
ETH Library

Learning quadrupedal locomotion
over challenging terrain

Journal Article

Author(s):
Lee, Joonho; Hwangbo, Jemin; Wellhausen, Lorenz ; Koltun, Vladlen; Hutter, Marco

Publication date:
2020-10-28

Permanent link:
https://doi.org/10.3929/ethz-b-000448343

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Science Robotics 5(47), https://doi.org/10.1126/scirobotics.abc5986

Funding acknowledgement:
852044 - Learning Mobility for Real Legged Robots (EC)
780883 - subTerranean Haptic INvestiGator (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-5148-754X
https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-b-000448343
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1126/scirobotics.abc5986
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Research Article ETH Zurich and Intel 1

Learning Quadrupedal Locomotion over Challenging Terrain
JOONHO LEE1,*, JEMIN HWANGBO1,2,†, LORENZ WELLHAUSEN1, VLADLEN KOLTUN3, AND MARCO HUTTER1

1Robotic Systems Lab, ETH Zurich, Zurich, Switzerland
2Robotics and Artificial Intelligence Lab, KAIST, Daejeon, Korea
3Intelligent Systems Lab, Intel, Santa Clara, CA, USA
†Substantial part of the work was carried out during his stay at 1
*Corresponding author: jolee@ethz.ch

This is the accepted version of Science Robotics Vol. 5, eabc5986 (2020)

Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain
out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains
of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that
explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity
while falling short of the generality and robustness of animal locomotion. Here we present a radically robust con-
troller for legged locomotion in challenging natural environments. We present a novel solution to incorporating
proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from sim-
ulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based
on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two gen-
erations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior
published work in legged locomotion. The controller retains its robustness under conditions that have never been
encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and
overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers
for robotics and indicates that radical robustness in natural environments can be achieved by training in much
simpler domains.

1. INTRODUCTION

Legged locomotion can dramatically expand the reach of robotics.
Much of the dry landmass on Earth remains impassible to wheeled and
tracked machines, the stability of which can be severely compromised
on challenging terrain. Quadrupedal animals, on the other hand, can
access some of the most remote parts of our planet. They can choose
safe footholds within their kinematic reach and rapidly change their
kinematic state in response to the environment. Legged robots have the
potential to traverse any terrain that their animal counterparts can.

To date, no published work has demonstrated dynamic locomotion
in diverse, challenging natural environments as shown in Fig. 1. These
environments have highly irregular profiles, deformable terrain, slip-
pery surfaces, and overground obstructions. Under such conditions,
existing published controllers manifest frequent foot slippage, loss of
balance, and ultimately catastrophic failure. The challenge is exacer-
bated by the inaccessibility of veridical information about the physical
properties of the terrain. Exteroceptive sensors such as cameras and
LiDAR cannot reliably measure physical characteristics such as friction
and compliance, are impeded by obstructions such as vegetation, snow,
and water, and may not have the coverage and temporal resolution to
capture changes induced by the robot itself, such as the crumbling of
loose ground under the robot’s feet. Under these conditions, the robot
must rely crucially on proprioception – the sensing of its own bodily
configuration at high temporal resolution. In response to unforeseen

events such as unexpected ground contact, terrain deformation, and
foot slippage, the controller must rapidly produce whole-body trajecto-
ries subject to multiple objectives: balancing, avoiding self-collision,
counteracting external disturbances, and locomotion. While animals
instinctively solve this complex control problem, it is an open challenge
in robotics.

Conventional approaches to legged locomotion on uneven terrain
have yielded increasingly complex control architectures. Many rely
on elaborate state machines that coordinate the execution of motion
primitives and reflex controllers [1–5]. To trigger transitions between
states or the execution of a reflex, many systems explicitly estimate
states such as ground contact and slippage [6–8]. Such estimation
is commonly based on empirically tuned thresholds and can become
erratic in the presence of unmodeled factors such as mud, snow, or
vegetation. Other systems employ contact sensors at the feet, which
can become unreliable in field conditions [9–11]. Overall, conventional
systems for legged locomotion on rough terrain escalate in complexity
as more scenarios are taken into account, have become extremely
laborious to develop and maintain, and remain vulnerable to corner
cases.

Model-free reinforcement learning (RL) has recently emerged as
an alternative approach in the development of legged locomotion
skills [12–14]. The idea of RL is to tune a controller to optimize a
given reward function. The optimization is performed on data acquired
by executing the controller itself, which improves with experience.

Research Article ETH Zurich and Intel 2

Fig. 1. Deployment of the presented locomotion controller in a variety of challenging environments.

Research Article ETH Zurich and Intel 3

RL has been used to simplify the design of locomotion controllers,
automate parts of the design process, and learn behaviors that could
not be engineered with prior approaches [12–15].

However, application of RL to legged locomotion has largely been
confined to laboratory environments and conditions. Our prior work
demonstrated end-to-end learning of locomotion and recovery behav-
iors – but only on flat ground, in the lab [12]. Other work also devel-
oped RL techniques for legged locomotion, but likewise focused largely
on flat or moderately textured surfaces in laboratory settings [13, 14, 16–
19].

Here we present a radically robust controller for blind quadrupedal
locomotion on challenging terrain. The controller uses only proprio-
ceptive measurements from joint encoders and an inertial measurement
unit (IMU), which are the most durable and reliable sensors on legged
machines. The operation of the controller is shown in Fig. 1 and
Movie 1. The controller was used to drive two generations of ANYmal
quadrupeds [20] in a variety of conditions that are beyond the reach of
prior published work in legged robotics. The controller reliably trots
through mud, sand, rubble, thick vegetation, snow, running water, and
a variety of other off-road terrain. The same controller was also used
in our entry in the DARPA Subterranean Challenge Urban Circuit. In
all deployments, robots of the same generation were driven by exactly
the same controller under all conditions. No tuning was required to
adapt to different environments.

Like a number of prior applications of model-free RL to legged
locomotion, we train the controller in simulation [12, 14, 16]. Prior
efforts have established a number of practices for successful transfer of
legged locomotion controllers from simulation to physical machines.
One is realistic modeling of the physical system, including the ac-
tuators [12]. Another is randomization of physical parameters that
vary between simulation and reality, such that the controller becomes
robust to a range of conditions that cover those that arise in physical
deployment, without the necessity to precisely model these conditions
a priori [21].

We use these ideas as well, but have found that they were not suf-
ficient to achieve robust locomotion on rough terrain. We therefore
introduce and validate a number of additional ingredients that are cru-
cial to realizing the presented skills. The first is a different policy
architecture. Rather than using a multi-layer perceptron (MLP) that
operates on a snapshot of the robot’s current state, as was common
in prior work, we use a sequence model, specifically a temporal con-
volutional network (TCN) [22] that produces actuation based on an
extended history of proprioceptive states. We do not employ explicit
contact and slip estimation modules, which are known to be brittle in
challenging situations; rather, the TCN learns to implicitly reason about
contact and slippage events from proprioceptive history as needed.

The second important idea that enables the demonstrated results is
privileged learning [23]. We have found that training a rough-terrain
locomotion policy directly via reinforcement learning was not success-
ful: the supervisory signal was sparse and the presented network failed
to learn locomotion within reasonable time budgets. Instead, we de-
compose the training process into two stages. First, we train a teacher
policy that has access to privileged information, namely ground-truth
knowledge of the terrain and the robot’s contact with it. The privileged
information enables the policy to quickly achieve high performance.
We then use this privileged teacher to guide the learning of a purely
proprioceptive student controller that only uses sensors that are avail-
able on the real robot. This privileged learning protocol is enabled by
simulation, but the resulting proprioceptive policy is not confined to
simulation and is deployed on physical machines.

The third idea that has proven important in achieving the presented
levels of robustness is an automated curriculum that synthesizes terrains
adaptively, based on the controller’s performance at different stages

E Forest (mud)D Forest (wet moss) F Forest (vegetation)

A Snow-covered slope B Pile of rocks C Stream

G DARPA Subterranean Challenge Urban Circuit (stair descent)

Fig. 2. A number of specific deployments. (A-F) Zero-shot gener-
alization to slippery and deforming terrain. (G) Steep descent during
the DARPA Subterranean Challenge. The stair rise is 18 cm and the
slope is ∼ 45◦.

of the training process. In essence, terrains are synthesized such that
the controller is capable of traversing them while becoming more
robust. We evaluate the traversability of parameterized terrains and
use particle filtering to maintain a distribution of terrain parameters of
medium difficulty [24, 25] that adapt as the neural network learns. The
training conditions grow increasingly more challenging, yielding an
omnidirectional controller that combines agility with unprecedented
resilience.

The result is a legged locomotion controller that is far more robust
than any counterparts in existing literature. Remarkably, the controller
is consistently effective in zero-shot generalization settings. That
is, it remains robust when tested in conditions that have never been
encountered during training. Our training in simulation only uses rigid
terrains and a small set of procedurally generated terrain profiles, such
as hills and steps. Yet when deployed on physical quadrupeds, the
controller successfully handles deformable terrain (mud, moss, snow),
dynamic footholds (stepping on a rolling board in a cluttered indoor
environment, or debris in the field), and overground impediments such
as thick vegetation, rubble, and gushing water. Our methodology and
results open new frontiers for legged robotics and suggest that the
extraordinary complexity of the physical world can be tamed without
brittle and painstaking modeling or dangerous and expensive trial-and-
error in field conditions.

2. RESULTS

Movie 1 summarizes the results of the presented work. We have
deployed the trained locomotion controller on two generations of ANY-
mal robots: ANYmal-B (Fig. 2D-G) and ANYmal-C (Fig. 2A-C and
Fig. 3). The robots have different kinematics, inertia, and actuators.

Natural environments
The presented controller has been deployed in diverse natural environ-
ments, as shown in Fig. 1 and Movies 1 and S1. These include steep
mountain trails, creeks with running water, mud, thick vegetation, loose
rubble, snow-covered hills, and a damp forest. A number of specific

https://youtu.be/9j2a1oAHDL8
https://youtu.be/9j2a1oAHDL8
https://youtu.be/9j2a1oAHDL8
https://youtu.be/txjqn8h6pjU

Research Article ETH Zurich and Intel 4

B

A

commandC

command
10 kg payload

D

Baseline 0.2 m/s

Ours w/ payloadBaseline 0.6 m/s

Baseline 0.2 m/s with payload

Ours

E

S
u
cc

es
s

ra
te

 (
%

)

Nominal

0.0

0.2

0.4

0.6

Nominal Payload

GF
Payload

0

10

30

20

Step height (cm) Step height (cm)

Step up

H
ea

d
in

g
 e

rr
or

 (
d
eg

.)

S
p
ee

d
 (

m
/s

)

Baseline 0.4 m/sOurs

command

Step down

Fig. 3. Evaluation in an indoor environment. (A) Locomotion over unstable debris. The robot steps onto loose boards (highlighted in red and
blue) that dislodge under the robot’s feet. (B) The policy exhibits a foot-trapping reflex and overcomes a 16.8 cm step. (C) The policy learns to
appropriately handle obstructions irrespective of the contact location. Here it is shown reacting to an obstacle that is encountered mid-shin during
the swing phase. (D) Controlled experiments with steps and payload. Our controller and a baseline [1, 26] are commanded to walk over a step
with and without the 10 kg payload. (E) Success rates for different step heights. The success rate is evaluated over 10 trials for each condition.
(F) Mean linear speed for different command directions on flat terrain. 0 ◦ refers to the front of the robot. Shaded area denotes 95 % confidence
interval. (G) Mean heading errors for different command directions on flat terrain. Shaded area denotes 95 % confidence interval.

Research Article ETH Zurich and Intel 5

Quantity Controller
Terrain

Moss Mud Vegetation

Average speed
(m/s)

Ours 0.452 0.338 0.248

Baseline 0.199 0.197 –

Average
mechanical

COT

Ours 0.423 0.692 1.23

Baseline 0.625 0.931 –

Table 1. Comparison of locomotion performance in natural envi-
ronments. The mechanical COT is computed using positive mechan-
ical power exerted by the actuators.

scenarios are further highlighted in Fig. 2A-F. These environments
have characteristics that the policy does not experience during training.
The terrains can deform and crumble, with significant variation of
material properties over the surface. The robot’s legs are subjected
to frequent disturbances due to vegetation, rubble, and sticky mud.
Existing terrain estimation pipelines that use cameras or LiDAR [27]
fail in environments with snow (Fig. 2A), water (Fig. 2C), or dense
vegetation (Fig. 2F). Our controller does not rely on exteroception
and is immune to such failure. The controller learns omnidirectional
locomotion based on a history of proprioceptive observations and is
robust in zero-shot deployment on terrains with characteristics that
were never experienced during training.

We have compared the presented controller to a state-of-the-art
baseline [1, 26] in the forest environment. The baseline could traverse
flat and unobstructed patches, but failed frequently upon encountering
loose branches, thick vegetation, and mud, as shown in Movie S1. Our
controller never failed in these experiments.

We have quantitatively evaluated the presented controller and the
baseline in three conditions: moss, mud, and vegetation (Fig. 2D-F).
We have measured locomotion speed and energy efficiency. The re-
sults are reported in Table 1. The presented controller achieves higher
locomotion speed in all conditions. We computed the dimension-
less cost of transport (COT) to compare the efficiency of the con-
trollers at different speed ranges. We define mechanical COT as
∑12 actuators [τθ̇]+/(mgv). τ denotes joint torque, θ̇ is joint speed,
mg is the total weight, and v is the locomotion speed. This quantity
represents positive mechanical power exerted by the actuator per unit
weight and unit locomotion speed [28]. As shown in Table 1, the
presented controller is more energy-efficient, with a lower COT than
the baseline.

The quantitative evaluation reported in Table 1 understates the dif-
ference between the two controllers because it only measures speed
and energetic efficiency of the baseline when it successfully locomotes.
The baseline’s catastrophic failures are not factored into these measure-
ments: when the baseline fails, it is reset by a human operator in a more
stable configuration. Catastrophic failures of the baseline controller
due to thick vegetation and other factors are shown in Movie S1. Our
controller exhibited no such failures.

DARPA Subterranean Challenge
Our controller was used by the CERBERUS team for the DARPA
Subterranean Challenge Urban Circuit (Fig. 2G). It replaced a model-
based controller that had been employed by the team in the past [1, 26].
The objective of the competition is to develop robotic systems that
rapidly map, navigate, and search complex underground environments,
including tunnels, urban underground, and cave networks. The human
operators are not allowed to assist the robots during the competition
physically; only teleoperation is allowed. Accordingly, the locomo-

tion controller needs to perform without failure over extended mission
durations. To our knowledge, this is the first use of a legged loco-
motion controller trained via model-free RL in such competitive field
deployment.

The presented controller drove two ANYmal-B robots in four mis-
sions of 60 minutes. The controller exhibited a zero failure rate through-
out the competition. A steep staircase that was traversed by one of the
robots during the competition is shown in Fig. 2G.

Indoor experiments
We further evaluated the robustness of the presented controller in an
indoor environment populated by loose debris, as shown in Fig. 3A.
Support surfaces are unstable and the robot’s feet frequently slip. Such
conditions can be found at disaster sites and construction zones, where
legged robots are expected to operate in the future.

Results are shown in Fig. 3A and Movie S2. The robot moves
omnidirectionally over the area. The presented controller can stably
locomote over shifting support surfaces. This level of robustness is
beyond the reach of prior controllers for ANYmal robots [1, 26] and is
comparable to the state of the art [2, 29].

The learned controller manifests a foot-trapping reflex, as shown
in Fig. 3B and Movie S3. The policy identifies the trapping of the
foot purely from proprioceptive observations and lifts the foot over the
obstacle. Such reflexes were not specified in any way during training:
they developed adaptively. This distinguishes the presented approach
from conventional controller design methods, which explicitly build
in such reflexes and orchestrate their execution by a higher-level state
machine [1, 3]. The step shown in Fig. 3B is 16.8 cm high, which is
higher than the foot clearance of the legs during normal walking on
flat terrain. The maximum foot clearance on flat terrain is 12.9 cm
and 13.6 cm for the LF and RF legs, respectively1, and increases up
to 22.5 cm and 18.5 cm in the case of foot-trapping. Our controller
also learns to adapt the hind leg trajectories when stepping up. The
maximum foot clearance on flat terrains is 13.5 cm and 9.06 cm for
the LH and RH legs, and increases up to 16.6 cm and 15.9 cm when
the front legs are above the step. Further analysis is provided in the
Materials and Methods section. Note also that the reflexes learned by
our controller are more general and are not tied to particular contact
events. Fig. 3C shows the controller responding to a mid-shin collision
during the swing phase. Here, the trapping event was not signalled by
foot contact, and scripted controllers that use foot contact events as
triggers would not appropriately handle this situation. Our controller,
on the other hand, analyzes the proprioceptive stream as a whole and is
trained without making assumptions about possible contact locations.
Hence, it can learn to react to any obstructions and disturbances that
impact the robot’s bodily configuration.

We now focus on comparing the presented approach with the base-
line [1, 26] in controlled settings. We first compare the robustness of
the controllers in the diagnostic setting of a single step, as shown in
Fig. 3D. In each trial, the robot is driven straight to a step for 10 s.
A trial is a success if the robot traverses the step with both front and
hind legs. We conducted 10 trials for each step height and computed
the success rate. Since the baseline controller takes a desired linear
velocity of the base as input, we commanded a forward velocity of
0.2 m/s and 0.6 m/s. 0.6 m/s is the maximum speed of the baseline.
The success rates are given in Fig. 3E. The presented controller outper-
forms the baseline in both stepping up and down. The baseline showed
high sensitivity to foot-trapping, which often led to a fall, as shown in
Movie S3.

We also tested the controllers in the presence of substantial model
mismatch. We attached a 10 kg payload, as shown in Fig. 3D and

1We denote left, right, fore, and hind as L, R, F, H, respectively, to compactly refer to a
leg. For example, ‘LF leg’ refers to the left fore leg.

https://youtu.be/txjqn8h6pjU
https://youtu.be/txjqn8h6pjU
https://youtu.be/Xnn4sVSpSh0
https://youtu.be/tPixnjLbTvE
https://youtu.be/tPixnjLbTvE

Research Article ETH Zurich and Intel 6

Movie S4. This payload is 22.7 % of the total weight of the robot,
and was never simulated during training. As shown in Fig. 3E, the
presented controller can still traverse steps up to 13.4 cm despite the
model mismatch. The baseline is incapable of traversing any steps
under any command speed with the payload.

We then evaluate the tracking performance of the controllers on
flat ground with the payload. We commanded each controller in 8
directions and measured the locomotion speed and the tracking error.
Target speed is fixed to 0.4 m/s for the baseline controller, which is
similar to the operating speed of the presented controller. In Fig. 3F, we
show the velocity profiles of the controllers. Our controller locomotes
at around 0.4 m/s in all directions and performs similarly with the
payload. On the other hand, the locomotion speed of the baseline
varies with direction, which can be seen by the anisotropic velocity
profile, and the velocity profile shifts significantly off center with
the payload. Fig. 3G shows the heading error of the controllers in
each commanded direction. The heading error is the angle between the
command velocity and the base velocity of the robot. The heading error
of the presented controller is consistently smaller than the baseline,
both with and without the payload. The baseline’s error in the lateral
direction reaches∼30 ◦ and the baseline fails when a speed of (0.6 m/s)
is commanded, as shown in Movie S4. In contrast, the average heading
error of the presented controller stays within 10 ◦ with or without the
payload. We conclude that the presented controller is much more
robust to model mismatch.

Next we test robustness to foot slippage. To introduce slippage, we
used a moistened whiteboard [1]. The results are shown in Movie S5.
The baseline quickly loses balance, aggressively swings the legs, and
falls. In contrast, the presented controller adapts to the slippery terrain
and successfully locomotes in the commanded direction.

3. DISCUSSION

The presented results substantially advance the published state of the
art in legged robotics. Beyond the results themselves, the methodology
presented in this work can have broad applications. Prior to our work,
a hypothesis could be held that training in simulation is fundamentally
constrained by the limitations of simulation environments in represent-
ing the complexity of the physical world. Present-day technology is
severely limited in its ability to simulate compliant contact, slippage,
and deformable and crumbling terrain. As a result, phenomena such
as mud, snow, thick vegetation, gushing water, and many others are
beyond the capabilities of robotics simulation frameworks [30–32].
The sample complexity of model-free RL algorithms, which commonly
require millions of time steps for training, further exacerbates the chal-
lenge by precluding reliance on frameworks that may require seconds
of computation per time step.

Our work demonstrates that simulating the astonishing variety of
the physical world may not be necessary. Our training environment fea-
tures only rigid terrain, with no compliance or overground obstructions
such as vegetation. Nevertheless, controllers trained in this environ-
ment successfully meet the diversity of field conditions encountered at
deployment.

We see a number of limitations and opportunities for future work.
First, the presented controller only exhibits the trot gait. This is nar-
rower than the range of gate patterns discovered by quadrupeds in
nature [33]. The gait pattern is constrained in part by the kinematics
and dynamics of the robot, but the ANYmal machines are physically
capable of multiple gates [26]. We hypothesize that training protocols
and objectives that emphasize diversity can elicit these.

Second, the presented controller relies solely on proprioception.
This is a significant advantage in that the controller makes few as-
sumptions on the sensor suite and is not susceptible to failure when

exteroception breaks down. Indeed, existing work has argued that a
blind (proprioceptive) controller should form the basis of a legged
locomotion stack [3]. Nevertheless, blind locomotion is inherently
limited. If the machine is commanded to walk off a cliff, it will.
Even in less extreme conditions, the robot’s gait is fairly conservative
since it must by necessity feel out the environment with its body as
it locomotes. A major opportunity for future work is to use the pre-
sented methodology as a starting point in the development of a hybrid
proprioceptive-exteroceptive controller that, like many animals, will
be able to locomote even when vision and other external senses are
disrupted, but will use exteroceptive data when it is provided. This will
enable legged machines to autonomously traverse environments that
may have fatal elements such as cliffs, and to raise speed and energetic
efficiency in safer conditions.

More broadly, the presented results expedite the deployment of
legged machines in environments that are beyond the reach of wheeled
and tracked robots and are dangerous or inaccessible to humans, while
the presented methodology opens new frontiers for training complex
robotic systems in simulation and deploying them in the full richness
and complexity of the physical world.

4. MATERIALS AND METHODS

A. Overview
The main objective of the presented controller is to locomote over
rough terrain following a command. The command is given either
by a human operator or by a higher-level navigation controller. In
our formulation, unlike many existing works [12, 14, 16] that focus
on tracking the target velocity of the base (B

IBvT), only the direction
(B
IB v̂T) is given to the controller. The reason is that the feasible range

of target speeds is often unclear on challenging terrain. For example,
the robot can walk faster downhill than uphill.

The command vector is defined as 〈(B
IB v̂T)xy, (ω̂T)z〉. The first

part is the target horizontal direction in base frame (B
IB v̂T)xy :=

〈cos(ψT), sin(ψT)〉, where ψT is the yaw angle to command direction
in the base frame. The stop command is defined as 〈0.0, 0.0〉. The
second part is the turning direction (ω̂T)z ∈ {−1, 0, 1}. 1 refers to
counter-clockwise rotation along the base z-axis.

An overview of our method is given in Fig. 4. We use a privileged
learning strategy inspired by “learning by cheating” [23] (Fig. 4A).
We first train a teacher policy that has access to privileged informa-
tion concerning the terrain. This teacher policy is then distilled into
a proprioceptive student policy that does not rely on privileged infor-
mation. The privileged teacher policy is confined to simulation, but
the student policy is deployed on physical machines. One difference of
our methodology from that of Chen et al. [23] is that we do not rely on
expert demonstrations to train the privileged policy; rather, the teacher
policy is trained via reinforcement learning.

The privileged teacher model is based on multi-layer perceptrons
(MLPs) that receive information on the current state of the robot, prop-
erties of the terrain, and the robot’s contact with the terrain. The model
computes a latent embedding l̄t that represents the current state, and
an action āt. The training objective rewards locomotion in prescribed
directions.

After the teacher policy is trained, it is used to supervise a proprio-
ceptive student policy. The student model is a temporal convolutional
network (TCN) [22] that receives a sequence of N proprioceptive ob-
servations as input. The student policy is trained by imitation. The
vectors l̄t and āt computed by the teacher policy are used to supervise
the student. This is illustrated in Fig. 4A.

Training is conducted on procedurally generated terrains in simu-
lation. The terrains are synthesized adaptively, to facilitate learning
according to the skill level of the trained policies at any given time.

https://youtu.be/3Nr47MXCFO0
https://youtu.be/3Nr47MXCFO0
https://youtu.be/aMPwB3t4idU

Research Article ETH Zurich and Intel 7

terrain
traversability
for the policy

height map

Automatic terrain curriculumB

Randomly sample
initial terrain parameters

Propagate particles
via random walk

Generate trajectories
using current policy

Update
weights

Update
policy

Resample particles

Imitate

...

action

Save proprioceptive measurements every 0.02 s

Proprioceptive
history

A Policy training

Step 1. Teacher policy training

action

Privileged
Information
- contact states
- contact forces
- terrain profile
- friction coeff.
- disturbances

robot state

MLP
encoder

TCN
encoder

MLP

MLP

400 Hz

+

leg frequencies

observationsleg phases

foot position residuals
Inverse

Kinematics

N
eu

ra
l n

et
w

o
rk

p
o

lic
y

Joint
PD controller

Robot
Dynamics

50 Hz

target
foot positionsFoot Trajectory

Generator

Foot Trajectory
Generator

Foot Trajectory
Generator

Foot Trajectory
Generator

Motion tracking
command

Motion generation
C Control architecture

- Step width
- Step height

- Step width
- Step height

- Roughness
- Frequency
- Amplitude

parameters:

Parameterized terrains
Steps StairsHills

Step2. Student policy training

Reward

Policy
gradient

copy

RL algorithm

Simulation environment

Privileged terrain
information

Fig. 4. Overview of the presented approach. (A) Two-stage training process. First, a teacher policy is trained using reinforcement learning in
simulation. It has access to privileged information that is not available in the real world. Next, a proprioceptive student policy learns by imitat-
ing the teacher. The student policy acts on a stream of proprioceptive sensory input and does not use privileged information. (B) An adaptive
terrain curriculum synthesizes terrains at an appropriate level of difficulty during the course of training. Particle filtering is used to maintain a
distribution of terrain parameters that are challenging but traversable by the policy. (C) Architecture of the locomotion controller. The learned
proprioceptive policy modulates motion primitives via kinematic residuals. An empirical model of the joint PD controller facilitates deployment
on physical machines.

Research Article ETH Zurich and Intel 8

We define a traversability measure for terrain and develop a sampling-
based method to select terrains with the appropriate difficulty during
the course of training. We use particle filtering to maintain an appropri-
ate distribution of terrain parameters. This is illustrated in Fig. 4B. The
terrain curriculum is applied during both teacher and student training.

Our control architecture is shown in Fig. 4C. We employ the Policies
Modulating Trajectory Generators (PMTG) architecture [34] to provide
priors on motion generation. The neural network policy modulates
leg phases and motion primitives by synthesizing residual position
commands.

The simulation uses a learned dynamics model of the robot’s joint
PD controller [12]. This facilitates the transfer of policies from simula-
tion to reality. After training in simulation, the proprioceptive controller
is deployed directly on physical legged machines, with no fine-tuning.

Motion synthesis

We now elaborate on the control architecture that is illustrated in
Fig. 4C. It is divided into motion generation and tracking. The input
to our controller consists of the command vector and a sequence of
proprioceptive measurements including base velocity, orientation and
joint states. The controller does not use any exteroceptive input (e.g.,
no haptic sensors, cameras, or depth sensors). The input also does not
contain any handcrafted features such as foot contact states or estimated
terrain geometry. The controller outputs joint position targets.

Our motion generation strategy is based on the periodic leg phase.
Previous works commonly leveraged predefined foot contact sched-
ules [2, 26, 35]. We define a periodic phase variable φi ∈ [0.0, 2π)
for each leg, which represents contact phase if φ ∈ [0.0, π) and swing
phase if φ ∈ [π, 2π). At every time step t, φi = (φi,0 + (f0 + fi)t)
(mod 2π) where φi,0 is the initial phase, f0 is a common base fre-
quency, and fi is the frequency offset for the i-th leg. We want the legs
to manifest periodic motions when f0 + fi 6= 0 and engage ground
contact in contact phase. We set f0 as 1.25 Hz, which is the value used
by a previously developed conventional controller for a trot gait [26].

The target foot positions, which are the output of the motion gen-
eration block, are defined in the horizontal frames [35] of the feet
(Hi, i ∈ {1, 2, 3, 4}). Hi is a reference frame that is attached below
the hip joint of the i-th leg. The distance equals the nominal reach
of the leg. The z-axis of the frame (Hi z) is parallel to eg and Hi x is
the projection of the base x-axis (Bx) onto the horizontal plane, i.e.,
the frame has the same yaw angle with the robot. The roll and pitch
angles of Hi are decoupled from the base. This kinematic trick reduces
the effect of base attitude on the foot motions [35] and consequently
stabilizes training. Defining the output in Hi results in less premature
termination at the beginning of the policy training, when the base mo-
tion is unstable due to random actions. Another benefit is that we can
decompose the action distribution of the stochastic policy in the lateral
and vertical directions during policy training. We applied larger noise
in the lateral direction to promote exploration along the ground surface.

We use the PMTG architecture [34] to integrate a neural network to
regulate the controller. Our implementation consists of four identical
foot trajectory generators (FTGs) and a neural network policy. The
FTG is a function F(φ) : [0.0, 2π) → R3 that outputs foot position
targets for each leg. The FTG drives vertical stepping motion when fi is
non-zero. The definition of F(φ) is given in supplementary section S3.

The policy outputs fis and target foot position residuals (∆r fi ,T),
and the target foot position for the i-th foot is r fi ,T := F(φi) + ∆r fi ,T .

The tracking control is done using analytic inverse kinematics (IK)
and joint position control. Each foot position target defined in Hi is
first expressed in the robot base frame, and the joint position targets are
computed using analytic IK. The joint position targets are then tracked
by joint position PD controllers. The main reason for using analytic IK

is to maximize computational efficiency and to reuse existing position
control actuator models [6, 15] for the sim-to-real transfer.

Teacher policy
We formulate the control problem as a Markov Decision Process
(MDP). MDP is a mathematical framework for modeling discrete-time
control processes in which the evolution of the state and the outcomes
are partly stochastic. An MDP is defined by a state space S , action
space A, a scalar reward functionR(st, st+1), and the transition prob-
ability P(st+1|st, at). A learning agent selects an action at from its
policy π(at|st) and receives a reward rt from the environment. The
objective of the RL framework is to find an optimal policy π∗ that
maximizes the discounted sum of rewards over an infinite time horizon.

Assuming the environment is fully observable to the teacher, we
formulate locomotion control as an MDP and use an off-the-shelf
RL method [36] to solve it. In this section, we provide the MDP for
teacher training, which is defined by a tuple of state space, action space,
transition probability, and reward function.

The state is defined as st := 〈ot, xt〉, where ot is the measurement
vector obtainable from the robot and xt is the privileged information
that is usually not available in the real world. The detailed definitions
are given in Table S4. ot contains command, orientation, base twist,
joint positions and velocities, φis, fis, and previous foot position tar-
gets. Joint position errors and velocities measured at -0.01 s and -0.02 s
are contained in ot, which is the same as the input to the learned model
of the joint-level PD controller. This information allows the policy to
exploit the actuator dynamics [12]. To encode the leg phase, we use
〈cos(φ), sin(φ)〉 instead of φ, which is a smooth and unique represen-
tation for the angle. Previous foot position targets are also fed back to
the policy and are used to compute the target smoothness reward that
is explained in the following paragraph. When the student controller
is deployed, the quantities in ot are replaced with readings from the
proprioceptive sensors and the base velocity and orientation are pro-
vided by a state estimator [37]. xt contains noiseless information that
we receive directly from a physics engine. xt mainly consists of infor-
mation related to foot-ground interactions such as terrain profile, foot
contact states and forces, friction coefficients, and external disturbance
forces applied during training. Specifically, we represent the terrain
profile with the elevation of 9 scan points around each foot, which are
symmetrically placed along a circle with a 10 cm radius (visualized in
Fig. 4).

The action (āt) is a 16-dimensional vector consisting of leg frequen-
cies and foot position residuals.

The reward function is defined such that an RL agent receives
a higher reward if it advances faster towards the goal. The reward
function is specified in detail in supplementary section S4.

The policy network is constructed by two MLP blocks as shown
in Fig. 4A. The MLP encoder embeds xt into a latent vector l̄t. The
command and robot states are not included in xt, so l̄t contains only
the terrain- and contact-related features. We hypothesize that l̄t drives
adaptive behaviors such as changing foot clearance depending on the
terrain profile. Then l̄t and ot are provided to the subsequent MLP
layers to compute action.

The Trust Region Policy Optimization (TRPO) [36] algorithm is
used for training. The hyperparameters we used are given in Table S7.

Student policy
The proprioceptive student policy only has access to ot. A key hypoth-
esis here is that the latent features l̄t can be (partially) recovered from
a time series of proprioceptive observations, ht, which is defined as
ht := ot \ { fo, joint history, previous foot position targets}.

The student policy uses a temporal convolutional network
(TCN) [22] encoder. The input to the TCN encoder is H =

Research Article ETH Zurich and Intel 9

{ht−1, ..., ht−N−1}, where N is the history length. The encoder is
fully convolutional and consists of three dilated causal convolutional
layers, interleaved with strided convolutional layers that reduce dimen-
sionality. The architecture is specified in Tables S5 and S6.

We use the TCN architecture because it affords transparent control
over the input history length, can accommodate long histories, and is
known to be robust to hyperparameter settings [22]. A comparison with
a recurrent neural network architecture is provided in supplementary
section S8.

The student policy is trained via supervised learning. The loss
function is defined as

L := (āt(ot, xt)− at(ot, H))2 + (l̄t(ot, xt)− lt(H))2. (1)

Quantities marked by a bar (·̄) denote target values generated by the
teacher. We employ the dataset aggregation strategy (DAgger) [38].
Specifically, training data is generated by rolling out trajectories by the
student policy. For each visited state, the teacher policy computes its
embedding and action vectors (·̄). These outputs of the teacher policy
are used as supervisory signals associated with the corresponding states.
The hyperparameters we used are given in Table S8.

Adaptive terrain curriculum
Our method is inspired by automatic curriculum learning (ACL) for
RL agents [25, 39]. The paired open-ended trailblazer (POET) ap-
proach [25] generates diverse parameterized terrains for a 2D bipedal
agent. The method employs minimal criteria (MC) [24, 40] and aims
to choose environmental parameters that are neither too challenging
nor trivial for the agents: this is realized by selecting task parameters
that yield mid-range rewards. Florensa et al. [39] similarly choose
achievable yet difficult goals for RL agents.

Our method likewise realizes a training curriculum that gradually
modifies a distribution over environmental parameters such that the
policy can continuously improve locomotion skills and generalize
to new environments. Our work differs from POET as POET aims
for open-ended search in the space of possible problems and evolves
a population of specialized agents while we seek to obtain a single
generalist agent.

Fig. 4B shows the types of terrains used in our training environment.
Each terrain is generated by a parameter vector cT ∈ C. The terrains
are described in detail in supplementary section S5. Our ACL method
approximates a distribution of desirable cTs using a particle filter.

We first describe how a given cT is evaluated in simulation. In-
stead of directly using the reward function to evaluate the learning
progress [25, 41–43], we evaluate cTs by the traversability of gener-
ated terrains, which is defined as the success rate of traversing a terrain.
We found traversability to be more intuitive than the reward function,
which consists of multiple objectives that are often unbounded. We
first define a labeling function ν as

ν(st, at, st+1) =

{
1 if vpr(st+1) > 0.2
0 if vpr(st+1) < 0.2∨ termination

(2)

for a state transition from st to st+1. vpr(st+1) stands for the inner
product of the base velocity and commanded direction at time step t+ 1.
If π can locomote in the commanded direction faster than 0.2 m/s, we
consider the terrain traversable in this direction. The threshold is a
hyperparameter; 0.2 m/s is about one third of the maximum speed of
our robot. Traversability is defined as

Tr(cT , π) = Eξ∼π{ν(st, at, st+1 | cT)} ∈ [0.0, 1.0], (3)

where ξ refers to trajectories generated by π. This follows a definition
of empirical traversability in prior work [44].

The objective of our terrain generation method is to find cTs with
mid-range traversability (Tr(cT , π) ∈ [0.5, 0.9]). The rationale is to
synthesize terrains that are neither too easy nor too difficult. We define
terrain desirability as follows:

Td(cT , π) := Pr(Tr(cT , π) ∈ [0.5, 0.9]) (4)
= Eξ∼π{Tr(cT , π) ∈ [0.5, 0.9]}, (5)

where 0.5 and 0.9 are fixed thresholds for minimum/maximum
traversability.

We use a particle filter to keep track of a distribution of high-
desirability cTs during training. We formulate a particle filtering prob-
lem where we approximate the distribution of terrain parameters that
satisfies Tr(cT , π) ∈ [0.5, 0.9] with a finite set of sampling points
(ck

T ∈ C, k ∈ 1, · · · , Nparticle). Our algorithm is modeled on the Se-
quential Importance Resampling (SIR) particle filter. It is based on the
following assumptions.

1. Terrain parameters with similar Tr(·, π) are close in Euclidean
distance in parameter space.

2. A policy trained over the terrains generated by cTs in some area
of C will learn to interpolate to nearby terrain parameters.

3. cT,0, cT,1, ... forms a Markov process, where cT,j =

{c1
T,j, c2

T,j, ...c
Nparticle

T,j } at iteration j.

The first assumption comes from the insight that terrain parameters
can be interpolated, e.g., the difficulty of a staircase increases as we
increase the step height. The second assumption justifies the use of
discrete samples from C to train a policy that generalizes over a certain
region of C. The last assumption is necessary for formulating a particle
filter.

The importance weight wk is defined for each ck
T , and the set

of tuples 〈ck
T , wk〉 approximates the target distribution (cTs with

Tr(cT , π) ∈ [0.5, 0.9]). We define the measurement variable yk
j such

that yk
j = 1 if Tr(ck

T,j, π) ∈ [0.5, 0.9]. Then the terrain desirability
defined above becomes the measurement probability

Pr(yk
j |c

k
T,j) = Pr(Tr(ck

T,i, π) ∈ [0.5, 0.9]) = Td(ck
T,j, π). (6)

For practical implementation, the measurement probability is computed
by the empirical expectation from the samples collected during policy
training:

Pr(yk
j |c

k
T,j) ≈

Ntraj

∑
1(Tr(ck

T,j, π) ∈ [0.5, 0.9])

Ntraj
, (7)

where Ntraj denotes the number of trajectories generated using ck
T,j.

The trajectories are also used for policy training. Our method therefore
does not require additional evaluation steps to advance the curriculum
of the terrain parameters. Resampling is done such that the probability
of choosing the kth sample equals the normalized importance weight
wk/ ∑

Nparticle

i wi ∈ [0, 1].
The transition model is a random walk in C. Each parameter of a

sampling point is shifted to its adjacent value by a fixed probability
ptransition. It satisfies the third assumption (Markov process) because
the evolution of each parameter only relies on the current value and
randomly sampled noise. To improve exploration, we bounded and
discretized C to reduce the search space. The initial samples (ck

T,0) are
either drawn uniformly from C or concentrated on almost flat terrains.

Implementation details and an overview of the training process
are provided in supplementary section S2 and Algorithm S1 in the
supplement.

Research Article ETH Zurich and Intel 10

TCN-20 (0.4 s) TCN-100 (2.0 s)TCN-1 (0.02 s) Teacher

TCN-20 with privileged trainingTCN-20 without privileged training

Slope Step Disturbance

Teacher without adaptive curriculum Teacher with adaptive curriculum

B C D

E F G

H I J

50 N external forcecommand directionA

0 2500 5000

Iterat ion

0.10

0.15

0.20

R
e

w
a

rd

Mean reward

0 2500 5000

Iterat ion

0

200

400

T
im

e
 s

te
p

s

Mean episode length

35.5 %

Fig. 5. Ablation studies. We trained each model 5 times using different random seeds. Error bars denote 95 % confidence intervals. (A) Test
setups. The robot is commanded to advance for 10 s in the specified direction (black arrow). We conducted 100 trials for each test. On the step
test, a trial is considered successful if the robot traverses the step with both front and hind legs. Robots are initialized with random joint config-
urations. Initial yaw angle is sampled from U(−π, π) for the slope test and from U(−π/6, π/6) for the other tests. The friction coefficients
between the feet and the ground are sampled from U(0.4, 1.0). The external force is applied for 5 s in the lateral direction. (B-D) Importance of
memory length N in the TCN-N encoder. (E-G) Importance of privileged training. (F) Learning curves for the teacher (grey) and a TCN-20 stu-
dent trained directly, without privileged training (red). For comparison, the blue line indicates the mean reward of a TCN-20 student trained with
privileged training. The reward is computed by running each policy on uniformly sampled terrains. (H-J) Importance of the adaptive curriculum.

Research Article ETH Zurich and Intel 11

S
al

ie
n
cy

flat terrainstepC

Time(s) Time(s) Time(s) Time(s) Time(s)

FT

iii

FT

iv

FT

v

FTFT

iii

A

i viviiiii

16.8 cm

B

i viviiiii

 at v

C
h
an

n
el

s

D

command
orientation
base twist

joint positions

joint velocities

Leg phases

Leg frequencies

ii iii iviFT

Time(s)

v

Foot-trapping reflexFirst collision

joint position errors

Fig. 6. Analysis of the emergent foot-trapping reflex. FT denotes the first contact of the LF foot with the step (foot-trapping event). (A) The
LF foot hits the step and then manifests higher foot clearance to overcome the step (ii-iv) in the following swing phase. (B) Reconstructed terrain
information from TCN embeddings. Red ellipsoid: estimated terrain shape around the foot. The center of the ellipsoid refers to the estimated
terrain elevation and the vertical length represents uncertainty (standard deviation). Black arrow: terrain normal at the in-contact foot. Red cone:
uncertainty of normal estimation. Blue spheres: estimated in-contact feet. (C) Input saliency at different moments. The peaks show that the TCN
policy attends to the foot-trapping (FT) that happened around 2.1 s. The orange curve (flat terrain) shows the saliency value computed on a flat
terrain at similar gait phases. (D) Saliency map unrolled across input channels at 3.4 s. Red boxes refer to joint measurements from the LF leg at
the moment it collides with the step.

Research Article ETH Zurich and Intel 12

Validation of the method
We present ablation studies to justify each component of our approach:
(1) using a sequence model for the student policy, (2) privileged train-
ing, and (3) adaptive terrain curriculum.

Memory in proprioceptive control

We evaluate the importance of incorporating proprioceptive memory in
the controller via the TCN architecture [22]. Let TCN-N denote a TCN
with a receptive field of N time steps. The network architectures we
use are specified in detail in Table S5. We test controllers in diagnostic
settings designed to focus on specific capabilities. Specifically, we test
omnidirectional locomotion on sloped ground, traversal of a discrete
step, and robustness to external disturbances (Fig. 5A).

Fig. 5B-D summarizes the importance of the memory length N.
In these experiments, N is varied from 1 (corresponding to 20 ms
of memory) to 100 (2 s of proprioceptive memory). The latter is the
default setting used in our deployed controller.

As shown in Fig. 5B, memory length doesn’t have a strong effect in
the uniform slope setting. Memory length does have a strong effect on
the controller’s ability to traverse a step (Fig. 5B-C). Controllers with
longer memory are able to handle higher steps. As shown in Fig. 5C,
the failure rate of limited-memory controllers is particularly high when
the hind legs encounter the step. Controllers with longer memory also
adapt hind leg trajectories to ensure higher foot clearances.

Fig. 5D shows that controllers with longer memory are more robust
to external disturbances. We applied an external 50 N force laterally
to the base for 5 s during a straight walk and evaluated the resulting
deviation from the intended locomotion direction. The deviation of the
TCN-100 controller was 35.5 % lower than that of TCN-1.

Privileged training

We now assess the importance of privileged training. As a baseline,
we train a TCN-20 policy directly, without the two-stage privileged
training protocol. The policy is trained by TRPO [36] with the same
reward and hyperparameters that we use for teacher training. This
baseline is compared to the same TCN-20 architecture trained via
privileged learning.

The results are summarized in Fig. 5E-G. Fig. 5E shows that the
baseline fails the diagnostic tests: it is incapable of locomoting on a
slope or traversing a step. Fig. 5F shows that the baseline does not reach
comparable reward during training as the teacher MLP architecture
with privileged information or the proprioceptive TCN-20 architecture
(same as the baseline, no privileged information) trained via privileged
learning. Fig. 5G shows the mean episode length during training, which
indicates that the baseline fails to learn to balance and locomote.

Adaptive terrain curriculum

We now evaluate the effect of the adaptive terrain curriculum on teacher
training. Terrains used for training (specifically, hills, steps, and stairs)
are shown in Fig. 4B. As a baseline, we trained a teacher using ran-
domly generated terrains that are uniformly sampled from C as speci-
fied in Table S2. The success rates on the testing terrains are signifi-
cantly lower when trained without the adaptive curriculum, as shown in
Fig. 5H. Fig. 5I shows that a teacher trained without adaptive curricu-
lum plateaus at a lower reward level. Throughout the training process,
the mean episode length is shorter for the model being trained without
adaptive curriculum (Fig. 5J). This is because uniform sampling is
more likely to draw terrains that cannot be successfully traversed by
the policy being trained. On these terrains, the policy fails early and
receives less training signal as a result. The adaptive curriculum modu-
lates the difficulty of sampled terrains so as to maximize the didactic
benefit of each episode. We provide an additional evaluation of the
adaptive curriculum in supplementary section S6.

Further analysis of emergent behavior

Here we provide further analysis on how the proprioceptive policy
adapts to different situations.

To investigate how the proprioceptive policy perceives the environ-
ment, we trained a decoder network which reconstructs the privileged
information xt ∈ X from the output of an intermediate layer of a
trained TCN policy. xt consists of information that is not directly
observable by the student policy such as contact states, terrain shape,
and external disturbances. For classification of foot contact states, we
employ a standard cross-entropy loss function. For regression of other
states, we predict both mean mi and standard deviation σi for each
component and use a negative Gaussian log-likelihood loss to quantify
the uncertainty encoded in the TCN representation [45]:

L = ∑
i∈dim(X\contact states)

(mi −mgt
i)2

2σ2
i

+ log(σi) (8)

with added weight decay. The superscript gt refers to the ground truth
generated in simulation. Note that the parameters of the policy network
are fixed during decoder training. Therefore, the decoder network is not
used for policy training. It only provides insight into the information
encoded by the TCN policy after training.

In Fig. 6, we provide snapshots of the foot-trapping reflex motion
(Fig. 6A) and the reconstructed privileged information. In Fig. 6B we
show the reconstructed terrain geometry and foot contact state. When
the LF foot collides with the step, the estimated elevation in front of
the front legs increases and its uncertainty grows (i+ii). The estimated
elevations and normal vectors adapt to the step during the foot-trapping
reflex (iii+iv). After the successful step-up, the terrain uncertainty
remains elevated (v), indicating an anticipation of generally rough
terrain. Additionally, the decoder network can detect foot contacts with
horizontal and vertical surfaces while successfully identifying frontal
collision as such, as indicated by the estimated terrain normal vector (i +
iii). The ability to reconstruct explicit environmental information from
the encoding of the proprioceptive history is a strong indicator that the
TCN policy learns to build an internal representation of the environment
and uses it for decision making. We provide more examples of the
reconstructed privileged information in supplementary section S7.

We then analyse how the proprioceptive policy leverages past ob-
servations. We compute the saliency map of the input H ∈ R60×N ,
and visualize the sensitivity of the policy to each element of the input
while overcoming the step [46]. Each column of H is a proprioceptive
measurement h ∈ R60, and we stack N measurements (history length
= 0.02 s× N). We define the saliency value for the i-th measurement
(i ∈ [0, N]) as

Mi = ∑
j∈channels

(|d((r f ,T)z)/dHi,j|) ∈ R, (9)

where (r f ,T)z refers to the height command for the foot f . We
computed the value for (r f ,T)z because we are interested in the change
in foot clearance. Mi can be interpreted as the sensitivity of the output
to the ith measurement. As we use 1D convolution over time, the
output is in RN , i.e., each row of H is regarded as a channel.

In Fig. 6C we can see that the saliency value at the foot-trapping
event (FT) is kept high while stepping up. The policy has direct access
to the measurements at the moment of foot-trapping, and leverages this
in the following swing phase. This is highlighted by the red boxes in
Fig. 6D. The policy attends to the LF leg joint states measured at the
foot-trapping event.

Research Article ETH Zurich and Intel 13

5. ACKNOWLEDGMENTS

Funding The project was funded, in part, by the Intel Network on
Intelligent Systems, the Swiss National Science Foundation (SNF)
through the National Centre of Competence in Research Robotics,
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme grant agreement
No 852044 and No 780883. The work has been conducted as part
of ANYmal Research, a community to advance legged robotics. Au-
thor contribution J.L formulated the main idea of the training and
control methods, implemented the controller, set up the simulation,
and trained control policies. J.L performed the indoor experiments.
J.H contributed in setting up the simulation. J.L and L.W performed
outdoor experiments together. J.L, J.H, L.W, M.H, and V.K re-
fined ideas, contributed in the experiment design and analyzed the
data. Conflict of interest The authors declare that they have no
competing interests. Data and materials availability All (other)
data needed to evaluate the conclusions in the paper are present in
the paper or the Supplementary Materials. Other materials can be
found at https://github.com/leggedrobotics/learning_quadrupedal_
locomotion_over_challenging_terrain_supplementary.

SUPPLEMENTARY MATERIALS

Section S1. Nomenclature
Section S2. Implementation details
Section S3. Foot trajectory generator
Section S4. Reward function for teacher policy training
Section S5. Parameterized terrains
Section S6. Qualitative evaluation of the adaptive terrain curriculum
Section S7. Reconstruction of the privileged information

in different situations
Section S8. Recurrent neural network student policy
Section S9. Ablation of the latent representation loss for student

training
Algorithm S1. Teacher training with automatic terrain curriculum
Figure S1. Illustration of the adaptive curriculum.
Figure S2. Reconstructed privileged information in different

situations.
Figure S3. Comparison of neural network architectures for the

proprioceptive controller
Table S1. Computation time for training
Table S2. Parameter spaces C for simulated terrains
Table S3. Hyperparameters for automatic terrain curriculum
Table S4. State representation for proprioceptive controller and

the privileged information
Table S5. Neural network architectures
Table S6. Network parameter settings and the training time for

student policies
Table S7. Hyperparameters for teacher policy training
Table S8. Hyperparameters for student policy training
Table S9. Hyperparameters for decoder training
Movie S1. Deployment in a forest
Movie S2. Locomotion over unstable debris
Movie S3. Step experiment
Movie S4. Payload experiment
Movie S5. Foot slippage experiment

REFERENCES

1. F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, M. Hutter, Dynamic
locomotion on slippery ground, IEEE Robotics and Automation Letters
4170–4176 (2019).

2. G. Bledt, P. M. Wensing, S. Ingersoll, S. Kim, Contact model fusion for

event-based locomotion in unstructured terrains, 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (IEEE, 2018).

3. M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G.
Caldwell, C. Semini. Heuristic planning for rough terrain locomotion
in presence of external disturbances and variable perception quality.
Advances in Robotics Research: From Lab to Market (Springer, 2020),
165–209.

4. J. Reher, W. Ma, A. D. Ames, Dynamic walking with compliance on a
Cassie bipedal robot, European Control Conference, 2589–2595 (IEEE,
2019).

5. Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J. Huang, J. W. Grizzle,
Feedback control of a Cassie bipedal robot: Walking, standing, and
riding a Segway, American Control Conference, 4559–4566 (IEEE,
2019).

6. J. Hwangbo, C. D. Bellicoso, P. Fankhauser, M. Huttery, Probabilistic
foot contact estimation by fusing information from dynamics and differ-
ential/forward kinematics, 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 3872–3878 (IEEE, 2016).

7. M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D. G.
Caldwell, C. Semini, Probabilistic contact estimation and impact de-
tection for state estimation of quadruped robots, IEEE Robotics and
Automation Letters 1023–1030 (2017).

8. M. Focchi, V. Barasuol, M. Frigerio, D. G. Caldwell, C. Semini. Slip de-
tection and recovery for quadruped robots. Robotics Research (Springer,
2018), 185–199.

9. M. Blösch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger,
R. Siegwart, State estimation for legged robots on unstable and slippery
terrain, 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 6058–6064 (IEEE, 2013).

10. C. Gehring, C. D. Bellicoso, S. Coros, M. Bloesch, P. Fankhauser,
M. Hutter, R. Siegwart, Dynamic trotting on slopes for quadrupedal
robots, 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 5129–5135 (IEEE, 2015).

11. R. Hartley, J. Mangelson, L. Gan, M. G. Jadidi, J. M. Walls, R. M. Eu-
stice, J. W. Grizzle, Legged robot state-estimation through combined
forward kinematic and preintegrated contact factors, 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 1–8 (IEEE,
2018).

12. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
M. Hutter, Learning agile and dynamic motor skills for legged robots,
Science Robotics p. eaau5872 (2019).

13. T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, S. Levine, Learning to
walk via deep reinforcement learning, Robotics: Science and Systems
(2019).

14. Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, M. van de Panne, Learning
locomotion skills for Cassie: Iterative design and sim-to-real, Confer-
ence on Robot Learning (2019).

15. J. Lee, J. Hwangbo, M. Hutter, Robust recovery controller
for a quadrupedal robot using deep reinforcement learning,
arXiv:1901.07517 (2019).

16. J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,
V. Vanhoucke, Sim-to-real: Learning agile locomotion for quadruped
robots, Robotics: Science and Systems (2018).

17. Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, V. Sindhwani, Data
efficient reinforcement learning for legged robots, Conference on Robot
Learning (2019).

18. S. Ha, P. Xu, Z. Tan, S. Levine, J. Tan, Learning to walk in the real
world with minimal human effort, arXiv:2002.08550 (2020).

19. X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, S. Levine,
Learning agile robotic locomotion skills by imitating animals,
arXiv:2004.00784 (2020).

20. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsou-
nis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, M. A. Höpflinger, ANYmal - a highly mobile
and dynamic quadrupedal robot, IEEE/RSJ International Conference on
Intelligent Robots and Systems, 38–44 (IEEE, 2016).

21. X. B. Peng, M. Andrychowicz, W. Zaremba, P. Abbeel, Sim-to-real trans-
fer of robotic control with dynamics randomization, IEEE International

https://github.com/leggedrobotics/learning_quadrupedal_locomotion_over_challenging_terrain_supplementary
https://github.com/leggedrobotics/learning_quadrupedal_locomotion_over_challenging_terrain_supplementary
https://github.com/leggedrobotics/learning_quadrupedal_locomotion_over_challenging_terrain_supplementary
https://github.com/leggedrobotics/learning_quadrupedal_locomotion_over_challenging_terrain_supplementary
https://youtu.be/txjqn8h6pjU
https://youtu.be/Xnn4sVSpSh0
https://youtu.be/tPixnjLbTvE
https://youtu.be/3Nr47MXCFO0
https://youtu.be/aMPwB3t4idU

Research Article ETH Zurich and Intel 14

Conference on Robotics and Automation (ICRA) (IEEE, 2018).
22. S. Bai, J. Z. Kolter, V. Koltun, An empirical evaluation of generic convolu-

tional and recurrent networks for sequence modeling, arXiv:1803.01271
(2018).

23. D. Chen, B. Zhou, V. Koltun, P. Krähenbühl, Learning by cheating,
Conference on Robot Learning (2019).

24. J. C. Brant, K. O. Stanley, Minimal criterion coevolution: a new ap-
proach to open-ended search, Genetic and Evolutionary Computation
Conference, 67–74 (2017).

25. R. Wang, J. Lehman, J. Clune, K. O. Stanley, Paired open-ended trail-
blazer (poet): Endlessly generating increasingly complex and diverse
learning environments and their solutions, arXiv:1901.01753 (2019).

26. C. D. Bellicoso, F. Jenelten, C. Gehring, M. Hutter, Dynamic locomotion
through online nonlinear motion optimization for quadrupedal robots,
IEEE Robotics and Automation Letters 2261–2268 (2018).

27. P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, R. Siegwart. Robot-
centric elevation mapping with uncertainty estimates. Mobile Service
Robotics (World Scientific, 2014), 433–440.

28. S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots
based on passive-dynamic walkers, Science 1082–1085 (2005).

29. Ghost Robotics, Vision 60: Latest blind-mode stress testing of V60
legged robot, www.youtube.com/watch?v=tQsLauQWp8M (2019).

30. J. Hwangbo, J. Lee, M. Hutter, Per-contact iteration method for solv-
ing contact dynamics, IEEE Robotics and Automation Letters 895–902
(2018).

31. E. Coumans, others, Bullet physics library, Open source: bulletphysics.
org (2013).

32. R. Smith, others, Open dynamics engine, Open source: ode.org (2005).
33. R. M. Alexander, Principles of Animal Locomotion (Princeton University

Press, 2003).
34. A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,

V. Vanhoucke, Policies modulating trajectory generators, Conference on
Robot Learning, 916–926 (2018).

35. V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, D. G.
Caldwell, A reactive controller framework for quadrupedal locomotion
on challenging terrain, 2013 IEEE International Conference on Robotics
and Automation, 2554–2561 (IEEE, 2013).

36. J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust re-
gion policy optimization, International Conference on Machine Learning,
1889–1897 (2015).

37. M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, R. Siegwart, State estimation for legged robots-consistent
fusion of leg kinematics and imu, Robotics 17–24 (2013).

38. S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning
and structured prediction to no-regret online learning, International
Conference on Artificial Intelligence and Statistics, 627–635 (2011).

39. C. Florensa, D. Held, X. Geng, P. Abbeel, Automatic goal generation
for reinforcement learning agents, International Conference on Machine
Learning, 1514–1523 (2018).

40. J. Lehman, K. O. Stanley, Revising the evolutionary computation ab-
straction: minimal criteria novelty search, Genetic and Evolutionary
Computation Conference, 103–110 (2010).

41. T. Matiisen, A. Oliver, T. Cohen, J. Schulman, Teacher-student curricu-
lum learning, IEEE transactions on neural networks and learning systems
(2019).

42. W. Yu, G. Turk, C. K. Liu, Learning symmetric and low-energy locomo-
tion, ACM Transactions on Graphics (TOG) p. 144 (2018).

43. I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, others, Solving
rubik’s cube with a robot hand, arXiv:1910.07113 (2019).

44. R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, A. Giusti, Learning
ground traversability from simulations, IEEE Robotics and Automation
Letters 1695–1702 (2018).

45. A. Kendall, Y. Gal, What uncertainties do we need in bayesian deep
learning for computer vision?, Advances in neural information processing
systems, 5574–5584 (2017).

46. K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional
networks: Visualising image classification models and saliency maps,

arXiv:1312.6034 (2013).
47. G. A. Pratt, M. M. Williamson, Series elastic actuators, IEEE/RSJ

International Conference on Intelligent Robots and Systems, 399–406
(1995).

48. R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, S. A. Groenewe-
gen, A survey of procedural methods for terrain modelling, Proceedings
of the CASA Workshop on 3D Advanced Media In Gaming And Simulation
(3AMIGAS), 25–34 (2009).

49. A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. S. Ebert,
J. P. Lewis, K. Perlin, M. Zwicker, A survey of procedural noise functions,
Computer Graphics Forum, 2579–2600 (Wiley Online Library, 2010).

50. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated
recurrent neural networks on sequence modeling, arXiv:1412.3555
(2014).

51. R. J. Williams, J. Peng, An efficient gradient-based algorithm for on-line
training of recurrent network trajectories, Neural Computation 490–501
(1990).

52. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
International Conference on Learning Representations (2015).

www.youtube.com/watch?v=tQsLauQWp8M
bulletphysics.org
bulletphysics.org
ode.org

Research Article ETH Zurich and Intel 15

SUPPLEMENTARY MATERIALS

S1. Nomenclature
ˆ(·) normalized vector
˙(·) first derivative
¯(·) teacher’s quantity

(·)T target quantity
C
ABv linear velocity of B frame with respect to A frame

ėxpressed in C frame
cT terrain parameter vector
ω angular velocity
τ joint torque
θ joint angle
ψ yaw angle
φ leg phase
f leg frequency

r f linear position of a foot
eg gravity vector
H horizontal frame
gi gap function of the i-th possible contact pair
Ic index set of all contacts

Ic,body index set of body contacts
Ic, f oot index set of foot contacts
Iswing index set of swing legs
|·| cardinality of a set or l1 norm
||·|| l2 norm

S2. Implementation details
The RaiSim simulator [30] is used for rigid-body and contact dynamics
simulation. The actuator networks [12] are trained for each robot to
simulate Series Elastic Actuators (SEA) [47] at the joint. The input to
the actuator model is a 6-dimensional real-valued vector consisting of
the joint position error and velocity at current time step t and two past
states corresponding to t− 0.01 s and t− 0.02 s. The feature selection
is done as in [12].

As several studies have shown that randomization of dynamic prop-
erties improves the robustness of the policy [12, 16], we also random-
ized several physical quantities, and the teacher policy has access to
these values during training. We applied disturbances, randomized
friction coefficients between the feet and the terrain, and additive noise
to the observations during training.

The training process for the teacher policy is depicted in Algo-
rithm S1. Hyperparameters are given in Table S3. In our implementa-
tion of the terrain curriculum, we update the curriculum every Nevaluate
policy iterations to reduce variance. We assume that within Nevaluate
iterations, the performance of the policy is similar. With the slower
update rate, the measurement probability of Eq.6 becomes

Pr(yk
j |c

k
T,j) ≈

Nevaluate

∑
Ntraj

∑
1(Tr(ck

T,j, π) ∈ [0.5, 0.9])

Ntraj Nevaluate
. (10)

Additionally, we leverage replay memory to prevent degeneration of
the particle filter and to avoid catastrophic forgetting.

The controller is implemented with a state machine to switch be-
tween the “standing still” state and the locomotion state. We set the
base frequency f0 to zero when the zero command is given for 0.5 s,
which stops FTGs, and the robot stands still on the terrain. f0 is set
to 1.25 Hz when the direction command is given or the linear velocity
of the base exceeds 0.3 m/s for the disturbance rejection. The state
machine is included in the training environment.

During the deployment, the base velocity and orientation are esti-
mated by the state estimator that relies on inertial measurements and
leg kinematics [37].

The neural network policy runs at 400 Hz on an onboard CPU (Intel
i7-5600U, 2.6 – 3.2GHz, dual-core 64-bit) integrated into the robot.
The Tensorflow C++ API is used for onboard inference.

Algorithm S1. Teacher training with automatic terrain curriculum

1: Initialize a replay memory, Sample Nparticle cT,0s uniformly from
C (Table S2), i, j = 0.

2: repeat
3: for 0 ≤ k ≤ Nevaluate do
4: for 0 ≤ l ≤ Nparticle do
5: for 0 ≤ m ≤ Ntraj do
6: Generate terrain using cl

T,j
7: Initialize robot at random position
8: Run policy πi
9: Compute traverability label for each

state transition (Eq. 2)
10: Save the scores and the trajectory
11: Update policy using TRPO [36]
12: i = i + 1
13: for 0 ≤ l ≤ Nparticle do
14: Compute measurement probability for each

parameter cl
T,js (Eq. 9)

15: for 0 ≤ l ≤ Nparticle do

16: Update weights wj =
P(yl

i |cl
T,j)

∑m P(ym
i |cm

T,j)

17: Resample Nparticle parameters
18: Append cT,js to the replay memory
19: for 0 ≤ l ≤ Nparticle do
20: by preplay probability, sample from replay memory
21: by ptransition probability, move cl

T,j to an adjacent value
in C.

22: j = j + 1
23: until Convergence

S3. Foot trajectory generator
The foot trajectory is defined as

F(φi) =

(h(−2k3 + 3k2)− 0.5)Hi z k ∈ [0, 1]
(h(2k3 − 9k2 + 12k− 4)− 0.5)Hi z k ∈ [1, 2]
−0.5Hi z otherwise,

(11)

where k = 2(φi − π)/π and h is a parameter for the maximum foot
height. Each segment during the swing phase (k ∈ [0, 2)) is a cubic
Hermite spline connecting the highest and lowest points with a zero
first derivative at the connecting points. Other periodic functions such
as hi sin(φi) can be used for the FTG. With a set of reasonably tuned
f0, h and φi,0, a quadruped can stably step in place. In our setting, f0
= 1.25, h = 0.2 m, and φi,0 are sampled from U(0, 2π).

S4. Reward function for teacher policy training
The reward function is defined as 0.05rlv + 0.05rav + 0.04rb +
0.01r f c + 0.02rbc + 0.025rs + 2 · 10−5rτ . The individual terms are
defined as follows.

• Linear Velocity Reward (rlv): This term maximizes the vpr =

(B
IBv)xy · (B

IB v̂T)xy, which is the base linear velocity projected
onto the command direction.

rlv :=

exp (−2.0(vpr − 0.6)2) vpr < 0.6
1.0 vpr ≥ 0.6
0.0 zero command

. (12)

Research Article ETH Zurich and Intel 16

The velocity threshold is defined as 0.6 m/s which is the maximum
speed reachable on the flat terrain with the existing controller [26].

• Angular Velocity Reward (rav): We motivate the agent to turn as
fast as possible along the base z-axis when (B

IBω̂T)z is nonzero.
It is defined as

rav :=

{
exp (−1.5(ωpr − 0.6)2) ωpr < 0.6
1.0 ωpr ≥ 0.6

, (13)

where ωpr = (B
IBω)z · (B

IBω̂T)z.

• Base Motion Reward (rb): This term penalizes the velocity or-
thogonal to the target direction and the roll and pitch rates such
that the base is stable during the locomotion.

rb := exp(−1.5v2
o) + exp(−1.5||(B

IBω)xy||2) (14)

where vo = ||(B
IBv)xy − vpr · (B

IB v̂T)xy||. When the stop com-
mand is given, vo is replaced by ||BIBv||.

• Foot Clearance Reward (r f c): When a leg is in swing phase, i.e.,
φi ∈ [π, 2π), the robot should lift the corresponding foot higher
than the surroundings to avoid collision. We first define the set of
such collision-free feet as Fclear = {i : r f ,i > max(Hscan,i), i ∈
Iswing}, where Hscan,i is the set of scanned heights around the
i-th foot. Then the clearance cost is defined as

r f c := ∑
i∈Iswing

(1Fclear (i)/|Iswing|) ∈ [0.0, 1.0]. (15)

• Body Collision Reward (rbc): We want to penalize undesirable
contact between the robot’s body parts and the terrain to avoid
hardware damage.

rbc := −|Ic,body\Ic, f oot|. (16)

• Target Smoothness Reward (rs): The magnitude of the second or-
der finite difference derivatives of the target foot positions are pe-
nalized such that the generated foot trajectories become smoother.

rs := −||(r f ,d)t − 2(r f ,d)t−1 + (r f ,d)t−2||. (17)

• Torque Reward (rτ): We penalize the joint torques to prevent
damaging joint actuators during the deployment and to reduce
energy consumption (τ ∝ electric current).

rτ := −∑i∈joints|τi|. (18)

S5. Parameterized terrains
It is important to generate training environments that can pose rep-
resentative challenges such as foot slippage and foot-trapping. To
efficiently synthesize random terrains, we use procedural generation
techniques [48]. This method allows us to generate a large number
of different terrains by changing a set of terrain parameters cT ∈ C.
In the following, we describe the three terrain generators used in this
work. See Fig. 4B for a visualization of the terrains and Table S2 for
the definition of parameter spaces C.

• The Hills terrain is based on Perlin noise [49]. The terrain is
generated via three parameters: roughness, frequency of the Perlin
noise, and amplitude of the Perlin noise. The height of each
element of the output height map hm is defined as hm[i, j] :=
Perlin(cT,2, cT,3)[i, j] + U(−cT,1, cT,1). A policy experiences
smooth slopes and foot slippage on this terrain during training.

• The Steps terrain consists of square steps of random height. For
every cT,1 by cT,1 blocks, the height is sampled from U(0, cT,2).
A policy experiences discrete elevation changes and foot-trapping
on this terrain.

• The Stairs terrain is a staircase with fixed width and height. The
robot is initialized at the flat segment in the middle of the staircase
(see Fig. 4B).

The ranges are defined considering the kinematics of the robot, e.g., a
step height should be lower than leg length. During training, the terrain
is regenerated every episode with a different random seed.

S6. Qualitative evaluation of the adaptive terrain curriculum
The behavior of adaptive curriculum is illustrated in Fig. S1. Fig. S1A-
C focuses on the Hills terrain type. There are three parameters for this
terrain: roughness, frequency, and amplitude. The relationship between
traversability (Eq. 3) and desirability (Eq. 4) is illustrated in Fig. S1A-
B. Undesirable terrains are either too easy or too difficult, as shown
in the leftmost and rightmost panels of Fig. S1A. Fig. S1B-C shows
that the particle filter fits the latent distribution of desirable terrains,
which has a bow shape in the frequency-amplitude marginal (middle).
Fig. S1D focuses on the Stairs terrain type and shows the evolution of
terrain parameters during training. The particle filter rejects parameters
that represent short and steep steps (upper-left area). The curriculum
initially focuses on wide and shallow steps (middle panels, particularly
Iter. 50-60), and then broadens the distribution to include narrower
steps (rightmost panels).

S7. Reconstruction of the privileged information in different
situations
In Fig. S2, we provide the decoded privileged information in different
situations. Fig. S2A shows the estimated friction coefficient between
the feet and the terrain when traversing a wet, slippery whiteboard,
as shown in Movie S5. The estimate decreases as soon as the first
foot starts slipping (i), remains low throughout the traversal (ii) and
increases about 2 s after the robot returns to normal ground (iii). The
external disturbance and terrain information can also be reconstructed
from the TCN embedding. As shown in Fig. S2B, the decoder detects
downward external force when an unknown 10 kg payload is applied.
While traversing dense vegetation as shown in Fig. S2C, it detects a
force opposite the motion direction, which makes the policy to counter-
act and push through the vegetation. The uncertainty of the elevation
estimates are notably high in the natural terrains shown in Fig. S2C and
Fig. S2D, which indicates that the TCN policy encodes the roughness
of the terrain.

S8. Recurrent neural network student policy
We use the TCN architecture for the proprioceptive policy [22]. For
comparison, we also evaluated a recurrent network with gated recurrent
units (GRU) [50]. The architectures are specified in Tables S5 and S6.
The loss function for training a GRU student policy is defined as

L := (āt(ot, xt)− at(ot))
2 + (l̄t(ot, xt)− lt(ot))

2. (19)

To improve the performance and computational efficiency of the train-
ing, we have implemented Truncated Backpropagation Though Time
(Truncated BPTT) [51].

Performance on the diagnostic settings presented in Fig. 5A is given
in Fig. S3. Overall, the performance of the GRU-based controller is
between that of TCN-20 and TCN-100. The performance is comparable
to TCN-100 in the slope setting, but the GRU-based controller fails to
achieve the performance of TCN-100 in step experiments.

https://youtu.be/aMPwB3t4idU

Research Article ETH Zurich and Intel 17

The chief advantage of the TCN is in training efficiency. The
training time for the TCN is much faster in comparison to the GRU.
The computation times are reported in Table S1.

S9. Ablation of the latent representation loss for student train-
ing
We examine the effect of the second term in the loss function for student
policy training presented in Eq. 1, which is a squared error loss for
the latent vector lt. As a baseline, we train a student policy using the
following loss function:

L := (āt(ot, xt)− at(ot, H))2, (20)

which simply imitates the output of the teacher.
The result is reported in Fig. S3 as ‘TCN-100 naive IL’. The perfor-

mance is comparable in the uniform slope setting and under external
disturbances. On the other hand, the ablated version has lower success
rates on steps.

Research Article ETH Zurich and Intel 18

N
u
m

b
er of sam

p
les

Stair parmeters generated by particle fiter during trainingD

0.6

0.4

0.2

B

Terrain
 d

esirab
ilityi

ii

iii

iv

Roughness=0.02
Frequency=0.1
Amplitude=2.0

Traversability= 0.91

Roughtness=0.15
Frequency=0.3
Amplitude=2.0

Traversability= 0.56

Roughness=0.15
Frequency=1.2
Amplitude=0.5

Traversability= 0.67

Roughness=0.15
Frequency=1.2
Amplitude=2.0

Traversability=0.15

A
i ii iii iv

C

6

18

30

42

54

66

N
u
m

b
er of sam

p
les

Fig. S1. Illustration of the adaptive curriculum. (A) Examples of Hills terrains. The color bar indicates desirability; dark blue represents low
desirability. (B) Terrain desirability estimated from 1000 trajectories generated by a fully trained teacher policy. The red crosses correspond to
the examples presented in A. (C) The distribution of terrain profiles sampled by the particle filter during the last 100 iterations of teacher training.
(D) Evolution of Stairs terrain parameters during training.

Research Article ETH Zurich and Intel 19

Estimated friction coefficient

10 kg payload

80.1 N

Time

i iiiii

ii iiiiFr
ic

ti
on

 c
oe

ff
.

C DB

A

command command

Fig. S2. Reconstructed privileged information in different situations. (A) Estimated friction coefficient between the feet and the terrain
while traversing a wet whiteboard. The shaded area denotes 95 % confidence interval. (B-D) Reconstruction of the external disturbance and
terrain information in different scenarios. Blue arrow: estimated external force applied to the torso. Red ellipsoid: estimated terrain shape around
the foot. The center of the ellipsoid refers to the estimated terrain elevation and the vertical length represents uncertainty (1 standard deviation).
For each foot, 8 ellipsoids are symmetrically placed along a circle with 10 cm radius. Black arrow: terrain normal at the in-contact foot.

TCN-1

TCN-20

TCN-100

TCN-100
Naive IL
GRU

Teacher

Fig. S3. Comparison of neural network architectures for the proprioceptive controller. We trained each model 5 times using different ran-
dom seeds. The error bars denote 95% confidence intervals. ‘TCN-100 naive IL’ denotes the TCN-100 network trained using a naive imitation
learning method without the latent representation loss (Eq. 19).

Research Article ETH Zurich and Intel 20

Name Time

Teacher policy training ≈ 12 hrs

Student policy training ≈ 4 hrs

Adaptive terrain curriculum 2.9 s

Table S1. Computation time for training. The TCN-100 architecture is used for the student policy. The training is conducted on a desktop
machine with i7-8700K CPU and a Geforce RTX 2080 GPU.

Terrain grid size friction coefficient parameters (cT) range

Hills 0.2 m N (0.7, 0.2)

roughness (m) [0.0, 0.05]

frequency [0.2, 1.0]

amplitude (m) [0.2, 3.0]

Slippery Hills 0.2 m N (0.3, 0.1)

roughness (m) [0.0, 0.05]

frequency [0.2, 1.0]

amplitude (m) [0.2, 3.0]

Steps 0.02 m N (0.7, 0.2)
step width (m) [0.1, 0.5]

step height (m) [0.05, 0.3]

Stairs 0.02 m N (0.7, 0.2)
step width (m) [0.1, 0.5]

step height (m) [0.02, 0.2]

Table S2. Parameter spaces C for simulated terrains. N (m, d) denotes that the value is sampled from the Gaussian distribution of mean m
and stardard deviation d. The friction coefficient is clipped to be above 0.1.

Parameter value

Number of particles (Nparticle) 10 per terrain type

Transition probability (ptransition) 0.8

Trajectories per particle (Ntraj) 6

Update rate of the terrain parameters (Nevaluate) 10

Probability of sampling from replay memory (Preplay) 0.05

Table S3. Hyperparameters for automatic terrain curriculum.

Research Article ETH Zurich and Intel 21

Data dimension xt ot ht

Desired direction ((B
IB v̂d)xy) 2 X X

Desired turning direction ((B
IBω̂d)z) 1 X X

Gravity vector (eg) 3 X X

Base angular velocity (B
IBω) 3 X X

Base linear velocity (B
IBv) 3 X X

Joint position/velocity (θi, θ̇i) 24 X X

FTG phases (sin(φi), cos(φi)) 8 X X

FTG frequencies (φ̇i) 4 X X

Base frequency (fo) 1 X

Joint position error history 24 X

Joint velocity history 24 X

Foot target history ((r f ,d)t−1,t−2) 24 X

Terrain normal at each foot 12 X

Height scan around each foot 36 X

Foot contact forces 4 X

Foot contact states 4 X

Thigh contact states 4 X

Shank contact states 4 X

Foot-ground friction coefficients 4 X

External force applied to the base 3 X

Table S4. State representation for proprioceptive controller (top) and the privileged information (bottom).

Layer Teacher TCN-N Student GRU Student Decoder

input ot xt ot h (60×N) ot ot 〈ot, lt〉

1 id tanh(72) id 1D conv dilation 1 id GRU(68) relu(196)

2 id tanh(64) id 1D conv stride 2 concatenate Output

3 concatenate id 1D conv dilation 2 tanh(256)* -

4 tanh(256)* id 1D conv stride 2 tanh(128)* -

5 tanh(128)* id 1D conv dilation 4 tanh(64)* -

6 tanh(64)* id 1D conv stride 2 Output* -

7 Output* id tanh(64) - -

8 - concatenate - -

9 - tanh(256)* - -

10 - tanh(128)* - -

11 - tanh(64)* - -

12 - Output* - -

Table S5. Neural network architectures. Unless specified otherwise, the dilation and stride are 1 for convolutional layers. The filter size is
fixed to 5. The layers marked with ∗ are copied from the teacher to learners after the teacher training. id refers to the identity map. The TCN-N
architecture uses dilated causal convolution [22]. Each convolutional layer is followed by a relu activation function.

Research Article ETH Zurich and Intel 22

Model seq. length # channels # param. SGD time (s)

TCN-1 1 60 161960 9.22e-3 (±1.78e-3)

TCN-20 20 44 158300 2.11e-2 (±1.24e-3)

TCN-100 100 34 158070 5.07e-2 (±1.94e-3)

GRU 100* - 159640 1.52e-1 (±1.89e-2)

Table S6. Network parameter settings and the training time for student policies. SGD time refers to the computation time required for one
stochastic gradient descent update with the batch size given in Table S8. The computation times are presented as empirical means with standard
deviations. *The sequence length for the GRU network stands for the sequence length used for Truncated BPTT [51].

Parameter Value

discount factor 0.995

KL-d threshold 0.01

max. episode length 400

CG damping 1e-1

CG iteration 50

discount factor 0.995

batch size 80000

total iterations 10000

Table S7. Hyperparameters for teacher policy training.

Parameter TCN-N GRU

initial learning rate 5e-4 2e-4

learning rate decay exp(0.995, 100)

max. episode length 400

batch size 20000 10000

minibatches 5

epochs 4

total iteration 4000

Table S8. Hyperparameters for student policy training. exp(a,b) denotes exponential decay, which is defined as lr0 ∗ aupdates/b. The
Adam [52] optimizer is used.

Parameter values

initial learning rate 1e-4

learning rate decay exp(0.99, 100)

batch size 20000

minibatches 2

epochs 10

total iteration 1000

weight decay l2-norm, 1e-4

Table S9. Hyperparameters for decoder training. exp(a,b) denotes exponential decay, which is defined as lr0 ∗ aupdates/b. The Adam [52]
optimizer is used.

