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Abstract

The goal of this PhD thesis is to collect the results of the author in the study of
thin obstacle problems. We start by giving an introduction to the Signorini or thin
obstacle problem, summarizing some of the most relevant currently known results.
The next chapters correspond each to one paper by the author (and collaborators).
Thus, we start by studying the regularity of solutions for the fully nonlinear thin
obstacle problem, to then move to the study of the free boundary for general frac-
tional obstacle problems with drift, in the critical regime. This is followed by a
regularity result for minimizers of the perimeter with lower dimensional obstacles.
Finally, the last two chapters focus on the standard thin obstacle problem (and its
fractional counter-part) and ne regularity and generic regularity properties for the
free boundary.

Sommario

In questa tesi di dottorato si raccolgono i risultati dell'autore nello studio dei pro-
blemi di ostacolo sottile. Iniziamo con un'introduzione al problema di Signorini
0 degli ostacoli sottili, riassumendo alcuni dei risultati pu rilevanti attualmente
conosciuti. | capitoli successivi corrispondono ciascuno ad un articolo dell'autore e
dei collaboratori. Cominciamo con lo studio della regolariti delle soluzioni per il
problema degli ostacoli sottili completamente non lineari, per poi passare allo stu-
dio della frontiera libera per i problemi generali degli ostacoli frazionari con termine
di trasporto, in regime critico. Segue un risultato di regolariae per i minimi del
perimetro con ostacoli di dimensioni inferiori. In ne, gli ultimi due capitoli si con-
centrano sul problema standard dell'ostacolo sottile e la sua controparte frazionaria,
e sulle proprietn di regolari ne e regolarit generica per la frontiera libera.
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Summary

This thesis revolves around various aspects of the thin (or fractional) obstacle pro-
blem (also known as Signorini problem). In the introduction (Chaptef|1) we present
the problem and the main known results. In the following ve chapters (Chaptef|2
to Chapter [)) we present the contributions of the author in the eld. Each chapter
corresponds to a di erent paper. We summarize here each of the chapters.

" Chapter 1]is a general introduction to the thin obstacle problem. It is a
self-contained survey that aims to cover the main known results regarding the
thin (or fractional) obstacle problem. We present the theory with some proofs:
from the regularity of the solution to the classi cation of free boundary points,
ending with generic regularity-type results for the free boundary.

Chapter 7 | corresponds to the paper [Fer16], that is,

X. Ferrandez-Real, CY¥ estimates for the fully nonlinear Signorini problem
Calc. Var. Partial Di erential Equations (2016), 55:94.

In this chapter we study a generalization of the Signorini problem involving
more general elliptic operators of second order in place of the Laplacian. We
consider general convex fully nonlinear operators, and show the regularity of
the solution to the fully nonlinear Signorini problem. This is a generalization
of a previous result by Milakis and Silvestre, [MS08], where they showed reg-
ularity of solutions under some extra assumptions on the operators and the
solution itself.

Given a fully nonlinear operator de ned on the space ai n matricesM ,,,
F:M,! R, satisfyind]

F is convex, uniformly elliptic (0.1)
with ellipticity constants 0 < ; and with F(0) =0;

we consider the lower dimensional obstacle problem

F(D?u)
minf F(D?u);u 'g

0 in Bynfxys =0g

0 onBi\f x4+ =00 0.2)

1N0ticg that, given a function w, we can express the nonlinear operatoF as F (D2w(x)) =
sup, LY@ x,wW(x)+cC ; for some family of symmetric uniformly elliptic operators with ellip-
ticity constants and , LY @, indexed by 2 . See [CC95,[FR20Q].

1
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(Notice that the Laplacian corresponds td=(M ) =tr M .) Then, we show that,
if * 2 CY1, the solutionu is C¥ for some small > 0 in either side of the
obstacle (thatis,u2 C¥ (B> \f Xns1  00)).

Chapter J | corresponds to the paper [FR18],

X. Ferrandez-Real, X.Ros-Oton The obstacle problem for the fractional
Laplacian with critical drift, Math. Ann. 371(3) (2018), 1683-1735.

Another possible generalization of the thin obstacle problem consists in chang-
ing the normal derivative condition with a directional derivative in another
(non-tangential) direction. If we denoter ,, the gradient in the rst n vari-
ables, we consider the obstacle problem with oblique derivative condition

u =0 inBj]

u+br,u;u "g =0 onB;\f x,+1 =0g; (0.3)

minf @

n+l

for someb2 R" xed (cf. (L.6)). In this case, problem [0.3) can be interpreted
as a fractional obstacle problem of the form

mn ( )%u+bruu ' =0 in R (0.4)

with s = % This kind of operators appears as in nitesimal generators of Levy
processes with jumps (se¢ (1.[18) below), and in particular, its obstacle-type
problem models optimal stopping problems for these processes. Problems of
the type (0.4) had been previously studied in_[PP15, GPPS17] in the case
s > 2, where, as a general intuition, the term involving the gradient can be
treated as a lower order term. No regularity results are expected for the case
s< % but the situation where the gradient has tocompetewith the fractional
operator (s = 3) was still open.

In this chapter we study the free boundary for solutions td (0]4) (of (0]3)) with
s= % also considering more general nonlocal operators of order 1 (so that no
monotonicity formulas are available to be used). Given a solution to (0.4),

we establish theCt regularity of the free boundary around any regular point

X , with an expansion of the form

1+~(x )

ux) '(x)=c (x x) e, jre O

+0 X X]j ;

~(x )= %+ Earctan(b e);

wheree 2 " 1 is the normal vector to the free boundary, > 0, andc > O.
In particular, we have that the growth of the solution at free boundary points
depends on the orientation of the free boundary with respect to the vectdr

Chapter 4 | corresponds to the paper [FS20],

X. Ferrandez-Real, J. Serra,Regularity of minimal surfaces with lower
dimensional obstaclesJ. Reine Angew. Math., to appear.



The Signorini problem can also be interpreted as a linearization of the problem

where we want to minimize the area of a surface with prescribed boundary,

and constrained to be above a certain lower dimensional obstacle: namely, the
Plateau problem, where we restrict the set of admissible solutions to those
that contained a xed lower dimensional smooth manifold (the thin obstacle).

In Chapter[4, we study the regularity of solutions to the minimization problem
in R"*1
min P(E;B;) : E O ; EnB;=E nB; (0.5)

whereP (E; B;) denotes the (variational) perimeter ofE inside B, and O :=
( fxn =0;%Xn+1  0g) is the thin obstacle (which here is given by the smooth
di eomorphism of a at thin obstacle).

Perhaps surprisingly, we show that solutions td (0}5) ar€*: at free boundary
points (in particular, they are a graph). This is opposed to classical smoothness
of minimal surfaces, which for dimensiona 8 need not be regular. Thus,
the thin obstacle is actively acting at contact points and forcing a graphical
and regular solution.

The diculty in studying (0[5)](with respect to the same problem with a
thick obstacle) lies on the fact that near a typical point of the contact set the
hypersurface@ Econsists of two surfaces that intersect transversally o@D.
Therefore, @Eis typically not at at small scales and thus (0.5) cannot be
treated as a perturbation of the Signorini problem.

Chapter § | corresponds to the paper [FJ20],

X. Ferrandez-Real, Y. Jhaveri, On the singular set in the thin obstacle
problem: higher order blow-ups and the very thin obstacle probjefmal.
PDE, to appear.

The set of non-regular points of the free boundary can subdivided into the
set of singular points and the set ofother points The set of singular points
corresponds to those points where the contact set has zero density (in the
thin space) and can be characterized also as those where the blow-up has even
homogeneity. It is contained in a countable union o€! manifolds. Moreover,
under a certain non-degeneracy condition on the obstacle (< 0), the set

of degenerate points consists only of singular points of order 2.

In this chapter we thoroughly investigate the structure of singular points for
the Signorini problem (also with weights,s 2 (0;1), so to cover the fractional
obstacle problem of any order as well). In particular, we adapt the techniques
that had been introduced by Figalli and Serra in[[FS18] in the context of
the classical obstacle problem to our setting. By means of GMT methods we
are able to deduce higher regularity properties for the singular set outside
of certain exceptional sets with lower dimension, and establish some higher
order expansions of the solutions around those points. As a consequence of
our study, we encounter a new fractional problem, what we call theery thin
obstacle probleman obstacle-type problem with constrains on a co-dimension
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2 domain, which only makes sense in the settirg > % Thus, we also study
the regularity properties of this new problem.

Chapter § | corresponds to the paper [FR19],

X. Ferrandez-Real, X. Ros-Oton, Free boundary regularity for almost every
solution to the Signorini problem preprint arXiv (2019).

For general smooth obstacles, without any extra non-degeneracy assumption,
the set of non-regular points of the free boundary can be very big, of dimension
n " forany"> 0.

Thus, while one would expect degenerate (non-regular) points to be always
small, we already know it is not true in the context of the Signorini problem.
The next natural question is to ask howfrequently do these degenerate points
appear: even if they can exist, we expect them to appear in very particular
con gurations, or at least, to be large in very particular con gurations. This

Is precisely what we show in this chapter by establishing a rst result of this
kind in the context of thin obstacle problems.

In particular, we show that for almost everysolution to the Signorini prob-
lem, the set of degenerate points im( 2)-dimensional (where almost every
solution" needs to be understood in the context of the theory of prevalence).
That is, if we denoteup the solution to

u =0 inBj]

g 0 onBi\f xy+1 =0g; (0.6)

minf @

he Ui U
with a certain boundary conditiong 2 C°(@B), and we denoteu the solution
to (0.6) with boundary datag = g+ , we show that

dimy Deg(u ) n 2 forae. 2]0;1]

In fact, our results are more precise, and are concerned with the Hausdor
dimension of  (u ), the set of points of order greater or equal than. We
show that if 3 n+1, then (u ) has dimensionn + 1, while for

>n +1, then (u ) is empty for almost every 2 [0; 1]. This is the rst
result, in the context of the Signorini problem, that proves that regular points
are better, in some sense, than the rest afegenerate points

We then use similar techniques in the context of the parabolic Signorini prob-
lem to show that, for almost all times, the set of non-regular points is lower-
dimensional.



Chapter 1

Introduction to the thin obstacle
problem

The Signorini problem (also known as the thin or boundary obstacle problem) is a
classical free boundary problem that was originally studied by Antonio Signorini in
connection with linear elasticity [Sig33| Sig59]. The problem was originally named
by Signorini himselfproblem with ambiguous boundary conditions the sense that
the solution of the problem at each boundary point must satisfy one of two di erent
possible boundary conditions, and it is not known a priori which point satis es which
condition.

Whereas the original problem involved a system of equations, its scalar version
gained further attention in the seventies due to its connection to many other areas,
which then lead to it being widely studied by the mathematical community. Hence,
apart from elasticity, lower dimensional obstacle problems also appear in describing
osmosis through semi-permeable membranes as well as boundary heat control (see,
e.g., [DL76]). Moreover, they often are local formulations of fractional obstacle prob-
lems, another important class of obstacle problems. Fractional obstacle problems can
be found in the optimal stopping problem for Levy processes, and can be used to
model American option prices (see [Mer76, CT04]). They also appear in the study
of anomalous di usion, [BG90], the study of quasi-geostrophic ows, [CV10], and in
studies of the interaction energy of probability measures under singular potentials,
[CDM16]. (We refer to [Ros1B] for an extensive bibliography on the applications of
obstacle-type problems.)

1.1 A problem from elastostatics

Consider an elastic body R3, anisotropic and non-homogeneous, in an equilib-
rium con guration, that must remain on one side of a frictionless surface. Let us

denoteu = (ul;u%u®) : ! RS2 the displacement vector of the elastic body, |,
constrained to be on one side of a surface (in particular, the elastic body moves
from the congurationto + u()). We divide the boundary into @= p[ s.

The body is free (or clampedu 0) at p, whereas g represents the part of
the boundary subject to the constraint, that is, s = @ \ . Alternatively, one
can interpret g itself as the frictionless surface that is constraining the body ,

5



6 Chapter 1. Introduction to the thin obstacle problem

understanding that only a subset of s is actually exerting the constraint on the
displacement. This will be more clear below.

Let us assume small displacements, so that we can consider the linearized strain
tensor

1 . .
N CORE G %0 HE S H B

Considering an elastic potential energy of the forrV (") = ajkn (X)"jj "kn, for some
functions ajnk (x) 2 C* (') (where, from now on, we are using the Einstein notation
of implicit summation over repeated indices), then the stress tensor has the form

i (U) = ajnk (X)"he(u):
We also impose thata;,c are elliptic and with symmetry conditions

Ajjhk (X) ij hk j j2 forall 2 R" " such that i = i
ajnk (X) = @ink (X) = ajkn (x);  forx 2

Let us also assume that is subject to the body force$ = (f1;f?;f3), so that by
the general equilibrium equations we have

@ (U) _ i,
@x ’

From the de nitions of (u) and " (u) above, this is a second order system, and
from the de nition of ajny , it is elliptic. Thus, the displacement vector satis es
an elliptic second order linear system inside . We just need to impose boundary
conditions on g (the conditions on p are given by the problem, we can think of
u 0 there).

Let us denote byn the outward unit normal vector to x 2 @. Notice that,
by assumption, the stresses in the normal direction on s, j(u)n;, must be
compressive in the normal direction, and zero in the tangential direction (due to the
frictionless surface). That is,

in ; fori=1;23:

j (u)nin; 0 on g, (1.2)
j(u)nj =0 on gandforall 2 R" with n =0.

On the other hand, we have the kinematical contact condition, encoding the fact
that there exists a surface exerting a constraint and the body cannot cross it (under
small displacements, or assuming simply that is a plane):

un 0 on g (1.2)
In fact, conditions (1.3)-(1.2) are complimentary, in the sense that
(u n) (jUninj))=0 on s, (1.3)

and we are dividing s into two regions: those where the body separates from
and those where it remains touching . That is, if there is an active normal stress
atapoint x 2 s, j(u(x))ni(x)n;(x) < 0O, then it means that the elastic body



is being constrained by s (or ) at X, and thus we are in the contact area and
there is no normal displacementu (x) n(x) = 0. Alternatively, if there is a normal
displacement,u(x) n(x) < 0, it means that there is no active obstacle and thus no
normal stress, j (u(x))ni(x)n;(x) = 0. This is precisely whatambiguous boundary
condition means

For eachx 2 s we have that one of the following two conditions holds

i (U))Ni(x)n;(x)

0 i (UG)Ni(x)nj(x) = 0
u(x) n(x) = 0;

u(x) n(x) < 0

(1.4)
and a priori, we do not know which of the condition is being ful lled at each point.
The Signorini problem is afree boundary problenbecause the set s can be divided
into two di erent sets according to which of the conditions [(1.) holds, and these
sets are, a priori, unknown. The boundary between both sets is what is known as
the free boundary

either or

The previous is a strong formulation of the Signorini problem, which assumed
a priori that all solutions and data are smooth. In order to prove existence and
uniqueness, however, one requires the use of variational inequalities with (convex)
constraints in the set of admissible functions.

The rst one to approach the existence and uniqueness from a variational point
of view was Fichera in[[Fic64]. We also refer to the work of Lions and Stampacchia
[LS67], where a general theory of variational inequalities was developed, which later
led to the scalar version of the Signorini problem, and its interpretation as a mini-
mization problem with admissible functions constrained to be above zero on certain
xed closed sets. Later, in[[DL76], Duvaut and Lions studied the problem and its
applications to mechanics and physics.

Finally, we refer to [Kin81, [KO8E&] for more details into the strong and weak
formulation of the (system) Signorini problem and its properties.

1.2 The thin obstacle problem

In this work we will focus our attention to the scalar version of the Signorini problem
from elasticity: our function, u, would correspond to an appropriate limit in the
normal components of the displacement vectou,,. Our obstacle,' , adds generality

to the problem, and would correspond to the possible displacement of the frictionless
surface@ while performing u. (We refer the interested reader ta [CDV19, Example
1.5] for a deduction of this fact.) As explained above, this problem also appears in
biology, physics, and even nance. Thus, from now on, functions are scalar.

Let us denotex = (x%Xp+1) 2 R" R andBj = By \f X, > 0g. We say that
u:Bj ! R is a solution to the Signorini problem or thin obstacle problem with
smooth obstacle’ de ned on BY := B;\f x,+1 = 0g, and with smooth boundary




8 Chapter 1. Introduction to the thin obstacle problem

datagon @B\f x,+; > 0Og, if u solves

8 .
E u =0 inBj
u= g on@B\f xp:1 > 0g
@.,u (u ') = 0 onB;\f x5 =0g (1.5)
3 @.,U 0 onBy\f Xy =0g
' u 0 onBi\f Xy+1 =0g;
where we are also assuming that the compatibility conditiog ' on @B\f Xp+1 =

Og holds. Notice the analogy with the ambiguous compatibility conditions| (1]1)-

(1.2)-(1.3) or (1.4): the set with Dirichlet conditions, p above, iS@B\f x,.1 > 0g,
whereu = g is imposed; whereas the set with ambiguous boundary conditionsg
above, is nowBY. That is, at each pointx = (x%0) 2 B? we have that

@,., u(x) 0 @.ux) = 0
ux) (x9 = 0; w9 > o

An alternative way to write the ambiguous boundary conditions in[(1]5) is by

either

imposing a nonlinear condition orB{ involving u and @, ., u as
u =0 inBj
minf @ .,uu 'g = 0 onB;\f x4 =0g; (1.6)

with u = gon @B \f Xn:1 > 0g. This is the strong formulation of the Signorini
problem.

In order to prove existence (and uniqueness) of solutions, we need to study the
weak formulation of the problem: a priori, we do not know any regularity for the
solution.

Consider a bounded domain R", and a closed seC . Let, also,

C(O ! R be a continuous function. In[[LS67], Lions and Stampacchia prove the
existence and uniqueness of a solution to the variational problem

Z
- . .2
minjr vj (2.7)
whereK = fv2 H}(): v on Cg Moreover, they also show that such solution
is the smallest supersolution.
If C= , (4.7)]is also known as the classical obstacle problem: nding the

function with smallest Dirichlet energy among all those which lie above a xed
obstacle . This problem has been thoroughly studied in the last fty years (see
[LS67,[KN77, Caf77| CR77, Wei99, PSU12] and references therein), many times in
parallel to the thin obstacle problem, and we will sometimes refer to it also as the
thick obstacle problem.

Our problem, (1.6), corresponds to the case wheDis lower dimensional, with
codimension 1. Notice that simple capacity arguments yield that, i€ has codimen-
sion 2 or higher, then the restriction of functions irH} to C does not have any e ect
on the minimization of the Dirichlet energy, and thus we would simply be solving
the classical Laplace equation. This means that, in this case, there is in general no
minimizer.



Thus, (1.6) are the EuIer{LagrangeZequations of the following variational problem

min . ir vj?: (1.8)
where
K =fv2HYB]):v=gon @B\f Xps1 > 0g;v ' onBy\f X1 =0g0:
Notice that the expressionsy = gon @B\f x,+; > Ogandv ' onB;\f x4+ =0g

must be understood in the trace sense. The existence and uniqueness of a solution,
as in [LS67], follows by classical methods: take a minimizing sequence, and by lower
semicontinuity of the Dirichlet energy, and the compactness of the trace embeddings
into H?Y, the limit is also an admissible function. The uniqueness follows by strict
convexity of the functional.
In some cases, the thin obstacle problem is posed in the whole | and thus

we co%sider

min  jrvj>, K =fv2HYBy):v=gon@B;v ' onB;\f x,.1 =0gg

v2K B,

(1.9)
for some functiong 2 C(@B). In this case, the Euler{Lagrange equations are for-
mally 38

< u " onBji\f xp41 =0g
u =0 inByn(fxy: =0g\f u="09) (1.10)

u 0 inBq;

with the added condition that u = g on @B. Alternatively, making the parallelism
with ([L.6), one could formally write

u
9

understanding that u is de ned only in the distributional sense. Notice that ifg

Is even with respect tox,.;, the solution to ) is even as well, and we recover
a problem of the form [1.6). On the other hand, for general, one can study the
symmetrised function u(x%Xns1) = 3 (U(X%Xn+1)+ U(X®  Xns1)), Which has the
same regularity and contact set asi. Thus, in order to study (1.10) one can always
assume thatu is even inx,.1, and this is enough to study [(1.).

Notice, also, that in (1.10) the condition u 0 needs to be understood in
the sense of distributions. In fact, u is a (hon-positive) measure concentrated on
fu = 0g. We can explicitly compute it by taking any test function' 2 C! (B;) even
IN Xn+1,

0 inBynfx, =0g

0 onBi\f Xy =0g; (1.11)

minf u; u

Z Z
h u'i=2 rur' =2lim rur'
B - A0 BIN xna "o
= 2lim @, u" = 2 @, u"
#0 BIV xnu1="g B1\f Xn+1 =0g
That is,
u=2@ , uH"L(B1\f X1 =00); (1.12)

where@ , U =lim 4 @,,, u(x%").
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Remark 1.1 In the derivation of (1.13), apart from (1.10), we have also used integra-
bility of r u, and that the trace of the normal derivative is well-de ned. This follows
because, in fact, as we will show later, the solution to the thin obstacle problem is
Lipschitz, and is continuously di erentiable up to the obstacle.

Remark 1.2 Problem (1.9) can be seen as a rst order approximation of the Plateau
problem with a lower dimensional obstacle, originally introduced by De Giorgi
[DeG73], which has also been studied in the last years [DeA79, FoSp18b, FS20].
Indeed, the Dirichlet functional corresponds to the area functional (up to a con-
stant) for at graphs. (See Chapter[4 for more discussions on this topic.)

Finally, let us end this section by mentioning other possible constructions of
solutions. As mentioned above, the solution to the previous minimization problem
can also be recovered as the least supersolution. That is, the minimizeto (L.9)
equals to the pointwise in mum

u(x) =inf v(x):v2C?Bi); Vv 0inByv ' onBi\f X1 =0g;
vV gon@B ;

the least supersolution above the thin obstacle. The fact that such function satis es
(1.10) can be proved by means of Perron's method, analogously to the Laplace
equation.

As a nal characterization of the construction of the solution, we refer to penal-
ization arguments. In this case there are two ways to penalize:

On the one hand, we camexpandthe obstacle, and work with the classical obstacle
problem. That is, we can consider as obstacle:(x) = ' (x9 " x2,, with "> 0
very small, which is now de ned in the whole domainB,. Then, by taking the
solutions to the thick obstacle problem with increasingly thinner obstaclés. (letting
" #0), converging to our thin obstacle, we converge to the solution to our problem.
Alternatively, we can even avoid the penalization step: the solutions to the thin
obstacle problem must coincide with the solution of the thick obstacle problem,
with obstacle' : B; ! R given by the solutonto ' =0in B;,' ="' on
B:\f Xp+1 =0g,' = gon @B\ f x,+.1 > 0g. Notice that ' itself is not the
solution to the thin obstacle problem since, a priori, it is not a supersolution across
fXn+s1 =0g.

On the other hand, we can penalizg (1.6) by replacing the ambiguous boundary
condition on fx,,1 = 0g, by considering solutionsu” with the Neumann boundary
conditionu, = =" minfO;u ' gonfx,.; =0g. By letting " #0, u' converges

Xn+1

to a solution to our problem.

1.3 Relation with the fractional obstacle problem

Let us consider the thin obstacle problem[ (1]6) posed in the whoR"**, for some
smooth obstacle’ : R" ! R with compact support. That is, we denoteR}** =
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R"™\f x,.1 > Og and consider a solution to
8

u =20 in RT*
% u(x%0) "' (x9 for x°2 R"
@.ux%0) = 0 if u(x%0)>" (x9 (1.13)
E @,., u(x®0) 0 if u(x®0) = ' (x9
ux) ' 0 asjxj!'1

If we denote byu : R" ! R the restriction of u to fx,+; = 0g, then we can
simply reformulate the problem in terms ofu instead ofu, given that u is just the
harmonic extension (vanishing at in nity) of u to R1**. That is, by means of the
Poisson kernel in the half-space,

z

U(XO; Xn+1) = [ P(Xn+1 : ) U] (X% = ¢, Xn+1 U(y(b dyO

R (XGg + X0 Y

for some dimensional constant,,. Thus, after a careful computation and taking
limits x,+1 # 0, one obtains

u(x9  uy9 o .
o b0y W) R
where the integral needs to be understood in the principal value sense. We have
introduced here an integro-di erential operator, acting onu, ( ) 2, known as the
fractional Laplacian of order 1 (in the sense that () %(v(r N=r( ) %v)(r ).

Let us very brie y justify the choice of notation () 2 in terms of the discussion

above. Given a smooth (sayC?) function u, () 2u is the normal derivative of its
harmonic extension. If one repeats this procedure, and takes the harmonic extension

u(x®0) = ¢,PV

n+l

of () zu, itis simply @, u. Thus, () () zu= @, u= «ou, where we
are using the fact that u =0 (up to the boundary), and we denote = 2+ @ . .
In all, problem (1.13) can be rewritten in terms ofu as
3 u in R"
()zu =0 ifu> (1.14)
2 () 2u 0 ifu="

ux9 ! 0 asjxyri ;

which is the formulation of the classical (or thick) global obstacle problem, with
obstacle' and operator ( ) 2, also referred to agractional obstacle problemNotice
that now, we are considering a functioru that remains above the obstaclé in the
whole domain (compared to before, where we only needed this condition imposed
on a lower dimensional manifold).

Similarly, one can consider the fractional obstacle problem in a bounded domain

R" with a (smooth) obstacle' I R by imposing exterior boundary
conditions with su cient decay, g:R"n ! R,
5 ' in
()%uzom \fu>'g
1.15
;()%u 0 in \fu="'g (1.15)
u =g InR"n
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Thus, in order to study the solution to (1.1%), by taking its harmonic extensionu,
it is enough to study the solutions to [(1.5).

Finally, another characterization of the fractional Laplacian, ( ) 2, is via Fourier
transforms. In this way, one can also characterize (up to a constant) general frac-
tional Laplacians of order 3, with 0 <s< 1, as

F(C ) *u)() =] i*Fu)();

whereF denotes the Fourier transform. The operator, which now has ordes2can
be explicitly written as

_ u(x) u@9 o
( ) SU(X% - Qq;SPV o Wdy

In this way, one can consider general obstacle problems with nonlocal operator
L=(C )°

8 :
3 u " in
Lu = 0 in \fu>'g
2 Lu 0O in \fu="g (1.16)
' u = g9g INnR"n

(See, e.g.,[Sil07].) As we have seen, the fractional Laplacian) 2 can be recovered
as the normal derivative of the harmonic extension towards one extra dimension (cf.
(1.15)-(1.6)). Ca arelli and Silvestre showed in[[CS07] that the fractional Laplacian
of order () ® can also be recovered by extending through suitable operators. Thus,
if one considers the operator

Lau :=div(jXp+1j2r u); a=1 2s2( 1,1)

then the evena-harmonic extension of the solutionu to (L.16) (that is, u with
Lau=0in Xps1 > 0 andu(x® xn41) = u(x®  Xn+1)) solves locally a problem of the
type 3
< u " onB\f x,+1 =0g
L.u = 0 inByn(fx,+x =0g\f u="9) (2.17)
Lau 0 IinBy;

that is, a thin obstacle problem with operatori ,, or a weighted thin obstacle problem
(cf. (1.10)) with A,-Muckenhoupt weight.

It is for this reason that many times one studies the weighted thin obstacle
problem (1.17) witha 2 ( 1;1) (seel[CSO7, CSS0D8]). For the sake of simplicity and
readability, in this introduction we will always assumea = 0, but most of the results
mentioned generalize to any 2 ( 1;1) accordingly, and therefore, they also apply
to solutions to the fractional obstacle problem[(1.16).

Fractional obstacle problems such a$ (1.]16), as well as many of its variants (with
more general non-local operators, with a drift term, in the parabolic case, etc.), have
been a very proli c topic of research in the last years (see [CH13, PR15, GPPS517,
DGPT17,/CRS17,BFR18b/ FR18] and references therein).
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1.3.1 The fractional Laplacian and levy processes

Integro-di erential equations arise naturally in the study of stochastic processes with
jumps, namely, Llevy processes. The research in this area is attracting an increasing
level of interest, both from an analytical and probabilistic point of view, among oth-
ers, due to its applications to multiple areas: nance, population dynamics, physical
and biological models, etc. (See [DLY6, Mer76, CT04, Ros16, Ras18] and references
therein.) In nitesimal generators of Levy processes are integro-di erential operators

of the form
Z

Lu=br u+tr( A D%u)+ fux+y) ux) y rux) s, (y)g (dy); (1.18)
RN
for some levy measure such that Rminf 1;jyj’g (dy) < 1 . The simplest (non-
trivial) example of such in nitesimal generators is the fractional Laplacian intro-
duced above, which arises as in nitesimal generator of a stable and radially sym-
metric Levy process.

In particular, obstacle type problems involving general integro-di erential oper-
ators of the form (1.18) appear when studying the optimal stopping problem for a
levy process: consider a particle located aK; at time t 0, moving according a
levy process inside a domain , and let' be a pay-o function de ned in , and
g an exterior condition de ned in R" n . At each time we can decide to stop the
process and be paid (X) or wait until the particle reaches a region wheré has
a higher value. Moreover, if the particle suddenly jumps outside of , we get paid
g(X4). The goal is to maximize the expected value of money we are being paid. We
refer the interested reader to the aforementioned references as welllas [Pha97] and
the appendix of [BFER18] for the jump-di usion optimal stopping problem, as well
as [LS09/ Eval2, FR20] for the local (Brownian motion) case.

1.4 Regqularity of the solution

Once existence and uniqueness is established for solutions to](1.6), the next question
that one wants to answer is:

How regular is the solutionu to ([L.6)?

Of course, its regularity is expected to depend on how smooth is the obstacleWe
will assume that it is as smooth as needed, so that we do not have to worry about
it at this point.
Regularity questions for solutions to the thin obstacle problem were rst inves-
tigated by Lewy in [Lew68], where he showed, for the case= 1, the continuity
of the solution of the Signorini problem. He also gave the rst proof related to the
structure of the free boundary, by showing, also im = 1, that if the obstacle ' is
concave, the coincidence séu = ' g consists of, at most, one connected interval.
The continuity of the solution for any dimension follows from classical arguments.
One rst shows that the coincidence sefu = ' g is closed, and then one uses the
following fact for harmonic functions: ifC isclosed,and v=0in nCandv
Is continuous onC, then v is continuous in .
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Rather simple arguments also yield that, in fact, the solution is Lipschitz. Indeed,
if one considers the solutioru to the problem (1.10), and we de neh 2 Lip(B,) as
the solution to

8

< h =20 in By nfx,+ =09
h = Kk uk:@g,) on@B
h =" on B \f Xn+1 =0g;

then u is a solution to the classical (thick) obstacle problem witth (which is Lips-
chitz) as the obstacle. In order to close the argument, we just notice that solutions
to the thick obstacle problem with Lipschitz obstacles are Lipschitz, sa is Lip-
schitz as well. This last step is not so immediate, we refer the reader {0 [AC04,
Theorem 1] or [Ferl6, Proposition 2.1] for two di erent ways to conclude this rea-
soning. These rst regularity properties were investigated in the early 1970's (see
[Bei69,[LS69/ Kin71] BC72, GM75]).

In general, we do not expect solutions to[ (1.10) to be better than Lipschitz.
Indeed, acrosd x,+1 = 0g on contact points, we have that normal derivatives can
change sign, as seen by taking the even extension fo {1.6). Nonetheless, we are
interested in the regularity of the solution in either side of the obstacle. The fact
that normal derivatives jump isarti cial , in the sense that it does not come from the
equations, but from the geometry of the problem. We see that this is not observed
in (L.6), where the solution could, a priori, be better than Lipschitz, and it also does
not appear when studying the solution restricted td x,+; = 0g, as in the situations
with the fractional obstacle problem [(1.15).

1.4.1 C% regularity

The rst step to upgrade the regularity of solutions to [1.6) was taken by Frehse in
[Fre77] in 1977, where he proved that tangential derivatives of are continuous up
to fxq+1 = 09, thus showing that the solution isC? in B, up to the boundary.

Later, in 1978 Richardson proved that solutions ar€%*=2 for n = 1 in [Ric78];
whereas, in parallel, Ca arelli showed in[[Caf79] that solutions to the Signorini
problem areCY for some 0< % up to the boundary on either side (alterna-
tively, tangential derivatives are Helder continuous). In order to do that, Ca arelli
started showing the semiconvexity of the solution in the directions parallel to the
thin obstacle. We state this result here for future convenience.

Proposition 1.1  ([Caf79]). Let u be any weak solution to(I.6), and let' 2
CLY(BY). Let e 2 S be parallel to the thin spaceg e,.; = 0. Then, u is semiconvex
in the e direction. That is,

Lj’nf @eu C(kUkLZ(Bl) + [r ' ]CO;l(BiJ));
1=2

for some constantC depending only om.

As a (not immediate) consequence, Ca arelli deduced thé® regularity of so-
lutions.
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Theorem 1.2 ([Caf79]). Let u be any weak solution tqI.6), and let* 2 C**(BY).
Then,u2 C* (B;_,) and

kukcl; )

C kUkLZ(BI) +[r ' ]CO?l(Bg) ;

for some constants > 0 and C depending only om.

Remark 1.3 In fact, Ca arelli in [Caf79] pointed out how to deal with other smooth
operators coming from variational inequalities with smooth coe cients. Thus, in
(1.6) one could consider other divergence form operators other than the Laplacian,
with smooth and uniformly elliptic coe cients.

Remark 1.4. A posteriori, one can lower the regularity assumptions on the obstacle,
the coe cients, and the lower dimensional manifold. We refer tol [RuSh17] for a
study in this direction, with C* obstacles,C% coe cients (in divergence form),
and with the thin obstacle supported on aC' manifold.

The fact that the regularity cannot be better than C1172 is due to the simple
counter-example,
U(X) =Re (Xl + inn+lj)3:2 (1-19)

which in (X1; Xp+1 )-polar coordinates can be written as
. — p3=2 3
t(r; )= ro-cos 3

The function u is a solution to the Signorini problem: it is harmonic fofjx,+1j > 0,
the normal derivative @, ,, vanishes at =0, and has the right sign at =

It was not until many years later that, in [AC04], Athanasopoulos and Ca arelli
showed the optimalC%'*2 regularity of the solution in all dimensions. That is, in
the previous theorem = % and by the example above, this is optimal. We leave
the discussion of the optimal regularity for the next section, where we deal with the
classi cation of free boundary points.

Historically, the classi cation of the free boundary was performeafter having
established the optimal regularity. In the next section we show that this was not
needed, and in fact one can rst study the free boundary, and from that deduce the
optimal regularity of the solution.

1.5 Classi cation of free boundary points

The thin obstacle problem, [1.5) or [(1.10), is aree boundary problemi.e., the
unknowns of the problem are the solution itself, and the contact set

(u:= x°2R":ux%0)="'x% f og R";

whose topological boundary in the relative topology dR", which we denote (u) =
@ (u)= @x°2 R":u(x%0)="(x9g f Og, is known as thefree boundary

After studying the regularity of the solution, the next natural step in understand-
ing the thin obstacle problem is the study of the structure and regularity of the free
boundary. This is also related to the optimal regularity question presented above,
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since one expects that thevorst points in terms of regularity lie on the boundary
of the contact set.

Let us suppose, for simplicity, that we have a zero obstacle problem, 0.
Notice that, if the obstacle' is analytic, we can always reduce to this case by
subtracting an even harmonic extension df to the solutiorf} This is not possible
under lower regularity properties (in particular, this does not include the case where
' 2 C!, see Sectiofi 1]9).

Our problem is

8

< u 0 onBji\f Xxy+:1 =0g
u =0 inBin(fxp: =0g\f u=009) (1.20)
u 0 inBy;

and the contact set is
(u)=f(x%0)2 R"™ :u(x%0)=0g:

In order to study a free boundary point,x 2 ( u), one considersblow-ups of
the solution u around x . That is, one looks at rescalings of the form

Une (X) = ‘;{(X ML (1.21)

2

_ 2
@B (x )u

The limit of such rescalings, ag # 0, gives information about the behaviour of
the solution around the free boundary pointx . Thus, classifying possible blow-up
proles asr # 0 around free boundary points will help us better understand the
structure of the free boundary. Notice that, by construction, the blow-up sequence
(1.21) is trivially bounded in L?(@B). To prove (stronger) convergence results, we
need the sequence to be bounded in more restrictive spaces (sayVik?), by taking
advantage of the fact thatu solves problem|(1.20).

In order to do that, a very powerful tool is Alimgren's frequency function If we
consider a solutionu to the Signorini problem (1.20) and take the odd extension
(with respect to x,+1), we end up with a two-valued map that is harmonic on
the thin space (and has two branches). Almgren studied in_[AImOO] precisely the
monotonicity of the frequency function for multi-valued harmonic functions (in fact,
Dirichlet energy minimizers), and thus, it is not surprising that such tool is also
available in this setting.

Let us de ne, for a free boundary pointx 2 ( u),

R

r jr uj?
N(rujx )= —R&- 7 —
@B (x )Y

We will often denote N (r;u) whenever we takex = 0. Notice that N(;u,) =
N(r;u), whereu, := u.o (see [1.2])). Then, we have the following.

1if the obstacle' is analytic, then ' has a harmonic extension toB; , and its even extension
in the whole B, is harmonic as well. Thus, the functionu ' solves a thin obstacle problem with
zero obstacle. This is no longer true if' is not analytic (not even when' 2 C!), and in such
situation one needs to adapt the arguments. However, the ideas are the same.
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Lemma 1.3. Let u be a solution to(L.20), and let us assumed 2 ( u). Then,

Almgren's frequency function
R
r . jr uj?
r7VN(nu)= —R———
@5 U

is nondecreasing. MoreoverN (r; u) is constant if and only if u is homogeneous.

Proof. We very brie y sketch the proof. By scaling(N(;u,) = N(r;u))itis enough
to show that NY1;u) 0. Let us denote
Z Z 1 Z z
ru?=r?® jrur)it H(nu)= = u? = u(r )%
B, B: " s @8

D(r,u) =

r'n+1

. — D(n . — D(@, DYL; Ho1; .
so that N (r;u) = g and NqLu) = g5 3 T - Now notice that

z Z Z

D{L;u)=2 rur(x ruydx=2 u? 2 u(x r u)dx;
B @8 B1

whereu denotes the outward normal derivative toB;. Sinceu is a solution to the
Signorini problem, either u=0oru=0and u> 0 (in which casex r u=20 by
C? regularity of the solution). Thus, the second term above vanishes. On the other
hand, we have that
Z Z Z
HY1;u) =2 uu and D(Lu)=  jr uj®= uu ;
@B B1 @8

where in the last equality we have used again that solves the Signorini problem,
u u 0. Thus,

R 5 R !
D (1, u uu
NYL;u)=2 (Liv)  ges RE 0;
H(1;u) @g Ul o8 u2

by Cauchy-Schwarz inequality. Equality holds if and only ifu is proportional to u
on @B for everyr (that is, u is homogeneous). ]

And from Lemma[1.3 we have the following.

Lemma 1.4. Let u be a solution to(L.20), and let us assume 2 (' u). Let :=
N (0" ;u), and let Z

()= - u*
@8

Then, the functionr 7! r 2 ' (r) is nondecreasing. Moreover, for every > 0 there
exists soma = r (") such thatifr<r r(") 1,

() ()
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Proof. Notice that by Lemma[1.3, is well-de ned. By di erentiating
Z Z
—r2'(r)y =2r 2 "t v jrup? u> 0
dr B @B
where we are also using the monotonicity df (r;u) from Lemma[1.3.
On the other hand, choose (") such that N(r ;u) + ". Then, just noticing

that q
r 1 n
N(r;u) = >dr log" (r) + (1.22)
forr<r r and integrating in (r; r ) we get the desired result. O

As a consequence of Almgren's monotonicity formula we get the existence of
a (homogeneous) blow-up limit around free boundary pointsj,. Notice that we
are not claiming the uniqueness of such blow-up, but its degree of homogeneity is
independent of the sequence.

Corollary 1.5. Let u be a solution to(1.20), and let us assumé 2 ( u). Let us

denote
U (x) = u(rx) .
- o8 u2
Then, for any sequence # O there exists a subsequencg # 0 such that

U, ! Uo strongly in L2 (R"1); (1.23)
[ U, * T Up weakly in L2.(R"™); (1.24)
U, ! U strongly in CL (RT™); (1.25)

Kj

for someN (0" ; u)-homogeneous global solutiam, to the thin obstacle problem with
zero obstacle([1.20), and kugk, 2(@g) = Cn, for some dimensional constant, > O.

Proof. The proof of the strong convergence ih? and weak convergence iV 2 is a
consequence of Lemnja 1.3, which shows that the sequengeis uniformly bounded
in W¥2(B,). Indeed, take any ball centered at the originBg ~ R". Then, using the
notation from Lemmal[1.4,

Z Z

r1n

o R"  (Rr)
rouj?= 2
N 20

where in the last step we are using that is small enough together with the second
part of Lemma with" = 1. Also notice that ku k. 2(@g) = Cn, SOU, is bounded
in W2 for every compact set (again, by Lemmp 1.4).

The homogeneity ofu, comes from the fact that

jr uj N(L;u)  C(R)N(L;u);

N(;uo)=lirr£t10N(;ur)=lirr1£t10 N(r;u)= N(";u);

and LemmalL.3.
Finally, the strong convergence irC! follows from the Ct regularity estimates
for the solution, Theorem[1.2. O
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Hence, we obtain the following result, describing the structure of blow-ups at
free boundary points.

Theorem 1.6. Let u be a solution to(L.20), and let us assumé 2 ( u). Let ug
denote any blow-up a0. Then, u, satis es

8 .
< Uo 2 Cé’c (f Xn+1 Og)
Uo solves the thin obstacle problerff.2q) in R"** (1.26)
3

Uo is -homogeneous, with 2 5 [ [2/1 ):

Moreover, if = 3, then ug is (after a rotation) of the form (1.19).

Proof. The fact that up 2 Cg. (fxn+1  0g) solves the thin obstacle problem[(1.20)
in R"™** comes directly from the strong convergencg (1]25). Also, from Corolldry 1.5,
Upisa := N(0";u) homogeneous function. We just need to determine the possible
values can take when < 2.

Thus, from now on, let us assume that< 2. We separate the rest of the proof
into two steps.

Step 1: Convexity ofug. Let us start by showing that ug is convex in the directions
parallel to the thin space, and thus, in particular, the restrictionuojsx,,, =o g IS CONVex.
We do so by means of the semiconvexity estimates from Propositijpn|1.1 applied to
Uo. Indeed, by rescaling Propositioff I]1 to a ball of radiuR 1 we get

R? Binf @< Uo CR %kuOkLZ(BR) = CR kugkizg,);
R=2

for some dimensional constanC, and fore e,.; =0, where in the last equality we
are using the -homogeneity ofug. That is, by letting R!1

E!nf @-Uo CR Zkugk zg,y! 0, as R!1

R=2

Hence,up is convex in the tangential directions to the thin space.

Step 2: Degree of homogeneity of,. From the C! convergence of the blow-ups, it
is clear that > 1. Let us now consider (up) f Xn+1 = 0g the contact set foruo,
which is a convex cone, from the convexity and homogeneity 0.

If ( up) has empty interior (restricted to the thin space), then@,,, Up is a
harmonic function in fx,+; > 0Og, identically zero on the thin space, and (
1)-homogeneous. In particular, from the sublinear growth at in nity, @ ,,uo O
everywhere, and thusu, 0, a contradiction. Hence, (up) has non-empty interior
on the thin space.

Let us denotee 2 " ! a direction contained in the interior of (up) (in particu-
lar, e en+1 =0). Letus de ne, wy := @eUpg andw, ;= | @, ,, Ugj, Whichare (1)
homogeneous functions, harmonic ifix,+; 6 0g.

Notice that w; = 0 in ( Up). In particular, for any x 2 f X, =0g, x +te2
( up) for t 2 R large enough (since (o) is a cone with non-empty interior ande is
a direction contained in it). Thus, from the convexity ofug, w; has to be monotone
alongx + te, and thusw; 0 on the thin space. Sincev; is ( 1)-homogeneous
(i.e., it has sublinear growth), and is non-negative on the thin space, there is a

n+l
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unique ( 1)-homogeneous harmonic extension that coincides with; (by the
Poisson kernel), and it is non-negative as well. Henoa; 0 in R"™,

In addition, w, 0 on the thin space as well (sinceg solves the thin obstacle
problem), and it has sublinear growth at in nity. That is, its harmonic extension is
itself, and thusw, 0 in R"*1. Moreover, notice thatw, =0 in fXx,.1 =0gn ( ug)
(in particular, wyw, 0 onfXxps; =0gQ).

On the one hand, we have that the restriction ofv; to the unit sphere must be
the rst eigenfunction of the Dirichlet problem for the spherical Laplacian with zero
dataon @B\ ( up) (since it is non-negative), and it has homogeneity 1. On the
other hand, the restriction ofw, to the unit sphere must be the rst eigenfunction
with zero data on @B\ (fx,+1 = 0gn ( ug)), and it has the same homogeneity

1. Since (Uup) is a (convex) cone, it is contained in a half-space (6k,+; =0Q),
and therefore,fx,+1 = 0g n ( uUp) contains a half-space. Since the corresponding
homogeneities are the same (i.e., 1), by monotonicity of eigenvalues with respect
to the domain we must have that, after a rotation, (up) and its complement are
equal, and hence, they are half-spaces themselves. The homogeneity for the half-
space in this situation is%, so = % and the corresponding eigenfunction is

Uo(X) = Re (X1 + ijXns1))%? ;
as we wanted to see. O

As a consequence of the previous result, we have a dichotomy for free boundary
points.

Proposition 1.7 (Classi cation of free boundary points) Let u be a solution to
(1.20). Then, the free boundary can be divided into two sets,

(u) =Reg(u) [ Deg(u):
The set of regular points

Regu):= x 2 (u):N(@O";u;x)=

NIw

and the set ofdegenerate points

Degu) = x 2 (u):N(@O";u;x)

N

Moreover, u 2 CY=2(B7) with

kUkcl;l:Z(@) CkUkLl (B1) (127)
for someC depending only om, and the set of regular points is open (in the relative
topology of the free boundary).

Proof. The classi cation result is an immediate consequence of Corollgry [1.5 and
Theorem[1.6.

For the optimal regularity, we observe that by Corollary 1.5, since the sequence
u, is uniformly bounded inr, for x 2 ( u),

2
kUkLl (B/)(x ) c - U2 CkUkLl (Bl)r%; (128)
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where in the last inequality we are using Lemmga 1.4, together with the fact that,
by Theorem,N (0";u;x ) g This establishes a uniform growth of the solution
around free boundary points. Combined with interior estimates for harmonic func-
tions, this yields that u is C¥1=2 on the thin space, and thusu 2 C1¥2(B;) with
estimates inB_,.

Indeed, takey 2 f x,+1 = 0g\f u > 0g, and letr = dist(y; ( u)). Then u is
harmonic in B, (y), and by harmonic estimates together with|(1.28)

kr XOUkLl (B=2(Y)) Cr 1kUk|_1 (B, (y)) CkUkLl (Bl)l’%:

In particular .
kr XonLl (Br(x )) CkUkLl (Bl)r? (129)

for x 2 (u), sincer you 0 on the contact setfx,.; =0g\f u = 0g. Take now
y1;¥2 2 f Xp41 =09, so that we want to obtain the bound

Jroaou(yD) rou(y2)i  Ckukis syiys  Yoi? (1.30)

to get CY¥*2 regularity of u on the thin space. Notice that, sincer ,ou = 0 on
fXne1 =0g\f u=0g, we can assume thay,;y, 2 f x,+1 =0g\f u> Og.

Let us suppose =dist(yy; (u)) dist(yz; (u)). Then, if dist(y1;y2)
sinceu is harmonic in B, (y;), by harmonic estimates we have

r
5 and

jl’ xou(yl) r x0U(Y2)j

jy1 Yoyt
where in the last step we have used (1.29). On the other hand, if digt(y-)
from (1.29) and distfy,; (u)) r,

Jroxou(ys) 1 xou(y2)j jr xeu(ys)j + jr xou(yz)j
CkUkLl (Bl)rlzz CkUkLl (Bl)jyl y2j1=2:

[r XOU]C1:2(Br:2(y1) Cr ¥2kr xouky 1 (Br (y1)) Ckuky 1 (B1)

r
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In all, (L.30) always holds, andu is C***2 on fxn.; = 0g. By standard harmonic
estimates, its harmonic extension taB; is also C¥**? with estimates up to the
boundary f x,+1 = 0g, which gives [1.2]).

Finally, we note that (u) 3 x 7! N(r;u;x) is continuous for everyr > 0,
and is monotone nondecreasing. Thudl (0% ; u; x) = inf - ¢ N (r; u; X) is the in mum
of a family of continuous functions, and therefore, it is upper semi-continuous. In
particular, if Deg(u) 3 xx ! x ,thenN(0";u;x ) limsup,; N(@O";u;x¢) 2,
and thus x 2 Deg(u). The set of degenerate points closed, and the set of regular
points is open (in the relative topology of the free boundary). H

1.6 Regular points

We have shown that the free boundary can be divided into two di erent sets: regular
points, and degenerate points, according to the value of the frequency.

As we will show next, the set of regular points received this name because we
can show smoothness of the free boundary around theim, [ACS08].
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Let O be a regular free boundary point, and consider the rescalings
u(rx)
“@s Y

ur(x) =

Since 0 is a regular point, by Theorem 1.6, there exists some sequenc# 0 such
that, up to a rotation,
u, ! Up:=Re (Xxi+ijXn:1j)*?  strongly in C*(B}.,): (1.31)

Notice that, on the thin space,uy is a half-space solution of the formiy(x%0) =
c(xl)fzz. In particular, the free boundary is a hyperplane (inf x,+; = 0g) and thus
smooth. We want to show that the smoothness of the free boundary in the limit is
inherited by the approximating sequencey;, , for j large enough.

Let us start by showing that the free boundary is Lipschitz. In the following

proposition, C(e;; ) denotes a cone with axi®; an opening > 0, in the tangential
directions,

Cley; )= 2R™: ,1=0; e cos()kk :

Proposition 1.8. Let u be a solution to(L.20), and let us suppose that the origin
is a regular free boundary point0 2 Reg(u). Suppose, also, tha{{1.31) holds.
Then, for any xed > 0, there exists some > 0 such that

@u O inB,forall 2C(ey; ): (1.32)

In particular, the free boundary is Lipschitz around regular points. That is, for
some neighbourhood of the origin{ u) is the graph of a Lipschitz functionx; =

Proof. We use that @uy, is converging to@uo uniformly in B;-;. Notice that, by
assumption,@uo O, and infact, @ug c¢( ; )> 0infijx,+1]> Q.

Thus, from the uniform convergence, for any > O there exists soma =
r ( ; )suchthat, ifr; r,

@Urj 0 iN Ba=4 NfjXn1] g
: . ; 1.33
@u;, ¢ )>0 inBs4n jXpuj 3 : (1.33)
Moreover, from the optimalCl?% regularity of solutions,
@u, C? inBag\fi Xpuu O (1.34)
Combining (1.33)-(1.34) with the fact that ( @u,;) = 0in By n ( uy), and
@u;; = 0 on ( uy), by standard comparison principle arguments (see [ACS08,
Lemma 5]) we deduce that there exist some = () such that if < ,

@u;; 0in Bi=. In particular, there exists some (depending only on , but also
depending on the regular point) such that@u 0 in B;. Thus, (1.32) holds.
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We nish by showing that (L.32) implies that the free boundary is Lipschitz. We
do so by considering the two (half) cones

= C (e )\ B:-y:

Notice that, since 02 (u), u(0) =0, and from u 0 onfxns+; = 0g together
with (L.32) we must haveu Oon |, so f u=0g.

On the other hand, suppose thay 2 . is such thatu(y ) = 0. Again, by ([.32)
and the non-negativity ofu on the thin space, we havei 0ony C (e;; ). But
notice that, sincey 2 ,,02y C (e;; ), thatis, O0is not a free boundary point.

A contradiction. Therefore, we have thatu(y ) > 0,so . f u> 0Og.

Thus, the free boundary at 0 has a cone touching from above and below, and
therefore, it is Lipschitz at the origin. We can do the same at the other points around
it, so that the free boundary is Lipschitz. m

In fact, the previous proof not only shows that the free boundary is Lipschitz,
but letting # 0 we are showing that it is basicallyC*. In order to upgrade the
regularity of the free boundary around regular points we use the boundary Harnack
principle.

Theorem 1.9 (Boundary Harnack Principle, [ACS08, DS19]) Let f Xpe1 =
Og\ B; be a Lipschitz domain on the thin space, and let;v, 2 C(B;) satisfying

vi= V,=01in By n . Assume, moreover, thatv; and v, vanish continuously
on ,andv,> 0in Byn . Then, there exists some> 0 such that% is -Helder
continuous inBi, n up to

As a consequence, we can show that the Lipschitz part of the free boundary is,
in fact, Ct .

Theorem 1.10 (CY regularity of the free boundary around regular points) Let
u be a solution to(L.20). Then, the set of regular pointsReg(u), is locally a C*
(n  1)-dimensional manifold.

Proof. We just need to apply Theoreni 1J9 to the right functions. Notice that, by
Proposition[1.8 we already know that around regular points, the free boundary is a
Lipschitz (n  1)-dimensional manifold.

notice thatin B such that (1.32) holds (with = =4) we have thatv, := @,u and
V, := @u are positive harmonic functions, vanishing continuously on := (u)\ B ,

by Proposition . Thus,vi=V, is Helder continuous, which implies that@ u=@,u
is Helder continuous, up to (u), in B .
We nish by noticing that, if we take x 2 f x,+; = 0g such that u(x) = t, then
(x) denotes the unit normal vector to the level sefu = tg on the thin space, where

@u _ . @Qu=@u

W7 j@uziau T g L@ueau)T

Thus, =( 1;:::; n) is Helder continuous. In particular, letting t # 0 we obtain
that the normal vector to the free boundary is Helder continuous, and therefore, the
free boundary isCY in B _». O
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It is possible to keep iterating a higher order boundary Harnack principle to
obtain higher order free boundary regularity estimates around regular points. Hence,
Theorem[1.9 also has a higher order analogy.

Proposition 1.11 (Higher order Boundary Harnack Principle, [[DS15]) Let
fx,+1 =0g\ B; be aC% domain on the thin space fok 1, and letvy;v, 2 C(B)

satisfying v; = v, =0 in By n . Assume, moreover, thatv; and v, vanish
continuously on , andv, > 0in Byn . Then, % isCX inByxn upto
Moreover, if Ug(x9 = = dist(x% ) , and v, is even inX,.1, then U is Ck % in

B%,n upto

And from the higher order Boundary Harnack Principle we can deduce higher
order regularity of the free boundary (at regular points).

Corollary 1.12 (C! regularity of the free boundary around regular points) Let
u be a solution to(1.20). Then, the set of regular pointsReg(u), is locally a C*
(n  1)-dimensional manifold.

Proof. Follows analogously to the proof of Theorer 1.110 by using Propositipn 1.11
instead of Theoren19. O

As a consequence of the previous argumentation we also get an expansion around
regular points, proving that, up to lower order terms, the solution behaves like the
half-space solution. In particular, this next theorem proves the uniqueness of blow-
ups.

Theorem 1.13 (Expansion around regular points) Let u be a solution to(.20),
and let us assumé) 2 Reg(u). Then, there exists some > 0 and some > 0
(possibly depending on everything) such that

U(x) = cp(X)+ 0 jxj=* ;

whereug is the blow-up ofu at O (i.e., Up(X) = Re (X1 + ijXn+1j)32 up to a rotation
in the thin space).

Proof. We here use the second part of Propositign 1]11. By taking2 S"\f X1 =
Og and v, = @u (a tangential derivative to the thin space), by Propositior] 1.1[1 we
have @

u

—2C
Uo

in the thin space, for some > 0 (coming from the regularity of the free boundary),
outside of the contact set and up to the free boundary. In particular,

%—:(X") o Cix§ =) j @ux9 cUs(x9] CUy(x9ix§  Cjx3z* ;

for some constani, = §4(0). We recall that Up(x9) = P dist(x% ). By the C% re-

gularity of the free boundary, there exists some such thatU, ¢ @up = 0 jxj%+ °
for some °> 0, whereuy is the blow-up at 0. Thus, we have that

j@iu(x% Q@itfo(Xc)j ij%* °.
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From the local uniform convergence@u, ! @ty we must haveg = ¢ 0 for all
I =1;:::;nin the previous expression, where

Z 1
. 3 2 2
c=limr 2 — u :
r#0 @B

Thus, .
ir ou(x9 o wuo(x9j  Cjx§z*t
Sincer you(0) = r oug(0) = 0, by integrating the previous expression we deduce

juxd  cu(x9j  Cjx§zt

By harmonic estimates, such inequality also holds outside of the thin space. Now, if
c =0, it means that the frequency at O is at Ieastg + O This contradicts 0 being
a regular point, and thus,c > 0. This concludes the proof. ]

We nish by noticing the uniqueness of blow-ups at regular points.

Corollary 1.14 (Uniqueness of blow-ups at regular points)Let u be a solution to
(1.20), and let us assumé 2 Reg(u). Then, up to a rotation,

u(r ) |

rz

Cuy as r#0;

locally uniformly, for somec > 0. Here, Ug(X) = Re (X1 + ijXn+1])%2 .

Proof. This is a direct consequence of Theorejm 1]13. O

1.7 Singular points

In the classical (or thick) obstacle problem, all points of the free boundary have
frequency 2, and thus the classi cation of free boundary points must be performed
di erently: regular points are those such that the contact set has positive density,
whereas singular points are those where the contact set has zero density.

This motivates the de nition of singular point. Whereas it is not true that all
points of positive density belong to the set Reg( as de ned above, one can char-
acterize the points with zero density.

Let us start de ning the set of singular points, which was originally studied by
Garofalo and Petrosyan in[[GP09]. Letu denote a solution to the thin obstacle

problem, (1.20), then we de ne

- — i H'(Cw\ B(x) _, .
Singu) = x2 (u): |IITr]#I(I)’]f A7 (B, 0\ %oy =0Q) 0o ; (1.35)

where we recall that (u) denotes the contact set, andH"(E) denotes the n-
dimensional Hausdor measure of a seE.
The rst result in this direction involves the characterization of such points.
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Proposition 1.15 (Characterization of singular points, [GP09]) Let u be a solution
to (L.20). Then, the set of singular points(1.35) can be equivalently characterized

by
Singu)= x2 (u):N@O";u;x)=2m; m2N

That is, singular points are those with even frequency.

Proof. Let us suppose that 02 Sing(u) according to de nition ([L.35), and take a
sequence; # 0 such that

H((W\ By
H(@, T X = 00) 0: (1.36)

Consider the sequence;,, and after taking a subsequence if necessary, let us
assumeu;; ! Up uniformly in B;. Notice that u,, is a non-positive measure sup-
ported on ( u,). By assumption,H"(( u;;)\ B1) ! 0. Thus, sinceu,, converges
uniformly to uo, U has Laplacian concentrated on a set with zero harmonic capacity,
and thus, it is harmonic.

By Theorem[1.6,u, is a global homogeneous solution to the thin obstacle prob-
lem, with homogeneity := N(0*;u). In particular, being homogeneous and har-
monic, it must be a polynomial. Moreover, since, is even with respect tof Xp+1 =
0g, so isug. Thus, ug is a non-zero, harmonic polynomial, even with respect to
fXh+1 = 0g and non-negative on the thin space. Its homogeneity must be even, and
thus =2m for somem 2 N.

Suppose now that @ ( u) is such that N (0*;u) = 2m for somem 2 N. Take
any blow-up of u at zero, up. Then ug is a global solution to the thin obstacle
problem, with homogeneity 2n. As a consequence, must be harmonic everywhere,
and thus, an homogeneous harmonic polynomial (we refer to [Mon09, Lemma 7.6]
or [GPQ9, Lemma 1.3.4] for a proof of this fact).

Now, sinceug is non-zero even homogeneous harmonic polynomial, and is non-
zero on the thin space (by Cauchy-KovalevskayaH"(fup, = 0g\f x,+1 =0g) =0.
Thus, from the uniform convergence,, ! uo, we must have that [1.36) holds. [

Thus, the set of singular points consists of those points with even homogeneity.
It is then natural to de ne

(u):=fx2 (u):N@O;u;x)= g;

so that [
Sing(u) = Zm(u) = even(u):
m2N
In fact, singular points present a particularly good structure. At singular points
of order 2m, the solution to the thin obstacle problem is & times di erentiable (in
the sense[(1.37)) and in particular, the blow-up is unique, and belongs to the set

Pom = fp: p=0;x r p=2mp;p(x%0)  0;p(X%Xn+1) = PX&  Xn+1)G;

2m-homogeneous, harmonic polynomials, non-negative on the thin space. That is,
the following result from [GPQ09], which we will not prove, holds.



27

Theorem 1.16 (Uniqueness of blow-ups at singular points| [GP09])Let u be a
solution to (1.20). Let X 2 .y (u) for somem 2 N. Then, there exists a non-zero
polynomial p, 2 P,y such that

ux) = pe (x  x )+ o(jx x j*m): (1.37)

In particular, the blow-up at O is unique. Moreover, the mag 3 ,n(u) 7! py is
continuous.

The proof of the previous theorem is based on a Monneau-type monotonicity
formula, saying that if u has a singular points of order & at the origin, the following
function is non-decreasing,

Z
A — 1 2.
r 7! My(r;u; pam) = rnezm @B(U Pom)*;
forall p2 Py, and 0<r < 1. From here, in [GPQ9] they establish rst non-
degeneracy at singular points, and then the uniqueness of a blow-up. The continuity
with respect to the point then follows by a compactness argument.

Theorem[1.16 establishes a connection between singular points and their blow-
ups. This also allows to separate between di erent singular points according to \how
big" the contact set is around them. We already know it has zerdl"-density. In
fact, the contact set around singular points has the same \size" as the translation
invariant set of the blow-up. Thus, we can establish a further strati cation within
the set of singular points, according to the size of the translation invariant set (which
is a subspace) of the blow-up.

Given a solution to the thin obstacle problem,[(1.20)u, and givenx 2 ( u), let
us denote byp, any blow-up ofu at x. In particular, if x is a singular free boundary
point, py 2 P,y is uniquely determined by the result above.

Let us denote byL (p) the translation invariant set for p, wherep is a blow-up,

L(p):= 2R"™ :p(x+ )= p(x)forall x2 R"*
= 2R™: rpx)=0forall x2 R" ;

where we recall that blow-upg are homogeneous. Then, if we denote

om = TX2 om:dimL(p)="g, ~2f0:::;;n 1g; (1.38)
we have
. [ T1.
SingU) = even(U) = om = 2m-
m2N m2N =0

As a consequence of Theorem 1]16, combined with Whitney's extension theorem
and the implicit function theorem, one can prove the following result regarding the
structure of the singular set.

Theorem 1.17 ([GP09]). Let u be a solution to(L.20). Then, the set ,,(u) (see
([1.38) for *2f0;:::;n 1g, is contained in a countable union ofc! “-dimension
manifolds.
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Notice that the fact that each stratum of the singular set is contained in countable
union of manifolds (rather than a single manifold) is unavoidable: there could be
accumulation of lower-order points (say, of order 2) to higher order points (say, of
order 4).

On the other hand, the previous result can also be applied to the whole singular
set: Sing(1) can be covered by a countable union @&* (n  1)-dimensional manifolds.
The fact that the manifold id C* is due to the expansion of the solution| (1.37). In
[FJ20], Jhvaeri and the author show higher order expansions at singular points

X 2 om(u), analogous to [(1.3]), as
ux) = pe (X x )+ g (x x)+oix  x ) (1.39)

for some (2n + 1)-homogeneous, harmonic polynomiaty . Expansion of the form
(1.39) hold at almost every singular point, and thus, analogously to the previous
case we obtain a structure result, that holds for all singular points up to a lower
dimensional set:

Theorem 1.18 ([FJ20]). Let u be a solution to (L.20). Then, there exists a set
E Sing(u) of Hausdor dimension at mostn 2 such thatSing(u) nE is contained
in a countable union ofC? (n  1)-dimensional manifolds.

1.7.1 The non-degenerate case

So far we have been studying the thin obstacle problem with zero obstacle. When
solving for an (even) boundary datum

g2 Co>@B); 9(x%xn+1) = 9(X% Xne1)

the problem looks like

8
3 u 0 onBi\f x,+1 =0g
u =0 inByn(fx,sy =0g\f u=0g)
2 U 0 inB; (1.40)
U =g on@B;

We had reduced to this problem from[(1]6) by subtracting the harmonic even
extension of the analytic obstaclé . Alternatively, from (L.40) we can reduce to the
case of zero boundary data by subtracting the harmonic extension gfto the unit
ball. Thus, we obtain a problem of the form

8
3 Y, " onBi\f xp41 =0g
v = 0 inByin(fxh,+ =0g\f v="0)
3 \Y 0 in B, (141)
: v = 0 on @B;

that is, a thin obstacle problem with obstacle . Problems [1.40) and[(1.41) are the
same when

"'=0 in B,

= g on@B:

and v=u+ " (1.42)
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In this setting, we say that problem [1.41) with® 2 C3'(B;\f xn+y = 0Q) is
non-degenerate if

X0 c <0inBy\f xp41 =0g\f '> 0g;, ? 6 f'> O0Og; (1.43)

where o denotes the Laplacian in the rstn coordinates (Laplacian along the thin
space). The last condition above is to avoid having a non-active obstacle. Alterna-
tively, in terms of problem (1.40) we have

([C4Q) is non-degenerate™*" ' 41 g on @B satises (1.43) (1.44)

g

In particular, when we deal with concave obstacles, we say that our problem is
non-degenerate. IN[BFR18], Barrios, Figalli, and Ros-Oton show that, under a non-
degeneracy assumption, we have a better characterization of free boundary points.

Theorem 1.19 ([BER18]). Let u be a solution to(L.40), and suppose that the non-
degeneracy condition holdgq[1.43). Then, there exists a constant (depending onc )
such that for anyx 2 (u)\ Bi-,

supu cr?

Br(x )
for all r 2 (0; ). In particular, if (1.43) holds, then
(u)=Reg(u)[ 2(u);
i.e., the free boundary consists only of regular points and singular points of order 2.

Proof. We prove it for v satisfying (1.41) and the proof follows by the transformation

([1.42) with' =" 4 as in (1.43).

Let us de ne for x = (x%0) 2 B1x \f Xnpe1 =0g\f u>"' g,

1 C 1 .
We(XSXne) = VX)) 5= X0 xPEE xR
wherec is the constant in (1.43). Notice that, since v = 0 in outside of the contact
set (v),
Wy = w Cc 0 in B/(X)n (Vv):

On the other hand, w,(x%0) > 0 andw < 0 on (V). By maximum principle, we
must have supyg () Wx > O: Letting x ! x 2 ( u) we deduce

sup Wy 0;
@B (x )
which implies the desired result.
Finally, since the growth at the free boundary is at least quadratic, there cannot
be any blow-up at a free boundary point with homogeneity greater than 2. m

In this case, therefore, the non-regular part of the free boundary consists, exclu-
sively, of singular points of order 2. In particular, in Theoremh 1.17 we have instead a
singleC! *-dimensional manifold covering the whole of,,, (u). We can also establish
a more re ned version of Theorenj 1.18,
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Theorem 1.20 ([FJ20]). Let u be a solution to(L.20), and suppose that the non-
degenerate condition(1.43) holds. Then,

(i)  9(u) is isolated inSingu) = (W[ [ 5 *(u).

(i) There exists an at most countable se 3(u) such that 3(u)nE; is locally
contained in a single one-dimensionaC? manifold.

(i) For each ~ 2 f2;:::;n 1g, there exists a setE, ,(u) of Hausdor
dimension at most™ 1 such that ,(u) nE- is locally contained in a single
*-dimensional C? manifold.

1.8 Other points

The free boundary contains, in general, other points di erent fromregular and
singular. Even in two dimensions § = 1) one can perform the simple (see [FOSpil8,
Proposition A.1]) task of manually classifying all the possible homogeneities that an
homogeneous solution to the thin obstacle problem (with zero obstacle) can present.

Indeed, forn = 1 homogeneous solutions to the thin obstacle problem must have
homogeneity belonging to the set

1
2m:2m =:2m+1
2 m2N
Solutions with homogeneity 2n are harmonic quadratic polynomials, non-negative
on the thin space. On the other hand, homogeneous solutions with homogeneity
2m 1 or 2m +1 are of the form

Re (Xq+ ijXzj)2" 2 and  Im (X1 + ijX2))®™*T : form 2 N:

Notice that when the homogeneity is eh % we havehalf-spacesolutions on the thin
space. Indeed, in this case, restricting t&, = 0, solutions are of the formu(x,;0) =

(xl)fm %. On the other hand, solutions with odd homogeneity are identically zero on
the thin space (in particular, this type of homogeneous solution isot an example
of a free boundary point with odd homogeneity, and in fact, they do not exist in
dimensionn = 1).

Given that no other homogeneities can appear in dimension 2, one can show that,
in any dimension, the previous homogeneities comprise all of the free boundary,
up to a lower dimensional set. It is for this reason that we separate the possible
homogeneities of the free boundary as

( U) = 3=2(u) [ even(u) [ odd(u) [ half(u) [ (U); (1-45)

where 3-,(u) = Reg(u) are regular points; ewen(u) = Sing(u) are singular points;

odd(U) denotes the set of points with odd homogeneity, 2+ 1 for m 2 N; pq5(U)
are the points with homogeneity 2n+ g form 2 N; and (u) are the rest of possible
free boundary points (in particular, (u) = ? if n=1,dmyx( (U) n 2in
general).
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1.8.1 The set  oqq(U)

The free boundary points belonging to oqq(u) are those with odd homogeneity,
2m + 1 for m 2 N. They are analogous to the singular set, in the sense that in this
case, points belonging to ,4q(u) can also be characterized via the density of the
contact set: these points have density 1.

They are not known to exist (no single example has been constructed so far).
Notice that the homogeneous solutions presented above are vanishing identically on
the thin space, and thus they do not have a free boundary.

In fact, in dimensionn = 1, if such a point existed its blow-up would be of the
form

Im (X1 + ijX2))®™t ; form2 N: (1.46)

(Think, for example, of the x,-even extension of the harmonic polynomiak3
3x2x, for x,  0.) However, solutions of the form[(1.46) have non-vanishing normal
derivative on the thin space, whereas a free boundary point can be approximated
by points with vanishing normal derivative. From the C! convergence of blow-ups,
we reach a contradiction: free boundary points with odd homogeneity do not exist
in dimensionn = 1.

The set of points belonging to qq(U) has been studied in a recent work by
Figalli, Ros-Oton, and Serral[FRS19, Appendix B].

Proposition 1.21 (Characterization of points in o4q(u), [FRS19]). Let u be a
solution to (L.20). Then, the set of points with odd homogeneity,,qq(u), can be
equivalently characterized by

— i H'(Cuw\ B/(x) _. |
odd(U) = x2 (u): Ilrrlfoup A7 (B, 0\ %oy =0Q) 1 ; (1.47)

That is, points with odd homegeneity are those where the contact set has density 1.

Proof. Let us suppose that ® ( u) fullls de nition (1{47)) that is, we can take a
sequence; # 0 such that

H((W\ B
F(B,, \T Xy = 00) | 1: (1.48)

Consider the sequence,;, and after taking a subsequence if necessary, let us
assumeu; ! Uug uniformly in Bj. In particular, uo vanishes identically on the thin
space. Since it is homogeneous, and harmonic ®f.; > 0, it must be a polyno-
mial. It cannot have even homogeneity, since by the discussion on singular points it
would have zero density. Thus, it is an homogeneous harmonic polynomial with odd
homogeneity inx,.; 0 (and extend evenly in the whole space). Notice also that
it cannot be linear (on each side) because the minimum possible homogeneitg.is

On the other hand, suppose that 02 ( u) is such that N(0";u) = 2m +1
for somem 2 N. Take any blow-up ofu at zero, ug. Then ug is a global solution
to the thin obstacle problem, with homogeneity & + 1. Let us de ne the global
(homogeneous) solution to the thin obstacle problem given by,

P(x) = § Im (x; + ijxneaj
i=1
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sothat @ P < 0infx,. =0gnf0g. Using (1.12), we obtain that for any test

function = ( jxj) (sothatr =  ¥jxj)),
z z z
2 @,.,P W= P U= (TP ru+ rPr uy
fxn+1=0g Z
= (P u+ Prugr Uor P 1)
Z . o
= Pr uo x (.)(J).(J) rP x (?(P.(J) =0;
jx I1X]

where we have used thaP up, 0 everywhere, and ug x =(2m+21)ug, r P x=
(2m+1)P. Sinceup, 0 on the thin space, and@ . P < 0 outside of the origin on
the thin space, we deducel;, 0 on the thin space.

As a consequenca, must be harmonic everywhere, vanishing on the thin space.
Thus, it is an homogeneous harmonic polynomial with degreen2+ 1. In particular,
@.., Ug is a non-zero -homogeneous polynomial oR}**. From the C! conver-

gence olu;; ! ug (thatis, the uniform convergence of@, ., u, to @, ., Uo) we deduce
A7) 0

We also have a result analogous to Theorein 1}16 at odd-frequency points. Let
us start by de ning form 1

Qzm+1 = :qsolves the thin obstacle problem[(1.20) iR"**;
X rg=2m+1)q; qx%xna) = X% Xna) ;

namely, the set of (2n+1)-homogeneous even solutions to the thin obstacle problem
(notice that by the proof of Proposition[1.21, in particular,g(x%0) 0). Then, we
have

Theorem 1.22 (Unigueness of blow-ups at odd-frequency points, [FRS19]et u
be a solution to(L.20). Let X 2 ,m4+1(u) for somem 2 N. Then, there exists a
non-zerogx 2 Qom+1 such that

ux)= o (X X )+ o(jx x jZ™1)y: (1.49)

In particular, the blow-up at 0 is unique. Moreover, the set,n+1(U) is (N 2)-
recti able.

1.8.2 The set naf(u)
3

The free boundary points belonging to nar(u) are those with homogeneity & + 3
form 2 N.

They do exist: the homogeneous solutions are themselves examples of solutions to
the thin obstacle problem with free boundary points belonging to 4 (u). Whereas
they are currently not very well understood, they seem to exhibit a similar behaviour
to regular points. However, the fact that they are not an open set (in the free
boundary), makes it harder to study regularity properties of the free boundary
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around them (there could even be, a priori, singular points of order 2 converging to
a point of order 1).

The following proposition shows that points in g (U) can present a behaviour
similar to that of regular points.

Proposition 1.23 ([FR19]). Given aC! domain Bi\f Xxh+1 =0g,andm 2 N,

there exists' 2 C!, and g2 C°(@B), such that the solutionu to the thin obstacle

problem (L.10) with obstacle’ and boundary datag has contact set( u)= , and
3

all the points of the free boundary( u) have frequencym + 3.

The proof of this proposition is an explicit computation based on a previous
result by Grubb, [GrulE].

1.8.3 Theset (u)

We call (u) the rest of free boundary points. That is, points with homogeneity
not belonging to the setf 2m;2m + 1;2m %gmzN,

( )
(u:= x 2 (u):N(O*;u;x)Z(Z;l)n[ 2m;2m+1;2m %

m2N
(1.50)

It is currently not known whether such points exist. Nowadays, the only result in
this direction is the following by Colombo, Spolaor, and Velichkov, saying that points
with order closeto 2m do not exist (except for singular points themselves). Apart
from this result, the possible existence (or not) of points with these homogeneities
Is still an open problem.

Theorem 1.24 ([CSV19]). Let u be a solution to the thin obstacle problem with
zero obstacle,

g u 0 onBj;\f x,+1 =0g

u =0 inBin(fxps =0g\f u=0g) (1.51)
2 U 0O inB; '
U = g on@B;

Let (u) denote the points of order > 0. Then,

[
(u="72 for every 2 2m c¢n;2m+ c,) nf2mg ;
m2N

for some constantsc,, depending only orm and n.

The goal of the rest of the subsection is to prove that, if the set (u) existed,
then it would be lower dimensional. That is, we will show the following proposition,
stating that points of order 2 (2;1 )nf2m; 2m+1;2m+ gngN aren 2 dimensional
for general solutions to the thin or fractional obstacle problem. We do that through
a dimension reduction argument due to White | [Whi97].
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Proposition 1.25. Let u be a solution to the thin obstacle problem with zero obsta-

cle, 1.57). Letus dene (u) (u) by (L.50). Then
dmy (U n 2
Moreover, if n =2, (u) is discrete.

In this proposition, dimy denotes the Hausdor dimension of a set.
In order to prove this result, we will need two lemmas. We will use the notation
u* (x) for x 2 ( u) to denote translations. That is, we denote

u* (x) = u(x®+ x%Xn+1);
so that, in particular, N(r;u;x )= N(r,u* ).

Lemma 1.26. Let u be a solution to the thin obstacle problerfi.51). Let (u) as
in (T50).
Lety 2 (u). Then, for every" > 0 there exists some > 0 such that for every
2 (0; ], there exists an(n  2)-dimensional linear subspack, . of R" f 0Og such
that

X2 B (y)¥ Xpe1 =0g:N(@O";u) N(@O ;) f x:dist(x;y +Ly.)<" @

Proof. Let us denote = N(0";u¥) 2 (2;1 )nf2m;2m +1;2m + ggmz,\,. Let us
proceed by contradiction. Suppose that there exist> 0, and sequences, # 0 and
k # 0 such that

fx2B , (y )\ Xnpe =0g: N(O";U¥) kg 6 fx :dist(x;y +L) <" g (1.52)

for every (h  2)-dimensional linear subspacke of R" f 0Og.

In particular, if we denoteuy = u¥ (r andd, = r "“?ku* ki 2(@sg), thenu’ =d,
converges, up to subsequences, to somea global solution to the thin obstacle prob-
lem with zero obstacle, homogeneous of degreelLet us denoteL (v ) the invariant
setinR" f Ogofv . In particular, it is a subspace of dimension at most 2 (this
follows since two dimensional homogeneous solutions to the thin obstacle problem
have homogeneity belonging t62m;2m+1;2m %ngN). As an abuse of notation,
let us take asL(v ) any (n  2)-dimensional plane containing the invariant set.

Now, by assumption [(1.5R) and choosing = L(v ), for everyk 2 N there exists
somexg 2 B  (y ) \f Xp+s1 = 0g with N(0F; uXx) k such that dist(xx;y +
L(v)) "«

Let us denotezy = | *(xk Y ) 2 B1(0), and notice that dist(z;L(v)) ".By
scaling, we know that

N(O";u*)= N@O";uw ( + z)):

Moreover,
d kluyk I v uniformly in compact sets ak ! 1

Thus,
k= N@O";u%)= NO" ;W ( +2z))= N@©O";d ' ( +z));
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and by the upper semi-continuity of the frequency function (and after taking a
subsequence such thaty ! z 2 B1(0)) we get that

N@O";v( +2) ;

for somez 2 B,(0) such thatdist(z;L(v)) ".Sincev is -homogeneoud\ (0*;v ( +
2)) implies that z belongs to the invariant set ofv (see, for instance, [FoSp18,
Lemma 5.2]). This contradicts distg;L(v)) ", and we are done. m

The following is a very general and standard lemma. We give the proof for
completeness. We thank B. Krummel, from whom we learned this proof.

Lemma 1.27. There exists :(0;1)! (0;1) with (t)! Oast #0, such that
the following holds true.

Let" > 0. Let A R" such that for eachy 2 A and 2 (0; ) there exists a
j -dimensional linear subspacé&,. of R" for which

A\ B (y) f x:dist(x;y+ Ly )<" g
(Note that we do not claim thatL,. is unique.) ThenH!* (I(A)=0.

Proof. Let (t)= n+1 | fort 1=8 and observe thatH"**(A) = 0. Thus it
su ces to consider " 2 (0; 1=8).

By a covering argument, after rescaling and translating, we may assume that
A B;(0) and 02 A. By assumption, there exists a subspadey.; such that

A\ B1(0) f x:dist(x;y + Lo1) <"0:

A\ B1(0), Yy« 2 A, N C(j)" ',andN(4")'*  C(j)" . Choose = (") so that
C@g)" 1=2.

Now observe that we can repeat this argument witlB - (yx) in place ofB;(0) to
get a new covering B a+y2(Yk;1 )Oi=12:::8, OF A\ B (yi) with I\lr_;,(4")j+ < 1=2. Thus
fB(4")2(3/k;l)gk=1;2;:::;N;|=1;2;:::;Nk covers A with Yil 2 A and Ezl Nk(4")2(jJr ) <
(1=2)?. Repeating this argument for a total ofp times, we get a nite covering of
A by M balls with centers onA, radii = (4")?, and M (4")P0* ) < (1=2)P. Thus
H‘(j..)p(A) i+ (1=2)P for every integerp = 1;2;3;::.. Letting p! 1 , we get
Hi* ()(A) =0. O

Thus, we can directly prove Propositiory 1.75.

Proof of Proposition[1.25. We want to show that (u) has Hausdor dimension

at mostn 2. Let" > 0 and dene, fori 2 N, G; to be the set of all points

x 2 (@ such that the conclusion of Lemma 1.26 holds true with = 1=i, so that
(uy= ;G;. Foreachg2 N, de ne

Giq=Tfx 2Gi:(q 1)=i<N(0";u*) g=ig
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S
Observe that (u)= ~,, Giq, and for everyx 2 Gig,
Gig f y:N@O";w)>N(@O";u) 1=ig

so that, by Lemma[1.26, for every 2 (0;1=i] there exists a i 2)-dimensional
linear subspacd_, . of R" f 0g such that

Gig\ B (x) f x:dist(x;x +Lx.)<" @

Now, thanks to Lemma[1.2f withA = Giq (taking = 1=i uniform on Sg),
H" 2+ ()(Giq) = 0. Hence H" 2+ (" (u)) = 0. Since " is arbitrary, for all > 0
we haveH" 2* ( (u)) =0, and thus (u) has Hausdor dimension at mostn 2.
The fact that for n = 2,  (u) is discrete, follows by similar arguments in a
standard way. O

1.9 C! obstacles

Let us suppose now that the obstacle 2 C! (BY), and therefore, we cannot reduce
the the zero obstacle situation. Our problem is then

8

< u " onBi\f xp41 =0g
u =0 inBin(fxp: =0g\fu="9) (1.53)
u 0 IinBy;

where, as before, we are assuming that our solution is even in thg, -variable.

Let us assume that O is a free boundary point, 2 @.fu="4g. Given 2 N »,,
let us consider the -order expansion of (x9 at 0, given by Q (x9. In particular,
¢ Q)XY = 0(jxg *1). Let Q"(x%x,+1) be the unique even harmonic extension
of Q to B;. Let us now de ne

U Xne1) 1= UGS Xner) " (X + Q (XY QXS Xna):

Then, u solves the zero thin obstacle problem with a right-hand side,

8

< u 0 onB;\f Xxp41 =0g
u = f inBin(fx, =0g\f u="g)
u

f inBy;

where
fF)= Q) " (x)=0Gx] *:
Sincejfj Mjx§ !andkr uk: @s,,) M for some constantM > 0, we can
consider the generalized frequency formula, ,
(r;u):=(r+ Cy r2)E logmax H(r);r"*2 ; where H(r):= u?;
dr @B

(cf. (1.22)) and the constantCy depends only on the dimension and/. Then,
there exists someay, > 0 such that (r; u) is non-decreasing for & r <r y. In
particular, (0" ;u) is well-de ned and

n+3 (0";u) n+2
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(see[CSS08, GP09]). We say that the origin is a free boundary point of ordes

if (0";u) = n+2 (in particular, as before, g). If = , we say that the
origin is a free boundary point of orderat least . At this point, all the theory
developed above for regular free boundary points and singular points, also applies
to the situation where there are non-analytic (i.e., non-zero) obstacles, by using the
new generalized frequency formula. Notice that this theory can be developed even
if the obstacle' has lower regularity thanC? .

Finally, we say that the origin is a free boundary point of in nite order if it is of
orderat least forall 2 N ;. Notice that this set of free boundary points has not
appeared until now, it did not exist in the zero obstacle case.

Intuitively, in the thin obstacle problem (L.53) a point is of order when the
solution u detaches from the obstacle at order on the thin space.

Thus, the free boundary for solutions to the thin obstacle problem with 2

C! (BY), (1.53), can be split as
(W= 32U even(W[ odad(W[ nar(U)[ (W[ 1 (u);

(cf. (1.45)), where the new set ; (u) denotes the set of free boundary points with
in nite order.
The set of points in ; (u) can be very wild. In fact, the following holds.

Proposition 1.28 ([FR19]). Let C B2, R" be any closed set. Then, there
exists an an obstaclé 2 C! (BY) and non-trivial solution u to (L.53) such that
( U)\ B = fu=" g\ B =C

Proof. Take any obstacle 2 C! (R") such that supp Blzg(%el), with > 0
somewhere, and take the non-trivial solution to[ (1.53) with obstacle.

Notice that u > in BY, (in particular, u 2 C! (By=p)). Let fc: B?! R be
any C! function suchthat0 fc 1landC= ffc=0g.

Now let 2 C? (BX;) such that 0 and 1 in B{_,. Consider, as new
obstacle, = + (u )1 fc)2C!(BY,). Noticethatu ' 0. Notice, also,
that for x°2 B1-, (u ' )(x9 = 0 if and only if x°2 C. Thus, u with obstacle
gives the desired result. O

That is, the contact set can, a priori, be any closed set. In particular, the free
boundary can have arbitrary Hausdor dimension @ " for any " > 0). It is worth
mentioning that the points constructed like this are not really acting as an obstacle
(the Laplacian around them vanishes).

1.10 Generic regularity

We have seen that, in general, the non-regular (or degenerate) part of the free
boundary can be of the same size (or even larger, in the caseCdf obstacles) than
the regular part. This is not completely satisfactory, since we only know how to
prove smoothness of the free boundary around regular points.

It is for this reason that generic regularity results are interesting: even if there
exist solutions where degenerate points are larger than regular points, this is not
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true for a generic solution. That is, foralmost everysolution, the free boundary is
smooth up to a lower dimensional set. Let us start by de ning what we mean by
\almost every" solution.

Let' 2 C! (BY) and let g 2 C°(@B) even with respect tox,.;. Let 2 [0;1],
and letu be the solution to

8
3 u ' onBi\f Xy+1 =0g
u =0 in Bin(fxp+: =0g\f u="g9)
2 u 0 in B, (1.54)
' u = g+ on @B:

That is, we consider the set of solution$u g ,j0.1; With a xed obstacle ' by
raising the boundary datum by . Alternatively, we could raise (or lower) the ob-
stacle, or just make small perturbations (monotone) of the boundary value. We say
that a property holds for almost everysolution if it holds for a.e. 2 [0; 1] for any
such construction of solutions.

Now notice that since points of order are detaching from the obstacle with
power , when raising the boundary datum, the larger is, the faster the free
boundary is disappearing (and thus, the less common is that type of point). As a
consequence, establishing a quantitative characterization of this fact together with
a GMT lemma (coming from [FRS19]), one can show the following proposition. We
recall that given a solutionv to a thin obstacle problem, [(1.5B), we denote by  (v)
the set of free boundary points of order greater or equal than

Proposition 1.29 ([FR19]). Let' 2 C! (BY) and letg 2 C°(@B) even with respect
to Xn+1. Let fu g (0.1 the family of solutions to the thin obstacle probler(l.54).
Then,

“If 3 n+1,the set (u) has Hausdor dimension at mostn +1
for almost every 2 [0; 1].

“If >n +1,theset (u)is empty forall 2 [0;1]nE, whereE has
Hausdor dimension at most 5.

" Theset ; (u)isemptyforall 2 [0;1]nE, whereE has Minkowski dimension
equal to 0.

On the other hand, @/ means of a Monneau-type monotonicity formula one can
also show that the set ,,,; 2(u ) (union of singular points of order 2 for all

2 [0;1]) is contained in a countable union ofr{ 1)-dimensionalC! manifolds.
As a consequence,

Proposition 1.30 ([FR19]). Let' 2 C! (BY) and letg 2 C°(@B) even with respect
t0 Xn+1. Let fu g 2p0.1) the family of solutions to the thin obstacle probler(il.54).
Then ,(u ) has dimension at mosn 3 for a.e. 2 [0;1]

And nally, combining Proposition [[.29, Proposition[1.30, and Propositiof 1.25,
we get the generic regularity theorem we wanted:
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Theorem 1.31 ([FR19)). Let' 2 C! (B?) and letg 2 C°(@B) even with respect
t0 Xn+1. Let fu g 2p0.q) the family of solutions to the thin obstacle probler(l.54).
Then, the setDeg( ) has Hausdor dimension at mostn 2 for a.e. 2 [0; 1]

In particular, the free boundary is smooth up to a lower dimensional set, for
almost every solution.

The previous theorem also holds true for obstacles with lower regularity. Namely,
in the proof of the result, only C3* regularity of the obstacle is really used.

1.11 Summary

Let us nish with a summary of the known results for the solutions to the thin
obstacle problem.

Let ' 2 C! (BY) and consider an even solution to the thin obstacle problem,
with obstacle' ,

8

< u onB\f Xy+1 =0g
u =0 inBin(fxy+ =0g\fu="9) (1.55)
u 0 IinBy:

Then, the solutionu is C11¥72 on either side of the obstacle. That is, there exists
a constantC depending only onn such that

kUKcl;lzz(BIZZ) + kUkC1;1:2(Bl:2) C K kcl;l(Bg) + kUkLl (B1) -

Moreover, if we denote (u) := fu ="' g the contact set, the boundary of (u)
in the relative topology of R", @ ( u), is the free boundary, and can be divided
into two sets

(u) =Reg(u) [ Deg(u);
the set ofregular points
( )
Regu):= x=(x%0)2 (u):0<cr32 SL(J%(U ')y Cr¥2 8r2(©r) ;
BO(x

and the set of non-regular points odegenerate points
( )

Degu):= x=(x%0)2 (u):0 sup(u ') Cr?% 8r2(@;r) ;
BP(x9

Alternatively, each of the subsets can be de ned according to the order of the
blow-up (the frequency) at that point. Namely, the set of regular points are those
whose blow-up is of ordeg, and the set of degenerate points are those whose blow-up
is of order for some 2 [2;1 ].

The free boundary can be further strati ed as

(U= 3=2[ eenl oddl rar[ [ 1; (1.56)

where:
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3= = Reg(u) is the set of regular points. They are an opem( 1)-dimensional
subset of (u), and itis C! (see[ACS08, KPS15, DS16)).

S .
even = o 1 2m(U) denotes the set of points whose blow-ups have even homo-

geneity. Equivalently, they can also be characterised as those points of the free
boundary where the contact set has zero density, and they are often called singu-
lar points. They are contained in the countable union o€! (n  1)-dimensional
manifolds; see[GP(09]. Generically, however, points in(u) have dimension at
mostn 3, and points in .y (u) have dimension at mosin  2m form  2; see
[FR19].

S
odd = 1 2m+1(U)Iis, apriori, at most (n  1)-dimensional and itis i 1)-

recti able (see [FoSp18/ KW13] FoSp19]), although it is not known whether it
exists. Generically, ,m+1 (U) has dimension at mosin  2m; seel[FR19].

S . .
haf = o 1 2m+3=2(U) corresponds to those points with blow-ups of orde%,

171, etc. They are much less understood than regular points, although in some
situations they have a similar behaviour. The set 4 is an (n  1)-dimensional
subset of the free boundary and it is ar( 1)-recti able set (see|[[FoSp1g, KW13,
FoSp19]). Generically, the set ,n+3-5(U) has dimension at mosin  2m  1=2.

is the set of all points with homogeneities 2 (2;1 ), with- 2 N and
2 2N 1. This set has Hausdor dimension at mosh 2, so it is alwayssmall,
see|[FoSp1&, KW13, FoSp19].

1 Is the set of points with in nite order (namely, those points at whichu
vanishes at in nite order). For generalC! obstacles it could be a huge set, even
a fractal set of in nite perimeter with dimension exceedingh 1. When' is
analytic, instead, ; is empty. Generically, this set is empty; seé [FR19].
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CL estimates for the fully
nonlinear Signorini problem

We study the regularity of solutions to the fully nonlinear thin obstacle problem. We
establish localCt estimates on each side of the smooth obstacle, for some small
> 0.

Our results extend those of Milakis-Silvestre [MS08] in two ways: rst, we do
not assume solutions nor operators to be symmetric, and second, our estimates are
local, in the sense that do not rely on the boundary data.

As a consequence, we prov@* regularity even when the problem is posed in
general Lipschitz domains.

2.1 Introduction

The aim of this work is to study the regularity of the solutions to the Signorini or
thin obstacle problem for fully nonlinear operators.

Given a domainD  R", the thin obstacle problem involves a functioru : D !
R, an obstacle’ : S! Rdenedona(n 1)-dimensional manifoldS, a Dirichlet
boundary condition given byg: @D! R, and a second order elliptic operatoL.,

8
ELU 0O iInDnfx2S:u(x)="(X)g

Lu O inD
2 u ' onS
: u = g on@D:

(2.1)

Intuitively, one can think of it as nding the shape of a membrane with pre-
scribed boundary conditions considering that there is a very thin obstacle forcing
the membrane to be above it.

When L is the Laplacian, theC* regularity of solutions was rst proved in 1979
by Ca arelli in [Caf79]. Later, the optimal value of was found by Athanasopoulos
and Ca arelli in [AC04], where solutions were proved to be ifC%z on either side
of the obstacle. Bore recently, this has been extended to linear operators with
dependencd = g (X)@u in [Gui09, GS14] KRS16].

Here, we study a nonlinear version of problenj (3.1). More precisely, we study
@.7) with Lu = F(D*?u), a convex fully nonlinear uniformly elliptic operator. Since

41
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all of our estimates are of local character, we consider the problemBn,

8
< F(D%u) = 0 inB;nfu="g
F(D?u) 0 inB; (2.2)
u " onBi\f x, =0g¢:

Here,' :B;\f x, =0g! R is the obstacle, and we assume that it i€, We
study the regularity of solutions on either side of the obstacle.
We assume that

F is convex, uniformly elliptic (2.3)
with ellipticity constants 0 < ; and with F(0) =0:

When u is symmetric, this problem was studied by Milakis and Silvestre in
[MS08], and is equivalent to

F (D%u)
maxf uy, ;' ug

0 in BJ

0 onB;\f x,=0¢: (2.4)

Moreover, they also implicitly assume a symmetry condition on the operatdt, in
particular, that F(A) = F(A), where A, = A = Aj, = A, fori<n and
A; = A; otherwise. Under this assumption, they proved interio€* regularity up
to the obstacle on either side by also assuming that ' + " on @B\f x, =0g,
for some"” > 0. Equivalently, they assume that the coincidence set is contained in
some ballB; for some > 0. This assumption is important in [MS08] to prove
semiconvexity of solutions.

Our main result, Theorem[ 2.1 below, extends the result df [MS08] in two ways.
First, we do not assume anything on the boundary data, so that we give a local
estimate. Second, we consider also non-symmetric solutian® (2.2)) with operators
not necessarily satisfying any symmetry assumption, and pro@" regularity for
such solutions.

In the linear case, one can symmetrise solutions tp (.2), and then the study of
such solutions reduces to problenj (3.4). However, in the present nonlinear setting
an estimate for [2.4) does not imply one for| (2]2).

Our main result is the following, stating that any solution to {2.2) isC* on
either side of the obstacle, for some smalb 0.

Theorem 2.1. Let F be a nonlinear operator satisfying(2.3) and let u be any
viscosity solution to ([2.2) with ' 2 C**. Then,u2 C* (B;,,)\ C* (B,,) and,

kUkcl; (@) + kukcl; (z) C kUkLl (B1) + k' kcl;l(Bl\f Xn=00)

for some constants > 0 and C depending only om, , and

Our proof of the semiconvexity of solutions is completely di erent from the one
done in [MS08] and follows by means of a Bernstein's technique. On the other hand,
to prove the Ct regularity in the non symmetric case we follow [Caf79, MSD8], but
new ideas are needed. We de ne a symmetrised solution to the problem and follow
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the steps in [Caf79] and [MS08] using appropriate inequalities satis ed by the sym-
metrised solution. This yields the regularity of the symmetrised normal derivative
at free boundary points. Then, we show that this implies th&€® regularity of the
original function u at free boundary points, by using the ideas from [Caf89]. Finally,
we show that the regularity ofu at free boundary points yields the regularity of
the symmetrized normal derivative at all points onx, = 0, and that this yields the
regularity of u on either side of the obstacle.

As an immediate corollary it follows an estimate when the thin obstacle problem
Is posed in a bounded Lipschitz domai® R".

Corollary 2.2. Let D R" be a bounded Lipschitz domain, and l&&¢ b D. Let
F be a nonlinear operator satisfying2.3). Let* : D\f x, = 0g! R be aC"!
function, and letu be the solution to

g F(D?u) = 0 inDnfu="g
F(D?u) 0O inD

3 u " onD\f x,=0g

’ u =g on@Db;

(2.5)

for someg 2 CO(@Diet K*:= K\f x,>0gand K := K \f x, < 0g. Then,
u2 Ct (K*)\ C¥ (K ), with
kUl‘(C]_; (F) + kUKcl; (K7) C kgkLl (@D + k' kcl?l(D\f xn=Og)

for some constant > 0 depending only om, , and , and C depending only on
n, , ,D,andK.

Let us introduce the notation that will be used throughout the work. We denote
x =(x%x,) 2 R" and

B, = fx°2R" 1:(x%0) 2 B,g:

The obstacle’ is de ned onB, seen as a subset &", and problem [2.2) is written

as 8
< F(D%u) = 0 in Bynf(x%0):u(x%0)="(x9g
F(Du) O in B,
u(x%0) "(x9  for x°2 B;:

We also denote
Bi = f(x5%,) 2B1:Xy > 0g; (@B)" = @B\f x, > 0g;

and analogously we de neéB, and (@B) . On the other hand, we call the coinci-
dence set
=fx2B,:ux%0)="(x%; = f 0g;

and its complement inB, is denoted by
=B;,n ; = f Og:

Our work is organised as follows. In Sectign 2.2 we give a Lipschitz bound and
prove semiconvexity of solutions. Then, in Sectidn 2.3 we prove Theorém|2.1.
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2.2 Lipschitz estimate and semiconvexity

2.2.1 Lipschitz estimate

We begin with a proposition showing that any solution to[(2.R) is Lipschitz, as long
as the obstacle iC*,

Proposition 2.3. Let u be any solution to(2.2) with F satisfying (2.3) and " 2
CY1. Then u is Lipschitz in B1-, with,

kUkLip(Bl:z) C kuk;: By T K' kcl;l(Bl) ; (2.6)
for someC depending only om and the ellipticity constants and

Proof. We will extend the obstacle to a function h de ned in the whole B4, and we
treat u as a solution to a classical \thick" obstacle problem. We de né separately
in B] and B, , as the solution to

8
< F(D%h) = 0 in By
h = Kk uku:@,) in(@B)* (2.7)
h(x%0) = ' (x9 for x°2 By;
and analogously
8
< F(D?%h) = 0 in B,
h = Kk uku:g,) in(@B) (2.8)
h(x20) = ' (x9 for x°2 B;:

Notice that h is Lipschitz in B;-g; see([MS06, Proposition 2.2]. By denoting
Ko = kuk: By T k' kcl?l(Bl);
we have
khkLip( B=g) CK 01

and by the maximum principleu  h. Moreover,u is a solution to a classical obstacle
problem in B; with h as the obstacle. We show next that this implies is Lipschitz,
with a quantitative estimate.

To begin with, sinceh is Lipschitz, xed any Xy 2 B;-, and 0<r < 14, there
exists someC, depending only onn, , and such that

sup jh(x) h(xg)] CoKor: (2.9)

Br (XO)

Notice that, by the strong maximum principle, the coincidence setu = hg is
, the coincidence set of the thin obstacle problem. Suppose then thaty 2 , i.e.,
u(Xe) = h(xg). Sinceu h, in particular we have that

inf (u(x) u(Xo)) CoKor: (2.10)
B (Xo)
becauseh is Lipschitz. Now let

a(x) = u(x) u(xg)+ CoKor:
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We already knowq 0 in B,(xo). On the other hand, from {2.9),
g(x) 2CoKor on B;(Xp)\
Moreover, g is a supersolution,
F(D?g)= F(D?u) 0 in B;(Xo):

Let g be the viscosity solution toF (D2g) =0 in B,(Xg) with g= ¢ on @B(xo).
We haveq qin B, (Xo) and by the non-negativity of g on the boundary,q 0 in
Br(XO)-

Thus, q < q+2CoKor on @B(Xp), andgq q+2CoKor in B, (Xo)\ . Therefore,

g g+2CoKor in B;(Xo):

On the other hand, we know 0 q(Xo) q(Xxo) = CoKor, and by the Harnack
inequality, g CCyKor in B,=2(Xg). Putting all together we obtain that u(x)
u(xo) CCoKor for some constantC > 0. Thus, combining this with (2.10),

sup ju(x) u(xo)j C kuki: g,y + K ke, I (2.11)

By (XO)

for some constantC depending only onn, , and .

We have obtained that the solution is Lipschitz on points of the coincidence set.
Let us use interior estimates to deduce Lipschitz regularity insidB ;.

Take any pointsx;y 2 B, and letr = jx yj. De ne

=minfdist(x; ) ;dist(y; ) o;

andletx ;y 2 , x =(x%0),y =(y%0)forx%y°2 |, be such that dist(; ) =
jX xjanddisty; )= jy vy j. We now separate two cases:
If 4r, then

ju) u)i joue) ueO)i+july)  uly)i+it(x9 O
C +C(r+ )+2C(r+ ) Cr

for some constantC. We are using here that is Lipschitz and that if jx x =
thenjy yj r+ andjx yj 2+ ).

If > 4r, we can use interior estimates. Supposeis such that dist(x; )=
and noticeB-,(x) Bin,sothatin B_-,(x), F(D?u)=0. We can now use the
interior Lipschitz estimates (see, for example, [CC95, Chapter 5]),

C
[Uips.,) —0SG_,xu C

for some constantC. We are using here that the supremum and the in mum ofi
in B -,(x) are controlled respectively byC +' (x )and C + ' (x ).
Thus, we have proved that the solution is Lipschitz inB;-,, with the estimate

2.9). 0
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2.2.2 Preliminary consideration

Before continuing to prove the semiconvexity and semiconcavity result, we introduce
a change of variables that will be useful in this section and the next one. Notice that,
given a functionw, we can express the nonlinear operatdt as

F(DW(x)) = sup LT @, w(x)+ ¢ |
2

for some family of symmetric uniformly elliptic operators with ellipticity constants
and , LY@y, indexed by 2 . Since F(0) = 0, there is some symmetric
uniformly elliptic operator from this family given by a matrix [ such that

tr(CD 2w(x)) = £V @, w(x) F(D?W(X)):

We now change coordinates in such a way that the matrix of this operator in the
new coordinates, denoted' s, fulls £ = (Y =0 for i < n . More precisely, if we
denote'°the matrix in Sym, , given by then 1 rstindices of (*, and we denote
(0 =(C™Mm); ; , 1 the vector of R" %, we change variables as

X 7'y = AX;

whereA is the matrix given by
0

anda= (9 ! [%is avector inR" 1. We de ne the new nonlinear operato as
F(N)= F(ATNA); forall N 2 Sym,;

so that it is consistent with the change of variables, in the sense that W(y) =
w(A 1y), then F(D?w(x)) = F(D2w(y)).

We trivially have that F is convex andF(0) = 0. In the new coordinates we still
have that C',& @y, is a symmetric uniformly elliptic operator, but now the ellipticity
constants and have changed depending only om, , and . The same occurs
with all the operators in the family de ning F, so that after changing coordinates,
F is still a convex uniformly elliptic operator with ellipticity constants depending
onlyonn, ,and .Indeed, for any matricesN;Np 2 Sym, , with Np 0 we have
that (using the de nition of uniform ellipticity in [CC95,| Chapter 2] and noticing
that ATNpA  0),

KA 'k 2kNpk  KATNpAk F(N + Np) F(N) KATNpAk  kAKk?kNpk;

and it is easy to boundkA k and kAk from the de nition of A, depending only on
n, and .

After changing variables, the regularity of the solution remains the same up to
multiplicative constants in the bounds depending only om, , and .
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As an abuse of notation we will call the new variable x,), the new operator
F, and the new ellipticity constants and , understanding that they might depend
on the original ellipticity constants and the dimensionn. This will not be a problem,
since in all the statements of the present work, , and appear together in the
dependence of the constants.

Thus, throughout the paper we will assume that there exists a xed symmetric
uniformly elliptic operator ' such that

(' @yxw F(D?w); and (" =" =0 for i<n: (2.12)
This change of variables is useful because, for any function
£V @ (WS xn)) = LV (@ W)(XS Xn);

which will allow us to symmetrise the solution and still have a supersolution for the
Pucci extremal operatorM . We also use it to prove a semiconcavity result from
semiconvexity in the following proof of Propositior 214.

2.2.3 Semiconvexity and semiconcavity estimates

We next prove the semiconvexity of solutions in the directions parallel to the domain
of the obstacle. To do it, we use a Bernstein's technique in the spirit of [ACO4].

Proposition 2.4. Let u be the solution to(2.2). Then
(a) (Semiconvexity) If =( ;0), with  a unit vector in R" 1,

inf u C kuki: ) + K keuis,) ;

B3=4
for some constantC depending only om, , and
(b) (Semiconcavity) Similarly, in the direction normal toB, f 0g,

SUpUy, x, C kUkLl (B1) + k' kcl;l(Bl) ;
Ba-s

for some constantC depending only om, , and

Proof. The second part, (b), follows from (a) using the de nition of uniformly elliptic
operator and the fact that we changed variables (in the previous subsection) in order
to have matrix  ful lling (4.12). We denote by ['°and D2 ,u the square matrices

corresponding to then 1 rst indices of [ and D2u respectively. Now, from
i@y ux) 0 C"=C"=0 for i<n;

and
Drz] U C kUkLl (B T k' kC131(Bl) |dn 1,

we directly obtain that

1
(M@, x, U (T@xu  C kuk: gy + K keug,) trC®
iij =1
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The desired bound follows becaude™ is bounded below by and tr(C9 is bounded
above by 0 1).

Let us prove (a). As in the proof of Propositior] 2]3, we de né1 as the solution
to

g F(D%h) = 0 in By E F(D%h) = 0 in B,
h = Kk uky: @, in(@B)* _ h = Kk uky: @, in(@B)
h(x20) = ' (x9 x°2 B, © h(x%0) = ' (X9 x°2 B;:
(2.13)
Recall that h is Lipschitz and that, by the strong maximum principle,u > h in B},
andB_,.

De ne now, for " > 0,

h-(x% xp) == " (x9 Xa

and
h.(x% x,) ;= max h(x%x,);h-(x%x,) :

Since,h is Lipschitz continuous andh(x% 0) = h-(x% 0), this implies that there exists
a constantC > 0 depending only om, , and such that

h(x%x,) > h-(x%x,) for jx,j>CK " (2.14)

where we de ne
Ko = kuk 1 By T k' kC1?1(Bl):

In particular, h- is Lipschitz continuous inB;=g, uniformly on ".
Let u- be the solution to the \thick" obstacle problem with obstacleh-,

g F(D?u) = O in Bynfu. = h.g

F(D2u) 0 in B, (2.15)
3 u- = maxfu;h.g on@B;) '
' U- h- in BT ;

and the analogous expression iB, . By (2.14), the coincidence set satis es
fue=hg f h.>hg f (x%x,)2B1:jxnj CKg"g

for someC > 0. We want to bound @ u- from below independently of".

Notice that D?(u- h.) 0 in the coincidence set, and since-  h-, this also
occurs along the free boundary. By the de nition oh- and recalling that h- = h.
in the coincidence set, this implies@ u- CKyp in fu- = h.g\ Bz, for some
constant C depending only onn, , and . Thus, it is enough to check that @ u-
is uniformly bounded from below outside the coincidence set. We proceed by means
of a Bernstein's technique.

Let 2 C! (B7=s) be a smooth, cuto function, with 0 1 and 1in
Bs-s. De ne

f+(x) = (X)@ u-(x) ir u(x)j?
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for some constant to be determined later. Notice that, sinceh- is Lipschitz con-

tinuous independently of" in Bs=g, then jr u-(x)j is bounded independently of in

B.=g. If the minimum X, in B,=g Is attained in the coincidence set, ther® u-(Xq)
CKy and we get that for everyx 2 By,

@ u-(x) CKo jr u=(x0)j?+ jr u-(x)j? CKo  kr ukfi (g, (2.16)
If the minimum Xg is attained at the boundary, @B-g, then for everyx 2 Bz,
@ u-(x) ir u(x0)j?+ jr u-(x)j? kr ukfs gy (2.17)

Let us assume now that the minimunmxg of f+ in B, is attained at some interior
point Xo outside the coincidence seftu- = h-g.

Let us also assume that the operatoF not only is convex, but alsoF 2 C! , so
that solutions are C* outside the coincidence set (see the end of the proof for the
general casd- Lipschitz). In this case, the linearised operator oF at Xg,

Lov = a; Vi = Fij (DZU" (Xo))Vij ;
is uniformly elliptic with ellipticity constants and . Moreover, for any 2 S" 1,
Lour(Xo) 0 Lo@u-(Xo)=0; Lo@ u-(xo) O (2.18)

This is a standard result, which can be found i [CC95, Lemma 9.2].
For simplicity in the following computations we denotev = u-. If X is an interior
minimum of f. (which is a C? function) in B;-g, then

O=rf-(Xg)=(r w + rw 2W ir w;)(Xo); (2.19)
and by (2.18) and the fact that (g; ) is elliptic,
0 afej(Xo) (a5 jW +2a; Wy 2aj Wy W) (Xo): (2.20)
Combining (2.19) and [2.2D), we nd

& ij aij iWij Wik

0 ajj j 2 w 2a i Wij Wi + 4

(Xo): (2.21)

Observe thatjr j> C (sincep ~is Lipschitz). Therefore, for some constant€,
and C; depending only onn and

0 Cojw j+ C1jD?wjir wj 2ajwgWg (Xo):
Usingjw (Xo)j j D?wW(Xo)j and the uniform ellipticity of (a; ),
ajj Wi W C (n)jD?wj?;

we obtain c
iD2W(x)] =2+ Cajr w(xo)j;
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for some constantCy and C; depending now also on. Now, sinceXq is a minimum
in B;=g, for any x 2 B3z,

w o (x) (X)W (Xo)  jr u(x0)j®+ jr u-(x)j?
j D®W(xo)j  kr u-kl: g (2.22)

Co
= Cikr ukis g,y kr ukf (B7=g)"

We now x = kr u-k i g . Notice that, in all three cases|(2.16),[(2.17), and
(2.22), we reach that for some constart depending only onn, , and ,
!

inf @ u- C supjr uj+ Kg

Ba=s B7=s

We had already seen thatu- is Lipschitz continuous independently of' > 0 and
controlled by the Lipschitz norm ofu, so that by Proposition (2.3),

inf @ u- C kUkLip(B7:8) + k' kcl;l(Bl) + Ko C Kkuk: ChN k' kcl;l(Bl) :

B3=4
(2.23)

If F is not smooth, then it can be regularised convoluting with a molli er in the
space of symmetric matrices, so that it can be approximated uniformly in compact
sets by a sequencéFcgy,n Of convex smooth uniformly elliptic operators with el-
lipticity constants and ; also, by subtracting F¢(0), we can assumd-,(0) = 0.
Note that, in B7—g and for every" > 0 we have uniformC estimates ink for the
solutions to (2.15) with operatorsFy, since the obstaclé is in C** in a neighbour-
hood of the free boundary. By Arzeh-Ascoli there exists a subsequence converging
uniformly, and therefore, the estimate[(2.23) can be extended to solutions ¢f (2.15)
with operators not necessarily smooth. Thus[ (2.23) follows for ay not necessarily
ct.

Note that u- converges uniformly tou, since for all > 0, there exists somé > 0
small enough such thawi+ >u- uin B;.

Since the right-hand side of[(2.23) is independent bf and u- converges uniformly
to uin B;—g as" #0, we nally obtain

inf u C kUkLl (B T k' kcl;l(Bl) , (224)

B3=4

as desired. n

2.3 CLT estimate

2.3.1 A symmetrised solution

By the results in the previous section we know that u is bounded in the interior
of B;. Moreover,uy, «, is bounded from above insid®;. In particular, the following
limit exists

(x9 = Xlirpm Uy, (X% Xn) Xli[rg Uy, (X% X,) = )!iryw Uy, (X% Xn) Uy, (X% Xp) -
(2.25)



51

A main step towards Theore 1 consists of proving that 2 C (B,_,) for some
> 0. We will prove this in this section.
We begin by noticing that (x% =0 for x°2  (by the C?% interior estimates),
where we recall that = fx°2 B, : u(x%0) >' (x9g. In general, however, we
have the following:

Lemma 2.5. The function de ned by (2.25) is non-positive, i.e., ~ 0in B;.

Proof. Suppose it is not true, and there exists some® 2 B, such that (x% > 0.

Let > ObesuchthatB (x9 B,, so that by the semiconcavity in Propositio} 2.4
applied to B =»((x%0)), uy,x,(x%0) C for some constantC, that now depends
also on . However,

(X(b = ”TO+ (Ux, (XO; Xn) Uy, (XO; Xn)) > 0;

which means
Ux, (X% Xn) Uy, (X% Xp)

2Xp
a contradiction with the bound in uy, x, . ]

Il +1; as x, #0";

We will now adapt the ideas of[[Caf7/9] to our non-symmetric setting. For this,
we use a symmetrised solution, de ned as follows

(x5 xn) + u(x%  Xn),

v(x% x,) = 5 . for (x®x,) 2 By: (2.26)
Hereu is any solution to (2.2).
Notice that
(x%=2 Iir;g) Vy, (X%%,) O (2.27)
Xn #0*
is well de ned, and in particular, we have that
(x9=2v,, (x%0)=0; forx°2 (2.28)

The following result follows from the results in the previous section. We will
use the notationM * and M  to refer to the Pucci's extremal operators with the
implicit ellipticity constants and (see [CC95, Chapter 2] for the de nition and
basic properties of such operators).

Lemma 2.6. Let u be a solution to the nonlinear thin obstacle probleif2.d), and
let v be de ned by(2.26). Then v is Lipschitz in B;_, and satis es

M (D?) 0 in By (2.29)
maxf vy, (x%0);' (x9 v(x%0)g = 0 for x°2 By: '
Moreover,

(a) (Semiconvexity) If =( ;0), with  a unit vector in R" 1,

inf v C kukp: g,) + K Keuis,)

B3=4

for some constantC depending only om, , and
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(b) (Semiconcavity) In the direction normal toB, f 0g,

SUPVx, x, C kUkLl (B1) + k' kC131(Bl) ;

Bs=4
for some constantC depending only om, , and

Proof. The Lipschitz regularity comes from the Lipschitz regularity inu, proved in
Proposition[2.3.

In (2.29) the rst inequality follows thanks to the change of variables introduced
in Subsection. Indeed, there exists some operator given by a mattixas in
(2.12) uniformly elliptic with ellipticity constants ~and such that

LV @y (XS xa)) = @y (XS xa)  F(D2U)(XS xa)) O

so that )
M (D%) Ci@yv O

as we wanted.

The second expression ir (2.29) follows from equations (3.2[7)-(2.28), Lenjma 2.5
and the fact that v(x%0) = u(x%0) for x°2 B;.

Finally, the semiconvexity and semiconcavity follow from Propositioh 214. [

2.3.2 Regularity for on free boundary points

The next steps are very similar to those in_[Caf79] (and [MSD8]), but we adapt them
to the symmetrised solutionv instead of u. For completeness, we provide all the
details. We begin with the following lemma, corresponding to [Cafl79, Lemma 2] (or
[MS08, Lemma 3.3]).

In the next result, we call' the extension of the obstacle t@B, i.e.' (x%x,) :=

' (x9.

Lemma 2.7. Let v be the symmetrised solutior(2.26). Let be a constant such
that > supj' jforany aunitvectorinR" ! f 0Og. Let xo2 xed and ,
denote the function

xo = (Xo)* T (X0) (X Xo)* jx X* (0 1)—xj:

Then, for any open setUy, such thatxo 2 Uy, Bj,

sup (v ) O
@W,\f xn>0g

Proof. Dene w=v x, and notice that by de nition of ,, and the fact that v
is a supersolution forM , we havew(xg) 0 andM (D?w) 0. Therefore, we
can apply the maximum principle onUy, n (recall is the coincidence set) and
use the symmetry ofw to obtain that

sup (Vv x) O
@Ux,n) \f xn 0Og
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Now notice that on the setfv = u= " gwe have that ,, >' , sincex,2 and
> supj' . Thus,v xo < 0 on this set, so that

SUp (V Xo) = SUp (V Xo) 01
@Uxyn) \f xn Og @Y, \f xn>0g

and we are done. O

We now proceed with the following lemma, corresponding to [Cai79, Lemma 2]
(or [MSQO8, Lemma 3.4]).

Lemma 2.8. Let v be the symmetrised solution as de ned i2.26), and let as
dened in .28} R.27). Let xo = (x3;0)2 and deneS = fx°: (x> g
Then, for suitable positive constant€, C, and o and for all 2 (0; ) there exists
a ballB. (x9 for x°2 B, such that

Bc X Bz (x)\ S:
The constantsC, C, and o depend only om, , , k' kciig,), and kuk.: ..

Proof. We apply Lemma[2.7 withU,, = B¢, (xo) ( C,;C. ) for some constants
to be chosenC;  C,, and study two cases.

Assume sup{ y,) is attained at a point (x?%;y;) (for x 2 R" 1,y 2 R)
on the lateral face of the cylinderUy,, i.e. with jx§ x3j=C; and0 vy, C, .
Then we have

OBy TR (0 osupi DXt xgi® (0 1)-yf
( supj CZ? (0 1)-C;?* GCg¥

providedthat C;,  C,. The positive constantC; depends only on , n, the ellipticity
constants,C;, and C,. Thus,

V(Xg;yl) Xo(xcl);yl) ' (Xg)-{- Cs %

Now pick ax3 2 B, (x}) for some positive constaniC, to be chosen and X3
X)) r (v ")(X%y) 0. We are considering heré in the whole B; by simply

0 0
x3 x§ .

putting ' (x%y) = ' (x9. Take = x>0 0, and use the semiconvexity from
Lemmal2.6 together with the fact that' 2 C?! to get

' 0. —
(V )(XZ’yl)_ ZZ
=(v )(XGYD) (X XD r(v (XS ya) + (v ")
[(x25y1);(x35y1)]
C: 2 Cjx3 x%% (C; CCy) 2>0;

if C4 is chosen appropriately, small enough depending only @, k' Kz and the
semiconvexity constant of Lemma 2|6. Here, and in the next steps, ., denotes
the double integral over the segment between the pointsand b,

zZ Zipa Zs b a
w = w a+t - -t dt ds:
[a;b] 0 0 jb g
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To get a contradiction, now suppose thatxd 2 S . In particular, this means
v(x3;0) = ' (x3), and from (2.27) and the semiconcavity in Lemma 2|6 we get

7
0
(X3) +

(v )XHYD) =(v U )(X3;0)+ y:

VXn Xn
[(x3;0);(x35y1)]

1
y1§+Cyf y1. CGC, 5 0

if C, is small enough depending only on the semiconcavity constant of Lemina 2.6.
Thus, we have reached a contradiction.

Assume now that supy x,) is attained at a point (x9;y;) in the base of
the cylinder Uy, i.e. with jx9 x3j C; andy; = C, . Then, from > supj' |,
we deduce

vix3iy)  xe(xBy) ' (x) (n 1)-CE %

Now choosex) such thatjx x%<C, and (x5 x9) r (v ")(x%y1) O.
As before,

(v )Xy = 27

=(v )G Y) (x5 X9 roe(v T )(XEyn) + (v ")
[(x25y1)5(x35y1)]

(n 1)-C3 2 cCjx3 x? cC: (n 1)—+C 2%

Now, if X3 2 S then v(x3;0) = ' (x9),
0 2 = 1 2 2
(v " )(X35y1) C2§ + Vin xn éccz C, :
[(x9:0);(x3;y1)]
The contradiction follows if one choose€, small enough, depending only on, n,
, , and the semiconvexity and semiconcavity constants from Lemmp 2.6. [

The following lemma is useful to prove the&C regularity of , and can be found
in [MS0&, Lemma 3.5]. It follows from an appropriate use of the strong maximum
principle for M, the Pucci's extremal operator.

Lemma 2.9 ([MSOE]). Let w be a non-negative continuous function B, (0;1)
that solves
M (D?w) O in B, (0;1):

Assume
limsupw(x®x,) 1 for x°2 B (x9;
Xn #0O*

for some ballB (x% B,. Then

13

w(x) ">0 for x2B,, 22 :

for some" depending only on, and the ellipticity constants and
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We now show the following lemma, analogous to [Cai79, Lemma 4] (or [MS08,
Lemma 3.6]).

Lemma 2.10. Let as de ned in (2.25)(2.27), for u the solution to the thin ob-
stacle problem(@.2). Let x3 2 , then

(x)  C kuki: (g, + K keig,y jx° xgj ; for x°2 B,
for some > 0 and C depending only om, , and
Proof. De ne
Ko := kuk.: g,) + K kcl;l(Bl);
and notice that by taking u=Kg instead ofu if necessary we can assume
kuk 1 Bt k' kcl;l(Bl) 1
Indeed, ifKg 1 then

Fro(DU) = KiOF(DZ(Kou»;

is a convex elliptic operator with ellipticity constants and , and u=Kj is a solution
to the nonlinear thin obstacle problem for the operatoFg , with obstacle'=K . In
this case,
Ku=Koki: g,y + K=K okeangg,y = 1;
as we wanted to see. Thus, from now on we assuidg 1.
Using Lemmasg 2.5 216, 218 ar[d 2.9, now the proof of this lemma is very similar
to the proof of [MS08, Lemma 3.6]. We give it here for completeness.
We will show
x)  Cix° x; (2.30)
with C and > 0 depending only om, , and .
Recall that (x9 = 2lim, 40 V, (x%X,), and that from Lemma [2.6, vy, is
bounded andv,,x, C. Moreover, is non-positive by Lemmg 2.5, so that,
Cx, for x, > 0.

In order to reach [2.30) we will provevy, (x) kK for x 2 B (x3) (0; X).
Assume this has been already proved for sorkewith 0 < < 1, and consider
the function

Vet K 0 .k
W= T e inB «(xg) (O %)

for small enough. Notice thatw ful Is the hypotheses of Lemmd 2.9, so that using
it together with Lemma|[2.§ we get

Vo) Ka(C R ke
forx 2 B ,(x§) ( *=43 *=4), since . Now, by means of Lemm6,
Vkaxa  C, and therefore, for anyy = (y%yn) 2 B (,(xQ) (0; *=4],
Z
VXn (y) VXan (yo; S)dS+ VXan (yo; k:4)
Yn
k
1
- k ~u k.
C i U *30 5
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so that we obtain L L
k + =n k = C k
VXn (X) 2 4

forx2 B k:2(x8) (0;3 k=4). To end the inductive argument we must see

1 1
k+1 k ~un k +=-C k.
2 4 '
For this, we pick so that the right-hand side is smaller than (1 3") X,
with  larger than 1 Z". Then, the inductive argument is completed, and[(2.30)
follows. O

2.3.3 Proof of Theorem 2[1 ]

Before proving our main result, let us show the following compactness lemma.

Lemma 2.11. Let F be a nonlinear operator satisfying[2.3), and letw be a con-
tinuous function de ned onB;. Suppose thatv satis es the problem

F(D?w) =0 in B; [ By; (2.31)

and that
kwki 1 (g,) = 1; Wliipcs,) 1

Let be the solution to

F(B*) (2.32)

and let us de ne the following operator
~(w) = lim_((@, w)(xShn)  (@,w)(X% hp)):

Then, for every"” > 0 there exists some = (";n; ; ) > 0 such that if
kK~(W)ki: 8,) <

then
k Wk|_1 (B1) <™

l.e., approximatesw as goes to O.

Proof. Let us argue by contradiction. Suppose that there exists some xeti> 0,
a sequence of functionsy, and a sequence of convex nonlinear operators uniformly
elliptic with ellipticity constants and , Fy, with F(0) = 0, such that

F«(D?w)=0in B] [ B, (2.33)

and
kwikis gy =1, Wilipey L



57

with
kK~(Wi)kL: 8,) < « (2.34)

for some sequencec ! 0, but such that
K« Wwikkir@gy (2.35)
for all k, where | is the solution to

Fc(D? &)
k

0 in B1
W, on @B:

(2.36)

By Arzeh-Ascoli, up to a subsequencew, converges to some functionv uni-
formly in B, with kwki: g,) = 1. On the other hand, sinceF,(0) = 0 and they
are uniformly elliptic and convex, they converge up to subsequences, uniformly over
compact sets, to some convex nonlinear operatbruniformly elliptic with ellipticity
constants and such that F(0) = 0. Notice also that  converges uniformly to
the solution to

F(D2) = 0 in By
- W on@B: (2.37)
and in the limit we obtain, from (2.35),
k wk 1 (B1) "> 0 (238)

Now consider the functionwy + ¢jX,j on B;. From (2.34), wi + (jXnj now has
a wedge pointing down in the seB; [f x, =0g, i.e.,

~(Wk + «jXn)) k>0, in By:
Therefore, sincem(D?wy) =0 in By [ B, , we have that, in the viscosity sense,
Fu(D*(Wi + «jxaj)) 0; in Ba:

Now, passing to the limit, noticing that w, + «jx,j converges uniformly tow and
using [CC95, Proposition 2.9], we immediately reach that, in the viscosity sense,

F(D?w) O; in Bx:

Repeating the same argument fow,  jXnj we reachF (D?w) 0in B, to nally
obtain

F(D?w)=0; in Bu:
This impliesw = in By, which is a contradiction with (2.38). O
Using the previous results, we now give the proof of Theorgm P.1.

Proof of Theorem[2.1. We separate the proof into three steps. In the rst step we
prove that the solutionu is C¥ around points in by means of Lemmak 2.10 and
[2.17. In the second step, we use the result from the rst step to deduce thatis C

in B,_;, to nally complete the proof in the third step.
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As in the proof of Lemmgd 2.1D we assume
kuk 1 B T k' kClil(Bl) 1;

to avoid having this constant on each estimate throughout the proof.

Step 1. Let us suppose that the origin is a free boundary point. Under these cir-
cumstances we will prove that there exist some a ne functiorl. = a+ b x such
that

ku Lk, Cr'*; foralr O (2.39)

for some constant<C and > 0 depending only om, , and . To do so, we proceed
in the spirit of the proof of [Caf89, Theorem 2].
Notice that from Lemma[2.10 we know that there exists > 0 such that

j x9)  jx§; forallx°2B;: (2.40)

Up to replacing from the beginningu(x) by u(rox) with ro 1, we can make as
small as necessary. The choice of the value @f and consequently the magnitude
in which the constant is made small, will depend only om, , and .

Let us show now that there exists = (;n;; ) < 1 and a sequence of ane
functions

Le(X) = ax + b X (2.41)
such that
ku Likeig,) <) (2.42)
and
jax a1 C k@a+ ); jbe b1 C k (2.43)

for some constantC depending only onn, , and .
We proceed by induction, takingL o = 0. Suppose that thek-th step is true, and

consider
(U L) *x).

K ) ; for x 2 By:

Wi (X) =
Begin by noticing that
F«(D?w)=0in B] [ B,

for some operatorFy of the form (2.3). On the other hand, from the induction
hypothesis,
kwikg, 1

Moreover, if we de ne
(X9 = Iirg;0 (@, wk(x%h) @ ,w(x% h)); forx°2 By;
then one can check that, from[(2.40),

ICSTRPS I
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We apply now Lemma[ 2.1]L. That is, giver! > 0 small, we can choose small
enough such that
kvii Wik sy "

wherevy is the solution to

Fr(D?v)
Vk

0 in B1
W, on @B:
Notice that, by interior estimates, v, is C¥ in B;-, with estimates depending

onlyonn, ,and . Then, let |y be the linearisation ofv, around 0, so that up to
choosing ,

(2.44)

kwi Ikt (B) K we vkt )t kvi ks (B )
" + C 2 1+ .

where C depends only onn, , and , is chosen small enough depending only
on ,n, ,and sothat C 2 11  and is chosen sothat 3 '* .ltis
important to remark that the choice of depends only om, , and .

Now, recalling the de nition of wy, we reach

UL ke (keD)+ ).
LY (B k+1)

so that the inductive step is concluded by taking

X
Lk+1(X): Lk(X)+ k(1+ )lk —

By noticing that there are bounds on the coe cients of the linearisation ofvy
depending only onn, , and , the inequalities in (2.43) are obtained.

Once one has[(2.41)[(2.42), and (243), de nke as the limit of L, ask ! 1
(which exists, by (2.438)), and notice that, given any &< r = * for somek 2 N,
then

X
ku Lkg: (Br) k u Lk @)t ij.,.]_ Lj K1 (Br) Crt*
ik

for someC depending only onn, , and ; as we wanted.

Step 2: In this step we prove that the function de ned in (2.25)-(2.27) isC (B,.,)
forsome = (n;; ) >0, and

K ke (s C: (2.45)

2:3)

for some constantC depending only onn, , and .
We already know is regular in the interior of  (by boundary estimates) and
; respectively the coincidence set and its complement B, . In particular, from
the interior estimates O0in . Fom Lemma[2.1D0 we also obtailC regularity
at points in @ . Namely, we have that given x3;0) = x02 @

i x9j Cjx° x3j ; forx°2 By; (2.46)
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for some constantC depending only onn, , and .
Therefore, we only need to check that givem;y 2 , x = (x%0),y = (y%0),
then there exists someC depending only onn, , and such that, if jx yj=r,

i) o9 Cr:

Let R := dist( x; ) and suppose that dist(x; )  dist(y; ). Let z=(2z%0),z°2
@ , be such that dist(x; z) = dist( x; ), and assume that lim, s+ r u(z%x,) =0
andr o' (29 =0 by subtracting an a ne function if necessary. Notice that we can
do so because we already know from the rst step that has aC' estimate around
z° Let us then separate two cases:

If R < 4r, then using (2.45)

P i < @i+ ) (@
CR +(R+r))
Cr :

In the caseR  4r we need to use known boundary estimates for this fully
nonlinear problem and the previous step of the proof. Notice that® y°2 B,_,(x9

Br(x9 , and u restricted to B (x9 is thus a C*? function, sinceu = ' there.
In particular, we use that under these hypotheses

1+ 2n .
R™ [ule., (Br_,(x) C 0sG: U+ RT Jere, o)

see, for example, [MS06, Proposition 2.2]. Now, remember that the gradientwoét
z is 0, so that from the previous step using the bound (2.39) arourd

jup '@ Cip zY CR' for p2 B4 (x): (2.47)

In particular, 0sg;+ ,yu CR' , and thus, this yields

Wew giop ©

from which (2.45) is proved.

Step 3: Our conclusion now follows by repeating Step 1 around every point @y, .
Notice that in the rst step we only used that the origin was a free boundary point

to be able to apply Lemmd 2.10 in[(2.40).

Now, given any pointz°2 B,_,, we can consider the functioru, given by

u(x) = u(x)  (2)(xn)";

where (,)* denotes the positive part ofx,.
Note that this function ful Is the hypotheses of Step 1, in particular,

i (X9 := Iri]gg(@nuz(xa,h) @,u(x% h) Cjx° z§; forx°2By;

for some constantC depending only onn, , and .
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By repeating the exact same procedure as in Step 1, we reach that for every point
z2 B [f X, =0g, and for everyx 2 B there exists somé.} a ne function such
that

jux) L;j Cix zi*";
and the same occurs i, for a possibly di erent a ne function L, . Therefore, in
particular,
kUkcl; (B,_,) C

for someC depending only onn, , and .

To nish the proof, we could now repeat a procedure like the one done in Step 2,
or directly notice that solutions to the nonlinear problem withCY boundary data
are CY up to the boundary (see, for example [MS06, Proposition 2.2]). m

We nally give the:

Proof of Corollary[2.2. It is an immediate consequence of Theorgm 2.1. Indeed, con-
sider balls of radiusRq := dist( K; @D around points onK \f x, = 0g and apply
Theorem[2.]. To cover the rest oK we use interior estimates, and the result follows
by noticing that kuk,: (py K gki: (@g *+ K' k2 by the maximum principle. O
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Chapter 3

The obstacle problem for the
fractional Laplacian with critical
drift

We study the obstacle problem for the fractional Laplacian with drift,
minf( ) Su+bruu 'g=0 in R
in the critical regime s = 1.
Our main result establishes theC* regularity of the free boundary around any
regular point xq, with an expansion of the form

ux) ()= G (X xo) er 4o jx xtTeOr ;

1 1
~(Xo) = > + —arctan(b e);

wheree2 S" ! is the normal vector to the free boundary, > 0, andc, > 0.
We also establish an analogous result for more general nonlocal operators of order
1. In this case, the exponent (x,) also depends on the operator.

3.1 Introduction
We consider the obstacle problem for the fractional Laplacian with drift,
mn ( ) %u+bruu ' =0 in R (3.1)

whereb2 R", and' :R"! R is a smooth obstacle.

Problem (3.1) appears when considering optimal stopping problems for Levy pro-
cesses with jumps. In particular, this kind of obstacle problems are used to model
prices of (perpetual) American options; see for example [CE13, BFR18] and refer-
ences therein for more details. See also [Sal12] and [KKP16] for further references
and motivation on the fractional obstacle problem.

We study the regularity of solutions and the corresponding free boundaries for
problem (3.1). Note that the value ofs 2 (0; 1) plays an essential role. Indeed, if

63
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s > % then the gradient term is of lower order with respect to ( ) °, and thus
one expects solutions to behave as in the case 0. Whens < % the leading term
is b r u and thus one does not expect regularity results fof (3.1). Finally, in the
borderline cases = % there is an interplay betweerb r uand ( ) 2, and one may
still expect some regularity, but it becomes a delicate issue.

In this work we study this critical regime, s = % As explained in detail below,
we establish theC regularity of the free boundary near regular points, with a ne
description of the solution at such points.

It is important to remark that, when s = % problem (3.1) is equivalent to the
thin obstacle problem inR}*™* with an oblique derivative condition onfx,.; = 0g.
Thus, our results yield in particular the regularity of the free boundary for such

problem, too.

3.1.1 Known results

The regularity of solutions and free boundaries fof (3.1) was rst studied in _[Sil07,
CSS08] wherb = 0. In [CSS08], Ca arelli, Salsa, and Silvestre established the op-
timal CYS regularity for the solutions and C* regularity of the free boundary
around regular points. More precisely, they proved that given any free boundary
point Xo 2 @u = ' g, then

() either
O<cr's sup(u ') Cri*s
Br(XO)

(ii) or
0 sup(u ') Cr%

Br (XO)

The set of points satisfying (i) is called the set ofegular points and it was proved
in [CSS08] that this set is open andcCt .

Later, the singular set | those points at which the contact set has zero density
| was studied in [GPQ9] in the case s = % More recently, the regular set was proved
to be C! in [UN17,[KRS19]; see also [KPS15, DS16]. The complete structure of the
free boundary was described in [BFR18] under the assumption 0. Finally, the
results of [CSS08] have been extended to a wide class of nonlocal elliptic operators
in [CRS17].

All the previous results are for the casb = 0. For the obstacle problem with drift
(B.1), Petrosyan and Pop proved in[PP15] the optimaC** regularity of solutions in
the cases > % This result was obtained by means of an Almgren-type monotonicity
formula, treating the drift as a lower order term. In [GPPS1V], the same authors
together with Garofalo and Smit Vega Garca establishiC* regularity for the free
boundary around regular points, again in the casg > % They do so by means of a
Weiss-type monotonicity formula and an epiperimetric inequality. The assumption
s> % is essential in both works in order to treat the gradient as a lower order term.

In the supercritical regime,s < % only the linear stationary and evolution prob-
lem have been studied. In_[Sil12], Silvestre established immediate spatial and tempo-

ral Helder continuity for the solutions to the linear evolution problem; and in [EP16]
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Epstein and Pop studied the Sobolev regularity for the linear stationary problem by
means of a completely di erent approach.

3.1.2 Main result

We study the obstacle problem with critical drift

min () Yu+bruyu ' =0 in R"
: 3.2
limja  u(x) = O: (3-2)
Herebis a xed vector in R", and the obstacle' is assumed to satisfy
' is bounded ' 2 C*}(R"); andf'> 0gb R": (3.3)

The solution to (3.2) can be constructed as the smallest supersolution above the
obstacle and vanishing at in nity.
Our main result reads as follows.

Theorem 3.1. Let u be the solution to(.2), with ' satisfying (3.3), and b2 R".

Let Xo 2 @u = ' g be any free boundary point. Then we have the following
dichotomy:
() either
O<cr* ™ gyp(u ') Crixo: ~(Xo) 2 (0 1);
Br(XO)

forall r 2 (0;1),
(ii) or

0O sup(u ') Cr?2"  forall"> 0 r2(0;1):

Br (xo)

Moreover, the subset of the free boundary satisfyi(y is relatively open and is locally
CY for some > 0.
Furthermore, ~(xo) is given by

~(Xp) = %+ Earctan b (X ; (3.4)

where (Xo) denotes the unit normal vector to the free boundary & pointing to-
wardsfu >" g. Finally, for every point xq satisfying (i) we have the expansion

. 1+~ (Xo) . L~ (X )+
u(x) (X)=¢c (X Xo) (Xo) . + 0 JX XgJ ° (3.5)

for some > 0, and ¢ > 0. The constants and depend only om and kbk.
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We think it is quite interesting that the growth around free boundary points
(and thus, the regularity of the solution) depends on the orientation of the normal
vector with respect to the free boundary. To our knowledge, this is the rst example
of an obstacle-type problem in which this happens.

The previous theorem implies that the solution isCY » at every free boundary
point Xq, with
1
b-= 5
Nonetheless, the constants may depend on the poirt considered, so that if we
want a uniform regularity estimate foru we actually have the following corollary. It
establishes almost optimal regularity of solutions.

1 arctan(kbk): (3.6)

Corollary 3.2. Let u be the solution to(3.2) for a given obstacleé of the form
(B.3), and a givenb2 R". Let | given by (3.6). Then, for any "> 0 we have

kukcl: b "(Rn) C";
whereC. is a constant depending only om, kik, ", and k' kca1(gn).

In order to prove Theorem[ 3.l we proceed as follows. First, we classify convex
global solutions to the obstacle problem by following the ideas in [CRS17]. Then, we
show the Lipschitz regularity of the free boundary at regular points, and using the
results in [RS19] we nd that the free boundary is actuallyCY . Finally, to prove
(B.5)-(3.4) we need to establish ne regularity estimates up to the boundary i€*
domains. This is done by constructing appropriate barriers and a blow-up argument
in the spirit of [RS16]. Notice that, since we do not have any monotonicity formula
for problem (3.2), our proofs are completely di erent from those in [PP15, GPPS17].

3.1.3 More general nonlocal operators of order 1 with drift

We will show an analogous result for more general nonlocal operators of the form

Lu(x) = ux+y) ; WX Yy D3N, (3.7)
RN 1y)
with
2L (S Y satisfying ()= ( ) and 0< . (3.8)

The constants and are the ellipticity constants. Notice that the operators L we
are considering are of order 1.

The obstacle problem in this case is, then,

min Lu+ b r uju in R";

|imjxj!1 U(X)

I
o

(3.9)

Our main result reads as follows.

Theorem 3.3. Let L be an operator of the form(3.7)-(3.8). Let u be the solution
to (3.9), with ' satisfying (8.3), and b2 R".

Let Xo be any free boundary pointxo 2 @u = ' g. Then we have the following
dichotomy:
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(i) either
O<cr* (o gupu ') cCriko. ~(xo) 2 (0;1);
Br (Xo)
forall r 2 (0;1).
(i) or
0 sup(u ') Cr?2"  forall"> 0;r2(0;1):
Br (Xo)

Moreover, the subset of the free boundary satisfyi(ijy is relatively open and is locally
CY for some > 0.
Furthermore, the value of~(xg) is given by

b (xo) .
( (o)

where (Xg) denotes the unit normal vector to the free boundary &t pointing to-
wardsfu>"' g, and

1 1
~(Xo) = > + —arctan (3.10)

Z
(e) = 5 1j g ()d for e2 S" L (3.11)
S
Finally, for any point X, satisfying (i) we have the expansion
, 1+~ (xo) . 14 (xo)+
u(x) (X)=C (X Xo) (Xo) . +0 X X °

for some > 0, andcy; > 0. The constants and depend only om, the ellipticity
constants, andkbk.

This result extends Theorenj 3]1, and the dependence on the operatotis re-
ected in (B.10). For the fractional Laplacian we have 1, and thus (3.10) becomes
E4).

We will also prove an analogous result to Corollary 3.2 regarding the almost
optimal regularity of solutions; see Corollary 3.29.

3.1.4 Structure of the work

We will focus on the proof of Theorenj 3|3, from which in particular will follow
Theorem[3.1. The paper is organised as follows.

In Section[3.2 we introduce the notation and give some preliminary results regard-
ing nonlocal elliptic problems with drift. In Section[3.3 we establisiC* estimates
for solutions to the obstacle problem with critical drift. In Section[ 3.4 we classify
convex global solutions to the problem. In Sectidn 3.5 we introduce the notion of reg-
ular points and we prove that blow-ups of solutions around such points converge to
convex global solutions. In Sectioh 3|6 we prow@® regularity of the free boundary
around regular points. In Sectiorj 3]7 we establish estimates up to the boundary for
the Dirichlet problem with driftin CY domains, in particular, nding an expansion
of solutions around points of the boundary. In Sectioh 3.8 we combine the results
from Sections 3.6 and 3|7 to prove Theorenis B.1 ahd]3.3. Finally, in Sectfon| 3.9,
we establish a non-degeneracy property at all points of the free boundary when the
obstacle is concave near the coincidence set.
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3.2 Notation and preliminaries

We begin our work with a section of notation and preliminaries. Here, we recall
some known results regarding nonlocal operators with drift, and we also nd a 1-
dimensional solution.

Throughout the work we will use the following function in order to avoid a heavy
reading, :R! (0;1), given by

(t) := %+ 1 arctan (t) : (3.12)

We next introduce some known results regarding the elliptic problem with drift
that will be used. The rst one is the following interior estimate.

Proposition 3.4. Let L be an operator of the form(3.7)-(8.8), and letb2 R". Let
u solve

(L+br)u=f in By
for somef. Then, if f 2 L (B,), and for any" > 0,

ju(y)]j .
[U]C1 "(B1=p) C kfkp: GO kuky 1 Bt - 1+ jyjn+1 y

whereC depends only om, ", the ellipticity constants, andkbk.

The proof of Proposition [3.4) is given in[[Ser15] in cade= 0 (in the much more
general context of fully nonlinear equations). The proof of [Serl5] uses the main
result in [CD14]. The proof of Propositior] 3.4 follows simply by replacing the use of
the result [CD14] in [Serlb] by [SS16, Theorem 7.2] or [CD16, Corollary 7.1].

We also need the following boundary Harnack inequality from [RS19].

Theorem 3.5 ([RS19]) Let U R" be an open set, leL be an operator of the
form (8.7)-(3.9), and letb2 R".

Let us;u, 2 C(B1) be viscosity solutions to

(L+br)uy =0 in U\ By . -1
U = 0 in BinU; ' I

and such that
u O in R"; ui(y) i=1;2

rn 1+ jyjn+t y=1

Then,
O<cu, u; Cu; in U\ B

for some constants and C depending only om, kbk, U, and the ellipticity constants.

We will also need the following result.
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Theorem 3.6 ([RS19]) Let U R" be a Lipschitz set, leL. be an operator of the
form (B.7)-(.9), and letb2 R".

Let uy;u, 2 C(B1) be viscosity solutions to

(L+br)uy = g in U\ B; . =10
u = 0 in B;nU; 7

for some functionsg 2 L* (U\ B,), i =1;2. Assume also that
uy O in R"; ui(y) i=1;2

g 1+ jyjntt y=1

Then, there exists > 0 depending only om, U, the ellipticity constants, and
kbk such that, if
kgikLl (U\ B1) in U\ Bi; i = 1;2
then
u
Uz ¢ (U\ By=2)

for some constants and C depending only om, U, the ellipticity constants, and
kbk.

Finally, to conclude this section we study how 1-dimensional powers behave with
respect to the operator, and in particular, we nd a 1l-dimensional solution to the
problem. This solution is the same as the one that appears as a travelling wave
solution in the parabolic fractional obstacle problem fos = %; seel[CF1B, Remark
3.7].

Proposition 3.7. Letb2 R, and letu 2 C(R) be de ned by
u(x) :=(x+) ;
for 2 (0;1). Then u satis es

( ) ¥2u+bl= bsin( )+cos( ) (x:) * in R:;
u 0 in R:

In particular, let us de ne
Ug(x) := C(x+) ©;

where 1 1
(t) := > + —arctan(t) 2 (0; 1):

Then, ug satis es

() PPup+bl=0 in R;;
Uup O in R ;

l.e., Ug is a solution to the 1-dimensional non-local elliptic problem with critical drift
and with zero Dirichlet conditions inR .
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Proof. De ne the harmonic extension toR?, u = u(x;y), via the Poisson kernel, so
that u(x; 0) = u(x), and @u(x;0)=( ) ™u(x). We have that u solves,

0 in R2\fy>0g
0 in fx 0Og\f y=0g¢:

u

. (3.13)

For simplicity, de ne the re ected function w(x;y) = u( Xx;y), and let us con-
sider that, by separation of variables in polar coordinatesy(r; ) = g(r)h( ), for
r 0, 2][0; ](we use the standard variablesx = r cos , y = r sin ). Notice that
we are considering homogeneous solutions, so tigdt) = r . Then, from (3.13) we
get

g®h+r gh+r 2gh® = 0 in fr>0g\f 2(0; )g

h(0) N 0 (3.14)
from which arise thatw can be expressed as
w(r; )=r sin( ):
Now notice that, forr > 0O,
() PPu+bd(r)=(r '‘@+b@w(r; ) _ = (bsin( )+cos( )r
Solving for we obtain that it is a solution for = (b). Moreover, notice that
for < (b)itis a supersolution, and for > (b) a subsolution. H

3.3 CY reqularity of solutions

In this section we proveC! regularity of solutions to the obstacle problem with
critical drift. For this, we use the method in [CRS1V, Section 2].
Throughout this section we can consider the wider class of nonlocal operators

u(x+y)+ uix y) u(x) a(y)

Lu(x) = —
09 Rn 2 jyjn+t

dy; (3.15)

with
a2 L' (R") satisfying a(y)= a( y) and a ; (3.16)

so that we are dropping the homogeneity condition of the kernel.

Lemma 3.8. Let L be an operator of the form(3.15)}-(3.16) and letb2 R". Let '
be any obstacle satisfying3.3), and letu be a solution to(3.9). Then,

(&) u is semiconvex, with

@ K ' Kcigny forall e2S' %

(b) u is bounded, with
kUkLl (RM) k I k|_1 (R“):
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(c) u is Lipschitz, with
kUkLip( RN) k' kLip( Rn):

Proof. The proof is exactly the same as in [CRS17, Lemma 2.1], since the operator
L + b r still has maximum principle and is translation invariant. ]

We next prove the lemma that will yield the Ct regularity of solutions.

Lemma 3.9. There exist constants > 0 and > 0 such that the following state-
ment holds true.

Let L be and operator of the form(3.15)-(3.16), let b2 R", and letu 2 Lip(R")
be a solution to

u 0 in R"
@eU in B, foralle2 S"1?
(L+br)u ul h) jhj in fu>0g\ B, forallh2 R";
in the viscosity sense

satisfying the growth condition

supjr uyy R for R 1

Br

Assume thatu(0) = 0. Then,
rux)j  2jxj :
The constants and depend only om, the ellipticity constants andkbk.

Proof. The proof is very similar to that of [CRS17, Lemma 2.3].

De ne

(r):=sup (r) supjr uj
rr r

Note that, by the growth control on the gradient, (r) 1 forr 1. Note also
that is nonincreasing by de nition.

To get the desired result, it is enough to prove(r) 2forallr 2 (0;1). Assume
by contradiction that (r) > 2 for somer 2 (0; 1), so that from the de nition of
there will be somer 2 (r; 1) such that

() swiru @ @ @ DO

r

for some small' > 0 to be chosen later.
We now de ne

_ou(rx)
10 = e
and
o WX+ y)+ w(x y) a(ry)
L w(x) := N > w(Xx) jyjn+1d
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Notice that L, is still of the form (3.15)-(3.16).

The rescaled function satis es

u 0 in R"
D2u (2t 1d Id in B,., B
( Ly+br)u u( h) (r) jrhj jhj infu> 0g\ B>,
forall h2 R";

Moreover, by de nition of and r, the rescaled functionu also satis es

1" sup supw and sup supw (R+1=4) (3.17)
jhj 1=4 B1 jhj jhj 1=4 Br jhj
forall R 1.
Let 2 CE(B3:2) with lin B, 1in Bao. Then,
sup sup M +3" 1+2"
jhj 1=4Bs=; jhj
Fix ho 2 Bix such that
to ;= max w+3" 1+
[ jhoj
and let xg 2 B3 be such that
o) UXo o) | gy v (3.18)
jhoj
Let us denote ) ( ho)
u(Xx u(x 0
v(X) = — :
o) jhoj
Then, we have
v+3" V(Xg) +3" (Xo)=top in  Ba:

Moreover, if is taken small enough then

supv (4+1=4) <1+" to

B4

so that in particular Xg is in the interior of Bs-,, and

v+3" to in Ba: (319)

Note also thatxy 2 f u > 0g since otherwisau(xg) u(Xo hg)would be a nonpositive
number.

We now evaluate the equation fow at Xy to obtain a contradiction. To do so,
recall that D?u Idin B,,u 0inR", and u(0) = 0. It follows that, for z 2 B,
andt°2 (0;1),

ut%) tu@+ @ tu) + j%jzto(l 9 u(z)+ j;jzto(l t9
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and thus, fort 2 (0; 1), setting z = x(1 + t=jxj) and t°= 1=(1 + t=jxj) we obtain, for

X2 By,

2 tFX] _ jxjt
L+ t=xj))> 2

ux) u x+tj%. 50X + 1

Therefore, denotinge = hoTjhgj, t = jhoj 1 and using that by (3.17), if small
enough,

4
kukipe ) 3
we obtain
u x+tx u(x)
v(x) = ux) u(x te) ux) u(x te) N ix] N
t t t
u x+ tj%. u(x te) . (3.20)
t

4 X 1

— e+ — + _

3 1Xj 4

in G\ B; provided is taken smaller than ¥12; whereGC is the cone,

X 1
G= X: e+ 171 3
On the other hand, we know that
V(Xo+y) V(Xo) 3" (Xo) (Xo+ty) in Bas: (3.21)

This allows us to de ne

V(Xo) +3" (Xo) (Xoty) inBis

(Xo+y)= V(Xo + y) otherwise
Notice that is regular aroundxo and that v everywhere, and recall that
( Ly+br)v(xp) in the viscosity sense. Therefore, we have
Ly (Xo) Ckbk"™ ( Li+br) (X0 (3.22)
Now, using

1 2" wv(Xg) 1+7
and de ning
(xy) = S y); &) (x);

we can bound (Xo;Y) as

8 . .
3 C'ivi’ in B,
(Xo0;Y) 5 (yi +2) 1+2" in R"nB;
38+ C" in ( Xo+ G\ By) NBy=:
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The rst inequality follows because aroundk, and from (3.21) we have the bound
(Xo0;Y) g (2 (xo) (Xo*+Y) (xo Y)) and is aC? function. The second

inequality follows from (3.17), and using that} jxo+yj+ 7 +21 jxo Yyj+ %
(jyj + 2) . For the third inequality, notice that

V(Xo+Yy) V(Xo) + V(Xo Yy) V(Xo)
2 2
1 1

3 .
3 §+ + C" §+ C" in ( Xo+t Cec\ By)nBiy;
where we have used (3.20) to bound the rst term and (3.21) to bound the second
one. The constantC depends only on the , so it is independent of everything else.
We then nd

(Xo5y) =

z ya
L+ (Xo) C"jyj%jyj " dy+ (yi+2) 1+2" jyj " *dy
% R"nB1
+ 3rct yin tdy
( Xf C\ B1)nB -4 8
C"+C (Gyi+2) 1ijyj " 'dy c;

R"nB 1=2

with ¢ > 0 independent of and (for " small).
Thus, combining with (3.22) we get
!

Z .
c C (kbk+21)"+ Mdy Ckbk" L, (xo) : (3.23)
R'NB 4., Iy

If * and are taken small enough so that the left-hand side i (3.23) is greater than
c=2, we get a contradiction for  c=4. ]

The following proposition implies that the solution to the obstacle problent (3]9)
is Ct for some > 0.

Proposition 3.10. Let L be any operator of the form(3.15)-(3.16), let b2 R",
and letu 2 Lip(R") with u(0) = 0 be any function satisfying, for allh 2 R" and
e2 S 1 and for some" > 0,

u 0 in R"
@eu K in Bz
(L+br)u u(l h) Kjhj in fu> 0g\ B,

jr uj K@+jxjt ") in R™
Then, there exists a small constant> 0 such that
Kukci (s,.,) CK:
The constants and C depend only om, kik, ", and the ellipticity constants.

Proof. The proof is standard and it is exactly the same as the proof af [CRS17,
Proposition 2.4] by means of Lemmp 3.9. O
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3.4 Classi cation of convex global solutions

In this section we prove the following theorem, that classi es all convex global solu-
tions to the obstacle problem with critical drift.

Theorem 3.11. Let L be an operator of the form(3.7)-(3.8). Let R" be a
closed convex set, wit® 2 . Let u2 C(R") a function satisfying, for allh 2 R",

8
( L+br)(ru R" n

(L+br)u u( h) 0O in R"n
D2u 0O in R" (3.24)
E u=20 in
' u 0 in R":

I
o
5

Assume also the following growth control satis ed hy,
kr uki: g,y R* " forall R 1 (3.25)
for some" > 0. Then, eitheru O, or
= fe x 0Og and u(x)= C(e x)i" =), (3.26)

for somee2 S" ' and C > 0. The value of (e) is given by (8.11) with the kernel
of L, and is given by(B.19).

We start by proving the following proposition.

Proposition 3.12. Let be a non-empty closed convex cone, and lebe an oper-
ator of the form (3.7)-(8.9). Let u; and u, be two non-negative continuous functions
satisfying

Assume, also, that they are viscosity solutions to

8

< (L+br)y =0 in R"n
u =0 in
u > 0 in R"n

Then,
us Ku, in R";

for some constantk .

Proof. The proof is the same as the proof of [CRS17, Theorem 3.1], using the bound-
ary Harnack inequality in Theorem[3.5.

Suppose, without loss of generality, that (R ". Take P a point with jPj =1
andB,(P) R"n for some r> 0, and assume thaw;(P) = 1. We want to prove
Us Us.

De ne, givenR 1,
ui (Rx)

C

uj(x) =
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R
with C; such that , ui(y)(1+ jyj) " *dy = 1. Thus, by Theorem|[3.5 there exists
somec > 0 such that

Uq CU» and uo CU4 in Bi-: (327)

In particular, u;(P=R) and u,(P=R) are comparable, so thatC, and C, are
comparable. Thus, from ),

Uup cu, and u, cu in Bgre;

forany R 1, so that the previous inequalities are true irR".
Now take
c:=supfc>0:u; cu in R"'g<1:

De ne
v=u cu O

Eitherv. 0inR" orv > 0in R"n by the strong maximum principle. If v 0
we are done, because in this case= 1 due to the fact that u;(P) = uy(P) = 1.

Let us assume then thatv > 0 in R" n . Apply the rst part of the proof
to v=\(P) and u, to deduce that, for some > 0, v > u ,. This contradicts the
de nition of ¢, sov 0 as we wanted. O

We can now prove the classi cation of convex global solutions in Theorgm 3|11

Proof of Theorem[3.11.First, by the same blow-down argument in[[CRS17, Theo-
rem 4.1], we can restrict ourselves to the case in which = for a closed convex
cone inR" with vertex at 0.

We now split the proof into two cases:

Case 1:When has non empty interior there are n linearly independent unitary
vectorse such that e 2 . Dene

Vi = Qu;
and note that, sinceD?u Oand € 2 = fu=0g, we have

8

< (L+br)y =0 in R"n
vv = 0 in (3.28)
Vi 0 in R":

From Proposition[3.12, we must have;, = av forsome 1 k n,a 2 R, and

foralli=1;:::;n,sothat @ 4 U OinR" for all i 6 k. Thus, there exists a
non-negative function :R! R, 2 C! suchthatu= (e x)for somee2 S" 1;
so that, since 2 @ = fe x 0Og.

Notice that ©° Osolves (L+(b @ 9=0in R, and ° 0inR , with
the growth qt) C(1+ t* ). From [RS14, Lemma 2.1], we have

((&( ) P+(be@ =0 in R.;

where (e) is given by (3.11). Now, a non-negative solution to the previous equation
is given by Proposition[3.7. Such solution is unique up to a multiplicative constant
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thanks to Proposition[3.12. Indeed, notice that the hypotheses of the lemma are
ful lled due to the growth control of °and the fact that © 0. Thus, we obtain

(1) = (t,) ®9=© for t2R;

where and are given by [3.1R) and[(3.11) respectively.
Case 2:If has empty interior then by convexity it must be contained in some

hyperplaneH = fx e=0g. From Proposition|3.10, rescaling,

[r ulc ) C(R);

for some constantC(R) depending onR; and for any R 1. In particular, for any
h2 R", if we de ne

v(x)= u(x) u(x h) for x2R";

thenv 2 Clﬁc(R”). This impliesthat ( L+ b r )v2 C,.(R"), but we already knew

that( L+b r)v=0in R"nH, so we must have
( L+br)v=0 in R"
Now, from the interior estimates in Propositior] 3.4 rescaled on balBr we have

e iV(RY)]
RO TMer 2@ © Kki@m* 50T
On the other hand, from the growth control on the gradient, we have
kaLl (Br) J hJRl ’
Putting the last two expressions together we reach
Cjhj
Me: =2 Rz

Now letR!1 to obtain that v must be constant for allh. That means that u
isane,but uO=0andu 0inR",sou O. ]

3.5 Blow-ups at regular points

By subtracting the obstacle if necessary and dividing bk’ Kcz:1(rn), we can assume
that we are dealing with the following problem,

8
3 u 0 in R"
(L+br)u f in R"
s (L+brju = f in fu> 0g (3.29)
' D2u Id in R"™

Moreover, dividing by a bigger constant if necessary, we can also assume that

kf kcl(Rn) 1; (330)



78 Chapter 3. The fractional obstacle problem with critical drift

and that
kUkcl; (R") 1 (331)

The validity of the last expression and the constant come from Proposition 3.10
and Lemmal3.8.
Let us now introduce the notion ofregular free boundary point.

De nition 3.1. We say that xo 2 @u > 0g is aregular free boundary point with
exponent" if

Kuki: 8, (o)) _

r2 1

limsup
r#0

for some" > 0.

The following proposition states that an appropriate blow up sequence of the
solution around a regular free boundary point converges i6* norm to a convex
global solution.

Proposition 3.13. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let u be a solution to(3.29)-(3.30)-(3.31). Assume thatO is a regular free boundary
point with exponent".

Then, given > 0, Ry 1, there existsr > 0 such that the rescaled function

o u(rx)
V(X) . rkr UkLl (Br)
satis es
kr vkii gry 2R* " forall R 1
(L+br)(rv) in fv> 0g;
and
JV. Ugj+jr v r ugj in  Bgy;

for someu, of the form (3.26) and with kr ugk 1 g,) = 1.
Before proving the previous proposition, let us prove the following lemma.
Lemma 3.14. Assumeu 2 C*(B;) satis es kr uk_: rny =1, u(0) =0, and

kUkLl (Br) 11

sup as #O0O:

P2t

Then, there exists a sequenag # 0 such thatkr uk.: (g,,) Ire . and for which
the rescaled functions

u(rgx)
rkkr Uk|_1 (Br,)

Uk (X) =

satisfy
it u(X)j 2@+ijxjt ) in R™
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Proof. De ne

():=sup

r

kr UkLl (B,) .
T-

Notice that, sinceu(0) = 0, we have

kUkLl (Br) kr Uk|_1 (Br).
rz" rt” .

Therefore, ( )!1 as #0, and notice also that is non-increasing.
Now, for everyk 2 N, there is somery % such that

" 1 1
re kr uks g, ) 5 (1=K 5 (ry): (3.32)
Sincekr uk 1 (rny = 1, then
; 1
re t é(1=k)!1 as k!1 ;

othatry! Oask!1 . We alsohave (r¢) 1, and thereforekr uk.: (g,,)
1
r

NIk 0

Ko
Finally, from the de nition of ~and (3.32), and for anyR 1, we have

kr uki: g, q) (rkR)(reR)
kr ukg: (Bry) %(I’k)l ’ (rk)

which follows from the monotonicity of . O

kr UkkLl (Br) = 2R1 ";

We can now prove Proposition 3.13, which follows taking the sequence of rescal-
ings given by Lemmd 3.74 together with a compactness argument.

Proof of Proposition[3.13. Let ry # 0 be the sequence given by Lemnpa 3|14. There-
fore, the functions

_ u(rex)
Vk(X) B rkkr Uk|_1 (Bry)
satisfy
kr vekis gy 2RY T forall R 1
and
kr vikir 8,) =1; w(0)=0:
Moreover, i )
D2y, = — K p2 —kld;
Vi kr uk_: g N kr uk_: g
( Tk) ( rk)
and, in fv, > Og,
Mk
L+b = ——————(L+br)ru
( ro(r v T ( )(r u)
Mk Mk
—kr fk —_—
kr Uk|_1 (Br,) Lt kr Uk|_1 (Bry)
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Notice that, from (3.32) and with the notation from the proof of Lemmg 3.14,

1 _ kruki s, (rv) 11 as 1 #0:
k

re 2r, ’
Thus, in all we have a sequence, such that v, 2 C!, v, (0) =0, and
kr vkii gy 2R' T forall R 1
( L+br)(rw) k in fve> 0g;
D2y, Id;
with ¢ #0. From the estimates in Propositiorj 3.7]0,
kr vikc 8r) C(R) forall R 1,

for some constant depending oir, C(R). Thus, up to taking a subsequenceyi
converges inC.(R") to somev; which by stability of viscosity solutions is a convex
global solution to the obstacle problem|(3.24) ful lling [3.25).

By the classi cation theorem, Theorem[3.11y; must be of the form [3.26).
Taking limits

kr V1 k|_1 (B1) = 1

and v; (0) = 0. Now the result follows because ¢ # 0 and v, converge inCL.(R")

to vy . ]

3.6 CY regularity of the free boundary around
regular points

In this section we proveC® regularity of the free boundary around regular points.
We begin by proving the Lipschitz regularity of the free boundary, as stated in
the following proposition.

Proposition 3.15. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let u be a solution to(3.29)-(3.30)-(3.31). Assume that0 is a regular free boundary
point.

Then, there exists a vectoe 2 S" ! such that for any™ > 0, there exists an
r> 0 and a Lipschitz functiong : R" *! R such that

fu>0g\ B, = Vyo>9(Y1;::5;¥n 1) \ By
wherey = Rx is a change of coordinates given by a rotatiodR with Re = e,, and g
ful ls
koKLip(B/)
Moreover, @u O0in B, forall €® e p—

[l

The following lemma will be needed in the proof, and it is analogous to [CRS17,
Lemma 6.2].
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Lemma 3.16. There exists = (n; ; ; kbk) such that the following statement
holds.

Let L be an operator of the form(3.7)-(3.8), and letb 2 R". Let E B be
relatively closed, and assume that, in the viscosity sense2 C(B;) satis es

E(L+br)w in BinE
w = 0 in E[ (R"nBy) (3.33)
w in B,nE;
and Z
w, 1
B1

Then, w is non-negative inB-,, i.e.,
w 0 in Bi-:

Proof. Let us argue by contradiction, and suppose that the statement does not hold
forany > 0. Dene 2 C2(Bs) be a radial function with 0, 1inBio
and with jr j C(n). Let

t(X) = t+  (x):

If w attains negative values orB;-,, then there exists somé, > 0 andz 2 B34
such that ., touchesw from below atz, i.e. w everywhere and ,(z) =
w(z) < 0. Let > 0 be such thatw < 0 in B (z) (recall w continuous). Let us now

de ne
w(X) if x2R"nB (2)
to (X) if x2B (2):

Notice that w is C2 around z, and is such thatw  w. By de nition of viscosity
supersolution, we have

w(X) := (3.34)

( L+br)w(z

On the one hand, this implies
(L+br)w )29 C;

for someC depending onn, the ellipticity constants, and kbk. On the other hand,
we can evaluatew t, Classically atz,

(Lb )y )@= LW o)D) ,
(W W)Yy "ty o) (W o)y

R" 7 BinB (2)

c(n) w'dy c(n) :

B1

We used here that (v to) BinB (7 W' in By.
In all, for small enough depending only on, the ellipticity constants, and kbk,
we reach a contradiction. O
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With the previous lemma and the results from the previous section, we can now
prove Proposition[3.15.

Proof of Proposition[3.15. Let > 0 andR, to be chosen, and consider the rescaled
function from Proposition[3.13,

a u(rx)
V(X) B rkr Uk|_1 (Br) |

Thanks to Proposition[3.13, there exists some2 S" ! such that

rv (x e,° ®@e in Bg,:

Recall and are given by [3.1) ).

Now let e°2 S" ! be such that (assuming 1)

e p——— =

1+°2 2
Notice that .
rv e Q(X g),Pe= in Bg,;
and
(L+br)(rv € in fv> 0g:
De ne
w = &(r v &) g,
for someC; such that 7
wtL
B1

Notice that, if is small enough, thenC; depends only onn, °, kbk, and the
ellipticity constants.

Letus callE = fv=0g. If Rg is large enough, depending only on, *, ", kbk,
and the ellipticity constants, then w satis es

< (L+br)w €& in BynE
w=0 in E[ (R"nB,) (3.35)
w & in B,nE:

We are using here that, forx 2 B; nE,

( L+br)w(x) & (L+br)&(rve0)35 (x)

C C
=+ LV &) es(x)

Z
G Gl (V) ek H(rv &) as(x Y)

- + —
S BRo 2jyjrt
N C (rv €) gsx+y)+(rv €) gs(x y)
T B 2jyjn*t

G Ge o CS
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where Rq is chosen large enough so that ¢éan be comparable to the other terms
(which can be done, thanks to the fact thatr v grows asR! ). Notice that C
depends only on and n.

In all, we can choose small enough so that

CC

for the constant given in Lemma[3.1p.
Therefore, applying Lemmd 3.16 to the functiorw we get that

w 0 in Bi;

or equivalently,
@)U 0 |n Br:2;

for all €2 S * such thate’ e ;. This implies that @u > 0g is Lipschitz in
B,, with Lipschitz constant smaller than ". O

Finally, combining Proposition[3.1% with the boundary regularity result in The-
orem[3.6 we show that the free boundary i€* around regular points.

Proposition 3.17. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let u be a solution to(3.29)-(3.30)-(3.31). Assume thatx, is a regular free boundary
point.
Then, there existsr > 0 such that the free boundary i€Y in B,(xo) for some
> 0 depending only om, kik, and the ellipticity constants.

Proof. Without loss of generality assumexg = 0 and that (0) = e,, where (0)
denotes the normal vector to the free boundary at O pointing towardsu > 0g.

By Proposition [3.15, we already know the free boundary is Lipschitz around
0, with Lipschitz constant 1 in a ballB . Let v; = Pl—i(@,l + @u) for any xed

12f1:::;n 1g, and letv, = @u. We rst show that for somer > 0and > O,
\Y; 1
- = p= 1+ @ C: (3.36)
V2 ¢ (fus0g\ B) 2 @U ¢ (rus0g B))

De ne w as in the proof of Propositior] 3.15, i.ew = Cy(r v €) g,, wherev is
the rescaling given by PropositioB, and’is such thate’ e 5 (choose =1
for example).

From the proof of Proposition we know thatv 0 in By, (if, using the
same notation,Ry is large enough and is small enough; i.e., the rescaling de ning
v is appropriately chosen). Now de ne

w=Cy(rv &),

and notice that
(L+br)w in B4 nfv=0g

for some > 0 that can be made arbitrarily small by choosing the appropriate
(small) > 0and (large)Ry in the rescaling given by Propositiof 3.13. The previous
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inequality follows from the fact that (r v €9 inBr,, (r v &) 21+jxjt")
in Brg,and (r v €)  0in B-.

Let e, = 91—5(3 +e,),and denew; = C(rv e,), andw, = C(r v &,).
(taking €°= g, and €°= g,). Now notice that w, and w;, ful | the hypotheses of the
boundary regularity result in Theoren{ 3.6, andv; = C(r v e,) andw, = C(r v &,)
in B1=,. Thus, applying Theorem[ 3.5 tow; and w, we obtain that there exists some

> 0 such that
" C:
W2 ¢ (fv>0g\ B,.g)
Going back to the rescalings de ningnv~we reach that for some > 0, (3.36) holds.

Once we have|[(3.36) the procedure is standard. Notice that the components of

the normal vector to the level setdu = tg for t > 0 can be written as

i(X) — %(X) — 5 @J:@U _
P (Qu=@u)® +1
"x) = B (x) = L .

jru
J J J!’\:ll (@u=@u)2 + 1

for u(x) = t > 0. In particular, from the regularity of @u=@u given by (3.36),
we obtain is C on these level sets; that isj (x) (y)j Cjx yj whenever
x;y 2fu=1tg\ B,. Now lett #0 and we are done. ]

3.7 Estimates in CY domains

Once we know that the free boundary i€* around regular points, we need to nd
the expansion of the solution[(3]5) around such points. To do so, we establish ne
boundary regularity estimates for solutions to elliptic problem with critical drift in
arbitrary C* domains. That is the aim of this section.

The main result of this section is the following, for the Dirichlet problem with
the operator L + b r in C¥ domains. We will use it on the derivatives of the
solution to the obstacle problem.

Theorem 3.18. Let L be an operator of the form(3.7)-(8.8), let b2 R" and let
be aC' domain.
Letf 2 LY ( \ B1), and supposeu 2 L! (R") satis es

(L+br)u

in \ B
u .

f
0 in Bin

(3.37)

Then, for each boundary pointxg 2 B, \ @ , there exists a constanQ with
jQf C kuki: rn)+ kf ki1 (\g,) such thatforallx?2 B;

U(X) Q (X XO) (XO) :(XO) C kUkLl (RM) + kf k|_1 ( \By) jX X0j~(xo)+ ;

where > 0 and (Xg) is the normal unit vector to@ at Xo pointing towards the
interior of , and ~(xo) is de ned in (8.1Q). The constantC depends only om,
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, the ellipticity constants, andkbk; and the constant depends only om, , the
ellipticity constants, and kbk.

To prove Theorem 3. 1B we will need several ingredients.

3.7.1 A supersolution and a subsolution

In this section we denote
d(x) :=dist(x;R"n ) :

We will also use the following.

De nition 3.2. Given aC¥ domain , we consider %a regularised distance func-
tion to C¥ ; i.e., a function that satis es

K d % Kd;
koci (y K and jD*% Kd 1
where the constantk” depends only on and the domain .

The existence of such regularised distance was discussed, for example, in [RS15,
Remark 2.2].
We next construct a supersolution, needed in our proof of Theorgm 3 18.

Proposition 3.19 (Supersolution) Let L be an operator of the form(3.7)-(3.9),
and letb2 R". Let be aC¥ domain for some > 0, and supposé)2 @ .
Let : @ ! S !be the outer normal vector at the points of the boundary of

, let  be de ned by(3.12), and by (3.11). Let us also de ne

- b (O .
o () °
and b ()
X
= inf 0: 8x2 @\ B; : 3.38
( (X)) 0 1 ( )
let =% fora xed 0< < 2 , and where%is the regularised distance
given by De nition [3.2. Then, there exist > 0 and € > 0 such that
S L+br) 1 in Bip\f x:0<d(x) g
¢ 1 in Bip\f x:dx) o (3.39)
The constants and € depend only om, , , the ellipticity constants, andkbk.

Proof. Pick any xg 2 B1x \f x : d(x) g, and de ne
lo(X) = %Xo) + 1 %Xo) (X Xo) ,:

Notice that, wheneverlo > 0, if we de ne % := { Z‘&ggi andz = 9 x then

(L+br)lgx)= (%) ) P+(b %)@ jr %xo)jiz+ o ,
= j%x0)i (%)c ;b %= (%) ir %xo)iz+ o,
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wherecy = %xp) r %UXo) Xo, and c( ;b %= (%)) is the constant arising from
Proposition[3.7. We want to check that this constant is positive, which is equivalent
to saying (again, from Propositior{ 3.]7) that

b %

(%)

To see this, it is enough to check that
b % .
(%)
which will be true for some small > 0 and for anyXo 2 B> \f X : d(x) gif
lim  inf r %)

#0 y2B12 xo2@\ Bs=4 jI’ %y)J
0<d (y)

0o 2

(x)=1;

l.e.,r %normalised is close to some unit normal vector to the boundary agyoes to
zero (notice that and are continuous). But this is true since%is aC* function,
S0 in particular, its gradient is continuous, and the boundary is a level set &) i.e.,
r %y) = jr %y)j (y) for any y on the boundary. It is important to remark that the
modulus of continuity of r %depends only on .

Now notice that

lo(Xo) = %Xo) r lo(Xo) = 1 %Xo): (3.40)

Let %be aCY (R") extension of%to the whole R" with % 0 in R" n . Then we
have

%xo)+ T %Xo) Y Hxo+ty) Ciyit' :
By using thatja. b.j j a b we nd
lo(xo+y) %xo+y) Ciyj*" :
Now, also using thatja® bj j a k(@ *+b Y fora;b 0,ja¢ Bj Cja b,
and sayingdy = d(xo) we get
8 .
< Cd, Yjyj* for 'y 2 By e
j loi(xo+y) . Cjyj* ) for y2 BinBg (3.41)
- Cyj for y2 R"nBj:
We have used here that, iRBy 4.y, lo © Cdy "and % *  Cd, . Here,K
denotes the constant given in De nition 3.2. Putting all together
( L+b r) (Xo) =
=( L+br)( lp)x)+( L+br)lg(xe)
L( )(X0) + ¢( )dy *

IO
£ 4 dr
= o (U Nxetr)+(le )Xo 1)) 7d () < )d '
Sk 0 |
_ Z Z

do=(K +1) 1.1+ 1 1+ ) 1

c B T g+ T dr+ dr o+o() ?
0 r do=(k+1) T 1 T

Cd, * cd™ ) t+¢()d, -
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Notice that the right-hand side tends to +1 as # 0 independently of thex,
chosen. Thus, we can choosesmall enough so that the right-hand side is greater
than 1. Then, by choosing 1suchthat  1inB;,\f x:d(x)> gwe are
done. 0

We can similarly nd a subsolution for the problem. It will be used in the next
section.

Lemma 3.20 (Subsolution). Let L be an operator of the form(3.7)-(3.8), and let
b2 R". Let be aC¥ domain for some > 0, and supposé)2 @ .
let :@ ! S ! be the outer normal vector at the points of the boundary of

, let be de ned by(8.13), and by (8.11). Let us also de ne

_ b (O |
o () °
and
. b (x)
@ .= inf 0: + 8x2@\ B; : (3.42)
WC) I '
Let := %2 forany xed 1> ,> +2 @ Then, there exist > 0andC€ > 0
such that
(L+br) 1 in B\ f x:0<d(x) g
¢ in B \f x:d(x)> g (3.43)
The constants and € depend only om, , », the ellipticity constants, andkbk.

Proof. The proof follows by the same steps as the proof of Propositipn 3.19. Using
the same notation, one just needs to notice that when evaluating

(L+br)l?(xX)=c 2b %= (%) Jr %xoiz+ G,
now the constantc( ») is negative (independently of the , chosen, as before). Thus,
(L+br) (x0) Cd2* +cd™? 2 +¢)d? %

for negativec( ;), so that if dy is small enough we obtain the desired result. [

3.7.2 Hblder continuity up to the boundary in CY domains

The aim of this subsection is to prove Proposition 3.21 below. Before doing that, let
us introduce a de nition.

De nition 3.3.  We say that R" isaCY graph splitting B, into U* and U
if there exists som& 2 Ct (R" 1) such that

= f(x%f (x9)\ B, for x°2 R" 1g;
Ut = f(x%x,) 2 B1:xp >f (X9g;
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U =f(x%x,)2By:x,<f (x90.

Under these circumstances, we refer to th€* norm of as kf kcu (po, where
D%=fx%2 R": (x%f (xY) 2 B4g.

Proposition 3.21. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let be aC% graph splittingB, into U* and U , according to De nition and
suppose0 2

Letf 2 L* (U*), letg2 C (U ), and supposeu 2 C(B,) satisfying the growth
condition ju(x)j M (1 + jxj) in R" for some < 1. Assume also thatu satis es
in the viscosity sense

( L+br)3 : g :2 3+: 3.42
Then there exists some> 0 such thatu 2 C (B1-) with
kukc 8,,) ©C Kkuki: (g,)+ Kgke (u y+ Kfkii u+y+ M
The constantsC and depend only om, ,the C¥ norm of , , the ellipticity

constants, andkbk.

Proof. Let & = u g, sothat ( L+ b r)a=f + L(u ge) = fin U™\ Baxy,
andu= gin U . Note that kfk. 1 (y+\g,, C(kfk.: )+ M) = Cy for some
constant C depending only onn, , and the ellipticity constants.

We begin by proving that for some small > 0, and for someC, we have

ket 9(z)ki: 8, (zy Cr forall r2(0;1); andforall z2 \ Bi-; (3.45)

where > 0 and C depend only onn, Co, kuk.: (g,), kgkc (u ), the ellipticity
constants, andkhbk.

Let us de ne aC% domain that will be used in this proof, analogous to a xed
ball if the surface was C%?.

Thus, we de neP as a xed C* bounded convex domain with diameter 1 that

be a xed point inside the domain, which will be treated as thecenter. Let us call
Pr the rescaled version of such domain with diametd®? and center yp., and let us
de ne

P{) = fx 2 R" : dist(x;Pr) g

As an abuse of notation we will also calPr any rotated and translated version that
will be given by the context.

Note that, since is CY , there exists some 2 (0;1) depending on theCt
norm of such that any point z2 \ B;-, can be touched by som® , rotated and
translated correspondingly and contained completely it .

Let us now consider the supersolution given by Propositign 3]19 with respect to
the domainR" nP.
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Figure 3.1: Sketch of the balB -, split into U* and U , and a domainPr tangen-
tially touching the boundary .

That is, there is some function p such that, for some constants > 0 and C
xed,

8
3 (L+br)e 1 in POnP
1 in R"nP()
5 z - in P (3.46)
' p Cd in R
n 0

whered = dist(x;P) and 0< < min  %& :kifk=kik;e2 S' ! can also be

xed | recall that ~ and are given by [3.12){(3.11).

Let P° be a rotated version ofP, and let po be the corresponding rotated
supersolution. Notice that we can assume thateo also ful Is (8.46) (with P%instead
of P), since while the operator ( L + b r ) is not rotation invariant, only an extra
positive constant arises depending on the ellipticity constants ankik.

Given a rotated, scaled and translated version of the domaiR, Pgr, we will
denote the corresponding supersolution (the rotated, scaled and translated version
of p)by pg.

Letnowz 2 \ Bi-. ForanyR 2 (0; o) there exists some rescaled, rotated and
translated domainPr U touching at z. Recall that yp, is the center of the
domain Pg, so that in particular jz yp.j = CpR for some constantCp that only
depends on the domairP chosen Cp 2 (0;1) because the domairPr has diameter
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R). See Figurg 31 for a representation of this situation.
Recall that p, is the supersolution corresponding to the domaiRg, with the
given by Proposition[3.19 (now, when rescaling, becomesR ). De ne the function

(X) = g(yes) + kgkc (v ) 1+ )R + Co+ Kkukpi gy) pg:

Note that is aboveu~in U \ PF(QR ), sinceu-= g there and the distance from
Yp, 10 @ny other point in P,QR ) is at most a1+ )R.
On the other hand, in PéR )nPr we have (L+br) (Co+ kuki: (5,))R *

Co ( L+br)usinceR o< 1; and outsideP{" > we haveu- . In all,
b everywhere by the maximum principle, and thus for anR 2 (0; o)

#(X) 9g(z) C R +(r=R) forall x2B,(z) andforall r2 (O;R );

for some constantC that depends only onn, Co, kuky 1 (g,), kgkc (u ), the ellipticity
constants, andkbk. If R is small enough we can take = R?, and repeat this
reasoning upside down to get that

kte g(2)kii @,y C r=2+r=2 Cr foral r2(0; ?);

for =min ;5 . This yields the result (3.4%) by taking a largerC if necessary.
Now let x;y 2 By, and letr = jx yj. We will show
jux) u(y)j Cr;

forsome > 0.If x;y 2 U we are done by the regularity ofy. If x 2 U",y2 U ,
we can takez in the segment betweernx and y, on the boundary , and comparex
andy to z, so that it is enough to considerx;y 2 U™

Let R =dist(x; )  dist(y; ), and supposeXy;Yyo 2 are such that dist(x; ) =
dist(x; xo) and dist(y; ) = dist( y;VYo). By interior estimates for the problem (see

Proposition|3.4),
Ulc Brrxy CR (3.47)

Let r < 1, and let us separate two di erent cases

Supposer  R?=2. Then, using [3.45) and the regularity ofy we obtain
jux) uy)j J u(x) u(xoe)j + ju(Xo) u(yo)j + ju(yo) u(y)j
CR + C(2R+ )
C(r=2+r=% cCr=%
Assumer  R?=2, so thaty 2 Bgr-»(x). Thus, using (3.47),
jux) ufy)j CR r Cr=%
In all, we have foundu 2 C (B.=p) for = =2. m

Remark 3.1 When U is C! , the above Helder estimate follows from the results in
[S94], [CDO1]. We thank G. Grubb for pointing this out to us.
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3.7.3 A Liouville theorem

We next prove a Liouville-type theorem in the half-space for non-local operators
with critical drift, that will be used to prove Theorem [3.18.

Theorem 3.22. Let L be an operator of the form(3.7)-(3.8), and letb2 R". Let u
be any weak solution to

( L+br)u 0 in RY

u i 0 in R": (3.48)
Assume also that for somé > 0 and some constanC, u satis es
kuk: g,y CR'" forall R 1
Then,
u(x) = C(xn), ™ (3.49)

for someC > 0, and wherel, is the n-th component ofb. The constant is de ned

by = (e)) where (e) is given by(3.11), and is given by(B.12).

Before proving the Liouville theorem, let us prove it in the 1-dimensional case.

Notice that from Proposition it already follows that any non-negative solu-
tion must be eitheru 0 or the one found in Propositior] 3]7. Here, however, we
need the same result for solutions that may change sign.

Proposition 3.23. Let b2 R, and letu 2 C(R) be a function satisfying
( ) Pu+bl=0 in Ry u 0 in R;
andju(x)j C@+ jxj* ") for some"> 0. Then,
u(x) = Co(x+) @;
where is given by (3.12).

Proof. We rst claim that
—_ (b)
u=(x+) ¢ ©1) C (3.50)

for some > 0.
Indeed, let
W= 102U+t  [3=2:2s

and recall that, for someé,
kUkLl ([0:R]) éRl ":

Notice that w(0) = 0, and that w Co(x)+(b) for x 1, if Cqy is big enough
depending only on and €. Choose so that ( ) 2w 0 in [0;1] so that by

the maximum principleu = w Co(x)+(b) in [0; 1]. Doing the same for u we reach
that
jui  Cox),® for x2[0;1]



92 Chapter 3. The fractional obstacle problem with critical drift

Dene now &= U @om) + M(x.+) P, whereM = M (m) is such thatw 0 in
(0; m). Notice that & solves an equation of the form () u+ ® = f,(x) in
(0;1) for some bounded ,, with kf k.1 1 #0asm!1 . We can now apply
Theorem[3.6 withu-and (x.) ® to get that for some large enoughm,

_ (b .
o=(Xx+) ' ¢ o ©

for some > 0. Thus, we get (3.50).
Denev=u k(x;) ®, wherek = lim w40 % Then we have

jiv(x)j Cjxj* "~ for x 1; (3.51)

jiv(x)j Cjxj ®*  for x2[0;2]; (3.52)

and we can assume, without loss of generality, that 1" > (b)+ . Combining
this with the interior estimates from Proposition[3.4 we obtainv 2 C ®* ([0; 1)).
Indeed, takex;y 2 [0;1],x<y.Letr =y x andR = jyj. Now separate two cases

If 2r R, by (3.52)

V() v § v+ vyi o CGxp O+ jyj O
CR r)® +RO Cr O

If 2r < R, then x;y 2 (y R=2;y+ R=2). By rescaling the estimates from
Proposition[3.4 and using|[(3.51)

RO Ve o v 33 C Kk rysm) ¥ R

Now, from (3.52)

kaLl (y Ry+R) CR (o) ,

so that
Ve o (v 2iy+®) C:
This implies
kaC (b)+ ([0;1)) C,
as desired.

Now, we claim that using the interior estimates from Propositiof 3]4 we obtain
ivAx)j Cjxj = for x 1, (3.53)

and
ivIx)j Cjxj @ 1 for x 2 [0;1] (3.54)

Let us show that these last inequalities hold. The rst one,[(3.533), follows using
that jv(x)j] C(1+jxj* "), and that (8.51)-(3.52) combined with the rescaled interior
estimates in Proposition 3.4 yield

Vlc o 2ry CR'™ ®  for R 1L (3.55)
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Indeed, take 0< < (b + ,and anyh 2 R with jhj R=2. Then by interior
estimates applied to the incremental quotients,
v(x+ h) v(x)

" (b .
ihj O T CR for R 1,

with C independent of theh chosen. In particular, this yields
Mc o  @ewy CR ~ ®  for R L

The inequality in (8.53) now follows comparing the value 0f92¥) for any k 2 N
with v{1) dyadically.

For the second inequality, [(3.54), we proceed similarly. Take® < (B +
and for anyR > 0 xed take jhj R=2 and notice that

v(x+ h) v(x)
jhj ®+

CR ! for O<R< 1 (3.56)

Cl (R;2R)
with C independent ofh. This follows from the interior estimates in Propositiorj 3.4

and the growth of ‘=R given by (3.55). As before, this implies

M o ®w CR ' for 0<R< L

Finally, the inequality (B.54) follows comparing the value of/42 *) with v{1) dyad-
ically. Thus, (3.53) and (3.54) are proved.

De ne now the function

A()= A (X)) D+ (x) @t
and notice that A and v°solve
( )2 A+b2=0 in x>0 (3.57)

() %+ pv9°=0 in x>0 (3.58)

We have that , >v%in fx > Og for some large enougl, thanks to the growth
of v2in (B.53)-(3.54). Choose the smallest nonnegative such that » V% Then,
by the growth at zero and in nity of both v®and A they touch at some point in
(0; 1 ). Moreover, if A> 0, then we must have A 6 V°

Let Xo > 0 be a point where a(Xg) = V{Xo). Notice that , Vis a non-negative
(and non-zero) function with a minimum atx,. Thus,

() %A VI+B A VO°(X)=( ) (A VI(X0)<O;

which contradicts the fact that both 5 and v®are solutions to the problem, [(3.57)-
(B.58). Thus, there is no positiveA such that  and v°touch at at least one point,
so we must have/® 0. Doing the same from below we react? 0, and therefore
v® 0. Hence, sincai(0) =0 we nd v 0. In particular, this means that

u=k(x;) ®;

as desired. ]
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We can now prove the Liouville theorem.

Proof of Theorem[3.22.Let us rst see that the solution is 1-dimensional in the
direction e,.
Given 1, de ne
v(x)= u(x):

Notice that
kV k|_l (BR) = "+l ku( )k|_1 (BR) = 1 kukLl (BR ) CRl ’

Moreover, by the homogeneity of (L+ b r ),

L+br)y =0 in R}
( )v =0 in R": (3.59)
Denenowwv =V g,,sothatw 2 L! (R"). We now have
(L+br)y = g in Bj
. 3.60
v =0 in By; ( )
for someg with kg k , B) Co with Cy independent of . Indeed,
(L+br)r=( L+br)v Vv gg)=L(v g) GCo in By;
where the last inequality follows thanks to the uniform growth control orv .
Now, by Proposition[3.2],
kv ke (Bi=2) = kv ke (B1=2) G
from which
e @.»p= U )c @y= ™ NMlee., C (3.61)
Now, givene2 S" ! with g, =0, and for any h > 0, de ne
W(x) = u(x + eh) u(x):
h
By (B.61), "
kwki: g,y CR ** 7 forall R L
We also have 5 0 ]
L+br)w = in RY
( )w = 0 in R"; (3.62)

thanks to the fact that e does not have component in the-th direction, e, = 0.
Repeat the previous argument applied tov instead ofu, to get

Wlc gsy CR **t " forall R L
Repeating iteratively we get that, form = b= + 1¢, then

[Wm]C (Br) CR M e forall R 1;
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wherew,, is an incremental quotient of ordemrm of u. Letting R!1  we observe
that w,, O.

Sincewy, is any incremental quotient of ordem, this means that for any xed
X, o(Y9 == u(x +(y%0)) for y°2 R" ! is a polynomial of orderm 1 in the y°
variables. However, from the growth condition oru the polynomial must grow less
than linearly at in nity, and therefore it is constant. This means that for any x,
u(x + eh) = u(x) forall h2 R and for alle2 S" ! with e, = 0; i.e., u(x) = u(xy),
as we wanted to see.

Now we can proceed as in the proof of the classi cation theorem, Theorém 3.11,
and use the classi cation of 1-dimensional solutions from Proposition 3]23. O

3.7.4 Proof of Theorem 3/18 |

We now prove the following result, which will directly yield Theoreny 3.18. For this,
we combine the ideas in [RS16] with Propositiorjs 3]21 ahd 3.23.

Proposition 3.24. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let be aCY graph splittingB; into U* andU (see De nition , and suppose
02 andthat (0) = e,, where (0) is the normal vector to at O pointing towards
u*.

Letf 2 L' (U*), and supposeu 2 L! (R") satis es

(L+brj)u = f in U*
u =20 in U : (3.63)
Let us denote = "o = (= (e)) and = () as dened in
(B.12)(B.11), and suppose that 2 o; o 1+ 3 for some ¢ 2 (0;1) such that
o 1+ 3 < 1 Suppose also that as de ned in (3.38) satis es <2, and let

= 0 1+ 7 -
Then, there existsQ with jQj C kukp: gy + kf kL1 (y+) such that

U(X) Q(Xn)+ C kUkLl (RM) + kf k|_1 (U+) jXJ forall x2 Bq;

where the constantC depends only om, , the Ct norm of , o, the ellipticity
constants, andkbk.

Before proving the previous result let us state a useful lemma. It can be found
in [RS16, Lemma 5.3].

Lemma 3.25 ([RS16]) Let1> > | and 2 S" ! some unit vector. Let
u2 C(B,) and de ne

r(X) = Q (r)(X )4
where

Z

R
= arg mi 2y~ s UOO(X )dx,
Q (r) :=arg ming,r . ux) Q(kx ), dx= I\Br(X 2 dx
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Assume that for allr 2 (0; 1) we have
ku rKer gy Cor -
Then, there isQ 2 R with jQj  C(Cp + kuk_: (g,)) such that
ku Q(x ).kii@,) CCor
for some constantC depending only on and .

We can now prove Proposition 3.24.

Proof of Proposition[3.24. Let us argue by contradiction. Suppose that there are
sequences;, U", U. , L;, h, uj, and f; that satisfy the assumptions

i is aCt graph with bounded C* norm independently ofi, splitting B,
into U andU; with 0 2 ; and with e, being the normal vector at 0 pointing
towards U;" .

L; are of the form [3.7)-(3.8), andkhk = kbk;

For each ;, the corresponding as de ned in (3.38) ful Is ( o)=64;
Kuik 1 (roy + kfikpa (g+y) =15

upsolves (Li+h r)u=fiinU",u=0in U ;

If wedene ;:= (b e,=;)with asin(3.12)and ;= i(e,)asin (3.11)
with the operator L, then ;2 [ o; o(1+ =8)];

but they are such that for allC > 0 there exists some such that there is no constant
Q satisfying
ui(x)  Q(xn). Cjxj forall x 2 Bj:

Step 1: Construction and properties of the blow up sequence.
Let us denote

= Qi) (Xn)4

where
7 R _
. 5 g Ui (X)(Xn)4 dX
Qi(r):=arg mingr  (Ui(x)  Q(xn),)"dx = —R——F-——:
B, g, (Xn)s "dx
From Lemma[3.25 with = ;and o= o1+ =8) we have that

supsup r  ku; irkit gy =1

i r>0

De ne the monotone function

(:=supsup (19 ku  ookes 8,0
i ror
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Note thatforr > 0, (r) <1 ,and (r)!1 asr #0. Now take a sequences
rm #0 andi,, such that

(rm)

(rm) KU,  inrm Kt 8,) 5

and denote , =
Consider now

Imifm*

Ui, (rmX) m(rmX) |
rm (Fm) -
By de nition of , we have the orthogonality condition for allm 1,
Z

Vim(X) =

Vi (X)(Xn), dx =0: (3.64)

B1
Note that also from the choice of,, we have a nondegeneracy condition fat,,

1
ka kLl (B1) E: (365)

From the de nition of i, ir = Qi(2r) Qi(r) (xn), so that

jQi(2r)  Qi(n)jr ' =K o ir KL (8))
K 2r UKt gyy + K iy Uk ,y Cro (r):

Proceeding inductively, ifR = 2N, then

QRN QM X0 @0 jQi@t)  Q@n)j
(r) j=0 (r)

X ) @n
. @

(3.66)
cNt D=CR

Thus, we obtain a bound on the growth control o¥,, given by

kvmki: gy CR  forall R L (3.67)

Indeed,

1

(rm)rm
1

(rm)rm

kakLl (Br) =

Kui Qi (Frm)(Xn)+ ket (Rrm)

kui Qi (Rrm)(Xn)< Ket (rrp)+
1
(rm)rm

+ CR

jQim(er) Qim(rm)j(er) i

R (Rry)
(rm)
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and the result follows from the monotonicity of .
Notice also that the previous computation in[(3.66) also gives a bound fa¥(r)
given by
Qi) C (r); (3.68)

which follows by putting R = r 1,

Step 2: Convergence of the blow up sequence.

In this second step we show thav,, converges locally uniformly inR" to some
function v satisfying

(C+br)v
Vv

0 in R?
0 in R":

(3.69)

for some operator- of the form (3.7)-(3.8), kik = kbk.
To do so, de ne

Ugm = Br\ 1 tU* \f x, > Og;

and suppose that it is well de ned by assumingn is large enough so thaRr, < 1=2.

Notice that in Uy, v satis es an elliptic equation with drift,

( Lim+bm r)Vm(X): fim(rmx) in Ui

Mm .
fm ('m)
since we know that (Li+ b r) , =01In fx, > Og. In particular, since < 1,

the right-hand side converges uniformly to 0 as,, #0.
We will now show that

Kuip, — mKii g (r)y © (ro)r® ) forall r< 1=4 (3.70)

and where the constantC is independent ofm, and = o 1 +; . Notice that
< o 2 ,sothatwe can use the supersolution from Propositign 3]19 to get

ju,.j  C dist(x;U ) ;

with C depending only onn, the Ct norm of , , the ellipticity constants, and
kbk. On the other hand, by de nition of |,

i m(X)j CQi,(rm) dist(x;R") ' C (rp) dist(x;R") forall x 2 By;
where we used[(3.68). Finally, since the domain &% , we have that
dist(x;U, ) Cr* ; dist(;R") Cr* in B\ (U_[ R");

where the constantC depends only on theC' norm of the domainU;’ , and there-
fore, it is independent ofm. Thus, combining the last two expressions we gdt (3/70).
Now, from Proposition[3.21 we have

kuim kC (B1=g) G

uniformly in m, for some 2 (0; o).
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From the regularity of |, this yields, in particular,
kuim ka (Br\ (U [R" )) C (rm); (371)

where we have used again the bounfl (3]68).
Thus, interpolating (3.70) and (3.71) there exists some; <  (depending on ,
0, and ) such that

kUim ka O(Br\(Uim[R”)) C (I'm)l’

Notice that we can do so because < (1+ ). Scaling the previous expression we
obtain
KVinkc o(BrnUZ. ) C(R) for all m with Rr, < 1=4; (3.72)

for some constantC(R) that depends onR, but is independent ofm.
We now want to apply Proposition[3.21 tovy,, rescaled to ballsBg. Recall that

( Lin* B, 1 )Vm(0)= - r?rm)fi”‘(rmx) i Ubm;

and vy, is C © outsideUg., by (8.72). Notice also that the boundary@4,, hasC*
norm smaller than theCY norm of thanks to the fact that we are rescaling with
smallerr, and Rry, < 1=4. Thus, Proposition[3.2]L can be applied and we obtain
that there exists some °> 0 small such that

KVinKc (Brey) C(R) for mwith Rry, < 1=4:

we have again that the constantC(R) depends onR, but is independent ofm; i.e,
we have reached a uniforn€ ° bound onv,, over compact subsets.
Thus, up to taking a subsequencey,, converge locally uniformly to somey.

Step 3: Contradiction.Up to taking a subsequence if necessaty, converges weakly
to some operatorC of the form (3.7)-(3.8), andh,, converges to som& with kbk =
kbk. Notice that, in particular, this means that ; converges to some 2 [ o; o(1+
=8),and = (b e,=~), where ~= ~(&,) is the associated constant de ned as

in (8.11)) with the operator L.
On the other hand, the domainsU;" converge uniformly toR? over compact

subsets by construction. Thus, passing all this to the limit, we reach that satis es

@.69).

Now, passing the growth control[(3.67) to the limit, we reach
kvki1 gy CR forall R 1
so that we can apply the Liouville theorem in the half space, Theorem 3|22, to get
v(x) = C(Xpn), :

Passing to the limit (3.64) and using this last expression, we obtaim 0.
However, by passing|[(3.85) to the limit we get

1-
21
a contradiction. ]

kaLl (B1)
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Proof of Theorem[3.18. The result follows from Proposition[ 3.24 applied to small
enough balls so that the condition on is fullled. Notice that the constant
cannot go to 0, because (%) cannot be made arbitrarily small for a givenL and
b. O

3.8 Proof of Theorems 3[1 and 3.8 ]

In this section, we will prove Theorem$ 3|1 anfd 3.3. We already know thatx is

a regular free boundary point, then the free boundary i€* in a neighbourhood.
Next, using the results of the previous section, we show that the regular set is open,
and that at any regular free boundary point we have[(3.73) below.

Proposition 3.26. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let u be a solution to(3.29)-(3.30)-(3.31).

Then the set of regular free boundary points is relatively open. Moreover, around
each regular pointxg

O<cr*&d gypu Cr¥* &) forall r 1 (3.73)
Br (Xo)

for some positive constants and C depending only omn, kik, and the ellipticity
constants. Here,~(xo) is given by (3.10) with (xo) being the normal vector to the
free boundary atx, pointing towardsfu > Og.

Proof. Suppose without loss of generality thatxg = 0 and (Xo) = €,. The free
boundary, , is CY in B,, for some ;r o > 0 by Proposition[3.17. Apply now
Theorem[3.18 to the partial derivative@u around pointsz 2 B, \ . We obtain

@) Q@ x 2 @ .7 cCix zZ®; (3.74)

for some > 0, and some constanC independent ofz.

Step 1. Q is continuous and positive at the originLet us rst check that Q is

a continuous function on the free boundary at 0. Indeed, suppose it is not con-
tinuous, so that there exists a sequence, ! 0 on the free boundary such that
limg: Q(zk) = Q 6 Q(0). Then, we have

QuUX) Q@) (x z) (2) . Cix oz
Thus, taking limits ask !'1 , for any xed x, we obtain
@Qu(x) Q) CixjTO :
We have used here that and ~are continuous. On the other hand, we had
@u(x) QO)(x)7”  Cixj"" ;

so that
iQ  Q)j(x):@ Cjxj O
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Now takex = (0;t) 2 R" ! Rfort2 R* andlett! O. It follows Q = Q(0), a
contradiction; i.e., Q is continuous at 0.

We now prove that Q(0) > 0 (notice that we already know that Q(0) 0
becauseu 0). To do so, we proceed by creating an appropriate subsolution using
Lemmal[3.20.

First of all, consider a xed bounded strictly convexCt¥ domainP f u> Og
touching the free boundary at 0, similar to the domains considered in the proof of
Proposition[3.2]. Suppose thaP has diameter less than 1, and take ah > 0 such
that, if we denote p(z) the normal vector to @ Ppointing towards the interior of P
at z2 @R then

b p(2)

(r(2)

where is the small constant following from Theoren 3.18 that appears if (3]74).
Let us call

~h 1= max for z2 @P\f x,<hg ~(0) + 2

™=~ ~0) 0

Suchh > 0 exists becausd® is CY' , and and are continuous. Take now =

~0)+3 ™ and let %be a regularised distance td&R" nP as in De nition In

particular, % 0 in R"nP. We will see that = % C@u for an appropriate C.
By Lemma|3.20 used irB;, we get that for some constant o < h=2,

(L+br) 1 in Bp\f x:0<d(x;R"nP) o0

Now, sinceP is strictly convex, we have that there exists some with 0 < p
o such that
(L+br) 1 in fO<x,< pg\ P:

Now considerv, as the one de ned in Propositior] 3.13 (there it is called),

u(rx)

Vi(X)= ———
r( ) rkr UkLl (Br)

By the same reasoning as in the proof of Propositign 3]15 rescaling to a larger
ball we have that
w, = Ci(@v;) 8, O

for r small enough.
From Proposition[3.13 we can choose small enough so that for some positive
constantc,
w,>c>0 in P\f x, pQ:

Moreover, also proceeding as in the proof of Propositipn 3]15,l(+ br )w, >
in By \f v, > Og for some arbitrarily small constant , making r even smaller if
necessary. Thus, we can assume

(L+br)w > g’ in By \f v, > Og;

for some O< e < c to be chosen later.



102 Chapter 3. The fractional obstacle problem with critical drift

Now compare the functions and e w,. Notice that in R" nP, w, 0.
In P\f xp pQg, € can be chosen small enough depending og and P so that
e w, there, becausav~>c > 0in P \f x, pQg. Finally,

(L+br) (L+br)w in fO<xp,< pg\ P:

Thus, by the maximum principle, for this particularr xed we have thatw, € .
Going back to the de nition of w;, this means that for some and c positive constants

@Qu(te,) c%te,) for O<t< :

For small enough,%is comparable to &,), along the segmente,, so that we
actually have
@Qu(te,) ct for O<t<: (3.75)

Now, if Q(0) = 0 then
j@u(x)j  Cixj™"
Since < ~(0)+ we get a contradiction with (3.7%). Thus,Q(0) > 0.

Step 2: Conclusion of the proofFor z 2 \ B, for r small enough we have that
Q(z) > 0, becausd) is continuous andQ(0) > 0. In particular,

@(x) Q) (x 20 (@ .72 cCjx z @ .
By taking x = z + te, for t> 0 we get
@u(z+te,) Q(2) (9t @ ct® .

Integrating with respect to t from 0 to t° < 1, using that @Qu(z) = 0 and
n(z) > 1=2 for r small enough and recalling thatQ(z) > 0, we get

u(z+ t%,) ct@*@ >

so that in particular, z is a regular point; i.e., the set of regular points is relatively
open. Doing the same foz = 0 we get one of the inequalities from[(3.73),

supu cr**"@ >0 foral r I (3.76)

Br

On the other hand, we can also nd the expansion at O fo@u for any i 2

@) Q) CixiTO
Therefore,

r Ui C X + jxj
Integrating, and usingr u(0) =0

u(x) C ij1+~(0)+ij1+~(o)+ :

le.,
supu Cr*=©@ foral r 1.
Br

Thus, combined with (3.76), this proves[(3.73). O
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Proposition 3.27. Let L be an operator of the form(3.7)-(8.8), and letb2 R". Let
u be a solution to(3.29)-(3.30)-(3.31) and let x, be a free boundary regular point.
Then

U) = co (X Xo) (Xo) ¥+ 0 jx  xott 0o (3.77)

with ¢ > 0 and for some > 0. Here ~(xo) is given by (3.10), with (o) being the
normal vector to the free boundary a0 pointing towardsfu > Og; and depends
only on n, the ellipticity constants, andkhbk.

Proof. Assume thatxg = 0 and (Xo) = €,. From the expansions in the proof of
Proposition[3.26 we have

@u(x) = Qi(xn);@ + 0 jxj" @ (3.78)

for someQ;, with Q, > 0, and > 0. Now, letx = (x%x,), with x°2 R" ! and
Xn 2 R. Integrating the expression|(3.78) in the segment with endpoints 0 ana% 0)
we get

u(x®0) = o jxji-O@*

Then, integrating in the segment with endpoints X% 0) and (x% x,) we nd

%) = 5 2 )2+ 0 i

Thus, (3.78) is proved. O

We nally can put all elements together to prove our main results, Theorenijs 3.1
and[3.3.

Proof of Theorem[3.3. After subtracting the obstacle and dividing by a constant,
we can assuma is a solution to (3.29)-(3.30){(3.3[1). Then the result we want is a

combination of Propositiond 3.1]7, 3.26, and 3.R7. O
Proof of Theorem[3.]. It is a particular case of Theorenj 3]3; we only need to check
that 1. For this, notice that the kernel is constant and given by ( ) = Cy.1=,

where the constantc,.s is the one appearing in the de nition of fractional Laplacian,

_ 1 cosi) v

see for example [DPV12]. Thus, the value of for ( ) s
YA

(9= ~%= j qd:
S 1

Notice that, by changing variables to polar coordinates,

Z zZ 7, z
ol = 1 coséq)dxz 1 cosft 1)drd - i d

n;1=2 RN ijn+l v 1 0 rz 2 S 1

R
where we have used thato1 (1 cosf))t 2dt = =2. This immediately yields that
1for ( ) 2, as desired. O
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We next prove the almost optimal regularity of solutions. Given an operatok
of the form (3.7)-(3.8), the associated de ned as in (3.1]), andb2 R", we de ne

: be
Wi g (3.79)
where is given by (3.12). Notice that , 2 (0;1=2].

Proposition 3.28. Let L be an operator of the form(3.7)-(3.8), and letb 2 R".
Let u be a solution to(3.29)-(3.30)-(3.31). Then, for any " > 0,

kuk .

C™ Lb "(Rn)

where the constanC- depends only om, L, b, and". The constant |, is given by
@79

Proof. In order to prove the bound we rst check the growth of the solution at the
free boundary, and then we combine it with interior estimates.
For simplicity, we will denote -~ = .
Step 1: Growth at the free boundaryWe rst prove that, if O is a free boundary
point, then

kr uki1 (s,)
sup———=
r>0

for some constantC depending only onn, L, b, and ".

We proceed by contradiction, using a compactness argument. Suppose that it is
not true, so that there exists a sequence of functions, f, with kuykc:: 1 for
some > 0 xed and kfKcigrny 1, such that

8
3 Uk 0 in R"
( L+br)u fr in R"
3 ( L+br)u = fy in fu, > Og
' D?uy 1 in R"

C; (3.80)

(3.81)

but uy are such that

(r)=sup sup (rY "kr ukir ¢ !1 as r#0:
i ro%r

Notice that for r > 0, (r) < 1 and that Iis a monotone function, with
(r)!'12 asr #0. Now take sequences, #0 andi,, such that

. (rm) .
ro krou Kk 2m :
and de ne the functions ( )
Ui (rmxX
\Y (X) - +m B
" m ()
Notice that 1
kr Vm k|_1 (B1) ; (382)
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1 . 1
DV r&“r ) in R"; J(L + br)(r vi)j rg‘r ) in fv, > 0g: (3.83)
m m

On the other hand,

kr uikal (Ber) R " (er)
rm (fm) (rm)

Therefore, noticing thatrl "= (r,)! Oasm!1 , we can apply Proposi-
tion to deduce that, for some > 0 independent ofm,

kr mGLl (Br) =

R" for R 1. (3.84)

ka kcl: (Br) C(R),

for some constant depending oR, C(R). Let us take limitsasm!1 . By Arzeh-
Ascoli, v, converges, up to taking a subsequence, @f.(R") to somev; . By taking
to the limit the properties (3.83)-(3.84) we reach thatv; should be a convex global
solution. By the classi cation theorem, Theorenj 3.71, we have that either 0

vi ()= C(e x)I" ®= ) for some e2 S 1

where and are given by [3.1D) ). Notice, however, that taking (3.84) to the

limit, v; grows at most like -, and by de nition (b e= (e)) > -. Therefore, we
must havev; 0. But this is a contradiction with (8.82) in the limit. Therefore,

we have proved |(3.80).

Step 2: ConclusionLet us combine the previous growth with interior estimates
to obtain the desired result.
Let x;y 2 R", letr = jx yjandR =dist(x;fu=0g). We want to prove that
for some constantC. then
jrux) r u(y)] Cr":

Without loss of generality and by the growth found in the rst step we can
assume thatx;y 2 fu > 0g. Let x 2 @u = 0g be such that distix;x) = R. We
separate two cases:

If4r> R,

jrux) rouy) jroulx) rou@)j+jroux) rouyj
CR " +(R+r)" Cr’";

where we have used the growth found in Step 1.

If 4r R, thenx;y 2 Bgr=2(X), and Br(x) f u> 0g. Notice that we have
(L+br)ru=rf in Bgr(X):

From the interior estimates in Proposition 3.4 rescaled, we have

jr u(Rx)j

R[N Ule “(Broooy € RKM fKit (Br(x) + KM UKL (B () + o T X
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Now notice that thanks to the growth found in Step 1 we have, on the one
hand,
kr Uk|_1 (BRr (X)) CR";

and on the other hand,

_ _ z
ir_u(Rx)j : X _ R
RN 1+jxjn+l RN 1+jxjn+1 !

so that putting all together and usingkr f k.1 (rny 1, it yields,
[r ule-@n,00 C 1+R

Thus, if R 4 we are done. Now supposB > 4. If r < 1, by applying
interior estimates to B;(x) we are done. Ifr 1, we are also done, because
jrux) r u(y)j 2kr ukp: gny C.

Thus, we have reached the desired result. m
As a consequence, we have the following immediate corollary.

Corollary 3.29. Let L be an operator of the form(3.7)-(8.8), and letb2 R". Let
u be the solution to(B.9) for a given obstacleé of the form (3.3). Then, for any
n > O,

kuk

ctu (RM)

whereC- depends only om, L, b, ", and k' Kczi1(rny. The constant . is given by

@79

Proof. After subtracting the obstacle and dividing by an appropriate constant, we
can apply Proposition[3.28 and the result follows. O

Finally, we prove Corollary[3.2.

Proof of Corollary [3.3. After subtracting the obstacle and dividing by a constant,
we get that this result is a particular case of Propositioh 3.28, but the constar@-
depends orb and not only on kbk.

To prove that C- actually depends onkbk, the proof of Proposition[3.28 can
be rewritten by taking also sequences of vectotg 2 R" with kbk = kbk; by
compactness, up to a subsequence they converge to sdimath kik = klk and the
rest of the proof is the same. O

3.9 A nondegeneracy property

In the obstacle problem for the fractional Laplacian (without drift), in [BFR1E],
Barrios, Figalli and the second author proved a non-degeneracy condition at all free
boundary points for obstacles satisfying ' 0. From this, and by means of a
Monneau-type monotonicity formula, they establish a global regularity result for
the free boundary.
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In the obstacle problem with critical drift for the fractional Laplacian we can
actually nd a non-degeneracy result analogous to the one found in [BER18]. In this
case, however, we cannot establish regularity of the singular set, since we do not
have (and do not expect) any monotonicity formula for this problem.

Proposition 3.30. Let b2 R", and suppose that 2 CY(R"). Assume that' is
concave inf'> 0Og or, more generally, that

(+ @)' O in f'> 0g ?6f> 0gbR"™

Let u be a solution to the obstacle proble®.2). Then, there exist constants; ro > 0
such that for anyx, a free boundary point then

2

sup(u ") cr° forall O<r<r g

By (XO)

Proof. Let w := ( ) ¥+ b r u,sothatw O.Ifw 0, by the interior
estimates rescaled, and using that is globally bounded, we reach is constant. From
limj;n  u(x) =0 we would getu 0, but this is a contradiction with ? 6 f'> 0g.
Thus, w6 0.

Notice, however, thatw 0O infu>" g. In particular, given x 2 fu>" g, then
r w(x) =0 and w has a global minimum atx, so that

()™ br wx)=( ) wx) <o

Now, noticing that f' > Og b R", we get that by compactness there are some
c;r > 0 such that for anyx 2 f u>"' g with dist(x;fu="g) r then

() br wKx c< O

Now, since ( ) ¥+ b r u= win R" and from the semigroup property of
the fractional Laplacian,

u bhb@u= ( )™ br w ¢ in U;

whereU := fu>"' g\f dist(;fu="g9g) rg. Note that the operator + b @ is
uniformly elliptic, with ellipticity constants 1 and 1 + kbk?.

Sinceu > 0 on the contact set, by compactness there exists sorhe> 0 such
that* hinfu=" g. By continuity, there exists some O<r o < r=2 such that

'> 0 in Up:=fu>" g\fdist(;fu="g9g) 2ro0:

Now let x 2 Uy with dist(x;fu = "g) ro, and considerr 2 (0;ry). From the
conditonon', (+ @)’ Oinf'> Og, we getthatifu:=u ' then

(+ @u c>0 in fu>0g\ B;(x) Uy:
Therefore, if we de ne

V= u ij in fu> Og\ Br(X);

C .
2(n + kok?)
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then
(+ @v O
By the maximum principle, if , := fu> 0g\ B,(x) then

O0< u(xy) supv=supv:

r r

Sincev< 0in @u > Og\ B,(x),

0O< sup Vv supu cr?
fu>0g\ @B (x) @B (x)
where ¢ = 5ty Therefore, ¢ is independent ofx, and we can letx | xo, to

obtain the desired result. O



Chapter 4

Regularity of minimal surfaces
with lower dimensional obstacles

We study the Plateau problem with a lower dimensional obstacle iR". Intuitively,

in R3 this corresponds to a soap Im (spanning a given contour) that is pushed
from below by a \vertical" 2D half-space (or some smooth deformation of it). We
establish almost optimalC11*2 estimates for the solutions near points on the free
boundary of the contact set, in any dimensiom 2.

The C11¥2  estimates follow from an'-regularity result for minimal surfaces with
thin obstacles in the spirit of the De Giorgi's improvement of atness. To prove it,
we follow Savin's small perturbations method. A nontrivial di culty in using Savin's
approach for minimal surfaces with thin obstacles is that near a typical contact point
the solution consists of two smooth surfaces that intersect transversally, and hence
it is not very at at small scales. Via a new \dichotomy approach” based on barrier
arguments we are able to overcome this di culty and prove the desired result.

4.1 Introduction

4.1.1 Minimal surfaces with obstacles

In this paper we study the regularity of minimizers in the Plateau problem with a
lower dimensional | or thin | obstacle. Before introducing the problem in further
detalil let us contextualize it by recalling ve closely related classical problems and
commenting on them.

" The Plateau problem:
min P(E;B;) : EnB;=E nB; ; (4.1)

where E R" (boundary condition), and B; denotes the unit ball of R",
E R", andP(E;B;) denotes the relative perimeter of the seE in B;.

" The Plateau problem with an obstacle:
min P(E;B;) : E O ; EnB;=E nB; (4.2)

whereE ;E are as above and® E (the obstacle) is given.

109
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The nonparametric obstacle problem:
Z
min 1+jr vj2 1 v in BY; Vigg = 0 ; (4.3)

v 0
Bl

whereB{ denotes the unit ball ofR" 1, g: @B! R (the boundary condition)
is given,v:B?! R,and :B?! Risthe obstacle satisfying jeg <g.

The obstacle problem:

ir vj? . .
J ZJ Y in BY, Vieg = 9 ; (4.4)
B?

min
\"

whereg, v, and , are as above.

The Signorini problem, or thin obstacle problem:
Z e
Y.y in BY\f X, 1=00; Vigg = 9 ; (4.5)
BY 2

min
\"

where g and v are as above, and now : BY\f x, ; =0g ! R (the thin
obstacle) acts only onfx,, ; =0g.

Note that (4.3) is a particular case of [(4.R), namely, whe@ and @ Eare graphs.
QIEO, -) is, in turn, a limiting case of [4.8) gfor "- at graphs, the area functional

1+ j"r vj2 becomes the Dirichlet energy %j"r vj2 at leading order.

The regularity of solutions and free boundaries is nowadays well understood
in both the classical obstacle problem[ (4l4) | see[[Caf77| Caf98] | and in the
Signorini problem | see [AC04] ACS08]. The case of minimal surfaces with thick
obstacles (both in parametric and nonparametric form) is also well understood |
seel[Kin73/ BK74/ Jen80, Giul0].

This paper is concerned with the regularity of minimizers of the Plateau problem
with lower dimensional, or thin, obstacles. Namely, we considdr (4.2) with obstacle

O= fx, 1=0;%x, Og (4.6)
where : R"! R" is some smooth C'1) di eomorphism. We denote
@ = fx, 1=0;x,=00":

This problem (4.2)-(4.6) is the geometric version of the Signorini problerp (4.5) in
the same way that [4.2) with thick O is the geometric version of[(4]4). To visualize a

solution of this problem inR3, one can think of a soap Im (spanning a given contour)
that is pushed from below by a vertical 2D half-space, as depicted in Figure |4.1.
Note that, in R3, we cannot use a \wire" (i.e. a one dimensional curve) as obstacle,
since the surface will not \feel" iff

More precisely, one can see that ifO had codimension two, then solutions of [(4.R) with an
in nitesimal tubular neighbourhood of O as obstacle would become, in the limit, solutions of the
Plateau problem (4.1) (without obstacle).
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Figure 4.1: The \potato chip con guration", popularized by Ca arelli.

Although the problem of minimal surfaces with thin obstacles was introduced by
De Giorgi [DeG73] already in 1973 (he established an existence result), very little
was known on the regularity of its solutions. De Acutis in[([DeA79] established?
regularity around points of the solution belonging toO n @. To our knowledge,
the only known regularity results up to@ concern the nonparametric case | as in
@.3) but with  as in (4.5). They are due to Kinderlehrer[[Kin71] who prove*
regularity estimates for the solution in two dimensions, and to Giusti [Giu72], who
obtained Lipschitz estimates for the solution in every dimension.

The di culty in studying (4[2){(4[6)](with respect to the same problem with a
thick obstacle) lies on the fact that near a typical point of the contact set the hy-
persurface@ Econsists of two surfaces that intersect transversally o@D. Therefore,
@Eis typically not at at small scales and thus (4.2) cannot be treated as a pertur-
bation of (4.5). A more subtle dichotomy argument is needed: in Subsectipn 4]1.5
we outline the idea of this new approach that is tailored to overcome the previous
di culty.

Let us also point out that it is not completely obvious how to give a meaning-
ful notion of solution to (4.2)-(4.6). The main issue is that with the Caccioppoli
de nition of relative perimeter P we have

P(E[O ;B;) = P(E;B;) for all measurableE; (4.7

and thus the obstacleO seems to be ignored bf?. This issue led De Giorgil [DeG73]
to introduce a more appropriate notion of perimeter that is suitable for the study
of thin obstacle problems (this is currently known as the De Giorgi measure). We
choose the similar (and a posteriori equivalent) approach of looking at the thin
obstacle as a limit of in nitesimaly thick neighbourhoods of it. See Subsecti¢n 4.11.4
for a more detailed discussion on this issue.

The goal of this paper is to address the question of the regularity of solutions to
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#.2)-(4.6). In particular, the main result of this paper is the proof of the following
local almost optimal regularity result.

Theorem 4.1. Let E be a solution to the thin obstacle problerf¢.2)-(4.6) in the
unit ball of R", n 2. Then, @Eis C*¥ around contact points and up to the
contact set.

The appropriate notion of solution is discussed in Subsectipn 4./1.4. Let us empha-
size here that this local regularity near contact points result holds in any dimension
n 2, in contrast to the classical regularity theory of minimal surfaces in which
minimizers are regular only up to dimension 7. As we will see, this di erence is due
to the presence of the thin obstacle, which rules out solutions with singularities of
the type of Simons and Lawson's cones like those appearing in dimension 8 in
the Plateau problem without obstacles.

In the following subsections we recall the main steps in the regularity theory for
sets of minimal perimeter and present the appropriate analogues for (4.2)-(4.6).

4.1.2 Improvement of atness

For the classical Plateau problem De Giorgi [DeG61] established, in 1961, the fol-
lowing fundamental result:

Theorem 4.2 ([DeG61]). Let E R" be a minimizer of the perimeter functional
in B; and assume that®@B B; fj e xj " gforsomee2 S" !, where" =" (n)
is some positive dimensional constant. Ther@B B;-, is a smooth hypersurface.

This theorem follows from the followingimprovement of atness property for
minimizers E of the perimeter in B;. Namely, given 2 (0;1) there exist positive
constants” (n; )and (n; ) such that, whenever 2 @Eand" 2 (0;" ) then the
following implication holds:

@B B, jexj " ) @BRB je xj "w o (4.8)

Here, e and e-denote two possibly di erent unit vectors (inS" 1).

Combined with the classi cation of stable minimal cones by Simons$ [SIm68],
Theorem[4.2 yields that minimizers of the perimeter ilR" are smoothfor3 n 7.
This result is optimal since, in dimensionsr 8, Bombieri, De Giorgi, and Giusti
[BDG69] showed the existence of minimal boundaries with am ( 8)-dimensional
linear space of cone-like singularities.

The philosophy of Theorem 4]2 is also shared by other key regularity results
of nonlinear PDEs:if a solution happens to be close enough to some special solu-
tion (e.g., the hyperplane), then it is regular These are the so-called"\regularity
results".

The goal of the paper is to establish ari-regularity result for (4.2)-(4.6), thus
extending De Giorgi's improvement of atness theorem to the setting of problem
@.9)-(4.6) | see Theorem .3 below. As a consequence, we will prove almost optimal
C11=2 estimates for minimizers of [(4]2){(4]6) irR" that are su ciently close to a
canonical blow-up solution (thewedgesntroduced in the following subsection). We
will also see that these canonical blow-up solutions are the only possible blow-ups
at any contact point, and then Theorent 4.]L will follow.



113

4.1.3 Blow-ups

An essential tool in the theory of minimal surfaces is the monotonicity formula.
Namely, if @Eis a minimal surface andx 2 @E then the function

A(r) = IrnilHn L' @R B,(x) (4.9)

IS monotone nondecreasing. In additior is constant if and only ifE is a cone. A
standard consequence of this monotonicity formula is that blow-ups of a minimizer
of the perimeterE  R" at any point x 2 @ Eare minimizing cones Simons proved
in [SIM6§)] that half-spaces are the only minimizing cones in dimensions 7. As

a consequence, one can always apply Theorem| 4.2 neaafter zooming in enough

| this gives the smoothness of perimeter minimizers fom 7.

For problem (4.2)-(4.6) we nd several analogies with this theory. As we will
prove in Lemmal[4.2], ifE is a minimizer of (4.2)-(4.6) andx 2 @E\ @ is a
contact point, then the same functionA(r) in (8.9) is still monotone when = id
(and an approximate monotonicity formula is also available for general smooth ; see
Lemma[4.27). As a consequence, blow-ups are also coneqd fof (4.2)-(4.6). It is trivially
false, however, that hyperplanes are the only possible blow-ups in low dimensions.
Indeed, thewedgegsee Figurd 4.p)

= x2R":e, x 0 ande x 0; (4.10)
for

e :=sin! e, 1 +cos! e;,; 0 I (4.11)

2 2’ 2
are solutions to [4.2){4.p) for =id . Thus, they are always possible blow-ups.

Being a wedge, . is the intersection of two semispaces with normal vectors
contained in the plane generated bg, ; ande,. The aperture angle of the wedge is
given by 2 , while its rotation angle is given by with respect toe, (we take the
convention thate, ; = e-,). Note also that there is the restriction 0 5 ]
to guarantee that the obstaclef x, ; =0;x, 0Ogis contained in .

We will show that, in all dimensions, the wedges are the only possible blow-
ups around contact points. More precisely, iE is a minimizer of (4.2)-(4.6) and
X 2 @B @ (i.e. x is a contact point) we have, in a suitable frame depending on
X,

— 0O x !'f x,1=0;%x5, 0Og (4.12)

and

1
—E x ! . (4.13)
Ik

This will be a consequence of the the classi cation of conic solutions to the thin
obstacle problem, given in Propositiof 4]5.
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Figure 4.2: Representations of . and

4.1.4 Rigorous notion of solution to  (4.2)-(4.6)

Given a measurable seE and an open set  R", we recall the standard de nition
of the relative perimeter ofE in as

Z Y4

P(E;)= ir gj= sup divg : (4.14)
g2CH() kgkp1 1 E

With this de nition of perimeter (4.7) holds. Thus, unless we de ne the problem
with further precision, minimizers of [4.2)-(4.6) will be | strictly speaking | just
the ones of [(4.11), ignoringO.

This, of course, is not what we have in mind when we think of (4.2)-(4.6). Heuris-
tically, we would like that if @ Eattaches from both sides taO in some region, then
the area of it is counted twice in the computation of the perimeter oE instead
of being ignored. To solve this issue De Giorgi introduced ih [DeG73] a notion of
perimeter that is suitable for the study of thin obstacle problems (the De Giorgi
measure); see also [DeA79]. Here we will use the similar approach (that will be a
posteriori equivalent) of considering a thin obstacle as a limit of thick obstacles.

Let us introduce the precise notion of[ (4]2)f(4]6) that will be used in this paper.
For > 0 small, let us denote

= 0. (4.15)

2

(Note that is very sharp wedge, pointing in thes, direction.)

De nition 4.1.  We say that E is aminimizer of (4.2)-(.6) in B, if E has positive
density at some point ofO and there exist  # 0, Ex minimizers of

n 0
min P(E;B;) : EnB;= E[ ( %) nB;y and ( %) E (4.16)

suchthat g, ! g in LY(By).
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Note that « are thick sets approximatingO. Now, minimizers of [4.1§)
\feel" the obstacle no matter how small i is. The intuitive idea behind this de nition
is that a sequenceEy as in De nition #4.I] will not converge to a solution to the
Plateau problem unless the obstacl® is \inactive" (i.e., the obstacle is contained
in density one points for the solution to the Plateau problem). The philosophy of
the paper will be to prove regularity estimates for problem| (4.16) that are robust as

k #0. As a consequence, we will be able to show that the previous intuitive idea is
actually fact. Namely, as it will be clear from the results of the paper, if the solution
to the Plateau problem (with boundary dataE ) crosseO n@, then there exists a
minimizer of (4.2)-(4.8) which is not a solution of Plateau problem (and therefore,
the thin obstacle plays an active role).

We remark that any minimizer according to De nition (up to replacing the
complement ofE by the zero density points ofE) is a minimizer in the sense of
De Giorgi by [DeA79] (see Remark 4l5). Conversely, it is not true a priori that
any minimizer in the sense of De Giorgi can be recovered as a minimizer in the
sense of De nition[4.1. Nonetheless, minimizers of the De Giorgi perimeter present
locally an aperture around the obstacle by [DeA79] (and thus, a wedge ts within),
and therefore, locally around contact points they are minimizers in the sense of
De nition 4.1] In particular, since our regularity results are local, they apply to
minimizers in the sense of De Giorgi. (See Remdrk 4.3.)

4.1.5 Regularity for solutions su ciently close to a wedge

The rst result of this paper is stated next, after introducing some notation and a
de nition. Throughout the paper we will denote

X YinB X\ B Y\ B:

We also introduce the following

De nition 4.2. We say thatE is "-closeto . in B if
E . inB
where
=fx2R" :dist(x; .) "g = fx 2R tdist(GR"n ) "o

Here is our main result, which we calilmprovement of closeness

Theorem 4.3 (Improvement of closeness)Given 2 O;% there exist positive
constants” and depending only om and such that the following holds:

Assume that, for some > 0, a setE R" with P(E;B;) < 1 satises
( )\B: E and

P(E;B;) P(F;B;) 8F suchthatEnB;=FnB;and ( )\ B; F: (4.17)
Suppose thaD2 @B @D, " 2 (0;" ), and

NI

(=0 : D(@)=id ; jp?j "*z: (4.18)
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Then,
Eis"closeto ; inB; ) Eis" ' <closeto .-inB ; (4.19)

where , ~, , and 7, are as in (4.11).
Remark 4.1 Let us comment on the statement of Theorern 4.3:
(1) This result generalizes the classical De Giorgi's improvement of atness theo-

rem (4.§).
(2) Our estimate (4.19) is designed to be applied, iteratively in a sequence of

dyadic balls, to a minimizer E of (4.16). It gives C¥ regularity of @Eat
points of the contact set; see Theorein 4.4 below.

(3) An essential feature of our result is that the constant is independent of .
Thus (4.19) is stable as # 0 and hence applies to solutions of (4.2)-(4.6); see
De nition 4.1]

(4) The assumption < 1=2 is almost sharp. Indeed, one can easily see that the
statement of the theorem cannot be true for 2 (3;1) by using that the

optimal regularity of solutions to the Signorini problem isCLz.

(5) If : R"! R"isanyC%! di eomorphism andx belongsto@ = ( fx, ;=
Xn =0g), then for > 0 and in some new coordinates = , (x) with origin
at x such that

«(X):= Ry (x x); whereR, is an orthogonal matrix

the assumption [4.1B) will be ful led bi some new di eomorphism satisfying

( )= (( ))|seeLemma 4.10| Hence, assumption [(4.18) is always
satis ed after a change of coordinates.

4.1.6 On the proof of Theorem 4.3 |

Let us now briey comment on the proof of Theoren{ 4]3. Our main idea is to
use a \dichotomy approach”, which is combined with Savin's \small perturbation
method". More precisely, we prove by a barrier argument that | if " is small
enough | one of the following two alternatives must hold:

(a) @Eis very atin Bj.

(b) The contact set is full in B34 (it contains @ \ Bj-4) and @ Esplits into two
minimal surfaces that meet alongdD with some angle.

Then, on the one hand, if &) holds we can use that our problem is a perturbation
of the Signorini problem [4.5) and exploit theC*=? regularity for (4.5) to prove
(@.19). For this we use the \small perturbation method" pioneered by Savin | see
[Sav09, Sav10, Sav10b].

On the other hand, if (b) holds then @ Esplits in B3-4 into two minimal surfaces
with boundary, each of them at in a di erent direction. Since the contact set is
full we can interpret it as a smooth \boundary condition". Then, using theC*?
regularity up to the boundary of at minimal surfaces, we can improve the atness
of each of the two surfaces separately to prove (4]19).
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4.1.7 Consequences

From our Theorem[4.3B, as in the classical theory, we get that once the minimizer is
su ciently close to a \wedge" type set . , then it has a localCY structure.

Theorem 4.4. Given 2 0;1 there exists a positive constant depending only
onn and such that the following holds:
Assume that, for some > 0, a setE R" with P(E;B;) < 1 satises
( )\ By E and (4.17). Suppose thaD2 @B @D, that
+;
(0=0; D(©O=id; jp?j "% (4.20)
and thatE is " -close to . in Bj.
Then, @Ehas the followingC% structure in B,-,. Either:

(a) In some appropriate coordinatesy = (Y%y,) = (Y1;:::;Yn), 1(@[3Ethe
graph fy, = h(y9g of a function h 2 C%(BY,) that belongs toC* (BY,) \

CY (B}.,), where BY, denotes the ball inR" * and BY_, are the half-balls
BY,\f vy, 1> Og. Moreover, we haveh Oony, ;=0 andr h is contin-
uous onfy, ; =0g\f h> Og.

or

(b) @B B, is the union of twoC%! surfaces that meet or@ with full contact
set in Bi-.
. . T :

In the previous statementC** := =, C" .
Remark 4.2 It will be clear from the proofs that if O is a minimal surface (with
boundary), then @Ecannot stick to O n @ and (b) must hold with the same
regularity as that of @O Namely, if @ is aCk (resp. analytic) codimension two
surface, then the two surfaces in (b) will also b€X (resp. analytic), and not just
ctt .

Theorem[4.4 requires the solution to be su ciently close to a wedge-type set, .
Thanks to the following classi cation of global conical solutions to our problem, we
will have that this is always the case (after rescaling) near any contact point.

Proposition 4.5 (Classi cation of minimal cones inR"). Let R" be a cone,
ie.t = forallt> O, with @ 6 ?. Suppose that satis es (4.17) with id.
Then, = . forsome and asin (4.11).

As a direct consequence of the combination of Theorém 4.4 and Proposition| 4.5
we obtain the following result (which is just a more precise version of Theorém |4.1
above),

Corollary 4.6. Letn 2, and assume thatO is a minimal surface and that 2
Ck for somek 2and 2 (0;1) | or equivalently @ is of classC* .

Let E be a solution (in the sense of De nition 4.]1) of (4.2)-(4.6) with x 2
@B @\ Bi-. Then, forall 2 0;% , @Ehas the followingC* local structure
near x . For r > 0 small enough, we have either:
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(a) In some appropriate coordinatesy = (y%y,) = (yi;:::;¥n), (@B is the
graph fy, = h(y9g of a function h 2 C°(B9) that belongs toC* (B%) \
C% (B?), whereB? denotes the ball inrR" * and BY are the half-ballsB?\
f yn 1> 0g. Moreover, we haveh 0Oony, 1 =0 andr h is continuous on
fyn 1=0g\f h> Og.

or

(b) @B B,(x ) is the union of twoC* minimal surfaces with boundary that meet
on @ with full contact set inB,(x ).

Remark 4.3 By [DeA79, Theorem 2.1 and Theorem 2.2] (or by a standard barrier
argument similar to that used in Hopf's lemma) if one considers a minimizer of the
De Giorgi measure for obstacles as in Corollafy 4.6, then its boundaries do not stick
to the obstacle. More precisely, they present an aperture around the obstacle that
allows, locally, a wedge contained in the minimizer.

As a consequence, minimizers of the De Giorgi measure are locally (in a neigh-
borhood of any contact point) minimizers in the sense of De nitiofi 4]1. Therefore,
Corollary [4.6§ above applies to minimizers in the sense of De Giorgi.

Remark 4.4. In the previous statement the condition thatO is a minimal surface
appears only to be able to apply Remarfk 4.2 and obtain (b). Otherwise, an analogous
result with Ct1 regularity holds.

Remark 4.5. We observe that, as a consequence of our results,
E is a minimizer as in De nition[4.1 ) Poc(E;B1) = P(E;B1): (4.21)

Indeed, letE be a minimizer as in De nition [4.]. First, as proven in[[DeA709],
sinceO is smooth, the De Giorgi perimeteiPps of the minimizer can be expressed
as

Poc(F;B1) = P(F;B1)+2H" Y((OnF)\ B,) P(F;B;) forany Borel setF:
(4.22)
But note that @Ecannot stick to the obstacle from both sides at any point of
O n @ by the strong maximum principle. Hence,

H" {((OnE)\ B,) =0: (4.23)

Using (4.22) and [(4.2B)E is therefore also a minimizer oPpg, sincePpg (F; B1)
P(F;B;) P(E;B1) = Pps(E;B;) for any competitor F.

Remark 4.6. Corollary [4.6 gives the regularity of the hypersurface around contact
points. The regularity around other points follows from the classical theory for mini-
mal surfaces (see for instance chapters 8 and 9 of the classical book of Giusti [Giu84]).
Note that this is result only up to dimension 7[[Sim68] since nhonsmooth minimizers
exist in dimensions 8 and higher [BDG69]. In contrast, our regularity result holds
around the contact set of the thin obstacle, in any dimension.
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Remark 4.7. After a previous version of this manuscript, a preprint of Focardi and
Spadaro[FoSp18b] appeared in which the authors establish optin@t=2 regularity
estimates and recti ability of the free boundary for minimal surfaces with at thin
obstacles in the nonparametric case (that is, in our notation, for the case =id
and assuming that@Eis a graph in then-th direction). Interestingly, our Corollary
(.6) gives that (at least for at obstacles) the assumptions of [FoSp18b] are always
satis ed near any contact point by parametric minimal surfaces with thin obstacles.
Thus, when combined with our results, the results in [FoSp18b] yield that solutions
to parametric thin obstacle problems areC'**2 near the obstacle and their free
boundary is recti able.

4.1.8 Organization of the paper

The paper is organised as follows.

In Section[4.2 we introduce some notation, de nitions, and preliminary results.
In Section[4.3 we construct a barrier and prove the dichotomy presented in the intro-
duction: if the solution is close to a wedge, then eithe® Eis very at or its contact
set is full in a smaller ball. In Sectiori 44 we focus on the at con guration, showing
the improvement of closeness result in this case (Propositibn 4.14). In Sectjon| 4.5,
instead, we focus on the full contact set con guration, which allows us to complete
the proof of our rst main result, Theorem[4.3. In Sectiorj 4)6 we prove Theorem 4.4
by iteratively applying Theorem [4.3. Finally, in Section[4.f we discuss blow-ups
(monotonicity formula and classi cation of minimal cones) and we complete the
proofs of Proposition 4.5 and Corollary 416, thus obtaining Theorem 4.1.

4.2 Notation and preliminary results

4.2.1 Conventions and notation.

As it is standard, throughout the paper we will assume that the representative of
E among sets that di er from it by a null set is such that topological and measure
theoretic boundary agree. That is, given a seE R", we will say that x 2 R"
belongs to the boundary o, x 2 @E whenever

0< JE\ B,;(x)j < jB;(x)j; forallr> O

Notice that, in general, this is not necessarily true. However, the set of points
where this does not hold is of measure zero, and therefore we can consider instead
the equivalent setE that arises from removing all such points. Thus, without loss
of generality, we will always assume that the measure theoretic and topological
boundary agree.

The notation introduced in Subsection§ 4.1|3 arid 4.1.4 will be recurrent through-
out the work. In particular, the de nitions of . and  from (4.10)-(4.15) as well
as the de nition of g, and the conditions on the constants and (see [4.1]1)). See
also Figure[4.D.

On the other hand, when not stated otherwise, we add a superscript prime to
an element or set inR" to denote its projection toR" *; and we proceed similarly
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we can also denotex = (x%x,) 2 R" * Rorx=(x%x, ;x,)2R"?2 R R.
Similarly, B; denotes the unit ball inR", BY is the unit ball in R" * and Bin R" 2,
We may sometimes writeBY R", or x°2 R" as an abuse of notation, meaning
BY f 0Og R" and (x%0) 2 R" respectively.

4.2.2 Preliminary results

De nition 4.3. Let E R". We say that E is a minimizer of the -thin obstacle
probleminB; R"if ( )\ By E and (4.17) holds.

We are also interested in the notion of super- and subsolutions to the minimal
perimeter problem. Thus, the follow de nition will also be useful.

In general terms, we say that a seéE* is a supersolution to the minimal perimeter
problem when compact additive perturbations toE* in B; produce sets of larger
perimeter. Similarly, E is a subsolution to the minimal perimeter problem when
compact subtractive perturbations toE in B; increase the perimeter.

De nition 4.4. LetE R". Then, E* is a supersolutionin B if
P(F";B) P(E";B);
forany F* with E* F* andF* nE* b B.
Analogously,E is asubsolutionin B if
P(F ;B) P(E ;B);
foranyF withE F andE nF b B.

Notice that, in particular, a set satisfying (4.17) is a supersolution to the minimal
perimeter problem.

Proposition 4.7. Given E R" with P(E ;B;) < 1, there existsE satisfying

)Wlth EnB;=E nB;.

Proof. The proof follows by classic methods in the calculus of variations. Lower
semicontinuity and compactness in.? of BV functions directly yield the result (see
[Giu84, Thm 1.9, Thm 1.19]). O

Proposition 4.8. Let E  R" satisfying (4.17). Then, for any B,(x ) By, E
Is a supersolutionin B,(x ). Moreover, if B,(x )\ ( )= ?,thenE is a set of
minimal perimeter in B, (X ).

Proof. This just follows from the de nitions of minimizer of the -thin obstacle
problem (4.17) and supersolution. O

Lemma 4.9. If E is a local minimizer of the perimeter around a poink 2 @E
then @ Esatis es the mean curvature equation

M(D2v;r v):=@1+ jr vj?) v (rv)'TD?r v=0
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in the viscosity sense. That is, if we de ne for any smooth : B! R,
S =1 x,<' (x9g;

then, if S is included in eitherE or E°¢in some ballB,(x ) andx 2 @S, we have
that
M(D* r') O (4.24)

Moreover, if E is a supersolution to the minimal perimeter problem arournxi 2 @E
then if S is included in E in some ballB,(x ) and x 2 @S we have the same

result, (4.29).

Proof. The proof is very standard, just using the de nitions of minimal perimeter
and supersolution and noticing that we can decrease the perimeter if the conclusion
does not hold. See, for example, [CCO3]. O

Lemma 4.10. Let : R"! R" be anyC! di eomorphism and let x belong to
@ = ( fxp 1= X, =0g). Assume that[] cza M andjD( 1)(x)j M. Then,
for > 0, there are new coordinatex =  (X)

«(X):= Ry (x x); whereRy is an orthogonal matrix
and a newC%! di eomorphism , such that
( )= x(C ) forsome 2 (0;C)

and
(=0 ; (0 =id ; and jD? j CM?3;
whereC depends only om.

Proof. Let us chooseR, to be some orthogonal matrix to be chosen and de ne
A, =R, D( x):
ChooseR, and 2 (0;C ) such that
Ac( )=
as a consequence the set

fXn 1=0;x, 0Og isinvariant under the linear mapAy :

Now de ne

X =Ry ( (x)+A x and = ! *(x):
Note that since (x )2 fx, 1 = x, =0gwe have (x)+ Al = and
thus

()= x(C "D)+AL D= (C )
By construction, we have (0)=0, D (0)=id,and[ ] ci1 CM?3 . O
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4.3 Barriers and dichotomy

For this section let us start by de ning the mean curvature operatoH , on functions
':R" !l Ras
!

H =div p—— =(1+jr ') M®D2:r"): (4.25)
1+jr'j?
We start by introducing a supersolution that will be used as barrier.

Lemma 4.11 (Supersolution) Let 2 O;le) . Let

S" = x=(x"x, :x,)2B; R"2?2 R R:
Xo ' (x)= X 20 2%,

Then, S* is a strict supersolution to the equation of minimal graphs iB8,, and
H' c; in BY
for some positive constant depending only om.

Proof. Let us check that, given' , then

H' Cc:
Let us rewrite the operatorH,
1 (r' )'D? r X
H X)= p——oreour—erers ' —— X)) = U (xX)@' (x);
(x9) Pm T+jr ' 2 (xY " i (9@ (X9
where 1 @ x)@ (X9
X X
Uij (X% = —_— ij PR
1+jr ' j 1+ " |
Let S (x9 = P 1+jr' j2. Note that, UXx% = S }(x9 Id ' 'T , where
(XY = (x9=S (x9. The only eigenvalue of Id ' ' T dierent from 1 is
1 k' k2 Letm. =supfir ' jg, where the supremum is taken over the domain of
de nition of ' . Putting all together we have obtained thatU is uniformly elliptic,
with ellipticity constants + = (1+ m?) 32 and 1.

Notice then that

X
H (9= 4(x9@ () (@n 2 4n 2)-); inBY
ij

On the other hand, from the fact thatjr ' j 4 (n 2)in BY,
c=(1+ m?) 2 (1+16 3(n 2)?) ¥ (4.26)

Putting all together, we get the desired result. O
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Figure 4.3: Representation of the setting in Lemmia 4.]L2 after a rotation.

The following lemma shows that whenever the minimizer is not at, then the
contact set is full in the interior. The condition of atness is used via the angle from
the de nition of the wedge . : being at means that is small, when compared to

Lemma 4.12. There exists" and C depending only om such that the following
statement holds:

Let E  R" satisfying (4.17) be such that it is"-close to some . in B, for
some" 2 (0;" ), and (§.18) holds. Suppose that 2 C ", 5 . Then

E ( - C ) in Bi-:
In particular, the contact set is full in B1=.

Proof. Let us prove this result, for simplicity, in the case id, and at the end
of the proof we discuss how to modify it in order to account for small second order
perturbations.

We will slide an appropriate supersolution from above until we intersect with the
surface@E

Takex 2 B2, f Og f Og, and by making a translation let us assume is the
origin. Let us also rotate the setting with respect to the last two coordinates so that
the angle betweere and e, is\ (e ;ep) = arctan(C"), for some constantC
depending only onn to be chosen, such that > arctan(C"). Let us denote€’, @E,
@' ,and ( )", the corresponding rotated versions. The following argument can
be done with both con gurations that ful | this property, so let us assume without
loss of generality that we are in a situation where

fxn= C"%, 19\f X1 0g @' ; inBiy: (4.27)

See Figurd 43 for a representation of this rotated situation, and the whole proof.
Take the supersolutionS™ from Lemma|4.11. Slide@$ from above until it
touches the boundary of the minimizer of the -thin obstacle problem, @E. That
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is, de ne
S'= @S+ tey;

and consider
m :=infft>0:S'\ @E\ B, 6 ?¢:

We recall that

@S = x=(x"%, ;%) 2B1:xp= X% 2(n 2x2 ,

then x™ cannot be an interior point toS™ \ Bi-,. Indeed, sinceS™ \ Bio\f X, 1 =

Og f x, m > Ogis strictly above zero, then thanks to Propositio@E is a
surface of minimal perimeter arounc;,. On the other hand,S" isa supersolution,
touching on an interior point with a surface of minimal perimeter locally, which is

not possible.
We will show that the boundary @B-, \ s" s always above @E in the e,
direction. From (4.27) and using that@E .+ B, it is enough to show that

there existsC depending only onn such that
X2 2(n X2, C"xn 1+ " for x°=(x%x, 1) 2 @B.,; (4.28)

for some constanty, depending only om that accounts for the di erence in distance
between the Hausdor distance and the distance in the,-direction. For (4.28) to

be satis ed, usingjx’f? = 1 (x, 1)? we want

(2n  1)x2 ;+ C"%, 1 2t c"; forx, 12 [0;1=2]:

By taking =4¢" and C = 2¢(2n 1) the previous condition holds, and notice
that for " small enough (depending only om) S* is a supersolution as wanted.

Thus, for =4c¢" and C = 2¢(2n 1), we can slideS' until t = 0, where it
touches @E at the origin (since it touches ( )" there). Therefore, the origin is a
contact point, and moreover,@E is contained inS* \f x, ;  0g. In particular,
since the origin was a translation of any point iB%, f 0g f Og, we have that in
BY, f 0g f Og\f x, 1 0Og, @E is contained infx, 0g.

Rotating back, and putting arctan(C") = C " for someC depending only on
n, we obtain the desired result from one side. Doing the same on the other side
completes the proof.

If 6 id, we can proceed similarly using thajD? j "!*z. Indeed, if E is
"-closeto . ,then I(E)is2'-closeto . for" small enough depending only on
n. Now we can repeat the previous argument with %(E) instead of E. The only
place where we used thaE satis es (4.17) is to check that we cannot touch at an
interior point when sliding the supersolution (using the previous notation, to check
that m cannot be strictly positive).

If we were touching at an interior point x,, in this case, thenE would be a
surface of minimal perimeter around (Xn). Since we can choose = 4¢," to avoid
contact in the boundary, thanks to Lemml the mean curvature a®8 is
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below 4c". Consequently, the mean curvature of @8 ) is below 4c" + Ol+e
and for " small enough (S™ ) is still a supersolution: there cannot be an interior

tangential contact point. O
Lemma[4.12 shows that if ifE is "-close to some wedge ; in B; with c"
then we haveE (. ¢ ). As a counterpart, the following lemma shows that

( .+c") E]evenfor <C ",

Lemma 4.13. There exists" and C depending only om such that the following
statement holds:

Let E  R" satisfying (4.17) be such that it is"-close to some . in B, for
some" 2 (0;" )and 2 0,5 C" .Suppose that satises (4.18). Then

( . +cs) E inBiy

Proof. The proof follows very similarly to the previous result, Lemma 4.12. Again,
as before, we assume id; and the proof can be adapted to the cag®? j nltg
following analogously to the proof of Lemma 4.12.

We want to show that we canopen  up to being at an angle proportional to
" from . .Letusshowitforx, ; O.

The fact that E in B, allows us to establish a separation betwees, ; 0
andx, 1 O.

Consider the surface@B\f x, ; 0g. Let ; be the angle betweer@ . and
@ infx, ;1 0g If  C;" for someC; depending only onn we are already
done, since is already a barrier; so that we can suppose that; C," for some
C, to be determined. We denote . = @ . \f x, 1 0Og.

Now, as in Lemmg 4.12, we rotate the setting in the last two coordinates, so that

" f xn Ogatan angle arctanC") from fx, = 0g, for some constantC to be
chosen. See Figure 4.4 for a representation after the rotation.

Notice that S" is a subsolution to the problem, wher&* denotes the superso-
lution constructed in Lemmal4.11l. Now the situation is the same as in Lemrha 4.12
upside down. In the new coordinates after the rotation, since ihx, ; > Og any
point on @E is locally a supersolution, we will be able to slide up the subsolution
up until the origin for the same constantC as in Lemm as long as we are are
not touching with it in the region fx, ; 0Og after the rotation. But this can be
avoided choosingC,; such that C," 3arctanC" for " small. O

4.4 Improvement of closeness in at con guration

In this section we prove our main result, Theorerm 413, in the at con guration case
in the case 2 (0;C "). Namely, we show:

Proposition 4.14. For every 2 0;% , there exist positive constants and "
depending only om and , such that the following statement holds:
Let E  R" satisfying (4.17), with 02 @E be such thatE is "-close to . in
B,, for some 2 (0;C ") and" 2 (0;" ), and (§.18) holds.
Then,
Eis ™ "<closeto .-inB ;
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Figure 4.4: Representation of the setting in Lemmia 4.]L3 after a rotation.

for some new~°and ~as in (4.11).

The proof of this proposition follows by compactness, using th@%'=? regularity
of the solutions to the classical thin obstacle problem with the Laplacian, .
The following proposition will be used to show compactness of vertical rescalings
(x%x,=") : (x%x,) 2 @E near a contact point.

Proposition 4.15. There existh and depending only om such that the following
statement holds:
DenoteQ; := BY ( 1;1) LetE R" satisfying, for somev 2 Q,

P(E;Qi1) P(F;Qi1) 8F : EnQi=FnQand v+ ( )\ Q F: (429
be such that for somé&2 ( 1;1) and someh 2 (0;h ), (4.18) holds for" 2 (0;h),
fx, b hg E f x, b+hg inBY ( 11);

and
v+ ( on) E; inBY? ( L)
Then,
"~ eitherfx, b h( )9 E,inBY, ( 11)

A

orE f x, b+h(1 )g,in BY, ( L;1).

To prove Proposition[4.1b we need the following half-Harnack for supersolutions;
seel|[Sav10b, Section 2] or the proof of [Sav10, Thm 5.3].



127

Proposition 4.16 ([Sav10,Savi0Ob])Let E R" be a supersolution to the minimal
perimeter problem inB1, and supposeé@E f x, 0g. Then, for every > 0O, there
exists some andC depending only om and such that if < and e, 2 @E
then

j e (@Bfx, Cg\(BY ( LYNjyn: @ )iBYun o

where ., denotes the projection of a set ont8Y in the e, direction.

Proof of Proposition[4.15. We separate the proof into two di erent scenarios.
The rst possibility is b "1+ 7. In this case, since ( on) E,itfollows that

tanh )
Xn —— otas: E; inBY, ( 1;1);

for someC depending only onn. For h small enough depending only om, since
" h h andb ",

3 tanh .
X, b Zh Xn % clt: E; inBY, ( L1):

This completes the casd "1* 1.
The second case is > "1* 7, and is less straight-forward. By Savin's half Harnack,
Proposition[4.16, for every > 0 small enough depending only on, if there exists

z=(2%z,) 2 @E;with jzj % andz, b h+ h; (4.30)

then

e @B B1\ B3, ( L1 \fx, b h+Cihg ., , Zng:4an .
(4.31)

for some constantC; depending only onn.
On the other hand, notice that since we are in the cade> "1*1,

E=E[f x, by

is a subsolution to the minimal perimeter problem inB; for h small enough. This
follows since ( ) f X, "1+%g for " small enough, and@Eis a surface of
minimal perimeter whenever it does not touch ( ).

Take E®, and apply again Proposition to get that, for every > 0 small
enough depending only om (take < C , 1), if there exists

z=(2%2,) 2 @E;with jz§ % andz, b+h h; (4.32)
then

3., .
e @B B1\ B3, ( L1) \fx, b+h Cyhg , , Z]Bg:4]Hn .
(4.33)
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Take Q= B, (b h;b+ h) In particular, we must have that

3. .
P(E; Q) EJBg:‘lJHn 1]

Notice, on the other hand, that we can taken small enough so that the lateral
perimeter of Q is less than%ng=4an 1. This yields a contradiction, since including
Q to E gives a competitor for the minimizer of [(4.17); and therefore eithe[ (4.30)
or (4.33) does not hold. This completes the proof. O

We also need a similar improvement of oscillatiofar away from contact points In
such case, we can use the following classical Harnack inequality for minimal surfaces.
The proof of this proposition is an straightforward application of Propositionf 4.16.

Proposition 4.17 ([Sav10b]) There existsh and depending only om such that
the following statement holds:

Let E R" be a set of minimal perimeter inB? ( 1;1), such that for some
b2 ( 1;1) and someh 2 (0;h )

fx, b hg E f x, b+hg inB? ( 1,1):
Then,

N

eitherfx, b h(1 )3 E,inBYL, ( L1)

orE f x, b+h1 )g inBY, ( 1,1).

Actually, to account for situations in which @Emay stick to @ . ), we need
the following version of Propositior 4.17 for minimal surfaces with at enough thin
obstacles.

Proposition 4.18. There existsh and depending only om such that the fol-
lowing statement holds:
Assume that satis es (4.18) with " 2 (0;h). Let E  R", satisfying

fx, 0g\Q E
where we denot®, := B? ( 1;1), be a solution of
P(E;Qi1) P(F;Qi) 8F suchthatE nQ; = F nQq; fx, 09\ Q: F:
Assume that for soméb2 ( 1;1) and someh 2 (0;h )
fx, b hg E f x, b+hg inQq:
Then,
" eitherfx, b h(1 )g E,in Qu=;

A

orE f x, b+h(1 )g, In Q.
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Proof. The proof is very similar to that of Proposition(4.17 in[[Sav10b]. We sketch
it.

Note that, by (4.18) we have

fxa=0g fi xoj "'"2g in Qu:
Now, if b O, since@Eis above fx, =0g in Q;, we havefx, "*39 E
in Q;. Thus we obtainfx, b h(1 )g E in Q; provided nltg h(1 ),
which is trivially satis ed if 1=2 and"<h<h 1=4. In other words, the

rst alternative of the conclusion of the proposition holds wheneveb 0.

Let us now consider the casb 0. Note that we may suppose that the \coinci-
dence set'@B  fx, =0g is nonempty in Qs-4 Since otherwise the result follows
immediately from Proposition[4.17, noting@Ewould be a minimal boundary in
Qs=4.

SinceE is a supersolution inQ; satisfyingf x, "l %g E in Qq such that has
some pointx = (X% X .n) 2 @B\ Qaeq With X oy 2 ( "142;"1*3), Proposition
(with a standard covering argument) yields

L1 3. .

e @BF Xy CEI\ Quy o JIBLijue o (4.34)
At the same time, the setE .= E [f X, b+ h=2g) is a subsolution inQ, since the
contact set@B @ fx, =0g \ Qy is contained infx, "*2g f x, b+ h=2g
(recallb 0O and"™ h). Thus, either

E E Xn b+ h(1 ) in Qs (4.35)
or else, by Propositi06 applied td&E*®, we would have

e @\fx, brh C hg\ Qe Zng=4an . (4.36)

Now (4.35) clearly implies the conclusion of the proposition ( rst alternative). On
the other hand, should [(4.3p) hold then, by de nition ofE, (4.36) would also hold
with @ replaced by @Eand thus we would nd a contradiction with (4.34) when
taking  small enough so thatbo+ h C h > C" 43 (recall " < h <h small
enough). Indeed, this contradiction argument | which uses the minimality of @E
among boundaries of sets containing the obstacle | is identical to the one given in
the proof of Proposition[4.15. O

At this point, combining Proposition 4.18 and Propositiorj 4.18 we obtain the fol-
lowing lemma regarding the convergence of vertical rescalings to a Helder continuous
function.

Lemma 4.19. Let (Ex)kon be a sequence such th&t,  R" satisfy (4.17), with

02 @k, and with  such that ) holds for" = ". SupposeEy is "k-close

to ., in By, with 2 (0;"), and with"y ! Oask!1 . Suppose also that
k( K: k+"k) Ex in B;. Let

Ef = x“,;—,” x=(x%x,) 2 Ef\ By ; for all k 2 N; (4.37)
k
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where E; := R, (Ex), and R, denotes the rotation of angle \ in the last two
coordinates bringinge , to e,.
Then, there existsu 2 C%3(B_,) with kukco;a(BT) C, for some C depending
1=2

only on n, such that
fx, ux9 ".g Ef fx, ux9+".g inBY, ( L1) (4.38)
for somea> 0and > 0 depending only om.

Proof. Let us de ne the cylinder Q,(x ) = (B%x% ( 1;1))\ B; for any x =
(x%x .,) 2 B1. Notice that, thanks to the hypotheses, for ank 2 @E\ B,

@E\ Qi(x") f Xx2B1:jXn X .j 2'%0;
wherex" denotes the rotated version of. That is, introducing a notation, we have

0sG @E 2';
Q2 1(x")

the oscillation in the e, direction of @E in the cylinder Q, 1(Xx") is less than 2.
We would like to use that if "¢ is small enough, then either Proposition 4.15 or
Proposition[4.18 improves the oscillation in the half cylinder, and proceed iteratively.
In order to do that, we separate between four cases.

Case 1:x = 0. The rst case we consider isx = 0 2 @FE. By assumption,
k(  +") Exin By, and we have that

0sG @E 2':
Q2 l(xr)

If we denote ash and the variables coming from Proposition 4.15; we have that
if

4 h; (4.39)
then

0sG @E 2'«(1 ):
Q, 2(x")

We are using here Proposition 4.15 witftn = “. Condition (4.39) is to ensure that
k+t "« h E] If we rescale by a factor 2, we have

0sGg 2@E 41 );
Q, 1(x")

so that, if we want to repeat the argument, hypothesis (4.39) becomes
8™ ) h:

If we want to continue one next iteration, we can takeén = 2" (1 ). Notice that,
after the rescaling, the transformation associated to 8k, is 7x(X) =2 (x=2),

2Notice that here we want to ensure that (o) Ef in order to apply Proposition §.15. We
actually have that R , «( ...+".) Eg. butthisis enough to use it as a barrier from below in
the proof of Proposition [4.15.
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+1 . .
sothatjD?~j 2 1"i 2, and the hypotheses of Proposition 4.15 are still ful lled,
with a better constant.

Rescaling and repeating this procedure iteratively, we have that as long as

21 )™ h; (4.40)
then
osG @E 21 )™t (4.41)
Q2 m(xr)

Case 2.x 2 @k\ @\ Bi-. The second case is whex belongs to the contact
set of the thin obstaclex 2 @R\ @y, where@y := ( fX, 1 = X, =0Q). After
a translation and a rotation, up to rede ning if necessary, we can put ourselves
in Case 1 (see Lemmi 4.[L0 with = 1), so that

2@ )™ h ) 0sq @E 2'(1 )™t (4.42)
Q, m(x")
We must point out here that, a priori, the oscillation might be in a direction di erent
from e, due to the rotation coming from Lemmgd 4.10. However, since the rotation
tends to the identity as "¢ # 0, we may also assume that fot, small enough, the
previous also holds.

Case 3:dist(x ;@K\ @) % Follows exactly as the two previous cases, using
Proposition[4.18 instead of Propositiof 4.15, yielding agaip (4}42).

Case 4:2 P 1 dist(x ;@k\ @x) 2 Pforp 3. Thisis a combination of Case
2 and Case 3. We apply Case 2 and rescale, until we can apply Case 3, so {hat [4.42)
holds again.

That is, (¢.42) holds for allx 2 @&\ Bi-. Let my denote the largestm we
can take for every”y such that (4.40) holds. Clearlym, ! 1 ask!1 , since
"« ! 0. If we consider the rescaled sets in the, direction, El';k, we have that for
everym  my,

osG @E< 21 )™ (4.43)
Q, m(x)

In particular, there exists a Helder modulus of continuity as"y ! 0 controlling
the boundaries@l'?,;k. By Arzeh-Ascoli, up to subsequences@ F,;k converges in the
Hausdor distance to the graph of some Helder continuous function,. ]

Lemma 4.20. The function u 2 C%3(B)_) from the Lemma|4.19 is a viscosity
solution to the classical thin obstacle problem witn(0) = 0. That is, u ful Is

8
= 0 inB%,n(fx, 1=0g\f u=0g)

< u
u 0 onfx, 1=0g\f u=0g (4.44)
u 0 onfx, 1=0g;

in the viscosity sense. In particular,

kuk + kuk 0% (4.45)

for some constantC depending only om. That is, u is C¥* up tofx, 1 =0gin
either side.
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Proof. The proof follows along the lines of [Sav10].

Since @E* converges uniformly to the graph ofu, and @E* \f x, ; = Og
fXn C"xg, we clearly have thatu 0 onfx, 1 = 0g. This follows since
(.. «+") Ek. Similarly, u(0) = 0.

Now take any pointx® 2 BY_,. ConsiderP (x% a quadratic polynomial in B,
with graph touching the graph ofu from below at (x°; u(x°)). Since @F,;k is con-
verging uniformly to the graph ofu, P(x% ¢ touches from below@ F,;k at a point
yi such thaty, ! (x%u(x®) ask!1 . Rescaling back!'P(x% & touches from
below @E at y such that y ! x° for some sequence-bounded. Since@E is a
supersolution being touched from below, by Lemnja 4.9 we have

M("kD?P;"r P)= "¢ P+"¢ Pjr Pj? "(r P)TD’PrpP 0
at yp. By letting " ! 0 we reach
P(x% O

so that u solves u 0 in the viscosity sense.

On the other hand, suppose® 2 B?_, n(fx, 1 =0g\f u=0g). Let P(x9 be
a quadratic polynomial in Bj-, with graph touching the graph ofu from above
at (x0 u(x?). Now, P(x9 + ¢ touches from above@E" at a point y, such that
v ! (x%u(x®)ask!'1 . Thatis, "P(x% + € touches from above@E at yi
such that yp ! x° for some sequence,-bounded. If k large enough,y®2 BY, n
(fxn 1 =0g\f u=0g). Therefore, either @E is a surface of minimal perimeter
around yg, or @E is touching ( ) at w. In the rst case, we are already done
proceeding as before, we gét (" D?P;",r P) 0.

Suppose then, that@E is touching «( ) at w. For this to happen, one must
have that ( ) is a supersolution to the minimal perimeter problem around;s
otherwise there could not be a contact point with a supersolution. However, notice
that it ils a supersolution with mean curvature laroundyk~ bounded from below by

C"f? Therefore,M ("¢ D?P;"cr P) C"ff at y, and letting k ' 1 we get
P(x% 0. Thus, (4.44) holds in the viscosity sense.

Finally, the regularity of solution to the classical thin obstacle problem,[(4.45),
was rst shown by Ca arelli in [Caf79]; and the optimal C1*=? regularity here pre-
sented was obtained by Athanaopoulos and Ca arelli in JAC04]. O

We can now present the proof regarding the improvement of closeness to sets of
the form , , Proposition[4.14.

Proof of Proposition[4.14. Let us argue by contradiction, and suppose that the state-
ment does not hold. Then, there exists some, 2 O;% and a sequenc&, R"
satisfying (4.17), such that 02 @[, E are"y-close to some ., for 2 (0;C "),
@.18) holds for" = "¢ (and the transformation ), for some positive sequence
"«! Oask!1l , butsuch thatthe conclusion does not hold for any ;" > 0.

By Lemma[4.13 we have that

k( ki k+C "k) Ex; in By-:
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By rescaling and renaming the'y sequence if necessary, we can assume that2
©;"¢) and ( ,..+") Ex in By, so that we are in the same situation as in
Lemmal[4.19. In particular, due to Lemmd 4.19, the sequen@E" approaches (in
Hausdor distance) a functionuin B, ( 1;1), which by Lemma 4.20 is a solution
to a classical thin obstacle problem. Thanks to the regularity aii, and the fact that
u(0) =0 and r 4ou(0) = 0, we have that

u(x) @ uO(xy )+ @ Oy )  C ¥ inBy;

forany > 0 and for some constanC depending only onn. Here, we have denoted
a, =maxfa;0g, a =minfa;0g, and
. @u
u(0) :=lim ——(0;:::;0; ;

@ 1 ( ) #0 @2 l( )
i.e., the limit of the derivative in the e, ; direction coming fromfx, ; > 0Og or
fxn 1 < Og (which exist by the regularity up to the contact set). Notice, moreover,
that since u 0 around 0, we must have@ ,u(0) @ ,u(0). In particular,
thanks to the closeness o® E* to the graph of u, we have that

@\ B2, (L1  x» @,uO(xS ) @ uOeS ) €

which, after rescaling implies that@E is at distance at mostC" 3= from some -
in B, given by the graph of" @ ,u(0)(x8 )+ + "«@ ;u(0)(x2 ;) . Now, simply
take small enough depending only om and - such thatC 32  1* 2 and we
reach a contradiction (notice that such exists because » < 3). O

4.5 Improvement of closeness in non- at con gu-
ration

In this section we study the complementary case to the one in the previous section:
the case wheree is "-close to anon-at ( & ") wedge . . Under this condition,
thanks to Lemma[4.12, there exists a full contact set, so that the study of the
regularity becomes a known matter.

We state and prove now the lemma that will allow us to conclude the proof of
Theorem[4.3.

Lemma 4.21. There exists" depending only om such that the following statement
holds:

Let E  R" satisfying (4.17) with 0 2 @Ebe such that for some . , and
" 2(0;),

( .+) E ( . ) inBy (4.46)
where satis es (4.18).
Then, -
@B Bi>= « [ , (447)
where

= @B B\ (f x5 1> 00); (4.48)
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and o o
\' (fxn 1=09)\ Bi ( Xy 1= X, =00): (4.49)

Moreover, for each 2 (0;1), . and are CY graphs up to the boundary in
thee ., ande directions respectively, withCt -norms bounded byC", where C
depends onlyn and

Remark 4.8. A a direct consequence of th€® estimates from Lemmd 4.31 there
exists ., as in (4.11) such that for any 2 (0;1=2),

EisC"! -closeto .. ,inB,; forallr 2 (0;1=2);
for some constantC depending only onn. Moreover,
j iti 1 Ch

for some constantC depending only onn. This will be useful later on in the paper.
In fact, we could clearly take 2 (0;1) but we will only need < 1=2 later on (see

Proposition [4.24).

In order to prove Lemma[4.2]L we need a version for thick smooth obstacles of
the following standard result on regularity of at minimizers of the perimeter.

Theorem 4.22 ([Giu84, Chapter 8]) There exists small depending only om
such that the following statement holds:
Let E R" be a minimizer of the perimeter inB; such that

fXxn g E f x, g; in By;

for some 2 (0; ).
Then, there exists a map :B)_,! R such that

@E= fx=(x%x,) R":x,='"(x% inBY, ( 1=2,1=2);
wherek' kck(B(l)zz) C(n;k) , for some constantC depending only om and k.

Let us comment on the standard proof of the previous theorem.

Remark 4.9, Theorem([4.22 is usually shown in two steps. First, one iterates (4.8)
obtain
() Wi Cix vy

for > 0, and where (x) for x 2 @Edenotes the unit normal vector to@ Epointing
outwardsE. This C estimate for the normal is a consequence of the improvement
of atness property (4.8).

Second, one improves thi€% estimate to obtain the CX regularity using interior
Schauder estimates for graphs.

Comparing normal vectors is like comparing the corresponding tangent hyper-
planes (or half-spaces). A similar approach is what inspired part of this work, where
we compare sets of the form . instead of half-spaces to get the regularity.

The version of the previous result we will need is the following
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Theorem 4.23. There exists small depending only om such that the following
statement holds:
Assume 2 (0; ) and that satises (4.18) with " 2 (0; ). Let E  R",
satisfying
fx, 0O0g \ By E;
P(E;B;) P(F;B;) 8F suchthatE nB;=F nBy; fx, Og \ By F:

Assume that for soméb2 ( 1=2;1=2)
fx, b g E fx, b+ g inBg:
Then, there exists a map :BJ,,! R such that
@E= fx=(x%%,) R":x,='"(x% inB), (b 1=4;b+1=4); (4.50)
wherek' kcl;l(B(l)zz) C , for some constantC depending only om.

The proof of Theorenj 4.2B is based on two steps as the proof of Theofem4.22 (see
Remark[4.9). First, we prove that@Eis aC* graph or, more precisely,[(4.50) with
k' kci g2y C . This can be done exactly by compactness of vertical rescaling,
following the exact same strategy of Savin [Savi10, Sav10b].

Second, we can apply a theorem of Bezis and Kinderleher [BK74] to improve
from this CY estimate to the optimal C1? estimate. By completeness we sketch the
proof here.

Proof of Theorem[4.28. We do the argument in two steps.

Step 1. Fix some 2 (0;1), say := 1=4. Then, we claim that if is small
enough then [(4.5D) holds withk' ki g0y  C , where C depends only onn.
Indeed, exactly as in the proof of Propositioh 4.14, we establish by compactness the
following improvement of atness property, aroundx 2 Bz, \ @E

@E je(x x)j inB/(x) ) @E je(x x)j ¥ inB (x)
(4.51)
for some 2 (0;1) depending only onn. The proof of (4.5]) is analogous to the
Proof of Proposition[4.14. It is enough to do the case= 1. To do it, we consider
the vertical rescalings de ned similarly as in[(4.37) in Lemma 4.19. These vertical
rescalings of@ Eare compact by Propositior] 4.18 (similarly as in Lemmf 4.1.9) and
converge \uniformly" to a function u 2 C#(BY_,) which is harmonic. Indeed, the

condition jD? j 3 implies that the thick obstacle will be zero in the limit if
we apply the vertical rescaling X% x,) 7! (x®x,=) and let # 0. Using the C*
regularity of harmonic functions we establish|(4.31).

With a standard iteration of (¢.51) we establish that [4.5D) holds with

kI kcl; (B(l):z) C ( = 1:4)1

as we wanted to show.
Step 2. We improve the previousC*** estimate to the optimal estimatek’ kcuge_ )
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Figure 4.5: Representation of the setting after a rotation.

C . This is a straightforward application of the results of Bezis and Kinderleher
[BK74] of optimal C%* regularity for obstacle problems with uniformly elliptic non-
linear operators. Indeed, once we have proved th@ Eis a graph and with bounded
gradient, then it follows that the mean curvature operatorH is uniformly elliptic
and thus [BK74, Theorem 1] provides exactly the desire@%! estimate. m

We can now prove Lemma 4.21.

Proof of Lemma[4.21. We divide the proof into two steps. In the rst step we show
that are a graphs, and in the second step we show their regularity.

Step 1: are graphs in an appropriate direction. The proof of the fact
that are graphs is almost immediate, just noticing that[(4.46) allows us to apply
Theorem[4.2B at every scale.

Let us consider rst the case id, and let us rotate the setting with respect to
the last two coordinates, in such a way that the normal vector to . for fx, ;>
Og, e + , now becomese, (that is, rotate an angle + ). Let us denote as the
corresponding rotated versions with superindex, e.g. " . See Figur for a
representation of the rotated setting.

Now take any pointx 2 Bi-\f x, =0g,sothatx 2 ' .Denoter = x, ,=2,
and consider a balB, (x ). Notice that

fXn dtan(" )rg E f x, 3tan(")r g, inB, (x):

Thus, if " is small enough, we can apply Theorein 4]22 rescaled in the ball
B, (x ); which tells us that ( *)" in B, (x ) is the graph of a function in thee,
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direction. Since we can cover all of (*)" with balls of this kind, we conclude that
( *)" is the graph of a function in thee, direction in B1 \f x, 1 0g.

The case 6 id is a perturbation of the previous one, but we would need to
use Theoren] 4.23 instead of Theorem 4]22, since it is no longer true that we are
necessarily a minimal surface iB, (x ).

Step 2: CY¥1 regularity of . Let us rst discuss the case id. In this
situation, using (4.46), we obtain that * is a graph that is Lipschitz up to its
boundaryfx, 1 = X, =0g and we may now consider the re ection © of * under
the transformation (x%x, 1;X,) 7! (X% X, 1, Xn). Since * is a Lipschitz graph
up to fx, 1 = x, = 0g the \odd re ection” *[ * is a Lipschitz graph which
solves the equation of minimal graphs in the viscosity sense. It follows that [ *
Is analytic.
In the case 6 id we cannot use the re ection trick and the interior smoothness
of minimal graph to conclude, but still using [4.45) and that 2 C*! we see that
* is a Lipschitz graph with now C*! boundary datum solving a thick obstacle
problem with the mean curvature operatoH . It follows from standard perturbative
methods and the boundary regularity theory for obstacle problems with elliptic
operators (see, for instance, Jensen [Jen80]) that the is a CY graph up to its
boundary ( fx, 1= x, =00Q). ]

With this, we can proceed and prove Theorein 4.3.

Proof of Theorem[4.3.1f 2 (0;C "), then we can directly apply Proposition 4.1§4.
On the other hand, if 2 ", 5 , thanks to Lemmas 4.1P ancﬂ 4.}3 we have
that

( . +C ) E ( ©C ), in Bl:z:

That is, by rescaling and taking" smaller depending only om if necessary, we
have put ourselves in the situation to apply Lemmé 4.21. We conclude the proof in

this case by noticing Remark 4]8 and that we can take = 1. O

4.6 Regqularity of solutions

In this section, in order to simplify the computations, we assume id. All state-

ments and proofs are done under this assumption. We leave to the interested reader

the standard extension of this results to the cases2 CK ,k 2and 2 (0;1) or
analytic.

Proposition 4.24. There exists" depending only onn such that the following
statement holds:

Let E  R" satisfying (4.17) with 0 2 @E be such thatE is "-close to . in
B1, for some” 2 (0;" ). Then, there exists some -- with ~ and ~ as in (4.11),
such that for 2 0;% ,

EisC "r' -close to ~-—in By; forallr 2 (0;1=2);

for some constantC depending only om and
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Proof. We will suppose that" > 0 is su ciently small so that each of the results
used can be applied.

We begin by noticing that there are two possible scenarios. Either C " or

< C ", whereC is the constant given in Lemmd 4.72 and in Propositiop 4.]L4,
depending only onn.

Notice that if C " we are already done. Indeed, in this case we can apply
Lemma[4.12 and Lemma@ 4.13 to ful Il the hypotheses of Lemnja 4]21; which at the
same time yields the desired result, thanks to Remafk 4.8.

Suppose otherwise that < C ". In this case we can apply the improvement of
closeness in Propositiof 4.14. That is, there exist some radius depending only
onn and , such that

Eis ! "-closeto , ,inB ;
for some , and , as in (4.1]). Let us deneE, := 'E, so that we have a set
E, R", satisfying (4.17), with 02 @k and "-close to ., in B;. We are now
again presented with a dichotomy: either, C "or , C ".In the former

case, we can again apply Lemnja 4]21 and Remark]4.8 to nd that

E,isC" r!" -closeto .. inB,; forallr 2 (0;1=2);

2, 2

for some ., (whichis closeto ,.,). Rescaling backE isC"r!* -closeto .,
in B, forall r 2 (0; =2). Using that E is "-close to . in B, it follows that E is
C"r'* closeto ,. ,in By, forallr 2 (0;1-2), and a constantC that depends
on andn,oftheformC = C ! for C depending only onn.

If , C ", we can repeat the process iteratively. Suppose that for &l <
k 2N,wehave , C X" but  C Kk ".Thatis, there existE, := *1E,
satisfying (4.17), with 02 @K such that it is (< Dv_close to ., in By. By
Lemma[4.2]1 and Remark 4|8,

Ex isC" ® D closeto . inB,; forallr 2 (0;1=2); (4.52)

for some | . (close to

: - ) and for some constantC depending only onn.
Alternatively, we can write

k

EisC"'r' -closeto . inB,; forallr2(0; * '=2):

Let us rede ne, from now on, and for convenience in the upcoming notation,
i« = .. .Notice that Ex is  Y"-close to ., in By, but it is also
(2 1 closeto | ., ,. Therefore,

jk kd*tik wdg € ®Atyor=c, Ky (4.53)

where the sub-indices denote the only dependences of the constants. In particular,
by triangular inequality

X _ (k+1)
J K+« ko Cn " oGyt =Cp " ¥ (4.54)
j=k+1
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for a dierent constant C,. , still depending only onn and . Thus, sinceEy is
kD closeto ., inBy, Eis & X D _close to inB « 1.

Now, from (454), .., isCy " * ¥ closeto ., in B« :. Putting all
together,E is Cy, (k- Dr_close to . - InB« forallk <k .This, combined
with (.52), yields the desired result.

Finally,if , C K "forallk 2 N, we cantakek = 1 and repeat the previous
procedure. In this case, consider ag and ; the limits of the sequencese)kan
and ( )kzn, Which exist by (4.53). Notice that ; = 0. O

ki k

Remark 4.1Q In the previous proof, notice that ifk < 1 we must be dealing with a
point in the interior of the contact set. In particular, all points on the free boundary
must havek = 1, and since ; = O there is a supporting plane at each of this
points.

We now give a proposition on regularity of@ Ein the case that it is close enough
to some . with small enough (the wedge is almost a half-space).

Proposition 4.25. There exists"” depending only onn such that the following
statement holds:

Let E  R" satisfying (4.17), be such thatE is "-close to . in By, for " 2
(0;" ), and C " for a constantC depending only om. Then, after a rotation
of angle , @Eis the graph of a functionh : B2, ! ( 1;1) in the e, direction in
B1-. Moreover,

khke, (B xn 1 0g) T khke, BV %o 1 0g) cY (4.55)

forany 2 O;% , and some constanC depending only om and

Proof. Let assume for simplicity that = 0, the other cases are analogous. We will
assume that" is small enough so that the previous results can be applied. Let us
also assume that the contact set, ¢ :== @B f x, 1 = X, = 0g, iS non-empty in
Bi-; e\ Bi-» 6 ?. Otherwise we are already done by the classical improvement
of atness.

Step 1: @Eis the graph of a function. Let us rst show that indeed @Eis the
graph of a function. To do so, proceed as in the rst part of Lemmp 4.21, combined
with Proposition 4.24 and the fact that C ":

Take any x 2 B>\ @Enot belonging to the contact set g, and letr :=
dist(x ; g)=jx zjforz2 . Applying Proposition aroundz, we deduce
that for some . (depending onz),

EisC"'r-closeto . ; inB=(X);

for some constantC depending only onn. If we rescale the space a factor 2! with
respect toz so that E becomesE then

EisC"-closeto . ; inBy(2r *x):

Notice that E is a minimal surface inB,(2r 'x ), sinceE is a minimal surface in
Bi=2(X ). Usingthatj O+ ] ] C" for someC depending only om, and that
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C",wegetthat . isC"r-close tofx, =0gin B.-2(x ). After the rescaling,
. is C"-close tofx, = 0g in B;(2r 'x ), so that E is C"-close tofx, = 0g in
B.(2r x ). Thanks to the classical improvement of atness (Theore2) far
small enough depending only on, @ is a graph in thee, direction in B;(2r 1x ),
and consequently the same occurs f@En B,-»(x ). Let us call h the function whose
graph is de ned onB,=»(x ) in the e, direction. In particular, applying Theorem[4.22
again, h 2 Lip(B2 ,(x%), with [h]coxgo y  C"; wherex® is the projection ofx to
fx, =0g.
Now, by a standard covering argument together with the fact that@ Eis contin-
uous and ¢ has measure zeray is de ned in BY_, with

[hlcorgo,) C

for someC depending only onn.

Step 2: Regularity bound.  Let us now show |(4.55). We will show that for any
y°2 B \f x, 1+ Ogandany 2 (0;1=4), there exists somgyo 2 R" * depending
only ony°such that for any 2 (0;1=2),

i) hy) pe x° ¥ C" ¥ inB°(Y)\f x5, Og; (4.56)

for some constantC depending only omn and . The other half,fx® ,  0g, follows
by symmetry.

Throughout this second step we will be switching between the characterisation
of the solution to our thin obstacle problem as a boundary@E and as the graph
of a function u on R" 1. Thus, we can rewrite Propositior] 4.24. That is, if @ @E
we know that

EisC"r* -closeto --inB,; forallr 2 (0;1=2); (4.57)

for some constantC depending only onn and , and for some . . We want to
rewrite it in terms of u. Note that j j+ C" for some constantC depending only
onn, since  C", and therefore, we have that[(4.57) implies

ihxd A (xS D+ A2 CUix§™ ; inBL,; (4.58)

with A A" and jJA j+ jATj C" for someC depending only onn and
Notice that if O is in the free boundary of the contact set, @ @ 2, then A* = A ,
or equivalently =0 (see RemarK 4.1).

Let y%z°2 B, \f x2 ; 0Og, and lety%z°2 2 be such that disty® 2) =
jy° y% and dist(z% 2)=jz° Zz%.We denote byy;z;y, andz , the corresponding
elements as seen iR" (e.g.y = (y%0)), and lety = (y®h(y9) 2 @Eand z =
(z%h(zY%) 2 @E Suppose, without loss of generality, thatl = jy° y% j z° Zz9,
and we consider two di erent cases.

"~ Case 1.Suppose thatr = jz° y§  d=2. Using {4.58) centered around
ylinstead of 0, we know that for somé\* depending ony®,

ih(x)  A™xq g CUix® ¥ forx®2 BR,(y)\f xp ;1 Og:
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Putting y®and z%in the previous expression yields

ih(y9) Ay g CUiy’ yi* =d"  Crtt g
ih@) A2, CUiZ® ¥ cr+nt o

from which
ihyd h@% Ay, )i C'rt

and in particular, (¢.56) holds with pyo = A*.

Case 2.Supposer = jz° y§ d=2. 1fBJ(y) * fx0 ; O0Og, theny®2 ¢
belongs to the free boundary and the corresponding (o). (yoy from Proposi-
tion aroundy is actually an hyperplane ((y°) = 0) with normal vector
e o) (see Remarkf 4.10). In particular,@Eis C"d'* -at in the e () di-
rection in the ball B4(y) thanks to Proposition[4.24. On the other hand, if
BdyY) f x2, Og, we consider again the corresponding (o). (o) from
Proposition [4.24 aroundy . Then @Eis C"d** - at in the e (yo), (y0) direc-
tion in the ball B4(y) (recall that e (yoy+ (40 is the normal vector to (o). (yoy
in fx, 1 0g). In any case, noting thatE is a set of minimal perimeter in
Ba(y) we can apply the classical improvement of atness (see Remark]4.9) in
Ba(y), to get

i) @i Cly 7zj;
for someC depending only onn. We have denoted here by (x) for x 2 @E
the unit normal vector to @ Epointed outwards with respect toE at the point
X.

Now notice that if " is small enough depending only on, sincejr hj C",
i (y) (@j jr hy9 r h(z9%j, and on the other hand,jy zj j y° 2§+
ihyd h(z% 2iy° z9 so that

ir hy9 r h@) Cciy® 2y
from which (4.56) follows.
From (4.56) the result (4.55) follows by a covering argument. O

With this, we can now prove Theorenj 4/4.

Proof of Theorem[4.4. In the case id it is a direct consequence of Lemma 4.1
and Proposition[4.25, depending on whether the wedge is"- at or not. The case

6 id follows from standard perturbative arguments and is left to the interested
reader. O

4.7 Monotonicity formula and blow-ups

In this section we prove Propositiont 4]5 and Corollarly 4.6.
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Lemma 4.26 (Monotonicity formula for minimizers of (4.17)). Let E  R" satisfy
@.17) in B, (instead of B;) and suppose) 2 @B\ @D. Let us de ne

A(r) = T ; for r> 0 (4.59)
Then,
(a) If id thenAq1) O
(b)If ) =0,D(O) =id , and [] cu for 2 (0;1) small enough
depending only om then
Aq1) C

for someC depending only om.

Proof. (a) The proof is similar to that of the classical monotonicity formula for
minimal surfaces. Indeed, we take as a competitor tB in B; the dilation of E
to B; - and we extend it conically in the annulus. For simplicity in the following
computations, from now on we rescale everything by a factor 2, so that we can deal
with r =1 and AY2).

As in [Sav10b], we take= de ned as

8
< X2E if jxj > 1
x2F, xIxj2 E f@a ") jx 1 (4.60)
@ ") x2E ifjxj< (@ ")
that is, we rst contract it by a factor 1 " and then extend conicallyF in the
annulusB; nB; - to obtain a competitor for E in B;.
Thus,
Ps,(E) Ps,(F)=( )" *Ps,(E)+ Ps,ns, - (F): (4.61)
Now, dividing by " and letting " # 0, we obtain
(n 1)Ps,(E) H " (@B @B): (4.62)
On the other hand, notice that
z 1
A= p (n  1)Ps,(E); (4.63)

dH g

which combined with (4.62) yields the result in the case (a).
(b) The proof in this case is a perturbation of the proof in case (a). Now we have

(=0 : D) id and jD? j in Ba;
The observation that allows us to control the errors is that, for alk 2 B;.
(x)=( x)+D(x)x x)+O( jx xj?); (4.64)

D(x)=id+ O( ); D(rx)=D(x)+0O( (1 r)); 8r2(0;1): (4.65)
As a consequence, far2 (0;1] the maps :(0;1] ( By)! ( B;) dened by

rx)7 o Y(x)



143

are bi-Lipschitz and are quasi-dilations with the estimate, for 2 (1=2;1)
] (r;x) (rx)] rjix xjl1+C@ r) (4.66)
Indeed, {4.66) follows immediately from[(4.64) and (4.65) jk  xj< (1 r). For

generalx ;x we use the previous case and the triangle inequality.

Now, repeat the proof for the case (a) after applying ! and then check using
(4.68) that the errors we make are small. Namely, we de nE as in (4.60) but with
E replaced by (E). Note that ( F) is a \competitor" of E in ( B;), namely,
() (F)and (F)n (Bi)= En (By).

Now (4.61) must be replaced by

Pisn(E) Penp((F)=Pce, o(( F)+ Peeins, (( F)): (4.67)
Now, using [4.66) and (F)= (1 ™E)in ( By ), we obtain
Pis, o((F) (1 ")" *Pesy(E)+ O( "):

and
I:)( BinB; )(( F)): "H" 2 ( F\ @3) + O( ")Z
So that,

Pisy(E) (1 ")" 'P(sy(E)+ "H" 2 (F\ @B) +O( "):
Dividing by " and letting " # 0 we obtain

(n 1P(sy(E) H " (@B ( @B)+ O( ):

Now we conclude the proof observing that

Z
1, 1
A1) = p@l & (();)))de”@EZ(@Bl) (n 1)P(ey(E);
andthat @ 1, (x) =1+ O( ). O

Lemma 4.27 (Monotonicity formula for minimizers of (4.17)). Let E  R" satisfy
(@.17) and supposé 2 @B @D. Let us de ne

Ag(r) = PErn& for r> O (4.68)
Then,
(a) If id then A® 0 for r 2 (0;1). Moreover, A® 0 (i.e., A constant) if
and only if E is a cone (E = E for any t > 0).
(b)If 0O)=0,D(@O) =id , and [] cu: for 2 (0;1) small enough
depending only om then
A2(r) C

for someC depending only om.
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Proof. It follows by scaling Lemma[4.26. Part (a) is immediate, being the cone
condition an immediate consequence of (4]63). For part (b), let us de ne, for any
> 0, = 1 and

Ac(r) = rn—l; for r> O: (4.69)

Note now, that

PE; (B) _P E; (By)

Ae(r) = n Ipn 1 - n Ipn 1 :AE(r):
Di erentiating both sides with respect to r we obtain
Al(ry=  Ag °(r): (4.70)

On the other hand, applying Lemmg 4.26 withE and

0
A: (1 C[ lciisy c !

Putting it together with (4.70) and xing = r ! we obtain

0
AR(n=r ' Ag (1) C ;
as we wanted to see. ]

We now recall the well-known density estimates lemma for perimeter minimizers.
It is a very standard result in the theory of minimal surfaces which can be found
extensively in the literature. We mention, for example, the survey [Savi10].

Lemma 4.28. LetE R" be a minimizer of the perimeter inB, for somer > 0,
such that0 2 @E Then,

JE\ B,j cr";
JEC\ Byj cr"; forall r2(0;r);
for somec constant depending only on the dimensiom.
We have a similar lemma for supersolutions to the minimal perimeter problem.

Lemma 4.29. Let E* R" be a supersolution to the minimal perimeter problem
in B, for somer > 0, such that02 @E . Then,

J(EY)°\ B,j cr"; forall r2(O;r);
for somec constant depending only on the dimensiom.

Proof. This is standard, and follows exactly the same as Lemma 4]28. O

Let us now prove the following proposition, stating that in order to prove that
at some scale the solution is close enough to a wedge, it is enough to classify conical
solutions.
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Proposition 4.30. Assume that in some dimensiom 2 the wedges . are the
only conese  R" satisfying (4.17) with =id and any > O.

Assume that, for some > 0, the setE R" with P(E;B;) < 1 satises
( )\ By E and (4.17), with a C*' di eomorphism.

Then, for any " > 0, there exists > 0 depending only om, ", andk k1, and
kD k.:,suchthatifx 2 @B @)\ B, then

'Ry E x) is"-closeto . ;
for some and as in (4.11) and for some rotationR, depending only orx .

Proof. After a translation, let us start by assuming thatx = 0. Let us also take
a rotation R, of the whole setting, in such a way that, if we denote y = k,
then R, «( ) converges in Hausdor distance locally to "ask!1 for some
9> 0 (i.e., we take the blow-up of a Lipschitz boundary). Notice that the value®
is determined only by and . By rede ning if necessary, let us assume R, =id
for simplicity. (Note that we could also argue via Lemma 4.10.)
Let us argue by contradiction, and assume that the thesis does not hold.
Let = k !, and consider the sequence of sefs = klE. Notice that, for
k .= k,each Eg fulls «( )\ Bx Ek and solves a thin obstacle problem of
the type

P(Ex;Bx) P(F;Bx) 8F suchthatExnBy=FnByand «( )\ Bx F:
(4.71)

Recall that the set ( ) converges in Hausdor distance to "ask!1 . From
1
minimality, we have compactness i, of Ey, so that, up to a subsequencé! Hoe
E. , for some global solution to the %thin obstacle problem with =id, E; , with
° E; . Itimmediately follows that 0 2 E; .
On the other hand, by the density estimates in Lemma 4.29, since eaER is a
supersolution to the minimal perimeter problem inB; and 02 @k for all k, we
have

JEf\ Byj cr"; forallr 2 (0;1);

for some constantc. The convergence irLi . implies that the limit also fulls jES \
B:j cr", and therefore 02 @k .
Using the same notation as in the proof of Lemnfa 4.27 (sée (4.69)), we know

Ag(r)= AE (kr); forallr> 0
Notice, also, that

P E:;B
AL (NTA g, ()= rn—lr locally ask ! 1 ;

where we are using theLi. convergence oy to E; , and the fact that K =
k(kt)! idask!1l in Cgl In particular, we have that

Iigg Ae( )= Ag, (r); forallr> O
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Thanks to Lemma[4.2} part (b), the left-hand side limit is well de ned. That is,
Ag, (r) is bounded and constant for anyr > 0, which, from Lemma[4.2]7 part (a)
implies that E; is a cone (E; = E; for anyt > 0). By assumption, therefore,
E, = . forsome and ;and we have thatEy is converging inLy . to some .

Finally, in order to reach the contradiction, let us show that the convergence of
@k to @k is in Hausdor distance locally, which will complete the proof.

Suppose that is is not. That is, after extracting a subsequence, we can as-
sume that there exists some sequence of points 2 @k such thaty, ! y; and
dist(yx; @k ) >"> Oforsome"> Oandforalll k 1 .We have a dichotomy,
eithery; 2 E; ory; 2 Ef.

Let us now use the density estimate in Lemmpa 4.29. i 2 E; then, after a
subsequence if necessaff;\ B-(yk)j c¢" but JEf \ B-(y1)j = 0, which is a
contradiction with the L}. convergence. On the other hand, if; 2 E$ assume
that after a subsequencey 2 Ef for all k > 0. We have that for k large enough
Yk 2 @K is a point around whichEy is a minimal surface (beinge; a barrier from
below). That is, we can use the classical density estimates for minimal surfaces in
Lemma[4.28 to reach thatjE, \ B-(yk)j c¢" but jE; \ B-(y1)j = 0, again, a
contradiction. O

Thus, in order to prove Corollary[4.6, it will be enough to classify cones.

Proof of Proposition[4.5. The proof is by induction on the dimensiom.

Step 1: Base case. Dimension n=2.
Assume that 2 R?is a cone satisfying[(4.17), in other words, the boundary of
2 in B4 consists of radii of length one. By assumption, we have;(01) 2 2\ St
Now, if 2 were not a wedge (that is, if 2\ S* were disconnected) then the convex
hull of 2\ B; would be a set containing the obstacle (it contains 2) and having
strictly less relative perimeter inB; than 2. This would contradict the minimality
of 2|i.e. (4[17)]
Step 2: Induction step.  Suppose that it holds up to dimensiom 1 2. Let us
show it for dimensionn.
Let us rst prove regularity of the cone around contact points. Assume that we
have, without loss of generalityx = e; =(1;0;:::;0)2 @ \ @B. The rst thing
to notice is that the blow up of around x is a wedge ,.,.Indeed, the blow-up
is a cone by the monotonicity formula, and thanks to the fact that is a cone and
X = e, we get that the blow up atx must be of the formR n 1. where now
n1 R"lisaconeinn 1 dimensions such that satis es7) (also taking
inn 1 dimensions). In particular, by induction step, " 1= "o R" 1 where
" .t denotes ;, asseenim 1 dimensions. This immediately yields that the
blow up atx is a wedge of the form ; ;. By Proposition[4.30 and Theorem 44@
Is @ smooth minimal surface around any 2 @ \f x, 1= X, =0ginf x, 1 0g
up to fx, 1 =0g.
Let us separate the proof between both sidesx, ; 0, and let us focus rst
onXx, 1 O (the other side follows analogously). We can now take = maxfs
.S in X, 1 0g. Notice that it is indeed a maximum, since it is enough to
check that s\ sn ! \ S" 1 whereS" 1 R" denotes the i 1)-dimensional
sphere.
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The boundaries@ \ S" *and@ ° \ S" ! musttouch atapointx 2fx, ; 0g.

If x 2fx, 1> 0g, then by the strong maximum principle for minimal surfaces we
must have o= ° infx, ; 0g, where o denotes the connected component of
nfx, 1 = X, =0g that contains the thin obstacleO (which, in this case, is at).
On the other hand, ifx 2 fx, 1 = X, = 0g, then we have previously shown (by
induction and dimension reduction) that@ \f x, ; 0Ogis C! up to its boundary
around the pointsx and touches the half-plane o@ ° tangentially at x . Using the
boundary strong maximum principle (Hopf lemma) we obtain again that o = *

in an 1 Og
The same holds for the other sidex,, 1 0, so that in all we have that

o=

for some and asin (4.11).

We can now repeat the argument, but opening . instead, until we reach an-
other connected component of nfx, ; = X, = 0g. Proceeding iteratively, this
yields that must be one dimensional; that is, is the cone R" 2 2 for some
cone 2 R2. By the base case in Step 1 minimality implies that > must be a
convex angle and henc®" 2 2 is a wedge. O

Once cones are classi ed, we can proceed with the proof of Corollary|4.6,

Proof of Corollary [4.6. We will apply Theorem[4.4 after an translation, rotation,
and scaling. We have to check that the hypotheses are ful lled.

By de nition of minimizer of (4.2) (see De nition there exist  # 0, E
minimizers of (4.16) such that ¢, ! ¢ in L*(B4). For eachEy let x be any point
in Bim,\ @\ @. LetE; ' =  (Ex)= R« Ex x), where , denotes
the change of coordinates from Lemmja 4]10. Let us also denoté := the new
di eomorphism (also from Lemma[4.1).

Thus, E; ' is a minimizer of the -thin obstacle problem aroundx with di eo-
morphism , suchthat * (0)=0, D * (0) =id, and [ * ]Jcz1g,) C thanks
to Lemmal[4.10.

On the other hand, as a consequence of Propositipn]4.5 and Proposifion 4.30 in

any dimensionn 2, we reach that, for small enough,E; ' is " -close to

: wlt3
for some and . Also, for small enough, we will have [* Jci1(s,) 2 where

" > 0 is the constant in Theoren{ 4J4. Therefore, applying Theorem 4.4 ®;
(and shrinking by a factor ) we obtain that @k has the followingCt structure
in B -,(x ). Either:

(a) In appropriate coordinatesy, ( * ) * Ry (@& x ) isthe graphfy, = h(y9g
of a functionh 2 C°(B2,) satisfyingh 2 C* (B%,)\ C* (BZ,). Moreover,
we haveh 0ony, ;=0 andr his continuous onfy, ; =0g\f h> Og.

or

(b) R(@k x )\ B_-, is the union of two C*! surfaces that meet on@ with
full contact set in B -»,.
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Now we deduce in case (a) that in some new coordinates with origin at we
have ! @k is the graphfz, = h(z9g of a function i 2 C%BY) satisfying
h2 CclB%\ c¥ (B%). Moreover, we haveh 0 onz, ; = 0 and r I is
continuous onfz, ; =0g\f > Og.

Since either (a) or (b) holds forEy with estimates independent ok, we can pass

to the limit and show that either (a) or (b) also holds forE.

Finally, if the alternative (b) near some pointx then using that @ is of class
Ck (and the classicalCk regularity up to the boundary results for minimal sur-
faces[[Jen80]) we obtain tha@ Esplits into two C% minimal surfaces with boundary

in a small ball aroundx . O

Proof of Theorem[4.1. After having introduced the appropriate notion of solution,
we have that Theoren] 4.]1 corresponds to Corollafy 4.6. O



Chapter 5

On the singular set in the thin
obstacle problem: higher order
blow-ups and the very thin
obstacle problem

In this work, we consider the singular set in the thin obstacle problem with weight
Xn+1J® for a2 ( 1;1), which arises as the local extension of the obstacle problem
for the fractional Laplacian (a non-local problem). We develop a re ned expansion of
the solution around its singular points by building on the ideas introduced by Figalli
and Serra to study the ne properties of the singular set in the classical obstacle
problem. As a result, under a superharmonicity condition on the obstacle, we prove
that each stratum of the singular set is locally contained in a singl€? manifold,
up to a lower dimensional subset, and the top stratum is locally contained in@*
manifold for some > Oifa< 0.

In studying the top stratum, we discover a dichotomy, until now unseen, in this
problem (or, equivalently, the fractional obstacle problem). We nd that second
blow-ups at singular points in the top stratum are global, homogeneous solutions to
a codimension two lower dimensional obstacle problem (or fractional thin obstacle
problem) whena < 0, whereas second blow-ups at singular points in the top stratum
are global, homogeneous, ana-harmonic polynomials whena 0. To do so, we
establish regularity results for this codimension two problem, what we call the very
thin obstacle problem.

Our methods extend to the majority of the singular set even when no sign as-
sumption on the Laplacian of the obstacle is made. In this general case, we are able
to prove that the singular set can be covered by countably man@? manifolds, up
to a lower dimensional subset.

5.1 Introduction

Lower dimensional obstacle problems are an important class of obstacle problems,
arising in many areas of mathematics. For instance, they can be found in the theory
of elasticity (see|[Sig33, Sigh9, KO88]), and they also appear in describing osmosis
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through semi-permeable membranes as well as boundary heat control (see, e.g.,
[DL76]). Moreover, they often are local formulations of fractional obstacle problems,
another important class of obstacle problems. Fractional obstacle problems can be
found in the optimal stopping problem for levy processes, and can be used to
model American option prices (see [Mer76, CT04]). They also appear in the study
of anomalous di usion, [BG90], the study of quasi-geostrophic ows, [CV10], and in
studies of the interaction energy of probability measures under singular potentials,
[CDM16]. (We refer to [Ros1B] for an extensive bibliography on the applications of
obstacle-type problems.)

Broadly, lower dimensional obstacle problems are minimization problems for a
given energy functional on class of functions constrained to sit above a given ob-
stacle (function) de ned on a lower dimensional manifold. Obstacle problems are
free boundary problems: the principal part of their study is the structure and regu-
larity of the boundary of the contact set of the solution and the obstacle, the free
boundary. The lower dimensional obstacle problem we consider |the thin obsta-
cle problem with weight jx,.+1j?| has garnered much interest and attention (see
[AC04, [CS07/ ACS08, GP(09, KRS19, FoSp18, CSV19, JN17]); it is a model setting,
and has motivated the study of many other types of lower dimensional obstacle prob-
lems (see [IMSQ8, AM11, Ferl6, RS17, RuSh1l7, F520, FoSpl8b, GR19, BLOP19]).

Nevertheless, the study of the non-regular part of the free boundary has been
rather limited. Only recently has signi cant progress been made (see [GR09, FoSp18,
GR19,[CSV19]). And many open questions still remain. In this work, we address
some of these questions, focusing on the singular set (see Se€tion|5.1.2). In particular,
we explore the ne properties of the solution and its expansion around singular
points, inspired by [FS18].

We note that the techniques of [[FS18] have been further developed and im-
proved in [FRS19], where the authors prove generic regularity (namely, the generic
smoothness of the free boundary in the classical obstacle problem) in dimension
three and the smoothness of the free boundary at almost every time for the three-
dimensional Stefan problem. We expect the machinery built here to be useful in tack-
ling genericness-type questions of this nature in the context of the thin/fractional
obstacle problem, expanding on the very recent results by the rst author and Ros-
Oton in [FR19].

5.1.1 The Thin Obstacle Problem

In this paper, we consider a class of lower dimensional obstacle problem&ii? :=
fX =(x;y) 2 R" Rgwith weight jyj2 whereR" f 0g acts as the lower dimensional
manifold. We will often refer to them as, simply, the thin obstacle problem, even
though this name is usually reserved for the case= 0. In particular, for an analytic
obstacle’ :B;\f y=0g! R, we look at the thin obstacle problem:

Z
min jir wjigjyj2dX ; with a2 ( 1;1); (5.1)
B1

w2A
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where A is the convex subset of the Sobolev spat®?(B1;jyj2 dX) (which, for
simplicity, we call W?(B1;jyj?)) de ned by

A =fw?2 Wol;z(Bl;jyja)+ g:w(x;0) ' (x)and w(x; Yy)= w(x;y)g;

given some boundary datg 2 C(B) (even with respect toy) such that gjgg\ y-0g
' . The condition that w sits above' on the thin spaceR" f Og needs to be under-
stood in the trace sense, a priori.

If uis the (unique) solution to (5.1), thenu satis es the Euler{Lagrange equations

] u(x;y) (%) onB;\f y=0g
E Lau(x;y) 0 in B,
Lau(x;y) = O in Byn (u) (5.2)
ux;y) = u(x; y) inB;
u(x;y) = dlx;y) on@B
where
Lau(x;y) == div( jyjer u(x;y))
and

(u):=1(x;0):u(x;0)="(x)g:

The set (u) is called the contact set and is an unknown of the problem. Its topo-
logical boundary inR"

(u=@ u R" f 0g
is called thefree boundary

Remark 5.1 A useful equivalent characterization of the minimizeu of (5.1) is that
u is the smallest supea-harmonic function inA:u2 A, Lau 0,andu w for
alw?2 A suchthatL,w O.

Remark 5.2 In this work, we consider analytic obstacles. Clearly, this regularity
restriction can be relaxed; the thin obstacle problen (5.1) can be well-formulated
with signi cantly less regular obstacles (e.g., continuous obstacles). That said, the
analytic setting allows us to understand the model behavior of (), and for this
reason, it deserves special consideration.

The Obstacle Problem for the Fractional Laplacian

As shown in [CSS08], the Euler{Lagrange equation§ (5.2) appear naturally in the
context of the obstacle problem for the fractional Laplacian, or the fractional obstacle
problem. Indeed, let' : R" ! R be an obstacle (with su cient decay at in nity)
and let u solve the fractional obstacle problem

8 .
3 u " inR"
() 3u 0 inR" . 1 a .
3 ( )Su =20 infus>'g with  s:= — 2 (0;1): (5.3)
limjn u(x) = 0
Then, the even iny, a-harmonic extension ofu to R"" (e, u : R"™ I R

such that Lyu(x;y) = 0 for jyj > 0, u(x;0) = u(x), u(x;y) = u(x; y), and
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limjieyyin - U(X;y) = 0) solves (5.2) inR"** (and, in particular, with its own bound-
ary data, in B;). Consequently, all of the results we prove in this work can be
translated into statements regarding the fractional obstacle problem. We leave this
translation to the interested reader.

5.1.2 Known Results

Let us brie y summarize some of the known properties of the solution to the thin
obstacle problem and its free boundary. To do so, it will be useful to \normalize",
and it will be necessary to de ne a collection of rescalings af

Since' ="' (x) is analytic, we can extend it from a function de ned orB,\f y =
0g to an a-harmonic, even iny function de ned on B, (see [GR19, Lemma 5.1]). For
simplicity, we still denote this extension by' . So if we let

gi=u (5.4)
(6.2) becomes g
% (X Y) 0 onB;\f y=0g
Lat(X;y) 0 in By
Lat(x;y) = O in By n (~u) (5.5)
By) = H(x; y) inB;
Hx;y) = 9(xy) on@B;

with g:=g ' and
(~u)=1(x;0):e{x;0)=0g= ( u):

Furthermore,
Lg=2 Ii% ye@u(x;y)H" L (~u): (5.6)
y

Hence, considering[ (5]5),
H a . ivi .
I}my @u(x;y) 0 for jxj< 1,
Ii;rg y@u(x;y) =0 for jxj< 1 andu(x;0)> 0;
y
and

gL,gg=0 in Bj:

(See [CSS0E, GP09, FoSp18, GR19].) All of the above expressions must be under-
stood in a distributional sense.

As we have mentioned, we need to introduce a collection of rescalingsi @round
a free boundary pointX 2 ( u) in order to outline the existing literature on (5.7).
They are

by 5 (X) = = (X) _ where ux (X):=H(X +X):  (5.7)

mis @ bty Y1
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Blow-ups and Optimal Regularity

In [ACS08,/CSS08], Athanasopoulos, Ca arelli, and Salsa and Ca arelli, Salsa, and
Silvestre, fora =0 and a 2 ( 1;1) respectively, proved that the seff tx . Q> IS
weakly precompact inW,s2(R"!;jyj?), and that the limit points of fey ;g o as

r #0 or blow-ups ofu at X are global x -homogeneous solutions td (5.5) with

1 a
2

x 2[1+s;1) for s:=

It is important to note that the homogeneity of blow-ups depends only on the point
X 2 (u) at which they are taken, and is independent of the sequence along which
the weak limit is produced.

Moreover, in [AC04, CSSQ08], it was shown that is optimally CXS on either side
of the thin space (but onlyC? across, Lipschitz ifs = 3).

The Free Boundary

The free boundary (u) can be partitioned into three sets:
(u)=Reg(u) [ Sing(u)[ Other(u);

the set of regular points the set of singular points and set of other points (see
[GP0O9, |[FoSp18/ GR19]), and they can be characterized by the value gf with
X 2 (u).

Reg(u) is the set of free boundary points where blow-ups are (-homogeneous.
In [ACS08, [CSS08], it was proved that Reg) is relatively open, that blow-ups
at points in Reg(u) are unique, and that Reg() is an (n  1)-dimensional C*
submanifold of the thin space (it is analytic, in fact, as proved in_ [KRS19]).

Sing(u) is the set of points in (u) where the contact set has zerél "-density,

H(CW\ B (X)) _
r'n

Singu):= X 2 (u): Ijr#po

In [GPQ9, [GR19], Garofalo and Petrosyan and Garofalo and Ros-Oton, far= 0
anda 2 ( 1;1) respectively, proved that the points of Singf) are those at which
blow-ups are evenly homogeneous and unique. In addition, they showed that Sing(
is contained in the countable union om-dimensionalC! manifolds with m ranging
from Oton 1. (The regularity of the covering manifolds was later improved to a
more quantitative C'°9 in [CSV19] whena = 0.) The goal of this manuscript is to
achieve a better understanding of singular points.

Finally, Other(u) is the remainder of the free boundary, and is not yet fully
characterized. That said, in [[FoSp18], Focardi and Spadaro proved that u), in
particular, Other(u), has nite (n 1)-dimensional Minkowski content, which implies
that the free boundary isH" !-recti able. Moreover, they showed that outside of
an at most Hausdor (n  2)-dimensional subset of (), the possible homogeneities
of blow-ups take values inf 2k; 2k 1+ s;2k + 2sgk,n (the same result was proved
for a = 0 by Krummel and Wickramasekera in [KW13]).
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The Non-degenerate Problem

We have already seen that the study of the thin obstacle problem for an analytic
obstacle can be reduced to the study of the thin obstacle problem for the zero ob-
stacle, [5.5). An alternative normalization is to reduce to the zero boundary data
case by subtracting o the a-harmonic extension ofg to B;. Indeed, for simplicity,
let g be its own a-harmonic extension toB, i.e., assume thatg is de ned on B,
andL,g=0in By. Then,u g solves|[(5.1) with zero boundary data and obstacle
"9:=("  9)ty=0g- (This procedure does not require to be analytic.) Under this
normalization, Barrios, Figalli, and Ros-Oton proved that if' g is strictly superhar-
monic, then

x 2f1+s;2g;

forall X 2 (u) (see[BFR18]). Consequently, we make the following de nition.

De nition 5.1.  We say that the thin obstacle problem|(5.1) or, equivalently,[(5]2)
IS non-degenerate if

x g c<0 on B;\f y=0g: (5.8)

Analogously, we say the Euler{Lagrange equation$ (5.5) are non-degenerate if they
arise from (5.1) or [5.2) satisfying[(5.8); i.e., x& c¢>0onB;\f y=0g, whereg-

denotes its owna-harmonic extension ofg+o B;.

Remark 5.3 In the context of the obstacle problem for the fractional Laplacian in
all of R", (6.3), the problem is non-degenerate under the less restrictive assumption
" 0Oinf'> 0g R".

5.1.3 Main Results

We are interested in studying the ne properties ofu at points in Sing(u), in the
spirit of the work of Figalli and Serra ([FS18]), wherein such a study is undertaken
for the classical obstacle problem given obstacles with Laplacian identically equal
to 1, i.e.,, under a non-degeneracy condition (cf. De nitiofi 5/1). To do so, we
establish a framework to better characterize the structure of singular points and
the behavior ofu around singular points: we develop a higher order expansion wf
around singular points, which, up to lower dimensional sets, yields a more regular
covering of Sing(@). Our approach and results are new even for the case= 0.

Before stating our results, it will be convenient to expand our discussion of
Sing(u) and the work of [GP09,. GR19], and introduce some notation. Let

w:=1fX 2 (w: x =g

denote the set of free boundary points where the homogeneity of blow-ups is

Consequently, [

Sing(u) = (w): (5.9)
22N

As noted, in [GPQ9, GR19], the authors showed that one and only one blow-up

exists, which is evenly homogeneous, at each singular point. In fact, they proved
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much more: the unique blow-up at a singular point is a non-triviala-harmonic,
evenly homogeneous polynomial that is even ip and non-negative on the thin
space. In other words, blow-ups at singular points belong to the set of polynomials

P =fp:Lap=0;X r p(X)= p(X);p(x;0) 0 p(x; y)= p(x;y)g

for 2 2N. Furthermore, they produce the rst term in the expansion ofu around
X 2 (u) Sing(u); they show that

#X +r ),

. px 2P locally uniformly as r #0: (5.10)

The polynomial p .x , which we call the rst blow-up of u at X , is a constant (non-
zero) multiple of the blow-up ofu at X given by the rescalings[(5]7). With the

rescalings [(5.10), we have

HX)=px (X X )+ o(jX Xj): (5.11)
Finally, consider

Lpx )=f 2R": r4px (X;0)=0forall x2 R"g
the invariant set or spineof p.x onfy =0g as well as
my :=dim L(p .x ):
Observe thatL(p .x ) is a linear subspace oR". Also, sincep.x 6 0 onR" f Og,
my 2f0;1;:::;n 1g;

and this number accounts for the dimension of the contact set around a singular
point. Thus, the singular set can be further strati ed:

1
Sing(u) = - M) where M™u):=fX 2 (u:myxy =mg: (5.12)
22N m=0

In particular, by [BER18], if the problem is non-degenerate (see De nitioh 51),
then

1

T
(u) =Reg(u) [ Sing(u) =Reg(u) [ 2(u) = Reg(u) [ 2 (U):

m=0

Now we are ready to present the main results of this work. First, given a non-
degenerate obstacle, we prove that each-dimensional component of Sing() can
be locally covered by a singl€? manifold outside a lower dimensional set:

Theorem 5.1. Let u solve (6.1) in the non-degenerate case (see De nitioh 5.1).
Then,

(i)  9(u) isisolated inSingu) = W[ [ 5 *(u).
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(i) There exists an at most countable sef 3(u) such that %(u)nE; is locally
contained in a single one-dimensionaC? manifold.

(i) For each m 2 f2;:::;n 1g, there exists a setE, 5'(u) of Hausdor
dimension at mostm 1 such that 5'(u) nEy, is locally contained in a single
m-dimensional C? manifold.

(iv) If a2 ( 1,0), 5 *(u) is locally contained in a single(n 1)-dimensional
CY manifold, for some > 0 depending only om and a.

The framework we develop in order to prove Theorefn 5.1 is rather robust, and
only sees the non-degeneracy condition (5.8) super cially. As a result, we can suit-
gbly extend Theorem to the bulk of Sing(), the top stratum " (u) :=

,on " H(u), in the general case. Recall that the lower stratum <" *(u) :=
Singu)n " 1(u) is strictly lower dimensional; it is contained in the countable union
of (n 2)-dimensionalC! manifolds. More precisely, we prove

Theorem 5.2. Let u solve (5.7)). Then,
. 0 .. . . S SI’l 1 m
(i) 3(u) is isolated inSingu) = L,y m=o T(U).

(i) There exists an at most countable seEj. 3(u) such that 3(u) nE,; is
contained in the countable union of one-dimension&? manifolds.

(i) For each m 2 f2;:::;n 1g, there exists a setE,n, 7'(u) of Hausdor
dimension at mostm 1 such that 5'(u) nE,., is contained in the countable
union of m-dimensional C? manifolds.

Moreover, for each 2 2N,

(iv) If n=2, there exists an at most countable sé& . ; 1(u) such that (u)n
E .1 is contained in the countable union ofl-dimensional C2 manifolds.

(v) If n 3, there exists a seE ., ; " 1(u) of Hausdor dimension at most
n 2suchthat " Y(u)nE ., ;is contained in the countable union ofn 1)-
dimensional C2 manifolds.

(vi) If n 2anda2 ( 1,0), " (u) can be covered by a countable union of
(n 1)-dimensional CY¥ manifolds, for some > 0 depending only om,
a, and

Remark 5.4. Notice that from the lower-dimensionality of <" l(u),byTheorem(iv)
and (v), we nd that the whole singular set can be covered by countably many
(n  1)-dimensionalC? manifolds up to a lower dimensional subset.

Remark 5.5 When n =1, it is well-known that singular points are isolated. Recall
that 4(X + )= p.x +0o(jXj)if X 2 (u). Sincen=1,px > 0ina
neighborhood of 0, so thau~= 0 around X and X is isolated.
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Before stating Theoreni 5.2, we noted that our methods see the non-degeneracy

of the problem super cially. Indeed, if we could show thap .x 's nodal setf (x; 0) :
p.x (X;0) = jr xp.x (x;0)) =0gandp .x 's spine align for everyX 2 E., (see
Section[5.7 (alsd 5J5) for a description oE .y ), then our analysis would imme-
diately imply that E., is lower dimensional, and ™(u)  Sing(u) is contained
in a countable union ofC2 manifolds up to an (m 1)-dimensional subset for all
m2f0;:::;n 1g, and not just whenm=n 1.

We remark that due to potential accumulation of lower homogeneity singular
points to higher homogeneity singular points, the countable covers of Theor¢gm|5.2
cannot be improved to single covers, as done in the the non-degenerate setting,
Theorem[5.] (and also as done in [FS18]).

5.1.4 Strategy of the Proof

From this point forward, we do not distinguishu and &, as de ned in (5.4) (or
we assume that' 0); we will always assume that we are in the normalized
situation (5.5). Furthermore, in this section, whenever we discuss (u), 2 2N =
2,4;6;:::9.

Theorems[5.]l and 5]2 are the culmination of a procedure that constructs the
second term in the expansion afi at singular points, outside of a lower dimensional
set. In order to study the higher in nitesimal behavior ofu at X 2  (u), we, quite
naturally, consider the rescalings

vx (rX
()= — 2 here v (X) = uX +X) px (X)
T g VK IYI®

(cf. €7)).

First, we show that the setfwy , g o is weakly precompact inW,-2(R"*! ; jyj?)

and classify its limit points asr # 0 or blow-ups (see Sectiorjs 5.2 afd b.3):
Proposition 5.3. Let u solve(5.1), and letX 2 ™(u) for m2f0;:::;n  1g.

@) If a2 [0;1), the limit points of fw Q-0 asr # 0 are .x -homogeneous,
a-harmonic polynomials with .x

@i)If m<n 1and = 2, the limit points of fw ,g-0 asr #0 are .x -
homogeneousa-harmonic polynomials with .x 2.

@) If m=n 21anda2 ( 1;0), the limit points of fw g0 asr #0are .x -
homogeneous, global solutions to the very thin obstacle problem (or fractional
thin obstacle problem)g.89)onL(p x ) R" f Ogwith x + , for
some > 0 depending only om, a, and

As far as we know, Propositiofi 5]3 is the rst instance of truly distinct behavior
within our class of lower dimensional obstacle problems; in all previous studies of
(.1), the class parameterized bya 2 ( 1;1) was treatable uniformly. The key
dierenceis thatif a 0, subsets of the thin spacéy = 0g of Hausdor dimension
n 1 have zeroW'?(R"*;jyj3)-capacity or a-harmonic capacity, while ifa < 0,
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subsets of the thin spacdy = 0g of Hausdor dimensionn 1 have positivea-
harmonic capacity. This capacitory distinction permits the formulation of, what we
call, a very thin obstacle problem, i.e., a search for a weighted Dirichlet energy
minimizer, as in (5.), within a class of functions constrained to sit above a given
function de ned on an (n  1)-dimensional submanifold oR" f 0Og (see Sectiof 58),
or, equivalently, a lower dimensional obstacle problem for the fractional Laplacian
() s wheres >  (see Sectiof 5]9 and cf. Sectign 5.1L.1).

We remark that the above classi cation in the case < 0 is analogous to the
classi cation found in [ES18], wherein Figalli and Serra consider the classical obstacle
problem. There, the analogous blow-ups in the top stratum of the singular set are
global, homogeneous solutions to the thin obstacle problefn (b.1) with zero obstacle
and a = 0. And in the lower stratum of the singular set, the analogous blow-ups set
are homogeneous, harmonic polynomials. That said, while Figalli and Serra could
rely on developed theory (for the thin obstacle problem) for their analysis, we cannot;
the very thin obstacle problem has, until now, been unstudied (Secti¢n 5.8).

Given Proposition[5.3 and our desire to produce the next term in the expansion
of u at X , we then show that collection of points for which x 2 [; +1)is
lower dimensional (for =2 or m= n 1). More speci cally, if we de ne

TAu= X 2 "W ox 2[; +1)g
then we have the following proposition.

Proposition 5.4. Let u solve (6.1). Then,

(i)  Y%(u) is empty.

(i) Foreachm2f1:::;n 1g, 5'%(u) has Hausdor dimension at mostm 1.
(i) Foreach 2 2N, " %3(u) has Hausdor dimension at mostn 2.

Remark 5.6. In fact, we can show that forn = 2, if a2 ( 1;0), then 2(u) is
countable; and ifa 2 [0;1), then 2(u) is discrete. Moreover, fom 3, 3%(u) is
discrete.

In turn, we call ™?2(u) the set of anomalouspoints of ™(u) and
MU= M(wn ™)

the generic points of ™(u) (cf. [FS18]). (See Sections 5.4 ar{d 5.5.) In order to
prove Proposition[5.4, we use two Federer-type dimension reduction arguments.
Whena Oorm<n 1, we argue as in[FS18], while whem< Oandm=n 1,
we adopt the arguments pioneered in [FRS19].

After the statement of Theorem[ 5.2, we remarked that if the nodal set and spine
of p x were aligned for eaclX 2 E . , then Theorem5.2 would immediately hold
foralm2f0;:::;n 1gand all 2 2N. (Notice that this alignment is always
true whenm 2 f0;:::;n 1gif =2, butony whenm=n 1if > 2)
Another way to understand this remark is as follows. If the nodal set and spine of
p.x were aligned for eachX 2 ™2(u), then our analysis would directly show
that ™2(u) is at most (m  1)-dimensional (in the Hausdor sense), extending
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Proposition[5.4 to every (;m ) pair. Hence, Theoren] 52 would immediately hold
foralm2f0;:::;n 1gand all 2 2N since every other aspect of our analysis
is indi erent to this issue. Nonetheless, it is unclear if such a statement is true; in
fact, Remark[5.16 indicates (but does not prove) the opposite.

Thanks to Propositions|5.8 and 54, and Whitney's Extension Theorem, generic
points are contained in the countable union o€*! manifolds; and so, we have the
following result, which is Theoren{ 5.2, but withC** coverings.

Theorem 5.5. Let u solve (5.1)). Then,
. 0 .. . . S Sn 1 m
(i)  3(u) is isolated inSingU) =  ,,y m=p T(U).
m;

(i) Foreach m 2 f1;:::;n  1g, T(u)n 35"%(u) is contained in the countable
union of m-dimensional Ct! manifolds, wheredimy 5"%(u) m 1.

Moreover, for each 2 2N,

(i) " Yu)n " 2(u) is contained in the countable union ofn 1)-dimensional
CY! manifolds, wheredimy " Y3u) n 2

(iv) In addition, if a2 ( 1;0), each " (u) can be covered by a countable union
of (n  1)-dimensionalC* manifolds, for some > 0 depending only om,
a, and

(See Sectiorj 5]6.) We refer to Remark 5.6 for the size of the anomalous set in the
caseq1 = 2 and m = 1, which corresponds to parts (ii) and (iv) of Theorenj 52. Just
as Theoren] 5.p is &% precursor to Theorenf 5.2, we note that &£ precursor to
Theorem[5.1 also holds.

To conclude the proofs of our main results and produce the next term in the
expansion ofu outside a lower dimensional set (and go fror€*! to C? covering
manifolds), we prove that outside of an at mostri  1)-dimensional (in the Hausdor
sense) subset of ™9(u), when =2and m2f0;:::;n 1gas well as when > 2
andm = n 1, the blow-ups classi ed in Propositiorf 53 are (+ 1)-homogeneous
polynomials, and not just higher homogeneous, global solutions to a codimension
two obstacle problem. In particular, we show that

er (+r1 ) ' g.x locally uniformly as r #0

whereq .x is a( +1)-homogeneousa-harmonic polynomial at all but strictly lower
dimensional set ofX 2 ™9(u), again, when =2and m2f0;:::;n 1gas well
as when > 2andm=n 1. (See Section 5|7.)

5.1.5 Notation
We de ne the balls

B,(X):
Br(x):
Bo(x%) :

fX 2R"™ :jX X j<rg;
fx2R":jx xj<rg;
fx°2 R" 1:jx° x%<rqg;
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i.e., the balls of radiusr centered atX , x , and x° in R"**, R", and R" ! respec-
tively. We will also denote B, := B,(0), B, := B, (0), and B? := B20). Similarly,
we let

D, R?

be the disc of radiusr > 0, centered at the origin.
For a polynomialp: R" ! R, consider

Xy, Yoo o1

oy ith ¢ := 5.13
,-zlq(ZJ)!y p with g (5.13)

Exta(p) .= p+

i=1

Notice that Ext,(p) : R"*! I R is the unique even iny, a-harmonic extension ofp
to R"*! (see [GR19, Lemma 5.2)). .(Ext 4(p)) = O.

5.1.6 Structure of the Work

In Section[5.2, we introduce a collection of monotonicity formulae (in particular,
Almgren's frequency function), and prove some basic but useful estimates. In Sec-
tion .3, we start a blow-up analysis of the solution around singular points. We show
the existence of second blow-ups and prove some facts about them. We also show
Proposition[5.3 holds. In Section 5]4, we gather some important lemmas regarding
the accumulation of singular points, which are then used to study the size of the
anomalous set in Sectiof 5|5. Whence, we prove Proposition|5.4 and Renfark 5.6.
In Section[5.6, we show that the set of generic points is contained in a countable
union of Ct! manifolds, which combined with previous results yields the proof of
Theorem[5.5. Finally, we conclude the proofs of our main results in Section|5.7, The-
orems/ 5.1 and 5]2, by studying the case of ¢ 1)-homogeneousa-harmonic second
blow-ups. Speci cally, we show that those points at which the second-blow up is
not the next order term in the expansion are collectively lower-dimensional. Finally,
Section[5.8 is dedicated to studying the very thin obstacle problem. Here, we prove
the estimates and claims on the very thin obstacle problem made use of throughout
the work. In Section[5.9, we make a nal remark on global obstacle problems.

5.2 Monotonicity Formulae and Preliminary Re-
sults

We recall that we will always assume that we are dealing with the zero obstacle case
()

Let X be a singular point foru of order x 2 2N := f2;4;6;:::9, and letp x
be the (unique) rst blow-up of u at X ,

(X +1rX)

px (X):=lim = (5.14)

I X

(see [5.1D)). Recall thatp x 2 P  , i.e,, it is an a-harmonic, x -homogeneous
polynomial, non-negative on the thin space, and even ip, and x is equal to



161

Almgren's frequency ofu at the X :
rR ir ujzyj?
x = N@O;u;X )= lim BT 2=
e ) U

(see[ACS0B|, CSS08, GPD9, GR19)).
We often assume thatX = 0 (which we can do without loss of generality after
a translation), and we letp := p .o. In particular, de ne

V.i=u p;
and set
= o L =L(p); and m := myg; (5.15)
so that m is the dimension of the spine ofp in fy = 0g, L , which is -
homogeneous.
Let, for 2 2N,

p2P and v=u p;

and observe that
VLav= pLau O (5.16)

SinceLu(x;y) = 21im yuo y2@u(x; y)H" L (u) 0,V L,vis non-negative as soon
asp is non-negative on (u) n N (u) where

N (u) := f(x;0) :u(x;0) = jr yu(x;0)j = ”y% yi@u(x;y) =0g: (5.17)

The setN (u) is called thenodal setof u.

Remark 5.7. Notice that v=u pis a solution to the thin obstacle problem with
obstacle’ = pjg,y y=04 and subject to its own boundary data. (This follows easily

by Remark([5.1.)

The goal of this section is to prove monotonicity-type results and estimates for
v=u pforanyp2 P . We stress that might not be equal to , and so we
will sometimes write N (0" ; u) := N (0" ;u;0) instead. Yet we will most often apply
these results and estimates to .

5.2.1 Monotonicity Formulae

To begin we study Almgren's frequency function ow at the origin, and prove that
it is non-decreasing provided that = N(0*;u).

Proposition 5.6. Suppose that N(0";u), and letv=u pforp2 P . Then,
Almgren's frequency function onv

R
" 0T VI%IYI®

r7' N(r;v) = —
as VAiYi?

is non-decreasing. MoreoverN (0 ; v)
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Before proceeding with the proof of Propositioh 5].6, let us recall a few de nitions
and facts. LetW (r;u) denote the -Weiss energy ofu at r:

1

W (r;u) := rTD(r;u) rTH(r;u) (5.18)

where 1 Z Z
D(ru)i= g Ir WPy =1 Jr u(X)y° (5.19)

B, Bi
and 1 Z Z

H(rhu) = — u%jyj* = u(rX )%yj: (5.20)

r @B @B

By [GR19, Theorem 2.11], we have thaN (r; u) is non-decreasing, from which, we
immediately deduce that

H(r,u)
r2

W (r;u) = (N (r;u) ) O (5.21)

(recall N (0*; u) ). In turn, we have the following lemma:

Lemma 5.7. Suppose that N(0*;u), and letv=u pforp2 P . Then,
Z Z

1 P .
ez T vj%iyj? T vijyj (5.22)
B, @8

and Z Z

o5 viX rv Vv)jy? e
Proof. We proceed as in the proof of [GP09, Theorem 1.4.3]. By [GR19, Theo-
rem 2.11],N(r; p) , from which it follows that W (r;p) 0. Using (5.21) and
integrating by parts, we immediately have that

vL,v: (5.23)

rn+a+2

0 W . .
) Y ) ,
= e jr viZ+2r v rp jyj® a2 V2 +2vp jyj?
1 ZBr Z @23 7
= o Lravz ir viZjyj? [nrarz VAjyj? + (nrarz v(X rp p)iy?
ZBr Z@B @B
viyi®;

— H 125 ia
- r VJ Jyj
1+ a+2 J +a+2
rn a r rnta

which directly yields (5.22). Continuing, integrating by parts again, we get

Z V4
r. n 1+a+2 Jr VJ 2j yJ a n+ a+2 VZJ yJ a
Br 7 @8 7
1 L
= oo . VL,V + e v(X rv v)jyj
‘ @B

which implies (5.23). O
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With Lemma in hand, we can now prove Proposition 5.6.

Proof of Proposition[5.6. Notice that

D(r,v) .

H(r;v)’

where D and H are given by [5.19) and [(5.20). By scaling (namelyN(;u,) =

N(r;u ), for the rescaling [5.7)), it is enough to showNq1;v) 0O or, equivalently,
that

N(rv)=

DYLH((1) HY)D@A) O (5.24)

where we have leD (1) = D(1;v) and H(1) = H(1;v).
We computeD 1) and HY1). First,
Z z

DA =2  jr vjjyj*+2 rv D?v X jyj?

ZBl Bi1

=2 rvr (X rvjyj?
z5 z VA

=2 Viyj2 2 Lau(X ru+2  Lau(X rp);
@B B1 B1

using integration by parts and that p is a-harmonic. Now notice that, by the reg-
ularity of the solution, Lou(X r u) 0. This, together with the fact that p is

-homogeneous, yields
Z Z Z 4

DY1) =2 V3jyje + 2 pLu=2 viyjd 2 vL,v;
@B Bi @B B1

where the last inequality follows by |(5.16). On the other hand,

HY1) =2 vV jyj:

@s
Now letting Z
| = \VAEAY;
B1
and using 7 7
ir vifyi® = wjyit ol
B1 @B

in addition to the Cauchy{Schwarz inequality, we nd that
DYDH (2) ZH D)

Z Z

= 2 Vi o2l iyt 2wyl wjyi* |

o8 - LI LI @8 .z
=2 11 S 1Y vijyj® wiyit o+ wjyjR

@3 @ @8 @8 @8

21 v3jyje + 21 WV jyj?

Z @B @B
=2l viX rv v)jy*

@B
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Hence, by [(5.1p) and[(5.23), we deduce that (5.24) holds, as desired. O

We end the subsection with a lemma on a Monneau-type monotonicity statement
and Weiss-type monotonicity statement, arguing as in [FSI18, Lemma 2.6 and 2.8],
and a important Monneau-type limit.

Lemma 5.8. Suppose that N(@O*;u),and letv=u pforp2 P . Given
> 0, dene 7

. 1
H (r;v):= e v3jyj? = rTH(r;v): (5.25)
Then, r 7! H (r;v) is non-decreasing for allO N (0*;v). Moreover, the
-Weiss energy
r7' W (r,v)

on v is also non-decreasing for all > 0.

Proof. Let v,(X):=(u p)(rX); then,

R . R .
H_O(r_v): 2 ga Vi (X)X T V(X )iYi® 2 gg VIYI®,
H ™ r o VAYI® '
Notice also that
Z Z Z Z
r Ve (X)X 1 v(rX ))jyj? = V(X T v)iyit= g vidyit+ v Lawg
@B @B B1 B;

andv, Lov; 0 (see[(5.16)). Hence, sincd (1;v;) = N(r;v),
H O . 2 . .
H—(r,v) - (N(r;v) ): (5.26)

Now using that N (r;v) N (0*;v) , we reach the desired result] (5.25).

To see the monotonicity ofW (r;v) for O N (0" ;v), we simply combine
the expressions[(5.21) and (5.25), so tha¥ (r;v) is product of two non-decreasing
non-negative functions.

On the other hand, if > N (0*;v), a simple manipulation (see the proof of

Proposition[5.6) yields
Wo(1) = Dg(l) HY1) 2 (D) Hz(l))

=2 (v Vv)HyP+2( ) vLav
@B B1

AsvLa,y Oand >N (07;v) (by Proposition [5.8), we conclude. O
Notice also that if we set
= N(0*;v) = N(0";u);
then

imH (v )=1 forall > ;
r#0

which follows arguing exactly as in[[FS18, Corollary 2.9].
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5.2.2 Estimates

Let us de ne, for any function f , the positive and negative parts as
f* :=maxff;0g and f :=maxf f;0g= minff; Og:

Hence,f = f* f
We start with an L* {L? estimate onv.

Lemma 5.9. Letv=u pforp2 P . Then,
kaLl (B1=5) CkaLZ(Bl;jyja); (527)
for some constantC depending only om and a.

Proof. Observe thatv is sub a-harmonic in B; as the maximum of two suba-
harmonic functions inB;.

Let us show that v* is also suba-harmonic in B;. To this end, rst, by Re-
mark 5.7, recall thatv is the solution to (5.1) with* = pjg,y y=0q and its own
boundary data. Now let be any smooth compactly supported function iB; such
0 1. In addition, let h be an approximation of the Heaviside function:
h(t)=0fort O,h(t)=1t= fort2 (0; ),andh (t) =1 for t . Finally, for
O0<"< ,denev-:=v "h (v).

Sincep(x; 0) 0, observe thatv-(x; 0) p(x; 0) and v-jg@g = Vjg@g. Therefore,

Z Z
jrvotr (h (v)igyi® jr vitiyi®;

B1 B1

which implies that, after dividing through by " and letting " # 0,

Z
rvr (h (v)jy? O

B1

Expanding, Z Z
h(Vrv r jy? jr vih°(vjyj* o
B1 B

In turn, if H°= h with H (0) =0, then

Z

r(HM) r jy* o
Bi
(Obviously, H here is not the Monneau-type function from Lemma 5|8.) Because
was arbitrary, we nd that H (v) is sub a-harmonic in B;. So letting # 0, we
determine that v* is suba-harmonic inB; (H (v) is an approximation ofv™).
To conclude, see that by the local boundedness of subsolutions [qr (see, e.g.,
[ON17, Proposition 2.1]), we have that
yA 1=2
supv. C v it

Bi=2 B1

and (5.27) holds. O
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Next, we prove Lipschitz and semiconvexity estimates onalong the spine ofp.
But before doing so, we prove a characterization lemma on the spine of a generic
-homogeneous polynomial.

Lemma 5.10. Let 2 N, andletp: R"! R be a -homogeneous polynomial.
Then, the following sets are equal.

M L(p):=f 2R": r p(x)=0 for all x 2 R"g.
@i I(p):=Ff 2R":p(x+ )= p(x) for all x 2 R"g.
@) D (pp:=Ff 2R":D p()=0forall =( ¢:::5 n):jij= 1g.

Proof. We prove that (i) and (ii) as well as (ii) and (iii) are equivalent.
{L(p) I(p):Let 2 L(p). Then,
z 1
p(x + )= p(x) + rp(x+t)dt= p(x):
0
{1(p) L(p): We start by noticing that | (p) is actually a linear space, thanks to
the homogeneity ofp. Indeed, the additive property is clear; it is also clear that
21 (p)if 2 1(p). Now suppose 2 | (p) and consider for some > 0. Then,
px+ )= p( X+ )= p( )= px) forall x2 R", sothat 2 I(p).
Let 2 1(p). Now for all h> 0 and for allx 2 R", p(x + h ) = p(x). Hence,

px+h;0) p(x) _

h 0

rxp(x) = lim

thatis, 2 L(p).

{1(AM D u(p):Let 21(p). Then, p( + x)= p(x)andD p(x+ )= D p(x)

forany =( 1;:::; o ) withj j= 1. Taking x = 0, we conclude thanks to
the -homogeneity ofp.

{ D 1(p) I(p). Let 2 D 4(p). Consider the degree polynomial g(x) :=

p(x + ). Notice that from the de nition of D ;, qis homogeneous. Now let> 0.
Using the homogeneity ofj and p,

px+ )=qx)= q x)= p( x+ )=px+ )

forall > 0. Taking #0, we see that 2 | (p).
This concludes the proof. H

Notice that the equivalence of (i) and (ii) also holds for general-homogeneous
functions.

Remark 5.8 Lemma[5.10 will be applied top(x; 0) for p2 P

The following lemma shows that derivatives o¥ along the invariant set ofp are
bounded. Recall thatL (p) denotes the invariant set ofp(x; 0). The lemma is proved
by means of a Bernstein's technique for integro-di erential equations, as introduced
by Cabe, Dipierro, and Valdinoci, in [CDV20].
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Lemma 5.11. Letv=u pforp2 P .Then,foralle2 L(p\ S,
K@k (8,,)  CkvKiz(syjyja);
for some constantC depending only om and a.

Proof. We proceed by Bernstein's technique (see [CDV20]). Let2 C?! (Bi=2) be
even iny and such that 1 in B1—4. Consider the function,

= (@v)’+ v

for some > 0 to be chosen.
Sincev is a-harmonic outside (u), in By n ( u),

La(v?) = 2vLav +2jr vi%jyj®  2r vi%jyj™:

Similarly, because@v is a-harmonic outside (u), we have that in Bi-, n ( u),
L.@v = L,@Qu = 0. Therefore, we nd that in Bi-, n ( u),
La( 2(@v)%) = (@v)°La( )+ 2La((@V)?) +2jyj’r (@v)* r 2
=(@v)°La( 5 +2 Fr @vi%iyj* + 2jyj’r (@v)* r 2
(@v)°La( ) +2 ?r (@V)i%yi*  8yi%ir @vij@viir |
j viti@vi*(yi °La( ®  8r )
where there last inequality follows from
%r @vi +4j@vidir 7 4@viir @vj jr
SoinBi» n (u),
La § Yi%i@vi®(yj ®La( ) 8 j?)+ jyj?ir vj*2
Vit vit@ i fikal B 8 j3):
Now as is even iny and smooth,jyj 3jLa( 2)j+8jr j> C in B, from which

we deduce that
La 0 in 81:2 n ( U)

provided 2 C.

By the maximum principle then, must attain its maximum at the boundary
of By, n (u). Being that @p = @Qu =0on (u)and jgg, =0, = vZon
@B-,[ ( u). Hence,

sup supv:
Bi=> Bi=>

In partiCL”ar, as 1on B]_:4,
k@Vk 1=2ka .
Ll (By4) LY (B1=p)"

Thus, by Lemma[5.9 and a covering argument, we nd the desired estimate. [
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Finally, we show thatv is semiconvex along the spine qf. Naturally, for h > 0,

let
f( +he)+ f( he) 2f

h2
be the second ordeh-incremental quotient of the functionf in the directione 2 S".

2 ¢ .=
enf =

Lemma 5.12. Letv=u pforp2 P .Then,foralle2L(p\ S,

inf @eV CkaLz(Bl;jyja);
Bi=>

for some constantC depending only om and a.

Proof. For any > O, letu be the solution to

u (xy) 0 onB.\f y=0g
Lau (y) 0 in Br=g
2 Lau (Xy) = O in Brgn (U ) (5.28)
' u((xy) = uxy)+ on@Bs:

That is, in B;=g, u is the solution to the thin obstacle problem with zero obstacle

and boundary datau+ . Notice that sinceu is continuous inB 1, we have thatu #u

uniformly in B7=g, as #0. Also,u > 0inBsnB,s forsome = ( )> 0, by

the continuity of u . In particular, u is a-harmonic in the annulusB;-g N B=g
Consider the function

f (x):=(@eu (X))

as the pointwise limit of ( 2,u(x)) ash#0. To do so, we de ne

G o(X) =minf Zou (X); "o

Observe thatL 4( g;hu ) O0inB7sgn (u)(sincelLyu OinBs,sandLsu =0
in Bz=gn ( u )). Moreover, sinceu is continuous and g;hu Oon (u), we have
G = " inaneighbourhood of (u ). Thus, Lag., . 0in By=.

We now want to let" # 0 and thenh # 0 to deduce thatL ,f 0 in B3=4 and
f Oon (u).Inorderto passLag.,. . O tothe limit(as";h #0), itis enough
to show that jg.,...j C for someC independent of* and h (but possibly depending
on ). As g.;,. . is supera-harmonic in B7=g, its minimum must be achieved on the
boundary. In particular, sinceg.,,., O,

Supjg';h;ej SUp jg";h;ej C( );

B3=4 @B-g -
where in the last inequality, we have used thag.,,. . is a-harmonic in B7=g N B7=g
and correspondingC? estimates in the tangential direction fora-harmonic functions.
Hence, we can indeed pass,g.,.. 0 in Bas= to the limit and obtain that L f 0
in B34 and f Oon (u).

With the sub-a-harmonicity and nonnegativity off in hand, it is easy to see that

f is continuous inBz-4. Indeed, suba-harmonic functions are upper semi-continuous
(see [HKM93, Theorem 3.63]). So being thdt is continuous whenf > 0 andf
IS nonnegative in general, we determine the continuity df , as desired.
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To conclude, we again proceed by Bernstein's technique (see [CDV20]). Le2
Cl (Bi=) be even iny and such that 1in B4, and set

= %2+ (@u )3

where we recalff (x) := (@.u (x)) . By the discussion above, is continuous in
B1-,. Recall that f 0 on (u), and therefore, 0 on (u ). On the other
hand, on the boundary ofB;.:, we have that = (@Qu )2. Following the proof
of Lemma[5.1] exactly (and using that ,f 0 in Ba), we see thatl , 0

in Bi»n (u)if islarge enough, and so, its maximum must be achieved at the
boundary. In turn,

K kioey K@U KL ey = K@U Pk ey, CKu pRzgey e

where we have used Lemmpa 5]11 in the last inequality. This implies the family

fug, for0< 1, is uniformly semiconvex. Letting # 0 then and applying a
covering argument, we deduce the desired result (using that semiconvexity passes
to the limit). 0

Remark 5.9. Notice that p's polynomial nature plays no role in Lemmag 59, 5.111,
and[5.12. We have only used thap is non-negative in the thin space an@-harmonic
in Lemma[5.9, and thatp is non-negative in the thin spacea-harmonic, and invariant
in the e directions in Lemmad 5. 11 and5.12.

5.3 Blow-up Analysis

Recall, after a translation, we may assume that @ Sing(u) represents any singular
point. And, as such, the rst blow-up ofu at 0 is an element o for some 2 2N.
As in Section[5.2, we lepp denote the rst blow-up of u at 0, and de ne

Vi=u p; = o, L =L(p); m :=mg and =N(@O";v):

For notational simplicity, from this point forward, we often suppress the star
subscript when denoting the homogeneity gb , and simply write instead of

In this section, we are interested in classifying theecond blow-ups ai at 0, that
is, the limit points of the setf w gy- o, which is weakly precompact by Propositioh 5|6,
asr #0, with

Vi

¥ . and v,(X):=u(rX) p(rX): (5.29)

kvi KLz2(@m ;jyja)

In turn, we will prove Proposition[5.3.
We will work according to two cases, determined by the value & and the
alignment of L and the nodal set ofp ,

N :=N(p)

(see[(5.1])). Notice that by Lemma 5.70, if we considér(p) as a subset oR" f 0g,
then

L(P) N (p)
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forall p2 P ; yet L(p) may be smaller thanN (p). In particular, we de ne
and[Case P as follows.

Either a2[01)

or a2( Lo)and dimyN n 2 (Case 1)
and
a2 ( 1,0)and dimy N =dimyL =n 1 (Case 2)

Remark 5.10 We remark that[Case 1 and Case€ 2, a priori, do not cover all possibil-
ities. Indeed, the case whea2 ( 1;0) and dimy L < dimg N = n 1is missing.
In fact, it is currently unknown if such a situation can occur wheru 6 p .

Before we proceed with our classi cation results, we make a pair of observations,
the second of which will play a key feature in Case 2. Sinpe 0 onR"**\f y =0g,
we have that

f(X;0):p(x:0)=0g=1(x;0):p (x;0)=jr «p (x;0)j =0g= N : (5.30)

Furthermore, if L = R" !, as it is in[Case 2, thenp jrn 1 og is @ one-dimensional
polynomial, and so we can identifL and N as the same subset d&R" f Og.

Let us start by studying second blows-up ifi Case 1.

Proposition 5.13. In Case 1, for every sequencg # 0, there is a subsequence
rj. # 0 such thatw, * q weakly inW*%?(By;jyj*) as” !'1 ,andq6 Ois a
-homogeneousa-harmonic polynomial. In particular, 2f ; +1; +2;:::0.

Proof. By Proposition , we see that given any sequence# 0, the sequencey,-
is uniformly bounded inW*2(By;jyj?). Hence, there is a subsequeneg # 0 such
that

% *q in WY(By;jyj?);

for someq, and askw; ki >(@g;yj2) = 1, we have that

kaki2(@8 jyjo) = 1
Observe thatL ;% is a non-positive measure as

L.v, =2r Ii;rg y*@u,H"L (u) O
y

in the sense of distributions. Furthermore, lek  B; be a any compact set and
k 2 Cl(B;) be such that ¢ lonK and O K 1 in B;. By Helder's
inequality,

z Z Z

0 Lav'r K LaV'r = r x r V'rjyja CK kr V'rkLZ(Bl;jyja)
K B1 B1

Since the family v is uniformly bounded in W%?(B;jyj?) by Proposition , it
follows that the collection of measures ;% is tight. So, up to a further subsequence,
which we still denote byr;., we have thatL ,q is a non-positive measure. Then, as
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r u.! p locally uniformly, with u,(X) := u(rX), the sets (u,) converge toN

in the Hausdor sense (recall[(5.30)). Therefore, the distributior. g is supported on
f(x;0) : p (x;0) = 0g. Yet we are in[Case [1, andN is of zeroa-harmonic capacity
R"1 . Indeed, asp jrn 1 og 6 O, the setN has locally nite H" I measure. Ifa 0,
then the a-harmonic capacity of N is smaller than the harmonic capacity oiN ,
which is zero. Ifa < 0, then, by assumption,N has locally nite H" ? measure,
which implies that it is of zero a-harmonic capacity (seel[Kil94, Corollary 2.12]).
Thus, qis a-harmonic, i.e.,L,q 0.

Let us now show thatqg is homogeneous, arguing as in [FS18, Lemma 2.12], with
homogeneity := N(0";v ). In order to do so, by [GR19, Theorem 2.11], it su ces
to show that

= N(;q) forall 2 (0;1): (5.31)

Notice, rst, that since g is a-harmonic, N( ;q) is non-decreasing. On the other
hand, by the lower semicontinuity of the weighted Dirichlet integral,

N(Lia)  fiminf N(Lw, ) = liminf N(Lv, ) = liminf N(rj.;v) =

Also, by Lemma@ applied tovr , and taking " !'1
Z Z

1 . -
— Oy orjyj® = 1: (5.32)
@B @B

However, becausé ,q = 0 and by (5.26), we know that

HO . —_ 2 . .
Ga)= SNGa) )

Suppose now thatN( ;q) = < for some 2 (0;1). In particular, by the
previous representation oH , H is non-increasing for 2 (0; ), so that
1 f b o X ) £ .
e ay®  rEm fjyj*> 0 forall 2 (0; ):
@B @B

But this contradicts (5.37) for small enough. Therefore,[(5.31) holds and is
homogeneous of degree . And by [CSS08, Lemma 2.7], we deduce thal is a

polynomial. In particular, IS an integer.
All in all, we have that g6 0 is ana-harmonic, even iny, and -homogeneous
polynomial with  2f ;  +1; +2;:::g. In particular, q ., , 0y 6 0. m

Before moving to] Case |2, let us state and prove a lemma which will help us to
comparep and q when working in[Case [L. That said, this lemma is independent of

and Case| 2, and holds generically.

Lemma 5.14. Assume thatw. * q in WY?(By;jyj?) for some sequence- # 0.
Then, 7
qpjyj* =0 (5.33)
@8
and Z

gayj* O forall p2P : (5.34)
@B
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Proof. We proceed as in[[FS18, Lemmas 2.11-2.12]. In order to see (5.33), we use

H (r;u p) is non-decreasing for = N(0";u p) (see Lemmd 5.8), recalling
that = N(0";u), by assumption. In particular, we have
Z
1 . . 1 .
e (U PR lim e (u P32y
@B @
=lim ( u(x) psyp? (5.35)
77 e
= (p P
@8

using the local uniform convergence af u, to p asr # 0, with u,(X) := u(rx),
and the -homogeneity ofp. By the de nition of p , notice that
h == kviK 2(@gjyjey = O(r ) as r#0 and ", := :]—r= o(l) as r#0:
Furthermore, for some subsequence, which we still denote by we have thatv;. =
vi.=h. ! gin L2(@B;]yj?). Thus,
z y 5 1 z
~+p P WI'E s (u pZyj* (P P)%y* forall r> 0
e T r @B @8

Sincer v, =,";, taking the subsequence:- and expanding, we obtain
Z Z

"2 jyi+2". w(p piyi* 0 foral p2P
@8 @8
Dividing by ",. and taking the limitas " !'1
Z

gp pjyji* 0 forall p2P
@B

Now taking p=2p andp=2 !p, which are both members o , we deduce
that Z

apjyj® =0;
@B

from which (5.34) follows immediately. O

Let us now deal with[Case 2. As we noted before, in this case, the spine and the
nodal set ofp can be identied:L = N .

Proposition 5.15. In Case 2, for every sequencg # 0, there is a subsequence

ri. # 0 such thatw;,. * g weakly in WY2(Byjyj*) as~ 11 ,and g6 Ois a
-homogeneous solution to the very thin obstacle problem with zero obstaclé gn

8
5 qg O onlL

L.,g O inR"™
3L.q=0 in R nL
" gLag=0 in R"1:

(5.36)

Moreover, + , for some constant > 0 depending only om, a, and



173

Proof. Without loss of generality, we will assume thatL = fx, = y = 0g. We
divide the proof into several steps.

Step 1: Weak limit and non-negativity on L . As in the proof of Proposi-

tion 5.13, we have that
V. *q in WY(By;jyj®); (5.37)

for someq, and L,w is converging weakly as measures to a non-positive measure
L .g supported onL . Unlike before, the set on which_,q is supported is now a set
of strictly positive a-harmonic capacity (sincem=n 1).

Consider the following trace operators

WE2(Bjyi?) ! WS2(B,) and ~:WS2(B))! W® %(BY):

By [NLM88] (see also [KimQ/]), since > 1=2, is continuous; and ~is the standard
continuous trace operator. (Recall thata=1 2s.) The operator :=~  thenis
continuous. Hence, considerind (5.87),

(w)* (@ in WS ¥%BY and  (w)! (9 in LZBY:

Now (w.) OonB?forall® 2 N,sincep Oandu OonL . Thus, from
the strong convergence above,(q) 0,org OonlL .

Step 2: Semiconvexity in directions parallel to L . By Lemma[5.12,

Ei;nf @-% C forall e2L \ ST (5.38)
1=2

for some constanC independent ofr. Namely, the sequence of functiong s locally
uniformly semiconvex (and, therefore, locally uniformly Lipschitz) in the directions
parallel to L .

Step 3: Strong convergence. We show that for every 0< " 1, there exists a
constant C. > 0 independent ofr- for which

[¥.]c a "8,y C-: (5.39)

Thus, by a covering argument,v~ ! g locally uniformly in B4, and, in fact, g 2
CIog1 (Ba).

Recallthat L = fx, = y=0gand X =(x%x,;y) for xX°2 R" 1. For simplicity,
in the following computations, set

W= A,

Let Q, = B? D, B, for somer > 0. Recall that D, denotes the disc of
radius r in R? centered at the origin. For convenience, rescale and assume= 1.
By Step 2, kw(x% ; )k2 5,y IS Lipschitz, as a function ofx’ Hence,

o . 2 .
0sakw(X% Kz, C:

1
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Recalling that kwk, 2g,;jyjsy C (we have rescaled to work irQ,, else this bound
would be 1), we have that
z
0 . 2 0 .
1
and sokw(x% ; )Kiz(p,:jyja) has bounded oscillation and integral. In turn,
kw(x% ; )kizp,jyey C forall x°2 BY: (5.41)
We also recall that

Ii;nO y*@w O and Law=0 in B;\f y> 0g: (5.42)
y

{ Step 3.1.In this subset, we prove that the measure
Nw(x%x,) = Ii;yo y’@w 0

is nite on each x°slice. Equivalently, we show that

Z 1
0 GX% xm))nw (X% xn) dx;, C forall x°2B? (5.43)
1
where is a smooth test function = (r) : [0;1) ! [0;1] such that 1in
[0; 1=2] and Oin [34;1).
Let = (j(x%xn;Y)j). By the divergence theorem,
Z, Z
n,dx, = divy, y (Y2 «,yW)dx, dy
1 ZD1\f y> 0g 7
_ L Xo Yy VI gy T oy W (5.44)
D\f y>0g Di\f y>0g
=1+l
whereL"Yf = div 4, y(Yj®r x,.yf). On one hand, observe that
LiYw=Law y* yow= y? 4w in D;\f y>0Og
by (6.42). And so, by [5.38),
I C: (5.45)

On the other hand, by the symmetries of (i.e., @ = O(y) as @ y=0 = Oand is
smooth),

JWLEY j=jwy?y ALY = jwiyti@ + @ +ay '@ Ciwjy™

So, by the symmetries of again, Helder's inequality, and [5.41), we deduce that
Z Z

= YO sy T oxayW = wLXnY C: (5.46)
D1\f y>0g D1\f y>0g
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We have also used that the boundary term ay = O vanishes in the integration by

parts,y*@ O onfy = 0g. Therefore, combining[(5.44),[(5.45), and (5.46), we see
that (p.43) holds, as desired.

{ Step 3.2. Now we conclude. Consider the fundamental solution for the operator
L, (see, e.g,[ICS07]) given by

a(X) == CpajXj "t &

More precisely, 5 is such thatL, ,=0in fjyj> Og and limyxy*@ .= (x), the
Dirac delta at x. Let

wix;y) = a( 3y) x(nw);
where is the test function de ned in Step 3.1, with = (jxj) here. We have that
Law=0in jyj > 0, and limyz y*@w = n,. We claim that w is bounded. Indeed,

by (5.43),

201 (n)(2)

1J(X0 Z0%%n zpsy)in R
dz°
o J(x° 250 y)jn 2

dz, dz°

JW(X% Xn; Y)]

By means of the previous proof, () Sw=(( ) %X a x (ny))isbounded as long
as &< asince () §jXj " a=CjXj " 2 2 and n, does not depend on
y. Thus, () wis bounded as long so®2< a, and by interior regularity for the
fractional Laplacian (supposes 6 1=2), w is C? (see [RS16, Theorem 1.1]).

Finally, notice that Lo(w w) =0in B;\fj yj> Ogand limys,y*@(w w)=0
in B1=\fj yj > Og. It follows that L,(w w) =0in B, and thenw w2 Cl_(B;-,)
by interior estimates for a-harmonic functions (and recalling thata 2 ( 1;0)). In
turn, w inherits the regularity of w; that is, w is C?, so long as 8 < a, and (5.39)
is proved.

In particular, by Arzeb{Ascoli and a covering argument, we have that

v.! g in C2.(By); (5.47)

andq2 C,2 "(B,) for any " > 0.

Step 4: Homogeneous solution to the very thin obstacle problem in Bi.
First, we show that q is a solution to the very thin obstacle problem,[(5.36); the
only condition that remains to be checked is thagL,q O.

By the proof of Proposition[5.6 and|[(5.23),

R 2
. 2 Vi LoV,
M= iIogN(;vr) R !321. R
N(rv) d o1 g T VAR gg VALY
Hence, by the de nition of v,
Z
INqr;v) 2 L (5.48)

Bi1
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Furthermore, reasoning as in [FS18, Lemma 2.12], sinkgr;v) # asr #0,
Z 2I’j\
N v )dr  2(N(2rj;v) N(rj;v)! 0 as “!'1
I'j‘
And so, by the mean value theorem, we can nd;. 2 [rj.;2r;.] with ri. Nqr;.;v ) !
Oas'!1 .Inturn, the non-negativity of v L,v and (5.48) then imply that
z z

V'I’j‘
B: B

I—av'rj‘ V'I’Ju

Law, ! O
j‘
with ;. := rj.=r;.. Therefore, sincd v, * L ,qweakly as measuresiBi, %, ! g
strongly in C2.(B1) by Step 3, (5.47), andvrL.w O, we obtain that
Z

gL.g=0 forall R< 1,
Br
so that, in fact, qL,g 0 in B;.

Thus, g is a solution to the very thin obstacle problem[(5.36) insid8;.

To conclude, we show thag is homogeneous with homogeneity := N(0*;v ).
Since q solves the very thin obstacle problem, by Lemm@a 5.52, it su ces to show
that

= N(;q) forall 2 (0;1): (5.49)

But this follows from arguing exactly as in the proof of Propositiorj 5.13, where

we obtained that g is homogeneous i Case 1, using Lemrha 5.5, (5]108), and
Lemmal5.53.

Step 5: + . We argue by contradiction (or compactness). Suppose, to the
contrary, that there exists a bounded sequence of solutions such that 02  (u-),
dmyL(p:)=n 1,and - + 1 Let p. be the rst blow-up and ¢ be

a second blow-up ou- at O (the homogeneity ofg is ). Up to a subsequence
(we can assume the sequences enjoy uniform bounds in appropriate Helder spaces),
taking ~ to in nity, we nd a solution u; whose rst blow-up at 0 is of order
whose spine has Hausdor dimension equal to 1, and whose second blow-ug

Is homogeneous of order.

Sinceq, is a -homogeneous, global solution to the very thin obstacle prob-
lem, it is an a-harmonic polynomial. Indeed, by[[GR19, Proposition 4.4], any global,
evenly homogeneous function with L,u non-negative and supported oR" f Og
Is actually an a-harmonic polynomial of degree . In particular, we have that
Koh Kiip(g1) C for some constant depending only om, a, and . Also, by as-
sumption,q@  OonL(p. ), wherep .; isthe rst blow-up of u; atO.

For simplicity, let g= q¢ andp = p .. ,andletusassumethat(p.; )= fx, =
Og, so that p de%ends only orx, in the thin spacefy = 0g. By Lemma(5.14,

hg;da = gayj? O forall p2P and hg;pi,=0: (5.50)
@B

Sincep is -homogeneous and depends only o, a constantc > 0 exists for
which p jg,\ y=0g = C jXnj . Now for any" > 0, observe that

Cp +q " on @B\f y=0g



177

with

C:=c ™ koKt g,y y=09) KK ip(B1f y=0):
Indeed, if jXnj "=KOoKLip(B1\f y=0g), then C:p jg,v y=0g + i\ y=0g 0, by the
de nition of C.. On the other hand, ifjx,j  "=koKiip(8,\f y=0g), then dig,\ y=0g "

sinceq O onfx, = 0g (recall p 0 on the thin space). Thus,C.p + g+
"Exta(jXj ) 2 P for every” > 0 (see [(5.1B)). So[(5.50) implies that

kakiz@miyey  "MEXta(ixj );dia:
Taking " #0, we deduce thatg 0, a contradiction. O
With Propositions [5.13 and 5.1p in hand, we can now prove Propositipn b.3.

Proof of Proposition[5.3. The proof is a simple consequence of Propositiops §.13
and[5.1%. Without loss of generalityX = 0.

(i) If a2 [0;1), we are in[Case]l. So by Propositidn 5]13, our claim holds.

(i) When = 2, sincep 0 on the thin space, we have that = N . Thus,

sincem<n 1, we are again i 1, and we conclude by Propositjon 5.13
once more.

(i) Finally,if m=n 1anda2 ( 1;0), we areinfCase|2 (recall N ). Thus,
applying Proposition[5.15, we arrive at our desired conclusion.

This completes the proof. ]

5.4 Accumulation Lemmas

In this section, we gather some important lemmas concerning accumulation points
of Sing(u). These lemmas are the key tools used in estimating the size of the points
where we can construct the next term in the expansion af. The lemmas of this
section are analogous to the accumulation lemmas of [F$18], although several new,
interesting technical challenges appear in our setting.

Let us start by proving an auxiliary lemma.

Lemma 5.16. Let g be a -degree,a-harmonic polynomial, for 1, and let
X 2 R"™ . Then,
rR ir gi%jyj?
N(rog;x )= R~ forall r> 0O
@s(x ) TV

Moreover,
N@O";q;X)=m

wherem is the smallest integer for which then -homogeneous part off( X + ) is
non-zero.
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Proof. Without loss of generality, we assume thaX = 0. Let

where ¢,, denotes them-homogeneous part ofj. Sinceq is a-harmonic anda 2
( 1;1), each of its homogeneous parts s-harmonic. Notice that if p; and p, are
homogeneous-harmonic polynomials with non-zero homogeneitias,; 6 m,, then
they are orthogonal inL(@B;jyj?). Indeed, using thatm;p, = X r p = r@p; on
@B and integrating by parts,
Z z z
(M1 my) P1P2jyj® = 1 P2@pajyj* 1 P1@p2jyj*
@B @R @Bz
= rprpjyittr rpropjyt=0;
B B

where we have also used thdt,p =0

Now, by means of then-homogeneity ofg,, and the orthogonality in L?(@ B; jyj?)
of homogeneous-harmonic polynomials of di erent homogeneities, we nd that

z Z

. m .
rq gyt = o guiyi®
B @B
Thus, 7 « 7 « Z
roogrdfyit= omo qjy® hivi®:
Br m=1 @B m=1 @B
Pythagoras's theorem also implies that
oiyi* = Chiyi®:
@B m=0 @B
Hence, Z Z
roojr gfy® iyi;
B @B
as desired.
Now let cn = g ¢2,jyj?, and setm 0 to be the smallest integer so that
Cn 60. Then,
R P
; i GiZivia om
LA L
o FIYi® m=m Cmf2"
which concludes the proof. m

Just as in Sectionj 5.8, we divide our attention betweén Casg 1 gnd Cake 2. Again,
we begin with[Case [L. Our accumulation lemma in this case is analogous[to [FS18,
Lemma 3.2]. We repeat the common parts for completeness.

We recall that, in the following lemmas, we are assuming that®  is a singular
point of order 2 2N.
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Lemma 5.17. In [Case 1, suppose that there exists a sequence of free boundary
points 3 X-=(x;0)! Oand radii r- #0 with jX-j r-=2 such thatw. * q
in W¥2(By;jyj®) and Z- := X-=r~! Z, . Then,

Z, =(z,;0)2L and D qZ,)=0 for all =( %0)andj j 2.
Moreover, if = ,thenq;, = q(Z, + ) qisinvariant under L + L(q); that
is,

G, (x+ ;0)=q, (x;0) forall pairs (;x)2 (L +L(g) R"

Proof. From Proposition [5.6 applied atX-, the frequency ofu(X- + ) p is at
least . (Here, p is being considered as just an element & . Recall, p is the
blow-up at 0, not at X-.) Therefore,

N(G;u(X-+r-) p(r- )= N(r;uX-+ ) p) for all 2 (0;1=2);
or, equivalently, for all 2 (0;1=2),

R . e
g “(Z+ )+ hr(pXo+r) p(r )ity

@B JV’r(Z + )+ hr~1(p (X +r- ) P (r\ ))szyja (551)

with
hr. = kvr- K 2@y
Now let

g(x)= P ”;) P (rX).

whichisa (  1)-degree,a-harmonic polynomial. Also, observe that
Z Z
v (2 + )i%yjt+ ir % (Z+ )PFyi? K e k§izg, e Ci (5.52)

Bi=2 Bi=>

We claim that the coe cients of g are uniformly bounded with respect to’, so
that, up to subsequencesg ! ¢ locally uniformly where q, is somea-harmonic
polynomial of degree 1. Indeed, suppose that this § not true. Then, letting
fa g denote the coe cients of ¢ and setting - := ,, jaj, we have that

11 . Now set 4

G = —
which is a polynomial with coe cients bounded by 1, and letq, denote its limit
(up to a subsequence). Notice thaty is ana-harmonic, (  1)-degree polynomial
asq are all a-harmonic, ( 1)-degree polynomials. So, fron{ (5.51), dividing the
numerator and denominator by 2, and by Lemma[5.1p, we deduce that

R . o R
g I "+ aifiyi® DBJr%JJYJ_N(_ql) .
el T QPR g it YR ’

since, by [5.52),

W )00 in WERB i)
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Impossible.

Sinceqg converges, up to subsequences, to some uniformly in compact sets
and by interior estimates fora-harmonic functions (see, e.g., [JN17, Propsition 2.3]),
we have thatjD ¢ (0)j C for someC independently of* for any multi-index

=( 1;::7; n;0). Then, from the -homogeneity ofp , we have
rl ] r
D a@)=-DpX)=i-D p(2) (5.53)
r r
forallj j 1. Hence, usingD g (0)] C andh,. = o(r-), we determine that

iDp(Z)j=0o1)! 0 as !'1

whenjaj 1. Thatis,D p(Z,)=0for j | 1. Thanks to Lemma[ 5.1],
Z 2L :

Proceeding as in [FS18, Lemma 3.2] by means of the Monneau-type monotonicity

formula from Lemma[5.8, we obtain
1 Z Z
—%—  JdZy + )+ @ jFy)r 22 jaZy + )+ @ jfyit (5.54)
@B @B->

for all 2 (0;1=2). Notice that, until now, we have not used any information on
the second blow-upg. From Proposition[5.13,q is a -homogeneousa-harmonic
polynomial with , since we are irf_Case| 1. It follows that the polynomial
q(Z, + )+ g is only made up of monomials of degree greater than or equal to
Thus, recalling (5.58), we have that

AZ1)= 21 1,0Z1)= Zi @@= lm (@1 1P (X)=0:

Here, we have also used thaZ, 2 L , X- = (x+;0), and g is -homogeneous.
Moreover, taking derivatives, we have

(] DD dZi)= lm(Zy r.D p(@)=0:

(By Lemmal[5.10,Z, r D p (Z-) =0.) Therefore,
D g(Z,)=0 forall =( %0)andj j 2:

In addition, notice that by construction, ¢ is invariant under L . Hence, so igy .

Finally, suppose = .Then,q(Z, + )+ ¢ consists of only degree terms.
In other words, it is -homogeneous. Now notice thatj(Z, + )= q+ s; where
s; is adegree 1 polynomial. Consequentlyg(Z, + )+ ¢ Q=S +q Iis
a -homogeneous polynomial. This is only possiblesf + ¢ 0 (recall, ¢ is of
degree  1.) And so, it follows that

G« =q aZ + );
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from which we deduce thatg, is invariant under L(q). Since the invariant set of a
function is a linear space,

q (x+ ;0)=q (x;0) forall pairs (;x)2 (L +L(q) R"
Lastly, we nd that
D g (=0 forall =( %0)andj j 2;
makingg a(  1)-homogeneous, even iy, a-harmonic polynomial. O

Notice thatif Z; 2 L(g),thena 0. Indeed, all of the derivatives oty jrn ¢ og
up to order 2 vanish at the origin sinceD ¢(Z,)=0foral = ( %0) and
I 2.S0ifD q(Z;)=0foral =( %0) with j j 1 too, then qu
would vanish up to in nite order at the origin, making it identically zero. In other
words,

Z, 2L(gifandonlyifq O

This also follows directly from the formq, takes when =
Before stating and proving gd Case|2 accumulation lemma, we present a simple
consequence of Lemnja 5]17 and make a remark.
If m =0,thenL = fOg. Hence, from Lemma 5.17, we deduce that is isolated
in
Lemma 5.18. Supposg¢ Case| 1 holds. Thef,is an isolated point of

Proof. Suppose, to the contrary, that 3 X- ! 0Oisasequence of points{(: 6 0).
Let r- :=2jX:j. By Lemma|5.17, we have that, up to a subsequence,

. . . X+
. *q in WYBgjyj») and Z := T! Z, 2L \ @B
whereqis a -homogeneous harmonic polynomial with . But, this is impos-
sible, sinceL = fO0g. O

Remark 5.11 In general, lower frequency singular points can accumulate to a higher
frequency singular point. Take, for example, the harmonic extension gfx3 to R3:

1
W)= xbE Gy v

This polynomial is a solution to the thin obstacle problem witha = 0, and has
singular points of order 2 approaching a singular point of order 4. In particular, it
is not true that © is isolated from - .

By the recent results of Colombo, Spolaor, and Velichkov, see [CSV19, Theorem
4], we know that the set of even frequencies (= 2m) is isolated from the set of
all possible frequencies for the thin obstacle problem when= 0. This, together
with the upper semicontinuity of the frequency, implies that free boundary points
of strictly higher order cannot accumulate to a singular point of lower order in this
case. Therefore, the above hypothesisx\ 2 and X- ! 02 " reduces to
\X- 2 and X-! 02 " atleastwhena=0.
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Now we prove g Case|2 accumulation lemma. It will only be applied when <
+land = (with as de ned inthe lemma). Nonetheless, we state it in more
generality, for completeness.
We recall that Ext, denotes thea-harmonic extension of a polynomial, se¢ (5.13).

Lemma 5.19. In Case 2, suppose that there exists a sequence of free boundary
points " 13 X =(x;0)! 0 and radii r- #0 with jX-j r-=2 such thatw. * q
in WY2(B4;jyj?) and (z;0)= Z- := X-=r- ! Z, . Set

x = NOuX-+ ) pux);

wherep x. denotes the rst blow-up ofu at X-. Lete 2 S"\f y=0g= S ! be
such thate ? L , and letf¥®" and g°% be the even and odd parts @f with respect
tolL,

) =S[00+ AX 2 X)e )]
and
) = SIX) AX 2e X)e ]
Let > 0 be as in Proposition 5.1p and set := liminf -f x.g + . Then,

Zl :(Z]_ ,0)2 L

and
Z
jofeN(Z, + X) ¢ Exta((e x))jFyj2 C 2*2 for all 2 (0;1=2);
@B
(5.55)
for some constantsc; and C independent of . Moreover, if < +1, then
e 0. If, in addition, = ,thenc, =0 in (6.55), and q is invariant in the

Z, direction; that is, q(Z; + X) = q(X) for all X 2 R"*1,

Proof. We divide the proof into two steps.

Step 1. We proceed using the ideas developed to prove [FS18, Lemma 3.3]. Recall
that

e u(X-+rX).
p.x.(X):= Ilm0 —
De ne
x- (X X+ 71X ,
a(X):= P x (r-X) h?( ) with  h. = kv KL 2(@g jyja)-
By Proposition [5.1% and Propositiorj 5J6, for all 2 (0; 1=2),
N(ruX-+ ) px.) X + > (5.56)

or, equivalently, _ o
g M v (Z+ ) 1 ajfyP
es (2 + ) ajyj
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(cf. (6.51)). Furthermore, arguing as in the proof of Lemma 5.17, we nd that the
family fgg-2n has uniformly bounded coe cients. This time, however, we use that
g is of degree and a-harmonic rather than of degree 1 anda-harmonic. Indeed,
as in Lemmg 5.1]7, suppose not. Then, dividing by the largest coe cient, we obtain
uniformly boundedl,qa-harmonic polynomialsg of degree and the inequality

A ajjyj?

5 e + forall "2 N (5.57)

@azzjll
and for some'- ! 0 in W%2(B1-,;yj?). Now notice that ¢ are degree polynomials
converging uniformly to someg, (up to subsequences). Also, since the translations
that dene g are infy = 0g, ¢ are a-harmonic. In turn, the limit ¢ is an a-
harmonic, -degree polynomial. From[(5.57) and Lemmia 5.]l6, we obtain

R

5.7 @ PIP°
on., % 7Y
a contradiction, since > 0. Thus, g converges, up to subsequences, locally uni-
formly to someq; , which is ana-harmonic polynomial of degree. SojD g (0)j] C

for some C independently of = for any multindex = ( q;:::; 5;0), and for
jaj 1,

+

NI =

i
Dmm=%opwo=%Dp@x (5.58)

Then, ash,. = ofr.), we determine that

iDp()=0o1)! 0 as !1

whenjaj 1. Thatis,D p(Zy)=0for j j 1. Thanks to Lemma] 5.1],
Z, 2L(p)2L:

Now, by assumption, for some 2 S" *andc;c > 0,
Ppx(X0)=c(ee x) and p((x0)=c(e x):
Also, settinga := e z, we see that

(% 0)=ht(px (rx0) p(x +rx;0)
r-ht(ce x) c(e (z+x))

rrh'! c(e x) c(e x) ca(e x)?!

+ca? o T %e x)

Sincep .x. ! p, we have thatc ! ¢ ande- ! e (up to a sign). Moreover, as
Z-! Z, 2L ande ? L ,a ! 0. Therefore, by the uniform boundedness in of
the coe cients of g (x; 0), we immediately nd that
g(x;0)=r-h,*c(e x) c(e x) ca(e x) *+o0@)

=rh'(c c)e x) +c(e x) (e x)) ca(e x) '+o0):
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Sete?:= 12—21 Then,

. . X1 _ .
& )J(()a faej X - jZ‘ zj X _ (e x)'(e x) *'=(e’ x)Qx):

In addition, as~ 11 |
el €229t and Q! ( e x) I

andef ? e . Thus,

q (x;0)=ci(e x) +c(e) x)(e x) ‘+ce x) L (5.59)
for some constants;; ¢;, and c3. Soq; vanishes onL .
Thanks to Lemma([5.8 applied tou(X- + r- ) p.x., denoting - := ., for
all 2 (0;1=2),
1 Z Z
= w(Z+ ) affyt 22 @ v (Z+ ) oty
@B @B-»

from which we deduce that, taking’ ! 1
Z Z

——  jaZ. + ) ajfyi® C jazy + ) Pyt (5.60)
@B @B-,

In turn, becauseq; (X) = Ext o(ch (x; 0)) and by (5.59),

7 Z
joPe(Z, + ) Exta(a(e  x)) jAyjir= i@z + ) ) yi®
@8 7@8
jaze + ) o Ay
@B 7
C 2+ jaze + ) Gy

@B-;

from which, taking c; = ¢;, we nd (5.55). (Here, we have used that taking the even
part of a function with respect toL , i.e.,f 7! f ¢**" is an orthogonal projection in
L*(@B;jyj?).)
Step 2: Let us now show that if < +1, then ¢®® 0; and if, in addition,
= ,thenc¢; =0 in (b.55). We remark that the fact that ¢®® 0if 2 Nis
independent of Step 1.
If X 2R™ nL ,thenX 2 X)e 2R"™ nL ;so

LaoP%(X) = Lag(X) Lag(X 2(& X)e)=0 for X 2 R™ nL

(by Proposition [5.15, q solves the very thin obstacle problem and is-harmonic
outside ofL ). On the other hand, if X 2 L , then we have thatX 2(e X)e = X.
And so,

L.oP9(X) = Laq(X) Lag(X)=0 for X 2L :
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Therefore, °% is a-harmonic in R"*!. This, together with the fact that % is -
homogeneous (again, by Propositign 5.115) and evenynyields that, by Liouville's
theorem for a-harmonic functions,®® is a -homogeneous polynomial (see, e.g.,
[CSS08, Lemma 2.7]). Hence, if< < +1,then ¢®™ 0, andq= ¢f*e".

Finally, let us now show that if = < +1,thenc =0. Let

O, (X):=0q(Z1 + X) c Exta((e x));

which is a solution to the very thin obstacle problem with zero obstacle ob . If
(6.55) holds with =, then from Lemma[5.55 and recalling thaig = ¢®**", we
deduce that

N(0";q, )

Inturn, ¢z, is -homogeneous. Indeed, for atl> 0, by Lemma[5.52,
N(rgz ) NEL1g,)=NELqX) c Exta(e x)))=

The penultimate equality holds since the limitag ! +1 of Almgren's frequency
function is independent of the point at which it is centered, and the last equal-
ity holds becauseq is -homogeneous with > | and thus g out-scales a -
homogeneous polynomial.

Sinceqz, is -homogeneous, we deduce that

q(X)+ q(X +22Z, ):

X +2Z;)= >

(5.61)
To see this, rst, observe that
aX + 'Zi)= (X +Z1)= g (X)+ ¢ Exta((e x));

for all > 0. The rst equality follows from the -homogeneity ofg, while the
second follows from the -homogeneity ofgy, . So

aX + 'Z1) @, (X)= c Exta((e X))
forall > 0. Taking the limitas ! +1 yields
@ = q (5.62)

(Recall, > .) Thatis,

¢ Exta((e x))=a(X +Zy) oX): (5.63)
And becausee ? Z; ,

G Exta((e x))=qX) oX Zi):

Hence, [5.6]L) holds, as desired.
To conclude, from the -homogeneity ofq and (5.63), observe that

@'qZ1)= o
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On the other hand, 5.61) implies

@ g2z
@’qz.1)= —Q(z Vo2 1@az)
Thus,
1 2 Hig =0:
Yet 16 0, by assumption. Consequentlyc; = 0.
Therefore, we have thatif < +land =
Z
1 . P
v jaz. + Hifyi*t C (5.64)
B

By Lemma[5.55N (0*;q(Z, + ))=  asqg(Z; + )isasolution to the very thin
obstacle problem. On the other hand, sincgis -homogeneousN (+1 ;q(Z; +
) = , and from the monotonicity formula in Lemmg 5.5, we deduce thayZ, +
) is -homogeneous. Then,

X +Z;)= o X+2Zy)=qX+ Z;) foral X 2R"and > 0;

that is, g is invariant in the Z, direction. O

We close this section with a pair of remarks and|[a Casg 2 version of Lenima b.18.
The observations made in these remarks are crucial to our analysis of when we can
produce the next term in the expansion ofi around a singular point.

Remark 5.12 In Lemma(5.19, as in Lemma 5.17, if| is an a-harmonic, ( + 1)-

homogeneous polynomial and = = +1, we also have that
D q(Z,)=0 for all =( %0)andj j 2: (5.65)
Indeed, observe that|(5.60) becomes
z
oz, + ) @iy C AT
@B

for all 2 (0;1=2). Hence, the polynomialg(Z; + )+ @ is only made up of
monomials of degree + 1. In particular, since g is ( + 1)-homogeneous andy
is of degree , g(Z, + )+ q is a ( + 1)-homogeneous polynomial. So, for all
multiindices j | ,

D q(Z:)=D a (0);
which, by (5.59), implies [5.65) holds, as desired.
Remark 5.13 The last part of the proof of Lemmag 5.IP fails to show thatf'*" is

invariant in the Z, direction when = = + 1. In this case, however, we nd
that

o, (X):= (21 + X) ¢ Exta((e X)),
is -homogeneous. Hence,

(X +  Z1) ¢, (X)= o Exta((e x));








































































































































































































































































