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I 

Abstract 

During public transport disruptions, the performance of the public transport network is 

degraded due to unexpected events, resulting in delays and inconvenience for passengers. 

Therefore, the infrastructure managers and operating companies typically generate a new 

public transport timetable, called disposition timetable, to reduce passengers’ delays, 

thereby limiting a negative impact on passengers’ activities and related satisfaction. To 

generate the new timetable, different rescheduling strategies are considered, such as 

retiming, rerouting, partial or full cancellation of services, possibly needing to take into 

account the feasibility of rolling stock circulation.  

In this context, disseminating information about the running services is critical. This 

information is not only the bridge for infrastructure managers and operating companies to 

provide an updated timetable to passengers, but also the link for them to understand 

passengers’ behaviours in case of disruptions so that they can reschedule timetable and 

rolling stock more efficiently to offer passengers better quality services. However, the 

disseminated information in reality could be incomplete or inaccurate, that is, not all the 

passengers immediately receive all the information about the disposition timetable. This 

incompleteness of information could jeopardise the efforts of infrastructure managers and 

operating companies to improve passengers’ satisfaction.  

In this dissertation, we study the effects of information provision to passengers in public 

transport disruptions, taking into account information availability, quality, passenger 

heterogeneity, passenger behaviours, disposition timetables and multi-modal transport 

network. The main contribution of this dissertation is three-fold. First, we propose 

rigorous mathematical relations to formalise the effects of information availability to 

passengers in public transport disruptions, including user equilibrium and non-

equilibrium solutions. These relations allow simulating and analysing passengers’ 

behaviours in a multi-modal network using an agent-based micro-simulation model 

(MATSim). Second, we combine in an innovative manner MATSim with an optimisation 

model to explore passengers’ satisfaction towards different disposition timetables and 

information strategies. The results from this integrated model can be helpful for 

infrastructure managers and operating companies to offer better services to passengers in 

public transport disruptions. Third, we propose a novel multi-layer time-event-graph 

method to quantify and identify the effects of incomplete information to passengers’ 

delays and route feasibility. 
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Part I summarises the information availability in public transport disruptions in a “who-

when-where-what” four-dimensional framework. Based on the proposed rigorous 

mathematical descriptions of the effects of information availability to passengers, 

including user equilibrium and non-equilibrium solutions, we apply MATSim to the city 

of Zürich, Switzerland, to assess the benefit of activity-based simulation in a multi-modal 

network. We use an existing day-to-day replanning method, and further extend it by a 

within-day replanning approach, to study agents’ route choices responding to public 

transport disruption in one single iteration. The disruption is assumed as the rail track 

blockages between two major stations, Zürich HB and Zürich Oerlikon. We simulate 

three scenarios based on different information availability, and compared with a 

benchmark of agents’ behaviours without disruption. Statistic results are analysed for all 

the agents who are involved in the defined disruption. Agents’ flow in related transit 

routes and transport modes shows their adaptations to the corresponding information 

availability. Our analysis on delays and other statistics reveal that information availability 

significantly influences agents’ satisfaction in public transport disruption. 

Part II applies a mixed integer programming (MIP) model to generate different 

disposition timetables following a disruption, with the objective to minimise the total 

delay of passengers. The timetable rescheduling includes the strategies of retiming, 

reordering, rerouting, cancellation of train services. The rolling stock circulation is 

checked to ensure the feasibility of the disposition timetable. We solve this MIP model 

using a commercial solver. We then apply MATSim to simulate the activity-based agents’ 

behaviours with different disposition timetables and information strategies in a multi-

modal network, and analyse agents’ delays and other performance indicators for the city 

of Zürich. We find that the earlier the information of disposition timetable is disseminated 

to passengers, the larger the improvements of satisfaction they can gain during disruption. 

We also find that, compared to a straightforward full cancellation of train services, 

computing a precise feasible rolling stock circulation that is able to handle partial train 

cancellations can significantly benefit the passengers. In particular, the delay of 

passengers whose planned services are disrupted decreases substantially, whereas other 

passengers that are not directly affected by the disruption may experience minor delays. 

At system level, the realistic operation strategy can considerably reduce the impact of the 

disruption, with a utility impact of the disruption reduced to a fifth only, instead of the 

original negative impact. 

Part III studies the effects of incomplete information to passengers and proposes a 

novel multi-layer time-event-graph method to describe heterogeneous passengers’ 

thinking about disposition timetable under different types of incomplete information. 

Specifically, the information we consider varies based on time and location that 

passengers receive as well as content. Moreover, we consider different passengers’ 

beliefs on delay propagation (i.e. impacts of disposition timetable). Using our graph-

based route choice model, we are able to describe passengers’ behaviours 
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incorporating the impacts of incomplete information (perfect or on-route) and their 

belief (schedule-stubborn or delay-extended). We then examine the feasibility of 

passengers’ routes and passengers’ delays. The results show that the on-route 

information causes more infeasible routes and larger passengers’ delays compared to 

the perfect information. The effects of passengers’ belief with on-route information 

are negligible; but are large in case of perfect information: schedule-stubborn belief 

causes less passengers’ delay with a short available information, otherwise delay-

extended belief works better.  

To sum up, this dissertation provides insights on how the information (e.g. availability, 

completeness) affects passengers’ satisfaction during public transport disruptions. We 

quantify the value of early information and richer information to the satisfaction/ delays 

of specific passenger groups. The results can be useful to infrastructure managers and 

operating companies to understand and evaluate the effects of different information and 

rescheduling strategies during public transport disruptions. This dissertation can be 

beneficial for passengers, infrastructure managers, operating companies and the public 

transport industry. 
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Zusammenfassung 

Während Störungen von öffentlichen Verkehrssystemen ist die Leistung des öffentlichen 

Verkehrsnetzwerkes infolge von unerwarteten Ereignissen reduziert. Diese Reduzierung 

führt zu Unannehmlichkeiten und Verspätungen für die Passagiere. Daher erstellen die 

Infrastrukturmanager und Betriebsgesellschaften typischerweise einen 

Dispositionsfahrplan um die Verspätung der Passagiere zu minimieren. Dadurch wird der 

negative Einfluss der Störungen auf die Aktivitäten der Passagiere limitiert und die 

Zufriedenheit erhöht. Um einen neuen Fahrplan zu erstellen, werden verschiedenen 

Neuplanungsstrategien in Betracht gezogen. Diese Strategien beinhalten eine 

Neubeurteilung der Route, der Abfahrtszeiten, sowie den partiellen oder vollständigen 

Ausfall der Linien. Diese Strategien müssen möglicherweise die Rollmaterialzirkulation 

berücksichtigen. 

In diesem Kontext ist es zentral, Informationen über die verkehrenden Linien zu verteilen. 

Diese Information stellt nicht nur die Brücke von Infrastrukturmanager und 

Betriebsgesellschaften zu den Passagieren dar. Sie wird auch verwendet um das Verhalten 

der Passagier im Störungsfall zu verstehen. Somit können die Fahrpläne und 

Rollmaterialzuweisung effizient geplant werden und die Qualität für die Passagiere erhöht 

werden. Die verteilten Informationen können aber in der Realität inkomplett und ungenau 

sein, so dass nicht alle Passagiere die Informationen bezüglich des Dispositionszeitplanes 

nicht in Echtzeit erhalten. Diese Unvollständigkeit der Information könnte die 

Anstrengungen der Infrastrukturmanager und Betriebsgesellschaften, die 

Fahrgastzufriedenheit zu erhöhen, gefährden.  

In dieser Dissertation betrachten wir die Effekte von dem zur Verfügung stellen von 

Informationen im Zuge von Störungen von öffentlichen Verkehrssystemen, unter 

Berücksichtigung von der Verfügbarkeit und Qualität von Informationen, 

Passagierheterogenität, Passagierverhalten, Dispositionsfahrplan und multimodalen 

Transportnetzwerken. Diese Dissertationen macht drei Hauptbeiträge an die 

Wissenschaft. Erstens, stellen wir rigorose mathematische Formulierungen auf, um den 

Effekt der Verfügbarkeit von Informationen für Passagiere während Störungen der 

öffentlichen Verkehrssysteme zu formalisieren. Diese Formulierungen beinhalten 

Lösungen für den Fall von Nutzergleichgewicht und Nutzerungleichgewicht. Diese 
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Formulierungen erlauben die Simulation und Analyse von Passagierverhalten in 

multimodalen Netzwerken unter Verwendung einer Agent-basierten Simulationssoftware 

(MATSim). Zweitens, kombinieren wir auf eine innovative Art MATSim mit einem 

Optimierungsmodell um die Passagierzufriedenheit in Bezug auf verschiedenen 

Dispositionsfahrpläne und Informationsstrategien zu erforschen. Die Resultate der 

Verwendung dieses integralen Models können für Infrastrukturmanager und 

Betriebsgesellschaften nützlich sein, um einen besseren Service für Passagiere während 

einer Störung zu bieten. Drittens, zeigen wie eine neuartige, mehrlagige Zeit-Ereignis-

Graph-Methodik auf, um die Effekte von unvollständigen Informationen bezüglich 

Passagierverspätung und Machbarkeit von Verbindungen zu identifizieren und 

quantifizieren. 

Der erste Teil der Arbeit fasst die Informationsverfügbarkeit während Störungen von 

öffentlichen Verkehrssystemen, in einem vierdimensionalen “wer-wann-wo-was” 

Framework, zusammen. Basierend auf der vorgeschlagenen rigorosen mathematischen 

Beschreibung der Effekte der Informationsverfügbarkeit, welches Lösungen für das 

Nutzergleichgewicht und Nutzerungleichgewicht beinhalten, werden wir MATSim auf die 

Stadt Zürich, Schweiz, an. Somit können wir die Vorteile einer auf Aktivitäten 

basierenden Simulation in einem multimodalen Netzwerk beurteilen. Wir verwenden eine 

bereits existierende Neuplanungsmethode mit dem Planungshorizont von einem Tag. 

Zusätzlich erweitern wir die Methode, um Neuplanungen während eines Tage zu 

ermöglichen. So können die Routenwahlen der Agenten während einer Störung des 

öffentlichen Verkehrssystems in einer einzigen Iteration untersucht werden. Es wird eine 

Störung in Form einer Blockierung der Eisenbahnverbindung zwischen Zürich HB und 

Zürich Oerlikon angenommen. Wir simulieren drei Szenarien mit verschieden 

Verfügbarkeiten von Informationen und vergleichen die Resultate mit den Verhalten der 

Agenten bei einem normalen Betrieb (Betrieb ohne einer Störung). Die Resultate werden 

für alle Agenten, die von der definierten Störung berührt werden, ausgewertet. Die neue 

Wahl der Agenten in Bezug auf Route und Verkehrsart zeigt ihre Adaption an die 

verfügbaren Informationen an. Unsere Analyse der Verspätungen und anderen 

Kennwerten zeigt, dass die Verfügbarkeit von Informationen die Zufriedenheit der 

Agenten während einer Störung signifikant beeinflusst.  

Im zweiten Teil der Arbeit generieren wir verschiedene Dispositionsfahrpläne als 

Reaktion auf eine Störung mittels eines gemischt-ganzzahligen Programmierung (MIP) 

Modelles. Das Ziel dieses Modelles ist die Minimierung der totalen Verspätung der 

Passagiere. Die Neuplanung des Fahrplanes beinhaltet eine Neubeurteilung der Routen, 

der Abfahrtszeiten, sowie den partiellen oder vollständigen Ausfall von Linien. Die 

Rollmaterialverwendung wird überprüft um die Machbarkeit des Dispositionsfahrplanes 

zu garantieren. Wir lösen das MIP Modell mittels eine kommerziell verfügbaren Solvers. 

Danach wenden wir MATSim an, um das Verhalten der Agenten mit verschiedenen 

Dispositionsfahrplänen und Informationsstrategien in einem multimodalen Netzwerk zu 
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simulieren. Im Anschluss analysieren wir die Verspätung der Agenten sowohl auch die 

weiteren Kennwerte für die Stadt Zürich. Wir zeigen auf, dass je früher die Information 

bezüglich des Dispositionsfahrplans verfügbar ist, desto grösser ist die Erhöhung der 

Zufriedenheit der Passagiere. Zusätzlich zeigen wir, dass, im Verglich zu einem 

kompletten Ausfall aller Fahrten, bei einer genauen Berechnung der machbaren 

Rollmaterialszirkulationen Lösungen gefunden werden können, welche einen 

signifikanten Mehrwert für die Passagiere darstellen. Insbesondere die Verspätung von 

Passagieren, deren geplante Fahrten von der Störung betroffen sind, nehmen erheblich ab, 

während andere Passagiere, die nicht direkt von der Störung betroffen sind, geringfügige 

Verspätungen haben können. Auf Systemebene kann die realistische Betriebsstrategie die 

Auswirkungen der Störung erheblich reduzieren, wobei die negativen Auswirkungen der 

Störung auf ein Fünftel der ursprünglichen Auswirkungen reduziert werden kann. 

Der dritte Teil untersucht die Auswirkungen von unvollständigen Informationen auf 

Passagiere und schlägt eine neuartige mehrlagige Methode vor, welche auf dem Zeit-

Ereignis-Graph basiert. So kann das heterogene Interpretierend des 

Dispositionsfahrplanes der Passagiere unter verschiedenen Variationen von 

unvollständiger Informationen beschrieben werden. Insbesondere variieren die 

Informationen, die die Passagiere erhalten nach Zeit und Ort. Darüber hinaus 

berücksichtigen wir unterschiedliche Ansichten der Passagiere zur 

Verspätungsausbreitung (d. H. die Auswirkungen des Dispositionsfahrplans). Mithilfe 

unseres grafischen Routenwahlmodells können wir das Verhalten der Passagiere unter 

Berücksichtigung der Auswirkungen unvollständiger Informationen (perfekt oder im 

Verlauf der Route) und ihrer Überzeugung (am ursprünglichen Fahrplan orientierend oder 

an der Verspätung orientierend) beschreiben. Anschliessend prüfen wir die Machbarkeit 

der Routen der Passagiere und die zugehörigen Verspätungen. Die Ergebnisse zeigen, 

dass die Informationen auf der Route im Vergleich zu den perfekten Informationen mehr 

undurchführbare Routen und grössere Verspätungen verursachen. Die Auswirkungen der 

Interpretation der Passagiere der Informationen auf der Route sind vernachlässigbar. Bei 

perfekten Informationen sind sie jedoch gross: Orientieren sich Passagiere am 

ursprünglichen Fahrplan und wird kurzfristig informiert, treten weniger Verspätungen auf, 

andernfalls ist es besser, wenn sich die Passagiere an der Verspätung orientieren.  

Zusammenfassend bietet diese Dissertation Einblicke, wie sich Informationen (z.B. 

Verfügbarkeit, Vollständigkeit) auf die Zufriedenheit der Fahrgäste bei Störungen des 

öffentlichen Verkehrs auswirken. Die Ergebnisse können für Infrastrukturmanager und 

Betriebsgesellschaften nützlich sein, um die Auswirkungen von verschiedenen 

Informations- und Neuplanungsstrategien bei Störungen des öffentlichen Verkehrs zu 

verstehen und zu bewerten. 
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Riassunto 

Le prestazioni di una rete di trasporti possono essere ridotte considerevolmente a causa di 

eventi imprevisti, con conseguenti ritardi e disagi per i passeggeri. Quando ciò accade, i 

gestori dell'infrastruttura e le società operative solitamente producono un nuovo orario dei 

trasporti, chiamato “orario dispositivo”, per ridurre i ritardi dei passeggeri, limitando così 

l’impatto negativo sulle loro attività e sulla loro soddisfazione verso l’utilizzo della rete di 

trasporti. Per produrre il nuovo orario, vengono prese in considerazione diverse strategie 

di rischedulazione dei mezzi, quali variazioni degli orari di arrivo e/o partenza alle 

stazioni, variazioni del percorso, annullamento parziale o totale dei servizi, tenendo conto 

nel caso della rete ferroviaria dei vincoli necessari affinché i veicoli ferroviari possano 

circolare correttamente.  

In questo contesto, divulgare le informazioni relative ai servizi in corso è fondamentale. 

Queste informazioni non costituiscono solo il mezzo per i gestori dell'infrastruttura e le 

società operative per fornire un orario aggiornato ai passeggeri, ma anche uno strumento 

per comprendere i comportamenti dei passeggeri in caso di interruzioni o riduzioni dei 

trasporti pubblici, in modo da poter riprogrammare gli orari ed i veicoli in modo più 

efficiente ed offrire un servizio migliore in caso di interruzioni future. Tuttavia, le 

informazioni diffuse potrebbero essere incomplete o imprecise: non tutti i passeggeri 

potrebbero ricevere immediatamente tutte le informazioni sul nuovo orario. Questa 

incompletezza ed imprecisione delle informazioni potrebbe compromettere gli sforzi dei 

gestori dell'infrastruttura e delle società operative per migliorare la soddisfazione dei 

passeggeri. 

In questa tesi vengono studiati gli effetti della divulgazione di informazioni ai passeggeri 

durante interruzioni o riduzioni dei trasporti pubblici, tenendo conto della disponibilità e 

tempistica delle informazioni, della loro qualità, dell'eterogeneità dei passeggeri, dei 

comportamenti dei passeggeri, dell’orario dispositivo e della rete di trasporto 

multimodale. I contributi principali di questa tesi sono i seguenti. In primo luogo, 

vengono proposte relazioni matematiche rigorose per formalizzare gli effetti della 

disponibilità di informazioni ai passeggeri in caso di interruzioni o riduzioni dei trasporti 

pubblici, includendo soluzioni di equilibrio e non equilibrio per i passeggeri. Queste 

relazioni hanno permesso di simulare e analizzare i comportamenti dei passeggeri in una 

rete multimodale utilizzando un modello di micro-simulazione basato sull’agente 

(MATSim). In secondo luogo, vengono integrati in modo innovativo MATSim ed un 

modello di ottimizzazione, con lo scopo di studiare la soddisfazione dei passeggeri nei 

confronti di diversi orari dispositivi e strategie di informazione. I risultati di questo 

modello integrato possono essere utili per i gestori dell'infrastruttura e le società operative 

per offrire servizi migliori ai passeggeri in caso interruzioni o riduzioni dei trasporti 

pubblici. In terzo luogo, nella tesi viene proposto un nuovo metodo basato su un 

diagramma ad eventi temporali a più livelli per identificare e quantificare l’effetto che 
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un’informazione incompleta può avere sui ritardi dei passeggeri e sulla possibilità di usare 

percorsi differenti. 

La parte I della tesi è rivolta a sintetizzare la disponibilità di informazioni durante le 

interruzioni o riduzioni dei trasporti pubblici in uno schema quadridimensionale "chi-

quando-dove-cosa". Sulla base delle relazioni matematiche introdotte per descrivere gli 

effetti della disponibilità di informazioni sui passeggeri, incluse soluzioni di equilibrio e 

non equilibrio, abbiamo applicato MATSim alla città di Zurigo (Svizzera) per valutare i 

vantaggi della simulazione delle loro attività in una rete multimodale. Abbiamo utilizzato 

sia un metodo esistente di ripianificazione giornaliera, sia una nuova estensione di questo 

metodo dove la ripianificazione avviene più volte al giorno. Questa estensione permette 

infatti di studiare in un'unica iterazione le scelte di percorso degli agenti che reagiscono 

ad un'interruzione dei trasporti. Nello specifico, l'interruzione considerata è il blocco della 

linea ferroviaria tra due stazioni principali di Zurigo (Stazione Centrale ed Oerlikon). 

Abbiamo simulato tre scenari in base alla diversa disponibilità delle informazioni e 

abbiamo confrontato il comportamento degli agenti con il caso in cui non ci sia stato il 

blocco. Abbiamo analizzato in modo statistico i risultati della simulazione per tutti gli 

agenti coinvolti nel blocco della linea. Il flusso degli agenti nei relativi percorsi e la loro 

scelta dei mezzi di trasporto mostra che gli agenti adattano le proprie scelte alle 

informazioni disponibili. Un’ulteriore analisi su ritardi e altre statistiche ha rivelato che la 

disponibilità di informazioni influenza in modo significativo la soddisfazione degli agenti 

durante il blocco della linea. 

La parte II applica un modello di programmazione lineare mista intera (MIP) per generare 

diversi orari dispositivi a seguito di un'interruzione dei trasporti, con l'obiettivo di ridurre 

al minimo il ritardo totale dei passeggeri. La ridefinizione dell'orario dei trasporti 

comprende le strategie di modifica degli orari di arrivo/ partenza, riordinamento delle 

precedenze dei veicoli, modifica del percorso e cancellazione di servizi ferroviari. Per 

garantire la fattibilità dell’orario dispositivo, il modello verifica anche che la circolazione 

dei veicoli ferroviari sia ammissibile. Il modello MIP viene risolto con un solutore 

commerciale. In seguito, MATSim viene applicato alla città di Zurigo per simulare i 

comportamenti degli agenti e le loro attività in base a diversi orari dispositivi e strategie di 

informazione in una rete multimodale. Inoltre, la simulazione serve per analizzare i ritardi 

degli agenti ed altri indicatori di prestazione della rete di trasporti. I risultati mostrano che 

prima le informazioni sul nuovo orario sono divulgate ai passeggeri, maggiori sono i 

miglioramenti della soddisfazione ottenibili durante l'interruzione o riduzione dei 

trasporti. Inoltre, comparato ad una cancellazione totale dei servizi ferroviari, includere 

cancellazioni parziali e calcolare in modo preciso l’ammissibilità della circolazione dei 

veicoli ferroviari può portare vantaggi notevoli ai passeggeri. In particolare, il ritardo dei 

passeggeri i cui servizi previsti sono stati interrotti diminuisce sostanzialmente; allo stesso 

tempo, passeggeri che non sono direttamente coinvolti dall'interruzione possono subire 

ritardi minori. A livello di sistema, una strategia operativa realistica può ridurre 
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considerevolmente l'impatto dell'interruzione: la misura di utilità dei trasporti durante 

l'interruzione viene ridotta solamente di un quinto anziché essere negativa come in caso 

mancata informazione. 

La parte III della tesi studia gli effetti di un’informazione incompleta sui passeggeri. 

Viene proposto un nuovo metodo basato su un diagramma ad eventi temporali a più livelli 

per descrivere diversi tipi di incompletezza di informazione e passeggeri eterogenei nel 

modo di reagire all’orario dispositivo. In particolare, l’informazione che consideriamo 

varia in base all'orario e posizione dei mezzi che i passeggeri ricevono nonché al 

contenuto. Inoltre, consideriamo le diverse convinzioni dei passeggeri riguardo la 

propagazione dei ritardi (ovvero l’impatto dell’orario dispositivo). Utilizzando il modello 

di scelta del percorso basato sul nostro nuovo metodo, siamo stati in grado di descrivere 

comportamenti dei passeggeri che incorporano l’effetto di un’informazione incompleta 

(perfetta oppure durante il percorso – “on-route”) e la loro tendenza ad affidarsi all’orario 

iniziale (“orario-iniziale”) piuttosto che all’ultima informazione disponibile sul ritardo 

(“ritardo-esteso”). Abbiamo quindi esaminato la fattibilità dei percorsi dei passeggeri ed i 

loro ritardi. I risultati mostrano che l’informazione on-route causa un maggior numero di 

percorsi non più ammissibili e ritardi dei passeggeri maggiori rispetto ad un’informazione 

perfetta. Gli effetti della convinzione dei passeggeri con informazione on-route sono 

trascurabili ma sono invece significativi in caso di informazione perfetta: la convinzione 

orario-iniziale provoca un ritardo minore dei passeggeri mentre la convinzione ritardo-

esteso funziona meglio. 

Per riassumere, questa tesi fornisce analisi su come la divulgazione di informazioni (ad 

esempio, la loro disponibilità o completezza) influenzano la soddisfazione dei passeggeri 

durante un’interruzione o riduzione dei trasporti pubblici. Questo studio è il primo a 

quantificare l’impatto che un’informazione tempestiva e completa produce sulla 

soddisfazione e sui ritardi di diverse categorie di passeggeri. I risultati contenuti in questa 

tesi possono essere utili ai gestori dell'infrastruttura e alle società operative per 

comprendere e valutare gli effetti di diversi tipi di informazione e per meglio definire le 

strategie di rischedulazione durante un’interruzione o riduzione dei trasporti pubblici. Più 

in generale, i risultati di questa tesi possono essere utili per i passeggeri, i gestori 

dell'infrastruttura, le società operative e l’intera industria dei tra sporti pubblici. 
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Chapter 1  

Introduction 

1.1 Research motivation 

The number of public transport passengers are estimated to continue growing rapidly 

(+51% public transport passenger-kilometres by 2040 with respect to 2010, Federal 

Office for Spatial Development, 2016). The higher usage of public transport, especially 

for the use of passengers, increases the vulnerability of public transport, the probability of 

disruptions and the operation complexity. Public transport operation might be disrupted 

by diverse reasons, such as infrastructure maintenance, accidents, natural disasters, 

malfunctions of facilities, etc. (Dorbritz, 2012). In case of public transport disruptions, the 

resources, necessary for running the public transport system as planned, become 

insufficient. These insufficient resources can be tracks, rolling stock, staff, power supply, 

information or train protection systems (Schranil, 2013). So far, research on public 

transport operation has connection with many diverse fields, such as capacity, train 

automation, energy supply, environmental and safety issues. However, the links to 

passengers, especially in case of severe disruptions of services, are still in the initial stage. 

With the comparison of the improved services of road traffic, the customers expect that 

public transport services can also make progress with a higher quality system. The 

passenger-friendly public transport operations are of great importance for the future.  

Public transport disruptions can cause passengers’ time lost and dissatisfaction as well as 

the service providers’ reimbursement costs and revenue losses. Cats et al. (2016) identify 

that the yearly costs can exceed 1.9 million euros, due to rail disruptions in a metropolitan 

public transport network of the Netherland. Yap (2020) summarises the refund policies in 

case of delays and disruptions in different countries and illustrates that disruption 

propagation costs are responsible for up to 8% of the total passenger disruption costs. 

Transport for London (2019) reports the disruptions of the underground network of 

London have caused 4.9 million lost customer hours during a four-week period (from 10 
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November to 7 December) in 2019. The public transport systems actually continue to face 

the challenge of improving the service qualities. European countries define challenging 

targets in terms of quality of services to customers (ERRAC 2012). Ojo (2019) reviews 

the research related to the quality of services of different type of public transport in 

different region of the world. To benefit the quality of services, Strässle and Schneeberger 

(2017) explain the customer information for the entire public transport system in 

Switzerland, including regional and city networks, railways, buses in different operating 

companies. The prime motivation of this research is to increase passengers’ satisfaction, 

especially in public transport disruptions, and improve quality of public transport services. 

Managing public transport disruptions is a complex task because of the multiple-

objectives of different stakeholders, the intricate interactions of the managing process, the 

diverse information disseminating the supplied services to passengers, passengers’ 

choices and behaviours in multi-modal network, etc. Figure 1.1 explains the complexity 

of public transport management, especially in case of disruptions. The services and 

feasibility are legally separated in railway (Federal Council, 2009), but the issues exist 

also for other public transport. The main three stakeholders are passengers, train operators 

and infrastructure managers. Passengers are the clients of public transport, whose travel 

demand should be satisfied in terms of punctuality, routes, stops, transfers, comfort, etc. 

However, disruptions generally result in passengers’ inconvenience, such as impossibility 

to reach the destination, increased travel time or compelled transfers. Passengers’ 

behaviours are diverse with reaction to disruptions (e.g. cancelling schedules directly, 

waiting for recovery or transferring to other trains, or even leaving the public transport 

system). Operating companies aim at both reducing operating costs and providing 

passengers with satisfactory services. Infrastructure managers need to ensure the 

operational feasibility, in charge of eliminating timetable conflicts from the network-wide 

perspectives.  

The relationships of the three stakeholders are described briefly as follows. Taking 

passengers’ quantities and priorities into consideration, operating companies design 

adapted services (e.g. lines, stops, connections) with the checked operational feasibility by 

infrastructure managers. The interactions among these three stakeholders, in case of 

public transport disruptions, are linked by the information. The information can be the 

inner communication between the two stakeholders who define and offer the supply 

services. From operating companies to infrastructure managers, the information includes 

the adaptation to the running/ planned services; the reverse direction confirms their 

feasibility from network perspectives. Furthermore, the information can be between these 

two stakeholders and passengers in public transport disruptions. The information, from 

operating companies and infrastructure managers to passengers, includes the feasible 

adapted services in disruptions; the reverse information flow is the feedback about 

passengers’ behaviours and satisfaction to the provided services.  
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Figure 1.1: Interactions in public transport disruptions 

 

In this dissertation, we mainly focus on the information, with the direction from operating 

companies and infrastructure managers to passengers, in case of public transport 

disruptions. This information to passengers can contain diverse contents, such as the start 

and the end time of disruptions, even the details of the rescheduled timetable, routes, stops 

or alternatives. Different information system or channels can disseminate the information 

to passengers, such as station display and radio broadcast, in-vehicle display, or the 

mobile apps for passengers’ check and request or for pushing notifications (e.g. Scherer, 

2019). This diversity of information is due to different rescheduling and information 

strategies in specific public transport disruptions, which results in different information 

availability to passengers, and then influences passengers’ behaviours. Especially in a 

multi-modal urban network, passengers have autonomy to decide how they react to the 

disruptions and the available information, such as choosing the adaptations provided by 

operating companies and infrastructure managers, or looking for other alternatives on 

their own in terms of transport modes/ routes, or waiting, or even cancelling the trip, etc.  

The focus of this dissertation is to understand and quantify the effects of information to 

passengers’ behaviours in public transport disruptions, which is barely discussed in 

current academic research. This research can not only help passengers to understand how 

the information influences their choices, but also can assist infrastructure managers and 

operating companies to understand passengers’ behaviours with the effects of 

information, trade off the interests to make more passenger-friendly decisions in case of 

public transport disruptions.  
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1.2 Research challenges 

To study the effects of information to passengers in public transport disruptions, the 

following several challenges are tackled:  

(1) The complexity of information in public transport disruptions. 

As the important bridge between supply and passengers in case of public 

transport disruptions, information can be described from different perspectives. 

The term information availability is from the perspective of passengers, to 

express the details of information that passengers received, which are 

disseminated by the infrastructure managers and operating companies. In case 

of public transport disruptions, this can be for instance what information about 

the planned/ updated supply is disseminated to passengers, when and where 

passenger can receive updated information. The term information strategies is 

from the perspective of infrastructure managers and operating companies, to 

depict their efforts to improve the information availability to passengers. For 

instance, Kroon et al. (2015) study how the information available to passengers 

can be complete or partial. As a more specific description, the term incomplete 

information refers to the delayed, imprecise, missing, partial information, 

which is common and inevitable in case of disruptions, including diverse 

aspects: the delayed information availability to passengers, the limited 

information content about specific public transport services at specific stations 

within specific time horizon, etc. For instance, Ben-Elia and Avineri (2015) 

review the literature about inaccurate information under conditions of 

uncertainty, including information either before departure or once on the move.  

The research challenge is to understand the factors of complexity of 

information, and to classify and study the effects of diverse information using 

mathematical notations, formulas and appropriate methods. 

(2) Passenger heterogeneity cannot be neglected.  

In public transport disruptions, information can have different effects to 

different passengers, with different origin, destination, planned departure time, 

planned transport mode and planned transport route, etc. For instance, 

information may affect the passengers who pass the disrupted route more 

significantly, compared to other passengers who travel very far away or 

passengers who are already at that moment at home. There are also passengers 

whose initial plan is to pass the disrupted route multiple times, increasing the 

complexity and meaning of detailing passenger heterogeneity in the research. 

The findings in Carrel et al. (2013) show that passengers value delays 
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differently depending on the available information during disruptions, e.g. the 

reasons of disruptions or where the disruptions occur within their trip. 

However, most literature simplify to model passengers as groups based on 

origins and destinations, considering only the aggregated passengers in the 

process of timetable or rolling stock rescheduling (e.g. Binder et al, 2017). This 

strong assumption simplifies the complexity of what passengers might do in a 

real multi-modal network.  

The research challenge is to consider the passenger heterogeneity, especially 

throughout the entire day, over multiple trips and activities, including the 

detailed description of their transport modes, routes, time and activities.  

(3) Passengers’ adaptations in case of public transport disruptions.  

Passenger adaptations, especially in case of public transport disruptions, with 

the impacts of information, need to be precisely explored in detail. Paulsen et 

al. (2018) show that passengers’ behaviours in multi- modal network are not 

limited to route changes (e.g. as considered in Hickman and Bernstein, 1997), 

but also include transport modes, activities and time change. In case of public 

transport disruptions, considering the impacts of information strategies/ 

information availability, the above-mentioned passengers’ adaptations need to 

be studied. The solutions of passengers’ behaviours from a system level could 

result in a user equilibrium or non-equilibrium depending on whether each 

passenger can figure out his/ her best solution with the guidance of information 

in public transport disruptions.  

Furthermore, in case of incomplete information, passengers’ belief influences 

their behaviours. The belief is passengers’ expectation/ projection about the 

future unknown operations, based on the known information. For instance, 

Arentze and Timmermans (2005) model passengers’ belief about activity 

locations based on the limited information. Consequently, passengers’ route 

choices in case of incomplete information can be different to that with the 

assumption of complete information. Parvaneh et al. (2014) mention that 

passengers are not always aware of all available alternatives with the uncertain 

information and different passengers’ belief.  

The research challenge is to model mathematically the impacts of information 

to passengers’ behaviours in public transport disruptions, either about the 

possible adaptations in multi-modal network, or passengers’ belief in case of 

incomplete information. 

(4) Quantify the effects in a large-scale multi-modal network. 
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Passengers’ actions in reality happen in a multi-modal network, and 

quantifying the effects of available information in disruptions should reflect 

this. Some literature consider realised travel behaviour by means of passenger 

tracking approaches (e.g. Marra et al., 2019) or smart card data usage (e.g. van 

der Hurk et al., 2018) as a possible way to collect real data about public 

transport disruptions. However, a comprehensive study of those factors and 

real wishes of passengers through e.g. revealed preferences is difficult due to 

rare, unexpected occurrence of disruptions, and possible answers’ bias from 

passengers under pressure and or skewed perception of disruption events. The 

evaluation of complex choices by a multitude of heterogeneous passengers is 

often too complex to be included explicitly in optimisation models, and is 

instead tackled by means of simulation techniques. Among those, agent-based 

simulation models consider each passenger as an agent, able to take 

independent decisions maximising some utility function, based on the 

understanding they have of the transport network.  

The research challenge is to realistically quantify the effects of information to 

passengers’ behaviours and corresponding satisfaction in a large-scale multi-

modal network, apply passenger simulation technique, such as agent-based 

simulation.  

(5) Timetable and rolling stock rescheduling in public transport disruptions. 

Infrastructure managers and operating companies have different objectives and 

functional requirements in the process of disruption management. The adjusted 

supply during disruptions typically includes a combination of rescheduling of 

public transport resources (optimising infrastructure capacity, vehicles, drivers, 

etc.), which have a strong effect to passengers. The different possible actions of 

infrastructure managers and operating companies include such as retiming, 

rerouting (e.g. Binder et al., 2017), full/ partial cancellation of train services 

(e.g. Cacchiani et al., 2014) and rolling stock rescheduling (e.g. Veelenturf et 

al., 2017). 

The challenge is to take advantage of these strategies to generate better 

disposition timetables in public transport disruptions, applying optimisation 

model to quantify the optimised solution in each case with different supply 

strategies.  

(6) The quantification of benefits to passengers with different rescheduling and 

information strategies. 

In order to improve passengers’ satisfaction in public transport disruptions, 

infrastructure managers and operating companies can apply different strategies, 
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such as information strategies, timetable and rolling stock rescheduling 

strategies. Different strategies might result in different level of services to 

passengers. In the process of considering strategies, different stakeholders have 

different objectives, which may conflict to each other. For instance, ensuring 

the disrupted passengers’ feasible route to destination may cause larger delay 

propagation to other passengers who are on the alternative routes. Some 

rescheduling methods may result in high cost, but result in few improvements 

to passengers in case of disruptions; for others, it might be the opposite. Trying 

to quantify the effects of information and rescheduling strategies is not only 

beneficial for infrastructure managers and operating companies to make 

decisions, but also beneficial for the improvement passengers’ satisfaction in 

public transport disruptions. To link passengers, train operators and 

infrastructure managers in public transport disruption management, one method 

is to combine passenger simulation and the optimisation model of timetable 

and rolling stock rescheduling.  

The challenge is to demonstrate the benefits of this holistic process, and to 

explore and study the trade-off towards the satisfaction of passengers in case of 

different supply and information strategies in public transport disruptions.  

1.3 Research question and hypotheses 

This dissertation aims at answering the following overarching question:  

What are the influences of information to passengers in case of public transport 

disruptions on a large-scale multi-modal network, considering the interplay of 

information availability about the disruption, updated operation strategies, incomplete 

information about future conditions? 

In detail, the sub-questions are given as follows: 

(1) How to model passengers’ adaptations under different information availability in 

public transport disruptions and estimate the corresponding passengers’ satisfaction? 

(2) What are passengers’ satisfaction under different information strategies and 

disposition timetables (considering different rescheduling strategies and the 

feasibility of rolling stock circulation) in public transport disruptions? 

(3) How to model passengers’ behaviours under different incomplete information 

(Inc. passengers’ belief) and quantify passengers’ satisfaction? 

In order to answer these questions, the following hypotheses are proposed: 
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H1 Information is main enabler of passengers’ behaviours in case of public transport 

disruptions; the effects of information to passengers’ behaviours can be described 

and modelled.  

H2 Passengers are rational and able to choose the maximum utility (e.g. the least travel 

time) to reach their destination with the given specific information about public 

transport disruptions. 

H3 The behaviours of passengers in a large-scale multi-modal network in case of 

public transport disruptions can be simulated based on some functional 

requirements within a time horizon of one full day, and considering different 

possibilities of mode/ route/ time/ activity change.  

H4 Heterogeneous passenger’s delay and satisfaction in public transport disruptions 

can be quantified from the results of passenger simulation. 

H5 The public transport disruptions can be described to include the change of planned 

schedules as input to passenger simulation or route/ time changes in the process of 

timetable and rolling stock rescheduling.  

H6 An optimisation approach can be used to support the rescheduling process, 

matching the functional requirements of infrastructure managers and operating 

companies, by designing adapted services and ensuring the operational feasibility 

of supply in public transport disruptions. 

H7 The adaptation of passengers to different, possibly optimised timetable and rolling 

stock plans, in case of public transport disruptions, can be modelled and simulated.  

H8 The incomplete information in public transport delays, passengers’ belief and the 

consequent effects to passengers’ behaviours and satisfaction can be modelled as a 

sequence or successive states over time. 

1.4 Research contributions 

1.4.1 Scientific contributions 

The main scientific contributions of this dissertation are as follows: 

(1) We define the mathematical notations and formulas to describe the effects of 

information availability to passengers’ adaptations. The rigorous mathematical 

descriptions are able to describe user equilibrium and non-equilibrium 

solutions corresponding to different information availability scenarios. 

Furthermore, a framework for the classification of information availability is 

proposed for the sake of passenger-oriented disruption management in 

transport networks. This framework can represent how many passengers know 
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about public transport disruptions, where they get to know this (e.g. at the 

disrupted station), when they know it (e.g. in advance or after disruption) and 

what they know (e.g. precise start and end time of public transport disruption). 

This framework allows determining many intermediate cases, between two 

extremes of information dissemination in public transport disruptions: agents 

have no knowledge about disruptions; or agents know all the detailed 

information about disruptions in advance (Chapter 3). 

(2) The use of agent-based micro-simulation approach, to study passenger 

behaviours during public transport disruptions, brings the following benefits. 

The first is the consideration of movements of agents in a multi-modal 

network, not only including choices within the public transport network, but 

also including switching to private modes, cancelling trips, and even cancelling 

or changing activities throughout a daily plan. The second is the explicit 

consideration of heterogeneity of users in the activity-based micro-simulation 

of an entire day, where detailed activities and trips are simulated. Therefore, 

the specific and heterogeneous reaction of passengers in disruptions can be 

precisely understood (Chapter 3, 4).  

(3) A novel within-day replanning module within the agent-based simulation 

approach is specifically designed to address passengers’ behaviours in public 

transport disruptions. This within-day replanning is fundamentally different 

from the traditional day-to-day replanning, as the simulation is in a single 

iteration; there is no equilibrium to be determined, but only a best adaptation, 

corresponding to a non-equilibrium solution. (Chapter 3). 

(4) An optimisation approach is applied to solve the timetable rescheduling problem 

with the feasibility of rolling stock circulation in a railway hub and explores 

alternative train routes to be used in case of disruptions. A mixed integer 

programming (MIP) model is applied with train order binary variables, which can 

be solved by a commercial solver. The objective of the optimisation model is to 

minimise the total delay of passengers. The timetable rescheduling includes the 

strategies retiming, reordering, rerouting, cancellation of train services. In addition, 

the rolling stock circulation is checked to ensure the feasibility of the disposition 

timetable (Chapter 4).  

(5) This dissertation innovatively combines an optimisation model and an agent-based 

micro-simulation model (Chapter 3) to explore passengers’ satisfaction of different 

information strategies and disposition timetables in public transport disruptions 

(Chapter 4). This combination quantifies the benefits to passengers with different 

information and rescheduling strategies in case of public transport disruptions. 

This combination is fast enough to be practically applicable, even for a large multi-

modal network, for both planned and unplanned disruptions. 
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(6) We propose a novel multi-layer time-event-graph method to describe the 

incomplete information (e.g. information issue time, duration, information 

contents) and belief (internal, own perspective of future operations, based on 

e.g. schedule or delay belief) for heterogeneous passengers, to evaluate more 

realistically passengers’ behaviours on public transport network in case of 

delays. The proposed multi-layer time-event-graph method and graph-based 

route choices are described with rigorous mathematical notations and formulas 

(Chapter 5).  

1.4.2 Societal contributions 

The main contributions to society of this dissertation are as follows: 

For the benefits of passengers: 

(1) Passengers could get better services (both operation and information services) in 

case of public transport disruptions.  

The main goal of passengers in case of public transport disruptions is to have 

feasible routes to reach their destination and to reduce their inconvenience (e.g. 

delays or extra transfers) as much as possible. This is studied in our research by 

considering different information availability and different rescheduling strategies. 

The research results are in view of heterogeneous passengers in a large-scale multi-

modal network, including diverse passengers’ adaptations (mode/ route/ time/ 

activity changes). In other terms, the research results are based on a relatively 

realistic model of the actual passengers’ behaviours in the real multi-modal 

transport system. In this sense, these results are valuable for the service providers 

to estimate how to improve the service quality to passengers in case of disruptions, 

including both the operation services and information services.  

The better operation services for passengers refer to fewer cancelled trains/ buses, 

fewer skipped stops, smaller delays of the running trains/ buses, and so on, in case 

of public transport disruptions. For instance, our research results (Chapter 4) show 

the following improvement of services to passengers. First, passengers who cross 

the disrupted area multiple times can benefit if the running trains are partially 

cancelled, instead of full cancellation. Second, passengers who are directly affected 

by disruptions can reduce a large delay if the disrupted trains are rerouted to the 

alternative routes. This may cause a slight delay for passengers on the alternative 

route.  

The better information services mean that passengers can get the information via 

more available channels (e.g. station display, mobile apps) as early as possible in 

case of disruptions. The provided information contains more details about 
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disruptions (e.g. the locations/ train routes of disruption, the start and end time), 

and the adjusted train operations (e.g. time/ route change), etc. For instance, the 

results of our research show that the information services affects passengers’ 

satisfaction in case of disruptions. First, the negative impact of disruption is 

reduced with the available information, compared to without information. Second, 

the earlier the passengers can receive the disposition timetable, the smaller the 

delay they will suffer in disruption (Chapter 3, 4). Third, either partial information 

about adjusted train operations or the information only available at station has 

negative effects to passengers. This incomplete information causes more infeasible 

routes and more delays to passengers, and results in the deviations between the 

delay that passengers think they will face and the actual delay in reality. (Chapter 

5). 

(2) Passengers can understand that which approximation of the future unknown 

operations brings better results. 

In case of incomplete information about train delays, passengers’ beliefs about 

further train operations affect their route choices and their delays. Our results can 

help passengers to know which approximation/ belief brings better results in 

specific incomplete information case (e.g. information type, information time 

horizon) (Chapter 5). 

For the benefits of infrastructure managers and operating companies: 

(1) To estimate passengers’ behaviours better in large-scale network in disruptions. 

The infrastructure managers and operating companies can estimate passengers’ 

behaviours, delays and satisfaction in the large-scale multi-modal network more 

comprehensively in case of planned or unplanned public transport disruption. It 

includes passengers’ route choices within the disrupted transport mode (e.g. 

railway), mode share in other public transport modes (e.g. bus or tram) or even the 

private mode (e.g. car or bike). In other terms, they can know the percentage of 

passengers who keep stay in the public transport system and how many passengers 

prefer to leave and choose other alternative transport modes (Chapter 3). 

(2) To quantify the benefits of different operating and information strategies in 

disruptions. 

The infrastructure managers and operating companies can test and quantitatively 

understand which kind of rescheduling strategies and information strategies can 

offer better services to passengers in public transport disruptions. They can also 

know the trade-offs between different groups of passengers (e.g. disruption 

affected passengers or passengers on the alternative routes) from the research 

results. From system level, they can quantitatively know how much the impacts of 
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disruption can be reduced with the efforts of rescheduling timetable and rolling 

stock, as well as offering passengers information (Chapter 4). Moreover, this 

research is crucial for infrastructure managers and operating companies to 

determine the trade-offs and balance the benefits of the rescheduling and 

information strategies with their costs (e.g. cost for vehicle short-turn, cost for 

information channels, or cost for improved prediction or predictable processes 

in case of disruptions). 

(3) To understand quantitatively the effects of incomplete information to passengers in 

case of delays. 

The infrastructure managers and operating companies can understand the 

quantitative loss of benefits due to the incomplete information in case of public 

transport delays (Chapter 5). It is helpful for them to trade off the benefits and costs 

of information and public transport operations in order to improving the service 

quality to passengers. This result is also helpful for them to decide the long-term 

investment about building the information system, such as station displays, train/ 

bus information facilities and mobile information to alarm delays. 

1.5 Outline 

The overall methodologies adopted in this research and the corresponding findings are 

presented. The structure of the rest of this dissertation is shown in Figure 1.2, including 

the following chapters. 

Chapter 2 reviews the related literature based on research question and hypotheses in 

order to synthesize the current research gap, with the characteristic of public transport 

disruptions, information generation and supply, information availability and passengers’ 

adaptations. In detail, we review the multiple objectives of stakeholders, the existing 

methods for timetable and rolling stock rescheduling, how to integrate passengers in the 

process of generating information, what are the typical information contents provided to 

passengers, the information channels and dissemination, passengers’ behaviours with the 

guidance of information, as well as the agent-based simulation approach.  

Chapter 3 defines the mathematical notations and formulas to describe the effects of 

information availability to passengers’ adaptations. We also show how to compute 

performance indicators of user equilibrium and non-equilibrium solutions 

corresponding to different information availability scenarios. In addition, a 

framework for classification of information availability is proposed for passenger-

oriented disruption management in transport networks. An agent-based micro-

simulation model (MATSim), including a novel within-day replanning module, simulates 

heterogeneous passenger behaviours in a multi-modal network in case of disruptions.  
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Chapter 4 combines an optimisation model and an agent-based micro-simulation model to 

estimate passengers’ satisfaction of different disposition timetables and information 

strategies. A mixed integer programming (MIP) model is applied to calculate the 

disposition timetable. The timetable rescheduling includes the strategies retiming, 

reordering, rerouting, cancellation of train services. The rolling stock circulation is 

checked to ensure the feasibility of the optimised disposition timetables. The agent-based 

simulation with MATSim platform (from Chapter 3) is used in case of different 

information strategies and different disposition timetables generated by an optimisation 

model of timetable and rolling stock rescheduling.  
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Figure 1.2: Overview of the dissertation structure 

 

Chapter 5 is a more in-depth study about information availability (from Chapter 3), 

discussing the effects of incomplete information to passengers. A novel multi-layer time-

event-graph method is proposed to describe the incomplete information (e.g. information 

issue time, duration, information contents) and belief (internal, own perspective of 

future operations, based on e.g. schedule or delay belief) for heterogeneous passengers. 
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This method can evaluate more realistically passengers’ behaviours in public transport 

network in case of delays. The graph-based route choices are described with rigorous 

mathematical notations and formulas. 

Chapter 6 concludes research results, answers the research questions and gives insights to 

future research on public transport disruption management. 
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Chapter 2  

Literature review 

To answer the research question in Section 1.2, one significant step is to comprehend the 

current research state and common research methods. First, we clarify the concepts of 

public transport disruptions and delays in Section 2.1 to understand the complexity of the 

corresponding management process. Moreover, information plays an important role in 

the field of passenger-oriented delay and disruption management, as the bridge 

linking the supply from infrastructure managers and operating companies to passengers. 

The information in this dissertation focuses on the transmission, processing, messaging, 

and communication systems, with the direction from the infrastructure managers and 

operating companies to passengers. In general, information provision can be particularly 

advantageous to passengers when things do not work as planned in the case of service 

disruptions (Cats et al., 2016). The process of passenger-oriented disruption 

management, which we follow in the structure of this review, can be summarised as: 

(1) Information generation and supply: infrastructure managers or operating 

companies gather the information about the disrupted operation, determine and 

implement some disposition timetables; (Section 2.2) 

(2) Information contents: infrastructure managers or operating companies decide 

which aspects about disruptions and disposition timetables will be disseminated 

to passengers; (Section 2.3) 

(3) Information channels and dissemination: the service providers disseminate the 

information via some specific channels; (Section 2.4) 

(4) Information availability and passengers’ behaviours: then the information 

becomes available to passengers; passengers adapt their behaviours based on 

information; (Section 2.5) 

(5) Effects of information: passengers’ behaviours determine the outcome in a 

large network and reveal the relation between the quality of available 

information and passengers’ satisfaction in the real-life. 
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The review in this chapter includes papers related to operations-oriented and 

passenger-oriented delay and disruption management, in railway, or in general public 

transport networks or multi-modal (including private transport) networks. Section 2.2 

discusses the information generation and supply from infrastructure managers and 

train operating companies including the topics: multi-objectives of disruption 

management, timetable and rolling stock rescheduling, the integrations in disruption 

management. Section 2.3 summarises the information contents in current research 

about public transport disruptions. Section 2.4 reviews the research about information 

channels and dissemination. Section 2.5 discusses the information availability and 

passengers’ adaptations in public transport delays and disruptions. We close with a 

review of agent-based simulation models modelling passengers in public transport 

disruptions. Finding out the state of literature, Section 2.6 synthesizes the literature and 

summarises the gaps to fulfil the research targets.  

2.1 Public transport disruptions 

When a public transport timetable cannot keep the operations as planned, deviations from 

current plan occur; typically, either disruptions or delays are used to describe this 

abnormal situation. Delays may be generated by the “disturbances”, which are here 

intended as events that have a small impact on the planned operations. In railway 

networks, Cacchiani et al. (2014) present in general, a disturbance refers to trains 

departing or arriving later than planned, while a disruption is usually related to large 

delays or cancellations of a number of trains. The events called “disruptions” mean the 

railway malfunctions last long time and partial technical components are unavailable. 

This section reviews the related research and summarises the differences and connections 

between public transport disruptions and delays.  

Based on literature, the concepts of public transport disruptions and delays are compared 

in the following aspects. 

Resource availability. The first distinction lies in resource availability in the public 

transport system. Public transport delays refer to the small disturbances of planned 

operations, but each technical component/ resource is still available, such as tracks, 

rolling stock, staff, power supply, information and train protection systems. In contrast, 

disruptions refer to the situation that some technical components are unavailable or some 

resources mentioned above are insufficient (Schranil, 2013). Durand (2017) summarises 

different types of disruptions based on line blockage and infrastructure capacity. Some 

literature investigate the disruption scenario of partial track blockages. For instance, Hirai 

et al. (2009) explore the accident caused by railway line blockage. Louwerse and 

Huisman (2014) denote the partial blockage as the situation that some tracks are blocked 

but some limited traffic is still feasible. Similar scenarios are also in Narayanaswami and 
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Rangaraj (2013), Binder et al. (2015). Liang et al. (2019) and Zhang and Lo (2020) study 

the metro services suspended for some time due to unexpected events. Other severe 

disruptions include the complete blockage of the public transport infrastructure. Wiklund 

(2007) explores the interruptions of interlocking system destroyed by fire, causing the 

closure of a railway line. Similar research in Zhan et al. (2015), Veelenturf et al. (2016a) 

denotes the complete blockage as the situation that all tracks are blocked. The causes of 

disruptions can be track maintenance (e.g. Albrecht et al., 2013), or planned engineering-

based disruptions (e.g. Shires et al. 2019), or natural disasters (e.g. earthquake, Shimizu et 

al., 2008), extreme weather (e.g. Wang et al., 2019), vandalism, power supplies, 

malfunctions of facilities (Dorbritz, 2012), etc.  

Duration. The second distinction is the duration time of interruptions of planned public 

transport operations. For instance, in the railway system, Pacciarelli (2013) defines the 

time window [t + a, t + b]. t is the time of a planned operation. a and b are the lower 

boundary and the upper boundary of time in railway failure, respectively. The challenge is 

then to find a new conflict free schedule given static information (timetable, railway 

infrastructure, train characteristics) and dynamic information (disruptions, train positions 

at time t). Based on different values of a and b, Rao (2015) summarises three focuses: 

 When the value a ≤  2 mins, b ≤  45 mins, the focus is on real-time train 

rescheduling, 

 When the value 2-3 mins ≤ a ≤ 10-15 mins, b ≤ 2-3 hours, the focus is on the 

delay management, 

 When the value b > 2-3 hours, the focus is on the disruption management. 

Real-time train rescheduling focuses on conflict detection and resolution (e.g. Rao, 2015). 

Delay management focuses on deciding whether to keep or drop traffic connections due to 

delays (e.g. Schöbel, 2007). Disruption management refers to the tasks of new timetable 

design, rolling stock rescheduling and crew rescheduling (e.g. Cacchiani et al., 2014).  

Rescheduling. The differences of rescheduling in public transport delays and disruptions 

can be summarised as the following aspects: 

(1) The main goal in case of public transport delays is to keep and recover the initial 

schedule (e.g. Lamorgese and Mannino, 2015). In contrast, there is a smaller 

chance to keep the initial schedule in case of disruptions. The main goal is to 

provide special alternative plans, during the management of the disruption 

situation, such as offering passengers feasible routes until the normal operation is 

restored (e.g. Kroon et al., 2015).  

(2) The concept of delay management relates to public transport stability. Based on the 

statistical results of railway delays in Switzerland, Graffagnino and Labermeier 

(2016) make a definition of the timetable stability. That is the timetable is stable 
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when all punctuality goals are achieved. Specifically, for different collections of 

train runs or sums of decision, different minimal punctuality values are achieved. 

In contrast, disruption management more relates to public transport robustness; see 

Weidmann et al. (2015). Andersson (2014) summarises many definitions about 

robustness in the current literature. Among which, we emphasise the definition of a 

public transport system where passengers can easily be re-routed if there is a 

disruption.  

(3) Two main phases exist in delay management: delay situation and recovered 

situation. In contrast, disruption management has four phases: transition phase to 

disruption, stable disruption situation, transition phase to initial recovered situation, 

see Ghaemi (2018).  

Effects to passengers. The small disturbances of operation generally result in the delays 

slightly perceived by passengers, with possible impacts to connections (Schöbel, 2007). 

Disruptions can have a more significant impact on passengers’ travel and lead to critical 

decisions from passengers’ perspective, such as cancelling the trip (Nielsen et al., 2012), 

or even worse, passengers might not reach their destinations.  

Moreover, data on public transport delays (e.g. Büchel and Corman, 2020) are easily 

retrievable when monitoring the normal operation. On the opposite, it is very hard to 

retrieve passengers’ real wishes during disruption both because of the unexpected (and, to 

some extent, unique) event and because of the answers’ bias (e.g. anger) or lack of 

willingness to answer from passengers (e.g. Leng et al., 2018). Public transport delays can 

be described mostly on supply characteristics (like the monitoring of arrival time), while 

disruptions include big changes by the demand. 

It has to be mentioned that, these distinctions between delays and disruptions contain 

small overlapping at the aspects of concepts and methods. Marra and Corman (2020) 

mention that disruptions can be defined as delayed or failed events. There is no strict 

boundary existing between delays and disruptions, rather there is a continuous range with 

the aspects of the features of failure, such as the frequencies, duration, passengers’ delays, 

travel costs to passengers.  

2.2 Information generation and supply 

We limit ourselves to research in passenger-oriented delay and disruption management in 

public transport/ multimodal networks, discussing the supply adaptations from the 

viewpoint of both the operators and passengers, including the role of information as 

enabler of better performance. 
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2.2.1 Multiple objectives in disruption management 

Many stakeholders interplay in public transport disruptions: passengers who want to move 

from their origin to their destination and public transport companies who need to keep the 

feasibility of operation and design better adaptations during the disruptions (e.g. Leng and 

Weidmann, 2017b). Especially in the railway transport perspective (Federal Council, 

2009): train operating companies sell transport services to passengers between stations, 

and the infrastructure managers sell infrastructure capacity to the train operating 

companies along railway lines. The viewpoints of different stakeholders are different and 

translate into different paradigms to determine a best solution in public transport 

disruptions. From the network viewpoint, infrastructure managers are responsible for 

network traffic control while train operators are responsible for rolling stock schedule and 

crew schedule. At stations, infrastructure managers are responsible for train routing and 

platform assignment while train operators are for shunt planning. 

Objectives of infrastructure managers. Current research with regard to disruption 

management is mainly from operations-centric views. The main problem in railway 

disruption is to reschedule the timetable, which is generally performed by infrastructure 

managers. The most popular objective is to minimise train delays (e.g. Brucker et al., 

2002; Shimizu et al., 2008). There are also some variations to describe train delays more 

precisely. For instance, Albrecht et al. (2013) propose two criteria to measure the 

rescheduling objectives. The one is the minimum total delay, consisting of train delays, 

while the other is to minimise the maximum train delay, avoiding largely attributed delay 

to one single train. Narayanaswami and Rangaraj (2013) minimise the weighted sum of 

the difference between the actual and scheduled arrival time at the destination for all 

trains on both directions of a single track. The second wide-applied objective is to 

minimise the deviations from original timetable. For example, Hirai et al. (2009) aim at 

minimising the number of stops outside stations and the deviations from original 

timetable. To avoid the modifications of scheduled timetable, some papers propose 

minimising the number of cancelled trains as one objective. Zhan et al. (2015) and 

Veelenturf et al. (2016a) minimise the number of cancelled trains and the total weighted 

delay. Except minimising the delays of the operated trains and the number of cancelled 

trains, Louwerse and Huisman (2014) include another two objectives from the operation 

viewpoint: balancing the number of trains in both directions, and distributing the operated 

trains evenly over time. The former objective is specified by the absolute difference 

between the numbers of cancelled train sub series in each direction while the latter one is 

demonstrated by the maximum time between two operated trains in the same direction. 

Objectives of train operating companies. In addition to timetable rescheduling, the train 

operating companies need to reschedule the rolling stock at reasonable cost, and then to 

adjust the crew schedules. The literature review in this section mainly focuses on rolling 

stock rescheduling. The prime objective of train operating companies is to minimise the 
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operation cost. Sato and Fukumura (2012) seek to minimise the total sum of the costs of 

selected paths. The traditional objectives of rolling stock planning problem is threefold: 

efficiency, service and robustness. Fioole et al. (2006) and Cacchiani et al. (2012) employ 

the objectives containing three major elements: carriage kilometres (efficiency), seat-

shortage kilometres (service), and the number of shunting movements (robustness). 

Among them, carriage-kilometres demonstrate the operational costs of the railway 

operator. Budai et al. (2010) not only use carriage-kilometres, seat shortage kilometres 

and the number of composition changes as additional objective, but also propose to 

resolve as many off-balances as possible in the rescheduling process. Besides, Nielsen et 

al. (2012) measure the deviation of the rescheduled circulation from the original 

circulation by employing three objective criteria: cancelled trips, changes to the shunting 

processes, and off-balances. 

Passenger-centric objectives. The literature from passenger-centric views, which deal 

with disruption management, are much scarcer than that from operations-centric views. 

Based on the literature review, there are three objectives from passengers’ viewpoint that 

cannot be neglected: minimising passenger delay, minimising numbers of neglected 

passengers (seating capacity), minimising general travel time. Jespersen-Groth et al. 

(2009) propose the objective of the operators in the disruption management process is to 

minimise the number of passengers affected by the disruption, and to minimise the 

inconvenience for the affected passengers. Binder et al. (2017) focus on passenger-

oriented timetable rescheduling in railway disruptions and integrate three objectives: 

passenger satisfaction, operational costs and the deviation from the original timetable. The 

passenger dissatisfaction is given by the generalised travel time including in-vehicle time, 

waiting time, numbers of transfers, early arrival and late arrival. Zhu (2019) mentions the 

objective of minimising passenger delays in the process of dispatching decisions. Van der 

Hurk (2015) uses the objective of minimising passenger inconvenience within a 

constrained operating cost.  

Almodóvar and García-Ródenas (2013) study the rolling stock rescheduling for passenger 

railways in case of emergencies and minimise the total in-system time of the passengers. 

The objective function in Kroon et al. (2015) consists of two parts: the system-related 

costs and the service-related costs. The service-related costs refer to the sum of the 

individual inconveniences, considering the increase of passenger delay under the limits of 

train capacity.  

2.2.2 Timetable, rolling stock rescheduling 

In public transport delay and disruption management, especially in railway disruptions, 

there are three main problems to be solved from the literature: timetable rescheduling, 

rolling stock rescheduling and crew rescheduling, see Jespersen-Groth et al. (2009). Here 

we mainly focus on the first two tasks and summarise the corresponding methods. A short 
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review in the following concerns the models and algorithms for timetable rescheduling in 

both delay and disruption management, including the methods how train operators 

allocate resources in order to fulfil rolling stock rescheduling in disruptions. 

The methods dealing with the timetable rescheduling can be distinguished from 

microscopic and macroscopic presentation of railway network. From microscopic 

viewpoint, alternative graph is a popular method presented in D’Ariano, et al. (2007). In 

Corman et al. (2011), an optimisation framework is presented to reschedule train services 

according to different classes of priority, which are used to group train services with 

similar characteristics. Meng and Zhou (2014) solve train rescheduling containing 

cumulative flow variables for train rerouting. Herrigel (2015) focuses on algorithms of 

periodic railway timetables during long- and mid-term planning, based on which Toletti 

(2018) continues to study algorithms for automated railway traffic dispatching and 

customer information.  

A macroscopic level of detail of the railway network to handle disturbances is considered 

in Dollevoet et al. (2012), Schöbel (2009) and Törnquist and Persson (2007). Especially 

considering from passenger-centric view, Schöbel (2007) studies the problem of delay 

management, which consists of deciding if connecting trains should wait in a station for 

delayed feeder trains or if they should depart on time. Schöbel (2009) and Schachtebeck 

and Schöbel (2010) include constraints on the limited capacity of the tracks. A branch-

and-bound algorithm and several heuristic approaches are developed in order to solve 

these problems.  

The literature model and produce algorithms to solve the defined disruptions. The mixed 

integer programming (MIP) model and the train traffic simulation are widely applied. For 

the focus of timetable rescheduling in disruption management, the rescheduling methods 

of infrastructure managers can be presented, such as retiming, reordering, cancellations, 

replacing services, connections, local rerouting and global rerouting. Narayanaswami and 

Rangaraj (2013) develop a MIP model for rescheduling the train services with the goal of 

minimising the weighted delay of all train services and solve the problem on a single 

bidirectional line with disruption blocking the line for some time. Albrecht et al. (2013) 

use a metaheuristic method to construct an integrated timetable including track 

maintenance to generate a new feasible schedule for the disrupted system. In Corman et al. 

(2014), centralized and distributed procedures for train rescheduling are compared, and 

heuristic algorithms are proposed for coordinating different dispatching areas. In Wiklund 

(2007), the author describes a simulation procedure for simulating train traffic at a 

microscopic level to determine the effectiveness of various recovery strategies in case of 

large-scale disruptions.  

For the focus of rolling stock rescheduling in disruption management, the system-related 

costs in Kroon et al. (2015) refer to three penalties: modifications in rolling stock 

compositions, modifications in the shunting operations and end-of-day off-balances. 
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Budai et al. (2010) propose two heuristic solution approaches to solve the rolling stock 

rebalancing problem, i.e. greedy approach and a two-phase heuristic. The MIP model in 

Nielsen et al. (2012) is an adapted version of the model by Fioole et al. (2006), 

rescheduling the rolling stock periodically over a rolling horizon with a limited length 

concerning the disruption as time progresses. Almodóvar and García-Ródenas (2013) 

propose a real-time optimisation method for rescheduling rolling stock in case of 

emergencies. The proposed method is based on a discrete-event simulation model, which 

determines how to reassign rolling stock from other lines to a line with high demand. The 

on-line optimisation model is solved using two greedy heuristics, which automatically 

generates near-optimal decisions about rolling stock reassignments.  

In addition, there are literature combining timetable rescheduling and rolling stock 

rescheduling in public transport disruptions. For instance, Lorek et al. (2011) attempt to 

integrate models for recovering the timetable and for rescheduling the rolling stock in 

case of a disruption. They specifically focus on subway networks. A timetable and rolling 

stock allocation is determined using a MIP model.  

2.2.3 Passengers in disruption management 

The adjusted supply during disruptions typically includes a combination of rescheduling 

of public transport resources (optimising infrastructure capacity, vehicles, drivers, etc.), 

which have a strong effect to passengers. As described in Cacchiani et al. (2014), there 

are papers dealing with the integration of passengers in different phases of rescheduling, 

with the aim of determining a good new schedule for the timetable, the rolling stock and 

crew duties when a disruption occurs. Here we omit the quotes of the literature focusing 

on crew rescheduling.  

Parbo et al. (2015) present a detailed summary of passengers’ perspectives and summarise 

the differences between passenger delay and train delay, showing that maintaining 

transfers is often the main concern among optimisation studies. Weston et al. (2006) 

conclude that, due to the missed connections, minimising train delays do not necessarily 

minimise passenger delays. Nielsen et al. (2008) investigate the differences between 

passenger delays and train delays by means of traffic assignment model, finding that 

passengers’ on-time performance is significantly lower than that of the trains. Vij et al. 

(2013) summarise the three impact factors of passengers’ travel behaviours. Vromans et 

al. (2006) examine how travellers perceive the extent of train delays and conclude that a 

few large delays proved to be more hurtful than several minor delays. Wardman et al. 

(2012) conduct a meta-analysis of European studies and summarise four variables used to 

reflect passengers’ perception of travel time variability. Hensher et al. (2011) define travel 

time deviations as either the travellers’ risk or uncertainty. Sun et al. (2014) present that 

the impacts of timetable changes on passengers’ travel behaviours should be considered 

explicitly, in order to accurately quantify the derived impacts. However, most literature 
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consider passenger flows as static or given input (e.g. Binder et al., 2015; Schachtebeck 

and Schöbel, 2010; Kumazawa et al., 2008). In contrast, Kroon et al. (2015) consider the 

dynamic passenger flows, i.e. passengers need to wait or re-chose alternative routes if 

their targeted trains are cancelled or with insufficient seat capacity. Kanai et al. (2011) 

propose a delay management algorithm considering dynamic interactions between trains 

and passengers. Kunimatsu et al. (2012) demonstrate a dynamic evaluation method by 

simulating train operation and passenger flow.  

Passengers in timetable rescheduling. Dollevoet et al. (2012) extend the delay 

management problem with rerouting of passengers who know which connections between 

trains will be maintained in the near future. Corman and D’Ariano (2012) determine an 

updated disposition timetable considering microscopic infrastructure capacity. Parbo et al. 

(2014) propose a genetic-algorithm to reduce passengers’ waiting times by changing the 

departure times of buses; the solutions are evaluated using a detailed passenger 

assignment model. Binder et al. (2017) consider passengers’ rerouting in a railway 

network by means of a linear programming model, defined for timetable rescheduling in a 

rail disruption. To solve the problem for different values, a three-dimensional Pareto 

frontier is explored to understand the trade-offs between passenger satisfaction and 

operational cost of the disposition timetable. Van der Hurk (2015) develops a model 

taking into account the probability of boarding and the uncertainty of the duration of large 

disruptions, proofing the benefits of providing personalised passenger information on 

alternative routes. Zhu (2019) designs an iterative algorithm to solve the integrated model 

of passenger re-routing and timetable rescheduling. 

Passengers in rolling stock rescheduling. Ghaemi (2018) proposes a model for short 

turning vehicles during rail disruptions, and studies their simplified effects to passengers’ 

satisfaction. Kroon et al. (2015) combine a passenger assignment problem (only rerouting 

in a railway network) with a rolling stock rescheduling model in rail disruptions. They 

approach the problem from the viewpoint of operating company, assuming that the 

adjusted timetable is given as input in railway disruptions, considering the dynamic 

passenger flows along the possible detour routes. The solution approach uses a two-stage 

feedback loop, including solving rolling stock rescheduling as a MIP model and a 

passenger simulation.  

Passengers in timetable and rolling stock rescheduling. Cadarso et al. (2013) consider 

the integration of timetable and rolling stock rescheduling in a single model. They also 

consider the inclusion of additional trips, the cancellation of trips, and the possible 

allocation of additional rolling stock in order to alleviate some of the negative effects of 

the disruption. A similar approach proposed in Cadarso et al. (2015) considers passenger 

flows as dynamic; passengers can update their route in a railway network in reaction to a 

disruption. Leng and Weidmann (2017a) discuss two different rescheduling processes 

with the difference on who, among infrastructure managers and train operators, makes the 

definition of passenger services. Veelenturf et al. (2017) integrate the rescheduling of the 
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rolling stock and the determination of a disposition timetable, by considering passenger 

demand iteratively.  

In this dissertation, we consider an optimisation model to generate different disposition 

timetables based on different possible actions of operating companies, such as retiming, 

rerouting, full/ partial cancellation of train services, and rescheduling of rolling stock 

(Chapter 4). The comprehensive effects of the generated disposition timetables are 

evaluated in a multi-modal network. We also make a step forward in considering 

individual activities, trips and beliefs of passengers, which relate and influence passenger 

reaction to disruptions and disposition timetables (Chapter 3, 4, 5). 

2.3 Information contents 

Infrastructure managers and operating companies need to produce a new timetable 

and generate information to passengers in disruptions, considering multi-objectives 

benefiting infrastructure managers, operating companies and passengers (Corman and 

D’Ariano, 2012). For the contents of the disseminated information, different aspects are 

discussed in the literature, such as the optimal routes to be communicated to passengers, 

which disposition timetable is applied in disruptions, the duration time of disruption as 

well as public transport service capacity.  

For instance, Goerigk et al. (2014) study the robust timetable information; i.e., to identify 

paths that bring the passenger to the planned destination even in the case of delays. 

Tsuchiya et al. (2006) examine passengers’ perception of a support system informing 

about optimal routes in disruptions. Cheng and Tsai (2014) mention that passengers 

appreciate being informed about the cause of the delay. When delays were caused by 

external factors, travellers’ negative emotions are alleviated compared to the situation 

where the operators are responsible for the delay. The information helps passengers to 

decide whether to wait for resumption or not, if not, which detour to choose. A 

similar study by means of game theoretical approaches has been presented in Bouman 

et al (2017), determining that how much the information disclosed and the capacity 

optimisation mechanism have an impact on the number of passengers utilizing 

resources and their satisfaction. In Kroon et al. (2015), the information obtained by 

passengers is complete or partial; for example, the updated timetable, the duration 

time of disruption or the train capacity. Van der Hurk et al. (2018) combine a passenger 

simulation mechanism, in which the duration of the disruption is uncertain and train 

capacity is limited, with an optimisation-based algorithm that aims to minimise passenger 

inconvenience. Passengers’ route choice depends on the route advice that they receive and 

the timetable information that is available to them. The survey in Zanni and Ryley 

(2015) shows that more qualitative information can help passengers to better 

understand the nature of the disruption (the timing and location along the trip, for 
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example), as well as the best reaction to it. Bender et al. (2013) study the online delay 

management problem of the effects of “additional information” (such as information 

about the next stations, or information about the distribution of delays) to passengers. 

Chorus et al. (2007) study by web survey about passengers’ need of information including 

early warnings, full trip assistance, time-related or location-specific information, 

personalized information, multimodal information, cost-related information, information 

on other than time- and cost-related aspects. Parvaneh et al. (2014) summarise 

passengers’ information including real-time prescriptive or descriptive, and public or 

personal information. 

The information content can also include some strategies by using other transport 

modes as alternatives in the disruptions. For instance, Liang et al. (2019) and Wang et 

al. (2019) provide passengers about the information of the bridging buses in case of 

expected or unexpected metro disruptions. Foell et al. (2013) study the transport 

routines of urban bus riders in order to understand in advance the temporal travel needs of 

individual users. Poulopoulou and Spyropoulou (2019) develop a tool using “variable 

message signs” acting as an “advanced traveller information systems”, aiming to mitigate 

disruptions and improve traffic flow in the road networks. Bruglieri et al. (2015) design 

the real time mobility information system for the management of unexpected events, 

delays and service disruptions concerning public transportation in the city of Milan. 

Papangelis et al. (2013) identify the requirements of real-time passenger information for 

each stage and type of disruption, particularly for rural public transport users.  

In brief, the different information strategies can vary, for instance, in what information the 

operating companies disseminate to passengers, when they do so, and where passengers 

can receive updated information. In this dissertation, a framework for classification of 

information availability to passengers in public transport disruptions is presented (Chapter 

3), able to consider most of those issues, and including the time dynamics of information 

i.e. what passengers know when (Chapter 3, 4, 5). Then, the influence of information 

availability to passengers’ satisfaction is evaluated. 

2.4 Information channels and dissemination 

Some research discusses the dissemination channels of information in public 

transport disruptions, either at static stops/ stations or via mobile channels. Loo and 

Leung (2017) prove that effective dissemination of information about the severe 

disruptions and the resulting changes in the transport system, both during the 

disruptions and considering the effects after it, through different channels, is very 

important.  
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Toletti (2018) describes the customer information in Swiss public transport system, which 

is a centralised platform for the entire public transport system, including regional and city 

networks, buses, and other train operating companies. It can provide information to 

stations, online system and staffs about the current traffic situation and the effects on 

passengers’ transport chains. Instead, there are some countries where each train operating 

company is responsible for information to their own customers. Watkins et al. (2011) 

show that access to mobile to check real-time information about the updated schedule 

can reduce passengers’ waiting time and increase their satisfaction with the system, 

by conducting a real-life experiment with the OneBusAway traveller information 

application. Pender et al. (2014) explore the extent by which social media is beneficial 

given it provides real-time information. They find that it can only supplement, but not 

replace conventional information dissemination approaches. Cottrill et al. (2016) study 

and understand how Twitter can be used as a communication channel during disruption. 

Findings indicate the potential for future applications of social media by transport 

operators and authorities in producing a more effective network of communication with 

passengers. Dziekan and Kottenhoff (2007) use both the questionnaires and behaviour 

observation method to prove that dynamic at-stop real-time information displays can 

reduce customers’ waiting time and result in adjustments of their walking speeds. 

Some research discusses the dissemination channels of real-time information in public 

transport disruptions.  

In this dissertation, we first assume and consider the appropriate channels that information 

dissemination is perfectly available to passengers, and focus only on the information 

contents, i.e. which information is disseminated, in Chapter 3 and 4. Then, we refine and 

consider the specific channels that information dissemination might be only available at 

stations or on-route (Chapter 5).  

2.5 Information availability and passengers’ 

behaviours 

In this section, we review the research about the relations between information 

availability and passenger behaviours, as well as passenger simulation methods that can 

enhance the heterogeneity of passenger in the research of public transport disruptions, 

including agent-based micro-simulation models. 

2.5.1 Passengers’ adaptations to information 

The findings in Carrel et al. (2013) show that passengers value delays differently 

depending on the perceived causes as well as where they know information within their 

trips. In other terms, providing good information to passengers during disruption is a key 
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aspect. The role of information in improving passenger satisfaction in public transport 

networks has been studied for disturbances and disruptions. For instance, Cats et al. 

(2016) provide evidence that the provision of real-time information can be especially 

beneficial in case of service disruption.  

There are strong relations between information availability and passengers’ 

adaptations in public transport disruptions. The information in Tsuchiya et al. (2006) 

helps passengers decide whether to wait for resumption or choose which detour: 94% 

passengers prefer to have this piece of information as soon as possible, although subject to 

uncertainty, rather than waiting until the information is certain. Adelé et al. (2019) apply 

a revealed-preference questionnaire to identify three categories of factors affecting 

suburban train user behaviours: individual-specific factors, journey-specific factors 

and information-specific factors. Shires et al. (2019) apply both revealed preference 

(RP) and stated intentions (SI) data to rail and non-rail users, as well as finding out 

that, the level of awareness prior to arriving at the station does not seem to have a 

large impact on the pattern of behavioural response. This may reflect the increased 

information available from information channels such as mobile devices. In addition, 

the differences of individual attributes are detailed in some research. Lois et al. 

(2018) report how the age of participants negatively affects information, indicating 

that older individuals have some cognitive problems with accessibility in road 

transport interchanges.  

Passengers’ possible decisions in disruptions are affected by the way they use the 

available information with additional assumptions including the regularity of services, 

passengers’ familiarity to services and the strategies considered by passengers. Each 

combination of assumptions about these aspects links to specific aspects of a public 

transport research in disruption (see for a broad overview Gentile and Noekel, 2016). 

In the classical passenger-oriented rescheduling model in Subsection 2.2.3, 

passengers are assumed to receive perfect information about disruptions (e.g. Binder 

et al., 2017; Parbo et al., 2014). Their adaptations are typically assumed to find a new 

fastest path in the disrupted transport network, which means choosing an alternative 

route in public transport (i.e. a different sequence of public transport services) to fulfil 

some given passenger journeys from origins to destinations (e.g. Veelenturf et al., 

2017; Cadarso et al., 2015). In addition, passengers are often clustered into several 

groups based on passengers’ origin and destination (e.g. Van der Hurk et al., 2018). 

The grouped passengers’ preference in Kroon et al. (2015) obeys probability distribution, 

including route preference, transfer burden, delay endurance and congestion. Ben-Elia and 

Avineri (2015) summarises the key theoretical concepts used to explore the relationship 

between information and passengers’ behaviour include: reinforced learning; framing; 

risk and loss aversion; probability weighting; affect; anchoring and ambiguity aversion; 

and regret aversion, under the distinction of experiential, descriptive, and prescriptive 

information sources. Moreover, passengers’ beliefs are studied in case of uncertain real-
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time information. Golledge (2002) shows that individuals make decisions based on their 

beliefs of reality, their knowledge of the environment and their experiences. Parvaneh et 

al. (2014) study passengers’ route choices, cancellation/ insertion/ resequencing of 

activities in different travel information and updating belief. Arentze and Timmermans 

(2005) show that expected information gain tends to favour longer trips and variety 

seeking in terms of both route and destination choices, especially for individuals who are 

less familiar with the transport network.  

Passengers’ adaptations in disruptions are not limited to changes in a single mode of 

transportation, also can be alternative choices in a multi-modal network including 

private modes and other public transport. Hickman and Bernstein (1997) develop a 

path choice model that incorporates both time-dependent and stochastic transit 

service characteristics, and allows passengers to update path choice decisions while 

waiting. Schmidt et al. (2017) study passengers’ decisions under the uncertainty of 

disruption duration; either they will wait until the end of disruption or taking a detour 

route as alternative. Anderson et al. (2014) estimate parameters for route choice in 

public transport networks by survey data, which requires a detailed estimation of the 

inconvenience of a route and possibly a distinction between different passenger types 

and trip purposes. The model with complete travel chain for passengers, including 

various origins and destinations, different trip purposes and departure times can 

describe passengers’ behaviours with influence of information in public transport 

disruptions in a more realistic way. Zhang and Lo (2020) focus on the number of 

passengers who decide leaving the metro system, and study how to serve more 

passengers by using bus-bridging method in case of metro disruptions.  

2.5.2 Agent-based simulation approach 

The evaluation of complex choices by a multitude of heterogeneous passengers is 

often too complex to be included explicitly in optimisation model, but rather 

approached by means of simulation techniques. Among those, agent-based simulation 

models consider each passenger as an agent, able to take independent decisions 

maximising some utility function, based on the understanding they have of the 

transport network. 

Simulation tools. Many different simulation models have been proposed with 

different modelling behaviour (assuming rationality of users), integrating demand-

supply feedback (focusing on demand assignment only, or considering some feedback 

to supply, and or transport network dynamics), and geographical resolution and time 

scale (static view, long term dynamics, or short term dynamics at seconds scale). The 

TRANSIMS (TRansportation ANalysis and SIMulation System) project (Smith et al. 

1995) aims at representing reactions of demand to limited supply based on a traffic 

simulation using cellular automata. It offers detailed simulation of traffic (incl. lanes, 
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traffic signals) and rich activity patterns, but only route choices are used as part of 

equilibration. Albatross (Arentze and Timmermans, 2000) and FEATHERS (Han et 

al., 2011) are two similar models based on the idea of decision trees. It represents 

decisions by a set of rules rather than an optimisation problem and generates activity 

patterns with external traffic assignment. These simulation tools do not rely on 

assumption of perfectly rational agents so that parameters of the model are more 

difficult to interpret. SimMobility (Lu et al., 2015) has a distinguishing feature of 

“multi-level” simulation including long-term (land use), mid-term (travel demand) 

and short-term (network simulation). It aims at representing all decisions from traffic 

tactics to long term and is also activity-based. Adnan et al. (2017) use SimMobility 

mid-term model to simulate within-day behaviour and agent interactions, where the 

information propagates to the disrupted transit station and triggers agents’ on-route 

rerouting decision-making processes. BusMezzo is a dynamic transit operations and 

assignment simulation model, which can be applied to multi-modal metropolitan 

transit networks. Cats et al. (2011) use BusMezzo to demonstrate that passengers can 

profit from having real-time information on the current state of the timetable. The 

structure of MATSim (Axhausen, 2007) is greatly based on TRANSIMS (Smith et al., 

1995). It is an activity-based simulation where the decisions of agents are based on 

some optimisation framework. Meister et al. (2011) present the application of agent-

based transport simulation toolkit MATSim to a large-scale scenario of Switzerland.  

Disruptions, simulation. Malandri et al. (2018) use BusMezzo to evaluate public 

transport network vulnerability with a non-equilibrium dynamic transit operations 

model to quantify temporal and spatial spillover effects of disruptions. Yap (2020) 

uses BusMezzo to predict disruptions and their impacts on passenger delays of public 

transport stops. Currently, MATSim includes multiple transport modes to 

accommodate passengers’ behaviours and is suitable for large-scale scenarios. Many 

papers in recent years apply MATSim to study the effects of unexpected events, but 

mainly focusing on road transport contexts. For instance, Padgham et al. (2014) 

couple MATSim with a Belief-Desire-Intention system to allow more extensive 

modelling of the agent’s decision-making. Stahel et al. (2014) show that agent-based 

simulations represent a promising approach for comprehensively modelling the 

impacts of unexpected weather on transport systems. Heyndrickx et al. (2016) show 

via the evaluation and simulation of MATSim that drivers’ costs can be reduced by 

informing them in case of extreme weather. In the public transport field, Paulsen et al. 

(2018) use MATSim for evaluating passenger delays caused by delayed trains in 

multi-modal public transport systems. 

In this dissertation, we study the heterogeneous passengers’ behaviours with information 

in public transport disruptions. The evaluation of complex choices by a multitude of 

heterogeneous passengers is tackled by means of simulation techniques. Among those, 

agent-based simulation models consider each passenger as an agent, able to take 
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independent decisions maximising some utility function, based on the understanding they 

have of the transport network. We focus on one specific agent-based simulation 

environment, but our ideas are applicable to any appropriate similar environment. We 

apply MATSim in a multi-modal network including public and private transport modes, 

under a public transport disruption, including a novel within-day replanning module for 

understanding the reaction of agents to disruption and disposition timetables (Chapter 3, 

4). We also consider passengers’ belief on delay propagation in case that the provided 

information is incomplete, and propose a novel multi-layer time-event-graph method to 

study passengers’ behaviours in case of public transport delays (Chapter 5). 

2.6 Summary and research gaps 

In this chapter, we review the gaps of literature related to public transport delay and 

disruption management. Especially, the passenger-oriented delay and disruption 

management focuses on understanding and adapting the demand of passengers 

(activities, trips, preferred modes, preferred arrival time), and the supply from 

infrastructure managers and operating companies (operating plan, and availability of 

resources such as vehicles and drivers) to offer better services to passengers. The 

reviewed literature related to passenger-oriented disruption management, either in 

public transport networks or multimodal networks, discuss the supply adaptations 

during disruptions (i.e. operators point of view), demand adaptations during 

disruption (i.e. passengers point of view) and the relation between the two with 

information as enabler of better performance.  

Information. Literature identify that information plays an important role in improving 

passenger satisfaction in public transport networks for both disturbances and 

disruptions. The generated and supplied information contents are diverse in many aspects 

such as the optimal routes to communicate to passengers, which disposition timetable is 

applied in disruptions, the duration time of disruption as well as public transport service 

capacity. The dissemination channels of information in public transport disruptions 

are also discussed in the literature, either at stops/ stations or via mobile channels.  

In brief, the information availability to passengers and the information strategies from 

service providers can vary, for instance, what is the content of information disseminated 

to passengers, when and where passengers can receive the updated information. A 

framework for classification of information availability to passengers in public transport 

disruptions needs to be defined, which should be able to consider most of those issues, 

and including the time dynamics of information i.e. what passengers know when. Then, 

the influence of information availability to passengers’ satisfaction can be quantified and 

evaluated (Chapter 3). In addition, the principles and effects of information availability 

to passengers in public transport disruptions need to be explained, which should be 
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rigorous and independent of the precise solver used to compute them, with possible 

formulations and descriptions of (user equilibrium, or non-equilibrium) solutions. 

This should be applicable to any appropriate similar environment, such as agent-

based simulation (Chapter 3, 4).  

Moreover, the information about the disposition timetable can be incomplete or imprecise, 

e.g. the delayed information availability to passengers, the limited information 

contents about specific public transport services at specific stations within specific 

time horizon. In case of incomplete information, passengers rely on their belief, i.e. 

passengers’ expectation about the future unknown operations based on their known 

information. The incomplete information and passengers’ belief affects their 

behaviours, such as route choices. These effects to passengers should be further studied in 

case of public transport delays and disruptions (Chapter 5). 

Passengers. In current research about railway delays and disruptions, there are literature 

considering passengers in the optimisation model of delay or disruption management. 

However, most literature simplify to model passengers as homogeneous groups based on 

origins and destinations to integrate the aggregated passengers in the process of timetable 

or rolling stock rescheduling. These literature regarding passenger behaviours in railway 

malfunctions usually consider passenger flows as static or given input, with few papers 

considering dynamic interactions between trains and passengers. Rerouting of passengers 

is widely considered, in the literature combining the simulation of train operation and 

passenger flow together, in public transport disruptions. However, the other changes of 

passengers’ behaviours, such as changing destinations, changing transport modes, are 

usually neglected.  

In other terms, the heterogeneity of individual passenger in public transport disruptions 

needs deeper study, such as considering individual activities and trips of passengers 

that relate and influence passenger reactions to disruptions and disposition timetables. 

The heterogeneous passengers’ behaviours with information in public transport 

disruption needs to be studied. The evaluation of complex choices by a multitude of 

heterogeneous passengers is often too complex to be included explicitly in 

optimisation models, and is instead tackled by means of simulation techniques. 

Among those, agent-based simulation models consider each passenger as an agent, 

able to take independent decisions maximising some utility function, based on the 

understanding they have of the transport network (Chapter 3, 4). 

Furthermore, more deeply considering the information availability, the incomplete 

information and passengers’ belief (i.e. passengers’ inference about the future 

unknown operations based on the known information) also affects passengers’ 

behaviours, which should be different from the assumption of complete information 

(i.e. all the operations and delays are known by passengers’ immediately as issued). 
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These effects of incomplete information to passengers’ behaviours and satisfaction 

needs further study (Chapter 5). 

Multi-objectives. The methods to study the trade-offs of different objectives of 

passengers, train operators and infrastructure managers are multiple in the literature. 

Some establish one holistic mixed-integer programming model to solve the whole 

problem with the aim to get an optimal solution. With the detailed consideration of 

modelling three stakeholders, the model size could be large and the computation time of 

an optimised solution could be considerable. Among which, the metaheuristics methods 

are applied with an evaluation mechanism to improve solutions from initial ones, where 

the challenge is to find the optimal solution. There are literature combining passenger 

simulation and supply optimisation, but they are generally focused on single transport 

mode instead of multi-modal network. 

The infrastructure managers and operating companies would prefer to quantify the effects 

of different rescheduling strategies and information strategies to passengers in a multi-

modal network, in case of disruptions. With the quantitative results, the operating 

companies can understand the benefits of different strategies and decide to exploit which 

strategy in public transport disruptions. The optimisation model could generate different 

disposition timetables based on different possible actions of operating companies, 

considering retiming, rerouting, full/ partial cancellation of train services and rolling stock 

rescheduling. The comprehensive effects of the generated disposition timetables and 

information strategies could be evaluated in a multi-modal network (Chapter 4).  
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Chapter 3  

Information availability in public 
transport disruptions: an agent-based 
simulation approach 

This chapter is based on the following published article. 

Leng, N. and Corman, F. (2020) The role of information availability to passengers in 

public transport disruptions: An agent-based simulation approach, Transportation 

Research Part A: Policy and Practice, 133 214-236. 

3.1 Introduction 

Public transport disruptions have typical features of malfunctions of technical 

components or unavailability of resource allocation, which can be caused by planned 

maintenance actions, or some unexpected events such as tracks, rolling stock, staff 

and power supply, failures, weather, etc. Disruptions can have a significant impact on 

passengers’ travel and lead to critical decisions from passengers’ perspective, such as 

delay or even cancelling the trip (Adelé et al., 2019). One main target of public 

transport disruption management is to improve the services for passengers, with 

effective methods such as offering information to passengers. The research in Cats et 

al. (2011) suggests how the provision of information can be especially beneficial to 

passengers in case of public transport disruptions. The public transport networks are 

organised in services, which can be used by passengers only as far as they have 

knowledge of them. In a disruption situation, the disposition timetable should be 

disseminated to passengers. Based on the information they know, passengers adapt 

their behaviours to the new situation. In other terms, providing good information to 
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passengers during disruptions is a key aspect; the information availability is an 

important factor to passengers’ satisfaction (Gentile and Noekel, 2016).  

The major goal of this chapter is to study the influence of information availability to 

passengers on a large-scale multi-modal network in case of public transport 

disruptions, i.e. how to model passengers’ adaptations under different information 

availability and measure the corresponding passengers’ satisfaction. This problem is 

interesting and challenging to solve because of the following aspects. First, the 

available information can vary, for instance in what they disseminate to people, when 

they do so, where people can receive updated information. For instance, Kroon et al. 

(2015) understand how the information available to passengers can be complete or 

partial. Second, passengers’ adaptations are complex under the impact of available 

information. Paulsen et al. (2018) show that passengers’ behaviours in multi- modal 

network are not limited to route changes (e.g. as considered in Hickman and 

Bernstein, 1997), also including transport mode, activities and time change. Third, the 

heterogeneity of passengers’ trips cannot be neglected. The findings in Carrel et al. 

(2013) show that passengers value delays differently depending on where the 

disruptions occur within their trip. Finally, passengers’ behaviours in reality happen 

in a multi-modal network, and quantifying the available information in disruptions 

should reflect this. Some literature consider studying that realised travel behaviour by 

means of passenger tracking approaches (e.g. Marra et al., 2019) or smart card data 

usage (e.g. van der Hurk et al., 2018) as a possible way to collect real data about 

public transport disruptions. However, a comprehensive study of those factors and 

real wishes of passengers through e.g. revealed preferences is difficult due to rare, 

unexpected occurrence of disruptions, and possible answers’ bias (e.g. anger) from 

passengers under pressure and or skewed perception of disruption events. 

Gentile and Noekel (2016) report how the impact of information availability could be 

possibly studied in a simulation-based approach. We propose to use agent-based 

micro-simulation, to imitate large-scale passengers’ behaviours during public 

transport disruptions. In such type of simulation, individual passengers and vehicles 

are modelled through agents that interact with the public transport system according 

to their individual goals (Bouman, 2017). Heterogeneous passengers in real world are 

modelled as agents in simulations. Their daily movements are divided as consequent 

activities and trips: activities represent passengers’ destinations in daily plans, such as 

staying home, at work or do shopping; trips express the connection between two 

adjacent activities, characterized by transport modes chosen, travel time, etc. With a 

well-defined description of passengers’ movements, an agent-based environment is 

capable to simulate comprehensive passengers’ behaviours in a multi-modal network 

(i.e. changing transport modes between public transport and private car, bike or walk; 

adjusting a departure time; changing route in a public transport network; possibly 

cancel activities) and evaluate the corresponding satisfaction (Horni and Nagel, 
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2016). We show that the output of agent-based simulations provides a valuable 

understanding of the differences of information availability to passengers’ satisfaction 

in a given public transport disruption.  

The major contributions of this chapter are as follows:  

(1) We define the mathematical notations and formulas to describe the effects 

of information availability to passengers’ adaptations. The rigorous 

mathematical descriptions are able to compute performance indicators of user 

equilibrium and non-equilibrium solutions corresponding to different 

information availability scenarios. In addition, a framework for classification 

of information availability is proposed for passenger-oriented disruption 

management in transport networks. This is able to model how many 

passengers know about public transport disruptions, where they get to know 

this (e.g. at the disrupted station), when they know it (e.g. in advance or after 

disruption) and what they know (e.g. precise start and end time of public 

transport disruption). This framework allows determining many intermediate 

cases, between two extremes about of information dissemination in public 

transport disruptions: agents have no knowledge about disruptions; or agents 

know all the detail information about disruptions in advance. 

(2) The use of agent-based simulation to study passenger behaviours during 

public transport disruptions, bringing three key benefits. The first is the 

consideration of movement of agents in a multi-modal network, including 

choices within the public transport network, but also including switching to 

private modes, cancelling trips, and even cancelling or changing activities 

throughout a daily plan. The second benefit is the explicit consideration of 

heterogeneity of users, seen in the activity-based micro-simulation of an entire 

day, where detailed activities and trips are simulated, so that the specific 

reaction in disruptions can be precisely understood. Third, to allow such 

analysis, this chapter has to define a few aspects, providing a novel within-day 

replanning module, specifically designed to address public transport 

disruption.  

(3) The evaluation of the information availability and the proposed MATSim 

implementation (including key extensions of the software modules of 

MATSim, determining the within day replanning) on a realistic case study on 

a large multi-modal network in Zürich, Switzerland, and the detailed 

evaluation of three different information availability under a large public 

transport disruption.  

This chapter is structured as follows. Section 3.2 proposes rigorous mathematical 

descriptions of information availability (scenarios), including both user equilibrium 



Chapter 3. Information availability, public transport disruptions, agent-based simulation 

36 

and non-equilibrium solutions. In addition, a novel framework for information 

availability classification is proposed. Section 3.3 describes the detailed agent-based 

simulation approach to study the information availability and passengers’ adaptations. 

Section 3.4 explains the set-up of Zürich case study and analyses the simulation 

results. In Section 3.5, conclusions and future work are presented.  

3.2 Information Availability and Passengers’ 

Adaptation 

In this section, three exemplar scenarios of information availability are introduced: 

“Advance information”, “Timely information” and “No information” in public 

transport disruption. In case of the same disruption, the different availability of 

information results in different passengers’ adaptations. We use mathematical 

formulas to explain the mechanisms of passengers’ adaptations in detail based on 

passenger assignment theory. We assume an appropriate channel for this information 

dissemination is available, and focus only on the content, i.e. which information is 

disseminated. We propose a “Who-When-Where-What” four-dimension framework 

for classifying information availability for passengers during public transport 

disruptions.  

3.2.1 Problem Description and User Equilibrium 

During public transport disruptions, passengers need to adapt their travel according to 

diverse information availability to fulfil their intentions to reach their destinations. To 

explain explicitly these passengers’ adaptations, the activity-based models presented 

in Axhausen (2007) can be applied. In these models, passengers’ overall movements 

are described as plans, dividing into activities and trips. An activity is a continuous 

interaction with the physical environment, a service or person, within the same socio-

spatial environment, such as home, work or other leisure. A trip is the link between 

two adjacent activities, expressing movement. The concept of “trip” is to represent 

passengers’ efforts and choices to reaching one activity from the previous one. In 

detail, passengers need to decide transport mode (e.g. public transport or private 

vehicles) and specific route to finish one trip. Especially if a person chooses public 

transport, his/ her trip may contain a certain number of transfers and stages. A stage is 

a continuous movement with one mode of transport; a transfer is the connection 

between two adjacent stages in one trip. The start and end time of activities and trips 

can be flexible in a passengers’ plan. 

Figure 3.1 shows an example of one passenger’s daily movements, consisting of three 

activities and three trips. The x-axis of the Figure 3.1 represents locations, while the 
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y-axis represents time over a day. This passenger starts his/ her day with “Activity 1” 

(at home) and uses public transport to perform “Trip 1”, which allows to reaches the 

“Activity 2” (Work). The next trip “Trip 2” is from “Activity 2” to “Activity 3”, and 

is composed of two stages (“Stage 1” and “Stage 2”) with one transfer “Transfer 1” 

within the public transport network. The last trip is from “Activity 3” back to 

“Activity 1” with public transport. The entire sequence over time and space including 

activities (locations, time) and trips (modes, routes, stages, transfers and time) is 

called “Plan” of the passenger. In Figure 3.1 we also represent a public transport 

disruption, which affects the passenger “Trip 2”, in specific the first stage. We call 

trip 2 as the “Directly affected trip” by the disruption.  

 

 

Figure 3.1: Terminology used in this work 

 

We use the following notation. P  is the set of all the agents, the total number of 

agents being P . For each agent p P , we define 
pS  the set of considered k  plans, 

to denote all possible choices they have available to fulfil their demand. We refer to 

the concepts in the sixth chapter of the book of Gentile and Noekel (2016) for more 

details. This latter book used “considered paths” to describe passengers’ demand of 

route choices; instead, the “considered plans” in our work include more details about 

the entire one-day journey, further composed of a sequence of activities A  and trips 

T . The Equation 3.1 shows the detailed components of a “considered plan” ,p ks . An 

activity describes the location of activity, start and end time. We hide those details in 

the following equations when not explicitly needed. A trip is defined by a set of 

location-time pair in a compact way; we also hide unnecessary detail when possible. 
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The transport modes, routes, stages are formulaically represented by the “location” of 

the trip without details. t  refers to the time and l  refers to the location of the activity 

or trip. 

, 1 1 2 2( , , , , , , ),

where ( , , ), {( , ), 0,1, , }.

p k i i

i start end i j j

s A T A T A T

A t l t T t l j J



  
 (3.1) 

The total number of the considered plans of agent p  is 
pS . Among all the 

considered plans, theoretically agents choose one, denoted by 
ps , for actual execution 

in real life. An assignment solution corresponds to determine one such actual plan for 

each agent p . 

For each specific considered plan ,p ks , there is a utility 
,p ku  that relates to quality 

(utility, satisfaction) of this considered plan of the agent p . A larger utility means the 

agent is more satisfied with their considered plan in the entire multi-modal transport 

network. In the Equation 3.2, 
,p ku depends on both the specific considered plan of 

agent p  and the actual plans Rs  of (in general) all the other agents \{ }r P p .These 

latter have (in general) some dependency on the 
ps , i.e. passengers choice interact, so 

we identify them as 
,r r p p ks S s s  .  

, , ,( , ), where { , \{ }}.p k p p k R R r r p p ku u s s s s S s s r P p                                  (3.2) 

Equation 3.3 shows an example of a set of considered plans 
,1 , p

p p S
s s  of agent p  

and the corresponding utility of each considered plan with the impact of other agents 

in the system. In general, 
,1Rs  means Rs  when

,1ps is chosen, i.e. the union of all 

,1r r p ps S s s  .  
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Among all possible choices (assignments) for 
ps , the academic literature typically 

focuses on user equilibrium solutions. Those are specific set of choices, such that 

each agent achieves his/ her best utility, in the condition that all the other agents also 

achieve their best utility and nobody else can choose a different actual plan to 

increase their utility (Gentile and Noekel, 2016). In general, finding a user 

equilibrium solution is not easy (Nagel and Floetteroed, 2016). We use agent-based 

approaches to determine (an approximation of) the equilibrium solution.  

For each agent p , we can write Equation 3.4, expressing the best choice of the 

considered plan 
*

ps  of agent p  (i.e. assuming users maximise their utility, the chosen 

actual plan is the best considered plan 
*

p ps s ) among all his/ her considered plans 

pS  in the condition that all the other agents \{ }r P p  also choose their best 

considered plan *

rs . *

Rs  compactly represents the best considered plans of the other 

agents except for agent p .  

,

* *

,

* * *

arg max ( , ),

where { , \{ }}.

p k p

p p p k R
s S

R r r p p

s u s s

s s S s s r P p





    

                                                      (3.4) 

The plans chosen at user equilibrium lead to a user equilibrium (best) utility 
*

pu  of 

agent p  (Equation 3.5).  

* * *( , ).p p p Ru u s s                                                                                                       (3.5) 

In Equation 3.6, the total utility *U  of user equilibrium of undisrupted solution in a 

normal day (from the system perspective) can be computed as the sum of each 

agent’s utility. 

* *

1

.
P

p

p

U u


                                                                                                       (3.6) 

3.2.2 Disruption 

Once one disruption occurs, the service levels of public transport decrease, they 

typically remain stable (at a lower level than original) throughout an updated plan of 

operation named the disposition timetable, and then increase back to original when 

the disruption is resolved and the network can operate the original timetable again (so 

called bathtub model, see Ghaemi, 2018). This means that passengers’ utility in the 

disruption situation decreases from their original utility. 
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Based on both the intuitive figure expression (Figure 3.1) and mathematical notations 

introduced, we now describe formally a disruption and the consequences it has 

towards passengers’ adaptations to information availability. We report for a set of 

considered scenarios, an intuitive figure and a related mathematical formulation of 

the choices of the users. 

We formalize a disruption as follows. D  indicates a disruption including the start D

startt  

and the end time D

endt , as well as a set of disrupted locations DL  (Equation 3.7). The 

specific services of public transport, which may be affected, are associated to a 

disruption by means of the “locations”.  

( , , ).D D D

start endD t t L                                                                                           (3.7) 

Without loss of generality, a disruption affects at least one agent p , in the sense that 

it limits the set of considered plans. Some plans in the set of considered plans 
pS  of 

agent p  become thus infeasible and unavailable for choice; we denote such set of 

infeasible plans as ( )pS D , adding D  as the relevant variable. Specifically, a plan 

, ( )p k ps S D  for agent p  is infeasible if there exists at least one trip iT  (called 

affected trip) in this plan, which matches a disrupted location 
jl  at the time 

jt  in 

which the disruption D  takes place. More formally (Equation 3.8): 

, : ( , ) with [ , ].D D D

i p k j j i j j start endT s l t T l L t t t                                                 (3.8) 

We focus on the agents whose best considered plan 
*

ps  are affected by the disruption. 

They are called “involved agents”, indicated by the specific set 
DP  (Equation 3.9). In 

other words, the disruption makes the involved agents’ user equilibrium choice under 

normal conditions infeasible, and they have to determine another actual plan.  

*: ( ).D

p pp P s S D                                                                                             (3.9) 

3.2.3 A Framework for Information Availability 

Classification 

We have discussed how passengers’ behaviours strongly depend on the information 

details they know about public transport disruptions in the literature review. We 

summarise these aspects into a general framework, which analyses the information 

dissemination along four dimensions, “Who-When-Where-What”. Figure 3.2 gives a 

schematic representation of such a framework, along four axes (corresponding to the 

four dimensions). For each axis, we picked three possible levels for each dimension 
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highlighted, even though the framework allows for a continuous range of possible 

levels on each dimension. Such a framework can be used also for other types of 

disruption, e.g. road disruption affecting private traffic. Our focus on public transport 

disruption and the need for the passengers to know which services can fulfil their 

mobility needs makes such a framework especially relevant for public transport 

services. We consider a single disruption, which can include multiple events, failures, 

and services not running; we refer to a single disruption, which is completely defined 

by a disposition timetable for the entire public transport network, used. We do not 

discuss technologies and costs for information dissemination but only its timely, 

spatial and content characteristics. 

All passengers facing the disruption would ultimately know at least that the 

disruption is occurring, at the time they try to board a service, which is not running 

anymore. Similarly, all passengers facing the disruption would know that the 

disruption is over, at the moment they can board a non-disrupted service which is 

actually running. All other information might be available to passengers. We discuss 

the proposed four dimensions in the following.  

The ‘Who’ dimension shows the proportion of passengers knowing some 

information. The worst case is that no passengers know anything about the disruption 

while the best case is all passengers know. In between, passengers can be grouped by 

some specific proportion: for instance some know the disruptions (maybe they are 

more tech-savvy and have continuous access to e.g. mobile data) and others do not 

know (maybe they are more reactive or unfamiliar with the network). In Figure 3.2, 

we for instance report three cases of “who”, namely the operating companies is able 

to reach everybody; some proportion (e.g. half) of the travellers, or none of them.  

The ‘Where’ dimension explains the locations of passengers, where they get to know 

the information. This can represent activities (e.g. I know of the disruption while I am 

at home or at work), on the transport vehicles (by e.g. announcements) or arriving at 

the disrupted stations (by e.g. displays). Mobile and social media can be used as the 

dissemination channel anywhere for passengers. In-vehicle and at-stop real-time 

information display devices can be helpful for passengers who are involved in public 

transport disruptions. In Figure 3.2, we for instance report three cases of “where”, 

namely the operating companies disseminate information through all channels, able to 

reach all users anywhere; or disseminate information only at the disrupted station; or 

they do not issue any information at all.  

The ‘When’ dimension describes the “issue time” at which the information reaches 

the users. It can be beforehand, for planned disruptions such as planned public 

transport maintenances, in which the operating companies broadcast the disposition 

timetable in detail in advance. In case of unexpected unplanned disruptions (like 

accidents, failures, etc.), the issue time can only be after the start time of the 
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disruption. In the worst case, the information is never issued and passengers know of 

the disruption only at the moment they try to board a service, which is not running. A 

complementary information is also the time at which the disruption is resolved, which 

can be disseminated at the beginning of the disruption, or later on. These information 

availability can also be different in the issue time, i.e. when the operating company 

sends out the announcement and the time the users can receive, which can be even 

dynamic (see e.g. the review in Corman and Meng, 2015). In Figure 3.2, we for 

instance report three cases of “when”, namely the operating companies can issue in 

advance information about the disruption; or disseminate information only when they 

realise that the disruption is going on; or they do not issue any information at all.  

The ‘what’ dimension defines the detailed information that passengers can know in 

public transport disruption. As is summarised in literature review, the information 

content can be different in the aspects of the exact disruption going on (e.g. some 

public transport line is not working), the disposition timetable implemented in this 

case (e.g. bus line XX is not running), train capacity (e.g. please avoid boarding this 

train as crowding is expected), additional services planned ( e.g. bus bridging is in 

place between station X and station Y), the duration time of disruption (e.g. we 

expect that the disruption last at least three hours), and the optimal routes to 

passengers (e.g. take this service in case you want to go from A to B). In Figure 3.2, 

we for instance report three cases of “what”, namely the operating companies can 

issue the precise start time and end time of disruption, and associated disposition 

timetable; or only the start time (as the ending time in unknown or cannot be 

precisely specified); or no information at all.  

With the classifications by the proposed “Who-When-Where-What” four-dimension 

framework, diverse information availability can be defined based on passengers’ 

different level of knowledge for the public transport disruptions. Figure 3.2 shows 

three exemplar information availability (more examples in Appendix A), which are 

scenarios analysed in the remainder of this chapter to study the effects of information 

to passengers’ behaviours and satisfaction in public transport disruptions. The “No 

information” scenario (red line in Figure 3.2) means passengers do not receive any 

other information, apart from the fact that a disruption of unspecified length is going 

on, when they try to board a disrupted service; and that the same disruption is solved, 

only once it is actually solved. This also implies that no passengers can receive any 

information anywhere about disruptions. The “Advance information” scenario (blue 

line in Figure 3.2) means all passengers have a complete knowledge well before the 

start time of the disruptions. The complete knowledge implies that all the passengers 

anywhere within the multi-modal network (e.g. not only users of public transport, but 

also those typically using cars) have access to perfect information, including the 

disposition timetable, the starting time, ending time, public vehicle capacity. The “No 

information” “Advance information” scenarios are two extreme types of information 
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availability in public transport disruptions. In between, many scenarios with different 

information availability can be identified. As an example, we consider a “Timely 

information” scenario (yellow line in Figure 3.2) which considers that all passengers, 

anywhere in the multi-modal network, get to know at the precise starting time of the 

disruption, that a disruption is going on; at the same time they know the disposition 

timetable, and the end time of disruption.  

 

 

Figure 3.2: Framework for classification of information availability and three examples of 

scenarios in public transport disruptions 
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3.2.4 Advance Information 

A relevant case is when passengers have perfect information beforehand, which 

allows them to adapt at best their plan. A practical case in which disruptions are 

known in advance and people can react on this, refers to for instance planned 

maintenance actions, or long term disruptions where people adjust their long term 

behaviour. Figure 3.3 explains passengers’ adaptations in the “Advance information” 

scenario. The following behaviour rules are assumed.  

 First, passengers as reaction to the disruption can change modes. A mode 

change means that passengers may leave the public transport system and take 

private car or bike for the affected trip, or even for the entire day.  

 Passengers can also change services in disruption. A service change means that 

passengers who keep using public transport can change the line they use (i.e. 

bus line 12 instead of 40). Or they can change transfer stations (i.e. Transfer 2 

in Figure 3.3 can be the same physical location as Transfer 1 in Figure 3.1, or 

not). Alternatively, they can take a completely different sequence of services in 

the public transport network as far as it enables them to reach their destination 

(in this case Activity 3).  

 Additionally, some passengers’ activities can be dropped or changed in their 

locations (e.g. shopping can be done at another location; Activity 3 in Figure 

3.3 might not take place at the same physical location as Activity 3 in Figure 

3.1).  

 Finally, passengers can depart earlier or later than their planned time, for any 

trip and activity. In the plan of the entire day, passengers can combine any of 

those reactions for the maximisation of their satisfaction. 

The disruption decreases the number of the feasible considered plans. With the 

help of “Advance information”, agents can perfectly know all the feasible 

considered plans 
D,AI \ ( )p p pS S S D  in the public transport disruption. “AI” is the 

short hand of “Advance information”. In Equation 3.10, we update Equation 3 for 

an involved agent p  under disruption, by representing some of the plans infeasible 

due to disruption. Without loss of generality and for graphical simplicity, we 

grouped those latter ( )pS D  at the last rows of the 
pS .  
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   (3.10) 

 

 

Figure 3.3: The effect of “Advance information” 

 

Thanks to the knowledge of all the feasible considered plans in disruption, the agents 

will find another solution among the new considered plans 
D,AI \ ( )p p pS S S D . 

Theoretically, passenger assignment can reach a user equilibrium in the case that 

passengers can freely change their choices based on learning from other passengers’ 

behaviours after known disruptions (Nagel and Floetteroed, 2016). In fact, the 

“Advance information” scenario results in another user equilibrium solution. 

Equation 3.11 indicates the new best considered plan 
*D,AI

ps  of agent p  in the new 

user equilibrium in the condition that all the other agents \{ }r P p  find their best 

considered plan *

rs  among the decreased considered plans D,AI \ ( )r r rS S S D .  



Chapter 3. Information availability, public transport disruptions, agent-based simulation 

46 

D,AI
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                            (3.11) 

The best considered plan leads to the maximum utility 
*D,AI

pu  of agent p  in this new 

equilibrium. Due to the decrease of available considered plans, the agents’ total utility 

in this case of “Advance information” is no more than their utility in the normal 

situation without disruption (Equation 3.12).  

*D,AI *D,AI * *

1 1

.
P P

p p

p p

U u u U
 

                                                                                (3.12) 

3.2.5 Timely Information  

A relevant case is also the one considering the fact that agents can only know the 

information about disruptions in a non-anticipatory way, i.e. only after disruptions 

occur. This is common for all unplanned disruptions. We call this scenario “Timely 

information” and refer to Figure 3.4 to explain the passengers’ adaptations in this 

scenario. In this case, we assume that passengers know the perfect information of 

starting time and specific length of disruption, but they know it only after the 

disruption starts.  

Compared to the “Advance information” scenario, passengers’ adaptations are much 

more limited. No change can retroactively take place in the past, i.e. only activities 

and trips in the future (starting from the start time of the disruption) can be considered. 

In particular, there cannot be any mode change (i.e. shifting to private car bike or 

walk) as reaction to the disruption. In other terms, we assume that passengers 

planning to use public transport do not have an alternative private mode directly 

available when they realise there is a disruption. This can be the case, for instance, 

the disruption happens in the afternoon when people already reached their workplace 

by some means. A different choice of disruption, e.g. in the morning, might oblige 

people to change their mode for the entire day (i.e. taking their private car to perform 

all trips). As the former case is more relevant for the information dissemination, we 

focus on that one. We do not consider taxi alternatives, nor bike or car sharing 

systems. Passengers planning to use public transport will adapt their plan by choosing 

the services enabling the best response (Trip leading to the maximum utility) from the 

previous activity (in this example, Activity 2) to the next one (in this example, 

Activity 3). We consider the maximum utility of a Trip as a combination of the 

walking time, waiting time and in-vehicle time, and related penalties with typical 

parameters of generalized travel time. The information that a disruption occurs is 

instantaneously transmitted to (and received by) all passengers at the start time. 
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Passengers that were performing an activity will not change the duration of such 

activity (i.e. I cannot leave work at Activity 2 earlier, if I know that there is 

disruption). Passengers that were waiting for a public transport service, or already on 

board a public transport service will instantaneously re-compute the maximum utility 

path and implement it at the earliest possible time. If passengers were waiting at a 

station, this can mean taking a different service; if passengers were on a bus/ train, 

this can include disembarking the vehicle where they were traveling as a connected 

service might not be running anymore. 

 

 

Figure 3.4: The effect of “Timely information” 

 

Formally, this scenario can be modelled as follows. The set 
*( , )p pZ D s  (adding D  and 

*

ps  as the relevant variables) describes all the considered plans that violate the non-

anticipatory condition, i.e. those plans that do not match the normal best considered 

plan 
*

ps  before the disruptions’ start time 
D

startt  (Equation 3.13 or 3.14). In other terms, 

the agents can only consider plans such that all the activities and trips should be the 

same up and until the start time of the disruption, because of the fact that what has 

happened in the past cannot be changed any more. 

Consider the involved agent 
Dp P , then a plan 

,p ks  becomes infeasible under the 

“Timely information” scenario (i.e. 
*

, ( , )p k p ps Z D s ), if either one of the following 

conditions is true: 

* * *

, , 0, : : .D

i p k start start start i p i iA s t t t A s A A                                               (3.13) 
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* * *

, 0 0, 0, : : .D

i p k start i p i iT s t t t T s T T                                                           (3.14) 

Equation 3.13 determines that for a considered plan 
,p ks  to become infeasible, there 

needs to exist an activity 
iA  whose start time startt  is no later than the disruption start 

time D

startt  and which is different from all activities *

iA  in the best considered plan in 

the situation without disruption 
*

ps . Equation 3.14 reports the same condition, for 

trips. 

In the case of “Timely information”, the number of considered plans further 

decreases. Equation 3.15 is an example of the decreased considered plans
D,TI *\ ( ( ) ( , ))p p p p pS S S D Z D s , further updating Equation 3.10. “TI” is the short hand 

of “Timely information”. Without loss of generality, and for graphical simplicity we 

delete two considered plans (i.e.
, , 1,p k p ks s 

) reported at the bottom rows in Equation 

3.15 that are infeasible because of “Timely information” in the non-anticipatory 

disruptions.  
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                                        (3.15) 

In this scenario, the involved agents choose the plan with the maximum utility 

*D,TI( )pu s  among the limited considered plans. We refer to Equation 3.16, which 

determines the new actual plan 
*D,TI

ps  of any involved agent 
Dp P  in the condition 

that all the other involved agents \{ }Dr P p  find their best considered plan 
*D,TI

rs  

among the reduced considered plans D,TI *\ ( ( ) ( , ))r r r r rS S S D Z D s . We assume the 

considered plan of the agents who are not affected by disruption is equal to their 

choice in the normal situation *

rs . Note that in general, this is not a user equilibrium 

solution. 
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D,TI
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*D,TI *D,TI
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p p p k R
s S

D

R r r

D

r r

s u s s

s s S r P p

s s r P P

 



   

  

                                        (3.16) 

In our research, the utility function 
*D,TI

pu  is calculated by the agent-based simulation 

model, see more details in Subsection 3.3.3. Due to the further decrease of feasible 

considered plans, agents’ total utility in the case of “Timely information” is no more 

than their utility in the “Advance information” scenario, and no more than normal 

situation without disruption (Equation 3.17). 

*D,TI *D,TI *D,AI * *

1 1 1

.
P P P

p p p

p p p

U u u u U
  

                                                          (3.17) 

3.2.6 No Information  

A last relevant scenario is that passengers have no knowledge about the disruption, 

and the only thing they can do is to wait until the planned service starts running again. 

This is a rather extreme case, though it is potentially relevant. In particular, some 

users are routinely in this situation during disruptions: think about tourists (people 

without familiarity with the network and the alternative choices). Or people without 

any information available: people without access to a mobile data connection 

describing alternative choices; stations without real time connection to central 

command centre; stops without a plan of the services running; outage of a 

communication network; etc. Figure 3.5 explains passengers’ adaptations in the “No 

information” scenario.  

In the “No information” scenario, passengers who were planning to use a public 

transport service which does not run anymore in the disposition timetable of 

disruption, they can do nothing else than wait at the station until the disruption 

recovers. In our case, this happens (see Figure 3.5) at the end of Activity 2, before 

Transfer 1. To express passengers’ adaptations in this scenario, the following 

behaviour rules are assumed.  

Passengers wait at the stations where they were supposed to take a public transport 

service which is not running (in short, we call it the “affected station”) until the end 

time of the disruption. And then they take the same public transport service as their 

initial plan (i.e. if they were planning to take bus line 40 in stage 1, they will be 

taking bus 40 at the end of the disruption) to the same transfer station (Transfer 1) 

and take the same public transport service, until they finish their trip. For instance, if 
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after Transfer 1 they were planning to take bus 50, they will be taking bus 50 at the 

end of the disruption, after they reach the transfer point.  

These behaviour rules will result in delays for activities following the “Directly 

affected trip”. Moreover, some passengers may face a high risk of failure to finish 

their whole plan (e.g. because bus line 50 might not run anymore).  

 

 

Figure 3.5: The effect of “No information” 

 

We first define the “Directly affected trip” Τ  as the first trip in the best considered 

plan 
*

ps  which matches a disrupted location 
jl  at the time 

jt  disruption D  takes place. 

In other terms, this is the first time where the user is affected by the disruption; before 

this moment his/ her plan is untouched; after this, his/ her plan needs to be updated. 

Formally, 

* * *, min( ){ : ( , ) with [ , ]}.D D D

h i p j j i j j start endT h i i T s l t T l L t t t       T    (3.18) 

In detail, we use ( , )h hl t  to represent the specific location-time pair where and when 

the agent encounters the disruption in this “Directly affected trip” Τ .  

We model this “No information” scenario as follows. The set 
*( , )p pQ D s  (adding D  

and 
*

ps  as the relevant variables) describes all the agents’ considered plans that are 

different from the normal best considered plan 
*

ps  starting from the “Directly affected 

trip” Τ (i.e. the considered plans which are not a combination of waiting and 



Chapter 3. Information availability, public transport disruptions, agent-based simulation 

51 

postponing the plan 
*

ps ). The activities and affected trips after Τ  cannot change to 

other locations (indicating other transport modes or routes) and also cannot be 

finished before the end of disruption D

endt .  

Consider the involved agent 
Dp P , then a plan 

,p ks  becomes infeasible in the “No 

information” scenario (i.e. 
*

, ( , )p k p ps Q D s ), if either one of the following conditions 

(Equation 3.19 or 3.20) is true: 

,

* * * *

*

{( , ), 0,1, , } ,  such that for each :

{( , ), 0,1, , }  such that for which :

.

i j j p k j

i j j p

D

j end j j

T t l j J s t j

T t l j J s j

t t l l

     

    

  

h
t

              (3.19) 

* * *

, ,  : : .D

i p k end i p end endA s t A s t t l l       
h

t                                         (3.20) 

This can be explained as follows. Equation 3.19 states that a plan 
,p ks  is infeasible, if 

there is at least one trip 
iT which is no earlier than “Directly affected trip” Τ  in the 

plan 
,p ks , compared with the trip *

iT in the normally chosen plan 
*

ps , such that the two trips 

iT  and *

iT  differ by locations 
*

j jl l  (i.e. the user would like to go somewhere else) or 

the trip happens before the disruption ends 
D

j endt t  (i.e. the users have to wait until the 

disruption ends, before actually moving forward). 

Equation 3.20 reports the similar condition for activities. Plans with activities no earlier 

than the “Directly affected trip” Τ  are infeasible under this scenario, if the location l  of 

the activity ,i p kA s  is different from the location *l  in the 
*

ps  (i.e. the agent cannot 

change the location of their activities) or the activities ends before the end time of 

disruption 
D

end endt t  (i.e. the agent has to delay their activities after the direct affected 

trip). 

In the case of “No information”, the number of considered plans decreases even 

further. Equation 3.21 is an example of the decreased considered plans 
D,NI * *\ ( ( ) ( , ) ( , ))p p p p p p pS S S D Z D s Q D s , further updating Equation 3.15. “NI” is 

the short hand of “No information”. Without loss of generality, we delete two 

considered plans (i.e.
,3 ,4,p ps s ) in Equation 3.21 that are infeasible in the “No 

information” scenario, and we put them as last rows for graphical simplicity. 
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                                       (3.21) 

The involved agents react by determining the plan with the maximum utility 
*D,NI( )pu s  

among the limited considered plans. In Equation 3.22, we look for such plan 
*D,NI

ps  of 

the involved agent 
Dp P  in the condition that all the other involved agents 

\{ }Dr P p  find their best considered plan 
*D,NI

rs  among the reduced considered 

plans 
D,NI * *\ ( ( ) ( , ) ( , ))r r r r r r rS S S D Z D s Q D s . We assume the considered plans of 

the agents who are not affected by disruption are equal to their choice in the normal 

situation *

rs . Also, this is not a user equilibrium solution. Formally, 

D,NI
,

*D,NI *D,NI

,

*D,NI *D,NI D,NI

*D,NI *

arg max ( , ),

where { , \{ }}

{ , \ }.

p k p

p p p k p
s S

D

p r r

D

r r

s u s s

s s S r P p

s s r P P





   

  

                                        (3.22) 

Due to the further decrease of feasible considered plans, agents’ total utility in this 

case of “No information” is no more than that in “Timely information”, and further 

no more than their utility in the “Advance information”, and no more than normal 

situation without disruption (Equation 3.23).  

*D,NI *D,NI *D,TI *D,AI * *

1 1 1 1

.
P P P P

p p p p

p p p p

U u u u u U
   

                                                (3.23) 

3.3 Agent-based Simulation Approach 

The proposed formulations and descriptions of (user equilibrium, or non-equilibrium) 

solutions are independent of the precise solver used to compute them. We focus on 
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one agent-based simulation environment, specifically MATSim, but our ideas are 

applicable to any appropriate similar environment. The basic idea of MATSim is that 

travel demand can be predicted by simulating daily life of persons and particularly the 

spatial-temporal occurrence of out-of-home activities (see Balmer et al., 2009). 

Agents in MATSim are the representation of passengers in reality, which will be used 

the following sections to represent passengers. Three subsections explain the 

translation of the framework presented in Section 3.2 towards MATSim modules; the 

day-to-day replanning method used in MATSim; and the novel module able to 

perform within-day replanning in public transport networks. 

3.3.1 Information Availability in MATSim 

MATSim is able to describe mobility in a multi-modal network, including private 

transport and public transport schedules. MATSim is based on scheduled operations, 

which means the vehicle delay in daily operations is neglected. MATSim can model 

any public transport disruptions as far as it can be related to an updated disposition 

timetable (i.e. which public transport services are running from where to where, at 

which time, with which capacity) regardless of the precise nature and cause of the 

disruption. These features of MATSim provide the foundation to model the above 

information availability and the corresponding passenger adaptations.  

Figure 3.6 shows the modelling in MATSim of the different information availability. 

The default MATSim works by reaching a user equilibrium solution by iterations. At 

each iteration, representing a day of the users, the plans of agents are executed (i.e. 

performed by the agents) and the choices of the agents are evaluated and changed by 

a replanning module, if necessary. The basic MATSim loop is shown in 

“Benchmark” in Figure 3.6, and includes input, execution, scoring, replanning and 

analysis. More details are briefly summarised in the next Subsection 3.3.2 and 

available e.g. in (Horni and Nagel, 2016). 

First, the situation without disruptions is set as a benchmark to initialize agents and 

determine a reference case to be used in, and compared with, the simulations 

including disruptions. This is computed by iteratively simulating the “Benchmark” 

(left) situation, until a stable solution is found (corresponding to user equilibrium 

solution in Subsection 3.2.1). The “Benchmark” runs with the default MATSim 

setting with normal public transport schedule and reflects agents’ behaviours without 

public transport disruption. The intended demand is consisting of output plans. The 

output plans resulting from the “Benchmark” simulation are considered as the initial 

choices (i.e. the ideal situation) of all agents in a normal daily travel. 
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Figure 3.6: The execution in MATSim of different information availability 

 

The initial plans are the basis which used by the passengers, when facing the 

disruption. In particular the disruption is modelled through a disposition timetable, 

which makes some of those initial plans infeasible. For the “No information” scenario 

(top right) in MATSim, the agents’ initial plans are executed on the disposition 

timetable, for a single iteration (in figure, there is no replanning). During the 

disruption time, the agent will remain waiting at the stops in case the public transport 

service is cancelled in the specific disposition timetable implemented. When the 

disruption is recovered, MATSim will try to execute the initial plans of agents, as far 

as this is possible and compatible with the public transport services and/ or preferred 

starting/ ending time of activities. 

For the “Advance information” scenario (middle right) in MATSim, the alternative 

route/ mode/ time/ activity choices are calculated by including them in the iterative 

process of MATSim (i.e. the blue box contains a replanning feedback mechanism). 

Agents can rely on their experiences from previous iterations so as to gain the ideally 

best solutions (i.e. new user equilibrium) which adapt the initial plans, in case of 

public transport disruptions.  

The “Timely information” scenario (bottom right) considers that agents have 

information, but only after disruption starts. Dobler and Nagel (2016) already point 

out that using an iterative approach to disseminate information results in problems, 

like illogical agent behaviour, which would be able to anticipate unforeseeable 

events. For instance, if a replanning approach is used, agents may start rerouting 

before disruptions. The key module to solve this approach is a ‘within-day’ 

replanning module, which is not reaching an equilibrium as in “Advance 

Information” but rather computing the best response to the disruption, considering the 
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available information, and not learning from experience. This is a key novelty and 

explained in detail in Subsection 3.3.3.  

3.3.2 Day-to-day Replanning 

As is described in Subsection 3.3.1, both “Benchmark” and “Advance Information” 

are calculated based on the day-to-day replanning process approximating the 

stochastic user equilibrium (SUE) in MATSim. The sets 
new

pS  and 
old

pS  are subsets 

of the set previously introduced pS . The overall approach, called a population-based 

co-evolutionary algorithm (Nagel and Floetteroed, 2016), reads as follows: 

 

Algorithm 3.1 Co-evolutionary, population-based search 

1. Initiation: Generate at least one plan ,p ks for every agent p . 

2. Iterations: Repeat the following until user equilibrium
* *

1

P

p

p

U u


 . 

a) Execution: Select one ,p ks of the plans pS  for every agent p . 

b) Scoring: Obtain a score ,p ku  for every agent’s selected plan by executing all 

selected plans simultaneously in a simulation.  

c) Replanning: For some of the agents, generate new plans 
new

pS ; for example, 

as “best replies” or as mutations of existing plans 
old

pS . 

 

Execution. In the “execution” module, one plan is selected in each iteration. For each 

agent, select a plan ,p ks  (which can be possibly be the plan considered at the last 

iteration ,p js ), with a convergent switching process (Equation 3.24). ,( )p kP s  is the 

probability of choosing plan ,p ks , , ,( )p k p jT s s  is the switching probability from plan 

,p ks  to ,p js . 

, , , , , ,( ) ( ) ( ) ( )p k p k p j p j p j p kP s T s s P s T s s                                                     (3.24) 

Scoring. Equation 3.25 shows a scoring function determining the utility of a plan for 

an entire day, formulated by Charypar and Nagel (2005). The utility of a plan ,p ku  is 

computed as the sum of all activity utilities 
iAu  plus the sum of all travel (dis)utilities 

iTu  for each activity i  within the number N  of activities, and trip i  as the trip that 

follows activity i .  
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                                                                                        (3.25) 

To ensure the convergence of scores, a learning rate   is used in Equation 3.26. 
new

,p ku  

and 
old

,p ku  are the agents’ scores for plan ,p ks , and ,p ku  is the most recent actual 

performance with that plan. 

new old

, , ,(1 )p k p k p ku u u                                                                                   (3.26) 

Replanning. The replanning module of MATSim works, at each iteration, by 

generating alternative adjustments of the plan executed (i.e. iteratively considering 

more plans from pS ). The agents’ plans can be changed in terms of routes, transport 

modes, departure time and activities (Horni and Nagel, 2016); for example, going to 

work earlier or later, doing an additional activity or not, taking some mode or some 

other mode to move between activities. To generate new solutions, two operators are 

often used in evolutionary algorithms: “mutation” (Balmer et al., 2009) takes a 

candidate solution and performs small modifications to it; and “crossover” (Charypar 

and Nagel, 2005) takes two candidate solutions and constructs a new one from those. 

Iterations. In each iteration, the agents’ plans with the best score may be chosen 

while those with the worst score may be discarded with a higher possibility. After a 

certain amount of iterations executing different plans, the plan with the highest score 

(i.e. the best considered plan 
*

ps ) will be identified. This process mimics the 

experience of agents from comparable situations to reach ideally a user equilibrium 

solution of plans. However, the stability of this equilibrium is not perfect, since the 

simulations are stochastic (see Meister, 2011).  

Analysis. MATSim has a complete output of agents’ journeys including all activities, 

trips, detailed departure and arrival time, detailed routes, stops and each agent’s score 

function. Based on this outputs, agents’ behaviours and impacts of disruptions and 

information availability, such as delays, can be analysed. 

3.3.3 Within-day Replanning 

The concept of within-day replanning is proposed in Dobler and Nagel (2016) for 

road traffic management in unforeseeable (i.e. subject to non-anticipatory conditions 

as our “Timely information” scenario) or partially foreseeable events, including road 

disruptions or accidents. Within-day replanning is fundamentally different from day-

to-day replanning, as the simulation is done in a single iteration; there is no 

equilibrium to be determined, but only a best adaptation, corresponding to a non-
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equilibrium solution. Moreover, complex detailed behavioural model needs to be 

described. Due to the very different dynamics of private car users and public transport 

users, a major improvement to this model has been necessary for application on the 

public transport disruptions. In fact, car users only choose the physical network route, 

while agents using public transport have to choose the train/ bus/ tram service, linking 

the physical network and the service network.  

We use the within-day replanning to compute the solution for the “Timely 

information” scenario explained in previous Figure 3.4. We follow the behavioural 

assumptions as stated in Subsection 3.2.5. The agents’ decision-making process in 

within-day replanning works as the following Algorithm 3.2.  

 

Algorithm 3.2 Within-day replanning 

1. Initiation: Compute the original plans 
*

ps  in pS  for every agent, regardless of the 

disruption. 

2a. Execution: for every agent 
Dp P  affected in disruption, do within-day 

replanning: 

a) Compute the available plans 
D,TI

pS  from 
*

ps .  

b) Approximate 
*D,TI

ps  as the 
D,TI

,

*

,arg max ( , )
p k p

p p k R
s S

u s s
 

 i.e. *

Rs  approximately equal to 

*D,TI

Rs . 

c) Execute the new generated plan 
*D,TI

ps . 

2b. Execution: For every agent not affected in disruption \ Dp P P , execute 
*

ps . 

3. Scoring: Obtain a score 
D,TI

pu  for every agent’s executed plan in a simulation, and 

related some performance measure.  

 

Without loss of generality, under the assumption of an equilibrium being reached at 

the initial plans, and to avoid unneeded variability in the execution of travel plans of 

agents, we focus on replanning only those agents 
Dp P , which are directly affected 

by the disruption.  

The agents’ plan for the entire day consists of many trips, each trip linking two 

adjacent activities. In the within-day replanning module, the “Directly affected trip” 

and all the following activities and trips until the end of the day can be modified. A 

trip change can influence the start time of the following activities, and a domino 

effect to next trips and activities. For each selected trip, a possible alternative is 

sought, which is able to connect the previous activity to the following activity. The 

plan maximising the utility is sought, but this can be simplified as follows. Any extra 
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delays in starting the disrupted trip will decrease the utility of the trip; any extra delay 

in starting the disrupted trip, or postponing the activity will decrease the utility of the 

activity, as well as its cancellation will decrease the utility of the activity. For this 

reason, under standard MATSim parameters of evaluation of generalized travel time 

we can directly focus on computing the plan, where the immediate trip to the next 

activity after the disruption has the maximum utility of the trip. Formally, under the 

assumptions considered, we can also replace the computation of 

D,TI
,

*D,TI

,arg max ( , )
p k p

p p k R
s S

u s s
 

 as the computation of 
D,TI

,

*

,arg max ( , )
p k p

p p k R
s S

u s s
 

 as *

Rs  will be equal to 

*D,TI

Rs . 

For trips and activities starting after the disruption, MATSim can execute directly the 

plan computed by the within-day replanning module without problems. For those 

trips which were performed at the moment when the disruption begins, in case they 

happen to be impossible (i.e. the agent is on a bus which breaks), the replanning 

module will seek for alternative ways of movement.  

3.4 Experiments and Results 

We perform a large set of experiments, based on calibrated initial demand of Zürich 

presented in Rieser-Schuessler et al. (2016). The public transport integration is 

implemented in the Zürich network, in which all public transport is integrated in a 

single system with a single payment scheme. So the users can use any mode as their 

choices without extra charges. The total number of agents including both public 

transport and private users in such Zürich scenario is 15,286, which represents a 1% 

sampling of the of real Zürich population. Based on the Zürich scenario, we 

determine a public transport disruption in MATSim and analyse agents’ behaviours 

and satisfaction from the simulation results.  

3.4.1 Zürich Scenario 

Zürich HB is the central rail station in Zürich, used by almost 400,000 passenger trips 

per day, and scheduling more than 2,800 trains per day; Zürich Oerlikon is also a 

major nodal point and junction for Zürich rail network, with almost 80,000 passenger 

trips per day, and scheduling about 300 trains per day. Physically three railway routes 

connect the two stations: one passing via Zürich Hardbrücke, one passing via Zürich 

Wipkingen and one direct tunnel route (DML). The railway route via Zürich 

Hardbrücke operates six train services: S15, S9, S16, S6, S7, S21; Zürich Wipkingen 

railway route operates six train services: S24, RE, IC4, IR75, IR37, IR70; the direct 

tunnel route operates eight train services: S2, S8, S19, S14, IR36, IC8, IC5, IC1. The 
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train frequency on the S-bahn train services (i.e. all those beginning with S) is every 

half hour, while that on most inter-region (IR) and inter-city (IC) services is every 

hour, except IC4 with a frequency of every two hours. Each train service stops at 

Zürich HB while not all train services stop at Zürich Oerlikon, some pass Zürich 

Oerlikon without stops (i.e. IC4, IR75, IR37, IC8, IC5 and IC1). This situation is 

graphically represented in Figure 3.7. For the sake of completeness, we include in 

Figure 3.7 all stations (Zürich Flughafen, Schaffhausen) which are the first/ last stop 

for train services leaving from/ arriving to the station Zürich Oerlikon, and that do not 

stop in Zürich Oerlikon.  

 

 

Figure 3.7: Details of rail elements and disposition schedules in Zürich scenario 

 

Each line in Figure 3.7 represents a train service, with the thickness related to the 

frequency. The travel time between Zürich HB and Zürich Oerlikon on all railway 

routes is comparable, being between 5 and 7 minutes. The red lines in Figure 3.7 show 

the assumed rail disruption: two railway routes between Zürich HB and Zürich 

Oerlikon via both Zürich Hardbrücke and Zürich Wipkingen are disrupted and 

unavailable during the afternoon peak hours, between 16 and 19 o’clock. One 

disposition timetable is applied during the disruption time, as follows.  

 For the disrupted train services between Zürich HB and Zürich Oerlikon, all the 

train services are cancelled between 16 and 19 o’clock. The cancellations are 

extended to the next stop beyond Zürich Oerlikon, in case the train service does 
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not stop there. For instance, train schedules of IR 37 between Zürich HB and 

Zürich Flughafen are completely cancelled between those two stations.  

 For the train services beyond either Zürich HB or Zürich Oerlikon, (or beyond 

the first/ last stop after/ before Zurich Oerlikon) as well as via the direct tunnel 

route, the original train schedules are kept.  

Outside of the disruption time, the original train schedules are not influenced.  

The agents affected by such disruption are those that take any train service passing 

Zürich HB and Zürich Oerlikon via Zürich Wipkingen and Zürich Hardbrücke 

between 16 and 19 o’clock. In our test case, 128 agents (representing 12,800 

passengers in real world) are involved in this public transport disruption. These 

agents (we call them “involved agents”) are 0.8% of the total population, and more 

than 2% of the population typically using public transport. In the next sections, we 

focus on those involved agents, and compare the different behaviours (more details in 

Appendix B) and satisfaction of these involved agents in the three different scenarios 

and the benchmark. We first analyse macroscopic features such as the flow over the 

public transport services. The second part analyses the influence of different 

information availability on agents’ delays and scores. 

3.4.2 Agents’ Behaviours with Different Information 

Availability 

Figure 3.8 shows the flow of the involved agents on the train services between Zürich 

HB and Zürich Oerlikon in the benchmark and three scenarios. Each figure shows the 

time on the x-axis, and the y-axis is the number of involved agents per each hour. The 

train services are reported in different colours, and grouped per railway route: via 

Zürich Hardbrücke (the family of blue colours), via Zürich Wipkingen (the family of 

red colours) and via the DML route (the family of green colours).  

In the “Benchmark”, top left, the agents are relatively evenly distributed on the trains 

during the disruption time from 16 to 19 o’clock. The agents distribute themselves in 

the disrupted railway routes as follows Hardbrücke (87.5%), Wipkingen (12.5%). In 

the “No information” scenario, top right, a majority of the involved agents can only 

pass the railway route via Hardbrücke or Wipkingen after 19 o’clock. Some agents 

cannot finish their trips. In particular, S21 service only operates between 16 to 19 

o’clock; those agents, who plan to take this train service in “Benchmark”, fail to 

board in the “No information” scenario and will never reach their final destination 

within the same day. This is about 15% (see later Figure 3.11). In both the “Advance 

information” and “Timely information” scenarios, a small share of involved agents 
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shifts from the route via Hardbrücke and Wipkingen, to the route via DML during the 

disruption time. The rest shifts to bus/ tram or car/ bike (see later Figure 3.9). 

 

 

 

Figure 3.8: Agents’ flow distribution per train service and route 

 

The data shown in Figure 3.9 represents the moving average of the involved agents’ 

time spent travelling (on the y-axis, as in Figure 3.8) of the “Directly affected trip” for 

each route and transport mode, as time goes (x-axis). As is described in the 

Subsection 3.2.1, one trip is composed of one or more stages. The “Directly affected 

trip” includes, but is not limited to, the stage that directly passes the defined 

disruption. It also includes the preceding/ successive stages that may also be 

indirectly affected by the public transport disruption. In other terms, we are looking at 

a comprehensive overview over stages of the involved agents, at different moment in 
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time and different stages within the “Directly affected trip” in relation to the 

disruption. We select five classifications based on alternative route choices (i.e. 

Wipkingen, Hardbrücke, DML and other rail, respectively red, blue, green and black 

lines) and transport modes (bus/ tram, car/ bike, respectively purple and yellow lines) 

in disruptions.  

 

 

Figure 3.9: Route and mode share of involved agents in the “Directly affected trip” 

 

Within each subfigure, the Wipkingen and Hardbrücke routes (red and blue lines) 

show similar characteristics, i.e. peak at the same time (for the “Benchmark”, this is 

at 18.30; for the “No information”, this is at 20.00), and comparable ratio (the total 

number of involved agents for Hardbrücke being roughly 4 to 5 times more than the 

one for Wipkingen). In this sense it is not advantageous for the agents to swap from 

one of those two routes to the other.  

Comparing those two routes across the subfigures, the “No information” scenario 

compared to “Benchmark”, the average agents’ proportion decreases from a 
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maximum of around 8% to 0% during the disruption (between 16 and 19 o’clock) 

while increases dramatically to a maximum of around 16% after 19 o’clock. In other 

terms, most of the agents are now concentrated moving in a short time horizon, from 

19.00 to 20.30. The agents’ proportion in both the “Advance information” and 

“Timely information” scenarios decreases compared to the “Benchmark” between 16 

and 19 o’clock but is not reduced to zero. The remaining agents are those who are 

travelling on the train services beyond either Zürich HB or Zürich Oerlikon rather 

than between these two stations. This is caused by the fact that agents can still use 

these running services (see the description of the disposition timetable in Subsection 

3.4.1) once they have crossed the disrupted area by using other rail routes or transport 

modes. 

The DML, other rail and bus/ tram (green, black and purple lines) show similar 

features, in particular a delay between “Benchmark” and “No information”; and an 

increase of the peak when comparing “Advance information” and “Timely 

information” to “Benchmark”. In the “No information” scenario, the three lines also 

have a small peak after 19 o’clock. This is caused by the successive delayed stages in 

the “Directly affected trip”.  

For the car/ bike (yellow lines), results in the “Benchmark”, “No information” and 

“Timely information” scenarios are zero; i.e. all involved agents are not changing 

mode as reaction to the disruption and therefore they are not using them. In contrast, 

an increase of agents’ proportion (around 4%) is shown in the “Advance information” 

scenario between 16 and 19 o’clock. This reflects the fact that agents can successfully 

change mode to improve their satisfaction, in the “Advance information” scenario. 

Table 3.1 summarises the route and mode share (rows: Wipkingen, Hardbrücke and 

DML and other rail, are the alternative railway routes, while Bus/ tram and Car/ bike 

represent different modes available) for the involved agents counting all the stages in 

the “Directly affected trip” (stage-based calculation) in the above scenarios 

(columns). Comparing the columns, the mode share of the involved agents in “No 

information” is similar to that in “Benchmark” with slight differences caused by few 

agents who don’t finish their trips. In contrast, in “Advance information” most agents 

choose alternative transport modes to avoid disruptions: 43.5% agents (i.e. 15.3% 

more) choose Bus/ tram and 27.1% switch to Car/ bike. The remaining 15.5% agents 

via Hardbrücke are those who use the undisrupted part of this route. In “Timely 

information”, the mode share of Bus/ tram and other rail increases compared to that in 

“Advance information” due to the limitation of mode change. Especially the mode 

share of Bus/ tram increases to 59.9%, approximately equal to the mode share of 

Hardbrücke in “Benchmark”. In fact, agents cannot shift to Car/ bike, so most of them 

shift to the alternative public transport instead. 
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Table 3.1: A summary of route and mode share of involved agents in the “Directly 

affected trip” 

Route and mode 

share 
Benchmark 

No 

information 

Advance 

information 

Timely 

information 

Wipkingen 6.0% 6.3% 0.9% 1.1% 

Hardbrücke 61.5% 62.2% 15.5% 20.4% 

DML 0.8% 0.8% 7.0% 10.0% 

Other rail 3.6% 4.2% 6.1% 8.6% 

Bus/ tram 28.2% 26.5% 43.5% 59.9% 

Car/ bike 0 0 27.1% 0 

 

3.4.3 Agents’ Benefits with Different Information 

Availability 

The involved agents’ delays are an important aspect of passenger satisfaction, 

focusing only on the direct affected trip. A delay is to this extent, the average time 

difference between the actual arrival to activities, and the planned arrival to the 

activities. We discuss the average delay of the involved agents as time goes, to give a 

feeling of the complexity of the problem. Figure 3.10 (left) reports the average delay 

(i.e. difference between a scenario and the benchmark, among all involved agents) for 

the affected trip by the disruption, as the time of the disruption goes by. We report the 

three scenarios considered (coloured lines) and a simplified calculation (labelled 

“without agent-based”). All lines show the 15min moving average of the involved 

agents’ average delay over the time (y-axis, in hours).  

The simplified calculation symbolically describes the linear decrement (black dotted 

line) expected to show the relation of agents’ average delay and time, under the “No 

information” scenario. In theory, each agent would have as much delay as the time 

required to clear the disruption. For this reason, a nicely regular pattern of delay is 

expected. Compared with the agent-based simulation results of the “No information” 

scenario (i.e. red line), the differences show the complexity and interaction of choices 

in a multi-modal network, subject to a disposition timetable unknown to passengers. 

The two other scenarios differ slightly from the zero delay case; the precise 

computation of this delay is a major contribution of the present chapter. In fact, only 

the proposed agent-based simulation is able to reveal the detail and specific 

behaviours due to the public transport disruption in a microscopic perspective. 

Overall, the “No information” (red line) results in agents’ average delay always larger 

than the assumed linear decrement (black dotted line). At approximate 15min after 
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disruption starts, the average agents’ delay reaches the maximum 3.6 hours. The 

“Advance information” (blue line) shows agents’ average delay varies closely to no 

delay. Overall, agents always suffer more delay in the “Timely information” (yellow 

line) compared to the “Advance information”. Especially at the beginning of 

disruption, agents’ average delay can reach up to 0.7 hours. The average delay 

decreases sharply to approximate 0.2 hours after around 30 min after disruption starts. 

Then, the average delay almost maintains at approximate 0.2 hours and decreases 

slowly to zero. 

 

 

Figure 3.10: Average delay and the number of delayed agents as time goes 

 

Figure 3.10 (right) shows the percentage of the involved agents with positive delay on 

their “Directly affected trip” at any moment throughout the disruption duration. In 

other terms, it is the volume of passengers, for which we represent the intensity of 

delay in Figure 3.10 (left). X-axis and colour scheme are analogous. The red scatters 

show that 100% agents are delayed in “No information” scenario until the end time of 

disruption (19 o’clock). After the disruption, delayed agents get less, and then reach 

their minimum only at almost 21 o’clock. There are still around 20% agents delayed 

because they cannot find available public transport services any more. The peak of 

delayed agents are right after 18 o’clock in both “Advance information” (blue line) 

and “Timely information” (yellow line). This corresponds to the peak hour dynamic 

in the real life test case considered. Overall, there are more delayed agents in “Timely 

information” (approximate 30% in the peak) compared to “Advance information” 

(around 20% in the peak). All delays reduce to zero about 30 min earlier in “Advance 

information” (at 20 o’clock) than in “Timely information”. 
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In the comparison of agents’ delay and score, we need to consider the issue of an 

imperfect convergence of MATSim (see Subsection 3.3.2). We therefore run 

MATSim for one more iteration than the “Benchmark” settings (i.e. computing a 

“Benchmark+1” solution), and then compare this results to “Benchmark” so as to 

understand the default variability in the scores that MATSim computes. This 

represents some kind of noise in the evaluations we will perform. We compare the 

“Benchmark+1” solution to the original “Benchmark”; as we report all scenarios, 

including this “Benchmark+1” in relative terms with the “Benchmark”, we name this 

as “Benchmark*” in the following figures. The idea is to represent the inherent 

variability that the Benchmark solution has.  

 

 

Figure 3.11: Probability density of delays (late arrival to activities) of involved agents in 

the “Directly affected trip” 
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Figure 3.12: Probability density of scores of involved agents 

 

Figure 3.11 displays the comparison results of the probability density of delays in 

different scenarios. Each subfigure reports the delays (x-axis) and the related 

probability density (y-axis). The variability of average delays of the agents in the 

default MATSim is 0.2 min, with a very large amount of agents facing no positive or 

negative delay. The average delay in the “No information” scenario is 2.4 hours, 

which includes 15.6% agents who fail to finish their whole-day plan (i.e. both the red 

and the grey zone in Figure 3.11 top right). In this case, the delay is referred to the end 

of the day. Focusing only to those agents who are able to complete all activities, the 

average delay is around 2 hours (i.e. only the red zone in the Figure 3.11 top right). In 

the “Advance information” scenario, the average delay is 1.6 min, but the variance 

range of minimum and maximum is up to 2 hours. This reflects major changes to the 

activity patterns of the agents as a reaction of the “Advance information” on the 

disruption occurrence. In the “Timely information” scenario, the average delay is 9.8 

min, which is larger than that in the “Advance information” scenario. The min-max 

range is about one hour. 
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As is described in Section 3.3, the scores calculated by the score function in MATSim 

express the satisfaction of the agents on the plan of the entire day. The probability 

density of scores of the involved agents in the considered disruption is showed in 

Figure 3.12. Each subfigure shows a scenario as in the previous figures; each 

subfigure reports the relative difference, for each agent, between the score of the 

“Benchmark” (assumed 100%), and the score of the considered scenario; the y-axis is 

the associated probability density. The variation of agents’ score in “Benchmark*” is 

minus 0.5% (inherent variability of MATSim). Compared to “Benchmark”, the 

average changes of scores for the three scenarios are: “No information” scenario (-

211.4%), “Advance information” scenario (-6.5%), “Timely information” (-22.1%). 

Of course, all average results are negative, i.e. agents had a higher (better) score 

without the disruption, but due to the variability of the MATSim computation, some 

agents might actually have an increase in score. In fact, the variances of scores are 

large: “Benchmark*” (1.9%), “No information” scenario (265.5%), “Advance 

information” scenario (7.8%), “Timely information” (68.4%), where the variance is 

measured based on the value 100% assigned to the “Benchmark”. This is an effect of 

the well-known fact that MATSim cannot always converge to the expected user 

equilibrium (other papers which discuss convergence of MATSim are for instance 

Meister, 2011; Fourie et al, 2013).  

 

 

Figure 3.13: Cumulative distribution of scores of involved agents 

 

Figure 3.13 shows the cumulative distribution of the involved agents’ scores, i.e. the 

superimposition of the cumulative densities, associated to the individual subfigures of 

Figure 3.12. The left plot is the complete result (with an extended x-axis) and the right 

is the zoomed-in version of the same plot, restrictive to the part where scenario 

“Benchmark*”, “Advance Information”, and “Timely information” are most similar. 
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This figure can express more intuitively that the “Advance information” scenario 

defines the upper bound and the “No information” scenario shows the lower bound 

for agents’ satisfaction under the same disposition timetable in the public transport 

disruption management. Within this gap, the “Timely Information” scenario provides 

an intermediate value. More scenarios, based on different information availability 

(described in Section 3.2) would result between these two boundaries.  

Finally, we report on the detailed statistical results of the involved agents’ delays and 

scores, in Table 3.2. The top rows report on the delays (in minutes; median, 10th and 

90th percentile), the bottom rows about the score (reported as variation from the 

Benchmark value, again as median, 10th and 90th percentile). Columns refer to the 

scenarios considered.  

The median of delay in “Benchmark*” and “Advance information” is zero. The 

median of delay in “Timely information” is 3 min and that in “No information” is two 

hours. While almost no agents has delay in “Benchmark*”, the score of agents 

fluctuates in a  5% range. Most agents’ delay in “Advance information” is the range 

 25min, their score because of disruption varies from -40% to 20%. In the “Timely 

information”, most agents (i.e. 90th percentile) have delay less than 40min, while in 

the “No information” this is larger than 300min. The “Timely information” and “No 

information” scenarios result in a much skewed distribution, with a stronger tail of 

very small scores, compared to a few positive scores. In fact the positive scores for 

the 90th percentile of “Advance Information” and “Timely information” point out the 

complexity of the effects in which agents change their plans, by which some (few) 

agents can actually improve their score; this should be compared with the change in 

percentage from Benchmark*. 

 

Table 3.2: Statistical results of involved agents’ delays and scores 

Information availability Benchmark* 
No 

information 

Advance 

information 

Timely 

information 

Delay 

[min] 

median 0 120 0 3 

10th percentile 0 30 -24.1 -7.7 

90th percentile 0 333.5 21.9 40.2 

Score 

median 0 -178.4% -2.6% -3.7% 

10th percentile -4.5% -505.8% -40.9% -60.2% 

90th percentile 3.3% -44.6% 20.4% 16.7% 
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3.5 Conclusions 

We study passengers’ behaviours and satisfaction in public transport disruptions in a 

large-scale multi-modal network, under the defined information availability on the 

basis of a novel “who-when-where-what” four-dimensional framework. Compared to 

a benchmark without disruption, three information availability (scenarios) are defined 

in public transport disruption: “No information”, “Advance information” and “Timely 

information”. Corresponding to each information availability, passengers’ behaviours 

are assumed: waiting and keeping initial plan, multiple choices (e.g. transport mode, 

route and activity changes), and within-day route choice.  

We propose rigorous mathematical descriptions of those cases, and are able to 

compute performance indicators of user equilibrium and non-equilibrium solutions 

corresponding to those cases, by means of an agent-based simulation platform 

(MATSim). MATSim is activity-based and considers comprehensively different 

transport modes, in which agents’ activities, trips and detail choices of users for a 

whole day can be simulated in detail. Especially for the “Timely information” 

scenario, we develop the within-day replanning approach in MATSim by enriching 

the procedure of selecting involved agents and modifying their initial plans in a single 

iteration/ execution as reaction to public transport disruption.  

From the MATSim simulation results of the Zürich scenario, three main conclusions 

are summarised: First, the “No information” and “Advance information” scenarios 

are two boundaries and provide the gaps for passenger simulation in public transport 

disruptions. Second, the average scores of involved passenger behaviours are 

expected (“Benchmark”> “Advance information”> “Timely information”> “No 

information”), but the variances are relatively large. Third, the difference of scores 

between the “Advance information” and “Timely information” scenarios is small, 

which means agents’ satisfaction decreases only slightly when they know of a 

disruption after its occurrence, as far as they know all details and react immediately in 

public transport disruption. 

For the further research, some more realistic scenarios based on the proposed 

framework of information availability can be simulated. Some examples are 

enumerated: one scenario can be that agents know disruptions only when reaching the 

involved stations otherwise they know nothing about the disruptions; another scenario 

can be that agents only know the start time of disruptions but they don’t know the 

precise end time; one more scenario can be set based on agents’ proportions of 

diverse information availability; and multiple scenarios can be defined in between 

those. Moreover, one can play with the size of the user groups having at the same 

time different information availability. These scenarios will result in different setups 

and costs for the channels through which information can be disseminated; thus will 
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be crucial in balancing the benefits of the information availability (which we 

discussed here) with their costs. These scenarios need further development in the 

within-day replanning module of MATSim.  

Moreover, the simulated disposition timetable is just one possible feasible schedule 

for the defined rail disruption. In reality, public transport operators may apply other 

schedules which aim to improve passengers’ satisfaction in public transport 

disruptions. So more different disposition timetables (such as retiming, reordering 

and rerouting) can be tested in MATSim to study which kind of timetable is more 

passenger-oriented. In addition, the output of agent-based simulations can be used as 

constraint for optimising a more passenger-oriented disposition timetable.  
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Chapter 4  

Information strategies and timetable, 
rolling stock rescheduling in public 
transport disruptions 

This chapter is based on the following published article. 

Leng, N., Liao, Z. and Corman, F. (2020) Role of timetable, rolling stock rescheduling, 

and information strategies to passengers in public transport disruptions, Transportation 

Research Record, 1-13. 

4.1 Introduction 

In public transport operation, disruptions may occur due to multiple potential reasons, 

such as planned maintenance actions, unexpected events, failures, weather, insufficient 

resources of tracks, rolling stock, staff and power supply. Typical characteristics of 

disruptions are for instance public transport malfunctions lasting more than 2-3 hours, 

where partial technical components are unavailable and the resource allocation plan 

(drivers, vehicles) might need to be changed, see Pacciarelli (2013). The public transport 

disruptions can have a significant impact on passengers’ travel and lead to critical 

decisions from passengers’ perspective, such as cancelling the trip. In response to 

disruptions, public transport operators use special alternative plans, called disposition 

timetables, to keep delivering a service to passengers. Once one disruption occurs, the 

service levels of public transport decrease, they typically remain stable (at a lower level 

than original) throughout the disposition timetable, and then increase back to original 

when the disruption is resolved and the network can operate the original timetable again 

(so called bathtub model), see Ghaemi (2018). Passenger-oriented disruption management 

focuses on understanding and adapting the demand of passengers (activities, trips, 
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preferred modes, preferred arrival time), and the supply from operating companies 

(operating plan, and availability of resources such as vehicles and drivers) to offer better 

services to passengers. The relation between the two is mediated by some information 

available about planned and adjusted services; see Leng and Corman (2020). 

Generally, modern urban transport is operated in a multi-modal network, including both 

public and private transport modes. Different operating companies usually manage 

specific public transport modes (e.g. bus, tram and rail). Each operating company 

reallocates its internal resources (disposition timetable, rolling stock) to reduce 

passengers’ dissatisfaction in disruptions. In the cities that implement the public transport 

integration policy, where public transport is integrated in a single system with a single 

payment scheme, the passengers can use any mode as their choices without extra charges 

even in disruptions. Therefore, it is of great importance for operating companies to have a 

comprehensive understanding of the impacts of the specific designed public transport 

disposition timetable to passengers’ reactions in a multi-modal network in case of 

disruption.  

The major goal of this chapter is to study the mutual influences of operation strategies and 

information to passengers in public transport disruption, i.e. what are passengers’ 

adaptations and satisfaction under different information strategies and disposition 

timetables (considering different reschedule strategies and the feasibility of rolling stock 

circulation). We propose to use agent-based micro-simulation (e.g. Balmer et al., 2009), 

to imitate large-scale passengers’ behaviours during public transport disruption. There are 

two main benefits of such kind of agent-based simulation. The first is the consideration of 

movement of agents in a multi-modal network, including choices not only within the 

public transport network, but also including switching to private modes, cancelling trips, 

and even cancelling or changing activities throughout a daily plan. These agents’ 

movements match the fact that disruption may causes more kind of inconvenience to 

passengers than just a delay on a trip. The second benefit is the explicit consideration of 

heterogeneity of users, seen in the activity-based micro-simulation of an entire day, where 

detailed activities and trips are simulated, so that the specific reaction in disruption can be 

precisely understood. The trip delays and the total scores of utility for all activities and 

trips estimate passengers’ (dis)satisfaction in disruption.  

We focus on railway disruption, since railway usually has limited capacity for extra train 

services in the alternative train routes. The evaluation of different disposition timetables 

and information strategies is analysed based on the proposed MATSim implementation, 

on a realistic case study on a large multi-modal network in Zürich Switzerland under a 

large railway disruption.  
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4.2 Information strategies and passengers’ 

adaptation 

After disruption, the operating companies apply the optimisation model to produce the 

disposition timetable considering the details of rescheduling strategies and the feasibility 

of rolling stock circulation (detail introduction see Section 4.4). Once given a disposition 

timetable in disruption, passengers’ behaviours strongly depend on the information details 

they know about the disposition timetable. In this chapter, we mainly consider the 

influence of the “issue time” that information reaches the users to passengers’ behaviours. 

It can be beforehand, for planned disruptions such as planned public transport 

maintenances, in which the operating companies broadcast the disposition timetable in 

detail in advance. In case of unexpected unplanned disruptions (like accidents, failures, 

etc.), the issue time can only be after the start time of the disruption. In the worst case, the 

information is never issued and passengers know of the disruption only at the moment 

they try to board a service that is not running. In this chapter, we for instance report three 

cases, namely the operating companies can issue information about the disruption 

beforehand; or disseminate information only when they realise that the disruption is going 

on; or they do not issue any information at all.  

Ideal information1. In this information strategy, passengers have the perfect information 

beforehand, which allows them to adapt at best their plan. The following behaviour rules 

are assumed. Passengers as reaction to the disruption can change services or modes. A 

mode change means that passengers may leave the public transport system and take 

private car or bike for the affected trip, or even for the entire day. A service change means 

that passengers who keep using public transport can change the service they use (i.e. the 

train service of IC4 instead of IC8), transfer stations (i.e. can be the same physical 

location or not) or take a completely different sequence of services in the public transport 

network as far as it enables them to reach their destination. Passengers can depart earlier 

or later than their planned time, for any trip and activity. In the plan of the entire day, 

passengers can combine any of those reactions for the maximisation of their satisfaction.  

Timely information. In this case, passengers know the perfect information of starting time 

and specific length of disruption, but they know it only after the disruption starts. 

Compared to the Ideal information, passengers’ adaptations are more limited. In 

                                                 

1 The “Ideal information” in Chapter 4 means the consistent concepts as the “Advance information” in 

previous Chapter 3. The name “Ideal information” is more from the viewpoint of service providers, who 

think the complete/ perfect/ advance information is an ideal situation in reality. The name “Advance 

information” is more from the viewpoint of passengers, who can know the complete/ perfect/ ideal 

information in advance before they make their daily travel plan. 
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particular, there cannot be any mode change (i.e. shifting to private car bike or walk) as 

reaction to the disruption. In other terms, we assume that passengers planning to use of 

public transport do not have an alternative private mode directly available when they 

realise there is a disruption. We do not consider taxi alternatives, nor bike or car sharing 

systems. We consider the shortest path as the fastest path between two activities, 

including the walking time, waiting time and in-vehicle time, and related penalties with 

typical parameters of generalized travel time. Further research might also consider more 

realistic situations, where passengers know only the start time of disruption without 

knowing the specific end time, until the disruption resolves. In this case, passengers’ 

adaptations will differ, depending on the information they have over time. 

No information. To express passengers’ adaptations in the case that passengers have no 

knowledge about the disruption, the following behaviour rules are assumed. Passengers 

wait at the stations where they were supposed to take a public transport service, which is 

not running due to the disposition timetable until the end time of the disruption. Then they 

take the same public transport service as their initial plan (e.g. S16 has a train service 

every half an hour, if they were planning to take one train service of S16, they will be 

taking the first train service of S16 at the end of the disruption) to the same transfer 

station. Then they take the same public transport service until they finish their trip (i.e. if 

after transfer they were planning to take train the train service of IC4, they will be taking 

other train service of IC4 at the end of the disruption, after they reach the transfer point). 

Some passengers may face a high risk of failure to finish their whole plan (e.g. because no 

train services of IC4 might run anymore).  

4.3 Agent-based simulation approach 

The present work uses the MATSim platform for agent-based simulation. The basic idea 

of MATSim is that travel demand can be predicted by simulating daily life of persons and 

particularly the spatial-temporal occurrence of out-of-home activities, see Horni and 

Nagel (2016). The following three features of MATSim provide the foundation to model 

the above information strategies (Section 4.2) and different disposition timetables 

(Section 4.4), as well as analyse the corresponding passenger adaptations. First, Agents in 

MATSim are the representation of passengers in reality; their daily movements as 

successive activities and trips have both a consequence on their utility or score. Second, 

MATSim is able to describe mobility in a multi-modal network, including private 

transport and public transport schedules. Third, MATSim is based on scheduled 

operations, which means the vehicle delay in daily operations is neglected. MATSim can 

model any public transport disruptions as far as it can be related to an updated disposition 

timetable (i.e. which public transport services are running from where to where, at which 

time, with which capacity) regardless of the precise nature and cause of the disruption. 
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We refer to the specific trip(s) affected by the defined disruption as “Directly affected 

trip”. 

Figure 4.1 shows the modelling in MATSim of the different information strategies and 

disposition timetables. The default MATSim works by reaching an equilibrium solution 

by iterations. At each iteration, representing a day of the users, the plans of agents are 

executed (i.e. performed by the agents) and the choices of the agents are evaluated and 

changed by a replanning module, if necessary. The basic MATSim loop is shown in 

“Benchmark” (left), and includes input, execution, scoring, replanning and analysis. More 

details are available e.g. in Horni and Nagel (2016). The “Benchmark” runs with the 

default MATSim setting with original public transport schedule and reflects agents’ 

behaviours without public transport disruption. The output plans resulting from the 

“Benchmark” simulation are considered as the initial passenger demand (i.e. the ideal 

situation) of all agents in a normal daily travel. 

 

Simulation 
(Execution) scoring

Replanning

Benchmark

Simulation 
(Execution) scoring

Replanning

Advance information

Simulation 
(Execution)

scoring

No information

Simulation 
(Execution) scoring

Timely information

Within-day replanning

Timetable & 
rolling stock 
rescheduling 

Figure 4.1: MATSim execution of different information strategies and disposition 

timetables 

 

The initial plans are the basis which used by the passengers, when facing the disruption. 

The initial plans of all agents and the original railway timetable are the two inputs to the 

optimisation model (middle). Depending on whether considering retiming, rerouting, with 

train services fully or partially cancelled and the feasibility of rolling stock circulation, 

different disposition timetables are generated. Those are completely determined, including 

possible delays due to extra trains running. More details about timetable and rolling stock 

rescheduling model are introduced in Section 4.4. Both the initial plans of agents (from 

“Benchmark”) and the specific disposition timetable are as inputs to MATSim to simulate 

agents’ behaviours under the three information strategies.  
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For the No information (top-right) in MATSim, the agents’ initial plans are executed on 

the disposition timetable, for a single iteration (in figure, there is no replanning). During 

the disruption time, the agent will remain waiting at the stops in case the public transport 

service is cancelled in the specific disposition timetable implemented. When the 

disruption is recovered, MATSim will try to execute the initial plans of agents, as far as 

this is possible and compatible with the public transport services and/ or preferred 

starting/ ending time of activities. 

For the Ideal information (middle-right) in MATSim, the alternative route/ mode/ time/ 

activity choices are calculated by including them in the iterative process of MATSim (i.e. 

the blue box contains a replanning feedback mechanism). Agents can rely on their 

experiences from previous iterations to gain the ideally best solutions, which adapt the 

initial plans in case of public transport disruption.  

The Timely information (bottom-right) considers that agents have information, but only 

after disruption starts. Dobler and Nagel (2016) already point out that using an iterative 

approach to disseminate information results in problems, like illogical agent behaviour, 

which would be able to anticipate unforeseeable events. For instance, if a replanning 

approach is used, agents may start rerouting before disruption. The key module to solve 

this approach is a “within-day replanning” module, which is not reaching an equilibrium 

as in Ideal Information but rather computing the best response to the disruption, 

considering the available information, and not learning from experience.  

The utility of a plan for an entire day, and thereby an estimate of agents’ satisfaction in 

different information strategies, is computed by the scoring function Equation 4.1, as in 

Charypar and Nagel (2005). The score of a plan ,p ku  is the sum of all activity utilities 
iAu  

plus the sum of all travel (dis)utilities 
iTu  for all activities and trips: 

1 1

,

0 0
i i

N N

p k A T

i i

u u u
 

 

                                                                                                 (4.1) 

4.4 Timetable and rolling stock rescheduling  

4.4.1 Problem description 

Dispatchers usually reschedule the impacted vehicles to decrease the negative impacts of 

disruption to passengers as much as possible. The most common strategy is timetable 

rescheduling, including retiming, reordering, rerouting, partial or full cancellation of 

services, see Cacchiani et al. (2014). In addition, the rolling stock circulation should be 

checked to ensure the feasibility of the disposition timetable. Feasible rolling stock 
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circulation means that vehicles are available to run the specific services at the right 

moment and right stations. In this chapter, we consider an optimisation model to solve the 

timetable rescheduling problem with the feasibility of rolling stock circulation in a 

railway hub that has alternative train routes to be used in case of disruption.  

The optimisation model is to get the disposition timetable, given the input of a railway 

network, an original timetable, disruption routes and durations, the operation parameters 

(train running time, minimum headway time) and the origins and destinations of on-board 

passengers. If some disrupted train services are rerouted to an alternative railway corridor, 

the original train services on this corridor may also be affected. Especially in the case that 

this alternative corridor has limited capacity of train services, the optimisation model 

should decide which train services have the priority to be kept and the order of train 

services. Because of rerouting, some train services unavoidably suffer delays. Those can 

be computed on beforehand, by considering the available capacity, headway constraints, 

and delay propagation phenomena.  

The objective of the optimisation model is to minimise the travel time of passengers. 

We assume that train dispatchers have limited knowledge about passengers’ dynamic 

choices about the disposition timetable in disruption and they expect that passengers will 

insist to their original choices. In other terms, passengers are assumed to keep using the 

same train service (i.e. a specific train with defined original, terminal stations and 

departure time) as their initial plans unless this train service is cancelled. If a train service 

is rerouted or retimed, passengers will still use this service and may suffer the same delay 

as this train. Otherwise, passengers on the cancelled train service are considered losing 

their direct trips with the penalty of unlimited delay. Passengers’ transfers and passenger 

reassignment are not considered in this timetable rescheduling phase since we consider 

them in more detail in the agent-based simulation model (see Section 4.3). 

In a given disruption with fixed time and train route, different disposition timetables can 

be generated depending on whether rerouting is applied, whether the train cancellation is 

full or partial and whether rolling stock feasibility are considered. Figure 4.2 shows the 

examples of the original and possible disrupted train services on the “Route 1” between 

station A and B during the disruption time. The subfigure (a) shows the original train 

schedules between these two stations, some train services run on the “Route 1” while the 

others on the “Route 2”. These two train routes can be used as alternative to each other 

during the time of disruption. Both the two routes can offer train services in two 

directions (either from left to right or from right to left). The thick line shows the 

differences of train services compared to the original one, while the thin line means the 

train services remain the same. The dashed and solid line explains the cancelled and 

running train services correspondingly. 

The subfigures (b) and (c) show the schedules without considering the rerouting 

strategies. All the disrupted train services between station A and B via “Route 1” are 
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cancelled. As a comparison, the subfigure (d) shows the idea to reroute the disrupted train 

services from “Route 1” to “Route 2”. Especially in case that “Route 2” has limited 

capacity, the optimisation model is used to calculate which train services can be rerouted 

and the delays of train services. For instance, the subfigures (e) and (f) show the rerouting 

schedules. If some trains can be rerouted, the whole train services can be kept from the 

train’s start and end station (thick solid line). If not, at least the train services between 

station A and B (thick dashed line) will be cancelled. 

 

Disruption 
start time

Disruption 
end time

Station A Station B

( a ) Original timetable
 (No disruption)

Route 1 

Route 2 

Station A Station B

( b )  No rerouting,
 fully cancelled

Route 1 

Route 2 

Disruption 
start time

Disruption 
end time

Station A Station B

( c ) No rerouting, 
partially cancelled & rolling stock

Station A Station B

( d ) Idea of rerouting 

Station A Station B

( e ) Rerouting,
 fully cancelled

delay

delay

Station A Station B

( f ) Rerouting, 
partially cancelled & rolling stock

delay

delay

delay

delay

Route 1 

Route 2 

Figure 4.2: Explanations of different schedules 

 

The differences between “full cancellation” and “partial cancellation” depend on whether 

the trains serving the stations beyond station A or station B are cancelled or not. The 

subfigures (b) and (e) are examples of the fully cancellation (thick dashed line). If the 

train services between station A and B are cancelled, the whole train services from origin 

to destination are completely cancelled. In this case, the rolling stock circulation is 

relatively simple; the services will wait at the terminal stations, and start running only 

when the disruption area can be passed. The practitioners often use such an action since it 

is easy to determine, but it has a large impact to services offered to passengers. The 

subfigures (c) and (f) illustrate the partial cancellation. The train services beyond either 



Chapter 4. Information strategies, timetable, rolling stock rescheduling, public transport disruptions 

81 

station A or station B will be kept (thin solid line). In particularly, some train services 

beyond either station A or station B are also cancelled because of considering the 

feasibility of rolling stock circulation (green line). In such case, the rolling stock 

circulation must be carefully designed, so that the disposition timetable is feasible in 

reality, by using vehicles which are available at the stations where they start. Such an 

approach is much more complex to setup and operationalize, and its evaluation in an 

agent-based model is a main contribution of the current chapter. 

4.4.2 Model formulation 

To determine the optimal combination of different rescheduling measurements and 

strategies, we propose an optimisation model able to compute a new disposition timetable, 

based on a given planned timetable, and a known disruption. The problem has a 

disjunctive programming structure, as order of trains on infrastructure elements can be 

represented by binary decisions (either train A before train B; or vice versa). The mixed 

integer programming (MIP) optimisation model proposed captures well both binary 

decisions as well as continuous variables and their interrelation. The key optimisation 

variable is a binary variable indicating the train sequence; other choices relate to the 

precise timing, the route chosen, and the possible cancellation of services (as standard, see 

Pacciarelli, 2013 and Cacchiani et al., 2014). 

An overview of all notation used is provided (Table 4.1). We define the direct directed 

link between two adjacent railway stations as the “segment”. The route of a train is 

composed of multiple adjacent segments.  

 

Table 4.1: Notation and terminology 

Symbol  Explanation 

Element and Collection 

s S  Station/ station set 

k K   Segment/ segment set 

( ),s k
( )s k

 Origin/ destination station of segment k  

r R  Route/ route set 

rK  Segment set of route r  

f  Train 

fr  Original route of train f  

fR  Possible alternative route (including the original one) set of train f  

p  Passenger 
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pf  Boarding train of passenger p  

pR  Alternative route set of passenger p  

pS  Alternative destination station set of passenger p  

u  Disruption 

uk  Segment of disruption u  

Parameters 

kH  Minimum headway of segment k  

k

fT  Running time of train f  at segment k  

',k k

fW  Minimum required dwell time at the station between segment k  and 
'k  

'( , )rg k k  Binary value, 1 indicates that 'k  is the successive segment of k , 0 

otherwise 

f  Binary value, 1 indicates the train f  is allowed to be canceled, 0 

otherwise 

,k k

f fe l  Planned entering/ leaving time of train f at segment k  

f  Delay tolerance of train f  

pa  Desired arrival time of passenger p  

p  Cancellation penalty of passenger p  

,u utS tE  Starting/ ending time of disruption u  

Decision variables 

pd  Delay time of passenger p  

r

fx  Binary variable, 1 indicates train f  selects route r , 0 otherwise 

,k k

f fe l  Entering/ leaving time of train f  at segment k  
u

fb  Binary variable, 1 indicates train f  runs through the segment uk  

before disruption u  happens, 0 otherwise 

',

k

f f
y  Binary variable, 1 indicates train f  runs through segment k  earlier 

than train 
'f , 0 otherwise 

 

The objective function in Equation 4.2 is minimising the total delay pd of passengers. If a 

passenger has no available direct trip (the train is cancelled or the rerouted train is no 

more applicable for the passenger), the corresponding delay will be set to a given penalty 

value (Equation 4.11). Passengers’ transfer penalty is neglected in this model, being only 

considered in the simulation. 

min p

p

d                                                                                                                   (4.2) 
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The objective is subject to the following constraints. Equation 4.3 describes how each 

train f  can select at most one route in its candidate set fR ; or none, if cancelled. 

1
f

r

f

r R

x f


   
                                                    (4.3) 

Equation 4.4 sets the difference between entering time and leaving time at segment k  to 

be equal to the given running time of train f . 

, ,k k k
rf f f fl e T f r R k K    
 

                       (4.4) 

Equation 4.5 models the dwell time of train f  at a station (the difference of its entering 

time and its leaving time) as greater or equal than minimum required dwell time, if the 

route r  is selected, 0 otherwise. 

' ' , ' ', , , : ( , ) 1k k k k r
r rf f f f fe l W x f r R k k K g k k      

 
         (4.5) 

Equation 4.6 introduces the train order variable ',

k

f f
y  describing whether train f  enters 

segment k  before train 
'f , or vice versa, later used to determine which of the big-M 

headway constraint (4.7) or (4.8) applies  

' '

'

, ,
1 , ,k k

f f f f
y y k K f f   

 
                   (4.6) 

Equations 4.7 and 4.8 impose headway constraints when entering and leaving segments, 

respectively, by means of a standard big-M structure. The headway constraints are valid if 

(a) the train f  enters segment k  before train 
'f and (b) the routes selected by train f  and 

train 
'f  have an overlapped segment k . 

'

' ' '

'
' '

'

,
: :

(3 ) , ,
f r

f r

k r r k k

f f kf f f f
r R k K r R k K

y x x M e e H k K f f
   

           
                (4.7) 

'

' ' '

'
' '

'

,
: :

(3 ) , ,
f r

f r

k r r k k

f f kf f f f
r R k K r R k K

y x x M l l H k K f f
   

           
           (4.8) 

Equations 4.9 and 4.10 calculate the passenger delay as used in the agent-based 

simulation. When train pf , with passenger p , selects route r , the passenger’s delay is 

the difference of actual and desired arrival time .  

(1 ) , , : ( )
p p

r k p p

p f f p r
d x M l a p r R k K s k S


        

 
             (4.9) 

(1 ) , , : ( )
p p

r k p p

p f f p r
d x M l a p r R k K s k S


        

 
              (4.10) 
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Equation 4.11 introduces the passenger cancellation penalty, equal to p , in case no 

candidate routes are selected for a passenger. 

(1 )
p

p

r

p f p

r R

d x p


   
 

               (4.11) 

Equations 4.12 and 4.13 identify the disrupted trains as those (a) selecting any of the route 

r  that contains segment uk , and (b) running through segment uk  after disruption. 

Disrupted trains can enter the disrupted segment only after the disruption ends, or before 

it starts. 

:

(1 ) ,u

f u r

k u r

f f f u

r R k K

e b x M tE u f
 

       
                                   (4.12) 

:

(2 ) ,u

f u r

k u r

f f f u

r R k K

l b x M tS u f
 

       
                               (4.13) 

Equations 4.14 and 4.15 describe the train delay tolerance f , providing an upper bound 

to the admissible delays of trains. A train is cancelled if its delay is more than the delay 

tolerance. 

, ,k k

f f f f rl l f r R k K    
 

               (4.14) 

, ,k k

f f f re e f r R k K   
 

                (4.15) 

Equation 4.16 forbids the cancellation of train services in specific train routes, indicated 

by parameter f . 

1 : 0
f

r

f f

r R

x f 


    
                 (4.16) 

The rolling stock circulation is enforced as post processing to the model. Two trains with 

compatible destination and origin station (after partial cancellation), identical train type, 

and sufficient short-turn time can be assigned as consecutive trains in the rolling stock 

circulation. A first-come-first-served principle constrains further the assignment. A train 

without available rolling stock assigned is cancelled. 

4.5 Test case 

We perform a large set of experiments, based on calibrated initial demand of Zürich 

presented in Rieser-Schuessler et al. (2016). The public transport integration is 

implemented in the Zürich network, i.e. any multimodal trip between origin and 
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destination is available to public transport users without extra charges. The total number 

of agents (public transport and private users) is 15,286, i.e. 1% of the real Zürich 

population. Physically three railway routes, with comparable running time, connect the 

two major station Zurich HB (400,000 passenger trips/ day) to Zürich Oerlikon (80,000 

passenger trips/ day) (Figure 4.3): one passing via Zürich Hardbrücke (green dashed line), 

one passing via Zürich Wipkingen (red dashed line) and one direct tunnel route (thick 

blue line). The green and red dashed lines in Figure 4.3 show the assumed rail disruption: 

two out of three railway routes are disrupted and unavailable during the afternoon peak 

hours, between 16 and 19 o’clock. All long-distance train service can be rerouted on the 

available undisrupted route; local S-bahn services are kept if a feasible rolling stock 

circulation can be found.  

 

Zürich HB

Zürich Oerlikon

Zürich Hardbrücke

Zürich Wipkingen

Zürich Wiedikon

Zürich 

Stadelhofen

Zürich 

Altstetten

West
East

South

North

*1

*2

*3

Direct tunnel Route

Figure 4.3: Zürich scenario 

 

All instances are solved on a personal computer with Intel Core i7-7700 CPU, 16 GB 

RAM. The instances are solved as MIP by Gurobi 8.1.1 with default settings. The optimal 

solution is found within less than 6 seconds. The evaluation of passenger choices in 

MATSim, for the Zürich multi-modal network, takes less than 60 seconds for No 

information and Timely information. The total computation time is thus feasible for real-

time reaction to unexpected events. In case of planned disruptions, where much longer 
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time for action is available, the results of Ideal information can be simulated in about 6 

hours, due to the iterative computation to reach user equilibrium.  

4.6 Results and discussion 

4.6.1 Schedules 

Table 4.2 shows the differences of train services in the different disposition timetables 

varying with retiming, rerouting, with services fully or partially cancelled, which then 

refer to an optimised, feasible rolling stock circulation. The percentage shows the 

proportion of rescheduled train services to the total number of vehicles of each railway 

route. The average delay refers to the arrival delays on each station of the rescheduled 

train services of each railway route. 

Due to applying the “rerouting” rescheduling strategy, 59.5% of trains can still run on the 

alternative railway route (the direct tunnel route). This results each train service originally 

operated on the direct tunnel route suffer the delay (3.3 min on average). With the setting 

of delay tolerance (30 min) in the optimisation model, some original train services are 

kept at the end of disruption: 4.4% train services of the railway route via Zürich 

Hardbrücke and 5.4% of that via Zürich Wipkingen respectively cause 8.7 min and 3.7 

min extra delays on average. The average over all traffic is 3.6 minutes of delay.  

Considering the feasibility of rolling stock circulation, 1.5% of the train services via 

Zürich Hardbrücke and 2.7% of that via Zürich Wipkingen must be fully cancelled as no 

vehicle could be made available in the right moment, at the right place, to enable a partial 

cancellation.  

4.6.2 Passenger delays and scores 

We classify the agents into three groups: “disruption affected agents”, “rerouting affected 

agents” and “multiply affected agents” as they are affected in substantially different way 

from the disruption, information, reschedule. The “disruption affected agents” are those 

who wanted to take the (disrupted) train services passing Zürich HB and Zürich Oerlikon 

via the disrupted railway routes (via either Zürich Wipkingen or Zürich Hardbrücke) 

between 16 and 19 o’clock. The “rerouting affected agents” are those who intended to 

take the (rerouted, rescheduled, or cancelled) train services passing Zürich HB and Zürich 

Oerlikon via the direct tunnel route during the defined disruption time. The “multiply 

affected agents” aggregate agents using both the disrupted railway routes and the direct 

tunnel route: either because of multiple trips, or because they need to transfer in one of the 
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two stations to a service using the other line. In our test case, the size of those groups is 

respectively 125 agents, 56 agents and 30 agents.  

Table 4.3 shows the average delay of the directly affected trip and average score of the 

whole day’s trips and activities (based on Equation 4.1) of these three groups of agents 

(group of columns), with different settings of disposition timetables (rows) and 

information strategies (columns), compared to “Benchmark” (0 min delay and 100% 

score) which represents the situation without disruption. For instance, -300% average 

score means the score is 3 times worse than the “Benchmark” calculated by Equation 4.1. 

We colour the cells of Table 4.3 for better readability. Here we focus on explaining the 

delays since the score shows similar trends.  

The “disruption affected agents” can substantially decrease their delay, if information will 

be disseminated, saving on average 93.6 min (no information  timely information) and 

further 31.3 min if ideal information will be provided. Especially with partial cancellation 

and rerouting, having ideal information reduces delay to a minimal amount of just 2 min. 

For ideal information, partial cancellation brings on average an improvement of 54%, 

while rerouting 32%; in other terms, having a better rolling stock management can be as 

important, if not more important than rerouting trains elsewhere in the network. For timely 

information, the benefit of partial cancellation stays well above 50%, while the benefit of 

rerouting decreases to around 15%. The delay of the agents who have no information 

reports limited improvement from rerouting, and no improvement from partial 

cancellation, as the agents are unable to find an alternative to bypass for the disrupted 

area.  

The “multiply affected agents” are those getting the largest benefits, if operating 

companies can keep the services beyond the affected stations in disrupted railway routes, 

saving up to 110 min in both no information and timely information. In case of partial 

cancellation, the benefit of information is rather limited, with 5 minutes between no 

information and timely information, and 5 minutes further to ideal information. Due to the 

complexity of their trip, rerouting services does not improve too much their delay.  

The “rerouting affected agents” are untouched by the disruption, unless rerouting takes 

place. In such case, they suffer 2.7 min more delay due to the “rerouting” strategy of the 

disrupted train services. This result matches the average train delay (3.3 min) of the direct 

tunnel route’s train services; in other terms, the agents’ delay is just related to train delay, 

and information plays a minor role. If they would receive ideal information, this 

minimum delay can be further reduced to a negligible 1.2 minutes. The delay does not 

depend on the timely information because their preferred path remains feasible and 

available.  

Aggregating over all agents, the trade-off arises, if it is preferable to limit the disruption to 

the “disruption affected agents” and “multiply affected agents”, which suffer large delays, 
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or rather reduce their delay at the expense of a small delay for passengers who would be 

virtually untouched by the disruption, like the “rerouting affected agents”. The net 

reduction of delay strongly suggests the second choice is better for the entire system 

provided that the trains can be rerouted, and the circulation is feasible for the operator. 

Concerning the optimisation of rolling stock circulation, we can see from the table that the 

impact of a suboptimal, straightforward overreaction in terms of train cancellations, in 

case of timely information, can increase the effect of the disruption by more than three 

times (i.e. 14.1 minutes to 51.5 minutes on average, 37.5 minutes saving). This gap is 

larger than what is gained by the availability ahead of operations of complete information 

(which is in the order of magnitude of 11 minutes).  

Regarding scores, a similar trend is found, with a reduction of disutility to a less than a 

fifth, when changing from no rerouting, full cancellation; to rerouting, partial 

cancellation, for timely information. The availability of ideal information is a further 

reduction to a fifth, but much smaller in absolute improvement (40% against 220% from 

optimised rolling stock circulation). 
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Table 4.2: Percentage of rescheduled trains and average train delays in the disposition timetables 

Rescheduling 

strategies 

Cancelled, 

rolling 

stock 

Railway route via Zürich 

Hardbrücke 
Avg. 

train 

delay 

(min) 

Railway route via Zürich Wipkingen 
Avg. 

train 

delay 

(min) 

Direct  

tunnel  

route 

Avg. 

train 

delay 

(min) 
Fully 

cancelled 

Partially 

cancelled 
Retime 

Fully 

cancelled 

Partially 

cancelled 
Rerouted Retime Retime 

No rerouting 
Fully 100% 0 0 

0 
100% 0 0 0 

0 
0 

0 
Partially 1.5% 98.5% 0 62.2% 37.8% 0 0 0 

Rerouting 
Fully 95.6% 0 4.4% 

8.7 
35.1% 0 59.5% 5.4% 

3.7 
100% 

3.3 
Partially 1.5% 94.1% 4.4% 2.7% 32.4% 59.5% 5.4% 100% 

Note: Avg. = average. 
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Table 4.3: Agents’ average delay (minutes) and average score (%) due to disposition timetables and information strategies 

Rescheduling 

strategies 

Cancelled, 

rolling 

stock 

Disruption affected agents 

(125) 

Rerouting affected agents 

(56) 

Multiply affected agents 

(30) 
Average, all agents (211) 

no info 
ideal 

info 

timely 

info 
no info 

ideal 

info 

timely 

info 
no info 

ideal 

info 

timely 

info 
no info 

ideal 

info 

timely 

info 

Agents’ average delay of the directly affected trip (minutes) 

No rerouting 
Fully  137.2 16.1 59.4 0 0 0 130.3 11.2 114.8 99.8 11.1 51.5 

Partially 137.2 5.4 28.5 0 0 0 19.0 7.1 15.0 84.0 4.2 19.0 

Rerouting 
Fully  128.8 8.9 49.8 2.7 1.2 2.7 121.0 9.2 108.2 94.2 6.9 45.6 

Partially 128.8 2.1 20.0 2.7 1.2 2.7 12.5 6.4 10.5 78.8 2.5 14.1 

Average, all schedules 133.0 8.1 39.4 1.4 0.6 1.4 70.7 8.5 62.1 89.2 6.2 32.5 

Agents’ average score of the whole day’s trips and activities (%) 

No rerouting 
Fully  -943.6 -76.8 -337.1 0 0 0 -541.2 -34.3 -528.5 -636.0 -50.4 -274.8 

Partially -943.6 -32.9 -107.8 0 0 0 -104.5 -18.6 -56.0 -573.9 -22.1 -71.8 

Rerouting 
Fully  -891.8 -46.8 -297.5 -10.7 -5.8 -10.7 -528.9 -24.0 -524.2 -606.4 -32.7 -253.6 

Partially -891.8 -14.2 -72.2 -10.7 -5.8 -13.7 -62.5 -12.2 -40.1 -540.0 -11.7 -52.1 

Average, all schedules -917.7 -42.7 -203.7 -5.4 -2.9 -6.1 -309.3 -22.3 -287.2 -589.1 -29.2 -163.1 

Note: info = information. 
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4.7 Conclusions 

We consider passengers’ delays and scores to quantify and improve their (dis)satisfaction 

in public transport disruption in a multi-modal network, under different disposition 

timetables and information strategies. The disposition timetables vary by the actions 

required by the operating companies: retiming, rerouting, full/ partial cancellation of train 

services, all based on a feasible and optimised rolling stock circulation. Compared to a 

benchmark without disruption, three information strategies are defined in public transport 

disruption: No information, Ideal information and Timely information. In each 

information strategy, passengers’ behaviours are assumed: waiting and keeping initial 

plan, multiple choices (e.g. transport mode, route and activity changes), and within-day 

route choice. We use an agent-based simulation platform (MATSim) to model different 

transport modes, in which agents’ activities, trips and detail choices for a whole day are 

simulated in detail. We optimise the schedule of rolling stock with regards to feasibility 

and approximated passenger delay. This combination of agent-based simulation and 

optimisation model is fast enough to be practically applicable, even for a large multi-

modal network, for both planned and unplanned disruptions. 

From the results of a test case in Zürich, there is capacity for many trains to be kept 

running despite the disruption on an alternative railway route; this allows running more 

trains against a minor delay (3.6 min on average, including rerouted and original train 

services). The challenges related to rolling stock still require a minor amount of train 

services to be cancelled. Our results show that the information strategy is a major driver 

of delays: the earlier the agents can receive the disposition timetable, the smaller the delay 

they will suffer in disruption. Being able to partially cancel trains based on a feasible 

rolling stock circulation is much better for passengers than full cancellation, especially for 

passengers crossing the disrupted area multiple times. This might require the possibility to 

determine automatically optimised circulation plans, and multiple adjustment in the 

rescheduling process of the company, for additional operation complexity. Last, train 

rerouting is able to trade-off between a large delay for “disruption affected agents” and a 

slight delay (2.7 min on average) for agents on the alternative route, assuming agents have 

enough information to benefit from this change of plans. At system level, the impact of a 

disruption can be reduced substantially in this way, with a utility impact of the disruption 

reduced to a fifth only, of the original negative impact, assuming the realistic timely 

information strategy.  

The current assumptions about information strategies might lead to overestimated benefits 

of information, as all agents have availability of information at the beginning of the 

disruption, in the most realistic scenario. In reality, other information strategies might 

disseminate information about the disruption only when reaching affected stations; or the 

agents would not know at any moment the precise end time of the disruption. 
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Furthermore, the experiments clarified how different group of agents suffer in different 

ways from disruption, rescheduling, information; the heterogeneity within each of those 

groups should be further analysed.  
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Chapter 5  

Incomplete information in public 
transport delays 

This chapter is based on the following article. 

Leng, N. and Corman, F. (2020) The role of incomplete information to passengers in 

public transport delays, 2020 INFORMS Annual Meeting. (One of winning papers of the 

2020 Railway Application Section (RAS) Student Paper Contest) 

5.1 Introduction 

Delays often occur in the operational business of public transit and usually make the 

scheduled timetable infeasible due to, e.g. signalling problems, late arrival of crew, 

and construction work on the tracks (Bauer and Schöbel, 2014). Quality of service in 

the public transport network requires that situations of delays, disturbances or failures 

are handled appropriately, trying to reduce the inconvenience caused to passengers 

despite the emergence of delays (Jespersen-Groth et al., 2009). To improve the 

quality of service of public transport, operating companies apply traffic management 

to adjust services to customers in case of delays and disseminate information on the 

adjusted operations to passengers (Toletti, 2018). This information is the bridge to 

ensure the individual passengers can cope with public transport delays. In an ideal 

situation, immediate and complete information (Corman, 2020) refers to a strict 

assumption that all the delays and the adjusted operations that have occurred and will 

occur in the network can be disseminated precisely to passengers without any 

discrepancy. However, the information can be incomplete in reality due to the 

uncertainty of operation delays, the delay that information dissemination requires, 

general limitations of information channels, the habits of passengers checking the 

information about delays only to a limited extent, etc.  
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The major goal in this chapter is to study the effects of incomplete information to 

passengers’ satisfaction in case of public transport delays, i.e. how to model 

passengers’ behaviours under different incomplete information cases and quantify 

passengers’ satisfaction. This problem is interesting and challenging to solve. First, 

the incomplete information refers to different aspects: a delayed information 

availability to passengers, limited information contents about specific public transport 

services at specific stations within specific time horizon, etc. For instance, Ben-Elia 

and Avineri (2015) review the literature about inaccurate information under 

conditions of uncertainty, including information either before departure or once on 

the move. Second, passengers’ belief influences their behaviours in the case of 

incomplete information. The belief is what passengers’ expect about the future 

unknown operations based on the known information. For instance, Arentze and 

Timmermans (2005) model passengers’ belief about activity locations based on some 

limited information. Third, passengers’ route choices in the case of incomplete 

information can be different from that with the assumption of complete information. 

Parvaneh et al. (2014) mention that passengers are not always aware of all available 

alternatives, i.e. they have the uncertain information and they may update their 

beliefs.  

Passengers’ chosen route in case of public transport delays has been studied in 

literature (e.g. Corman et al., 2017). This is essentially calculated by a kind of graph-

based route choice, based on the timetable of adjusted operations (i.e. disposition 

timetable). We propose that passengers’ route choices in case of incomplete 

information can also be described based on a more complex graph, i.e. so-called 

multi-layer time-space-event graph. Different layers of this graph are able to depict 

the details of incomplete information, passengers’ belief about future public transport 

services, and passengers’ thinking about their route choices. Passengers’ thinking 

refers to an integral mental model, representing the public transport operations in 

passengers’ mind, composed of both the provided information and their belief. Due to 

the deviations between incomplete information and passengers’ belief, the possible 

route choices in passengers’ thinking can also deviate from the actual alternatives in 

reality. This matches the typical multi-agent structure Belief-Desire-Intention (BDI), 

such as Mnif et al., 2017. We show that this proposed multi-layer time-event-graph 

method provides a valuable understanding of the effects of incomplete information 

and passengers’ belief on their route choices and satisfaction in case of public 

transport delays.  

The major contributions of this chapter are as follows:  

(1) We propose a novel multi-layer time-event-graph method to describe the 

incomplete information (e.g. information issue time, duration, information 

contents) and belief (internal, own perspective of future operations, based on 
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e.g. schedule or delay belief) for heterogeneous passengers, to evaluate the 

effects to passengers’ behaviours on public transport network in case of delays. 

(2) The proposed multi-layer time-event-graph method and graph-based route 

choice are described with rigorous mathematical notations and formulas.  

(3) The evaluation of different incomplete information cases is on a realistic case 

study in Dutch railway network.  

This chapter is structured as follows. Section 5.2 proposes a new method, named 

“multi-layer time-space-event graph” to present passengers’ information and belief. 

The graph-based passenger route choice is explained. Section 5.3 explains the set-up 

of a Dutch railway case study and analyses the results. In Section 5.4, conclusions 

and future work are presented.  

5.2 Incomplete information and passenger route 

choice 

In this section, we discuss the details of incomplete information in the process of 

managing public transport delays, and explain the main aspects of passengers’ belief 

in case of incomplete information. We also propose a novel method, named multi-

layer time-space-event graph, to illustrate passengers’ information and belief 

regarding to the original timetable and disposition timetable. The new graph-based 

passenger route choice is explained. We apply this to railway, but it is applicable to 

any public transport network as far as the public transport services can be described 

as time-space schedules.  

5.2.1 Incomplete information and passengers’ belief 

This subsection introduces concepts relevant to the present research. In general, 

public transport passengers plan their journeys from origin to destination based on the 

timetable, a time-space schedule of planned public transport services. The original 

timetable refers to the long-term planned and published schedule, based on which 

passengers usually regularly plan their travel. However, delays often occur in daily 

public transport operation, resulting in deviations of public transport services 

compared to original timetable, temporally or spatially. Delays can be caused either 

by external disturbances or by the propagation of delays from one train/ bus to the 

other, from one station to the other (e.g. the next or connecting) throughout the public 

transport network. Delay management focuses on the impact of rescheduling 

decisions on the quality of service perceived by the passengers. A disposition 

timetable is generated in the process of delay management by operating companies, 
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which is a new updated schedule of public transport services taking into account the 

delays. This timetable is likely to be different from the original one in the aspects of 

departure or arrival time at some stations, stops, or even the routes of public transport 

services.  

Passengers’ information represents how much they definitely know about the 

published timetable (e.g. original, disposition); this information generated and 

disseminated by the operating companies. The information can be complete or 

incomplete. The completeness is determined by the following factors from passengers’ 

perspective (see the framework of information availability in Leng and Corman, 2020). 

The first factor is what the information is (i.e. the features of information itself), 

including information content (e.g. all trains’ time at all stations, or one specific 

train’s operation at some stations) and time horizon (the duration of information, e.g. 

for the whole day, or for the next one hour). Another is when and where passengers 

receive this information (e.g. before their planned departure, or at the moment they 

arrive at the departure station). For instance, passengers can have complete 

information of the original timetable, including all the departure and arrival time at all 

the stations of all public transport services in the normal operations. In case of public 

transport delays, passengers might only have incomplete information of the 

disposition timetable, thus they partially know the operation time of some services at 

some stations. In some cases, passengers cannot be informed early enough, either the 

disposition timetable is not disseminated fast enough or passengers do not check the 

published information in time. In some other cases, the disseminated information only 

contains limited time horizon of disposition timetable, because the operations may 

change in the future. These cases are considered as incomplete information in 

passenger-oriented delay management, in which passengers are not informed fully 

and timely about the delays that occur and will occur, and the new generated 

disposition timetable in the network. 

In case of incomplete information, passengers have to make an expectation of the 

public transport operations (e.g. the departing or arrival time of some services at some 

stations), extending the available information content to future times (beyond the 

information time horizon). Passengers’ belief on delay propagation, shortly called 

passengers’ belief, can be used to define passengers’ expectation or inference about 

the future unknown operations based on information known to them. Passengers’ 

belief might be correct or not. The correctness depends on whether it matches with 

the actual operations in reality. In general, passengers’ belief is based on how 

passengers interpret the available information, what they expect about the delays and 

consequences (e.g. propagation of delays or delays fading due to buffer time of the 

original timetable), as well as how they foresee the possible public transport 

operations beyond the time horizon in case of a geographical limitation for which 

they have information.  
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In summary, the information represents the definite delays or disposition timetable 

from the information start time (i.e. the moment that passengers know information) 

within a given information time horizon (i.e. the time length between the start and 

end of the available information). The belief represents what passengers believe about 

the delays and the public transport operations from the information end time (i.e. the 

moment that passengers start to have no available information) to the time passengers 

might ultimately reach their destination. It is a belief, as those operations did not 

happen yet, and information is unavailable. Based on both the information and belief, 

we assume each passenger makes a mental model, representing comprehensively 

about the public transport operations (especially the possible services related to their 

journey) in the case of delays, shortly called “passengers’ thinking” in this chapter. In 

each passenger’s thinking, his/ her possible route choices are described by a set of 

“considered paths” (one, or usually more than one) linking the origin to destination, 

possibly including transfers at intermediate stations. Each “considered path” (Gentile 

and Noekel, 2016) has an expected utility (e.g. travel time), not definitely known in 

general, associated with passengers’ satisfaction of this specific path. With the 

assumption that passengers are rational, they choose the path of the maximum utility 

(e.g. the least travel time) in their thinking/ mental model.  

However, due to information’s incompleteness and belief’s incorrectness, passengers’ 

thinking might deviate from the reality, in the case of delays. In other terms, 

passengers’ incomplete information and passengers’ belief on delay propagation 

might affect their thinking about route choices, and therefore affect their actual route 

choice in reality. For instance, passengers might not know all the possible alternative 

paths (i.e. the set of “considered paths” is incomplete and does not include all the 

possibilities); or the considered paths will result in some misleading deviations (e.g. 

arrival time) between passengers’ thinking and the reality. Especially for passengers 

who need transfers at intermediate stations, an inaccurate time estimation may 

mislead passengers missing some feasible connections (i.e. the feeding train/ bus 

arrives later than the theoretically connected train/ bus departs). Therefore, 

passengers’ chosen route with the “best” utility in their thinking might not always be 

the optimal one in reality.  

5.2.2 Multi-layer time-space-event graph 

In this subsection, we propose a novel method, named multi-layer time-space-event 

graph, to indicate passengers’ information of original and disposition timetable, 

passengers’ belief on delay propagation, their thinking of “considered paths” in a 

time-space network, and the possible deviations between passengers’ thinking and 

reality. We use Figure 5.1 (a railway network) as an example to explain this new 

method, which can also be applied to other public transport similarly. 
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There are five layers in the multi-layer time-space-event graph, which can be 

extended based on the schedule-based structure. The layers are all time-space-event 

graphs, as follows: 

(1) Original timetable: the time and space (or station) of the off-line schedule of 

train operations; 

(2) Disposition timetable: the time and space of on-line train operations; 

(3) Information layer: when, where, and which train’s operation does the 

information cover with full precision; 

(4) Passengers’ thinking layer: generated based on the first three layers, to describe 

at each time and each station, what is passengers’ thinking of each train’s 

operation; 

(5) Passengers’ actual route choice in reality: based on the forth layer, the shortest 

path is chosen, which determines the actual travel. 

The first two layers are the same for each passenger; but the last three layers are for 

each passenger depending on their departure time, the time of each train at each 

station. 

 

(b) Original timetable

A B
C

DA B
C

D

Train 1

Train 2

Train 3

Train 4

Train 5

(a) Example: trains

A B
C

D

(c) Disposition timetale

Figure 5.1: Example: railway network, original timetable and disposition timetable 

 

For the details, in Figure 5.1, the example railway network consists of four stations 

(i.e. station A, B, C, D), connected by two physical routes from station A to station D: 

one physical route is A-B-D, the other is A-B-C-D. Figure 5.1(a) shows five example 

trains with different stop patterns, different line styles meaning different trains: Train 



Chapter 5. Incomplete information in public transport delays 

99 

1 (loosely dashed line) is A-B-D, Train 2 (dotted line) is A-B-C-D, Train 3 (solid 

line) is B-D, Train 4 (dashed line) is A-B, and Train 5 (dash-dot line) is B-D. 

The graph in the subfigures (b) and (c) in Figure 5.1 reports train operations in a time 

(y-axis) – space (x-axis) network from station A to station D. The grey lines show the 

operations of the example five trains in the original timetable, see Figure 5.1(b); 

while the black lines show the five trains’ corresponding operations in an example 

disposition timetable in the case of delays, see Figure 5.1(c).  

We assume one passenger plans to travel from the origin (station A) to destination 

(station D) with a given planned departure time (the orange node). In the case of “No 

delay”, passengers know all the details of the original timetable and choose the fastest 

route to reach destination. The red line in the Figure 5.2 shows this passenger’s initial 

plan, choosing Train 2 from station A to station B, and then transferring to Train 3 

until station D.  

 

  No delay 

A B
C

D

Planned departure

Transfer

Original Timetable

 

Figure 5.2: Passenger’s route choice in case of “No delay” 

 

In the case of delays, the green area in Figure 5.3 indicate the set of events (e.g. 

trains’ departure, arriving) in time and space for which information is fully available 

to passengers. X-axis describes which stations have available information, while y-

axis shows for how long the information is available. The green and red nodes 

describe the start and end time of available information, respectively. We assume that 
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the operating companies could release the disposition timetable via the media 

channels (e.g. mobile device or station display) immediately after train delays are 

detected. That means the start time (the green node) of available information depends 

on when passengers start to check the information. The time horizon of available 

information could be shorter or longer because the disposition timetable may change 

as consequence of successive delays. For instance, Figure 5.3 show the “infinite” 

available information, while the following Figure 5.6 and Figure 5.7 have a given end 

time (red node) of information.  

 

(a)  Perfect-infinite Info  

A B
C

D

(b)  On-route-infinite Info  

A B
C

D

Disposition Timetable InformationOriginal Timetable

Planned departure Info start time Info end time

Figure 5.3: Explanation of information layer 

 

The Figure 5.3(a) show the instance of “Perfect information”, meaning passengers 

perfectly know train delays and disposition timetable (i.e. all trains’ departure and 

arrival time at all the stations throughout the whole network) within information’s 

start and end time. This “Perfect information” may happen to the frequent users of 

mobile channels, who may often check the information about train delays and have a 

higher chance to know comprehensively the details of disposition timetable (i.e. 

trains’ arrival and departure). Especially, the “Perfect-infinite information”, Figure 

5.3(a), is the ideal example that passengers are informed of all the train delays that 

will occur in the network until their destination. With “Perfect information”, the 

green area has always the shape of rectangle within a given time length of the 
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provided information. The start time of information is the same as passengers’ 

planned departure time, meaning the green node overlaps with the orange node.  

In contrast, the Figure 5.3(b) show the instance of “On-route information”, in which 

passengers could be aware of delays only at the moment they arrive at specific 

stations (i.e. their planned departure station and the possible transfer stations) and 

partially know the rescheduled train services of disposition timetable related to these 

stations (e.g. depart from, or stop at) within the given information time horizon. This 

“On-route information” may happen to some passengers who might not check the 

mobile channels very frequently, and rely on the information displayed at train 

stations. With “On-route information”, the green area are a series of trapezoid shapes 

within a given time length of the provided information. For each station, the 

information’s start time is the same as the time that passengers arrive at this station. 

Specifically, passengers start to know the information at the planned departure station 

(station A in Figure 5.3) at the same time as their initial plan (taking Train 2), 

meaning the green node is at the same as the departure time of Train 2 (the “No 

delay” route choice) in the original timetable in Figure 5.2. For the following possible 

transfer stations (e.g. station B), passengers could know the information about trains 

departing from these stations after their earliest possible arrival time to these stations 

(the light green nodes).  

 

(a)  Perfect-infinite Information 

A B
C

D

(b) Passengers  thinking 
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(c) Actual route
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Disposition Timetable InformationOriginal Timetable Passengers thinking

Passengers  actual routePlanned departure

Transfer

Info start time Info end time

Figure 5.4: Explanation of passengers’ thinking and route choice with “Perfect-infinite 

Information” 

 

In Figure 5.4 and Figure 5.5, the blue lines show the time and space of the possible 

route between origin to destination in passengers’ thinking with the specific 
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information. The red lines show the actual time and space of the chosen route out of 

the passengers’ thinking as it is in reality (as updated/ adjusted in the disposition 

timetable), which is called “actual route” in this chapter. We assume that at the 

moment of the information dissemination, passengers immediately start their thinking 

and make their route choice, with a rational choice process, for minimising travel 

time among all the “considered paths” in their thinking. As is shown in these figures, 

within the time horizon of information, passengers’ actual routes match with their 

thinking (i.e. the red lines overlapping with the blue ones), where the time and space 

are coincident with the disposition timetable.  

In addition, the time horizon of information also affects the number of “considered 

paths”. Here are two extreme examples: As the minimum, if passengers have zero 

information (meaning the green area in Figure 5.4 is negligible or non-existent), their 

“considered paths” do not include any possible alternatives of disposition timetable at 

all; while the “Perfect-infinite Information” has the largest set of “considered paths” 

based on the information of disposition timetable.  

Compared to “Perfect Information”, the main impact of “On-route Information” on 

passengers is the smaller set of “considered paths” because of the delayed 

information at passengers’ planned departure station, and the possible transfer 

stations. At passengers’ planned departure station (station A), with “On-route 

Information”, they might miss the trains, which are planned to depart earlier than the 

passengers’ planned departure time (orange node) in the original timetable; but 

actually are delayed in the disposition timetable (e.g. Train 1), and depart earlier than 

the moment at which passengers start to receive this information (green node). In a 

short, the missed trains are called “delayed earlier-departure trains” as they are 

earlier-departure trains, normally not available for passengers departing at the given 

time, which are delayed enough; and therefore could enter the set of considered paths. 

Similarly, “On-route Information” might result in passengers missing some train 

connections; especially the trains that depart earlier than passengers’ arrival time at 

the possible transfer stations (e.g. station B). For example, in Figure 5.4, passengers’ 

best route choice with the “Perfect-infinite Information” is Train 1. While in Figure 

5.5, with the “On-route-infinite Information”, passengers miss this direct train (Train 

1) due to not including this in their “considered paths”; subsequently they miss the 

train connection (e.g. Train 3) at the transfer station B because their arrival time with 

Train 4 is too late.  

It has to be mentioned that, with other different delays or disposition timetables, there 

are also possibilities that either perfect or on-route information does not affect 

passengers’ route choices, either at the planned departure station or the transfer 

stations. For instance, it can be the case that there is no “delayed earlier-departure 

trains” (e.g. Train 1) or passengers can arrive at the transfer station early enough to 

perform their transfer.  
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There are two tables in Appendix C as explanations of passengers’ route choices. 

Table C.1 explain the cases of “No delay”, “Perfect-infinite Information” and “On-

route-infinite Information”, which are according to Figure 5.2, Figure 5.4 and Figure 

5.5, respectively. Table C.2 and Table C.3 explain the cases of incomplete 

information and passengers’ belief according to the following Figure 5.6 and Figure 

5.7. 

 

A B
C

D A B
C

DA B
C

D

(a)  On-route-infinite Information (b) Passengers  thinking (c) Actual route

Disposition Timetable InformationOriginal Timetable Passengers  thinking

Passengers  actual routePlanned departure

Transfer

Info start time Info end time

Figure 5.5: Explanation of passengers’ thinking and route choice with “On-route-infinite 

Information” 

 

Except the infinite information as in Figure 5.3, 5.4 and 5.5, passengers behave in the 

public transport network based on their belief on delay propagation beyond the 

information end time, until the end of their journey. Passengers’ belief is an inference 

about the further delays and network operations, based on their available knowledge 

of the information they have about the disposition timetable and the original 

timetable. 

Figure 5.6 (a) shows an example of finite “Perfect Information” with a given time 

horizon of information (the end time of information is marked in red node). Figure 

5.6 (b) and (c) show the instances of passengers’ “Schedule-stubborn belief”, in 

which passengers believe that the train delays for which they have information, will 

disappear in the subsequent stations and their trains will reach their destinations 

without any delay. We call it schedule-stubborn because passengers believe that 

trains will operate as in the original timetable, schedule for those events happening in 

the future, for which they have no information, no matter how much is the current 

delay. This assumption often makes sense because the buffer time exists in the 
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original timetable and the trains might catch up their delays. For example, 

considering the blue lines in Figure 5.6 (b), passengers know Train 1 (loosely dashed 

line) has delays at station B, but they still believe this train will reach station D on 

time (the same time as in the original timetable). For small delays and no delay 

propagation, this is often the case. 
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(b) Passengers  thinking  

 Schedule-stubborn Belief   

(c) Actual route 
 Schedule-stubborn Belief   
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 Delay-extended Belief   

(e) Actual route 
  Delay-extended Belief   

Disposition Timetable InformationOriginal Timetable Passengers  thinking

Passengers  actual routePlanned departure

Transfer

Info start time Info end time

}

}

}
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thinking  and actual

Figure 5.6: Explanation of passengers’ thinking and route choice with “Perfect 

Information” and different beliefs 

 

Figure 5.6 (d) and (e) show the instances of passengers’ “Delay-extended belief”. We 

call it delay-extended because passengers believe that the train delays for which they 

have information will extend along the subsequent stations. As an example, 

passengers assume the delays constant in time, and with the same amount as the delay 

at the last station for which they have information. Different, complex mechanisms of 

delay belief can be applied within such a construction, such as Bayesian belief 

updating (e.g. Arentze and Timmermans, 2005). As is shown by the blue lines in 

Figure 5.6 (d), passengers know the delay of Train 1 (9 minutes, solid line) at station 
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B, and they believe this train will reach station D with the same amount of delay (9 

minutes). 

We explain the complexity and efficiency of the proposed multi-layer time-space-

event graph method with different combinations of incomplete information and 

passengers’ belief as follows. 

Limited time horizon of information, together with individual passenger’s belief, 

affects the correctness of the “considered paths”. Here we mean the absolute 

correctness at the level of precise timing, meaning the departure and arrival time at 

each station of one considered path are exactly the same as in the actual disposition 

timetable. For instance, the time passengers believe to arrive at station D is incorrect, 

in Figure 5.6 (b). The arrival time at station D in passengers’ thinking (blue lines) 

differs from that in the actual disposition timetable (black lines), because of the lack 

of information about station D and their “Schedule-stubborn belief”. In general, with 

the limited information time horizon, it is hard for passengers to have a belief which 

is absolutely correct about future operations of every single train at each station.  

However, this might not affect passengers’ final route choice (see red lines in Figure 

5.6 (c)) within the “considered paths” if they have appropriate belief. In other terms, 

the route (either direct train or multiple trains with connections) which passengers 

believe is the earliest to arrive at the destination, can be indeed the fastest in reality. 

For instance, in Figure 5.6 (c) considering incomplete information with “Schedule-

stubborn belief”, passengers can choose the same route, as the “Perfect-infinite 

Information” in Figure 5.4 (c), i.e. the optimal direct route (Train 1), even if the 

arrival delay at destination in reality are more than what they think.  

Similar results can also be seen in Figure 5.7, as an example of “On-route 

Information” with two different beliefs: “Schedule-stubborn belief” and “Delay-

extended Belief”. Figure 5.7 (a) shows an example of finite “On-route Information” 

with a given time horizon of information (the end time of information is marked in 

red node). In Figure 5.7 (e), passengers with “Delay-extended Belief” take the best 

possible route choice: taking Train 4 from station A, transferring at station B to Train 

5. This route is the same as the best/ fastest choice in case of “On-route-infinite 

Information”, as shown in Figure 5.5 (c). 

In general, limited information results in a gap between passengers’ thinking and the 

reality about the arrival time at the destination. That means, passengers may 

underestimate or overestimate the delays because of the lack of information, based on 

their belief. In Figure 5.6 (c) and (e), Figure 5.7 (c) and (e), we can see the gap (curly 

red braces) between passengers’ thinking (blue line) and the actual route (red line).  
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In case of incomplete information, passengers might choose different routes 

composed of different transfers or stops, or along different physical routes (such as 

changing from A-B-C-D to A-B-D). There is the possibility that the incomplete 

information and passengers’ belief mislead their final route choice (red lines in Figure 5.6 

and 5.7). We divide this misunderstanding into two categories.  

 

A B
C

D A B
C

DA B
C

D

(a)  On-route Information 
(b) Passengers  thinking  

 Schedule-stubborn Belief   

(c) Actual route 
 Schedule-stubborn Belief   

(d) Passengers  thinking 
 Delay-extended Belief   

(e) Actual route 
  Delay-extended Belief   

Disposition Timetable InformationOriginal Timetable Passengers  thinking

Passengers  actual routePlanned departure

Transfer

Info start time Info end time }
Gap between 
thinking  and actual

}

}

 

Figure 5.7: Explanation of passengers’ thinking and route choice with “On-route 

Information” and different beliefs 

 

The first category is that the route that passengers believe arriving the earliest at the 

destination, is indeed not the fastest, but still feasible, in reality. For instance, in 

Figure 5.6 (e) the incomplete information with “Delay-extended belief”, passengers 

think Train 3 should reach station D earlier than Train 1, and choose the route with 

transfer from Train 1 to Train 3. In reality this is not the fastest route, instead the 

direct Train 1 is the fastest one as in Figure 5.4 (c). Similar results can be found with 
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the comparison of Figure 5.7 (c) and Figure 5.5 (c), where “Schedule-stubborn Belief” 

misleads passengers’ thinking to choose a slower route.  

The second category is that the route, feasible according to the passengers’ thinking, 

is actually infeasible in reality. This infeasibility can be caused by different reasons: 

some trains are cancelled in the disposition timetable, or some connections, feasible 

in passengers’ thinking, do not work in reality. For instance, passengers have zero 

information in the case of delays and they insist on their initial plan as in Figure 5.2 

(Train 2 from station A to station B, and then transferring to Train 3 until station D). 

In reality, because of delays, this connection between Train 2 and Train 3 does not 

work anymore in the actual disposition timetable.  

It has to be mentioned that, this kind of misleading passengers’ thinking might 

happen to any combinations of the incomplete information and passengers’ belief. It 

depends on multiple influencing factors: passengers’ origin, destination and planned 

departure time, the train time deviations between disposition timetable and original 

timetable, the type and time horizon of incomplete information, as well as the 

correctness of passengers’ belief. Briefly, this new proposed method, multi-layer 

time-space-event graph, can sufficiently describe these influencing factors and 

possible results of route choices. 

5.2.3 Graph-based route choices 

The proposed method is based on the following assumptions of a given set of 

passenger groups. In this chapter, we use the following notation. P  is the set of all 

the passenger groups. Each passenger group p P  includes one or more than one 

passenger. The total number of passengers in each group is p . Passengers in the 

same group p  arrive at the same origin po  at the same time pw  and bound for the 

same destination pd . We assume that passengers within the same group p  will have 

the same type of information and belief, resulting in the same “considered paths” in 

their thinking. Hence, passengers in the same group p  move together in the network 

along the same route (we assume this route as unique, possibly breaking ties 

arbitrarily), due to the assumptions that each train has infinite capacity and each 

passenger aims at reaching his/ her destination in the minimum time. Moreover, once 

the train schedule is fixed, each p  moves in the network independently from the 

others, i.e., the choice of a particular routing for a given passenger group p  does not 

influence the routing of any other passenger groups \{ }r P p . The passenger groups 

can also be generalized, to represent heterogeneous passengers with only one 

passenger in each group, which demands more detailed passenger data.  
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As is discussed in Subsection 5.2.2, the multi-layer time-space-event graph is 

constructed based on both the original (planned) and disposition (actual) timetables. 

The disposition timetable is generally computed by an optimisation model, managing 

train rescheduling problem based on the original timetable and train delays. In the 

present chapter, we chose a microscopic train scheduling model which can check the 

local microscopic feasibility from an operations-centric view (e.g. D’Ariano et al., 

2007), based on the alternative graph model (Mascis and Pacciarelli, 2002). In 

general, other timetable rescheduling models, with either a macroscopic or a 

microscopic representation, can be applied to this new proposed method. We apply 

the iterative model introduced in Corman et al. (2017) composed of train scheduling 

and passenger routing problems, and apply one heuristic solution approach to 

generate the disposition timetable in which train retiming, reordering, rerouting and 

train connections are considered.  

The basic time-space graph of the whole network is represented as ( , )G N E . Nodes in 

the set N  correspond to operations, each associated with the occupation of a block 

section by a train. Arcs in the set E  model time relations between the starting times 

of some pairs of operations. For each operation node i N , we know the time of each 

operation it  in the disposition timetable; for the same operation, the time it  is in 

original timetable. The set F  represents all the trains (or buses) running on the entire 

public transport network. Each train f F  is composed of a sequence of nodes and 

arcs. The set S  represents all the stations in the public transport network.  

Here we define explicitly how to indicate the information, passengers’ thinking and 

route choice based on the original and disposition timetables. For each passenger 

group p P , a graph related to passenger routing can be represented as 

( , )p p p pG N E C . pG  is generated based on G . pN , pE  and pC  are sets of nodes, 

fixed arcs and connection arcs that are necessary for passengers to take into account route 

choices. The set pN  contains the nodes taking into account the origin po  and destination 

pd  of the flow associated with p . Each node pi N  refers to a specific operation of a 

train at a specific station. Fixed arcs in pE  link arriving/ departing passengers of p  to the 

first/ last train they may take on their journey. By letting 
po  be the set of nodes 

associated with train departures from the origin of p  and by letting 
pd  be the set of 

arrivals at the destination of p , pE  is the set of arcs ( , )po j  with 
poj   plus the arcs 

( , )pi d  with 
pdi  . pC  is the set of all possible connection arcs, which can be feasible or 

infeasible. There is an arc ( , ) pi j C  for a pair of nodes i , associated with a train 

arrival, and j , associated with a train departure, at/ from the same station, for all 
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stations. The set pF  and pS  represent the trains (or buses) and stations related to 

passengers’ route choices. 

For each node pi N , we use apostrophes and bars to denote the layers of the graph 

model. 
'

it  is the time of each operation in passengers’ thinking. it  and it  are 

respectively the time of the same operation in the original and disposition timetable. 

Specifically, considering the whole trip of each passenger group p , 
'

pot  is the starting 

time at origin po  and 
'

pdt  is the arrival time at pd  in passengers’ thinking. 
pot  and 

pdt  are 

the planned starting and arrival time based on the original timetable. 
pot  and 

pdt  represent 

the actual starting and arrival time according to the disposition timetable in reality.  

In case of incomplete information about train delays, pG  can be described as a union 

of an information graph 
Info

pG  and a graph of passengers’ belief 
Belief

pG  for each group 

p  (Equation 5.1). 
Info

pG  includes the nodes and arcs for which there is information 

available, about the actual train operation in case of delays. 
Belief

pG  represents the 

remaining nodes and arcs that are necessary for passenger routing but for which there 

is no information available and passengers need to make an expectation about train 

operations.  

, .Info Belief

p p pG G G p P                                                                              (5.1) 

Info

pG  represents the available information for each passenger group p . Specifically in 

this chapter, we discuss two types of information: “Perfect Information” and “On-route 

Information”. The graph of “Perfect Information” for each passenger group p  is 

represented as ( , )PI PI PI

p p pG N E . 
PI

pN , 
PI

pE  are sets of nodes and arcs for which the 

“Perfect Information” setup provides information available to passengers in each 

group p . ,

PI

start pt  and ,

PI

end pt  represent the start and end time of “Perfect Information”, 

respectively. For all the nodes in the set of 
PI

pN , the time of each operation it  in the 

disposition timetable should be between the range of the start and end time of 

information (Equation 5.2). 

, ,{ }, .PI PI PI

p p start p i end pN i N t t t p P                                                          (5.2) 
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For “Perfect information”, passengers know the details of the disposition timetable 

for all the nodes 
PI

pi N . Their thinking of train time 
'

it  is equal to the disposition 

timetable it . Formally, 

' , , .PI

i i pt t i N p P                                                                                           (5.3) 

Particularly, with the “Perfect-infinite Information”, all the passenger groups P  know 

the information about the time in disposition timetable for their whole trip. Formally, 

in Equation 5.4, i.e. the information is available earlier than the passengers’ starting 

time at the origin and last until the arrival at the destination.  

, .
p p

PI PI

o start d endt t t t p P                                                                                (5.4) 

The graph of “On-route Information” for each passenger group p  is represented as 

( , )OI OI OI

p p pG N E . 
OI

pN , 
OI

pE  are sets of nodes and arcs for which the “On-route 

Information” setup provides information available to passengers in each passenger 

group p . The start time of “On-route Information” is station-dependent, represented 

by , ,

OI

start s pt  for each station ps S . Passengers can only know the delays after reaching 

the station and receiving the information. In other terms, , ,

OI

start s pt  means the earliest 

arrival time at each station s . For instance, passengers’ arrival time at the origin 

station 
pos  is equal to passengers’ departure time 

pot  in the original timetable (i.e. 

planned departure time). Formally: 

, , .
o pp

OI

start s ot t p P                                                                                         (5.5) 

For each station is  in the remaining set of nodes \{ }OI

p pN o , passengers start to know 

the “On-route Information” at the earliest arrival time of the trains (or buses) which 

pass this station. Formally: 

, ,
\{ }:

min { }, , .
OI
p p i

OI

start s p i p
i N o s s

t t s S p P
 

                                                         (5.6) 

,

OI

end pt  represents the end time of “On-route Information” in the disposition timetable, 

which is identical for each node i . For each node in the set of 
OI

pN , the time of each 

operation it  in the disposition timetable should be between the range of the start and 

end time of information (Equation 5.7). 

, , ,{ }, .
i

OI OI OI

p p start s p i end pN i N t t t p P                                                          (5.7) 
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For all the nodes 
OI

pi N  of “On-route Information”, passengers’ thinking of train time 

'

it  is equal to the disposition timetable it . Formally, 

' , , .OI

i i pt t i N p P                                                                                           (5.8) 

Particularly, with the “On-route-infinite Information”, Equation 5.9 is true 

considering the whole trip of each passenger group p . The actual departure time 
pot  in 

case of delays is at the same, time, or later than the planned departure time 
pot ; the end 

time of information is later than the passengers’ arrival time at destination. 

, .
p p p

OI

o o d endt t t t p P                                                                                (5.9) 

Belief

pG  represents the graph of passengers’ belief for each group p . Specifically in this 

chapter, we discuss two types of belief: “Schedule-stubborn belief” and “Delay-

extended belief”. The graph of “Schedule-stubborn belief” is represented as 

( , )SB SB SB

p p pG N E . With the “Schedule-stubborn belief”, passengers believe that trains 

will operate as in the original timetable, for those events happening in the future, for 

which they have no information, no matter how much the current delay is. Formally 

in Equation 5.10, for the node i  in the set 
SB

pN , passengers’ belief time 
'

it  is equal to the 

original timetable it . 

' , , .SB

i i pt t i N p P                                                                                         (5.10) 

The graph of “Delay-extended belief” is represented as ( , )DB DB DB

p p pG N E . With the 

“Delay-extended belief”, passengers in each group p  believe the delays will extend 

(i.e. keep constant, equal to the last known value) for each train pf F . ,f pl  

represents the last node, for which passengers in group p  have the information of the 

delay of train f . The delay at this node 
,f pld  is computed in Equation 5.11, as the 

difference between the time at which the event associated to this node occurs, in the 

original and disposition timetable.  

, , ,
, , .

f p f p f pl l l pd t t f F p P                                                                  (5.11) 

In this case, the nodes in the set 
DB

pN  can be separated into subsets ,

DB

f pN  for each train 

f F . Passengers in the group p  believe that the train delay 
,f pld  will remain the 

same for the successive nodes that are related to train f . In other terms, the delay is 
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extended over other events, keeping unchanged its magnitude. As is written in Equation 

5.12, their thinking of arrival/ departure time is a constant shift of the time in original 

timetable it  plus the believed train delay 
,f pld . 

,

'

,, , , .
f p

DB

i i l f p pt t d i N f F p P                                                         (5.12) 

In case of public transport delays, due to different combination of passengers’ 

incomplete information and belief of delay propagation, the graph to describe 

passengers’ thinking 
Info Belief

p p pG G G  is also different. As is shown in Equations 

5.3, 5.8, 5.10 and 5.12, the time of each operation for each node pi N  in passengers’ 

thinking 
'

it  is different according to “Perfect Information”, “On-route Information”, 

“Schedule-stubborn belief” and “Delay-extended belief”. The different thinking time 

results in changes of feasibility of connections in the set of connection arcs pC . For 

instance, some connections are feasible in the graph 
PI SB

p p pG G G  in passengers’ 

thinking, but may be infeasible in other graph such as 
OI DB

p p pG G G . The connection is 

feasible, only if passengers think that the connected train departs sufficiently later than the 

arrival of the passengers from a feeder service. 
'

pC  shows the set of feasible connection 

arcs in passengers’ thinking of public transport delays. In Equation 5.13, the difference 

between passengers’ thinking time of two nodes of the connection arc 
'( , ) pi j C , is 

larger than the minimum time ijc  for transferring passengers from the feeder train to 

the connected one. 
'

it  and 
'

jt  differentiate with different combinations of incomplete 

information, Equation 5.3 and 5.8, as well as passengers’ belief, Equation 5.10 and 5.12.  

' ' '{( , ) , , }, .p p j i ij p pC i j C t t c i N j N p P                                    (5.13) 

For p P  , passengers choose the route with the least travel time in their thinking/ 

mental model in case of public transport delays. The formulation of passengers’ best 

route choice is as follows. 

' 'min
p pd ot t                                                                                                      (5.14) 

, 1
p

op

o j

j

q


                                                                                               (5.15) 

, 1
p

d p

i d

i

q


                                                                                               (5.16) 

' ':( , ) :( , )

\{ , }

p p p p p p

p p

ij jk p p p

i N i j E C k N j k E C

q q j N o d
   

                                           (5.17) 
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{0,1}p

ijq                                                                                                (5.18) 

For each passenger, the objective function is the minimisation of the total travel time 

in passengers’ thinking, as in Equation 5.14. Equation 5.15 to Equation 5.17 define a 

min-cost flow problem to assign a path to the passengers from origin to destination. 

p

ijq  defined for each passenger group p , is associated with the use of feasible 

connections 
'( , ) pi j C  by the passengers and to the assignment of passengers to arcs 

in pE . Specifically, Equation 5.15 and 5.16 describe the departure of passengers from 

the origin and the arrival at destination, respectively, while Equation 5.17 models the 

typical flow balance constraints at intermediate nodes. Equation 5.18 defines type and 

bounds for the optimisation variables used. 
p

ijq  is equal to 1 if arc 
'( , ) p pi j E C  

belongs to the path of p , and 0 otherwise. 

In summary, the graph-based passenger routing is explained in the following 

Algorithm 5.1.  

 

Algorithm 5.1 Graph-based passenger routing 

1. Initialisation: Compute the time it  in original timetable and it  in disposition 

timetable for each operation node i N  in the basic graph ( , )G N E . 

2. Updating: For each passenger group p P , generate ( , )p p p pG N E C  with a 

union of two graphs: information 
Info

pG  and belief 
Belief

pG : 

a) Updating the time 
'

it  for each node 
PI

pi N  with “Perfect Information”, or for 

OI

pi N  with “On-Route Information”. 

b) Updating 
'

it  for each node 
SB

pi N  with “Schedule-stubborn belief”, or for 

DB

pi N  with “Delay-extended belief”. 

c) Compute the feasible connections 
'( , ) pi j C  in passengers’ thinking via 

checking the feasibility 
' '

j i ijt t c  . 

3. Passenger routing: For each passenger group p P , compute the optimal route in 

passengers’ thinking by solving the optimisation problem Equations (5.14) to (5.18).  

 

The time it  in the disposition timetable is computed according to the time it  the 

original timetable, based on train rescheduling model (Corman et al., 2017). Each 

passenger group p P  has a specific graph ( , )p p p pG N E C  in their thinking about 
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train delays and train connections, which is different in the condition of different 

types of information and belief. On one hand, the time 
'

it  in passengers’ thinking is 

the same as the time it  in the disposition timetable for each operation node i  in the 

graph of information 
Info

pG . Different information types determine which nodes have 

available information: 
PI

pi N  with “Perfect Information”, or 
OI

pi N  with “On-Route 

Information”. On the other hand, the time 
'

it  in passengers’ thinking related to the 

graph about belief 
Belief

pG  may deviate from the time it  in the disposition timetable. 

More specifically, the time is updated for 
SB

pi N  with “Schedule-stubborn belief”, or 

for 
DB

pi N  with “Delay-extended belief”. Furthermore, the feasibility of connections 

'( , ) pi j C  needs to be checked. Passengers will only choose the connections that they 

think are feasible 
' '

j i ijt t c  . According to the graph ( , )p p p pG N E C  describing 

passengers’ thinking with the updated time of each node and the check of feasibility 

of connections, passengers’ best/ fastest route is calculated.  

As a result, passengers’ delay and some related performance measure can be 

calculated for each passenger group p P . Due to the deviation between the time 
'

it  

in passengers’ thinking and the time it  in reality for some operation nodes, this graph-

based passenger routing method may lead to some interesting results. For instance, 

passengers’ route choice based on the graph in their thinking cannot be fulfilled in the 

disposition timetable. It can be the case that some believed connections from 

passengers’ thinking are infeasible in the reality, or vice versa. It can be also be the 

case that, passengers may miss the optimal route due to lack of information. This will 

be evaluated via the experiments and results in Section 5.3.  

5.3 Experiments and results 

We perform a large set of experiments, based on the initial demand and various train 

delays of Dutch railway network presented in Corman et al. (2017). We test different 

cases with including different passengers’ origin, destination and planned departure 

time, different delays, different incomplete information and passengers’ belief, as 

well as different information time horizon. Passengers’ behaviours and delays are 

analysed from the results.  
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5.3.1 Dutch railway network considered 

The network, reported in Figure 5.8, comprises a significant region of the 

Netherlands, including Amsterdam, Schiphol and Utrecht. The traffic pattern we 

consider is the real timetable for year 2010, which is schematically reported in Figure 

5.8, where every line is a service running twice per hour per direction. The network is 

highly interconnected and there are several bottlenecks. As a result, there is a need for 

frequent rescheduling in peak hours in case of disturbances, since any small delay 

may propagate to other trains with a domino effect.  

 

 

Figure 5.8: Test case infrastructure description (elaboration from sporenplan.nl) 

 

As for the instances evaluated, we consider 20 instances with extended delays, 

generated with the Weibull distribution, fitted to real data, presented in Corman et al. 

(2017). Entrance delays, for all trains in the network, are defined based on a three-

parameter Weibull distribution. In each instance, train delays are randomly generated 

according to a typical Monte-Carlo scheme. All computational results are reported as 

averages over this combination of 20 instances (when not aggregated at higher level). 
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As presented in Corman et al. (2017), there are 101 trains running on the network, 

with the average delay of 37 seconds; 52.3% trains have a positive delay at the start 

of their trip; and 6.4% trains have a delay larger than 5 min at the start of their trip (a 

typical punctuality measure in railways).  

The OD pairs considered in the experiments are based on the average volume of 

passengers at the considered stations as published by the infrastructure manager, as 

presented in Corman et al. (2017). Triples odw  in ODW  are generated by considering 

the largest 22 OD pairs in the network, for different time windows. Each odw  has a 

number of passengers. 

For the 20 delay instances and the mentioned passengers ODW , we test the two types 

of infinite information (i.e. “Perfect-infinite Information” and “On-route-infinite 

Information”) as well as the four combinations of passengers’ information and belief 

mentioned in Subsection 5.2.2. For the incomplete information, different time 

horizons of information, varying each 5 min from zero to infinite, are tested.  

5.3.2 Infeasible routes  

 

Figure 5.9: The average percentage of feasible/ infeasible routes, comparing different 

information and belief types (Incomplete information time horizon: average of 

possibilities from zero to infinite) 
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Figure 5.9 shows the average percentage of feasible/ infeasible routes in the tested 20 

delay instances, comparing different information types (perfect or on-route) which are 

infinite, or incomplete with different belief types (schedule-stubborn or delay-

extended). For the incomplete information, different time horizon of information, 

varying each 5 min from zero to infinite, are calculated on average.  

In each subplot of Figure 5.9, there are three layers to show the percentage of route 

feasibility: in the case of original timetable i.e. “No delay” (the outer layer), in 

passengers’ thinking (the middle layer) based on defined infinite, complete or 

incomplete information, and in the actual disposition timetable in reality (the inner 

layer) due to the corresponding thinking. As is shown in the legend, different families 

of colours are to mark the changes of route feasibility. The family of green colours 

means always feasible in the three layers. The family of red colours shows always 

infeasible in the three layers. The family of blue colours shows the routes which get 

feasible from infeasible from outer layer to inner, i.e. surprisingly better performance 

than expected. The family of orange colours shows the routes which get infeasible 

from feasible from outer layer to inner, i.e. worse performance experienced from plan 

to reality.  

For each layer, the total percentage is 100%. The result of “No delay” (the outer 

layer) is consistent in each subplot: 87.3% routes (dark green) are feasible; 12.7% 

(dark red) are infeasible because of the passengers who have a late departure time, 

wanting to take the last train or missing the connection to their destination. 

First, we check the feasible routes of “No delay” (dark green). Thanks to the infinite 

information of the disposition timetable, i.e. both “Perfect-infinite Information”, 

subfigure (a), and “On-route-infinite Information”, subfigure (d), all of these routes 

are also feasible both in passengers’ thinking (green) and in reality (light green) in 

case of delays. If the information is incomplete (the four subplots on the right: b, c, e 

and f), most routes (more than 99%) are still feasible in passengers’ thinking (green in 

the middle layer). However, around 2% of these routes, feasible in passengers’ 

thinking, are actually infeasible in reality (orange and yellow in the inner layer) due 

to the misleading incomplete information plus passengers’ wrong belief.  

Specifically with the same type of belief, passengers suffer slightly more infeasible 

routes (less than 1%) in case of “On-route Information”, subfigure (e) or (f), 

compared to “Perfect Information”, subfigure (b) or (c). With the same information 

type, the “Delay-extended Belief”, subfigure (c) or (f), causes a bit more infeasible 

routes (less than 1%) than “Schedule-stubborn Belief”, subfigure (b) or (e). 

Then, we check the infeasible routes of “No delay” (dark red). With the “On-route 

Information” (the bottom three subplots: d, e and f), all of these routes are infeasible, 

either in passengers’ thinking or in reality. This is due to the reason that passengers 
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who think they do not have feasible route in “No delay” will not go to the station to 

check the information of train delays in case of “On-route Information”. In contrast, 

with the “Perfect Information” (the top three subplots: a, b and c), approximately 50% 

of these infeasible routes (“No delay”) significantly become feasible (the family of 

blue colours). That means some train delays together with the “Perfect Information” 

can result in benefits on route choices, meaning either proper train services or 

appropriate connection, for passengers who have a late departure time.  

Specifically, “Perfect-infinite Information”, subfigure (a), gives the most benefits, 

52% infeasible routes in “No delay” get feasible in both passengers’ thinking (blue) 

and the actual disposition timetable in reality (light blue). If passengers have 

incomplete “Perfect information” and “Schedule-stubborn Belief”, subfigure (b), 

results in slight more feasible routes (around 2%) compared to “Delay-extended 

Belief”, subfigure (c), in passengers’ thinking (blue). In both the two subplots, there 

are very few routes (around 0.2% of the total amount of routes), which are infeasible 

(light orange) in the actual disposition timetable in reality. 

 

 

Figure 5.10: The average percentage of feasible/ infeasible routes, comparing different 

information and belief types (Incomplete information time horizon: 10 min) 
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Figure 5.10 and Figure 5.11 are two figures with the consistent structure of pie charts 

as in previous Figure 5.9. Instead of calculating the average of all different time 

horizon of incomplete information cases, we show two specific examples of 

information time horizon to show the effects of short or long time horizon to 

passengers’ route choices: 10 min in Figure 5.10, 30 min in Figure 5.11.  

Comparing the results of the same type of incomplete information and belief in the 

Figure 5.10 and Figure 5.11, similar results can be found out, no matter of the belief 

type. With “Perfect Information”, the longer the information time horizon, the more 

passengers’ routes are feasible. For instance, with the “Schedule-stubborn belief”, 

subfigure (b), the 30 min time horizon results in 2.1% more routes feasible in total 

(the sum of light green and light blue) compared to 10 min information. Similarly, the 

increased percentage of total feasible routes (from 10 min to 30 min information) are 

1.8% with “Delay-extended Belief”. For “On-route Information”, in case of the 

“Delay-extended belief”, subfigure (f), the 30 min time horizon results in 0.2% more 

routes feasible (light green) compared to 10 min.  

 

 

Figure 5.11: The average percentage of feasible/ infeasible routes, comparing different 

information and belief types (Incomplete information time horizon: 30 min) 
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Table 5.1 shows the average percentage of passenger numbers on the feasible/ 

infeasible routes in the tested 20 delay cases with either complete information or 

incomplete information. The difference from Figure 5.9 is this table counts the 

number of passengers on each route, and not the amount of groups. We keep the 

consistency of different families of colours as is explained in Figure 5.9. 

By comparing the data in Table 5.1 with Figure 5.9, Figure 5.10 and Figure 5.11, the 

absolute value is slightly different because of the different/ heterogeneous volume of 

OD pairs, but the results seem very similar in the sense of comparing different 

information, belief type, and information time horizon. That means the percentage of 

passengers’ numbers is similar to the percentage of the routes without considering 

passengers’ numbers. 
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Table 5.1: Average percentage of passenger numbers on the feasible/ infeasible routes, comparing different information and belief types 

  Infeasible Feasible 

No delay 14.6% 85.4% 

    Infeasible Feasible Infeasible Feasible 
Perfect-infinite Info 7.4% 7.2% 0 85.4% 

On-route-infinite Info 14.6% 0 0 85.4% 

    Infeasible Feasible Infeasible Feasible Infeasible Feasible Infeasible Feasible 
 

 

 

 

All Avg. 

Perfect Info, 

Schedule- Belief 

Thinking  8.1% 6.5% 0 85.4% 
Actual 8.1% 0 0.2% 6.2% 0 0 1.0% 84.4% 

Perfect Info,  

Delay- Belief 

Thinking  8.2% 6.3% 0 85.4% 
Actual 8.2% 0 0.1% 6.2% 0 0 1.4% 84.0% 

On-route Info, 

Schedule- Belief 

Thinking  14.6% 0 0.1% 85.3% 

Actual 14.6% 0 0 0 0.1% 0 1.2% 84.1% 
On-route Info, 

Delay- Belief 

Thinking  14.6% 0 0.2% 85.3% 
Actual 14.6% 0 0 0 0.2% 0 1.6% 83.7% 

 

 

 

10 min 

Info 

Perfect Info, 

Schedule- Belief 

Thinking  8.5% 6.1% 0 85.4% 

Actual 8.5% 0 0.8% 5.3% 0 0 2.2% 83.2% 
Perfect Info,  

Delay- Belief 

Thinking  8.4% 6.1% 0.1% 85.4% 

Actual 8.4% 0 0.3% 5.9% 0.1% 0 3.1% 

 

82.3% 
On-route Info, 

Schedule- Belief 

Thinking  14.6% 0 0 85.4% 
Actual 14.6% 0 0 0 0 0 0 85.4% 

On-route Info, 

Delay- Belief 

Thinking  14.6% 0 0.1% 85.3% 
Actual 14.6% 0 0 0 0.1% 0 0.9% 84.4% 

 

 

 

 

30 min 

Info  

Perfect Info, 

Schedule- Belief 

Thinking  7.4% 7.1% 0.1% 85.4% 

Actual 7.4% 0 0.3% 6.8% 0.1% 0 1.6% 83.8% 
Perfect Info,  

Delay- Belief 

Thinking  7.5% 7.1% 0 85.4% 
Actual 7.5% 0 0.2% 6.9% 0 0 2.0% 83.5% 

On-route Info, 

Schedule- Belief 

Thinking  14.6% 0 0.2% 85.2% 
Actual 14.6% 0 0 0 0.2% 0 1.0% 84.2% 

On-route Info, 

Delay- Belief 

Thinking  14.6% 0 0.2% 85.3% 
Actual 14.6% 0 0 0 0.2% 0 1.4% 83.9% 
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5.3.3 Passengers’ delays 

To study passengers’ delays, we consider the passengers whose thinking and actual 

routes are both feasible, as shown with the family of green colours in Figure 5.9. 

 

 

Figure 5.12: The average passengers’ thinking delay and actual delay with different 

information time horizon 

 

Figure 5.12 shows the trend of passengers’ average delay (y-axis, min) both in their 

thinking (dotted line) and in reality (solid line) following the increasing information 

time horizon (x-axis, min). The four colours report the combinations of two 

incomplete information types and two belief types.  

If passengers have no information of train delays (information is zero), they think 

they will not have delay (average delay is zero) but they will actually suffer the 

largest average delay (5.4 min) in actual train operations. Overall, passengers’ actual 
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average delay in reality (solid lines) decreases with the increase of the disseminated 

information. Especially, within approximately 15 min time horizon, the delay 

decreases in a relatively faster way. More specifically, the “Perfect Information” 

always leads to less average delay in reality, compared to the “On-route Information”, 

at any information time horizon no matter of passengers’ beliefs. With the infinite 

information, the benefit of “Perfect Information” on reducing actual delays gets 

maximum to 1.6 min.  

The gap between the red and green solid lines is small, around 0.1 min, meaning 

passengers’ belief does not matter too much with “On-route Information” in real life 

cases. In contrast, the gap between the blue and orange lines is larger, meaning 

passengers’ beliefs do affect their actual delays in case of “Perfect Information”. 

Specially, if passengers do not have enough (less than 25 min) information, 

“Schedule-stubborn belief” leads to smaller delays, around 0.6 min on average; while 

if they have enough (more than 25 min) information, “Delay-extended Belief” is 

slightly better to passengers, saving around 0.2 min on average. 

With “Schedule-stubborn belief”, passengers could do the optimal choice (blue or 

green solid lines) with proper information, but they believe they should have smaller 

delays (blue or green dotted lines). This could lead to annoyance, for instance, 

according to the “prospect theory” (e.g. Van de Kaa, 2008) which passengers value 

losses of time and have loss aversion for travel time given a reference value which they 

know. Passengers actually could choose the fastest route with the limited information 

in the case of train delays, even though there are losses of time between their thinking 

assumes (reference value) and reality.  

In addition, with “Schedule-stubborn belief”, passengers even think they could have 

negative delays, compared to their planned arrival time at destination based on 

original timetable (off-line schedule). For instance, with “Perfect Information” and 

“On-route Information”, passengers think they will have negative delays within 36 

min (blue dotted line) and within 20 min (green dotted line) information, respectively.  

In contrast, with “Delay-extended belief”, passengers might be pessimistic about train 

delays, meaning their thinking is worse than actual delays in reality. For instance, if 

passengers have “On-route Information” in the range 19 – 55 min, passengers 

overestimate train delays in their thinking. With “Perfect Information”, the 

corresponding time range is 22 – 55 min.  

With any given time horizon of information, “Perfect Information” always results in 

less delay in passengers’ thinking than “On-route Information”, in any type of belief. 

From Figure 5.12, we compare the dotted lines: delay of the red line is always higher 

than the orange one, and delay of the green line is higher than the blue one.  
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With the same type of information, with a limited information time horizon, the 

“Delay-extended Belief” results in a larger average delay in passengers’ thinking than 

the “Schedule-stubborn Belief”. From Figure 5.12, we compare the dotted lines: 

delay of the red line is always higher than the green one, and delay of the orange line 

is higher than the blue one.  

Nevertheless, with infinite information, passengers’ thinking delay (the dotted lines) 

is the same as the actual delay (the solid lines) in reality, which only depends on the 

types of information. 

In Table 5.2, we report on the detailed statistical results of passengers’ thinking and 

actual delays with different information types, belief types and information time 

horizon. The columns refer to the statistical results on the delays in minutes: mean, 

median, 10th and 90th percentile. The top two rows report the two infinite 

information cases. The following group of rows shows the data of all the possibilities 

of different information time horizon in the four different information and belief 

cases; the last two group of rows especially show the data with 10 min and 30 min 

information time horizon, respectively. For an easier check, we mark the data related 

to thinking delays in a grey colour. 

There is a larger tail of negative delays, about -4 min with “Perfect-infinite 

Information”, compared to the 10th percentile of “On-route-infinite Information”. 

That means in case of train delays, some passengers could arrive earlier than their 

original plan (off-line schedule) with sufficient information about train delays. The 

90th percentile of delays in “Perfect-infinite Information” is around 0.5 min less than 

“On-route-infinite Information”. The benefits of “Perfect-infinite Information” are 

also reflected in the smaller mean (1.6 min) and smaller median (0.9 min) delays.  

With the “Schedule-stubborn Belief”, passengers’ thinking delays has a larger gap to 

the actual delays, compared to the results with “Delay-extended Belief” in any type of 

information. Particularly, with “Perfect Information” and “Schedule-stubborn Belief”, 

passengers suffer the largest gap between their thinking delays and actual delays: the 

deviation of mean and median delays is around 3 min, the 10th percentile is about 1.4 

min, and the 90th percentile is about 4 min. 

With the 10 min time horizon of information, most passengers who have the 

“Schedule-stubborn Belief” think they will not have any delay with any type of 

information, as is shown in the 90th percentile of thinking delays is zero. However, 

these passengers can suffer a largest delay of about 10 min in reality.  
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Table 5.2: Statistical results of passengers’ thinking and actual delays (min) with different 

information 

 Mean Median 10th 

percentile 

90th 

percentile 

Perfect-infinite Info 2.71 2.8 -4.1 9.52 

On-route-infinite Info 4.33 3.7 -0.18 9.98 

 

 

All 

possible 

Info time 

horizon 

 

Perfect Info,  

Schedule- Belief 

Thinking  0.33 0 -5.07 5.98 

Actual 3.26 2.98 -3.63 9.88 

Perfect Info,  

Delay- Belief 

Thinking  2.65 1.5 -2.68 9.43 

Actual 3.31 2.87 -3.63 9.98 

On-route Info,  

Schedule- Belief 

Thinking  1.71 0 0 7.25 

Actual 4.55 3.7 -0.12 10.02 

On-route Info,  

Delay- Belief 

Thinking  3.92 2.65 0 10.02 

Actual 4.58 3.7 -0.12 10.2 

 

 

 

10 min 

Info 

Perfect Info,  

Schedule- Belief 

Thinking  -1.78 0 -10.8 0 

Actual 3.39 3 -3.62 10.02 

Perfect Info,  

Delay- Belief 

Thinking  1.7 0 -1.22 7.72 

Actual 3.94 3 -3.68 12.75 

On-route Info,  

Schedule- Belief 

Thinking  -0.44 0 0 0 

Actual 4.78 3.88 -0.12 10.18 

On-route Info,  

Delay- Belief 

Thinking  2.18 0.25 0 6.98 

Actual 4.99 3.72 0 11.35 

 

 

 

30 min 

Info 

Perfect Info,  

Schedule- Belief 

Thinking  -0.95 0 -9 3.07 

Actual 3.28 2.82 -4.35 10.02 

Perfect Info,  

Delay- Belief 

Thinking  3.78 2.87 -2.5 11.1 

Actual 3.13 2.82 -4.15 9.52 

On-route Info,  

Schedule- Belief 

Thinking  0.67 0 0 4.65 

Actual 4.43 3.7 -0.17 10.13 

On-route Info,  

Delay- Belief 

Thinking  5.44 5.02 0 12.07 

Actual 4.54 3.7 -0.12 10.97 

 

With the 10 min time horizon of “Perfect Information”, most passengers think they 

will have negative delay (i.e. earlier arrival at destination), as the 10th percentile of 

thinking delays is -10.8 min.  
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With the 30 min time horizon of information, most passengers who have “Delay-

extended Belief” overestimate the delays in a pessimistic way: the thinking delays are 

larger than the actual delays, more than 1 min in the 90th percentile.  

In reality, as expected, passengers’ actual delays decrease with the increase of 

information time horizon (from 10 min to 30 min), especially a decrease of 0.8 min 

for the “Perfect Information” and “Delay-extended Belief”. 

 

 

Figure 5.13: Passengers’ thinking delays vs. actual delays, comparing different 

information and belief types (Incomplete information time horizon: each 5 min from zero 

to infinite) 

 

The bi-axis scatter plots in Figure 5.13 display the thinking delay (x-axis, min) and 

actual delay (y-axis, min) for each individual passenger in different information cases 

(in different colours), including the results of different time horizon varying from 

zero to infinite. The two histograms at the sides of each scatter plot are the probability 
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density of passengers’ thinking delays (grey colours) and actual delays (same colour 

as the scatter) of different information cases.  

With the infinite information, a consistent correlation between passengers’ thinking 

delay and actual delay is shown in a diagonal line in the left two scatter plots. The 

“Perfect-infinite Information”, subfigure (a), causes more passengers having the 

negative delays in reality, compared to “On-route-infinite Information”, subfigure (d). 

One proof is that the least delay, black colour, is less than -20 min, much less than the 

least delay in purple colour, about -18 min; the other proof is the larger delay 

distributions between -20 min to zero in the black colour. 

With the finite information, as is seen from the four plots with the colour of blue, 

orange, green and red, there are passengers whose thinking delay is the same as the 

actual delay, same as the diagonal line in infinite information. However, many other 

passengers exist whose actual delays (y-axis) are larger than their thinking delays (x-

axis), shown in the scatters upper than the diagonal line. Among which, many 

passengers think they will not have delay (zero, in x-axis), but actually have positive 

delay (y-axis) in reality. Especially with “Schedule-stubborn Belief” (blue and green), 

most passengers underestimate the delays in their thinking. With the “Delay-extended 

Belief”, we can identify some scatters under the diagonal line in the orange and red 

colour, meaning some passengers overestimate the delays in their thinking. The 

deviations is not too large; the overestimations are not too much away from the 

diagonal line.  

Passengers’ thinking delays (x-axis, grey distributions) depend more on passengers’ 

belief based on their known information, usually “Delay-extended Belief” (the right 

two subplots: c and f) resulting in more thinking delays compared to “Schedule-

stubborn Belief” (the middle two subplots: b and e).  

However, in reality, passengers’ actual delays (y-axis, colourful distributions) depend 

more on the disseminated information rather than their beliefs. With “Perfect 

Information”, the blue and orange distributions, subfigures (b) and (c), have a longer 

trail between -20 min to 0, meaning more passengers can have negative actual delays 

(y-axis), compared to the “On-route Information”, subfigures (e) and (f). 

Figure 5.14 and Figure 5.15 are the same kind of plots as in previous Figure 5.13. 

Instead of plotting all different time horizon of incomplete information cases, here 

gives two specific examples of information time horizon to show the effects of short 

or long time horizon to passengers: 10 min in Figure 5.14, and 30 min in Figure 5.15.  
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Figure 5.14: Passengers’ thinking delays vs. actual delays, comparing different 

information and belief types (Incomplete information time horizon: 10 min) 

 

In Figure 5.14 and Figure 5.15, the scatters on y-coordinate meaning passengers have 

delays in reality instead of no-delay as in their thinking. With 10 min information 

time horizon, compared to 30 min time horizon, we can see that more nodes, 

subfigures (b) and (e), are accumulated in the part that passengers think the delays are 

negative for “Schedule-stubborn Belief”.  

With 30 min information time horizon, compared to 10min time horizon, we can find 

out there are less scatters on the y-coordinate in all the four incomplete information 

cases (the four subplots on the right: b, c, e and f). Furthermore, the scatters get more 

convergent to the diagonal line (i.e. passengers’ thinking delay is same as actual 

delay). In other terms, as expected, with longer information time horizon, passengers’ 

thinking delays get more similar with the actual delays experienced in reality. 
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Figure 5.15: Passengers’ thinking delays vs. actual delays, comparing different 

information and belief types (Incomplete information time horizon: 30min) 

 

5.4 Conclusions 

We study the problem of incomplete information and its effects to passengers’ route 

choices in case of public transport delays. We propose a new multi-layer time-space-event 

graph method to describe passengers’ behaviours and route choices with the incomplete 

information and passengers’ belief in public transport delays. The graph includes five 

layers: original timetable, disposition timetable, information, passengers’ thinking and 

passengers’ actual route choice. We define and discuss two types of incomplete 

information, i.e. “Perfect Information” and “On-route Information”, and two types of 

passengers’ belief: “Schedule-stubborn Belief” and “Delay-extended Belief”. With 

“Perfect information”, passengers perfectly know train delays and disposition 

timetable within information’s start and end time. With “On-route information”, 

passengers could know delays only at the moment they arrive at specific stations and 

partially know the rescheduled train services of disposition timetable related to these 
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stations (e.g. depart from, or stop at) within the given information time horizon. With 

“Schedule-stubborn belief”, passengers believe that the train delays, for which they 

have information, will disappear in the subsequent stations and their trains will reach 

their destinations without any delay. With “Delay-extended belief”, passengers 

believe that train delays, for which they have information, will propagate among the 

subsequent stations. The information time horizon is also considered, from zero (i.e. no 

information) to infinite. Passengers’ route feasibility and passengers’ delay in both their 

thinking and in reality are studied to understand the effects of incomplete information. 

The results show that the “Perfect Information” helps passengers to have a larger set of 

considered paths and take the “delayed earlier-departure trains”: the trains plan to depart 

earlier than passengers’ planned departure time, but actually are delayed in the 

disposition timetable. “Perfect Information” can offer about 50% more feasible routes 

and decrease passengers’ delays, compared to “On-route Information”. On a specific case, 

the largest gap of these two information types is 1.6 min on average when the information 

is infinite. In case of “On-route Information”, the different effects of passengers’ beliefs 

on their delays is negligible. However, beliefs indeed affect passengers’ delays depending 

on the information time horizon. When information is not enough (no more than 25 min), 

“Schedule-stubborn Belief” cause fewer passengers’ delays (0.6 min on average) in 

reality. The results has most probably to relate to the rescheduling strategies from 

operating companies that they prefer to keep the train orders/ sequences in train delays. In 

other terms, the train that passengers believe to arrive earlier to their destination is indeed 

arriving earlier, with the efforts of operating companies, in case of delays. Nevertheless, 

with “Schedule-stubborn Belief”, passengers might not be satisfied with the public 

transport delays because they believe they will face smaller delays, even zero delay or 

negative delays in their thinking. Otherwise, when information is enough (more than 25 

min), “Delay-extended Belief” causes fewer actual passengers’ delays. With the 

“Schedule-stubborn Belief”, passengers’ thinking delays has a large gap to the actual 

delays in reality if the information time horizon is short. The longer the information time 

horizon, the smaller the gap between passengers’ thinking delays and actual delays. In 

contrast, passengers can be pessimistic about the delays (i.e. actual delays less than 

thinking delays) with “Delay-extended Belief”. This effect has most probably to relate to 

possible transfers in the network.  

Based on the proposed multi-layer time-space-event graph method, more research can be 

performed. For instance, it can be applied to severe public transport disruptions, such as 

case of physical route infeasible, route blockage for a certain long time or multiple train 

cancellation, where the incomplete information and passengers’ belief may lead to more 

missing connections or infeasible routes. For the research field about uncertain delays or 

disruptions, the information might need to be provided multiple times, resulting in 

different possibilities of passengers’ thinking, similar to a stochastic programming with 
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recourse; see for instance, Veelenturf, et al. (2016b). This can be studied based on our 

proposed method.  

Moreover, combining the proposed method with timetable or rolling stock rescheduling is 

able to trade off the benefits and costs of information and public transport operations. This 

research enriches the passenger heterogeneity on the aspects of their type of belief, which 

can be applied as one attribute in more complex agent-based simulation, with the efforts 

of more data collection and calibration and the study about computation efficiency.  

  



 

 



 

133 

Chapter 6  

Synthesis 

6.1 Main findings 

The aim of this dissertation is to quantify the effects of information to passengers’ 

adaptations and satisfaction in public transport disruptions, consequently to improve the 

service quality of public transport. We recall the overarching question presented in 

Chapter 1:  

What are the influences of information to passengers in case of public transport 

disruptions on a large-scale multi-modal network, considering the interplay of 

information availability about the disruption, updated operation strategies, incomplete 

information about future conditions? 

Based on the previous chapters, this main question is answered in summary as follows: 

We identify that the “considered plans” can describe how different factors affect 

passengers’ adaptations in case of public transport disruptions. The “considered 

plans” represent a set of alternatives of passengers’ demand in their daily journey, 

i.e. a sequence of activities and trips (including alternative paths, transport 

modes), in a large-scale multi-modal network (see the terminology in Chapter 3). 

We explain how passengers’ “considered plans” are affected jointly by disruption 

itself, information availability, passengers’ belief and the adjusted operation 

services. The influence of public transport disruptions is to reduce the set of 

passengers’ “considered plans”, such as route infeasibility. Providing available 

information can help passengers to react at best in case of public transport 

disruptions. A timely/ wide-range/ complete/ precise information availability 

provides more alternatives in the set “considered plans” for passengers; on the 

opposite, a delayed/ incomplete/ partial/ imprecise information reduces the set of 

passengers’ “considered plans”.  
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The information availability in disruptions is summarised in our work with a novel 

“who-when-where-what” four-dimensional framework (Chapter 3). This 

framework can represent different details about information availability, including 

incomplete information. Especially with incomplete information, passengers’ 

expectation/ belief on delay propagation may change the details (e.g. time) of 

some “considered plans” (Chapter 5). Furthermore, the adjusted operation 

services (disposition timetable) can help some passengers to add more alternatives 

(e.g. rerouted trains, connections) in their “considered plans”, with the condition 

of available information. (Chapter 4).  

We study the interplay of these influencing factors by modelling passengers’ 

adaptations in public transport disruptions as follows. The effects of information 

availability and disruptions to passengers’ adaptations are studied in Chapter 3. 

We define the mathematical notations and formulas to describe these effects, and 

apply the agent-based micro-simulation approach (MATSim) to calculate user 

equilibrium and non-equilibrium solutions. The effects of information availability, 

disruptions, and adjusted operation services are discussed in Chapter 4, combining 

MATSim with an optimisation model. The effects of incomplete information 

about delays and passengers’ belief are studied in Chapter 5, with our novel multi-

layer time-event-graph method. 

Based on these methods, our results quantify passengers’ behaviours and their 

(dis)satisfaction in different settings of information availability, disposition 

timetables and passengers’ belief. We summarise the most significant results, 

which could be useful for service providers and passengers, as follows: 

The adjusted services provided by infrastructure managers and operating 

companies could substantially benefit passengers in case of public transport 

disruptions (Chapter 4). First, if the disrupted trains can be partially cancelled 

(instead of full cancellation), passengers who are directly affected by disruptions can 

significantly have about 50% smaller delays on average (for both planned and 

unexpected disruptions). Second, if the disrupted trains can be rerouted, there is a 

trade-off between passengers who are directly affected (large reduce of delays) and 

passengers who intended to pass the alternative routes (small increase of delays). For 

directly affected passengers, rerouting decreases 32% and 15% average delays in 

planned and unexpected disruptions, respectively. In our results, passengers who 

pass the alternative routes suffer a small delay (less than 3 min). At system level, 

these strategies can considerably reduce the impact of especially the unexpected 

disruptions, with a utility impact reduced to a fifth only, instead of, the original 

negative impact. 

The above benefits of operations can be achieved only on the condition of the 

best/ perfect information system, both in planned and unexpected disruptions. 
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That means all the passengers can have available information about all details of 

the disruptions and the adjusted services, in advance of planned disruptions, or 

immediately after the unexpected disruptions occur. We summarise the benefits of 

providing available information and the loss of benefits of incomplete information, 

based on the research in Chapter 3, 4 and 5. First, providing information, instead 

of completely no information, is useful for passengers. Without any information, 

15.6% passengers fail to find feasible way back to home, and they suffer the 

maximum delays. Second, the start time of information affects passengers’ 

benefits. The immediately available information in unexpected disruptions, results 

in approximate 14.1% – 35.8% larger average delays for the directly affected 

passengers, compared to the beforehand provided information in planned 

disruptions. The percentage differs in different settings of the adjusted services: 

the better the adjusted services, the less information’ start time affects passengers. 

Third, if the information is only available at stations, passengers will suffer up to 

60% more average delays in our case study, compared to the anywhere-available 

information. In addition, the station-available information might cause more 

infeasible routes, especially for the passengers who have a late departure time. 

Fourth, the more information content (details about adjusted operations) is 

provided, the more passengers can decrease their delays. In our results, we see a 

significant reduction of passengers’ average delays by providing information from 

zero to 15 minutes about the further adjusted services.  

In different cases of incomplete information, we find out passengers’ belief affects 

their choices to different extents (Chapter 5). The effects of passengers’ belief to 

passengers depend more on the provided information, including information type 

and the detail contents. If the information is only available at stations, the effects 

of passengers’ belief is negligible. If there is not enough information about 

adjusted operations can be anywhere available, the schedule belief (train delays 

will not propagate) brings better approximation and causes up to 22.3% smaller 

average delays, compared to delay belief (train delays will propagate). In general, 

passengers’ belief could cause approximate 2% infeasible routes, in different 

cases of incomplete information.  

The further details, caring about passengers’ heterogeneity, are answered item-by-item, 

following the structure of sub-questions: 

(1) How to model passengers’ adaptations under different information availability in 

public transport disruptions and estimate the corresponding passengers’ 

satisfaction? 

We refine the functional requirements of modelling the information availability and 

heterogonous passengers in a large-scale multi-modal transport network. We 

propose rigorous mathematical descriptions of how different information 
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availability affects passengers’ “considered plans” in public transport disruptions. 

We also show how to compute performance indicators of user equilibrium and 

non-equilibrium solutions. The agent-based simulation platform (MATSim) is 

applied, taking advantage of the detailed descriptions of passengers’ entire daily 

journey (continuous trips and activities). This platform contains also a multi-modal 

transport network, where passengers’ choices of activities and trips can be 

simulated, including detailed transport modes, routes and time. Especially for 

unexpected disruptions, we develop the within-day replanning approach in 

MATSim, by enriching the procedure of selecting the affected agents and 

modifying their initial plans in a single iteration as reaction to public transport 

disruption (Chapter 3).  

We study two boundaries and provide the gaps for passenger simulation in public 

transport disruptions. The lower bound is no information at all; the upper bound is 

a user equilibrium solution with best/ ideal information to simulate the case of the 

planned disruptions. Besides, we study the non-equilibrium solution with an 

immediately available information in case of unexpected disruptions. We apply 

our method to a large-scale multi-modal network of Zürich, Switzerland.  

We identify that studying passengers’ heterogeneity is helpful to show more 

details in the simulation results, which can be used to define and evaluate the level 

of services for passengers in case of public transport disruptions. For instance, 

with the immediately detailed information in unexpected disruptions, the average 

delay of passengers is 9.8 min, while the 90th percentile of passengers’ delay is 

40.2 min. The results can also show heterogeneous passenger’s delay as the 

disruption time goes, in case of different information availability. The mode and 

route share in different transport modes and routes can be calculated by 

aggregating the heterogeneous passenger’s results, which can useful for the 

service providers to understand passengers’ behaviours. For instance, in our case 

study, 27.1% passengers leave the public transport system if they have beforehand 

information in case of planned disruptions.  

(2) What are passengers’ satisfaction under different information strategies and 

disposition timetables (considering different rescheduling strategies and the 

feasibility of rolling stock circulation) in public transport disruptions? 

We consider passengers’ delays and scores to quantify their satisfaction in public 

transport disruption in a multi-modal network, under different disposition timetables 

and information strategies. We apply an optimisation model to calculate the 

disposition timetables, varying by different rescheduling strategies: retiming, 

rerouting, full/ partial cancellation of train services, all based on a feasible rolling 

stock circulation. We use MATSim to simulate passengers’ behaviours and their 

satisfaction in case of these optimised timetables and different information strategies 
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(as in Chapter 3) in case of public transport disruptions. This combination of agent-

based simulation and optimisation model is fast enough to be practically applicable, 

even for a large multi-modal network, for both planned and unplanned disruptions 

(Chapter 4). 

From the results of a test case in Zürich, the information strategy is a major driver of 

passengers’ satisfaction, especially for whom planned to pass the disruptions. The 

earlier the passengers can receive the disposition timetable, the smaller the delay they 

will suffer in disruption. The challenges related to rolling stock still require a minor 

amount of train services to be cancelled. The partial cancellation of trains is much 

better for passengers than full cancellation, especially for passengers crossing the 

disrupted area multiple times. This might require the possibility to determine 

automatically optimised circulation plans, and multiple adjustment in the rescheduling 

process of the company, for additional operation complexity. There is capacity for 

many trains to be kept running despite the disruption on an alternative railway route; 

this allows running more trains against a minor delay (3.6 min on average, including 

rerouted and original train services). Train rerouting is able to trade-off between a 

large delay for the passengers who are affected by disruptions and a slight delay (2.7 

min on average) for passengers on the alternative route, assuming passengers have 

enough information to benefit from this change of plans.  

(3) How to model passengers’ behaviours under different incomplete information 

(Inc. passengers’ belief) and quantify passengers’ satisfaction? 

We propose a novel multi-layer time-space-event graph method and explain the 

graph-based route choices in case of incomplete information and passengers’ belief in 

public transport delays. The time-space-event graph can describe five layers: original 

timetable, disposition timetable, the information, passengers’ thinking and passengers’ 

actual route choice. This new method is applicable to study different types of 

incomplete information and passengers’ belief. The incomplete information can be 

described based on the “who-when-where-what” four-dimensional framework 

(Chapter 3). Passengers’ belief describes their expectations about further train 

propagations based on their known information. Passengers’ route feasibility and 

passengers’ delay in both their thinking and in reality are studied to understand the 

effects of incomplete information (Chapter 5). 

The results show that the information is the major driver of passengers’ actual delays 

in reality. If the information is only available at stations, passengers may miss to take 

the “delayed earlier-departure trains”, where the trains plan to depart earlier than 

passengers’ planned departure time, but actually are delayed in reality. With this 

on-route information, some passengers have larger delays and fewer feasible 

routes, compared to the anywhere-available information. As expected, if there is 

more information about the future operations, passengers will suffer the smaller 
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actual delays and the gap of delays between passengers’ thinking and the reality 

gets smaller. In other terms, if the provided information contains few details of 

future operations, passengers’ belief affects passengers’ route choices and their 

delays. A few passengers choose the route, that they think/ expect is feasible, but 

is actually infeasible in reality. Passengers, who believe train delays will not 

propagate, might not be satisfied with their travel because they believe/ expect to 

face smaller delays, even zero or negative delays in their thinking. Passengers, 

who believe train delays will propagate, may overestimate the actual train delays.  

6.2 Implications to practice 

Based on our research, we formulate several implications for the public transport industry.  

(1) Managing the planned public transport disruptions 

To ensure the public transport services can be provided safely, the infrastructure 

managers constantly plan and perform the track maintenance, construction or other 

engineering work. These will disrupt the normal train operations and affect 

passengers’ regular behaviours. To reduce the negative impacts to passengers, 

different operation strategies can be provided by the infrastructure managers and 

operating companies. Our methods can help the service providers to quantify the 

effects of different rescheduling strategies to passengers’ satisfaction. The 

optimisation model is able to calculate different disposition timetables with 

different timetable and rolling stock strategies (Chapter 4). A user equilibrium 

solution of passengers can be calculated by the day-to-day replanning approach in 

MATSim (Chapter 3), because the planned disruptions can be disseminated to 

passengers beforehand. The calculation time of both the optimisation model and 

the agent-based simulation is applicable for the planned disruptions. The optimal 

solution is found within less than 6 seconds. The evaluation of passenger choices 

in MATSim, for the Zürich multi-modal network, takes about 6 hours. Moreover, 

multiple simultaneous disruptions can also be evaluated, once the disruptions can 

be represented as the adjusted schedules. Depending on the requirements of 

specific cases, many different results can be analysed, such as the number of 

passengers who leave the public transport system, or passengers’ delays and scores 

with different strategies.  

(2) Managing the unexpected public transport disruptions 

For the unexpected disruptions, our methods can also provide insights to evaluate 

different rescheduling strategies, information strategies and the corresponding 

passengers’ satisfaction. One idea is to compute/ evaluate new solutions after other 

unexpected disruptions. The optimisation model for timetable and rolling stock 
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(Chapter 4) can be solved fast enough (few seconds). The within-day replanning 

approach of MATSim (Chapter 3) can be simulated within approximately one 

minute for the evaluation of passenger choices of the Zürich multi-modal network. 

The simulation results might overestimate the benefits of information, because we 

assume passengers could know the details of information immediately after 

disruptions. To be more realistic, further research needs to be extended in 

MATSim in the aspects of incomplete information (as in Chapter 5) and the 

limited capacity of public transport vehicles. Nevertheless, the research findings in 

Section 6.1 can also provide suggestions to infrastructure managers and operating 

companies in case of unexpected disruptions. For instance, partially cancelling 

the disrupted trains, instead of fully cancelling them, is strongly helpful for 

passengers.  

(3) Balancing the benefits and costs of operations 

This research focuses on evaluating the benefits of different operation and 

information strategies to passengers. The results can show the delays and utility of 

heterogeneous passengers in case of different strategies. The results can also show 

the aggregate number of passengers on specific stations, trains/ buses, railway 

routes at specific time or during the whole disruption. Some rescheduling 

strategies in case of disruptions may need extra operation costs. Based on this 

research, the operating companies can study the trade-offs of different strategies 

between passengers’ benefits and operation costs. This could even help the long-

term investment of public transport operations, such as calculating the number of 

spare vehicles.  

(4) Improving the information system of public transport 

This research allows the service providers to evaluate the benefits of improving 

the information availability, such as station displays, train/ bus information 

facilities and mobile information to broadcast delays. Based on this, more research 

can be done at the aspects of information contents, such as train capacity, 

additional/ alternative services in case of disruptions. At the end, the main goal is 

to improve the information system so that passengers could receive the 

information timely, widely and comprehensively.  

(5) Passengers’ refund in public transport disruptions 

The public transport systems around the world start to refund passengers in case of 

large delays or disruptions. For instance, passengers get refunds from transport for 

London in a delay of 15 minutes or more, from the Dutch Railways (NS) when a 

delay exceeds 30 minutes (Yap, 2020). The Swiss Federal Railways (SBB) pays 

compensation for passengers for the reasons of train delays and train cancellations. 
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This research can show the delays of heterogeneous passengers, and can further 

calculate how many refunds that passengers may declare in specific disruptions 

based on the refund policy.  

6.3 Future Research 

Given the complexity of public transport system, we recommend several directions to 

extend and explore in the future research. 

Information availability in public transport disruptions. Some more scenarios based 

on our proposed framework of information availability can be simulated for the 

further research. Some examples are enumerated as follows. One scenario can be that 

passengers only know the start time of disruptions but they do not know the precise 

end time. Another scenario can be that passengers are informed about different 

aspects of the adjusted services, such as train capacity, additional services (bus 

bridging, see Liang et al., 2019), the optimal routes (passenger advices, see Van der 

Hurk et al., 2018). Other scenarios might be to set different stations (e.g. only the affected 

stations, or only major stations) to have the available information about the disruptions. 

More scenarios can be set based on different proportions of passengers (e.g. Scherer, 

2019) who have diverse information availability; and multiple scenarios can be 

defined in between those.  

Furthermore, the information might need to be provided multiple times, in case of 

uncertain delays or disruptions. This uncertain information may result in different 

possibilities of passengers’ thinking, similar to a stochastic programming with recourse; 

see for instance, Veelenturf, et al. (2016b). This can be further studied based on our 

proposed multi-layer time-space-event graph method.  

Passenger heterogeneity. The research in Chapter 5 enriches passenger heterogeneity on 

the aspects of their type of belief, which can be applied as one attribute in a more complex 

environment, such as the agent-based simulation. This needs more research about data 

collection and calibration and the study about computation efficiency. In addition, 

passengers’ choice preferences (e.g. Vij et al., 2013), especially in case of public transport 

disruptions, can be further modelled in detail. For instance, if there are two choices with 

the same best utility to passengers, some may prefer the direct train; others may prefer the 

early departure one. Moreover, it would be interesting to study how the personal attributes 

(e.g. travel purpose, familiarity of operation schedules, gender, age, profession) affect 

passengers to realise and react to the information (e.g. Lois et al., 2018) about the 

disruptions.  

Operation strategies in public transport disruptions. Except from what has been studied 

in this dissertation, other operation strategies can be applied in case of public transport 
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disruptions, such as bus bridging, additional train services between some stations. 

Moreover, there are four phases to manage disruptions (Ghaemi, 2018): transition phase 

to disruption, stable disruption situation, transition phase to initial recovered situation. For 

each phase of disruption management, different rescheduling strategies may have 

different priorities and benefits. The computation efficiency to produce solutions based on 

different operation strategies is also one relevant research direction, especially for the 

large-scale network.  

Benefits vs. costs. This dissertation mainly discusses the benefits of different 

operation and information strategies to passengers in case of public transport 

disruptions. These strategies will result in different setups and costs for the additional 

vehicles or for the channels through which information can be disseminated. It will be 

thus crucial in balancing the benefits of the information availability and operation 

strategies with their costs.  
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Appendices 

Appendix A  

With the classifications by the proposed “Who-When-Where-What” four-dimension 

framework, more examples of scenarios can be extended as in Figure A.1 to define 

diverse information availability based on passengers’ different level of knowledge for 

the public transport disruptions. The differences depend on the proportion of agents 

who know the information, the locations and time they receive, and the contents of 

the information.  

The dimension “who” refers to which passengers can receive the information, such as 

frequent users of public transport or not. The green and blue lines in Figure A.1 give 

examples about the studies that information is only available to some passengers. The 

dimension “when” means the time passengers start to know the information. The 

available information can be in advance of disruption (planned maintenance) 

(Chapter 3, 4) or after disruption (unexpected events) (Chapter 3, 4, 5). Passengers 

may know this information before their departure time or afterwards (Chapter 3, 4, 5). 

The dimension “where” shows the locations passengers start to know the information, 

such as anywhere (Chapter 3, 4, 5) or only at station (Chapter 5). The dimension 

“what” means the content of the available information. It can be only the news about 

disruption itself, such as the start/ end time of disruption or the reasons of disruption. 

The pink and blue lines in Figure A.1 give examples of the study about the uncertain 

disruption end time. It can also include the details of the adjusted operations in 

disruptions, such as the train delays or cancellation (Chapter 3, 4, 5). 
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Figure A.1: More scenarios with the information framework 
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Appendix B  

The detailed agents’ behaviours of the case study in Section 3.4 are shown in the results 

of Appendix B. The figures from B.1 to B.4 represent the detailed travel chain of the 

involved agents (y-axis) for each route and transport mode, as time goes (x-axis). We 

select five classifications based on alternative route choices (i.e. Wipkingen, Hardbrücke, 

DML and other rail, respectively red, blue, green and black lines) and transport modes 

(bus/ tram, car/ bike, respectively yellow and pink lines) in disruptions.  

Figure B.1 shows agents’ behaviours in case of “Benchmark” (without disruptions). With 

the “Advance Information” in Figure B.2, the agents have different behaviours: choosing 

the alternative rail routes (green and black lines), other public transport modes (bus/ tram 

in yellow lines), and even the private transport modes (pink lines). 

The agents’ proportion via the Wipkingen and Hardbrücke routes in the “Timely 

information” scenario in Figure B.3 decreases between 16 and 19 o’clock but is not 

reduced to zero. The remaining agents are those who are travelling on the train services 

beyond either Zürich HB or Zürich Oerlikon rather than between these two stations. This 

is caused by the fact that agents can still use these running services once they have 

crossed the disrupted area by using other rail routes or transport modes. Instead, more 

agents in “Timely information” choose The DML, other rail and bus/ tram (green, black 

and yellow lines). 

In the “No information” scenario in Figure B.4, agents wait during the disruption 

(between 16 and 19 o’clock) while the number of agents increases dramatically to a 

maximum after 19 o’clock. In other terms, most of the agents are now concentrated 

moving in a short time horizon, from 19.00 to 20.30. 
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Figure B.1: The detailed travel chain of involved agents in “Benchmark” 
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Figure B.2: The detailed travel chain of involved agents in “Advance Information” 
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Figure B.3: The detailed travel chain of involved agents in “Timely Information” 
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Figure B.4: The detailed travel chain of involved agents in “No Information” 
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Appendix C 

Appendix C explains passengers’ route choices based on their thinking, referring to 

Section 5.2. Table C.1 explain the cases of “No delay”, “Perfect-infinite Information” 

and “On-route-infinite Information”, which are according to Figure 5.2, Figure 5.4 

and Figure 5.5, respectively. Table C.2 and Table C.3 explain the cases of incomplete 

information and passengers’ belief according to the following Figure 5.6 and Figure 

5.7. 

All tables have the same structure. The column labelled “Considered paths” in 

passengers’ thinking, enumerates the possibilities of route choices. “->” means transfer 

from previous train to the next one. For each train, a series of train ID, station ID, time is 

reported. For instance, “Train 2 (A, 120 - B, 180) -> Train 3 (B, 190 - D, 220)” means 

that, passengers take the Train 2 at station A at the time 120, and then arrive at station B 

at 180, then they can transfer to Train 3 which departs from station B at 190 and arrives at 

station D at the time 220. The numbers in black is the time in original timetable; the 

numbers in bold black is the time in disposition timetable; the numbers in red is the time 

of passengers’ belief. The yellow mark is the best/ fastest route for passengers in their 

mental model among all the “considered paths”. The column labelled “No.” counts the 

total number of “considered paths” in each case. “Thinking arrival time” and “Thinking 

delay” are the arrival time and delay in passengers’ thinking in each case. “Actual arrival 

time” and “Actual delay” are the time and delay according the disposition timetable if 

passengers choose the fastest route based on the “considered paths” in their thinking. The 

column labelled “Deviations: think vs. act” shows the deviations of delay between 

passengers’ thinking and the reality.  

With the given examples of passengers’ route choices, the comparison of different cases 

shows the following the effects of information in case of train delays: 

(1) The delays may provide more route choices for passengers with sufficient 

information. 

The total number of “considered paths” in case of “No delay” is five, while in case 

of train delays, with “Perfect-infinite Information”, the total number is seven. The 

increased number of route choices is due to the “delayed earlier-departure trains”: 

the routes related to “Train 1” in this specific case. In the original timetable, 

“Train 1” departs earlier than this passengers’ planned departure time, but it 

has delay and passengers can take “Train 1” thanks to the “Perfect-infinite 

Information”. 

(2) “Perfect Information” may provide more route choices and cause smaller passenger 

delays, compared to “On- route Information”. 
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For instance, with the comparison of “On-route-infinite Information”, passengers 

could take the “delayed earlier-departure trains” in case of “Perfect-infinite 

Information” and get more route choices: the routes related to “Train 1” in this 

specific case. As a result, passengers suffer smaller delays in case of “Perfect-

infinite information”. 

(3) Passengers’ connections may change with information in case of delays. 

The “Train 2” can connect with “Train 3” in case of “No delay”, but this 

connection becomes infeasible in case of “Perfect-infinite Information”. The reason 

is “Train 2” arrive at station B too late, and “Train 3” has already departed from 

station B.  

(4) Passengers may choose the “best” route in case of incomplete information. 

The route choice with “Perfect-infinite Information” is the best one among all the 

possible options for passengers in case of delays, in reality. The best route is “Train 

1 (A, 100 - B, 150 - B, 160 - D, 290)”. As is shown in the result of “Perfect 

Information” and “Schedule-stubborn Belief”, passengers will choose “Train 1” 

based on their thinking. Even if passengers think, they can arrive at station D at the 

time 200. Similarly, passengers with “On-route Information” and “Delay-extended 

Belief” can choose the best route, same as the route choice with “On-route-infinite 

Information”. 

(5) Deviations exist between passengers’ thinking and reality in case of incomplete 

information. 

In table C.2 and Table C.3, we can see the results that the delays are different in 

passengers’ thinking and in reality. For instance, in case of “Perfect Information” 

and “Delay-extended Belief”, passengers think they will suffer the delay of 10, but 

in the reality, the actual delay is 90. These deviations are because passengers’ 

belief about delay propagation is not consistent to the actual delays in reality. 
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Table C.1: Example of passengers’ route choices in case of “No delay” or infinite information of delays 

 

Figure “Considered paths” in passengers’ thinking No. 

Thinking 

arrival 

time 

Actual 

arrival 

time 

Thinking 

delay 

Actual 

delay 

Deviations: 

think vs. 

act 

No delay 5.2 

Train 2 (A, 120 - B, 180) -> Train 3 (B, 190 - D, 220) 

5 220 220 0 0 0 

Train 2 (A, 120 - B, 180 - B, 220 - C, 290 - C, 300 -D, 390) 

Train 2 (A, 120 - B, 180) -> Train 5 (B, 290 - D, 410) 

Train 4 (A, 170 - B, 210) -> Train 2 (B, 220 - C, 290 - C, 300 -

D, 390) 

Train 4 (A, 170 - B, 210) -> Train 5 (B, 290 - D, 410) 

Perfect-

infinite Info 
5.4 

Train 1 (A, 100 - B, 150 - B, 160 - D, 290) 

7 290 290 70 70 0 

Train 1 (A, 100 - B, 150) -> Train 3 (B, 200 - D, 310) 

Train 1 (A, 100 - B, 150) -> Train 5 (B, 300 - D, 470) 

Train 1 (A, 100 - B, 150) -> Train 2 (B, 310 - C, 420 - C, 430 -

D, 520) 

Train 4 (A, 190 - B, 250) -> Train 5 (B, 300 - D, 470) 

Train 4 (A, 190 - B, 250) -> Train 2 (B, 310 - C, 420 - C, 430 -

D, 520) 

Train 2 (A, 200 - B, 290 - B, 310 - C, 420 - C, 430 -D, 520) 

On-route-

infinite Info 
5.5 

Train 4 (A, 190 - B, 250) -> Train 5 (B, 300 - D, 470) 

3 470 470 250 250 0 
Train 4 (A, 190 - B, 250) -> Train 2 (B, 310 - C, 420 - C, 430 -

D, 520) 

Train 2 (A, 200 - B, 290 - B, 310 - C, 420 - C, 430 -D, 520) 
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Table C.2: Example of passengers’ route choices in case of incomplete “Perfect Information” 

 

Figure “Considered paths” in passengers’ thinking No. 

Thinking 

arrival 

time 

Actual 

arrival 

time 

Thinking 

delay 

Actual 

delay 

Deviations: 

think vs. 

act 

Perfect Info, 

Schedule- 

Belief 

5.6(b) 

5.6(c) 

Train 1 (A, 100 - B, 150 - B, 160 - D, 200) 

7 200 290 -20 70 90 

Train 1 (A, 100 - B, 150) -> Train 3 (B, 200 - D, 220) 

Train 1 (A, 100 - B, 150) -> Train 5 (B, 290 - D, 410) 

Train 1 (A, 100 - B, 150) -> Train 2 (B, 220 - C, 290 - C, 300 -

D, 390) 

Train 4 (A, 190 - B, 210) -> Train 5 (B, 290 - D, 410) 

Train 4 (A, 190 - B, 210) -> Train 2 (B, 220 - C, 290 - C, 300 -

D, 390) 

Train 2 (A, 200 - B, 180 - B, 220 - C, 290 - C, 300 -D, 390) 

Perfect Info, 

Delay-Belief  

5.6(d) 

5.6(e) 

Train 1 (A, 100 - B, 150 - B, 160 - D, 290) 

7 230 310 10 90 80 

Train 1 (A, 100 - B, 150) -> Train 3 (B, 200 - D, 230) 

Train 1 (A, 100 - B, 150) -> Train 5 (B, 290 - D, 410) 

Train 1 (A, 100 - B, 150) -> Train 2 (B, 300 - C, 370 - C, 380 -

D, 470) 

Train 4 (A, 190 - B, 250) -> Train 5 (B, 290 - D, 410) 

Train 4 (A, 190 - B, 250) -> Train 2 (B, 300 - C, 370 - C, 380 -

D, 470) 

Train 2 (A, 200 - B, 260 - B, 300 - C, 370 - C, 380 -D, 470) 
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Table C.3: Example of passengers’ route choices in case of incomplete “On-route Information” 

 

Figure “Considered paths” in passengers’ thinking No. 

Thinking 

arrival 

time 

Actual 

arrival 

time 

Thinking 

delay 

Actual 

delay 

Deviations: 

think vs. 

act 

On-route Info, 

Schedule- 

Belief 

5.7(b) 

5.7(c) 

Train 4 (A, 190 - B, 250) -> Train 5 (B, 300 - D, 410) 

3 390 520 170 300 130 
Train 4 (A, 190 - B, 250) -> Train 2 (B, 290 - C, 290 - C, 300 -

D, 390) 

Train 2 (A, 200 - B, 290 - B, 290 - C, 290 - C, 300 -D, 390) 

On-route Info, 

Delay- Belief 

5.7(d) 

5.7(e) 

Train 4 (A, 190 - B, 250) -> Train 5 (B, 300 - D, 420) 

3 420 470 200 250 50 
Train 4 (A, 190 - B, 250) -> Train 2 (B, 330 - C, 400 - C, 410 -

D, 500) 

Train 2 (A, 200 - B, 290 - B, 330 - C, 400 - C, 410 -D, 500) 
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