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Zusammenfassung

In dieser Arbeit wird die erste experimentelle Realisierung des Quantenphasenüberganges im

Dicke Modell vorgestellt. Wir betrachten die Quantenbewegung eines Bose-Einstein Konden-

sates die an einen optischen Resonator gekoppelt ist. Konzeptionell ist der Phasenübergang

durch langreichweitige Wechselwirkungen induziert, die zum Entstehen eines selbstorgani-

sierten suprasoliden Zustandes führen.

Der Quantenphasenübergang im Dicke Modell wurde bereits 1973 vorhergesagt. Vor dieser

Arbeit konnte dieser aber wegen grundlegenden und technologischen Gründen experimentell

nicht nachgewiesen werden. Durch die Verwendung von atomaren Impulszuständen konnten

wir diese Herausforderung nun bewältigen. Die Impulszustände werden durch Zweiphotonen-

Übergänge miteinander gekoppelt, wobei je ein Photon aus dem Resonator und ein Photon

aus einer transversalen Lichtwelle gebraucht werden. Diese offene Implementierung des Di-

cke Modells erlaubt es alle relevanten Parameter einzustellen und bietet eine einzigartige

Detektionsmethode in Echtzeit.

Wir zeigen in dieser Doktorarbeit, dass der Phasenübergang von einem makroskopisch

besetzten Feld im Resonator und einer starken Veränderung der atomaren Impulsvertei-

lung begleitet ist. Diese Impulsveränderung wird durch spontane Selbstorganisation der ato-

maren Dichte auf einem Schachbrettmuster hervorgerufen. Wir haben die Grenze des Pha-

senübergangs durch Variieren von zwei Parametern im Dicke Modells abgetastet und das

gemessene Phasendiagramm stimmt mit der Modellbeschreibung überein.

Die superradiante Phase erlaubt zwei verschiedene geometrische Konfigurationen was un-

ausweichlich zu dem Konzept der spontanen Symmetriebrechung am Phasenübergang führt.

Wir können die beiden Zustände experimentell unterscheiden und haben die Ursache für

den Symmetriebruch untersucht. Die endliche räumliche Ausdehnung unseres Systems indu-

ziert außerdem eine kleines symmetriebrechendes Feld, welches sich zufällig zwischen jeder

experimentellen Realisierung ändert.
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Abstract

We report on the first experimental realization of the Dicke quantum phase transition re-

alized in the quantum motion of a Bose–Einstein condensate coupled to an optical cavity.

Conceptually, the transition is driven by cavity-mediated long-range interactions, giving rise

to the emergence of a self-organized supersolid phase.

The Dicke phase transition, predicted in 1973, has not been demonstrated experimentally

before this work, both due to fundamental and technological reasons. These challenges have

been overcome in the present thesis by employing atomic momentum states of a Bose-Einstein

condensate, which are coupled via two-photon Raman transitions involving a cavity photon

and a free-space pump photon. This open-system implementation of the Dicke model allows

to tune all relevant parameters and offers a unique detection scheme to monitor the many-

body system in real time.

We demonstrate that the phase transition is accompanied by a macroscopically occupied

cavity field and a striking change in the atomic momentum distribution, due to spontaneous

self-organization of the atomic density on a checkerboard lattice. The boundary of the

transition is mapped out by scanning two parameters of the Dicke model, to reveal a phase

diagram in close agreement with the model description.

Two different ordered configurations are allowed in the superradiant phase, giving rise to

the concept of spontaneous symmetry breaking at the phase transition. We experimentally

distinguish the symmetry-broken states and study the origin of the symmetry-breaking pro-

cess. The finite spatial extension of our system induces a small symmetry-breaking field

which changes randomly on each experimental realization. The influence of this field is stud-

ied and shown to diminish upon dynamically crossing the transition point with increasing

transition rates.
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1 Introduction

A fundamental model to describe the interaction between light and matter is the Dicke model

which has been introduced by Robert H. Dicke in 1954 [1]. This model has been studied ex-

tensively since the early years of quantum optics and it became a paradigmatic example to

describe collective quantum behavior. In this thesis we present the first experimental demon-

stration of one of the most striking phenomena provided by the Dicke model: a quantum

phase transition from a normal to a steady-state superradiant phase [2, 3, 4].

Dicke studied an ensemble of two-level atoms coupled identically to one mode of the quan-

tized electromagnetic field. He realized, that the atoms may not be considered as independent

individuals when describing their radiative properties and modeled the system of all atoms

in a surrounding light field as one single quantum system. The central result of his work was

that atoms can absorb photons collectively, resulting in the build-up of strong inter-atomic

correlations. These quantum correlations strongly influence the atom-field dynamics and lead

to collective spontaneous emission: due to interference between each emitter, the collection of

atoms radiates faster than a single atom and produces a short and intense burst of radiation.

Thus, the name superradiance was established for this non-equilibrium phenomenon [5].

The experimental demonstration of superradiance was initially prevented by the lack of

intense coherent field sources. The maser, providing coherent microwave radiation, was still in

its infancy as it was experimentally demonstrated just in 1954 [6, 7]. A first functional laser, a

source for coherent visible light, was demonstrated in 1960 [8]. The subsequent overwhelming

advances of the laser technology paved the way towards experimentally approaching Dicke’s

non-equilibrium superradiance. The effect was observed in several laboratories in the 1970’s

[9, 10, 11, 12, 13, 14]. Intimately related effects have recently been observed with ultracold

atoms in free space showing superradiant Rayleigh scattering [15, 16]. This phenomenon

can be amplified with the help of an optical ring cavity, giving rise to collective atomic-recoil

lasing [17, 18] in close relation to the original effect of superradiance. All of these observations

show the intrinsic transient character of Dicke’s superradiance by producing short bursts of

radiation far from equilibrium.

Beyond non-equilibrium superradiance, the Dicke model exhibits a fascinating phase tran-

sition between a normal and a steady-state superradiant phase [19, 20]. Compared to the

original superradiance, this phase transition requires many orders of magnitude larger light-

matter coupling strength. In this regime, the light-matter coupling gives rise to a polaritonic

energy spectrum whose excitations show admixtures of both atomic and photonic character.

The Dicke quantum phase transition happens when the energy of one polaritonic eigenmode

crosses the ground state. The emerging ground state is of counter intuitive nature: it is ener-

getically favorable to occupy the field mode with photons while having the atomic ensemble

coherently sharing excitations.
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1. INTRODUCTION

A level crossing in the ground state at zero temperature upon the change of some control

parameter can be considered as a quantum phase transition [21]. Such a phase transition

originates from the competition of two energy scales. In the Dicke phase transition one

scale is determined by the elementary photonic or atomic excitation energies. This energy is

counteracted by the light-matter coupling which can lead to a lowering in energy. The phase

transition occurs, once the interaction energy exceeds the elementary excitation energy. Thus,

the atom-light coupling strength must exceed the energy scale defined by both the atoms and

the photons [19, 20, 22].

Up to now, no experiment provided sufficiently strong light-matter coupling to observe

the Dicke phase transition. A possible candidate seemed to be the settings of cavity quan-

tum electrodynamics where a small number of two-level atoms are placed in a cavity which

enhances the light-matter coupling and ensures that the atoms couple to only one mode

of the electromagnetic field. The traditional systems established in the field range from

highly-excited Rydberg atoms coupled to the field of a superconducting microwave resonator

[23, 24, 25, 26] to alkali atoms inside an optical cavity [27, 28]. Already more than twenty

years ago, the regime of strong coupling, where the light-matter coupling rate for a single

atom exceeds all decoherence rates, was realized. The available coupling rates in theses sys-

tems are however typically eight orders of magnitude too small to reach the Dicke phase

transition. The selected group of systems achieving strong coupling was recently joined by

systems involving artificial atoms like quantum dots [29] and superconducting Cooper-pair

boxes [30]. A new record in terms of coupling-strength was set last year in the latter type

of system, achieving light-matter coupling strengths of up to 10 % of the atomic transition

frequency [31, 32]. The integration of many artificial atoms might bring the Dicke transition

in those systems within experimental reach within the next years.

A rather different approach to the experimental demonstration of the Dicke phase tran-

sition is to decrease the energy scales of the atoms and photons while keeping the coupling

strength large. A theoretical proposal from 2007 by Dimer et al. followed this strategy by

considering an ensemble of alkali atoms in an optical ring cavity [33]. Two long-lived hyper-

fine ground states of the atoms are coupled via balanced two-photon Raman transitions. It

was shown that the Hamiltonian description of the system reduces to the Dicke model with

strongly reduced cavity-mode frequency and atomic transition energy. For realistic experi-

mental conditions this seemed to bring the Dicke phase transition within experimental reach.

However, due to the technological complexity of the scheme, it has not been pursued.

In this work, we report on the first experimental realization of the Dicke quantum phase

transition. We realize an open system formed by a Bose–Einstein condensate (BEC) coupled

to an optical Fabry-Pérot cavity [2] which is driven by a laser field transverse to the cavity

axis. We use momentum states rather then hyperfine states and achieve a reduction of the

atomic energy scale by three orders of magnitude compared to Dimers proposal [33].

Indeed, Helmut Ritsch and Peter Domokos studied dynamical light forces on atoms inside

a cavity and predicted a quantum phase transition towards a self-organized phase of a BEC

inside a cavity which is driven by a pump laser transverse to the cavity axis [34]. A related

classical version of the self-organization phase transition [35] had already been demonstrated

with thermal atoms in the group of Vladan Vuletić [36]. Experimentally, also other groups

have succeeded in trapping ensembles of ultracold atoms in optical cavities [37, 38, 39, 40, 41,

42, 43] but none of them have studied the BEC self-organization quantum phase transition.
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Considering the quantum motion of a BEC inside a cavity gives rise to qualitative new

physics. The narrow momentum distribution of the BEC permits to expand the matter field

in two distinct momentum states and allows to show the direct equivalence of the BEC self-

organization phase transition and the Dicke quantum phase transition [2, 44]. Conceptually,

the resonator induces atom-atom interactions which are mediated by the cavity field, thus

resulting in effective interactions of infinite-range. We experimentally observe the atomic

density modulation emerging into either of two checkerboard patterns, while atomic phase

coherence is preserved at the transition. From the perspective of condensed matter physics,

the superradiant phase can thus be regarded as a self-organized supersolid [45, 46, 47, 48].

The Dicke model implemented in our experiment offers a tunable atom-light coupling

strength, which is determined by the transverse-pump intensity. This feature enables us to

map out the phase boundary of the steady-state superradiant phase in quantitative agreement

with the Dicke model. The open character of our system is caused by the finite field lifetime

of the experimental cavity setup. Detecting the leaking photons allows us to peek deeply

into the atom-cavity dynamics without disturbing the many-body state as it has been shown

theoretically that the atomic quantum statistics can be mapped onto the cavity field [49].

Our realization of the Dicke model offers a controlled system with unique detection meth-

ods for further investigation of different quantum many-body phenomena. Recently, a new

theoretical emphasis has emerged on the general role of entanglement at the Dicke quantum

phase transition as it might be a key aspect to understand the dramatic effects occurring in

quantum critical systems [50, 51, 52, 53, 54]. Further theoretical investigations of the Dicke

model have focused on the onset of quantum chaos [55, 56, 57], geometrical phases [58, 59]

and finite-size scaling [60, 61, 62]. These phenomena are now within experimental reach by

applying the scheme presented in this thesis.
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1. INTRODUCTION

Outline of this thesis:

� In chapter 2 we start with an introduction of the mathematical framework to describe

the dispersive interaction of a Bose-Einstein condensate coupled to a single cavity

mode. This framework is applied for describing the phenomenon of self-organization.

We present self-organization in terms of intuitive models before proceeding with a

mathematical mean-field description. The system is then shown to be equivalent to

the Dicke model, which is further explored under the aspect of its phase transition and

symmetry breaking.

� Chapter 3 is devoted to give an overview of the experimental apparatus which was

used to perform all experiments presented in this thesis. The transverse pump beam,

a heterodyne detection scheme used to measure the phase of the cavity field and its

electronic read out are described in detail.

� Our experimental observation of the Dicke model phase transition is reported on in

chapter 4. The phase boundary of this transition is mapped out in quantitative agree-

ment with the Dicke model.

� By measuring the phase of the cavity output field, we are able to distinguish the

two ordered states with reduced symmetry. The origin of the symmetry breaking is

investigated in chapter 5 by statistically analyzing the occurrence of both states. We

identify a small symmetry-breaking field due to the finite spatial extension of the system

and investigate its influence on the symmetry-breaking process.

� Experimental results when coherently pumping the cavity mode directly are presented

in chapter 6. The Bose-Einstein condensate is subject to a dynamic optical lattice

potential whose depth depends non linearly on the atomic density distribution. We

observe optical bistability already below the single photon level and a strong back-

action dynamics.
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2 Theoretical Framework

The system under investigation throughout this thesis is a Bose-Einstein condensate (BEC)

dispersively coupled to a high-finesse optical cavity. In this chapter we will introduce its

theoretical description. It is organized as follows: section 2.1 derives the basic theoretical

formalism starting from the fundamental description of dipole coupling between a BEC and

a single quantized cavity mode. The concept of self-organization of atoms in an optical

cavity driven by a transverse laser is presented in terms of intuitive models in section 2.2.

We proceed by analyzing self-organization in a mean-field description and show fundamental

aspects of the phase transition in section 2.3. After mapping the equations to the Dicke

model in section 2.4, we apply concepts, which were discussed in the literature covering the

Dicke model, to gain more insight to the process. The chapter concludes with a discussion

on second-order phase transitions and the symmetry-breaking process in section 2.5.

2.1. Atoms in an Optical Cavity

The goal in this section is to derive an effective Hamiltonian which is applicable to describe a

BEC coupled to a high-finesse optical cavity. This forms the common basis for all collective

phenomena discussed throughout this thesis. After describing a single atom coupled to one

cavity mode, we apply the rotating-wave approximation to arrive at the Jaynes-Cummings

model [63]. We will take atomic motion into account and eliminate the atomic excited state.

2.1.1. A Single Atom

Let’s consider a two-level atom at a fixed position in an optical Fabry-Pérot cavity. The

Hamiltonian of the system consists of three terms

Ĥ = Ĥa + Ĥc + Ĥint,

where Ĥa describes the atomic subsystem, Ĥc describes the cavity subsystem and Ĥint the

interaction of the two. The two atomic levels are given by the ground state |g〉 and the excited

state |e〉 (in Dirac notation). To conveniently express the Hamiltonian Ĥa, we introduce the

operators

σ̂z =
|e〉〈e| − |g〉〈g|

2
σ̂+ = |e〉〈g|
σ̂− = |g〉〈e|.

Physically, the operator σ̂z is interpreted to measure the population difference between the

excited and ground state. The transition of an atom from the ground state |g〉 into the

5



2. THEORETICAL FRAMEWORK

excited state |e〉 is expressed by σ̂+ = σ̂†− (σ̂− gives the reverse process). These operators

satisfy the spin-1/2 algebra of the Pauli matrices, i.e.,

[σ̂−, σ̂+] = −2σ̂z

[σ̂−, σ̂z] = σ̂−.

Given this notation and denoting the energies of a ground and excited state atom with Eg

and Ee, respectively, the Hamiltonian Ĥa is written as

Ĥa = Eg|g〉〈g|+ Ee|e〉〈e| =
Eg≡0

Eeσ̂+σ̂− ≡ ~ωaσ̂+σ̂−.

The ground state energy Eg is set to zero and the excited state energy Ee is expressed by the

atomic transition frequency ωa. This shift in energy does not influence the system dynamics.

The geometry of a Fabry-Pérot cavity defines its mode function E(r) with a maximum field

strength in the presence of a single photon at frequency ωc given by Emax =
√
~ωc/2ε0V .

Here, we have used the cavity mode volume V =
∫ ∣∣∣ E(r)
Emax

∣∣∣2dr and the electric permittivity

of vacuum ε0. We describe the electromagnetic field in the second quantized formalism

employing photon creation and annihilation operators â† and â (obeying
[
â, â†

]
= 1) [64]. In

this notation the Hamiltonian Ĥc, neglecting the zero point energy term ~ωc/2, reduces to

Ĥc = ~ωcâ
†â.

The remaining term Ĥint describes the interaction between the atom and the light field. One

assumes that the electric field is uniform across the extension of the point-like atom and the

interaction can thus be described in the dipole approximation [65]. An electron with charge

−e at a relative position with respect to the nucleus r̂ creates an electric dipole moment

d̂ = −e · r̂ that couples to the electric field Ê at the position of the atom r. Formally, the

Hamiltonian describing this process is given by

Ĥint = d̂ · Ê.

Rewriting the dipole moment d̂ in terms of the transition operators σ̂+ and σ̂− yields

d̂ = −e · r̂ = −
∑

i,j∈{e,g}
e · |i〉〈i|r̂|j〉〈j| =

Di,j≡e·〈i|r̂|j〉
−
∑
i,j

Di,j |i〉〈j|

= −De,gσ̂+ −Dg,eσ̂− =
D=De,g=Dg,e

−D (σ̂+ + σ̂−) ,

where the electric-dipole transition matrix elements Di,j (i, j ∈ {e, g}) was introduced. With-

out loss of generality, the point-like atom is assumed to be at a position of maximum electric-

field strength where the field operator is written as Ê = Emax(â + â†). To conform with

literature, we further introduce the single-atom coupling strength by g0 = −DEmax/~.

We can now write the complete Hamiltonian for the combined system

Ĥ = Ĥa + Ĥc + Ĥint

= ~ωaσ̂+σ̂− + ~ωcâ
†â+ ~g0 (σ̂+ + σ̂−) (â+ â†). (2.1)

6



2.1. ATOMS IN AN OPTICAL CAVITY

2.1.2. The Jaynes-Cummings Model

The Hamiltonian (2.1) includes an interaction part consisting of four terms which are com-

monly grouped into “co-rotating” terms (σ̂+â and σ̂−â†) and “counter-rotating” terms (σ̂+â
†

and σ̂−â). We show, that the latter terms can be neglected in the limit of moderate coupling

strength g0 � ωa, ωc. The resulting Hamiltonian, in contrast to (2.1), is analytically solvable

and known in literature as Jaynes-Cummings Hamiltonian [63].

The counter-rotating terms are eliminated in the interaction picture. The transformed

Hamiltonian reads

Ĥ∗ = ~g0

[
σ̂−â†e−i(ωa−ωc)t + σ̂+âe

i(ωa−ωc)t

σ̂+â
†ei(ωa+ωc)t + σ̂−âe−i(ωa+ωc)t

]
.

The technical details of the transformation are presented in appendix A. Our experiments

are performed in the optical regime and the cavity frequency ωc is chosen close to the atomic

transition frequency ωa, i.e., |ωc−ωa| � ωc +ωa. The terms oscillating at a frequency ωa +ωc

(in our experiment ≈ 2π · 1014 Hz) will average to zero on the relevant timescale given by g0

(in our experiment ≈ 2π ·107 Hz). Terms oscillating at a frequency ωa−ωc on the other hand

remain relevant. Neglecting the fast oscillating parts and transforming the Hamiltonian back

into the Schrödinger picture yields the Jaynes-Cummings model

Ĥ = ~ωcâ
†â+ ~ωaσ̂+σ̂− + ~g0

(
σ̂+â+ σ̂−â†

)
. (2.2)

2.1.3. Atomic Motion

In the previous section, the atom was assumed to be at a fixed position with respect to

the cavity field mode. This assumption is now dropped and the atom is free to move in

an external trapping potential. Additionally, the system is driven by two different pumping

lasers. The cavity is subject to a driving field with frequency ωp and amplitude Ωc through

one of the cavity mirrors and the atomic subsystem is also driven by a standing-wave pump

field transverse to the cavity axis with amplitude Ωp and frequency ωp (see figure 2.1). The

following section closely follows reference [66].

The Jaynes-Cummings model (2.2) is extended to take the atomic motional degrees of

freedom into account. Quite generally, we have to add the kinetic energy of an atom of

mass m and momentum p̂. The atom is further subject to a trapping potential V (r), that is

different if the atom is in the ground or excited state (thus labeling the potential with e/g).

The Hamiltonian description is accordingly extended by the terms

p̂2

2m
+ Ve(r)σ̂+σ̂− + Vg(r)σ̂−σ̂+.

The transverse pump field is a standing-wave laser field with frequency ωp and is described

by a spatially-varying classical Rabi frequency h(r) = Ωpht(r) with mode profile ht(r) and

maximum Rabi frequency Ωp. Using the dipole approximation and the rotating-wave ap-

proximation we include this driving field in the Hamiltonian description by

~h(r)
(
σ̂+e

iωpt + σ̂−e−iωpt
)
.

7
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Ωp, ωp

Ωc, ωp

x

z

Figure 2.1.: The general system considered in the present thesis. Atoms are trapped inside

an optical resonator and are free to move. The cavity is subject to a driving field (with

amplitude Ωc and frequency ωp). The atoms themselves are driven by a standing-wave laser

field (with amplitude Ωp and frequency ωp) from free space.

In a similar fashion, the driving field along the cavity axis with frequency ωp and strength

Ωc is taken into account by

~Ωc

(
âeiωpt + â†e−iωpt

)
.

The full extended single-particle Hamiltonian is thus given by

Ĥ(1) = Ĥ(1)
A + Ĥ(1)

C + Ĥ(1)
Int

Ĥ(1)
A =

p̂2

2m
+ Ve(r)σ̂+σ̂− + Vg(r)σ̂−σ̂+ + ~ωaσ̂+σ̂−

+~h(r)
(
σ̂+e

iωpt + σ̂−e−iωpt
)

Ĥ(1)
C = ~ωcâ

†â+ ~Ωc

(
âeiωpt + â†e−iωpt

)
Ĥ(1)

Int = ~g(r)
(
σ̂+â+ σ̂−â†

)
.

The explicit time dependency is eliminated by transforming into a frame rotating with the

pump frequency ωp. Since the procedure is very similar to the transformation given in

section 2.1.2, the description is kept short here, restricted to presenting the appropriate

transformation operator

Û(t) = exp
[
iωpt

(
σ̂+σ̂− + â†â

)]
,

and the transformed Hamiltonian (while using the same labeling as for the Schrödinger-

picture operators)

Ĥ(1)
A =

p̂2

2m
+ Ve(r)σ̂+σ̂− + Vg(r)σ̂−σ̂+ − ~∆aσ̂+σ̂−

+~h(r) (σ̂+ + σ̂−)

Ĥ(1)
C = −~∆câ

†â+ ~Ωc

(
â+ â†

)
Ĥ(1)

Int = +~g(r)
(
σ̂+â+ σ̂−â†

)
. (2.3)

The quantities ∆c = ωp−ωc and ∆a = ωp−ωa describe the detuning of the pump frequency

with respect to the bare cavity-resonance and the atomic transition frequency, respectively.
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2.1. ATOMS IN AN OPTICAL CAVITY

2.1.4. Elimination of the Excited State

After describing a single atom inside a cavity, we will now treat N atoms, that all couple

identically to the cavity field which is perfectly realized with a BEC in a cavity [67]. The

upcoming description closely follows the procedure presented in reference [66]. For a detailed

discussion on the procedure also see reference [68].

Let us introduce the atomic field operators Ψ̂g(r) and Ψ̂e(r) for annihilating an atom

at position r in the ground and excited state, respectively. These operators obey bosonic

commutation relations[
Ψ̂i(r), Ψ̂†j(r

′)
]

= δ3(r − r′)δi,j[
Ψ̂i(r), Ψ̂j(r

′)
]

=
[
Ψ̂†i (r), Ψ̂†j(r

′)
]

= 0 i, j ∈ {g, e}.

We now write the derived single particle Hamiltonian (2.3) in the formalism of second quan-

tization

Ĥ = Ĥa + Ĥc + Ĥa−a + Ĥa−c + Ĥa−p,

where Ĥa and Ĥc describe the free evolution of the atomic and cavity subsystem. They are

given by

Ĥa =

∫
d3r

[
Ψ̂†g(r)

(
− ~2

2m
∇2 + Vg(r)

)
Ψ̂g(r)

+Ψ̂†e(r)

(
− ~2

2m
∇2 − ~∆a + Ve(r)

)
Ψ̂e(r)

]
Ĥc = ~∆câ

†â+ ~Ωc(â+ â†).

The term Ĥa−a describes the collisional interaction between two atoms, which is modeled

via a short ranged potential characterized by the s-wave scattering length a (see for example

reference [69]). This simplification is valid in our experimental regime at ultra-low temper-

atures, where scattering processes with p-wave or higher character are negligible. Defining

U = 4π~2a/m, the Hamiltonian Ĥa−a is written as

Ĥa−a =
U

2

∫
d3rΨ̂†g(r)Ψ̂†g(r)Ψ̂g(r)Ψ̂g(r).

The remaining terms Ĥa−c and Ĥa−p describe the interaction of atoms with the light fields,

where the first describes the cavity field and the latter the transverse-pump field. They read

Ĥa−c = ~
∫
d3r

[
Ψ̂†g(r)g(r)â†Ψ̂e(r) + Ψ̂†e(r)g(r)âΨ̂g(r)

]
Ĥa−p = ~

∫
d3r

[
Ψ̂†g(r)h(r)Ψ̂e(r) + Ψ̂†e(r)h(r)Ψ̂g(r)

]
.

9
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With these Hamiltonian at hand, we proceed by calculating the Heisenberg equations for the

field operators

∂Ψ̂g(r)

∂t
= i

[
~

2m
∇2 − Vg(r)

~
− U

~
Ψ̂†g(r)Ψ̂g(r)

]
Ψ̂g(r)

+
[
g(r)â† + h(r)

]
Ψ̂e(r) (2.4)

∂Ψ̂e(r)

∂t
= i

[
~

2m
∇2 − Ve(r)

~
+ ∆a

]
Ψ̂e(r)

− [g(r)â+ h(r)] Ψ̂g(r) (2.5)

∂â

∂t
= i∆câ+ Ωc +

∫
d3r g(r)Ψ̂†g(r)Ψ̂e(r). (2.6)

In the present thesis, we have explored the dispersive-coupling regime, which is realized by

a large detuning of the light fields with respect to the atomic transition frequency. Typical

values of ∆a and ∆c are chosen five orders of magnitude larger then the line width of the

atomic states which strongly suppresses any atomic excitation. All atomic internal dynamics,

i.e., electronic evolution, are much faster than atomic motion, which allows to discard the

kinetic- and potential-energy terms in equation (2.5). We can assume that the atomic excited-

state population adiabatically follows atomic motion and accordingly set equation (2.5) to

zero, yielding

Ψ̂e(r) = − i

∆a
[h(r) + g(r)â(t)] Ψ̂g(r),

which we insert into equation (2.4) and (2.6) to give

∂Ψ̂g(r)

∂t
= i

[
~

2m
∇2 − Vg(r)

~
− h(r)2

∆a
− g2(r)

∆a
â†â

−h(r)g(r)

∆a

(
â+ â†

)
− U

~
Ψ̂†g(r)Ψ̂g(r)

]
Ψ̂g(r) (2.7)

∂â

∂t
= i

[
∆c −

1

∆a

∫
d3r g2(r)Ψ̂†g(r)Ψ̂g(r)

]
â

− i

∆a

∫
d3r g(r)h(r)Ψ̂†g(r)Ψ̂g(r) + Ωc. (2.8)

These equations describe the dynamical behavior of a dispersively-coupled BEC-cavity sys-

tem. The idea is to find an effective Hamiltonian Ĥeff , that results in the same equations of

motion (2.7) and (2.8). One possible Hamiltonian is (omitting the subscript g for readability)

Ĥeff =

∫
d3r Ψ̂†(r)

{
− ~2

2m
∇2 + V (r)

+
~

∆a

[
h2(r) + g2(r)â†â+ h(r)g(r)

(
â+ â†

)]}
Ψ̂(r)

+
U

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

−~∆câ
†â− ~Ωc(â+ â†),

10



2.1. ATOMS IN AN OPTICAL CAVITY

with a corresponding single particle Hamiltonian

Ĥ(1)
eff =

p̂2

2m
+ V (r) +

~h2(r)

∆a

+~
(
−∆c +

g2(r)

∆a

)
â†â

+~
(
−Ωc +

h(r)g(r)

∆a

)
(â+ â†). (2.9)

This Hamiltonian describes all phenomena discussed in the present thesis. The remainder

of this thesis will however be restricted to either of the two case: we will only drive either

the cavity (Ωc 6= 0,Ωp = 0) or the atoms (Ωc = 0,Ωp 6= 0), where the majority of this work

covers the latter case.

We will now briefly give an interpretation for the individual terms in Hamiltonian (2.9).

The part p̂2

2m+V (r) describe the free evolution of a particle in a potential V (r) and−~∆câ
†â−

~Ωc(â + â†) describe an effective cavity mode at frequency ∆c which is subject to pumping

with amplitude Ωc. The remaining terms describe lattice potentials for the atoms, starting

with ~h2(r)
∆a

given by the transverse pumping laser and ~g2(r)â†â
∆a

due to the cavity field. Both of

these lattice potentials are proportional to the squared of the corresponding mode functions,

which in our experimental setting are given by standing waves (i.e., g(r) = g(x) ∝ cos kx

and h(r) = h(z) ∝ cos kz). The resulting lattice potentials thus show a spatial periodicity

of half the optical wavelength. This is in strict contrast to the last remaining expression

~h(r)g(r)
∆a

(â + â†), which describes a lattice potential due to the interference pattern of the

cavity and pump field. Both mode functions g(r) and h(r) enter linearly implying a λ-

periodicity along the cavity and transverse axis.
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2.2. Self-Organization of Atoms in a Cavity

The remainder of chapter 2 is devoted to one specific setting of Hamiltonian (2.9). We will

consider the atomic ensemble being driven transversely to the cavity axis by a standing-

wave laser field while the cavity itself is not subject to a driving field. In this geometry, the

atomic ensemble shows the phenomenon of spontaneous self-organization when sufficiently

driven from the side [35, 34]. We will introduce this phenomenon here in terms of intuitive

pictures to give the reader a physical understanding before proceeding with the mathematical

treatment. The explanation is conceptually done with point-like atoms, but the reader should

keep in mind that this assumption is strictly speaking not correct for a BEC, where the atoms

are delocalized over many µm and one has to adopt a picture of density waves.

2.2.1. Light Scattering by Atoms

Let’s consider a single atom inside a cavity which is subject to a free-space transverse laser

field. Light from the pump beam can be scattered off-resonantly by an atom. Due to

the Purcell effect [70], scattering into the cavity mode will be enhanced and the process is

coherent, i.e., the phase of the scattered light field is well defined. This phase value however

depends on the position of the atom within the cavity and the pump mode profile.

The scattering process can be seen in terms of radiating atomic dipoles, which are induced

in the atoms by the incident pump field. We consider an incident field as a running wave

field described by ∝ eikz. The relative phase of the atomic dipole oscillation with respect

to the position z = 0 depends on the atomic position z along the pump axis. This relative

phase takes any value between 0 and 2π and the created cavity-field phase will take the same

value. Now we consider a standing wave as the incident field, i.e., ∝ cos (kz). This function

is real valued which restricts the relative phase of the atomic dipole oscillation to either 0 or

π. The resulting cavity field will take the same relative phase and is thus restricted to these

two values. The same argument holds along the cavity axis, because the cavity mode in a

Fabry-Pérot geometry is also given by a standing wave.

When considering two scattering atoms, their relative position is obviously crucial for the

build-up of a cavity field (see figure 2.2). If the separation is half the pump wavelength (or

odd multiples of that), the scattered light fields will interfere destructively and the cavity

field can not build up (see figure 2.2). If in contrast, the separation is multiples of the pump

wavelength, the scattered fields will interfere constructively, enhancing the scattering into

the cavity mode and thus increasing the build up of a cavity field.

2.2.2. Scattering by an Ensemble

When replacing two atoms by a large atomic ensemble, we have to consider the distribution

of the atoms with respect to the cavity-mode and the pump-mode profile. Two extreme cases

are readily seen: (a) the atoms are distributed uniformly, i.e., there is no spatial correlations

between individual atoms (see figure 2.3(a)). The light fields scattered at individual atoms

will in mean destructively interfere and thereby cancel scattering into the cavity. Intuitively,

every atom finds another atom that is separated by odd numbers of half the pump wavelength

to cancel its scattered field.

12



2.2. SELF-ORGANIZATION OF ATOMS IN A CAVITY

(2n+ 1)λ2 2nλ2

x

z

Figure 2.2.: Coherent scattering of light by two atoms. Depending on the spatial separa-

tion between the atoms, constructive and destructive interference of the scattered fields can

amplify or cancel the scattering.

The other extreme case (b) is a highly ordered state, in which all atoms are separated

by multiples of the pump wavelength both along the pump and cavity axis. The inter-

ference pattern of the cavity and a standing-wave pump is given by u(x, z) ∝ g(x)h(z) ∝
cos (kx) cos (kz), where x correspond to the cavity axis and the wave vector k = 2π/λ is

expressed by the pump wavelength λ. Positions defined by the condition u(x, z) = +1 span

a checkerboard lattice with the lattice sites being referred to as “even”. The opposite sites,

defined by u(x, z) = −1, are referred to as “odd” and the corresponding checkerboard lattice

is spatially shifted by half the pump wavelength with respect to the even lattice. If all atoms

are localized on either of these two checkerboard lattices, the optical separation between

them is always a multiple of the pump wavelength, giving rise enhanced scattering into the

cavity due to constructive interference (see figure 2.3(b)).

2.2.3. Buildup of an Interference Potential

After the discussion on the influence of the atomic position on the cavity field in terms of

scattering properties, we will now focus on how the cavity light influences the atomic motion.

Throughout the present thesis, we have chosen all involved light fields to oscillate at a

frequency that is smaller than the atomic transition frequency. This gives rise to a dipole

force on the atoms due to the AC-Stark shift [71, 72], resulting in a potential that shows

its minima at the positions of highest electric-field strength. The potential acting on the

atoms is given by the interference pattern of the cavity field Ec = A cos (kx+ [0/π]) with

real amplitude A and the pump field Ep = B cos (kz) with real amplitude B. The cavity field

is thereby created by scattering of light from the pump beam, which gives the additional

phase freedom in the cavity field determined by the atoms either at the even or odd site.

The resulting interference potential V (x, z) is given by

V (x, z) ∝ |Ec + Ep|2

= A2 cos2 (kx) + B2 cos2 (kz)

±2AB cos (kx) cos (kz).

This potential consists of two terms that are quadratic in either cos (kx) or cos (kz) and thus

creates minima at both the even and odd site. Atoms subject to this lattice will localize

on both checkerboard lattices and, due to destructive interference, not scatter light into the

cavity. The additional term in the last row however is different because it shows its minima

at either the even or odd sites, depending on the ± sign. If the atoms are on even sites and
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(a)

(b)

λp

even odd

Figure 2.3.: The distribution of atoms with respect to the combined mode of the cavity and

pump fields. (i) The atoms are distributed equally over all sites suppressing the scattering

due to destructive interference. (ii) The atoms are distributed on either the even or odd

sub-lattice, thereby maximizing the scattering of pump light into the cavity.

thus create a cavity field with zero phase shift, the last term is added positively, yielding

an overall potential with minima at exactly the even sites (and vice versa for the odd case).

The restriction of the cavity phase to two values, which yields the ± sign in the last row, is

crucial for yielding a potential with its minima at one of two checkerboard lattices.

2.2.4. The Self-Organization Phase Transition

Having discussed the two extreme cases for the atomic position, we will now show how the

system enters the ordered phase when starting from the unordered state. Lets consider

to start with a cloud of atoms, which are randomly distributed, and we slowly increase

the pumping strength beyond a critical value. The atomic cloud is subject to fluctuations

(thermal or quantum) which for a short moment leave more atoms on the even checkerboard

(the discussion is analogous for more atoms on the odd sites). As there are now more atoms

on the even sites, destructive interference between the scattered fields is not perfect and the

atomic ensemble will scatter a small light field into the cavity. The interference of cavity

and pump field results in a potential with minima at the even sites, therefore attracting even

more atoms there. That in turn increases the scattering and amplifies the potential depth

which leads to a runaway process localizing all atoms at the even sites. This organization

happens at a well defined transverse-pump amplitude as a second-order phase transition [34].

Below the pump-power threshold, this runaway process is counteracted by a characteristic

energy scale. The unordered phase is stabilized by thermal fluctuations when considering a

thermal atomic ensemble. In the case of a BEC, thermal fluctuations are negligible. Here,

the relevant scale is given by kinetic energy of the atomic wave function. Localization costs

kinetic energy due to the strong curvature of the wave function, whereas the interference

pattern between pump and cavity field yields a gain in potential energy. The transition point

is determined by the interplay between these two energy contributions.
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2.2.5. Long-Range Interaction

The dynamical nature of the cavity field can be interpreted to induce an effective interaction

of infinite range between the atoms. All atoms are subject to a global potential which is

created by the cavity-light field interfering with the pump field. It is the position of each

individual atom, that determines the scattering rate from the pump into the cavity and thus

this global potential. If one atom moves in position, the scattering rate and with that the

global potential will change for all other atoms. Each atom thus effectively interacts with

each other. We want to mention here that a related effect has been reported on in the group

of G. Rempe in 2000 [73]. A cavity mode was driven by a resonant laser instead of driving

the atoms from free space. A small number of thermal atoms in the cavity revealed effective

long-range interaction, demonstrated in an asymmetric normal-mode splitting.

At the end of the section, we want to recall, that all experiments presented later are

performed with a BEC. The picture of localized atoms provides only a qualitatively under-

standing. The next two sections follow a mathematical approach which correctly take the

matter-wave nature of a BEC into account.
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2.3. Mean-Field Description

2.3.1. Mean-Field Equations

Atomic self organization is now described with a set of coupled mean-field equations based

on the Hamiltonian derived in section 2.1.4. The discussion focuses on one spatial dimension

(the cavity axis x) in the infinite system (i.e., no trapping potential, infinite number of atoms

but at finite density) to simplify the equations without loosing the main physical content.

We will discuss effects due to the finite size of the BEC in section 2.5.

The model follows references [34, 74] and assumes the cavity field to be in a coherent state

described by the complex field amplitude α. Entanglement between the atoms and the light

field is thus neglected and can not be described. In addition to our previous description, we

include a decay of the cavity field with rate κ. Under those assumptions, the set of coupled

mean-field equations reads:

i
∂

∂t
α = [−∆c +N〈U(x)〉 − iκ]α+N〈η(x)〉 (2.10)

i
∂

∂t
ψ(x, t) =

[
p2

2m~
+Ngc|ψ(x, t)|2

+ |α(t)|2U(x) + (α(t) + α(t)∗)η(x)
]
ψ(x, t). (2.11)

Equation (2.10) describes the time evolution of the cavity-field amplitude α which is subject

to a dynamic pumping term described by N〈η(x)〉. Here, η(x) = ηp cos kx denotes the

spatial-varying effective pump amplitude, ηp = Ωpg0/∆A the maximum two-photon Rabi

frequency and g0 the single atom coupling strength (see 2.1.1). The spatial dependency

along the cavity axis is due to the cavity-mode profile (cos kx) and the expectation values

are defined by 〈·〉 = 〈ψ| · |ψ〉 with ψ the atomic wave function normalized to 1. A single

atom inside the optical resonator gives rise to a position dependent dispersive shift of the

cavity resonance given by U(x) = U0 cos2 kx. Hence, a single atom at an anti-node of the

cavity-mode function gives rise to the maximum shift of U0 = g2
0/∆A. The cavity-field decay

is properly taken into account by the expression −iκα.

The time evolution of the atomic wave function ψ is described by equation (2.11), which is

a Gross-Pitaevskii-type equation (GPE) [75] including kinetic energy p2

2m~ and s-wave inter-

action Ngc|ψ(x, t)|2 with the strength given by gc = 4π~2a/m. Additionally, two potential

terms are present, where the first term describes a potential |α(t)|2U0 cos2 kx with a strength

dependent on the intracavity photon number |α(t)|2. U0 is thus reinterpreted as the lattice

depth created by one intracavity photon. The part (α(t) + α(t)∗)η(x) describes a lattice

potential with periodicity λ and a strength determined by the external pump amplitude ηp

and the cavity field (α(t) + α(t)∗) = 2Re(α).

It is important to realize, that the light field depends on the atomic density distribution

n(x) = |ψ(x)|2 via the expectation values 〈U(x)〉 and 〈η(x)〉 (see equation (2.10)). On the

other hand, the potentials acting on the atoms in equation (2.11) depend on the intracavity

field α. This complex interplay renders an analytic solution difficult and we will thus proceed

by deriving general properties of the steady-state solution analytically before presenting

numerical results.
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2.3.2. Steady State

The light field adapts to a changing atomic density within a time proportional to the inverse

of the field decay rate κ whereas the atomic motion is limited by the inverse of the recoil

frequency ωr = ~k2

2m (k is the wave vector of the light field and m the mass of an atom).

These scales differ by two orders of magnitude in our experiment and it is thus reasonable

to approximate the light field to adapt instantaneously to the atomic density profile. We

accordingly set the time derivative in equation (2.10) to zero. The atomic wave function

is described by ψ(x, t) = ψ0(x)e−iµt with a normalized spatially-dependent part ψ0(x) and

a time varying term, determined by the chemical potential µ. With those assumptions,

equation (2.10) and (2.11) are rewritten as

α0 =
NηpΘ

∆c −NU0B + iκ
(2.12)

µψ0(x) =

[
p2

2m~
+ |α0|2U(x) + (α0 + α∗0)η(x) +Ngc|ψ0(x)|2

]
ψ0(x). (2.13)

Here we have introduce the order parameter

Θ = 〈ψ| cos kx|ψ〉 (−1 ≤ Θ ≤ 1), (2.14)

which measures the overlap of the atomic density with the cos kx mode profile of the cavity.

For localized atoms, i.e., the atomic density is a sum of delta distributions, this parameter

counts the population imbalance of atoms on the even and odd sites. We will later use Θ as

the order parameter for describing the phase transition. In a similar mathematical fashion,

we define the bunching parameter B = 〈ψ| cos2 kx|ψ〉 (0 ≤ B ≤ 1), which measures the

density overlap with the square of the cavity mode profile. This quantity gives rise to a

dispersive shift of the cavity resonance.

We can explicitly write an effective potential acting on the atomic wave function by in-

serting equation (2.12) into (2.13). The obtained GPE consists of terms describing kinetic

energy and atom-atom interaction as well as a potential of the form

V (x) = U1 cos kx+ U2 cos2 kx. (2.15)

The coefficients are given by U1 = 2ΘNI0 [∆c −NU0B] and U2 = Θ2N2I0U0. The expression

I0 = |ηp|2/
(

[∆c −NU0B]2 + κ2
)

can be interpreted as the maximum scattering rate of a

single atom.

2.3.3. Phase Boundary

Self-organization of a BEC is described by the first potential term in equation (2.15). We will

now determine the critical pump amplitude ηcr for the phase transition where the system’s

state abruptly changes from a normal to an ordered state.

The analytic expression for the threshold pump amplitude ηcr is obtained by performing

a linear stability analysis of the equation (2.13) [34]. We start with the trivial steady-state

solution below threshold, which corresponds to a constant atomic density and a zero cavity

field, i.e., we define ψ0 = 1 and α0 = 0. Only density perturbations proportional to cos kx,

i.e., periodic in λ, will couple to the cavity field and we thus write the atomic state as
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Figure 2.4.: Ground state below and above the critical pump amplitude ηcr. The normal

phase is characterized by no coherent cavity-field and a constant atomic density. A coherent

population of the cavity field and a modulated atomic field characterize the ordered phase.

ψ(x) = ψ0 + ε cos kx = 1 + ε cos kx. The parameter ε� 1 characterizes a small perturbation

around the constant atomic ground-state density. The light field is further eliminated and

we neglect terms of quadratic order in ε.

Propagating the atomic state for one time step in imaginary time i∆τ yields (for a brief

introduction to imaginary-time propagation see appendix B)

∆ψ

∆τ
= −Ngc − ε cos kx

(
ωr +Nη2

p

2∆c −NU0

(∆c −NU0/2)2 + κ2
+ 3Ngc

)
.

The constant part of the wave function decays with a rate of Ngc whereas the perturbation

part decays with a rate depending on the pump amplitude ηp

(
ωr = ~k2

2m

)
. Since we have

chosen ∆c < 0, the decay rate of the perturbation will decrease upon an increase of the

pump amplitude. The trial solution remains stable if the perturbation decays faster than the

constant term. The condition for the critical pump amplitude is thus given by the equality

of the two decay rates. This yields

ηcr =
1√
N

√
(∆c −NU0/2)2 + κ2

NU0 − 2∆c

√
ωr + 2Ngc. (2.16)

It is crucial to realize that the denominator in the square root has to be positive in order to

give a real (and therefore physical) results. Experimentally, we thus choose ∆c and U0 to be

negative and obey the condition |NU0/2| < |∆c|. The self-organization process is otherwise

prevented.

2.3.4. Normal and Ordered Phases

We will now qualitatively discuss the steady states of the normal and ordered phase. If the

pump amplitude is below the critical value (ηp < ηcr), the ground state of the system is

given by the trivial solution of equation (2.12) and (2.13). This corresponds to a constant

atomic density n(x) = |ψ0|2 = const and no coherent cavity field |α0|2 = 0 (figure 2.4). The

order parameter Θ vanishes for this configuration, therefore rendering the effective potential
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Figure 2.5.: Atomic density as a function of position x along the cavity axis for different

pump amplitudes ηp. The left and right panel display the even and odd solution respectively.

The parameters for the simulation are given in section 2.3.5.

(equation (2.15)) to zero and equation (2.13) reduces to the description of a BEC with s-wave

atom-atom interaction.

The ground state of the system dramatically changes when tuning the control parameter

ηp beyond its critical value, where two energetically equivalent ground states emerge. Both

states show a modulated atomic density with maxima at either of the two checkerboard

lattices. The order parameters Θ acquires a macroscopic value with its sign determined by

the choice between the even and odd sites. A non-zero order parameter gives rise to a non-

zero coherent cavity field, evident from equation (2.12), which oscillates either in phase or

with a π phase shift with respect to the pump beam.

The finite value of the cavity decay rate κ induces an additional cavity-field phase shift.

However, the light-phase difference between the system organized on the even sites and the

system on the odd sites remains independent of κ and always shows the value π. Detecting

the relative phase between pump and cavity field can thus be used to distinguish the two

self-organized states experimentally.

2.3.5. Numerical Results

The self-consistent ground state solution of equations (2.12) and (2.13) obtained from a

numerical simulation is discussed in the following section. We use a split-step technique to

propagate a trial wave function in imaginary time to obtain an approximation of the system’s

ground state. An introduction of the algorithm is given in appendix B.

It is sufficient to consider a computational cell of length λ by applying periodic bound-

ary conditions, since the one-dimensional infinite system without a trapping potential is

investigated. The parameters chosen for the simulations are in close accordance to our ex-

perimental settings. We typically work with 2 · 105 atoms yielding a density on the order of

1014 atoms/cm3. The line density chosen in the one-dimensional simulations is set to a value

of 108 atoms/cm, according to our trapping potential. The pump-cavity detuning ∆c is set

to a value of ∆c = −2π · 20 MHz. Equation (2.16) shows that weak atom-atom interactions

do not alter the phase transition significantly, apart from a small shift of the transition point.

We will thus neglect the interaction due to the small scattering length of 87Rb.

Figure 2.5 shows the atomic density |ψ(x)|2 for different values of the pump amplitude.

For values below the critical pump strength, the condensate exhibits a flat atomic density
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Figure 2.6.: Displayed are properties of the ground-state solution as a function of pump

amplitude ηp. Shown is (a) the order parameter Θ, (b) the real (full lines) and imaginary

part (dashed lines) of the intracavity light field α and (c) a Fourier decomposition of the

even solution into different momentum modes with wave vector of nkr = n 2π
λ (n = 1, 2, ...).

The simulation parameters are given in section 2.3.5.

and constant phase over the unit cell (the latter is not shown in the figure but apparent from

the raw simulation data). As the pump strength is increased beyond the critical value, the

atomic density shows a modulation with periodicity of λ. Further increasing the pump power

yields an even stronger modulation of the atomic density, equivalent to stronger localization

of the atomic density onto the checkerboard lattice. The two panels of the figure show the

two possible ground states, corresponding to the even and odd configuration.

To get further insight into the process of self-organization, the order parameter Θ, as a

function of pump strength ηp, is shown in figure 2.6. Below threshold, the trivial ground

state exhibits a zero order parameter. At the phase transition point, two degenerate ground

states emerge in a pitchfork bifurcation with the even solution yielding a positive branch

and the odd solution the negative branch. Kinetic energy counteracts the increase in the

order parameter, which results in a slow approach of the extreme values. The second panel

in figure 2.6 shows the real and imaginary part of the cavity-field amplitude. The non-zero

imaginary part is solely due to cavity decay κ, which becomes apparent by analyzing equation

(2.12). The different scales of the real and imaginary part are determined by the pump-cavity

detuning ∆c compared to κ, but the scaling behavior, i.e., linear in the order parameter Θ,

is identical for both.

The third panel in the figure shows the absolute square of different Fourier components

of the atomic field for the even solution. Below threshold, only the component which is

constant in space is populated. As the phase transition is crossed, the population in the

mode with a wave function proportional to cos kx starts to increase. Due to matter-wave

interference with the ground state, this results in a modulated density distribution. As the
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Figure 2.7.: Phase diagram of the order parameter as a function of pump-cavity detuning

∆c and pump amplitude ηp. The white lines shows the phase boundary from equation (2.16).

The parameters for the simulation are given in section 2.3.5.

pump strength is further increased and the atomic density gets more and more modulated,

other Fourier components are populated, visible in the Fourier decomposition, as the value

of higher components cosnkx with n = 2, 3, ... increases. It is however also apparent, that

the population in modes cosnkx with n > 1 is very little for moderate pumping. Hence, the

two lowest lying momentum states are dominant at the phase transition and will be used to

formulate an effective two-mode description in section 2.4.

Figure 2.7 shows the order parameter as a function of both the pump-cavity detuning

∆c and the pump amplitude ηp in a two-dimensional color plot. A clear boundary between

the normal and ordered phase is apparent which reproduces the analytic result presented

in equation (2.16) (dashed curve in the figure). The upper boundary in frequency for self-

organization is given by the condition, ∆c − NU0/2 < 0, i.e., the pump laser has to be

negatively detuned with respect to the dispersively shifted cavity resonance. Below this re-

gion, the phase boundary increases like
√

∆c. Accessing the ordered phase for large detuning

should be possible due to the moderate scaling of the critical pump amplitude with detuning.

The region defined by NU0 < ∆c < NU0/2 (−2π ·8 MHz < ∆c < −2π ·4 MHz) is predicted

to be unstable [76] which is also visible in the simulation by the “noise” in the upper right

corner of figure 2.7. This area is dominated by the dispersive-shift term of the cavity, given

by the expression NU0B. The crucial parameter here is the bunching parameter B, as it

takes the value 1
2 for a flat condensate density and can rise up to +1, if the atoms are fully

localized onto one of the checkerboard lattices. The resulting doubling of the dispersive

cavity shift flips the sign of the effective pump-cavity detuning ∆c−NU0B and thus stop the

self-organization process. As the atomic density relaxes towards a flat distribution, the sign

flips again and starts the process again. This instability has been observed experimentally

and will be presented in chapter 4.

Finally, the scaling of the intracavity intensity as a function of atomic density is shown

in figure 2.8. The left panel (a) shows results from simulations with a pump amplitude

ηp = 1.05ηcr, set for each data point independently since ηcr depends on both the atomic

density and pump-cavity detuning. The light intensity increases almost perfectly linear in

atomic density. On the other hand, the right panel (b) shows the simulation for constant
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Figure 2.8.: Intracavity photon number |α|2 as a function of atomic density and pump-

cavity detuning ∆c. (a) calculated for a pump amplitude ηp = 1.05ηcr, where ηcr is evaluated

for each data point independently. The lines are fits according to |α|2 = εx. (b) calculated

for a value of ηp = 2π ·19 kHz for all data points and the lines are fits according to |α|2 = εx2.

The color code, representing the pump-cavity detuning ∆c, is the same for both panels.

pump amplitude of ηp = 2π · 19 kHz for all data points, resulting in a quadratic increase of

the intracavity photon number. This rather unusual scaling behavior constitutes a strong

hint towards a connection with the superradiant phase of the Dicke model as the light field

is predicted to scale identically.
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2.4. The Dicke Model

We have seen that only two atomic momentum modes are populated in the vicinity of the

transition point (see figure 2.6). We will thus restrict our discussion to two atomic momen-

tum states and show that atomic self-organization corresponds to the Dicke quantum phase

transition. We will then discuss the system further, using the Dicke model framework.

2.4.1. Coupling of Momentum States

The ground state of an atom is characterized by zero momentum |px, pz〉 = |0, 0〉 along

the pump (z) and cavity axis (x) which is a good approximation for a BEC, where the

momentum-distribution is ultra narrow around zero. The scattering of photons between the

pump and cavity field will couple this ground state to a superposition state | ± ~k,±~k〉 ≡∑
µ,ν=±1 |µ~k, ν~k〉/2, denoted as the excited state in the following. The constituents of this

superposition each have one photon momentum ~k along the cavity and pump axis, resulting

in an energy lifted by twice the recoil energy (Er = ~2k2/2m) with respect to the ground

state (see figure 2.9).

Let’s consider an atom in its ground-state that scatters a photon from the pump beam into

the cavity mode. We can think of the process as the virtual absorption of a photon from the

pump beam (see figure 2.9(b)). The atom therefore gains one photon momentum along the

pump axis, but due to the standing-wave nature of the pump field, the sign of the momentum

is not determined yielding a superposition of both. The subsequent emission of a photon into

the cavity mode yields a momentum “kick” along the cavity axis, which once again results in

a superposition of both signs due to the standing-wave nature of the cavity mode. An atom

is thus transferred from the ground state |0, 0〉 into the excited state |±~k,±~k〉. A different

point of view is given in figure 2.9(a), where the process is interpreted as a two-photon Raman

transition including the pump and cavity field. The electronic intermediate level is however

not populated during the transition due to the large value of ∆a. The figure also shows the

reversed processes, i.e., first virtual absorption of a cavity photon and subsequent emission

into the pump beam (figure 2.9 dashed lines). Both paths can thus transfer an atom from the

ground state into the excited state (and vice versa). The resulting four coupling processes

of the two momentum states describe the phenomenon of self-organization extremely well.

The next section will restrict the atomic Hilbert space to the discussed momentum modes to

derive an effective Hamiltonian description, which is the Dicke model.

2.4.2. Mapping to the Dicke Model

The single particle Hamiltonian (2.9) derived in section 2.1 forms the starting point of the

following discussion. We neglect the external trapping potential and the potential arising from

the standing-wave pump field because both do not alter the physical process significantly,

but hamper the analytical treatment. The presented transformation has been published for

reducing the system to two spatial dimensions [2] and to one spatial dimension [44]. We will

proceed with in two dimensions, where the Hamiltonian reads

Ĥ(1) =
p̂2

2m
− ~

[
∆c −

g2(x)

∆a

]
â†â+

~g(x)η(z)

∆a

(
â+ â†

)
.
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Figure 2.9.: Basis for mapping atomic self-organization onto the Dicke phase transition.

(a) energy diagram showing the relevant two-photon transitions from the atomic ground

state |0, 0〉 to the excited momentum state | ± ~k,±~k〉. (b) the possible excitation paths

shown in a momentum diagram.

The size of the BEC in the experiment is small compared to the waist radius of both the

cavity mode and the transverse pump beam. We can therefore neglect the transverse Gaussian

envelope function of both and write the cavity mode function as g(x) = cos (kx) and the pump

mode function as η(z) = ηp cos (kz) with a maximum single-atom single-photon coupling

strength g0 and a maximum two-photon Rabi-frequency of ηp =
Ωpg0

∆a
. By further introducing

the momentum operators along the cavity axis and pump axis as p̂x and p̂z, we can rewrite

the Hamiltonian as

Ĥ(1) =
p̂2
x + p̂2

z

2m

+~ηp

(
â† + â

)
cos(kx) cos(kz)

−~
(
∆c − U0 cos2(kx)

)
â†â. (2.17)

Similar to section 2.1.4, the many-body Hamiltonian is written in the formalism of second

quantization neglecting atom-atom interaction

Ĥ = −∆c~â†â+

∫∫ λ

0
Ψ̂†(x, z)

[
p̂2
x + p̂2

z

2m

+~ηp

(
â† + â

)
cos(kx) cos(kz)

+~U0 cos2(kx)â†â
]

Ψ̂(x, z)dxdz. (2.18)

The atomic ground state ψ0 is coupled to the excited state ψ1 via the processes discussed in

the previous section. Explicitly, the considered states are written as

ψ0 = 1

ψ1 = 2 cos kx cos kz.

The ground state shows a spatially constant atomic density |ψ0|2 while the excited state shows

a modulated density |ψ1|2 with a periodicity of λ/2. Matter-wave interference between the
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ground and excited state leads to the modulation according to a checkerboard patter, with a

periodicity of λ along both axis. Thus, the ordered configuration is given by a superposition

state of both basis states.

We expand the atomic field operator in this basis, Ψ̂ = ψ0ĉ0 + ψ1ĉ1, and insert it into the

many-body Hamiltonian (2.18). The kinetic energy term is then evaluated to be∫∫ λ

0
Ψ̂†
[
p̂2
x + p̂2

z

2m

]
Ψ̂dxdz = ĉ†1ĉ1

~2k2

m
,

reflecting that the kinetic energy of the ground state vanishes. Cross-terms involving ĉ0 and

ĉ1 vanish due to the orthogonality of ψ0 and ψ1. The only non-vanishing expression is the

kinetic energy of the excited state given by twice the recoil energy Er = ~2k2/(2m). The

cavity potential term is evaluated to∫∫ λ

0
Ψ̂†
[
~U0 cos2(kx)â†â

]
Ψ̂dxdz = ĉ†0ĉ0 â

†â ~
U0

2

+ĉ†1ĉ1 â
†â ~

3U0

4
.

The remaining expression couples the ground state ψ0 with the excited state ψ1. Explicitly,

the interaction reads∫∫ λ

0
Ψ̂†
[
~ηp

(
â† + â

)
cos(kx) cos(kz)

]
Ψ̂dxdz = ĉ†0ĉ1

(
â† + â

)
~ηp

1

2

+ĉ†1ĉ0

(
â† + â

)
~ηp

1

2
.

The resulting Hamiltonian with all computed terms is given by

Ĥ =
~2k2

m
ĉ†1ĉ1 + ~

U0

2
ĉ†0ĉ0 â

†â+ ~
3U0

4
ĉ†1ĉ1 â

†â

+
~ηp

2

(
ĉ†0ĉ1 + ĉ†1ĉ0

)(
â† + â

)
− ~∆câ

†â.

The number of atoms is assumed to be conserved by all processes, i.e., N = ĉ†1ĉ1 + ĉ†0ĉ0.

Following section 2.1.1, we introduce collective spin operators

Ĵ− = ĉ†0ĉ1

Ĵ+ = ĉ†1ĉ0

Ĵz =
(
ĉ†1ĉ1 − ĉ†0ĉ0

)
/2,

which obey the angular-momentum commutation relations. The many-body Hamiltonian is

then rewritten with those operators to take the form

Ĥ/~ = ω0Ĵz + ωâ†â+
λ√
N

(
Ĵ+ + Ĵ−

)(
â† + â

)
+
Nω0

2
+
U0

4

(
Ĵz +

N

2

)
â†â. (2.19)

The first line of this expression is exactly the Dicke Hamiltonian, that describes N two-level

atoms with transition frequency ω0 coupled to one cavity mode with frequency ω and a
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coupling constant of λ. In our realization of this Hamiltonian, the transition frequency of

the atoms is given by the energy difference between the two involved momentum states, i.e.,

ω0 = ~2k2/m. The effective frequency of the radiation field is given by ω = −∆c + NU0/2.

A convenient feature of our implementation is the ability to tune the atom-light coupling

strength λ = ηp

√
N/2 via the transverse pump amplitude.

The first expression in the second line of Hamiltonian (2.19) is constant and is therefore

omitted. The remaining term is small as long as the population of the excited state is small.

This condition is met anyways, since otherwise coupling to higher momentum states can not

be neglected, violating the basic assumption of our two-mode momentum expansion. We can

therefore omit the full last line of Hamiltonian (2.19) to describe the phase transition.

2.4.3. The Dicke Phase Transition

It was shown in 1973 that the Dicke model in the thermodynamic limit exhibits a second order

phase transition from a normal to a steady-state superradiant phase [19, 20]. Taking into

account the counter-rotating terms (as in our realization), it was pointed out by Carmichael

et al. [22] that the critical coupling strength is given by

λc =

√
ωω0

4 tanhβ ~ω0
2

β =
1

kbT
.

The corresponding phase diagram is displayed in figure 2.10. The critical coupling strength

λc increases in temperature whereas for low temperatures, the slope diverges and the value

approaches the zero-temperature limit given by λc =
√
ωω0/2. Since our experiments are

carried out with a BEC, the atomic two-level system is not thermally populated and we thus

effectively realize this zero-temperature limit of the Dicke model.

Our realization relies on a high-finesse optical cavity. Even though built with the best

commercially available mirrors, a finite cavity-field decay rate κ remains, which is caused by

the finite transmission of the cavity mirrors and loss due to manufacturing imperfections.

This can be taken into account giving rise to a correction of the critical coupling strength

[33]. The corrected expression is given by

λc =
1

2

√(ω0

ω

)
(ω2 + κ2)

(
−→
κ
ω
→0

√
ωω0

2

)
.

In the normal phase, the ground state of the original Dicke system is a state with no

coherent cavity field and all atoms in their electronic ground state. In our effective Dicke

system, this corresponds to all atoms in the zero momentum state (i.e., a flat atomic density)

and no coherent occupation of the cavity field. Beyond the phase transition however, the

new ground state in the original Dicke setting is a state with non-vanishing cavity field and

collective atomic excitation. In our realization, this excited state is characterized by a BEC

with modulated density of periodicity λ and a non-vanishing coherent cavity field.

It should be noted that our implementation constitutes an open-system version of the

Dicke transition. There is a constant energy loss rate, mainly due to the cavity-field loss

rate, which is compensated by a flux of energy from the pump beam. The system is thus

to be regarded in a non-equilibrium state (see for example [77, 78, 79]). This however does

not prevent an open system to reach a steady state, where all properties (or state variables)
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Figure 2.10.: Finite temperature phase diagram of the Dicke model. Displayed is the

phase boundary between the normal and the superradiant phase. Our realization using a

BEC corresponds to the zero-temperature limit.

are constant in time [80]. An intriguing feature of our system is the ability to monitor light

leaking out of the cavity. This gives us the possibility to infer about the systems current

state in real time as the cavity field is an intrinsic part of the system. Further effects of the

openness of the system regarding critical exponents and measurement-induced backaction is

subject to ongoing theoretical [81, 82] and experimental work.

2.4.4. Numerical Diagonalization

We will proceed by analyzing atomic self-organization within the framework of the Dicke

model. Two techniques are employed in the following: exact numerical diagonalization of

the finite atom-number Dicke Hamiltonian and analytic results in the thermodynamic limit

(i.e., N →∞). The technical details for the numerically diagonalization are described in this

section. The actual results are shown in the following section alongside the analytic results

in the thermodynamic limit. We find good agreement of both methods.

A basis for describing N two-level atoms is given by the product states

|µ1〉1|µ2〉2 . . . |µN〉N,

where |.〉i describes the state of the i-th atom and µi takes either g or e, denoting ground

and excited state. This basis consists of 2N states. A different basis that is better adapted

to the problem is given by the so called Dicke states [83]

|j,m〉 m = −j,−j + 1, . . . , j − 1, j

which are eigenstates of the collective spin operators Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z and Ĵz

Ĵ2|j,m〉 = j(j + 1)|j,m〉
Ĵz|j,m〉 = m|j,m〉.

Ladder operators are defined as Ĵ± = Ĵx ± Ĵy and fulfill

Ĵ+|j,m〉 =
√
j(j + 1)−m(m+ 1)|j,m+ 1〉

Ĵ−|j,m〉 =
√
j(j + 1)−m(m− 1)|j,m− 1〉.
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There are (N/2+1)2 of those states if N is even and [(N+1)/2+1](N+1)/2 states if N is odd.

This number is in general smaller than 2N , from which we can follow that the Dicke states

labeled with j and m are degenerate. The label j corresponds to Dicke’s co-operation number

and takes the values j = 1/2, 3/2, . . . , N/2 for N = 1, 3, 5 . . . (odd) and j = 0, 1, . . . , N/2 for

N = 2, 4, 6 . . . (even). The interest of this thesis lies in the Dicke phase transition, which

is a phenomenon of the ground state. This state is contained in the manifold given by the

maximal value j = N/2. The Dicke interaction does not couple states with different j-values

and we can thus restrict our discussion to j = N/2.

We can readily diagonalize the Dicke Hamiltonian in the Dicke basis numerically when

truncating the photonic Hilbert space. Using a standard solver for eigenvalue problems of a

square matrix, a Hamiltonian with 1000 atoms and five photonic states (including the zero

photon state) is diagonalized within minutes. The cavity frequency for all shown results is

set to ω = 1000ω0, according to our experimental parameters, and all energies are scaled

in units of ω0. It should be noted, that the used atom number is two orders of magnitude

smaller compared to our experimental value.

2.4.5. Thermodynamic Limit

The Dicke model is now discussed in the thermodynamic limit, i.e., the atom number ap-

proaches infinity. The details for deriving the expressions are omitted, but can be found in

reference [55, 56]. Mathematical expressions for the atomic inversion, the cavity-field am-

plitude and the order parameter are given, which are not analytically available from the

mean-field description of section 2.3. By comparing them to the numerical results, we will

justify their applicability to our experimental situation.

The expectation value of Ĵz measures the atomic inversion. It takes the value −N/2 in the

normal phase where all atoms occupy the ground state and the coherent cavity field vanishes,

i.e., â†â = 0. Above the critical coupling strength λc, both the cavity field and the atomic

inversion will be macroscopically occupied. The corresponding mathematical expressions are

given in the following table [55, 56]. Note that the values are scaled by the number of atoms

N , since all quantities diverge in the thermodynamic limit j = N
2 →∞

λ < λc λ > λc

〈Ĵz〉/N −1/2 −λ2
c/(2λ

2)

〈â†â〉/N 0 (λ4 − λ4
c)/(ωλ)2

The values of 〈Ĵz〉 and 〈â†â〉 as a function of coupling strength λ are shown in figure

2.11 alongside the numerical results. Both quantities show a sharp increase at the critical

coupling strength λc. The numerical results show agree with the analytic expressions, despite

the small atom number used. The high atom number in the experiment thus justifies to apply

the thermodynamic-limit expressions to describe our experimental data.
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Figure 2.11.: The expectation values of 〈Ĵz〉 and 〈â†â〉 as a function of coupling strength.

A clear threshold behavior is visible in both quantities. The blue curves show the ana-

lytic results in the thermodynamic limit and the thin red curves present the result of exact

numerical diagonalization. The parameters are given in section 2.4.4.

The order parameter for the phase transition in the framework of the Dicke model is given

by the expectation value 1
2〈Ĵ+ + Ĵ−〉 = 〈Ĵx〉 and is explicitly written as

Θ =
1

2
〈Ĵ+ + Ĵ−〉 =

{
0 if λ < λc

±
√

1− λ4
c
λ4 if λ > λc

. (2.20)

The Dicke model correctly reflects the symmetry breaking at the phase transition, as the order

parameter takes either positive or negative values. Figure 2.12 shows the order parameter as

a function of coupling strength. It is zero below the critical point λ < λc, where it shows a

pitchfork bifurcation with the two branches tending towards the extreme values, in agreement

with the mean-field results of presented in section 2.3. Each of those branches corresponds

to one ordered state which are label by “even” and “odd” to draw the connection to the

self-organized states (see figure 2.5).

2.4.6. Energy Spectrum

The excitation-energy spectrum of the Dicke model yields further insight into the origin

of the phase transition due to the competition between elementary excitation energy and

interaction energy. Those energies are on the one hand the terms describing the occupation

of the cavity mode and the atomic mode (which cost energy when occupying). On the other

side, there is the coupling term which reduces energy if the cavity field is occupied and the

atomic polarization is at a finite value. Therefore, upon an increase of the coupling strength,

an eigenmode in the excitation spectrum is expected to “soften”, i.e., lower its energy and

becoming degenerate with the ground state at the critical coupling strength. There a new

two-fold degenerate ground state with macroscopic occupation of the fields emerges.

The Dicke model in the thermodynamic limit reduces to a set of coupled harmonic oscil-

lators with a harmonic energy spectrum, i.e., the difference in energy of adjacent excitations

is a constant. We will therefore present and discuss only the first excitation in the spectrum.
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Figure 2.12.: The order parameter Θ as a function of coupling strength λ. Shown are the

analytic results in the thermodynamic limit (thick blue line) alongside with the result of

exact numerical diagonalization (thin red lines). The branches are labeled “even” and “odd”

in accordance with previous sections. The parameters are given in section 2.4.4.

Below the threshold (i.e., λ < λc) the two lowest lying energy states are given by [56]

E0/N = −ω0

E1/N =

√
1

2

(
ω2 + ω2

0 −
√(

ω2 − ω2
0

)2
+ 16λ2ωω0

)
.

Beyond the critical point (i.e., λ > λc), the energies are expressed by

E0/N = −2λ2

ω
− 2λ4

c

λ2ω

E1/N =

√√√√√1

2

ω2 +
ω2

0λ
2

λ2
c

−
√(

ω2
0λ

2

λ2
c

− ω2

)2

+ 4ω2ω2
0

.
These excitation energies are displayed in figure 2.13. Indeed, we can identify a mode that

“softens” and merges with the ground state. From the numerical results it is obvious, that

many modes bend towards zero energy at the transition point. A small energy gap between

the merged ground state and the next excited state however remains in the finite system.

This gap is theoretically expected to scale with the atom number ∝ N−1/3 [60]. Regarding

realistic experimental atom numbers closes this gap by another factor of 5.

2.4.7. Long-Range Interaction

The long-range character of the interaction induced by the cavity mode is discussed here

within a mathematical treatment. We start with the many-body Hamiltonian (2.18), used

for mapping to the Dicke model in section 2.4.2

Ĥ = −~∆câ
†â+

∫
Ψ̂†(r)

[
p̂2

2m

+~ηp

(
â† + â

)
u(r)

]
Ψ̂(r)dr,

where we have neglected a term (∝ cos2 kx) because, for our experimental parameters, it is

much smaller compared to all other terms. In addition, it will not alter the physical content of
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Figure 2.13.: Displayed is the excitation-energy spectrum as a function of coupling strength

λ from analytic expressions (blue lines) and numerical diagonalizing (red lines). As the

coupling strength approaches the critical value, the energy gap between the ground and the

first excited state vanishes in the thermodynamic limit and a new two-fold degenerate ground

state emerges. The parameters are given in section 2.4.4.

the present discussion. The interference pattern between pump and cavity field is defined in

the usual way as u(r) = cos (kx) cos (kz) with the position vector r = (x, y, z). We calculate

the equations of motion for the operators Ψ̂(r) and â. They read

∂Ψ̂(r)

∂t
= i

[
p̂2

~2m
− ηp

(
â† + â

)
u(r)

]
Ψ̂(r)

∂â

∂t
= i∆câ− iηp

∫
Ψ̂†(r)u(r)Ψ̂(r)dr.

The cavity-field follows the atomic degree of freedom within a time scale given by the cavity

decay rate κ whereas the timescale of atomic motion is set by the recoil frequency, which is

much lower. The cavity field will therefore adiabatically follow the atomic motion and the

corresponding equation for ∂â
∂t is accordingly set to zero and solved for the field operator â.

This yields

â =
ηp

∆c

∫
Ψ̂†(r)u(r)Ψ̂(r)dr.

This expression is substituted back into the equation of motion for ∂Ψ̂(r)
∂t yielding a single

equation describing the systems dynamics. We can read off an effective Hamiltonian giving

the same equation of motion as

Ĥ =

∫
Ψ̂†(r)

p̂2

2m
Ψ̂(r)dr

+

∫∫
Ψ̂†(r)Ψ̂†(r′)U(r, r′)Ψ̂(r′)Ψ̂(r)dr′dr.

The second term, where we have introduced U(r, r′) =
(
~η2

p/∆c

)
u(r)u(r′), has the math-

ematical form of an effective two-body interaction. The shape of the interaction potential

U(r, r′) is given by the interference pattern between cavity and pump field.

Let us consider two atoms at position r1 and r2, to illustrate the effect of this term. The

atomic density for localized atoms is written as a sum of delta distribution. Evaluating the

integrals leads to an interaction energy of U(r1, r1) + 2U(r1, r2) + U(r2, r2) which will be

minimized (∆c < 0) if both atoms are either on even site (i.e., u(r) = +1) or both atoms are
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on odd sites (i.e., u(r) = −1). The interaction is thus not dependent on the actual separation

of the two atoms, but rather on their relative position with respect to the cavity and pump-

mode function. It will thus induce correlations in their relative position of multiples of the

optical wavelength along pump and cavity axis, no matter how far the atoms are apart.

When considering a Bose-Einstein condensate, i.e., delocalized atomic wave-functions, the

interaction minimizes its energy for a density distribution that is modulated as ±u(r). This

implies spatial correlations of multiples of the optical wavelength.
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2.5. Symmetry Breaking

The Dicke model in the thermodynamic limit shows a second-order phase transition and

spontaneous symmetry breaking . The previous discussion focused on the microscopic physics

of these phenomena. In this section we will give a brief introduction to the relevant concepts

of second-order phase transitions and spontaneous symmetry breaking and apply them to the

Dicke phase transition. The presence of an external symmetry-breaking field in our setting

is discussed. For detailed information on the concepts we refer to the textbooks [84, 85, 86].

2.5.1. Second-Order Phase Transition

A phase transition is the transformation of a system from one state to another with qualita-

tively different properties upon the change of a control parameter. In general, a second-order

transition exhibit a discontinuity in the second derivative of the free energy with respect to

some thermodynamic variable at the critical point. A typical example for a second-order

transition is the transition from a paramagnet to a ferromagnet. The magnetization shows

a finite value below a critical temperature. It continuously reduces and eventually vanishes

due to thermal fluctuations as the temperature approaches a critical point.

Characteristic for a second order phase transition is that the states on one side of the tran-

sition point show a reduced symmetry compared to the Hamiltonian describing the system.

This feature is termed spontaneous symmetry breaking. For the mathematical description

of the phases, a parameter measuring the degree of order, thus called order parameter, is

introduced. Its mean value vanishes on one side of the transition and acquires a non-zero

value on the other side.

Landau has introduced a phenomenological theory to unify the description of second-order

transitions [86]. His theory deliberately circumvents the exact microscopic physics to describe

F

Θ

λ = λc

λ < λc λ > λc

Θ

λ

λc
{h > 0

{h < 0
h = 0

Figure 2.14.: The left panel shows the free energy F as a function of the order parameter

Θ. Below threshold, i.e., the control parameter λ is smaller than the critical value λc, one

minimum exists. Upon increasing λ beyond λc, the free energy shows two or more minima,

between which the system may randomly decide. The right panel shows the order parameter

Θ as a function of the control parameter λ in the presence of an externally applied field h. A

non-zero value of h determines a finite order parameter below threshold and predetermines

the sign beyond. The symmetry is thus broken explicitly rather than spontaneously.
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Θ > 0 Θ < 0

Figure 2.15.: An overlap due to the finite extension of the atomic cloud. Depending on the

trap position, the number of atoms on the even sites does not balance the number of atoms

on the odd sites.

the system in close vicinity of the transition point and it has proven to be very successful

in describing second-order transitions. The theory is based on the assumption, that the free

energy F of a system can be expanded in the order parameter Θ. The odd terms vanish for

a second-order transition, which can yield a characteristic functional form of the free energy

that is sketched in figure 2.14. It shows that the free energy in the unordered phase exhibits

a minimum at zero order parameter, with a characteristic parabolic shape. As the control

parameter is increased beyond the critical point, the minimum flattens and eventually splits

into two or more equivalent minima. It is fluctuations, either of thermal or quantum nature,

which will drive the system into either of the two minima. As an observer from the outside,

not being aware of the fluctuations, the system randomly picks a final state.

The presence of any additional external field h will alter the behavior significantly, giving

rise to a linear term in the Taylor expansion of the free energy. This could be an externally

applied magnetic field in the example of the ferromagnetic transition. Figure 2.14 shows a

sketch of the evolution of the order parameter as a function of control parameter for various

values of h. The order parameter starts with a finite value below the phase transition given

by the strength and sign of the field h. Upon increasing the control parameter, the order

parameter increases well before the critical point and approaches the no-field curve well

beyond the critical value. In this case, the symmetry was broken by the external field and

the process is thus termed explicit symmetry breaking.

In order to distinguish between explicit and spontaneous symmetry breaking experimen-

tally, great care has to be taken. One can evaluate the statistical occurrence of the symmetry-

broken states over many experimental realizations. However, it is misleading to conclude that

spontaneous symmetry breaking has occurred if equal probabilities for all configurations are

observed. It is crucial to see that the external field might change from measurement to

measurement. If the external field changes randomly between consecutive measurements, we

can very easily observe equal number of occurrences of the individual final states but the

symmetry was actually broken explicitly due to technical noise.

2.5.2. Finite-Size Effect

In our experiment a symmetry-breaking field originates from the finite extension of the

atomic cloud which has not been taken into account by the previous discussion. We had

argued, that the order parameter vanishes in the normal phase because the overlap integral∫
n(x, z) cos kx cos kzdxdz (see 2.14 and 2.20) vanishes for a constant atomic density. Taking
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Figure 2.16.: Overlap due to the finite size of the atomic cloud. The atomic density n(x, z)

is taken from numerically solving for the ground state in the trapping potential. Shown is the

overlap O =
∫
n(x′, z′) cos (k(x′ − x)) cos (k(z′ − z))dx′dz′ as a function of spatial offset x′

between cavity-mode and pump axis. The plots on the side show slices indicated by dashed

lines in the main graph.

into account the external trapping potential for the atomic sample yields an atomic density

that is not constant in space. The population of atoms on the even sites might not exactly

balance the population on the odd sites, depending on the exact location of the trapping

potential with respect to the cavity mode profile. This imbalance thus yields a finite order

parameter already below the threshold. Figure 2.15 illustrates the phenomenon for a very

small number of atoms. More atoms residing on the even site (left panel), gives a positive

order parameter. This situation is reversed if the trap center is shifted by half an optical

wavelength yielding a negative order parameter.

The overlap as a function of trap location can be computed from the numerical solution of

the ground state in the trapping potential. Figure 2.16 displays the result showing a sinusoidal

spatial oscillation in the trap position. The maximum value of 6.6 · 10−4 corresponds to a

population imbalance between the even and odd sites of 66 atoms, a minute number compared

to the total atom number of 105.

This finite-size effect can effectively be taken into account within the two mode description

of equation (2.19). We expand the atomic field operator in eigenstates φn(x, z) of the trapping

potential, obeying [
p̂2

2m
+ V (x, z)

]
φn(x, z) = Enφn(x, z).

The Hilbert space is again restricted to the ground state φ0 and one additional state, that has

the largest overlap with the cavity mode profile, denoted as φ1. The atomic-field operator

is then written as Ψ̂ = ĉ0φ0(x, z) + ĉ1φ1(x, z) and inserted into the many-body Hamiltonian

2.18. This yields one additional relevant term:

2~λ(â† + â)O
√
N

(
O =

∫
|φ0|2 cos (kx) cos (kz)dxdz

)
.

35



2. THEORETICAL FRAMEWORK

0.90 0.95 1.00 1.05 1.10

coupling strength λ/λc

0.0

0.1

0.2

0.3

0.4

E
−

E
0

(ω
0
)

Figure 2.17.: The energy spectrum of the Dicke model including a symmetry breaking term.

Shown is the spectrum in close vicinity of the transition point. The blue lines correspond

to zero symmetry-breaking field and the red lines include a strong symmetry-breaking field.

The parameters are given in section 2.4.4.

A direct consequence of this additional term is a coherent cavity field already below the

threshold which explicitly breaks the symmetry. Intuitively, this can be seen by considering

the scattering of photons from the pump field into the cavity mode. We had argued, that

due to destructive interference, no light is scattered. This perfect cancellation can not work

with a population imbalance between the even and odd sites. The resulting cavity field,

despite being small, gives rise to an interference pattern with the pump field. The arising

checkerboard-intensity pattern will be adapted by the atomic density, thus breaking the

symmetry already before the threshold for self-organization.

The physical changes induced by the symmetry-breaking field can further be visualized

in the excitation-energy spectrum obtained from numerical diagonalization. It is displayed

in figure 2.17, where we have plotted a reference spectrum with no symmetry breaking field

alongside. We have further chosen the finite size overlap much larger than experimentally

relevant values to enhance the effect for the discussion. The no-field spectrum shows an

excitation, that becomes degenerate with the ground state at the critical point. There a new

two-fold degenerate ground state emerges and the system may randomly decide to occupy

either of the two state. Figure 2.17 shows, that the presence of a symmetry-breaking field lifts

this degeneracy of the ground states. Thus the basis for spontaneous symmetry breaking,

two or more degenerate ground states, is lost. When slowly crossing the “transition point”,

the system will seek the lowest-energy state and the symmetry is broken explicitly.

Experimental evidence for this symmetry-breaking field is presented in chapter 5. The

influence of this field is studied and shown to vanish upon dynamically crossing the transition

point with increasing transition rates.
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3 Experimental Setup

The experimental apparatus used for the research discussed in this thesis has continuously

evolved since its constitution in 2002. It has proven to be a versatile setup which was extended

and modified in several stages and allowed to explore various physical phenomena. Initially,

the apparatus was used to produce an atom laser [87, 88, 89, 90] passing a high-finesse

cavity as an ultra-efficient single-atom detector. The experiments demonstrated higher order

coherence of the atom laser [40] and studied the thermal to Bose-Einstein condensate (BEC)

transition [91, 92, 93]. Later, the setup was modified to trap the BEC inside the cavity

and allowing it to coherently couple a BEC to a single cavity mode. In those experiments

collectively enhanced vacuum-Rabi splitting [94] and self-sustaining density oscillations of

the BEC [95, 96] were observed.

Many experimental details have been presented thoroughly in reference [97] and various

Ph.D. theses. Explicitly, the thesis of Anton Öttl [98] and Stephan Ritter [99] describe almost

all aspects of the Vacuum system, the BEC production setup and the cavity itself. The thesis

by Tobias Donner [100] gives a detailed description of an optical transportation system and

Ferdinand Brennecke describes the cavity-laser setup [67]. This chapter will briefly review the

apparatus and focus on newly build parts which are the transverse-pumping beam geometry,

the optical heterodyne-detection setup and a software framework for data acquisition.

The experimental setup is conveniently distributed onto two optical tables. One of the

tables is devoted to the laser system, which consists of several external-cavity diode lasers

[101] and the control electronics to generate the optical frequencies needed for cooling, ma-

nipulating, and probing the atomic ensemble. Optical fibers guide the light to the second

table, where the BEC is prepared in an ultra-high vacuum chamber.

3.1. Experimental Sequence

Experiments with ultracold atoms typically end with a destructive method of detecting the

atomic cloud by imaging it optically. Then a new sample, i.e., a cloud of ultracold atoms,

has to be prepared. The preparation procedure in our experimental setup takes around

1 min while the experiments on a sample only take ≈ 100 ms. Each step in the preparation

sequence is timed on a µs scale, while this severe timing requirement has to be maintained

during the entire experimental cycle. It is achieved by a computer-control system managing

the full experiment and its timing. The hardware level requires control of 36 analog-output

channels, 64 digital-output channels, a local-area network interface (LAN) and a GPIB bus.

On a software level, the experiment is controlled by a framework developed in our group

[102].
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For describing an experimental run, a data format based on XML is employed where the

experiment is described in a matrix-type representation: one axis describes timing edges

whereas the other axis describes hardware channels. Each entry in the matrix consist of a

value (which may be time dependent) for the specific hardware channel at the corresponding

time edge. The matrix concept is kept very general to cover hardware from TTL-level

logic channels (i.e., on or off), digitally controlled frequency synthesizers and analog output

channels controlling for example analog PID-loops. After defining the next experimental

sequence with a graphical user interface, the description in XML format is sent to the main

personal computer (PC) via a LAN connection. This PC has all required hardware features

build in (i.e., analog/digital output cards, network connections, GPIB cards,. . . ) and will

be referred to as the “runner computer”. It interprets the next sequence, pre-computes the

output values and uploads the results onto all hardware devices. The timing of all devices is

controlled during the sequence by sending TTL-level pulses to the specific device whenever

an action is required. The experimenter may change values in the matrix from run to run

(also possible automatically in a loop fashion). If no changes are made, the last matrix is

automatically repeated to allow the setup to thermalize.

Additional personal computers are used for various detection techniques, e.g., absorption

imaging or photon detection, which are synchronized with the main computer via LAN

communication. Each of these computers requests a copy of the XML-data in the beginning

of the run, sets up the detection hardware (e.g., cameras, ADCs, . . . ) accordingly and records

the data upon a TTL-trigger pulse send from the runner. The recorded data is stored with

the XML-code as meta data. The use of this meta-data system has proven to be useful for

later data analysis, as every piece of data stored includes a full set of information on the

corresponding experimental run.

The next section will briefly describe the standard experimental cycle for preparation of a

BEC. Most of the steps are not only separated in time, but also in space as the atomic cloud

is physically shifted during the experimental sequence. An overview of the experimental

vacuum chamber alongside the timing sequence is displayed in figure 3.1.

3.1.1. MOT - Transport - QUIC

The experimental sequence starts in a vacuum chamber with a background pressure of

10−9 mbar where a magneto-optical trap (MOT) [103, 104] is loaded with 87Rb atoms from a

dispenser source. The MOT operates at the D2 line of 87Rb [105] at a wavelength of 780.2 nm

with a loading time of 18 s and yields ≈ 2 · 109 atoms in the µK regime. We subsequently

further reduce the temperature by sub-Doppler cooling in an optical molasses during 10 ms

[106]. This step is followed by a 2 ms optical-pumping sequence [106], preparing the atoms

in the low-field seeking state |F = 1,mF = −1〉, where F denotes the total angular momen-

tum and mF the magnetic quantum number. The cloud is then trapped with a magnetic

quadrupole trap.

The high background pressure in the MOT chamber prevents reaching quantum degeneracy

due to collisions. The atoms are thus magnetically transported horizontally [107] through a

differential pumping tube into the main chamber with a pressure of 10−11 mbar. Trapped

in a quadrupole-Ioffe type trap (QUIC) [108], radio-frequency induced evaporative cooling is

performed until just above the critical temperature for Bose-Einstein condensation to set in.
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Figure 3.1.: Timing sequence and sketch of the experimental apparatus. The atoms are

pre-cooled in a magneto-optical trap, transported into an ultra-high vacuum chamber and

evaporatively cooled to near quantum degeneracy. After optical transportation, the atoms

are trapped in the cavity by a crossed-beam dipole trap where a last step of evaporative

cooling yields a BEC.

3.1.2. Optical Transport and Trapping

The atomic cloud is then vertically transported by 36 mm to the position of the high-finesse

cavity in an optical conveyor belt [109, 110], generated by two counter-propagating laser

beams. We provide the light by two tapered amplifiers, giving ≈ 100 mW light power on

the experimental table each. Both amplifiers are seeded by a common external-cavity diode

laser [101] at 852 nm which is stabilized onto the D2 transition of 133Cs [111] via frequency

modulation spectroscopy [112]. At the position of the cavity, the atoms are loaded into a

crossed-beam dipole trap formed by one of the transport beams and an additional beam on

the horizontal axis. In this optical trap, a further step of evaporative cooling is performed

to reach quantum degeneracy, yielding a BEC with condensation fraction of > 90 %.

39



3. EXPERIMENTAL SETUP

3.2. The High-Finesse Cavity

The centerpiece of the apparatus is a high-finesse optical cavity in Fabry-Pérot geometry

[113] which is mounted on a vibration isolation stack to reduce mechanical noise. We work

in the near-planar symmetric limit with two identical mirrors having a radius of curvature

of 75 mm and a separation of 178µm. In this geometry, the longitudinal modes are spaced

by 852 GHz with a transverse-mode spacing of 18.5 GHz. The TEM00 mode, to which we

couple experimentally, has a waist radius of 25.3µm and a corresponding mode volume of

88 · 103 µm3. The dielectric reflective coating of the mirrors is of very high optical quality,

showing transmission of only 2.3 ppm and losses of 6.9 ppm. We achieve a Finesse of F =

3.4 · 105 corresponding to a quality factor of 1.6 · 109 and the cavity resonance shows a line

width (FWHM) of 2.5 MHz at 780 nm.

In the experiment, we load a BEC of 87Rb atoms, optically pumped into the |F = 1,mF =

−1〉 state, into the cavity mode. Only σ+ or σ− polarized cavity photons can couple to atomic

transition due to a small magnetic field along the cavity axis (B ≈ 0.1 G). For a single σ+

or σ− polarized photons we calculate an atom-light coupling strength of g+ = 2π · 14.1 MHz

and g− = 2π · 10.9 MHz [99, 67] corresponding to single-photon cooperativity parameters of

C+ = 25.5 and C− = 15.5. The system is thus in the regime of single-atom single-photon

strong coupling, where the coherent coupling rate g+/− is larger than all decoherence rates,

dominated by the cavity-field decay rate κ = 2π · 1.3 MHz and the decay rate of the atomic

dipole γ = 2π · 3 MHz [105].

3.3. The Transverse Pump

For the experiments presented in this thesis, the existing setup had to be extended to allow

for transverse pumping of the BEC with a standing-wave light field. We will describe the

setup here and it is shown in figure 3.2.

The principal concept is to use the same optical fiber and optical beam path as used for the

transport and trapping light. On the laser table side, the optical transport light at 852 nm

and the transverse pumping light at 785 nm are combined with a dichroic mirror and coupled

into a single-mode optical fiber, that guides the light to the top of the experimental chamber.

After an optical isolator, the beam is expanded along one axis with a cylinder-lens telescope

to account for the restricted optical access in the vacuum chamber. Light leaking through

mirrors in the beam path is filtered with optical-bandpass filters (to distinguish between

the two wavelengths) and detected with photodiodes used to actively stabilize the intensity

of the beams via electronic control-loops. After a second telescope to further increase the

beam waists, the beams pass a special dichroic waveplate. This custom-made waveplate has

no influence on the transport light but the polarization axis of the transverse pump beam

is rotated by 90 ◦ to be linearly polarized orthogonal to the cavity axis. A lens with focal

length of 400 mm focuses both beams to the center of the cavity mode. This lens is mounted

on an a x-y-z translation stage for aligning the position of the beams with respect to the

cavity mode. After the beams have passed the vacuum chamber, the almost identical optical

setup is reversed, assuring that the lower transport beam, traveling in the opposite direction,

shows identical properties. The major difference is a dichroic mirror in the beam path,

that transmits the transverse pump light from the top. After this mirror, a retro-reflecting
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Figure 3.2.: Optical setup for the transverse pumping beam at 785 nm. The same opti-

cal fiber is used for the transport light at 852 nm. A custom made waveplate rotates the

polarization axis of the pump light to be orthogonal to the cavity axis while leaving the

polarization axis of the transport light unaffected. Gravity (g) points downwards.

mirror, i.e., reflective under 0 ◦ angle of incidence, is installed on a mount, that is adjustable

by piezo actuators (Newport Agilis AG-M100N). The back reflected beams together with the

initial pump beam forms the standing-wave pump at the position of the atoms. The use of

piezo actuators is necessary, because the geometric length of the beam path after the vacuum

chamber exceeds 1 m which requires an angle resolution for adjusting the retro reflector below

10−5 rad.

The described scheme of using the identical beam path for trapping and pumping light

ensures a perfect geometrical overlap between both beams. The spatial extension of both the

transport beam and the pumping beam are intrinsically matched at the position of the cavity

mode and measured to be 29µm (cavity axis) and 53µm. The scheme however suffers from

chromatic aberrations of the optical elements. The lenses, even though achromatic, are not

optimized for the used wavelengths. Using a commercial ray-tracing software, we confirmed

that the focal position of the two wavelengths differs by 1.3 mm along the beam path. The

Rayleigh range of the beams is however calculated to be 3.6 mm, which is larger than the

mismatch in focal position. The wavefront distortion of the transverse pump beam at the

position of the atoms is thus expected to be small.
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3.4. Single-Photon Counting Module

We detect photons leaking out of the cavity with single-photon counting modules (SPCM)

from the manufacturer “PerkinElmer”. These very convenient detection units employ a

silicon avalanche photodiode and incorporate high-speed electronics to yield a TTL-level

pulse whenever a photon is detected (quantum efficiency is ≈ 50 %). After a photon has been

detected, the avalanche photodiode and the electronics needs ≈ 50 ns to recover in which

no photon can be detected (typically referred to as “dead time”). This yields an absolute

maximum detectable count rate of 20 · 106 photons/s, where severe saturation effects set in

already at much lower count rates.

The electronic pulses signaling detected photons are registered with a time digitizer “P7888”

from the manufacturer “Fast Comtech GmbH”. The arrival times of each photon, within a

1 ns resolution, are written into a FIFO memory buffer and transferred via the PCI-bus into

the main memory. This architecture allows for peak rates of up to 1 GHz, but cannot main-

tain this count rates for long time due to the limited band with of the PCI bus as well as

system latencies. Detected events are overwritten if the amount of data stored in the FIFO

buffer exceeds its capacity. If the experiments performed yield high count rates, it is crucial

to decrease the optical efficiency of the beam path (with neutral density filters) to prevent

saturation effects in the SPCM and data loss in the digitizer. The software controlling the

digitizer and synchronization with the experiment is described in the section 3.6.

3.5. Balanced Optical Heterodyne Setup

A balanced optical heterodyne-detection system as an alternative to the single photon count-

ing modules (previous section) is described. After giving a general introduction to the concept

of balanced heterodyne detection, we will present details of our system. We then proceed by

presenting the calibration procedure and compare our system with the theoretical achievable

noise limit.

Principle of Optical Heterodyne Detection

A photodiode measures the photon flux impinging on it and is thus insensitive to the optical

phase of the incident light field. It is however possible to measure the complex electric field

(i.e., both amplitude and phase) of the incoming field by optically mixing it with a coherent

reference field of stable phase, called local oscillator (LO). By detecting the superposition

of both fields, we can reconstruct the relative phase information. In addition, small optical

fields can be measured with this technique due to optical amplification of the signal by a

strong LO field. The method is called “heterodyne detection” if the frequency of the signal

field ωs differs from the LO frequency ωlo.

Let Es(t) = Ese
i(ωst+φ(t)) and Elo(t) = Eloe

iωlot be the time-varying complex electric field

of signal and LO with real amplitudes Es and Elo. The factor φ(t) describes a time varying

phase factor, which is the signal to be measured. These fields are overlapped on an optical

beam splitter and the two output ports are measured with photodiodes. The 50/50 beam

splitter will induce a phase shift, different for the transmitted and reflected beam and depends

on the exact type of the optical device. We will use the standard convention for the phase
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shift in a single beam splitter, which includes a π phase shift for one of the reflected beams

[114]. The intensity impinging on the photodiodes labeled with 1 and 2 is written as

I1/2 = Is + Ilo ± 2
√
IsIlo cos [∆ · t+ φ(t)],

where we have introduced the bare intensities Is and Ilo of the signal and LO beam as well as

the difference frequency ∆ = ωs − ωlo. The optical power P detected by the photodiodes is

given by the intensity integrated over the photo-diode detection area which should be larger

than the beam extension. This power generates a photocurrent that is proportional to the

quantum efficiency of the photodiode and the photon flux, i.e., the integrated power divided

by the energy of a photon. Denoting īs and īlo as the bare photocurrents from the beams,

we write the photodiode currents as

ī1/2 ≈ īlo + īs ± 2
√
īsīlo cos (∆ · t+ φ(t)).

The photocurrents of the detectors are subtracted electronically which strongly reduces the

influence of technical noise on the LO. The resulting current is thus given by

ītot ∝
√
īsīlo cos (∆ · t+ φ(t)).

This expression shows one great advantage of balanced heterodyne detection compared to

direct intensity measurements: the measured photocurrent depends on the product of the

light intensity of both the signal and LO beam. A small signal field can thus be amplified

optically by increasing the LO intensity. On the other, the signal oscillates at a frequency ∆,

which can be chosen freely by setting ωlo appropriately. Setting the frequency difference ∆

in the radio-frequency regime (RF) allows to use off-the-shelve components for the following

electronic processing.

We want to extract the phase term φ(t) from the photocurrent ītot, which oscillates in

time with a frequency of ∆. This task is achieved fully electronically. At first, the current

signal is converted into a voltage signal with a trans-impedance amplifier. The voltage

signal, still oscillating at radio frequency, is then split into two parts where one of these

signals is shifted in phase by π/2. Both are then electronically mixed with a RF signal

proportional to cos (∆t+ τ) (τ is an arbitrary but constant phase factor). The non-linearity

of this process, generates terms oscillating at 2∆ and terms oscillating at the difference of

the input frequencies, i.e., in our case ∆ − ∆ = 0 Hz. The quickly oscillating terms are

filtered by electronic means and the remaining two signals are proportional to sin (φ(t)− τ)

and cos (φ(t)− τ). From this we can reconstruct the signal field (apart from a phase factor

determined by τ) by

Es ∝ [cos (φ(t)− τ) + i sin (φ(t)− τ)]

= e−iτeiφ(t).

The overall efficiency of the system is determined by many factors, for example LO intensity,

optical losses, quantum efficiency of the photodiodes and amplifier gain. We must therefore

calibrate the setup, to relate a measured voltage value with an impinging signal intensity.

The procedure will be presented after the description of our implementation.
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Implementation

Our implementation of the heterodyne detection is sketched in figure 3.3. A laser beam is

split already on the laser table, to give the transverse pumping beam and the local-oscillator

beam. We couple both into two independent optical fibers guiding the light towards the

experimental setup, where the transverse pumping beam enters the optical setup described

in section 3.3. The advantage of using two independent fibers is that we can freely place the

local oscillator beam near the detection photodiodes. A great disadvantage however is low-

frequency phase noise on the light fields introduced by the optical fibers in the kHz regime.

This noise, different for the two fibers, has to be actively compensated.

Both beams pass acousto-optical modulators (AOM) before the optical fibers which are

operated at different frequencies to induce a small frequency difference between LO and pump

beam (55 MHz in our setup). The AOMs are used as actuators to control the beam intensities

via the amplitude of their driving RF input and we can additionally control the phase of the

light fields by shifting the frequency of the RF inputs. We have chosen not to compensate

the noise of both fibers independently, but rather stabilize the local-oscillator field onto the

transverse-pump field, so that their relative phase is constant.

To measure the relative phase, we have set up an additional heterodyne setup. As reference

beam, we us a small fraction of the pump light, that leaks through the retro-reflecting mirror

(see section 3.3). Half of the local-oscillator power on the experiment side is combined with

this reference on a 50/50 beam splitter and detected. The photodiode output is electronically

mixed with a 55 MHz RF source to yield the phase noise introduced by the fibers. This signal

is directly fed into the frequency modulation input of the RF source driving the local-oscillator

AOM. This setup effectively realizes a proportional control loop that keeps the relative phase

between LO and pump field constant. The remaining phase noise at the position of the retro

reflector is measured to be below π/10.

The cavity output, which we want to measure, propagates along a different beam path

compared to the LO path on their way to the photodiodes. We have measured the drift

of the differential path length of the beam lines, which translate into drifts of the detected

phase signal, to be about 0.1π /s. Our typical measurement time on a BEC is below one

second, and we can thus easily distinguish the two superradiant configurations, separated by

a π-phase difference. Due to the long separation between measurements of 60 s (because of

the long BEC preparation time), we can however not compare the measured phase values

between consecutive runs.

The intensity of the transverse pump beam is further actively stabilized in order to reduce

technical noise. Leakage light through a mirror after the optical fiber is detected with a stan-

dard photodiode and used as error signal for a home-build proportional-integral controller.

The set point of this control loop is provided by the runner pc and the AOM before the

optical fiber is used as actuator for the control loop.

The main heterodyne setup follows the theoretical description above. We use a package of

balanced photodiodes including the electronic subtraction and an amplifier stage (Thorlabs

PDB110A). Electronic splitting, mixing and amplification is achieved with discrete compo-

nents from the manufacturer Mini-Circuits and a last filter stage employs a programmable

dual-channel Butterworth filter (Krohn Hitec Co. model 3940). For digitizing we use high-

speed analog-to-digital converters in a personal computer (National Instruments PCI-6132).
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Figure 3.3.: Schematic representation of the heterodyne setup and phase stabilization of the

local-oscillator fiber. Also shown is the intensity regulation for the transverse pump beam.

The thin lines ( ) represent electronic signals, the medium gray lines ( ) correspond

to optical beam lines and the thick dark-gray lines ( ) correspond to optical fibers, that

introduce phase noise, which has to be canceled with the help of an active phase stabilization

loop. The symbols correspond to: RF amplifier, RF splitter 3 dB, - RF electronic

difference,
π
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2 -phase shifter, RF mixer, RF low-pass filter, fiber coupler,

photodiode and (semi-transparent) mirror.

Calibration of the System

We digitize two voltage values with the heterodyne setup, where their squared sum is pro-

portional to the impinging light intensity. To be able to assign an intracavity photon number

to the heterodyne voltages, we have to calibrate the setup. The basic procedure is presented.

The cavity is driven (i.e., pumped with a laser) on the cavity axis. A fraction of this pump

beam is split off before the cavity to monitor its amplitude. The challenge in calibration

stems from the desire to detect ultra-small light fields with the heterodyne system. This

design choice demands for high amplification of the involved RF signals to allow to measure

light powers on the order of pW. This power level is however much to small to detect with

a commercial calibrated power meter. Increasing the power to a level, detectable with the

power meter, fully saturates the heterodyne electronics, prohibiting to directly compare the

optical power with the measured heterodyne voltages.

The calibration scheme we use consists of two steps. We first set the pump-light level to

different values and measure the transmitted light power with the power meter directly after
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the cavity output (only one vacuum window is in between the cavity mirror and the power

meter). With this data, we can assign a pump level (measured before the cavity) with the

cavity-transmitted power. In a second step, we repeat a similar sequence with much lower

light levels detected by the heterodyne system. From this measurement, we can relate the

pump level to a heterodyne voltage. From both measurements, the system’s voltage response

on cavity-output light is calculated to be ≈ 2.5 nW
V (at a LO power of 450µW).

We now have to assign the light power leaking out of the cavity to a mean intracavity

photon number. This is readily done by calculating the power leakage of a coherent cavity

field with one mean photon. It is given by (for a derivation see reference [99, 67, 115])

Pphoton = hν∆νT ,

where we have introduce the resonance frequency of the cavity ν, the free spectral range

of the cavity ∆ν = c
2L with c the speed of light and L the length of the cavity and the

transmission of the cavity mirror T = 2.3 ppm. We evaluate the response of the heterodyne

system to be ≈ 0.2 V2

cavity photon (at a LO power of 450µW).

Comparison with the Theoretical Noise Limit

The performance in terms of noise of our system will now be compared to the theoretical

limit of optical heterodyne detection where the noise of a detected signal is dominated by

optical shot noise of the local oscillator beam. We follow the procedure described in reference

[116, 117], where it is shown, that a heterodyne setup at the fundamental limit follows(
S2

N

)
het

= 4TηSm, (3.1)

where S is the mean value of the quadrature amplitude signal, N its variance, T is the

measurement time, η the overall photon detection efficiency, S the cavity decay rate due to

mirror transmission and m = |〈α〉|2 is the mean intracavity photon number.

The noise of the system should be given by the optical shot-noise of the local-oscillator

beam which can always be achieved if the power of the LO beam is chosen large enough. The

condition was confirmed by blocking the signal beam and evaluating the photo-current noise

for different DC-power levels of the LO. From the analysis we conclude that the noise on the

photocurrent is indeed given by LO photon shot-noise.

The photon detection efficiency is determined by three factors η = Vζτ , where
√
V gives

the spatial overlap of the signal and local-oscillator beam, ζ the quantum efficiency of the

photodiodes and τ the optical efficiency of the detection path. This optical efficiency is

readily determined with an optical power meter by measuring the optical power after the

cavity output and comparing it with the optical power measured directly in front of the

photodiodes. In our system, this value was determined to a value of τ = 0.70. The quantum

efficiency is taken from the data sheet of the photodiode to be ε = 0.84. By evaluating the

contrast of the photodiode output signal measuring the interfering signal and local-oscillator

beam, we infer the spatial overlap to be
√
V = 0.75. We determined an overall value of

η = 0.33. From the knowledge of the mirror transmission T and the loss-coefficient L, the

value of S is calculated to be S = κ T
2T +2L = 162.5 kHz.
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Equation (3.1) is reinterpreted as a calibration method by rewriting it as

|〈α〉|2 =
1

4TηS

(
S2

N

)
het

. (3.2)

For analyzing a measured cavity-output signal, we can evaluate all quantities on the right

hand side of this equation and compute the intracavity photon number |〈α〉|2. Comparing

this method (which is based on the signal’s noise and only valid for a truly shot-noise limited

system) with the power-meter based calibration procedure presented before, we find a devi-

ation by a factor of ≈ 1.7 in photon numbers. The method based on noise (equation (3.2))

gives a lower value, which hints to excess noise on the intensity of the measured pump beam.

Indeed, many weeks after the data was taken, we found discrete peaks at acoustic frequencies

in the Fourier spectrum of the cavity-field traces. To check whether this is the origin of the

discrepancy, we have eliminated those peaks in the Fourier spectrum and transformed the

traces back into the time domain. The relative factor in the photon number between the

two calibration methods then reduces to ≈ 1.4. Hence, the quoted number of comparing our

system to the theoretical limit should be interpreted as an upper bound because it seems

dominated by technical noise of the signal beam.

3.6. Data Acquisition Software

The single photon counting modules and the optical heterodyne setup have to be synchronized

with the experimental cycle. The recorded data is displayed immediately to allow real-time

analysis and the data is saved to the hard disk. This is accomplished by a software, developed

in the course of this thesis. It runs on two separate personal computers, each designated

for read-out of the SPCM and the heterodyne setup respectively. The underlying software

framework is identical for both purposes, only replacing the hardware-specific code part.

The basis of this framework is implemented in Python using GTK+ for displaying a graph-

ical user interface. The framework Twisted is used for multi-threaded implementation of the

network protocols to communicate with the runner computer. This part of the software,

also controlling the hardware and data storage, is referred to as the backend. An additional

part, referred to as the frontend, is implemented using “MathWorks MATLAB”. Its purpose

is to display the acquired data and give functionality for real-time analysis (e.g., filtering,

Fourier transform, second order correlation functions, . . . ). This hybrid approach was chosen,

so that the frontend can be easily expanded due to the widespread knowledge of MATLAB.

The communication between Python and MATLAB is implemented via the “MATLAB COM

Automation Server” interface. It should be noted, that the names “frontend” and “backend”

do not imply only one having a graphical user interface where rather both give the user

graphical possibilities to interact.

We will now describe an experimental cycle in terms of software logic, also displayed in

figure 3.4. After start up, the software connects to the runner computer and requests infor-

mation on the next cycle. This TCP/IP is kept open until the next experimental sequence

starts and the runner computer sends the XML set of information, describing the next run.

The XML data is parsed and all relevant parameters are extracted, which is for example the

total time of recording. The hardware is set in a state where it waits for an external TTL

trigger (which is supplied by the runner computer) to start the recording. The software waits
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Figure 3.4.: Schematic representation and timing sequence of the heterodyne/SPCM data-

acquisition software. The numbers show the timing sequence: 1 backend initiates network

connection to runner pc, 2 runner pc sends XML data set for run, 3 backend initializes

data acquisition hardware, 4 runner pc sends TTL-trigger pulse to start data acquisition,
5 data acquisition hardware reads values from SPCM/heterodyne, 6 data is transferred to

backend, 7 data is transferred to frontend and displayed, 8 data is saved to hard-disk drive.

until the data is taken, reads it and pushes it into a variable in the MATLAB workspace. It

then invokes a MATLAB function, which processes and displays the data. This is the only

time, when both the MATLAB interface and the Python program are blocked and do not

accept user interaction. The period takes < 1 s, depending on the amount of data taken.

After MATLAB finishes, the backend compresses the data and stores it on the hard disk

drive. Then the cycle restarts with the communication to the controlling computer.

The full data set stored on the hard-disk drive consists of the raw data taken in a binary

format, the XML data from the runner and further settings made locally. All these separate

files are compressed using TAR as a container format and GZIP as compression algorithm.

The format was chosen, because MATLAB has build-in commands to read it and there are

good tools to extract the data on Windows computers (besides every Linux distribution

including the required tools by default). The SPCM data is very efficiently stored because

the arrival time of each photon is written in a 32-bit integer representing a time in ns. If no

photons are detected, no data is stored. This is fundamentally different from the hardware

used to record the heterodyne data, which is an analog-to-digital converter. Even if no actual

signal is applied, the hardware reads voltage values for every time bin. This voltage value

is stored in a 64-bit float variable. At full sampling-rate of 4 MHz with all four channels

read, this results in a data-rate of 120 Mbyte/s. Even though in principal no problem, it is

not desirably for hard-disk space and processing-speed reasons. The underlying analog-to-

digital converters operate at a 15-bit resolution. A linear calibration curve is then applied

by the software drivers to yield 64-bit floats representing a voltage. We can thus reverse

this calibration procedure, to recover the raw 15 bit data. When storing the raw data, the

calibration curve is saved as meta data, so that any software reading it later, must apply the

calibration. This trick reduces the data by a factor of four, yielding a maximal data rate of

30 Mbyte/s.

48



4 The Dicke Phase Transition with a Superfluid Gas

A phase transition describes the sudden change of state of a physical system, such as melt-

ing or freezing. Quantum gases provide the opportunity to establish a direct link between

experiments and generic models that capture the underlying physics. The Dicke model de-

scribes a collective matter–light interaction and has been predicted to show an intriguing

quantum phase transition. Here we realize the Dicke quantum phase transition in an open

system formed by a Bose–Einstein condensate coupled to an optical cavity, and observe the

emergence of a self-organized supersolid phase. The phase transition is driven by infinitely

long-range interactions between the condensed atoms, induced by two-photon processes in-

volving the cavity mode and a pump field. We show that the phase transition is described by

the Dicke Hamiltonian, including counter-rotating coupling terms, and that the supersolid

phase is associated with a spontaneously broken spatial symmetry. The boundary of the

phase transition is mapped out in quantitative agreement with the Dicke model. Our results

should facilitate studies of quantum gases with long-range interactions and provide access to

novel quantum phases.

This chapter is published in reference [2]: K. Baumann, C. Guerlin, F. Brennecke and T.

Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature

464(7293), 1301 (2010).
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4.1. Introduction

The realization of Bose-Einstein condensation (BEC) in a dilute atomic gas [118, 119] marked

the beginning of a new approach to quantum many-body physics. Meanwhile, quantum

degenerate atoms are regarded as an ideal tool to study many-body quantum systems in

a very well controlled way. Excellent examples are the BEC-BCS crossover [120, 121, 122]

and the observation of the superfluid to Mott-insulator transition [123]. The high control

available over these many-body systems has also stimulated the notion of quantum simulation

[124, 125], one of the goals being to generate a phase diagram of an underlying Hamiltonian.

However, the phase transitions and crossovers which have been experimentally investigated

with quantum gases up to now are conceptually similar since their physics is governed by

short-range interactions.

In order to create many-body phases dominated by long-range interactions different routes

have been suggested, most of which exploit dipolar forces between atoms and molecules

[126]. A rather unique approach considers atoms inside a high-finesse optical cavity, so that

the cavity field mediates infinitely long-range forces between all atoms [127, 128]. In such

a setting a phase transition from a Bose-Einstein condensate to a self-organized phase has

been predicted once the atoms induce a sufficiently strong coupling between a pump field and

an empty cavity mode [35, 34]. Indeed, self-organization of a classical, laser-cooled atomic

gas in an optical cavity was observed experimentally [36]. Conceptually related experiments

studied the atom-induced coupling between a pump field and a vacuum mode using ultracold

or condensed atoms. This led to the observation of free-space [15, 16] and cavity-enhanced [18]

superradiant Rayleigh scattering, as well as to collective atomic recoil lasing [18, 17]. Both

phenomena did not support steady-state quantum phases, and became visible in transient

matter wave pulses.

A rather general objective of many-body physics is to understand quantum phase transi-

tions [21] and to unravel their connection to entanglement [129, 130]. An important concept

within this effort is a system of interacting spins in which each element is coupled to all others

with equal strength. The most famous example for such an infinitely coordinated [131] spin

system is the Dicke model [1], which has been predicted to exhibit a quantum phase transi-

tion more than thirty years ago [19, 20]. The Dicke model considers an ensemble of two-level

atoms, i.e., spin-1/2 particles, coupled to a single electromagnetic field mode. For sufficient

coupling this system enters a superradiant phase with macroscopic occupation of the field

mode. A promising route to realize this transition has been proposed recently in the setting

of cavity quantum electrodynamics by Carmichael and coworkers [33]. In their scheme strong

coupling between two ground states of an atomic ensemble is induced by balanced Raman

transitions involving a cavity mode and a pump field. This idea circumvents the thought to

be unattainable condition for the Dicke quantum phase transition which requires a coupling

strength on the order of the energy separation between the two involved atomic levels.

In this work we realize the Dicke quantum phase transition in an open system and observe

self-organization of a Bose-Einstein condensate. In the experiment, a condensate is trapped

inside an ultrahigh-finesse optical cavity, and pumped from a direction transverse to the cavity

axis, as shown in figure 4.1. We will theoretically show that the onset of self-organization

is equivalent to the Dicke quantum phase transition where the two-level system is formed

by two different momentum states which are coupled via the cavity field. At the phase
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transition a spatial symmetry of the underlying lattice structure, given by the pump and

cavity modes, is spontaneously broken. This steers the system from a flat superfluid phase

into a quantum phase with macroscopic occupation of the higher-order momentum mode and

the cavity mode. The corresponding density wave together with the presence of off-diagonal

long-range order allows to regard the organized phase as a supersolid [45, 46, 47] akin the

proposed two-component systems [48].

4.2. Theoretical Description and Dicke Model

Let us consider a single two-level atom of mass m interacting with a single cavity mode and

the standing-wave pump field. The Hamiltonian then reads in a frame rotating with the

pump laser frequency ([66] and chapter 2)

Ĥ(1) =
p̂2
x + p̂2

z

2m
+ V0 cos2(kẑ) + ~η(â† + â) cos(kx̂) cos(kẑ)

− ~
(

∆c − U0 cos2(kx̂)
)
â†â. (4.1)

Here, the excited atomic state is adiabatically eliminated which is justified for large detuning

∆a = ωp − ωa between the pump laser frequency ωp and the atomic transition frequency

ωa. The first term describes the kinetic energy of the atom with momentum operators

p̂x,z. The pump laser creates a standing-wave potential of depth V0 = ~Ω2
p/∆a along the

z-axis, where Ωp denotes the maximum pump Rabi frequency, and ~ the Planck constant.

Scattering between the pump field and the cavity mode, which is oriented along x, induces

a lattice potential which dynamically depends on the scattering rate and the relative phase

between the pump field and the cavity field. This phase is restricted to the values 0 or

π, for which the scattering induced light potential has a λp/
√

2 periodicity along the x-z

direction, with λp = 2π/k denoting the pump wavelength (see figure 4.1c). The scattering

rate is determined by the two-photon Rabi frequency η = g0Ωp/∆a, with g0 being the atom-

cavity coupling strength. The last term describes the cavity field, with photon creation and

annihilation operators â† and â. The cavity resonance frequency ωc is detuned from the

pump laser frequency by ∆c = ωp − ωc, and the light-shift of a single maximally coupled

atom is given by U0 =
g2
0

∆a
.

For a condensate of N atoms, the process of self-organization can be captured by a mean-

field description [34]. It assumes that all atoms occupy a single quantum state characterized

by the wave function ψ, which is normalized to the atom number N . The light-atom in-

teraction can now be described by a dynamic light potential [132] felt by all atoms. Since

the timescale of atomic dynamics in the motional degree of freedom is much larger than the

inverse of the cavity field decay rate κ, the coherent cavity field amplitude α adiabatically

follows the atomic density distribution according to α = ηΘ/(∆c − U0B + iκ). The order

parameter describing self-organization is given by Θ = 〈ψ| cos(kx) cos(kz)|ψ〉 which measures

the localization of the atoms on either the even (Θ > 0) or the odd (Θ < 0) sublattice of the

underlying checkerboard pattern defined by cos(kx) cos(kz) = ±1 (see figure 4.1c). The sign

of the order parameter determines which of the two possible relative phases is adapted by the

cavity field. According to the spatial overlap between the atomic density and the cavity mode

profile, the atoms dispersively shift the cavity resonance proportional to B = 〈ψ| cos2(kx)|ψ〉.
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P < Pcr

a

P > Pcr

b
even sites
odd sites

λp

c

z

xy

Figure 4.1.: Concept of the experiment. A Bose-Einstein condensate which is placed inside

an optical cavity is driven by a standing-wave pump laser oriented along the vertical z-axis.

The frequency of the pump laser is far red-detuned with respect to the atomic transition

line but close detuned to a particular cavity mode. Correspondingly, the atoms coherently

scatter pump light into the cavity mode with a phase depending on their position within

the combined pump–cavity mode profile. a, For a homogeneous atomic density distribution

along the cavity axis, the build-up of a coherent cavity field is suppressed due to destructive

interference of the individual scatterers. b, Above a critical pump power Pcr the atoms self-

organize onto either the even or odd sites of a checkerboard pattern (c) thereby maximizing

cooperative scattering into the cavity. This dynamical quantum phase transition is trig-

gered by quantum fluctuations in the condensate density. It is accompanied by spontaneous

symmetry breaking both in the atomic density and the relative phase between pump field

and cavity field. c, Geometry of the checkerboard pattern. The intensity maxima of the

pump and cavity field are depicted by the horizontal and vertical lines, respectively, with λp
denoting the pump wavelength.
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4.2. THEORETICAL DESCRIPTION AND DICKE MODEL

a

|0, 0〉
| ± ~k,±~k〉
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∆a

2ωr

g0

Ωp

g0

Ωp

b

px

pz

âĴ+

â†Ĵ+

|~k, ~k〉

Figure 4.2.: Analogy to the Dicke model. In an atomic two-mode picture the pumped

BEC–cavity system is equivalent to the Dicke model including counter-rotating interaction

terms. a, Light scattering between the pump field and the cavity mode induces two balanced

Raman channels between the atomic zero-momentum state |px, pz〉 = |0, 0〉 and the symmet-

ric superposition of the states | ± ~k,±~k〉 with an additional photon momentum along the

x and z directions. b, The two excitation paths (dashed and solid) corresponding to the two

Raman channels are illustrated in a momentum diagram. For the notation see text.

The resulting dynamic lattice potential reads

V (x, z) = V0 cos2(kz) + ~U0|α|2 cos2(kx) + ~η(α+ α∗) cos(kx) cos(kz). (4.2)

The atoms self-organize due to positive feedback from the interference term in equation (4.2)

above a critical two-photon Rabi frequency ηcr. Assuming that a density fluctuation of the

condensate induces an order parameter, e.g., Θ > 0, and the pump-cavity detuning is chosen

to yield ∆c − U0B < 0, the lattice potential resulting from light scattering further attracts

the atoms towards the even sites. This in turn increases light scattering into the cavity and

starts a runaway process. The system reaches a steady state once the gain in potential energy

is balanced by the cost in kinetic energy and collisional energy.

Fundamental insight into the onset of self-organization is gained from a direct analogy to

the Dicke model quantum phase transition [1, 19, 20]. This analogy uses a two-mode descrip-

tion for the atomic field, where the initial Bose-Einstein condensate is approximated by the

zero-momentum state |px, pz〉 = |0, 0〉. Photon scattering between the pump and cavity field

couples the zero-momentum state to the symmetric superposition of states which carry addi-

tional photon momenta along the x and z directions: | ± ~k,±~k〉 =
∑

µ,ν=±1 |µ~k, ν~k〉/2.

The energy of this state is correspondingly lifted by twice the recoil frequency ωr ≡ Er/~ =

~k2/(2m) compared to the zero-momentum state. (For the inclusion of Bloch states, see

section 4.5.)

There are two possible paths from the zero-momentum state |px, pz〉 = |0, 0〉 to the excited

momentum state | ± ~k,±~k〉: i) the absorption of a standing-wave pump photon followed

by the emission into the cavity, â†Ĵ+, and ii) the absorption of a cavity photon followed by

the emission into the pump field, âĴ+ (see figure 4.2b). Here, the collective excitations to

the higher-energy mode are expressed by the ladder operators Ĵ+ =
∑

i |±~k,±~k〉i i〈0, 0| =
Ĵ†−, with the index i labelling the atoms. Including the reverse processes, the interaction
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4. THE DICKE PHASE TRANSITION WITH A SUPERFLUID GAS

Hamiltonian describing light scattering between pump field and cavity field reads (sec. 4.5)

~λ√
N

(â† + â)(Ĵ+ + Ĵ−).

This is exactly the interaction Hamiltonian of the Dicke model which describes N two-level

systems with transition frequency ω0 interacting with a bosonic field mode at frequency ω.

This system exhibits a quantum phase transition from a normal phase to a superradiant

phase once the coupling strength λ between atoms and light reaches the critical value of

[19, 20] λcr =
√
ω0ω/2. Our system realizes the Dicke Hamiltonian with ω = −∆c + U0N/2,

ω0 = 2ωr and λ = η
√
N/2. Correspondingly, the process of self-organization is equivalent to

the Dicke quantum phase transition where both the cavity field and the atomic polarization

〈Ĵ+ + Ĵ−〉 = 2Θ acquire macroscopic occupations.

The experimental realization of the Dicke quantum phase transition is usually inhibited

because the transition frequencies by far exceed the available dipole coupling strengths. Us-

ing optical Raman transitions instead brings the energy difference between the atomic modes

from the optical scale to a much lower energy scale, which makes the phase transition ex-

perimentally accessible. A similar realization of an effective Dicke Hamiltonian has been

theoretically considered using two balanced Raman channels between different electronic (in-

stead of motional) states of an atomic ensemble interacting with an optical cavity and an

external pump field [33]. It is important to point out that these systems are externally driven

and subject to cavity loss. Therefore they realize a dynamical version of the original Dicke

phase transition. However, the cavity output field offers the unique possibility to in situ

monitor the phase transition as well as to extract important properties of the system [33].

4.3. Observing the Phase Transition

To observe the onset of self-organization in the transversely pumped BEC, we gradually

increase the pump power over time while monitoring the light leaking out of the cavity,

see figure 4.1 and section 4.5. As long as the pump power is kept below a threshold value

no light is detected at the cavity output, and the expected momentum distribution of a

condensate loaded into the shallow standing-wave potential of the pump field is observed

(see figure 4.3b,c). Once the pump power reaches the critical value an abrupt build-up of

the mean intracavity photon number marks the onset of self-organization (see figure 4.3a).

Simultaneously, the atomic momentum distribution undergoes a striking change to show

additional momentum components at (px, pz) = (±~k,±~k) (see figure 4.3d). This provides

direct evidence for the acquired density modulation along one of the two sublattices of a

checkerboard pattern associated with a non-zero order parameter Θ.

Conceptually, the self-organized quantum gas can be regarded as a supersolid [133], similar

to those proposed for two-component systems [48]. This requires the coexistence of non-trivial

diagonal long-range order corresponding to a periodic density modulation, and off-diagonal

long-range order associated with phase coherence. In our system the checkerboard structure

of the density modulation is determined by the long-range cavity-mediated atom-atom inter-

actions in a non-trivial way. This is because the arrangement of the atoms is restricted to

two possible checkerboard patterns which are intimately linked to the spontaneous breaking

of the relative phase between pump and cavity field. In contrast, the spatial atomic structure
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Figure 4.3.: Observation of the phase transition. a, The pump power (dashed) is gradually

increased while monitoring the mean intracavity photon number (solid, binned over 20µs).

After sudden release and subsequent ballistic expansion of 6 ms, absorption images (clipped

equally in atomic density) are taken for different pump powers corresponding to lattice

depths of: b, 2.6 Er, c, 7.0 Er, d, 8.8 Er. Self-organization is manifested by an abrupt

build-up of the cavity field accompanied by the formation of momentum components at

(px, pz) = (±~k,±~k) (d). The weak momentum components at (px, pz) = (0,±2~k) (c)

originate from loading the atoms into the 1D standing-wave potential of the pump laser. The

pump-cavity detuning was ∆c = −2π×14.9(2) MHz and the atom number N = 1.5(3)×105.

in traditional optical lattice experiments is solely given by the externally applied light fields

(sec. 4.5). In addition, the off-diagonal long-range order of the Bose-Einstein condensate is

not destroyed by the phase transition. The atomic coherence length extends over almost the

full atomic ensemble, as we deduce from the width of the higher-order momentum peaks.

After crossing the phase transition the system quickly reaches a steady state in the orga-

nized phase. As shown by a typical photon trace (figure 4.4a), light is scattered into the cavity

for up to 10 ms while the pump intensity is kept constant. This shows that the organized

phase is stabilized by scattering induced light forces, which is in strict contrast to previous

experiments observing (cavity-enhanced) superradiant light scattering [15, 18] where transfer

of momentum on the atomic cloud inhibited a steady state. The overall decrease of the mean

cavity photon number for constant pump intensity (figure 4.4a) is attributed to atom loss

caused by residual spontaneous scattering at a rate of Γsc = 3.7 /s and backaction-induced

heating of the atoms [134]. Atom loss raises the critical pump power according to Pcr ∝ N−1

which, close to the transition point, explains the reduction of the mean intracavity photon

number. This was confirmed by entering the organized phase twice within one run and com-
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Figure 4.4.: Steady state in the self-organized phase. a, Pump power sequence (dashed)

and recorded mean intracavity photon number (solid, binned over 20µs). After crossing

the transition point at 9 ms, the system reaches a steady state within the self-organized

phase. The slow decrease in photon number is due to atom loss (see text). The short-

time fluctuations are due to detection shot-noise. b-d, Absorption images are taken after

different times in the phase: (b) 3 ms, (c) 7 ms, and (d) after lowering the pump power

again to zero. The pump-cavity detuning was ∆c = −2π×6.3(2) MHz and the atom number

N = 0.7(1)× 105.

paring the corresponding critical pump powers of self-organization. From absorption imaging

we deduce an overall atom loss of 30% for the pump-power sequence shown in figure 4.4a. Ex-

perimentally however, the atom-loss induced photon-number reduction can be compensated

for by either steadily increasing the pump intensity or chirping the pump-cavity detuning.

From figure 4.4a we infer a maximum depth of the checkerboard lattice potential of 22 Er

which corresponds to single-site trapping frequencies of 19 kHz and 30 kHz along the x- and

z-direction, respectively. Accordingly, the atoms are confined to an array of tubes which are

oriented along the weakly confined y-direction and contain on average a few hundred atoms.

Due to the strongly suppressed tunnelling rate between adjacent tubes separated by λp/
√

2

a dephasing of the different tubes is expected [135]. This is directly observed via the reduced

interference contrast in the absorption images reflecting that the supersolid phase evolved

into a normal crystalline phase (see figure 4.4b). However, the phase coherence between the

tubes is quickly restored when the mean intracavity photon number decreases and the lattice

depth correspondingly lowers (see figure 4.4c). After ramping the pump intensity to zero, an

almost pure BEC is retrieved (see figure 4.4d).

4.4. Mapping out the Phase Diagram

From the analogy to the Dicke quantum phase transition we can deduce the dependence of the

critical pump power on the pump-cavity detuning ∆c. To experimentally map out the phase

boundary we gradually increase the pump power similar to figure 4.3a for different values of

∆c (see figure 4.5b). The corresponding intracavity photon number traces are shown as a 2D

color plot in figure 4.5a.

A sharp phase boundary is observed over a wide range of pump-cavity detuning ∆c. For

large negative values of ∆c the critical pump power Pcr ∝ λ2
cr scales linearly with the effective
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Figure 4.5.: Phase diagram. a, The pump power is increased to 1.3 mW over 10 ms for

different values of the pump-cavity detuning ∆c. The recorded mean intracavity photon

number n̄ is displayed in color along the rescaled horizontal axis, showing pump power and

corresponding pump lattice depth. A sharp phase boundary is observed over a wide range of

the pump-cavity detuning ∆c, which is in very good agreement with a theoretical mean-field

model (dashed curve). The dispersively shifted cavity resonance for the non-organized atom

cloud is marked by the arrow. b-c, Typical traces showing the intracavity photon number

for different pump-cavity detuning: (b) ∆c = −2π × 23.0(2) MHz, binned over 20µs, (c)

∆c = −2π× 4.0(2) MHz, binned over 10µs. The atom number was N = 1.0(2)× 105. In the

detuning range −2π× 7 MHz ≥ ∆c ≥ −2π× 21 MHz the pump power ramp was interrupted

at 540µW. Therefore, no photon data was taken under the insets.

cavity frequency ω = −∆c+U0B0, which agrees with the dependence expected from the Dicke

model (see section 4.5). For ω < 0, the critical coupling strength λcr has no real solution.

Indeed, almost no light scattering is observed if the pump-cavity detuning is larger than the

dispersively shifted cavity resonance at U0B0 = −2π×3.5 MHz, where B0 denotes the spatial

overlap between the cavity mode profile and the atomic density in the non-organized phase.

As the pump-cavity detuning approaches the shifted cavity resonance from below, scattering

into the cavity and the intracavity photon number increase.

We quantitatively compare our measurements with the phase boundary calculated in a

mean-field description, including the external confinement of the atoms, the transverse pump

and cavity mode profiles, and the collisional atom-atom interaction (see section 4.5). The

agreement between measurements and theoretically expected phase boundary is excellent

(see figure 4.5a, dashed curve).
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The organization of the atoms on a checkerboard pattern not only affects the scattering rate

between pump and cavity field, but also changes the spatial overlap [95] B. This dynamically

shifts the cavity resonance, which goes beyond the Dicke model (see section 4.5), and results

in a frustrated system [76] for U0N > ∆c > U0B0. Here the onset of self-organization

brings the coupled atoms-cavity system into resonance with the pump laser, and the positive

feedback which drives self-organization is interrupted (see equation (4.2)). This is observed

in an oscillatory behavior of the system between the organized and the non-organized phase

(see figure 4.5c).

4.5. Methods

Our experimental setup has been described previously [97, 94]. In brief, we prepare almost

pure Bose-Einstein condensates of typically 105 87Rb atoms in a crossed-beam dipole trap

which is centered inside an ultrahigh-finesse optical Fabry-Pérot cavity. The atoms are

prepared in the |F,mF 〉 = |1,−1〉 hyperfine ground state, where F denotes the total angular

momentum and mF the magnetic quantum number. Perpendicular to the cavity axis the

atoms are driven by a linearly polarized standing-wave laser beam whose wavelength λp is

red-detuned by 4.3 nm from the atomic D2 line. The pump-atom detuning is more than

five orders of magnitude larger than the atomic linewidth. This justifies that we neglect

spontaneous scattering in our theoretical description, and consider only coherent scattering

between the pump beam and a particular TEM00 cavity mode which is quasi-resonant with

the pump laser frequency. The system operates in the regime of strong dispersive coupling

[136] where the maximum dispersive shift of the empty cavity resonance induced by all atoms,

NU0, exceeds the cavity decay rate κ = 2π×1.3 MHz by a factor of 6.5. The light leaking out

of the optical resonator is detected with calibrated single-photon counting modules allowing

us to in-situ monitor the intracavity light intensity. In addition, we infer about the atomic

momentum distribution from absorption imaging along the y-axis after a few milliseconds of

ballistic expansion of the atomic cloud.

4.5.1. Experimental Details

We prepare almost pure 87Rb Bose-Einstein condensates in a crossed-beam dipole trap with

trapping frequencies of (ωx, ωy, ωz) = 2π × (252, 48, 238) Hz, where x denotes the cavity axis

and z the pump axis. For a typical atom number of N = 105 this results in condensate radii

of (Rx, Ry, Rz) = (3.2, 16.6, 3.3)µm which were deduced in a mean-field approximation [75].

Experimentally, the position of the dipole trap is aligned to maximize the spatial overlap

between the BEC and the cavity TEM00 mode which has a waist radius of wc = 25µm. The

cavity has a finesse of 3.4× 105. Its length of 178µm is actively stabilized using a weak laser

beam at 830 nm which is referenced onto the transverse pump laser [97]. The intracavity

stabilization light results in a weak lattice potential with a depth of less than 0.35 Er.

The pump laser beam has waist radii of (wx, wy) = (29, 53)µm at the position of the atoms.

To accomplish optimal mode matching with the atomic cloud we use the same optical fiber

for the pump light and the vertical beam of the crossed-beam dipole trap. The retro-reflected

pump power is reduced by a factor of 0.6 with respect to the incoming one due to clipping

at the cavity mirrors and losses at the optical elements. All pump powers given in the text

refer to the incoming one. The systematic uncertainties in determining the pump intensity
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at the position of the atoms is estimated to be 20 %. The pump light has a wavelength of

λp = 784.5 nm and is linearly polarized along the y-axis (within an uncertainty of 5 %) to

optimize scattering into the cavity mode. A weak magnetic field of 0.1 G pointing along

the cavity axis provides a quantization axis for the atoms prepared in the |F,mF 〉 = |1,−1〉
ground state. Accordingly, only σ+ or σ− polarized photons can be scattered into the cavity

mode. We observe the onset of self-organization always with σ+ polarized cavity light since

the corresponding atom-cavity coupling strength exceeds the one for σ− polarized light.

The light which leaks out of the cavity is monitored on two single-photon counting modules

each of which is sensitive to one of the two different circular polarizations. In principle this

allows to detect single intracavity photons with an efficiency of about 5%. However, for

the experiments reported in this work the detection efficiency was reduced by a factor of

10 in order to enlarge the dynamical range of our light detection (limited by the saturation

effects of the photon counting modules). The systematic uncertainties in determining the

intracavity photon number is estimated to be 25 %.

4.5.2. Mapping to the Dicke Hamiltonian

The onset of self-organization is equivalent to a dynamical version of the normal to superra-

diant quantum phase transition of the Dicke model. This analogy is derived in a two-mode

expansion of the atomic matter field, and allows to infer about properties of the transition

into the organized phase.

In the absence of collisional atom-atom interactions the many-body Hamiltonian describing

the driven BEC–cavity system is given by

Ĥ =

∫
Ψ̂†(x, z)Ĥ(1)Ψ̂(x, z)dx dz (4.3)

where Ψ̂ denotes the atomic field operator, and Ĥ(1) is the single-particle Hamiltonian given

in equation (4.1). In the non-organized phase the mean intracavity photon number vanishes

and all atoms occupy the lowest-energy Bloch state ψ0 of the 1D lattice Hamiltonian p̂2
z

2m +

V0 cos2(kẑ). Scattering of photons between the pump field and the cavity mode couples

the state ψ0 to the state ψ1 ∝ ψ0 cos(kx) cos(kz) which carries additional ~k momentum

components along the x and z direction. In order to understand the onset of self-organization

we expand the field operator Ψ̂ in the reduced Hilbert space spanned by the modes ψ0 and

ψ1. Note that for describing the deeply organized phase, higher-order momentum states have

to be included in the description in order to account for atomic localization at the sites of

the emergent checkerboard pattern.

After inserting the expansion Ψ̂ = ψ0ĉ0 + ψ1ĉ1 into the many-body Hamiltonian (see

equation (4.3)) we obtain up to a constant term

Ĥ/~ = ω0Ĵz + ωâ†â+
λ√
N

(â† + â)(Ĵ+ + Ĵ−) + U0Mĉ†1ĉ1â
†â, (4.4)

with bosonic mode operators ĉ0 and ĉ1, and the total atom number N = ĉ†0ĉ0+ĉ†1ĉ1. Here, the

collective spin operators Ĵ+ = ĉ†1ĉ0 = Ĵ†− and Ĵz = 1
2(ĉ†1ĉ1−ĉ†0ĉ0) were introduced. Apart from

the last term, Ĥ is the Dicke Hamiltonian [33] which describes the coupling between N two-

level systems with transition frequency ω0 = 2ωr and a bosonic field mode with frequency
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ω = −∆c + NU0/2. Their collective coupling strength is given by λ =
√
Nη/2, which

experimentally can be tuned by varying the pump laser power. The last term in equation

(4.4) (which is proportional to the matrix elementM∼ 1) describes the dynamic (dispersive)

shift of the cavity frequency, which is negligible in the close vicinity of the phase transition.

Therefore, self-organization of the transversely pumped BEC–cavity system corresponds to

the phase transition of the Dicke model from a normal into a superradiant phase [33].

The Dicke Hamiltonian is invariant under the parity transformation [52] â → −â and

Ĵ± → −Ĵ±. This symmetry is spontaneously broken by the process of self-organization

corresponding to the atomic arrangement on the even or odd sites of a checkerboard pattern

with 〈Ĵ+ + Ĵ−〉 = 2Θ taking either positive or negative values. At the same time the relative

phase between the pump and cavity field takes one of two possible values separated by π.

This is in contrast to traditional optical lattice experiments where the phase between different

laser beams determining their interference pattern is externally controlled [137].

4.5.3. Derivation of the Phase Boundary in a Mean-Field Description

To derive a quantitative expression for the critical pump intensity of self-organization, we

perform a stability analysis of the compound BEC–cavity system in a mean-field description,

following Ref. [34]. For comparison with our experimental findings we take into account

the external trapping potential, the transverse sizes of the cavity mode and the pump beam,

as well as collisional atom-atom interactions. The system is described by the generalized

Gross-Pitaevskii equation( p2

2m
+ Vext(r) + ~U0|α|2φ2

c(r) + ~η(α+ α∗)φc(r)φp(r) + g|ψ|2
)
ψ(r, t) = µψ(r, t) (4.5)

where ψ(r) denotes the condensate wave function (normalized to the total atom number

N), and α denotes the coherent cavity field amplitude which was adiabatically eliminated

according to:

α =
ηΘ

∆c − U0B + iκ
.

The mode profiles of the cavity and the pump beam are given by φc(r) = cos(kx)e
− y2+z2

w2
c and

φp(r) = cos(kz)e
− x2

w2
x
− y2

w2
y , respectively. The external potential Vext consists of the harmonic

trapping potential m(ω2
xx

2 +ω2
yy

2 +ω2
zz

2)/2 given by the crossed-beam dipole trap, and the

lattice potential V0φ
2
p(r) provided by the pump beam. The order parameter Θ = 〈ψ|φcφp|ψ〉

and the bunching parameter B = 〈ψ|φ2
c |ψ〉 are defined according to the main text. The

collisional interaction strength is given by g = 4π~2a
m with the s-wave scattering length a.

The chemical potential of the condensate is denoted by µ.

A defining condition for the critical two-photon Rabi frequency ηcr is obtained from a linear

stability analysis of equation (4.5) around the non-organized phase ψ0 with α = 0. Starting

with the two-mode ansatz ψ = ψ0(1 + εφcφp) with ε � 1, we carry out an infinitesimal

propagation step into imaginary time in equation (4.5). This yields the following condition

for the critical pump strength ηcr where the system exhibits a dynamical instability

ηcr

√
Neff =

1

2

√
∆̃2
c + κ2

−∆̃c

√
2ωr + 4Eint. (4.6)
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Here, we introduced the effective number of maximally scattering atoms Neff = 〈ψ0|φ2
cφ

2
p|ψ0〉,

and denoted the detuning between the pump frequency and the dispersively shifted cavity

resonance by ∆̃c = ∆c − U0B0, with B0 = 〈ψ0|φ2
c |ψ0〉. The interaction energy per particle,

given by Eint = g
2N

∫
|ψ0|4dr, accounts for the mean-field shift of the dispersion relation.

Identifying ω = −∆̃c, ω0 = 2ωr + 4Eint and λcr = ηcr

√
Neff our result agrees with the critical

coupling strength λcr obtained in the Dicke model including cavity decay [33]

λcr =
1

2

√
ω2 + κ2

ω
ω0.

The phase boundary shown in figure 4.5a (dashed curve) is obtained from equation (4.6)

by approximating the condensate wave function ψ0 by the Thomas-Fermi solution in the

crossed-beam dipole trap [75].

4.6. Conclusions and Outlook

We have experimentally realized a second-order dynamical quantum phase transition in a

driven Bose-Einstein condensate coupled to the field of an ultrahigh-finesse optical cavity.

At a critical driving strength the steady state realized by the system spontaneously breaks an

Ising-type symmetry accompanied by self-organization of the superfluid atoms. We identify

regimes where the emergent light-atom crystal is accompanied by phase coherence, and can

thus be considered as a supersolid. The process of self-organization is shown to be equivalent

to the Dicke quantum phase transition in an open system. We gain experimental access to

the phase diagram of the Dicke model by observing the cavity output in situ. In a very cold

classical gas the corresponding phase boundary is predicted to scale with the temperature

instead of the recoil energy [138], and the transition is triggered by classical fluctuations in

the atomic density instead of quantum fluctuations.

For the presented experiments the collective interaction λcr between the induced atomic

dipoles and the cavity field approaches the order of the cavity decay rate κ, with a maximum

ratio of λcr/κ = 0.2. Reaching the regime where the Hamiltonian dynamics dominates the

cavity losses offers possibilities to study the coherent dynamics of the Dicke model at the

critical point which was shown theoretically to be dominated by macroscopic atom-field and

atom-atom entanglement [52, 60, 139]. Detecting the phase of the light leaving the resonator

opens the opportunity to study spontaneous symmetry breaking induced by pure quantum

fluctuations. Furthermore, recording the statistics of the scattered light may enable quantum

non-demolition measurements and the preparation of exotic many-body states [49, 140].
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5 Symmetry Breaking at the Dicke Phase Transition

We study symmetry breaking at the Dicke quantum phase transition by coupling a motional

degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using

an optical heterodyne detection scheme we observe symmetry breaking in real-time and

distinguish the two superradiant phases. We explore the process of symmetry breaking in

the presence of a small symmetry-breaking field, and study its dependence on the rate at

which the critical point is crossed. Coherent switching between the two ordered phases is

demonstrated.

This chapter is published in reference [3]: K. Baumann, R. Mottl, F. Brennecke, T. Esslinger,

Exploring Symmetry Breaking at the Dicke Quantum Phase Transition, Phys. Rev. Lett.

107, 140402 (2011).

63



5. SYMMETRY BREAKING AT THE DICKE PHASE TRANSITION

5.1. Introduction

Spontaneous symmetry breaking at a phase transition is a fundamental concept in physics

[85]. At zero temperature, it is caused by the appearance of two or more degenerate ground

states in the Hamiltonian. As a result of fluctuations, a macroscopic system evolves into

one particular ground state which does not possess the same symmetry as the Hamiltonian.

Finding a clean testing ground to experimentally study the process of symmetry breaking

is notoriously difficult as external fluctuations and asymmetries have to be minimized or

controlled. The protected environment of atomic quantum gas experiments and the increasing

control over these systems offer new prospects to experimentally approach the concept of

symmetry breaking. Recently, rapid quenches across a phase transition were studied in multi-

component Bose-Einstein condensates [141, 142, 143] and optical lattices [144, 145]. Such

a non-adiabatic quench causes a response of the system at correspondingly high energies.

Therefore, a central characteristic of a phase transition, which is its diverging susceptibility

to perturbations, remains partially hidden.

In this work we study the symmetry breaking process while slowly varying a control pa-

rameter several times across a zero-temperature phase transition. Compared to quenching,

this allows us to explore the low energy spectrum of the system which probes its symmetry

most sensitively. For very slow crossing speeds we identify the presence of a residual symme-

try breaking field of varying strength. Larger values of this residual field can be correlated

to the repeated observation of one particularly ordered state. For increasingly steeper ramps

across the phase transition the influence of the symmetry breaking field almost vanishes.

We investigate the symmetry breaking in the motional degree of freedom of a Bose-Einstein

condensate coupled to a single mode of an optical cavity. Our system realizes the Dicke model

[1, 2, 44] which exhibits a second-order zero-temperature phase transition [19, 20, 22, 55].

The broken symmetry is associated with the formation of one of two identical atomic density

waves, which are shifted by half an optical wavelength [2, 44, 35, 36]. Using an interferometric

heterodyne technique, we monitor the symmetry-breaking process in real time while crossing

the transition point. A similar technique has been used to test self-organization in a classical

ensemble of laser-cooled atoms [36], where the symmetric phase is stabilized by thermal

energy rather than kinetic energy [34].

5.2. Realizing the Dicke Model

The Dicke model [1] considers the interaction between N two-level atoms and the quantized

field of a single-mode cavity, which is described by the Hamiltonian

Ĥ = ~ω0Ĵz + ~ωâ†â+
2~λ√
N

(â† + â)Ĵx. (5.1)

Here, â and â† denote the annihilation and creation operators for the cavity mode at frequency

ω, and Ĵ = (Ĵx, Ĵy, Ĵz) describes the atomic ensemble with transition frequency ω0 in terms

of a pseudospin of length N/2. The cavity light field couples with coupling strength λ to

the collective atomic dipole Ĵx. In the thermodynamic limit, the Dicke model exhibits a

zero-temperature phase transition from a normal to a superradiant phase when the control

parameter λ exceeds a critical value given by λcr =
√
ωω0/2 [19, 20, 22]. Simultaneously, the
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Figure 5.1.: (a) Experimental setup. A Bose-Einstein condensate is placed inside an optical

cavity and driven by a far-detuned standing-wave laser field (wavelength λp) along the z-

axis. Phase and amplitude of the intracavity field are measured with a balanced heterodyne

setup (PD: photodiodes). (b) Steady-state order parameter 〈Ĵx〉 as a function of coupling

strength λ, with corresponding atomic density distributions (1.-3.). The order parameter

vanishes in the normal phase (1.) and bifurcates at the critical point λcr, where a discrete

λp/2-spatial symmetry is broken. The two emergent superradiant phases (2. and 3.) can be

distinguished via the relative time-phase φ.

parity symmetry of the Dicke Hamiltonian, given by the invariance under the transformation

(â, Ĵx) → (−â,−Ĵx), is spontaneously broken [55]. While parity is conserved in the normal

phase with 〈â〉 = 0 = 〈Ĵx〉, two equivalent superradiant phases (denoted by even and odd)

emerge for λ > λcr, which are characterized by 〈Ĵx〉 ≶ 0 and 〈â〉 ≷ 0 (figure 5.1b).

In our experiment [2] we couple motional degrees of freedom of a Bose-Einstein condensate

(BEC) with a single cavity mode using a transverse coupling laser (figure 5.1a). Within a

two-mode momentum expansion of the matter-wave field, the Hamiltonian dynamics of this

system is described by the Dicke model (equation 5.1) [2, 44, 33] where the effective atomic

transition frequency is given by ω0 = 2ωr with the recoil frequency ωr = ~k2/2m, the atomic

mass m and the wavelength λp = 2π/k of the coupling laser. The frequency and power of this

laser controls the effective mode frequency ω and the coupling strength λ, respectively [2].

Above a critical laser power, the discrete λp/2-spatial symmetry, defined by the optical mode

structure u(x, z) = cos(kx) cos(kz), is spontaneously broken and the condensate exhibits

either of two density waves (figure 5.1b). Correspondingly, the atomic order parameter 〈Ĵx〉,
given by the population difference between the even (u(x, z) > 0) and odd (u(x, z) < 0)

sublattice, exhibits a negative or positive macroscopic value, while the emergent cavity field

oscillates (for ω � κ) either in (φ = 0) or out of phase (φ = π) with the coupling laser.

As described previously [2], we prepare BECs of typically 2×105 87Rb atoms in a crossed-

beam dipole trap centered inside an ultrahigh-finesse optical Fabry-Pérot cavity, which has a

length of 176µm. The transverse coupling laser at wavelength λp = 784.5 nm is red-detuned

by typically ten cavity linewidths 2κ = 2π × 2.5 MHz from a TEM00 cavity mode, realizing
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Figure 5.2.: Observation of symmetry breaking and steady-state superradiance. Shown

are simultaneous traces of (a) the coupling laser power P , (b) the mean intracavity photon

number nph, and (c) the relative time-phase φ between coupling laser and cavity field (both

averaged over 150µs). The coupling laser frequency is red-detuned by 31.3(2) MHz from the

empty cavity resonance and the atom number is 2.3(5) × 105. Residual atom loss causes a

slight decrease of the cavity photon number in the superradiant phase.

the dispersive regime ω � ω0 of the Dicke model. We monitor amplitude and phase of the

intracavity field in real-time using a balanced heterodyne detection scheme (figure 5.1a). Due

to slow residual drifts of the differential path length of our heterodyne setup, which translate

into drifts of the detected phase signal of about 0.1π /s, we cannot relate the phase signals

between consecutive experimental runs separated by 60 s.

5.3. Observing Symmetry Breaking

To observe symmetry breaking, we gradually increase the coupling laser power across the crit-

ical point (figure 5.2a). The transition from the normal to the superradiant phase is marked

by a sharp increase of the mean intracavity photon number (figure 5.2b). Simultaneously,

the time-phase φ between the two light fields locks to a constant value, implying that the

symmetry of the system has been broken (figure 5.2c). The observation of a constant time-

phase above threshold confirms that the system reaches a steady-state superradiant phase

in which the induced cavity field oscillates at the coupling laser frequency. When lowering

the laser power to zero again, the system recovers its initial symmetry and a pure BEC is

retrieved, as was inferred from absorption imaging after free ballistic expansion.

To identify the two different superradiant states (figure 5.1b), we cross the phase transition

multiple times within one experimental run (figure 5.3a). Above threshold, the corresponding

phase signal takes always one of two constant values. From multiple traces of this type we

extract a time-phase difference of 1.00(2) × π between the two superradiant phases, where

the statistical error can be attributed to residual phase drifts of our detection system.

If the system was perfectly symmetric, the two ordered phases would be realized with

equal probabilities, when repeatedly crossing the phase transition. However, the presence of

any symmetry-breaking field will always drive the system into the same particularly ordered

state when adiabatically crossing the critical point. We experimentally quantify the even-
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odd imbalance by performing 156 experimental runs (similar to figure 5.3a), in each of which

the system enters the superradiant phase ten times within 1 s. A measure for the even-odd

imbalance is given by the parameter ε = (m1 −m2)/10, where m2 ≤ m1 denote the number

of occurrences of the two superradiant configurations in individual traces. In 73 % of the

traces, the system realized ten times the same time-phase, corresponding to the maximum

imbalance of ε = 1 (figure 5.3b). However, 12 % of the runs exhibited an imbalance below

0.5, which is not compatible with a constant even-odd asymmetry.

We attribute our observations to the finite spatial extension of the atomic cloud. This can

result, even for zero coupling λ, in a small, but finite population difference between the even

and odd sublattice, determined by the spatial overlap O between the atomic column density

n(x, z) (normalized to N) and the optical mode profile u(x, z). This asymmetry enters the

two-mode description (equation 5.1) via the symmetry-breaking term 2~λO(â†+ â)/
√
N , and

renormalizes the order parameter 〈Ĵx〉 by the additive constant O. The resulting coherent

cavity field below threshold drives the system dominantly into either of the two superradiant

phases, depending on the sign of O. In the experiment, the resulting even-odd imbalance is

likely to change between experimental runs, as the overlap integral O depends λp-periodically

on the relative position between the mode structure u(x, z) and the center of the trapped

atomic cloud, with amplitude O0. We can exclude a drift of the relative trap position by

more than half a wavelength λp on the timescale given by our probing time of 1 s, as it would

lead to equal probabilities of the two phases, pretending spontaneous symmetry breaking.

The openness of the system gives us direct experimental access to the symmetry-breaking

field ∝ O. Indeed, we detect a small coherent cavity field (nph < 0.02) in the normal

phase whose magnitude varies between experimental runs. In all runs with an imbalance of

ε = 1 (figure 5.3b), the relative time-phases of the cavity field below and above threshold

are equal. Furthermore, the even-odd imbalance increases significantly with the light level

observed below threshold. Post-selection of those 10 % runs with the smallest light level

yields a much smaller imbalance (figure 5.3b, inset).

In general, the influence of a symmetry breaking field becomes negligible, if the mean value

of the order parameter, induced by this field, is smaller than the quantum or thermal fluctu-

ations present in the system. From a mean-field calculation performed in the Thomas-Fermi

limit for N = 2× 105 harmonically trapped atoms, we estimate a maximum order parameter

of O0 = 40 for zero coupling strength, corresponding to an even-odd population difference

of 40 atoms. This value is much smaller than the uncertainty ∆Jx =
√
N/2 = 224, given by

vacuum fluctuations of the excited momentum mode. Therefore, one expects in the extreme

case of a sudden quench of the coupling strength beyond λcr, that the apparent symmetry is

spontaneously broken, resulting in nearly equal probabilities of the two superradiant phases.

5.4. Crossing Rate

In the experiment we determined the even-odd imbalance ε for increasingly larger rates λ̇/λcr

at which the critical point was crossed, i.e., in an increasingly non-adiabatic situation (figure

5.3c). As the transition is crossed faster, the mean imbalance between the two superradi-

ant phases decreases significantly and approaches the value ε ≈ 0.25 corresponding to the

balanced situation (figure 5.3c, dashed line). This indicates that the effect of the symmetry

breaking term can be overcome by non-adiabatically crossing the phase transition.
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Figure 5.3.: (a) Cavity time-phase (red, averaged over 30µs) for a single run, and corre-

sponding time sequence of the coupling laser power P (dashed). (b) Probability distribution

of the imbalance ε (see text) for 156 runs, where the phase transition was crossed at a rate

of λ̇/λcr = 18(3) s−1. The inset displays the distribution of post-selected data (see text). (c)

Mean imbalance (dots) as a function of the rate λ̇/λcr at which the transition was crossed

(extracted from 356 runs in total), and theoretical model (solid line). The error bars indicate

the standard error of the mean of ε and systematic changes of λcr during probing.

Our observations (figure 5.3c) are in quantitative agreement with a simple model based

on the adiabaticity condition known from the Kibble-Zurek theory [146, 147]. We divide the

evolution of the system during the increase of the transverse laser power into a quasi-adiabatic

regime, where the system follows the change of the control parameter, and an impulse regime,

where the system is effectively frozen. After crossing the critical point, fluctuations of the

order parameter, which are present at the instance of freezing, become instable and are

amplified. The coupling strength which separates the two regimes is determined by Zurek’s

equation [146] |ζ̇/ζ| = ∆/~, with ζ = (λcr − λ)/λcr and the energy gap between ground and

first excited state given by ∆ = ~ω0

√
1− λ2/λ2

cr for ω � ω0 [55, 33].

We deduce the probability with which the system chooses the even phase, peven =
∫∞

0 p(Θ)dΘ,

from the probability distribution p(Θ) at the instance of freezing, where Θ̂ denotes the shifted

dipole operator Θ̂ = Ĵx+O. In the thermodynamic limit the distribution p(Θ) becomes Gaus-

sian with a mean value 〈Θ̂〉 = 〈Ĵx〉+O and a width determined by the quantum fluctuations

of the order parameter ∆Jx. These values are determined from the linear quantum Langevin

equations based on the Dicke model [33] including the symmetry breaking term. Besides the

decay of the cavity field we also take into account dissipation of the excited momentum state

at a rate γ = 2π × 0.6 kHz. This value was deduced from independent measurements of the

cavity output field below threshold.

From the steady-state solution of the quantum Langevin equations we find that the mean

order parameter 〈Θ̂〉 grows faster in λ than its fluctuations. If O > 12 the order parameter

exceeds its uncertainty already below critical coupling. Thermal fluctuations are neglected in

this analysis. For our typical condensate temperatures of about 100 nK quantum fluctuations

dominate as long as ζ > 0.005. We account for shot-to-shot fluctuations of the overlap O by

suitably averaging over the position of the harmonic trap. The solid line in figure 5.3c shows

a least square fit of our model to the data with the single free parameter O0. We obtain

68



5.5. COHERENT SWITCHING
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Figure 5.4.: Coherent switching between the two ordered phases. After adiabatically

preparing the system in one of the two superradiant phases, the coupling field is turned

off for a time τ . Displayed is the steady-state cavity time-phase ∆φ (averaged over 0.5 ms)

after turning on the coupling field, referenced to the value recorded before the turning-off.

Each data point corresponds to a single measurement. The dashed line shows the time

evolution as expected from the two-mode model.

a value of O0 = 77 which is in reasonable agreement with the theoretically expected value

of O0 = 40. This verifies the predominance of the considered symmetry breaking field over

other possible noise terms.

5.5. Coherent Switching

Finally, we experimentally demonstrate coherent switching between the two ordered states.

To this end we suddenly turn off the coupling laser field after adiabatically preparing the

system in one of the two superradiant phases. The atoms are then allowed to freely evolve

according to their momentum state occupation, giving rise to standing-wave oscillations of

the atomic density distribution. In the two-mode description this corresponds to harmonic

oscillations of the order parameter 〈Ĵx〉 at frequency 2ωr. We probe this time evolution by

turning on the coupling laser after a variable off-time τ , thereby deterministically re-trapping

the atoms either in the initial or in the opposite superradiant state. As expected, we observe

regular π-jumps in the difference ∆φ between the steady-state phase signals measured before

and after the free evolution, with a frequency of 2ωr (figure 5.4, dashed line). The inertia

of the atoms traveling at finite momentum causes the π-jumps in figure 5.4 to occur before

those times at which the order parameter has evolved by an odd number of quarter periods.
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6 Dynamical Coupling of a BEC and a Cavity Lattice

The physical phenomena discussed in the following chapter are performed driving the cavity

directly without using a transverse pumping field. The underlying Hamiltonian description

is still given by equation 2.9, which also described atomic self-organization and formed the

basis for the mapping to the Dicke model.

Changing the pumping geometry shows a drastic impact on the observed physics: the BEC

coupled the cavity does not show a phase transition. The system is however still governed by

strong interactions between the atomic motion and the light field even at the level of single

quanta. While coherently pumping the cavity mode the condensate is subject to the cavity

optical lattice potential whose depth depends nonlinearly on the atomic density distribution.

We observe optical bistability already below the single photon level and strong back-action

dynamics which tunes the coupled system periodically out of resonance.

This chapter is published in reference [96]: S Ritter, F. Brennecke, K. Baumann, T. Donner,

C. Guerlin, T. Esslinger, Dynamical Coupling between a Bose-Einstein Condensate and a

Cavity Optical Lattice, Applied Physics B 95(2), 213 (200).
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6. DYNAMICAL COUPLING OF A BEC AND A CAVITY LATTICE
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Figure 6.1.: A. Sketch of the coupled BEC-cavity system. To study the nonlinear coupling

between condensate and cavity light field the cavity mode is coherently driven by a pump

laser while the transmitted light is monitored on a single photon counter. B. Energy diagram

of the coupled system. We work in the dispersive regime where the pump laser frequency ωp
is far detuned from the atomic transition frequency ωa. The collective coupling between BEC

and cavity mode leads to dressed states (solid). In the dispersive regime their energy is shifted

with respect to the bare state energies (dashed) by an amount which depends on the spatial

overlap O between the cavity mode and the atomic density distribution. Correspondingly,

the condensate is subject to a dynamical lattice potential whose depth depends non-locally

on the atomic density distribution.

6.1. Introduction

The coherent interaction between matter and a single mode of light is a fundamental theme in

cavity quantum electrodynamics [148]. Experiments have been realized both in the microwave

and the optical domain, with the cavity field being coupled to Rydberg atoms [149, 150],

neutral atoms [151, 152], ions [153] or artificial atoms like superconducting qubits [30]. The

energy spectrum of these systems is characterized by an avoided crossing between the atomic

and cavity excitation branches. Far detuned from the atomic resonance the dispersive regime

is realized. The atom-light coupling then predominantly affects the motional degrees of

freedom of the atoms through the dipole force. In turn, the atoms induce a phase shift

on the cavity field which depends on their spatial position within the cavity mode. This

regime has been investigated both with single atoms strongly coupled to optical cavities

[154, 155] and with cold,ultracold and condensed ensembles of atoms collectively coupled to

large volume cavities [39, 156, 36, 136, 18].

Access to a new regime has recently been attained by combining small volume ultra-

high finesse optical cavities with ultracold atomic ensembles [41, 134] and Bose-Einstein

condensates (BEC) [94, 42, 95]. Here a very strong coupling to the ensemble is achieved

and the light forces significantly influence the motion of the atoms already at the single

photon level. In turn, the atoms collectively act as a dynamical index of refraction shifting

the cavity resonance according to their density distribution. Atomic motion thus acts back

on the intracavity light intensity, providing a link to cavity optomechanics [157, 158, 159,

72



6.2. EXPERIMENTAL SETUP

160, 161, 162, 163, 164, 165, 166]. Recently, bistability at photon numbers below unity [41],

measurement back-action [134], and triggered coherent excitations of mechanical motion [95]

have been observed.

Here, we further investigate the steady state and non-steady state aspects of this highly

nonlinear regime including bistability and coherent oscillations. We present experimental

observations and compare them with ab-initio calculations in a mean-field approximation.

6.2. Experimental setup

In our setup a 87Rb BEC is coupled dispersively to an ultra-high finesse Fabry-Pérot optical

cavity [94] (figure 6.1A). The atoms are trapped inside the cavity within a crossed beam

dipole trap formed by two far-detuned laser beams oriented perpendicularly to the cavity

axis. The trapping frequencies are (ωx, ωy, ωz) = 2π × (220, 48, 202) Hz where x denotes

the cavity axis and z the vertical axis. The BEC contains typically N = 105 atoms, which

corresponds to Thomas-Fermi radii of (Rx, Ry, Rz)= (3.2, 19.3, 3.4) µm.

The atoms are prepared in the sub-level |F,mF 〉 = |1,−1〉 of the 5S1/2 ground state

manifold, where F denotes the total angular momentum and mF the magnetic quantum

number. The atomic D2 transition couples to a TEM00 mode of the cavity with bare frequency

ωc corresponding to a wavelength of λ = 780 nm. The mode has a waist radius of 25 µ m

and is coherently driven at amplitude η through one of the cavity mirrors with a circularly

polarized pump laser at frequency ωp. For the experiments reported here, the pump laser

was blue-detuned by 2π × 58 GHz from the atomic transition frequency ωa. Due to a weak

magnetic field oriented along the cavity axis pump photons couple only to σ+ transitions.

Summing over all accessible hyperfine levels we obtain a maximum coupling strength between

a single atom and a σ+ polarized intracavity photon of g0 = 2π × 14.1 MHz. This is larger

than the cavity decay rate κ = 2π × 1.3 MHz and the atomic spontaneous emission rate

γ = 2π × 3.0 MHz. Therefore the condition of strong coupling is fulfilled even at the single

atom level.

A piezo actuator between the cavity mirrors allows us to actively stabilize the cavity length

(≈ 178µ m) via a Pound-Drever-Hall lock onto a far detuned laser at 829 nm that is tuned to

resonance with a different longitudinal cavity mode. The corresponding weak standing wave

potential inside the cavity has no significant influence on the results presented here.

6.3. Theoretical description

Since the detuning ∆a = ωp − ωa between pump laser frequency and atomic transition

frequency is large compared to the collective coupling strength
√
Ng0 and the spontaneous

emission rate γ, the population of the atomic excited state is small [167]. This allows us to

neglect spontaneous emission, and to eliminate the atomic excited state [66] from the Tavis-

Cummings Hamiltonian which describes the collective coupling between N atoms and the

cavity field [168]. The coupling induces a light shift of the atomic ground state energy and a

collective phase shift of the cavity light field (figure 6.1B). This results in an one-dimensional

optical lattice potential ~U0 cos2(kx) with the atom-light coupling varying along the cavity

axis as g0 cos(kx). Here, U0 = g2
0/∆a denotes the light shift of a maximally coupled atom in

the presence of a single cavity photon, with k = 2π/λ. For our parameters this lattice depth
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Figure 6.2.: Mean intracavity photon number |α|2 of the pumped BEC-cavity system versus

the cavity-pump detuning ∆c calculated for three different pump strengths η = (0.7, 1, 2)ηcr

(bottom to top curve). The blue-detuned cavity light field pushes the atoms to regions of

lower coupling strength which gives rise to bistability. The initially symmetric resonance

curve centered around ∆c = U0N/2 develops above a critical pump strength ηcr a bistable

region with two stable (solid lines) and one unstable branch (dashed).

is comparable to the recoil energy ~ωrec = ~2k2/(2m), i.e., already mean intracavity photon

numbers on the order of one are able to significantly modify the atomic density distribution.

In turn, the intracavity light intensity of the driven system itself depends on the spatial

distribution of the atoms in the cavity mode. The overall frequency shift of the cavity

resonance is determined by the spatial overlap O between atomic density and cavity mode

profile. Correspondingly, the coupled BEC-cavity system is governed by a strong back-action

mechanism between the atomic external degree of freedom and the cavity light field.

To describe the BEC-cavity dynamics quantitatively we use an one-dimensional mean field

approach. Light forces of the cavity field affecting the transverse degrees of freedom can

be neglected for low intracavity photon numbers. With ψ denoting the condensate wave

function along the cavity axis (normalized to unity) and α the coherent state amplitude of

the cavity field, the equations of motion read [169]

i~ψ̇(x, t) =
(−~2

2m

∂2

∂x2
+ |α(t)|2~U0 cos2(kx)

+Vext(x) + g1D|ψ|2
)
ψ(x, t) (6.1)

iα̇(t) = −(∆c − U0NO + iκ)α(t) + iη. (6.2)

Here, Vext denotes the weak external trapping potential, N is the total number of atoms,

g1D the atom-atom interaction strength integrated along the transverse directions, and ∆c =

ωp − ωc denotes the cavity-pump detuning.

These coupled equations of motion reflect that the depth of the cavity lattice potential,

which is experienced by the atoms, depends non-locally on the atomic state ψ via the overlap

O = 〈ψ| cos2(kx)|ψ〉. To get insight into the steady-state behavior of the condensate in this

dynamical lattice potential we first solve equation (6.1) for the lowest energy state in case of

a fixed lattice depth. Starting from the variational ansatz

ψ(x) = c0 + c2

√
2 cos(2kx) (6.3)
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which is appropriate for moderate lattice depths, we find the overlap integral in the ground

state to be O = 1
2 −

|α|2U0

16ωrec
. Here, the external trapping potential Vext and atom-atom inter-

actions have been neglected for simplicity. Correspondingly, the BEC acts as a Kerr medium

that shifts the empty cavity resonance proportionally to the intracavity light intensity. After

inserting this result into the steady state solution of equation (6.2)

|α|2 =
η2

κ2 + (∆c − U0NO)2
,

an algebraic equation of third order in |α|2 is obtained which determines the resonance curve

of the system. For sufficient pump strength η the system exhibits bistable behavior (figure

6.2), a property which is known from optical and mechanical Kerr nonlinearity [170, 171, 172,

173, 39, 41]. Namely, while increasing the pump strength η the initially Lorentzian resonance

curve of height η2/κ2 gets asymmetric and develops an increasing region with three possible

steady states above a critical value ηcr. A detailed analysis results in a corresponding critical

intracavity photon number on resonance of ncr = 8
3
√

3
16κωrec

NU2
0

.

6.4. Bistability measurement

To study the nonlinear coupling between BEC and cavity field experimentally, the pump laser

frequency was scanned slowly (compared to the atomic motion) across the resonance while

recording the cavity transmission on a single photon counter. From the measured photon

count rate the mean intracavity photon number is deduced by correcting for the quantum

efficiency (≈ 0.5) and the saturation of the single photon counter, and by taking into account

the transmission (2.3 ppm) of the output coupling mirror as well as the losses at the detection

optics (15 %). The systematic uncertainty in determining the intracavity photon number is

estimated to be 25 %.

Typical resonance curves obtained for different pump strengths are shown in figure 6.3.

For maximum intracavity photon numbers well below the critical photon number ncr the

resonance curve is Lorentzian shaped and does not depend on the scan direction of the

pump laser (A). When increasing the pump strength beyond the critical value we observe a

pronounced asymmetry of the resonance and hysteretic behavior which indicates bistability

of the system (B). The frequency range over which bistability occurs gets enlarged by further

increasing the pump strength (C).

We compare our experimental data with resonance curves obtained from a numerical so-

lution of the coupled set of equations (6.1) and (6.2) including atom-atom interactions and

the external trapping potential (red lines in figure 6.3). We find a critical photon number of

ncr = 0.21, in accordance with our experimental observations within the systematic uncer-

tainties. The inclusion of atom-atom interactions results in a critical photon number which

is slightly larger than the value 0.18 obtained from the analytical interaction-free model. For

very low photon numbers (A and B) we find good agreement between the measured and

calculated resonance curves. However, for increasing pump strengths we observe that the

system deviates more and more from the calculated steady state curves (C). This is visible in

a precipitate transition from the upper branch to the lower one while scanning with decreas-

ing ∆c. Such deviations indicate a superposed non-steady state dynamics. This dynamics

is governed by the inertia of our refractive index medium, and goes beyond the physics of a
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Figure 6.3.: Bistable behavior at low photon number. The traces show the mean intracavity

photon number |α|2 versus the cavity-pump detuning ∆c. Traces A, B and C correspond

to pump strengths of η = (0.22, 0.78, 1.51)κ, respectively. The intracavity photon number

is deduced from the detector count rate. Each graph corresponds to a single experimental

sequence during which the pump laser frequency was scanned twice across the resonance,

first with increasing detuning ∆c (blue curve) and then with decreasing detuning (green

curve). The scan speed was 2π × 1 MHz/ms and the raw data has been averaged over 400µ

s (A) and 100µ s (B and C). We corrected for a drift of the resonance caused by a measured

atom loss rate of 92/ms assumed to be constant during the measurement. The theoretically

expected stable resonance branches (red) have been calculated for 105 atoms (deduced from

absorption images) taking a transverse part of the mode overlap of 0.6 into account. This

value was deduced from several scans across the resonance in the non-bistable regime and is

about 25% below the value expected from the BEC and cavity mode geometry. Shot-to-shot

fluctuations in the atom number resulting in uncontrolled frequency shifts were corrected for

by overlapping the individual data traces A,B and C with the theoretically expected curves.

The inset of C shows photon-photon correlations of the green trace calculated from the last

400µ s right before the system transits to the lower stable branch. Due to averaging these

oscillations are not visible in the main graph.
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Figure 6.4.: A. Coherent dynamics of the BEC in the dynamical lattice potential. Shown

is the count rate of the single photon detector while scanning with increasing cavity-pump

detuning across the bistable resonance curve. The scan speed was set to 2π × 2 MHz/ms

with a maximum intracavity photon number of 9.5. The condensate is excited due to the

non-adiabatic branch transition resulting in oscillations of the overlap O clearly visible in

a periodic cavity output. B. Absorption image revealing the population in the |p = ±2~k〉
momentum components during the coherent oscillations. Once the coherent dynamics was

excited both trapping potential and pump laser were switched off and the cloud was imaged

after 4 ms free expansion. To clearly detect the small |p = ±2~k〉 population we averaged over

9 independent images and subtracted the average of 9 different images without excitation

(taken after the oscillations had stopped [95]).

pure Kerr medium [174]. Experimentally, this is supported by detecting regular oscillations

in the second order correlation function g(2)(τ) which was evaluated from the transmission

signal right before the system leaves the upper resonance branch (figure 6.3C inset).

6.5. Dynamics

Coherent non-steady state dynamics of the system can also be excited more directly by

means of a non-adiabatic increase in the cavity light intensity. This is naturally provided by

the sudden transition which appears while scanning with increasing ∆c across the bistable

resonance (figure 6.4A). Once the system reaches the turning point of the lower stable branch

(figure 6.2) a periodic dynamics is excited which gets observable through a strongly pulsed

cavity transmission. This dynamics has been reported on previously [95]. In short, a small

fraction of condensate atoms is scattered by the cavity lattice into the higher momentum

states |p = ±2~k〉. Due to matter-wave interference with the remaining |p = 0〉 atoms the

atomic cloud develops a density oscillation which shifts the system periodically in resonance

with the pump laser. Direct evidence for the coherence of this dynamics is obtained via the

atomic momentum distribution from absorption imaging (figure 6.4B).

Further insight into the non-steady state behavior can be gained from the analogy between

the coupled BEC-cavity system and a mechanical oscillator coupled to a cavity field via

radiation pressure [95]. The mechanical oscillator can be identified with the c2-mode in the

state expansion equation (6.3). Matter-wave interference with the c0-mode gives rise to a

spatial modulation of the atomic density, and results in harmonic oscillations of the overlap

O at a frequency of 4ωrec ≈ 2π × 15 kHz.
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This mapping to cavity optomechanics shown in [95] helps to gain knowledge on the dy-

namical behavior of the system. Since the mechanical oscillator is subject to the radiation

pressure force its stiffness is modified according to the intracavity light intensity. This mech-

anism is known in the literature as ’optical spring’ [171, 175]. We observe a clear signature of

this effect in the photon-photon correlations (figure 6.3C inset) oscillating at approximately

42 kHz which is a factor of 2.9 larger than the bare oscillator frequency. A detailed study

of this dynamics including the amplification effects due to retardation between cavity light

field and oscillator motion is the subject of ongoing work.

6.6. Conclusion

Here we have studied the dynamical coupling between a BEC and a cavity optical lattice. We

have observed a strong optical nonlinearity at the single photon level, manifested by bistable

behavior and coherent oscillations around the steady state. These results complement the

cavity optomechanical studies traditionally conducted on microfabricated or high precision

interferometric devices (for a recent review see [176]). Our system has remarkable properties

which should allow us to experimentally explore the quantum regime of cavity optomechanics

[176, 177]. The mechanical oscillator intrinsically starts in the ground state, from which, due

to collective enhancement of the coupling, a single motional excitation can cause a shift of

the cavity resonance on the order of the cavity linewidth. Inversely, a change of one photon

in the light field strongly modifies the atomic motional state. Beyond the classical nonlinear

observations reported here, the system is therefore promising to reveal signatures of the

quantum nature of the light and matter fields [134, 177, 178].
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7 Conclusions and Outlook

In this thesis, the first experimental realization of the Dicke quantum phase transition was

presented. We have achieved this long-standing experimental goal by employing atomic

momentum states of a Bose-Einstein Condensate (BEC) dispersively coupled to a high-finesse

optical cavity [2]. This enables a light-matter coupling strength larger than the elementary

energy of an atomic or photonic excitation. We have observed spontaneous self-organization

of the atoms on a checkerboard pattern when sufficiently driven by a transverse laser field.

The theoretical equivalence of the BEC self-organization and the zero-temperature Dicke

phase transition was shown. Conceptually, the phase transition is driven by infinite-range

interactions between the atoms which are mediated by the cavity field. The phase boundary of

the superradiant phase was mapped out in quantitative agreement with the model description.

We have demonstrated controlled crossing of the phase transition making it possible to enter

the ordered phase and subsequently recover a BEC again. We have further investigated the

symmetry-breaking process and identified a residual symmetry-breaking field, caused by the

finite spatial extension of our system [3]. By varying the rate, at which the critical point is

crossed, we can approach a symmetric regime, where both symmetry-broken states appear

with equal probability.

Ongoing experimental work focuses on precursors of the Dicke phase transition below

threshold. We have recently spectroscopically mapped out the mode softening in the exci-

tation energy spectrum towards the critical point. The characteristic momentum selectivity

of the infinite-range interaction modifies excitations at distinct momenta, in close analogy to

the physics of a roton minimum. We have further observed an increasing susceptibility upon

density fluctuations when approaching the critical point. The cavity output field, due to these

density fluctuations, reveals an incoherent population of the cavity mode and an oscillating

second-order correlation function. By comparing the experimental data with a quantum

statistical model we have identified a regime, in which quantum fluctuations dominate the

dynamics of the system.

The experimental setup gives us many opportunities and possibilities for the future. One

exciting aspect of the system is the dynamics at the Dicke phase transition, as strict adiabatic-

ity can not be met experimentally when approaching the critical point. A perfect adiabatic

process in finite time at the critical point is forbidden due to the vanishing excitation-energy

gap. The resulting state after crossing the critical point consequently shows excess energy,

corresponding to the formation of defects. The Kibble-Zurek theory [179, 146] gives a good

estimation of the defect production rate. Our system potentially allows to detect these de-

fects via either the atomic momentum distribution or real-time detection of the cavity-output

field. Recently, concepts of quantum optimal-control theory, which is the study of optimiza-

tion strategies to improve the outcome of a quantum process, have been successfully applied
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to many-body systems [180, 181, 182]. The dynamical crossing of a quantum phase transition

under optimal control conditions is however still experimentally unexplored.

Cavity loss, inevitable from an experimental point of view, allows us to infer about the

many-body system inside the cavity in real time without disturbing the system. Mekhov et

al. have shown theoretically, that the atomic quantum statistics is mapped to the cavity field

via atom-light interactions [49]. Transverse light scattering is thus an excellent tool to study

complex many-body phenomena such as the superfluid to Mott-insulating phase transition of

ultracold atoms in an optical lattice [123]. Implementing a three dimensional optical lattice

inside our cavity might allow us to non-destructively monitor this phase transition in real time

and possibly study the quantum critical region, where quantum fluctuations dominate the

dynamics of the system. It would also enable us to go beyond pure Bose-Hubbard physics.

By tuning the light-matter interaction strength, we can engineer a hybrid system, where

both Bose-Hubbard type physics and self-organization physics become equally relevant. An

interplay of short-ranged interaction, due to atomic s-wave scattering, and infinite-ranged

interaction, due to the cavity mode, will certainly generate a rich many-body phase diagram.

The ultimate control over all atomic degrees of freedom achieved in a BEC combined

with the clean electromagnetic environment in a high-finesse optical cavity provides an ideal

playground to study a plethora of quantum many-body phenomena. We have demonstrated,

that we can explore general physical concepts beyond the field of ultracold atoms. Minor

experimental changes allow us to explore strongly-correlated atomic phases that are governed

by infinite-range interactions, with an detection method allowing for non-destructive and

real-time observation of quantum many-body dynamics.
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A Rotating-Frame Transformation

In this appendix we present the technical details on transforming Hamiltonian (2.1) into the

interaction picture [183]. The transformation is used twice in a similar fashion in this thesis:

the rotating-wave approximation is applied in section 2.1.2 after transforming into a the

frame rotating with the pump frequency. Explicit time dependencies are further eliminated

in section 2.1.3 by transforming into a rotating frame. We start by repeating the Hamiltonian

(2.1) (for the individual terms see section 2.1.1)

Ĥ = ~ωcâ
†â+ ~ωaσ̂+σ̂− + ~g0 (σ̂+ + σ̂−) (â+ â†).

The Hamiltonian (2.1) is split into Ĥ = Ĥ0 + Ĥ1 where Ĥ0 = Ĥa + Ĥc describes the bare

cavity and atoms and Ĥ1 = Ĥint describes the interaction. We introduce the transformation

operator

Û(t) = exp
(
iĤ0t/~

)
= exp

(
iωatσ̂+σ̂− + iωctâ

†â
)

= exp(iωatσ̂+σ̂−)︸ ︷︷ ︸
Û1(t)

exp(iωctâ
†â)︸ ︷︷ ︸

Û2(t)

= Û1(t)Û2(t).

With this definition, the commutator
[
Û1, Û2

]
= 0 vanishes. An operator in the Schrödinger

picture ÂS is transformed into an operator ÂI in the interaction picture via the operation

ÂI = ÛÂSÛ
† and correspondingly a state vector via |ψI〉 = Û |ψs〉.

Explicitly the transformed atomic operators read

σ̂+ → Û σ̂+Û
† = Û1σ̂+Û

†
1 = eiωatσ̂+σ̂− σ̂+e

−iωatσ̂+σ̂−

=

∞∑
n,m=0

(iωat)
n(σ̂+σ̂−)n

n!
σ̂+

(iωat)
m(σ̂+σ̂−)m

m!︸ ︷︷ ︸
=0∀m6=0

=
∞∑
n

(iωat)
n

n!
(σ̂+σ̂−)nσ̂+︸ ︷︷ ︸

=σ̂+

= eiωatσ̂+

σ̂− → Û σ̂−Û † = Û1σ̂−Û
†
1 = . . . = e−iωatσ̂−.
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The transformation of the photonic operators is analogous. We employ the relation

eX̂ Ŷ e−X̂ = Ŷ + 1
1!

[
X̂, Ŷ

]
+ 1

2!

[
X̂,
[
X̂, Ŷ

]]
+ . . . [184] and the commutator

[
â†â, â

]
= â

to obtain

â→ Û âÛ † = Û2âÛ
†
2 = eiωctâ†ââe−iωctâ†â

= â+
[
iωctâ

†â, â
]

+
1

2!

[
iωctâ

†â,
[
iωctâ

†â, â
]]

+ . . .

= â+ (−iωct)
1â+

1

2!
(−iωct)

2â+ . . .

= e−iωctâ

â† → Û â†Û † = Û2â
†Û †2 = . . . = eiωctâ†.

Next, Schrödinger’s equation is written in the interaction picture

i~
∂

∂t
|ψI〉 = i~

∂

∂t

(
Û |ψS〉

)
= −Ĥ0Û |ψS〉+ i~Û

∂

∂t
|ψS〉

= −Ĥ0|ψI〉+ ÛĤS|ψS〉
= −Ĥ0|ψI〉+ ÛĤSÛ

†Û |ψS〉
= −Ĥ0|ψI〉+ ĤI|ψI〉
= Ĥ∗|ψI〉.

Inserting the transformed atomic and photonic operators into the Hamiltonian Ĥ∗ yields

Ĥ∗ = ~g0

[
σ̂−â†e−i(ωa−ωc)t + σ̂+âe

i(ωa−ωc)t

σ̂+â
†ei(ωa+ωc)t + σ̂−âe−i(ωa+ωc)t

]
.
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B Numerical Methods

In this appendix we will briefly introduce the split-step Fourier method as a numerical tool to

solve nonlinear partial-differential equations [185, 186, 187]. We will then present the method

of imaginary-time propagation to approximate the ground state solution of a Gross-Pitaevskii

equation. The appendix closes with a discussion on the treatment of s-wave interaction in

low dimensional simulations.

Split-Step Fourier-Transform Technique

A time-independent Hamiltonian Ĥ usually consists of a kinetic energy term T̂ and a potential

Term V̂ . The assumption is that the kinetic energy term T̂ is diagonal in Fourier space

whereas the potential term V̂ is diagonal in real space. Numerically, the kinetic energy is

thus cheaply calculate in Fourier-space whereas the potential term is easily applied in real-

space. In general however, these terms do not commute
[
T̂ , V̂

]
6= 0 and the time-propagation

operator can thus not be split exactly

e−i∆tĤ/~ = e−i∆t(T̂+V̂ )/~ 6= e−i∆tT̂ /~e−i∆tV̂ /~.

To overcome this issue, we can rewrite the time-evolution operator using the Baker-Hausdorff

formula [184]

e−i∆tĤ/~ = e−i
∆t
2
T̂ /~e−i∆tV̂ /~e−i

∆t
2
T̂ /~eO(∆t3)

−→
∆t→0

e−i
∆t
2
T̂ /~e−i∆tV̂ /~e−i

∆t
2
T̂ /~. (B.1)

The last term eO(∆t3) tends to unity for ∆t→ 0. We will thus neglect it, keeping in mind to

choose a sufficiently small ∆t when running the simulation.

Equation (B.1) provides us with an algorithm sketched in figure B.1 that is readily im-

plemented. Application of the full time propagator is approximated by applying half a time

step in Fourier-space (involving T̂ ), a full time step in real-space (involving V̂ ) and again

half a time step in Fourier-space (involving T̂ ). Repeating this scheme multiple times yields

the time evolution of the wave function.

The advantage of this algorithm is that each application of the time propagator corre-

sponds to simple multiplications since the operators are diagonal in their corresponding space.

Computational costly is however the transformation back and forth between real space and

Fourier space. The broad availability of highly optimized fast-Fourier transform techniques

[188] helps to achieve short run-times of the simulation while keeping the development time

reasonable.
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initialize ψx 6= 0

Fourier transform: ψx → ψk

apply e−i
∆t
2 T̂ /~ to ψk

inverse Fourier transform: ψk → ψx

normalize ψx

apply e−i∆tV̂ /~ to ψx

Fourier transform: ψx → ψk

apply e−i
∆t
2 T̂ /~ to ψk

inverse Fourier transform: ψk → ψx

normalize ψx

n
tim

es

Figure B.1.: Sketch of the split-step Fourier algorithm.

Imaginary-Time Propagation

Imaginary-time propagation is used to find an approximation of the ground state of a Hamil-

tonian. Lets consider a general wave function |ψ〉 =
∑∞

k=0 ck|k〉, where the basis state |k〉
are eigenstates of the Hamiltonian Ĥ, i.e., Ĥ|k〉 = εk|k〉. For simplicity, we choose ε0 = 0.

We will now apply the time propagator eiĤ∆t/~ but will choose the time-step ∆t = −iτ to

be an imaginary time. Applying this operator to |ψ〉 gives

|ψ(τ)〉 = e−Ĥτ
∞∑
k=0

ck|k〉 =

∞∑
k=0

e−εkτ ck|k〉.

All basis states are exponentially damped in time τ . The damping rate is given by the

eigenenergy εk, yielding to a bigger damping for states with higher energy. The biggest

contribution in the sum will thus be given by the lowest energy eigenstate for sufficiently

large τ . It should be noted, that propagation in imaginary time is not unitary and thus does

not preserve the normalization of the wave function. It has to be re-normalized after each

application of the propagator.

The combination of the imaginary-time propagation with the split-step Fourier method

yields an efficient algorithm to numerically find the ground state of a non-liner Schrödinger

equation. Great care has to be taken in the choice of the time-step τ . The split-step method

demands a small value of τ to justify the approximation in equation B.1. On the other hand,

imaginary-time propagation demands a large value of τ to “damp out” all states apart from

the ground state. This can to be achieved by successive application of many small time-steps.
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S-Wave Scattering

A complication arises from the non-linear s-wave interaction term present in the Gross-

Pitaevskii equation (GPE) [75, 69]. It is written as

4π~2a

m
|ψ(x)|2 ,

where a is the s-wave scattering length, m is the atomic mass and ψ(x) is the atomic wave

function. Typical system sizes regarded in the scope of this thesis suffer from the high memory

usage and slow simulation speed. It is thus often desirable to perform the simulations in lower

dimensions. While this can be readily done from an algorithmic point of view, the interaction

strength has to be rescaled to give physical results.

Different methods are used for rescaling. For simulating a BEC in a trap, we follow refer-

ence [189]. The idea it to rescale the interaction strength to give the same chemical potential

in lower dimensions (1D and 2D) as we would get in the full 3D calculation. The chemical

potentials are readily calculated analytically in the Thomas-Fermi limit and set equal. This

leads to following expressions for the interaction strength in one and two dimensions

a1d =

(
15Na

ā

)2/5(~ω̄
2

)3/2 √
2m

3ωx~2πN

a2d =
54/5

(
aN
ā

)2/5
ω̄2

2 · 31/5Nπωxωy
,

where N is the particle number, (ωx, ωy, ωz) are the trap frequencies along the three orthog-

onal axis, ω̄ = (ωxωyωz)
1/3 is the mean trapping frequency and ā =

√
~
mω̄ .

85





C Physical constants

All physical constants used in this thesis have been published in [190] which can be accessed

via http://physics.nist.gov/constants.

All data concerning the physical properties of 87Rb have been taken from [105] and can be

accessed via http://steck.us/alkalidata/.
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[127] J. K. Asbóth, P. Domokos and H. Ritsch. Correlated motion of two atoms trapped in

a single-mode cavity field. Phys. Rev. A 70(1), 13414 (2004)
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[157] C. Höhberger Metzger and K. Karrai. Cavity cooling of a microlever. Nature 432(7020),

1002 (2004)

98



Bibliography

[158] A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg. Radiation

pressure cooling of a micromechanical oscillator using dynamical backaction. Phys.

Rev. Lett. 97(24), 243905 (2006)

[159] O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard and A. Heidmann. Radiation-pressure

cooling and optomechanical instability of a micromirror. Nature 444(7115), 71 (2006)
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Place of birth: Leipzig, Germany 8049 Zürich
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