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Abstract

Biology is orchestrated by a myriad of beautifully complex phenomena. While sci-
entists have only been able to uncover a tiny part of all existing biological mecha-
nisms, they have done so by methodically relying on data, which sometimes came
in enormous amounts. The advent of computational methods have therefore been
instrumental for the latest discoveries in the field. Genome-Wide Association Stud-
ies (GWAS), for instance, have been able to pinpoint the location of causal mutations
that lead to given phenotypes. Advances in computational and statistical methods
are themselves driven by newer and larger data sets. In fact, GWAS only came after
the large genotyping efforts started bearing their fruit. However, this symbiotic and
virtuous relationship between data and methods is sometimes hindered.
In particular, the current genomic efforts have yielded massive data sets, which

in turn have led to colossal amounts of results that are highly unorganised and not
always comparable. It is therefore hard to combine these rich outcomes to derive
new findings and large data sets sit completely unused. Another blocking issue is
that proposed computational methods oftentimes rely on simplifying assumptions.
While they have allowed certain discoveries, they are also limiting many advanced ap-
proaches: machine learning methods to investigate biological phenomena sometimes
suffer from oversimplifications, which in turn leads to limited prediction capabilities.
In this thesis, solutions and approaches relying on big data and machine learning

are presented to tackle both these issues. A first part focuses on enabling the compa-
rability of GWAS results across phenotypes and study designs. On the data side, we
present a large curatorial effort to homogenise GWAS results across a multitude of
phenotypes for Arabidopsis thaliana. Moreover, we present a new GWAS summary
statistics imputation method to palliate to the problem of non-overlapping summary
statistics, which limit the downstream applications that rely on GWAS results. A
second part introduces a new family of similarity measures for complex structured
objects. We propose a new class of kernels relying on optimal transport to better
capture differences between structured objects, such as graphs or time series; it can
be applied to many biological problems where complex interplay of signals are found.
Finally, a third part tackles the problem of complex phenotype prediction. There, we
introduce a new deep learning method to predict wheat crop yield by using genotypic
information and also accounting for environmental and developmental factors.
In summary, we provide several solutions to mitigate the two undesirable effects in

certain situations. Our contributions unlock new ways of combining GWAS results
and new directions to model complex biological phenomena: we believe that machine
learning will greatly benefit the biological sciences.
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Résumé

La biologie est orchestrée par une myriade de phénomènes merveilleusement com-
plexes. Si les scientifiques n’ont pu découvrir qu’une infime partie de tous les mé-
canismes biologiques existants, ils l’ont fait en s’appuyant méthodiquement sur des
données, parfois très nombreuses. L’avènement des méthodes de calcul a donc été
déterminant pour les dernières découvertes dans ce domaine. Les études d’association
pangénomiques (Genome-Wide Association Studies, GWAS en anglais), par exem-
ple, ont permis de localiser les mutations causales qui conduisent à des phénotypes
donnés. Cela étant, les progrès des méthodes de calcul et de statistique sont eux-
mêmes dus à des ensembles de données plus récents et plus importants. De ce fait,
les GWAS ne sont apparues qu’après que les grands efforts de génotypage aient com-
mencé à porter leurs fruits. Cependant, cette relation symbiotique et vertueuse entre
les données et les méthodes est parfois entravée.
En particulier, les efforts de génomique récents ont produit des ensembles de don-

nées massifs, qui ont à leur tour conduit à des quantités colossales de résultats très
peu organisés et pas toujours comparables. Il est donc difficile de combiner ces riches
résultats pour en tirer de nouvelles conclusions et de grands ensembles de données
restent totalement inutilisés. Autre problème bloquant : les méthodes de calcul
proposées reposent souvent sur des hypothèses simplificatrices. Si elles ont permis
certaines découvertes, elles limitent également de nombreuses approches avancées :
les méthodes d’apprentissage machine pour étudier les phénomènes biologiques souf-
frent parfois de simplifications excessives, ce qui conduit à des capacités de prédiction
limitées.
Dans cette thèse, des solutions et des approches s’appuyant sur les grandes don-

nées et l’apprentissage machine sont présentées pour pallier ces deux problèmes. Une
première partie s’attache à permettre la comparabilité des résultats des GWAS entre
les phénotypes et les plans d’étude différents. Du côté des données, nous présentons
un grand effort de curation pour homogénéiser les résultats des GWAS à travers une
multitude de phénotypes pour l’Arabidopsis thaliana. En outre, nous présentons une
nouvelle méthode d’imputation des statistiques sommaires de GWAS pour remédier
au problème des statistiques sommaires sans chevauchement, qui limitent les appli-
cations en aval s’appuyant sur les résultats des GWAS. Une deuxième partie présente
une nouvelle famille de mesures de similarité pour les objets structurés complexes.
Nous proposons une nouvelle classe de kernels reposant sur le transport optimal pour
mieux saisir les différences entre les objets structurés, tels que les graphes ou les séries
temporelles ; elle peut être appliquée à de nombreux problèmes biologiques où l’on
trouve une interaction complexe de signaux. Enfin, une troisième partie aborde le
problème de la prédiction de phénotypes complexes. Nous y présentons une nouvelle
méthode d’apprentissage profond pour prédire le rendement des cultures de blé en
utilisant les informations génotypiques et en tenant compte également des facteurs
environnementaux et de développement.
En résumé, nous proposons plusieurs solutions pour atténuer les deux effets in-

désirables dans certaines situations. Nos contributions ouvrent de nouvelles voies
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pour combiner les résultats des GWAS et de nouvelles directions pour modéliser des
phénomènes biologiques complexes : l’apprentissage machine est donc et continuera
à être bénéfique pour les sciences biologiques.
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1 Introduction

In which the motivation behind this doctoral
thesis is laid.

Since its inception, biology has been a field that heavily relies on data. From the
first inheritance experiments performed by Gregor Mendel on more than 28, 000
plants [157] to the large-scale data sets analysed by Ronald Fisher at the Rotham-
sted Experimental Station [76], large biological evidence has always driven method-
ological and theoretical advances. More recently, the early successes of the genome
sequencing initiatives of the beginning of the new millennium motivated the devel-
opment of new statistical tools to identify links between genotypes and phenotypes:
shortly thereafter came Genome-Wide Association Studies (GWAS) [167]. Similarly,
the advent of Next Generation Sequencing techniques have made the availability of
sequenced genotypes explode, resulting in studies with an ever-increasing number of
genetic variants and participants. The high-dimensional nature of the resulting data
sets and the interest in exploring higher-order interaction effects between genetic
variants inspired the creation of significant pattern mining [146].

It should therefore come as no surprise that the sheer amount of biological data
generated nowadays is seen as the key element to unravel life sciences mysteries and
incite methodological developments. During the last decade, many have put forward
the promises of precision medicine, which, thanks to the abundance of molecular data
sets, would enable personalised disease prevention and treatment [9]. Nevertheless,
our ability to make sense of large biological data sets is currently hindered in two
main ways.
Firstly, the ever-increasing amount of data that is being generated in the biolog-

ical and medical fields is generally unorganised. It is therefore hard to efficiently
combine and cross-reference findings across studies. This is particularly problematic
because the data collection efforts continue without any sign of slowdown. Hence, it
is necessary to provide solutions to organise these data and to make them coherent
and comparable.
Secondly, the current approaches to answer biological questions rely on simplify-

ing assumptions and, by consequence, are oftentimes inapt to capture and model
all involved mechanisms. Since biological phenomena are highly complex, simple
approaches to elucidate them are limited to scenarios where everything is controlled
and understood. However, to grasp realistic problems and answer practical questions,
computational methods need to get rid of simplifications and embrace complexity.
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1 Introduction

With this thesis, our goal is to provide pointers on how to best tackle these two
limitations with machine learning and show what practical benefits can result from
considering them.

1.1 Instilling coherence across large biological
data set

The ease of genotype collection mentioned above led to tens of thousands of data sets
with millions of biological measurements for thousands of patients [236]. For each
genotyped individual, information about structural variations (SV), i.e. differences
between an individual’s genotype and a reference genotype, could be pooled. These
include Single Nucleotide Polymorphisms (SNPs), for which single bases are differ-
ent, Insertions and Deletions (InDels), where individuals present additional short
sequences or miss some, and Copy Number Variations (CNVs), which indicate dif-
ferences in the number of copies of single genes. The idea of linking the observed
structural variations to the observed variations in phenotypes to better understand
how the first potentially causes the second came very naturally. The best example
of such analysis is given by the previously mentioned GWAS.

1.1.1 Genome-Wide Association Studies

The goal of GWAS is to identify regions in the genome that could be causal for a
specific phenotype. Here, phenotype is meant in the most general sense of the term
and can take the form of any observable characteristic of an organism, including
binary phenotypes (e.g. diabetic patients versus healthy controls), categorical phe-
notypes (e.g. patient groups with different responses to a treatment), or continuous
phenotypes (e.g. human height). Insights gathered with GWAS therefore have mul-
tiple applications: from better disease understanding [154], to personalised treatment
plans [9] or to optimise crops for better yield in plant research [53].
More practically, a GWAS consists in collecting the genotypes and phenotypes

of a large individual cohorts. Then, association tests between each SNP and the
phenotype are run to identify highly associated variations. The association signal
can be measured in several ways. For binary phenotypes, a GWAS can rely on simple
two sample tests: for each variant, a contingency table counting the different variants
for each of the phenotype classes is obtained and used to test for association using
a discrete test statistics like a χ2 test or a Fisher’s exact test. Alternatively, linear
models are a popular way to test individual variants’ association with a phenotype.
They rely on the assumption that the phenotypes y can be seen as a linear additive
combination of genotype values x: y = β01 + β1x + ε, where y and x are the
vector of phenotypes and genotypes of the cohort individuals respectively, β0 ∈ R
is the offset, β1 the genotype effect, 1 is a vector containing ones, and ε are the
residuals following a known distribution. The parameters can then be estimated
using a maximum likelihood estimator and the deviation of β1 from 0 indicates the
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1.1 Instilling coherence across large biological data set

effect size for that given variant, it can then be used in a statistical test to assess if
its deviation from 0 is statistically significant. Linear models come in various shapes:
linear regression and linear mixed models can be used for continuous phenotypes,
logistic regression can be used for binary and categorical phenotypes.
The associations are then summarised with p-values that indicate the degree of the

association between the given SNP and the phenotype: under a certain computed
threshold, these associations are deemed significant, meaning that, statistically, they
are very unlikely to result from random effects. Given the high dimensional nature
of genotype data and the relatedness of all genomes, certain steps need to be taken
to avoid false positives. First, population structure correction can be performed:
when related individuals are present in the same study, the combined signal of their
similar genotypes will augment and false positive associations can be found. The
genomic inflation factor [64] can be used to assess the degree of population structure.
If this value deviates from 1, correcting for population structure is necessary. This
can be achieved by using the principal components of a genetic similarity matrix
as covariates or by adapting the significance threshold using the genomic inflation
factor mentioned above [63, 189]. Secondly, SNPs need to be filtered to ensure the
lowest possible number of false positive results. This is usually performed using
the Hardy–Weinberg equilibrium [250], to discard SNPs that are the results of sam-
pling or genotyping errors. SNPs can also be filtered by using their minor allele
frequency (MAF); rare variants (i.e. SNPs with MAF below 0.05 or 0.01) need to
be removed because standard GWAS are underpowered to uncover associations re-
lated to theses SNPs [6]. Finally, conducting so many univariate tests (we sometimes
speak about millions of variants) will necessarily result in spurious associations, this
is often referred to as the problem of multiple hypothesis testing. To avoid this issue,
one can control the Family-Wise Error Rate (FWER) by applying a Bonferroni cor-
rection [28] (i.e. dividing the significance threshold by the number of conducted tests
to obtain a new significance threshold). Alternatively, one can control the False Dis-
covery Rate (FDR) by using the Benjamini–Hochberg procedure [20], this approach
is less conservative but avoids a larger number of false negatives. Therefore, the
number of considered SNPs in a GWAS can vary considerably due to several quality
control procedures performed before and during the study.
Since they are usually conducted on a subset of all mutations, GWAS seldom

identify causal SNPs; instead, high association signals are often attributed to SNPs
that are in linkage disequilibrium with causal variations, meaning that they are both
located on highly heritable portions of the genotype. Nonetheless, GWAS have
enabled the discovery of thousands of genetic risk loci for hundreds of diseases in
humans and continue to be a useful tool in identifying relevant portions among the
3 billion base pairs of the human genome [154].
In other organisms too, GWAS have elucidated some genotype-phenotype relation-

ships: significant associations have been reported for many traits in several organisms
such as rice [266], tomatoes [142], fruit flies [156], mice [125], and A. thaliana [10].
The rapid increase of genotyped individuals led to an explosion of GWAS results

with millions of reported association scores. Navigating and leveraging this wealth of
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1 Introduction

results is therefore not trivial. While drawing conclusions at the individual phenotype
level is relatively easy given a GWAS, combining insights across phenotypes becomes
drastically challenging. Not only due to the high complexity of the genome and
interplay of its structural variations with the environment (see the next section on
complex biological phenomena for more details on this), but also given the high
variability and disparateness of the reported results.

1.1.2 Organising and ensuring comparability of GWAS results

First, GWAS results - also referred to as summary statistics, i.e. association scores
under the form of p-values, are not comparable across studies because of the design
of the experiments itself. As briefly hinted at above, a p-value is only useful if used
in combination with the significance threshold of the study. Yet, the significance
threshold of a GWAS heavily depends on the design of the study. For instance, the
number of evaluated SNPs has an impact on the correction used for the significance
threshold. Given that most studies are performed on diverse sets of participants and
on different sets of variants, the direct comparison of both p-values and significant
association indication becomes meaningless.
Moreover, even when the studies are of comparable sizes and setups, the obtained

summary statistics cannot be combined because of their highly disparate nature.
Data sets obtained from studies that were performed with different genotyping plat-
forms or filtering criteria result in summary statistics for sets of SNPs that are
not overlapping. Therefore, only a considerably smaller subset of SNPs will have
summary statistics for all the considered studies. This severely limits the types of
analyses that can be conducted because of the incomplete overlap of the genetic
variants and their associations scores.
Hence, it is obvious that, in order to develop the next generation of algorithms that

rely on association statistics, a curation effort of these latter is needed. To this end,
we explore two ways of palliating to the above-mentioned issues. In Chapter 2 we
establish online resources that enable a comparative analysis between GWAS results
for the model organism Arabidopsis thaliana by re-calculating all GWAS across a
large set of phenotypes using a best-practice pipeline, an updated version of the
genotype data, and permutation-based statistical significance threshold to account
for the phenotypic distributions. The outcome is a catalog of standardised GWAS
results for all A. thaliana phenotypes that can easily promote comparative analyses
across different phenotypes. In Chapter 3 we introduce Ardiss, an accurate, fast
and effective method to impute missing association summary statistics in mixed-
ethnicity cohorts. The method can be used to ensure a complete overlap of the
SNPs of interest when dealing with results from multiple GWAS.

1.2 Embracing complexity in biological phenomena

Having coherent and organised data sets is key to answer questions about biological
phenomena. But biological phenomena are highly complex, and existing methods
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1.2 Embracing complexity in biological phenomena

can fail at taking this into account. For example, GWAS are excellent at identifying
individual variants’ associations with a given phenotype. However, they could never
capture higher-order interactions between structural variants in relation with a phe-
notype. Several approaches have been put forward to overcome these limitations.
Significant pattern mining is a prime example [146]: by leveraging statistical tricks,
this family of methods enable the automatic identification of larger genomic regions
associated with a given phenotype. Similarly, Azencott et al. [11] incorporated infor-
mation about the underlying biological pathways that connect seemingly unrelated
SNPs using notions from graph theory resulting in a higher power in detecting causal
SNPs.
This second example showcases how important complex objects are in biology. We

often consider the genome as a single string, while forgetting that it translates in an
elaborate interplay of signals that are distributed through time and space. Struc-
tured objects such as time series and graphs can be found everywhere in biological
mechanisms. Being able to handle said data structures is therefore paramount to the
development of reliable algorithms for the life sciences. That is why, in Chapter 4
we introduce a new family of similarity measures, or kernels, for graphs and time
series that are able to better distinguish structured objects as compared to existing
measures. In turn, this can be applied to a variety of machine learning methods that
rely on kernels for prediction tasks.

1.2.1 Phenotype prediction

The limitation of current approaches in dealing with complex biological phenomena
is also well exemplified with phenotype prediction methods. As seen above, one of
the ultimate goals of genomics is to be able to leverage genetic information to bet-
ter understand phenotypic variations and guide decision making. In practice, this
is represented by tasks such as phenotype prediction, which has been a problem of
interest since the beginnings of genomics [219]. Being able to identify individuals
with a high genetic risk for specific conditions has immense potential benefits for
public health [202]. Similarly, being able to identify high-potential crops that max-
imise yield while ensuring resistance and resilience is critical for food security [53,
78]. Throughout the many attempts that were made, it quickly became obvious that
genotype alone cannot be used to accurately predict all phenotypic differences. This
can be partly imputed to the problem of “missing heritability” [162]: even on large
cohorts, the variability of individual genetic variations cannot explain all the vari-
ability of the heritable portion of observed phenotypes. While several hypotheses
have been proposed to explain missing heritability, the problem is yet to be fully
solved. A concrete example can be found in the highly heritable trait human height.
Human height is reported to have an approximate empirical heritability of 80% but
the 50 most associated loci together only account for 5% of the observed phenotypic
variance [162, 242]. Several hypotheses around the causes of missing heritability were
put forth and some were validated, but part of the heritability still remains unex-
plained. First, initial GWAS were only focusing on highly associated SNPs. When
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1 Introduction

considering all common SNP variants, the explained variance increases considerably.
For human height, accounting for all common SNP variants can explain between
45% to 55% of the observed phenotypic variance [136, 259]. Hence, accounting for
all variants increases the explainability thanks to the weak effects of many variants.
Another supposition is that genetic variants’ effects are not only additive but also
present an interactive nature: specific combinations of variants are causal for given
phenotypes [163]. Finally, epigenetics is also seen as a potential source of heritabil-
ity [85]. But most importantly, a large portion of the phenotypic variations is caused
by environmental and developmental factors, which simply cannot be explained by
genomic variability [99].
Therefore, external factors need to be accounted for in order to achieve acceptable

phenotype prediction performance. Combining genotypic data with environmental
data is all but straightforward. Most statistical genetics studies that have a link
with phenotype prediction either try to control the environmental conditions so as
not to have to account for them [24] or design experiments to minimise the impact
of the environment [188]. Other attempts to incorporate environmental variables in
predictive models are usually performed by including covariates that are linked to
certain environmental factors. For example, in humans this can be done by including
covariates such as sex and age [122]: risk predictors for coronary artery disease reach
an area under the receiver operating characteristic (ROC) curve of 0.81 when includ-
ing sex and age, whereas the performance only reaches 0.64 when solely considering
genetic variants [121].
While these approaches showed some promising results, the simple linear com-

bination of genotypic and environmental information is certainly not sufficient to
capture interactions between an individual’s genome and the environment in which
they evolve. Therefore, models able to capture higher-order interactions between
genotype and environment are necessary. Plant breeding offers excellent opportuni-
ties in this direction and has a rich literature around phenotype prediction.

1.2.2 Crop yield prediction for crop breeding

Food security is a critical problem that recently attracted considerable interest due
to the recent global population growth and important environmental changes, as op-
timised crops are not sufficiently resilient to certain climatic conditions [53, 78]. Since
the early 1980s, molecular markers have been used in plant breeding programs to im-
prove quantitative traits with stark economic and social importance [23]. As soon as
SNP data on various crops became available, they were extensively used to identify
quantitative trait loci (QTLs), genomic areas highly associated with a phenotype
of interest. Individuals presenting relevant QTLs were then crossed in phenotypic
selection assays using marker-assisted selection [53]. Nevertheless, approaches based
on QTLs alone failed to yield successful crops partly due to the problem of missing
heritability and to the lack of consideration for interactions between QTLs and en-
vironment [22]. From these limitations stemmed the field of genomic selection (GS),
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which relies on all available genetic markers for phenotype prediction to select crops
in a test population that has been genotyped but not phenotyped.
The advantage of genomic selection is to provide indications on a new crop’s quan-

titative trait without the need for phenotyping it. Genomic selection therefore short-
ens the breeding cycle by reducing the time necessary to phenotype the evaluated
crossings [265]. Due to the pronounced interest for good phenotype predictors, many
advances in the statistical methods used were made. Similar methods than the one
used for phenotype prediction in human were adopted and extended. The ridge-
regression model used by Yang et al. [259] for height prediction is one of the most
widespread model and was extended to account for interactions between genotypes
and environment [40]. While initial contributions modeled the environment as an
additional linear component in the regression models, newer approaches attempt to
truly capture interactions [149], that were then extended to non-linear interactions
using kernel methods [54].

More recently, advances in high-throughput phenotyping unlocked new possibilities
to capture interactions between genotype and phenotype [172]. In Chapter 5, we
present a way do so on a crop yield prediction problem, leveraging a multitude
of different environmental-related data sources and combining them with genotypic
information. Moreover, we show that using more complex deep learning models that
are not based on simplifying assumptions needs not to be made at the detriment of
interpretability: we manage to quantify the contributions of individual data sources
in the final prediction.
This thesis is therefore a collection of solutions and methods to deal with the issues

of coherence and complexity in contemporary biological data sets.

1.3 Organisation and contributions of this thesis

This thesis is organised in four chapters that comprise the main contributions in terms
of new resources and methods to better elucidate genotype-phenotype relationships in
simple and more structured settings. Each chapter is self contained, meaning that it
includes all relevant background for the understanding of the identified problems and
the proposed solutions. Chapters are based on published and unpublished work and
the detailed contributions are presented below. Chapter 6 contains the conclusions
and an outlook towards the open problems along the various directions explored in
the thesis.

1.3.1 Comparable GWAS for Arabidopsis thaliana

Chapter 2 introduces a set of online resources that organise phenotype and GWAS
results for Arabidopsis thaliana and prepare them for the next generation of analyses.
The chapter is based on the following publications:

9
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- M. Togninalli, Ü. Seren, D. Meng, J. Fitz, M. Nordborg, D. Weigel, K. Borgwardt, A. Ko-
rte, and D.G. Grimm. “The AraGWAS Catalog: A curated and standardized Arabidopsis
thaliana GWAS catalog”. Nucleic Acids Research 46:D1, 2018

- M. Togninalli, Ü. Seren, J.A. Freudenthal, J.G. Monroe, D. Meng, M. Nordborg, D.
Weigel, K. Borgwardt, A. Korte, and D.G. Grimm. “AraPheno and the AraGWAS Cat-
alog 2020: a major database update including RNA-Seq and knockout mutation data for
Arabidopsis thaliana”. Nucleic Acids Research 48:D1, 2020

For both studies, Matteo Togninalli, Ümit Seren, Karsten Borgwardt, Arthur Korte,
and Dominik Grimm conceived the platforms and studies. Matteo Togninalli and
Ümit Seren developed and maintained the online platforms. Arthur Korte and Do-
minik Grimm performed the Genome-Wide Association Study experiments. Magnus
Nordborg hosted the resources. Magnus Nordborg and Detlef Weigel provided initial
data for the resources. J. Grey Monroe analysed the gene knockout data. Mat-
teo Togninalli, Ümit Seren, Karsten Borgwardt, Arthur Korte, and Dominik Grimm
wrote the publications with contributions from all authors.

1.3.2 Imputation of GWAS summary statistics

Chapter 3 introduces Ardiss, an association summary statistics imputation method
that works efficiently in mixed-ethnicity cohorts without the need to rely on privacy-
sensitive covariates. The chapter is based on the following publication:

- M. Togninalli, D. Roqueiro, I. COPDGene, and K.M. Borgwardt. “Accurate and adaptive
imputation of summary statistics in mixed-ethnicity cohorts”. Bioinformatics 34:17, 2018

Matteo Togninalli, Damiàn Roqueiro, and Karsten Borgwardt designed the study.
Matteo Togninalli and Damiàn Roqueiro performed the comparison experiments.
The COPDGene Investigators provided access to genotypes of patients. Matteo
Togninalli, Damiàn Roqueiro, and Karsten Borgwardt wrote the manuscript.

1.3.3 Wasserstein kernels for structured objects

Chapter 4 presents a new class of kernels for structured data based on optimal
transport theory. The chapter is based on the following publications:

- M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt. “Wasserstein
Weisfeiler-Lehman Graph Kernels”. In: Advances in Neural Information Processing Sys-
tems. 2019

- C. Bock, M. Togninalli, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt. “A Wasser-
stein Subsequence Kernel for Time Series”. In: 19th IEEE International Conference on
Data Mining (ICDM 2019). 2019

For the first study, Matteo Togninalli, Elisabetta Ghisu, Bastian Rieck, and Karsten
Borgwardt conceived the study. Matteo Togninalli, Elisabetta Ghisu, and Bastian
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Rieck implemented the method and performed the experiments. Matteo Togn-
inalli and Bastian Rieck derived the theoretical considerations regarding positive
definiteness of the kernels. Felipe Llinares–Lopez gave inputs on the experimental
results. Matteo Togninalli, Elisabetta Ghisu, Bastian Rieck, and Karsten Borg-
wardt wrote the manuscript with inputs from Felipe Llinares–Lopez. For the second
study, Karsten Borgwardt highlighted the meaninglessness of certain subsequence
time series kernels. Christian Bock, Matteo Togninalli, Bastian Rieck and Karsten
Borgwardt designed the study. Christian Bock, Matteo Togninalli, Elisabetta Ghisu,
Thomas Gumbsch, and Bastian Rieck performed the experiments. Finally, all au-
thors contributed to the writing of the manuscript.

1.3.4 Crop yield prediction using deep learning

Chapter 5 introduces a new crop yield prediction method that efficiently combines
genotype information with multiple data sources related to the investigated plants.
The chapter is based on the unpublished work:

- M. Togninalli, X. Wang, J. Poland, and K. Borgwardt. “Deep learning enables accurate
grain yield prediction using image and genotype information”. Unpublished Manuscript.
2020

Matteo Togninalli, Xu Wang, Jesse Poland, and Karsten Borgwardt imagined the
study. Xu Wang coordinated the data acquisition and processing. Matteo Togninalli
implemented the methods and computational experiments. Xu Wang and Jesse
Poland gave field-informed inputs on the proposed approaches. Matteo Togninalli
drafted the manuscript with inputs from the other authors.
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2 Comparable GWAS for A. thaliana
In which online resources grouping genotype,
phenotype, and association scores for Ara-
bidopsis thaliana are presented.

The ease of collection of abundant experimental data from model organisms such
as Arabidopsis thaliana have made them the ideal subjects of large genetic research
efforts. However, despite the large interest of the community for understanding the
link between genotypes and phenotypes of A. thaliana, it remains hard to compare
results across studies, even for such a well-documented and standardised plant.
In this chapter, we present AraPheno [212, 232], a database of A. thaliana pheno-

types enriched with RNA-Seq data and the AraGWAS Catalog [232, 233], a resource
that was developed to allow researchers to easily access and browse standardised
GWAS results. AraPheno was initially developed by collaborators [212] and the
contributions of the author of this thesis are centered around extensions thereof.
However, for sake of completeness, we here report on the entirety of the project. The
presented content is partly based on the following publications:
- M. Togninalli, Ü. Seren, D. Meng, J. Fitz, M. Nordborg, D. Weigel, K. Borgwardt, A. Ko-
rte, and D.G. Grimm. “The AraGWAS Catalog: A curated and standardized Arabidopsis
thaliana GWAS catalog”. Nucleic Acids Research 46:D1, 2018

- M. Togninalli, Ü. Seren, J.A. Freudenthal, J.G. Monroe, D. Meng, M. Nordborg, D.
Weigel, K. Borgwardt, A. Korte, and D.G. Grimm. “AraPheno and the AraGWAS Cat-
alog 2020: a major database update including RNA-Seq and knockout mutation data for
Arabidopsis thaliana”. Nucleic acids research 48:D1, 2020
The chapter is organised as follows. Section 2.1 explains the motivations for pro-

viding these resources to the community. Section 2.2 presents the features and par-
ticularities of AraPheno. Section 2.3 details the characteristics of AraGWAS and of
the standardised GWAS pipeline that was developped for the effort.

2.1 Introduction

Arabidopsis thaliana is a dicotyledonous species and a member of the Brassicaceae
or mustard family. It has a rapid life cycle – with only 6 weeks from germination
to mature seeds, is easy to cultivate in a controlled environment and limited space,
and produces large self progeny. Additionally, its genome, which was the first plant
genome to be sequenced, is relatively small (114.5–125 Mb in total). All-in-all,
these many advantages have made A. thaliana the reference model organism in plant
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biology [46, 169, 197, 226]. Moreover, Arabidopsis thaliana is a naturally inbred plant,
meaning that it can and often does self-pollinate, resulting in lines with completely
homozygous genomes. This is a highly desirable property as it allows the study
of genetically identical plants and several of their phenotypes under different and
controlled environmental conditions [10], which represents a colossal advantage when
studying complex trait variation in general and interactions between genotype and
environment in particular.

In fact, over the past years, large efforts were carried to identify causative genetic
variation for a wide variety of different phenotypes. Genome-wide association studies
(GWAS) became the reference tool to link genetic variation in a population with the
observed phenotypic differences, and after being pioneered in humans, were rapidly
adopted and adapted by researchers in the broader biological sciences [94]. GWAS
correlate genomic markers with phenotypic differences and report a likelihood of the
association under the form of a p-value. On the one hand, it is desirable to have a
high marker density to obtain meaningful results: in A. thaliana, GWAS have been
regularly performed using 214, 000 markers relying on hybridization technology [107].
On the other hand, the statistical power of the analysis increases with the number of
samples in the study, hence the interest for increasingly large populations in humans,
where, additionally, control over the environmental variables is virtually nonexistent.
Having identical samples with homozygous genomes as it is the case for Arabidopsis
thaliana is therefore very helpful, as it allows for easily reproducible results and
enables the re-analysis of collected results once that udpated versions of the genotypic
data for the available lines become available.

Therefore, the homorozygous nature of Arabidopsis thaliana combined with the
availability of high-quality full genome genotype for more than a thousand organisms
(available here) provide a rare platform for reproducible research [4] and make A.
thaliana a prime model organism for genetic research beyond plants [128].

Nevertheless, while these resources enabled the development and benchmarking of
tools in the machine learning and data mining communities [147, 176, 223], the lack of
centralised information related to phenotypes and GWAS results made it difficult for
researchers to (i) conveniently access phenotypic data sets; and (ii) easily compare
GWAS results across different phenotypes.

In the next sections, we introduce and detail two online resources for Arabidop-
sis thaliana that centralise and standardise information on phenotypes and GWAS
results. AraPheno is a centralised repository of phenotypic information from thou-
sands of A. thaliana lines and the AraGWAS Catalog is a catalog of standardised
GWAS results computed using the phenotypes of AraPheno. These resources are
of great relevance for both the A. thaliana and the data mining community as they
represent a source of new biological insights as well as one of untapped data for the
development and assessment of machine learning methods.
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2.2 AraPheno

AraPheno (arapheno.1001genomes.org) is a database for A. thaliana phenotypes.
It was originally created to organise and centralise all the published phenotypes
reported by the research community, and its primary purpose is therefore to provide
information about the collected phenotypes and the studies they were obtained from.

2.2.1 Content and features

AraPheno is accessible online at arapheno.1001genomes.org through a user-friendly
interface. Phenotypes are grouped by studies, where a study is a collection of multiple
phenotypes obtained for a given publication or research effort. Users can therefore
select which elements to inspect from a list of phenotypes or a list of studies. However,
considering the ever growing number of phenotypes, a fulltext search functionality
is available to search for specific phenotypes, studies or other terms. To help users
navigate the large diversity of AraPheno data, all phenotypes are linked to plant
trait ontologies (bioportal.bioontology.org/ontologies/PTO), therefore relying on a
predetermined vocabulary to describe observed traits in A. thaliana and allowing
users to group phenotypes. Every phenotype reported in AraPheno was also used
in a standardised GWAS pipeline and the results of the study are reported in the
AraGWAS Catalog, see Section 2.3 for more details.
Moreover, AraPheno also provides access to a comprehensive list of

available A. thaliana accessions that were collected in the wild (ara-
pheno.1001genomes.org/accessions/). The list regroups meta-information (e.g. geo-
graphic positions) as well as information related to the public genotype releases for a
given accession, such as RegMap, 1001Genomes or others. For accessions where seeds
are available, a link to The Arabidopsis Information Resource (TAIR) page where the
germplasm can be ordered is provided. Each reported phenotype is therefore linked
to a specific accession allowing for easy retrieval of geographical information and for
computation of genotype-phenotype associations with constantly updated genotype
information, thanks to the above-mentioned homozygous nature of the species. This
also enables users to easily access all phenotypes related to a particular accession of
interest.
Being a constantly evolving resource, AraPheno’s content grew over the last years.

A list of currently up-to-date values can be found in Table 2.1. The platform contains
22 Studies relaying information about 462 phenotypes for 1, 496 different accessions.
The large volume of presented data implied some technical challenges that were
tackled with modern web-development frameworks, as presented in Section 2.2.3.
AraPheno offers several views to display all the relevant information to users.

The study view (an example can be found here) presents a description of the study,
summary statistics about the reported phenotypes, a link to the relevant publication,
and a list of phenotypes. The phenotype view (see Figure 2.1 or this link) lists
characteristics of the phenotype such as its ontological attributes, the unit it was
measured in as well as details on how it was scored. A list of relevant publication for
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the phenotype is shown. It also displays the geographic distribution of the measured
accessions as well as some visualizations on the phenotype values themselves: the
Explorer widget allows users to further dive into the distribution of a particular
phenotype. The view also shows a link to the associated AraGWAS results (see
Section 2.3). The accession view (shown in Figure 2.2 or accessible here) provides
the coordinates of where the accession was collected from and shows them on a map.
It also lists all the reported measured phenotypes for that given accession as well as
some summary statistics related to their ontology.
To make the resource practically useful, all information can be downloaded di-

rectly from the website in various file formats (CSV, JSON, and PLINK for sin-
gle phenotypes or PLINK and ISA-TAB for complete studies). Additionally, users
can access the data programmatically via a Representational State Transfer Ap-
plication Programming Interface (REST API, more details can be found at ara-
pheno.1001genomes.org/faq/rest). This enables a fast and direct integration of the
data into existing programming pipelines. Moreover, the platform provides the pos-
sibility to download the full AraPheno database in a single ZIP component, including
all phenotypes and its meta-information (see arapheno.1001genomes.org/faq/content
for a detailed explanation of the ZIP content).
AraPheno aims to be a participative resource, that is why it offers the possibility

to users to upload their own studies to the website via a user friendly form or via
the REST API. The submitted studies go through a manual curation step to ensure
all relevant and important information such as scoring details and trait ontology
terms are provided. Once the study is approved, the phenotypes are made public
and a Digital Object Identifier (DOI) is associated to each of them by DataCite
(https://datacite.org/) to make them easily referenceable and citeable in order to
encourage researchers to upload their phenotypes even if they are not published yet.
AraPheno also offers two handy tools: a widget to evaluate and visualise the

correlation between a set of phenotypes and a tool to apply transformation to any
phenotype. Measuring correlation between phenotypes can be useful to decouple the
shared environmental and shared genetic effects: several methods rely on phenotypic
correlation to map the underlying genetic components [129, 225, 268]. Additionally,

Table 2.1: AraPheno content and summary statistics as of January 2020.
Studies 22
Phenotypes 462
Phenotype Values 193,616
Accessions 7,426
Phenotyped accessions 1,496
RNA-Seq studies 2
Unique RNA-Seq genes 28,819
Total RNA-Seq expression values 20,371,657
Accessions with RNA-Seq data 788
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Figure 2.1: AraPheno phenotype view, containing details related to the Iron Concentration
in leaves. Users can easily cite the phenotype using the DOI or download the
reported values with the download button on the top right.
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Figure 2.2: AraPheno accession view, containing details related to the Ör-1 accession, col-
lected in Sweden. Users can easily download the details related to the accession
with the download button on the top right.
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for many statistical analysis, phenotypic values need to be normalised to match
the assumptions of the employed statistical test, hence we provide an easy way to
apply transformations such as log, anscombe or box-cox transformations to AraPheno
phenotypes.
Finally, AraPheno also has a detailed FAQ, tutorials and guided tours to help

users understand how to use all the available functionalities.

2.2.2 RNA-Seq data

Recently, AraPheno was extended to also provide gene expression data from RNA-
Seq experiments. This major overhaul of the backend of the platform (see Section
2.2.3) allows us to now present the gene expression values of more than 750 accessions
for more than 28, 800 genes. Unlike regular phenotypes, these measurements do not
have a corresponding study in the AraGWAS Catalog as of yet. However, it is
possible to treat gene expression data as high-dimensional phenotypic data and run
GWAS or transcription-wide association studies (TWAS) on them [244]. Users can
access the RNA-Seq data by toggling the switch on the homepage of AraPheno. A
clone of the website built around the peculiarities of gene expression is then accessed
and can easily be recognised by the theme color of the interface (blue for RNA-Seq
and brown for phenotypes).
The AraPheno RNA-Seq interface is built around the study view, which sum-

marises information of a given RNA-Seq study, and a detailed gene view. The RNA-
Seq view shows all measured genes as the phenotype study view would show the
collected phenotypes. The gene view highlights the distribution of the RNA-Seq
values measured for the different accessions. As of now, there are 2 RNA-Seq studies
on AraPheno, but this number is expected to grow constantly, similarly to what
happened with the number of phenotypes.

2.2.3 Architecture and implementation

AraPheno was built with open-source, popular, and modern web development frame-
works. The platform relies on Django (www.djangoproject.com), a Python-based
web-application framework. Its popularity simplifies many extensions, the Django
REST framework (www.django-rest-framework.org), for example, allowed us to eas-
ily build REST endpoints that were then documented using the django-rest-swagger
(GitHub link), an open-source swagger implementation for Django REST.
For the backend, Django easily interfaces with the high-performance PostgreSQL

(www.postgresql.org) database in which the data are stored. During the last update
[232], the backend components were modified to improve performance for multiple
users and enable easier download and upload of large amounts of phenotypes. The
frontend visualizations are obtained using the free google charts library (develop-
ers.google.com/chart) and D3.js (d3js.org), a popular Javascript library for insight-
ful data visualization. The two phenotype manipulation tools (correlation analysis
and phenotype normalization) are built using open-source Python libraries: NumPy
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(www.numpy.org), SciPy (www.scipy.org), and Pandas (pandas.pydata.org), three
very well known high-performance scientific computing and data handling libraries.
Finally, AraPheno is deployed using docker (www.docker.com), an open-source

software containerization platform. Docker ensures a reproducible environment
for the deployment of the AraPheno platform without encountering issues with
dependencies. The platform is hosted under the 1001genomes organization
(1001genomes.org) and its framework is accessible as an open-source software on
GitHub.

2.3 AraGWAS Catalog

The AraGWAS Catalog (aragwas.1001genomes.org) is a manually curated database
for standardised GWAS results for Arabidopsis thaliana. It was originally conceived
after noticing that, despite the abundance and sharing of collected phenotypes for
A. thaliana (see Section 2.2), it was impossible to find an overview of all SNP-trait
associations that guarantees comparability across phenotypes. In fact, due to the
large variety of accessions, phenotypes, and growth conditions, it was hard to find
two large-scale studies for which the reported associations scores were comparable.
That is why we re-calculated all GWAS for the available phenotypes from AraPheno,
using a best practice pipeline (see section 2.3.2) and the most up-to-date version of
the genotype data. We then standardised all statistical significance thresholds using
a permutation-based approach that accounts for the phenotypic distribution that
can differ across phenotypes. Having a standard procedure for phenotype normal-
ization and processing, association computation, and permutation-based significance
threshold computation ensures the comparability of the scores and the significance
of the reported associations. Finally, the AraGWAS Catalog enables easy access to
standardised GWAS results for all AraPheno phenotypes with the latest release of
genomic data and promotes comparative analyses across different phenotypes.

2.3.1 Content and features

The AraGWAS Catalog contains GWAS results for all the 462 phenotypes reported
in AraPheno using the fully imputed data for 2, 029 A. thaliana lines from the 1001
Genomes Consortium [51]. While similar resources can be found for other species
such as humans – e.g. the NHGRI GWAS Catalog [154, 248], the public availability of
genotypes and phenotypes in A. thaliana allows for the systematical re-computation
of the GWAS results in a best-practice way to ensure comparability across pheno-
types and experiments. Permutation-based significance thresholds are computed for
every trait in the catalog to account for various phenotypic distributions. In total,
we identified 44, 680 significant SNP-trait associations for Arabidopsis thaliana. A
detailed list of summary statistics can be found in Table 2.2.
Users can find a sortable table with all available GWAS under the “GWAS Studies”

view, where the studies are sorted according to the number of significantly associated
hits above the permutation-based threshold. All details about a specific GWA Study
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can be visualised in the detailed study view (accessible by clicking on the study name,
which is equivalent to the trait name, e.g. aragwas.1001genomes.org/study/144).
Figure 2.3 shows an example of the view for a metabolite content phenotype. The
view contains all relevant information for the phenotype and details about the study,
such as the genotype version used, a link to the AraPheno entry and information
about the significance thresholds used (Figure 2.3 - A). Summary statistics about the
distribution of significant associations are displayed just below (Figure 2.3 - B) while
a list of all associated hits with their respective p-values is accessible right next to it
(Figure 2.3 - C). Users can easily filter the associations with the lateral filter option
and download the selected associations via a convenient download button (Figure
2.3 - D). Additionally, interactive Manhattan plots are shown in a separate tab of
the sudy view and knock-out mutations associations can be visualised in a third tab.
From the detailed study view, users can conveniently click on specific associations

(i.e. SNPs in the list) and access an individual association view, as shown in Figure
2.4 (accessible at aragwas.1001genomes.org/study/144/associations/4_1269036). In
fact, it can be of interest for downstream analyses to look not only at p-values but
also at effect sizes, standard errors, allelic information, and phenotypic distributions
for the different allelic groups. All this information can be conveniently visualised in
the association view via dynamic plotting or in the accession table and is accessible
when downloading study data.
Moreover, other data-centric views are shown across the platform to ease users’

quick grasp of the Catalog’s content. The “GWAS Hitmap” shows a high level
overview of the most associated hits in different regions of each of A. thaliana’s
5 chromosomes (see Figure 2.5). The columns summarise the chromosomes while
each row reports the 25 strongest hits per chromosome for each of the studies re-
ported in the catalog. Each dot illustrates the top associated hit within the focal
region of the chromosome, which is obtained via a sliding window of 250 kbp. The
color reports the strength of the association, where red indicates a stronger associ-
ation (i.e. lower p-value) than yellow. A histogram summarises the density of hits
for each chromosome. This view enables users to have an overview of the associated

Table 2.2: AraGWAS Catalog content and summary statistics as of January 2020. Numbers
of associated hits are filtered by minor allele count (MAC) > 5. Sig. is an
abbreviation of Significant.

Studies 462
Phenotypes 462
Sig. SNP-Trait Associations at p < 10−4 1,152,968
Sig. SNP-Trait Associations at Bonferroni threshold 104,874
Sig. SNP-Trait Associations at Permutation threshold 44,680
KO-Mutations 2,088
Sig. KO-Trait Associations at p < 10−4 319
Sig. KO Associations at Bonferroni threshold 130
Sig. KO Associations Permutation threshold 15
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Figure 2.3: AraGWAS Catalog detailed study view, containing details about the GWA
Study on M216T665 phenotype. Users can easily download the details related
to the filtered associations with the download button on the bottom right. (A)
Brief description about study related information with links to the phenotype
and publication. (B) Summary statistics about SNP type, impact, annotation
and MAF. (C) Sorted list of associated markers. (D) Filters to narrow down the
list of associated hits.
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Figure 2.4: AraGWAS Catalog association view, containing details about the Chr4_1269036
accession of the GWA Study on M216T665 phenotype. Users can easily visualise
the distribution of the phenotype for different allelic groups.

hits at a glance, potentially highlighting correlations between traits, patterns across
chromosome areas, and uncovering pleiotropic effects.
In the “Top Associations” view, users can obtain a list of all associated hits (i.e. p-

value< 10−4) across all traits stored in the catalog. Each association has additional
information related to its variant, e.g. MAF, MAC, type and annotations. These
additional entries can be used to filter the hits. Each entry in the table contains links
to the detailed view about the study, accession or the gene the variant was found in.
The “Top Genes” view summarises all associated hits detected in genes (or in their

close proximity), grouping results by gene name. Table 2.3 shows the 10 genes with
the most hits. Clicking on gene names will redirect to the gene-centric view (Figure
2.6), where dynamic visualization can be used to guide the users in their explo-
ration around a region of interest. Information about annotations from SnpEff [49]
or gene descriptions extracted from the AraPort11 GFF3 file from the TAIR re-
source (www.arabidopsis.org/download) are shown and users can directly access the
ThaleMine entries for each gene when clicking on them.
Since loss-of-function mutations are an important source of genetic variation in the

evolution of plant traits [16, 111], the AraGWAS Catalog also contains associations
between reported knockout (KO) mutations and all AraPheno phenotypes. The
natural KO mutations are based on loss-of-function alleles of full genes [171] and
these new association results are shown in additional views in the catalog. Users can
quickly scan through KO-Trait association via the interactive KO Manhattan plots
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2 Comparable GWAS for A. thaliana

Figure 2.5: AraGWAS Catalog GWAS HitMap, containing a snapshot overview of all asso-
ciated hits reported in the Catalog. Each column is a chromosome while each
row represents a study of the catalog. The color (yellow to red) indicates of the
strength of the association.

shown in each detailed study view and, when clicking on one of the dots, they will
be redirected to the detailed gene view of the knocked out gene. Additionally, the
“Top KO Mutation” view shows a full list of all significant associations between KO
genes and traits and the “Top KO Genes” view provides a list of the top associated
KO mutation genes, and indicates if any of the KO genes is associated to more than
one phenotype.
When analyzing the reported associations between phenotypes and natural KO

mutations, associations undetected by SNP-based GWAS could be uncovered. As an
example, natural KO alleles in AT1G57570, a mannose-binding lectin superfamily
protein expressed during seed germination, were associated with the “number of days
of seed dry storage required to reach 50% germination” (DSDS50).
Data from the AraGWAS Catalog are easily downloadable through the web-

interface: users can obtain full study results (summary statistics) in HDF5 format
and filtered association lists in CSV format. Additionally, all related phenotype data
can be obtained from AraPheno, through convenient links. A Download Center re-
groups various download options such as the full database download, the imputed
genotype download or the KO mutation data download to ensure reproducibility of
the results. The AraGWAS Catalog also provides a series of REST endpoints for a
programmatic access to the data. Users can therefore obtain hits for a specific gene
or a given genomic region in their custom analysis pipelines. A full documentation is
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Figure 2.6: AraGWAS Catalog Gene view, showing details of associations around specific
genes. Detailed gene descriptions are available when hovering with the cursor
over a certain gene.
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Table 2.3: AraGWAS Catalog Top Genes according to the number of significant hits as of
January 2020. The number of associated loci per gene are based on permutation-
based thresholds and minor allele count (MAC) > 5.

Gene name Short description N. hits
AT4G02930 GTP binding Elongation factor Tu family protein 195
AT3G20910 Nuclear factor Y, subunit A9 190
AT5G44800 Chromatin remodeling 4 189
AT4G02850 Phenazine biosynthesis PhzC/PhzF family protein 179
AT5G40150 Peroxidase superfamily protein 159
AT5G44820 Nucleotide-diphospho-sugar transferase family protein 146
AT5G45095 Hypothetical protein 144
AT5G45190 Cyclin family protein 118
AT5G22760 PHD finger family protein 117
AT4G30150 Urb2/Npa2 family protein 112

provided online (aragwas.1001genomes.org/docs/). Finally, the AraGWAS Catalog
also has a detailed FAQ and offers tutorials and guided tours to new users.

2.3.2 Standardised GWAS pipeline

The GWAS results presented in the AraGWAS Catalog are obtained with a standard-
ised procedure to ensure comparability of the presented associations across different
phenotypes. On one hand, all the accessions’ genotype values come from the same
SNP-Matrix. On the other hand, permutation-based threshold were used to have
true comparability between traits with different measuring units and distributions
(including non-Gaussian phenotype distributions).
GWAS was performed on all phenotypes of the AraPheno database. For the geno-

type, the latest version of the 1001 genomes project was used in combination with
existing SNP chip data [107], resulting in a SNP-Matrix for 2, 029 accessions and
10, 709, 466 segregating markers. Missing values were imputed with BEAGLE v3.0
and standard parameters [37]. For the phenotypes, the untransformed mean value
for each phenotype across the accessions’ replicates was used for the analysis.
GWAS were conducted using linear mixed models, correcting for population struc-

ture in a two-step approach. In the first step, all markers were analysed using
an approximation of the mixed model (EMMAX). In the second step, the top 100
markers were analysed again using the full mixed modell (EMMA). The kinship
matrix was pre-calculated using all available accessions and removing alleles with a
minor allele frequency below 5%. The permutation-based threshold for each phe-
notype was obtained by repeating this exact procedure multiple times, with per-
muted trait values for each accession, resulting in a mixed-model where, supposedly,
no genotype-phenotype connection is present. The AraGWAS Catalog reports the
5% permutation-based threshold per phenotype, providing a more realistic signifi-
cance threshold that depends on the phenotypic distribution rather than on generic
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statistical assumptions. Results were obtained using GWAS-Flow, a fast Tensor-
Flow and Graphical Processing Unit (GPU)-compatible implementation that enables
permutation-based thresholds [80].
It is interesting to notice that the permutation-based threshold is usually more

stringent than the classical Bonferroni threshold for a given study (leading to fewer
associated hits) but can, in certain cases, be less stringent than this latter (leading to
more associated hits). It is therefore important to keep in mind that the permutation-
based threshold changes across phenotypes, when comparing traits. Overall, across
all studies, the number of significant associations under the permutation-based
threshold is considerably lower than the Bonferroni one (see Table 2.2).

2.3.3 Architecture and implementation

Like AraPheno, the AraGWAS Catalog was built using open-source popular web
development frameworks. The web-application frontend is a single-page applica-
tion (SPA) that relies on HTML5 and Javascript and was built using the Vue.js
framework (vuejs.org). The multiple visualizations were obtained using libraries like
google charts and D3.js and the user interface relies on the Material Design system
(material.io) developed by Google to ensure a smooth and pleasant user experience.
Django links two databases in the backend: a first Relational Database Manage-

ment System (RDBMS) contains all information related to studies while a second
elasticsearch engine (www.elastic.co) indexes genes and associations to enable extra-
fast retrieval of a large number of association scores. Both databases can be accessed
via a RESTful API (see documentation at aragwas.1001genomes.org/docs) and the
REST endpoints are built using the Django REST framework and elasticsearch-dsl
(elasticsearch-dsl.readthedocs.io), an open-source library for high-level elasticsearch
queries in Python.
Finally, the AraGWAS Catalog is automatically deployed using docker coupled

with Jenkins (jenkins.io), an open-source automation server that deploys the latest
version of the code directly from GitHub. The platform is hosted under the 1001
Genomes Organization and the framework is entirely available on GitHub.

2.3.4 Concluding remarks

We propose two key resources to investigate phenotype-genotype relationships for
Arabidopsis thaliana. The repositories have become central resources for the A.
thaliana community [27, 69, 123]. Researchers use AraPheno to publish newly mea-
sured phenotypes [32, 65, 113] or use publicly available phenotype data to derive
new biological insights [74]. Moreover, both platforms are greatly useful for method
development and benchmarking in other areas, such as bioinformatics and machine
learning [146, 223]. The rapidly-evolving nature of the two resources make them
particularly interesting for these applications. The platforms are currently focused
on data from A. thaliana, but the code is open-source and could easily be used to
extend these resources to new species.
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3 Imputation of GWAS Summary
Statistics

In which Ardiss, a method to reliably impute
GWAS summary statistics in mixed-ethnicity
cohorts is presented.

While genome-wide association studies have been instrumental to many discoveries
in the field of applied genetics in the last decade, issues around the privacy of the
genotypes required to conduct such analyses prevented multiple collaborative efforts.
To circumvent these issues, numerous approaches relying solely on GWAS summary
statistics were developed. In addition to ensuring a higher privacy preservation of
study participants, they often present computational cost advantages. However, due
to the diversity in methodologies of conducted GWAS, researchers working with
summary statistics are often faced with mismatched SNP sets and therefore need to
impute missing ones.

Hence, due to the ubiquitousness of summary statistics based methods, imputation
of summary statistics has become a key procedure in many bioinformatics pipelines.
Nevertheless, existing imputation methods do not consider the ethnic heterogeneity
of the populations originally examined in the GWAS or, to do so, rely on additional
information about the original study that are not available to users for the same
privacy reasons mentioned above.

In this chapter, we present Ardiss [230], a method to impute missing summary
statistics in mixed-ethnicity cohorts using Gaussian Process Regression and Au-
tomatic Relevance Determination, without the need to use additional information
about the original GWAS. The presented content is based on the following publica-
tion:

- M. Togninalli, D. Roqueiro, I. COPDGene, and K.M. Borgwardt. “Accurate and adaptive
imputation of summary statistics in mixed-ethnicity cohorts”. Bioinformatics 34:17, 2018

The chapter is organised as follows. Section 3.1 details the motivation and neces-
sity of reliable summary statistics imputation methods. Section 3.2 formulates the
imputation problem, presents existing approaches and introduces Ardiss. Section
3.3 introduces the experimental setup of the performed experiments and discusses the
experimental results obtained with Ardiss compared to state-of-the-art methods.
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3.1 Introduction

GWA Studies have been key to identifying associations between traits and genetic
variants in populations. For more than a decade, GWAS have been performed in
a wide variety of organisms: plants and crops [142, 168, 266], animals [125, 156],
and humans [79]. The marked interest for these analyses has pushed researchers to
share results via public databases web services, for humans [248] and other model
organisms, such as Arabidopsis thaliana, as thoroughly discussed in Chapter 2. To
facilitate the exchange around GWAS and the dissemination of results, the scientific
community has increasingly shared so-called association summary statistics. These
results are usually found in the form of p-values or Z-scores. They are used for
meta-analyses, gene-based association tests, fine-mapping, conditional association
methods, and to investigate the polygenic nature of complex phenotypes [181].
The stark popularity of methods relying on summary statistics for downstream

analyses stems from two main advantages: (i) summary statistics offer noticeable
computational cost benefits when compared to genotype-based methods; and (ii) they
are relatively unaffected by any privacy-related concerns that inevitably impact geno-
type data. Nonetheless, given the large diversity of GWAS pipelines used by prac-
titioners, scientists working with summary statistics often face very disparate data
sets with non-overlapping single-nucleotide polymorphisms (SNPs). For example,
even when relying on the same genotyping arrays, using different filtering criteria
will lead to an incomplete overlap of the genetic variants. Likewise, when compar-
ing results obtained from two different populations, some variants might have been
discarded in one study while kept in the other, due to their relative abundance with
respect to a fixed minor allele frequency (MAF) threshold. The incomplete overlap
of genetic variants across multiple GWAS severely limits the outcome of downstream
evaluations such as meta-analyses: SNPs with values missing from a study will in
most cases be discarded. Therefore, in order to maximise the reach and power of
downstream analyses, missing summary statistics need to be imputed. That is why,
over the last years, several summary statistics imputation methods were proposed as
standalone software solutions.
The focus of this chapter lies on association summary statistics, namely p-values

and Z-scores, which summarise the strength with which a genomic region is associated
to a given trait. We do not specifically target other type of summary statistics that
are related to the population studied in the GWAS, like genotype counts or allele
frequencies. Imputation of Z-scores is therefore the goal of this and related works,
but the theoretical foundations derived for these summary statistics can also be used
with other ones such as allele frequencies or β values [249].
Existing Z-scores imputation methods can be divided into (i) methods relying

solely on the Z-scores (e.g. ImpG-Summary [182]); and (ii) methods requiring ad-
ditional information about the original GWA Study (e.g. DISSCO [257], ImpG-
SummaryLD [182], DISTMIX [135]). While both types rely on an external refer-
ence panel of genotyped individuals, the former relies on the assumption that the
correlations between SNPs of the study samples are the same as the ones observed
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Figure 3.1: Decision flowchart for the choice of the best-suited association summary statistics
imputation method. No alternative method fits all scenarios, while Ardiss
covers all of them without needing additional information about the original
study. Accounting for covariates is not necessary if the covariates were taken
into account during the original study (see Section 3.3.3).

in the reference panel, an assumption which is oftentimes violated in practice. The
latter, on the other hand, uses additional information in the form of other summary
statistics (such as allele frequencies), covariates, detailed ethnic composition of the
original GWAS population, or even the original genotypes to estimate the correlation
between SNPs in the studied population and tend to give more accurate imputation
results.
Therefore, depending on the availability of additional data sources, researchers

who wish to impute association summary statistics are faced with many options.
Figure 3.1 contains a decision flowchart to guide users in the choice of the best-
suited imputation method, given their scenario.
The first distinction is made if the genotypes used in the original GWAS are acces-

sible. One might wonder about the need to impute summary statistics if genotypes
are available: why not rely on well-established genotype imputation methods such
as MaCH [138], IMPUTE2 [108] or others [39, 213] to impute the genotypes of the missing
SNPs and then recompute the GWAS scores? Despite looking like an interesting
alternative, this option is often impractical due to the hefty computational cost of
genotype data imputation. In fact, when the number of SNPs to be imputed is high
(106), the genotype imputation can take up to weeks of dedicated cluster computing
for studies with thousands of participants. In these situations, users can use methods
like ImpG-SummaryLD [182] or DISSCO [257], which rely on the original study to
model the SNPs covariance relationship.
If genotype data is not available, users need to evaluate if the original study relied

on a mixed-ethnicity cohort to generate the summary statistics at hand. In most
human studies, designers want the cohorts to be as homogeneous as possible in order
to avoid any spurious associations due to population stratification. However, in
practice, since ethnicity is self-reported and individuals might miss out on some of
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their true genetic background, mixed-ethnicity cohorts are quite common and the
obtained Z-scores reflect these considerations. Therefore, Z-scores are oftentimes
derived from non-homogeneous cohorts and the imputation of missing values need
to account for this to avoid yielding false positives. To do so, researchers can use
DISTMIX [135], which tackles the problem of mixed-ethnicity cohorts. DISTMIX
requires the allele frequencies of the original study to estimate the ethnic composition
of the studied population prior to imputation.
Nevertheless, when imputing summary statistics in an association study, we can-

not take lightly the fact that some methods require additional sources of data to
perform an accurate imputation. In particular, because these additional data may
be unavailable or hard to obtain or, in a worst-case scenario, they can pose a threat
to the privacy of the individuals if used inappropriately [105].
Hence, when looking at all available possibilities in Figure 3.1, it is easy to no-

tice that there is no one-fits-all method that can reliably and easily be used in all
situations. That is why we developed Ardiss, a fast (highly parallelizable) and ac-
curate summary statistics imputation method that can accurately approximate the
ethnic composition of a GWAS population from the summary statistics alone. It
does not need any additional information of the study participants, hence guaranty-
ing their privacy, by relying on Automatic Relevance Determination (ARD). ARD
is often used in Gaussian Process Regression to perform feature selection in high-
dimensional spaces [155]. We use ARD to automatically weight the contribution of
individual reference panel members to mimic the mixed-ethnicity composition of the
study, see Section 3.2.3 for more details.

3.2 Summary Statistics Imputation as Gaussian
Process Regression

3.2.1 A Gaussian process regression primer

Gaussian Processes are a versatile class of statistical models that can be used for both
classification and regression problems. In this short primer, which draws inspiration
from the book of Rasmussen and Williams [196], we focus on the regression case. A
Gaussian Process (GP) is a stochastic process (i.e. a collection of random variables)
and it can be seen as defining a distribution over functions:

Definition 1 (Gaussian process, from [196]). A Gaussian process is a collection of
random variables, any finite number of which have a joint Gaussian distribution.

A Gaussian process can entirely be described by its mean function m(x) and its
covariance, or kernel function, k(x,x′). The Gaussian process can then be written
as:

f(x) ∼ GP(m(x), k(x,x′)). (3.1)

The random variables of the GP therefore represent the value of the function f(x)
at position x. GPs can therefore be used to model a given function by capturing the
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right mean and covariance between the associated variables. In practice, we take the
mean function m(x) to be zero, for notational and implementation simplicity. This
implies that, since the GP’s random variables have a joint Gaussian distribution, we
can draw values from them at input value X with f ∼ N (0,K(X,X)).

However, drawing random function values from the prior given by the covariance
function k is not particularly interesting nor useful. But we can leverage knowledge
from the training data points X with output values f to predict on test points X∗
with test outputs f∗. The joint distribution of training outputs f and test outputs
f∗ is given by: [

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (3.2)

where K(X,X) is a n×n matrix containing the pairwise covariances between train-
ing points, K(X,X∗) is a n×n∗ matrix containing the covariances between training
and testing points, and similarly for K(X∗, X) and K(X∗, X∗). We then need to
condition the joint Gaussian prior distribution on the observations to make the se-
lected functions agree with the observed training points. Using Gaussian identities
(see appendix A.2 of Rasmussen and Williams [196]), we obtain:

f∗|X∗, X,f ∼ N (K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)).
(3.3)

From there, one can sample the test output values and use the variance to estimate
the certainty of a given prediction.

Simple Gaussian Process regression is a form of lazy learning, where the model only
leverages the training data at time of inference. However, the covariance functions
can also contain hyperparameters. These can be set manually by taking into account
expert knowledge but could also greatly benefit from being tuned to best fit a given
data set. Leveraging Bayesian principles it is easy to optimise the parameters of
a covariance function. We can obtain the marginal likelihood of a given model by
taking the integral of the likelihood times the prior:

p(y|X) =

∫
p(y|f , X)p(f |X)df . (3.4)

In realistic settings, we prefer to use noisy observations of the data given by
y = f(x) + ε over the non-noisy values f∗. The marginal likelihood refers to
the marginalization over the function values f and can conveniently be used as
a “goodness-of-fit” measure for a given covariance function and its hyperparameters
θ. One can then maximise the marginal likelihood via gradient descent using the
gradients of Equation 3.4 with respect to the hyperparameters θ (see Section 3.2.3
for a practical application).

35



3 Imputation of GWAS Summary Statistics

3.2.2 Summary statistics imputation

Multiple methods were proposed to impute association summary statistics.
DIST [134], ImpG-Summary [182], DISSCO [257], and DISTMIX [135] are con-
sidered state-of-the-art techniques for the imputation of Z-scores and differ in how
they handle additional data. Despite their differences, they all rely on an external
reference panel of genotyped individuals for the imputation of missing values. Typ-
ical examples of such reference panels are the ones provided by the 1000 Genomes
Project for humans [1] or the 1001 Genomes Project [4] for Arabidopsis thaliana.
Moreover, all these methods share a common function: they impute missing Z-scores
by approximating summary statistics using a multivariate Gaussian distribution over
neighboring SNPs’ values. In practice, we differentiate between available – or typed
– Z-scores (Zt) and missing – or untyped – Z-scores (Zu) . Using the linkage dise-
quilibrium (LD) structure for neighboring SNPs, all the above-mentioned methods
impute the missing values using variations of the following formula:

Zu|t = ΣutΣ
−1
tt Zt (3.5)

where Σut is the correlation matrix between untyped and typed SNPs and Σtt is the
correlation matrix between typed SNPs. The correlations are obtained by computing
the Pearson’s correlation coefficient between SNP genotypes in an external reference
panel, for which genotypes are available for both typed and untyped SNPs. In
practice, this approach can be seen as a naïve Gaussian Process Regression (see
Section 3.2.1) that uses a simple linear kernel k and 0 mean:

f(x) ∼ GP(0, k(x,x′)) (3.6)

k(x,x′) =

d∑
i=1

xix
′
i (3.7)

where x and x′ are the standardised feature vectors of two SNPs (i.e. the standard-
ised genotype values for every individual in the reference panel). Analogously to
what described in Equation 3.3, the Gaussian Process then outputs predicted means
and variance for the missing values according to the following formulas:

fu|Xi, Xt,f t ∼ N (µK , σK)

µK = K(Xu, Xt)K(Xt, Xt)
−1f t

σK = K(Xu, Xu)−K(Xu, Xt)K(Xt, Xt)
−1K(Xt, Xu)

(3.8)

where fu and ft are the generalizations of Zu and Zt, respectively; Xu and Xt

are the matrices of features for the untyped and typed SNPs and K(X,X ′) is the
n × n′ matrix of the covariance values evaluated at all pairs of points using (3.7).
To enhance the readibility of our notation, we will refer to K(Xt, Xt), K(Xu, Xu),
K(Xu, Xt) and K(Xt, Xu) as Ktt, Kuu, Kut and K>ut, respectively.
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In order to consider the noise present in the observed data, methods usually add
a noise component to the covariance data between typed data as follows:

Ky = Ktt + σ2
noiseI (3.9)

and replaceKtt byKy. This step is usually related as Σadj
tt = Σtt+λI in the summary

statistics imputation literature.
The formulas reported here are the basis of all the techniques mentioned at the

beginning of this section. Some methods (DISSCO and DISTMIX) build on top
of these to account for mixed-ethnicity cohorts, but they do so by using additional
information about the study population. The user either needs to report the original
genotypes, the allele frequencies of the study genotypes or a manual estimation of
the population structure. This information can then be used to compute adjusted
partial correlations between SNPs. Nevertheless, these requirements are not ideal
in a realistic setting: when access to the original genotypes is possible, genotype
imputation should be preferred [182] and allele frequencies are often not shared due
to privacy concerns [68, 105].

3.2.3 Automatic Relevance Determination

To deal with mixed ethnicity cohorts without the need to consider additional sources
of information from the original GWAS, we rely on automatic relevance determi-
ation (ARD) and present Ardiss (ARD for Imputation of Summary Statistics).
Ardiss is a summary statistics imputation method that solely uses the typed asso-
ciation statistics and an external reference panel of genotypes. Automatic relevance
determination enables feature selection while fitting a Gaussian Process. This can
be achieved by adding weights to each feature used in the kernel construction and to
learn the weights during the training procedure so as to best fit the observed values.
As highlighted in Section 3.2.1, a Gaussian Process is characterised by its mean

function In our case, since the mean is zero, we can compute the marginal likelihood
(or evidence) to evaluate how the parameters fit the observed data using the following
equation:

log p(y|X,θ) = −1

2
y>K−1

y y − 1

2
log |Ky| −

n

2
log(2π) (3.10)

We can then fit the Gaussian Process by maximizing the likelihood. Therefore, as
suggested in Section 3.2.1, we use a gradient based optimiser on the partial derivatives
of the marginal likelihood with respect to the hyperparameters:

∂

∂θj
log p(y|X) =

1

2
tr((αα> −K−1

y )
∂Ky

∂θj
) where α = K−1

y y (3.11)

We can now incorporate ARD. In our case, each feature in the kernel is an individual
genotype in the reference panel. We therefore aim at weighing the contribution of
the individual genotypes so as to ideally match the original ethnic distribution and
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Algorithm 1 ARDISS_get_weights

Input: Standardised genotypes for typed SNPs Xt ∈ RN×d, typed Z-scores Zt ∈
RN , window size w, optimiser Opt

Output: Average ARD weights across chromosome
1: W← blength of X/wc,weights← ∅
2: for k in {1...W } do
3: . Slice the array to get batch samples
4: Xbatch ← Xt,i• i ∈ {(k − 1) · w...k · w}
5: Zbatch ← Zt,i i ∈ {(k − 1) · w...k · w}
6: . Initialise the ARD weights to a vector of d ones
7: σ2

ARD ← 11×d
8: for i in {1...Opt.maxiter} do:
9: . Compute the kernel matrix

10: Ky ← Xbatchdiag(σ2
ARD)X>batch + σnoiseI

11: α← K−1
y Zbatch

12: . Compute the σARD gradients with Equation (3.11)
13: grads← 1

2tr((αα
> −K−1

y )
∂Ky

∂θj
)j={1...d}

14: . Update the ARD weights with the optimiser of choice
15: σARD ← Opt.update(grads)
16: Append σARD to weights
17: Return average of weights along second axis

the reported Z-scores. This is a proxy to represent the population of the original
GWAS as closely as possible. The new linear kernel function then becomes [155]:

kARD(x,x′) =

d∑
i=1

σ2
i xix

′
i (3.12)

We finally fit the σi values by using a gradient descent optimiser on the negative
log-likelihood in Equation (3.10). The partial derivative of Ky with respect to σj is
the outer product of the genotype values for sample j across the SNPs of interest
multiplied by 2σj .

3.2.4 Implementation

Ardiss combines ARD with a moving-window imputation of untyped GWAS Z-
scores. The algorithm proceeds in two steps. Initially, we iterate over the typed
Z-scores of one chromosome to obtain the consensus weight for each sample of the
reference panel. Then, we use the weighted genotype values to run the moving-
window imputation across the chromosome.
The first phase of the procedure relies on an external library, GPflow [166], a Ten-

sorFlow [2] based library for Gaussian Process optimization. Since we have hundreds
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Algorithm 2 ARDISS

Input: Standardised genotypes from reference sample X ∈ RM×d, typed Z-scores
Zt ∈ RN , window size w, optimiser Opt

Output: Imputed Z-scores
1: Split genotypes in typed and untyped Xt, Xu ← X
2: σARD ← ARDISS_get_weights(Xt, Zt, w,Opt)
3: . Element-wise multiplication followed by standardization further speeds up op-

erations
4: Xi• ← Standardise Xi• � σARD i ∈ {1...M}
5: Xt,window ← Xt,i• i ∈ {0...w}
6: Zt,window ← Zt,i i ∈ {0...w}, Zu ← ∅
7: N ← length of Xt

8: Ktt ← Xt,windowX
>
t,window + σ2

noiseI

9: Compute K−1
tt

10: . Boundary conditions are treated differently
11: for i in {w2 + 1...N − w

2 } do
12: Update Xt,window, Zt,window and Ktt

13: . Use Sherman-Morrison formulas
14: K−1

tt ← update_inverse(K−1
tt ,Ktt)

15: Xu ← get_untyped_snps_for_window()

16: Kut ← XuX
>
t,window

17: Zu,window ← KutK
−1
tt Zt,window

18: Append Zu,window to Zu
19: Return Zu

of thousands of available Z-scores, deriving the weights on a single large window
enclosing all the typed SNPs is computationally impossible, due to the many matrix
inversions required (O(n3)). We therefore perform the optimization on subsets of
SNPs in a window-based approach, as shown in lines 1 − 7 of Algorithm 1. This
implementation can benefit from parallel computing on graphics processing units
(GPUs), as enabled by GPflow, and allows breakneck runtimes (see Section 3.3.5).
Any gradient-based optimiser can be used for the optimization of the weights (see
Input of algorithm 1). We observed that the RMSProp optimiser implementation of
GPflow with a learning rate of 0.1 and momentum of 0.001 yields good results.

After the ARD weights have been optimised for the individual windows, we average
them across the chromosome (line 17) and we use the following formula to impute
the untyped values:

Zu|t = KARD
ut [KARD

tt + σ2
noiseI]−1Zt (3.13)

Where the entries of KARD
tt are given by Equation (3.12). To speed execution up,

all the genotypes are multiplied element-wise with the ARD-derived weights and
standardised (line 4 of Algorithm 2). Imputation is then run with a moving-window
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3 Imputation of GWAS Summary Statistics

using a fixed number of neighboring SNPs (a window size of 100 SNPs gives excellent
results under different scenarios) rather than the commonly used approach of sep-
arating the data in chunks of fixed base pairs sizes. The moving-window approach
enables faster matrix operations, accelerating execution. In particular, Ardiss im-
plements the Sherman-Morrison formula, that enables obtaining the inverse of the
correlation matrix in O(n2) rather than O(n3). Moreover, our imputation procedure
always centers the window around the SNPs that are being imputed, ensuring to
always find the strongest LD structures. SNPs at the boundary of the chromosome
are treated slightly differently and are imputed with all the window-size SNPs at
the boundary. In total, N loops are performed (where N is the number of typed
SNPs). The covariance matrix Ktt, its inverse and the typed Z-score vector Zt are all
initialised before iterating through all typed SNPs (lines 5−9). Every iteration then
updates the necessary entries (lines 11 − 14), rapidly retrieves Xu for the missing
SNPs located between the two central typed SNPs (e.g. between the 50th and the
51st typed SNPs for a window size of 100) using specific Python data structures (line
15) and imputes their Z-score values (lines 16− 17).
The overall complexity of Ardiss is O(Nkw ·max(w, d)) for the weight learning

step (Algorithm 1) and O(N(w2 + nuwd)) for the imputation step (Algorithm 2),
where N is the number of typed SNPs, k is the maximum number of iterations of
the optimiser, w is the window size, d is the number of samples in the reference
panel and nu is the number of untyped SNPs in a single window. Moreover, we
can assume that, on average, nu = Nu

N , where Nu is the overall number of untyped
SNPs and have a final runtime complexity of O(Nw2 + Nuwd) for the imputation
step. Considering the simple inner products needed to obtain the covariance matrix,
Ardiss scales linearly for the number of samples in the reference panel, given a
fixed number of SNPs and a fixed window size. Empirical validation is reported in
Figure 3.12.

3.3 Experimental results

In order to evaluate the performance of Ardiss in diverse use cases, we devise
several experiments. Here, we report the results obtained on two data sets as well
as on runtime experiments.

3.3.1 Data sets

COPDGene

We obtained genotype data from participants in the COPDGene study [198]. The
aim of the study is to identify risk factors of genetic nature associated to chronic
obstructive pulmonary disease (COPD). The study was originally performed on two
ethnic groups: African Americans (AA) and non-Hispanic whites (NHW). After
combining the samples of the two populations, we keep 615, 906 SNPs that overlapped
in both datasets. Of these SNPs, we removed the ones that did not fulfill the following
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3.3 Experimental results

Table 3.1: Sample size details of the COPDGene cohort. The column “Case” refers to indi-
viduals who were diagnosed with COPD. The number of SNPs in the intersection
of both populations is 615, 906 and we take this as the starting point of our anal-
ysis.

Population Disease status Gender
case control Total male female

African Americans (AA) 821 1,826 2,647 1,498 1,149
Non-Hispanic whites (NHW) 2,812 2,534 5,346 2,816 2,530
Total 3,633 4,360 7,993 4,314 3,679

criteria: (a) minor allele frequency > 0.01; or (b) Hardy-Weinberg equilibrium >
1.0 · 10−6 . Furthermore, due to genotyping errors, some combinations of samples
and SNPs had missing genotypes. For these cases, the missing SNP values were
imputed as described in [48]. Of the 7, 993 individuals in the combined data set,
3, 633 are patients diagnosed with COPD (cases) and 4, 360 are controls. Table 3.1
provides additional details. This combined data set is then subsampled to create
cohorts of mixed ethnicities as described below.

Randomised cohorts of mixed ethnicity. To simulate mixed-ethnicities cohort,
we create 11 randomised partitions of the combined COPDGene data set. On the two
extremes, we have homogeneous population of 100% AA and 100% NHW samples,
respectively. In between, we artificially create cohorts with a mixed ethnic compo-
sition by increments of 10%, i.e., 90% AA with 10% NHW; 80% AA with 20%
NHW, all the way to 10% AA with 90% NHW. Additionally, we randomly sample
individuals from the two populations in a stratified manner to ensure the same ratio
of cases/controls per population. We set all randomised partitions to contain the
same number of samples: 2, 313.

Association analysis. For each of these randomised partitions, we conduct a
GWAS using a linear mixed model to account and to correct for population struc-
ture in the mixed cohort [190]. The analyses are performed using FaST-LMM [145]
and for each of the 615, 906 SNPs, we obtained a Z-score of association. It is impor-
tant to mention that, when imputing summary statistics in a real-life scenario, the
genotypes of the individuals in the study will, most likely, not be available. However,
having access to the original genotypes of the COPDGene study allows us to create
randomised cohorts of varying ethnic composition and to perform the corresponding
association tests. The obtained Z-scores are the starting point to the execution of
the evaluated imputation methods.

SNP masking. To evaluate the performance of Ardiss and of its comparison
partners, we have to simulate the absence of certain Z-scores of association. We
therefore randomly mask 10% of the 615, 950 SNPs across the whole genome (strati-
fying by chromosome) and consider those as missing (i.e. untyped SNPs). The other
90% (typed SNPs) are the ones for which we know the Z-score and that are used to
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3 Imputation of GWAS Summary Statistics

impute the untyped ones. This randomization is repeated 10 times in order to get
a good genome-wide coverage. The genomic locations of the SNPs are based on the
hg19 version of the human genome. All the evaluated methods are asked to impute
all the missing SNPs, for a total of 11, 671, 761 imputed SNPs.

Insomnia complaints

Thanks to online repositories such as the Genome-wide Repository of Associations
Between SNPs and Phenotypes (GRASP) [137], we were able to download additional
summary statistics. The GRASp catalog currently contains association scores for
more than 2, 000 GWAS. We focus on a study aimed at identifying the genetic risk
factors associated with insomnia complaints [100]. The original study is a large-scale
study conducted on 113, 006 individuals of self-reported European descent and their
samples were obtained from the May 2015 release of the UK Biobank [222].

Data processing. We downloaded the results file #2 from GRASP with full sum-
mary statistics on both males and females. Among the different summary statistics,
we use BETA – the β of the logistic regression, – and SE – the standard error of the
logistic regression β. The Z-score for each SNP is then computed as BETA/SE. We re-
strict our analysis to a single chromosome: chromosome 12. Of the original 430, 235
Z-scores in chromosome 12, we randomly mask 10% and impute them. In a similar
way as for the COPDGene data set, we perform the masking 10 times.

Reference panel

All imputation methods rely on an external genotype reference panel to perform
imputation. For our analyses we rely on the reference panel from the 1000 Genomes
Project, ref. 1, release 3 [1]. The panel contains 14 populations grouped in 4 super-
populations (see Table 3.2) and is based on the hg19 version of the human genome.

3.3.2 Experimental design

We benchmark Ardiss with ImpG-Summary [182], the most used summary statis-
tics imputation method that cannot account for mixed-ethnicity cohorts, and DIST-
MIX [135], a method that accounts for ethnicity of the original population, but does so
by relying either on the study’s original allele frequencies or on a manually-provided
ethnic composition estimate of the original study.
To assess the performance of each method, we compare the imputed Z-scores with

the original Z-scores on the untyped SNPs. The most commonly found evaluation
metrics are the Pearson’s correlation coefficient, the R2 score and the root-mean-
square-error (RMSE) between the imputed and original (masked) values. We com-
pute all these metrics, focus on the correlation coefficient in our analysis but also
report the details on R2 scores and RMSE, see Table 3.5.
All the runtime analyses were performed on a dedicated server running Ubuntu

14.04.5 LTS, with 2 CPUs (Intel R© Xeon R© E5-2620 v4 @ 2.10GHz), 8 GPUs
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3.3 Experimental results

Table 3.2: Details of the samples in the 1000 Genomes Project that are used in our analyses
as reference panel. The four superpopulations are: AFR (African), AMR (ad-
mixed American), EAS (East Asian), EUR (European).

Superpopulation Population Name Samples

AFR
ASW African-American SW 61
LWK Luhya 97
YRI Yoruba 88

AMR
CLM Colombian 60
MXL Mexican-American 66
PUR Puerto Rican 55

EAS
CHB Han Chinese 97
CHS Southern Han Chinese 100
JPT Japanese 89

EUR

CEU CEPH (Utah residents) 85
FIN Finnish 93
GBR British 89
IBS Spanish 14
TSI Tuscan 98

(NVIDIA R© GeForce R© GTX 1080), and 128 GB of RAM. The code is implemented
in Python 3. To evaluate the runtime required by each method, we run them inde-
pendently on our server, with no other concurrent processes. We report imputation
runtime for every chromosome separately as the imputation process is highly par-
allelizable, depending on the available computing capabilities. Speed measurements
were taken for the imputation of all the missing SNPs when using Ardiss and
ImpG-Summary. Given the slow nature of DISTMIX, we could only run it on five
chromosomes (chromosomes 18 to 22). The same setup is used to run the speed
assessments for varying reference panel sizes and window sizes.

3.3.3 COPDGene

As highlighted in the first part of Section 3.3.1, the COPDGene populations are used
to create different cohorts with precise mixtures of ethnicities. The obtained cohorts
enable a thorough analysis of the weights computed by Ardiss and an assessment
of the accuracy of the different imputation methods under different conditions.

Weights optimization

Before imputing missing Z-scores, Ardiss optimises and outputs a specific weight for
each sample from the reference panel. The individual weights can then be aggregated
according to the ethnic background of the sample they are related to and used to
reconstruct the population composition. Figure 3.2 shows the composition obtained
when looking at the weights obtained on the COPDGene mixed cohorts. Since no
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Figure 3.2: Stacked contributions of individuals from the two major super populations of in-
terest (African-descent, AFR, and European-descent, EUR) obtained by Ardiss
for sets of different ethnic compositions of the original study cohort. The theo-
retical composition is represented in red along the diagonal.

existing method can reconstruct the population structure of the original study from
Z-scores alone, a comparison with other baselines is infeasible.
ARD also picks up residual signal from the other populations of the reference panel,

as shown in Figure 3.3 and Figure 3.4. This weak noise contamination is partly due
to the moving-window strategy used when optimizing the ARD weights that forces
the averaging of the weights across different LD regions of the chromosome. We keep
these contributions during the imputation procedure that follows.
We also compare the weights obtained with ARD to the ones derived by DISTMIX

using the allele frequencies of the original study samples. The overall correlation be-
tween the two sets of weights is 0.839 and 0.936 when looking only at the populations
of interest, as shown in Figure 3.5. Hence, Ardiss reconstructs the study population
using only the typed Z-scores, without the need for allele frequencies of the original
study.

Imputation performance

Once the weights are computed, Ardiss and the three comparison partners are
applied to the Z-scores obtained from the GWAS performed on the 11 mixed-ethnicity
cohorts detailed in Section 3.3.1. Figure 3.6 reports the performance in terms of
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Figure 3.3: Relative contribution of individual samples as detected by the weights obtained
by ARD for the 100% AA | 0% NHW mix of population. Some residual weights
for non-African populations are picked up. Boxplots are obtained by taking
the weight output by Ardiss, i.e. one per sample from the reference panel,
and grouping them by their super-population code. Super-population codes are
reported in Table 3.2.
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Figure 3.4: Relative contribution of individual samples as detected by the weights obtained
by ARD for the 100% AA | 0% NHW mix of population. Some residual weights
for non-African populations are picked up. Boxplots are obtained by taking
the weight output by Ardiss, i.e. one per sample from the reference panel, and
grouping them by their population code. Population codes are reported in Table
3.2.
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Figure 3.5: Weights obtained by Ardiss (x axis) and by DISTMIX using the allele frequen-
cies of the original study (y axis) for a selection of populations. The color code
indicates the population to which the weight belongs and the different points
are obtained from the various sets of ethnicity mixture. Population codes are
reported in Table 3.2.

Pearson’s correlation coefficient of the three methods across the different mixed-
ethnicity cohorts.
Overall, Ardiss reports better performance when compared to ImpG-Summary

and DISTMIX across all mixtures of population (see Table 3.5 for the complete
results). The three methods all perform better with the homogeneous cohort of 100%
non-Hispanic whites than with the cohort of 100% African American samples. This is
hypothetically caused by two reasons: (i) there are more samples of European descent
in the reference panel (379 EUR vs 246 AFR), and (ii) populations of African descent
have a higher genetic diversity and less LD [42], making it harder to encompass all
the haplotype diversity with few reference samples.
When looking at the performance of Ardiss with respect to the one of ImpG-

Summary, the improvement is stronger with non-mixed cohorts. The 0% AA | 100%
NHW, 90% AA | 10% NHW and 100% AA | 0% NHW are the ethnic mixtures for
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Figure 3.6: Pearson’s correlation coefficients obtained during full genome imputation across
different mixtures of ethnicity sets using Ardiss and comparison partners.
ImpG-Summary is run using all the samples in the reference panel and DIST-
MIX computes the optimal weights from the allele frequencies. The shaded area
represents the standard deviation interval across the 10-fold validation.

which Ardiss clearly outperforms ImpG-Summary, with 2.08%, 2.55% and 3.20%
improvements respectively, as shown in Figure 3.7. Interestingly, the improvement
on the African-American population is considerably higher, hinting at the ability
of Ardiss to draw information from other individual samples that might not be in
the same super population group. With increasing admixture, the gain derived by
weighting different individual contributions decreases: at 50% AA | 50% EUR, the
improvement over ImpG-Summary is down at 1.34%. This is because the underlying
weight distribution gets closer to the actual distribution in the reference panel, which
is the one used by ImpG-Summary. In fact, all the available samples in the reference
panel were used with ImpG-Summary to mimic a realistic scenario with limited
knowledge on the original study population.
Similarly, Ardiss does considerably better than DISTMIX, with improvements

ranging from 4.03% for 0% AA | 100% NHW to 11.85% for 100% AA | 0% NHW,
as shown in Figure 3.8.
Furthermore, we also measure the performance of ImpG-Summary using (i) only

EUR samples, (ii) only AFR samples, and (iii) a combination of both on chromo-
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Figure 3.7: Relative improvement of Ardiss over ImpG-Summary for different randomised
mixed-ethnicity cohorts. Ardiss outperforms ImpG-Summary in all mixture
scenarios, with both methods being equally accurate in cases of very heteroge-
neous cohorts (with practically 50% of AA and NHW). The shaded area repre-
sents the standard deviation interval across the 10-fold validation.
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Figure 3.8: Relative improvement of Ardiss over DISTMIX for different randomised mixed-
ethnicity cohorts. Ardiss outperforms DISTMIX in all mixture scenarios across
the whole genome. The shaded area represents the standard deviation interval
across the 10-fold validation.
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Figure 3.9: Pearson’s correlation coefficients obtained during imputation across different
mixtures of ethnicity sets using Ardiss and other available methods on chro-
mosome 12. ImpG-Summary was run using all the samples in the reference
panel, with only the European samples (ImpG-Summary-EUR) and with only
the African samples (ImpG-Summary-AFR). DISTMIX computed the optimal
weights from the allele frequencies and was run with manual weight setting (for
which we provided it with the original fractions of ASW and CEU).

some 12. Moreover, we evaluate the performance of DISTMIX when provided with
“best-guess” weights, an approach that is realistic in a setting for which no informa-
tion about the original population is known. For each ethnicity mixture, we attribute
the effective percentage of weights to the ASW (Americans of African Ancestry in
Southwest USA) and to the CEU (Utah Residents (CEPH) with Northern and West-
ern European Ancestry). None of these approaches gives better results than the one
mentioned above, with the “best-guess” weights approach yielding the worst perfor-
mance of all. Results of these attempts are reported in Figure 3.9.
Additionally, leveraging the created dataset, we want to assess two other aspects

of our proposed method: (i) the influence of the imputation window size and (ii) the
impact of not accounting for covariates in the original study. We measure imputation
performance for various window sizes (see Figure 3.10) and notice that performance
initially improves with increasing size but starts deteriorating for larger windows.
The cause of this behaviour is to be found in the non-overlapping nature of the
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Figure 3.10: Pearson’s correlation coefficients obtained during Ardiss imputation on chro-
mosome 12 of the 0%AA | 100%NHW admixed cohort for different window
sizes. The performance initially increases for larger windows but deteriorates
for very large values. The reason is that larger windows lead to less successful
automatic relevance determination, since large windows encompass more LD
regions and dilute the signal. The imputation step is also affected as larger win-
dows negatively impact imputation by adding considerable noise from low-LD
SNPs.

ARD step: having larger windows implies overlapping more LD regions, making it
harder to precisely pinpoint the composition of the original study population by
giving more evenly distributed weights. Moreover, during imputation, long-distance,
low-LD SNPs encompassed by larger window sizes add noise to the Gaussian Process,
decreasing the quality of the imputation. For the dataset at hand, we observe optimal
performance with window size of 100 SNPs. This number could be different in other
studies with denser or sparser number of typed SNPs.

Furthermore, to assess the impact of not accounting for covariates on highlighting
potential spurious associations, we analyse the percentage of recovered top hits.
While correlation between masked and imputed Z-scores is a good global measure of
imputation performance, it overlooks the ranks of the recovered Z-scores. In practice,
if the original Z-score of a SNP ranks high in the study compared to the rest, the
imputed value for that SNP should also rank high. We therefore select the top 100
SNPs from the untyped SNPs, i.e., the highest absolute value of the Z-scores marked
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Table 3.3: Example percentage of recovered top 100 SNPs after imputation with Ardiss on
chromosome 12 for the 10% AA | 90% NHW cohort.

Typed Ardiss ImpG-Summary
With covariates 100 70 55
Without covariates 100 64 61

as missing, and compare them with the top 100 imputed Z-scores. Table 3.3 shows
how Ardiss recovers a comparable number of top hits when the original association
test is conducted with or without accounting for covariates. In the case of COPD,
the covariates used as confounders were (i) age and (ii) pack-years of smoking. The
results highlight the importance of accounting for covariates in GWAS. Nevertheless,
it is safe to assume that most reported and published GWAS association results are
obtained with the correct pipelines.

3.3.4 Insomnia complaints

The insomnia study provides a very realistic scenario for the imputation of associa-
tion summary statistics: publicly available data of a study for which we have little
to no previous knowledge of the evaluated population. We only compare Ardiss
to ImpG-Summary due to its wider adoption and ease of use. As highlighted in
Section 3.3.1, the study on insomnia complaints conducted by Hammerschlag and
colleagues relies on samples from the UK Biobank, a large data set of self-reported
traits and genotypes from the United Kingdom. The study participants reported
their ethnicities themselves, making them potentially uncertain and an ideal sce-
nario for our method. Table 3.4 summarises the results of the comparison. Ardiss
clearly outperforms the comparison partner, suggesting that it successfully evaluates
the study population’s structure and ideally imputes values for the study at hand.
This result highlights the benefits of using an adaptive method such as Ardiss in a
setting where the ethnic background of the study participants is not clearly defined.
As mentioned in Section 3.1, Ardiss can straightforwardly be extended to perform

imputation of β values. A β value is the regression coefficient obtained during the
association analysis performed between a genetic variant and a phenotype. For this
GWAS, the Pearson’s correlation coefficient between the imputed and masked values
for β values on chromosome 12 is 0.804 ± 0.008. The imputation accuracy is lower

Table 3.4: Imputation performance of Ardiss and ImpG-Summary on the publicly avail-
able summary statistics for the Insomnia Complaints GWAS.

Method Insomnia
Correlation RMSE

Ardiss 0.956 ± 0.001 0.093 ± 0.002
ImpG-Summary 0.889 ± 0.003 0.218 ± 0.005
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Figure 3.11: Breakdown of the run times for sequential imputation of summary statistics
across chromosomes 18 to 22.

than for Z-scores because the Z-score—defined as the ratio of β over its standard
error—contains more information about the association between the genetic variant
and the phenotype.

3.3.5 Speed performance

Ardiss can easily be deployed on GPU architectures to speed up the ARD com-
putation and the imputation. When compared with existing imputation methods,
Ardiss shows steep improvements in runtime performance. The total elapsed time
to impute the full genome missing SNPs (i.e. 11, 671, 761 SNPs) described in Sec-
tion 3.3.1 using ImpG-Summary was of ∼ 22h (79, 205.53 s) compared to ∼ 4h15
min (15, 287.61 s) for Ardiss and ∼ 2h20 (8, 530.12 s) when using Ardiss on a GPU.
Alternatively, users with strict time constraints also have the option to omit ARD
and get even faster imputation: ∼ 35 minutes (2, 118.95 s) for the whole genome, at
a cost of slightly less accurate imputation. On the contrary, DISTMIX was too slow
for full sequential imputation and its speed could only be measured for a subset of
chromosomes. In order to impute 1, 131, 674 SNPs on chromosomes 18 to 22, DIST-
MIX took ∼ 5h (17, 947.63 s), compared to the ∼ 15 minutes (907.50 s) of Ardiss
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Figure 3.12: Scaling of Ardiss runtime with increasing number of samples in the reference
panel. Ardiss scales linearly for an increasing number of samples as both the
weight learning step and the imputation step only rely on inner products of
genotypes for the computation of the covariance matrix. The experiments were
run on our server, under the conditions specified in Section 3.3.2, for the 0%
AA | 100% NHW study over chromosomes 18 to 22.

on a GPU. Figure 3.11 shows the sequential run times of Ardiss, ImpG-Summary
and DISTMIX on a subset of chromosomes. Since imputation methods are usually
run in parallel to impute multiple chromosomes separately, we computed the mean
ratio of run times of Ardiss and comparison partners across chromosomes: when
using GPUs the user can expect, on average, a method that is 9.38 times faster than
ImpG-Summary and 19.88 times faster than DISTMIX. When dropping the ARD
step, the fold change increases to 38.35 and 83.10 respectively.
To evaluate the theoretical runtimes highlighted in Section 3.2.4, we also measure

the runtime of Ardiss for varying number of samples in the reference panel (see
Figure 3.12) and for varying window size (see Figure 3.13).

3.3.6 Concluding remarks

In summary, we present Ardiss, a fast, accurate and adaptable method to impute
missing Z-scores while inferring the underlying population composition without the
need for any extra information such as allele frequencies or covariates of the original
study population. The proposed method matches typical use-case scenarios better
than any other available solution and outperforms them both in terms of performance
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and runtime. Ardiss relies on open-source libraries and is publicly available on
GitHub. The ever increasing body of publicly available results from association
studies in plants, humans and other model organisms, enables researchers that use
GWAS results to ask questions that go beyond the SNP-trait association. Integrating
Z-scores from different studies makes the imputation of missing values a necessity
which, coupled with the limited time researchers have to gather additional sample
information from a study publication, creates opportunities for software tools that
minimise the need for additional data. Ardiss is therefore a key tool to accelerate
all these pipelines.

Figure 3.13: Breakdown of the runtime for imputation over chromosomes 18-22 using differ-
ent window sizes. While the complexity of Ardiss is quadratic in the window
size, very small window sizes also have a longer runtime in practice. This is
due to the larger number of iterations the optimiser needs to converge for small
window sizes. The experiments were run on our server, under the conditions
specified in Section 3.3.2, for the 0% AA | 100% NHW study.

56

https://github.com/BorgwardtLab/ARDISS


3.3
E

xperim
entalresults

Table 3.5: Full results for the imputation performance of ARDISS, ImpG-Summary and DISTMIX for different ethnicity mixtures on
Chromosome 12. AA: African American, NHW: Non-Hispanic White.

Ethnicity mixture ARDISS ImpG-Summary DISTMIX

Correlation R2 score RMSE Correlation R2 score RMSE Correlation R2 score RMSE

0%AA 100%NHW 0.937864 0.879574 0.120343 0.918807 0.842510 0.157396 0.901536 0.810946 0.189162

10%AA 90%NHW 0.928537 0.862112 0.138552 0.914156 0.834141 0.166698 0.889022 0.786884 0.213162

20%AA 80%NHW 0.920273 0.846737 0.154707 0.908090 0.823282 0.178377 0.874940 0.760112 0.240772

30%AA 70%NHW 0.912832 0.832950 0.168865 0.901577 0.811679 0.190393 0.863474 0.738522 0.260892

40%AA 60%NHW 0.905113 0.818732 0.183526 0.893759 0.797866 0.204714 0.851413 0.715859 0.285431

50%AA 50%NHW 0.897775 0.805242 0.197344 0.885872 0.784054 0.218886 0.840613 0.695673 0.306743

60%AA 40%NHW 0.889782 0.790610 0.211961 0.876294 0.767376 0.235571 0.826718 0.670519 0.333172

70%AA 30%NHW 0.881272 0.775119 0.227334 0.865700 0.749122 0.253704 0.810649 0.641220 0.362157

80%AA 20%NHW 0.872744 0.759577 0.243203 0.854496 0.730003 0.273168 0.797976 0.617850 0.385391

90%AA 10%NHW 0.864019 0.743779 0.259342 0.842541 0.709811 0.293717 0.784062 0.593090 0.413472

100%AA 0%NHW 0.854559 0.726644 0.274134 0.828186 0.685850 0.315088 0.763999 0.558292 0.444259
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4 Wasserstein Kernels for
Structured Objects

In which optimal transport measures are em-
ployed to obtain fine-grained and sensitive ker-
nels for structured data.

Structured objects have long been subjects of interest for machine learning. The
high flexibility they offer make them the perfect fit to model real-life concepts and
processes. The recent advances in deep learning methods have shown that higher
performance can be reached with the most complex data (see Chapter 5 for a practical
example). This, in turn, has revived interest in kernel-based methods for structured
data. The classical R-Convolution framework proposed by Haussler [101] allows for
the easy construction of kernels for structured objects. It does so by comparing the
substructures of the objects and aggregating the substructure similarities. However,
the naïve application of the framework aggregates the substructures in a simple way,
discarding valuable information about the distribution of the individual components.
Moreover, it can be totally meaningless when applied to certain data structures, such
as time series subsequences.

In this chapter, we propose a novel approach based on optimal transport theory
that can capture subtler differences in data sets by simultaneously considering local
and global characteristics of the structured object. Part of the presented content is
based on the following publications:

- M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt. “Wasserstein
Weisfeiler-Lehman Graph Kernels”. In: Advances in Neural Information Processing Sys-
tems. 2019

- C. Bock, M. Togninalli, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt. “A Wasser-
stein Subsequence Kernel for Time Series”. In: 19th IEEE International Conference on
Data Mining (ICDM 2019). 2019

The chapter is organised as follows. Section 4.1 gives the relevant background on
R-Convolution kernels and optimal transport. Section 4.2 extends the presented no-
tions to graphs and guides the reader through the derivation of the Wasserstein
Weisfeiler–Lehman graph kernel (WWL). Section 4.3 explores the application of
the found concepts to time series and presents the Wasserstein Time series Ker-
nel (WTK).
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4 Wasserstein Kernels for Structured Objects

4.1 Introduction

Structured data can be found across all disciplines and considerable research efforts
to develop novel machine learning models are devoted to tackle structured data prob-
lems. In the field of bioinformatics alone, structured data is present in multiple forms.
For instance, graphs and trees have been used to model molecular structures [87] and
evolutionary lineages for different organisms [33]. Strings are ubiquitous too: with
the sheer amount of sequenced data collected in recent years, a myriad of models
based on sequence modeling have emerged [3, 211]. Moreover, other data types can
also be considered as structured data. Time series, for example, can be seen as sets
of subsequences that are linked by their temporal ordering.

Developing machine learning algorithms for these data has therefore been a re-
search goal for a long time. Tasks such as graph and time series classification gener-
ated a lot of interest from both theoretical and applied perspectives. For example,
several methods have been proposed for small drug classification and property pre-
diction, using graph regression and classification [215, 241]. Similarly, for biomedical
time series, different classification and pattern mining [25] approaches were devel-
oped.

Kernel methods are particularly interesting due to the flexibility they offer for very
diverse structures. This is especially the case for R-Convolution kernels [101], which
define similarity measures on substructures and aggregate them at the structure level
(more details in Section 4.1.1). However, the vanilla application of R-Convolution
kernels to graphs and time series poses some critical challenges. For graphs, the
aggregation step discards very valuable information about the distribution of sub-
structures. This problem is better described in Section 4.2. For time series, the
construction of kernels on substructures via the R-Convolution framework often re-
sults in meaningless kernels, as elaborated in Section 4.3.

To tackle these issues, we turn to Optimal Transport (OT), a field of mathematics
that has been increasingly popular in machine learning thanks to improvements of
the computational strategies to efficiently obtain Wasserstein distances [5, 57]. In
turn, these advancements have led to many applications ranging from generative
models [8] to new loss functions [83]. Sections 4.2 and 4.3 illustrate how notions from
OT can be used to improve kernels for graphs and time series. The remainder of
this section presents the relevant background on the popular framework proposed by
Haussler and introduces the optimal transport notions necessary to the development
of our new class of kernels.

4.1.1 R-Convolution kernels

Kernels are a class of similarity functions that offer interesting properties to be used
in learning algorithms [208]. Let X be a set with n elements and k: X ×X → R be a
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function. If k is (i) symmetric, and (ii) positive definite1, i.e.
∑n

i,j=1 cicj k(xi, xj) ≥ 0
for every ci ∈ R and xi, xj ∈ X , then k is said to be a kernel on X × X .
Equivalently, there exists a Hilbert space H (a complete inner product space) and

a map φ : X → H such that k(·, ·) can be equivalently expressed as
k(xi, xj) = 〈φ(xi), φ(xj)〉H, (4.1)

where 〈·, ·〉H indicate the inner product on H. H is also referred to as a Reproducing
Kernel Hilbert Space (RKHS) because its inner product reproduces the given kernel.

Thanks to this feature space view, a positive definite kernel can be interpreted
as a dot product in a high-dimensional space. This in turn allows for their use
in any learning algorithm that relies on dot products, such as support vector ma-
chines (SVMs), by virtue of the kernel trick [207].
Let us now consider the case of structured data. Let x ∈ X be a composite

structure and x1, . . . , xD are its “parts”, where xd is in the set Xd for each 1 ≤ d ≤ D.
Assuming that X ,X1, . . . ,XD are nonempty, separable metric spaces, we can define
a kernel kd on Xd for each 1 ≤ d ≤ D. Next, suppose we have x, y ∈ X with their
decompositions ~x = x1, . . . , xD and ~y = y1, . . . , yD. We can use kd to measure the
similarity kd(xd, yd) between the part xd and the part yd. We can then define the
R-Convolution of k1, . . . , kD denoted as k1 ? · · · ? kD(x, y) as the zero extension to
X × X of

k(x, y) =
∑

x1,...,xD∈~x
y1,...,yD∈~y

D∏
d=1

kd(xd, yd) (4.2)

Theorem 1 (R-Convolution kernels [101]). If k1, . . . , kD are kernels on X1×X1, . . . ,
XD ×XD, then k1 ? · · · ? kD(x, y) is a kernel on X × X .

For a proof, see the seminal paper by Haussler [101]. Since, in practice, ensuring
positive definiteness is not always feasible, many learning algorithms were recently
proposed to extend SVMs to indefinite kernels [14, 148, 178]. Some proposed ap-
proaches are not directly based on an RKHS but rather on Reproducing Kernel
Krĕın Spaces (RKKS) [177]. In an RKKS, positive definiteness of the kernel function
is left aside, so that kernels are allowed to be indefinite, i.e. neither positive definite
nor negative definite. Moreover, previous research [96] showed that in practice, SVM
classifiers can handle the integration of indefinite kernel matrices (see [140, 152, 262])
while still offering favourable predictive performance. This provides a solid foun-
dation for developing new kernel methods, especially when considering that positive
definiteness can impose restrictive conditions onto the underlying similarities induced
by a kernel function [73].

4.1.2 Optimal transport

Transportation theory, from which optimal transport methods stem, is a field of
mathematics aimed at comparing probability distributions by geometrical means.

1To simplify notation, we do not make a distinction between “positive definite” and “positive
semi-definite” in this thesis.
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4 Wasserstein Kernels for Structured Objects

One of its most commonly-used metrics is the Wasserstein distance. The Wasserstein
distance is a distance function between probability distributions defined on a specific
metric space. Let σ and µ be two probability distributions on a metric space M
equipped with a ground distance d, such as the Euclidean distance.

Definition 2. The Lp-Wasserstein distance for p ∈ [1,∞) is defined as

Wp(σ, µ) :=

(
inf

γ∈Γ(σ,µ)

∫
M×M

d(x, y)p dγ(x, y)

) 1
p

, (4.3)

where Γ(σ, µ) is the set containing all transportation plans γ ∈ Γ(σ, µ) over M ×M
with marginals σ and µ on the first and second factors, respectively.

TheWasserstein distance is a metric and satisfies the required axioms (namely non-
negativity, identity of indiscernibles, symmetry, and triangle inequality), provided
that d is a metric (for a proof, see the book of Villani [240], chapter 6). For the
scope of this thesis, we focus on the distance for p = 1 and, when mentioning the
Wasserstein distance, we refer to the L1-Wasserstein distance unless noted otherwise.
The Wasserstein distance is related to the optimal transport problem [240], for

which one wishes to find the most “inexpensive” (in terms of the predefined ground
distance) way to transport all the probability mass from distribution σ so as to
match distribution µ. A more intuitive example can be made by considering the
1-dimensional case, where the two distributions can be seen as piles of dirt or sand.
In this context, the Wasserstein distance is also referred to as the Earth Mover’s
Distance [204] and its solution represents the minimum effort required to move the
content of the first pile of dirt to reproduce the second one.
While Definition 2 is correct, it is not very practical to deal with finite sets, as we

will do in the remainder of the Chapter. In fact, as we saw in Section 4.1.1, when
using kernel methods on structured objects, we deal with sets of parts (also referred
to as substructures). Therefore, we can reformulate the Wasserstein distance as a
sum rather than an integral and rely on the matrix formulation of the optimisation
problem presented above. This definition is the one commonly encountered in the
optimal transport literature [204] and fits our setting better.

Definition 3. Let X ∈ Rn×m and Y ∈ Rn′×m be two matrices. We consider X and
Y to represent sets of feature vectors of dimension m, but of varying cardinalities n
and n′. The 1st Wasserstein distance between X and Y is defined as

W1(X,Y ) := min
P∈Γ(X,Y )

〈D,P 〉F, (4.4)

where D is an n× n′ matrix containing the pairwise distances dist(x, y) for (x, y) ∈
X × Y , P is the transport matrix, and 〈·, ·〉F is the Frobenius inner product.

The transport matrix P (or joint probability) contains the fractions indicating
the way to transport values from X to Y with the lowest total transport effort.
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Assuming that the total mass to transport equals 1 and that it is evenly distributed
in the elements of X and Y , the values for the rows and columns of P must sum to
1/n and 1/n′, respectively, and the sum of all the entries of P must therefore be equal
to 1.
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4 Wasserstein Kernels for Structured Objects

4.2 Wasserstein Graph Kernels

Many problems in chemo- and bioinformatics can be modelled using graphs. From
protein-protein interaction networks interrogation [170] to molecular properties pre-
diction [254], graph-based tasks have become ubiquitous. Graph kernels [241] have
been highly successful in tackling graph-specific problems thanks to their modeling
flexibility. In particular, graph kernels have shown excellent predictive performance
for various classification problems [173, 215, 258].
As briefly mentioned in Section 4.1, most graph kernels rely on the R-Convolution

framework. In practice, existing kernels decompose the graphs in subgraphs, compute
local similarities, and aggregate them at the global level. However, R-Convolution
kernels on graphs have known limitations: (i) the simplicity of the local similari-
ties aggregation procedure can hinder their ability to capture complex character-
istics of the graph; (ii) most proposed approaches do not generalise to graphs with
high-dimensional continuous node attributes, and extensions are not straightforward.
Some techniques have been suggested to address point (i). For instance, Fröhlich et
al. [84] introduced kernels based on the optimal assignment of node labels, although
the obtained kernels are not positive definite [239]. Lately, another method was pro-
posed by Kriege et al. [131]: it leverages a Weisfeiler–Lehman based colour refinement
scheme and then solves an optimal assignment problem to compute the kernel. Un-
fortunately, this method cannot handle continuous node attributes, leaving point (ii)
as an unsolved problem.
To overcome the aforementioned limitations, we developed a method that combines

the most distinctive vectorial representations obtained from the graph kernel litera-
ture with methods from optimal transport, which have recently gained considerable
attention in machine learning in general and in graph applications in particular [255].
In this section, we present the Wasserstein Weisfeiler–Lehman (WWL) graph ker-

nel. We provide the theoretical foundations of our method and showcase successful
experimental results on categorical and continuously attributed graphs.

4.2.1 Graph kernels

This Section introduces the necessary notation and background for graph kernels.
As introduced in Section 4.1.1, kernels are a class of similarity functions that have
interesting properties for learning algorithms. The R-Convolution framework is usu-
ally used to define kernels on graphs. Before detailing the way of constructing graph
kernels, let us introduce some notation.
We define a graph as a tuple G = (V,E), where V and E denote the set of nodes

and edges, respectively. In our case, we further assume that the edges are undirected.
Moreover, we denote the cardinality of nodes and edges for G as |V | = nG and
|E| = mG. For a node v ∈ V , we write N (v) = {u ∈ V | (v, u) ∈ E} and
|N (v)| = deg(v) to indicate its first-order neighbourhood, i.e. the set of connected
nodes, and the “degree” of the node.
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4.2 Wasserstein Graph Kernels

We say that a graph is labelled if its nodes have categorical labels. A label on
the nodes is a function l : V → Σ that assigns to each node v in G a value l(v)
from a finite label alphabet Σ. Additionally, we say that a graph is attributed if for
each node v ∈ V there exists an associated vector a(v) ∈ Rm. For the scope of this
thesis, a(v) are the node attributes and l(v) are the categorical node labels of node v.
In particular, the node attributes are high-dimensional continuous vectors, whereas
the categorical node labels are assumed to be integer numbers (encoding either a
category or an ordered discrete value). With the term “node labels”, we implicitly
refer to categorical node labels. Finally, a graph can have weighted edges, and the
function w : E → R defines the weight w(e) of an edge e := (v, u) ∈ E.

The main idea of R-Convolution kernels on graphs is to decompose graph G into
substructures and to define a kernel value k(G,G′) as a combination of substructure
similarities. The first kernel on graphs was introduced by Kashima et al. [115], where
node and edge attributes are used to generate label sequences based on a random
walk scheme. Building on this, a more efficient approach based on shortest paths [29]
was proposed: it computes each kernel value k(G,G′) as a sum of the similarities
between each shortest path in G and each shortest path in G′. However, despite
the large practical success of R-Convolution kernels, they usually rely on on aggre-
gation strategies that ignore valuable information such as the distribution of the
substructures. This is the case in the Weisfeiler–Lehman (WL) subtree kernel or one
of its variants [199, 214, 215], which obtain graph-level features by simply summing
the contribution of the node representations. To avoid these simplifications, we use
concepts from optimal transport theory (see Section 4.1.2), which can help to better
capture the similarities between graphs.

4.2.2 Wasserstein distance on graphs

The insufficient discriminative ability of current R-Convolution graph kernels caused
by their simple aggregation step that might mask important substructure differences
by averaging, prompted us to have a finer distance measure between structures and
their components. Our method is composed of the following steps:

(i) Obtain a set of node embeddings (i.e. vectorial representations) for each graph,

(ii) Measure the Wasserstein distance between each pair of graphs,

(iii) Compute a similarity measure to be used in a learning algorithm.

A schematic view of the first two steps can be found in Figure 4.1 and Algorithm 3
details the complete method. We now introduce the procedure to obtain a set of
embeddings and show how to integrate them in the Wasserstein distance.

Definition 4 (Graph Embedding Scheme). Given a graph G = (V,E), a graph
embedding scheme f : G → R|V |×m, f(G) = XG is a function that outputs a fixed-
size vectorial representation for each node in the graph. For each vi ∈ V , the i-th
row of XG is called the node embedding of vi.
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4 Wasserstein Kernels for Structured Objects

Figure 4.1: Schematic summary of the graph Wasserstein distance. First, f generates node
embeddings for two input graphs G and G′. Then, the Wasserstein distance
between the embedding distributions is computed.

Definition 4 permits the use of node labels, which are categorical attributes, as
one-dimensional attributes with m = 1.

Definition 5 (Graph Wasserstein Distance). Given two graphs G = (V,E) and
G′ = (V ′, E′), a graph embedding scheme f : G → R|V |×m and a ground distance
d : Rm ×Rm → R, we define the Graph Wasserstein Distance (GWD) as

Df
W (G,G′) := W1(f(G), f(G′)). (4.5)

where W1 is the Wasserstein distance as introduced in Definition 3. Equipped with
these definitions, we will now propose a graph embedding scheme inspired from the
Weisfeiler–Lehman (WL) kernel, extend it to continuously attributed graphs with
weighted edges, and show how to use it to obtain fine-grained GWDs.

Obtaining the graph embedding

The Weisfeiler–Lehman scheme. The Weisfeiler–Lehman subtree kernel [214,
215] was developed for labelled non-attributed graphs. It considers similarities among
subtree patterns defined by a propagation scheme that iteratively compares the labels
of nodes and their neighbours. At every iteration, the labels of the neighbouring
nodes are put in an ordered string sequence and appended to the original label. The
set of obtained strings is subsequently hashed to create updated compressed node
labels that are in turn attributed to the nodes of the graph. With every iteration of
the algorithm, these hashed labels represent increasingly larger neighbourhoods of
each node, enabling the comparison of extended substructures.
In particular, consider a graph G = (V,E), let `0(v) = `(v) be the initial node

label of v for each v ∈ V , and let H be the number of iterations of the WL scheme.
Then, we can define a recursive scheme to compute `h(v) for h = 1, . . . ,H by looking
at the ordered set of neighbours labels N h(v) = {`h(u0), . . . , `h(udeg(v)−1)} as

`h+1(v) = hash(`h(v),N h(v)). (4.6)
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We denote this procedure as the WL labelling scheme. We use perfect hashing for
the hash function, so that nodes at iteration h+1 will have the same label if and only
if their label and those of their neighbours are the same at the previous iteration h.

Extension to continuous attributes. For graphs with continuous attributes
a(v) ∈ Rm, we need to adapt the WL refinement step, which was not originally
defined for continuous cases. Existing approaches have been implicitly investigated
for node-level kernel similarity computations [173, 175], but they rely on extra hashing
steps for the continuous features. The goal is to create an explicit propagation scheme
that considers the node features of the entire neighbourhood and combines them for
the current node of interest. It is then easy to incorporate edge weights in the
average calculation of each neighbourhood. Suppose we have a continuous attribute
a0(v) = a(v) for each node v ∈ G. Then, we recursively define

ah+1(v) =
1

2

ah(v) +
1

deg(v)

∑
u∈N (v)

w((v, u)) · ah(u)

. (4.7)

When there are no edge weights, we set w(u, v) = 1. We use a weighted average
over the neighbourhood attributes instead of a sum. Additionally, we add the 1/2

to ensure a similar scale of the features across iterations. As we will discuss later,
we concatenate these features for building our kernel (see Definition 6) and obtain
better empirical results with similarly scaled features. Despite the fact that this does
not constitute a proper test of isomorphism, this refinement scheme can be seen as
an intuitive extension for continuous attributes of the one used on categorical node
labels by the WL subtree kernel, which has proven to be highly successful. Besides,
one can see the parallel with the propagation scheme used in several graph neural
networks, which have also shown brilliant performance for node classification tasks
on large graphs [67, 124, 126].

Graph embedding scheme. Leveraging the recursive procedure described
above, we propose a WL-based graph embedding scheme to generate node embed-
dings capturing both the node labels or attributes and the topology of the graph.

Definition 6 (WL features). Let G = (V,E) and let H be the total number of WL
iterations. Then, for every h ∈ {0, . . . ,H}, we define the WL features as

Xh
G = [xh(v1), . . . ,xh(vnG)]T , (4.8)

where xh(·) = `h(·) for categorically labelled graphs and xh(·) = ah(·) for continu-
ously attributed graphs. We denote Xh

G ∈ RnG×m as the node features of graph G at
iteration h. Then, the node embeddings of graph G at iteration H are defined as

fH : G→ RnG×(m(H+1))

G 7→ concatenate(X0
G, . . . , X

H
G ).

(4.9)
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Above, m denotes the dimensionality of the node attributes, and m = 1 for the
categorical labels. We note that a graph can be both categorically labelled and con-
tinuously attributed, it would therefore be possible to extend the above scheme by
jointly considering this information (for instance, by concatenating the node fea-
tures). However, this would require to define an appropriate distance measure be-
tween categorical and continuous data, a long-standing issue that will not be solved
in this thesis [221].

Computing the Wasserstein distance

With a defined Graph Embedding Scheme, we can then evaluate the pairwise Wasser-
stein distance between graphs using their node embeddings. To do so, we start by
defining and computing the ground distances between each pair of nodes. For cate-
gorical node features, we rely on the normalised Hamming distance:

dHam(v,v′) =
1

H + 1

H+1∑
i=1

ρ(vi, v
′
i), ρ(x, y) =

{
1, x 6= y
0, x = y

(4.10)

The Hamming distance is equal to 1 when two vectors share no features and 0 when
they are identical and can be imagined as the normalised sum of the discrete metric
ρ on each of the features. The choice of the Hamming distance is motivated by
the categorical nature of the Weisfeiler–Lehman features for nodes with categorical
labels, whose value carry no meaning. For continuous node features, on the other
hand, we use the Euclidean distance:

dE(v,v′) = ||v − v′||2. (4.11)

We then insert the ground distance in the equation of Definition 2 and compute the
Wasserstein distance via the network simplex method [186].
Computational complexity. The naïve computation of the Wasserstein dis-

tance has a complexity of O(n3log(n)), where n is the number of nodes in the two
graphs. However, recent advances in the optimal transport field have reduced the
practical runtime. In particular, Sinkhorn regularisation [57] enables approximations
that reduce the computational burden to near-linear time while preserving the orig-
inal distance [5]. Such speedups become particularly useful for larger data sets, i.e.
graphs with thousands of nodes and can be seamelessly integrated in our method. A
detailed discussion of the runtime performance is reported in Section 4.2.4.

4.2.3 From distance to graph kernels: theoretical
considerations

Once the Wassestein distance between two graphs is obtained, it is possible to con-
struct a similarity measure to accommodate various learning algorithms. We there-
fore propose a new graph kernel, present some considerations about its theoretical
properties, and show how to use it for graph classification tasks.
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Algorithm 3 Compute Wasserstein graph kernel

Input: Two graphs G1, G2; graph embedding scheme fH ; ground distance d; λ.
Output: kernel value kWWL(G1, G2).

XG1 ← fH(G1) // Generate node embeddings for G1

XG2 ← fH(G2) // Generate node embeddings for G2

D ← pairwise_dist(XG1 , XG2 , d) // Compute the ground distance between each
pair of nodes
DW (G1, G2) = minP∈Γ〈P,D〉 // Compute the Wasserstein distance
kW (G1, G2)← e−λDW (G1,G2) // Apply the Laplacian kernel

Definition 7 (Wasserstein Weisfeiler–Lehman). Given a set of graphs G =
{G1, . . . , GN}, λ ∈ R>0, and the GWD defined for each pair of graph on their WL
embeddings, we define the Wasserstein Weisfeiler–Lehman (WWL) kernel as

KWWL = e−λD
fWL
W . (4.12)

The proposed kernel is an instance of a Laplacian kernel, which offers favourable
conditions for positive definiteness for non-Euclidean distances [73]. We will now
detail a few theoretical considerations for the obtained kernel.
For Euclidean spaces, obtaining positive definite kernels from distance functions

is a well-studied topic [97]. However, obtaining positive definite kernels from opti-
mal transport distances, which are not isometric in their general form [75], remains
an open research question. Several attempts to draw general conclusions on the
definiteness of the Wasserstein distance were unsuccessful, but insightful results on
particular cases were obtained along the way. Here, we first collect some of these con-
tributions and use them to prove that our WWL kernel for categorical embeddings is
positive definite. Then, we elaborate further on the case of continuous embeddings,
for which we provide conjectures on practical conditions to obtain a positive definite
kernel.

Theoretical considerations for categorical embeddings

Before proceeding, it is helpful to recall the notion of positive definite kernel intro-
duced in Section 4.1.1.

Definition 8 (Schölkopf and Smola [208]). A symmetric function k : X × X → R is
called a positive definite (pd) kernel if it satisfies the condition

n∑
i,j=1

cicjKij ≥ 0, with Kij = k(xi,xj), (4.13)

for every ci ∈ R, n ∈ N and xi ∈ X .
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The matrix of kernel values K with entries Kij is denoted Gram matrix of k with
respect to x1, . . . ,xn. A conditional positive definite (cpd) kernel is a function that
satisfies Equation 4.13 for all ci ∈ R with

∑n
i=1 ci = 0. Analogously, a conditional

negative definite (cnd) kernel is a function that satisfies
∑n

i,j=1 cicjKij ≤ 0 for all
ci ∈ R with

∑n
i=1 ci = 0.

As mentioned above, obtaining kernels from distance functions is a well-studied
topic for Euclidean spaces.

Proposition 1 (Haasdonk and Bahlmann [97]). Let d(x,x′) be a symmetric, non-
negative distance function with d(x,x) = 0. If d is isometric to an L2-norm, then

knd
d (x,x′) = −d(x,x′)β, β ∈ [0, 2] (4.14)

is a valid cpd kernel.

Nevertheless, the Wasserstein distance is not isometric in its general form, meaning
that there is no metric-preserving mapping to an L2-norm. This is because the metric
space it induces strongly depends on the used ground distance [75].
Probability distributions are not the only type of data that do not always reside in

Euclidean spaces. Hence, Feragen et al. [73] defined the family of exponential kernels
relying on a non-Euclidean distance d as:

k(x,x′) = e−λd(x,x′)q for λ, q > 0, (4.15)

and denote them as geodesic kernels. Using earlier considerations from Berg et al.
[21], they also showed that, under certain conditions, the Laplacian kernel (q = 1 in
Equation 4.15) is positive definite.

Proposition 2 (Feragen et al. [73]). The geodesic Laplacian kernel is positive definite
for all λ > 0 if and only if the geodesic distance d is conditional negative definite.

Here too, considerations on the negative definiteness of Wasserstein distance func-
tions cannot be made on a general level. Nonetheless, certain ground distances guar-
antee the negative definite nature of the resulting Wasserstein distance. Particularly,
the Wasserstein distance equipped with the discrete metric ρ, already encountered
in Equation 4.10, was proved to be conditional negative definite [86].
These conclusions can be leveraged to prove that the Wasserstein distance with a

Hamming ground distance is conditional negative definite under specific conditions,
yielding, therefore, a positive definite kernel for the categorical WL embeddings.

Theorem 2. The categorical WWL kernel is positive definite for all λ > 0.

The Weisfeiler–Lehman labelling scheme relies on a shared dictionary across the
entire graph to generate the node embeddings. This, in turn, can be used to show
that the solutions of the optimal transport problem are shared across iterations. We
refer to the Weisfeiler–Lehman embedding scheme as defined in Definition 6 as fHWL,
and let DfWL

W be the corresponding GWD on a set of graphs G with categorical labels.
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Additionally, let dHam(v,v′) of Equation 4.10 be the ground distance of DfWL
W . The

following useful results hold.

Lemma 1. If a transportation plan γ with transport matrix P is optimal in the sense
of Definition 3 for distances dHam between embeddings obtained with fHWL, then it is
also optimal for the discrete distances ddisc between the H-th iteration values obtained
with the Weisfeiler–Lehman procedure.

Proof. We recall the matrix notation introduced in Equation 4.4, where M is the
cost or distance matrix, P ∈ Γ is the transport matrix, and 〈·, ·〉 is the Frobenius
dot product. Since we give equal weight (i.e., equal probability mass) to each of the
vectors in each set, Γ contains all nonnegative n× n′ matrices P with

n∑
i=1

pij =
1

n′
,

n′∑
j=1

pij =
1

n
, pij ≥ 0 ∀i, j (4.16)

To simplify notation, we denote the Hamming distance matrix
DHam(fhWL(G), fhWL(G′)), where the ij-th entry is given by the Hamming dis-
tance between the embedding of the i-th node of graph G and the embedding of
the j-th node of graph G′ at iteration h, by Dh

Ham. Similarly, we define Dh
disc to be

the discrete metric distance matrix, where the ij-th entry is given by the discrete
distance between feature h of node embedding i of graph G and feature h of node
embedding j of graph G′. We note that [Dh

Ham]ij ∈ [0, 1] and [Dh
disc]ij ∈ {0, 1} and

that, by definition (see Equation 4.10):

DH
Ham =

1

H

H∑
h=0

Dh
disc. (4.17)

Additionally, by the formulation of the WL procedure, two labels that are different
at iteration h will also differ at iteration h + 1. Therefore, the following identify
holds: [

Dh
Ham

]
ij
≤
[
Dh

disc

]
ij
, (4.18)

which, in turn, implies that [Dh
Ham]ij = 0 ⇐⇒ [Dh

disc]ij = 0.

An optimal transportation plan P h for fhWL embeddings satisfies〈
P h, Dh

Ham

〉
≤
〈
P,Dh

Ham

〉
∀P ∈ Γ. (4.19)

If we assume that P h is not optimal for Dh
d , we can define P ∗ such that〈

P ∗, Dh
disc

〉
<
〈
P h, Dh

disc

〉
. (4.20)
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Because the entries of Dh
disc are either 0 or 1, we can define the set of indices tuples

H =
{

(i, j) | [Dh
disc]ij = 1

}
and rewrite the inequality as∑

i,j∈H
p∗ij <

∑
i,j∈H

phij . (4.21)

We consider the constraints on the entries of P ∗ and P h, namely
∑

i,j p
∗
ij =

∑
i,j p

h
ij =

1, this implies that, by rearranging the transport map, there is more mass that could
be transported at 0 cost. In our formalism,∑

i,j /∈H

p∗ij >
∑
i,j /∈H

phij . (4.22)

However, as stated before, entries of Dh
d that are 0 are also 0 in Dh

Ham. Therefore, a
better transport plan P ∗ would also be optimal for Dh

Ham:〈
P ∗, Dh

Ham

〉
<
〈
P h, Dh

Ham

〉
, (4.23)

which contradicts the optimality assumption above. Hence, P h is also optimal for
DH

disc.

Lemma 2. If a transportation plan γ with transport matrix P is optimal in the sense
of Definition 3 for distances dHam between embeddings obtained with fHWL, then it is
also optimal for distances dHam between embeddings obtained with fH−1

WL .

Proof. Intuitively, the transportation plan at iteration h is a “refinement” of the
transportation plan at iteration h−1, where only a subset of the optimal transporta-
tion plans remain optimal for the new cost matrix Dh

H . Using the same notation as
for the previous proof, and considering the WL procedure, two labels that are differ-
ent at iteration h will also differ at iteration h+1. Therefore, the following identities
hold: [

Dh
Ham

]
ij
≤
[
Dh+1

Ham

]
ij

[
Dh

disc

]
ij
≤
[
Dh+1

disc

]
ij

(4.24)[
Dh

Ham

]
ij
≤
[
Dh

disc

]
ij
. (4.25)

An optimal transportation plan P h for fhWL(G) embeddings satisfies〈
P h, Dh

Ham

〉
≤
〈
P,Dh

Ham

〉
∀P ∈ Γ, (4.26)

which can also be written as〈
P h, Dh

Ham

〉
=

1

h

(
(h− 1) ·

〈
P h, Dh−1

Ham

〉
+
〈
P h, Dh

disc

〉)
. (4.27)

The values ofDh
Ham increase in a step-wise fashion for increasing h, and their ordering

remains constant, except for entries that were 0 at iteration h− 1 and became 1
h at
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iteration h. Since our metric distance matrices satisfy monotonicity conditions and
because P h is optimal for Dh

disc according to Lemma 1, it follows that〈
P h, Dh−1

Ham

〉
≤
〈
P,Dh−1

Ham

〉
∀P ∈ Γ. (4.28)

Therefore, P h is also optimal for fh−1
WL (G) embeddings.

Thanks to these two lemmas, we can show that the Wasserstein distance between
categorical WL node embeddings is a conditional negative definite function.

Theorem 3. DfWL
W (·, ·) is a conditional negative definite function.

Proof. Using the same notation as for the previous proofs and the formulation in
Equation 4.4, we can write

DfWL
W (G,G′) = min

PH∈Γ

〈
PH , DH

Ham

〉
(4.29)

= min
PH∈Γ

1

H

H∑
h=0

〈PH , Dh
disc〉. (4.30)

Let P ∗ be an optimal solution for iteration H. Then, from Lemmas 1 and 2, it is
also an optimal solution for DH

disc and for all h = 0, . . . ,H − 1. We can rewrite the
equation as a sum of optimal transport problems:

DfWL
W (G,G′) =

1

H

H∑
h=0

min
P ∗∈Γ

〈P ∗, Dh
disc〉. (4.31)

This corresponds to a sum of 1-dimensional optimal transport problems relying on the
discrete metric, which were shown to be conditional negative functions [86]. There-
fore, the final sum is also conditional negative definite.

Finally, we can prove Theorem 2.

Proof of Theorem 2. Theorem 2 in light of Proposition 2 implies that the WWL
kernel of Definition 7 is positive definite for all λ > 0.

Let us now consider the case of continuously attributed graphs.

Theoretical considerations for continuous embeddings

While we managed to prove the positive definiteness of our kernel for the categorical
case, this is considerably more difficult to do for the continuous case. We conjecture
that, under certain conditions, the kernel derived for graphs with continuous features
is also positive definite. Although no formal proof is provided in this subsection, we
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provide arguments to support this conjecture, which is also confirmed by empirical
findings.2

As briefly mentioned for the categorical embeddings, the metric space induced by
the Wasserstein metric for a given ground distance greatly differs. In particular, the
curvature of such space plays an important role in the possible positive definiteness.
To explore this further, we need to define Alexandrov spaces.

Definition 9 (Alexandrov space). Given a metric space and a real number k, the
space is called an Alexandrov space if its sectional curvature is ≥ k.

Intuitively, the curvature indicates to what extent a geodesic triangle will be de-
formed in the space. The case of k = 0 is special as no distortion happens here—
hence, spaces that satisfy this property are called flat. The definition of Alexandrov
spaces is required for the following proposition, taken from a theorem by Feragen et
al. [73], which highlights the relationship between a kernel and its underlying metric
space.

Proposition 3. The geodesic Gaussian kernel (i.e., q = 2 in Equation 4.15) is
positive definite for all λ > 0 if and only if the underlying metric space (X, d) is flat
in the sense of Alexandrov, i.e., if any geodesic triangle in X can be isometrically
embedded in a Euclidean space.

Nevertheless, it is unlikely that the space induced by the Wasserstein distance is
locally flat. In fact, even the geodesics (i.e., a generalisation of the shortest path to
arbitrary metric spaces) between graph embeddings are not necessarily unique, as
we subsequently show. That is why we use the geodesic Laplacian kernel instead of
the Gaussian one: it poses less strict requirements on the induced space, as stated in
Proposition 2. Specifically, the metric used in the kernel function needs to be cnd.
While we cannot directly prove this, we can show that the converse is not true. To
this end, we first notice that the metric space induced by the GWD, which we refer
to as X, does not have a curvature that is bounded from above.

Definition 10. A metric space (X, d) is said to be CAT(k) if its curvature is bounded
by some real number k > 0 from above. This can also be seen as a “relaxed” definition,
or generalisation, of a Riemannian manifold.

Theorem 4. X is not in CAT(k) for any k > 0, meaning that its curvature is not
bounded by any k > 0 from above.

Proof. This follows from a similar argument presented by Turner et al. [235]. Let G
and G′ be two graphs. Assume that X is a CAT(k) space for some k > 0. Then,
it follows [36, Proposition 2.11, p. 23] that if DfWL

W (G,G′) < π2/k, there is a unique
geodesic between them. Nonetheless, we can construct a family of graph embeddings
for which this is not the case. To do so, let ε > 0 and fWL(G) and fWL(G′) be two

2We empirically observe that for all considered data sets, after standardisation of the input features
before the embedding scheme, GWD matrices are conditional negative definite.
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graph embeddings with node embeddings a1 = (0, 0), a2 = (ε, ε) as well as b1 = (0, ε)
and b2 = (ε, 0), respectively. Because we use the Euclidean distance as a ground
distance, there will be two optimal transport plans: the first maps a1 to b1 and a2

to b2, whereas the second maps a1 to b2 and a2 to b1. Hence, we have found two
geodesics that connect G and G′. Since we may choose ε to be arbitrarily small, the
space cannot be CAT(k) for k > 0.

While this does not provide an upper bound on the curvature, we have the following
conjecture.

Conjecture 1. X is an Alexandrov space with curvature bounded from below by zero.

For a proof idea, we refer to Turner et al. [235]; the main argument aims at char-
acterizing the distance between triples of graph embeddings. This first conjecture is
particularly helpful because being a nonegatively curved Alexandrov space is a nec-
essary prerequisite for X to be a Hilbert space [216]. From there, we refer to Feragen
et al. [73], who show that cnd metrics and Hilbert spaces are intricately linked.
We therefore have some hope in obtaining a cnd metric, although we do not have

a clear proof yet. Our empirical results indicate that it is possible to turn the GWD
into a cnd metric with proper normalisation of the input features. Intuitively, for
high-dimensional spaces, standardisation of input features changes the curvature of
the induced space by making it locally (almost) flat.
To further support this argumentation, we look at an existing way to ensure pos-

itive definiteness of Wasserstein distances. One can use an alternative called sliced
Wasserstein [192], where high-dimensional distributions are projected into many ran-
dom one-dimensional spaces and the Wasserstein distance is obtained by combin-
ing the one-dimensional distances. Kolouri et al. [127] showed that each single one-
dimensional Wasserstein distance is conditional negative definite, guaranteeing the
negative definiteness of the combined Wasserstein distance.

Practical considerations

We showed that the proposed kernel is positive definite in the case of categorically
labelled graphs and can thus be used in kernel-based learning algorithm while en-
suring convergence. However, we could not prove that this holds for continuously
attributed graphs. Therefore, to ensure the theoretical and practical correctness of
our results in the continuous case, we employ recently developed methods for learning
with indefinite kernels.
More particularly, we leverage learning methods for Krĕın spaces, which have been

expressly designed to work with indefinite kernels [178]. Kernels that are not positive
definite in fact induce reproducing kernel Krĕın spaces (RKKS), which are a generali-
sation of reproducing kernel Hilbert spaces. These spaces share similar mathematical
properties with RKHS and are therefore amenable to certain machine learning ap-
proaches. In particular, recent algorithms [148, 177] are capable of solving learning
problems in RKKS and reported results indicate that there are clear benefits (in
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terms of classification performance, for example) in learning in such spaces. There-
fore, when evaluating our kernel WWL in the continuous attributes scenario, we rely
on a Krĕın SVM (KSVM, [148]) as a classifier.

4.2.4 Experimental evaluation

We now analyse the empirical performance of WWL in comparison with state-of-
the-art graph kernels. In particular, we observe that WWL (i) performs on-par with
the best graph kernel for categorically labelled data, and (ii) outperforms all the
state-of-the-art graph kernels for attributed graphs.

Data sets

For the evaluation of the different graph kernels, we rely on real-world data sets
from diverse sources [30, 215, 241]. A detailed list of the used data sets can be found
in Table 4.1. Our data sets belong to multiple chemoinformatics domains, includ-
ing small molecules (MUTAG, PTC-MR, NCI1), macromolecules (ENZYMES,
PROTEINS, D&D) and chemical compounds (BZR, COX2). We further consider
a movie collaboration data set (IMDB, see [258] for a description) and two synthetic
data sets Synthie and Synthetic-new, created by Morris et al. [173] and Feragen
et al. [72], respectively.
Depending on the scenario, we use their categorical labels or continuous attributes

for evaluation. MUTAG, PTC-MR, NCI1, and D&D only have categorical node
labels; ENZYMES and PROTEINS have both categorical labels and continuous
attributes; IMDB-B, BZR, and COX2 only contain continuous attributes; finally,
BZR-MD and COX2-MD have both continuous node attributes and edge weights.
The BZR-MD and COX2-MD data sets do not have node attributes but contain the
atomic distance between each connected atom as an edge weight. We do not consider
distances between non-connected nodes [130] and we equip the node with one-hot-
encoding categorical attributes representing the atom type, i.e., what is originally
intended as a categorical node label. On IMDB-B, IMDB-Binary was used with
the node degree as a (semi-)continuous feature for each node [258]. For all the other
data sets, we use the off-the-shelf version provided by Kersting et al. [119]. All the
data sets have been downloaded from Kersting et al. [119].

Experimental setup

We evaluate WWL in comparison with other state-of-the-art graph kernels as well
as with relevant baselines. To guarantee maximal comparability, we use the exact
same data set splits for all methods. In the categorical labels scenario, we compare
with WL [214] and WL-OA [131] and with the vertex (V) and edge (E) histograms.
We do not include all existing graph kernels because Kriege et al. [131] already shows
that the WL-OA is superior to other existing approaches.
For the continuous attributes scenario, we compare with GraphHopper (GH) [72]

and two instances of the hash graph kernel (HGK-SP; HGK-WL) [173]. Additionally,
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Table 4.1: Details of the experimental data sets.

Data set Class Ratio Node Labels Node Attributes Edge Weights # Graphs Classes

MUTAG 63/125 X - - 188 2
NCI1 2053/2057 X - - 4110 2
PTC-MR 152/192 X - - 344 2
D&D 487/691 X - - 1178 2

ENZYMES 100 per class X X - 600 6
PROTEINS 450/663 X X - 1113 2

BZR 86/319 X X - 405 2
COX2 102/365 X X - 467 2
SYNTHIE 100 per class - X - 400 4
IMDB-Binary 500/500 - (X) - 1000 2
Synthetic-new 150/150 - X - 300 2

BzR-MD 149/157 X - X 306 2
COX2-MD 148/155 X - X 303 2

we compare with a simple continuous vertex histogram baseline (VH-C), which is
defined as a radial basis function (RBF) kernel between the sums of the obtained
graph node embeddings. Furthermore, to assess the advantage of using the Wasser-
stein distance in our method, we compare with a variation of our technique where
we replace it with an RBF kernel. Specifically, given two graphs G1 = (V1, E1) and
G2 = (V2, E2), with |V1| = n1 and |V2| = n2, we start by computing the Gaus-
sian kernel between each pair of node embeddings obtained with the same graph
embedding scheme as for WWL; therefore obtaining a kernel matrix between node
embeddings K ′ ∈ n1×n2. We then sum up all the values Ks =

∑n1
i=1

∑n2
j=1K

′
i,j and

set K(G1, G2) = Ks. We repeat this procedure for each pair of graphs to obtain the
final graph Gram matrix and refer to this baseline as RBF-WL.
To solve the classification task, we rely on a Support Vector Machine (SVM), or

a Krĕın-SVM (KSVM) for WWL in the continuous scenario. For each data set, we
use a 10-fold cross-validation, selecting the parameters on the training set only. We
repeat each cross-validation split 10 times and report average and standard deviation
of the classification accuracies. As mentioned above, the used splits are exactly the
same for each evaluated method to ensure a fully comparable setup.
The ranges used for the hyperparameter selection are the following: the parameter

of the SVM C = {10−3, . . . , 103} (for continuous attributes) and C = {10−4, . . . , 105}
(for categorical attributes); the WL number of iterations h = {0, . . . , 7}; the λ
parameter of the WWL λ = {10−4, . . . , 101}. For RBF-WL and VH-C, we use the
default γ parameter for the Gaussian kernel, i.e., γ = 1/m, where m is the size of the
node attributes. For the GH kernel, we also fix the γ parameter to 1/m. For HGK,
we set the number of iterations to 20 for each data set, except for SYNTHETICnew
where we use 100 (these setups were suggested by the respective authors [72, 173]).
Moreover, since HGK is a randomised method, we compute each kernel matrix 10
times and average the results. When the dimensionality of the continuous attributes
m > 1, we normalise the input features to ensure comparability among the different
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Table 4.2: Classification accuracies on graphs with categorical node labels. Comparison
of Weisfeiler–Lehman kernel (WL), optimal assignment kernel (WL-OA), and
Wasserstein Weisfeiler–Lehman (WWL, ours).

Method MUTAG PTC-MR NCI1 PROTEINS D&D ENZYMES

V 85.39±0.73 58.35±0.20 64.22±0.11 72.12±0.19 78.24±0.28 22.72±0.56
E 84.17±1.44 55.82±0.00 63.57±0.12 72.18±0.42 75.49±0.21 21.87±0.64

WL 85.78±0.83 61.21±2.28 85.83±0.09 74.99±0.28 78.29±0.30 53.33±0.93
WL-OA 87.15±1.82 60.58±1.35 86.08±0.27 76.37±0.30∗ 79.15±0.33 58.97±0.82

WWL 87.27±1.50 66.31±1.21∗ 85.75±0.25 74.28±0.56 79.69±0.50 59.13±0.80

Table 4.3: Classification accuracies on graphs with continuous node or edge attributes. Com-
parison of hash graph kernel (HGK-WL, HGK-SP), GraphHopper kernel (GH),
and Wasserstein Weisfeiler–Lehman (WWL, ours).

Method ENZYMES PROTEINS IMDB-B BZR COX2 BZR-MD COX2-MD

VH-C 47.15±0.79 60.79±0.12 71.64±0.49 74.82±2.13 48.51±0.63 66.58±0.97 64.89±1.06
RBF-WL 68.43±1.47 75.43±0.28 72.06±0.34 80.96±1.67 75.45±1.53 69.13±1.27 71.83±1.61

HGK-WL 63.04±0.65 75.93±0.17 73.12±0.40 78.59±0.63 78.13±0.45 68.94±0.65 74.61±1.74
HGK-SP 66.36±0.37 75.78±0.17 73.06±0.27 76.42±0.72 72.57±1.18 66.17±1.05 68.52±1.00

GH 65.65±0.80 74.78±0.29 72.35±0.55 76.49±0.99 76.41±1.39 69.14±2.08 66.20±1.05

WWL 73.25±0.87∗ 77.91±0.80∗ 74.37±0.83∗ 84.42±2.03∗ 78.29±0.47 69.76±0.94 76.33±1.02

feature scales. This is performed in every data set except for BZR and COX2, due
to the meaning of their node attributes, which are 3-D location coordinates.
Finally, to implement our method, we rely on existing Python implementations

for the WL kernel [224] and the Wasserstein distance [77] and make our code pub-
licly available on GitHub. Additionally, we rely on the original implementations of
the comparison partners to compute WL-OA, HGK and GH. All our analyses were
performed on a shared server running Ubuntu 14.04.5 LTS, with 4 CPUs (Intel Xeon
E7-4860 v2 @ 2.60GHz) each with 12 cores and 24 threads, and 512 GB of RAM.

Results and discussion

Table 4.2 and Table 4.3 summarise the classification accuracy results for the cat-
egorically labelled and continuously attributed data sets, respectively. The best
performing methods up to the resolution implied by the standard deviation across
repetitions are highlighted in boldface. Moreover, we evaluate the significance by
performing 2-sample t-tests with a significance threshold of 0.05 and Bonferroni
correction for multiple hypothesis testing within each data set. Methods that are
significantly outperforming the other ones are highlighted by an asterisk. Addition-
ally, Figure 4.2 shows a visual comparison of the performance across continuously
attributed data sets. Furthermore, we report results on synthetic data (Synthie
and SYNTHETIC-new) in Table 4.4.
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Figure 4.2: Classification accuracies on graphs with continuous node or edge attributes.
Comparison of vertices histogram baseline (VH-C), RBF Weisgeiler–Lehman
(RBF-WL), hash graph kernel (HGK-WL, HGK-SP), GraphHopper kernel
(GH), and Wasserstein Weisfeiler–Lehman (WWL, ours).

Categorical labels. In the categorical scenario, WWL improves over the classical
WL. Moreover, it largely improves over WL-OA in PTC-MR and is slightly bet-
ter on D&D, whereas WL-OA is better on NCI1 and PROTEINS. The WL-OA
approach offers very comparable performance with our method. This is unsurpris-
ing, as the main idea behind WL-OA is to solve the optimal assignment problem
by defining Dirac kernels on histograms of node labels across multiple iterations of
WL, which shares motivations with our method. However, this formulation relies on
optimal assignment rather than the optimal transport, therefore requiring one-to-
one mappings instead of continuous transport maps. Moreover, we solve the optimal
transport problem on concatenated embeddings, therefore jointly using representa-
tions at multiple iterations of the WL scheme. On the contrary, WL-OA performs
optimal assignment at each iteration separately, combining them in a second stage.
WWL therefore offer strong performance for graphs with categorical labels but, most
importantly, can handle continuously attributed graphs very well.

Continuous attributes. In the continuous attributes setting, WWL is statisti-
cally significantly better on 4 out of 7 data sets and is on par on the last 3. To
validate these observations, we compute the average rank of each method in the
continuous scenario. The ranks calculated from Table 4.3 are WWL = 1, HGK-WL
= 2.86, RBF-WL = 3.29, HGK-SP = 4.14, and VH-C = 5.86. WWL always scores
first: this is a considerable improvement over the state of the art. As discussed in
Section 4.2.3, the kernel derived from continuous attributes is not guaranteed to be
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positive definite. Nevertheless, in practice we observe the kernel matrices to be pos-
itive definite, further supporting the theoretical considerations previously discussed.

Synthetic data sets. The results for synthetic data sets are presented in a separate
table due to the severely unstable and unreliable results that we obtained. For both
data sets, the variation between the different methods is high and minor changes in
the node features (e.g. normalisation or scaling of the embedding scheme) resulted
in substantial change of performance (up to 15%). Finally, other authors showed
that a WL with degree treated as a categorical node label outperforms most of
the competitors on Synthetic-new, indicating that the node attributes are not
informative[72]. These reasons led us to exclude these data sets from the main
analysis, as they could not be used to fairly assess the quality of the evaluated
methods.

Comparison with hash graph kernels. Among the existing methods designed
for continuously attributed graphs, HGK is the closest to our approach, as it shares
a somewhat related propagation scheme. By relying on multiple random hashing
functions, the HGK extends a set of existing graph kernels to the continuous set-
ting, overcoming the limitations of perfect hashing, which cannot account for small
differences in continuous attributes. The main drawback of the random hashing of
HGK is that it requires additional parameters and introduces stochasticity in the
computation of the kernel. By contrast, our propagation scheme is fully continuous
and relies on the Wasserstein distance to capture small differences in distributions
of continuous node attributes. Finally, the performance gap observed in practice
highlights the benefits of an entirely continuous representation of the graphs over
hashing.

Performance under noise. Finally, we perform an additional experiment to eval-
uate the difference between WL and WWL for noisy Erdős–Rényi graphs (n = 30,
p = 0.2). We report the relative distance between G and its permuted and perturbed
variant G′, with respect to a third independent graph G′′ for an increasing level of

Table 4.4: Classification accuracies on synthetic graphs with continuous node attributes.
Comparison of hash graph kernel (HGK-WL, HGK-SP), GraphHopper kernel
(GH), and Wasserstein Weisfeiler–Lehman (WWL, ours).

Method SYNTHIE SYNTHETIC-new

VH-C 27.51± 0.00 60.60± 1.60
RBF-WL 94.43± 0.55 86.37± 1.37

HGK-WL 81.94± 0.40 95.96± 0.25∗

HGK-SP 85.82± 0.28 80.43± 0.71

GH 83.73± 0.81 88.83± 1.42

WWL 96.04± 0.48∗ 86.77± 0.98
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Figure 4.3: Relative distance between (Erdős–Rényi) graph G and the relative permuted
and perturbed variant G′ with respect to a third independent graph G′′ for an
increasing noise level for both the Weisfeiler–Lehman (WL) and the Wasserstein
Weisfeiler–Lehman (WWL) distances.

noise (i.e., edge removal) in Figure 4.3. We see that WWL is more robust against
noise.

Runtime considerations

In the categorical labels scenario, both WL and WL-OA scale linearly with the
number of nodes, therefore being faster than WLL. Since the different methods we
consider rely on various programming languages and implementation, it is tricky to
provide an accurate runtime comparison. Nevertheless, the Wasserstein graph kernels
remain competitive as the kernel matrix can still be computed in a median time of
40 s, depending on the number and size of graphs. In the continuous attributes
scenario, our approach has a runtime similar to GH. Nonetheless, GH was shown to
empirically scale quadratically with the number of graph nodes [72], which is faster
than the computation of the Wasserstein distance with complexity O(n3log(n)). On
the other hand, HGK is considerably slower due to the multiple repetitions needed
to balance the randomisation.
As mentioned in Section 4.1.2, the complexity of the Wasserstein distance compu-

tation can be reduced to near linear time by using the Sinkhorn approximation [5].
To evaluate the benefits of such an approximation on WWL, we simulate a fixed
number of graphs with varying average number of nodes per graph and measured
the execution speed of our method. We generate random node embeddings for 100
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graphs, where the number of nodes is taken from a normal distribution centered
around the average number of nodes. We then compute the kernel matrix for each
set of graphs to compare the runtime of regular Wasserstein with the Sinkhorn reg-
ularised optimisation. Figure 4.4 shows how the speedup begins to be beneficial
at approximately 100 nodes per graph, which is larger than the average number of
nodes in the benchmark data sets we used.
Moreover, we want to ensure that using Sinkhorn approximation does not decrease

our model accuracy. We therefore evaluate it on the Enzymes data set. Recalling
that the Sinkhorn method solves the following entropic regularisation problem,

P γ = arg min
P∈Γ(X,X′)

〈P,M〉 − γh(P ),

we further need to select γ and we do that in the cross-validation step. We obtain
a final accuracy of 72.08 ± 0.93, which remains above the current state of the art.
Values of γ selected most of the time are 0.3, 0.5, and 1.

Concluding remarks

We here presented a new family of graph kernels: the Wasserstein Weisfeiler–-
Lehman (WWL) graph kernels. We provide theoretical motivations for our approach
and show that our method outperforms the state of the art for graph classification
in the scenario of continuous node attributes and matches the state of the art in the
categorical labels scenario. WWL is a great way to better capture subtle similarities
between graphs that are either categorically labelled or continuously attributed and
supports the aptness of Optimal Transport for machine learning applied to structured
objects, as introduced in Section 4.1.
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Figure 4.4: Runtime performance of the WWL Kernel computation step with a fixed number
of graphs. We also report the time taken to compute the ground distance matrix
as distance_time. Here, total_time is the sum of the time to compute the ground
distance and the time taken to solve the optimal transport (ot) problem for the
regular solver or the Sinkhorn-regularised one. The logarithmic scale on the
right-side figure shows how, for a small average number of nodes, the overhead
to run Sinkhorn is higher than the benefits.
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4.3 Wasserstein Time series Kernels

Time series are even more widespread than graphs in biomedical applications [25,
109]. Devising resilient machine learning algorithms for such applications is therefore
of high interest, making time series classification (TSC) a particularly active area of
research. Many TSC approaches have been proposed, relying on very diverse method-
ologies. Some make use of short and predictive subsequences [260] while others are
based on distance measures such as dynamic time warping (DTW). A comprehen-
sive overview of competitive methods for TSC was assembled by Bagnall et al. [12].
Nevertheless, few methods relying on kernels have been advanced and their successes
for TSC are limited. This is due to two main reasons: (i) the similarity measures
used are either insensitive or hypersensitive to time shifts, and (ii) subsequence-based
kernels naïvely built using the R-Convolution framework are generally meaningless.

Hence, building on what was done for graphs in Section 4.2, we propose a mean-
ingful kernel for time series that captures both the similarities between subsequence
distributions in addition to their pairwise similarities. In this Section, we present the
Wasserstein Time Series Kernel (WTK) and show its practical benefits.

4.3.1 Time series kernels

As already briefly mentioned, few kernel methods have been proposed for TSC. Here,
we present some existing definite and indefinite kernels (as defined in Section 4.1.1).
The very first kernel-based classification approaches encompassed standard SVM
kernels (linear, RBF) on whole time series [205]. Then, kernels relying on cross-
correlation were proposed to capture periodic patterns [243]. In parallel, methods
based on DTW kernels [150] or alignment of full time series [55, 58] were published.
The DTW-based kernels being indefinite in general, investigations of the impact of
indefinite kernels on classification performance lead to recursive edit distance kernel
for TSC [165].

Daliri [59] proposes KEMD, a kernel using the earth mover distance on the his-
tograms of the time series data points, and evaluate it on EEG classification. While
this kernel also relies on optimal transport, it fundamentally differs from the one
we propose, as we specify in Section 4.3.2. Finally, Cuturi and Vert [58] define an
alignment kernel through the polytope of all possible alignments (two sequences are
similar if they share a wide set of efficient alignments) - extended in [55] to rely less
on global information.

Nevertheless, methods that apply the R-Convolution framework on time series can
suffer from certain pitfalls. In particular, this can lead to completely meaningless
similarity measures. If one considers a time-series as a structured object where
its subsequences are the parts, the construction of a naïve R-Convolution kernel
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resembles the following. Let T, T ′ refer to two time series, and S,S ′ to their respective
sets of subsequences, the obtained kernel is defined as

k
(
T, T ′

)
:=

1

|T | · |T ′|
∑
S∈S

∑
S′∈S′

kbase
(
S, S′

)
, (4.32)

where kbase represents the base kernel function. Choosing a linear kernel as kbase (or
equivalently, the standard inner product in Euclidean space), will lead to

k
(
T, T ′

)
=

1

|T | · |T ′|
∑
S∈S

∑
S′∈S′

S>S′

≈ 1

|T | · |T ′|

(∑
S∈S

S>

)(∑
S′∈S′

S′

)
≈ T>T ′,

(4.33)

where the last approximation is given by the observation that in the respective sums
over all subsequence feature vectors, all the observations of length k, except for the
leading k− 1 as well as the trailing k− 1 observations, will appear at all dimensions
in the sum. In other terms, for several values of k, the basic R-Convolution above
degenerates into a simple comparison of the mean values of T and T ′. As a conse-
quence, the kernel becomes meaningless, especially in the case of z-normalised data
sets, which are suggested to always be use in time series analysis [194]. A similar
argumentation has been made by Keogh and Lin [117], where the authors argue that
clustering time series can be inherently meaningless.

Figure 4.5 shows how this is observed in practice for some data sets from the
UCR Time Series Archive (see Section 4.3.4 for details). The x-axis indicates the
subsequence length w, while the y-axis depicts the mean of the kernel matrix values.
For small values of the subsequence length, the mean tends to stay near zero for most
data sets. As some of our experiments in Section 4.3.4 further show, even increasing
the subsequence length w to a significant percentage of the original time series length
does not result in decent predictive performance.

2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

0.15

Subsequence length w

M
ea
n
va
lu
e Coffee

Gun Point
Plane
Trace

Figure 4.5: The mean value of a kernel matrix constructed for a linear kernel, using a
straightforward application of the R-Convolution framework.
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To avoid this construction pitfall, here too, we leverage concepts from optimal
transport (see Section 4.1.2) and define a competitive kernel for TSC.

4.3.2 A subsequence-based Wasserstein kernel

We here define and describe our novel subsequence-based Wasserstein kernel. Let
w ∈ N>0 refer to a window width (i.e. a subsequence length). Given a set of n
time series T := {T1, . . . , Tn} we denote their set of length-w subsequences as S :=
{S1, . . . ,Sn}. For time series with a uniform length ofm, the set Si therefore contains
m− w + 1 subsequences.

Definition 11 (Wasserstein time series kernel). Let Ti and Tj be two time series,
and Si1, . . . , SiL as well as Sj1, . . . , SjK be their respective subsequences. Moreover,
let D be a K × L matrix that contains the pairwise distances between all of the
subsequences, such that

Dkl := d(Sik, Sjl), (4.34)

where d(·, ·) denotes the usual Euclidean distance. Following Definition 3, we solve
the optimisation problem

W1(Ti, Tj) := min
P∈Γ(Ti,Tj)

〈D,P 〉F, (4.35)

which gives the optimal transport cost to transform Ti into Tj using their subse-
quences. Then, given λ ∈ R>0, we can define

WTK(Ti, Tj) := e−λW1(Ti,Tj), (4.36)

which we refer to as our Wasserstein-based subsequence kernel.

In the remainder of the thesis, since we consider that a time series Ti is represented
by its set of subsequences Si, to simplify the notation, we will also write

W1(Si,Sj) := W1(Ti, Tj) (4.37)
and

WTK(Si,Sj) := WTK(Ti, Tj). (4.38)

We further motivate that this kernel can be seen as an R-convolution kernel with
a single decomposition because W1(·, ·) is permutation-invariant, meaning that the
order in which these subsequences are detected does not matter, as required in The-
orem 1. As mentioned in Section 4.3.1, despite some similar theoretical background,
WTK differs substantially from the Kernel Earth Mover’s Distance (KEMD) method
proposed by Daliri [59]. KEMD is a histogram intersection kernel [159] that treats each
time series as a one-dimensional distribution of scalar values. Our approach, on the
other hand, measures the distance between high-dimensional distributions of subse-
quences. It is therefore much better suited to capture long-distance similarities of
subsequences and time series.
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(a) Subsequence extraction

(b) Subsequence distance matrix (c) Optimal transport plan

Figure 4.6: To measure the distance between two time series, our method proceeds in several
steps. (a) First, all subsequences of the two time series are obtained using a slid-
ing window approach (here, not all subsequences are shown due to the overlap
of their windows). (b) Second, the pairwise distance matrix between all subse-
quences is calculated. Yellow highlights large distances, while blue shows small
distances. This matrix on its own is not sufficient to assess the dissimilarity be-
tween the two time series, since it is unclear which subsequences correspond to
which other. (c) Calculating the optimal transport plan makes correspondences
between subsequences more readily visible. For example, the two highlighted
subsequences are matched with each other in the plan. Since the two time series
have different lengths, some rows of the transport plan also contain fractional
matchings, making it possible to individuate fine-grained differences in the dis-
tributions of the subsequences.
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Figure 4.7: An explicit visualisation of the transport plan obtained in Figure 4.6c. Every line
indicates a (partial) match between two subsequences. The lines are anchored
to the beginning of the respective subsequence and their thickness reflect the
transport value. Only the largest values are reported.

Intuition

WTK leverages the descriptive power of subsequences of a time series, as do other
shapelet-based methods such as the Matrix Profile [261]. To provide a better under-
standing of the steps performed to obtain our kernel, we show a visual description
of the procedure in Figure 4.6. We therefore see the length-w subsequence extrac-
tion (Figure 4.6a), followed by pairwise distance calculations (Figure 4.6b), and the
final calculation of the optimal transport plan (Figure 4.6c).
The optimal transport plan P obtained after solving the optimisation problem in

Equation 4.35 can be seen as a map assigning each subsequence of the first time
series (columns) to at least one subsequence of the second time series (rows). The
goal being to transport all subsequences, ultimately, every subsequence (i.e. row or
column) must contain values. Figure 4.7 highlights how the transport plan values
represent the mapping of the time series. The example shows that the optimisation
procedure selects the lowest distances between subsequences and aligns the peaks
of the time series. Moreover, since the optimisation problem accounts for sets of
different cardinalities, our method can be applied to time series of varying length.
This is particularly important for many TSC applications.
Finally, the Wasserstein distance is obtained by summing the element-wise mul-

tiplication values of the two matrices shown in Figure 4.6. The final distance value
better captures the difference between the time series in term of the subsequence
distributions rather than simply summing all the pairwise distances.

Extensions

The definition of the proposed kernel leaves room for several extension. In particular,
WTK easily allows for a different ground distance measure. In fact, the Euclidean
distance choice was mostly motivated by experimental practice, but the choice of a
distance was shown to be crucial to obtain good predictive performance in shapelet-
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Algorithm 4 Compute Wasserstein time series kernel
Input: Two time series T1, T2; subsequence length w; λ
Output: kWTK(T1, T2)

S1 ← Subsequences(T1, w) // Extract subsequences for T1

S2 ← Subsequences(T2, w) // Extract subsequences for T2

dW ←W1(S1,S2) // Compute the Wasserstein distance
kWTK(T1, T2)← e−λdW // Apply the Laplacian kernel

based methods [160]. The only limitation is that the chosen distance needs to satisfy
the axiom of a metric to ensure that the Wasserstein distance remains a metric itself.
This precludes DTW, which is known not to satisfy the triangle inequality [118].

Another possible extension is to consider subsequences of multiple lengths, in
order to capture similarities across different scales. One could simply combine (e.g.
sum) the kernels for different lengths, therefore obtaining a kernel combining scales,
but this would prevent the capture of similarities across scales. The challenge here
resides in finding a novel way to compute distances between subsequences of different
lengths, e.g. k and k′. The sliding Euclidean distance, a commonly-used distance
for shapelet mining [260], is not a metric because it does not statisfy the “identity
of indiscernibles”3. Additionally, the inclusion of even more subsequences leads to
higher computational costs (see Section 4.3.4), which should be somehow mitigated.
As already highlighted in Section 4.2.3, obtaining positive definite kernels is usually

preferable, we will now see how our defined method behaves in that regard.

Implementation & computational complexity

Algorithm 4 summarises the steps to obtain our newly defined kernel. It requires, in
addition to the two time series, a subsequence length parameter w ∈ N>0 and the
Laplacian weight λ ∈ R>0.
The complexity of WTK encompasses the following parts: (i) Subsequence extrac-

tion, (ii) Subsequence distance calculation, and (iii) Wasserstein metric calculation.
We denote by n the number of time series and m the length of the time series (we as-
sume that they are all of the same length but the derivation can easily be extended to
the case where m is the maximum length). We therefore have at most s := m−w+1
subsequences per time series and the extraction process is dominated by m, leading
to a total complexity for step i of O(nm). This pre-processing step is shared with
other methods, such as shapelet extraction methods [260] or matrix profile methods
such as MPdist [88].
Next, the pairwise distance computation between subsequences of two time series

requires s2 distance calculations, each with a complexity of w. Hence, in the worst
3This property states that dist(x, y) = 0 if and only if x = y. For the sliding Euclidean distance,
any subsequence S of some time series T satisfies dist(S, T ) = 0, even though S 6= T . The
property is therefore not satisfied.
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case scenario, the calculation has a complexity of O(s2w), while it is possible to
reduce this significantly in the case of Euclidean distances by re-using calculations.
Finally, computing the Wasserstein distance between two time series using Equa-

tion 4.35 has a complexity of O(s3 log s) for an input matrix of maximum dimensions
s× s [5]. Since m is an upper bound to the number of subsequences of fixed length
s, the asymptotic runtime of all parts can thus be summarised as O(n2m3 logm).
This is a worst-case approximation of the runtime and here too, approximations of

the Wasserstein distance relying on Sinkhorn can be used to achieve near linear-time
complexity [5, 19, 57].

4.3.3 Theoretical considerations

In order to obtain a positive definite kernel that belongs to an RKHS, it must satisfy
Equation 4.13. In a line of argument similar to the one discussed for the continuous
case of the graphs in Section 4.2.3, we can only conjecture on conditions that will
lead to a positive definite kernel. In fact, the Wassestein distance equipped with
the euclidean distance induces a metric space that cannot provably be mapped to a
space equipped with the L2-norm. To show this, we would always need to have a
matrix of Wasserstein distances that is conditionally negative definite (as mentioned
in Proposition 2), which implies that it has at most one positive eigenvalue [15,
Lemma 4.1.4, p. 163].
In practice, however, our empirical results indicate that for some data sets and

specific configurations, we have more than one positive eigenvalue in D. Therefore,
the kernel matrixK, whose entries are defined as Kij = WTK(Ti, Tj) := e−λW1(Ti,Tj),
is not positive definite. This clearly indicates that the properties of the time series
influence the induced metric. We therefore have several options:

(i) We can enforce the eigenvalue condition by calculating K′ := K · K>, where
K refers to the n× n matrix with entries according to Equation 4.36. Letting
y := K>x for x ∈ Rn, we then have x>KK>x = x>Ky = y>y =

∑n
i=1 yi ≥ 0,

so K′ is positive definite. This is also known as the empirical kernel. This option
is the easiest from a computational perspective: it only requires an additional
matrix multiplication. Nonetheless, it affects the similarity values between time
series and we empirically observe that the classification accuracy is diminished
by the enforcement.

(ii) We can regularise the matrix by subtracting all negative eigenvalues, yielding
K′ := K −

∑
i λivivi

>, where i ranges over the indices of the negative eigen-
values and vi denotes their corresponding unit eigenvectors. By construction,
this will set negative eigenvalues to zero, leaving us with a positive definite
matrix. This option is computationally more demanding as it requires a full
eigendecomposition of the kernel matrix. Wu et al. [251] describe several trans-
formations and show that the shift of the spectrum has negligible impact on
the computational performance, while also having the lowest impact on the
predictive performance.
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(iii) We can generalise the Wasserstein distance by using a “softmin” of all pos-
sible transportation plans, which ensures that we obtain a positive definite
kernel [252]. This approach was originally presented by Cuturi et al. [58]. In our
case, the resulting kernel values would be given by

SoftWTK(Si, Sj) :=
∑

γ∈Γ(σ,µ)

exp

(
−λ
(∫
MxM
dist(x, y)pdγ(x, y)

) 1
p

)
(4.39)

which is a kernel under the condition that dist/dist +1 is positive definite.
Nonetheless, it requires the computation of the permanent of Dkl, which scales
super-exponentially with the number of subsequences; please refer to [56] and
Figure 4.12 for more information. SoftWTK is therefore infeasible for all prac-
tical purposes and we do not include it in our experiments.

(iv) We can sidestep the eigenvalue problem by using algorithms that are capable
of handling indefinite matrices better [177]. This is the easiest option and,
as mentioned in the introductory Section 1, a plethora of methods to learn
with indefinite kernels have been proposed. Indefinite kernels are a valuable
approach and training them is nowadays easier than ever.

We explored Options (i) and (ii) to guarantee the positive definiteness of our
similarity measure. However, none of these options showed a significantly better
classification performance with respect to WTK, indicating that the use of algorithm
with indefinite kernels can be used without any problem for our situation. Moreover,
the vast majority of the data sets in our experiments yielded a positive definite matrix
K. Therefore, we refer to WTK as a kernel, that sometimes only has a corresponding
Krĕın space (whose existence is guaranteed) rather than a corresponding Hilbert
space. To ensure the soundness of our calculations, we here too employ a Krĕın
SVM [148] to classify the time series in the considered data sets.

4.3.4 Experimental evaluation

In this Section, we analyse the classification performance of WTK compared to
other TSC methods. We are particularly interested in comparing it with (i) different
subsequence-based methods, (ii) established baselines such as DTW, and (iii) state-
of-the-art (SOTA) methods for time series classification. We show that it outperforms
naïve kernels derived with the R-convolution framework and that it performs on par
with highly complex ensemble methods despite its simplicity.

Data sets

The standard database for the benchmarking of time series classification algorithms
is the “UCR Time Series Archive” [45], a repository of 85 labelled time series that was
recently increased to 128 time series [60]. Each data set consists of time series of vary-
ing lengths, though in each data set the time series length is fixed and a predefined
train/test split of variable size. Please refer to http://www.timeseriesclassification.com
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for additional details. We perform all our experiments on the 85 time series using
the predetermined splits.

Experimental setup

Summary of the experiments. First, we compare WTK to other kernels that
are based on subsequences in order to demonstrate that a straightforward R-
convolution kernel is meaningless and that the Wasserstein distance for subsequence
comparison is better suited for time series classification. We then perform a di-
rect comparison to DTW-1-NN using a “Texas Sharpshooter” plot, which shows
that WTK leads to consistent predictions. Finally, we conclude with a large-scale
comparison of our method against the respective state of the art for every data set.

Comparison partners. There is a multitude of time series classification ap-
proaches. Bagnall et al. [12] give a comprehensive view of alternatives. In addition to
these, Wang et al. [247] established a baseline of neural network techniques, compris-
ing a fully convolutional network as well as a residual network architecture, among
others. In our experiments, in addition to the kernel and DTW-1-NN baselines,
we compare against most of them: from fully convolution networks over ensem-
ble methods such as Elastic Ensemble (EE) [144], FLAT-COTE [13], and HIVE-
COTE [143] to shapelet-based classifiers such as Shapelet Transform (ST) [31] and
Learned Shapelets (LS) [92]. We also evaluate against results obtained with a rota-
tion forest [203] with 50 trees (RotF), a random forest [35] with 500 trees, a classifier
based on a combination of DTW distances and SAX [141] histograms (DTW_F) [116],
the SAX Vector Space Model (SAXVSM) [210], as well as as the Bag of Symbolic
Fourier Approximation Symbols (BOSS) [206] method. Finally, we include several
baselines such as the 1-nearest neighbour based on Euclidean Distance (E-1NN) and
a Bayesian network (BN).

Training and evaluation. We evaluate the classification accuracy on the test set,
selecting the parameters on the training set via a 5-fold cross validation using a Krĕın
SVM classifier [148] with the following parameter grid:

(i) γ = {10−5, 10−4, . . . , 103} (for the RBF kernel),

(ii) λ = {10−4, 10−3, . . . , 10} (for WTK),

(iii) C = {10−3, 10−2, . . . , 103} (for the SVM classifier).

We also select the length w of the subsequences using a percent grid: we select
potential values of w as 10%, 30%, and 50% of the original time series length.

Implementation. Our implementation uses Python 3.7 and POT, the Python Opti-
mal Transport library [77]. We make our code publicly available on GitHub.
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Figure 4.8: Comparison of the classification accuracy of WTK against the Linear and the
RBF kernels for the “UCR Time Series Archive” data sets.

Results and discussion

Comparison to other kernels. We start by comparing WTK against other
subsequence-based kernels: we train both a linear and an RBF kernel on subse-
quences of the same length. As seen in Section 4.3.1, the linear kernel degenerates
into a comparison of the means of two time series, we therefore expect bad predic-
tive performance for it. On the other hand, the RBF kernel was already used in
previous TSC work [205]. We would expect the RBF kernel to perform better than
the linear as it capture non-linear patterns, which are critical in TSC. Nonetheless,
the RBF kernel compares each pair of subsequences independently, while WTK cap-
tures similarities across the entire distributions of subsequences of two time series.
Figure 4.8 summarises the accuracy results for all UCR data sets. Unsurprisingly,
WTK outperforms the simple linear kernel in all cases. This confirms the meaning-
lessness of a straightforward application of the R-convolution kernel to time series
outlined in Sections 4.1 and 4.3.1. WTK also appears to be superior to the RBF
kernel: the performance is better on all but twelve data sets. The accuracy difference
for the points below the diagonal is however negligible, with an average difference
in predictive performance of only ≈2.2% for those data sets. This proves that the
performance of our method is not achieved by considering the subsequences per se,
but by considering the distributions of the subsequences instead.
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Figure 4.9: “Texas Sharpshooter” plot comparing the expected gains of our method WTK
with the actual gains, relative to DTW-1-NN.

Comparison to DTW-1-NN. To follow best practices in TSC literature [60],
we evaluate WTK against a strong DTW-1-NN baseline. The goal is to showcase
the practical benefits of WTK by accounting for its potential performance in ad-
vance. The ‘Texas Sharpshooter” plot [17] shown in Figure 4.9 presents the expected
gain (estimated from the training data set) compared to the actual gain (calculated
on the test data set). Most points fall into the TP or TN quadrants, implying that
we correctly predicted that WTK would outperform DTW-1-NN (TP) or that it
would be outperformed (TN). Points in the FN quadrant are good surprises: our
method outperforms DTW-1-NN on the test set while we were expecting it would
not. Points in the FP quadrant, on the other hand, are the problematic ones, however
it only contains few points with minor accuracy differences. Therefore, since most
points are in the upper right quadrant, the sharpshooter plot supports the claim
that the proposed method is better than the DTW-1-NN baseline and highlights
the fundamental consistency of the predictions of WTK.

Comparison to the state of the art Here, we compare WTK against the state
of the art (SOTA) in TSC. We collected the accuracies of all published methods
of the “UCR Time Series Classification Repository” [45], and two neural network
baselines [247] with their classification performances from [71]. This resulted in 40
methods, nevertheless the availability of comparison partners depends on the data
set (neural network baselines, for example, are not available for all of them). We
then selected the best method for each data set (using the published train/test split
results) and refer to it as the respective SOTA for that data set. In total, we there-
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Figure 4.10: Critical difference plot comparing WTK (shown in bold) against multiple other
methods. We observe that there is no statistically significant difference between
the performance of our method and state-of-the-art ensemble methods.

fore compare our method against the best methods across 40 other method for each
data set. WTK outperforms all SOTA methods on six data sets: DistalPha-
lanxTW, DistalPhalanxOutlineAgeGroup, MiddlePhalanxOutlineAgeGroup,
Earthquakes, ECG5000, and FordB. Moreover, WTK has at least equal accuracy
as any SOTA method on 12 data sets: BeetleFly, Coffee, ECGFiveDays, Plane,
ShapeletSim, and Trace . Additionally, we are almost as good as the SOTA in many
other data sets. Table 4.5 gives a better breakdown of the performance differences in
comparison with HIVE-COTE, the best-performing ensemble method, and KEMD,
a conceptually similar (due to its use of concepts from optimal transport) method.
Each entry in the table shows the fraction of data sets for which the condition of the
first column (absolute difference w.r.t. the SOTA performance) is respected. While
we do not match the performance of HIVE-COTE, a heavy ensemble method, for
the majority of data sets, our performance difference is less than 5%. Moreover,
we observe that the performance of KEMD is quire erratic, leading to favourable
performance on some data sets while being completely outperformed on most of the
others. Finally, we provide an in-depth comparison with three selected methods in
Figure 4.8. We compare with HIVE-COTE (the overall best method), ResNet (the
best deep neural network method), and KEMD (another method using notions of op-

Table 4.5: Absolute difference (∆) in mean accuracy for three different methods with the
respective SOTA method. Columns might not sum to 100% due to rounding.

∆ WTK HIVE-COTE KEMD

∆ ≥ 0 14.1% 36.5% 4.7%
0% >∆ ≥ −5% 44.7% 34.1% 15.3%
−5% >∆ ≥ −10% 24.7% 18.8% 7.1%
−10% >∆ ≥ −15% 8.2% 1.2% 16.5%
−15% >∆ ≥ −20% 4.7% 7.1% 9.4%
−20% >∆ 3.5% 2.4% 47.1%
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Figure 4.11: Comparison of our method WTK against selected other methods: fol-
lowing the critical difference plot from Figure 4.10, we chose the over-
all best method (HIVE-COTE), as well as the best deep neural network
method (ResNet). Additionally, we also compare against KEMD because of
the shared theoretical background it has with WTK. In each of the plots, ev-
ery point corresponds to one data set, while the axes depict the accuracy of
the respective method. We adjusted the axes to a range of [0.4, 1.0] because
no lower accuracies occured. In an ideal scenario, all points would be above
the diagonal as this would mean that we outperform the respective comparison
partner on all data sets.
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timal transport). Our method follows the performance of ResNet closely and clearly
outperforms KEMD.

Statistical analysis. To support our claims with statistical soundness, we ob-
tained a critical difference plot [62], shown in Figure 4.10. It depicts the average
rank of our method and the top comparison methods across all UCR datasets. The
critical difference plot is obtained by running the Friedman test [82] to detect if rank
distributions are significantly different across the methods. If this proves to be the
case, the procedure then relies on post-hoc analyses such as the Nemenyi test [174]
to determine the critical difference in average ranks that groups competing methods
according to their performance and distinguishes groups of methods that offer signif-
icantly different performances. The procedure relies on multiple testing corrections
to control the family-wise error rate and guarantees maximal power by limiting tests
to pairwise tests with the new proposed method. The interested reader can refer to
Demšar [62] for a more detailed description. For a significance level of α = 0.05, the
figure shows that there is no statistically significant difference in the performance of
WTK and these best-performing classifiers [12]. This suggests good generalisation
performance as our method is on par with heavily-parametrised classifiers such as
neural networks or ensembles that comprise more than 30 methods.

Runtime considerations

Similar to what was done for WWL and graphs, we performed a brief analysis of
the empirical runtime properties of WTK. Figure 4.12 confirms that the Wasserstein
computation is not the driving factor in the asymptotic computational complexity
since the linear kernel, the RBF kernel and WTK, all relying on differences between
subsequences, perform the same asymptotically. KEMD [59] is faster since it does
not extract subsequences. We also observe, as briefly mentioned in Section 4.3.2,
that SoftWTK scales super-exponentially because it requires the computation of the
permanent [56] of the differences between subsequences. Finally, we did not assess
the impact of using Sinkhorn approximation for given length of time series but we
expect it to have a similar behavior than the one observed with graphs. Namely, the
speed up benefits only start to weigh in for a given number of subsequences (and
therefore time series length).

Concluding remarks

We here introduced a new subsequence-based kernel for time series: the Wasserstein
Time series Kernel (WTK). We showed that our method ourtperforms some of the
state-of-the-art time series classification approaches while displaying favourable gen-
eralisation properties. WTK is a good way to avoid the meaninglessness of certain
subsequence-based kernels applied to time series and confirms the appropriateness of
Optimal Transport for machine learning applied to structured objects, as introduced
in Section 4.1 and explored in Section 4.2.
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Figure 4.12: The empirical computational complexity of different subsequence kernels when
scaling the dataset. n is the number of samples and m is the length of the
time series. The y-axis shows running time normalised with respect to the
shortest-running method.

More generally, the OT-based kernels presented in this chapter (WWL and WTK)
solve the issues related to R-Convolution mentioned in Section 4.1. We can therefore
reliably use them to tackle challenges related to complex and structured objects in
bioinformatics.
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Crop yield prediction
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5 Deep learning for crop yield
prediction

In which a new approach to accurately fore-
cast wheat yield using several early field ob-
servations and genotypes is proposed.

One of the ultimate goals of genomics is to leverage genetic information to better
understand phenotypic variations and guide decision making. In humans, this trans-
lates into improved diagnostics, patient segmentation, and therapeutic efforts [9],
as we have also seen and discussed in Chapter 3. In plant research, this mostly
corresponds to enhanced crop selection, as we will discuss here. In both cases, phe-
notype prediction from genotypes is the ultimate aspiration of many bioinformatics
initiatives, albeit it has proven to be very difficult to do so well [136].

Identifying and growing crops that guarantee the highest product yield for a species
is of utmost importance to guarantee appropriate and sustainable food supplies for
the global population [53, 78]. Plant breeding programs benefit from increasing tech-
nological support but still rely on full growth cycle and manual yield measurement,
hindering speed of development. While methods to predict yield from other mea-
surements have been proposed, none has reached satisfying levels of performance.

In this chapter, we propose a new attention-based deep learning model that pre-
dicts wheat yield and leverages both genotype and observational data by fusing four
sources of input data: multitemporal multispectral images, multitemporal thermal
images, multitemporal digital elevation models, and single nucleotide polymorphism
(SNP) measurements. Part of the presented content is based on the following un-
published manuscript:

- M. Togninalli, X. Wang, J. Poland, and K. Borgwardt. “Deep learning enables accurate
grain yield prediction using image and genotype information”. Unpublished Manuscript.
2020

The chapter is organised as follows. Section 5.1 introduces the topic of plant yield
prediction and gives an overview of existing approaches. Section 5.2 outlines and
motivates the method we propose to tackle the yield prediction problem. Finally,
Section 5.3 summarises the outcomes and results of the experiments performed on
wheat data.
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5 Deep learning for crop yield prediction

5.1 Introduction

Phenotype prediction has always been a clear goal of genomic research. From the
very first attempts [93, 219] to more recent approaches [136], the scientific commu-
nity has tried to predict all kinds of phenotypes from genotype information alone.
Nevertheless, it quickly became obvious that genotype alone cannot be used as a
blueprint to explain all phenotypic differences. In fact, the initial GWAS efforts
rapidly uncovered and described the so-called “missing heritability” problem [162]:
even on large cohorts, the variability of individual genetic variations cannot explain
all the variability of the heritable portion of observed phenotypes. A leading exam-
ple can be found in the highly heritable human height trait. Visscher [242] reports
that human height has an approximate empirical heritability of 80% but the 50 most
associated loci together only account for 5% of the observed phenotypic variance [162,
242]. Several hypotheses of where this problem comes from have been put forward
and some were validated, but a part of the heritability remains unexplained. Coming
back to the previous example, Yang et al. [259] showed that accounting for all the
common SNP variants can explain up to 45% of the observed phenotypic variance.
Hence, accounting for all variants increases the explainability thanks to the weak
effects of many variants. Another supposition is that genetic variants’ effects are not
solely additive but present an interactive nature: specific combinations of variants
are causal for given phenotypes [163]. Finally, epigenetics is also seen as a potential
source of heritability [85].
These considerations, however, are only related to the heritable portion of phe-

notypic variance. The remainder variability in phenotypic distributions is caused
by environmental and developmental factors that cannot be explained by genetic
factors [99]. Therefore, to fully be applicable and useful in practice, phenotype pre-
diction also needs to account for these non-genetic factors. Most statistical genetics
studies related to phenotype prediction either try to control the environmental con-
ditions so as not to have to account for them [24] or design experiments to minimise
the impact of the environment [188]. Another way to incorporate environmental vari-
ables in the predictive model is by using covariates that encompass or are linked to
certain environmental factor. In humans, for example, this can be done by including
covariates such as sex and age [122]. In their study, Khera et al. [122] develop risk
predictors for Coronary Artery Disease and report an area under the receiver oper-
ating characteristic (ROC) curve of 0.81 when including sex and age, whereas the
performance only reaches 0.64 when solely considering genetic variants [121].
Nevertheless, simply adding environment-related variables as new features in linear

models can be limited, especially when considering that genotypic variations result
in biological phenomena that can interact with said environment. Therefore, more
complex models that capture the interactions between genotypes and environmental
variables are better suited for phenotype prediction tasks. Moreover, the considered
covariates in past studies are often still snapshots of the environment at a given point
in time, but biological processes being highly dynamical, such static representations
are not indicative enough. It would be better, when possible, to evaluate environ-
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mental factors throughout time to better model the impact they have on the resulting
phenotypes. Hence, while ways to mitigate or incorporate environmental factors in
phenotype prediction models do exist, they are currently limited because (i) they fail
to account for the interactions between environment and genetic background, and
(ii) they do not consider the temporal nature of the environment.
When considering these limitations, one field of machine learning appears as an

obvious candidate to tackle them. Deep learning [91] has proven to be an extremely
versatile framework for both unsupervised and supervised learning with a myriad
of data types. With clear successes in computer vision [102], natural language pro-
cessing [237], time series forecasting [247], sequence modeling [267], and graph-based
machine learning [124], deep learning has affected all areas of applied and theoreti-
cal machine learning [200]. It relies on artificial neural networks with several layers
to extract features from the input that are relevant for the output and leverages
non-linearities to capture higher degree interactions from the input features. More
recently, attention mechanisms were shown to clearly outperform competing meth-
ods when dealing with sequential data [237]; these mechanisms allow models to learn
meaningful combinations of intermediate representations. Deep learning equipped
with attention mechanisms could therefore address both concerns (i) and (ii) enu-
merated above and efficiently capture the interactive nature of genetic variants during
training.
Here we leverage attention mechanisms and convolutional neural networks to fuse

data from several channels. We leverage a vast agricultural data set comprising
measurements acquired throughout time from different sources to accurately pre-
dict wheat grain yield. We develop a deep learning model that is efficiently able to
combine genetic information with rich phenotypic observations reflecting the envi-
ronment and its effects over time on the predicted phenotype. We now present in
further details the task of interest.

5.1.1 Crop yield prediction

Food security is a critical problem that recently attracted considerable interest due
to the recent global population growth [78]. In order to guarantee appropriate food
supplies, it is of utmost importance to identify and grow crops that guarantee the
highest product yield for each species. To that end, plant breeding programs are
designed to identify the crossings that guarantee the highest yield while ensuring
resistance and resilience [53]. Over the years, several technological tools such as
high-throughput phenotyping and genomic selection have been developed to help
breeders identify the most promising candidates [227]. Nevertheless, plant scientists
still rely on end-point destructive measurements such as grain yield measurement to
rank and select the best candidates. Therefore, along the technological improvements
above, being able to predict yield from simple aerial images during the growth stages
would drastically reduce the effort needed in the selection process.
Since being able to predict crop yield is also important for food security monitor-

ing and policy-making [180], several approaches have been proposed. Methods range
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from ground-based field surveys or farmers’ expert knowledge to growth models and
remote sensing data [47, 245]. The most discussed source of data is remote sensing
data, for they are easy to collect and access. Satellite data with various spatial, tem-
poral, and spectral resolutions have been used over a large range of geographic areas
and scales [18]. However, the coarse spatial resolution of satellite imagery motivated
the development of sensor technologies embarked in low altitude Unmanned Aerial
Vehicles (UAV) [50]. This led to improved spectral, spatial, and temporal resolutions
and considerable cost benefits for high-throughput phenotyping [98]. In turn, many
crop yield prediction models based on UAV-acquired imagery were developed for a
multitude of crops [66, 90, 164].
Typical setups of UAV-based phenotyping include multispectral cameras and ther-

mal imagery [90, 95]. Most crop yield predictors rely on manually crafted fea-
tures (vegetation indices, VIs), which are believed to efficiently summarise veg-
etation growth related information. The Normalised Difference Vegetation In-
dex (NDVI) [191] is a prime example of such features. Despite the efforts put in
crafting these manual features, they oftentimes solely rely on two bands of the mul-
tispectral images available, discarding valuable information about the remainder of
the signal. Several machine learning models have been evaluated for crop yield
predictions: self-organizing maps to account for different soil types [179], Support
Vector Machines [220], ensemble tree methods [103], statistical linear models [253],
or artificial neural networks [139]. However, most of these approaches rely on sim-
ple summary statistics of the imagery values recorded by the UAV [112]: by relying
on means and standard deviations of VIs, models discard all information related to
high-order moments.
More recent approaches leveraged the potential of high-dimensional image data

using deep learning techniques. You et al. [263] use convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) in combination with a Gaussian Pro-
cess to model the spatio-temporal structure of the collected data. However, they still
only used histograms of the collected images and are limited to evenly-spaced acqui-
sition periods, i.e. the time difference between acquisition must be constant, which in
practice is not a very practical assumption. Maimaitijiang et al. [158] propose a deep
learning model to fuse information from multispectral and thermal images, but can
only use single snapshots of information and cannot capture temporal evolution of
the environmental parameters. Finally, Khaki et al. [120] propose a CNN-RNN model
to combine satellite imagery with weather and soil data and models the temporal evo-
lution across the years via a long short-term memory (LSTM) model. Nonetheless,
such a model could not scale to more granular data (e.g. UAV) and is also lim-
ited to evenly-spaced acquisition periods. Moreover, none of the above-mentioned
approaches allow the incorporation of genetic information in their predictions.
To counter the above mentioned limitations, we provide a flexible model that lever-

ages attention mechanisms to comprehensively take into consideration four sources
of information: multitemporal multispectral images, multitemporal thermal images,
multitemporal digital elevation models, and SNP measurements. We suggest to
leverage images captured by UAVs across time at different temporal resolutions for
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plot-level yield prediction. Instead of using deep learning architectures specifically
designed for time-series data such as recurrent neural networks, we approach the
problem from a Multiple Instance Learning (MIL) perspective: for each sample (the
plot in our cases) a set of multiple data points denoted as instances (images of the
plot at different times and from different angles) are associated with the same label
(the measured yield for that plot). We will now present the relevant background and
introduce our method.

5.2 Multiple Instance Learning for phenotype
prediction

This section details the necessary background on Multiple Instance Learning and
deep representation learning and introduces our proposed method.

5.2.1 Background

Deep learning models

Deep learning models are complex non-linear functions that learn some target func-
tion f∗ by updating their many parameters via backpropagation of gradients with
respect to a defined loss function. Most deep learning models are called networks
because they are obtained by composing together several functions (i.e. layers). The
functions are chained : this way, the output of a function is the input of the following
function. Many architecture, combining these functions in diverse ways, have been
proposed to tackle all types of learning tasks: regular Deep Neural Networks (DNN),
Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) are
typical examples [133]. We here present some basic concepts from the deep learning
literature. Our primer is by no means exhaustive, for a complete introduction to
deep learning refer to the book by Goodfellow et al. [91].

The simplest function used in deep learning networks is the fully connected layer,
which takes a vector x ∈ Rn as an input, applies a linear transformation via a weight
matrix W ∈ Rm×n and a bias vector b ∈ Rm followed by a non-linear activation
function a(·) to output a vector y ∈ Rm:

y = a(Wx+ b). (5.1)

Chaining several fully connected layers leads to DNN, also known as fully connected
networks (FCN) or multi-layer perceptrons (MLP): f(x) = f (3)(f (2)(f (1)(x))). The
learning procedure then takes the final output f(x) and compares it against a ground
truth label to obtain a loss value L. From there, the gradients with respect to the
loss for each parameter in the network (i.e. W (1), W (2), W (3) in the example above)
are taken leveraging the chained nature of f(x) and used to update the parameters
via a gradient descent approach.
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Convolutional neural networks are typically composed of three types of layers:
convolutional, pooling, and fully connected layers. The main idea of convolutional
layers is that they share weights across the first two input dimensions and therefore
reduce the number of parameters to learn. They were designed to process data with
a known grid-like topology (e.g. images with their 2D grid of pixels). The layer takes
as an input a matrix X ∈ Rh×w, applies a convolution using weight matrixW ∈ Rl×l
and adds a bias term B ∈ Rp×q before applying a non-linear activation function a(·)
and outputting a matrix Y ∈ Rp×q:

Y = a(W ∗X +B), (5.2)

where “∗” is the convolution operator. Intuitively, the convolution can be seen as
a sliding window of size l × l that linearly combines values from x locally at every
location of the matrix. This is usually followed by a pooling layers that aggregate the
values of the convolutional layer’s output to reduce its dimensionality. Typical pool-
ing operations include max-pooling or mean-pooling. Here too, one can imagine this
as an operation to extract local summary statistics from the input x at different lo-
cations. In addition to that, more recent CNN models also include skip-connections,
which enable to skip given layers in order to mimic the biological behavior of pyra-
midal cells. These architectures, known as Residual Networks (ResNet) have proven
to be very efficient in extracting features for image-related tasks [102].
Lastly, recurrent neural networks are oftentimes used to deal with temporal data

in forecasting scenarios [104]. Nevertheless, RNNs were recently shown to be out-
performed on time series tasks by using temporal convolutional networks, variants
of CNNs [132]. Moreover, these techniques are devised for evenly spaced and aligned
time series and offer weak performances on unaligned and irregularly spaced time
series [106]. Horn et al. [106] also showed that permutation-invariant aggregation of
the time-steps in a time series results in good classification performance when inte-
grating the time-stamp of each observation in its vectorial representation, indicating
that permutation-invariant functions can be applied to learn on time series.
Overall, deep learning models excel in representation learning tasks, where the

goal is to learn meaningful representations of input data to be used for downstream
tasks. This is possible thanks to the end-to-end training capabilities unlocked by
the deep learning framework: the error signal obtained from the loss function L can
be used to update all parameters used to reach the final prediction. Deep learning
layers and models are therefore regularly combined to fit any learning task.

Multiple Instance Learning

Multiple Instance Learning (MIL) aims at learning a target value from a sample that
is a bag of instances. Classically, the MIL problem was solved by combining the out-
puts of an instance-level model run on each of the instances for the sample [195]. Al-
ternatively, single instances can be embedded to low-dimensional representations and
fed to a set function predictor [7]. Along similar lines and more recently, researchers
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adapted deep learning pipelines to the MIL problem by using neural networks to
learn useful low-dimensional representations of the single instances and then lever-
aging attention mechanisms to aggregate the different elements’ contributions [110].
More formally, for one target variable y ∈ R, instead of a single associated instance
x ∈ Rn we have an associated bag of instances X = {x1, . . . ,xk} that do not exhibit
a particular ordering between each other.

The learning problem then aims to learn ŷ = S(X), where S is a function that is
permutation-invariant to the elements in X (i.e. the output of S is not influenced by
the ordering of x1, . . . ,xk). Zaheer et al. [264] show that such a function needs to be
decomposable in a sum of transformations as follows.

Theorem 5 (Zaheer et al. [264]). A function S(X) for a set of instances X having
countable elements is a valid set function (i.e. permutation-invariant to the elements
of X), iff it can be decomposed in the form

S(X) = g(
∑
x∈X

f(x)) (5.3)

where g and f are suitable transformations.

This allows us to view the MIL problem as a three-step process: (i) transform the
instances with a function f , (ii) combine the transformed instances with a permuta-
tion invariant function φ (e.g. sum, average) (iii) transform the combined instances
with a function g. In other terms, we obtain an embedding for each instance via f ,
combine them in an invariant manner with the pooling operator φ and rely on g to
get a useful output for the learning task at hand.

This process can be translated to a deep learning setting, where both f and g
are neural networks and φ needs to be a differentiable pooling operator. Common
pooling operators in deep learning include the maximum operator and the mean
operator [264]. Nevertheless, these pooling opeartors have the disadvantage of being
pre-defined and non-trainable. That is why we prefer an attention-based pooling
mechanism [110], which offers a higher flexibility to the data and the tackled task as
well as a certain degree of interpretability of the pooling.

Attention mechanisms have been extensively used in natural language process-
ing [237], image captioning [256] and graph neural networks [238]. Broadly speak-
ing, attention mechanisms are neural networks’ components in charge of quantifying
the interdependence of input elements (i.e. weight the contributions of each input
based on the input itself and on other inputs). This translates in finding weights
ai = f(h1, . . . ,hk) ∀i = 0, . . . , k, where H = {h1, . . . ,hk} is the set of inputs. In
their simplest form, they can be a simple inner product between the inputs hi. More
advanced attention mechanisms are composed by a neural network that learns the
relative importance of each input element. Ilse et al. [110] proposed a MIL pooling
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of the sort. Let H = {h1, . . . ,hk} be the set of k embeddings of dimension m for a
sample X = {x1, . . . ,xk}, then the pooling operation is given by:

z =

k∑
i=1

aihi, (5.4)

with

ai = softmax(w>tanh(V H>))i =
ew
>tanh(V hi

>)∑k
j=1 e

w>tanh(V hj
>)
, (5.5)

where w ∈ Rl×1 and V ∈ Rl×m. This pooling allows for more flexibility in the way
the contribution of individual instances are combined, unlocking better prediction
performance. Additionally, the weights a1, . . . , ak can be used to gauge the relative
importance of each instance of the sample and provide interpretability around the
model’s prediction.

5.2.2 Data fusion with attention-based MIL

Considering the problem described in Section 5.1.1, we wish to predict the wheat
grain yield using multiple data sources. It is therefore necessary to combine them
meaningfully. The different “views” - multispectral images, thermal images, digital
elevation models, and genotypes in our case - are all linked to the same final grain
yield. Moreover, we have multiple instances (i.e. images) of the same plot for the
same view. With the background collected in the previous section, we can envision
a MIL-based method that meets these criteria.
We base our approach on the work of Ilse et al. [110] and extend it to fuse multispec-

tral and thermal images, temporal, spatial, and genomic information. We therefore
treat each observation of a given plot as an instance of the object we aim to predict
yield for. We rely on a DNN to encode the genotypic information and on ResNet
architectures to encode the different images we have for each plots. We then combine
the obtained representations in a permutation-invariant MIL setup, that allows for
efficient aggregation of data from diverse sources across time. We will therefore ob-
tain embeddings for each instance (i.e. data source) we are dealing with and we will
combine them using Equations 5.4 and 5.5. Moreover, since some of our data sources
consist in multiple, irregularly-sampled observations through time and since we have
also seen in Section 5.2.1 that permutation-invariant aggregation can be efficiently
used to learn on time series with irregularly spaced observation, we will apply the
attention pooling framework along the temporal dimension too.
More practically, for each sample, i.e. plot of wheat, we have a final yield value and

four data sources that need to be combined: multispectral images, thermal images,
digital elevation models (DEM), and SNP array data. Moreover, for the first three
data sources, each plot has multiple observations through time: from early images at
the beginning of the growth process to images just before harvest (see Section 5.3.1
for details). We therefore rely on a deep learning architecture that (i) takes each
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Figure 5.1: Schematic view of the Multiple Instance Learning (MIL) model used for the
wheat grain yield prediction. For each sample (i.e. plot), data from four sources
are combined: multitemporal multispectral images, multitemporal thermal im-
ages, multitemporal digital elevation models (DEM ), and genotype data (SNP
array). Each data instance is transformed into an embedding via a dedicated
model (ResNet-18 for images and a simple fully-connected network - FCN - for
genotype data) and the attention mechanisms combines the embeddings into a
single embedding which is passed to a final fully-connected network for yield
prediction.

instance of every data source and transforms it into a fixed-size embedding via a data
source-specific encoder, (ii) combines the obtained embeddings into a unique vectorial
representation of the sample (iii) computes the predicted grain yield for that sample.
Figure 5.1 summarises the architecture in a schematic view. The model can then be
trained in an end-to-end fashion and learn the weights for the encoding, the pooling,
and the prediction networks. To do so, we use a mean squared error (MSE) loss
between the measured yield y and the predicted yield ŷ: LMSE =

∑N
i=1

(ŷi−yi)2/N.
Moreover, since the number of instances for each plot and data source is not constant,
we can easily handle samples with less or more images as well as with missing data
sources.
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5.2.3 Implementation

We implemented our method in a flexible manner to be able to add and remove
data sources easily. We rely on the PyTorch library [183] to implement the model
architecture, on PyTorch Lightning wrapper to speed up experiments [70], and make
our code available on GitHub.
For image-based data channels, we rely on a small residual network architecture

(ResNet-18 [102]) given the relative simplicity of the images (small size, see Sec-
tion 5.3.1). For genotypic information (SNPs) we use a FCN with two layers of 1024
and 512 hidden units respectively. We then force all embedding representations to a
256-dimensional vector and combine them using the attention mechanism described
in Section 5.2.2. We employ a multi-head attention mechanism with n heads, mean-
ing that we have n different combined vectors that we then concatenate and pass
through the final fully connected layer of the model for the final regression.
We also implement additional encoding mechanisms. We experiment with a tem-

poral encoding to leverage the datestamp of each image acquired by embedding the
dates as one-hot vectors and appending those to the embeddings generated by the
residual convolutional networks. In a similar fashion we test channels encoding where
we append a one-hot encoding of the channel to the 256-dimensional embeddings, to
see if nudging the attention mechanism by indicating which data sources it is dealing
with is helping.
Due to memory constraints on the computing infrastructure, we cannot use all

images for each instance (some instances have up to 200 images). We therefore add
a parameter denoted as bag size which indicates a maximum number of images to
randomly sample for each channel at every iteration. This means that throughout
training, the set of chosen images for samples with many input images constantly
changes. We then tune this hyperparameter with other ones in our setup (see Ex-
perimental design in Section 5.3.2).

5.3 Experimental results

After introducing our approach, we assess its performance in practice. This section
contains all the details about the performed experiments and used data set. We
first present the data set, then present the performance of the model on the grain
yield prediction task before investigating the attention mechanism of the model to
understand what drives the model predictions.

5.3.1 Data set

The studied data set regroups multisensor data acquired by collaborators at Kansas
State University. The detailed methodology can be found in Singh et al. [217], we
report here the most relevant details.

Plant material and field layout. Advanced spring wheat (Triticum aestivum L.)
breeding lines from the International Maize and Wheat Improvement Center (CIM-
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MYT) breeding program were sown on November 21, 2017 during season 2017–2018.
The experiment consisted of 9600 unique spring wheat entries distributed in 320
trials arranged following an α-lattice design in two blocks with plot size of 1.7× 3.4
m2. Final crop yield was measured in tons per hectare (t/ha) on a per plot basis.

Data acquisition. A DJI Matrice 100 (DJI, Shenzhen, China) UAS was used for
data acquisition, it was equipped with a 5-channel multispectral RedEdge camers
(MicaSense Inc., United States) with blue (475 nm), green (560 nm), red (668 nm),
RedEdge (717 nm), and near infrared (840 nm) bands. Flights were conducted
between 11AM and 1PM relying on the procedures developed by the Poland Lab [246]
at a ground altitude of 35m. To ensure highly accurate data, the acquired images
were geo-referenced and geo-rectified using 12 colored ground control points (GCPs)
uniformly distributed across the field area. To collect thermal images, a FLIR VUE
Pro R thermal camera (FLIR Systems, USA) was carried by the DJI Matrice 100
and flights were performed at 60m above the ground. All lines were profiled using
the genotyping-by-sequencing protocol of Poland et al. [188] and sequenced on an
Illumina Hi Seq2000 or HISeq2500. Single nucleotide polymorphism (SNP) markers
were aligned to the reference Chinese Spring Wheat Assembly v1.0 [52]. Genotyping
calls were extracted and filtered so that the percent missing data per marker was
less than 40% and percent heterozygosity was less than 10%. Lines with more than
50% missing data were removed.

Table 5.1: Details of the data set after quality control and filtering.

Plants

# plots 19,161
# trials 320
# entries 9,596
# genetically unique entries 8,931

Multispectral images
# images 804,546
# unique dates 14
Avg # images per plot per date 8.36

Thermal images
# images 1,386,679
# unique dates 4
Avg # images per plot per date 36.18

DEM images
# images 96,358
# unique dates 14
Avg # images per plot per date 1.00

Genotypes # typed SNPs 38,361

Data processing To obtain the images for the multispectral and thermal images,
the acquired pictures were orthorectified and each pixel was mapped to its exact
geographical location using the GCPs via a Python pipeline available on GitHub.
Finally, the plot-level image extraction was performed by cropping single-plot images
out of the larger orthorectified images. To obtain digital elevation models (DEM) for
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each plot, images were processed using Agisoft PhotoScan Pro (Agisoft LLC, Russia)
and the protocols of the lab to extract the height estimates from the multispectral
images. DEM were then treated as single-channel images by the model. Each image
source (multispectral, thermal, and DEM) was further preprocessed to optimise for
subsequent model learning. For each plot, all images across time and source were
regrouped, their size was homogenised and they were stored in a single file. The final
size for images were 128× 128 pixels for multispectral and DEM images and 40× 40
pixels for thermal images. For the SNP data, after filtering, a total of 38,361 SNP
markers were retained and missing data were imputed with Beagle v4.1 [38]. Of the
original entries, some were left out due to missing data in any of the channels. Finally,
genotyped SNP values were standardised by subtracting the mean and dividing by
the variance of the whole training set on every SNP. Table 5.1 summarises the main
characteristic of the curated data set.

5.3.2 Phenotype prediction

The goal of the prediction task is to accurately predict final grain yield in tons
per hectare (t/ha). We first detail the experimental design and then summarise the
performance obtained with an increasing number of data sources.

Experimental design

For all phenotype prediction tasks, we do a 5-fold cross-validation on the plot ids,
stratifying by trial. This ensures that there are no replicates that can be both in
the training and in the test set. We then split the training set using the same
stratification and obtain a validation set for the deep learning models. We use 80%
of the data for training, 10% for validation, and 10% for testing. To guarantee
comparability, the baseline models that do not require validation data can use it as
training data, the test set are therefore the same for all compared methods and split.
We compare against several linear and non-linear baseline models: linear regres-

sion, lasso (L1-regularised regression) [228], ridge regression (L2-regularised regres-
sion) [201], elastic net (L1 and L2-regularised regression) [269], random forest [35],
and gradient boosting [81]. Hyperparameters for these baseline models are tuned via
internal cross-validation on the training set (90% of the dataset) using the dedicated
scikit-learn python library [185].
The high-dimensionality of the images impedes their direct usage in the baseline

models, we therefore extract moments (mean and mode) of individual channels as
well as of manually crafted vegetation indices for each image. The vegetation indices
considered are the normalised difference vegetation index (NDVI), the normalised
difference red edge index (NDRE), and the green normalised difference vegetation
index (GNDVI), and they are obtained as follows:

NDVI =
NIR− Red
NIR + Red

, NDRE =
NIR− RedEdge
NIR + RedEdge

, GNDVI =
NIR−Green
NIR + Green

,

(5.6)
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where Red, RedEdge, NIR, and Green are the channels captured by the multispec-
tral camera. Moreover, the baselines models are not capable of handling multiple
instance input for the image channels: they can only handle a fixed-size input and
concatenation of values across dates and instances is not possible, as the number of
images per plot constantly changes. To tackle this, we average the above-mentioned
values across images of a given plot. We do this both on a date-basis, where we group
dates in 4 temporal groups: 1: 18.01.2018 - 31.01.2018, 2: 01.02.2018 - 02.03.2018,
3: 03.03.2018 - 10.03.2018, 4: 11.03.2018 - 21.03.2018. We then train the baseline
model using individual date group values or using all the values combined. Each
sample therefore has 16 features (2 x 5 channels and 2 x 3 VIs) for a given date
group and 64 in the case of training with all dates.
For the MIL model, we fine-tune the hyperparameters via a random search of 20

runs on a split using the validation’s Pearson’s correlation coefficient to select the
best set of parameters. The tuned hyperparameters are:

- Learning rate: the initial learning rate, chosen among
{

10−5, 10−4, 10−3
}

- Learning rate scheduling: this parameter allows us to have scheduled changes
in the learning rate throughout training. This has proven to improve training,
we try to have no scheduling, a plateau scheme which reduces the learning rate
once learning stagnates or a cyclic cosine annealing scheme [151] chosen among
{none, plateau, cosine}

- Batch size: the amount of samples processed in parallel, chosen among {8, 16}
- Bag size: the maximum number of processed images for a given channel, chosen
among {8, 16, 32}

- Number of attention heads: the number of attention mechanisms used in parallel,
chosen among {1, 4, 8}

- Temporal encoding: whether temporal encoding as described in Section 5.2.3 is
performed, chosen among {True, False}

- Channel encoding: whether channel encoding as described in Section 5.2.3 is per-
formed, chosen among {True, False}

We evaluate the regression performance by evaluating mean absolute error (MAE),
mean squared error (MSE), Pearson’s correlation coefficient, and the coefficient of
determination R2. We report the Pearson’s correlation score on plots and refer to
other values in tables.
All experiments were run on a dedicated cluster running Ubuntu 14.04.5 LTS, with

16 CPUs (Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz) each with 8 cores and 24
threads, 128 GB of RAM, and 8 GPUs.

Prediction with multispectral images

In a first step, we wish to assess the performance of the model with respect to
baselines relying on traditional, manually crafted vegetation indices (VIs). To do so,
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Figure 5.2: Pearson’s correlation coefficient for linear and non-linear baselines on wheat
yield prediction using multispectral images as well as for a MIL approach. Each
baseline relies on VIs values aggregated on a time window (different colors) or on
a combination of the aggregated values (“All” bar). Error bars indicate standard
deviation across splits.

we only consider multispectral images as input. As highlighted above, the considered
baseline cannot use multiple images as input, therefore we need to use summary
statistics of the data at hand. Moreover, values are aggregated in groups of dates
to capture the relevant properties at different growth stages. Figure 5.2 reports the
performance of the baselines with respect to our MIL approach.
Moreover, a detailed breakdown of the performance of the MIL model and the

baseline models relying on data from 01.02.2018 to 02.03.2018 can be found in Ta-
ble 5.2. The MIL approach clearly outperforms the baselines. This can be attributed
to two phenomena:

(i) First, the deep learning framework enables the use of the entire images instead
of simple moments of their pixel value distributions. It can therefore better
capture non-linear relationship between channels and neighboring pixels. This
is also corroborated by the better performance of gradient boosting and random
forest, two non-linear methods, with respect to the linear baselines.

(ii) Second, the multiple instance learning framework combined with the attention
mechanism allows the efficient capture of inter-relationships between images
of the same plot across observation points and time: with an average of 42
multispectral images per plot, a lot of information can be lost with simplistic
aggregations such as averaging.
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Table 5.2: Detailed results on wheat yield prediction for baselines and MIL model on mul-
tispectral images alone (mean ± std).

Method MAE MSE R2 Pearson Coeff.

Linear Regression 0.416± 0.016 0.293± 0.024 0.387± 0.054 0.626± 0.045

Lasso 0.422± 0.016 0.301± 0.025 0.371± 0.053 0.615± 0.048

Ridge Regression 0.416± 0.016 0.293± 0.024 0.387± 0.054 0.626± 0.045

ElasticNet 0.422± 0.016 0.301± 0.025 0.370± 0.052 0.615± 0.047

Gradient Boosting 0.402± 0.015 0.273± 0.022 0.428± 0.052 0.658± 0.043

Random Forest 0.395± 0.015 0.264± 0.022 0.447± 0.047 0.671± 0.037

MIL 0.372± 0.012 0.237± 0.019 0.507± 0.045 0.717± 0.028

We can therefore conclude that MIL can be efficiently used to combine multiple
observations of images across time.

Wasserstein kernels on multispectral images. Since we are interested in two
linked sources of data (i.e. multispectral images and genotypes), we wish to inves-
tigate the similarities between them. Images can also be considered as structured
objects, we therefore apply the Wasserstein kernel framework presented in Chap-
ter 4 to obtain similarity measures between each plot and compare these similarities
with the underlying genotypic relationships. To do so, we transform every plot-
related set of multispectral images in a high-dimensional histogram and compute the
Wasserstein distance between them. We then apply the Laplacian kernel to obtain a
similarity measure. A hierarchical clustering model uses these similarities to group
the 19, 161 unique plots in 8, 931 clusters, which is the number of unique genotypes in
the data set, resulting in 4, 030 clusters composed of a single plot and 4, 901 clusters
with more than one plot. Out of those, only 323 (∼ 6.6%) contain multiple instances
of the same genetic replicate. This indicates that the variability captured in the
multispectral images is different from the one given by the genotypic information
and combining these sources would be beneficial for prediction. We will therefore
now look at the performance of our model once genotype data is included. It is
worth noting that we also apply our kernel to predict phenotype from multispec-
tral images alone by using Support Vector Regression but do not reach satisfactory
performance (Pearson’s correlation coefficient of 0.562 ± 0.038). This is due to the
simplification assumptions made during the histogram creation: instead of simple
histograms, one should prefer images signatures [204], which cluster the pixel values
of each image and get more meaningful representations of the images. However,
this could not be performed on our data set, considered the large amount of images
(804, 546 multispectral images).
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Figure 5.3: Pearson’s correlation coefficient on wheat yield prediction for approaches com-
bining genotype data and multispectral images. Error bars indicate standard
deviation across splits.

Prediction with multispectral images and genotypes

For the baseline model comparison, since the best performance for images alone was
achieved with the second date group (01.02.2018 - 02.03.2018), we only keep the sum-
mary statistics for the multispectral images for those dates and concatenated them
with the normalised genotype values. Moreover, due to the very high dimensionality
of the SNP array data (38, 361 features) we only consider the Lasso regression and
the random forest baselines. Lasso’s L1 regularisation acts as a feature selector and
is the go-to model in linear phenotype predictors from genotypic data and we keep
random forest as a non-linear baseline.
For the MIL model, on the other hand, we used the attention-based aggregation

to combine the embeddings from MIL images across all dates together with the one
obtained from the genotype FCN. Figure 5.3 and Table 5.3 present the results of this
comparison. Here again, the MIL approach outperforms the linear and non-linear
baseline by a considerable margin. We will now integrate the data from all 4 channels
and assess the impact on performance before investigating the attention mechanism.
Furthermore, these results, when compared to the performance obtained by

genotype-only based models (Pearson’s correlation coefficients of 0.559 ± 0.050 for
Lasso, 0.335± 0.046 for a simple FCN), also confirm that phenotype prediction can
be greatly improved when incorporating covariates that model the environmental
effects on the samples.

Prediction from all channels

Combining information from all channels is expected to improve the predictive per-
formance of the algorithm: both thermal images and digital elevation models have
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Table 5.3: Detailed results on wheat yield prediction for baselines and MIL model on mul-
tispectral images and SNP array data (mean ± std).

Method MAE MSE R2 Pearson Coeff.

Lasso 0.371± 0.008 0.240± 0.015 0.498± 0.040 0.708± 0.029

Random Forest 0.372± 0.011 0.241± 0.016 0.496± 0.035 0.707± 0.027

MIL 0.345± 0.008 0.210± 0.017 0.563± 0.038 0.754± 0.024

been shown to be partially predictive of the final yield of the plots [217]. This is
confirmed in Figure 5.4 and Table 5.4, where the performance of the model slightly
improves with the additional data provided across channels. The largest impact
seems to be provided by adding genotypic information and the gain seems to sat-
urate: the addition of DEM and thermal images improves the performance only
slightly. DEM images are obtained from the multispectral images directly, it seems
therefore plausible that part of their information content is already captured by the
model when looking at the multispectral images. Nonetheless, the addition of image
channels diminishes the variability of the performance, potentially indicating that
the different sources corroborate each other and increase the model’s certainty.

MIL-MS MIL-MS-TH MIL-MS-GENO MIL-MS-
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Figure 5.4: Pearson’s correlation coefficient on wheat yield prediction for different MIL mod-
els and channel combinations. Error bars indicate standard deviation across
splits. MS: Multispectral, TH: thermal, DEM: Digital elevation models, GENO:
SNP data.

We can therefore conclude that the MIL approach combining four input channels
is able to accurately predict the wheat grain yield of wheat crops. While comparison
with other studies is difficult given the peculiarity of different crops and setups, we
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Table 5.4: Detailed results on wheat yield prediction for baselines and MIL model with
varying input channels (mean ± std). MS: Multispectral, TH: thermal, DEM:
Digital elevation models, GENO: SNP data.

Method MAE MSE R2 Pearson Coeff.

MIL-MS 0.372± 0.012 0.237± 0.019 0.507± 0.045 0.717± 0.028

MIL-MS-TH 0.364± 0.007 0.228± 0.011 0.526± 0.028 0.729± 0.021

MIL-MS-GENO 0.345± 0.008 0.210± 0.017 0.563± 0.038 0.754± 0.024

MIL-MS-GENO-TH 0.352± 0.010 0.213± 0.005 0.578± 0.019 0.762± 0.115

MIL-MS-GENO-DEM 0.348± 0.008 0.214± 0.003 0.579± 0.027 0.763± 0.185

MIL-MS-GENO-TH-DEM 0.347± 0.002 0.209± 0.004 0.586± 0.028 0.767± 0.019

can observe that the performance we report is higher compared to the ones in other
studies [158, 245, 263].

5.3.3 Feature importance analysis

The attention mechanism contributes effectively to the performance of the model,
but it can also be very helpful to investigate the effects of the different input data. In
fact, if we consider the attention values as the weights of a weighted average across
the input elements, they represent the relative contributions of the input instances
to the final prediction. Therefore, we can look at these values to better understand
(i) which data sources are more relevant, and (ii) which temporal windows contain
the most informative (i.e. predictive) images. In the selected MIL models, we rely
on 8 attention heads, which behave differently. We therefore need to investigate the
attention value across all of them. In the following experiments, we use samples from
the test set and pass them through the trained model, which had never seen these
samples before.

Channel contributions

We begin by looking at the attention distribution across data channels. Since each
channel has a different and variable number of entries for each sample, we take
the average attention value across channels and normalise these into a percentage
score to get comparable results. Figure 5.5 shows the contribution of individual
data sources for the 8 different heads of the MIL-MS-GENO-TH-DEM model for
one sample. Different heads indeed give a different importance to each channel. The
multispectral images are the ones that constantly get more attention, reaching almost
40% of the attention in head 4. On the opposite side, thermal images overall receive
less attention, indicating that their contribution is not so key for this particular
sample and task.
To verify if these observation generalise across more samples, we take 100 test

instances and plot the attention that each of their channel receive for heads 1 (where
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Figure 5.5: Attention distribution in percentage across data channels for one sample and
eight heads. Each attention head learns to focus on different representations of
the plot and their combined output lead to improved performance.

genotype data is deemed more important) and head 4 (where multispectral images
dominate while genotype and thermal data are not considered). Figures 5.6 and 5.7
show that the attention distribution is roughly maintained throughout samples and
that head 1 focuses more on genotypic data while head 4 gives a major importance
to multispectral images. This indicates that the attention heads indeed tend to
specialise in a given data channel and will distinctively extract relevant features for
those.

Temporal contributions

Since each input instance from the 3 image channels are also linked to a date, we can
investigate what attention the model gives to different channels at given temporal
scales. To do so, we combine the attention values across channels and take the mean
for a given date. We repeat the operations for multiple samples (here again, 100)
and average the obtained “attention time series” to get an indicative distribution
of the attention for a given head across time. The resulting plots can be found in
Figures 5.10 and 5.11, where the temporal distribution of the attention is presented
for heads 1 and 4.
When looking at these plots for all attention heads, one can observe a general

trend for multispectral and DEM attentions. The attention mechanisms deem ear-
lier multispectral images as more important while it considers later DEM images as
more relevant. This intuitively makes sense: at early stage of growth, little infor-
mation about the plant height is contained in the DEM images. Similarly, relevant
information about the soil properties, only visible in earlier images, can be accounted
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Figure 5.6: Attention distribution of attention head 1 in percentage across data channels for
100 samples.
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Figure 5.7: Attention distribution of attention head 4 in percentage across data channels for
100 samples.
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Figure 5.8: Temporal distribution of attention yielded by attention head 1 across data chan-
nels for 100 samples.
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Figure 5.9: Temporal distribution of attention yielded by attention head 4 across data chan-
nels for 100 samples.
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Figure 5.10: Temporal distribution of attention yielded by attention head 1 across data
channels without thermal images for 100 samples.
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Figure 5.11: Temporal distribution of attention yielded by attention head 4 across data
channels without thermal images for 100 samples.
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for in the multispectral images. Moreover, there seems to be a higher cumulative
attention load towards the middle of the growth phase (e.g. 01.02.2018 - 02.03.2018),
which coincide with the period for which linear and non-linear baselines gave better
results when using VIs from multispectral images (see Figure 5.2). Thermal images,
on the other hand, do not seem to have considerably different importance across
time. This is also due to the fact that all samples only had thermal observations at
only 2 distinct dates and that these were quite close in time.
To ensure that thermal images are not confounding the relative importance at

later stages of the other channels, we remove them at inference time. Figures 5.10
and 5.11 show the distribution of the relative attention obtained by the model when
thermal images are discarded (and hence not accounted in the computation of the
attention). Similar behavior of the attention distribution can be observed across the
other channels, with a slightly smaller difference between multispectral and DEM
importance in the intermediate phase. This confirms the findings mentioned above.

5.3.4 Concluding remarks

We here present a flexible, accurate, and interpretable method to predict wheat crop
yield. Our approach can be applied to widely diverse data sets and can incorporate
endless data channels with instances sampled at irregular time intervals. Addition-
ally, we successfully combine genotypic information with environmental variables by
fusing SNP array data with images that also capture environmental conditions such
as soil properties and the effects of these conditions across time. We confirm that en-
vironmental variables are widely important in phenotype prediction tasks and show
that they can easily be incorporated into an end-to-end deep learning model.
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6 Conclusions and Outlook

In which we summarise the findings of the dif-
ferent parts of this thesis, draw conclusions,
and present perspective for future research di-
rections.

At the beginning of this thesis, we identified two major challenges for the computa-
tional analysis of biological data sets, namely:
- the lack of coherence across the ever-increasing amount of data sets and generated
results;

- the lack of efficient ways to account for all the complexity encountered in biological
phenomena.

Throughout the remainder of the work, we presented solutions and approaches to
solve or mitigate these problems. In this chapter, we summarise the findings collected
across the thesis and propose a new outlook for each of the explored directions. We
then conclude by giving general directions for future work.

Online resources for Arabidopsis thaliana

In Chapter 2, we presented AraPheno and the AraGWAS Catalog. AraPheno is
a comprehensive repository for A. thaliana phenotypes where everyone can submit
new measured phenotypes while the AraGWAS Catalog is the first manually curated
and standardised database to collect the results of GWAS for A. thaliana on the
AraPheno phenotypes. The ultimate goal of these resources is to provide the Ara-
bidopsis thaliana community with a homogenised view of all existing associations
between the plant’s genotype and its multiple phenotypes.
The public availability of high quality genotypes and phenotypes in A. thaliana of-

fers the unique opportunity to systematically re-compute and analyse GWAS results
using a best-practice pipeline. The Catalog further enables researchers to analyse
and compare standardised results of GWAS on different or related traits. These
horizontal GWAS analyses unlock unique opportunities to detect seemingly unre-
lated functions of a gene caused by pleiotropic effects or discover traits with a shared
genetic basis. The catalog offers a sophisticated and fast search API to query the
database and to extract information for specific associations, genes or traits. In-
teractive visualizations empower the user to easily maneuver the data and uncover
interesting patterns.
For AraPheno, we plan to integrate more phenotypes and meta-information, simi-

lar to what we did for the RNA-Seq data. For example, we would like to add climatic
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data for all A. thaliana accessions allowing users to link environmental variables with
different genotypes or phenotypes. Currently, we only provided a link to the Ara-
CLIM portal but plan an easy and smooth integration of such data in future releases.
For the AraGWAS Catalog, a permutation-based standardised GWAS pipeline was
used to compute univariate associations using a linear mixed model [114] on binary
and continuous traits. Nevertheless, recent advances in machine learning enabled
the use of generalised linear mixed models for dichotomous traits [161], which we
plan to include into future releases of the Catalog. In addition to results of univari-
ate GWAS, we would also like to include SNP-trait associations from multi-locus
GWAS [11, 193, 209] and multi-trait GWAS [43, 129]. The platforms are currently
focused on data from A. thaliana, but we plan to develop a flexible application pro-
gramming interface (API), such that anyone could build their custom platforms for
their individual species.
Our vision would be that anyone generating population-scale phenotypes in A.

thaliana will upload their phenotypic data to AraPheno. This will not only make
AraPheno and the AraGWAS Catalog more valuable resources, but will also set a
precedent for the publication of these data. Furthermore, in the long term, this
will facilitate investigations into more complex research questions. Recent work
in phenome-wide association studies indicate the promises of such cross-phenotype
approaches [41].

Imputation of GWAS summary statistics

The stark need for comparability across studies has pushed the development of many
bioinformatics methods relying exclusively on GWAS summary statistics. Neverthe-
less, the often incomplete overlap of typed SNPs between studies limits the per-
formance of said methods. Imputation of missing values has therefore become a
key procedure and several approaches to do so have been proposed. However, as
we highlighted in our analysis, some of the available methods suffer from usability
issues.
First, not all methods can account for studies with mixed-ethnicity cohorts. Given

the constantly increasing size of the participants pools in modern GWAS, it is be-
coming a necessity to have versatile methods that can easily take in consideration
mixed-ethnicity panels. DISTMIX [135], an existing method that can handle this
type of cohorts, however relies entirely on allele frequencies for accurate imputation
results. While these data might be accessible in certain cases, their exchange has
been severely reduced after they were proven to be an effective mean to identify
participants in a GWAS [105]. Moreover, as privacy concerns steadily grow, access to
sensitive information will only become harder in the future. A method like DIST-
MIX is therefore severely disadvantaged in the case of missing allele frequencies.
Similarly, a method that requires covariates on the original data, like DISSCO [257],
simply cannot be executed when these are not present. In fact, given its require-
ments, it can be argued that the usability of DISSCO is circumscribed to a small
niche of users who have access to the original genotype data in a study (and its co-
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variates) but prefer to impute summary statistics on the missing SNPs rather than
perform the more accurate (yet more computationally intensive) task of imputing the
missing genotypes with IMPUTE2, MaCH or others. Lastly, ImpG-Summary [182]
offers excellent performance on certain well-defined data sets, but lacks the flexibility
necessary to impute missing values in slightly more complex studies. In our experi-
ments, the GWAS study on insomnia shows that an easily adaptable method gives
much better imputation performance, even for a self-reported homogeneous cohort.
That is why, in Chapter 3, we introduced Ardiss, a fast, accurate and adapt-

able method to impute missing Z-scores while inferring the underlying population
composition without relying on any extra information such as allele frequencies or
covariates of the original study population. Our method matches all use-case scenar-
ios better than other available solutions. Our motivation to develop Ardiss was to
simplify the task of imputing summary statistics by providing a unique and robust
solution that encompasses all imagined scenarios (cf. Figure 3.1), while at the same
time, providing superior imputation accuracy and better runtimes. The results of the
performed experiments prove both these claims. Finally, Ardiss is a key element to
integrate Z-scores from different studies and will contribute, together with the ever
increasing body of publicly available results from association studies in many organ-
isms, to pushing scientists that use GWAS results to ask questions that go beyond
the SNP-trait association.

Wasserstein kernels for structured objects

Complex phenomena, such as the ones encountered in biology, sometimes require
the use of sophisticated techniques. Advanced data types such as structured objects
like graphs offer great modeling opportunities for machine learning methods. Simi-
larity measures - or kernels, for structured objects are usually constructed using the
R-Convolution framework [101]. Nevertheless, kernels obtained via this framework
suffer from pitfalls. For example, classical R-Convolution kernels for graphs rely on
simplifying aggregation strategies that discard valuable information about the distri-
bution of nodes. Moreover, in time series, naïve R-Convolution kernels can result in
meaningless similarity measures that simply compare the mean value of time series.
In Chapter 4, we highlight these limitations and propose a new family of ker-

nels for structured objects based on the Wasserstein distance, an optimal transport
measure. In particular, we present a new family of graph kernels, the Wasserstein
Weisfeiler–Lehman (WWL) graph kernels. We theoretically prove some properties
of the obtained kernels and our experiments show that WWL outperforms the state
of the art for graph classification in the scenario of continuous node attributes, while
matching the state of the art in the categorical setting. Similarly, we introduce the
Wasserstein Time series Kernel (WTK), a subsequence-based similarity measure that
efficiently distinguishes between time series. To prove the benefits of our proposed
method, we performed a large-scale evaluation on the several time series bench-
mark data sets. Extensive analysis scenarios indicate that our method outperforms

129



6 Conclusions and Outlook

some of the state-of-the-art time series classification approaches while also displaying
favourable generalisation properties.
As a line of research for future work, we see great potential in the runtime im-

provement, thus, enabling applications of our method on regimes with larger data
sets. Preliminary experiments already confirm the benefits of using Sinkhorn regu-
larisation when the average number of nodes in the graph or length of the time series
increases. In parallel, it would be beneficial to derive approximations of the explicit
feature representations in the RKKS for both WWL and WTK, as this would also
provide a consistent speedup. We further envision that major theoretical contribu-
tions could be made by defining theoretical bounds to ensure the positive definiteness
of the WWL and WTK kernels when using the Wasserstein distance combined with
the euclidean distance. Finally, optimisation objectives based on optimal transport
could be employed to develop new algorithms in deep learning with graph neural
networks [67, 124] or temporal convolution networks [132]. On a more general level,
the proposed methods provide a solid foundation of the use of optimal transport
theory for kernel methods and highlight the large potential of optimal transport for
machine learning.

Crop yield prediction using deep learning-based data fusion

Phenotype prediction has been a clear focus of genomics for a long time. Past
attempts highlighted the problem of “missing heritability”: all genotypic variants
need to be considered in the prediction task and so do their high-order interactions.
Moreover, it has also been clear that environmental and developmental factors play
a key role in observed phenotypic variability. Nonetheless, very few machine learn-
ing approaches account for these aspects. With the advent of deep representation
learning, new data fusion possibilities have been unlocked and place deep learning as
an obvious candidate for predicting phenotypes by fusing all factors meaningfully.
In Chapter 5 we show how to integrate genotypic data with multitemporal multi-

spectral images, multitemporal thermal images, and multitemporal digital elevation
models for accurate prediction of wheat crop yield. By relying on Multiple Instance
Learning and attention-based aggregation of learned representations, we show that
new state-of-the-art prediction performance can be achieved. Moreover, the atten-
tion mechanisms prove to be a rich source of interpretability for the model prediction,
giving indications on which data sources and temporal windows are deemed more
important.
Our experiments confirm the potential for enhanced phenotype prediction while

relying on multiple data sources in addition to genotypic information. Deep learning,
despite its seemingly fathomless behaviors, offers great opportunities to capture all
the complexity of biological phenomena and gives hints on how to best understand
them by providing some interpretability over the prediction mechanism. Naturally,
this represents a first preliminary study and much remains to be investigated to
understand deep learning suitability in the area of complex phenotype prediction.
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We therefore presented a series of approaches to deal with two incumbent prob-
lems of data-driven machine learning method development in the life sciences: the
incoherence of data sets and the complex nature of biological phenomena. Our re-
computation of GWAS results for Arabidopsis thaliana as well as the development of
a summary statistics imputation method are essential steps in the direction of large-
scale comparative analyses of GWAS results. For instance, GWAS results can help
elucidate the presence of genomic regions associated with multiple phenotypes, an
effect referred to as pleiotropy [218]. Investigation of pleiotropic effects has already
been performed to some extent but has always been limited to a predefined set of
traits or genomic regions or had to rely on raw genotypic data [89, 187]. Moreover, bi-
ological pleiotropy can be mapped onto gene networks [44]. The “omnigenic” model
proposed by Boyle et al. [34] suggests that pleiotropy is ubiquitous in the human
genome since gene regulatory networks are sufficiently interconnected for many non-
related genes (“peripheral genes”) to affect the few phenotype-related genes (“core
genes”) in almost every phenotype and to give rise to a phenomenon the authors call
network pleiotropy. However, there is currently no described method to confirm said
widespread pleiotropy.
More generally, combining GWAS summary statistics with the abundant biological

network data could shed some light on the underlying mechanisms of biology. Causal
inference [184] concepts have already been used with GWAS summary statistics to
identify causal relationships between phenotypes via mendelian randomization ex-
periments [61]. But extensions of these methods to also account for known biological
networks have yet to be thoroughly explored. Integration of knowledge obtained
from different sources can be extremely beneficial and would help to better reflect
the complexity of biological phenomena.
As seen in Chapters 4 and 5, machine learning approaches offer promising proper-

ties to model complex objects and behaviours. Deep representation learning can be
extremely powerful in extracting relevant features and modeling non-linear relation-
ships between data. This power is exemplified by the strong predictive performance
deep learning offers. Nevertheless, further research is needed to understand the real
extent of the learning abilities of these models. In particular, “nudging” mechanisms
offer interesting possibilities to fathom trained deep learning models and to extract
more insights on the biological mechanisms. Ma et al. [153], for example, used a cell-
inspired deep learning architecture to better understand interactions between cellular
subsystems during cellular growth. Similar approaches could be envisioned at the
organism level: by combining existing knowledge, genotypic information, and auxil-
iary phenotypic observations, one could devise deep learning models that account for
known effects and model the remainder of interactions between the genetic, environ-
mental and developmental factors. Being able to then inspect individual components
of these complex architectures would enable new findings on mechanisms at different
biological scales. Additionally, nudging can also be used to other ends. Constructed
deep learning architectures could leverage auxiliary phenotypic data at training time
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to obtain better genotype-based predictors at test time. Relying on environmental
factors during training could nudge the model into extracting specific high-order in-
teractions between genotypic data that would then be retained at test time, when
the model runs on genotype data alone. The learned representation could therefore
indirectly contribute to explain additional parts of the missing heritability. All in
all, the vast progress machine learning has experienced in recent times has paved the
way for new exciting ways to interrogate living systems and generate new biological
insights: new discoveries are therefore poised to intensify over the coming years.
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