
ETH Library

Forward and Backward Private
Conjunctive Searchable
Symmetric Encryption

Conference Paper

Author(s):
Patranabis, Sikhar; Mukhopadhyay, Debdeep

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000447960

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.14722/ndss.2021.23116

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000447960
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.14722/ndss.2021.23116
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Forward and Backward Private Conjunctive
Searchable Symmetric Encryption

Sikhar Patranabis
ETH Zürich

sikhar.patranabis@inf.ethz.ch

Debdeep Mukhopadhyay
IIT Kharagpur

debdeep@cse.iitkgp.ac.in

Abstract—Dynamic searchable symmetric encryption (SSE)
supports updates and keyword searches in tandem on outsourced
symmetrically encrypted data, while aiming to minimize the
information revealed to the (untrusted) host server. The literature
on dynamic SSE has identified two crucial security properties
in this regard - forward and backward privacy. Forward privacy
makes it hard for the server to correlate an update operation with
previously executed search operations. Backward privacy limits
the amount of information learnt by the server about documents
that have already been deleted from the database.

To date, work on forward and backward private SSE has
focused mainly on single keyword search. However, for any
SSE scheme to be truly practical, it should at least support
conjunctive keyword search. In this setting, most prior SSE
constructions with sub-linear search complexity do not support
dynamic databases. The only exception is the scheme of Kamara
and Moataz (EUROCRYPT’17); however it only achieves forward
privacy. Achieving both forward and backward privacy, which is
the most desirable security notion for any dynamic SSE scheme,
has remained open in the setting of conjunctive keyword search.

In this work, we develop the first forward and backward
private SSE scheme for conjunctive keyword searches. Our pro-
posed scheme, called Oblivious Dynamic Cross Tags (or ODXT
in short) scales to very large arbitrarily-structured databases (in-
cluding both attribute-value and free-text databases). ODXT
provides a realistic trade-off between performance and security
by efficiently supporting fast updates and conjunctive keyword
searches over very large databases, while incurring only moderate
access pattern leakages to the server that conform to existing
notions of forward and backward privacy. We precisely define
the leakage profile of ODXT, and present a detailed formal
analysis of its security. We then demonstrate the practicality of
ODXT by developing a prototype implementation and evaluating
its performance on real world databases containing millions of
documents.

I. INTRODUCTION

The advent of cloud computing potentially allows individ-
uals and organizations to outsource storage and processing of
large volumes of data to third party servers. However, this
leads to privacy concerns - clients typically do not trust service
providers to respect the confidentiality of their data [13]. This
lack of trust is often fortified by threats from malicious insiders
and external attackers.

Consider, for instance, a client that offloads an encrypted
database of (potentially sensitive) emails to an untrusted server.
At a later point of time, the client might want to issue a query
of the form “retrieve all emails received from xyz@foobar.org
or “retrieve all emails with the keyword “research” in the
subject field”. Ideally, the client should be able to perform
this task without revealing any sensitive information to the
server, such as the sources and contents of the emails, the key-
words underlying a given query, the distribution of keywords
across emails, etc. Unfortunately, techniques such as fully
homomorphic encryption [19], that potentially allow achieving
such an “ideal” notion of privacy, are unsuitable for practical
deployment due to large performance overheads.

Searchable Symmetric Encryption. Searchable symmetric
encryption (SSE) [33], [20], [14], [32], [9], [8], [16], [36], [24],
[29] is the study of provisioning symmetric-key encryption
schemes with search capabilities. Consider again a client that
offloads an encrypted database of emails to an untrusted server
and later issues a query of the form “retrieve all emails with
the keyword “research” in the subject field”. The goal of SSE
is to allow the client to perform this task without revealing
any sensitive information to the server, such as the contents of
emails, the keywords underlying a given query, the distribution
of keywords across emails, etc.

Leakage Versus Efficiency. The most general notion of SSE
with optimal security guarantees can be achieved using the
work of Ostrovsky and Goldreich on Oblivious RAMs [21].
More precisely, using these techniques, one can evaluate a
functionally rich class of queries on encrypted data without
leaking any information to the server. However, such an ideal
notion of privacy comes at the cost of significant computational
or communication overhead. A large number of existing SSE
schemes prefer to trade-off security for practical efficiency by
allowing the server to learn “some” information during query
execution. The information learnt by the server is referred to
as leakage. Some examples of leakage include the database
size, query pattern (which queries correspond to the same
keyword w) and the access pattern (the set of file identifiers
matching a given query). Practical implementations of such
schemes can be made extremely efficient and scalable using
specially designed data structures.

Dynamic SSE. An important line of works (e.g., [11], [27],
[26], [8], [5], [6], [15]) have studied dynamic SSE schemes
that support updates on the database without the need to re-
initialize the entire protocol. To formally address the addi-
tional privacy concerns that arise when supporting the update

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23116
www.ndss-symposium.org

operations, two new notions of security for SSE have been
proposed in these works - (a) forward privacy (which requires
that adding a new file f to a database should not reveal whether
f contains keywords that have been previously searched for)
and (b) backward privacy (which requires that searching for a
keyword w should reveal no information about files containing
w that have already been deleted from the database).

Forward private SSE was introduced by Chang and Mitzen-
macher in [11], and has been subsequently studied in [35],
[5], [18], [28], [6], [15], [34]. Forward privacy has received
much attention in light of file injection attacks [7], [38],
which are potentially devastating for SSE schemes that try to
support updates without being forward private. The notion of
backward privacy is comparatively more recent, and was first
formalized by Bost et al. in [6]. Subsequently, Chamani et
al. [10] and Sun et al. [37] proposed SSE schemes supporting
single keyword search that are backward private under various
leakage profiles.

However, existing dynamic SSE schemes, that satisfy both
forward and backward privacy, support only single keyword
search. As a result, despite their efficiency and security, these
schemes are often severely limited in terms of the expressive-
ness of queries they support. Consider, for example, a client
that can only specify a single keyword to search on, and
receives all the documents containing this keyword. In real-
life applications, such as querying large remotely stored email
databases, a single keyword query would potentially return
a large number of matching records/documents that the client
would need to download and filter locally. For any SSE scheme
to be truly practical, it should at least support conjunctive
keyword search, i.e., given a set of keywords (w1, . . . , wn),
it should be able to find and return the set of documents that
contain all of these keywords.

Goals and Challenges. In this paper, we aim to design a
dynamic SSE scheme with both forward and backward privacy,
and with search complexity proportional to the number of
documents containing the least frequent term in the con-
junction. This is indeed the best possible search complexity
achieved by plaintext information retrieval algorithms, as well
as by conjunctive SSE schemes in the static setting [9], [29].
However, this is non-trivial to achieve in the dynamic SSE
setting, where we need to additionally support updates and
ensure forward and backward privacy. For instance, existing
conjunctive SSE schemes in the static setting [9], [29] facilitate
fast conjunctive searches by heavily pre-processing the dataset
during setup. Such pre-processing at setup is impossible in the
dynamic setting, where the dataset is updated on-the-fly.

Handling conjunctive searches also makes the analysis
of leakage significantly more challenging. Existing defini-
tions for forward and backward privacy [5], [6], [10], [37]
assume leakage profiles that are tuned specifically towards
single keyword search, and are insufficient to cover general
conjunctive searches. For example, suppose that we design a
dynamic SSE scheme that has the following leakage profile:
given a conjunctive query over the keywords (w1, w2, w3),
it leaks to the server, in addition to the actual outcome
of the query, the outcome of the sub-query (w1, w2). Note
that this partial leakage is not meaningful when searching
for a single keyword; so the aforementioned SSE scheme

might well be secure according to forward/backward privacy
definitions that cover only single keyword search. But for
general conjunctive queries, such partial leakages could have
devastating consequences [38].

A. Our Contributions

We develop the first dynamic SSE scheme supporting con-
junctive keyword searches that is both forward and backward
private. Our scheme is named Oblivious Dynamic Cross-Tags,
or ODXT in short. The performance of ODXT scales to very
large arbitrarily-structured databases, including both attribute-
value and free-text databases.

Techniques Developed. The technical centerpiece of ODXT
is a search protocol executed between the client and the
server, where server takes as input a set of encrypted records
corresponding to update operations on the database, while the
client takes as input a conjunction of keywords and some
secret state information. The outcome of this protocol is a
filtered, significantly smaller set of encrypted records, which
the client can then locally decrypt to compute the identifiers
for documents containing all of the queried keywords.

A straightforward realization of this protocol, however,
requires multiple rounds of communication between the client
and the server, which does not satisfy our desired level of
performance. In order to enable this search protocol with a
single round of communication, we design a novel update
mechanism based on dynamic cross-tags that pre-computes
parts of the protocol messages, and stores these in encrypted
form at the server. Then, during the actual search protocol,
the client only sends across some auxiliary information that
allows the server to unlock these pre-computed messages from
the relevant update records, without any further interaction.

Differences with Static Cross-Tags. Our idea of pre-computing
search protocol messages using cross-tags is inspired by con-
junctive SSE schemes for static databases [9], [29]. However,
applying this technique to the dynamic setting is not straight-
forward. In static SSE schemes, the pre-computation typically
happens at setup, when the client has access to the entire
database in the clear. Also, since the database is never updated,
the pre-computed messages do not need to change with time.
This is impossible to emulate in the dynamic setting, where
the database is continuously updated. Finally, these schemes
use specially designed data structures that are inherently static
with no provisions for updates such as insertions/deletions.

This makes dynamic conjunctive SSE with appropriate
performance and security guarantees non-trivial to achieve;
in particular, prior attempts to do so have been found to be
vulnerable to different classes of attacks such as leakage-abuse
and file-injection attacks [7], [38].

Novelty of Our Approach. We introduce two novel techniques
to tackle this issue that differ significantly from existing
design-paradigms:

• A specialized data structure for “dynamic cross-tags”
that can be efficiently updated and searched in tandem
while ensuring both forward and backward-privacy.

• A round-reduction technique for conjunctive keyword
searches that combines message pre-computation with

2

the update operations, and requires no pre-processing
at setup.

At a high level, if an update operation (insertion/deletion)
affects the outcome of some future search, we ensure that
the corresponding message pre-computation for this search
is also updated simultaneously. This combination of message
pre-computation with normal update operations is done in a
manner that: (a) leaks as little information as possible to the
server, and (b) does not degrade the online efficiency of update
and search operations.

Performance. Some of the performance benefits of ODXT
are summarized below.

Fast Conjunctive Searches. Conjunctive keyword searches in
ODXT entail only a single round of communication between
the client and the server. The search complexity is independent
of the total number of documents in the database. For a
conjunctive query over a set of keywords (w1, . . . , wn), the
search complexity of ODXT scales linearly with the number
of update operations involving the least frequent keyword in
the conjunction.

More specifically, the best possible search complexity for
any conjunctive-SSE scheme is O(n · |DB(w1)|), where n is
the number of keywords involved in the conjunction, w1 is
the least frequent of these keywords, and |DB(w1)| is the
number of files currently containing w1. ODXT incurs slightly
higher computational complexity, namely O(n.|Upd(w1)|),
where |Upd(w1)| is the number update operations involving
files containing w1 (this is primarily a tradeoff for achieving
both forward and backward privacy). Our experiments reveal
that |Upd(w1)| typically exceeds |DB(w1)| by around 10%. In
particular, any keyword that occurs in very few files is naturally
expected to be involved in very few update operations.

In summary, ODXT achieves a search performance level
“reasonably close” to the best possible search complexity
achieved by plaintext information retrieval algorithms, as well
as by conjunctive SSE schemes in the static setting [9], [29].

Fast Updates. Updates in ODXT are extremely fast and
lightweight. Each update operation entails only a constant
amount of computation at the client and the server, and a
single message transmission from the client to the server. This
matches closely the update efficiency of existing forward and
backward private SSE schemes for single keyword search [6],
[10], [37].

Efficient Storage. The server storage requirements for ODXT
scale linearly with the number of update operations executed
on the database until a given point of time, while the client is
required to maintain a small amount of local storage that scales
only logarithmically with the number of update operations
executed on the database until a given point of time. This
closely matches some of the most storage-efficient forward
and backward private SSE schemes that support only single
keyword search [6], [10], [37].

Security. We establish security by: (a) precisely enumerat-
ing the leakage profile for our scheme, including leakages
from updates as well as leakages from conjunctive keyword
searches, and then (b) by proving formally that this is indeed

the entire leakage incurred by our scheme. Our formal proof
of security follows the same simulation-based framework as
existing forward and backward private SSE schemes for single
keyword queries [6], [10], [37], and assumes an adaptive
adversarial model. In this framework, we establish formally
that a probabilistic polynomial-time simulation algorithm can
simulate the view of the adversarial server (in a computation-
ally indistinguishable manner) given access to only the leakage
profile for our scheme.

Leakage Analysis. We also present a detailed analysis of
the leakage profile incurred by our scheme, and compare it
with the leakages incurred by existing forward and backward
private SSE schemes supporting single keyword search, as
well as existing conjunctive SSE schemes for static datasets.
We broadly categorize the leakage from our scheme into two
categories described below.

Update Leakages. These are leakages incurred during updates.
The design of our scheme ensures that update operations reveal
nothing to the adversary, including the nature of the update op-
eration (insertion/deletion), as well as the document/keyword
pair involved in the update operation.

Conjunctive Search Leakages. These are leakages incurred dur-
ing conjunctive keyword searches. Examples of such leakages
incurred by our scheme include the access pattern, the times-
tamps corresponding to updates involving the least frequent
term in the conjunction, and the timestamps corresponding to
updates involving other terms in the conjunction and the files
containing the least frequent term. Some of these leakages are
also incurred by existing forward and backward private in the
single keyword search setting. Other leakages are very specific
to the case of conjunctive queries, and we draw parallels with
conjunctive SSE schemes in the static setting to justify their
presence as a necessary performance trade-off.

Prototype Implementation. Finally, we present a prototype
implementation of ODXT, and compare its search perfor-
mances with the naı̈ve adaptation of MITRA [10] to the con-
junctive search setting, as well as IEX-2LEV and IEX-ZMF
due to Kamara and Moataz [24]. The evaluations are carried
out on 60.92GB-sized real world dataset obtained from Wiki-
media downloads [17], consisting of 16 million documents, 43
million keywords and 100 million update operations.

B. Related Work

SSE for single keyword searches was first introduced by
Song et al. in [33], and was subsequently equipped with formal
security definitions by Goh in [20] and by Curtmola et al.
in [14]. The literature on SSE that is relevant to this work can
be broadly divided into two categories - dynamic SSE schemes
that are forward and backward private but only support single
keyword queries, and conjunctive SSE schemes that are either
static or only forward private. We summarize them below.

Forward and Backward Private Dynamic SSE. The first
SSE schemes to efficiently support updates [27], [26] were
neither forward nor backward private. The notion of forward
privacy was introduced formally in [11]. Since then, numer-
ous works have proposed improved dynamic SSE schemes
with forward privacy, albeit with support for single keyword

3

searches [35], [5], [18], [28], [6], [15], [34]. Backward privacy
was introduced in [35], albeit without a formal security defini-
tion or construction. Bost et al. [6] introduced the first formal
definitions of backward privacy for single keyword search,
and proposed SSE constructions satisfying these notions. More
efficient constructions of backward private SSE have been
proposed subsequently in [37], [10].

To the best of our knowledge, all forward and backward
private SSE constructions till date only support single keyword
searches. In particular, they do not support conjunctive key-
word searches, which is the goal of this paper.

Conjunctive SSE. A completely disjoint set of works have
attempted to design SSE schemes that support expressive
queries such as conjunctions, disjunctions and general Boolean
formulae over keywords. The seminal work of Cash et al. [9]
and a subsequent work of Lai et al. [29] enable efficient
conjunctive keyword searches, albeit on static datasets with no
provisions for updates. The work of Kamara and Moataz [24]
enables conjunctive keyword searches over dynamic databases,
but is only forward private.

In this work, we address the open question of designing an
SSE scheme for conjunctive keyword searches over dynamic
databases while simultaneously achieving both forward and
backward privacy.

II. PRELIMINARIES

In this section we introduce the notations that are used in the
rest of the paper. We refer the reader to the full version of
the paper [31] for additional cryptographic background and
background material on dynamic SSE.

Notations. We write x R←− χ to represent that an element x is
sampled uniformly at random from a set/distribution X . The
output x of a deterministic algorithm A is denoted by x = A
and the output x′ of a randomized algorithm A′ is denoted
by x′ ← A′. For a ∈ N such that a ≥ 1, we denote by [a]
the set of integers lying between 1 and a (both inclusive). We
refer to λ ∈ N as the security parameter, and denote by poly(λ)
and negl(λ) any generic (unspecified) polynomial function and
negligible function in λ, respectively. 1

Databases. Let ∆ = {w1, . . . , wK} be a dictionary of key-
words, and let F = {f1, . . . , fD} be a collection of files,
such that each fi is associated with a unique identifier idi and
contains keywords from ∆. We denote by DB a database of
identifier-keyword pairs, such that a given pair (id, w) ∈ DB
if and only if the file with identifier id contains the keyword
w. We denote by W ⊆ ∆ the set of all keywords that appear
at least once in DB, and by DB(w) the set of all identifiers
corresponding to files containing w. We denote by |W| the
number of distinct keywords in DB, by |DB| the number
of distinct identifier-keyword pairs in DB, by |DB(w)| the
number of files containing the keyword w, and by |Upd(w)|
the number of update operations involving the keyword w.

Conjunctive Queries. We represent a conjunctive query over
n distinct keywords w1, . . . , wn as q = (w1 ∧ w2 ∧ . . . ∧ wn)

1Note that a function f : N → N is said to be negligible in λ if for every
positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large.

and define the set DB(q) as DB(q) = ∩ni=1DB(wi). Depending
on the context, the keyword w1 is assumed to have either the
least frequency of occurrence or to have the least frequency
of updates among all keywords in the conjunction q.

Dynamic SSE. A dynamic searchable symmetric encryp-
tion (SSE) scheme consists of a polynomial-time algorithm
SETUP executed by the client, and protocols SEARCH and
UPDATE executed jointly by the client and the server:

• SETUP(λ): A probabilistic algorithm that takes the se-
curity parameter λ. It outputs the tuple (sk, st,EDB),
where sk is the client’s secret-key, st is the client’s in-
ternal state, and EDB is an empty encrypted database.

• UPDATE(sk, st, op, (id, w); EDB): A client-server pro-
tocol, where the client takes as input the secret-key
sk, its state st, an operation op ∈ {add, del} and an
identifier-keyword pair (id, w), while the server takes
as input the encrypted database EDB. The protocol
outputs a modified client state st′ and a modified
encrypted database EDB′ so as to reflect the outcome
of the addition/deletion operation.

• SEARCH(sk, st, q; EDB): A client-server protocol,
where the client takes as input the secret-key sk, its
state st and a query q, while the server takes as
input the encrypted database EDB. At the end of the
protocol, the client outputs DB(q).

In the above, we adopted the definition of dynamic SSE
used by Chamani et al. [10]. There exist other definitions of
dynamic SSE in the literature [28], [15] where the UPDATE
operation takes an entire file for addition/deletion, which is
functionally equivalent to executing multiple addition/deletion
operations on the relevant identifier/keyword pairs in our
framework. Finally, we make the implicit assumption that upon
obtaining the set of file identifiers corresponding to a query,
the client performs an additional interaction with the server to
actually retrieve the files with these identifiers.

Correctness. A dynamic SSE is said to be correct if for every
database DB and for every query q, the SEARCH protocol
outputs DB(q) with all but negligible probability.

Security. We refer the reader to the full version of the
paper [31] for the formal security definition of a dynamic SSE
scheme.

III. DYNAMIC CONJUNCTIVE SSE SCHEMES

A. A Naı̈ve Solution

To motivate our solutions, we begin with a straightforward
extension of the dynamic SSE scheme MITRA introduced by
Chamani et al. [10] from single keyword queries to conjunctive
queries.2 The idea is as follows: on input of a conjunctive
query q = (w1 ∧ . . . ∧ wn), the client and the server run the
original MITRA search protocol in parallel for each keyword
wi. At the end of the search protocol, the client receives a list

2We choose MITRA because it has the best update and search performances
in practice among existing forward and backward private SSE scheme.
However, conceptually, the extension works for all forward and backward
private SSE schemes supporting single keyword search.

4

Client

1) Sample a uniformly random key KT for PRF F
2) Initialize UpdateCnt,TSet to empty maps
3) Set sk = KT and st = UpdateCnt
4) Set EDB = TSet
5) Send EDB to the server

Figure 1: MITRACONJ . SETUP (λ)

of encrypted file identifiers corresponding to each keyword,
decrypts each such list, and retains only the file identifiers in
the intersection of all the lists.

We refer to this naı̈ve adaptation of MITRA for conjunctive
queries as MITRACONJ. The corresponding setup, update and
search algorithms are described in Figures 1, 2 and 3, respec-
tively. Below, we provide a brief technical overview of how
MITRACONJ handles conjunctive queries. For more details on
the original MITRA scheme, the reader may refer to [10].

Construction Overview. The construction of MITRACONJ is
based on a key-value dictionary called a TSet designed as
follows: for each keyword w, the TSet dictionary stores en-
crypted transcripts corresponding to each operation involving
w. The keys for TSet (which are addresses in the dictionary
storing encrypted values) are generated using a PRF.

During an update operation of the form [op(id, w)], the
client generates the appropriate key-value pair for the TSet
dictionary, and sends it over to the server. The server updates
the dictionaries accordingly. Under the assumption that file
identifiers are never repeated3, the use of PRFs ensures that
these key-value pairs reveal no information to the server about
the underlying operation op, the identifier id or the keyword
w. Since updates are leakage-free, forward privacy follows
immediately.

Finally, let q = (w1 ∧ w2 ∧ . . . ∧ wn) be a conjunctive
query issued by the client. For each keyword wi (in parallel),
the client recovers DB(wi) via the following steps. The client
efficiently generates the appropriate keys for the TSet dictio-
nary corresponding to each operation involving the keyword
wi, and sends these across to the server. The server retrieves
the encrypted transcripts corresponding to each operation in-
volving wi and sends these back to the client. Upon receiving
the encrypted transcripts, the client decrypts them to recover
each update operation involving wi. Given this information,
constructing DB(wi) is straightforward. Eventually, the client
computes DB(q) = ∩ni=1DB(wi).

Search Performance. It is straightforward to observe that the
computational and communication complexity of this search
protocol is proportional to

∑n
i=1 |Upd(wi)|, which is at least

as large as
∑n
i=1 |DB(wi)|. This may be reasonable in practice

if each keyword wi is low-frequency, but is definitely rather
poor if one or more keywords have very high-frequency of
occurrence.

3 This assumption is made in several existing forward and backward private
SSE schemes for single keyword search, most notably in the constructions of
Bost et al. [6] and Chamani et al. [10], including the original MITRA scheme.

Client

1) Parse sk = KT and st = UpdateCnt
2) If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0
3) Set UpdateCnt[w] = UpdateCnt[w] + 1
4) Set addr = F (KT , w||UpdateCnt[w]||0)
5) Set val = (id||op)⊕ F (KT , w||UpdateCnt[w]||1)
6) Send (addr, val) to the server

Server

1) Parse EDB = TSet
2) Set TSet[addr] = val

Figure 2: MITRACONJ . UPDATE (sk, st, op, (id, w); EDB)

Client

1) Parse sk = KT and st = UpdateCnt
2) Initialize tokenList1, . . . , tokenListn to empty lists
3) For i = 1 to n:

a) For j = 1 to UpdateCnt[wi]:
i) Set addri,j = F (KT , wi||j||0)

ii) Set tokenListi = tokenListi ∪ {addri,j}
b) End For

4) End For
5) Send tokenList1, . . . , tokenListn to the server

Server

1) Parse EDB = TSet
2) Initialize EOpList1, . . . , EOpListn to empty lists
3) For i = 1 to n:

a) For j = 1 to tokenListi.size:
i) Set vali,j = TSet[tokenListi[j]]

ii) Set EOpListi = EOpListi ∪ {vali,j}
b) End For

4) End For
5) Send EOpList1, . . . , EOpListn to the client

Client: Final Output Computation

1) Initialize IdList1, . . . , IdListn to empty lists
2) For i = 1 to n:

a) For j = 1 to UpdateCnt[wi]:
i) Set:

(idi,j ||opi,j) = EOpListi[j]⊕F (KT , wi||j||1)

ii) If opi,j is add then set IdListi = IdListi∪{idi,j}
iii) Else set IdListi = IdListi \ {idi,j}

b) End For
3) End For
4) Output IdList = ∩ni=1IdListi

Figure 3: MITRACONJ . SEARCH (sk, st, q = (w1 ∧ . . . ∧ wn); EDB)

Leakage. Although this scheme inherits many of the for-
ward and backward privacy properties of the original MITRA
scheme, it incurs an additional undesirable leakage: a search
operation over keywords w1, . . . , wn allows the server to learn
|Upd(wi)| (i.e., the total number of update operations) for
each keyword wi, including those involving files that are
not relevant to the query, and the corresponding timestamp
associated with each such update operation.

Our goal is to reduce both the computational overheads as
well as the leakages in the protocol by tying these to only the
less frequent keywords in the queried conjunction.

5

B. Basic Dynamic Cross-Tags

To achieve the above goal, we introduce the idea of
“dynamic cross-tags”. For ease of understanding, we exemplify
the idea via a simplified protocol, called Basic Dynamic
Cross-Tags, or BDXT in short. The corresponding algorithms
for setup, updates and search are described in Figures 4, 5
and 6 , respectively. The main changes from MITRACONJ are
highlighted in red.

Assume that, given a conjunctive query q = (w1∧. . .∧wn),
the client can choose the keyword with the least frequency of
occurrence (at the cost of small additional storage). Assume
without loss of generality that this keyword is w1. We will refer
to w1 as the s-term (where s stands for “special”) and to each
of the remaining keywords w2, . . . , wn as a x-term (where x
stands for “cross”).

Handling the s-Term. In our simplified protocol presented
below, the client still runs an instance of the MITRA search
protocol, albeit only for the s-term w1, following which the
client is able to retrieve the set of all identifiers corresponding
to files currently containing w1. In the process, the com-
putational overheads incurred by the client and the server
are both proportional to DB(w1), and the server only learns
|DB(w1)| (assuming no padding for now).

At this point, an obvious solution is as follows: the client
downloads all the files containing w1, parses them locally and
retains only those files that contain all the other keywords
w2, . . . , wn. This is extremely inefficient from a performance
point of view, since it requires downloading and parsing many
more files than actually necessary. In order to handle this
more efficiently, we introduce the idea of “dynamic cross-tags”
below.

Dynamic Cross-Tags. Concretely, in addition to the TSet dic-
tionary in the previous scheme, we use an additional dictionary
called the XSet that has a pair of designated addresses for each
possible identifier-keyword pair (id, w). At any given time, this
address pair is populated with one of the following value pairs:

• (⊥,⊥) : (id, w) was neither inserted nor deleted

• (1,⊥) : (id, w) was inserted but not yet deleted

• (1, 1) : (id, w) was inserted and later deleted

where ⊥ denotes the corresponding address is empty. The
keys pointing to these addresses are referred to as “dynamic
cross-tags”, and represent a major technical contribution of
this work. Unlike the “cross-tags” in the scheme of Cash et
al. [9] which can only determine the presence/absence of any
identifier-keyword pair in a static dataset, the keys for our
XSet dictionary can determine the presence/absence of any
identifier-keyword pair in a dynamic dataset across any number
of update operations.

These dynamic cross-tags are generated using PRFs, so
that they may be efficiently reproduced by the client dur-
ing update/search queries. More concretely, for an identifier-
keyword pair (idj , wi), the corresponding “insertion-cross-tag”
and “deletion-cross-tag” are generated as:

xtagi,j,add = F (KX , wi||idj ||add) , xtagi,j,del = F (KX , wi||idj ||del).

This is illustrated in Figure 5.

Client

1) Sample a uniformly random key KT , KX for PRF F
2) Initialize UpdateCnt,DBCnt,TSet,XSet to empty maps
3) Set sk = (KT , KX) and st = (UpdateCnt,DBCnt)
4) Set EDB = (TSet,XSet)
5) Send EDB to the server

Figure 4: BDXT. SETUP (λ)

Client

1) Parse sk = (KT , KX) and st = (UpdateCnt,DBCnt)
2) If UpdateCnt[w] is NULL then set:

UpdateCnt[w] = DBCnt[w] = 0

3) Set UpdateCnt[w] = UpdateCnt[w] + 1
4) If op is add then set DBCnt[w] = DBCnt[w] + 1
5) Else set DBCnt[w] = DBCnt[w]− 1
6) Set addr = F (KT , w||UpdateCnt[w]||0)
7) Set val = (id||op)⊕ F (KT , w||UpdateCnt[w]||1)
8) Set xtag = F (KX , w||id||op)
9) Send (addr, val, xtag) to the server

Server

1) Parse EDB = (TSet,XSet)
2) Set TSet[addr] = val
3) Set XSet[xtag] = 1

Figure 5: BDXT. UPDATE (sk, st, op, (id, w); EDB)

Handling Updates. The update procedure for BDXT is de-
scribed in Figure 5. The TSet dictionary is updated as in the
previous scheme MITRACONJ, and hence incurs no leakages.
The XSet dictionary is updated as follows: when an identifier-
keyword pair (id, w) is inserted, the entry at the “insertion
cross-tag” corresponding to (id, w) is updated to 1. At a later
time, when (id, w) is deleted, the entry at the “deletion-cross-
tag” corresponding to (id, w) is updated to 1.

Differences with Static Cross-Tags. A key difference in our
approach as compared to conjunctive SSE schemes for static
databases [9], [29] is that our cross-tags are computed on-the-
fly with every update operation, and not at setup. In the works
of Cash et al. [9] and Lai et al. [9], the presence or absence of
a cross tag in the XSet simply indicated whether a given file
contains a certain keyword or not. By involving the operation
op ∈ {add, del} in the generation of the cross-tag, we have
extended its semantic meaning to now indicate whether a
certain operation (either addition or deletion) involving a given
keyword-file pair has occurred or not. As a result, the XSet
data structure, which was an inherently static data structure
in the previous works, is now transformed into a dynamic
data structure that can be updated without any additional pre-
computation at setup. We managed to do this while maintaining
forward privacy (because a cross-tag does not reveal any
information about the underlying operation, file identifier or
keyword), which is crucial for achieving resistance against
leakage-abuse attacks [7] and file-injection attacks [38].

In addition, as we demonstrate subsequently, our dynamic
cross-tags are both forward and backward private, in the
sense that they also incur minimal leakages during conjunctive
searches. In particular, our technique of treating additions and

6

Client: Round 1

1) Parse sk = (KT , KX) and st = (UpdateCnt,DBCnt)
2) Use DBCnt to identify the least frequent keyword (assumed to be w1

w.l.o.g)
3) Initialize stokenList to an empty list
4) For j = 1 to |Upd(w1)|:

a) Set saddrj = F (KT , w1||j||0)
b) Set stokenList = stokenList ∪ {saddrj}

5) End For
6) Send stokenList to the server

Server: Round 1

1) Parse EDB = (TSet,XSet)
2) Initialize sEOpList to an empty list
3) For j = 1 to stokenList.size:

a) Set svalj = TSet[stokenList[j]]
b) Set sEOpList = sEOpList ∪ {svalj}

4) End For
5) Send sEOpList to the client

Client: Round 2

1) Initialize sIdList to an empty list
2) For j = 1 to |Upd(w1)|:

a) Set (idj ||opj) = sEOpList[j]⊕ F (KT , w1||j||1)
b) If opj is add then set sIdList = sIdList ∪ {idj}
c) Else set sIdList = sIdList \ {idj}

3) End For
4) Let m = sIdList.size (=|DB(w1)|).
5) Initialize xtagList1, . . . , xtagListm to empty lists
6) For j = 1 to m:

a) Let idj = sIdList[j]
b) For i = 2 to n:

i) Set xtagi,j,add = F (KX , wi||idj ||add)
ii) Set xtagi,j,del = F (KX , wi||idj ||del)

iii) Set xtagListj = xtagListj ∪
{(xtagi,j,add, xtagi,j,del)}

c) Randomly permute the tuple-entries of xtagListj
7) End For
8) Send (xtagList1, . . . , xtagListm) to the server

Server: Round 2

1) For j = 1 to m:
a) Set bj = 1
b) For i = 2 to n:

i) Set (xtagi,j,add, xtagi,j,del) = xtagListj [i]
ii) If XSet[xtagi,j,add] = ⊥, then set bj = 0

iii) Else If XSet[xtagi,j,del] = 1, then set bj = 0

c) End For
2) End For
3) Send (b1, . . . , bm) to the client

Client: Final Output Computation

1) Initialize IdList to an empty list
2) For j = 1 to m:

a) Let idj = sIdList[j]
b) If bj = 1, then set IdList = IdList ∪ {idj}

3) End For
4) Output IdList

Figure 6: BDXT. SEARCH (sk, st, q = (w1 ∧ . . . ∧ wn); EDB)

deletions in a symmetric manner by generating cross-tags for
them using the same PRF operation ensures that the adversary
also cannot infer additional information about the deletion
history of keywords (it is computationally indistinguishable
from the insertion history), which is the primary requirement
for backward privacy. Achieving simultaneously forward and
backward private dynamic cross-tags constitutes the key tech-
nical innovation of our work and has not, to our knowledge,
been achieved by prior works.

Handling Conjunctive Searches. The conjunctive search

procedure for BDXT is described in Figure 6. Let q =
(w1 ∧ w2 ∧ . . . ∧ wn) be a conjunctive query issued by the
client, and let w1 be the keyword with the least frequency.
In our simplified protocol, the search operation involves two
rounds of communication between the client and the server.

Round-1 allows the client to recover DB(w1) as mentioned
above. More concretely, the client first efficiently generates all
relevant addresses in the TSet related to w1 and sends them
across to the server. The server then retrieves the encrypted
(id, op) pairs and transmits them back to the client. Finally,
the client locally decrypts and recovers DB(w1). This is very
similar to the search algorithm in MITRACONJ.

Round-2 is based on the following observation: at a given
point of time, an identifier-keyword pair (idj , wi) ∈ DB
iff the following conditions hold simultaneously: (a) the
“insertion-cross-tag” corresponding to (idj , wi) is currently set
to 1 (meaning that (idj , wi) has been inserted), and (b) the
“deletion-cross-tag” corresponding to (idj , wi) is currently set
to ⊥ (meaning that (idj , wi) is not yet deleted).

Based on this observation, it is natural to execute Round-2
of the conjunctive search via the following steps:

1) For each identifier idj ∈ DB(w1), the client effi-
ciently computes the cross-tag-pairs corresponding
to (idj , w2), . . . , (idj , wn), and sends these (n − 1)
cross-tag-pairs across to the server (in randomly
permuted order).

2) For each j ∈ |DB(w1)|, the server receives a set of
(n − 1) cross-tag-pairs from the client and retrieves
the corresponding XSet entries. If for each pair, the
first entry is 1 and second entry is ⊥, the server
returns bj = 1, otherwise it returns bj = 0.

3) For each idj ∈ DB(w1), if the corresponding bit bj
received from the server is 1, the client includes the
identifier idj in the final list of identifiers to be output.
Otherwise, it discards the identifier idj .

Correctness of the search protocol follows immediately
from the aforementioned observation.

Implementing XSet. The XSet dictionary is represented
equivalently using a set SXSet that is history-independent (i.e.,
it is independent of the order in which the elements of the
set were inserted), and supports: (a) efficient element insertion
and (b) efficient membership test for a random element. For
a dynamic cross-tag xtagi,j,op corresponding to an identifier-
keyword pair (idj , wi) and an operation op ∈ {add, del}, we
interpret its corresponding value in the XSet dictionary as:

XSet[xtagi,j,op] =

{
1 if xtagi,j,op ∈ SXSet
⊥ otherwise

During an update operation, setting a XSet entry to 1 can be
realized by simply adding the corresponding cross-tag to the
set SXSet. As long as SXSet supports efficient element insertion,
an update operation can thus be realized efficiently. Similarly,
as long as SXSet supports efficient membership testing, the
XSet dictionary can be efficiently looked up by the server
during conjunctive searches.

7

Server Storage. The server stores the dictionaries TSet and
XSet. Note that during setup, the TSet and XSet dictionaries
are both initialized to empty. After N updates, the storage
requirement at the server grows linearly as O(Nλ), since
each update operation adds a O(λ)-sized entry of the form
(addr, val) to TSet and a O(λ)-sized cross-tag entry of the
form (xtag, 1) to XSet. In other words, the storage require-
ment at the server grows linearly with the number of update
operations on the dataset.

Client Storage. The client locally stores the arrays UpdateCnt
and DBCnt. Note that during setup, both arrays are initialized
to empty. After N updates, the storage requirement at the
client grows as O(|W| · logN), |W| is the size of the keyword
dictionary, which is typically upper-bounded by some large
pre-defined constant. In other words, the storage requirement
at the client grows logarithmically with the number of update
operations on the dataset.

Search Performance. The computational overhead at both
the client and the server scales with (|Upd(w1)| + (n − 1) ·
|DB(w1)|). This is clearly a significant improvement over
the naı̈ve adaptation over MITRA whenever there is a query
term in the conjunction with relatively small frequency of
occurrence. The communication overhead also scales with
(|Upd(w1)|+ (n− 1) · |DB(w1)|), which is again a significant
improvement over the naı̈ve adaptation over MITRA whenever
DB(w1) is small. In particular, this matches our original goal
of reducing the computational and communication overheads
by tying these to the s-term w1 that has the lowest frequency
of occurrence.

An undesirable feature of BDXT from the point of view
of search performance is the extra round of communication
with consequent latency. For some applications, low latency
might be a more crucial requirement and having a single round
of communication during searches might be preferable, even
if at the cost of additional computation at the client and/or
server. Having multiple rounds of interaction during searches
also limits the applicability of BDXT to some settings, such as
the multi-client SSE setting. We expand on this subsequently.

Leakage. In terms of leakage, BDXT again improves sub-
stantially upon the naı̈ve adaptation of MITRA by tying the
leakage from conjunctive searches to the s-term w1 that has
the least frequency of occurrence. Recall that in MITRACONJ, a
search operation allows the server to learn partial information
about every update operation involving every keyword in the
conjunction. On the other hand, in BDXT, for each x-term
in {w2, . . . , wn}, the information gained by the adversary is
only restricted to update operations involving files in DB(w1).
To see this, observe that if a file with identifier id contains
some x-term (say, w2) but does not contain the s-term w1,
then in BDXT, the server does not receive any cross-tag
corresponding to id, and hence learns no information about
the pair (id, w2).

However, BDXT still leaks more information than desir-
able. To begin with, BDXT allows the server to learn the fre-
quency of the s-term, i.e., |DB(w1)|, in addition to the number
of update operations involving the s-term, i.e., |Upd(w1)|. This
immediately leaks the exact number of insertion and deletion
operations involving w1. Note that the naı̈ve adaptation of

MITRA to the conjunctive setting does not suffer from this
leakage, as it only reveals |Upd(w1)| to the server.

BDXT also allows the server to learn cross-tag pairs in the
XSet dictionary that correspond to the same identifier-keyword
pair, as well as the update history for this pair. Although
the server cannot immediately identify which keyword among
the x-terms w2, . . . , wn a given cross-tag pair corresponds
to (since the cross-tag pairs are uniformly randomly permuted
for each file identifier in DB(w1)), it can test each cross-
tag pair for membership in the XSet dictionary to learn the
exact number of keywords among w2, . . . , wn that each file in
DB(w1) contains.

We present in the next subsection an improved version of
BDXT that achieves significantly smaller leakage; hence, we
avoid a formal analysis of the leakage of BDXT.

C. Oblivious Dynamic Cross-Tags

We address the drawbacks of BDXT with respect to both
search performance and leakage by presenting an alternative
realization of dynamic cross-tags called Oblivious Dynamic
Cross-Tags, or ODXT in short. The corresponding algorithms
for setup, updates and search are described in Figures 7, 8
and 9 , respectively. The main changes from BDXT are
highlighted in red.

The key technical difference between ODXT and BDXT
is that ODXT uses an oblivious shared computation between
the client and the server to allow conjunctive searches with a
single round of communication. To enable this oblivious shared
computation, we resort to using blinded exponentiations (as in
the Diffie-Hellman based oblivious PRF) in a cyclic group
of prime order. ODXT also improves upon BDXT in terms
of search privacy by reducing the information leakage to the
server during conjunctive searches.

The Idea. In order to elucidate the core idea behind ODXT,
we focus on why our simpler scheme, namely BDXT, requires
two rounds of communication between the server and the
client. Note that in the first round, the client executes a single
keyword search on the s-term to recover DB(w1). Conse-
quently, in the second round, it generates a pair of cross-tags
(xtagi,j,add, xtagi,j,del) for each keyword wi ∈ {w2, . . . , wn}
and each document identifier idj ∈ DB(w1) recovered in the
first round. If the client could allow the server to compute these
cross-tags without explicitly recovering DB(w1), the additional
round communication could be avoided.

Our goal is to enable an oblivious evaluation of the
cross-tag pair without explicitly recovering DB(w1), thereby
avoiding an additional round of interaction between the client
and the server.

Change Cross-Tags in XSet. The first step in realizing this
goal is to change the manner in which the cross-tags are
generated. For a keyword wi, a document identifier idj and
an operation op ∈ {add, del}, the client now generates the
corresponding cross-tag xtagi,j,op as

xtagi,j,op = gFp(KX ,wi)·Fp(KY ,idj ||op),

where g is a generator for a cyclic group G of prime order p,
Fp is a PRF with range Z∗p , and KX and KY are uniformly
sampled keys for the PRF Fp.

8

Client

1) Sample a uniformly random key KT for PRF F
2) Sample uniformly random keys KX , KY , KZ for PRF Fp
3) Initialize UpdateCnt,TSet,XSet to empty maps
4) Set sk = (KT , KX , KY , KZ) and st = UpdateCnt
5) Set EDB = (TSet,XSet)
6) Send EDB to the server

Figure 7: ODXT. SETUP (λ)

Note that conceptually, the xtag is split into two parts, one
pertaining to wi and the other pertaining to the pair (idj , op),
which are combined multiplicatively in the exponent of g.
This is the key change from how the xtag was generated in
BDXT (in BDXT, these two parts were combined into a single
PRF evaluation). As we shall see, this is crucial to enabling
the oblivious computation.

Note: The tag calculation mechanism works even when a
given document is being updated with the same keyword(s)
multiple times. As stated earlier in footnote 3, we assume
that update operations involving the same file identifier are
never repeated. In particular, when an existing file is to be
updated, it is deleted and re-inserted (in modified form) under a
fresh file identifier. This assumption is made in several existing
forward and backward private SSE schemes for single keyword
search, most notably in the constructions of Bost et al. [6] and
Chamani et al. [10], including the original MITRA scheme.

Dynamic Blinding Factors in TSet. The client also computes
and stores in the TSet dictionary a dynamic blinding element
corresponding to each update operation. For example, let
(op, (idj , wi)) be the cntth update operation involving the
keyword wi (the client can keep track of this count for each
keyword using the UpdateCnt data structure). In the TSet
address corresponding to this update operation, the client
additionally stores the following blinding element:

αi,j,op = Fp(KY , idj ||op) · (Fp(KZ , wi||cnt))−1,

where g, Fp and KY are as defined before, and KZ is again
a uniformly sampled key for the PRF Fp.

Note again that conceptually, the blinding factor α is also
split into two parts, one pertaining to the keyword-count pair
(wi, cnt) and the other pertaining to the pair (idj , op), which
are combined multiplicatively in Z∗p . Also note that the part
pertaining to the pair (idj , op) is the same in both the xtag
and the blinding factor α. This is an intentional design choice.
Looking ahead, during a search operation, the server will
be provided with a “search token” that, when “obliviously”
combined with the blinding term α, will give rise to an
expression that matches the corresponding xtag. The presence
or absence of this xtag in the XSet will then determine the
outcome of the search. We present the details of this oblivious
combination mechanism next.

Differences with Static Cross-Tags and Static Blinding Fac-
tors. Once again, unlike previous works [9], [29], our cross-
tags are computed on-the-fly with every update operation, and
not at setup. In the OXT scheme of et al. [9] and the HXT

Client

1) Parse sk = (KT , KX , KY , KZ) and st = UpdateCnt
2) If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0
3) Set UpdateCnt[w] = UpdateCnt[w] + 1
4) Set addr = F (KT , w||UpdateCnt[w]||0)
5) Set val = (id||op)⊕ F (KT , w||UpdateCnt[w]||1)
6) Set α = Fp(KY , id||op) · (Fp(KZ , w||UpdateCnt[w]))−1

7) Set xtag = gFp(KX,w)·Fp(KY ,id||op)

8) Send (addr, val, α, xtag) to the server
Server

1) Parse EDB = (TSet,XSet)
2) Set TSet[addr] = (val, α)
3) Set XSet[xtag] = 1

Figure 8: ODXT. UPDATE (sk, st, op, (id, w); EDB)

scheme of Lai et al. [9], a static cross tag was conceptually di-
vided into two parts, one corresponding to the keyword wi and
the other corresponding to only the document identifier idj . In
ODXT, we additionally involve the operation op ∈ {add, del}
in the generation of the cross-tag, and combine it with the
document identifier idj . Similar to BDXT, this allows a cross-
tag to indicate whether a certain operation (either addition or
deletion) involving a given keyword-file pair has occurred or
not, which in turn allows the XSet to be dynamic and forward
privacy-preserving.

However, where we improve over BDXT is in achieving a
stronger notion of backward privacy by minimizing leakages
during searches, as discussed subsequently. A crucial role in
this regard is played by the dynamic blinding factor α in
ODXT, which can also be computed on-the-fly with every up-
date operation. In other words, unlike OXT [9] and HXT‘[29],
we completely avoid the need for any pre-computation at setup.
By involving the operation op ∈ {add, del} in the generation
of both the cross tags and the blinding factors, we now allow
both the TSet and XSet to be updated dynamically in tandem
while preserving forward privacy. In particular, our TSet now
differs significantly from that in MITRACONJ in its contents
and also the manner in which it is updated. The concept of
dynamic blinding factors does not appear in MITRA, or for
that matter, any existing dynamic conjunctive SSE scheme.

As demonstrated subsequently, dynamic blinding factors ad-
ditionally allow oblivious reconstruction of cross tags during
conjunctive searches, which suppresses leakages and paves
the way for strong backward privacy guarantees. Hence, the
introduction of dynamic blinding factors is another novel
technical contribution of this work.

Oblivious Conjunctive Search. We now elucidate the overall
idea for oblivious conjunctive search. Unlike in BDXT, where
the s-term in a conjunctive query was chosen to be the keyword
with the least frequency, in ODXT, we choose the s-term to be
the keyword involved in the least number of update operations.
We note, however, that in real-life databases a keyword that
occurs across fewer documents is also likely to be involved
in fewer update operations, especially in systems where an
update operation takes an entire file for addition/deletion.
Additionally, the client no longer needs two separate data
structures UpdateCnt and DBCnt to keep track of both the
number of update operations involving a keyword and the

9

number of documents actually containing it.

Suppose that in a conjunctive query q = (w1 ∧ . . . ∧ wn),
w1 is the keyword involved in the least number of update
operations. Let (op, (idj , w1)) be the cntth update operation
involving w1 and suppose that the server is able to compute
each cross-tag xtagi,j,op for wi ∈ {w2, . . . , wn}. In that
case, the server is able to check each such cross-tag for
membership in the XSet dictionary, and let the client know
the corresponding outcomes.

For example, if the cntth update operation was an insert
operation, the client learns exactly how many insertion opera-
tions involving idj and keywords among w1, . . . , wn have been
executed so far. Similarly, if this was a deletion operation, the
client learns exactly how many deletion operations involving
idj and keywords among w1, . . . , wn have been executed.

Once the client gets this information from the server, it
can compute the final list of document identifiers as follows:
among all document identifiers that appear in operations in-
volving w1, retain those that satisfy both of the following:

• It has been inserted for every keyword w1, . . . , wn,

• It has not been deleted for any keyword w1, . . . , wn

The challenge is to allow the server to compute the cross-
tags obliviously, i.e., without explicitly learning the actual
identifier-operation pair (idj , op), via a single message re-
ceived from the client.

Oblivious Cross-Tag Computation. To enable this, the client
does the following: for the cntth update operation involving
the keyword w1, it sends to the server the corresponding
TSet address (same as in BDXT) along with an additional
(permuted) set of cross-tokens {xtokeni,cnt}i∈[n] where for
each i ∈ [n], we have

xtokeni,cnt = gFp(KX ,wi)·Fp(KZ ,w1||cnt).

Now recall that the TSet address corresponding to the
cntth update operation involving w1 stores an additional pre-
computed blinding factor α, where

α = Fp(KY , idj ||op) · (Fp(KZ , w1||cnt))−1.

It is easy to see that given a cross-token xtokeni,cnt and the
blinding factor α, the server can compute the cross-tag as:

xtagi,j,op = gFp(KX ,wi)·Fp(KY ,idj ||op) = (xtokeni,cnt)
α.

In other words, without ever learning what the underlying
identifier idj or the underlying operation op was, the server
obliviously computes the relevant cross-tag involving the key-
word wi and the pair (idj , op). Note that we explicitly use the
fact that xtagi,j,op and α share the same sub-terms pertaining
to the pair (idj , op) to enable this oblivious computation.

To see why this is useful, recall that in BDXT, the second
round of communication between the client and the server
essentially involved the client explicitly computing and sending
across the relevant xtag values to the server. In ODXT, we
save this additional round of communication by allowing the
client and the server to engage in a specially designed single-
round protocol where the server directly gets the xtag values.

Client

1) Parse sk = (KT , KX) and st = UpdateCnt
2) Use UpdateCnt to identify keyword with least updates (assumed to

be w1 w.l.o.g)
3) Initialize stokenList to an empty list
4) Initialize xtokenList1, . . . , xtokenListUpdateCnt[w1] to empty lists
5) For j = 1 to UpdateCnt[w1]:

a) Set saddrj = F (KT , w1||j||0)
b) Set stokenList = stokenList ∪ {saddrj}
c) For i = 2 to n:

i) Set xtokeni,j = gFp(KX,wi)·Fp(KZ,w1||j)

ii) Set xtokenListj = xtokenListj ∪ {xtokeni,j}
d) End For
e) Randomly permute the tuple-entries of xTagListj

6) End For
7) Send (stokenList, xtokenList1, . . . , xtokenListUpdateCnt[w1]) to the

server
Server

1) Parse EDB = (TSet,XSet)
2) Initialize sEOpList to an empty list
3) For j = 1 to stokenList.size:

a) Set cntj = 1
b) Set (svalj , αj) = TSet[stokenList[j]]
c) For i = 2 to n:

i) Set xtokeni,j = xtokenListj [i]
ii) Compute xtagi,j = (xtokeni,j)

αj

iii) If XSet[xtagi,j] = 1, then set cntj = cntj + 1

d) End For
e) Set sEOpList = sEOpList ∪ {(j, svalj , cntj)}

4) End For
5) Send sEOpList to the client

Client: Final Output Computation

1) Initialize IdList to an empty list
2) For ` = 1 to sEOpList.size:

a) Let (j, svalj , cntj) = sEOpList[`]
b) Recover (idj ||opj) = svalj ⊕ F (KT , w1||j||1)
c) If opj is add and cntj = n then set sIdList = sIdList∪

{idj}
d) Else if opj is del and cntj > 0 then set sIdList =

sIdList \ {idj}
3) End For
4) Output IdList

Figure 9: ODXT. SEARCH (sk, st, q = (w1 ∧ . . . ∧ wn); EDB)

The oblivious computation described above constitutes the core
of this protocol. Beyond this, the rest of the search operation
proceeds along the same lines as BDXT.

Putting these ideas together, we get the ODXT protocol,
as described across Figures 7, 8 and 9.

Server Storage. The server stores the dictionaries TSet and
XSet. Note that during setup, the TSet and XSet dictionaries
are both initialized to be empty. After N updates, the storage
requirement at the server grows linearly to O(Nλ), since
each update operation adds a O(λ)-sized entry of the form
(addr, α, val) to TSet and a O(λ)-sized cross-tag entry of the
form (xtag, 1) to XSet. In other words, the storage requirement
at the server grows linearly with the number of update opera-
tions on the dataset. This is exactly as in the BDXT scheme
described earlier.

Client Storage. ODXT approximately halves the local storage
requirement at the client as compared to BDXT. In ODXT,
the client locally stores only a single array UpdateCnt, as
opposed to both UpdateCnt and DBCnt in BDXT. This makes

10

the client storage requirements for ODXT comparable to the
naı̈ve adaptation of MITRA, as well as other dynamic SSE
schemes supporting single keyword search [5], [6], [10], [37].

Note that during setup, this array is initialized to empty.
After N updates, the storage requirement at the client grows
as O(|W| · logN), |W| is the size of the keyword dictionary,
which is typically upper-bounded by some large pre-defined
constant. In other words, the storage requirement at the client
grows logarithmically with the number of update operations.

Search Performance. ODXT requires a single round of
communication between the client and the server during con-
junctive searches. The computational overheads at both the
client and the server, as well as the communication overheads,
scale with O(n·|Upd(w1)|). First of all, this is still a significant
improvement over the naı̈ve adaptation over MITRA whenever
there is a query term in the conjunction with relatively small
frequency of updates.

While searches in BDXT incur lower computational over-
head in the asymptotic sense, it is worth observing that in real-
life databases, a keyword that occurs across fewer documents is
also likely to be involved in fewer update operations, especially
in systems where an update operation takes an entire file
for addition/deletion. So for real-life databases, the s-terms
for BDXT and ODXT are likely to be the same for most
conjunctive queries, and the number of updates on the s-
term is unlikely to be significantly larger than the number of
documents currently containing it.

D. Leakage Profile of ODXT (Informal)

We now present an informal overview of the leakage profile
for ODXT.

Update Leakages. Updates in ODXT are leakage-free. This is
because during updates, the server only sees a TSet (address,
value) pair and a cross-tag, all of which are generated using
PRFs and appear only once under the assumption that file
identifiers are never repeated4. This in turn implies that ODXT
is forward private.

Search Leakages. Next, we informally summarize the leak-
ages incurred by ODXT during conjunctive searches.

Output Leakage: The server learns the final set of document
identifiers in the conjunction, since we assume that the client
sends these in the clear to retrieve the corresponding docu-
ments.

s-term Leakage: The server learns the number of update
operations involving the s-term w1, as well as the time stamp
for each such operation.

Common s-Term Leakage: The server learns if two (or more)
conjunctive queries have the same s-term w1. This is because,
for all queries where the s-term is w1, the client sends across
the same set of (or a superset of the same set of) stoken
values corresponding to update records involving w1 in the
TSet dictionary.

4This assumption is made in several existing forward and backward private
SSE schemes for single keyword search, most notably in the constructions of
Bost et al. [6] and Chamani et al. [10], including the original MITRA scheme.

x-term Leakage: For each update operation (opj , (idj , w1))
involving the s-term w1, the server learns the total number of
update operations of the form (opj , (idj , wi)) for each x-term
wi ∈ {w2, . . . , wn}, as well the corresponding time stamp for
each such operation.

Common x-Term Leakage: The server learns if two queries
with (possibly distinct) s-terms w1 and w′1 share a common
x-term wi, provided that the update histories for w1 and w′1
involve at least one common document identifier idj . This
is because when processing these queries, the server would
encounter a common cross-tag xtagi,j .

Improvements over BDXT. It is easy to see that ODXT
improves significantly over BDXT in terms of leakage. To
begin with, in ODXT, the server does not learn the frequency
of the s-term, i.e., |DB(w1)|; it only learns the number of
update operations involving the s-term, i.e., |Upd(w1)|. This is
exactly as in the naı̈ve adaptation of MITRA to the conjunctive
setting. On the other hand, in BDXT, the server learns both
|Upd(w1)| and |DB(w1)|.

Moreover, in ODXT, the server does not learn which
cross-tag pairs in the XSet dictionary correspond to the same
identifier-keyword pair. Learning this information would re-
quire the server to be able to correlate cross-tags generated
across different update operations, which is computationally
infeasible since the PRF Fp hides any such correlation. Conse-
quently, it does not learn the exact number of keywords among
w2, . . . , wn that each document in DB(w1) contains. This is
a major improvement over BDXT, where the server was able
to learn this information.

E. Formalizing the Leakage Profile of ODXT

In this section, we formally describe the leakage profile
for ODXT and prove its forward and backward privacy.
Intuitively, a dynamic conjunctive SSE scheme is forward
and backward private if: (a) an update operation reveals no
additional information about a conjunctive search operation
that took place at an earlier time, and (b) if a search operation
on a conjunction q = (w1 ∧ . . . ∧ wn) reveals no information
about certain deletion operations on (w1, . . . , wn) that took
place at an earlier time. We formally establish below that
ODXT achieves this notion of forward and backward privacy.

Let Q be a list with the following types of entries:

• (t, w): search query on keyword w at timestamp t.

• (t, op, (id, w)): update query op ∈ {add, del} on
identifier-keyword pair (id, w) at timestamp t.

Output Leakages. For any keyword w, we define TimeDB(w)
to be the function that returns the list of all file identifiers
containing w that have not yet been deleted, along with their
respective timestamps of insertion. More formally, we have

TimeDB(w) = {(t, id) | (t, add, (id, w)) ∈ Q
and ∀t′ : (t′, del, (id, w)) /∈ Q}

We overload notation to define TimeDB(q) for any conjunctive
query q = (w1 ∧ . . . ∧ wn) as

TimeDB(q) = {({ti}i∈[n], id) | (ti, add, (id, wi)) ∈ Q
and ∀t′ : (t′, del, (id, wi)) /∈ Q}

11

In other words, TimeDB(q) returns the list of identifiers
corresponding to documents containing w1, . . . , wn that have
not yet been deleted, along with their respective timestamps of
insertion. Intuitively, TimeDB(q) captures the output leakage
for q.

s-Term Leakages. For any keyword w, we define Upd(w)
to be the function that returns the timestamps of all update
operations on w. More formally, we have

Upd(w) = {t | ∃(op, id) : (t, op, (id, w)) ∈ Q}.

Intuitively, for a conjunctive query q = (w1∧ . . .∧wn), where
w1 is the s-term, Upd(w1) captures all s-term leakages for q.

x-Term Leakages. Next, we again overload notation to define
Upd(w1, w2) for any pair of keywords (w1, w2) as

Upd(w1, w2) = {(t1, t2) | ∃(op, id) : (t1, op, (id, w1)) ∈ Q
and (t2, op, (id, w2)) ∈ Q}

In other words, Upd(w1, w2) returns the timestamps of all
update operations on w1 and w2 that involve the same doc-
ument identifier. Intuitively, for a conjunctive query q =
(w1 ∧ . . . ∧wn), where w1 is the s-term, {Upd(w1, wi)}i∈[n]
captures all x-term leakages for q.

For ease of representation, we combine the s-term and
x-term leakages from a given query as follows: we further
overload notation to define Upd(q) for q = (w1 ∧ . . . ∧ wn),
where w1 is the s-term, as

Upd(q) = Upd(w1) ∪

(
n⋃

i=2

Upd(w1, wi)

)
.

ODXT Leakage Profile. We are now ready to formally define
the leakage profile for ODXT as:

LODXT =
(
LSETUP

ODXT,LSEARCH
ODXT ,LUPD

ODXT

)
,

where

• LSETUP
ODXT = ⊥.

• LUPD
ODXT(op, (id, w)) = ⊥.

• LSEARCH
ODXT (q) = (TimeDB(q),Upd(q)).

Finally, we state the following theorem for the security of
ODXT.

Theorem-1 (Security of ODXT). Assuming that F and Fp
are secure PRFs and the decisional Diffie-Hellman assumption
holds over the group G, ODXT is adaptively-secure with
respect to a leakage function LODXT.

The detailed proof appears in the full version of the paper [31]
due to lack of space.

F. Forward Privacy of ODXT

In this section, we formally describe the forward privacy
guarantees of ODXT. According to the formal definition
introduced by Bost et al. [6], a dynamic conjunctive SSE
scheme that is adaptively secure with respect to a leakage
profile

L =
(
LSETUP,LSEARCH,LUPD

)
,

is said to be adaptively forward private if there exists a stateless
function L′ such that for any arbitrary triplet (op, id, w), we
have

LUPD(op, (id, w)) = L′(op, id).

Intuitively, this captures the fact that an update operation
computationally hides the underlying keyword w, and hence it
cannot be correlated with any previous search query involving
w by a computationally bounded adversary.

We now examine whether ODXT is forward private as
per this definition. Since LUPD

ODXT(op, (id, w)) = ⊥, an update
operation in ODXT hides not only the underlying keyword w,
but also the identifier id and the operation op. In other words,
the following is a natural corollary of Theorem-1:

Corollary-1 (Forward Privacy of ODXT). Assuming that F
and Fp are secure PRFs and the decisional Diffie-Hellman
assumption holds over the group G, ODXT is adaptively
forward private.

G. Backward Privacy of ODXT

Next, we formally describe the backward privacy guaran-
tees of ODXT. According to the formal definition introduced
by Bost et al. [6], a dynamic SSE scheme that supports single
keyword searches and is adaptively secure with respect to some
leakage function L =

(
LSETUP,LSEARCH,LUPD

)
is adaptively

Type-II backward private if there exist stateless functions L′′
and L′′′ such that for any (op, id, w), we have

LUPD(op, (id, w)) = L′′(op, id)), and

LSEARCH(w) = L′′′(TimeDB(w),Upd(w)).

We now examine whether ODXT is forward backward as
per this definition. Recall that we have

LUPD
ODXT(op, (id, w)) = ⊥,LSEARCH

ODXT (q) = (TimeDB(q),Upd(q)),

for any conjunctive query q. This is a natural generalization
of the aforementioned leakage profile for Type-II backward
privacy from the setting of single keyword searches to our
setting of conjunctive keyword searches. Hence, the following
is also a natural corollary of Theorem-1:

Corollary-2 (Backward Privacy of ODXT). Assuming that
F and Fp are secure PRFs and the decisional Diffie-Hellman
assumption holds over the group G, ODXT is adaptively Type-
II backward private.

H. Discussion on the Leakage Profile of ODXT

In this subsection, we present a more in-depth analysis of
the leakage profile for ODXT during conjunctive searches and
its implications.

Output Leakage. We begin by noting that the output leak-
age (alternatively, the result pattern leakage) is incurred by
nearly all existing SSE schemes, including static and dynamic
schemes, in the setting of both single and conjunctive keyword
searches (such as in [14], [9], [29], [6], [10], [37]). This is
usually considered acceptable in the SSE literature; indeed the
few known data/query recovery attacks that manage to exploit
this leakage ([22], [7], [38], [3]) assume extremely strong

12

adversarial models where the adversary has partial knowledge
of the plaintext database/queries.

s-Term Leakages. We focus next on the leakages related to
the s-term, namely, the total number of operations on the s-
term and the timestamps corresponding to these operations.
We begin by noting that these leakages are somewhat inherent
in our design paradigm, which attempts to tie both the search
complexity and the leakage to the s-term, as it has the least
frequency of occurrence. We draw parallels with conjunctive
SSE schemes in the static setting, most notably the scheme of
Cash et al. [9] and the more recent scheme of Lai et al. [29],
which incur similar s-term leakages.

In the setting of single keyword search, existing forward
and Type-II backward private SSE schemes [6], [10], [37] also
incur leakages of update patterns; the only constructions not
to incur such leakages seem to rely on the use of ORAM-
style data structures [6], [10]. Fortifying ODXT with such data
structures in an attempt to prevent this leakage is an interesting
open challenge, although this would probably have to trade-
off with some degradation in search performance (mostly in
terms of communication complexity and number of rounds of
communication during searches).

It is also possible (and perhaps conceptually simpler) to
mask this leakage by using volume-hiding techniques such
as padding [14], [25] where for the s-term w1, the client
additionally sends a randomly chosen set of dummy stoken
keys to the server, such that the total number of stoken keys
sent is the same for all queries. This would incur a degradation
in search performance, and it is up to the designer to decide
on a suitable trade-off between performance and leakage.

However, we would like to point out that there are no
known data/query recovery attacks on either static or dynamic
conjunctive SSE schemes that specially exploit leakages re-
lated to the s-term. So we believe that even without the afore-
mentioned fortifications, it appears that our ODXT scheme is
not vulnerable to any known attacks due to the leakages related
to the s-term.

x-Term Leakages. Next, we focus on the x-term leakages.
We again draw parallels with conjunctive SSE schemes in
the static setting, most notably the scheme of Cash et al. [9]
and the more recent scheme of Lai et al. [29], which incur
similar x-term leakages. The only known attack on conjunctive
SSE schemes that exploits a form of x-term leakages is the
file injection attack proposed by Zhang et al. in [38]. More
concretely, the adversarial server must be able to compute
|DB(w1) ∩ DB(wi)| when processing the search query.

We note however that for file injection attacks to work
efficiently, the adversarial server must recover, for every x-
term wi, the result size corresponding to each sub-query of
the form w1 ∩ wi. However, the x-term leakage profile of
ODXT is not sufficient to compute this term, since the set
of xtoken values sent to the server is randomly permuted
precisely to mask such inference-style attacks. In addition,
in ODXT, the server only learns update histories, and not
the exact correspondences between insertions and deletions on
the same identifier-keyword pair, which is also necessary for
inferring the aforementioned information.

Once again, either implementing the XSet using ORAM-
style data structures or adopting volume-hiding techniques
such as padding may be useful in masking this leakage even
further; however, even without such additional fortifications,
it appears that our ODXT scheme is not vulnerable to file
injection attacks, or any other known attacks for that matter,
due to the leakages related to the x-terms in a conjunctive
query.

I. ODXT in the Multi-Client Setting

As already discussed, ODXT removes the need for an
additional round of communication between the client and
the server during conjunctive searches. Beyond the obvious
savings in terms of search latency, this also potentially expands
the applicability of ODXT to settings where multiple rounds of
interaction are unsuitable, such as the multi-client SSE setting.

In the multi-client setting, a data owner outsources its
encrypted data to an external server and enables other parties
to perform queries on the encrypted data by providing them
with search tokens for specific queries. The key requirement is
that external parties should learn no information beyond what
is revealed by the search tokens authorized to them.

Unfortunately, schemes such as BDXT with search opera-
tions involving multiple rounds of client-server communication
are inherently unsuited to the multi-client setting. This is
because such schemes potentially allow the untrusted server to
collude with malicious clients and recover sensitive informa-
tion about queries issued by honest clients [9]. In particular, a
malicious client could gain access to intermediate messages
exchanged between the server and the honest clients, and
exploit them to learn outcomes of queries involving conjuncts
that it was not originally authorized for.

On the other hand, ODXT involves a single round of com-
munication during searches. Hence, it is inherently resistant
to such attacks. In particular, since the only message from
the server to each client is the final list of file identifiers
corresponding to the client’s query, there are no intermediate
messages that a malicious client could observe/manipulate to
infer unauthorized information. Consequently, ODXT can be
combined with well-established authorization techniques for
controlled disclosure (such as discussed in [12], [27], [23])
and deployed in the multi-client setting. Additionally, using
techniques introduced by the authors of [23], ODXT can be
extended to hide client-issued queries not only from the server
but also from the token issuing authority.

As a concrete example, when ODXT is implemented in
the multi-client setting, the token generation algorithm can be
implemented using a secure two-party oblivious transfer (OT)
protocol [1], [30] between the client and the token issuing
authority. For simplicity, we can assume that the token issuing
authority is the data owner itself (the same assumption is made
in [23].

In this protocol, the data owner’s input would be the secret
key used to generate search tokens, while the client’s input
would be the keyword(s) that is wishes to search for. At the
end of the protocol, the client would learn the search token(s)
corresponding to its query without gaining any additional
information about the secret key, while the data owner would

13

learn no information about the query issued by the client. After
this, the client can simply forward this search token to the
server, and the search process would be executed exactly as
in the ODXT protocol described in Section III-C. We can
also argue that this affords the client precisely the same query
privacy guarantees against the server as the original ODXT
protocol.

We would also implement an authentication mechanism
that would allow the server to verify that any search token that
it receives from a client was actually issued by the data owner,
and was not forged by the client. This is important to prevent
query privilege escalation attacks wherein a client could try and
issue queries beyond those authorized by the data owner. Since
we are in the semi-honest setting, any standard authentication
mechanism (e.g., existentially unforgeable digital signatures)
would suffice for this purpose.

Finally, using techniques from [23], we can also boost
the security of ODXT in the multi-client setting to withstand
arbitrarily malicious behavior from both the data owner as well
as from a group of (potentially colluding) clients. Such tech-
niques would not compromise the core security and efficiency
guarantees of ODXT.

IV. EXPERIMENTAL EVALUATION

In this section, we report on a prototype implementation
of ODXT and compare it with a prototype implementation of
MITRACONJ, which is a naı̈ve adaptation of the MITRA scheme
for conjunctive queries, as well as prototype implementations
of dynamic variants of IEX-2LEV and IEX-ZMF proposed
by Kamara and Moataz [24], which are not backward private.

Implementation Details. Our prototype implementations are
developed in Python (version-3.8) using the PyCrypto library5

for symmetric-key operations and the Sagemath library6 for
group-based operations. More specifically, we realize all PRF
operations using AES-256 in counter mode, and all group op-
erations in ODXT over the elliptic curve Curve25519 [2]. We
implement the TSet data structure using Riak7, which provides
APIs for realizing distributed NoSQL key-value dictionaries,
while the XSet dictionary is realized using a Bloom filter [4].

Platform and Dataset Used. For our experiments, we used
a cluster of four 64-bit Intel Xeon E5-2690 v4 2.60GHz
processors, running Ubuntu 18.04.1 LTS, with 128GB RAM
and 1TB SSD hard disk, connected over a 10MBps wide-area
network (WAN).

We used a 60.92GB-sized real world dataset from Wikime-
dia downloads [17], with 16 million documents and 43 million
keywords. We simulated updates by randomly inserting and
deleting documents from the original dataset into an empty
dataset. Overall, we performed a total of 108 update operations,
30% of which were deletions. Our experiments were designed
to ensure that each file in the 61GB dataset was inserted at
least once; hence the entire database was effectively used.

5https://pycryptodome.readthedocs.io/en/latest/
6http://www.sagemath.org/
7http://basho.com/products/riak-kv/

A. Performance Evaluation

Multi-Threaded Implementations. Our experiments use
multi-threaded implementations of the client and the server. In
particular, for MITRACONJ, the search operation corresponding
to each keyword in the queried conjunction is executed in
parallel. Hence, the search latency for MITRACONJ in our
experiments is determined purely by the frequency of the most
frequent keyword(s). Similarly, for ODXT, the search opera-
tions corresponding to the x-terms are executed in parallel;
however by design, the search latency in our experiments
depends only on the frequency of the least frequent keyword.

Search Latency v/s Computational Complexity. Note that
in the setting of multi-threaded implementations, the varia-
tion of search latency with the frequency of keywords in
the queried conjunction do not exactly correspond to the
asymptotic expressions for computational overhead mentioned
in Sections III-A and III-C. In particular, the expressions for
computational overhead take into account the total work done
across all the keywords in the conjunction. Nonetheless, the
core advantage of ODXT over MITRACONJ is also reflected in
our experiments evaluating search latency.

Client and Server Latency. Figures 10 and 11 compare the
various schemes with respect to the computational overheads
at the client and the server for conjunctive searches involving
two and six keywords, respectively. ODXT closely matches
IEX-2LEV (despite achieving stronger security guarantees)
and outperforms MITRACONJ and IEX-ZMF in most cases.
The only cases where MITRACONJ either matches or out-
performs ODXT is when all terms in the conjunction have
nearly the same frequency, i.e., either the s-term has very high
frequency of updates, or all x-terms have very low frequency
of updates. However, such queries occur relatively rarely in
practice. For most commonly encountered queries, ODXT
offers significantly faster searches.

A simple observation is that in the extreme cases, the
performance for ODXT can be boosted by using only the TSet
to search for every keyword in the conjunction in parallel.
This eliminates the usage of the heavier elliptic machinery,
and achieve performance comparable with MITRACONJ. We
illustrate this when we compare the end-to-end search latency
of ODXT with the other benchmarks in Figure 13.

Communication Overheads. Figure 12 compares the various
schemes with respect to the communication overheads for
conjunctive searches involving two and multiple keywords,
respectively. For ODXT and IEX-ZMF, the communication
overheads scale with the update-frequency for the least fre-
quent keyword, while in MITRACONJ, the communication over-
heads grow cumulatively with the frequency of each queried
keyword. Note that IEX-ZMF has a constant communication
overhead, but as we show later in Figure 14, this is achieved at
the cost of nearly 100x greater storage as compared to ODXT.

Note: Observe that the flat lines corresponding to MITRACONJ

in Figure 12 have some “bumps” when the frequency of w1

jumps from 106 to 107. For the two-keyword case, this is
explained as follows: since the queries for w1 and w2 are
executed in parallel, the contributions of w1 and w2 towards
the overall communication overhead are proportional to their

14

https://pycryptodome.readthedocs.io/en/latest/
http://www.sagemath.org/
http://basho.com/products/riak-kv/

101 102 103 104 105 106 107

10−1

101

103

105

107

|Upd(w1)|

C
lie

nt
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107

10−2

10−1

100

101

102

103

104

|Upd(w2)|

C
lie

nt
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s) ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107

10−1

101

103

105

107

|Upd(w1)|

Se
rv

er
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

|Upd(w2)|

Se
rv

er
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s) ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 10: Two-conjunctive search query q = (w1 ∧ w2): (a) computation time v/s variable |Upd(w1)| (Client), (b) computation time v/s variable |Upd(w2)| (Client), (c)
computation time v/s variable |Upd(w1)| (Server), and (d) computation time v/s variable |Upd(w2)| (Server). The only cases where MITRACONJ either matches or outperforms
ODXT is when all terms in the conjunction have nearly the same frequency, i.e., either the s-term has very high frequency of updates, or all x-terms have very low frequency of
updates. However, such queries relatively rarely in practice. For most commonly encountered queries, ODXT offers significantly faster searches.

101 102 103 104 105 106 107
10−1

101

103

105

107

|Upd(w1)|

C
lie

nt
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107
10−1

100

101

102

103

104

105

|Upd(w2)|

C
lie

nt
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107
10−1

101

103

105

107

|Upd(w1)|

Se
rv

er
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107
10−1

100

101

102

103

104

105

|Upd(w2)|

Se
rv

er
C

om
pu

ta
tio

n
Ti

m
e

(in
m

s)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 11: Multi-conjunctive search query q = (w1 ∧ . . .∧w6) with |Upd(w`)| = 107 for ` ∈ [3, 6]: (a) computation time v/s variable |Upd(w1)| (Client), (b) computation
time v/s variable |Upd(w2)| (Client), (c) computation time v/s variable |Upd(w1)| (Server), and (d) computation time v/s variable |Upd(w2)| (Server)

101 102 103 104 105 106 107

100

103

106

109

|Upd(w1)|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(in

K
B

)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107

100

101

102

103

104

105

106

|Upd(w2)|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(in

K
B

)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107

100

103

106

109

1012

|Upd(w1)|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(in

K
B

)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

|Upd(w2)|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(in

K
B

)
ODXT

MITRACONJ

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 12: Two-conjunctive search query q = (w1 ∧ w2): (a) communication overhead v/s variable |Upd(w1)|, (b) communication overhead v/s variable |Upd(w2)|. Multi-
conjunctive search query q = (w1 ∧ . . . ∧ w6) with |Upd(w`)| = 107 for ` ∈ [3, 6]: (c) communication overhead v/s variable |Upd(w1)|, (d) communication overhead v/s
variable |Upd(w2)|

respective update-frequencies. The bumps indicate a transition
point between “small” and “large” update-frequencies of w1,
relative to the update-frequency of w2.

End-to-End Search Latency. Figure 13 compares
ODXT (with the modification as mentioned above for
boosting search performance in extreme cases) and the
other schemes with respect to their end-to-end latency for
conjunctive searches involving two and multiple keywords
over a 10MBps wide-area network (WAN). As in our
micro-benchmarks involving only the client or the server,
the end-to-end search latency for ODXT scales only with
the update-frequency of the least frequent keyword. It also

outperforms all of the remaining schemes across queries
involving keywords from all frequency ranges. In particular,
the modification proposed above allows ODXT to be
competitive with MITRACONJ even in the extreme cases where
all terms in the conjunction have nearly the same frequency.

Note that the end-to-end conjunctive search latency for
ODXT is less than 10 seconds even when the frequency of
the least frequent keyword w1 is as high as 105. For example,
the average end-to-end search latency of a conjunctive query
of the form “Find all emails containing the keywords stock,
consensus, infrastructure and cash” over a database of size
60.92GB is only 0.75 seconds, which is comparable in practice
with the search latency over plaintext databases.

15

101 102 103 104 105 106 107
10−1

102

105

108

|Upd(w1)|

E
nd

-t
o-

E
nd

Se
ar

ch
L

at
en

cy
(in

m
s)

ODXT-Boosted
MITRACONJ

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

|Upd(w2)|

E
nd

-t
o-

E
nd

Se
ar

ch
L

at
en

cy
(in

m
s)

ODXT-Boosted
MITRACONJ

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107

100

102

104

106

108

|Upd(w1)|

E
nd

-t
o-

E
nd

Se
ar

ch
L

at
en

cy
(in

m
s)

ODXT-Boosted
MITRACONJ

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107

100

101

102

103

104

105

106

|Upd(w2)|

E
nd

-t
o-

E
nd

Se
ar

ch
L

at
en

cy
(in

m
s)

ODXT-Boosted
MITRACONJ

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 13: Experimental results with boosted ODXT: Two-conjunctive search query q = (w1 ∧ w2): (a) end-to-end search latency v/s variable |Upd(w1)|, (b) end-to-end
search latency v/s variable |Upd(w2)|. Multi-conjunctive search query q = (w1 ∧ . . . ∧ w6) with |Upd(w`)| = 107 for ` ∈ [3, 6]: (c) end-to-end search latency v/s variable
|Upd(w1)|, (d) end-to-end search latency v/s variable |Upd(w2)|

101 102 103 104 105 106 107 108
10−7

10−4

10−1

102

105

Total Number of Updates

St
or

ag
e

(in
G

B
)

ODXT
MITRACONJ

IEX-2LEV
IEX-ZMF

Plaintext Search Index

Figure 14: Server storage v/s number of updates

Storage Overheads. Figure 14 compares the schemes with
respect to the storage overhead at the server. In all cases, the
storage overhead grows linearly with the number of updates.
The storage overhead for MITRACONJ is approximately 75x that
of the plaintext search index. Despite the additional storage
required for the XSet dictionary, ODXT requires only 3x
more storage compared to MITRACONJ, which seems to be
a reasonable trade-off for the vast improvements in search
performance. Finally, the storage overheads for IEX-ZMF and
IEX-2LEV are 10x and 100x larger than that for ODXT.

B. Leakage Analysis

In this section, we experimentally analyze the leakage
profile of ODXT. The experiments were conducted over
the same 60.92GB-sized real world dataset from Wikimedia
downloads [17] as was used for the performance evaluation
experiments in Section IV. Recall that the dataset contains 16
million documents and 43 million keywords.

Leakage Evaluation of Updates. We first present leakage
evaluation of the update protocol in ODXT. We evaluate
the probability that the adversary guesses correctly either the
operation op or the document identifier id or the keyword w
underlying a given update operation. As stated earlier in foot-
note 3, our leakage enumeration works under the assumption
that update operations involving the same file identifier are
never repeated. In particular, when an existing file is to be
updated, it is deleted and re-inserted (in modified form) under a
fresh file identifier. This assumption is made in several existing
forward and backward private SSE schemes for single keyword
search, most notably in the constructions of Bost et al. [6] and
Chamani et al. [10], including the original MITRA scheme.

101 102 103 104 105 106 107 108

10−4

10−3

10−2

10−1

100

N = |Upd(DB)|

Pr
ob

ab
ili

ty
of

R
ec

ov
er

y Operation op
File identifier id

Keyword w

Figure 15: Leakage Analysis of ODXT: Updates in the
“Known Update” Setting

We design our experimental evaluation of the leakages from
updates based on the assumption.

Our first set of experiments are in the “known update”
model. More specifically, we assume that any given point of
time, a computationally bounded adversary has seen N =
|Upd(DB)| update tokens - each corresponding to an update
operation involving unique (op, id) pair, and is trying to guess
the operation op, the document identifier id and the keyword w
underlying the next update operation. However, the adversary
is not allowed to choose the update operations for which
the tokens are to be generated. The adversary’s knowledge
is allowed to grow in a cumulative manner in that for each
new update operation, the adversary is allowed to learn the
underlying (op, (id, w)) tuple after fails to correctly predict
the same.

Figure 15 illustrates the success probability of the adver-
sary in this experiment as the number of tokens it has seen
grows from 1 to 108. The results establish that the adversary
can do no better than a “random guess”. In particular, the
guessing probability of the operation remains very close to
0.5 throughout (indicating an equal probability of addition and
deletion), while the guessing probability for the file identifiers
and keywords go down as the total number of files and
keywords in the database grow with each update operation.

Our second set of experiments are in the “chosen update”
model. More specifically, we assume that any given point of
time, a computationally bounded adversary has seen N =
|Upd(DB)| update tokens - each corresponding to an update

16

101 102 103 104 105 106 107 108

10−4

10−3

10−2

10−1

100

N = |Upd(DB)|

Pr
ob

ab
ili

ty
of

R
ec

ov
er

y Operation op
File identifier id

Keyword w

Figure 16: Leakage Analysis of ODXT: Updates in the “Cho-
sen Update” Setting

operation involving unique but adversarially chosen (op, id)
pair and is trying to guess the operation op, the document
identifier id and the keyword w underlying a fresh randomly
chosen update operation.

Figure 16 illustrates the success probability of the adver-
sary in this experiment as the number of chosen updates from
1 to 108. The results establish that even in this stronger setting,
the adversary can do no better than a “random guess”. In par-
ticular, the guessing probability of the operation again remains
very close to 0.5 throughout (indicating an equal probability
of addition and deletion), while the guessing probability for
the file identifiers and keywords again go down as the total
number of files and keywords in the database grow with each
update operation.

Our experiments thus re-establish our formal statement
that updates in ODXT computationally hide the underlying
operation op, the file identifier id and the keyword w from the
honest-but-curious adversarial server.

Leakage Evaluation of Conjunctive Searches. We now
evaluate the leakage from the conjunctive search protocol
in ODXT. We evaluate the probability that the adversary
guesses correctly the keywords w1 and w2 underlying a two-
conjunction query q = (w1 ∧ w2) by one of two well-known
and extensively studied cryptanalysis methodologies in the
SSE literature- the leakage-abuse attack of Cash et al. [7] and
the file-injection attack of Zhang et al. [38]. These attacks
operate in two models - the known file model (where the
adversary knows the contents of a certain fraction of the files
in the database) and the chosen/injected file model (where a
certain fraction of the files in the database are adversarially
generated).

Naturally, when the adversary knows (or has injected)
all the documents in the database, query recovery is trivial.
However, this is a very strong attack model and is practicaly
infeasible. What we want in a real-life application is that when
the adversary knows only a small fraction of the files in the
database, or has managed to inject a small fraction of files into
the database, query recovery should happen with a very small
probability. This would essentially indicate that the adversary
has access to no additional leakage (about either the keywords
underlying the query or the files in the database) from the
search protocol beyond the benign leakage profile that was
formally enumerated in Appendix III-E.

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fraction of Known Files

Pr
ob

ab
ili

ty
of

Q
ue

ry
R

ec
ov

er
y

Leakage-Abuse Attack [7]
File-Injection Attack[38]

Figure 17: Leakage Analysis of ODXT: Two-Keyword Con-
junctive Searches in the “Known Files” Setting

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fraction of Adversarially Chosen/Injected Files

Pr
ob

ab
ili

ty
of

Q
ue

ry
R

ec
ov

er
y

Leakage-Abuse Attack [7]
File-Injection Attack[38]

Figure 18: Leakage Analysis of ODXT: Two-Keyword Con-
junctive Searches in the “Chosen Files” Setting

Figure 17 illustrates the success probability of the adver-
sary for both kinds of attacks in the “known file” attack setting.
The results clearly establish that even when the fraction of
known files in the database is as high as 50%, the success
probability of the adversary in recovering the keywords un-
derlying a conjunction (w1 ∧ w2) is less than 5%.

Similarly, figure 17 illustrates the success probability of
the adversary for both kinds of attacks in the “chosen/injected
file” attack setting. The results again establish that even when
the fraction of injected files in the database is as high as
60% (which is quite unlikely in any real world database), the
success probability of the adversary in recovering the keywords
underlying a conjunction (w1 ∧ w2) is less than 5%.

Our experiments thus re-establish our claims in Sec-
tion III-E that the leakages incurred by the conjunctive search
protocol in ODXT are benign and are resistant to even the
most powerful leakage-based cryptanalysis techniques in the
SSE literature over real-world databases.

V. CONCLUSION AND OPEN PROBLEMS

In this work, we proposed the first dynamic SSE scheme
supporting conjunctive keyword search that achieves both
forward and backward privacy. Prior to this work, the study
of forward and backward private SSE was restricted almost
exclusively to single keyword search. On the other hand, in
the setting of conjunctive keyword search, most prior SSE
constructions with sub-linear search complexity only supported
static databases.

17

Our main construction, called Oblivious Cross-
Tags (ODXT in short), supports both updates and conjunctive
keyword searches in tandem over very large arbitrarily-
structured databases, including both attribute-value and
free-text databases. All operations in ODXT involve only a
single round of communication between the client and the
server. This makes it amenable to deployment in a variety of
settings such as single-client and multi-client SSE. Updates in
ODXT are leakage-free, while searches incur only moderate
access pattern leakages to the server that conform to existing
notions of forward and backward privacy.

Our work gives rise to a number of interesting open
problems. We leave it open to design dynamic conjunctive
SSE schemes with even smaller leakage profiles. For example,
an attractive goal is to construct a scheme that only reveals
the update history pertaining to the final query outcome,
and hides all the information pertaining to the least frequent
keyword. Extending ODXT beyond conjunctions to support
general Boolean queries is an interesting direction of future
work. Finally, we leave open the question of achieving forward
and backward private SSE schemes with (quasi-) optimal
conjunctive keyword search complexity (along the lines of
ORION and HORUS in [10]).

ACKNOWLEDGMENT

The second author would like to thank the grant ”Design
and Implementation of Efficient and Secure Searchable En-
cryption” sponsored by MHRD-STARS (Scheme for Trans-
formational and Advanced Research in Sciences), India for
partially supporting the work.

REFERENCES

[1] W. Aiello, Y. Ishai, and O. Reingold, “Priced oblivious transfer: How
to sell digital goods,” in EUROCRYPT 2001, 2001, pp. 119–135.

[2] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
PKC 2006, 2006, pp. 207–228.

[3] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” in NDSS 2020, 2020.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] R. Bost, “
∑

oϕoς: Forward secure searchable encryption,” in ACM CCS
2016, 2016, pp. 1143–1154.

[6] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private
searchable encryption from constrained cryptographic primitives,” in
ACM CCS 2017, 2017, pp. 1465–1482.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in ACM CCS 2015, 2015, pp. 668–679.

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in NDSS 2014, 2014.

[9] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in CRYPTO 2013, 2013, pp. 353–373.

[10] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New
constructions for forward and backward private symmetric searchable
encryption,” in ACM CCS 2018, 2018, pp. 1038–1055.

[11] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in ACNS 2005, 2005, pp. 442–455.

[12] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in ASIACRYPT 2010, 2010, pp. 577–594.

[13] C. Chu, W. T. Zhu, J. Han, J. K. Liu, J. Xu, and J. Zhou, “Security
concerns in popular cloud storage services,” IEEE Pervasive Computing,
vol. 12, no. 4, pp. 50–57, 2013.

[14] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in ACM CCS 2006, 2006, pp. 79–88.

[15] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Efficient
dynamic searchable encryption with forward privacy,” PoPETs, vol.
2018, no. 1, pp. 5–20, 2018.

[16] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in ESORICS
2015, 2015, pp. 123–145.

[17] W. Foundation, “Wikimedia downloads,” https://dumps.wikimedia.org,
2017.

[18] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: efficient obliv-
ious RAM in two rounds with applications to searchable encryption,”
in CRYPTO 2016, 2016, pp. 563–592.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM
STOC’09, 2009, pp. 169–178.

[20] E. Goh, “Secure indexes,” IACR Cryptology ePrint Archive, vol. 2003,
p. 216, 2003.

[21] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[22] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in NDSS
2012, 2012.

[23] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in ACM CCS
2013, 2013, pp. 875–888.

[24] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in EUROCRYPT 2017, 2017,
pp. 94–124.

[25] ——, “Computationally volume-hiding structured encryption,” in EU-
ROCRYPT 2019, 2019, pp. 183–213.

[26] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in FC 2013, 2013, pp. 258–274.

[27] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in ACM CCS 2012, 2012, pp. 965–976.

[28] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W. Kim, “Forward secure
dynamic searchable symmetric encryption with efficient updates,” in
ACM CCS 2017, 2017, pp. 1449–1463.

[29] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay, R. Ste-
infeld, S. Sun, D. Liu, and C. Zuo, “Result pattern hiding searchable
encryption for conjunctive queries,” in ACM CCS 2018, 2018, pp. 745–
762.

[30] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
SODA 2001, 2001, pp. 448–457.

[31] S. Patranabis and D. Mukhopadhyay, “Forward and backward private
conjunctive searchable symmetric encryption,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 1342, 2020.

[32] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query processing,”
in ACM SOSP 2011, 2011, pp. 85–100.

[33] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in IEEE S&P 2000, 2000, pp. 44–55.

[34] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized I/O efficiency,” IACR
Cryptology ePrint Archive, vol. 2018, p. 497, 2018.

[35] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in NDSS 2014, 2014.

[36] S. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with support
for boolean queries,” in ESORICS 2016, 2016, pp. 154–172.

[37] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and
S. Nepal, “Practical backward-secure searchable encryption from sym-
metric puncturable encryption,” in ACM CCS 2018, 2018, pp. 763–780.

[38] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security Symposium 2016, 2016, pp. 707–720.

18

https://dumps.wikimedia.org

