1 (B R ) =
kr ui m kL 1 (B Rr m )

r 
 "
m � (rm )

� R
 "
� (Rr m )
� (rm )

� R
 " for R � 1: (3.84)

Therefore, noticing that r 1� 
 "
m =� (rm ) ! 0 as m ! 1 , we can apply Proposi-

tion 3.10 to deduce that, for some� > 0 independent ofm,

kvmkC1;� (B R ) � C(R);

for some constant depending onR, C(R). Let us take limits asm ! 1 . By Arzel�a-
Ascoli, vm converges, up to taking a subsequence, inC1

loc(R
n ) to somev1 . By taking

to the limit the properties (3.83)-(3.84) we reach thatv1 should be a convex global
solution. By the classi�cation theorem, Theorem 3.11, we have that eitherv � 0

v1 (x) = C(e � x)1+ 
 (b�e=� (e))
+ for some e 2 Sn� 1;

where
 and � are given by (3.12)-(3.11). Notice, however, that taking (3.84) to the
limit, v1 grows at most like
 " , and by de�nition 
 (b� e=� (e)) > 
 " . Therefore, we
must have v1 � 0. But this is a contradiction with (3.82) in the limit. Therefore,
we have proved (3.80).

Step 2: Conclusion.Let us combine the previous growth with interior estimates
to obtain the desired result.

Let x; y 2 Rn , let r = jx � yj and R = dist( x; f u = 0g). We want to prove that
for some constantC" then

jr u(x) � r u(y)j � Cr 
 " :

Without loss of generality and by the growth found in the �rst step we can
assume thatx; y 2 f u > 0g. Let �x 2 @f u = 0g be such that dist(�x; x) = R. We
separate two cases:

� If 4r > R ,

jr u(x) � r u(y)j � jr u(x) � r u(�x)j + jr u(�x) � r u(y)j

� C
�
R
 " + ( R + r )
 "

�
� Cr 
 " ;

where we have used the growth found in Step 1.

� If 4r � R, then x; y 2 BR=2(x), and BR(x) � f u > 0g. Notice that we have

(� L + b� r )(r u) = r f in BR(x):

From the interior estimates in Proposition 3.4 rescaled, we have

R
 " [r u]C 
 " (B R= 2 (x)) � C
�

Rkr f kL 1 (B R (x)) + kr ukL 1 (B R (x)) +
Z

Rn

jr u(Rx)j
1 + jxjn+1

�
:
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Now notice that thanks to the growth found in Step 1 we have, on the one
hand,

kr ukL 1 (B R (x)) � CR
 " ;

and on the other hand,
Z

Rn

jr u(Rx)j
1 + jxjn+1

� R
 "

Z

Rn

jxj 
 "

1 + jxjn+1
= CR
 " ;

so that putting all together and usingkr f kL 1 (Rn ) � 1, it yields,

[r u]C 
 " (B R= 2 (x)) � C
�
1 + R1� 
 "

�
:

Thus, if R � 4 we are done. Now supposeR > 4. If r < 1, by applying
interior estimates to B1(x) we are done. Ifr � 1, we are also done, because
jr u(x) � r u(y)j � 2kr ukL 1 (Rn ) � C.

Thus, we have reached the desired result.

As a consequence, we have the following immediate corollary.

Corollary 3.29. Let L be an operator of the form(3.7)-(3.8), and let b 2 Rn . Let
u be the solution to(3.9) for a given obstacle' of the form (3.3). Then, for any
" > 0,

kuk
C

1;
 �
L;b � "

(Rn )
� C" ;

whereC" depends only onn, L, b, " , and k' kC2;1 (Rn ) . The constant 
 �
L;b is given by

(3.79).

Proof. After subtracting the obstacle and dividing by an appropriate constant, we
can apply Proposition 3.28 and the result follows.

Finally, we prove Corollary 3.2.

Proof of Corollary 3.2. After subtracting the obstacle and dividing by a constant,
we get that this result is a particular case of Proposition 3.28, but the constantC"

depends onb and not only on kbk.
To prove that C" actually depends onkbk, the proof of Proposition 3.28 can

be rewritten by taking also sequences of vectorsbk 2 Rn with kbkk = kbk; by
compactness, up to a subsequence they converge to some~b with k~bk = kbk and the
rest of the proof is the same.

3.9 A nondegeneracy property

In the obstacle problem for the fractional Laplacian (without drift), in [BFR18],
Barrios, Figalli and the second author proved a non-degeneracy condition at all free
boundary points for obstacles satisfying �' � 0. From this, and by means of a
Monneau-type monotonicity formula, they establish a global regularity result for
the free boundary.
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In the obstacle problem with critical drift for the fractional Laplacian we can
actually �nd a non-degeneracy result analogous to the one found in [BFR18]. In this
case, however, we cannot establish regularity of the singular set, since we do not
have (and do not expect) any monotonicity formula for this problem.

Proposition 3.30. Let b 2 Rn , and suppose that' 2 C1;1(Rn ). Assume that' is
concave inf ' > 0g or, more generally, that

(� + @2
bb) ' � 0 in f ' > 0g; ? 6= f ' > 0g b Rn :

Let u be a solution to the obstacle problem(3.2). Then, there exist constantsc; r0 > 0
such that for anyx0 a free boundary point then

sup
B r (x0 )

(u � ' ) � cr2 for all 0 < r < r 0:

Proof. Let w :=
�
(� �) 1=2 + b � r

�
u, so that w � 0. If w � 0, by the interior

estimates rescaled, and using thatu is globally bounded, we reachu is constant. From
lim jx j!1 u(x) = 0 we would get u � 0, but this is a contradiction with ? 6= f ' > 0g.
Thus, w 6� 0.

Notice, however, thatw � 0 in f u > ' g. In particular, given �x 2 f u > ' g, then
r w(�x) = 0 and w has a global minimum at �x, so that

�
(� �) 1=2 � b� r

�
w(�x) = ( � �) 1=2w(�x) < 0:

Now, noticing that f ' > 0g b Rn , we get that by compactness there are some
�c; �r > 0 such that for any �x 2 f u > ' g with dist(�x; f u = ' g) � �r then

�
(� �) 1=2 � b� r

�
w(�x) � � �c < 0:

Now, since
�
(� �) 1=2 + b� r

�
u = w in Rn and from the semigroup property of

the fractional Laplacian,

� � u � bi bj @ij u =
�
(� �) 1=2 � b� r

�
w � � �c in �U;

where �U := f u > ' g \ f dist(�; f u = ' g) � �r g. Note that the operator � + bi bj @ij is
uniformly elliptic, with ellipticity constants 1 and 1 + kbk2.

Sinceu > 0 on the contact set, by compactness there exists someh > 0 such
that ' � h in f u = ' g. By continuity, there exists some 0< r 0 < �r=2 such that

' > 0 in U0 := f u > ' g \ f dist(�; f u = ' g) � 2r0g:

Now let �x 2 U0 with dist(�x; f u = ' g) � r0, and considerr 2 (0; r0). From the
condition on ' , (� + @2

bb)' � 0 in f ' > 0g, we get that if �u := u � ' then

(� + @2
bb) �u � �c > 0 in f �u > 0g \ B r (�x) � U0:

Therefore, if we de�ne

v := �u �
�c

2(n + kbk2)
jx � �xj2 in f �u > 0g \ B r (�x);
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then
(� + @2

bb)v � 0:

By the maximum principle, if 
 r := f �u > 0g \ B r (�x) then

0 < �u(x1) � sup

 r

v = sup
@
 r

v:

Sincev < 0 in @f �u > 0g \ B r (�x),

0 < sup
f �u> 0g\ @Br (�x)

v � sup
@Br (�x)

�u � cr2;

where c = �c
2(n+ kbk2 ) . Therefore, c is independent of �x, and we can let �x ! x0, to

obtain the desired result.



Chapter 4

Regularity of minimal surfaces
with lower dimensional obstacles

We study the Plateau problem with a lower dimensional obstacle inRn . Intuitively,
in R3 this corresponds to a soap �lm (spanning a given contour) that is pushed
from below by a \vertical" 2D half-space (or some smooth deformation of it). We
establish almost optimalC1;1=2� estimates for the solutions near points on the free
boundary of the contact set, in any dimensionn � 2.

The C1;1=2� estimates follow from an"-regularity result for minimal surfaces with
thin obstacles in the spirit of the De Giorgi's improvement of 
atness. To prove it,
we follow Savin's small perturbations method. A nontrivial di�culty in using Savin's
approach for minimal surfaces with thin obstacles is that near a typical contact point
the solution consists of two smooth surfaces that intersect transversally, and hence
it is not very 
at at small scales. Via a new \dichotomy approach" based on barrier
arguments we are able to overcome this di�culty and prove the desired result.

4.1 Introduction

4.1.1 Minimal surfaces with obstacles

In this paper we study the regularity of minimizers in the Plateau problem with a
lower dimensional | or thin | obstacle. Before introducing the problem in further
detail let us contextualize it by recalling �ve closely related classical problems and
commenting on them.

ˆ The Plateau problem:

min
�

P(E; B1) : E n B1 = E � n B1
	

; (4.1)

where E � � Rn (boundary condition), and B1 denotes the unit ball of Rn ,
E � Rn , and P(E; B1) denotes the relative perimeter of the setE in B1.

ˆ The Plateau problem with an obstacle:

min
�

P(E; B1) : E � O ; E n B1 = E � n B1
	

(4.2)

whereE � ; E are as above andO � E � (the obstacle) is given.
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ˆ The nonparametric obstacle problem:

min
v

� Z

B 0
1

p
1 + jr vj2 : v �  in B 0

1; vj@B0
1

= g
�

; (4.3)

whereB 0
1 denotes the unit ball ofRn� 1, g : @B01 ! R (the boundary condition)

is given,v : B 0
1 ! R, and  : B 0

1 ! R is the obstacle satisfying j@B0
1

< g.

ˆ The obstacle problem:

min
v

� Z

B 0
1

jr vj2

2
: v �  in B 0

1; vj@B0
1

= g
�

; (4.4)

whereg, v, and  , are as above.

ˆ The Signorini problem, or thin obstacle problem:

min
v

� Z

B 0
1

jr vj2

2
: v �  in B 0

1 \ f xn� 1 = 0g; vj@B0
1

= g
�

; (4.5)

where g and v are as above, and now : B 0
1 \ f xn� 1 = 0g ! R (the thin

obstacle) acts only onf xn� 1 = 0g.

Note that (4.3) is a particular case of (4.2), namely, when@O and @Eare graphs.
Also, (4.4) is, in turn, a limiting case of (4.3) | for "-
at graphs, the area functionalRp

1 + j"r vj2 becomes the Dirichlet energy
R

1
2 j" r vj2 at leading order.

The regularity of solutions and free boundaries is nowadays well understood
in both the classical obstacle problem (4.4) | see [Caf77, Caf98] | and in the
Signorini problem | see [AC04, ACS08]. The case of minimal surfaces with thick
obstacles (both in parametric and nonparametric form) is also well understood |
see [Kin73, BK74, Jen80, Giu10].

This paper is concerned with the regularity of minimizers of the Plateau problem
with lower dimensional, or thin, obstacles. Namely, we consider (4.2) with obstacle

O := �
�
f xn� 1 = 0; xn � 0g

�
(4.6)

where � : Rn ! Rn is some smooth (C1;1) di�eomorphism. We denote

@O := �
�
f xn� 1 = 0; xn = 0g

�
:

This problem (4.2)-(4.6) is the geometric version of the Signorini problem (4.5) in
the same way that (4.2) with thick O is the geometric version of (4.4). To visualize a
solution of this problem inR3, one can think of a soap �lm (spanning a given contour)
that is pushed from below by a vertical 2D half-space, as depicted in Figure 4.1.
Note that, in R3, we cannot use a \wire" (i.e. a one dimensional curve) as obstacle,
since the surface will not \feel" it1.

1More precisely, one can see that ifO had codimension two, then solutions of (4.2) with an
in�nitesimal tubular neighbourhood of O as obstacle would become, in the limit, solutions of the
Plateau problem (4.1) (without obstacle).
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Figure 4.1: The \potato chip con�guration", popularized by Ca�arelli.

Although the problem of minimal surfaces with thin obstacles was introduced by
De Giorgi [DeG73] already in 1973 (he established an existence result), very little
was known on the regularity of its solutions. De Acutis in [DeA79] establishedC1

regularity around points of the solution belonging toO n @O. To our knowledge,
the only known regularity results up to@O concern the nonparametric case | as in
(4.3) but with  as in (4.5). They are due to Kinderlehrer [Kin71] who provedC1

regularity estimates for the solution in two dimensions, and to Giusti [Giu72], who
obtained Lipschitz estimates for the solution in every dimension.

The di�culty in studying (4.2)-(4.6) (with respect to the same problem with a
thick obstacle) lies on the fact that near a typical point of the contact set the hy-
persurface@Econsists of two surfaces that intersect transversally on@O. Therefore,
@Eis typically not 
at at small scales and thus (4.2) cannot be treated as a pertur-
bation of (4.5). A more subtle dichotomy argument is needed: in Subsection 4.1.5
we outline the idea of this new approach that is tailored to overcome the previous
di�culty.

Let us also point out that it is not completely obvious how to give a meaning-
ful notion of solution to (4.2)-(4.6). The main issue is that with the Caccioppoli
de�nition of relative perimeter P we have

P(E [ O ; B1) = P(E; B1) for all measurableE; (4.7)

and thus the obstacleO seems to be ignored byP. This issue led De Giorgi [DeG73]
to introduce a more appropriate notion of perimeter that is suitable for the study
of thin obstacle problems (this is currently known as the De Giorgi measure). We
choose the similar (and a posteriori equivalent) approach of looking at the thin
obstacle as a limit of in�nitesimaly thick neighbourhoods of it. See Subsection 4.1.4
for a more detailed discussion on this issue.

The goal of this paper is to address the question of the regularity of solutions to
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(4.2)-(4.6). In particular, the main result of this paper is the proof of the following
local almost optimal regularity result.

Theorem 4.1. Let E be a solution to the thin obstacle problem(4.2)-(4.6) in the
unit ball of Rn , n � 2. Then, @Eis C1;1=2� around contact points and up to the
contact set.

The appropriate notion of solution is discussed in Subsection 4.1.4. Let us empha-
size here that this local regularity near contact points result holds in any dimension
n � 2, in contrast to the classical regularity theory of minimal surfaces in which
minimizers are regular only up to dimension 7. As we will see, this di�erence is due
to the presence of the thin obstacle, which rules out solutions with singularities of
the type of Simons and Lawson's cones like those appearing in dimensionn � 8 in
the Plateau problem without obstacles.

In the following subsections we recall the main steps in the regularity theory for
sets of minimal perimeter and present the appropriate analogues for (4.2)-(4.6).

4.1.2 Improvement of 
atness

For the classical Plateau problem De Giorgi [DeG61] established, in 1961, the fol-
lowing fundamental result:

Theorem 4.2 ([DeG61]). Let E � Rn be a minimizer of the perimeter functional
in B1 and assume that@E\ B1 � fj e� xj � " � g for somee 2 Sn� 1, where" � = " � (n)
is some positive dimensional constant. Then,@E\ B1=2 is a smooth hypersurface.

This theorem follows from the followingimprovement of 
atness property for
minimizers E of the perimeter in B1. Namely, given� 2 (0; 1) there exist positive
constants" � (n; � ) and � � (n; � ) such that, whenever 02 @Eand " 2 (0; " � ) then the
following implication holds:

@E\ B1 �
�

je � xj � "
	

) @E\ B � � �
�

j~e � xj � "� 1+ �
�

	
: (4.8)

Here,e and ~e denote two possibly di�erent unit vectors (in Sn� 1).
Combined with the classi�cation of stable minimal cones by Simons [Sim68],

Theorem 4.2 yields that minimizers of the perimeter inRn are smooth for 3� n � 7.
This result is optimal since, in dimensionsn � 8, Bombieri, De Giorgi, and Giusti
[BDG69] showed the existence of minimal boundaries with an (n � 8)-dimensional
linear space of cone-like singularities.

The philosophy of Theorem 4.2 is also shared by other key regularity results
of nonlinear PDEs: if a solution happens to be close enough to some special solu-
tion (e.g., the hyperplane), then it is regular. These are the so-called \"-regularity
results".

The goal of the paper is to establish an"-regularity result for (4.2)-(4.6), thus
extending De Giorgi's improvement of 
atness theorem to the setting of problem
(4.2)-(4.6) | see Theorem 4.3 below. As a consequence, we will prove almost optimal
C1;1=2� estimates for minimizers of (4.2)-(4.6) inRn that are su�ciently close to a
canonical blow-up solution (thewedgesintroduced in the following subsection). We
will also see that these canonical blow-up solutions are the only possible blow-ups
at any contact point, and then Theorem 4.1 will follow.
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4.1.3 Blow-ups

An essential tool in the theory of minimal surfaces is the monotonicity formula.
Namely, if @Eis a minimal surface andx � 2 @E, then the function

A(r ) :=
1

r n� 1
H n� 1

�
@E\ B r (x � )

�
(4.9)

is monotone nondecreasing. In addition,A is constant if and only if E is a cone. A
standard consequence of this monotonicity formula is that blow-ups of a minimizer
of the perimeterE � Rn at any point x � 2 @Eareminimizing cones. Simons proved
in [Sim68] that half-spaces are the only minimizing cones in dimensionsn � 7. As
a consequence, one can always apply Theorem 4.2 nearx � after zooming in enough
| this gives the smoothness of perimeter minimizers forn � 7.

For problem (4.2)-(4.6) we �nd several analogies with this theory. As we will
prove in Lemma 4.27, ifE is a minimizer of (4.2)-(4.6) andx � 2 @E\ @O is a
contact point, then the same functionA(r ) in (4.9) is still monotone when � = id
(and an approximate monotonicity formula is also available for general smooth �; see
Lemma 4.27). As a consequence, blow-ups are also cones for (4.2)-(4.6). It is trivially
false, however, that hyperplanes are the only possible blow-ups in low dimensions.
Indeed, thewedges(see Figure 4.2)

� 
;� :=
�

x 2 Rn : e
 + � � x � 0 and e
 � � � x � 0
	

; (4.10)

for

e! := sin ! en� 1 + cos! en ; �
�
2

� 
 �
�
2

; 0 � � �
�
2

� j 
 j: (4.11)

are solutions to (4.2)-(4.6) for � = id . Thus, they are always possible blow-ups.
Being a wedge, �
;� is the intersection of two semispaces with normal vectors

contained in the plane generated byen� 1 and en . The aperture angle of the wedge is
given by � � 2� , while its rotation angle is given by
 with respect to en (we take the
convention that en� 1 = e�= 2). Note also that there is the restriction 0� � � �

2 � j 
 j
to guarantee that the obstaclef xn� 1 = 0; xn � 0g is contained in � 
;� .

We will show that, in all dimensions, the wedges are the only possible blow-
ups around contact points. More precisely, ifE is a minimizer of (4.2)-(4.6) and
x � 2 @E\ @O (i.e. x � is a contact point) we have, in a suitable frame depending on
x � ,

1
r k

�
O � x �

�
�! f xn� 1 = 0; xn � 0g (4.12)

and
1
r k

�
E � x �

�
�! � 
;� : (4.13)

This will be a consequence of the the classi�cation of conic solutions to the thin
obstacle problem, given in Proposition 4.5.
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Figure 4.2: Representations of �
;� and � � .

4.1.4 Rigorous notion of solution to (4.2)-(4.6)

Given a measurable setE and an open set 
 � Rn , we recall the standard de�nition
of the relative perimeter ofE in 
 as

P(E; 
) =
Z



jr � E j = sup

g2 C1
0 (
) ;kgkL 1 � 1

�
�
�
�

Z

E
div g

�
�
�
� : (4.14)

With this de�nition of perimeter (4.7) holds. Thus, unless we de�ne the problem
with further precision, minimizers of (4.2)-(4.6) will be | strictly speaking | just
the ones of (4.1), ignoringO.

This, of course, is not what we have in mind when we think of (4.2)-(4.6). Heuris-
tically, we would like that if @Eattaches from both sides toO in some region, then
the area of it is counted twice in the computation of the perimeter ofE instead
of being ignored. To solve this issue De Giorgi introduced in [DeG73] a notion of
perimeter that is suitable for the study of thin obstacle problems (the De Giorgi
measure); see also [DeA79]. Here we will use the similar approach (that will be a
posteriori equivalent) of considering a thin obstacle as a limit of thick obstacles.

Let us introduce the precise notion of (4.2)-(4.6) that will be used in this paper.
For � > 0 small, let us denote

� � := � 0; �
2 � � : (4.15)

(Note that � � is very sharp wedge, pointing in theen direction.)

De�nition 4.1. We say that E is a minimizer of (4.2)-(4.6) in B1 if E has positive
density at some point ofO and there exist� k # 0, Ek minimizers of

min
n

P( ~E; B1) : ~E n B1 =
�
E � [ �(� � k )

�
n B1 and �(� � k ) � ~E

o
(4.16)

such that � Ek ! � E in L1(B1).
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Note that �
�
� � k

�
are thick sets approximatingO. Now, minimizers of (4.16)

\feel" the obstacle no matter how small� k is. The intuitive idea behind this de�nition
is that a sequenceEk as in De�nition 4.1 will not converge to a solution to the
Plateau problem unless the obstacleO is \inactive" (i.e., the obstacle is contained
in density one points for the solution to the Plateau problem). The philosophy of
the paper will be to prove regularity estimates for problem (4.16) that are robust as
� k # 0. As a consequence, we will be able to show that the previous intuitive idea is
actually fact. Namely, as it will be clear from the results of the paper, if the solution
to the Plateau problem (with boundary dataE � ) crossesO n@O, then there exists a
minimizer of (4.2)-(4.6) which is not a solution of Plateau problem (and therefore,
the thin obstacle plays an active role).

We remark that any minimizer according to De�nition 4.1 (up to replacing the
complement ofE by the zero density points ofE) is a minimizer in the sense of
De Giorgi by [DeA79] (see Remark 4.5). Conversely, it is not true a priori that
any minimizer in the sense of De Giorgi can be recovered as a minimizer in the
sense of De�nition 4.1. Nonetheless, minimizers of the De Giorgi perimeter present
locally an aperture around the obstacle by [DeA79] (and thus, a wedge �ts within),
and therefore, locally around contact points they are minimizers in the sense of
De�nition 4.1. In particular, since our regularity results are local, they apply to
minimizers in the sense of De Giorgi. (See Remark 4.3.)

4.1.5 Regularity for solutions su�ciently close to a wedge

The �rst result of this paper is stated next, after introducing some notation and a
de�nition. Throughout the paper we will denote

X � Y in B , X \ B � Y \ B:

We also introduce the following

De�nition 4.2. We say that E is "-closeto � 
;� in B if

� � "

;� � E � � "


;� in B

where

� "

;� := f x 2 Rn : dist(x; � 
;� ) � "g; � � "


;� := f x 2 Rn : dist(x; Rn n � 
;� ) � "g:

Here is our main result, which we callimprovement of closeness:

Theorem 4.3 (Improvement of closeness). Given � 2
�
0; 1

2

�
there exist positive

constants" � and � � depending only onn and � such that the following holds:
Assume that, for some� > 0, a set E � Rn with P(E; B1) < 1 satis�es

�(� � ) \ B1 � E and

P(E; B1) � P(F ; B1) 8F such thatE nB1 = F nB1 and �(� � ) \ B1 � F: (4.17)

Suppose that0 2 @E\ @O, " 2 (0; " � ), and

�(0) = 0 ; D�(0) = id ; jD 2� j � "1+ 1
2 : (4.18)



116 Chapter 4. Regularity of minimal surfaces with lower dimensional obstacles

Then,

E is "-close to� 
;� in B1 ) E is "� 1+ �
� -close to� ~
; ~� in B � � ; (4.19)

where
 , ~
 , � , and ~� , are as in (4.11).

Remark 4.1. Let us comment on the statement of Theorem 4.3:

(1) This result generalizes the classical De Giorgi's improvement of 
atness theo-
rem (4.8).

(2) Our estimate (4.19) is designed to be applied, iteratively in a sequence of
dyadic balls, to a minimizer E of (4.16). It gives C1;� regularity of @Eat
points of the contact set; see Theorem 4.4 below.

(3) An essential feature of our result is that the constant" � is independent of� .
Thus (4.19) is stable as� # 0 and hence applies to solutions of (4.2)-(4.6); see
De�nition 4.1.

(4) The assumption� < 1=2 is almost sharp. Indeed, one can easily see that the
statement of the theorem cannot be true for� 2 ( 1

2 ; 1) by using that the
optimal regularity of solutions to the Signorini problem isC1; 1

2 .

(5) If � : Rn ! Rn is any C1;1 di�eomorphism and x � belongs to@O = �( f xn� 1 =
xn = 0g), then for � > 0 and in some new coordinates �x =  x � (x) with origin
at x � such that

 x � (x) := � � 1Rx � (x � x � ); whereRx � is an orthogonal matrix;

the assumption (4.18) will be ful�led by some new di�eomorphism�� satisfying
��(� �� ) =  (�(� � )) | see Lemma 4.10. Hence, assumption (4.18) is always
satis�ed after a change of coordinates.

4.1.6 On the proof of Theorem 4.3

Let us now brie
y comment on the proof of Theorem 4.3. Our main idea is to
use a \dichotomy approach", which is combined with Savin's \small perturbation
method". More precisely, we prove by a barrier argument that | if " � is small
enough | one of the following two alternatives must hold:

(a) @Eis very 
at in B1.

(b) The contact set is full in B3=4 (it contains @O \ B3=4) and @Esplits into two
minimal surfaces that meet along@O with some angle.

Then, on the one hand, if (a) holds we can use that our problem is a perturbation
of the Signorini problem (4.5) and exploit theC1;1=2 regularity for (4.5) to prove
(4.19). For this we use the \small perturbation method" pioneered by Savin | see
[Sav09, Sav10, Sav10b].

On the other hand, if (b) holds then @Esplits in B3=4 into two minimal surfaces
with boundary, each of them 
at in a di�erent direction. Since the contact set is
full we can interpret it as a smooth \boundary condition". Then, using theC1;1

regularity up to the boundary of 
at minimal surfaces, we can improve the 
atness
of each of the two surfaces separately to prove (4.19).
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4.1.7 Consequences

From our Theorem 4.3, as in the classical theory, we get that once the minimizer is
su�ciently close to a \wedge" type set � 
;� , then it has a localC1;� structure.

Theorem 4.4. Given � 2
�
0; 1

2

�
there exists a positive constant" � depending only

on n and � such that the following holds:
Assume that, for some� > 0, a set E � Rn with P(E; B1) < 1 satis�es

�(� � ) \ B1 � E and (4.17). Suppose that0 2 @E\ @O, that

�(0) = 0 ; D�(0) = id ; jD 2� j � "
1+ 1

2
� ; (4.20)

and that E is " � -close to� 
;� in B1.
Then, @Ehas the followingC1;� structure in B1=2. Either:

(a) In some appropriate coordinatesy = ( y0; yn ) = ( y1; : : : ; yn ), � � 1(@E) is the
graph f yn = h(y0)g of a function h 2 C0(B 0

1=2) that belongs toC1;� (B 0+
1=2) \

C1;� (B 0�
1=2), where B 0

1=2 denotes the ball inRn� 1 and B 0�
1=2 are the half-balls

B 0
1=2 \ f� yn� 1 > 0g. Moreover, we haveh � 0 on yn� 1 = 0 and r h is contin-

uous onf yn� 1 = 0g \ f h > 0g.

or

(b) @E\ B1=2 is the union of twoC1;1� surfaces that meet on@O with full contact
set in B1=2.

In the previous statementC1;1� :=
T

� 2 (0;1) C1;� .

Remark 4.2. It will be clear from the proofs that if O is a minimal surface (with
boundary), then @Ecannot stick to O n @O and (b) must hold with the same
regularity as that of @O. Namely, if @O is a Ck;� (resp. analytic) codimension two
surface, then the two surfaces in (b) will also beCk;� (resp. analytic), and not just
C1;1� .

Theorem 4.4 requires the solution to be su�ciently close to a wedge-type set �
;� .
Thanks to the following classi�cation of global conical solutions to our problem, we
will have that this is always the case (after rescaling) near any contact point.

Proposition 4.5 (Classi�cation of minimal cones inRn ). Let � � Rn be a cone,
i.e. t� = � for all t > 0, with @� 6= ? . Suppose that� satis�es (4.17) with � � id.

Then, � = � 
;� for some
 and � as in (4.11).

As a direct consequence of the combination of Theorem 4.4 and Proposition 4.5
we obtain the following result (which is just a more precise version of Theorem 4.1
above),

Corollary 4.6. Let n � 2, and assume thatO is a minimal surface and that� 2
Ck;� for somek � 2 and � 2 (0; 1) | or equivalently @O is of classCk;� .

Let E be a solution (in the sense of De�nition 4.1) of (4.2)-(4.6) with x � 2
@E\ @O \ B1=2. Then, for all � 2

�
0; 1

2

�
, @Ehas the followingC1;� local structure

near x � . For r > 0 small enough, we have either:
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(a) In some appropriate coordinatesy = ( y0; yn ) = ( y1; : : : ; yn ), � � 1(@E) is the
graph f yn = h(y0)g of a function h 2 C0(B 0

r ) that belongs toC1;� (B 0+
r ) \

C1;� (B 0�
r ), whereB 0

r denotes the ball inRn� 1 and B 0�
r are the half-ballsB 0

r \
f� yn� 1 > 0g. Moreover, we haveh � 0 on yn� 1 = 0 and r h is continuous on
f yn� 1 = 0g \ f h > 0g.

or

(b) @E\ B r (x � ) is the union of twoCk;� minimal surfaces with boundary that meet
on @O with full contact set in B r (x � ).

Remark 4.3. By [DeA79, Theorem 2.1 and Theorem 2.2] (or by a standard barrier
argument similar to that used in Hopf's lemma) if one considers a minimizer of the
De Giorgi measure for obstacles as in Corollary 4.6, then its boundaries do not stick
to the obstacle. More precisely, they present an aperture around the obstacle that
allows, locally, a wedge contained in the minimizer.

As a consequence, minimizers of the De Giorgi measure are locally (in a neigh-
borhood of any contact point) minimizers in the sense of De�nition 4.1. Therefore,
Corollary 4.6 above applies to minimizers in the sense of De Giorgi.

Remark 4.4. In the previous statement the condition thatO is a minimal surface
appears only to be able to apply Remark 4.2 and obtain (b). Otherwise, an analogous
result with C1;1� regularity holds.

Remark 4.5. We observe that, as a consequence of our results,

E is a minimizer as in De�nition 4.1 ) PDG (E; B1) = P(E; B1): (4.21)

Indeed, let E be a minimizer as in De�nition 4.1. First, as proven in [DeA79],
sinceO is smooth, the De Giorgi perimeterPDG of the minimizer can be expressed
as

PDG (F ; B1) = P(F ; B1) + 2 H n� 1((O n F ) \ B1) � P(F ; B1) for any Borel setF:
(4.22)

But note that @Ecannot stick to the obstacle from both sides at any point of
O n @O by the strong maximum principle. Hence,

H n� 1((O n E) \ B1) = 0 : (4.23)

Using (4.22) and (4.23),E is therefore also a minimizer ofPDG , sincePDG (F ; B1) �
P(F ; B1) � P(E; B1) = PDG (E; B1) for any competitor F .

Remark 4.6. Corollary 4.6 gives the regularity of the hypersurface around contact
points. The regularity around other points follows from the classical theory for mini-
mal surfaces (see for instance chapters 8 and 9 of the classical book of Giusti [Giu84]).
Note that this is result only up to dimension 7 [Sim68] since nonsmooth minimizers
exist in dimensions 8 and higher [BDG69]. In contrast, our regularity result holds
around the contact set of the thin obstacle, in any dimension.
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Remark 4.7. After a previous version of this manuscript, a preprint of Focardi and
Spadaro [FoSp18b] appeared in which the authors establish optimalC1;1=2 regularity
estimates and recti�ability of the free boundary for minimal surfaces with 
at thin
obstacles in the nonparametric case (that is, in our notation, for the case � = id
and assuming that@Eis a graph in then-th direction). Interestingly, our Corollary
(4.6) gives that (at least for 
at obstacles) the assumptions of [FoSp18b] are always
satis�ed near any contact point by parametric minimal surfaces with thin obstacles.
Thus, when combined with our results, the results in [FoSp18b] yield that solutions
to parametric thin obstacle problems areC1;1=2 near the obstacle and their free
boundary is recti�able.

4.1.8 Organization of the paper

The paper is organised as follows.
In Section 4.2 we introduce some notation, de�nitions, and preliminary results.

In Section 4.3 we construct a barrier and prove the dichotomy presented in the intro-
duction: if the solution is close to a wedge, then either@Eis very 
at or its contact
set is full in a smaller ball. In Section 4.4 we focus on the 
at con�guration, showing
the improvement of closeness result in this case (Proposition 4.14). In Section 4.5,
instead, we focus on the full contact set con�guration, which allows us to complete
the proof of our �rst main result, Theorem 4.3. In Section 4.6 we prove Theorem 4.4
by iteratively applying Theorem 4.3. Finally, in Section 4.7 we discuss blow-ups
(monotonicity formula and classi�cation of minimal cones) and we complete the
proofs of Proposition 4.5 and Corollary 4.6, thus obtaining Theorem 4.1.

4.2 Notation and preliminary results

4.2.1 Conventions and notation.

As it is standard, throughout the paper we will assume that the representative of
E among sets that di�er from it by a null set is such that topological and measure
theoretic boundary agree. That is, given a setE � Rn , we will say that x 2 Rn

belongs to the boundary ofE, x 2 @E, whenever

0 < jE \ B r (x)j < jB r (x)j; for all r > 0:

Notice that, in general, this is not necessarily true. However, the set of points
where this does not hold is of measure zero, and therefore we can consider instead
the equivalent set ~E that arises from removing all such points. Thus, without loss
of generality, we will always assume that the measure theoretic and topological
boundary agree.

The notation introduced in Subsections 4.1.3 and 4.1.4 will be recurrent through-
out the work. In particular, the de�nitions of � 
;� and � � from (4.10)-(4.15) as well
as the de�nition of ew and the conditions on the constants� and 
 (see (4.11)). See
also Figure 4.2.

On the other hand, when not stated otherwise, we add a superscript prime to
an element or set inRn to denote its projection to Rn� 1; and we proceed similarly
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with a double superscript prime projection toRn� 2. Thus, if x = ( x1; : : : ; xn ) 2 Rn ,
we can also denotex = ( x0; xn ) 2 Rn� 1 � R or x = ( x00; xn� 1; xn ) 2 Rn� 2 � R � R.
Similarly, B1 denotes the unit ball inRn , B 0

1 is the unit ball in Rn� 1 and B 00
1 in Rn� 2.

We may sometimes writeB 0
1 � Rn , or x0 2 Rn as an abuse of notation, meaning

B 0
1 � f 0g � Rn and (x0; 0) 2 Rn respectively.

4.2.2 Preliminary results

De�nition 4.3. Let E � Rn . We say that E is a minimizer of the � -thin obstacle
problem in B1 � Rn if �(� � ) \ B1 � E and (4.17) holds.

We are also interested in the notion of super- and subsolutions to the minimal
perimeter problem. Thus, the follow de�nition will also be useful.

In general terms, we say that a setE + is a supersolution to the minimal perimeter
problem when compact additive perturbations toE + in B1 produce sets of larger
perimeter. Similarly, E � is a subsolution to the minimal perimeter problem when
compact subtractive perturbations toE � in B1 increase the perimeter.

De�nition 4.4. Let E � � Rn . Then, E + is a supersolutionin B if

P(F + ; B ) � P(E + ; B );

for any F + with E + � F + and F + n E + b B.
Analogously,E � is a subsolutionin B if

P(F � ; B ) � P(E � ; B );

for any F � with E � � F � and E � n F � b B.

Notice that, in particular, a set satisfying (4.17) is a supersolution to the minimal
perimeter problem.

Proposition 4.7. Given E � � Rn with P(E � ; B1) < 1 , there existsE satisfying
(4.17) with E n B1 = E � n B1.

Proof. The proof follows by classic methods in the calculus of variations. Lower
semicontinuity and compactness inL1 of BV functions directly yield the result (see
[Giu84, Thm 1.9, Thm 1.19]).

Proposition 4.8. Let E � Rn satisfying (4.17). Then, for any B r (x � ) � B1, E
is a supersolutionin B r (x � ). Moreover, if B r (x � ) \ �(� � ) = ? , then E is a set of
minimal perimeter in B r (x � ).

Proof. This just follows from the de�nitions of minimizer of the � -thin obstacle
problem (4.17) and supersolution.

Lemma 4.9. If E is a local minimizer of the perimeter around a pointx � 2 @E,
then @Esatis�es the mean curvature equation

M (D 2v; r v) := (1 + jr vj2)� v � (r v)T D 2vr v = 0
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in the viscosity sense. That is, if we de�ne for any smooth' : B 0
1 ! R,

S�
' := f� xn < ' (x0)g;

then, if S�
' is included in eitherE or E c in some ballB r (x � ) and x � 2 @S�' , we have

that
� M (D 2'; r ' ) � 0: (4.24)

Moreover, if E is a supersolution to the minimal perimeter problem aroundx � 2 @E,
then if S�

' is included in E in some ballB r (x � ) and x � 2 @S�' we have the same
result, (4.24).

Proof. The proof is very standard, just using the de�nitions of minimal perimeter
and supersolution and noticing that we can decrease the perimeter if the conclusion
does not hold. See, for example, [CC93].

Lemma 4.10. Let � : Rn ! Rn be anyC1;1 di�eomorphism and let x � belong to
@O = �( f xn� 1 = xn = 0g). Assume that[�] C1;1 � M and jD(� � 1)(x � )j � M . Then,
for � > 0, there are new coordinates�x =  x � (x)

 x � (x) := � � 1Rx � (x � x � ); whereRx � is an orthogonal matrix;

and a newC1;1 di�eomorphism �� , such that

��(�
�� ) =  x � (�(� � )) for some �� 2 (0; C� )

and
��(0) = 0 ; ��(0) = id ; and jD 2 �� j � CM 3�;

whereC depends only onn.

Proof. Let us chooseRx � to be some orthogonal matrix to be chosen and de�ne

Ax � := Rx � D�(� � 1(x � )
�
:

ChooseRx � and �� 2 (0; C� ) such that

Ax � (� � ) = �
��

as a consequence the set

f xn� 1 = 0; xn � 0g is invariant under the linear mapAx � :

Now de�ne

� x � := Rx �

�
�(� � 1(x � ) + A � 1

x �
x) � x �

�
and �� := � � 1� x � (�x ):

Note that since � � 1(x � ) 2 f xn� 1 = xn = 0g we have � � 1(x � ) + A � 1
x �

� �� = � � and
thus

��(�
�� ) =  x � (�(� � 1(x � ) + A � 1

x �
�

�� )) =  x � (�(� � )) :

By construction, we have��(0) = 0, D ��(0) = id, and [ ��] C1;1 � CM 3� .



122 Chapter 4. Regularity of minimal surfaces with lower dimensional obstacles

4.3 Barriers and dichotomy

For this section let us start by de�ning the mean curvature operatorH , on functions
' : Rn� 1 ! R as

H' = div

 
r '

p
1 + jr ' j2

!

= (1 + jr ' j2)� 3
2 M (D 2�; r ' ): (4.25)

We start by introducing a supersolution that will be used as barrier.

Lemma 4.11 (Supersolution). Let � 2
�

0; 1
10(n� 2)

�
. Let

S+
� :=

�
x = ( x00; xn� 1; xn ) 2 B1 � Rn� 2 � R � R :

xn � ' � (x0) := �
�
jx00j2 � 2(n � 2)x2

n� 1

� 	

Then, S+
� is a strict supersolution to the equation of minimal graphs inB1, and

H' � � � c�; in B 0
1;

for some positive constantc depending only onn.

Proof. Let us check that, given' � , then

H' � � � c�:

Let us rewrite the operatorH ,

H' � (x0) =
1

p
1 + jr ' � j2

�
� ' � �

(r ' � )T D 2' � r ' �

1 + jr ' � j2

�
(x0) =

X

i;j

Uij (x0)@ij ' � (x0);

where

Uij (x0) :=
1

p
1 + jr ' � j2

�
� ij �

@i ' � (x0)@j ' � (x0)
1 + jr ' � j2

�
:

Let S' (x0) =
p

1 + jr ' � j2. Note that, U(x0) = S� 1
' (x0)

�
Id � �' � �' T

�

�
, where

�' � (x0) = r ' � (x0)=S' (x0). The only eigenvalue of Id� �' � �' T
� di�erent from 1 is

1 � k �' � k2. Let m' = supfjr ' � jg, where the supremum is taken over the domain of
de�nition of ' � . Putting all together we have obtained thatU is uniformly elliptic,
with ellipticity constants � ' = (1 + m2

' )� 3=2 and 1.
Notice then that

H' � (x0) =
X

i;j

Uij (x0)@ij ' � (x0) � � (2(n � 2) � 4(n � 2)� ' ) ; in B 0
1:

On the other hand, from the fact that jr ' j � 4� (n � 2) in B 0
1,

� ' = (1 + m2
' )� 3=2 � (1 + 16� 2(n � 2)2)� 3=2: (4.26)

Putting all together, we get the desired result.
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Figure 4.3: Representation of the setting in Lemma 4.12 after a rotation.

The following lemma shows that whenever the minimizer is not 
at, then the
contact set is full in the interior. The condition of 
atness is used via the angle� from
the de�nition of the wedge � 
;� : being 
at means that � is small, when compared to
".

Lemma 4.12. There exists" � and C� depending only onn such that the following
statement holds:

Let E � Rn satisfying (4.17) be such that it is"-close to some� 
;� in B1, for
some" 2 (0; " � ), and (4.18) holds. Suppose that� 2

�
C� "; �

2

�
. Then

E � �(� 
;� � C� " ) in B1=2:

In particular, the contact set is full in B1=2.

Proof. Let us prove this result, for simplicity, in the case � � id, and at the end
of the proof we discuss how to modify it in order to account for small second order
perturbations.

We will slide an appropriate supersolution from above until we intersect with the
surface@E.

Take x � 2 B 00
1=2 � f 0g � f 0g, and by making a translation let us assumex � is the

origin. Let us also rotate the setting with respect to the last two coordinates so that
the angle betweene
 and en is \ (e
 ; en ) = � � arctan( ~C"), for some constant ~C
depending only onn to be chosen, such that� > arctan( ~C"). Let us denoteer


 , @Er ,
@� r


;� , and (� � )r , the corresponding rotated versions. The following argument can
be done with both con�gurations that ful�l this property, so let us assume without
loss of generality that we are in a situation where

f xn = � ~C"x n� 1g \ f xn� 1 � 0g � @� r

;� ; in B1=2: (4.27)

See Figure 4.3 for a representation of this rotated situation, and the whole proof.
Take the supersolutionS+

� from Lemma 4.11. Slide@S+� from above until it
touches the boundary of the minimizer of the� -thin obstacle problem,@Er . That
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is, de�ne
St

� := @S+� + ten ;

and consider
m� := inf f t > 0 : St

� \ @Er \ B1=2 6= ? g:

We recall that

@S+� =
�

x = ( x00; xn� 1; xn ) 2 B1 : xn = �
�
jx00j2 � 2(n � 2)x2

n� 1

�	
:

If m� > 0 and xm = ( xm
1 ; : : : ; xm

n ) 2 B1=2 is such that xm 2 Sm �
� \ @Er \ B1=2,

then xm cannot be an interior point toSm �
� \ B1=2. Indeed, sinceSm �

� \ B1=2 \f xn� 1 =
0g � f xn � m� > 0g is strictly above zero, then thanks to Proposition 4.8@Er is a
surface of minimal perimeter aroundxm . On the other hand,Sm �

� is a supersolution,
touching on an interior point with a surface of minimal perimeter locally, which is
not possible.

We will show that the boundary @B1=2 \ Sm �
� is always above@Er in the en

direction. From (4.27) and using that@Er � � r

;� + B " , it is enough to show that

there exists ~C depending only onn such that

�
�
jx00j2 � 2(n � 1)x2

n� 1

�
� � ~C"x n� 1 + c0"; for x0 = ( x00; xn� 1) 2 @B01=2; (4.28)

for some constantc0 depending only onn that accounts for the di�erence in distance
between the Hausdor� distance and the distance in theen -direction. For (4.28) to
be satis�ed, usingjx00j2 = 1

4 � (xn� 1)2, we want

� � (2n � 1)x2
n� 1 + ~C"x n� 1 � �

�
4

+ c0"; for xn� 1 2 [0; 1=2]:

By taking � = 4c0" and ~C = 2c0(2n � 1) the previous condition holds, and notice
that for " small enough (depending only onn) S+

� is a supersolution as wanted.
Thus, for � = 4c0" and ~C = 2c0(2n � 1), we can slideSt

� until t = 0, where it
touches@Er at the origin (since it touches (� � )r there). Therefore, the origin is a
contact point, and moreover,@Er is contained in S+

� \ f xn� 1 � 0g. In particular,
since the origin was a translation of any point inB 00

1=2 � f 0g � f 0g, we have that in
B 00

1=2 � f 0g � f 0g \ f xn� 1 � 0g, @Er is contained inf xn � 0g.

Rotating back, and putting arctan( ~C") = C� " for someC� depending only on
n, we obtain the desired result from one side. Doing the same on the other side
completes the proof.

If � 6� id, we can proceed similarly using thatjD 2� j � "1+ 1
2 . Indeed, if E is

"-close to � 
;� , then � � 1(E) is 2"-close to � 
;� for " small enough depending only on
n. Now we can repeat the previous argument with �� 1(E) instead of E. The only
place where we used thatE satis�es (4.17) is to check that we cannot touch at an
interior point when sliding the supersolution (using the previous notation, to check
that m� cannot be strictly positive).

If we were touching at an interior point xm in this case, thenE would be a
surface of minimal perimeter around �(xm ). Since we can choose� = 4c0" to avoid
contact in the boundary, thanks to Lemma 4.11 the mean curvature of@Sm �

� is
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below � 4c". Consequently, the mean curvature of �(@Sm �
� ) is below � 4c" + c0"1+ 1

2

and for " small enough �(Sm �
� ) is still a supersolution: there cannot be an interior

tangential contact point.

Lemma 4.12 shows that if ifE is "-close to some wedge �
;� in B1 with � � C� "
then we haveE � �(� 
;� � C� " ). As a counterpart, the following lemma shows that
�(� 
;� + C� " ) � E | even for � < C � " .

Lemma 4.13. There exists" � and C� depending only onn such that the following
statement holds:

Let E � Rn satisfying (4.17) be such that it is"-close to some� 
;� in B1, for
some" 2 (0; " � ) and � 2

�
0; �

2 � C� "
�
. Suppose that� satis�es (4.18). Then

�(� 
;� + C� " ) � E in B1=2:

Proof. The proof follows very similarly to the previous result, Lemma 4.12. Again,
as before, we assume �� id; and the proof can be adapted to the casejD 2� j � "1+ 1

2

following analogously to the proof of Lemma 4.12.
We want to show that we canopen � � up to being at an angle proportional to

" from � 
;� . Let us show it for xn� 1 � 0.
The fact that � � � E in B1 allows us to establish a separation betweenxn� 1 � 0

and xn� 1 � 0.
Consider the surface@E\ f xn� 1 � 0g. Let � 1 be the angle between@� 
;� and

@� � in f xn� 1 � 0g. If � 1 � C1" for someC1 depending only onn we are already
done, since �� is already a barrier; so that we can suppose that� 1 � C1" for some
C1 to be determined. We denote �
;� = @� 
;� \ f xn� 1 � 0g.

Now, as in Lemma 4.12, we rotate the setting in the last two coordinates, so that
� r


;� � f xn � 0g at an angle arctan(~C") from f xn = 0g, for some constant~C to be
chosen. See Figure 4.4 for a representation after the rotation.

Notice that � S+
� is a subsolution to the problem, whereS+

� denotes the superso-
lution constructed in Lemma 4.11. Now the situation is the same as in Lemma 4.12
upside down. In the new coordinates after the rotation, since inf xn� 1 > 0g any
point on @Er is locally a supersolution, we will be able to slide up the subsolution
up until the origin for the same constant ~C as in Lemma 4.12 as long as we are are
not touching with it in the region f xn� 1 � 0g after the rotation. But this can be
avoided choosingC1 such that C1" � 3 arctan ~C" for " small.

4.4 Improvement of closeness in 
at con�guration

In this section we prove our main result, Theorem 4.3, in the 
at con�guration case
in the case� 2 (0; C� " ). Namely, we show:

Proposition 4.14. For every � 2
�
0; 1

2

�
, there exist positive constants� � and " �

depending only onn and � , such that the following statement holds:
Let E � Rn satisfying (4.17), with 0 2 @E, be such thatE is "-close to� 
;� in

B1, for some� 2 (0; C� " ) and " 2 (0; " � ), and (4.18) holds.
Then,

E is � 1+ �
� " -close to� ~
; ~� in B � � ;
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Figure 4.4: Representation of the setting in Lemma 4.13 after a rotation.

for some new~
 0 and ~� as in (4.11).

The proof of this proposition follows by compactness, using theC1;1=2 regularity
of the solutions to the classical thin obstacle problem with the Laplacian, �.

The following proposition will be used to show compactness of vertical rescalings�
(x0; xn=") : (x0; xn ) 2 @E

	
near a contact point.

Proposition 4.15. There existh� and � � depending only onn such that the following
statement holds:

Denote Q1 := B 0
1 � (� 1; 1) Let E � Rn satisfying, for somev 2 Q1,

P(E; Q1) � P(F ; Q1) 8F : E n Q1 = F n Q1 and
�
v + �(� � )

�
\ Q1 � F: (4.29)

be such that for someb2 (� 1; 1) and someh 2 (0; h� ), (4.18) holds for " 2 (0; h),

f xn � b� hg � E � f xn � b+ hg; in B 0
1 � (� 1; 1);

and �
v + �(� 0;h)

�
� E; in B 0

1 � (� 1; 1):

Then,

ˆ either f xn � b� h(1 � � � )g � E, in B 0
1=2 � (� 1; 1);

ˆ or E � f xn � b+ h(1 � � � )g, in B 0
1=2 � (� 1; 1).

To prove Proposition 4.15 we need the following half-Harnack for supersolutions;
see [Sav10b, Section 2] or the proof of [Sav10, Thm 5.3].
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Proposition 4.16 ([Sav10, Sav10b]). Let E � Rn be a supersolution to the minimal
perimeter problem inB1, and suppose@E� f xn � 0g. Then, for every� � > 0, there
exists some� � and C depending only onn and � � such that if � < � � and � en 2 @E,
then

j� en (@E\ f xn � C� g \ (B 0
1 � (� 1; 1)))jH n � 1 � (1 � � � )jB 0

1jH n � 1 ;

where� en denotes the projection of a set ontoB 0
1 in the en direction.

Proof of Proposition 4.15. We separate the proof into two di�erent scenarios.
The �rst possibility is b � "1+ 1

4 . In this case, since �(� 0;h) � E , it follows that

�
xn � �

tan h
2

� C"1+ 1
2

�
� E; in B 0

1=2 � (� 1; 1);

for someC depending only onn. For h� small enough depending only onn, since
" � h � h� and b � "1+ 1

4 ,
�

xn � b�
3
4

h
�

�
�

xn � �
tan h

2
� C"1+ 1

2

�
� E; in B 0

1=2 � (� 1; 1):

This completes the caseb � "1+ 1
4 .

The second case isb > " 1+ 1
4 , and is less straight-forward. By Savin's half Harnack,

Proposition 4.16, for every� > 0 small enough depending only onn, if there exists

z = ( z0; zn ) 2 @E;with jz0j �
1
2

and zn � b� h + �h; (4.30)

then

�
�� en

�
@E\ B1 \

�
B 0

3=4 � (� 1; 1)
�

\ f xn � b� h + C1�h g
� �
�
H n � 1 �

3
4

jB 0
3=4jH n � 1 ;

(4.31)
for some constantC1 depending only onn.

On the other hand, notice that since we are in the caseb > " 1+ 1
4 ,

~E := E [ f xn � bg;

is a subsolution to the minimal perimeter problem inB1 for h small enough. This
follows since �(� � ) � f xn � "1+ 1

4 g for " small enough, and@Eis a surface of
minimal perimeter whenever it does not touch �(� � ).

Take ~E c, and apply again Proposition 4.16 to get that, for every� > 0 small
enough depending only onn (take � < C � 1

1 ), if there exists

z = ( z0; zn ) 2 @E;with jz0j �
1
2

and zn � b+ h � �h; (4.32)

then

�
�� en

�
@E\ B1 \

�
B 0

3=4 � (� 1; 1)
�

\ f xn � b+ h � C1�h g
� �
�
H n � 1 �

3
4

jB 0
3=4jH n � 1 :

(4.33)
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Take Q = B 0
3=4 � (b� h; b+ h) In particular, we must have that

P(E; Q) �
3
2

jB 0
3=4jH n � 1 :

Notice, on the other hand, that we can takeh small enough so that the lateral
perimeter of Q is less than1

2 jB 0
3=4jH n � 1 . This yields a contradiction, since including

Q to E gives a competitor for the minimizer of (4.17); and therefore either (4.30)
or (4.32) does not hold. This completes the proof.

We also need a similar improvement of oscillationfar away from contact points. In
such case, we can use the following classical Harnack inequality for minimal surfaces.
The proof of this proposition is an straightforward application of Proposition 4.16.

Proposition 4.17 ([Sav10b]). There existsh� and � � depending only onn such that
the following statement holds:

Let E � Rn be a set of minimal perimeter inB 0
1 � (� 1; 1), such that for some

b2 (� 1; 1) and someh 2 (0; h� )

f xn � b� hg � E � f xn � b+ hg; in B 0
1 � (� 1; 1):

Then,

ˆ either f xn � b� h(1 � � � )g � E, in B 0
1=2 � (� 1; 1);

ˆ or E � f xn � b+ h(1 � � � )g, in B 0
1=2 � (� 1; 1).

Actually, to account for situations in which @Emay stick to @�(� 
;� ), we need
the following version of Proposition 4.17 for minimal surfaces with 
at enough thin
obstacles.

Proposition 4.18. There existsh� and � � depending only onn such that the fol-
lowing statement holds:

Assume that� satis�es (4.18) with " 2 (0; h). Let E � Rn , satisfying

�
�
f xn � 0g

�
\ Q1 � E

where we denoteQr := B 0
r � (� 1; 1), be a solution of

P(E; Q1) � P(F ; Q1) 8F such thatE n Q1 = F n Q1; �
�
f xn � 0g

�
\ Q1 � F:

Assume that for someb2 (� 1; 1) and someh 2 (0; h� )

f xn � b� hg � E � f xn � b+ hg; in Q1:

Then,

ˆ either f xn � b� h(1 � � � )g � E, in Q1=2;

ˆ or E � f xn � b+ h(1 � � � )g, in Q1=2.
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Proof. The proof is very similar to that of Proposition 4.17 in [Sav10b]. We sketch
it.

Note that, by (4.18) we have

�
�
f xn = 0g

�
� fj xn j � "1+ 1

2 g in Q1:

Now, if b � 0, since@Eis above �
�
f xn = 0g

�
in Q1, we havef xn � � "1+ 1

2 g � E
in Q1. Thus we obtain f xn � b� h(1 � � � )g � E in Q1 provided "1+ 1

2 � h(1 � � � ),
which is trivially satis�ed if � � � 1=2 and " < h < h � � 1=4. In other words, the
�rst alternative of the conclusion of the proposition holds wheneverb � 0.

Let us now consider the caseb � 0. Note that we may suppose that the \coinci-
dence set"@E\ �

�
f xn = 0g

�
is nonempty in Q3=4 since otherwise the result follows

immediately from Proposition 4.17, noting@Ewould be a minimal boundary in
Q3=4.

SinceE is a supersolution inQ1 satisfyingf xn � � "1+ 1
2 g � E in Q1 such that has

some pointx � = ( x0
� ; x � ;n ) 2 @E\ Q3=4 with x � ;n 2 (� "1+ 1

2 ; "1+ 1
2 ), Proposition 4.16

(with a standard covering argument) yields
�
�
� � en

�
@E\ f xn � C"1+ 1

2 g \ Q3=4

� �
�
�
H n � 1

�
3
4

jB 0
3=4jH n � 1 : (4.34)

At the same time, the set ~E := E [ f xn � b+ h=2g) is a subsolution inQ1 since the
contact set@E\ @�

�
f xn = 0g

�
\ Q1 is contained inf xn � "1+ 1

2 g � f xn � b+ h=2g
(recall b � 0 and " � h). Thus, either

E � ~E �
�

xn � b+ h(1 � � � )
	

in Q3=4 (4.35)

or else, by Proposition 4.16 applied to~E c, we would have
�
�
� � en

�
@~E \ f xn � b+ h � C� � hg \ Q3=4

� �
�
�
H n � 1

�
3
4

jB 0
3=4jH n � 1 : (4.36)

Now (4.35) clearly implies the conclusion of the proposition (�rst alternative). On
the other hand, should (4.36) hold then, by de�nition of ~E, (4.36) would also hold
with @~E replaced by@Eand thus we would �nd a contradiction with (4.34) when
taking � � small enough so thatb + h � C� � h > C" 1+ 1

2 (recall " < h < h � small
enough). Indeed, this contradiction argument | which uses the minimality of @E
among boundaries of sets containing the obstacle | is identical to the one given in
the proof of Proposition 4.15.

At this point, combining Proposition 4.15 and Proposition 4.18 we obtain the fol-
lowing lemma regarding the convergence of vertical rescalings to a H•older continuous
function.

Lemma 4.19. Let (Ek)k2 N be a sequence such thatEk � Rn satisfy (4.17), with
0 2 @Ek , and with � k such that (4.18) holds for " = " k . SupposeEk is " k-close
to � 
 k ;� k in B1, with � k 2 (0; "k), and with " k ! 0 as k ! 1 . Suppose also that
� k(� 
 k ;� k + " k ) � Ek in B1. Let

E " k
k :=

��
x0;

xn

2" k

�
: x = ( x0; xn ) 2 E r

k \ B1

�
; for all k 2 N; (4.37)
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where E r
k := R
 k (Ek), and R
 k denotes the rotation of angle
 k in the last two

coordinates bringinge
 k to en .
Then, there existsu 2 C0;a(B 0

1=2) with kukC0;a (B 0
1=2 ) � C, for some C depending

only on n, such that

f xn � u(x0) � " �
k g � E " k

k � f xn � u(x0) + " �
k g; in B 0

1=2 � (� 1; 1); (4.38)

for somea > 0 and � > 0 depending only onn.

Proof. Let us de�ne the cylinder Qr (x � ) = ( B 0
r (x

0
� ) � (� 1; 1)) \ B1 for any x � =

(x0
� ; x � ;n ) 2 B1. Notice that, thanks to the hypotheses, for anyx � 2 @Erk \ B1=2,

@Erk \ Q1=2(xr
� ) � f x 2 B1 : jxn � x � ;n j � 2" kg;

wherexr
� denotes the rotated version ofr . That is, introducing a notation, we have

oscn
Q2� 1 (x r

� )
@Erk � 2" k ;

the oscillation in the en direction of @Erk in the cylinder Q2� 1 (xr
� ) is less than 2" k .

We would like to use that if " k is small enough, then either Proposition 4.15 or
Proposition 4.18 improves the oscillation in the half cylinder, and proceed iteratively.
In order to do that, we separate between four cases.

Case 1: x � = 0. The �rst case we consider isx � = 0 2 @Ek . By assumption,
� k(� 
 k ;� k + " k ) � Ek in B1, and we have that

oscn
Q2� 1 (x r

� )
@Erk � 2" k :

If we denote ash� and � � the variables coming from Proposition 4.15; we have that
if

4" k � h� ; (4.39)

then
oscn

Q2� 2 (x r
� )

@Erk � 2" k(1 � � � ):

We are using here Proposition 4.15 withh = " k . Condition (4.39) is to ensure that
� k + " k � h�

2. If we rescale by a factor 2, we have

oscn
Q2� 1 (x r

� )
2@Erk � 4" k(1 � � � );

so that, if we want to repeat the argument, hypothesis (4.39) becomes

8" k(1 � � � ) � h� :

If we want to continue one next iteration, we can takeh = 2" k(1 � � � ). Notice that,
after the rescaling, the transformation � associated to 2@Ek , is ~� k(x) = 2� k(x=2),

2Notice that here we want to ensure that �(� 0;h ) � E r
k in order to apply Proposition 4.15. We

actually have that R
 k � k (� 
 k ;� k + " k ) � E r
k , but this is enough to use it as a barrier from below in

the proof of Proposition 4.15.
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so that jD 2 ~� k j � 2� 1"
1+ 1

2
k , and the hypotheses of Proposition 4.15 are still ful�lled,

with a better constant.
Rescaling and repeating this procedure iteratively, we have that as long as

2m (1 � � � )m� 2" k � h� ; (4.40)

then
oscn

Q2� m (x r
� )

@Erk � 2" k(1 � � � )m� 1: (4.41)

Case 2:x � 2 @Ek \ @Ok \ B1=2. The second case is whenx � belongs to the contact
set of the thin obstacle,x � 2 @Ek \ @Ok , where@Ok := �( f xn� 1 = xn = 0g). After
a translation and a rotation, up to rede�ning � if necessary, we can put ourselves
in Case 1 (see Lemma 4.10 with� = 1), so that

2m (1 � � � )m� 2" k � h� ) oscn
Q2� m (x r

� )
@Erk � 2" k(1 � � � )m� 1: (4.42)

We must point out here that, a priori, the oscillation might be in a direction di�erent
from en due to the rotation coming from Lemma 4.10. However, since the rotation
tends to the identity as " k # 0, we may also assume that for" k small enough, the
previous also holds.

Case 3:dist(x � ; @Ek \ @Ok) � 1
8 . Follows exactly as the two previous cases, using

Proposition 4.18 instead of Proposition 4.15, yielding again (4.42).

Case 4:2� p� 1 � dist(x � ; @Ek \ @Ok) � 2� p for p � 3. This is a combination of Case
2 and Case 3. We apply Case 2 and rescale, until we can apply Case 3, so that (4.42)
holds again.

That is, (4.42) holds for all x � 2 @Ek \ B1=2. Let mk denote the largestm we
can take for every" k such that (4.40) holds. Clearly,mk ! 1 as k ! 1 , since
" k ! 0. If we consider the rescaled sets in theen direction, E " k

k , we have that for
every m � mk ,

oscn
Q2� m (x � )

@E" k
k � 2(1 � � � )m� 1: (4.43)

In particular, there exists a H•older modulus of continuity as" k ! 0 controlling
the boundaries@E" k

k . By Arzel�a-Ascoli, up to subsequences,@E" k
k converges in the

Hausdor� distance to the graph of some H•older continuous function,u.

Lemma 4.20. The function u 2 C0;a(B 0
1=2) from the Lemma 4.19 is a viscosity

solution to the classical thin obstacle problem withu(0) = 0 . That is, u ful�ls
8
<

:

� u = 0 in B 0
1=2 n (f xn� 1 = 0g \ f u = 0g)

� u � 0 on f xn� 1 = 0g \ f u = 0g
u � 0 on f xn� 1 = 0g;

(4.44)

in the viscosity sense. In particular,

kuk
C1;1=2

�
B 0

1=4 \f xn � 1 � 0g
� + kuk

C1;1=2
�

B 0
1=4 \f xn � 1 � 0g

� � C; (4.45)

for some constantC depending only onn. That is, u is C1;1=2 up to f xn� 1 = 0g in
either side.
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Proof. The proof follows along the lines of [Sav10].
Since @E" k

k converges uniformly to the graph ofu, and @E" k
k \ f xn� 1 = 0g �

f xn � � C"kg, we clearly have that u � 0 on f xn� 1 = 0g. This follows since
�(� 
 k ;� k + " k ) � Ek . Similarly, u(0) = 0.

Now take any point x0
� 2 B 0

1=2. ConsiderP(x0) a quadratic polynomial in B1=20,
with graph touching the graph of u from below at (x0

� ; u(x0
� )). Since @E" k

k is con-
verging uniformly to the graph ofu, P(x0) � ck touches from below@E" k

k at a point
yk such that yk ! (x0

� ; u(x0
� )) as k ! 1 . Rescaling back," kP(x0) � ~ck touches from

below @Erk at ~yk such that ~y0
k ! x0

� for some sequence ~ck bounded. Since@Erk is a
supersolution being touched from below, by Lemma 4.9 we have

M (" kD 2P; "kr P) = " k � P + "3
k

�
� Pjr Pj2 � " k(r P)T D 2P r P

�
� 0

at ~y0
k . By letting " k ! 0 we reach

� P(x0
� ) � 0;

so that u solves � u � 0 in the viscosity sense.
On the other hand, supposex0

� 2 B 0
1=2 n (f xn� 1 = 0g \ f u = 0g). Let P(x0) be

a quadratic polynomial in B1=20, with graph touching the graph of u from above
at (x0

� ; u(x0
� )). Now, P(x0) + ck touches from above@E" k

k at a point yk such that
yk ! (x0

� ; u(x0
� )) as k ! 1 . That is, " kP(x0) + ~ck touches from above@Erk at ~yk

such that ~y0
k ! x0

� for some sequence ~ck bounded. If k large enough, ~y0
k 2 B 0

1=2 n
(f xn� 1 = 0g \ f u = 0g). Therefore, either @Erk is a surface of minimal perimeter
around ~yk , or @Erk is touching � k(� � ) at ~yk . In the �rst case, we are already done
proceeding as before, we getM (" kD 2P; "kr P) � 0.

Suppose then, that@Erk is touching � k(� � ) at ~yk . For this to happen, one must
have that � k(� � ) is a supersolution to the minimal perimeter problem around ~yk ,
otherwise there could not be a contact point with a supersolution. However, notice
that it is a supersolution with mean curvature around ~yk bounded from below by

� C"
1+ 1

2
k . Therefore,M (" kD 2P; "kr P) � � C"

1+ 1
2

k at ~yk , and letting k ! 1 we get
� P(x0

� ) � 0. Thus, (4.44) holds in the viscosity sense.
Finally, the regularity of solution to the classical thin obstacle problem, (4.45),

was �rst shown by Ca�arelli in [Caf79]; and the optimal C1;1=2 regularity here pre-
sented was obtained by Athanaopoulos and Ca�arelli in [AC04].

We can now present the proof regarding the improvement of closeness to sets of
the form � 
;� , Proposition 4.14.

Proof of Proposition 4.14. Let us argue by contradiction, and suppose that the state-
ment does not hold. Then, there exists some� ? 2

�
0; 1

2

�
and a sequenceEk � Rn

satisfying (4.17), such that 02 @Ek , Ek are" k-close to some �
 k ;� k for � k 2 (0; C� " k),
(4.18) holds for " = " k (and the transformation � k), for some positive sequence
" k ! 0 ask ! 1 , but such that the conclusion does not hold for any� � ; " � > 0.

By Lemma 4.13 we have that

� k(� 
 k ;� k + C� " k ) � Ek ; in B1=2:
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By rescaling and renaming the" k sequence if necessary, we can assume that� k 2
(0; "k) and � k(� 
 k ;� k + " k ) � Ek in B1, so that we are in the same situation as in
Lemma 4.19. In particular, due to Lemma 4.19, the sequence@E" k

k approaches (in
Hausdor� distance) a functionu in B 0

1=2 � (� 1; 1), which by Lemma 4.20 is a solution
to a classical thin obstacle problem. Thanks to the regularity ofu, and the fact that
u(0) = 0 and r x00u(0) = 0, we have that

�
�u(x0) � @+

n� 1u(0)(x0
n� 1)+ � @�

n� 1u(0)(x0
n� 1)�

�
� � C� 3=2; in B 0

2� ;

for any � > 0 and for some constantC depending only onn. Here, we have denoted
a+ = maxf a;0g, a� = min f a;0g, and

@�
n� 1u(0) := lim

� #0

@u
@x0n� 1

(0; : : : ; 0; � � );

i.e., the limit of the derivative in the en� 1 direction coming from f xn� 1 > 0g or
f xn� 1 < 0g (which exist by the regularity up to the contact set). Notice, moreover,
that since � u � 0 around 0, we must have@�

n� 1u(0) � @+
n� 1u(0). In particular,

thanks to the closeness of@E" k
k to the graph of u, we have that

@E" k
k \

�
B 0

3�= 2 � (� 1; 1)
�

�
� �

�xn � @+
n� 1u(0)(x0

n� 1)+ � @�
n� 1u(0)(x0

n� 1)�

�
� � C� 1=2

	
;

which, after rescaling implies that@Erk is at distance at mostC"k � 3=2 from some � ~
; ~�

in B � , given by the graph of" k@+
n� 1u(0)(x0

n� 1)+ + " k@�
n� 1u(0)(x0

n� 1)� . Now, simply
take � small enough depending only onn and � ? such that C� 3=2 � � 1+ � ? , and we
reach a contradiction (notice that such� exists because� ? < 1

2).

4.5 Improvement of closeness in non-
at con�gu-
ration

In this section we study the complementary case to the one in the previous section:
the case whereE is "-close to anon-
at (� & ") wedge � 
;� . Under this condition,
thanks to Lemma 4.12, there exists a full contact set, so that the study of the
regularity becomes a known matter.

We state and prove now the lemma that will allow us to conclude the proof of
Theorem 4.3.

Lemma 4.21. There exists" � depending only onn such that the following statement
holds:

Let E � Rn satisfying (4.17) with 0 2 @Ebe such that for some� 
;� , and
" 2 (0; " � ),

�(� 
;� + " ) � E � �(� 
;� � " ); in B1; (4.46)

where� satis�es (4.18).
Then,

@E\ B1=2 = � + [ � � ; (4.47)

where
� � = @E\ B1=2 \ �( f� xn� 1 > 0g); (4.48)
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and
� � \ �( f xn� 1 = 0g) \ B1=2 � �( f xn� 1 = xn = 0g): (4.49)

Moreover, for each� 2 (0; 1), � + and � � are C1;� graphs up to the boundary in
the e
 + � and e
 � � directions respectively, withC1;� -norms bounded byC", whereC
depends onlyn and � .

Remark 4.8. A a direct consequence of theC1;� estimates from Lemma 4.21 there
exists � 
 ? ;� ? as in (4.11) such that for any �� 2 (0; 1=2),

E is C"r 1+�� -close to � 
 ? ;� ? in B r ; for all r 2 (0; 1=2);

for some constantC depending only onn. Moreover,

j �
 � 
 j + j �� � � j � C";

for some constantC depending only onn. This will be useful later on in the paper.
In fact, we could clearly take �� 2 (0; 1) but we will only need �� < 1=2 later on (see
Proposition 4.24).

In order to prove Lemma 4.21 we need a version for thick smooth obstacles of
the following standard result on regularity of 
at minimizers of the perimeter.

Theorem 4.22 ([Giu84, Chapter 8]). There exists� � small depending only onn
such that the following statement holds:

Let E � Rn be a minimizer of the perimeter inB1 such that

f xn � � � g � E � f xn � � g; in B1;

for some� 2 (0; � � ).
Then, there exists a map' : B 0

1=2 ! R such that

@E= f x = ( x0; xn ) � Rn : xn = ' (x0)g in B 0
1=2 � (� 1=2; 1=2) ;

wherek' kCk (B 0
1=2 ) � C(n; k) � , for some constantC depending only onn and k.

Let us comment on the standard proof of the previous theorem.

Remark 4.9. Theorem 4.22 is usually shown in two steps. First, one iterates (4.8)
obtain

j� (x) � � (y)j � C� jx � yj � ;

for � > 0, and where� (x) for x 2 @Edenotes the unit normal vector to@Epointing
outwardsE. This C � estimate for the normal� is a consequence of the improvement
of 
atness property (4.8).

Second, one improves thisC1;� estimate to obtain theCk regularity using interior
Schauder estimates for graphs.

Comparing normal vectors is like comparing the corresponding tangent hyper-
planes (or half-spaces). A similar approach is what inspired part of this work, where
we compare sets of the form �
;� instead of half-spaces to get the regularity.

The version of the previous result we will need is the following
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Theorem 4.23. There exists� � small depending only onn such that the following
statement holds:

Assume � 2 (0; � � ) and that � satis�es (4.18) with " 2 (0; � ). Let E � Rn ,
satisfying

�
�
f xn � 0g

�
\ B1 � E;

P(E; B1) � P(F ; B1) 8F such thatE n B1 = F n B1; �
�
f xn � 0g

�
\ B1 � F:

Assume that for someb2 (� 1=2; 1=2)

f xn � b� � g � E � f xn � b+ � g; in B1:

Then, there exists a map' : B 0
1=2 ! R such that

@E= f x = ( x0; xn ) � Rn : xn = ' (x0)g in B 0
1=2 � (b� 1=4; b+ 1=4) ; (4.50)

wherek' kC1;1 (B 0
1=2 ) � C� , for some constantC depending only onn.

The proof of Theorem 4.23 is based on two steps as the proof of Theorem 4.22 (see
Remark 4.9). First, we prove that@Eis a C1;� graph or, more precisely, (4.50) with
k' kC1;� (B 0

1=2 ) � C� . This can be done exactly by compactness of vertical rescaling,
following the exact same strategy of Savin [Sav10, Sav10b].

Second, we can apply a theorem of Br�ezis and Kinderleher [BK74] to improve
from this C1;� estimate to the optimal C1;1 estimate. By completeness we sketch the
proof here.

Proof of Theorem 4.23.We do the argument in two steps.

Step 1. Fix some � 2 (0; 1), say � := 1=4. Then, we claim that if � � is small
enough then (4.50) holds withk' kC1;� (B 0

1=2 ) � C� , where C depends only onn.
Indeed, exactly as in the proof of Proposition 4.14, we establish by compactness the
following improvement of 
atness property, aroundx � 2 B3=4 \ @E,

@E�
�

je�(x � x � )j � �
	

in B r (x � ) ) @E�
�

j~e�(x � x � )j � � 1+ �
� �

	
in B � � r (x � ):

(4.51)
for some� � 2 (0; 1) depending only onn. The proof of (4.51) is analogous to the
Proof of Proposition 4.14. It is enough to do the caser = 1. To do it, we consider
the vertical rescalings de�ned similarly as in (4.37) in Lemma 4.19. These vertical
rescalings of@Eare compact by Proposition 4.18 (similarly as in Lemma 4.19) and
converge \uniformly" to a function u 2 Ca(B 0

1=2) which is harmonic. Indeed, the

condition jD 2� j � � 1+ 1
2 implies that the thick obstacle will be zero in the limit if

we apply the vertical rescaling (x0; xn ) 7! (x0; xn=� ) and let � # 0. Using the C1;1

regularity of harmonic functions we establish (4.51).
With a standard iteration of (4.51) we establish that (4.50) holds with

k' kC1;� (B 0
1=2 ) � C� (� = 1=4);

as we wanted to show.

Step 2. We improve the previousC1;1=4 estimate to the optimal estimatek' kC1;1 (B 0
1=2 ) �
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Figure 4.5: Representation of the setting after a rotation.

C� . This is a straightforward application of the results of Br�ezis and Kinderleher
[BK74] of optimal C1;1 regularity for obstacle problems with uniformly elliptic non-
linear operators. Indeed, once we have proved that@Eis a graph and with bounded
gradient, then it follows that the mean curvature operatorH is uniformly elliptic
and thus [BK74, Theorem 1] provides exactly the desiredC1;1 estimate.

We can now prove Lemma 4.21.

Proof of Lemma 4.21. We divide the proof into two steps. In the �rst step we show
that � � are a graphs, and in the second step we show their regularity.

Step 1: � � are graphs in an appropriate direction. The proof of the fact
that � � are graphs is almost immediate, just noticing that (4.46) allows us to apply
Theorem 4.23 at every scale.

Let us consider �rst the case � � id, and let us rotate the setting with respect to
the last two coordinates, in such a way that the normal vector to �
;� for f xn� 1 >
0g, e
 + � , now becomesen (that is, rotate an angle 
 + � ). Let us denote as the
corresponding rotated versions with superindexr , e.g. � r


;� . See Figure 4.5 for a
representation of the rotated setting.

Now take any point x � 2 B1=2 \ f xn = 0g, so that x � 2 � r

;� . Denoter � = x �

n� 1=2,
and consider a ballB r � (x � ). Notice that

f xn � � 3 tan(" � )r � g � E � f xn � 3 tan(" � )r � g; in B r � (x � ):

Thus, if " � is small enough, we can apply Theorem 4.22 rescaled in the ball
B r � (x � ); which tells us that (� + )r in B r � (x � ) is the graph of a function in the en
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direction. Since we can cover all of (�+ )r with balls of this kind, we conclude that
(� + )r is the graph of a function in theen direction in B1=2 \ f xn� 1 � 0g.

The case � 6� id is a perturbation of the previous one, but we would need to
use Theorem 4.23 instead of Theorem 4.22, since it is no longer true that we are
necessarily a minimal surface inB r � (x � ).

Step 2: C1;1� regularity of � � . Let us �rst discuss the case � � id. In this
situation, using (4.46), we obtain that �+ is a graph that is Lipschitz up to its
boundary f xn� 1 = xn = 0g and we may now consider the re
ection �+� of � + under
the transformation (x00; xx� 1; xn ) 7! (x00; � xn� 1; � xn ). Since � + is a Lipschitz graph
up to f xn� 1 = xn = 0g the \odd re
ection" � + [ � +

� is a Lipschitz graph which
solves the equation of minimal graphs in the viscosity sense. It follows that� + [ � +

�

is analytic.
In the case � 6� id we cannot use the re
ection trick and the interior smoothness

of minimal graph to conclude, but still using (4.46) and that � 2 C1;1 we see that
� + is a Lipschitz graph with now C1;1 boundary datum solving a thick obstacle
problem with the mean curvature operatorH . It follows from standard perturbative
methods and the boundary regularity theory for obstacle problems with elliptic
operators (see, for instance, Jensen [Jen80]) that the �+ is a C1;� graph up to its
boundary �( f xn� 1 = xn = 0g).

With this, we can proceed and prove Theorem 4.3.

Proof of Theorem 4.3. If � 2 (0; C� " ), then we can directly apply Proposition 4.14.
On the other hand, if � 2

�
C� "; �

2

�
, thanks to Lemmas 4.12 and 4.13 we have

that
�(� 
;� + C� " ) � E � �(� 
;� � C� " ); in B1=2:

That is, by rescaling and taking" smaller depending only onn if necessary, we
have put ourselves in the situation to apply Lemma 4.21. We conclude the proof in
this case by noticing Remark 4.8 and that we can take� � = 1

4 .

4.6 Regularity of solutions

In this section, in order to simplify the computations, we assume �� id. All state-
ments and proofs are done under this assumption. We leave to the interested reader
the standard extension of this results to the cases �2 Ck;� , k � 2 and � 2 (0; 1) or
� analytic.

Proposition 4.24. There exists " � depending only onn such that the following
statement holds:

Let E � Rn satisfying (4.17) with 0 2 @E, be such thatE is "-close to � 
;� in
B1, for some " 2 (0; " � ). Then, there exists some� 
; � with 
 and � as in (4.11),
such that for � 2

�
0; 1

2

�
,

E is C� "r 1+ � -close to� 
; � in B r ; for all r 2 (0; 1=2);

for some constantC� depending only onn and � .
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Proof. We will suppose that " > 0 is su�ciently small so that each of the results
used can be applied.

We begin by noticing that there are two possible scenarios. Either� � C� " or
� < C � " , where C� is the constant given in Lemma 4.12 and in Proposition 4.14,
depending only onn.

Notice that if � � C� " we are already done. Indeed, in this case we can apply
Lemma 4.12 and Lemma 4.13 to ful�ll the hypotheses of Lemma 4.21; which at the
same time yields the desired result, thanks to Remark 4.8.

Suppose otherwise that� < C � " . In this case we can apply the improvement of
closeness in Proposition 4.14. That is, there exist some radius� � , depending only
on n and � , such that

E is � 1+ �
� " -close to � 
 2 ;� 2 in B � � ;

for some
 2 and � 2 as in (4.11). Let us de�neE2 := � � 1
� E, so that we have a set

E2 � Rn , satisfying (4.17), with 02 @E2 and � �
� " -close to � 
 2 ;� 2 in B1. We are now

again presented with a dichotomy: either� 2 � C� � �
� " or � 2 � C� � �

� " . In the former
case, we can again apply Lemma 4.21 and Remark 4.8 to �nd that

E2 is C"� �
� r 1+ � -close to � �
 2 ; �� 2

in B r ; for all r 2 (0; 1=2);

for some � �
 2 ; �� 2
(which is close to � 
 2 ;� 2 ). Rescaling back,E is C"r 1+ � -close to � �
 2 ; �� 2

in B r for all r 2 (0; � � =2). Using that E is "-close to � 
;� in B1 it follows that E is
C� "r 1+ � close to � �
 2 ; �� 2

in B r , for all r 2 (0; 1=2), and a constantC� that depends
on � and n, of the form C� = C� � 1� �

� for C depending only onn.
If � 2 � C� � �

� " , we can repeat the process iteratively. Suppose that for allk <
k� 2 N, we have� k � C� � k�

� " , but � k� � C� � k� �
� " . That is, there exist Ek := � � k+1

� E,
satisfying (4.17), with 0 2 @Ek such that it is � � (k� 1)

� " -close to � 
 k ;� k in B1. By
Lemma 4.21 and Remark 4.8,

Ek� is C"� (k� � 1)�
� r 1+ � -close to � �
 k � ; �� k �

in B r ; for all r 2 (0; 1=2); (4.52)

for some � �
 k � ; �� k �
(close to � 
 k � ;� k �

) and for some constantC depending only onn.
Alternatively, we can write

E is C"r 1+ � -close to � �
 k � ; �� k �
in B r ; for all r 2 (0; � k� 1

� =2):

Let us rede�ne, from now on, and for convenience in the upcoming notation,
� 
 k � ;� k �

:= � �
 k � ; �� k �
. Notice that Ek is � � (k� 1)

� " -close to � 
 k ;� k in B1, but it is also

� � (k� 2)� 1
� " -close to � 
 k � 1 ;� k � 1 . Therefore,

j� k � � k� 1j + j
 k � 
 k� 1j � C� � � (k� 2)
�

�
� � 1

� + � �
�

�
" = Cn;� � �k

� "; (4.53)

where the sub-indices denote the only dependences of the constants. In particular,
by triangular inequality

j� k� � � k j + j
 k� � 
 k j � Cn;� "
k�X

j = k+1

� �j
� � Cn;� "

� � (k+1)
�

1 � � �
�

= Cn;� "� �k
� ; (4.54)
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for a di�erent constant Cn;� , still depending only on n and � . Thus, sinceEk is
� � (k� 1)

� " -close to � 
 k ;� k in B1, E is � (1+ � )( k� 1)
� " -close to � 
 k ;� k in B � k � 1

�
.

Now, from (4.54), � 
 k ;� k is Cn;� "� �k
� � k� 1

� -close to � 
 k � ;� k �
in B � k � 1

�
. Putting all

together,E is Cn;� � (1+ � )( k� 1)
� " -close to � 
 k � ;� k �

in B � k � 1
�

for all k < k � . This, combined
with (4.52), yields the desired result.

Finally, if � k � C� � k� " for all k 2 N, we can takek� = 1 and repeat the previous
procedure. In this case, consider ase1 and � 1 the limits of the sequences (ek)k2 N

and (� k)k2 N, which exist by (4.53). Notice that � 1 = 0.

Remark 4.10. In the previous proof, notice that ifk� < 1 we must be dealing with a
point in the interior of the contact set. In particular, all points on the free boundary
must have k� = 1 , and since� 1 = 0 there is a supporting plane at each of this
points.

We now give a proposition on regularity of@Ein the case that it is close enough
to some � 
;� with � small enough (the wedge is almost a half-space).

Proposition 4.25. There exists " � depending only onn such that the following
statement holds:

Let E � Rn satisfying (4.17), be such thatE is "-close to � 
;� in B1, for " 2
(0; " � ), and � � C� " for a constant C� depending only onn. Then, after a rotation
of angle
 , @Eis the graph of a functionh : B 0

1=2 ! (� 1; 1) in the en direction in
B1=2. Moreover,

khkC1;� (B 0
1=2 \f xn � 1 � 0g) + khkC1;� (B 0

1=2 \f xn � 1 � 0g) � C"; (4.55)

for any � 2
�
0; 1

2

�
, and some constantC depending only onn and � .

Proof. Let assume for simplicity that 
 = 0, the other cases are analogous. We will
assume that" � is small enough so that the previous results can be applied. Let us
also assume that the contact set, �E := @E\ f xn� 1 = xn = 0g, is non-empty in
B1=2; � E \ B1=2 6= ? . Otherwise we are already done by the classical improvement
of 
atness.

Step 1: @Eis the graph of a function. Let us �rst show that indeed @Eis the
graph of a function. To do so, proceed as in the �rst part of Lemma 4.21, combined
with Proposition 4.24 and the fact that � � C� " :

Take any x � 2 B1=2 \ @Enot belonging to the contact set � E , and let r :=
dist(x � ; � E ) = jx � � zj for z 2 � E . Applying Proposition 4.24 aroundz, we deduce
that for some � �
; �� (depending onz),

E is C"r -close to � �
; �� ; in B r=2(x � );

for some constantC depending only onn. If we rescale the space a factor 2r � 1 with
respect toz so that E becomes~E then

~E is C"-close to � �
; �� ; in B1(2r � 1 x � ):

Notice that ~E is a minimal surface inB1(2r � 1 x � ), sinceE is a minimal surface in
B r=2(x � ). Using that j �
 � 0j + j� � �� j � C" for someC depending only onn, and that
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� � C� " , we get that � �
; �� is C"r -close tof xn = 0g in B r=2(x � ). After the rescaling,
� �
; �� is C"-close tof xn = 0g in B1(2r � 1 x � ), so that ~E is C"-close tof xn = 0g in
B1(2r � 1 x � ). Thanks to the classical improvement of 
atness (Theorem 4.22) for"
small enough depending only onn, @~E is a graph in theen direction in B1(2r � 1 x � ),
and consequently the same occurs for@Ein B r=2(x � ). Let us call h the function whose
graph is de�ned onB r=2(x � ) in the en direction. In particular, applying Theorem 4.22
again, h 2 Lip( B 0

r=4(x0
� )), with [ h]C0;1 (B 0

r= 2 ) � C"; wherex0
� is the projection ofx � to

f xn = 0g.
Now, by a standard covering argument together with the fact that@Eis contin-

uous and � E has measure zero,u is de�ned in B 0
1=2 with

[h]C0;1 (B 0
1=2 ) � C";

for someC depending only onn.

Step 2: Regularity bound. Let us now show (4.55). We will show that for any
y0 2 B 0

1=4 \ f xn� 1 � 0g and any � 2 (0; 1=4), there exists somepy0 2 Rn� 1 depending
only on y0 such that for any � 2 (0; 1=2),

jh(x0) � h(y0) � py0 � (x0 � y0)j � C"� 1+ � in B 0
� (y0) \ f x0

n� 1 � 0g; (4.56)

for some constantC depending only onn and � . The other half, f x0
n� 1 � 0g, follows

by symmetry.
Throughout this second step we will be switching between the characterisation

of the solution to our thin obstacle problem as a boundary,@E, and as the graph
of a function u on Rn� 1. Thus, we can rewrite Proposition 4.24. That is, if 02 @E,
we know that

E is C� "r 1+ � -close to � 
; � in B r ; for all r 2 (0; 1=2); (4.57)

for some constantC� depending only onn and � , and for some ��
; �� . We want to
rewrite it in terms of u. Note that j
 j + �� � C" for some constantC depending only
on n, since� � C� " , and therefore, we have that (4.57) implies

jh(x0) � A+ (x0
n� 1)+ � A � (x0

n� 1)� j � C� " jx0j1+ � ; in B 0
1=2; (4.58)

with A � � A+ and jA � j + jA+ j � C" for someC� depending only onn and � .
Notice that if 0 is in the free boundary of the contact set, 02 @� 0

E , then A+ = A � ,
or equivalently �� = 0 (see Remark 4.10).

Let y0; z0 2 B 0
1=4 \ f x0

n� 1 � 0g, and let y0
� ; z0

� 2 � 0
E be such that dist(y0; � 0

E ) =
jy0� y0

� j and dist(z0; � 0
E ) = jz0� z0

� j. We denote byy; z; y� , and z� , the corresponding
elements as seen inRn (e.g. y = ( y0; 0)), and let �y = ( y0; h(y0)) 2 @Eand �z =
(z0; h(z0)) 2 @E. Suppose, without loss of generality, thatd = jy0 � y0

� j � j z0 � z0
� j,

and we consider two di�erent cases.

ˆ Case 1. Suppose that r = jz0 � y0j � d=2. Using (4.58) centered around
y0

� instead of 0, we know that for someA+ depending ony0
� ,

jh(x0) � A+ x0
n� 1j � C� " jx0 � y0

� j1+ � ; for x0 2 B 0
1=2(y0

� ) \ f x0
n� 1 � 0g:
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Putting y0 and z0 in the previous expression yields

jh(y0) � A+ y0
n� 1j � C� " jy0 � y0

� j1+ � = d1+ � � C� "r 1+ � ;

jh(z0) � A+ z0
n� 1j � C� " jz0 � y0

� j1+ � � C� " (d + r )1+ � � C� "r 1+ � ;

from which
jh(y0) � h(z0) � A+ (y0

n� 1 � z0
n� 1)j � C� "r 1+ � ;

and in particular, (4.56) holds with py0 = A+ .

ˆ Case 2.Supposer = jz0 � y0j � d=2. If B 0
d(y0) * f x0

n� 1 � 0g, then y0
� 2 � 0

E
belongs to the free boundary and the corresponding �
 (y0

� );� (y0
� ) from Proposi-

tion 4.24 aroundy� is actually an hyperplane (� (y0
� ) = 0) with normal vector

e
 (y0
� ) (see Remark 4.10). In particular,@Eis C"d1+ � -
at in the e
 (y0

� ) di-
rection in the ball Bd(y) thanks to Proposition 4.24. On the other hand, if
B 0

d(y0) � f x0
n� 1 � 0g, we consider again the corresponding �
 (y0

� );� (y0
� ) from

Proposition 4.24 aroundy� . Then @Eis C"d1+ � -
at in the e
 (y0
� )+ � (y0

� ) direc-
tion in the ball Bd(y) (recall that e
 (y0

� )+ � (y0
� ) is the normal vector to � 
 (y0

� );� (y0
� )

in f xn� 1 � 0g). In any case, noting that E is a set of minimal perimeter in
Bd(y) we can apply the classical improvement of 
atness (see Remark 4.9) in
Bd(y), to get

j� (y) � � (z)j � C"jy � zj � ;

for someC depending only onn. We have denoted here by� (x) for x 2 @E
the unit normal vector to @Epointed outwards with respect toE at the point
x.

Now notice that if " is small enough depending only onn, sincejr hj � C",
j� (y) � � (z)j � jr h(y0) � r h(z0)j, and on the other hand,jy � zj � j y0� z0j +
jh(y0) � h(z0)j � 2jy0 � z0j so that

jr h(y0) � r h(z0)j � C"jy0 � z0j � ;

from which (4.56) follows.

From (4.56) the result (4.55) follows by a covering argument.

With this, we can now prove Theorem 4.4.

Proof of Theorem 4.4. In the case � � id it is a direct consequence of Lemma 4.21
and Proposition 4.25, depending on whether the wedge �
;� is "-
at or not. The case
� 6� id follows from standard perturbative arguments and is left to the interested
reader.

4.7 Monotonicity formula and blow-ups

In this section we prove Proposition 4.5 and Corollary 4.6.
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Lemma 4.26 (Monotonicity formula for minimizers of (4.17)). Let E � Rn satisfy
(4.17) in B2 (instead of B1) and suppose0 2 @E\ @O. Let us de�ne

A(r ) :=
P

�
E; �( B r )

�

r n� 1
; for r > 0: (4.59)

Then,
(a) If � � id then A 0(1) � 0
(b) If �(0) = 0 , D�(0) = id , and [�] C1;1 � � � for � � 2 (0; 1) small enough

depending only onn then
A 0(1) � � C� �

for someC depending only onn.

Proof. (a) The proof is similar to that of the classical monotonicity formula for
minimal surfaces. Indeed, we take as a competitor toE in B1 the dilation of E
to B1� " and we extend it conically in the annulus. For simplicity in the following
computations, from now on we rescale everything by a factor 2, so that we can deal
with r = 1 and A 0(1).

As in [Sav10b], we takeF de�ned as

x 2 F ,

8
<

:

x 2 E if jxj > 1
x=jxj 2 E if (1 � " ) � j xj � 1
(1 � ")� 1x 2 E if jxj < (1 � ");

(4.60)

that is, we �rst contract it by a factor 1 � " and then extend conicallyF in the
annulus B1 n B1� " to obtain a competitor for E in B1.

Thus,
PB 1 (E) � PB 1 (F ) = (1 � ")n� 1PB 1 (E) + PB 1nB 1� " (F ): (4.61)

Now, dividing by " and letting " # 0, we obtain

(n � 1)PB 1 (E) � H n� 2(@E\ @B1): (4.62)

On the other hand, notice that

A 0(1) =
Z

1
p

1 � (x � � (x))2
dH n� 2

@E\ @B1
� (n � 1)PB 1 (E); (4.63)

which combined with (4.62) yields the result in the case (a).
(b) The proof in this case is a perturbation of the proof in case (a). Now we have

�(0) = 0 ; D�(0) � id and jD 2� j � � � in B1;

The observation that allows us to control the errors is that, for allx � 2 B1.

�( x) = �( x � ) + D�( x � )(x � x � ) + O(� � jx � x � j2); (4.64)

D�( x � ) = id + O(� � ); D�( rx � ) = D�( x � ) + O(� � (1 � r )) ; 8r 2 (0; 1): (4.65)

As a consequence, forr 2 (0; 1] the maps� : (0; 1] � �( B1) ! �( B r ) de�ned by

(r; x ) 7! �
�
r � � 1(x)

�
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are bi-Lipschitz and are quasi-dilations with the estimate, forr 2 (1=2; 1)

j� (r; x ) � � (r; x � )j � r jx � x � j
�
1 + C(1 � r )� �

�
: (4.66)

Indeed, (4.66) follows immediately from (4.64) and (4.65) ifjx � � xj < (1 � r ). For
generalx � ; x we use the previous case and the triangle inequality.

Now, repeat the proof for the case (a) after applying �� 1 and then check using
(4.66) that the errors we make are small. Namely, we de�neF as in (4.60) but with
E replaced by � � 1(E). Note that �( F ) is a \competitor" of E in �( B1), namely,
�(� � ) � �( F ) and �( F ) n �( B1) = E n �( B1).

Now (4.61) must be replaced by

P�( B 1 )(E) � P�( B 1 )(�( F )) = P�( B 1� " )(�( F )) + P�( B 1nB 1� " )(�( F )): (4.67)

Now, using (4.66) and �(F ) = � (1 � "; E ) in �( B1� " ), we obtain

P�( B 1� " )(�( F )) � (1 � " )n� 1P�( B 1 )(E) + O(� � " ):

and
P�( B 1nB 1� " )(�( F )) = "H n� 2

�
�( F \ @B1)

�
+ O(� � " ):

So that,

P�( B 1 )(E) � (1 � " )n� 1P�( B 1 )(E) + "H n� 2
�
�( F \ @B1)

�
+ O(� � " ):

Dividing by " and letting " # 0 we obtain

(n � 1)P�( B 1 )(E) � H n� 2(@E\ �( @B1)) + O(� � ):

Now we conclude the proof observing that

A 0(1) =
Z �

�@r �
�
1; � � 1(x)

� �
�

p
1 � (x � � (x))2

dH n� 2
@E\ �( @B1 ) � (n � 1)P�( B 1 )(E);

and that
�
�@r �

�
1; � � 1(x)

� �
� = 1 + O(� � ).

Lemma 4.27 (Monotonicity formula for minimizers of (4.17)). Let E � Rn satisfy
(4.17) and suppose0 2 @E\ @O. Let us de�ne

A E (r ) :=
P

�
E; �( B r )

�

r n� 1
; for r > 0: (4.68)

Then,
(a) If � � id then A 0 � 0 for r 2 (0; 1). Moreover, A 0 � 0 (i.e., A constant) if

and only if E is a cone (tE = E for any t > 0).
(b) If �(0) = 0 , D�(0) = id , and [�] C1;1 � � � for � � 2 (0; 1) small enough

depending only onn then
A 0

E (r ) � � C� �

for someC depending only onn.
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Proof. It follows by scaling Lemma 4.26. Part (a) is immediate, being the cone
condition an immediate consequence of (4.63). For part (b), let us de�ne, for any
� > 0, � � := � �

�
1
� �

�
, and

A �
E (r ) :=

P
�
E; � � (B r )

�

r n� 1
; for r > 0: (4.69)

Note now, that

A E (r ) =
P

�
�E ; � �( B r )

�

� n� 1r n� 1
=

P
�
�E ; � � (B �r )

�

� n� 1r n� 1
= A �

�E (�r ):

Di�erentiating both sides with respect to r we obtain

A 0
E (r ) = �

�
A �

�E

� 0
(�r ): (4.70)

On the other hand, applying Lemma 4.26 with�E and � � ,
�
A �

�E

� 0
(1) � � C[� � ]C1;1 (B 1 ) � � C� � 1� � :

Putting it together with (4.70) and �xing � = r � 1 we obtain

A 0
E (r ) = r � 1

�
A �

�E

� 0
(1) � � C� � ;

as we wanted to see.

We now recall the well-known density estimates lemma for perimeter minimizers.
It is a very standard result in the theory of minimal surfaces which can be found
extensively in the literature. We mention, for example, the survey [Sav10].

Lemma 4.28. Let E � Rn be a minimizer of the perimeter inB r � for somer � > 0,
such that0 2 @E. Then,

jE \ B r j � crn ;

jE c \ B r j � crn ; for all r 2 (0; r � );

for somec constant depending only on the dimensionn.

We have a similar lemma for supersolutions to the minimal perimeter problem.

Lemma 4.29. Let E + � Rn be a supersolution to the minimal perimeter problem
in B r � for somer � > 0, such that0 2 @E+ . Then,

j(E + )c \ B r j � crn ; for all r 2 (0; r � );

for somec constant depending only on the dimensionn.

Proof. This is standard, and follows exactly the same as Lemma 4.28.

Let us now prove the following proposition, stating that in order to prove that
at some scale the solution is close enough to a wedge, it is enough to classify conical
solutions.
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Proposition 4.30. Assume that in some dimensionn � 2 the wedges� 
;� are the
only conesE � Rn satisfying (4.17) with � = id and any � > 0.

Assume that, for some� > 0, the set E � Rn with P(E; B1) < 1 satis�es
�(� � ) \ B1 � E and (4.17), with � a C1;1 di�eomorphism.

Then, for any " > 0, there exists� > 0 depending only onn, " , and k� kC1;1 , and
kD� � 1kL 1 , such that if x � 2 @E\ @O \ B1=2, then

� � 1(Rx � E � x � ) is "-close to� 
;� ;

for some
 and � as in (4.11) and for some rotationRx � depending only onx � .

Proof. After a translation, let us start by assuming that x � = 0. Let us also take
a rotation Rx � of the whole setting, in such a way that, if we denote �k := k�,
then Rx � � k(� � ) converges in Hausdor� distance locally to ��

0
as k ! 1 for some

� 0 > 0 (i.e., we take the blow-up of a Lipschitz boundary). Notice that the value� 0

is determined only by� and �. By rede�ning � if necessary, let us assume Rx � = id
for simplicity. (Note that we could also argue via Lemma 4.10.)

Let us argue by contradiction, and assume that the thesis does not hold.
Let � k = k� 1, and consider the sequence of setsEk = � � 1

k E. Notice that, for
� k := k�, each Ek ful�ls � k(� � ) \ Bk � Ek and solves a thin obstacle problem of
the type

P(Ek ; Bk) � P(F ; Bk) 8F such that Ek n Bk = F n Bk and � k(� � ) \ Bk � F:
(4.71)

Recall that the set � k(� � ) converges in Hausdor� distance to ��
0

as k ! 1 . From

minimality, we have compactness inL1
loc of Ek , so that, up to a subsequence,Ek

L 1
loc��!

E1 , for some global solution to the� 0-thin obstacle problem with � = id, E1 , with
� � 0

� E1 . It immediately follows that 0 2 E1 .
On the other hand, by the density estimates in Lemma 4.29, since eachEk is a

supersolution to the minimal perimeter problem inB1 and 0 2 @Ek for all k, we
have

jE c
k \ B r j � crn ; for all r 2 (0; 1);

for some constantc. The convergence inL1
loc implies that the limit also ful�ls jE c

1 \
B r j � crn , and therefore 02 @E1 .

Using the same notation as in the proof of Lemma 4.27 (see (4.69)), we know

A E (r ) = A k
Ek

(kr ); for all r > 0:

Notice, also, that

A k
Ek

(r ) ! A E1 (r ) :=
P

�
E; B r

�

r n� 1
locally ask ! 1 ;

where we are using theL1
loc convergence ofEk to E1 , and the fact that � k =

k�( k� 1 � ) ! id as k ! 1 in C1;1
loc . In particular, we have that

lim
� #0

A E (� ) = A E1 (r ); for all r > 0:
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Thanks to Lemma 4.27 part (b), the left-hand side limit is well de�ned. That is,
A E1 (r ) is bounded and constant for anyr > 0, which, from Lemma 4.27 part (a)
implies that E1 is a cone (tE 1 = E1 for any t > 0). By assumption, therefore,
E1 = � 
;� for some
 and � ; and we have thatEk is converging inL1

loc to some � 
;� .
Finally, in order to reach the contradiction, let us show that the convergence of

@Ek to @E1 is in Hausdor� distance locally, which will complete the proof.
Suppose that is is not. That is, after extracting a subsequence, we can as-

sume that there exists some sequence of pointsyk 2 @Ek such that yk ! y1 and
dist(yk ; @E1 ) > " > 0 for some" > 0 and for all 1� k � 1 . We have a dichotomy,
either y1 2 E1 or y1 2 E c

1 .
Let us now use the density estimate in Lemma 4.29. Ify1 2 E1 then, after a

subsequence if necessary,jE c
k \ B " (yk)j � c"n but jE c

1 \ B " (y1 )j = 0, which is a
contradiction with the L1

loc convergence. On the other hand, ify1 2 E c
1 assume

that after a subsequenceyk 2 E c
1 for all k > 0. We have that for k large enough

yk 2 @Ek is a point around whichEk is a minimal surface (beingE1 a barrier from
below). That is, we can use the classical density estimates for minimal surfaces in
Lemma 4.28 to reach thatjEk \ B " (yk)j � c"n but jE1 \ B " (y1 )j = 0, again, a
contradiction.

Thus, in order to prove Corollary 4.6, it will be enough to classify cones.

Proof of Proposition 4.5. The proof is by induction on the dimensionn.

Step 1: Base case. Dimension n = 2.
Assume that � 2 � R2 is a cone satisfying (4.17), in other words, the boundary of

� 2 in B1 consists of radii of length one. By assumption, we have (0; � 1) 2 � 2 \ S1.
Now, if � 2 were not a wedge (that is, if �2 \ S1 were disconnected) then the convex
hull of � 2 \ B1 would be a set containing the obstacle (it contains �2) and having
strictly less relative perimeter inB1 than � 2. This would contradict the minimality
of � 2 |i.e. (4.17).

Step 2: Induction step. Suppose that it holds up to dimensionn � 1 � 2. Let us
show it for dimensionn.

Let us �rst prove regularity of the cone around contact points. Assume that we
have, without loss of generality,x � = e1 = (1 ; 0; : : : ; 0) 2 @� \ @B1. The �rst thing
to notice is that the blow up of � around x � is a wedge �
 1 ;� 1 . Indeed, the blow-up
is a cone by the monotonicity formula, and thanks to the fact that � is a cone and
x � = e1, we get that the blow up at x � must be of the formR � � n� 1; where now
� n� 1 � Rn� 1 is a cone inn � 1 dimensions such that satis�es (4.17) (also taking ��

in n � 1 dimensions). In particular, by induction step, �n� 1 = � n� 1

 1 ;� 1

� Rn� 1, where
� n� 1


 1 ;� 1
denotes � 
 1 ;� 1 as seen inn � 1 dimensions. This immediately yields that the

blow up at x � is a wedge of the form �
 1 ;� 1 . By Proposition 4.30 and Theorem 4.4,@�
is a smooth minimal surface around anyx � 2 @� \ f xn� 1 = xn = 0g in f� xn� 1 � 0g
up to f xn� 1 = 0g.

Let us separate the proof between both sides� xn� 1 � 0, and let us focus �rst
on xn� 1 � 0 (the other side follows analogously). We can now takes� = maxf s �
� : � s � � in xn� 1 � 0g. Notice that it is indeed a maximum, since it is enough to
check that � s \ Sn� 1 � � \ Sn� 1, whereSn� 1 � Rn denotes the (n � 1)-dimensional
sphere.
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The boundaries@� \ Sn� 1 and@� s�
\ Sn� 1 must touch at a point x � 2 f xn� 1 � 0g.

If x � 2 f xn� 1 > 0g, then by the strong maximum principle for minimal surfaces we
must have � O = � s�

in f xn� 1 � 0g, where � O denotes the connected component of
� n f xn� 1 = xn = 0g that contains the thin obstacleO (which, in this case, is 
at).
On the other hand, if x � 2 f xn� 1 = xn = 0g, then we have previously shown (by
induction and dimension reduction) that@� \ f xn� 1 � 0g is C1 up to its boundary
around the pointsx � and touches the half-plane of@� s�

tangentially at x � . Using the
boundary strong maximum principle (Hopf lemma) we obtain again that �O = � s�

in f xn� 1 � 0g.
The same holds for the other side,xn� 1 � 0, so that in all we have that

� O = � 
;�

for some
 and � as in (4.11).
We can now repeat the argument, but opening �
;� instead, until we reach an-

other connected component of �n f xn� 1 = xn = 0g. Proceeding iteratively, this
yields that � must be one dimensional; that is, � is the cone Rn� 2 � � 2 for some
cone � 2 � R2. By the base case in Step 1 minimality implies that �2 must be a
convex angle and henceRn� 2 � � 2 is a wedge.

Once cones are classi�ed, we can proceed with the proof of Corollary 4.6,

Proof of Corollary 4.6. We will apply Theorem 4.4 after an translation, rotation,
and scaling. We have to check that the hypotheses are ful�lled.

By de�nition of minimizer of (4.2) (see De�nition 4.1) there exist � k # 0, Ek

minimizers of (4.16) such that� Ek ! � E in L1(B1). For eachEk let x � be any point
in B1=2 \ @Ek \ @O. Let E x � ;�

k :=  x � (Ek) = � � 1(Rx � Ek � x � ), where  x � denotes
the change of coordinates from Lemma 4.10. Let us also denote �x �

� := �� the new
di�eomorphism (also from Lemma 4.10).

Thus, E x � ;�
k is a minimizer of the �� -thin obstacle problem aroundx � with di�eo-

morphism � �
x �

such that � x �
� (0) = 0, D� x �

� (0) = id, and [� x �
� ]C1;1 (B 1 ) � C� thanks

to Lemma 4.10.
On the other hand, as a consequence of Proposition 4.5 and Proposition 4.30 in

any dimensionn � 2, we reach that, for � small enough,E x � ;�
k is " � -close to � 
;�

for some
 and � . Also, for � small enough, we will have [�x �
� ]C1;1 (B 1 ) � "

1+ 1
2

� where
" � > 0 is the constant in Theorem 4.4. Therefore, applying Theorem 4.4 toE x � ;�

k
(and shrinking by a factor � ) we obtain that @Ek has the followingC1;� structure
in B �= 2(x � ). Either:

(a) In appropriate coordinatesy, (� x � )� 1
�
Rx � (@Ek � x � )

�
is the graphf yn = h(y0)g

of a function h 2 C0(B 0
�= 2) satisfying h 2 C1;� (B 0+

�= 2) \ C1;� (B 0�
�= 2). Moreover,

we haveh � 0 on yn� 1 = 0 and r h is continuous onf yn� 1 = 0g \ f h > 0g.

or

(b) R(@Ek � x � ) \ B �= 2 is the union of two C1;1� surfaces that meet on@O with
full contact set in B �= 2.
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Now we deduce in case (a) that in some new coordinates with origin atx � we
have � � 1

�
@Ek

�
is the graph f zn = ~h(z0)g of a function ~h 2 C0(B 0

~� ) satisfying
~h 2 C1;� (B 0+

~~�
) \ C1;� (B 0�

~� ). Moreover, we have~h � 0 on zn� 1 = 0 and r ~h is

continuous onf zn� 1 = 0g \ f ~h > 0g.
Since either (a) or (b) holds forEk with estimates independent ofk, we can pass

to the limit and show that either (a) or (b) also holds forE.
Finally, if the alternative (b) near some point x � then using that @O is of class

Ck;� (and the classicalCk;� regularity up to the boundary results for minimal sur-
faces [Jen80]) we obtain that@Esplits into two Ck;� minimal surfaces with boundary
in a small ball aroundx � .

Proof of Theorem 4.1. After having introduced the appropriate notion of solution,
we have that Theorem 4.1 corresponds to Corollary 4.6.



Chapter 5

On the singular set in the thin
obstacle problem: higher order
blow-ups and the very thin
obstacle problem

In this work, we consider the singular set in the thin obstacle problem with weight
jxn+1 ja for a 2 (� 1; 1), which arises as the local extension of the obstacle problem
for the fractional Laplacian (a non-local problem). We develop a re�ned expansion of
the solution around its singular points by building on the ideas introduced by Figalli
and Serra to study the �ne properties of the singular set in the classical obstacle
problem. As a result, under a superharmonicity condition on the obstacle, we prove
that each stratum of the singular set is locally contained in a singleC2 manifold,
up to a lower dimensional subset, and the top stratum is locally contained in aC1;�

manifold for some� > 0 if a < 0.
In studying the top stratum, we discover a dichotomy, until now unseen, in this

problem (or, equivalently, the fractional obstacle problem). We �nd that second
blow-ups at singular points in the top stratum are global, homogeneous solutions to
a codimension two lower dimensional obstacle problem (or fractional thin obstacle
problem) whena < 0, whereas second blow-ups at singular points in the top stratum
are global, homogeneous, anda-harmonic polynomials whena � 0. To do so, we
establish regularity results for this codimension two problem, what we call the very
thin obstacle problem.

Our methods extend to the majority of the singular set even when no sign as-
sumption on the Laplacian of the obstacle is made. In this general case, we are able
to prove that the singular set can be covered by countably manyC2 manifolds, up
to a lower dimensional subset.

5.1 Introduction

Lower dimensional obstacle problems are an important class of obstacle problems,
arising in many areas of mathematics. For instance, they can be found in the theory
of elasticity (see [Sig33, Sig59, KO88]), and they also appear in describing osmosis
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through semi-permeable membranes as well as boundary heat control (see, e.g.,
[DL76]). Moreover, they often are local formulations of fractional obstacle problems,
another important class of obstacle problems. Fractional obstacle problems can be
found in the optimal stopping problem for L�evy processes, and can be used to
model American option prices (see [Mer76, CT04]). They also appear in the study
of anomalous di�usion, [BG90], the study of quasi-geostrophic 
ows, [CV10], and in
studies of the interaction energy of probability measures under singular potentials,
[CDM16]. (We refer to [Ros18] for an extensive bibliography on the applications of
obstacle-type problems.)

Broadly, lower dimensional obstacle problems are minimization problems for a
given energy functional on class of functions constrained to sit above a given ob-
stacle (function) de�ned on a lower dimensional manifold. Obstacle problems are
free boundary problems: the principal part of their study is the structure and regu-
larity of the boundary of the contact set of the solution and the obstacle, the free
boundary. The lower dimensional obstacle problem we consider | the thin obsta-
cle problem with weight jxn+1 ja | has garnered much interest and attention (see
[AC04, CS07, ACS08, GP09, KRS19, FoSp18, CSV19, JN17]); it is a model setting,
and has motivated the study of many other types of lower dimensional obstacle prob-
lems (see [MS08, AM11, Fer16, RS17, RuSh17, FS20, FoSp18b, GR19, BLOP19]).

Nevertheless, the study of the non-regular part of the free boundary has been
rather limited. Only recently has signi�cant progress been made (see [GP09, FoSp18,
GR19, CSV19]). And many open questions still remain. In this work, we address
some of these questions, focusing on the singular set (see Section 5.1.2). In particular,
we explore the �ne properties of the solution and its expansion around singular
points, inspired by [FS18].

We note that the techniques of [FS18] have been further developed and im-
proved in [FRS19], where the authors prove generic regularity (namely, the generic
smoothness of the free boundary in the classical obstacle problem) in dimension
three and the smoothness of the free boundary at almost every time for the three-
dimensional Stefan problem. We expect the machinery built here to be useful in tack-
ling genericness-type questions of this nature in the context of the thin/fractional
obstacle problem, expanding on the very recent results by the �rst author and Ros-
Oton in [FR19].

5.1.1 The Thin Obstacle Problem

In this paper, we consider a class of lower dimensional obstacle problems inRn+1 :=
f X = ( x; y) 2 Rn � Rg with weight jyja whereRn �f 0g acts as the lower dimensional
manifold. We will often refer to them as, simply, the thin obstacle problem, even
though this name is usually reserved for the casea = 0. In particular, for an analytic
obstacle' : B1 \ f y = 0g ! R, we look at the thin obstacle problem:

min
w2 A

� Z

B 1

jr wj2jyja dX
�

; with a 2 (� 1; 1); (5.1)
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where A is the convex subset of the Sobolev spaceW 1;2(B1; jyja dX ) (which, for
simplicity, we call W 1;2(B1; jyja)) de�ned by

A := f w 2 W 1;2
0 (B1; jyja) + g : w(x; 0) � ' (x) and w(x; � y) = w(x; y)g;

given some boundary datag 2 C(B1) (even with respect toy) such that gj@B1 \f y=0 g �
' . The condition that w sits above' on the thin spaceRn � f 0g needs to be under-
stood in the trace sense, a priori.

If u is the (unique) solution to (5.1), thenu satis�es the Euler{Lagrange equations
8
>>>><

>>>>:

u(x; y) � ' (x) on B1 \ f y = 0g
Lau(x; y) � 0 in B1

Lau(x; y) = 0 in B1 n �( u)
u(x; y) = u(x; � y) in B1

u(x; y) = g(x; y) on @B1

(5.2)

where
Lau(x; y) := div( jyjar u(x; y))

and
�( u) := f (x; 0) : u(x; 0) = ' (x)g:

The set �( u) is called thecontact set, and is an unknown of the problem. Its topo-
logical boundary inRn

�( u) := @�( u) � Rn � f 0g

is called thefree boundary.

Remark 5.1. A useful equivalent characterization of the minimizeru of (5.1) is that
u is the smallest supera-harmonic function in A : u 2 A , Lau � 0, and u � w for
all w 2 A such that Law � 0.

Remark 5.2. In this work, we consider analytic obstacles. Clearly, this regularity
restriction can be relaxed; the thin obstacle problem (5.1) can be well-formulated
with signi�cantly less regular obstacles (e.g., continuous obstacles). That said, the
analytic setting allows us to understand the model behavior of �(u), and for this
reason, it deserves special consideration.

The Obstacle Problem for the Fractional Laplacian

As shown in [CSS08], the Euler{Lagrange equations (5.2) appear naturally in the
context of the obstacle problem for the fractional Laplacian, or the fractional obstacle
problem. Indeed, let' : Rn ! R be an obstacle (with su�cient decay at in�nity)
and let �u solve the fractional obstacle problem

8
>><

>>:

�u � ' in Rn

(� �) s �u � 0 in Rn

(� �) s �u = 0 in f �u > ' g
lim jx j!1 �u(x) = 0

with s :=
1 � a

2
2 (0; 1): (5.3)

Then, the even in y, a-harmonic extension of �u to Rn+1 (i.e., u : Rn+1 ! R
such that Lau(x; y) = 0 for jyj > 0, u(x; 0) = �u(x), u(x; y) = u(x; � y), and
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lim j(x;y )j!1 u(x; y) = 0) solves (5.2) inRn+1 (and, in particular, with its own bound-
ary data, in B1). Consequently, all of the results we prove in this work can be
translated into statements regarding the fractional obstacle problem. We leave this
translation to the interested reader.

5.1.2 Known Results

Let us brie
y summarize some of the known properties of the solution to the thin
obstacle problem and its free boundary. To do so, it will be useful to \normalize"' ,
and it will be necessary to de�ne a collection of rescalings ofu.

Since' = ' (x) is analytic, we can extend it from a function de�ned onB1 \ f y =
0g to an a-harmonic, even iny function de�ned on B1 (see [GR19, Lemma 5.1]). For
simplicity, we still denote this extension by' . So if we let

~u := u � '; (5.4)

(5.2) becomes 8
>>>><

>>>>:

~u(x; y) � 0 on B1 \ f y = 0g
La~u(x; y) � 0 in B1

La~u(x; y) = 0 in B1 n �(~u)
~u(x; y) = ~u(x; � y) in B1

~u(x; y) = ~g(x; y) on @B1;

(5.5)

with ~g := g � ' and

�(~u) := f (x; 0) : ~u(x; 0) = 0g = �( u):

Furthermore,
La~u = 2 lim

y#0
ya@y ~u(x; y)H n �(~u): (5.6)

Hence, considering (5.5),

lim
y#0

ya@y ~u(x; y) � 0 for jxj < 1;

lim
y#0

ya@y ~u(x; y) = 0 for jxj < 1 and ~u(x; 0) > 0;

and
~u La~u = 0 in B1:

(See [CSS08, GP09, FoSp18, GR19].) All of the above expressions must be under-
stood in a distributional sense.

As we have mentioned, we need to introduce a collection of rescalings ofu around
a free boundary pointX � 2 �( u) in order to outline the existing literature on (5.1).
They are

~uX � ;r (X ) :=
~uX � (rX )

�
1

r n + a

R
@Br

~u2
X �

jyja
� 1=2

where ~uX � (X ) := ~u(X � + X ): (5.7)
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Blow-ups and Optimal Regularity

In [ACS08, CSS08], Athanasopoulos, Ca�arelli, and Salsa and Ca�arelli, Salsa, and
Silvestre, for a = 0 and a 2 (� 1; 1) respectively, proved that the setf ~uX � ;r gr> 0 is
weakly precompact inW 1;2

loc (Rn+1 ; jyja), and that the limit points of f ~uX � ;r gr> 0 as
r # 0 or blow-ups ofu at X � are global� X � -homogeneous solutions to (5.5) with

� X � 2 [1 + s;1 ) for s :=
1 � a

2
:

It is important to note that the homogeneity of blow-ups depends only on the point
X � 2 �( u) at which they are taken, and is independent of the sequence along which
the weak limit is produced.

Moreover, in [AC04, CSS08], it was shown thatu is optimally C1;s on either side
of the thin space (but onlyC2s across, Lipschitz ifs = 1

2).

The Free Boundary

The free boundary �(u) can be partitioned into three sets:

�( u) = Reg(u) [ Sing(u) [ Other(u);

the set of regular points, the set of singular points, and set of other points (see
[GP09, FoSp18, GR19]), and they can be characterized by the value of� X � with
X � 2 �( u).

Reg(u) is the set of free boundary points where blow-ups are (1+s)-homogeneous.
In [ACS08, CSS08], it was proved that Reg(u) is relatively open, that blow-ups
at points in Reg(u) are unique, and that Reg(u) is an (n � 1)-dimensional C1;�

submanifold of the thin space (it is analytic, in fact, as proved in [KRS19]).
Sing(u) is the set of points in �( u) where the contact set has zeroH n -density,

Sing(u) :=
�

X � 2 �( u) : lim
r #0

H n (�( u) \ B r (X � ))
r n

= 0
�

:

In [GP09, GR19], Garofalo and Petrosyan and Garofalo and Ros-Oton, fora = 0
and a 2 (� 1; 1) respectively, proved that the points of Sing(u) are those at which
blow-ups are evenly homogeneous and unique. In addition, they showed that Sing(u)
is contained in the countable union ofm-dimensionalC1 manifolds with m ranging
from 0 to n � 1. (The regularity of the covering manifolds was later improved to a
more quantitative C1;log in [CSV19] whena = 0.) The goal of this manuscript is to
achieve a better understanding of singular points.

Finally, Other( u) is the remainder of the free boundary, and is not yet fully
characterized. That said, in [FoSp18], Focardi and Spadaro proved that �(u), in
particular, Other(u), has �nite ( n� 1)-dimensional Minkowski content, which implies
that the free boundary isH n� 1-recti�able. Moreover, they showed that outside of
an at most Hausdor� (n � 2)-dimensional subset of �(u), the possible homogeneities
of blow-ups take values inf 2k; 2k � 1 + s;2k + 2sgk2 N (the same result was proved
for a = 0 by Krummel and Wickramasekera in [KW13]).
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The Non-degenerate Problem

We have already seen that the study of the thin obstacle problem for an analytic
obstacle can be reduced to the study of the thin obstacle problem for the zero ob-
stacle, (5.5). An alternative normalization is to reduce to the zero boundary data
case by subtracting o� the a-harmonic extension ofg to B1. Indeed, for simplicity,
let g be its own a-harmonic extension toB1, i.e., assume thatg is de�ned on B1

and Lag = 0 in B1. Then, u � g solves (5.1) with zero boundary data and obstacle
' g := ( ' � g)j f y=0 g. (This procedure does not require' to be analytic.) Under this
normalization, Barrios, Figalli, and Ros-Oton proved that if' g is strictly superhar-
monic, then

� X � 2 f 1 + s;2g;

for all X � 2 �( u) (see [BFR18]). Consequently, we make the following de�nition.

De�nition 5.1. We say that the thin obstacle problem (5.1) or, equivalently, (5.2)
is non-degenerate if

� x ' g � � c < 0 on B1 \ f y = 0g: (5.8)

Analogously, we say the Euler{Lagrange equations (5.5) are non-degenerate if they
arise from (5.1) or (5.2) satisfying (5.8); i.e., �x ~g � c > 0 on B1 \ f y = 0g, where ~g
denotes its owna-harmonic extension of ~g to B1.

Remark 5.3. In the context of the obstacle problem for the fractional Laplacian in
all of Rn , (5.3), the problem is non-degenerate under the less restrictive assumption
� ' � 0 in f ' > 0g � Rn .

5.1.3 Main Results

We are interested in studying the �ne properties ofu at points in Sing(u), in the
spirit of the work of Figalli and Serra ([FS18]), wherein such a study is undertaken
for the classical obstacle problem given obstacles with Laplacian identically equal
to � 1, i.e., under a non-degeneracy condition (cf. De�nition 5.1). To do so, we
establish a framework to better characterize the structure of singular points and
the behavior ofu around singular points: we develop a higher order expansion ofu
around singular points, which, up to lower dimensional sets, yields a more regular
covering of Sing(u). Our approach and results are new even for the casea = 0.

Before stating our results, it will be convenient to expand our discussion of
Sing(u) and the work of [GP09, GR19], and introduce some notation. Let

� � (u) := f X � 2 �( u) : � X � = � g

denote the set of free boundary points where the homogeneity of blow-ups is� .
Consequently,

Sing(u) =
[

� 2 2N

� � (u): (5.9)

As noted, in [GP09, GR19], the authors showed that one and only one blow-up
exists, which is evenly homogeneous, at each singular point. In fact, they proved
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much more: the unique blow-up at a singular point is a non-trivial,a-harmonic,
evenly homogeneous polynomial that is even iny and non-negative on the thin
space. In other words, blow-ups at singular points belong to the set of polynomials

P � := f p : Lap = 0; X � r p(X ) = �p (X ); p(x; 0) � 0; p(x; � y) = p(x; y)g

for � 2 2N. Furthermore, they produce the �rst term in the expansion ofu around
X � 2 � � (u) � Sing(u); they show that

~u(X � + r � )
r �

! p� ;X � 2 P � locally uniformly as r # 0: (5.10)

The polynomial p� ;X � , which we call the�rst blow-up of u at X � , is a constant (non-
zero) multiple of the blow-up of u at X � given by the rescalings (5.7). With the
rescalings (5.10), we have

~u(X ) = p� ;X � (X � X � ) + o(jX � X � j � ): (5.11)

Finally, consider

L(p� ;X � ) := f � 2 Rn : � � r xp� ;X � (x; 0) = 0 for all x 2 Rng

the invariant set or spineof p� ;X � on f y = 0g as well as

mX � := dim L(p� ;X � ):

Observe thatL(p� ;X � ) is a linear subspace ofRn . Also, sincep� ;X � 6� 0 on Rn � f 0g,

mX � 2 f 0; 1; : : : ; n � 1g;

and this number accounts for the dimension of the contact set around a singular
point. Thus, the singular set can be further strati�ed:

Sing(u) =
[

� 2 2N

n� 1[

m=0

� m
� (u) where � m

� (u) := f X � 2 � � (u) : mX � = mg: (5.12)

In particular, by [BFR18], if the problem is non-degenerate (see De�nition 5.1),
then

�( u) = Reg(u) [ Sing(u) = Reg(u) [ � 2(u) = Reg(u) [
n� 1[

m=0

� m
2 (u):

Now we are ready to present the main results of this work. First, given a non-
degenerate obstacle, we prove that eachm-dimensional component of Sing(u) can
be locally covered by a singleC2 manifold outside a lower dimensional set:

Theorem 5.1. Let u solve (5.1) in the non-degenerate case (see De�nition 5.1).
Then,

(i) � 0
2(u) is isolated in Sing(u) = � 0

2(u) [ � � � [ � n� 1
2 (u).
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(ii) There exists an at most countable setE1 � � 1
2(u) such that� 1

2(u)nE1 is locally
contained in a single one-dimensionalC2 manifold.

(iii) For each m 2 f 2; : : : ; n � 1g, there exists a setEm � � m
2 (u) of Hausdor�

dimension at mostm � 1 such that� m
2 (u) nEm is locally contained in a single

m-dimensionalC2 manifold.

(iv) If a 2 (� 1; 0), � n� 1
2 (u) is locally contained in a single(n � 1)-dimensional

C1;� manifold, for some� > 0 depending only onn and a.

The framework we develop in order to prove Theorem 5.1 is rather robust, and
only sees the non-degeneracy condition (5.8) super�cially. As a result, we can suit-
ably extend Theorem 5.1 to the bulk of Sing(u), the top stratum � n� 1(u) :=S

� 2 2N � n� 1
� (u), in the general case. Recall that the lower stratum �<n � 1(u) :=

Sing(u) n� n� 1(u) is strictly lower dimensional; it is contained in the countable union
of (n � 2)-dimensionalC1 manifolds. More precisely, we prove

Theorem 5.2. Let u solve (5.1). Then,

(i) � 0
2(u) is isolated in Sing(u) =

S
� 2 2N

S n� 1
m=0 � m

� (u).

(ii) There exists an at most countable setE2;1 � � 1
2(u) such that � 1

2(u) n E2;1 is
contained in the countable union of one-dimensionalC2 manifolds.

(iii) For each m 2 f 2; : : : ; n � 1g, there exists a setE2;m � � m
2 (u) of Hausdor�

dimension at mostm � 1 such that� m
2 (u) nE2;m is contained in the countable

union of m-dimensionalC2 manifolds.

Moreover, for each� 2 2N,

(iv) If n = 2, there exists an at most countable setE �; 1 � � 1
� (u) such that� 1

� (u) n
E �; 1 is contained in the countable union of1-dimensionalC2 manifolds.

(v) If n � 3, there exists a setE �;n � 1 � � n� 1
� (u) of Hausdor� dimension at most

n � 2 such that� n� 1
� (u) nE �;n � 1 is contained in the countable union of(n � 1)-

dimensionalC2 manifolds.

(vi) If n � 2 and a 2 (� 1; 0), � n� 1
� (u) can be covered by a countable union of

(n � 1)-dimensional C1;� � manifolds, for some� � > 0 depending only onn,
a, and � .

Remark 5.4. Notice that from the lower-dimensionality of � <n � 1
� (u), by Theorem 5.2(iv)

and (v), we �nd that the whole singular set can be covered by countably many
(n � 1)-dimensionalC2 manifolds up to a lower dimensional subset.

Remark 5.5. When n = 1, it is well-known that singular points are isolated. Recall
that ~u(X � + � ) = p� ;X � + o(jX j � ) if X � 2 � � (u). Since n = 1, p� ;X � > 0 in a
neighborhood of 0, so that ~u > 0 around X � and X � is isolated.
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Before stating Theorem 5.2, we noted that our methods see the non-degeneracy
of the problem super�cially. Indeed, if we could show thatp� ;X � 's nodal setf (x; 0) :
p� ;X � (x; 0) = jr xp� ;X � (x; 0)j = 0g and p� ;X � 's spine align for everyX � 2 E �;m (see
Section 5.7 (also 5.5) for a description ofE �;m ), then our analysis would imme-
diately imply that E �;m is lower dimensional, and �m� (u) � Sing(u) is contained
in a countable union ofC2 manifolds up to an (m � 1)-dimensional subset for all
m 2 f 0; : : : ; n � 1g, and not just when m = n � 1.

We remark that due to potential accumulation of lower homogeneity singular
points to higher homogeneity singular points, the countable covers of Theorem 5.2
cannot be improved to single covers, as done in the the non-degenerate setting,
Theorem 5.1 (and also as done in [FS18]).

5.1.4 Strategy of the Proof

From this point forward, we do not distinguish u and ~u, as de�ned in (5.4) (or
we assume that' � 0); we will always assume that we are in the normalized
situation (5.5). Furthermore, in this section, whenever we discuss �� (u), � 2 2N =
f 2; 4; 6; : : : g.

Theorems 5.1 and 5.2 are the culmination of a procedure that constructs the
second term in the expansion ofu at singular points, outside of a lower dimensional
set. In order to study the higher in�nitesimal behavior ofu at X � 2 � � (u), we, quite
naturally, consider the rescalings

~vX � ;r (X ) :=
vX � (rX )

�
1

r n + a

R
@Br

v2
X �

jyja
� 1=2

where vX � (X ) := u(X � + X ) � p� ;X � (X )

(cf. (5.7)).
First, we show that the setf ~vX � ;r gr> 0 is weakly precompact inW 1;2

loc (Rn+1 ; jyja)
and classify its limit points asr # 0 or blow-ups (see Sections 5.2 and 5.3):

Proposition 5.3. Let u solve (5.1), and let X � 2 � m
� (u) for m 2 f 0; : : : ; n � 1g.

(i) If a 2 [0; 1), the limit points of f ~vX � ;r gr> 0 as r # 0 are � � ;X � -homogeneous,
a-harmonic polynomials with� � ;X � � � .

(ii) If m < n � 1 and � = 2, the limit points of f ~vX � ;r gr> 0 as r # 0 are � � ;X � -
homogeneous,a-harmonic polynomials with� � ;X � � 2.

(iii) If m = n � 1 and a 2 (� 1; 0), the limit points of f ~vX � ;r gr> 0 as r # 0 are � � ;X � -
homogeneous, global solutions to the very thin obstacle problem (or fractional
thin obstacle problem)(5.89) on L(p� ;X � ) � Rn � f 0g with � � ;X � � � + � � , for
some� � > 0 depending only onn, a, and � .

As far as we know, Proposition 5.3 is the �rst instance of truly distinct behavior
within our class of lower dimensional obstacle problems; in all previous studies of
(5.1), the class parameterized bya 2 (� 1; 1) was treatable uniformly. The key
di�erence is that if a � 0, subsets of the thin spacef y = 0g of Hausdor� dimension
n � 1 have zeroW 1;2(Rn+1 ; jyja)-capacity or a-harmonic capacity, while if a < 0,
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subsets of the thin spacef y = 0g of Hausdor� dimension n � 1 have positivea-
harmonic capacity. This capacitory distinction permits the formulation of, what we
call, a very thin obstacle problem, i.e., a search for a weighted Dirichlet energy
minimizer, as in (5.1), within a class of functions constrained to sit above a given
function de�ned on an (n� 1)-dimensional submanifold ofRn �f 0g (see Section 5.8),
or, equivalently, a lower dimensional obstacle problem for the fractional Laplacian
(� �) s wheres > 1

2 (see Section 5.9 and cf. Section 5.1.1).
We remark that the above classi�cation in the casea < 0 is analogous to the

classi�cation found in [FS18], wherein Figalli and Serra consider the classical obstacle
problem. There, the analogous blow-ups in the top stratum of the singular set are
global, homogeneous solutions to the thin obstacle problem (5.1) with zero obstacle
and a = 0. And in the lower stratum of the singular set, the analogous blow-ups set
are homogeneous, harmonic polynomials. That said, while Figalli and Serra could
rely on developed theory (for the thin obstacle problem) for their analysis, we cannot;
the very thin obstacle problem has, until now, been unstudied (Section 5.8).

Given Proposition 5.3 and our desire to produce the next term in the expansion
of u at X � , we then show that collection of points for which� � ;X � 2 [�; � + 1) is
lower dimensional (for� = 2 or m = n � 1). More speci�cally, if we de�ne

� m;a
� (u) := f X � 2 � m

� (u) : � � ;X � 2 [�; � + 1) g;

then we have the following proposition.

Proposition 5.4. Let u solve (5.1). Then,

(i) � 0;a
2 (u) is empty.

(ii) For each m 2 f 1: : : ; n � 1g, � m;a
2 (u) has Hausdor� dimension at mostm � 1.

(iii) For each � 2 2N, � n� 1;a
� (u) has Hausdor� dimension at mostn � 2.

Remark 5.6. In fact, we can show that forn = 2, if a 2 (� 1; 0), then � 1;a
� (u) is

countable; and ifa 2 [0; 1), then � 1;a
� (u) is discrete. Moreover, forn � 3, � 1;a

2 (u) is
discrete.

In turn, we call � m;a
� (u) the set of anomalouspoints of � m

� (u) and

� m;g
� (u) := � m

� (u) n � m;a
� (u)

the generic points of � m
� (u) (cf. [FS18]). (See Sections 5.4 and 5.5.) In order to

prove Proposition 5.4, we use two Federer-type dimension reduction arguments.
When a � 0 or m < n � 1, we argue as in [FS18], while whena < 0 and m = n � 1,
we adopt the arguments pioneered in [FRS19].

After the statement of Theorem 5.2, we remarked that if the nodal set and spine
of p� ;X � were aligned for eachX � 2 E �;m , then Theorem 5.2 would immediately hold
for all m 2 f 0; : : : ; n � 1g and all � 2 2N. (Notice that this alignment is always
true when m 2 f 0; : : : ; n � 1g if � = 2, but only when m = n � 1 if � > 2.)
Another way to understand this remark is as follows. If the nodal set and spine of
p� ;X � were aligned for eachX � 2 � m;a

� (u), then our analysis would directly show
that � m;a

� (u) is at most (m � 1)-dimensional (in the Hausdor� sense), extending
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Proposition 5.4 to every (�; m ) pair. Hence, Theorem 5.2 would immediately hold
for all m 2 f 0; : : : ; n � 1g and all � 2 2N since every other aspect of our analysis
is indi�erent to this issue. Nonetheless, it is unclear if such a statement is true; in
fact, Remark 5.16 indicates (but does not prove) the opposite.

Thanks to Propositions 5.3 and 5.4, and Whitney's Extension Theorem, generic
points are contained in the countable union ofC1;1 manifolds; and so, we have the
following result, which is Theorem 5.2, but withC1;1 coverings.

Theorem 5.5. Let u solve (5.1). Then,

(i) � 0
2(u) is isolated in Sing(u) =

S
� 2 2N

S n� 1
m=0 � m

� (u).

(ii) For each m 2 f 1; : : : ; n � 1g, � m
2 (u) n � m;a

2 (u) is contained in the countable
union of m-dimensionalC1;1 manifolds, wheredimH � m;a

2 (u) � m � 1.

Moreover, for each� 2 2N,

(iii) � n� 1
� (u) n� n� 1;a

� (u) is contained in the countable union of(n � 1)-dimensional
C1;1 manifolds, wheredimH � n� 1;a

� (u) � n � 2.

(iv) In addition, if a 2 (� 1; 0), each � n� 1
� (u) can be covered by a countable union

of (n � 1)-dimensionalC1;� � manifolds, for some� � > 0 depending only onn,
a, and � .

(See Section 5.6.) We refer to Remark 5.6 for the size of the anomalous set in the
casesn = 2 and m = 1, which corresponds to parts (ii) and (iv) of Theorem 5.2. Just
as Theorem 5.5 is aC1;1 precursor to Theorem 5.2, we note that aC1;1 precursor to
Theorem 5.1 also holds.

To conclude the proofs of our main results and produce the next term in the
expansion ofu outside a lower dimensional set (and go fromC1;1 to C2 covering
manifolds), we prove that outside of an at most (m� 1)-dimensional (in the Hausdor�
sense) subset of �m;g

� (u), when � = 2 and m 2 f 0; : : : ; n � 1g as well as when� > 2
and m = n � 1, the blow-ups classi�ed in Proposition 5.3 are (� + 1)-homogeneous
polynomials, and not just higher homogeneous, global solutions to a codimension
two obstacle problem. In particular, we show that

vX � (r � )
r � +1

! q� ;X � locally uniformly as r # 0

whereq� ;X � is a (� +1)-homogeneous,a-harmonic polynomial at all but strictly lower
dimensional set ofX � 2 � m;g

� (u), again, when� = 2 and m 2 f 0; : : : ; n � 1g as well
as when� > 2 and m = n � 1. (See Section 5.7.)

5.1.5 Notation

We de�ne the balls

B r (X � ) := f X 2 Rn+1 : jX � X � j < r g;

B �
r (x � ) := f x 2 Rn : jx � x � j < r g;

B 0
r (x

0
� ) := f x0 2 Rn� 1 : jx0 � x0

� j < r g;
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i.e., the balls of radiusr centered atX � , x � , and x0
� in Rn+1 , Rn , and Rn� 1 respec-

tively. We will also denoteB r := B r (0), B �
r := B �

r (0), and B 0
r := B 0

r (0). Similarly,
we let

D r � R2

be the disc of radiusr > 0, centered at the origin.
For a polynomial p : Rn ! R, consider

Ext a(p) := p +
1X

j =1

cj
(� 1)j

(2j )!
y2j � j

xp with cj :=
jY

i =1

2i � 1
2i � 1 � a

: (5.13)

Notice that Ext a(p) : Rn+1 ! R is the unique even iny, a-harmonic extension ofp
to Rn+1 (see [GR19, Lemma 5.2]);La(Ext a(p)) = 0.

5.1.6 Structure of the Work

In Section 5.2, we introduce a collection of monotonicity formulae (in particular,
Almgren's frequency function), and prove some basic but useful estimates. In Sec-
tion 5.3, we start a blow-up analysis of the solution around singular points. We show
the existence of second blow-ups and prove some facts about them. We also show
Proposition 5.3 holds. In Section 5.4, we gather some important lemmas regarding
the accumulation of singular points, which are then used to study the size of the
anomalous set in Section 5.5. Whence, we prove Proposition 5.4 and Remark 5.6.
In Section 5.6, we show that the set of generic points is contained in a countable
union of C1;1 manifolds, which combined with previous results yields the proof of
Theorem 5.5. Finally, we conclude the proofs of our main results in Section 5.7, The-
orems 5.1 and 5.2, by studying the case of (� + 1)-homogeneous,a-harmonic second
blow-ups. Speci�cally, we show that those points at which the second-blow up is
not the next order term in the expansion are collectively lower-dimensional. Finally,
Section 5.8 is dedicated to studying the very thin obstacle problem. Here, we prove
the estimates and claims on the very thin obstacle problem made use of throughout
the work. In Section 5.9, we make a �nal remark on global obstacle problems.

5.2 Monotonicity Formulae and Preliminary Re-
sults

We recall that we will always assume that we are dealing with the zero obstacle case
(5.5).

Let X � be a singular point foru of order � X � 2 2N := f 2; 4; 6; : : : g, and let p� ;X �

be the (unique) �rst blow-up of u at X � ,

p� ;X � (X ) := lim
r #0

u(X � + rX )
r � X �

(5.14)

(see (5.10)). Recall thatp� ;X � 2 P � X �
, i.e., it is an a-harmonic, � X � -homogeneous

polynomial, non-negative on the thin space, and even iny, and � X � is equal to
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Almgren's frequency ofu at the X � :

� X � = N (0+ ; u; X � ) := lim
r #0

r
R

B r (X � ) jr uj2jyja
R

@Br (X � ) u2jyja

(see [ACS08, CSS08, GP09, GR19]).
We often assume thatX � = 0 (which we can do without loss of generality after

a translation), and we letp� := p� ;0. In particular, de�ne

v� := u � p� ;

and set
� � := � 0; L � := L(p� ); and m� := m0; (5.15)

so that m� is the dimension of the spine ofp� in f y = 0g, L � , which is � � -
homogeneous.

Let, for � 2 2N,
p 2 P � and v = u � p;

and observe that
v Lav = � p Lau � 0: (5.16)

SinceLau(x; y) = 2 lim y#0 ya@yu(x; y)H n� 1 �( u) � 0, v Lav is non-negative as soon
as p is non-negative on �(u) n N (u) where

N (u) := f (x; 0) : u(x; 0) = jr xu(x; 0)j = lim
y#0

ya@yu(x; y) = 0 g: (5.17)

The set N (u) is called thenodal setof u.

Remark 5.7. Notice that v = u � p is a solution to the thin obstacle problem with
obstacle' = � pjB 1 \f y=0 g and subject to its own boundary data. (This follows easily
by Remark 5.1.)

The goal of this section is to prove monotonicity-type results and estimates for
v = u � p for any p 2 P � . We stress that � might not be equal to � � , and so we
will sometimes writeN (0+ ; u) := N (0+ ; u; 0) instead. Yet we will most often apply
these results and estimates tov� .

5.2.1 Monotonicity Formulae

To begin we study Almgren's frequency function onv at the origin, and prove that
it is non-decreasing provided that� � � � = N (0+ ; u).

Proposition 5.6. Suppose that� � N (0+ ; u), and let v = u � p for p 2 P � . Then,
Almgren's frequency function onv

r 7! N (r; v) =
r

R
B r

jr vj2jyja
R

@Br
v2jyja

is non-decreasing. Moreover,N (0+ ; v) � � .
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Before proceeding with the proof of Proposition 5.6, let us recall a few de�nitions
and facts. Let W� (r; u) denote the � -Weiss energy ofu at r :

W� (r; u) :=
1

r 2�
D(r; u) �

�
r 2�

H (r; u) (5.18)

where

D(r; u) :=
1

r n+ a� 1

Z

B r

jr uj2jyja = r 2
Z

B 1

jr u(rX )j2jyja (5.19)

and

H (r; u) :=
1

r n+ a

Z

@Br

u2jyja =
Z

@B1

u(rX )2jyja: (5.20)

By [GR19, Theorem 2.11], we have thatN (r; u) is non-decreasing, from which, we
immediately deduce that

W� (r; u) =
H (r; u)

r 2�
(N (r; u) � � ) � 0 (5.21)

(recall N (0+ ; u) � � ). In turn, we have the following lemma:

Lemma 5.7. Suppose that� � N (0+ ; u), and let v = u � p for p 2 P � . Then,

1
r n� 1+ a+2 �

Z

B r

jr vj2jyja �
�

r n+ a+2 �

Z

@Br

v2jyja (5.22)

and
1

r n+ a+2 �

Z

@Br

v(X � r v � �v )jyja �
1

r n� 1+ a+2 �

Z

B r

v Lav: (5.23)

Proof. We proceed as in the proof of [GP09, Theorem 1.4.3]. By [GR19, Theo-
rem 2.11],N (r; p) � � , from which it follows that W� (r; p) � 0. Using (5.21) and
integrating by parts, we immediately have that

0 � W� (r; u) � W� (r; p)

=
1

r n� 1+ a+2 �

Z

B r

�
jr vj2 + 2r v � r p

�
jyja �

�
r n+ a+2 �

Z

@Br

�
v2 + 2vp

�
jyja

=
1

r n� 1+ a+2 �

Z

B r

jr vj2jyja �
�

r n+ a+2 �

Z

@Br

v2jyja +
2

r n+ a+2 �

Z

@Br

v(X � r p � �p )jyja

=
1

r n� 1+ a+2 �

Z

B r

jr vj2jyja �
�

r n+ a+2 �

Z

@Br

v2jyja;

which directly yields (5.22). Continuing, integrating by parts again, we get

1
r n� 1+ a+2 �

Z

B r

jr vj2jyja �
�

r n+ a+2 �

Z

@Br

v2jyja

= �
1

r n� 1+ a+2 �

Z

B r

v Lav +
1

r n+ a+2 �

Z

@Br

v(X � r v � �v )jyja;

which implies (5.23).
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With Lemma 5.7 in hand, we can now prove Proposition 5.6.

Proof of Proposition 5.6. Notice that

N (r; v) =
D(r; v)
H (r; v)

;

where D and H are given by (5.19) and (5.20). By scaling (namely,N (�; u r ) =
N (r�; u ), for the rescaling (5.7)), it is enough to showN 0(1; v) � 0 or, equivalently,
that

D 0(1)H (1) � H 0(1)D(1) � 0; (5.24)

where we have letD(1) = D(1; v) and H (1) = H (1; v).
We computeD 0(1) and H 0(1). First,

D 0(1) = 2
Z

B 1

jr vj2jyja + 2
Z

B 1

r v � D 2v � X jyja

= 2
Z

B 1

r v � r (X � r v)jyja

= 2
Z

@B1

v2
� jyja � 2

Z

B 1

Lau (X � r u) + 2
Z

B 1

Lau (X � r p);

using integration by parts and that p is a-harmonic. Now notice that, by the reg-
ularity of the solution, Lau (X � r u) � 0. This, together with the fact that p is
� -homogeneous, yields

D 0(1) = 2
Z

@B1

v2
� jyja + 2�

Z

B 1

p Lau = 2
Z

@B1

v2
� jyja � 2�

Z

B 1

v Lav;

where the last inequality follows by (5.16). On the other hand,

H 0(1) = 2
Z

@B1

vv� jyja:

Now letting

I :=
Z

B 1

v Lav

and using Z

B 1

jr vj2jyja =
Z

@B1

vv� jyja � I;

in addition to the Cauchy{Schwarz inequality, we �nd that

D 0(1)H (1) � H 0(1)D(1)

=
�

2
Z

@B1

v2
� jyja � 2�I

� Z

@B1

v2jyja � 2
Z

@B1

vv� jyja
� Z

@B1

vv� jyja � I
�

= 2
� Z

@B1

v2
� jyja

Z

@B1

v2jyja � �I
Z

@B1

v2jyja �
� Z

@B1

vv� jyja
� 2

+ I
Z

@B1

vv� jyja
�

� � 2�I
Z

@B1

v2jyja + 2I
Z

@B1

vv� jyja

= 2I
Z

@B1

v(X � r v � �v )jyja:
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Hence, by (5.16) and (5.23), we deduce that (5.24) holds, as desired.

We end the subsection with a lemma on a Monneau-type monotonicity statement
and Weiss-type monotonicity statement, arguing as in [FS18, Lemma 2.6 and 2.8],
and a important Monneau-type limit.

Lemma 5.8. Suppose that� � N (0+ ; u), and let v = u � p for p 2 P � . Given
� > 0, de�ne

H � (r; v ) :=
1

r n+ a+2 �

Z

@Br

v2jyja =
1

r 2�
H (r; v): (5.25)

Then, r 7! H � (r; v ) is non-decreasing for all0 � � � N (0+ ; v). Moreover, the
� -Weiss energy

r 7! W� (r; v )

on v is also non-decreasing for all� > 0.

Proof. Let vr (X ) := ( u � p)(rX ); then,

H 0
�

H �
(r; v ) =

2r
R

@B1
vr (X )(X � r v(rX )) jyja � 2�

R
@B1

v2
r jyja

r
R

@B1
v2

r jyja
:

Notice also that

r
Z

@B1

vr (X )(X � r v(rX )) jyja =
Z

@B1

vr (X � r vr )jyja =
Z

B 1

jr vr j2jyja +
Z

B 1

vr Lavr ;

and vr Lavr � 0 (see (5.16)). Hence, sinceN (1; vr ) = N (r; v),

H 0
�

H �
(r; v ) �

2
r

(N (r; v) � � ) : (5.26)

Now using that N (r; v) � N (0+ ; v) � � , we reach the desired result, (5.25).
To see the monotonicity ofW� (r; v ) for 0 � � � N (0+ ; v), we simply combine

the expressions (5.21) and (5.25), so thatW� (r; v ) is product of two non-decreasing
non-negative functions.

On the other hand, if � > N (0+ ; v), a simple manipulation (see the proof of
Proposition 5.6) yields

W 0
� (1) = D 0(1) � �H 0(1) � 2� (D(1) � �H (1))

= 2
Z

@B1

(v� � �v )2jyja + 2( � � � )
Z

B 1

v Lav:

As v Lav � 0 and � > N (0+ ; v) � � (by Proposition 5.6), we conclude.

Notice also that if we set

� � := N (0+ ; v� ) � � � = N (0+ ; u);

then
lim
r #0

H � (r; v � ) = 1 for all � > � � ;

which follows arguing exactly as in [FS18, Corollary 2.9].
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5.2.2 Estimates

Let us de�ne, for any function f , the positive and negative parts as

f + := maxf f; 0g and f � := maxf� f; 0g = � minf f; 0g:

Hence,f = f + � f � .
We start with an L1 { L2 estimate onv.

Lemma 5.9. Let v = u � p for p 2 P � . Then,

kvkL 1 (B 1=2 ) � CkvkL 2 (B 1 ;jyja ) ; (5.27)

for some constantC depending only onn and a.

Proof. Observe that v� is sub a-harmonic in B1 as the maximum of two suba-
harmonic functions inB1.

Let us show that v+ is also suba-harmonic in B1. To this end, �rst, by Re-
mark 5.7, recall that v is the solution to (5.1) with ' = � pjB 1 \f y=0 g and its own
boundary data. Now let � be any smooth compactly supported function inB1 such
0 � � � 1. In addition, let h� be an approximation of the Heaviside function:
h� (t) = 0 for t � 0, h� (t) = t=� for t 2 (0; � ), and h� (t) = 1 for t � � . Finally, for
0 < " < � , de�ne v" := v � "�h � (v).

Sincep(x; 0) � 0, observe thatv" (x; 0) � � p(x; 0) and v" j@B1 = vj@B1 . Therefore,
Z

B 1

jr v � " r (�h � (v)) j2jyja �
Z

B 1

jr vj2jyja;

which implies that, after dividing through by " and letting " # 0,
Z

B 1

r v � r (�h � (v)) jyja � 0:

Expanding, Z

B 1

h� (v)r v � r � jyja � �
Z

B 1

� jr vj2h0
� (v)jyja � 0:

In turn, if H 0
� = h� with H � (0) = 0, then

Z

B 1

r (H � (v)) � r � jyja � 0:

(Obviously, H � here is not the Monneau-type function from Lemma 5.8.) Because
� was arbitrary, we �nd that H � (v) is sub a-harmonic in B1. So letting � # 0, we
determine that v+ is suba-harmonic in B1 (H � (v) is an approximation of v+ ).

To conclude, see that by the local boundedness of subsolutions forLa (see, e.g.,
[JN17, Proposition 2.1]), we have that

sup
B 1=2

v� � C
� Z

B 1

jv� j2jyja
� 1=2

;

and (5.27) holds.
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Next, we prove Lipschitz and semiconvexity estimates onv along the spine ofp.
But before doing so, we prove a characterization lemma on the spine of a generic
� -homogeneous polynomial.

Lemma 5.10. Let � 2 N, and let p : Rn ! R be a � -homogeneous polynomial.
Then, the following sets are equal.

(i) L(p) := f � 2 Rn : � � r p(x) = 0 for all x 2 Rng.

(ii) I (p) := f � 2 Rn : p(x + � ) = p(x) for all x 2 Rng.

(iii) D � � 1(p) := f � 2 Rn : D � p(� ) = 0 for all � = ( � 1; : : : ; � n ) : j� j = � � 1g.

Proof. We prove that (i) and (ii) as well as (ii) and (iii) are equivalent.

{ L(p) � I (p): Let � 2 L(p). Then,

p(x + � ) = p(x) +
Z 1

0
� � r p(x + t� ) dt = p(x):

{ I (p) � L(p): We start by noticing that I (p) is actually a linear space, thanks to
the homogeneity ofp. Indeed, the additive property is clear; it is also clear that
� � 2 I (p) if � 2 I (p). Now suppose� 2 I (p) and consider�� for some� > 0. Then,
p(x + �� ) = � � p(� � 1x + � ) = � � p(� � 1x) = p(x) for all x 2 Rn , so that �� 2 I (p).

Let � 2 I (p). Now for all h > 0 and for all x 2 Rn , p(x + h� ) = p(x). Hence,

� � r xp(x) = lim
h#0

p(x + h�; 0) � p(x)
h

= 0;

that is, � 2 L(p).

{ I (p) � D � � 1(p): Let � 2 I (p). Then, p(� + x) = p(x) and D � p(x + � ) = D � p(x)
for any � = ( � 1; : : : ; � n� 1) with j� j = � � 1. Taking x = 0, we conclude thanks to
the � -homogeneity ofp.
{ D � � 1(p) � I (p). Let � 2 D � � 1(p). Consider the degree� polynomial q(x) :=
p(x + � ). Notice that from the de�nition of D � � 1, q is homogeneous. Now let� > 0.
Using the homogeneity ofq and p,

p(x + � ) = q(x) = � � q(� � 1x) = � � p(� � 1x + � ) = p(x + �� )

for all � > 0. Taking � # 0, we see that� 2 I (p).
This concludes the proof.

Notice that the equivalence of (i) and (ii) also holds for general� -homogeneous
functions.

Remark 5.8. Lemma 5.10 will be applied top(x; 0) for p 2 P � .

The following lemma shows that derivatives ofv along the invariant set ofp are
bounded. Recall thatL(p) denotes the invariant set ofp(x; 0). The lemma is proved
by means of a Bernstein's technique for integro-di�erential equations, as introduced
by Cabr�e, Dipierro, and Valdinoci, in [CDV20].
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Lemma 5.11. Let v = u � p for p 2 P � . Then, for all e 2 L(p) \ Sn ,

k@evkL 1 (B 1=2 ) � CkvkL 2 (B 1 ;jyja ) ;

for some constantC depending only onn and a.

Proof. We proceed by Bernstein's technique (see [CDV20]). Let� 2 C1
c (B1=2) be

even iny and such that � � 1 in B1=4. Consider the function,

 := � 2(@ev)2 + �v 2;

for some� > 0 to be chosen.
Sincev is a-harmonic outside �( u), in B1=2 n �( u),

La(v2) = 2 v Lav + 2jr vj2jyja � 2jr vj2jyja:

Similarly, because@ev is a-harmonic outside �( u), we have that in B1=2 n �( u),
La@ev = La@eu = 0. Therefore, we �nd that in B1=2 n �( u),

La(� 2(@ev)2) = ( @ev)2La(� 2) + � 2La((@ev)2) + 2 jyjar (@ev)2 � r � 2

= ( @ev)2La(� 2) + 2 � 2jr @evj2jyja + 2jyjar (@ev)2 � r � 2

� (@ev)2La(� 2) + 2 � 2jr (@ev)j2jyja � 8jyjajr @evjj@evjjr � j�

� j yjaj@evj2(jyj � aLa(� 2) � 8jr � j2)

where there last inequality follows from

� 2jr @evj2 + 4j@evj2jr � j2 � 4j@evjjr @evj� jr � j:

So in B1=2 n �( u),

La � j yjaj@evj2(jyj � aLa(� 2) � 8jr � j2) + jyjajr vj22�

� j yjajr vj2(2� � j yj � ajLa(� 2)j � 8jr � j2):

Now as� is even iny and smooth,jyj � ajLa(� 2)j + 8 jr � j2 � C� in B1=2, from which
we deduce that

La � 0 in B1=2 n �( u)

provided 2� � C� .
By the maximum principle then,  must attain its maximum at the boundary

of B1=2 n �( u). Being that @ep = @eu = 0 on �( u) and � j@B1=2
= 0,  = �v 2 on

@B1=2 [ �( u). Hence,
sup
B 1=2

 � � sup
B 1=2

v2:

In particular, as � � 1 on B1=4,

k@evkL 1 (B 1=4 ) � � 1=2kvkL 1 (B 1=2 ) :

Thus, by Lemma 5.9 and a covering argument, we �nd the desired estimate.
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Finally, we show that v is semiconvex along the spine ofp. Naturally, for h > 0,
let

� 2
e;h f :=

f ( � + he) + f ( � � he) � 2f
h2

be the second orderh-incremental quotient of the functionf in the direction e 2 Sn .

Lemma 5.12. Let v = u � p for p 2 P � . Then, for all e 2 L(p) \ Sn ,

inf
B 1=2

@eev � � CkvkL 2 (B 1 ;jyja ) ;

for some constantC depending only onn and a.

Proof. For any 
 > 0, let u
 be the solution to
8
>><

>>:

u
 (x; y) � 0 on B7=8 \ f y = 0g
Lau
 (x; y) � 0 in B7=8

Lau
 (x; y) = 0 in B7=8 n �( u
 )
u
 (x; y) = u(x; y) + 
 on @B7=8:

(5.28)

That is, in B7=8, u
 is the solution to the thin obstacle problem with zero obstacle
and boundary datau+ 
 . Notice that sinceu is continuous inB1, we have thatu
 # u
uniformly in B7=8, as 
 # 0. Also, u
 > 0 in B7=8 nB7=8� � for some� = � (
 ) > 0, by
the continuity of u
 . In particular, u
 is a-harmonic in the annulusB7=8 n B7=8� � .

Consider the function
f 
 (x) := ( @eeu
 (x)) �

as the pointwise limit of (� 2
e;hu(x)) � as h # 0. To do so, we de�ne

g

";h; e(x) := min f � 2

e;hu
 (x); � "g:

Observe that La(� 2
e;hu
 ) � 0 in B7=8 n �( u
 ) (since Lau
 � 0 in B7=8 and Lau
 = 0

in B7=8 n �( u
 )). Moreover, sinceu
 is continuous and� 2
e;hu
 � 0 on �( u
 ), we have

g

";h; e = � " in a neighbourhood of �(u
 ). Thus, Lag


";h; e � 0 in B7=8.
We now want to let " # 0 and then h # 0 to deduce thatLaf 
 � 0 in B3=4 and

f 
 � 0 on �( u
 ). In order to passLag

";h; e � 0 to the limit (as "; h # 0), it is enough

to show that jg

";h; ej � C for someC independent of" and h (but possibly depending

on 
 ). As g

";h; e is super-a-harmonic in B7=8, its minimum must be achieved on the

boundary. In particular, sinceg

";h; e � 0,

sup
B 3=4

jg

";h; ej � sup

@B7=8� �= 2

jg

";h; ej � C(� );

where in the last inequality, we have used thatg

";h; e is a-harmonic in B7=8 n B7=8� �

and correspondingC2 estimates in the tangential direction fora-harmonic functions.
Hence, we can indeed passLag


";h; e � 0 in B3=4 to the limit and obtain that Laf 
 � 0
in B3=4 and f 
 � 0 on �( u
 ).

With the sub-a-harmonicity and nonnegativity of f 
 in hand, it is easy to see that
f 
 is continuous inB3=4. Indeed, sub-a-harmonic functions are upper semi-continuous
(see [HKM93, Theorem 3.63]). So being thatf 
 is continuous whenf 
 > 0 and f 


is nonnegative in general, we determine the continuity off 
 , as desired.
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To conclude, we again proceed by Bernstein's technique (see [CDV20]). Let� 2
C1

c (B1=2) be even iny and such that � � 1 in B1=4, and set

 
 := � 2f 2

 + � (@eu
 )2;

where we recallf 
 (x) := ( @eeu
 (x)) � . By the discussion above, 
 is continuous in
B1=2. Recall that f 
 � 0 on �( u
 ), and therefore,  
 � 0 on �( u
 ). On the other
hand, on the boundary ofB1=4, we have that  
 = � (@eu
 )2. Following the proof
of Lemma 5.11 exactly (and using thatLaf 
 � 0 in B3=4), we see thatLa 
 � 0
in B1=2 n �( u
 ) if � is large enough, and so, its maximum must be achieved at the
boundary. In turn,

kf 
 kL 1 (B 1=4 ) � � 1=2k@eu
 kL 1 (B 1=2 ) = � 1=2k@e(u
 � p)kL 1 (B 1=2 ) � Cku
 � pkL 2 (B 1 ;jyja ) ;

where we have used Lemma 5.11 in the last inequality. This implies the family
f u
 g, for 0 < 
 � 1, is uniformly semiconvex. Letting
 # 0 then and applying a
covering argument, we deduce the desired result (using that semiconvexity passes
to the limit).

Remark 5.9. Notice that p's polynomial nature plays no role in Lemmas 5.9, 5.11,
and 5.12. We have only used thatp is non-negative in the thin space anda-harmonic
in Lemma 5.9, and thatp is non-negative in the thin space,a-harmonic, and invariant
in the e directions in Lemmas 5.11 and 5.12.

5.3 Blow-up Analysis

Recall, after a translation, we may assume that 02 Sing(u) represents any singular
point. And, as such, the �rst blow-up of u at 0 is an element ofP � for some� 2 2N.
As in Section 5.2, we letp� denote the �rst blow-up of u at 0, and de�ne

v� := u � p� ; � � := � 0; L � := L(p� ); m� := m0; and � � := N (0+ ; v� ):

For notational simplicity, from this point forward, we often suppress the star
subscript when denoting the homogeneity ofp� , and simply write � instead of � � .

In this section, we are interested in classifying thesecond blow-ups ofu at 0, that
is, the limit points of the set f ~vr gr> 0, which is weakly precompact by Proposition 5.6,
as r # 0, with

~vr :=
vr

kvr kL 2 (@B1 ;jyja )
and vr (X ) := u(rX ) � p� (rX ): (5.29)

In turn, we will prove Proposition 5.3.
We will work according to two cases, determined by the value ofa and the

alignment of L � and the nodal set ofp� ,

N � := N (p� )

(see (5.17)). Notice that by Lemma 5.10, if we considerL(p) as a subset ofRn � f 0g,
then

L(p) � N (p)
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for all p 2 P � ; yet L(p) may be smaller thanN (p). In particular, we de�ne Case 1
and Case 2 as follows.

Either a 2 [0; 1)
or a 2 (� 1; 0) and dimH N � � n � 2

(Case 1)

and

a 2 (� 1; 0) and dimH N � = dim H L � = n � 1: (Case 2)

Remark 5.10. We remark that Case 1 and Case 2, a priori, do not cover all possibil-
ities. Indeed, the case whena 2 (� 1; 0) and dimH L � < dimH N � = n � 1 is missing.
In fact, it is currently unknown if such a situation can occur whenu 6� p� .

Before we proceed with our classi�cation results, we make a pair of observations,
the second of which will play a key feature in Case 2. Sincep� � 0 onRn+1 \f y = 0g,
we have that

f (x; 0) : p� (x; 0) = 0g = f (x; 0) : p� (x; 0) = jr xp� (x; 0)j = 0g = N � : (5.30)

Furthermore, if L �
�= Rn� 1, as it is in Case 2, thenp� jRn �f 0g is a one-dimensional

polynomial, and so we can identifyL � and N � as the same subset ofRn � f 0g.
Let us start by studying second blows-up in Case 1.

Proposition 5.13. In Case 1, for every sequencer j # 0, there is a subsequence
r j ` # 0 such that ~vr j `

* q weakly in W 1;2(B1; jyja) as ` ! 1 , and q 6� 0 is a
� � -homogeneous,a-harmonic polynomial. In particular, � � 2 f �; � + 1; � + 2; : : : g.

Proof. By Proposition 5.6, we see that given any sequencer j # 0, the sequence ~vr j

is uniformly bounded in W 1;2(B1; jyja). Hence, there is a subsequencer j ` # 0 such
that

~vr j `
* q in W 1;2(B1; jyja);

for someq, and ask~vr j `
kL 2 (@B1 ;jyja ) = 1, we have that

kqkL 2 (@B1 ;jyja ) = 1:

Observe thatLa~vr is a non-positive measure as

Lavr = 2r lim
y#0

ya@yur H n �( ur ) � 0

in the sense of distributions. Furthermore, letK � B1 be a any compact set and
� K 2 C1

c (B1) be such that � K � 1 on K and 0 � � K � 1 in B1. By H•older's
inequality,

0 �
Z

K
� La~vr �

Z

B 1

� � K La~vr =
Z

B 1

r � K � r ~vr jyja � CK kr ~vr kL 2 (B 1 ;jyja )

Since the family ~vr is uniformly bounded in W 1;2(B1; jyja) by Proposition 5.6, it
follows that the collection of measuresLa~vr is tight. So, up to a further subsequence,
which we still denote byr j ` , we have that Laq is a non-positive measure. Then, as
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r � � ur ! p� locally uniformly, with ur (X ) := u(rX ), the sets �( ur ) converge toN �

in the Hausdor� sense (recall (5.30)). Therefore, the distributionLaq is supported on
f (x; 0) : p� (x; 0) = 0g. Yet we are in Case 1, andN � is of zeroa-harmonic capacity
Rn+1 . Indeed, asp� jRn �f 0g 6� 0, the setN � has locally �nite H n� 1 measure. Ifa � 0,
then the a-harmonic capacity ofN � is smaller than the harmonic capacity ofN � ,
which is zero. If a < 0, then, by assumption,N � has locally �nite H n� 2 measure,
which implies that it is of zero a-harmonic capacity (see [Kil94, Corollary 2.12]).
Thus, q is a-harmonic, i.e.,Laq � 0.

Let us now show thatq is homogeneous, arguing as in [FS18, Lemma 2.12], with
homogeneity� � := N (0+ ; v� ). In order to do so, by [GR19, Theorem 2.11], it su�ces
to show that

� � = N (�; q ) for all � 2 (0; 1): (5.31)

Notice, �rst, that since q is a-harmonic, N (�; q ) is non-decreasing. On the other
hand, by the lower semicontinuity of the weighted Dirichlet integral,

N (1; q) � lim inf
` !1

N (1; ~vr j `
) = lim inf

` !1
N (1; vr j `

) = lim inf
` !1

N (r j ` ; v� ) = � � :

Also, by Lemma 5.8 applied to ~vr j `
, and taking ` ! 1 ,

1
� n+ a+2 � �

Z

@B�

q2jyja �
Z

@B1

q2jyja = 1: (5.32)

However, becauseLaq = 0 and by (5.26), we know that

H 0
�

H �
(�; q ) =

2
�

(N (�; q ) � � ):

Suppose now thatN (� � ; q) = � � < � � for some� � 2 (0; 1). In particular, by the
previous representation ofH � , H � � is non-increasing for� 2 (0; � � ), so that

1
� n+ a+2 � �

Z

@B�

q2jyja �
� 2(� � � � � )

� n+ a+2 � �
�

Z

@B� �

q2jyja > 0 for all � 2 (0; � � ):

But this contradicts (5.32) for � small enough. Therefore, (5.31) holds andq is
homogeneous of degree� � . And by [CSS08, Lemma 2.7], we deduce thatq is a
polynomial. In particular, � � � � is an integer.

All in all, we have that q 6� 0 is ana-harmonic, even iny, and � � -homogeneous
polynomial with � � 2 f �; � + 1; � + 2; : : : g. In particular, q

�
�
Rn �f 0g

6� 0.

Before moving to Case 2, let us state and prove a lemma which will help us to
comparep� and q when working in Case 1. That said, this lemma is independent of
Case 1 and Case 2, and holds generically.

Lemma 5.14. Assume that ~vr ` * q in W 1;2(B1; jyja) for some sequencer ` # 0.
Then, Z

@B1

qp� jyja = 0 (5.33)

and Z

@B1

qpjyja � 0 for all p 2 P � : (5.34)
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Proof. We proceed as in [FS18, Lemmas 2.11-2.12]. In order to see (5.33), we use
H � (r; u � p) is non-decreasing for� = � � N (0+ ; u � p) (see Lemma 5.8), recalling
that � = N (0+ ; u), by assumption. In particular, we have

1
r n+ a+2 �

Z

@Br

(u � p)2jyja � lim
� #0

1
� n+ a+2 �

Z

@B�

(u � p)2jyja

= lim
� #0

Z

@B1

(� � � u(�X ) � p)2jyja

=
Z

@B1

(p� � p)2jyja;

(5.35)

using the local uniform convergence ofr � � ur to p� as r # 0, with ur (X ) := u(rX ),
and the � -homogeneity ofp. By the de�nition of p� , notice that

hr := kvr kL 2 (@B1 ;jyja ) = o(r � ) as r # 0 and " r :=
hr

r �
= o(1) as r # 0:

Furthermore, for some subsequence, which we still denote byr ` , we have that ~vr ` =
vr ` =hr ` ! q in L2(@B1; jyja). Thus,
Z

@B1

� vr

r �
+ p� � p

� 2
jyja =

1
r n+ a+2 �

Z

@Br

(u� p)2jyja �
Z

@B1

(p� � p)2jyja for all r > 0:

Sincer � � vr = ~vr " r , taking the subsequencer ` and expanding, we obtain

"2
r `

Z

@B1

~v2
r `

jyja + 2" r `

Z

@B1

~vr ` (p� � p)jyja � 0 for all p 2 P � :

Dividing by " r ` and taking the limit as ` ! 1 ,
Z

@B1

q(p� � p)jyja � 0 for all p 2 P � :

Now taking p = 2p� and p = 2 � 1p� , which are both members ofP � , we deduce
that Z

@B1

qp� jyja = 0;

from which (5.34) follows immediately.

Let us now deal with Case 2. As we noted before, in this case, the spine and the
nodal set ofp� can be identi�ed: L � = N � .

Proposition 5.15. In Case 2, for every sequencer j # 0, there is a subsequence
r j ` # 0 such that ~vr j `

* q weakly in W 1;2(B1; jyja) as ` ! 1 , and q 6� 0 is a
� � -homogeneous solution to the very thin obstacle problem with zero obstacle onL � ,

8
>>><

>>>:

q � 0 on L �

Laq � 0 in Rn+1

Laq = 0 in Rn+1 n L �

qLaq = 0 in Rn+1 :

(5.36)

Moreover, � � � � + � � , for some constant� � > 0 depending only onn, a, and � .
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Proof. Without loss of generality, we will assume thatL � = f xn = y = 0g. We
divide the proof into several steps.

Step 1: Weak limit and non-negativity on L � . As in the proof of Proposi-
tion 5.13, we have that

~vr ` * q in W 1;2(B1; jyja); (5.37)

for someq, and La~vr is converging weakly� as measures to a non-positive measure
Laq supported onL � . Unlike before, the set on whichLaq is supported is now a set
of strictly positive a-harmonic capacity (sincem = n � 1).

Consider the following trace operators


 : W 1;2(B1; jyja) ! W s;2(B �
1) and ~
 : W s;2(B �

1) ! W s� 1
2 ;2(B 0

1):

By [NLM88] (see also [Kim07]), sinces > 1=2, 
 is continuous; and ~
 is the standard
continuous trace operator. (Recall thata = 1 � 2s.) The operator � := ~
 � 
 then is
continuous. Hence, considering (5.37),

� (~vr ` ) * � (q) in W s� 1
2 ;2(B 0

1) and � (~vr ` ) ! � (q) in L2(B 0
1):

Now � (~vr ` ) � 0 on B 0
1 for all ` 2 N, sincep� � 0 and u � 0 on L � . Thus, from

the strong convergence above,� (q) � 0, or q � 0 on L � .

Step 2: Semiconvexity in directions parallel to L � . By Lemma 5.12,

inf
B 1=2

@ee ~vr � � C for all e 2 L � \ Sn ; (5.38)

for some constantC independent ofr . Namely, the sequence of functions ~vr is locally
uniformly semiconvex (and, therefore, locally uniformly Lipschitz) in the directions
parallel to L � .

Step 3: Strong convergence. We show that for every 0< " � 1, there exists a
constant C" > 0 independent ofr ` for which

[~vr ` ]C � a � " (B 1=2 ) � C" : (5.39)

Thus, by a covering argument, ~vr ` ! q locally uniformly in B1, and, in fact, q 2
C � a� "

loc (B1).
Recall that L � = f xn = y = 0g and X = ( x0; xn ; y) for x0 2 Rn� 1. For simplicity,

in the following computations, set

w := ~vr :

Let Qr � := B 0
r �

� D r � � B1, for somer � > 0. Recall that D r denotes the disc of
radius r in R2 centered at the origin. For convenience, rescale and assumer � = 1.
By Step 2, kw(x0; �; �)k2

L 2 (D 1 ;jyja ) is Lipschitz, as a function ofx0. Hence,

osc
B 0

1

kw(x0; �; �)k2
L 2 (D 1 ;jyja ) � C:
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Recalling that kwkL 2 (B 1 ;jyja ) � C (we have rescaled to work inQ1, else this bound
would be 1), we have that

Z

B 0
1

kw(x0; �; �)k2
L 2 (D 1 ;jyja ) dx0 � C; (5.40)

and sokw(x0; �; �)kL 2 (D 1 ;jyja ) has bounded oscillation and integral. In turn,

kw(x0; �; �)kL 2 (D 1 ;jyja ) � C for all x0 2 B 0
1: (5.41)

We also recall that

lim
y#0

ya@yw � 0 and Law = 0 in B1 \ f y > 0g: (5.42)

{ Step 3.1. In this subset, we prove that the measure

nw(x0; xn ) := lim
y#0

ya@yw � 0

is �nite on each x0 slice. Equivalently, we show that

0 �
Z 1

� 1
� (j(x0; xn )j)nw(x0; xn ) dxn � � C for all x0 2 B 0

1 (5.43)

where � is a smooth test function� = � (r ) : [0; 1 ) ! [0; 1] such that � � 1 in
[0; 1=2] and � � 0 in [3=4; 1 ).

Let � = � (j(x0; xn ; y)j). By the divergence theorem,

Z 1

� 1
�n w dxn = �

Z

D 1 \f y> 0g
divxn ;y(�y ar xn ;yw) dxn dy

= �
Z

D 1 \f y> 0g
�L xn ;y

a w �
Z

D 1 \f y> 0g
yar xn ;y � � r xn ;yw

=: I + II

(5.44)

whereL xn ;y
a f := div xn ;y(jyjar xn ;y f ). On one hand, observe that

L xn ;y
a w = Law � ya� x0w = � ya� x0w in D1 \ f y > 0g

by (5.42). And so, by (5.38),
I � � C: (5.45)

On the other hand, by the symmetries of� (i.e., @y � = O(y) as @y �
�
�
y=0

= 0 and � is
smooth),

jwLxn ;y
a � j = jwyay� aL xn ;y

a � j = jwjyaj@nn � + @yy � + ay� 1@y � j � Cjwjya:

So, by the symmetries of� again, H•older's inequality, and (5.41), we deduce that

II = �
Z

D 1 \f y> 0g
yar xn ;y � � r xn ;yw =

Z

D 1 \f y> 0g
wLxn ;y

a � � � C: (5.46)
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We have also used that the boundary term aty = 0 vanishes in the integration by
parts, ya@y � � 0 on f y = 0g. Therefore, combining (5.44), (5.45), and (5.46), we see
that (5.43) holds, as desired.

{ Step 3.2. Now we conclude. Consider the fundamental solution for the operator
La (see, e.g, [CS07]) given by

� a(X ) := Cn;a jX j � n+1 � a:

More precisely, �a is such that La� a = 0 in fj yj > 0g and limy#0 ya@y � a = � (x), the
Dirac delta at x. Let

�w(x; y) := � a( � ; y) � x (�n w);

where� is the test function de�ned in Step 3.1, with� = � (jxj) here. We have that
La �w = 0 in jyj > 0, and limy#0 ya@y �w = �n w . We claim that �w is bounded. Indeed,
by (5.43),

j �w(x0; xn ; y)j �
Z

B 0
1

Z 1

� 1

(�n w)(z0; zn )
j(x0 � z0; xn � zn ; y)jn� 1+ a

dzn dz0

� C
Z

B 0
1

dz0

j(x0 � z0; 0; y)jn� 1+ a
� C:

By means of the previous proof, (� �) �s
X �w = (( � �) �s

X � a � x (�n w)) is bounded as long
as 2�s < � a, since (� �) �s

X jX j � n+1 � a = CjX j � n+1 � a� 2�s, and �n w does not depend on
y. Thus, (� �) �s

X �w is bounded as long so 2�s < � a, and by interior regularity for the
fractional Laplacian (suppose �s 6= 1=2), �w is C2�s (see [RS16, Theorem 1.1]).

Finally, notice that La( �w � w) = 0 in B1 \ fj yj > 0g and limy#0 ya@y ( �w � w) = 0
in B1=2\fj yj > 0g. It follows that La( �w� w) = 0 in B1=2, and then �w� w 2 C1

loc(B1=2)
by interior estimates for a-harmonic functions (and recalling thata 2 (� 1; 0)). In
turn, w inherits the regularity of �w; that is, w is C2�s, so long as 2�s < � a, and (5.39)
is proved.

In particular, by Arzel�a{Ascoli and a covering argument, we have that

~vr ` ! q in C0
loc(B1); (5.47)

and q 2 C � a� "
loc (B1) for any " > 0.

Step 4: Homogeneous solution to the very thin obstacle problem in B1.
First, we show that q is a solution to the very thin obstacle problem, (5.36); the
only condition that remains to be checked is thatq Laq � 0.

By the proof of Proposition 5.6 and (5.23),

rN 0(r; v � )
N (r; v � )

=
d
d�

logN (�; v r )

�
�
�
�
� =1

�
2

� R
B 1

vr Lavr

� 2

R
B 1

jr vr j2jyja
R

@B1
v2

r jyja
� 0:

Hence, by the de�nition of ~vr ,

rN 0(r; v � ) � 2
� Z

B 1

~vr La~vr

�
: (5.48)
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Furthermore, reasoning as in [FS18, Lemma 2.12], sinceN (r; v) # � � as r # 0,

�
Z 2r j `

r j `

rN 0(r; v � ) dr � 2(N (2r j ` ; v� ) � N (r j ` ; v� )) ! 0 as ` ! 1 :

And so, by the mean value theorem, we can �nd �r j ` 2 [r j ` ; 2r j ` ] with �r j ` N
0(�r j ` ; v� ) !

0 as` ! 1 . In turn, the non-negativity of v� Lav� and (5.48) then imply that
Z

B 1

~vr j `
La~vr j `

�
Z

B �� j `

~vr j `
La~vr j `

! 0

with �� j ` := �r j ` =rj ` . Therefore, sinceLa~vr j `
* L aqweakly� as measures inB1, ~vr j `

! q
strongly in C0

loc(B1) by Step 3, (5.47), and ~vr La~vr � 0, we obtain that
Z

B R

q Laq = 0 for all R < 1;

so that, in fact, q Laq � 0 in B1.
Thus, q is a solution to the very thin obstacle problem (5.36) insideB1.
To conclude, we show thatq is homogeneous with homogeneity� � := N (0+ ; v� ).

Sinceq solves the very thin obstacle problem, by Lemma 5.52, it su�ces to show
that

� � = N (�; q ) for all � 2 (0; 1): (5.49)

But this follows from arguing exactly as in the proof of Proposition 5.13, where
we obtained that q is homogeneous in Case 1, using Lemma 5.52, (5.108), and
Lemma 5.53.
Step 5: � � � � + � � . We argue by contradiction (or compactness). Suppose, to the
contrary, that there exists a bounded sequence of solutionsu` such that 02 � � (u` ),
dimH L(p� ;` ) = n � 1, and � � ;` � � + ` � 1. Let p� ;` be the �rst blow-up and q̀ be
a second blow-up ofu` at 0 (the homogeneity ofq̀ is � � ;` ). Up to a subsequence
(we can assume the sequences enjoy uniform bounds in appropriate H•older spaces),
taking ` to in�nity, we �nd a solution u1 whose �rst blow-up at 0 is of order� ,
whose spine has Hausdor� dimension equal ton � 1, and whose second blow-upq1

is homogeneous of order� .
Since q1 is a � -homogeneous, global solution to the very thin obstacle prob-

lem, it is an a-harmonic polynomial. Indeed, by [GR19, Proposition 4.4], any global,
evenly homogeneous functionu� with Lau� non-negative and supported onRn � f 0g
is actually an a-harmonic polynomial of degree� . In particular, we have that
kq1 kLip( B 1 ) � C for some constant depending only onn, a, and � . Also, by as-
sumption, q1 � 0 on L(p� ;1 ), where p� ;1 is the �rst blow-up of u1 at 0.

For simplicity, let q = q1 and p� = p� ;1 , and let us assume thatL(p� ;1 ) = f xn =
0g, so that p� depends only onxn in the thin spacef y = 0g. By Lemma 5.14,

hq; pi a :=
Z

@B1

qpjyja � 0 for all p 2 P � and hq; p� i a = 0: (5.50)

Since p� is � -homogeneous and depends only onxn , a constant c� > 0 exists for
which p� jB 1 \f y=0 g = c� jxn j � . Now for any " > 0, observe that

C" p� + q � � " on @B1 \ f y = 0g
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with
C" := c� 1

� " � � kqkL 1 (B 1 \f y=0 g)kqk�
Lip( B 1 \f y=0 g) :

Indeed, if jxn j � "=kqkLip( B 1 \f y=0 g) , then C" p� jB 1 \f y=0 g + qjB 1 \f y=0 g � 0, by the
de�nition of C" . On the other hand, if jxn j � "=kqkLip( B 1 \f y=0 g) , then qjB 1 \f y=0 g � � "
since q � 0 on f xn = 0g (recall p� � 0 on the thin space). Thus,C" p� + q +
" Ext a(jxj � ) 2 P � for every " > 0 (see (5.13)). So (5.50) implies that

kqkL 2 (@B1 ;jyja ) � � "hExt a(jxj � ); qi a:

Taking " # 0, we deduce thatq � 0, a contradiction.

With Propositions 5.13 and 5.15 in hand, we can now prove Proposition 5.3.

Proof of Proposition 5.3. The proof is a simple consequence of Propositions 5.13
and 5.15. Without loss of generality,X � = 0.

(i) If a 2 [0; 1), we are in Case 1. So by Proposition 5.13, our claim holds.

(ii) When � = 2, since p� � 0 on the thin space, we have thatL � = N � . Thus,
sincem < n � 1, we are again in Case 1, and we conclude by Proposition 5.13
once more.

(iii) Finally, if m = n � 1 anda 2 (� 1; 0), we are in Case 2 (recallL � � N � ). Thus,
applying Proposition 5.15, we arrive at our desired conclusion.

This completes the proof.

5.4 Accumulation Lemmas

In this section, we gather some important lemmas concerning accumulation points
of Sing(u). These lemmas are the key tools used in estimating the size of the points
where we can construct the next term in the expansion ofu. The lemmas of this
section are analogous to the accumulation lemmas of [FS18], although several new,
interesting technical challenges appear in our setting.

Let us start by proving an auxiliary lemma.

Lemma 5.16. Let q be a � -degree,a-harmonic polynomial, for � � 1, and let
X � 2 Rn+1 . Then,

N (r; q; X � ) =
r

R
B r (X � ) jr qj2jyja

R
@Br (X � ) q2jyja

� � for all r > 0:

Moreover,
N (0+ ; q; X� ) = m�

wherem� is the smallest integer for which them� -homogeneous part ofq(X � + �) is
non-zero.



178 Chapter 5. Singular points in the thin obstacle problem

Proof. Without loss of generality, we assume thatX � = 0. Let

q =
�X

m=0

q0

where qm denotes them-homogeneous part ofq. Since q is a-harmonic and a 2
(� 1; 1), each of its homogeneous parts isa-harmonic. Notice that if p1 and p2 are
homogeneousa-harmonic polynomials with non-zero homogeneitiesm1 6= m2, then
they are orthogonal inL1(@Br ; jyja). Indeed, using that mi pi = x � r pi = r@� pi on
@Br and integrating by parts,

(m1 � m2)
Z

@Br

p1p2jyja = r
Z

@Br

p2@� p1jyja � r
Z

@Br

p1@� p2jyja

= � r
Z

B r

r p1 � r p2jyja + r
Z

B r

r p1 � r p2jyja = 0;

where we have also used thatLapi = 0.
Now, by means of them-homogeneity ofqm and the orthogonality in L2(@Br ; jyja)

of homogeneousa-harmonic polynomials of di�erent homogeneities, we �nd that
Z

B r

r q � r qm jyja =
m
r

Z

@Br

q2
m jyja:

Thus,

r
Z

B r

jr qj2jyja =
�X

m=1

m
Z

@Br

q2
m jyja � �

�X

m=1

Z

@Br

q2
m jyja:

Pythagoras's theorem also implies that

Z

@Br

q2jyja =
�X

m=0

Z

@Br

q2
m jyja:

Hence,

r
Z

B r

jr qj2jyja � �
Z

@Br

q2jyja;

as desired.
Now let cm :=

R
@B1

q2
m jyja, and set m� � 0 to be the smallest integer so that

cm � 6= 0. Then,

r
R

B r
jr qj2jyja

R
@Br

q2jyja
=

P �
m= m �

mcm r 2m

P �
m= m �

cm r 2m
= m� + O(r 2);

which concludes the proof.

Just as in Section 5.3, we divide our attention between Case 1 and Case 2. Again,
we begin with Case 1. Our accumulation lemma in this case is analogous to [FS18,
Lemma 3.2]. We repeat the common parts for completeness.

We recall that, in the following lemmas, we are assuming that 02 � � is a singular
point of order � 2 2N.
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Lemma 5.17. In Case 1, suppose that there exists a sequence of free boundary
points � � � 3 X ` = ( x` ; 0) ! 0 and radii r ` # 0 with jX ` j � r `=2 such that ~vr ` * q
in W 1;2(B1; jyja) and Z` := X `=r` ! Z1 . Then,

Z1 = ( z1 ; 0) 2 L � and D � q(Z1 ) = 0 for all � = ( � 0; 0) and j� j � � � 2:

Moreover, if � � = � , then qZ1 := q(Z1 + � ) � q is invariant under L � + L(q); that
is,

qZ1 (x + �; 0) = qZ1 (x; 0) for all pairs (�; x ) 2 (L � + L(q)) � Rn :

Proof. From Proposition 5.6 applied atX ` , the frequency ofu(X ` + � ) � p� is at
least � . (Here, p� is being considered as just an element ofP � . Recall, p� is the
blow-up at 0, not at X ` .) Therefore,

N (�; u (X ` + r ` � ) � p� (r ` � )) = N (�r ` ; u(X ` + � ) � p� ) � � for all � 2 (0; 1=2);

or, equivalently, for all � 2 (0; 1=2),

�
R

B �
jr ~vr ` (Z` + � ) + h� 1

r `
r (p� (X ` + r ` � ) � p� (r ` � )) j2jyja

R
@B�

j~vr ` (Z` + � ) + h� 1
r `

(p� (X ` + r ` � ) � p� (r ` � )) j2jyja
� � (5.51)

with
hr ` := kvr ` kL 2 (@B1 ;jyja ) :

Now let

q̀ (X ) :=
p� (X ` + r `X ) � p� (r `X )

hr `

;

which is a (� � 1)-degree,a-harmonic polynomial. Also, observe that
Z

B 1=2

j~vr ` (Z` + � )j2jyja +
Z

B 1=2

jr ~vr ` (Z` + � )j2jyja � k ~vr ` k
2
W 1;2 (B 1 ;jyja ) � C: (5.52)

We claim that the coe�cients of q̀ are uniformly bounded with respect tò , so
that, up to subsequences,q̀ ! q1 locally uniformly where q1 is somea-harmonic
polynomial of degree� � 1. Indeed, suppose that this is not true. Then, letting
f a`gi 2 I denote the coe�cients of q̀ and setting � ` :=

P
i 2 I ja`

i j, we have that
� ` ! 1 . Now set

�q̀ :=
q̀
� `

;

which is a polynomial with coe�cients bounded by 1, and let �q1 denote its limit
(up to a subsequence). Notice that �q1 is an a-harmonic, (� � 1)-degree polynomial
as �q̀ are all a-harmonic, (� � 1)-degree polynomials. So, from (5.51), dividing the
numerator and denominator by� 2

` , and by Lemma 5.16, we deduce that

� �
�

R
B �

jr " ` + r �q̀ j2jyja
R

@B�
j" ` + �q̀ j2jyja

!
�

R
B �

jr �q1 j2jyja
R

@B�
j �q1 j2jyja

= N (�; �q1 ) � � � 1

since, by (5.52),

" ` :=
~vr ` (Z` + � )

� `
! 0 in W 1;2(B1=2; jyja):



180 Chapter 5. Singular points in the thin obstacle problem

Impossible.
Sinceq̀ converges, up to subsequences, to someq1 uniformly in compact sets

and by interior estimates fora-harmonic functions (see, e.g., [JN17, Propsition 2.3]),
we have that jD � q̀ (0)j � C for someC independently of ` for any multi-index
� = ( � 1; : : : ; � n ; 0). Then, from the � -homogeneity ofp� , we have

D � q̀ (0) =
r j � j

`

hr `

D � p� (X ` ) =
r �

`

hr `

D � p� (Z` ) (5.53)

for all j� j � � � 1. Hence, usingjD � q̀ (0)j � C and hr ` = o(r �
` ), we determine that

jD � p� (Z` )j = o(1) ! 0 as ` ! 1

when jaj � � � 1. That is, D � p� (Z1 ) = 0 for j� j � � � 1. Thanks to Lemma 5.10,

Z1 2 L � :

Proceeding as in [FS18, Lemma 3.2] by means of the Monneau-type monotonicity
formula from Lemma 5.8, we obtain

1
� a+2 �

�
Z

@B�

jq(Z1 + � ) + q1 j2jyja � 2a+2 � �
Z

@B1=2

jq(Z1 + � ) + q1 j2jyja (5.54)

for all � 2 (0; 1=2). Notice that, until now, we have not used any information on
the second blow-upq. From Proposition 5.13,q is a � � -homogeneous,a-harmonic
polynomial with � � � � , since we are in Case 1. It follows that the polynomial
q(Z1 + � ) + q1 is only made up of monomials of degree greater than or equal to� .
Thus, recalling (5.53), we have that

� � q(Z1 ) = Z1 � r xq(Z1 ) = � Z1 � r xq1 (0) = � lim
` !1

r `

hr `

(Z1 � r xp� (X ` )) = 0 :

Here, we have also used thatZ1 2 L � , X ` = ( x` ; 0), and q is � � -homogeneous.
Moreover, taking derivatives, we have

(� � � j � j)D � q(Z1 ) = � lim
` !1

r �
`

hr `

(Z1 � r xD � p� (Z` )) = 0 :

(By Lemma 5.10,Z1 � r xD � p� (Z` ) = 0.) Therefore,

D � q(Z1 ) = 0 for all � = ( � 0; 0) and j� j � � � 2:

In addition, notice that by construction, q̀ is invariant under L � . Hence, so isq1 .
Finally, suppose� � = � . Then, q(Z1 + � ) + q1 consists of only degree� terms.

In other words, it is � -homogeneous. Now notice thatq(Z1 + � ) = q + s1 where
s1 is a degree� � 1 polynomial. Consequently,q(Z1 + � ) + q1 � q = s1 + q1 is
a � -homogeneous polynomial. This is only possible ifs1 + q1 � 0 (recall, q1 is of
degree� � 1.) And so, it follows that

q1 = q � q(Z1 + � );
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from which we deduce thatq1 is invariant under L(q). Since the invariant set of a
function is a linear space,

q1 (x + �; 0) = q1 (x; 0) for all pairs (�; x ) 2 (L � + L(q)) � Rn :

Lastly, we �nd that

D � q1 (0) = 0 for all � = ( � 0; 0) and j� j � � � 2;

making q1 a (� � 1)-homogeneous, even iny, a-harmonic polynomial.

Notice that if Z1 2 L(q), then q1 � 0. Indeed, all of the derivatives ofq1 jRn �f 0g

up to order � � 2 vanish at the origin sinceD � q(Z1 ) = 0 for all � = ( � 0; 0) and
j� j � � � 2. So if D � q(Z1 ) = 0 for all � = ( � 0; 0) with j� j � � � 1 too, then q1

would vanish up to in�nite order at the origin, making it identically zero. In other
words,

Z1 2 L(q) if and only if q1 � 0:

This also follows directly from the formq1 takes when� � = � .
Before stating and proving a Case 2 accumulation lemma, we present a simple

consequence of Lemma 5.17 and make a remark.
If m� = 0, then L � = f 0g. Hence, from Lemma 5.17, we deduce that �0

� is isolated
in � � � .

Lemma 5.18. Suppose Case 1 holds. Then,0 is an isolated point of� � � .

Proof. Suppose, to the contrary, that � � � 3 X ` ! 0 is a sequence of points (X ` 6= 0).
Let r ` := 2jX ` j. By Lemma 5.17, we have that, up to a subsequence,

~vr ` * q in W 1;2(B1; jyja) and Z` :=
X `

r `
! Z1 2 L � \ @B1=2

whereq is a � � -homogeneous harmonic polynomial with� � � � . But, this is impos-
sible, sinceL � = f 0g.

Remark 5.11. In general, lower frequency singular points can accumulate to a higher
frequency singular point. Take, for example, the harmonic extension ofx2

1x2
2 to R3:

u(X ) = x2
1x2

2 � (x2
1 + x2

2)y2 +
1
3

y4:

This polynomial is a solution to the thin obstacle problem witha = 0, and has
singular points of order 2 approaching a singular point of order 4. In particular, it
is not true that � 0

� is isolated from � <� .
By the recent results of Colombo, Spolaor, and Velichkov, see [CSV19, Theorem

4], we know that the set of even frequencies (� = 2m) is isolated from the set of
all possible frequencies for the thin obstacle problem whena = 0. This, together
with the upper semicontinuity of the frequency, implies that free boundary points
of strictly higher order cannot accumulate to a singular point of lower order in this
case. Therefore, the above hypothesis \X ` 2 � � � and X ` ! 0 2 � � " reduces to
\ X ` 2 � � and X ` ! 0 2 � � ", at least when a = 0.
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Now we prove a Case 2 accumulation lemma. It will only be applied when� � <
� + 1 and � = � � (with � as de�ned in the lemma). Nonetheless, we state it in more
generality, for completeness.

We recall that Exta denotes thea-harmonic extension of a polynomial, see (5.13).

Lemma 5.19. In Case 2, suppose that there exists a sequence of free boundary
points � n� 1

� 3 X ` = ( x` ; 0) ! 0 and radii r ` # 0 with jX ` j � r `=2 such that ~vr ` * q
in W 1;2(B1; jyja) and (z` ; 0) = Z` := X `=r` ! Z1 . Set

� � ;X ` := N (0+ ; u(X ` + � ) � p� ;X ` );

wherep� ;X ` denotes the �rst blow-up ofu at X ` . Let e� 2 Sn \ f y = 0g �= Sn� 1 be
such thate� ? L � , and let qeven and qodd be the even and odd parts ofq with respect
to L � ,

qeven(X ) =
1
2

[q(X ) + q(X � 2(e� � X )e� )]

and
qodd(X ) =

1
2

[q(X ) � q(X � 2(e� � X )e� )] :

Let � � > 0 be as in Proposition 5.15 and set� := lim inf ` f � � ;X ` g � � + � � . Then,

Z1 = ( z1 ; 0) 2 L �

and

�
Z

@B�

jqeven(Z1 + X ) � c1 Ext a((e� � x)� )j2jyja � C� 2� + a for all � 2 (0; 1=2);

(5.55)
for some constantsc1 and C independent of� . Moreover, if � � < � + 1, then
qodd � 0. If, in addition, � = � � , then c1 = 0 in (5.55), and q is invariant in the
Z1 direction; that is, q(Z1 + X ) = q(X ) for all X 2 Rn+1 .

Proof. We divide the proof into two steps.

Step 1: We proceed using the ideas developed to prove [FS18, Lemma 3.3]. Recall
that

p� ;X ` (X ) := lim
r #0

u(X ` + rX )
r �

:

De�ne

q̀ (X ) :=
p� ;X ` (r `X ) � p� (X ` + r `X )

hr `

with hr ` := kvr ` kL 2 (@B1 ;jyja ) :

By Proposition 5.15 and Proposition 5.6, for all� 2 (0; 1=2),

N (�r ` ; u(X ` + � ) � p� ;X ` ) � � � ;X ` � � + � � > �; (5.56)

or, equivalently,
�

R
B �

jr ~vr ` (Z` + � ) � r q̀ j2jyja
R

@B�
j~vr ` (Z` + � ) � q̀ j2jyja

� � + � �
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(cf. (5.51)). Furthermore, arguing as in the proof of Lemma 5.17, we �nd that the
family f q̀ g`2 N has uniformly bounded coe�cients. This time, however, we use that
q̀ is of degree� and a-harmonic rather than of degree� � 1 anda-harmonic. Indeed,
as in Lemma 5.17, suppose not. Then, dividing by the largest coe�cient, we obtain
uniformly bounded, a-harmonic polynomials �q̀ of degree� and the inequality

1
2

R
B 1=2

jr " ` � r �q̀ j2jyja
R

@B1=2
j" ` � �q̀ j2jyja

� � + � � for all ` 2 N (5.57)

and for some" ` ! 0 in W 1;2(B1=2; jyja). Now notice that �q̀ are degree� polynomials
converging uniformly to some �q1 (up to subsequences). Also, since the translations
that de�ne q̀ are in f y = 0g, �q̀ are a-harmonic. In turn, the limit �q1 is an a-
harmonic, � -degree polynomial. From (5.57) and Lemma 5.16, we obtain

� �
1
2

R
B 1=2

jr �q1 j2jyja
R

@B1=2
j �q1 j2jyja

� � + � � ;

a contradiction, since� � > 0. Thus, q̀ converges, up to subsequences, locally uni-
formly to someq1 , which is ana-harmonic polynomial of degree� . SojD � q̀ (0)j � C
for some C independently of ` for any multiindex � = ( � 1; : : : ; � n ; 0), and for
jaj � � � 1,

D � q̀ (0) =
r j � j

`

hr `

D � p� (X ` ) =
r �

`

hr `

D � p� (Z` ): (5.58)

Then, ashr ` = o(r �
` ), we determine that

jD � p� (Z` )j = o(1) ! 0 as ` ! 1

when jaj � � � 1. That is, D � p� (Z1 ) = 0 for j� j � � � 1. Thanks to Lemma 5.10,

Z1 2 L(p� ) 2 L � :

Now, by assumption, for somee` 2 Sn� 1 and c̀ ; c� > 0,

p� ;X ` (x; 0) = c̀ (e` � x)� and p� (x; 0) = c� (e� � x)� :

Also, setting a` := e� � z` , we see that

q̀ (x; 0) = h� 1
r `

(p� ;X ` (r `x; 0) � p� (x` + r `x; 0))

= r �
` h� 1

r `
(c̀ (e` � x)� � c� (e� � (z` + x)) � )

= r �
` h� 1

r `

�
c̀ (e` � x)� � c� (e� � x)� � c� �a ` (e� � x)� � 1

+ c� a2
`

�X

j =2

�
�
j

�
� j � 2

` (e� � x)� � j

�
:

Sincep� ;X ` ! p� , we have that c̀ ! c� and e` ! e� (up to a sign). Moreover, as
Z` ! Z1 2 L � and e� ? L � , a` ! 0. Therefore, by the uniform boundedness iǹ of
the coe�cients of q̀ (x; 0), we immediately �nd that

q̀ (x; 0) = r �
` h� 1

r `

�
c̀ (e` � x)� � c� (e� � x)� � c� �a ` (e� � x)� � 1

�
+ O(a` )

= r �
` h� 1

r `

�
(c̀ � c� )(e` � x)� + c� ((e` � x)� � (e� � x)� ) � c� �a ` (e� � x)� � 1

�
+ O(a` ):
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Set e0
` := e` � e�

je` � e� j . Then,

(e` � x)� � (e� � x)�

je` � e� j
=

�
e` � e�

je` � e� j
� x

� � � 1X

i =1

(e� � x) i (e` � x)� � 1� i =: ( e0
` � x) Q` (x):

In addition, as ` ! 1 ,

e0
` ! e0

1 2 Sn� 1 and Q` ! (� � 1)(e� � x)� � 1;

and e0
1 ? e� . Thus,

q1 (x; 0) = c1(e� � x)� + c2(e0
1 � x)(e� � x)� � 1 + c3(e� � x)� � 1; (5.59)

for some constantsc1; c2, and c3. Soq1 vanishes onL � .
Thanks to Lemma 5.8 applied tou(X ` + r ` � ) � p� ;X ` , denoting � ` := � � ;X ` , for

all � 2 (0; 1=2),

1
� 2� ` + a

�
Z

@B�

j~vr ` (Z` + � ) � q̀ j2jyja � 22� ` � a�
Z

@B1=2

j~vr ` (Z` + � ) � q̀ j2jyja;

from which we deduce that, taking` ! 1 ,

1
� 2� + a

�
Z

@B�

jq(Z1 + � ) � q1 j2jyja � C�
Z

@B1=2

jq(Z1 + � ) � q1 j2jyja: (5.60)

In turn, becauseq1 (X ) = Ext a(q1 (x; 0)) and by (5.59),

�
Z

@B�

jqeven(Z1 + � ) � Ext a(c1(e� � x)) � j2jyja = �
Z

@B�

j(q(Z1 + � ) � q1 )evenj2jyja

� �
Z

@B�

jq(Z1 + � ) � q1 j2jyja

� C� 2� + a�
Z

@B1=2

jq(Z1 + � ) � q1 j2jyja;

from which, taking c1 = c1, we �nd (5.55). (Here, we have used that taking the even
part of a function with respect to L � , i.e., f 7! f even, is an orthogonal projection in
L2(@B� ; jyja).)

Step 2: Let us now show that if � � < � + 1, then qodd � 0; and if, in addition,
� = � � , then c1 = 0 in (5.55). We remark that the fact that qodd � 0 if � � =2 N is
independent of Step 1.

If X 2 Rn+1 n L � , then X � 2(e� � X )e� 2 Rn+1 n L � ; so

Laqodd(X ) = Laq(X ) � Laq(X � 2(e� � X )e� ) = 0 for X 2 Rn+1 n L �

(by Proposition 5.15, q solves the very thin obstacle problem and isa-harmonic
outside ofL � ). On the other hand, if X 2 L � , then we have thatX � 2(e� �X )e� = X .
And so,

Laqodd(X ) = Laq(X ) � Laq(X ) = 0 for X 2 L � :
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Therefore,qodd is a-harmonic in Rn+1 . This, together with the fact that qodd is � � -
homogeneous (again, by Proposition 5.15) and even iny, yields that, by Liouville's
theorem for a-harmonic functions,qodd is a � � -homogeneous polynomial (see, e.g.,
[CSS08, Lemma 2.7]). Hence, if� < � � < � + 1, then qodd � 0, and q = qeven.

Finally, let us now show that if � = � � < � + 1, then c1 = 0. Let

qZ1 (X ) := q(Z1 + X ) � c1 Ext a((e� � x)� );

which is a solution to the very thin obstacle problem with zero obstacle onL � . If
(5.55) holds with � = � � , then from Lemma 5.55 and recalling thatq = qeven, we
deduce that

N (0+ ; qZ1 ) � � � :

In turn, qZ1 is � � -homogeneous. Indeed, for allr > 0, by Lemma 5.52,

� � � N (r; qZ1 ) � N (+ 1 ; qZ1 ) = N (+ 1 ; q(X ) � c1 Ext a((e� � x)� )) = � � :

The penultimate equality holds since the limit asr ! + 1 of Almgren's frequency
function is independent of the point at which it is centered, and the last equal-
ity holds becauseq is � � -homogeneous with� � > � , and thus q out-scales a� -
homogeneous polynomial.

SinceqZ1 is � � -homogeneous, we deduce that

q(X + Z1 ) =
q(X ) + q(X + 2Z1 )

2
: (5.61)

To see this, �rst, observe that

� � � q(X + � � 1Z1 ) = q(�X + Z1 ) = � � � qZ1 (X ) + � � c1 Ext a((e� � x)� );

for all � > 0. The �rst equality follows from the � � -homogeneity ofq, while the
second follows from the� � -homogeneity ofqZ1 . So

q(X + � � 1Z1 ) � qZ1 (X ) = � � � � � c1 Ext a((e� � x)� );

for all � > 0. Taking the limit as � ! + 1 yields

qZ1 = q: (5.62)

(Recall, � � > � .) That is,

c1 Ext a((e� � x)� ) = q(X + Z1 ) � q(X ): (5.63)

And becausee� ? Z1 ,

c1 Ext a((e� � x)� ) = q(X ) � q(X � Z1 ):

Hence, (5.61) holds, as desired.
To conclude, from the� � -homogeneity ofq and (5.63), observe that

@(� )
e�

q(Z1 ) = � !c1 :
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On the other hand, (5.61) implies

@(� )
e�

q(Z1 ) =
@(� )

e� q(2Z1 )
2

= 2 � � � � � 1@(� )
e�

q(Z1 ):

Thus,
(1 � 2� � � � � 1)� !c1 = 0:

Yet � � � � � 1 6= 0, by assumption. Consequently,c1 = 0.
Therefore, we have that if� � < � + 1 and � = � � ,

1
� n+2 � � + a

Z

@B�

jq(Z1 + � )j2jyja � C: (5.64)

By Lemma 5.55,N (0+ ; q(Z1 + � )) = � � asq(Z1 + � ) is a solution to the very thin
obstacle problem. On the other hand, sinceq is � � -homogeneous,N (+ 1 ; q(Z1 +
� )) = � � , and from the monotonicity formula in Lemma 5.52, we deduce thatq(Z1 +
� ) is � � -homogeneous. Then,

q(X + Z1 ) = � � � q(� � 1X + Z1 ) = q(X + �Z 1 ) for all X 2 Rn and � > 0;

that is, q is invariant in the Z1 direction.

We close this section with a pair of remarks and a Case 2 version of Lemma 5.18.
The observations made in these remarks are crucial to our analysis of when we can
produce the next term in the expansion ofu around a singular point.

Remark 5.12. In Lemma 5.19, as in Lemma 5.17, ifq is an a-harmonic, (� + 1)-
homogeneous polynomial and� = � � = � + 1, we also have that

D � q(Z1 ) = 0 for all � = ( � 0; 0) and j� j � � � 2: (5.65)

Indeed, observe that (5.60) becomes

�
Z

@B�

jq(Z1 + � ) � q1 j2jyja � C� 2(� +1)+ a;

for all � 2 (0; 1=2). Hence, the polynomialq(Z1 + � ) + q1 is only made up of
monomials of degree� + 1. In particular, since q is (� + 1)-homogeneous andq1

is of degree� , q(Z1 + � ) + q1 is a (� + 1)-homogeneous polynomial. So, for all
multiindices j� j � � ,

D � q(Z1 ) = D � q1 (0);

which, by (5.59), implies (5.65) holds, as desired.

Remark 5.13. The last part of the proof of Lemma 5.19 fails to show thatqeven is
invariant in the Z1 direction when � = � � = � + 1. In this case, however, we �nd
that

qe
Z1

(X ) := qeven(Z1 + X ) � c1 Ext a((e� � x)� );

is � � -homogeneous. Hence,

qeven(X + � � 1Z1 ) � qe
Z1

(X ) = � � 1c1 Ext a((e� � x)� );
















































































































































































