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Prominent companies have committed to procuring a percentage of their power demand from

renewable sources by a future date. Long-term �nancial contracts with renewable generators, known

as corporate power purchase agreements (CPPAs), are popular to meet such a renewable power

purchase target (RPPT). By analyzing a simpli�ed three-stage model, we show that the generation

capacity contracted via a CPPA is more nuanced to structure optimally compared to traditional

long-term power contracts due to the interplay between price and supply uncertainties as well as

the RPPT. We subsequently propose a Markov decision process (MDP) to formalize rolling-power-

purchase policies used in practice, that is, the construction of dynamic CPPA portfolios to meet

an RPPT. The optimal MDP policy is intractable to compute but possesses the following key

properties: (i) its decisions account for stochastic prices and supply, (ii) it captures the timing


exibility to enter CPPAs, and (iii) it can sign CPPAs with di�erent tenures. We develop forecast-

based reoptimization heuristics and a novel information-relaxation based reoptimization approach

that sacri�ce and approximate, respectively, the �rst property of the MDP policy and capture

the remaining properties. We perform an extensive computational study on realistic procurement

instances to uncover managerial insights related to procurement costs, the control of risks arising

from supply uncertainty, the relevance of CPPAs as markets evolve, and the near-optimality of

rolling power purchases from our information-relaxation based procurement heuristic.

1. Introduction

Corporations are playing an increasing leadership role in promoting sustainability and social re-

sponsibility around the globe. Over half of the Fortune 500 companies have publicly announced

commitments to meet sustainability and climate goals, which includes greenhouse gas emissions

reduction, energy e�ciency improvements, and renewable power procurement (CDP et al. 2017).

We focus on companies that have committed to renewable power purchase targets (RPPT), that

1corresponding author
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is, they procure a speci�ed percentage of annual electricity demand from renewable power sources

by a future date and sustain this level of renewable procurement thereafter. For example, Procter

& Gamble and Intel have committed to RPPTs of 30% and 75%, respectively, by 2020 and 2025.

In 2019, nearly 400 companies had committed to an RPPT and 221 global companies have pledged

an RPPT of 100% as part of the RE100 initiative (BNEF 2020). To meet these targets, power pur-

chases need to be coupled with renewable energy certi�cates (RECs), where each REC allows its

owner to validate the use of one megawatt hour (MWh) of renewable power.

Companies have increasingly resorted to corporate power purchase agreements (CPPAs) as ve-

hicles to procure renewable power directly from the generator instead of going through a utility. A

CPPA is a long-term bilateral contract between the company and a renewable generator to receive

a �xed quantity of power and RECs at a predetermined strike price for each year of the contract's

tenor. The purchase of power using CPPAs has increased 40% in 2019 from its previous record

of 7.2 gigawatts in 2018 (Baker McKenzie 2018, BNEF 2018, 2020). In this paper, we consider

synthetic CPPAs (henceforth, CPPAs) which have driven the recent wave of corporate renewable

procurement and account for 80% of the clean energy procurement in 2019. They are long-term �-

nancial agreements on generation capacity where the producer sells the power generated to the grid,

the �rm buys power at a short-term (i.e., uncertain) price 1 from the grid or a utility, and payments

for di�erences between the �xed strike price and a variable reference price are made. Typically, the

CPPA reference price and the �rm's short-term power purchase price are equal (or at least close to

each other) to ensure a price hedge (see, e.g., RMI 2016, WBCSD 2018). Despite this price hedge,

the amount of power that is generated from the contracted capacity is uncertain due to operations

(e.g., maintenance) beyond the control of the buyer and the intermittency of renewable resources

such as wind and solar. In other words, CPPAs ensure that the buyer pays a �xed price per MWh

on an uncertain quantity of power. This feature is a blessing, as it avoids CPPAs being classi�ed as

a derivative and adhering to �nancial regulation (see, e.g., Davies et al. 2018, page 5), as well as a

curse because it does not eliminate the companies exposure to power price and supply uncertainties.

Since CPPAs are quite di�erent from traditional long-term contracts that ensure certainty in

price and supply, there has been signi�cant recent experimentation in corporate renewable procure-

ment policies. Traditionally, long-term power contract lengths were twenty to twenty �ve years.

Recent CPPAs include contracts with tenors ranging from �ve to �fteen years and companies have

begun actively managing CPPA portfolios over time. Despite these trends, a large proportion of

1A short-term power purchase may be from the wholesale market at the day-ahead price or through a utility at a
variable monthly retail rate.
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companies have not yet committed to any renewable energy target due to a lack of strategic knowl-

edge on corporate renewable procurement (PWC 2016). Moreover, the procurement problem faced

by a �rm that plans to setup and meet an RPPT has not been formally studied in the extant aca-

demic literature to the best of our knowledge. Our goal is to take a meaningful step towards reduc-

ing this knowledge gap by studying two dominant power procurement options to satisfy an RPPT

(BNEF 2018): (i) enter into CPPAs, and (ii) buy short-term power, as needed, and supplement it

with unbundled REC purchases2. To this end, we (i) analyze a simpli�ed procurement model to

highlight the structure of CPPAs and the impact of price and supply uncertainties on CPPA ca-

pacities and costs to meet an RPPT, and (ii) formulate a realistic tactical planning model and use

it to investigate how practice-based policies as well as new dynamic procurement policies can be

bene�cial to meet an RPPT.

Our simpli�ed procurement model uses as its long-term option a single CPPA that can be

entered today with a contract length extending to the RPPT date. We analyze the behavior of

the optimal expected procurement cost and CPPA capacity with respect to market parameters as

well as the RPPT level. The procurement cost is greater in markets with high renewable energy

penetration and high (short-term) power price volatility. Moreover, buyers procure less using

CPPAs in such markets where practitioners would traditionally expect long-term agreements to be

e�ective at reducing energy costs. Uncertainty in power supply drives this non-traditional behavior.

In particular, the balancing of sustainability goals and energy costs is more nuanced: the capacity

contracted via a CPPA (in the presence of power supply uncertainty) is less than and greater than,

respectively, the analogous capacity in a deterministic supply setting with small and large RPPTs.

Therefore, CPPAs become more e�ective at reducing procurement costs for companies that have

aggressive RPPTs and are accessing power markets with limited renewable power penetration,

which is the status quo in many US and global regions. In other words, a key insight is that

combining aggressive RPPTs and CPPAs helps address climate change goals and energy costs {

thus tying the knot between social responsibility and �nancial performance.

The intricacies of structuring procurement via a single CPPA underscore the challenge faced by

companies that dynamically choose among multiple procurement options. We propose a realistic

tactical procurement model that provides a unifying framework to view and benchmark multi-stage

and multi-contract policies. Our model is a Markov decision process (MDP) that minimizes the

expected procurement cost to meet and sustain an RPPT. The planning horizon in this MDP is

divided into a reach period where the target does not have to be ful�lled (but contracts can be

2Unbundled RECs represent the short-term option to buy RECs at an uncertain price from a secondary market.
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signed) and a sustain period where the target must be satis�ed. At each stage, the company decides

whether to enter into new CPPAs. The set of available CPPAs depends on the contracts o�ered

by generators, which is unpredictable over time. Moreover, when entering a CPPA, the associated

purchase quantity needs to satisfy minimum and maximum requirements. These realistic features

translate to the procurement decisions from an optimal MDP policy (i) accounting for stochastic

prices and supply, (ii) capturing the timing 
exibility to sign CPPAs, and (iii) potentially signing a

variety of CPPAs with di�erent tenures. Nevertheless, computing this policy is intractable owing

to our MDP having a non-convex action set and a high-dimensional state space. We thus develop

heuristics motivated by practice as well as a novel approach to approximate our MDP.

Practice-based procurement policies use forecasts and take a rolling power purchase approach.

In its traditional form, such a policy signs CPPAs of a single �xed tenure (e.g., 20 years), maintains

only one CPPA at any time, and determines the capacity of the new CPPA for the next block of the

planning horizon (e.g., years 21-40) once the incumbent CPPA expires. The CPPA capacity is com-

puted by solving easy-to-implement-deterministic models that use forecasts of stochastic quantities

in the MDP and limit the forecasting e�ort to the CPPA tenure. We refer to this strategy with

low timing 
exibility and no CPPA variety as the forecast-based block heuristic (FBH). We also

consider two extensions that both increase the timing 
exibility to allow the signing of new CPPAs

each year and use forecasts that span the full planning horizon. These extensions, dubbed forecast-

based reoptimization heuristic (FRH) and portfolio FRH (PFRH), di�er in the variety of candidate

CPPAs they can access, with the former and latter using single- and multiple-CPPA types.

Since the aforementioned policies use forecasts, in contrast to an optimal policy, they do not

directly capture the impact of the future evolution of uncertainty on the current procurement de-

cision, which is conceptually undesirable. Moreover, understanding if this issue results in poor em-

pirical policy performance requires a lower bound on the optimal policy value. We develop a novel

multiple-contract procurement heuristic based on information-relaxation (PIRH) that provides both

a lower bound and decisions that account for future uncertainty. PIRH solves deterministic (hind-

sight) optimization models along sample paths in Monte Carlo simulation, with costs corrected by a

dual penalty term based on the information relaxation and duality approach (Andersen and Broadie

2004, Haugh and Kogan 2004, Brown et al. 2010). It extracts a non-anticipative decision from a dis-

tribution of anticipative actions across sample paths using a function that we refer to as a decision

measure. Examples of decision measures include the mean, median, and mode of a distribution.

We specify when a decision measure leads to a feasible procurement policy and leverage the theory

on information relaxations to show that this policy is optimal when using an ideal dual penalty.
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We conduct numerical experiments on realistic instances with CPPA contract lengths ranging

from 5 to 25 years and a planning horizon of 40 years. The strike prices of CPPAs are speci�ed by

a model that factors in the e�ects of the expected power price, the expected supply, and the return

on investment required by the generator in a manner that is consistent with publicly available

software from the National Renewable Energy Laboratory (NREL; NREL 2017). We calibrate

stochastic processes for the evolution of power/REC prices as well as supply using market data and

the practitioner literature. We uncover the following insights:

� The additional cost of certifying power as being renewable increases by roughly 6% as the

correlation between the power price and supply changes from being perfectly negatively cor-

related to being perfectly positively correlated. This suggests that companies need to account

for co-variance between power price and supply uncertainties to accurately estimate the cost

of meeting an RPPT using CPPAs.

� The shape of power supplied by a renewable generator exposes the �rm to two types of shape

risks associated with (i) meeting demand and (ii) satisfying the RPPT. Mitigating the former

risk is not in the �rm's direct control but the latter risk can be controlled by satisfying the

RPPT less frequently (e.g., yearly). Reducing this frequency, e.g., from monthly to yearly

causes the expected procurement cost to decrease by 3{4%.

� Rolling power purchases with a single long-term CPPA leads to near-optimal procurement

costs and optimality gaps of 3{5%, provided that new CPPAs can be signed each year as done

in FRH. Using shorter-tenure CPPAs alone in both FBH and FRH leads to larger optimality

gaps of 7{15%. This �nding motivates the use of portfolios with multiple CPPA tenures.

Such portfolios computed by forecast-based heuristics lead to larger optimality gaps than our

policies employing a single-CPPA type, which suggests that these heuristics do not su�ciently

optimize CPPA portfolios. In contrast, PIRH is e�ective at computing near-optimal dynamic

CPPA portfolios, with an average optimality gap of 1.6%. The use of CPPA portfolios, in

addition to short-term purchases, can thus signi�cantly reduce procurement costs, especially

for companies with aggressive RPPTs.

� CPPAs remain valuable as a �rm's operating environment evolves. In particular, corporate

procurement portfolios with multiple CPPA types lead to procurement costs that are stable

when contract availability and the market dynamics of REC prices change. Moreover, the

removal of production tax credits has a signi�cant impact on the cost of CPPAs, which results

5



in a procurement cost increase of 9%. Although the presence of production tax credits directly

a�ects the use of CPPAs in the short to medium term, they remain relevant in the long term.

1.1 Novelty and related work

We build on the extant literature that studies commodity procurement using spot purchases and

forward contracts (Li and Kouvelis 1999, Kleindorfer and Wu 2003, Boyabatl� et al. 2011, Sec-

omandi and Kekre 2014) as well as procurement in supply chains via short-term and long-term

contracts, including dual- and multi-sourcing options (Mart��nez-de Alb�eniz and Simchi-Levi 2005,

Tomlin and Wang 2005, Veeraraghavan and Scheller-Wolf 2008, Allon and Van Mieghem 2010).

Our study of renewable power procurement adds to this line of work. Speci�cally, our focus on con-

structing procurement portfolios to meet an RPPT, related insights, and the dynamic policies are

new to this literature. Moreover, the long-term contracts that we consider, that is CPPAs, have

unique structure. For instance, CPPAs deliver power at each period over the tenure of the contract

and their payo� depends on both price and supply uncertainties, which together di�ers from the

long-term contracts considered in the aforementioned papers.

Our work indeed contributes to the growing literature on renewable energy. Several studies in

this area study important market level issues related to supply intermittency (Wu and Kapuscinski

2013, Hu et al. 2015, A
aki and Netessine 2017, Zhou et al. 2019), power supply equilibria (Al-

Gwaiz et al. 2016, Sunar and Birge 2019), support schemes and their impact on renewable energy

investments (_I�slegen and Reichelstein 2011, Drake et al. 2016, Singh and Scheller-Wolf 2017), and

market-based or equilibrium-based pricing of feed-in tari�s and CPPAs (Wu and Babich 2012,

Alizamir et al. 2016, Ritzenhofen et al. 2016, Bruck et al. 2018). We instead investigate a problem

faced by a corporation, that is, a �rm-level decision problem as opposed to a market level issue. We

also do not focus on pricing CPPAs nor do we use an equilibrium model for this purpose. Rather,

we obtain CPPA strike prices in our MDP by employing a modi�ed net present value calculation

consistent with the procedure in the publicly available software SAM from NREL (2017).

A more closely related research subarea focuses on individual players in the renewable power

market. In particular, this stream of research studies the valuation and operations of renewable

generators and operators of storage and transmission assets (see, e.g., Denholm and Sioshansi

2009, Kim and Powell 2011, Jiang and Powell 2015, Pand�zi�c et al. 2015, Zhou et al. 2019), as well

as the management of consumer incentive programs such as demand response (Chao and Chen

2005, Webb et al. 2017, and references therein). To the best of our knowledge, a study of the

power procurement problem faced by a corporation with an RPPT is new to the renewable energy
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literature. Moreover, our investigation of the factors a�ecting the e�ectiveness of CPPAs and

comparison of both traditional and contemporary procurement policies from the unifying lens of

our MDP model enriches this literature.

The procurement policies we consider add to existing rolling-horizon planning approaches, also

known as certainty equivalent control or reoptimization methods, which have been successfully used

for decision making under uncertainty in engineering and business applications (Chand et al. 2002,

Bertsekas 2005). In the context of energy, reoptimization models are popular for determining the

next day unit commitment and real-time economic dispatch of power generators (Weber et al. 2009,

Meibom et al. 2011, Milligan et al. 2012). They have also been used in real option settings, most

notably for managing energy storage (Lai et al. 2010, Wu et al. 2012, Nadarajah and Secomandi

2018). Our development of PIRH introduces a new reoptimization scheme to this literature. More-

over, our extensive numerical study expands the set of applications for which reoptimization has

been considered and shows that PIRH can outperform PFRH.

In addition to the reoptimization literature, PIRH contributes to the active research on the in-

formation relaxation and duality approach (Brown and Smith 2011, 2014, Brown and Haugh 2017,

Haugh and Lacedelli 2018, Nadarajah and Secomandi 2018, Ye et al. 2018), which does not directly

provide control policies. Therefore, Desai et al. (2012) design an auxiliary procedure to obtain de-

cisions in this framework. Speci�cally, they estimate a value function approximation by regressing

on value function estimates computed by solving dual optimization problems in Monte Carlo sim-

ulation. This approximation is then used along with the MDP Bellman operator to compute deci-

sions. It is not easy to extend the approach of Desai et al. (2012) to our setting because estimating

a value function approximation and computing decisions using the Bellman operator are both chal-

lenging due to the large controllable part of the state space in our MDP arising from tracking the

generation capacity contracted via CPPAs. Our development of PIRH thus adds a direct way to

obtain non-anticipative controls when using the information relaxation and duality approach.

More broadly, PIRH adds to approximate dynamic programming (ADP; Bertsekas 2005), an

area of stochastic optimization dealing with the solution of high-dimensional MDPs. Several ADP

methods tackle MDPs where either the endogenous state or the exogenous state is high-dimensional.

Well-known examples include least squares Monte Carlo (Longsta� and Schwartz 2001, Tsitsiklis

and Van Roy 2001), approximate linear programming (De Farias and Van Roy 2003, Lin et al. 2019),

and stochastic dual dynamic programming (Pereira and Pinto 1991, Shapiro 2011). However, meth-

ods to approximately solve MDPs with high-dimensional endogenous and exogenous state compo-

nents are limited (see, e.g., Salas and Powell 2017, Nadarajah and Secomandi 2018) and approaches
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that handle non-convex action sets are even more scarce. PIRH has potential value for solving

MDPs with these complicating features, which arise beyond our speci�c procurement application.

1.2 Paper structure

In x2, we analyze CPPAs in a simpli�ed procurement setting. In x3, we formulate an MDP to reach

and sustain an RPPT using rolling power purchases. We present procurement heuristics that ap-

proximate this model in xx4{5. We conduct an extensive numerical study using models calibrated

to data and discuss our �ndings in x6. We conclude inx7. All proofs and additional material re-

lated to our models and numerical study can be found in an online supplement.

2. Corporate power purchase agreements

We consider a �rm that faces deterministic demand over time and commits now (time 0) to satisfy

an RPPT in the future (time T), in addition to meeting its power demand at intermediate points in

time. For simplicity, we assume there is only one intermediate time3. Thus, we have a three period

problem with stage 0 representing time 0 and two future periods 1 and 2 corresponding to timesT{2

and T, respectively, with power demandsD1 and D2. We represent the RPPT at stage 2 as a fraction

� P r0; 1s of total demand D :� D1 � D2, that is, the target equals �D . To meet this target, the

company can (i) enter into a CPPA at stage 0 to receive power and RECs from a renewable generator

at periods 1 and 2; (ii) procure any unmet power demand in these periods using short-term power

purchases; and (iii) purchase unbundled RECs to satisfy any shortfall in the RPPT at period 2.

The main decision in our model is the megawatts (MWs) of capacity that the buyer contracts

via the CPPA, which we denote by z. The CPPA has an associated strike price ofK USD/MWh.

Due to uncertainty, the megawatt hours (MWhs) of power generated in a periodi may be less than

z multiplied by the maximum number of hours H of production in each period. We model stochas-

tic power supply in period i by � i z, where � i is a random variable with support on the interval

r0; H s. The total renewable power supplied by the CPPA equals�z �
°

i Pt1;2u � i z. The prevalent

CPPA format is an as-generated �nancial contract that ensures the company pays a �xed strike

price K (USD/MWh) for � i z MWh of power generated at each periodi P t1; 2u and receives RECs

associated with �z MWh. The cash 
ows when using a CPPA are as follows. The company pur-

chases its periodi power demand ofD i MWh from the short-term market at price Pi (USD/MWh).

In addition, there is a �nancial settlement between the generator and the buyer. Speci�cally, if the

short-term power price Pi is greater than the strike price K , the generator paysPi � K per MWh

for the � i z MWh of power; otherwise, the company pays the generatorK � Pi per MWh of power

3Our results extend to the case with a general number of such times but this does not lead to new insights.
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generated. Although there is no physical power delivery, the generator does transfer RECs for the

total power generation of �z MWh. If this amount is smaller than the target �D , the shortfall is

met using unbundled REC purchases at priceRi (USD/MWh).

To represent the aforementioned cash 
ows, we de�new :� p Pi ; Ri ; � i ; i P t0; 1; 2uqas a sample

path of known and uncertain quantities, and use � : � p � Pi ; � R i ; � � i ; � Pi ;R i ; � Pi ;� i ; � R i ;� i ; i P t1; 2uq

to denote a vector containing the volatilities and correlations of the random components ofw,

where � p�q and � p�;�q represent the volatility and the correlation, respectively. Given a sample path

realization w, the cost of choosing a CPPA with capacityz is

rCpz; w; �; K; � q :�
¸

i Pt1;2u

rPi D i � p K � Pi q� i zs � R2p�D � �z q� : (1)

In this de�nition, the two terms in the summation correspond to the short-term power payment

and the �nancial transaction between the generator and the buyer, respectively, while the third

term is the cost of purchasing the REC shortfall. The cash 
ow in (1) can be rewritten as follows:

rCpz; w; �; K; � q �
¸

i Pt1;2u

pK� i z � Pi pD i � � i zqq � R2p�D � �z q� :

It becomes apparent from the �rst term that a quantity �z MWh is procured at the pre-agreed

strike price K but the buyer is exposed to uncertain prices because supply is uncertain in the

remaining terms. Speci�cally, supply uncertainty associated with a CPPA results in the buyer

(i) being exposed to volatile power prices to varying extents dictated by the mis-match between

the period i CPPA power supply � i z and the demand D i in this period and (ii) the 
uctuating

amounts of unbundled REC purchases at uncertain REC prices when the total CPPA power supply

�z falls short of the RPPT �D . These issues are non-traditional to practitioners engaging in

power procurement because they typically use long-term contracts to eliminate uncertainty. It is

thus apriori unclear if and when a CPPA is an e�ective procurement vehicle, which prompts the

following analysis of optimal CPPA procurement capacities and expected costs.

The optimal procurement cost when using a CPPA is

Cp�; K; � q :� min
z¥ 0

Er rCpz; w; �; K; � qs: (2)

To facilitate analysis we de�ne two intuitive quantities. The �rst is the power agreement premium

PAPpK; � q :� K Er� s �
¸

i Pt1;2u

Er� i Pi s:

This term when positive equals the extra cost of receiving power and RECs from a unit of CPPA

capacity compared to buying non-renewable power directly from the short-term market. The second
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quantity is the power and REC savings from using a CPPA, which we denote

PRSpK; � q :�
¸

i Pt1;2u

Er� i Pi s � ErR2� s � K Er� s � ErR2� s � PAPpK; � q:

This term equals the expected savings from receiving power and RECs from one unit of CPPA

capacity relative to purchasing the same amounts of power and RECs directly from their respective

short-term markets.

Proposition 2.1 characterizes the optimal CPPA capacityzp�; K; � qand its behavior with power

price related market parameters. When analyzing the behavior of functions with respect to a

market parameter, we omit showing their dependence on parameters that do not play a role in this

behavior. For example, we write zp� Pi ;� i q to represent the one-dimensional function obtained by

changing only � Pi ;� i in zp�; K; � q.

Proposition 2.1. The optimal procurement quantity satis�es

zp�; K; � q :�

$
'&

'%

0 if PRSpK; � q ¤ 0

�D {ypK; � q otherwise;

where ypK; � q � inf t y P r0; 2H s |PAPpK; � q � ErR2� 1p� ¤ yqs ¤ 0u. Moreover, for any period i ,

(i) zp� Pi ;� i q is a weakly increasing function of the power price and supply correlation� Pi ;� i ; and (ii)

zp� Pi ; � Pi ;� i q is a weakly decreasing (weakly increasing) function of the price volatility� Pi if � � i ;Pi

is negative (positive).

The structure of the optimal CPPA capacity in Proposition 2.1 shows that no CPPA is signed when

the power and REC savings per unit of capacity is non-positive. Otherwise, it is optimal to sign a

CPPA for a capacity value that balances (i) the premium paid for purchasing renewable power and

RECs from the CPPA (i.e., PAP pK; � q); and (ii) the short-term REC costs avoided when meeting

the RPPT as result of the RECs obtained via the CPPA (i.e., K Er� s). It is also apparent that the

optimal CPPA capacity increases linearly in the RPPT parameter � .

The optimal CPPA capacity increases with � Pi ;� i because low power prices (i.e., low power price

risk) tend to occur when the generator's power supply is low (i.e, high supply risk) and the buyer

needs to purchase power at the short-term price. On the other hand, high power prices (i.e., high

power price risk) are common when the generator's supply tends to be high (i.e., low supply risk)

and most of the power needed is purchased at the pre-agreed CPPA strike priceK . In other words,

power price risk and supply risk work in opposing directions and thus mitigate the net e�ect on pro-

curement cash 
ows, which in turn, makes CPPA capacity become more valuable and more capacity

is procured as� Pi ;� i increases. Following similar reasoning, the impact of power price volatility is

10



mixed. If � Pi ;� i is positive, high power price risk and low supply risk are likely to co-occur and enter-

ing into CPPA capacity is more bene�cial as already discussed. On the other hand, if� Pi ;� i is nega-

tive, then increasing power price volatility reduces the procured capacity as power price movements

leading to high prices (i.e., high power price risk) are more likely when supply is low (i.e., high supply

risk) and the buyer needs to purchase power at the short-term price. In markets with high renewable

power penetration, such as ERCOT,� Pi ;� i is negative (Woo et al. 2011) and our results indicate that

procurement via a CPPA should be reduced relative to markets where correlations are zero or posi-

tive. In other words, buyers need to consider the risk arising from correlation when entering CPPAs.

Proposition 2.2 establishes the behavior of the optimal procurement cost, again focusing on the

market parameters related to the power price.

Proposition 2.2. The optimal costCp�; K; � qis (i) linearly increasing in � ; (ii) weakly decreasing

in � Pi ;� i ; and (iii) weakly increasing (decreasing) in � Pi if � Pi ;� i is negative (positive).

The optimal cost varies linearly with the RPPT parameter � , which shows that average spending

needs to proportionally increase if the company wants to be more aggressive with its target when

using a synthetic contract. The remaining �ndings pertaining to � Pi ;� i and � Pi are consistent with

Proposition 2.1 and the ensuing discussion underscoring the importance of correlation between

power prices and supply.

Correlation and volatility risks are not limited to power price and supply but extend to the REC

price in period 2, R2, and the total supply, �z . When the correlations� Pi ;� i for all i P t1; 2uand � R2 ;�

are negative, Proposition 2.3 shows that the behavior of the optimal CPPA capacity with respect

to supply volatility is more involved than its change with respect to price volatility established in

Proposition 2.1. As already discussed, there is support for negative correlation between power price

and supply, which we assume in Proposition 2.3. However, it is hard to rationalize a strong positive

correlation between the period 2 REC priceR2 and total supply � . This correlation is likely zero or

potentially negative. The former case does not change our results while that the latter, which we

assume, is likely with more renewable energy penetration. We also assume (for simplicity) that� � i

equals a constant for alli P t1; 2u and compare cases when this constant equals zero and a strictly

positive value. For � ¡ 0, we write zp� � i � � qand zp� � i � 0qas short forms forzp� � 1 � �; � � 2 � � q

and zp� � 1 � 0; � � 2 � 0q, respectively. We de�ne the lost REC value LRVpz; � q :� ErR2� 1p�z ¡

�D qs, which is the expected value of RECs when CPPA power supply exceeds the RPPT of�D .

Proposition 2.3. For � ¡ 0, suppose� Pi ;� i for all i P t1; 2u and � R2 ;� are negative. Then

zp� � i � � q � 0, if zp� � i � 0q � 0. Instead, whenzp� � i � 0q ¡ 0, we havezp� � i � � q ¤ zp� � i � 0q,
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if LRV p�D {Er� s; � � i � � q ¥ PRSpK; � � i � � q, and zp� � i � � q ¥ zp� � i � 0q, otherwise.

When zero CPPA capacity is purchased in the deterministic supply case (� � i � 0), this proposition

shows that the same is true with supply uncertainty (� � i ¡ 0). In other words, the buyer avoids

using a CPPA more often under volatile supply. On the other hand, if nonzero CPPA capacity is

optimal under deterministic supply, then we �nd that the CPPA capacity with uncertain supply

can be greater than or smaller thanzp� � i � 0qdepending on whether the lost REC value is greater

or smaller, respectively, than the REC and power price savings. In addition, this trend shows that

supply variability can result in contracts with smaller CPPA capacity for �rms with less aggressive

RPPTs (i.e., smaller � ) since the lost REC value LRVp�D {Er� s; � � � � q decreases with� .

Although optimal CPPA capacities can increase or decrease when there is supply uncertainty,

Proposition 2.4 establishes that the optimal procurement cost is nevertheless greater with supply

uncertainty when correlations are negative. This di�erence is lower bounded by a quantity that

increases with the magnitude of the power price, REC price, and supply volatilities. Moreover, this

bound is larger for companies with more aggressive RPPTs (i.e., larger� ).

Proposition 2.4. For � ¡ 0, we have

Cp� � i � � q � Cp� � i � 0q ¥
�D

yp� � i � � q

�

� �
¸

i Pt1;2u

� Pi ;� i � Pi � � � R2 ;� � R2 � 1pyp� � i � � q ¥ Er� sq

�

� :

Moreover, if � � i ;Pi for all i P t1; 2u and � R2 ;� are negative, thenCp� � i � � q � Cp� � i � 0q ¥ 0.

Our analysis highlights that power price and supply volatilities increase procurement costs, as

expected, but the magnitude of this increase is closely linked to the correlations between price and

supply. The amount of capacity procured using a CPPA also depends on such correlations. It is

interesting that CPPA procurement capacity increases in the presence of supply uncertainty when

RPPTs are high, that is, RPPTs themselves play a role in determining whether a CPPA is an ef-

fective procurement vehicle. An insightful consequence is that companies using aggressive RPPTs

have a higher potential of reducing their costs by including a CPPA as a procurement vehicle. Thus,

a high RPPT in conjunction with a CPPA helps a �rm balance climate goals (i.e., social responsi-

bility) with energy costs (i.e., �nancial performance). Our results also shed light on the non-trivial

nature of meeting an RPPT with a single CPPA. Practitioners have gone beyond a single CPPA

and have started using dynamic portfolios of CPPAs with di�ering durations to both reach and

sustain RPPTs, which we will turn to next.
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3. A Markov decision process view of rolling power purchases

Two di�erent procurement perspectives for meeting an RPPT are to (i) use short-term power and

REC purchases and (ii) use a single large long-term CPPA with shortfalls procured via the short-

term market. The former short-term policy exposes the buyer fully to price volatility. The latter

long-term CPPA policy faces the risk of locking in uncertain supply at terms that may become

unfavorable in a rapidly evolving power market. To balance these risks, we considerrolling power

purchasesto meet and sustain an RPPT, which is a 
exible strategy that maintains a portfolio of

CPPA types with short and long tenors and signs new CPPAs, as needed, on a regular basis. We

formulate in this section an MDP model that optimizes this strategy and provides a unifying lens

to understand the procurement policies we consider inxx4-5.

The planning horizon in our MDP is composed of two nested intervals as illustrated in Figure 1.

The courser intervals are de�ned by stages, which are points in time when CPPA contracting

decisions are made and we assume any RECs needed to meet the RPPT are purchased from the

short-term market at this time. The �ner intervals are demarcated by inner-stagesat which (i) the

corporation attempts to match power supply from the CPPA with demand using short-term power

purchases, and (ii) exchanges cash 
ows with the generator to hedge the price for power generated

from capacity contracted via CPPAs. In summary, the enforcement of the RPPT takes place at

the decision stages, whereas CPPA settlements take place at inner-stages.

Figure 1: Illustration of planning horizon, stages, and inner-stages.

Formally, the horizon is comprised ofI stages indexed byi belonging to setI :� t 0; : : : ; I � 1u.

Stage i corresponds to time� i and time � 0 is now. There areT � 1 inner-stages between stagesi

and i � 1 indexed by t with support in set T :� t 0; : : : ; Tu, where � i;t is the time associated with

inner-staget. Thus, � i; 0 and � i;T equal � i and � i � 1, respectively. To ease exposition, we assume equi-

distant annual stages and equi-distant inner-stages. An RPPT is enforced annually from yearI R

onward, that is, a percentage� P p0; 1s of the annual demand in each yeari P I S :� t I R ; : : : ; I � 1u

must be satis�ed by renewable sources. The target� does not have to be ful�lled in the remaining
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part of the planning horizon, that is I R :� t 0; : : : ; I R� 1u, but CPPAs can be signed. We thus refer

to the years in setsI R and I S, respectively, as the reach and sustain periods. The demand that

needs to be satis�ed in the interval p� i;t ; � i;t � 1s in year i P I is denoted by D i;t (MWh).

At each stagei , the set of potentially available CPPAs are indexed bym with ground set M .

We assume these contracts are di�erentiated by their duration so that m can be interpreted as

the length of a contract and M � maxt m P M u is the length of the longest contract4. A CPPA

of length m signed at stagei delivers power from stagesi � 1 to i � m at a �xed strike price of

K i;m USD/MWh. The company can choose to enter into a new CPPA of typem, if it is available,

by determining a capacity level in MW that is within minimum and maximum allowable limits

(often imposed by the generator) represented byzmin
m and zmax

m , respectively. We model contract

availability at stage i using a binary vector ai :� p ai;m P t0; 1u; m P M q, where ai;m equals one, if

contract m is available, and is zero, otherwise. The continuous-valued procurement decision vector

is zi :� t zi;m ; m P M u, where zi;m is the contracted capacity in MW5 of the CPPA of length m

years signed at yeari . Given a contract availability vector ai , the vector zi belongs to set

Z i pai q:�
 
zi PR|M |

�

�
� zi;m � 0, if ai;m � 0, and zi;m P t0u Y rzmin

m ; zmax
m s, otherwise, @m PM

(
;

which is non-convex when minimum purchase quantities are strictly positive (i.e.,zmin
m ¡ 0).

The information required to make procurement decisions is described in the MDP state, which

contains two components. The �rst component is a vectorx i :� p x i;l ; l P t0; : : : ; M � 1uqrepresenting

the on-hand capacity from CPPA contracts, where x i;l is the total capacity in MW available at

year i � l by the on-hand CPPAs. This component is a�ected by the �rm's decisions. The second

componentwi � p Pi; 0; Ri ; � i; 0; ai qcontains the stochastic factors needed to determine the Markovian

evolution of the power price Pi;t (USD/MWh), REC price Ri (USD/MWh), contract availability

ai , and stochastic power supply� i;t P r0; H s (hours), where H is the number of hours between

consecutive inner-stages, e.g.,H � 730 for monthly inner-stages. The complete stagei MDP state

is represented by the pairpx i ; wi q PXi � Wi . Executing procurement decisionszi PZ i pai q at stage

i and state px i ; wi q PXi � Wi results in an update of the CPPA capacity vector x i to

x i � 1;l � f i px i ; zi ql �

$
&

%

x i;l � 1 �
¸

mPM :m¡ l

zi;m ; if l P t0; : : : ; M � 2u;

zi;M ; if l � M � 1;
(3)

where f i px i ; zi q is a vector transition function and f i px i ; zi ql represents itsl-th element.

4The de�nition of the set of contracts in our formulation can be easily extended to di�erentiate contracts based
on features other than length.

5The amount of energy in MWh delivered in a speci�c interval is given by the product of the contracted capacity
in MW and the stochastic renewable energy production during this interval measured in hours.
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For each stagei P I , the expected procurement cost accrued when entering into CPPAs is

ci px i ; wi ; zi q � Ei

�

�
¸

mPM

L i;m¸

l � 1

T � 1¸

t � 0


 l
a 
 t pK i;m � Pi � l;t q� i � l;t zi;m �

T � 1¸

t � 0


 t Pi;t D i;t

� 
 aRi � 1 max
 
�D i � � i x i; 0; 0

(
1t i PI Su

�
; (4)

where Ei r�s � Er�|wi s, L i;m :� mint m; I � iu equals the number of stages of power delivery within

the planning horizon, 
 P r0; 1q denotes the discount factor over the interval de�ned by inner-

stages,
 a � 
 T P r0; 1q is the annualized discount factor, andD i :�
° T � 1

t � 0 D i;t and � i :�
° T � 1

t � 0 � i;t

represent the aggregate (annual) power demand and power supply, respectively. The �rst term in

(4) models the sum of the settlement cash 
ows between the generator and the company at each

interval over the tenure of the CPPAs signed from set M . Here � i � l;t zi;m is the actual power

generated in the interval p� i;t ; � i;t � 1s of stage i � l by the zi;m MW CPPA signed at stage i with

tenure m. The second term is the cost of procuring the known demandsD i;t , t � 0; : : : ; T � 1

from the short-term market at prices Pi;t , t � 0; : : : ; T � 1. The third term accounts for the REC

purchasing costs at a priceRi � 1 USD/MWh to cover any shortfall between the RPPT �D i in year

i P I S and the renewable power supply� i x i; 0 in this year. We assume that at stageI � 1 only

short-term procurement of power and RECs is possible, which means

cI � 1px I � 1; wI � 1q � EI � 1

�
T � 1¸

t � 0


 t PI � 1;t D I � 1;t � 
 aRI max
 
�D I � 1 � � I � 1x I � 1;0; 0

(
�

: (5)

A stage i dynamic procurement policy � i is a collection of stage-dependent decision rules

t Z � i
j ; j P I i u, each mapping states to actions, whereI i :� t i; : : : ; I � 2u. A decision rule Z � i

i in

stagei is feasible if it associates with each statepx i ; wi q PXi � Wi an action zi px i ; wi q that belongs

to Z i pai q. We denote by � i the set of all feasible stagei policies. Given an initial state px i ; wi q in

stage i , an optimal policy in � i solves

Vi px i ; wi q:� min
� i P� i

Ei

�
¸

j PI i


 j � i
a cj px � i

j ; wj ; Z � i
j px � i

j ; wj qq � 
 I � 1� i
a cI � 1px � i

I � 1; wI � 1q

�

; (6)

where Vi px i ; wi q is the MDP value function at stage i and state px i ; wi q and x � i
j is the endogenous

state reached in stagej when following the policy � i starting from px i ; wi q.

An optimal policy of MDP (6) maintains a dynamically evolving portfolio of CPPAs to reach

and sustain an RPPT. The MDP policy decision at a stagei accounts for (P1) the future stochas-

ticity of prices and supply, (P2) the full 
exibility to time CPPA purchases, and (P3) the access

to a variety of CPPA types. While these properties are appealing, computing the optimal MDP

policy is challenging due the well-known curses of dimensionality associated with MDPs (Bertsekas
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2011, Powell 2011). Speci�cally, in MDP (6), the endogenous statex i and decisionzi are M - and

|M |-dimensional continuous vectors, respectively, and the exogenous statewi may also be high di-

mensional when using a multi-factor stochastic model for the evolution of uncertainty. In addition

to dimensionality issues, another source of intractability stems from the non-convex structure of

Z i pai q. A common strategy to overcome this intractability relies on approximating the value func-

tion of the MDP, where convexity of the value function plays an important role in approximate

dynamic programming methods (see, e.g., Brown and Smith 2014, Salas and Powell 2017, Nadara-

jah and Secomandi 2018). The value function of MDP (6) is not convex in general as we show via

an example in Online Supplement B. Ensuring convexity requires additional conditions, such as no

procurement minimums (i.e., zmin
m � 0), that may not hold in practice, as shown in Proposition

3.1. (We refer the reader to Online Supplement C for further discussion.)

Proposition 3.1. Suppose (i) zmin
m � 0 and zmax

m   8 for all m PM , and (ii) the value function

satis�es |Vi p�; �q|   8 for each stagei P I . Then the value function Vi p�; wi q is convex in the

endogenous statex i for each stage and exogenous statepi; w i q PI � Wi .

Owing to these di�culties we pursue simpler strategies. In x4, the policies we consider are based

on forecasts. They sacri�ce property P1 of the MDP policy but partially/fully capture properties

P2 and P3. We then introduce in x5 policies based on information relaxation and duality (Andersen

and Broadie 2004, Haugh and Kogan 2004, Brown et al. 2010) satisfying properties P1, P2, and P3.

4. Forecast-based rolling power purchase policies

The traditional use of long-tenure CPPAs in practice can be viewed as a special case of a procure-

ment heuristic that employs a single CPPA. This CPPA is renewed in a rolling fashion (WBCSD

2018) by solving a deterministic model derived from MDP (6) by only allowing CPPAs of a single

type to be signed just-in-time to meet and sustain the RPPT, replacing uncertain quantities by fore-

casts, and limiting these forecasts to the tenure of the CPPA type, that is, they may not extend to

the end of the planning horizon. This heuristic, dubbed theforecast-based block heuristic(FBH), is

parameterized by a �xed m PM and works as follows. The �rst contract is entered at the last year of

the reach period,I R � 1, and delivers renewable power during the �rstm years of the sustain period.

The second contract is ordered one year before the �rst contract expires to ensure the continuous

delivery of power from CPPAs. This process is repeated until the end of the planning horizon. If at

year i contract m is not available, that is, ai;m � 0, then the RPPT in i � 1 is ful�lled by unbundled
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RECs and the CPPA procurement decision is postponed to yeari � 1. The optimal CPPA capacity is

z�
i;m � argmin

zi;m PZ i pai q

L i;m¸

l � 1


 l
a

�
T � 1¸

t � 0


 t pK i;m � Ei rPi � l;t sqEi r� i � l;t szi;m �
T � 1¸

t � 0


 t Ei rPi � l;t sD i � l;t

� Ei rRi � l � 1smax
 
�D i � l � Ei r� i � l szi;m ; 0

(
�

: (7)

Compared to the optimal policy of MDP (6), FBH has low timing 
exibility and no CPPA

variety because new CPPAs are signed only when the incumbent contract expires and it uses

a single CPPA type. We introduce a rolling-planning approach that extends FBH in terms of

timing 
exibility and CPPA variety. This approach, dubbed portfolio forecast-based reoptimization

heuristic (PFRH), solves at each stage a model obtained by replacing random quantities in MDP

(6) by their respective forecasts, i.e., expected values. In the case of contract availability, given the

binary nature of this variable, we assign a forecast of 1 if the contract is available with probability

greater than 0.5, and 0 otherwise. Formally, the stagej forecast for contract m PM made at stage

i , with i ¤ j , is de�ned as �ai;j;m � 1, if Ei raj;m s ¡ 0:5, and �ai;j;m � 0 otherwise. Consider the

following version of the cost function (4) with expectations replacing random quantities:

cDET
i px i ; wi ; zi q �

¸

mPM

L i;m¸

l � 1

T � 1¸

t � 0


 l
a 
 t pK i;m � Ei rPi � l;t sqEi r� i � l;t szi;m �

T � 1¸

t � 0


 t Ei rPi;t sD i;t

� 
 aEi rRi � 1smax
 
�D i � Ei r� i sx i; 0; 0

(
1t i PI Su: (8)

We omit the expression forcDET
I � 1 as it is a simpli�cation of the terminal cost (5). At stage i and

state px i ; wi q PXi � Wi , PFRH solves

min
yj ;zj

¸

j PI i


 j � i
a cDET

j

�
yj ; Ei rwj s; zj

�
� 
 I � 1� i

a cDET
I � 1

�
yI � 1; Ei rwI � 1s

�
(9a)

s.t.: yi � x i ; (9b)

yj � 1 � f j pyj ; zj q; @j P I i ; (9c)

yj PXj ; @j P I i Y t I � 1u; (9d)

zj PZ j p�ai;j q; @j P I i : (9e)

This math program computes decisionszj P I i and includes auxiliary variables yj to track the

endogenous MDP state. Its objective (9a) is the sum of discounted procurement costs. Constraint

(9b) initializes the stage i state to the current state x i . Constraints (9c) ensure the feasibility of

state transitions. Constraints (9d){(9e) restrict decision variables to their respective feasible sets.

Although solving (9) at stage i and state px i ; wi q provides the PFRH procurement decisions

t z�
j ; j P I i u, we only implement z�

i corresponding to the current stage. Implementing this decision
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results in a transition to a new inventory of power x i � 1 � f i px i ; z�
i q. Once new information wi � 1

becomes available at stagei � 1, we recompute the expectations of uncertain quantities and solve

an analogue of math program (9) formulated using these updated expectations at statepx i � 1; wi � 1q

to obtain z�
i � 1. We repeat this procedure until we reach stageI � 1.

We also consider a variant of PFRH that can only sign a single CPPA type. We refer to

this approach as FRH, which has full timing 
exibility but no CPPA variety, and is thus more


exible than FBH but less 
exible than PFRH. The computational burden of using the FBH,

FRH, and PFRH policies is tied to the di�culty of solving the deterministic form of our MDP or

a simpli�cation thereof, which is a favorable algorithmic property, especially in the presence of the

non-convexities discussed inx3. Note that both (7) and (9) are mixed integer programs that can

be solved using o�-the-shelf commercial optimization software. Conceptually, by replacing random

quantities by their respective forecasts in our setting, FBH, FRH, and PFRH do not capture the

impact of the future evolution of uncertainty on the current procurement decision. It is apriori

unclear how this factor a�ects the policy performance of these forecast-based rolling planning

approaches. In addition, the optimal objective of the PFRH math program does not provide a

lower bound on the optimal policy cost whereas deterministic (convex/
uid) approximations in

other applications are known to provide such an optimistic bound (see, e.g., Gallego and Van Ryzin

1997). We show in Online Supplement D that such a lower bounding property is not true for even

a \convexi�ed" version of the PFRH math program.

5. Information-relaxation based reoptimization heuristic

We propose a procurement policy based on the information relaxation and duality framework (An-

dersen and Broadie 2004, Haugh and Kogan 2004, Brown et al. 2010) that addresses the shortcom-

ings of forecast-based heuristics discussed at the end ofx4. We describe the dual bound inx5.1 and

then present in x5.2 the reoptimization scheme used to de�ne the new policy.

5.1 Dual bound

Information relaxation and duality is a useful framework to obtain dual bounds on the optimal pol-

icy cost of intractable MDPs and is applicable to MDP (6) as well. In its most commonly used form,

a dual bound is estimated in Monte Carlo simulation by solving a deterministic variant of MDP (6)

endowed with full information about future uncertainty and costs adjusted for this knowledge us-

ing a dual penalty. Let qi
�
x i ; Wi ; zi

�
and qI � 1

�
x I � 1; WI � 1

�
denote respectively the stagei   I � 1

and stageI � 1 dual penalty function, where Wi :� p wj;t ; j � i : : : ; I; t P T q is a vector of realized

stochastic factors for each stage fromi to I and interval t P T . If Ej rqj
�
x j ; Wj ; zj

�
s ¥ 0 holds for
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j P I i and EI � 1rqI � 1
�
x I � 1; WI � 1

�
s ¥ 0, then the dual penalty function is feasible. Given knowl-

edge ofWi , de�ne the following hindsight cost function (we omit the analogous de�nition for cIR
I � 1)

cIR
i px i ; Wi ; zi q �

¸

mPM

L i;m¸

l � 1

T � 1¸

t � 0


 l
a 
 t pK i;m � Pi � l;t q� i � l;t zi;m �

T � 1¸

t � 0


 t Pi;t D i;t

� 
 aRi � 1 max
 
�D i � � i x i; 0; 0

(
1t i PI Su; (10)

and consider the following deterministic optimization problem

V IR
i px i ; Wi q � min

yj ;zj

¸

j PI i


 j � i
a

�
cIR

j

�
yj ; Wj ; zj

�
� qj

�
yj ; Wj ; zj

� �

� 
 I � 1� i
a

�
cIR

I � 1pyI � 1; WI � 1q � qI � 1
�
yI � 1; WI � 1

� �
(11a)

s.t.: yi � x i ; (11b)

yj � 1 � f j pyj ; zj q; @j P I i ; (11c)

yj PXj ; @j P I i Y t I � 1u; (11d)

zj PZ j paj q; @j P I i : (11e)

Constraints (11b){(11d) are identical to constraints (9b){(9d) in the math program solved by

PFRH. Constraints (11e) di�er from (9e) in the availability vector used to de�ne Z j p�q. In the former

case, we use the realization of the random contract availability vector on a given sample path while

in the latter case we use the contract availability forecast vector described inx4. The objective

(11a) can be obtained by modifying the PFRH objective (9a) by subtracting dual penalty terms and

replacing the forecasted uncertainty with the elements ofWi . The expectationEi rV IR
i px i ; Wi qstaken

with respect to the random variable Wi |wi de�nes a dual bound on the value function Vi px i ; wi q,

that is the optimal policy value starting from stage i and state px i ; wi q.

The quality of the dual bound depends on the choice of the dual penalty function in math

program (11). Choosing this function to be zero, i.e.,qi p�; �; �q � 0, results in the dual bound being

equivalent to the well-known perfect information bound, which can be weak. Brown et al. (2010)

show that the dual bound is instead equal to the optimal policy value when using the following

ideal dual penalty based on the MDP value function:

qI � 1
�
x I � 1; WI � 1

�
� cIR

I � 1px I � 1; WI � 1q � cI � 1px I � 1; WI � 1q; (12a)

qi
�
x i ; Wi ; zi

�
� 
 a

 
Vi � 1

�
f i px i ; zi q; wi � 1

�
� Ei

�
Vi � 1 pf i px i ; zi q; wi � 1q

�(

� cIR
i

�
yi ; Wi ; zi

�
� ci

�
yi ; wi ; zi

�
: (12b)

The term cIR
i

�
yi ; Wi ; zi

�
� ci

�
yi ; wi ; zi

�
is atypical in the de�nition of an ideal penalty but needed

here since our MDP cost function (4) includes expectations over future exogenous states; hence it
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di�ers from its hindsight counterpart (10). Since the exact value function in (12b) is not available,

value function approximations can be used instead or simpler dual penalties that do not rely on such

approximations can be constructed (see, e.g., Brown and Smith 2014, Secomandi 2015, Nadarajah

and Secomandi 2018). We take the latter approach and de�ne the dual penalty function as

qi px i ; Wi ; zi q:�
¸

mPM

L i;m¸

l � 1

T � 1¸

t � 0


 l
a 
 t

�
� P

i pEi rPi � l;t s � Pi � l;t q � � �
i pEi r� i � l;t s � � i � l;t q

�
zi;m

�
¸

mPM

L i;m¸

l � 1


 l
a � R

i pEi rRi � l s � Ri � l qzi;m ; (13)

where p� P
i ; � R

i ; � �
i q are stage- and factor-dependent weights. In (13), the information gained when

taking a decision is approximated by spreads between the value taken by the uncertainty in future

periods pi � l; t q and its expectation computed at period pi; 0q. These spreads are multiplied by

the CPPA purchase decisions. The dual penalty (13) is linear inzi , does not depend onx i , and is

feasible because the expectation ofEi rPi � l;t s � Pi � l;t equals zero (analogously for the other factors).

In addition to its simple form, linear penalties ensure that the math program (11) falls into the same

complexity class as the deterministic version of MDP (6) and the math program (9) solved by PFRH.

5.2 Decisions

Traditionally, an operating policy is computed independent of the dual bound computation de-

scribed above (see, e.g., Desai et al. 2012 and the related discussion inx1.1). We now de�ne

a non-anticipative decision directly during the dual bound estimation process, where being non-

anticipative refers to a decision that only depends on the information available at stagei (the de-

cision resulting from solving (11) is anticipative as it relies on future information on the sample

path Wi ). Since the dual boundEi rV IR
i px i ; Wi qsinvolves solving the math program (11) over mul-

tiple realizations of the random variable Wi |wi , we also have a distribution of optimal solutions of

this math program. This decision distribution encodes information from the evolution of future

prices and supply uncertainties. We focus on stagei decisions obtained during the dual estimation

process and represent them via a random decisionzi pWi q that is a function of the random vari-

able Wi |wi . Our key idea is to de�ne a functional that operates on the distribution of the random

variable zi pWi q and returns a single non-anticipative decision. We call this functional adecision

measure H i that maps a distribution zi pWi q to a vector of R|M |. Proposition 5.1 establishes some

useful properties of a decision measure with respect to optimality and feasibility.

Proposition 5.1. The decisionH i pzi pWi qqis guaranteed to be feasible, that isH i pzi pWi qq PZ i pai q,

if any of the following conditions hold:
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1. Z i pai q is convex andH i pzi pWi qq:� Ei rzi pWi qs.

2. H i pzi pWi qq � �zi and �zi;m � zi;m pW m
i q for all m P M , where W m

i is a realization of the

random variable Wi |wi .

Moreover, if the decision H i pzi pWi qqsatis�es one of the conditions above and we use the ideal dual

penalty (12) in math program (11), then H i pzi pWi qqis an optimal solution to MDP (6).

Examples ofH i that satisfy conditions (1) and (2) of Proposition 5.1 areH i pzi pWi qq � Ei rzi pWi qs

and H i pzi pWi qq � Mrzi pWi q|wi s, respectively, whereM denotes the component-wise median of a

multivariate distribution (Lopuhaa and Rousseeuw 1991), that is, the standard univariate median

applied to each dimension of the distribution (in our case, each contract typem P M ). This def-

inition of median leads to a feasible decision in our application since there are no constraints on

the action spaceZ i pai q that tie di�erent contracts in M . It is important to note the feasibility

of H i pzi pWi qqunder condition (2) holds even whenZ i pai q is non-convex. Thus, in our application

the median decision measure is more robust in terms of feasibility than the mean decision mea-

sure since the latter measure satis�es only condition (1). More broadly, the decisionH i pzi pWi qqis

impacted by the unfolding of uncertainty because it is a function of the distribution of zi pWi q { a

favorable property shared by the MDP optimal policy but not by heuristics in x4 that employ fore-

casts. The optimality of H i pzi pWi qqunder an ideal dual penalty shows that the information about

future uncertainty encoded in the action distribution can be useful.

To compute a dual bound and decision at stagei and state px i ; wi q, we generateH Monte Carlo

sample paths of uncertainty t wh
j;t ; pj; t; h q P ti; : : : ; I u� T �t 1; : : : ; H uuwhich provide a discrete ap-

proximation Ŵi |wi of the random variable Wi |wi . Based on this approximation, we estimate both a

dual bound
° H

h� 1 V IR
i px i ; W h

i q{H and a decisionH i pzi pŴi qq, which requires the solution ofH math

programs of the type (11). We apply the aforementioned decision to move to an endogenous state

x i � 1 � f i px i ; H i pzi pŴi qqq. Then we observe the stagei � 1 uncertainty wi � 1 and repeat the same

process at statepx i � 1; wi � 1q and keep moving forward in time until we reach the terminal stage.

We call the resulting approach the portfolio information-relaxation based reoptimization heuristic

(PIRH) and the policy computed in the process using decision measures as the PIRH policy.

6. Numerical study

In x6.1 and x6.2, respectively, we describe our realistic instances and explain the computational

setup. In xx6.3-6.6, we present our results and discuss related managerial insights.
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6.1 Procurement instances

Table 1 summarizes the parameter values of our baseline MDP instance. We use a 40 year plan-

ning horizon pI q and a 5 year reach periodpI Rq to attain a stochastic RPPT that is 90% p� q.

Within each year, there are 12 monthly inner-stages (T). The set of contracts M and the mini-

mum/maximum quantities are consistent with the CPPA portfolio of Google (Google 2017). The

corresponding availability factors pm are chosen based on Wiser and Bolinger (2017) and Baker

McKenzie (2015): According to the �rst report, 15- to 25-year CPPAs are predominant, with 20-

year contracts being the most common, while the second report indicates that CPPAs of length

between 10 and 20 years are prevalent. We use a constant monthly power demandD i;t throughout

the horizon which corresponds to the consumption of two large data centers. The annual risk-free

rate is set to 3.1% and corresponds to the average 10-year United States treasury rate in November

2018 (Bloomberg 2018), which implies a discount factor
 a equal to 0.97.

Table 1: Parameters de�ning the baseline CPPA instance.

Name Value Unit Name Value Unit Name Value Unit

I 40 years D i;t 5 � 104 p@i; t P I � T q MWh/month zmin
m 20p@m PM q MW

I R 5 years M t 5; 10; 15; 20; 25u years zmax
m 400p@m PM q MW

T 12 months pm t 0:3; 0:4; 0:5; 0:5; 0:4u - 
 a 0.97 -
� 90% - �� � 0:2p@i; t P I � T q - ra 0.93 -

We designed a realistic model to obtain CPPA strike prices. A renewable power generator

typically sets a strike price to recoup its project investment and maintenance costs as well as a

return on investment. We chose the generator's discount factor (ra) so that the return on investment

is roughly twice the risk-free interest rate. In addition, historical data and models from NREL

show that the CPPA strike price is a�ected by several factors including the expected quantity of

power produced as a fraction of installed capacity (i.e., capacity factor), tax credits, improvements

in technology, the contract duration, and the expected power price over the tenor of the contract

(NREL 2010, DOE 2016, Wiser and Bolinger 2017). We develop a model that accounts for these

factors based on a net present value (NPV) calculation consistent with software from NREL (NREL

2017). For instance, we account for a production tax credit (PTC) per MWh that is granted to

CPPAs signed in the �rst �ve years of the planning horizon. We relegate details of the strike price

model to Online Supplement E.

We consider stochastic processes for the power price, REC price, and power supply. We consider

monthly power prices, which can be seen as the �rm purchasing power from the utility at a variable

retail rate that tracks the average wholesale price (see, e.g., the CPPA signed by Amazon in RMI
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2016)6. We model the power price using a mean-reverting stochastic process with seasonality and

jumps (Lucia and Schwartz 2002, Weron 2014). The monthly power supply is also modeled using a

mean-reverting process but without jumps (Loukatou et al. 2018). Power price and power supply

share instantaneous correlation� Pi � i equal to a constant �� of � 0.2 for all stages based on the study

by Woo et al. (2011). We employ a Jacobi di�usion process to forecast yearly REC prices following

Zeng et al. (2015) and assume zero correlation between REC price and power supply as discussed in

x2. We employ a maximum likelihood estimation process to calibrate the power price, REC price,

and power supply models using real data from PJM, New Jersey, and EIA, respectively. Availability

of CPPA m PM follows a Bernoulli random variable, wherepm P r0; 1sdenotes the probability that

this contract is available. Online Supplement F contains details of these models and the calibration.

Table 2 summarizes six instance sets S1{S6, with 34 instances in total, obtained by perturbing

the parameters of our baseline instance (distinguished by a superscriptB). These instances allow

us to analyze the behavior of procurement policies as market parameters change.

Table 2: Extended instance sets with the baseline-instance parameter superscripted byB.

Set Modi�ed parameter Values

S1 Renewable energy target� t 0; 0:1; : : : ; 0:9B ; 1u
S2 CPPA availability change pm for all m PM t� 0:2; � 0:1; 0B ; � 0:1; � 0:2; � 0:3u
S3 Long-term mean of power price t 20; 25; 30; 39:7B u USD/MWh
S4 Long-term mean of RECs price t 5; 9:4B ; 15; 20u USD/MWh
S5 Generator annual discount factorra t 0:9; 0:91; 0:92; 0:93B ; 0:94; 0:95u
S6 Power price and supply correlation �� t� 1; � 0:66; � 0:33; 0; 0:33; 0:66; 1u

6.2 Computational setup

Our computational study is setup to shed light on how to structure e�ective procurement strategies

to meet an RPPT. To this end, we evaluate the procurement heuristics ofxx4{5 (i.e., FBH, FRH,

PFRH, and PIRH) as well as estimate cost components via Monte Carlo simulation. We denote

by FBH m and FRHm the speci�cations of these heuristics that use CPPAm from set M . We

implemented PIRH using linear dual penalties de�ned as in (13) with weights p� P
i ; � R

i ; � �
i q �

p0:3; 0; 0q for each i P I , i.e. that include power price spreads alone, andqI � 1p�; �q � 0. We found

that this dual-penalty speci�cation led to near-optimal procurement policies and lower bounds.

All algorithms were programmed using C++ with Gurobi 8.1 as the math programming solver.

We estimated the value of the procurement policies (i.e., expected discounted total costs over

the planning horizon) and the PIRH lower bound using 1000 Monte Carlo sample paths (i.e.,H

6Our MDP and methods can be used at �ner time scales at the expense of higher computational cost.
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equals 1000), as this choice resulted in standard errors of lower/upper bound estimates of 0.36%

on average and at most 0:53%. We followed an analogous approach to obtain low standard errors

when estimating other quantities. The PIRH upper bound estimation process requires computing

procurement decisions at each stage of an evaluation sample path. Therefore, for a �xed stage and

evaluation sample path, we formulated and solved the math program (11) on 30 inner sample paths

and then applied a decision measure to back out a non-anticipative control.

6.3 Managing the cost of renewable power certi�cation

The company's cash 
ow function (4) is the sum of two components: (i) the term
° T � 1

t � 0 
 t Pi;t D i;t

captures the cost of purchasing power from the short-term market and (ii) the remaining terms

corresponding to the expected cost of \certifying" this power as being renewable through CPPAs

and/or unbundled RECs. We refer to the latter component as the certi�cation cost, which simpli-

�es as follows for a setting with 1 MWh of power demand in each hour, an RPPT of 100%, and a

1 MW CPPA of length m PM entered at stagei :

um
i :�

L i;m¸

l � 1


 l
a

�
T � 1¸

t � 0


 t
�

K i;m Ei r� i � l;t s� Ei rPi � l;t sEi r� i � l;t s� CovpPi � l;t ; � i � l;t q
	

� Ei rRi � l � 1pTH � � i � l qs

�

:

The certi�cation cost terms inside the summation explicitly capture the covariance between power

price and supply, where CovpPi � l;t ; � i � l;t q � �� � Pi � l;t � � i � l;t . Speci�cally, when �� takes positive and

negative values, respectively, the certi�cation cost decreases and increases relative to the case with

zero correlation because of the covariance term. The remaining term related to short-term REC

purchases replaces the 1 MWh of demand by its implied annual demand ofTH MWh. To be able

to compare certi�cation costs across CPPAs of di�erent tenures, we annuitizeum
i , which amounts

to converting the total cash 
ow into a sequence of equal discounted monthly payments and then

dividing this discounted cost by H (i.e., the hours per month) to obtain a 1 MWh cost. Henceforth,

we denote byum
i the annuitized unit cost (with an abuse of notation) and by uST

i the certi�cation

cost per unit when using no CPPAs and only short-term REC purchases.

Figure 2(a) displays the impact that the signing year i has on a 20-year CPPA, that isu20
i , for �� P

t� 1; 0; 1u, as well as the behavior ofuST
i with year i , which is not a�ected by correlation. The cost

uST
i varies only marginally with stage i while u20

i displays a signi�cant jump at year 5 followed by

a decrease over time. The former jump in certi�cation cost stems from the PTC expiring �ve years

into the planning horizon. On our baseline instance, entering into a 20-year CPPA at year 5 (i.e.,

u20
5 ) rather than year 4 (i.e., u20

4 ) translates into an annual expected increase in expenditure of about

2 mln. USD. This cost increase makes certifying power to be renewable using a 20-year CPPA more
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Figure 2: Expected certi�cation cost for 1 MWh of power.

expensive than procuring RECs from the short-term market (i.e.,u20
5 ¡ uST

5 ). The decrease inu20
i

after year 5 is the result of improving technology and e�ciency which brings down the CPPA strike

price. Despite the signi�cant impact of subsidies on the cost of CPPAs, the use of such agreements

can substantially decrease the cost of certifying power to be renewable for most stages in the plan-

ning horizon and all three correlation levels compared to buying RECs from the short-term market.

As expected from our analysis inx2, the values ofu20
i in Figure 2(a) for �� equal to 1 and � 1

is smaller than and greater than, respectively, this value for zero correlation. Next, we assess the

certi�cation cost change due to the correlation between power price and supply. Figure 2(b) displays

the average annuitized certi�cation cost
°

i PI um
i {| I | for CPPA m as a function of �� . The averaging

here smooths the impact of the signing yeari and allows us to focus on the covariance e�ect. Varying

�� from � 1 to � 1 signi�cantly increases the average certi�cation cost by about 6% for all contracts.

This �nding suggests that companies need to account for the impact of power price and supply

correlations; otherwise, their cost estimates for certifying power to meet an RPPT could be biased.

6.4 Shape risk and RPPT settlement time scale

MDP (6) has two time scales de�ned by inner-stages and stages. The time interval separating inner-

stages depends on how often short-term power prices change, as this a�ects when power supplied

by the CPPA is matched with power demand. Indeed the �rm can negotiate with a utility on index

pricing and the frequency of price changes but this is not under its direct control. In contrast, the

company directly controls the time scale at which the RPPT is met. We assume that this time

scale coincides with the decision stages but this need not be the case.

Using the block heuristic FBHm , we explore in Figure 3(a) how the procurement cost in the
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baseline instance varies with the RPPT settlement time scale. Reducing this time scale from yearly

to monthly causes the expected procurement cost to increase by 3.5%, 4.4%, and 3.2%, respectively,

for 15-year, 20-year, and 25-year CPPAs. To understand such procurement cost increases, consider

a 1 MW CPPA that delivers power in year 10. This CPPA delivers di�erent amounts of power each

month due to a seasonal component and a random component, both embedded in our stochastic

model for power supply. Figure 3(b) shows the average delivery pro�le of this contract with the

RPPT depicted using the dotted line. Under annual RPPT settlements, the average CPPA is

su�cient to meet the target since months with supply shortfalls are balanced by ones with excess

supply. Instead, if the RPPT is met every six months, then the supply from the CPPA is enough

to ful�ll the target in months 1{6 but 0.12 MWh of unbundled RECs are needed in months 7{12,

which results in higher procurement cost. Similarly, when using a monthly RPPT commitment,

0.2 MWh of unbundled RECs need to be purchased in months 7, 8, and 9.

Figure 3: E�ect of di�erent contract lengths and RPPT settlements on FBH m procurement.
(a) Procurement costs (b) Power supply

Intuitively, when using a shorter RPPT settlement, the shape of supply more heavily impacts

the exposure of a �rm to the volatile short-term REC price. Indeed, when using a CPPA, supply

uncertainty already exposes a �rm to volatile power prices (see discussion inx2). What we show

above is that this shape risk arising from volatile power prices is further exacerbated by exposure to

volatile REC prices in the presence of an RPPT. Fortunately, shape risk due to REC prices can be

mitigated by using less frequent RPPT settlements, which motivates an annual RPPT time scale.

6.5 Value of 
exibility in rolling power purchases and portfolio optimization

Rolling power purchase strategies discussed inx4 di�er based on their timing 
exibility and CPPA

variety. We begin by investigating the value of timing 
exibility in single-CPPA policies of FBH m

and FRHm (i.e., the value of their respective policies when using CPPA typem P M ). Recall
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that the former policy has less timing 
exibility and less forecast information than the latter one.

Table 3 reports their performance on the baseline instance as well as their average performance

over the instance sets S1{S6. The performance of the policy that executes short-term power and

REC purchases alone is also reported as a benchmark. Optimality gaps are computed with respect

to the PIRH dual bound.

Table 3: Procurement costs in mln. USD and optimality gaps (in parenthesis) for FBHm , FRHm ,
and short-term policies.

Instance m � 5 m � 10 m � 15 m � 20 m � 25 Short-term

Baseline
FBHm 648.2 (14.9%) 637.3 (13.0%) 627.4 (11.2%) 620.3 (10.0%) 625.0 (10.8%) 652.9
FRHm 638.6 (13.2%) 624.5 (10.7%) 607.8 (7.8%) 591.6 (4.9%) 582.7 (3.3%) (15.7%)

S1{S6
FBHm 621.6 (11.2%) 614.1 (9.9%) 606.7 (8.6%) 601.0 (7.6%) 602.1 (7.8%) 626.4
FRHm 613.0 (9.7%) 601.8 (7.7%) 590.5 (5.7%) 579.9 (3.8%) 574.5 (2.9%) (12.1%)

FRHm results in a lower procurement cost than FBHm under each contract in setM and these

policies for longer tenure CPPAs signi�cantly improve on the short-term policy. The di�erence

between FRH and FBH increases with the contract length and can be up to 42.3 mln. USD on

the baseline instance when using 25-year CPPAs. Further investigation showed that the average

number of years between signing two consecutive CPPAs for FRH25 was roughly 12 years while

FBH25 has a much longer average interval equal to 26 years. Moreover, the minimum, average, and

maximum capacity of CPPAs (in MW) signed by FRH 25 are 22.2, 114.6, and 185.1, respectively,

while analogous values for FBH25 are 182.6, 187.9, and 193.2. These statistics show that FRH25 uses

its additional timing 
exibility to sign CPPAs more often and with less capacity compared to FBH 25,

which results in signi�cant cost reduction. It is also encouraging that FRH20 and FRH25 have low

optimality gaps (between 3% and 5%). However, in the absence of long-term CPPAs spanning 20 to

25 years, using a shorter tenure CPPA instead can lead to a substantial increase in procurement cost.

Motivated by the above �nding, we assess the value of signing multiple CPPA types, that

is, the bene�t of maintaining portfolios of CPPAs with di�erent tenures. Table 4 reports the

performance of PFRH, PIRH with mean and median decision measures, and a PIRH variant with

zero dual penalty, labeled PIRH-0. The PFRH optimality gaps are worse than the ones for FRH25

(see Table 3). This worsening of procurement cost cannot occur if a CPPA portfolio is optimized

(for instance using MDP (6)), which suggests that PFRH is not e�ective at structuring dynamic

portfolios. The results in Table 4 corresponding to PIRH show this to certainly be the case.

Speci�cally, the PIRH optimality gap when using a median decision measure is 2% and 1.6% on the

baseline instance and on the other instances sets, respectively, which is a signi�cant improvement

over FRH25. This �nding shows that portfolios constructed by PIRH can reduce procurement costs
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Table 4: Procurement costs and optimality gaps for PFRH, PIRH-0, and PIRH policies.

PIRH-0 PIRH

Instance PFRH mean median mean median

Baseline
Procurement cost (mln. USD) 590.9 589.0 597.0 576.0 575.2
Optimality gap 4.8% 4.4% 5.8% 2.1% 2.0%

S1{S6
Procurement cost (mln. USD) 577.6 584.8 584.2 568.7 567.4
Optimality gap 3.4% 4.7% 4.6% 1.8% 1.6%

relative to a rolling planning approach such as PFRH.

Next, we provide some insight into the superior performance of PIRH compared to PFRH. The

conceptual advantage of PIRH highlighted in x5.2 is that the action distribution it uses to extract

a non-anticipative decision encodes information about the impact of future uncertainty on the

current decision. In contrast, PFRH does not have such information as it uses a forecast. A natural

question is when the information encoded in the PIRH action distribution is useful to improve on

PFRH. An answer to this question can be gleaned from the optimality gaps of PIRH-0 in Table 4,

which are worse than PFRH and PIRH. Speci�cally, if the quality of the dual penalty is poor, as

in PIRH-0, then relying on an action distribution can be worse than using a forecast. On the other

hand, it is encouraging that the simple linear dual penalties that we use in PIRH are su�cient to

make decision measures improve upon the PFRH decisions as well as lead to near optimal decisions

and a dual bound. On our instances, there is signi�cant value in maintaining CPPA portfolios and

PIRH provides an e�ective methodology to compute and update such portfolios.

The performance di�erences between PIRH and PFRH also translate to contracting di�erences

in their respective procurement policies. Table 5 reports the contract diversity, which we represent

using the mean and maximum numbers of distinct CPPAs in the policy's portfolio over the stages

in the planning horizon. Since each of these statistics depends on the sample path of uncertainty

in the policy simulation, we report their respective averages over the sample paths. The table

also contains the fraction of sample paths (as a percentage) that use CPPAs of a particular tenure

under PFRH and PIRH. Both approaches have comparable average contract diversities but PIRH

Table 5: Contract diversity and usage of PFRH and PIRH policies on the baseline instance.

Contract diversity Percentage of sample paths using a CPPA tenure

Mean Max 5 10 15 20 25

PFRH 1.89 2.42 6% 15% 43% 80% 96%
PIRH 1.84 3.10 36% 18% 38% 81% 98%
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has a larger maximum. Their policies use CPPAs of all tenures with PIRH using 5-year CPPAs

signi�cantly more often than PFRH, possibly because shorter term CPPAs avoid locking in an

unfavorable strike price for a long time horizon.

The bene�ts of the PIRH policy comes with a higher computational burden than FRHm and

PFRH. At a given stage and state, the time taken to compute a decision using FRHm , PFRH,

and PIRH are 0.01, 0.04, and 1.9 seconds, respectively. Most of this time for PIRH goes towards

solving the dual optimization models on sample paths and the time required to extract the non-

anticipative decision was negligible. Estimating the value of a policy, i.e., applying it over the entire

planning horizon using 1000 Monte Carlo simulations, took 2 and 9 minutes respectively for FRHm

and PFRH, and 9 hours for FIRH. Estimating the value of the PIRH policy is more expensive than

PFRH because the former policy solves at each stage math programs for each of the inner sample

paths (which is 30 in our simulation) whereas the latter policy solves a single math program. The

solution of PIRH math programs in the inner samples can be parallelized to substantially reduce

this overhead. Finally, estimating the PIRH lower bound took about 1 minute on average.

6.6 Current and future relevance of CPPAs

The results in Tables 3 and 4 show that the PIRH procurement policy reduces expected cost on the

baseline instance by 13.5% compared to the short-term policy, which translates to 78 mln. USD.

Therefore, entering into CPPAs appears highly bene�cial for a �rm in an environment resembling

our baseline instance. Since regulatory and market conditions evolve, we consider below the impact

of some of these changes on the bene�ts of a CPPA.

Support schemes have spurred the increase in renewable energy generation but these schemes

are being gradually phased out in several countries. We investigate if removing the PTC7 would

signi�cantly a�ect how corporations meet an RPPT. Figure 4 displays the evolution of an \average"

CPPA portfolio over the procurement horizon under the PIRH policy with and without a PTC,

where the averaging occurs over the CPPA portfolios associated with the sample paths used in our

policy simulation. For our baseline instance, which has a PTC expiring in year �ve, Figure 4(a)

shows that power is purchased aggressively in the �rst �ve years via CPPAs to meet the RPPT

due to lower strike prices. The PTC expiration results in the strike price of CPPAs to jump in year

six, causing new CPPAs to become less desirable for a few years before the strike price decreases

again due to improvement in technology { a feature captured by our strike price model (see Online

Supplement E). This strike price trend is supported in Figure 4(a) by the decrease in CPPA power

7The presence of a PTC results in additional revenue to the generator and thus a lower strike price. See our strike
price model in Online Supplement E for details.
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Figure 4: Average PIRH renewable portfolio composition with and without a PTC.

delivery from year 6 for some years and the subsequent increase in the CPPA power supply. With

no PTC, procurement via CPPAs is more subdued at the beginning, with signi�cant short-term

REC purchases used to meet the RPPT as seen in Figure 4(b). The increase in the use of CPPAs in

later years is driven by the decrease in the strike price due to technology improvements captured via

a learning rate in our strike price model. The average contribution of CPPAs towards the RPPT in

our baseline instance decreases from 93% with a PTC to 79% without a PTC. Moreover, the total

procurement cost increases from 575.2 to 627.0 mln. USD when the PTC is removed, which equals a

9% increase. Thus, the presence of a PTC directly a�ects the use of CPPAs in the short- to medium-

term but, regardless of a PTC, CPPAs are competitive procurement instruments in the long term.

Other important market trends pertain to power and REC prices, and CPPA availability. Mar-

ket outlooks suggest that long-term power prices will decrease due to increasing penetration of

renewable energy (Mills et al. 2017). Figure 5(a) shows the impact of reducing our calibrated long-

term mean power price of 38 USD/MWh to 20 USD/MWh on the short-term and PIRH policy costs.

As expected, the procurement costs of both policies decrease as the long-term mean power price

drops. When the long-term mean power price falls below 25 USD/MWh, the performance of both

policies become comparable. Since such a price drop is substantial, our results suggest that CPPAs

will likely continue to play an important role in corporate procurement for several years to come.

In contrast to the power price, the average REC price can increase or decrease in the long-term

due to regulatory changes (EPA 2018). Figure 5(b) is analogous to Figure 5(a) but considers in-

creasing and decreasing the calibrated long-term mean of the REC price of 9:4 USD/MWh to 20 and

5 USD/MWh, respectively. When the long-term mean of the REC price increases, the procurement

costs of the short-term policy is a�ected substantially while PIRH is stable across instances. This

robustness to REC price variability is due to PIRH purchasing a considerable amount of CPPAs
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Figure 5: Procurement costs in mln. USD for the short-term policy (dashed line), PIRH (continuous
line), and FRH25 (dotted line).

even when the REC prices are low, which insulates its procurement policy to REC price increases.

Finally, Figure 5(c) shows how procurement costs of the short-term, FRH25, and PIRH policies

change when varying the availability pm of each contractm PM from its base value to a value from

� 20% to � 30%. We included FRH25 in the comparison as it was the best single-contract policy we

tested. Indeed, contract availability has no impact on the short-term policy. In contrast, but as in-

tuitively expected, the cost of the single-contract-type heuristic FRH25 changes quite substantially

as availability drops. Interestingly, we �nd that contract availability does not have a severe impact

on the PIRH cost { the procurement cost increases by only 2% when decreasing contract availabil-

ity from � 30% to � 20% relative to the baseline, which is a 50% availability cut for each contract

type. This suggests that: (i) portfolios containing multiple CPPAs and optimized dynamically are

rather stable under contract availability changes, and (ii) there is some level of substitutability be-

tween di�erent subsets of CPPAs.

7. Conclusion

Motivated by the global trend in corporate energy procurement, we investigated the problem of

meeting an RPPT using CPPAs in the presence of supply and price uncertainties. We analyzed a

simpli�ed model with a single CPPA and showed that it exposes a �rm to price uncertainty as a re-

sult of volatile supply from the renewable energy generator. Nevertheless, signing a CPPA decreases

procurement costs for companies with aggressive RPPTs when the correlations between power/REC

prices and supply are not too negative, which is currently true in power markets. To inform the

construction of a dynamic CPPA portfolio to meet and sustain an RPPT, as done in practice, we

formulate an MDP, which is intractable. We design three forecast-based heuristics and a novel

information-relaxation based technique with policies that approximate features of the idealized

MDP policy. The latter technique also provides a dual bound for benchmarking policies. Through
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an extensive computational study on realistic procurement instances, we shed light on the cost of

renewable power certi�cation, the risks arising from supply uncertainty, the value of dynamic CPPA

portfolios, and the e�ectiveness of our information-relaxation heuristic for constructing them.
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A. Proofs
Proof of Proposition 2.1. The derivative of the expected cost with respect toz is PAPpK; � q �
ErR2� 1p�z ¤ �D qs, which is a non-decreasing function ofz since PAPpK; � q is a constant and
ErR2� 1p�z ¤ �D qsweakly decreases inz. Thus, the expected cost is a convex function ofz and a
comparison of slopes su�ces to characterize the optimal procureme nt quantity.

We �rst consider the conditions for z� p�; K; � q � 0. Since� i is a random variable with support
on the interval r0; H s, the random variable � has support on the interval r0; 2H s. This implies that
there exists a small enough value forz, denoted �z, such that for 0 ¤ z ¤ �z we have PAPpK; � q �
ErR2� 1p�z ¤ �D qs � PAPpK; � q � ErR2� s. Therefore, if PAPpK; � q � ErR2� s ¥ 0, which is the
same as PRSpK; � q ¤ 0, then z� p�; K; � q equals 0. Instead, if PRSpK; � q ¡ 0 holds, then there is
a 8 ¡ y� pK; � q ¥ 0 such that PAPpK; � q � ErR2� 1p� ¤ y� pK; � qqs � 0 sinceErR2� 1p� ¤ yqsis
an increasing function ofy that is bounded below by 0 for y � 0 and upper bounded byErR2� s for
y equal to 2H . This implies that z� p�; K; � q � �D {y� pK; � q. We pick the smallest suchy� pK; � q
in de�ning the optimal procurement quantity.

We can write PAPpK; � q as follows

PAPpK; � q � K Er� s �
¸

i Pt1;2u

Er� i Pi s

� K Er� s �
¸

i Pt1;2u

pEr� i sErPi s � CovpPi ; � i qq

� K Er� s �
¸

i Pt1;2u

pEr� i sErPi s � � Pi ;� i � � i � Pi q:

It is apparent from this rewriting that PAP pK; � q is a decreasing function of each� Pi ;� i if � � i ¡ 0
and � Pi ¡ 0. In addition, ErR2� 1p� ¤ yqsdoes not depend on� Pi ;� i . It follows that y� p� Pi ;� i q is
non-increasing in � Pi ;� i and z� p� Pi ;� i q is weakly increasing in this parameter.

(ii) From our rewriting of PAP pK; � q in part (i) above, it is clear that this quantity is non-
decreasing in� Pi when � Pi ;� i ¤ 0. SinceErR2� 1p� ¤ yqsdoes not depend on� Pi , y� p� Pi ; � Pi ;� i q is
non-decreasing in� Pi , which implies that z� p� Pi ; � Pi ;� i q weakly increases in this parameter.

Proof of Proposition 2.2. (i) If PRS pK; � q ¤ 0, by Proposition 2.1, we havez� p�; K; � q � 0 and
C � p�; K; � q �

°
i Pt1;2u D i ErPi s� � ErR2sD , which is linear a function of � . Instead, if PRSpK; � q ¡

0, then z� p�; K; � q � �D {y� pK; � q, where y� pK; � q does not depend on� . In this case,

C � p�; K; � q �
¸

i Pt1;2u

D i ErPi s � p �D {y� pK; � qq

�

� K Er� s �
¸

i Pt1;2u

Er� i Pi s � ErR2py� pK; � q � � q� s

�


 ;

which is again a linear function of � .
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(ii) The expected cost can be written as follows

Er rCpz; w; �; K; � qs � K Er� sz �
¸

i Pt1;2u

pD i ErPi s � Er� i Pi szq � ErR2p�D � �z q� s;

� K Er� sz �
¸

i Pt1;2u

pD i ErPi s � Er� i sErPi sz � Covp� i ; Pi qzq � ErR2p�D � �z q� s

� K Er� sz �
¸

i Pt1;2u

pD i ErPi s � Er� i sErPi sz � � Pi ;� i � � i � Pi zq � ErR2p�D � �z q� s:

This shows that expected cost function weakly decreases in� Pi ;� i for any z. In particular, consider
correlations � 1

Pi ;� i
and � 2

Pi ;� i
such that � 1

Pi ;� i
¡ � 2

Pi ;� i
for all i P t1; 2u. Then we have

C � p� 1
Pi ;� i

q � min
z¥ 0

Er rCpz; w; � 1
� 1 ;P1

; � 1
� 2 ;P2

qs

� Er rCpz� p� 1
� 1 ;P1

; � 1
� 2 ;P2

q; w; � 1
� 1 ;P1

; � 1
� 2 ;P2

qs

¥ Er rCpz� p� 1
� 1 ;P1

; � 1
� 2 ;P2

q; w; � 2
� 1 ;P1

; � 2
� 2 ;P2

qs

¥ min
z¥ 0

Er rCpz; w; � 2
� 1 ;P1

; � 2
� 2 ;P2

qs

� C � p� 2
� 1 ;P1

; � 2
� 2 ;P2

q:

(iii) Similarly, for negative (positive) � Pi ;� i for all i P t1; 2u, the expected cost function weakly
increases (decreases) with� Pi for eachz and thus by analogous reasoning to part (i), it follows that
the optimal cost increases (decreases) with� Pi .

Proof of Proposition 2.3. (i) If z� p� � � 0q � 0 then PRSpK; � � � 0q ¤ 0. Otherwise, PRSpK; � � �
0q � ErRT � 1p� ¤ 8qs � PAPpK; � � � 0q ¡ 0 and 0 ¤ y� pK; � � � 0q   8 , implying that
z� pK; � � � 0q ¡ 0. Therefore, we can write

PRSpK; � � � � q � ErR2� s � PAPpK; � � � � q

� ErR2sEr� s � � R2 � � R2 � � � K Er� s �
¸

i Pt1;2u

pEr� i sErPi s � � Pi ;� i � � i � Pi q

� PRSpK; � � � 0q � � R2 � � R2 � � �
¸

i Pt1;2u

� Pi ;� i � � i � Pi

¤ � R2 � � R2 � � �
¸

i Pt1;2u

� Pi ;� i � � i � Pi

¤ 0;

where the �rst and second inequalities follows from PRSpK; � � � 0q ¤ 0 and negative correlations,
respectively. Therefore,z� p� � � � q � 0 by Part (i) of Proposition 2.1.

(i) If z� p� � � 0q ¡ 0 then PRSpK; � � � 0q ¡ 0 and y� pK; � � � 0q � Er� s. Suppose
LRV p�D {Er� sq ¥ PRSpK; � � � � q. In this case, we have

PAPpK; � � � � q � ErR2� 1p� ¤ Er� sqs � PAPpK; � � � � q � ErR2� s � ErR2� 1p� ¡ Er� sqs

� � PRSpK; � � � � q � ErR2� 1p� ¡ Er� sqs
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¥ 0;

where the �rst equality employs the relationship ErR2� s � ErR2� 1p� ¤ Er� sqs � ErR2� 1p� ¡
Er� sqs, the second equality using the de�nition of PRSpK; � � � � q, and the inequality from
LRV p�D {Er� sq ¥ PRSpK; � � � � q which is equivalent to ErR2� 1p� ¡ Er� sqs ¥PRSpK; � � � � q.
Therefore, y� pK; � � � � q ¥ Er� s � y� pK; � � � 0q, which implies that z� p� � � � q ¤ z� p� � � 0q.
Using analogous reasoning it is easy to verify thatz� p� � � � q ¥ z� p� � � 0q if LRV p�D {Er� sq ¤
PRSpK; � � � � q.

Proof of Proposition 2.4. The di�erence C � p� � � � q � C � p� � � 0q

� Cpz� pK; � � � � q; � � � � q � C � p� � � 0q

¥ Cpz� pK; � � � � q; � � � � q � Cpz� pK; � � � � q; � � � 0q

� Cp�D {y� pK; � � � � q; � � � � q � Cp�D {y� pK; � � � � q; � � � 0q

� �
¸

i Pt1;2u

� Pi ;� i � � i � Pi

�D
y� pK; � � � � q

� E

�

R2

�
�D � �

�D
y� pK; � � � � q




�

�

� ErR2s
�

�D � Er� s
�D

y� pK; � � � � q




�

¥ �
¸

i Pt1;2u

� Pi ;� i � � i � Pi

�D
y� pK; � � � � q

�
�

ErR2s�D � ErR2� s
�D

y� pK; � � � � q




�

� ErR2s
�

�D � Er� s
�D

y� pK; � � � � q




�

� �
¸

i Pt1;2u

� Pi ;� i � � i � Pi

�D
y� pK; � � � � q

�
�

ErR2s�D � ErR2sEr� s
�D

y� pK; � � � � q

� � R2 � � R2 �
�D

y� pK; � � � � q




�
� ErR2s

�
�D � Er� s

�D
y� pK; � � � � q




�

¥ �
¸

i Pt1;2u

� Pi ;� i � � i � Pi

�D
y� pK; � � � � q

� � R2 � � R2 � 1py� pK; � � � � q ¥ Er� sq
�D

y� pK; � � � � q

¥ 0:

The �rst inequality follows from z� pK; � � � � qbeing a feasible solution toCpz; � � � 0q, the second
inequality is a consequence of applying Jensen's inequality, the third inequality follows from noticing
that ErR2sp�D � Er� s�D {y� pK; � � � � qq ¥ 0 when y� pK; � � � � q ¥ Er� s, and the last inequality
follows from the assumption on negative correlations.

Proof of Proposition 3.1. Consider the Bellman recursion associated with MDP (6):

VI � 1px I � 1; wI � 1q � cI � 1px I � 1; wI � 1q; @px I � 1; wI � 1q PXI � 1 � WI � 1;

Vi px i ; wi q � min
zi PZ i pai q

!
ci px i ; wi ; zi q � 
 aEi

�
Vi � 1 pf i px i ; zi q; wi � 1q

� )

@pi; x i ; wi q P t0; : : : ; I � 2u � Xi � Wi :
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At a given stagei P t0; : : : ; I � 2u, let Ci :� tp x i ; zi q|x i PXi ; zi PZ i pai qudenote the set of actions
and states at i , and also de�ne

Gi px i ; wi ; zi q:� ci px i ; wi ; zi q � 
 aEi
�
Vi � 1pf px i ; zi q; wi � 1q

�
:

To prove the convexity of MDP (6), we show �rst that GI � 2px I � 2; wI � 2; zI � 2q is jointly convex in
the state x I � 2 and action zI � 2, i.e. in set CI � 2, at stage I � 2. For a given wI � 2, we have:

VI � 2px I � 2; wI � 2q � min
zI � 2PZ I � 2paI � 2q

!
cI � 2px I � 2; wI � 2; zI � 2q � 
 aEI � 2

�
VI � 1pf px I � 2; zI � 2q; wI � 1q

� )
:

We know that VI � 2px I � 2; wI � 2q and henceEI � 2
�
VI � 1pf px I � 2; zI � 2q; wI � 1q

�
are �nite quantities

since by assumptionVI � 2px I � 2; wI � 2q is bounded. Moreover,cI � 2px I � 2; wI � 2; zI � 2q is piece-wise
linear and convex inx I � 2 from the de�nition in Equation (4). Similarly, the terminal value function
VI � 1px I � 1; wI � 1q � cI � 1px I � 1; wI � 1q is convex in x I � 1 for a given wI � 1 based on the de�nition in
Equation (5). Thus, the continuation function 
 aEI � 2rVI � 1pf px I � 2; zI � 2q; wI � 1qsis convex inx I � 2.
In addition, the set CI � 2 is convex since bothXI � 2 and Z I � 2paI � 2qare convex. As a consequence, for
a realization of wI � 2, the function GI � 2pzI � 2; x I � 2; wI � 2q is convex in the setCI � 2. The convexity
of VI � 2px I � 2; wI � 2q as a function of x I � 2 now follows from Proposition B-4 in Heyman and Sobel
(1982).

SupposeVi � 1p�; wi � 1q is convex in x i � 1. Following the same steps above, we can show that
Gi px i ; wi ; zi q is convex in Ci and consequentlyVi p�; wi q is convex in x i . Hence, the result follows
from mathematical induction.

Proof of Proposition 5.1. We �rst prove the feasibility of H i pzi pWi qqunder the two conditions
of Proposition 5.1.

1. SinceZ i pai q is convex and bounded, for anyWi |wi , the optimal decision zi pWi q at stage i
is �nite. Moreover, the average of the actions for the random variableWi given wi , Ei rzi pWi qs,
belongs to the setZ i pai q; thus, Ei rzi pWi qsis feasible.

2. H i pzi pWi qqis feasible since �zi is feasible and �nite based on the statement of the condition
and boundedness of the setZ i pai q.

Next, assumingH i satis�es one of these conditions, we establish its optimality when using ideal
dual penalties in math program (11). Speci�cally, we show that the decision at every sample path
Wi is optimal. Our proof relies on the stochastic dynamic programming (SDP) reformulation of
(11) at stage i , which is

V IR
I � 1px I � 1; WI � 1q � cIR

I � 1px I � 1; WI � 1q � qI � 1
�
x I � 1; WI � 1

�
; @x I � 1 PXI � 1; (14a)

V IR
j px j ; Wj q � min

zj PZ j paj q

!
cIR

j px j ; Wj ; zj q � qj px j ; Wj ; zj q

� 
 aV IR
j � 1

�
f j px j ; zj q

� )
; @j P I i ; @x j PXi : (14b)

At stage I � 1, it is true that for each x I � 1 PXI � 1:

V IR
I � 1px I � 1; WI � 1q � cIR

I � 1px I � 1; WI � 1q � qI � 1
�
x I � 1; WI � 1

�
� cI � 1px I � 1; wI � 1q � VI � 1px I � 1; wI � 1q:
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By backward induction, we assume thatV IR
j � 1px j � 1; Wj � 1q in equation (11) equalsVj � 1px j � 1; wj � 1q

in equation (6) and prove the equality for stage j . The following equation represents the stage-j
step of SDP (14) when the ideal dual penalty (12) is used:

V IR
j px j ; Wj q � min

zj PZ j paj q

!
cIR

j px j ; Wj ; zj q � 
 aVj � 1 pf j px j ; zj q; wj � 1q � 
 aEj
�
Vj � 1

�
f j px j ; zj q; wj � 1

��

� 
 aV IR
j � 1 pf j px j ; zj qq � cIR

j px j ; Wj ; zj q � cj px j ; wj ; zj q
)

; @x j PXj : (15a)

� min
zj PZ j paj q

!
cj px j ; wj ; zj q � 
 aEj

�
Vj � 1

�
f j px j ; zj q; wj � 1

�� )
; @x j PXj : (15b)

� Vj px j ; wj q; @x j PXj ; (15c)

where (15b) follows from the induction hypothesis, and (15c) from the de�nition of the SDP associ-
ated with MDP (6). The relation, V IR

j px j ; Wj q � Vj px j ; wj q, thus holds at the generic stagej P I i

for the principle of mathematical induction. The optimality of the action for every Wi is immedi-
ate from this equality. Since zi pWi q is equal to the optimal decision for any sample path, a feasible
decision measureH i that satis�es conditions 1 and 2 leads to an optimal solution to MDP (6).

B. Non-convexity of the MDP value function
We show that the value function Vi p�; wi q of MDP (6) is non-convex in the endogenous statex i by
using a simple counter-example with two stages (i.e., 0 and 1) and no intermediate inner-stages. A
CPPA can be entered at stage 0 with delivery during stage 1, and an RPPT of� � 0:8 has to be
ful�lled during stage 1. Any RPPT shortfall at the end of stage 1 can be procured via short-term
RECs at price R2. We assume that the contract is available at stage 0 (i.e.,a0 � 1), the renewable
power supply during the contract delivery period is known and equal to� 1 � 1, and that minimum
and maximum procurement quantities arezmin � 6 MW and zmax � 10 MW, respectively. Thus, a
feasible actionz0 belongs to the action setZ0pa0q � t 0uYr6; 10s € R� . Moreover, we assume there
is no discounting, demand equalsD0 � D1 � 10 MWh, power and REC prices have starting values
P0 � R0 � 10 USD/MWh and are martingales (i.e., Ei rPj s � Pi and Ei rRj s � Ri for j ¥ i ), and
the strike price K 0 is equal to 11 USD/MWh. Proceeding backward, the terminal value function
(stage 1) is convex in the statex1 as it is equal to

V1px1; w1q � P1D1 � E1rR2sp�D 1 � � 1x1q�

� P1D1 � R1p�D 1 � x1q� ;

which has the slope� R1 for x1 P r0; �D 1s, and is a constant (i.e., zero slope) equal toP1D1 if
x1 ¥ �D 1. Instead, the stage 0 value function is given by

V0px0; w0q � min
z0PZ 0pa0q

!
E0rpK 0 � P1qsz0 � P0D0 � E0

�
P1D1 � R1p�D 1 � x0 � z0q�

� )

� min
z0PZ 0pa0q

 
pK 0 � P0qz0 � P0D0 � P0D1 � R0p�D 1 � x0 � z0q�

(
;
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which is non-convex in x0 as illustrated in Figure 6. In particular, Figure 6(a) displays the value
function V1p�; w1q as a function of x1 given P1 � R1 � 10, and Figure 6(b) showsV0p�; w0q and z�

0

as functions of x0 for w0, which is known. The value function V0p�; w0q takes a constant value in
the interval that is roughly r2; 7:5s. In this interval, it is indeed optimal to enter into a CPPA of
sizezmin � 6, even if this decision causes over-procurement, because the CPPA is cheaper than the
expected short-term option. Instead, whenx0 ¡ 7:5, the optimal action jumps from z�

0 � zmin � 6
to z�

0 � 0, i.e., it becomes optimal to rely only on the short-term option.

Figure 6: Stage 1 and stage 0 MDP value functions.

(a) V1p�; w1q with P1 � R1 � 10. (b) V0p�; w0q and z�
0 .

C. Finiteness of the MDP value function
In this section we introduce two sets of su�cient conditions under which the MDP value function (6)
is �nite, which is one of the assumptions needed in Proposition 3.1 to prove convexity of the value
function. Speci�cally, the �rst set of conditions refers to the power and REC price processes having
bounded support and is discussed in Proposition C.1. The second set of conditions is presented in
Proposition C.2 and is less strict, only requiring expectations of price processes to be �nite.

Proposition C.1. If zmax
m   8 for each m P M and prices Pi;t and Ri have bounded support,

respectively, for all pi; t q PI � T and for all i P I Y t I u, then |Vi p�; �q|   8 for each i P I .

Proof of Proposition C.1. For each stage and intervalpi; t q PI � T , we know that the power
supply uncertainty have bounded support � i;t P r0; H s, and that the same is true for Pi;t and Ri

by assumption. Moreover, sincezmax
m   8 for each m P M , we have that Z i pai q is a bounded

set at each stagei P I . As a consequence, there existsN P R� such that |ci px i ; wi ; zi q| ¤ N
for each pi; x i ; wi ; zi q P t0; : : : ; I � 2u � Xi � Wi � Z i pai q and |cI � 1px I � 1; wI � 1q| ¤ N for each
px I � 1; wI � 1q PXI � 1 � WI � 1. It follows immediately that |Vi p�; �q| ¤ N pI � i � 2q ¤ N � I   8 for
eachi P I .

Proposition C.2. If zmax
m   8 for each m PM and price expectations are �nite, i.e., Ei r|Pj;t |s  

8 and Ei rRj � 1s   8 for each pi; j; t q PI � t i; : : : ; I � 1u � T , then |Vi p�; �q|   8 for i P I .
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Proof of Proposition C.2. We start by showing that Vi px i ; wi q   8 for i P I . From the de�ni-
tion of MDP (6) at stage i , we know that for each policy � i P � i , we have

Vi px i ; wi q ¤ Ei

�
¸

j PI i


 j � i
a cj px � i

j ; wj ; Z � i
j px � i

j ; wj qq � 
 I � 1� i
a cI � 1px � i

I � 1; wI � 1q

�

:

By choosing � i to be the policy that only procures from the short-term market (i.e., CPPA pro-
curement decisionszi;m are always zero), we obtain the following inequalities:

Vi px i ; wi q ¤ Ei

�
I � 1¸

j � i


 j � i
a Ej

� T � 1¸

t � 0


 t Pj;t D j;t � 
 a �R j � 1D j 1t j PI Su

� �

(16a)

�
I � 1¸

j � i


 j � i
a

�
T � 1¸

t � 0


 t D j;t Ei
�
Ej rPj;t s

�
� 
 a �D j 1t j PI SuEi

�
Ej rRj � 1s

�
�

; (16b)

where (16a) is obtained by accounting for the costs of short-term procurement and (16b) follows
by linearity of the expectation operator. Due to the law of iterated expectations, it holds that
Ei rEj rPj;t ss � Ei rPj;t s ¤ Ei r|Pj;t |s and Ei rEj rRj � 1ss � Ei rRj � 1s. The value function satisfying
Vi px i ; wi q   8 thus follows by our assumption on �nite price expectations.

Next we show that Vi px i ; wi q ¡ �8 . The cost function cj px j ; wj ; zj q de�ned in (4) contains
terms of the form � Pj � l;t � j � l;t zj;m which are generally negative (unless power prices are negative),
while the remaining cost components are positive. Thus, for eachj P I i , it holds that:

cj px j ; wj ; zj q ¥ �

�
�
�
�
�
Ej

�
¸

mPM

L j;m¸

l � 1

T � 1¸

t � 0


 a 
 t Pj � l;t � j � l;t zj;m

� �
�
�
�
�

(17a)

� �

�
�
�
�
�

¸

mPM

L j;m¸

l � 1

T � 1¸

t � 0


 a 
 t � j � l;t zj;m Ej rPj � l;t s

�
�
�
�
�

(17b)

¥ �
¸

mPM

L j;m¸

l � 1

T � 1¸

t � 0


 a 
 t � j � l;t zj;m Ej r|Pj � l;t |s (17c)

¥ �
¸

mPM

L j;m¸

l � 1

T � 1¸

t � 0


 a 
 t � j � l;t N Ej r|Pj � l;t |s; (17d)

where (17b) follows by linearity of the expectation operator, (17c) holds by bringing the absolute
values inside the summations and further inside the expectation operator, and (17d) follows by the
assumption on bounded action space by choosingN :� maxt zmax

m : m P M u   8 . Therefore, at a
given stagei , it holds that

Vi px i ; wi q ¥ Ei

�
¸

j PI i


 j � i
a

�
�

¸

mPM

L j;m¸

l � 1

T � 1¸

t � 0


 a 
 t � j � l;t N Ej r|Pj � l;t |s
� �

(18)

� �
¸

j PI i


 j � i
a

¸

mPM

L j;m¸

l � 1

T � 1¸

t � 0


 a 
 t � j � l;t N Ei rEj r|Pj � l;t |ss; (19)
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where (19) follows by linearity of the expectation operator. SinceEi rEj r|Pj;t |ss � Ei r|Pj;t |s due
to the law of iterated expectations, Vi px i ; wi q ¡ �8 follows from our assumption on �nite price
expectations. Therefore, it holds that |Vi p�; �q|   8 .

D. Convex and 
uid PFRH approximation
In this section, we show that a convex and 
uid approximation of the PFRH math program does not
provide a lower (dual) bound to the optimal MDP cost, although this is the case with deterministic
approximations in other applications (Gallego and Van Ryzin 1997), which further bolsters the
need for information relaxations to de�ne lower bounds in our procurement application. Below
we: (i) introduce a \convex-
uid" variant of the PFRH decision model, and (ii) construct a simple
counter-example where such a model does not provide a lower bound.

Recall that the stage-i PFRH decision model (9) relies on forecasts of the availability factors
de�ned by �ai;j;m � 1, if Ei raj;m s ¡ 0:5, and �ai;j;m � 0 otherwise, for i ¤ j and m P M . These
forecasts de�ne the feasible action setZ j p�ai;j q used in PFRH. To de�ne the convex-
uid PFRH
approximation, we �rst convexify the action set Z j p�ai;j qby dropping the minimum CPPA purchase
quantity zmin

m for each stagej ¥ i and contract m P M . This operation results in a relaxation of
the original PFRH model (9) constraints. Second, we consider a 
uid approximation with respect
to the contract availability factors ai;j , which amounts to allowing decisionszj to vary in the set
Yj pai;j q de�ned by

Yj pai;j q:�
 
zj PR|M |

�

�
� zj;m P

�
0; Ei raj;m s �zmax

m

�
; @m PM

(
:

Finally, notice that the objective function (9a) of PFRH is inconsistent with the MDP objective
function as it replaces individual uncertain variables with their expected value whereas the MDP
uses the expected cost (4). Therefore, we use the latter expected cost as the objective. The resulting
convex-
uid PFRH approximation de�ned at stage i thus solves:

V̂i px i ; wi q � min
yj ;zj

¸

j PI i


 j � i
a cj

�
yj ; wj ; zj

�
� 
 I � 1� i

a cI � 1
�
yI � 1; wI � 1

�
(20a)

s.t.: yi � x i ; (20b)
yj � 1 � f j pyj ; zj q; @j P I i ; (20c)
yj PXj ; @j P I i Y t I � 1u; (20d)
zj PYj pai;j q; @j P I i : (20e)

The decision variables in the math program (20) coincide with those from the original PFRH model
(9), and constraints (20b){(20d) are the same too. However, model (20) di�ers from (9) since the
former model uses a modi�ed objective function (20a) and the convex-
uid action set (20e).

Despite the convex and 
uid approximation introduced in (20), solving this model at stage i
does not provide in general a lower bound on the optimal MDP value functionVi px i ; wi q. We
illustrate this by constructing a counter-example based on a three-stage model with no inner-stages
and with two CPPA procurement options: a \long-term" CPPA which can be signed at stage 0
and delivers power at stages 1 and 2, and a \short-term" CPPA that can be signed at stage 1 and
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delivers power at stage 2. The initial CPPA inventory is empty, i.e., x0 � 0. We consider a demand
of 10 MWh at each stage, an RPPT of 80% in years 1 and 2, and for simplicity assume a stage is
made of a single hour. We also consider deterministic and constant power and REC prices equal
to 20 and 10 USD/MWh, respectively, and a deterministic strike price of 22 USD/MWh at each
stage. There are two equally-likely supply scenarios for stage 1:� 1 � 0:3 (low supply) and � 1 � 0:7
(high supply) and no further branching after stage 1, which means� 2|� 1 � � 1. The action space
is convex and equal topz0; z1q P r0; 50s2 € R2 (unit: MW 2) and both CPPAs are always available,
i.e., all availability factors ai;m are equal to 1.

Solving the convex-
uid approximation (20) in this setting results in an objective value of
V̂0px0; w0q � 453:3 USD and optimal decisions ^z0 � 26:67 MW and ẑ1 � 0:00 MW. Solving the MDP
to optimality (which is easy in this simpli�ed setting) gives instead the value V0px0; w0q � 450:3
USD. Since V0px0; w0q   V̂0px0; w0q, then V̂0px0; w0q is not a lower bound on the optimal MDP
cost. The optimal MDP decisions arez�

0 � 11:43 MW for stage 0 andz�
1 � 15:24 and z�

1 � 0:00
for stage 1, respectively, for the low and high supply scenario. In this example, the MDP optimal
solution indicates that it is preferable to enter a long-term CPPA with smaller capacity compared
to the decisions from (20), observe the supply scenario at stage 1, and then decide whether or not
to complement the on-hand CPPA with a second shorter CPPA. If supply is low, signing a second
CPPA is economical but if supply is high, it is optimal to rely on the CPPA already signed and
unbundled RECs. Intuitively, the 
exibility to adapt decisions at a stage i to realizations of the
uncertainty at that stage allows the optimal MDP policy to better optimize costs compared to the
decisions in (20).

E. CPPA strike price
Consider a renewable power generator that begins installation at periodpi; t � 0q; i P I . We as-
sume the generator needs one year to be operational, that is, production starts atpi � 1; t � 0q. The
generator has an expected lifetime ofL P years and incurs a cost ofC INV

i capturing the one-time in-
stallation and estimated maintenance costs associated with 1 MW of production capacity as well as
any applicable investment tax credit1. We assume that there is a production tax credit (PTC)2 of
Gi USD per MWh for the next L G

i years and that future cash 
ows are discounted at each interval by
rate r P p0; 1s, which can be chosen to also account for the generator's target return on investment.
The associated annual discount rate isra � r T P p0; 1s. The production � i;t P r0; H s is stochas-
tic at each year l over the generator lifetime and each intervalt P T . We begin by computing the
�xed strike price K̂ i of a CPPA that spans the lifetime of the generator using the net present value
(NPV) of the contract's cash 
ows. This approach is consistent with the System Advisor Model3

1An investment tax credit represents a one-time federal tax deduction equal to a pre-speci�ed percentage of the
installation cost of a renewable power project.

2A production tax credit provides a per-megawatt-hour tax credit for power generation for a �xed number of
future years from the installation of a renewable power project.

3SAM is an open source performance and �nancial tool designed by NREL to access the feasibility of renewable
energy projects (e.g., wind, solar, or biomass).
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(SAM; NREL 2017). The NPV of 1 MW of installed capacity contracted via such a CPPA is

NPV i �
L P¸

l � 1

T � 1¸

t � 0

r l
ar t Ei r� i � l;t sK̂ i �

L G
i¸

l � 1

T � 1¸

t � 0

r l
ar t Ei r� i � l;t sGi � C INV

i :

Setting NPV i to zero, we obtain the following strike price formula:

K̂ i �
1

° L P

l � 1
° T � 1

t � 0 r l
ar t Ei r� i � l;t s

�

� C INV
i �

L G
i¸

l � 1

T � 1¸

t � 0

r l
ar t Ei r� i � l;t sGi

�

� : (21)

Expression (21) captures the dependence of the strike price on generator vintage (i.e., the year that
production begins) by treating the production tax credit Gi , investment cost C INV

i , and capacity
factors � i;t as time-dependent quantities. Currently, renewable power generators that started con-
struction before 2020 are eligible for productions tax credits for 10 years from the date the facility
starts production (DOE 2016) but this status-quo is likely to change with government regulation.
Investment costs and capacity factors typically decrease and increase, respectively, over time due
to improvements in technology. The capacity factor, in addition, exhibits signi�cant inter-region
variation. For instance, in the case of wind power, capacity factors in the \internal" regions of the
United States are signi�cantly higher than those of coastal regions (Wiser and Bolinger 2017).

Next, we describe how the strike priceK̂ i in (21) can be modi�ed to account for shorter contract
lengths and the expected power price over the tenure of the contract. Consider a CPPA with a
duration of m years that is less than the lifetime L P of the generator. Shorter contracts result in
additional cash 
ow risk over the period of the generator's life time for which they do not generate
revenue (ACORE 2016). We thus de�ne a risk-adjusted strike priceK̂ i;m :� K̂ i �K �

m , whereK �
m ¥ 1

is a risk factor that in
ates the strike price if m   L P and equals 1 otherwise, that is,K �
m � 1 when

the contract spans the life of the generator. The CPPA strike price is not solely determined by
NPV but is also tied to the long-term expected power price because higher expected (future) power
prices give the generator leverage to increase the CPPA price since the company's outside option is
expensive (Wiser and Bolinger 2017). To account for this e�ect, we lower bound the CPPA strike
price by the discounted average power price over the tenure of the contract, which is

K i;m �
1

° m
l� 1

° T � 1
t � 0 
 l

a 
 t

m̧

l � 1

T � 1¸

t � 0


 l
a 
 t Ei rPi � l;t s:

Our �nal strike price expression is K i;m :� max
 
K̂ i;m ; K i;m

(
.

The parameters de�ning the strike price model of our baseline CPPA instance are reported in
Table 6. Following NREL (2010), we use a functional form forC INV

i that decreases over time by
a �xed percentage � ; speci�cally, it evolves according to a learning modelC INV

i � C INV
0 p1 � � qi .

We chose the initial cost (C INV
0 ) based on 2015{2016 wind projects in the U.S. (EIA 2018) and the

learning rate � � 1% based on the range of values in NREL (2010). Wind turbines are usually
designed to operate for 20{25 years but many remain operational for a longer period of time (Ziegler
et al. 2018), thus we select the lifetime (L P) to be 30 years also to account for improving technology.
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Table 6: Strike price model parameters in the baseline CPPA instance.

Name Value Unit Name Value Unit

L P 30 years 
 a 0.97 -
L G

i 10 years ra 0.93 -
Gi 23 USD/MWh K �

5 1.2 -
C INV

0 1:7 � 106 USD/MW K �
25 1.1 -

The duration of the production tax credit ( L G
i ) and its amount (G i ) are based on United States

policy in 2016 (DOE 2016). Moreover, we assume the tax credit expires in 5 years, i.e., it is only
granted to renewable energy facilities commencing construction at stagesi   5. The discount
factors 
 a and ra are set to 0.97 and 0.93, respectively, as explained inx6.1. We use a maximum
risk factor K 5

� � 1:2, i.e. a 20% premium for the 5-year CPPAs, which decreases linearly asm is
increased until K 25

� � 1:1.

F. Model of market dynamics and calibration
In this section we present in detail the stochastic processes used to describe the evolution of the
power price, REC price, and power supply, and discuss their calibration using market data.

The evolution of electricity prices has been studied using various processes that capture features
such as seasonality (Lucia and Schwartz 2002), mean-reversion and long-term trends (Schwartz and
Smith 2000 and references therein), and jumps (Weron 2014, 2007, Cartea and Figueroa 2005, Seifert
and Uhrig-Homburg 2007, Escribano et al. 2011). To obtain a power price model that captures the
main features of short-term electricity prices, we construct a mean-reverting stochastic process with
jumps and seasonality. We use a continuous-time process for the power pricet Ps; s PR� u, and then
consider in our decision model discrete-time valuest Pi;t ; pi; t q PI � T u, which are the values taken
by this process at the beginning of montht of year i (we do analogously for the stochastic processes
of REC price and power supply). Following Weron (2014), the power price model is written as:

lnpPsq � � s � gpsq; (22a)

d� s � p � P � KP � sqds � � P dWs � J p� J ; � J qd� p� q; (22b)

gpsq � � 0 �
12¸

k� 1

� k P̂ k
s : (22c)

Equation (22a) describes the log power price process as the sum of a stochastic component� s and
a deterministic component gpsq. The stochastic component evolves according to (22b), whereKP

is the speed of mean reversion,� P models the drift, � P is the volatility, and Wt is a standard
Brownian motion. We model spikes in monthly prices by a jump di�usion process in which the
jump size follows a normal distribution J p� J ; � J q and the jump frequency a Poisson distribution
� p� q (Cartea and Figueroa 2005). The deterministic function gpsq in (22c) models the monthly
price seasonality by using a constant� k for each month k, and binary values P̂ k

s equal to one if
time s falls in month k and zero otherwise.

We calibrated the parameters of model (22) using historical monthly power price data from the
Pennsylvania New Jersey Maryland Interconnection LLC (PJM) market during the period January
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2010{August 2017. Analyzing power prices, we found that the jump frequency and intensity are
small when considering monthly prices. We thus tested the number of jumps in the monthly
power prices using the algorithm presented in Weron (2014, p. 1047), and found the jump di�usion
parameters to be insigni�cant. Therefore, we removed jumps from the model and only focused
on a mean-reverting process with seasonality. We �rst estimated the seasonality functiongpsq
directly from the data using linear regression, resulting in the coe�cients t � k ; k � 0 : : : ; 12u �
t 3.519; 0.163; 0.163; 0.078; � 0.026; 0.003; 0.039; 0.174; 0.013; 0.009; � 0.037; � 0.038; 0.0u. Then, we
calibrated the mean reverting coe�cients using maximum likelihood estimation. The resulting
estimates wereKP � 0:295, � P � 0:178 (both with a p-value below 0.001), and� P � 0. We set
P0 � 31:5 USD/MWh which is the average power price observed in 2017. When plotting the sample
paths using the calibrated parameters, we noticed that the speed of mean reversion was too strong
and so we decreased it fromKP � 0:295 to KP � 0:04 for our numerical study. We illustrate this
e�ect in Figures 7(a) and 7(b), which display 300 power price sample paths generated in Monte
Carlo simulation over 20 years usingKP � 0:295 andKP � 0:04, respectively. Finally, to construct
the instance set S3, we varied the calibrated value for� P from 0 to � 0:0105,� 0:0178, and� 0:0268
to obtain long-term mean power prices equal to 30, 25, and 20 USD/MWh, respectively.

Figure 7: 300 Monte Carlo sample paths of power prices for di�erent mean-reversion speeds.

(a) Mean-reversion KP � 0:295 (b) Mean-reversion KP � 0:04

The dynamics of REC prices has been less studied in the literature. Under renewable portfolio
standards, which is one of the prominent support programs for renewable energy sources, the regu-
lator requires producers, distributors, and consumers to purchase RECs. To forecast the evolution
of REC prices, following Zeng et al. (2015), we use a Jacobi di�usion process to generate values
between zero and one, and obtain REC prices as the product between the output of this stochastic
process and an upper bound threshold. The stochastic process is de�ned by

drs � p � R � KR r sqds � � R

a
r sp1 � r sqdWs; (23a)

Rs � r s � R: (23b)

In equation (23a), � R and KR are the mean-reverting parameters,� R is the volatility, and Ws is a
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standard Brownian motion. The process (23a) generates valuesr s P r0; 1s, which are then scaled in
the second equation (23b) by the threshold valueR to ensureRs belongs to the interval r0; Rs.

We chose an upper bound ofR � 60 USD/MWh that is representative of wind RECs (EPA
2018). We then estimated the parameters of the REC price model using monthly data for New
Jersey REC prices between May 2015 and December 2017, and an adaptation of the maximum
likelihood estimation method for Jacobi di�usion processes from Gouri�eroux and Val�ery (2004).
We obtained the parameter estimatesKR � 0:448, � R � 0:066, and � R � 0:109 (p-values were
below 0.001). We set the initial valueR0 � 10 USD/MWh, which is representative of the average
REC price in our time series. To construct the instance set S4, we changed the calibrated value
for � R from 0:066 to 0:0343, 0:105, and 0:141 to obtain long-term mean REC prices equal to 5, 15,
and 20 USD/MWh, respectively.

We model monthly power supply using a mean reverting process with seasonality (Loukatou
et al. 2018), which is similar to the power price model (22) but without jumps, as shown below.

lnp� sq � � s � gpsq; (24a)

d� s � p � � � K � � sqds � � � dWs; (24b)

gpsq � � 0 �
12¸

k� 1

� k �̂ k
s ; (24c)

� s � H � � s: (24d)

The stochastic process de�ned in (24a){(24c) models a capacity factor �s P r0; 1s. In (24d), the
output from this process is then multiplied by the number of hours H in an inner-stage to obtain
a power supply value in � s P r0; H s (hours) consistent with our MDP (6).

We calibrated model (24) using historical capacity factors in the United States from January
2011 to June 2019 (EIA 2019). We proceeded essentially using the same steps we used to calibrate
the power price model (22). Speci�cally, we �rst estimated the seasonality function gpsq from
the data with a linear regression, which resulted in coe�cients t � k ; k � 0 : : : ; 12u � t� 1.055;
0.014; 0.064; 0.089; 0.162; 0.041; � 0.030; � 0.289; � 0.369; � 0.254; � 0.035; 0.067; 0u. We then used
maximum likelihood to estimate the remaining coe�cients of the model, obtaining the estimates
K � � 0:814, � � � 0:0919 (both with p-value lower than 0.001), and � � � 0. We set � 0 � 0:36,
which was the average capacity factor observed in our time series.

The calibrated models allow us to generate sample paths of the uncertainty in Monte Carlo
simulation, which are needed to estimate the value of the procurement policies and dual bounds.

G. Additional numerical results
In Figures 8{10 we compare the behavior of the di�erent procurement policies on the extended
instance set S1{S6. Speci�cally, we consider the PIRH dual bound and the following policies:
Short-term, FBH 20, PFRH, and PIRH with median decision measure (henceforth PIRH).

In Figure 8(a), which refers to instance set S1, PIRH performs best on all the S1 instances with
average optimality gap of 1.4%, followed by PFRH with average optimality gap of 3.4%. The perfor-
mance of block and short-term heuristics is largely inferior to reoptimization methods (the average
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Figure 8: Procurement costs for the S1 and S2 instance sets.

optimality gap is respectively 6.2% and 9.4%). Figure 8(b) refers to instance set S2. The relative
ranking of methods in these instances is the same as in set S1, with PIRH achieving the smallest
optimality gaps across instances (1.90% on average). However, contract availability impacts the
block policy more heavily than PFRH/PIRH. In fact, the FBH 20 procurement cost increases by
more than 6% when decreasing contract availability from� 30% to � 20% relative to the baseline,
which corresponds to more than 36 mln. USD. In contrast, the maximum cost increase is less than
3% (16 mln. USD) under PFRH/PIRH that use dynamic portfolios containing multiple CPPAs.

Results for the S3 and S4 instance sets are displayed in Figures 9(a) and 9(b), respectively. The
relative performance of methods on these instance sets is largely consistent with our prior obser-
vations on the S1{S2 instances. Interestingly, the shortsighted objective function of block policies
(see the FBH model (7)) results in FBH20 entering into some CPPAs even under low power prices
as shown in left part of Figure 9(a), leading to larger procurement costs than the short-term policy.

Figure 9: Procurement costs for the S3 and S4 instance sets.

Finally, results for the S5 and S6 instance sets are displayed in Figures 10(a) and 10(b), respec-
tively. The results in Figure 10(a) show that the procurement cost increases under all methods
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when the generator discount factor decreases (i.e., return on investment increases), except for the
short-term policy. Similar to instances S3, Figure 10(a) shows that FBH20 enters into CPPAs even
when the short-term policy is near optimal. The impact of correlation on procurement cost is visi-
ble in Figure 10(b). Varying �� from � 1 to � 1 results in an cost increase of 2{3% across methods.

Figure 10: Procurement costs for the S5 and S6 instance sets.
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