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A B S T R A C T

Background. As time passes, the field of biology is constantly revolutionised by the
rapid emergence of technologies that have been providing larger and more diverse
datasets. The availability of these large datasets enables in return discoveries of
biological mechanisms and the development of new fields such as personalised
medicine. Analysing these large datasets remain however challenging, because of
their size and diversity, and of the underlying complex biological mechanisms. Un-
ravelling these mechanisms requires the development of new data analysis methods,
coming from domains such as pattern mining or machine learning. Among the
various challenges and questions that arise from biological data, a core problem
concerns how to handle biological interactions. Biological interactions are extremely
diverse and appear indispensable in studies of molecular or macroscopic pheno-
types. Transcription factor binding to DNA sequences are examples of core physical
interactions, while indirect interactions can also exist, such as proteins operating in
the same disease pathway. Due to the diversity in interaction types, a large number
of models for interactions have been proposed throughout the years. In this thesis,
we will examine several ways to model such interactions in two types of datasets
and closely related problems to these dataset types.

Contributions. We focused on two dataset types, genome-wide association studies
and large sequence-function datasets, to explore the potential of modelling interac-
tions for better understanding and prediction of biological mechanisms.

In the first chapter of this thesis, we will focus on applications to genome-wide
association study (GWAS) data, namely finding groups of genetic variants whose
interaction would be responsible for a phenotype of interest. The relevance of this
application lies in the fact that it is possible that a group of genetic variants is
responsible for a phenotype while none of its subgroups would alter the phenotype.
Additionally, GWAS datasets are typically confounded, as its samples can have
different origins or covariates such as age or height. Performing association testing
in confounded datasets without any adequate correction is highly at risk as it can
result in many spurious associations. Therefore, only with the ability to correct for
covariate factors, can algorithms that account for interactions be widely applicable
to GWAS datasets. In the first chapter of the thesis, we present two algorithms that
are able to find statistically significant interactions of genetic variants in the presence of a
categorical covariate. Two types of interactions are studied, first all higher-order interactions,
which, as their number scales exponentially with the number of genetic variants, generate
computational and statistical challenges, and second, all contiguous genomic regions poten-
tially at the origin of genetic heterogeneity.
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In the second chapter of this thesis, we will focus on applications to functional
genomics, in particular on function prediction of DNA-regulatory sequences in
bacteria. Being able to accurately predict the function of regulatory sequences is
highly relevant in field such as synthetic biology or bioengineering. To this end, we
build a deep learning model in order to accurately predict the functions of the regulatory
sequences of interest training on a large-scale sequence-function dataset. We additionally
provide reliable uncertainty estimates for the predicted values in order understand which
predictions the model is confident about, so that the corresponding sequences could be used
in downstream biological tasks. Finally, we compare several interpretability methods and
show that the model is able to detect sequence determinants and to measure their position-
dependent influence.

Conclusion. We show that the methods introduced in these two chapters are able
to leverage non-linear interactions to improve feature selection or prediction perfor-
mance, respectively. We also provide software package and webserver in order to
participate openly to the community’s effort and advances. It would be possible to
further extend the concepts and models presented in this thesis, either to weaken as-
sumptions, incorporate domain knowledge or tackle related but different problems
of similar and crucial importance, such as data integration or molecular design. We
believe that the recent advances in machine learning, bioinformatics and biology
greatly hold promise in the years to come.
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R É S U M É

Contexte. Ces dernières années, le domaine de la biologie a été constamment ré-
volutionné par l’émergence rapide de technologies qui fournissent des données
toujours plus importantes et diversifiées. La disponibilité de ces grands ensembles
de données permet en retour de découvrir des mécanismes biologiques et de dé-
velopper de nouveaux domaines tels que la médecine personnalisée. L’analyse de
ces grands ensembles de données reste cependant difficile, en raison de leur taille
et de leur diversité, ainsi que des mécanismes biologiques complexes sous-jacents.
L’élucidation de ces mécanismes nécessite le développement de nouvelles méthodes
d’analyse des données, provenant de domaines tels que le data mining ou l’appren-
tissage automatique. Parmi les divers défis et questions qui viennent de données
biologiques, un problème central concerne la manière de traiter les interactions
biologiques. Les interactions biologiques sont extrêmement diverses et semblent
indispensables dans l’étude des phénotypes moléculaires ou macroscopiques. Les
facteurs de transcription se liant aux séquences d’ADN sont des exemples d’inter-
actions physiques essentielles, tandis que des interactions indirectes existent aussi,
comme les interactions entre protéines qui agissent dans la même voie métabolique.
En raison de la diversité des types d’interactions, un grand nombre de modèles
d’interactions ont été proposés au fil des ans. Dans cette thèse, nous examinerons
plusieurs façons de modéliser ces interactions dans deux types de données et des
problèmes connexes à ces types de données.

Contributions. Nous nous sommes concentrés sur deux types de données, les
études d’association pangénomique (EAG) et les grands jeux de données composées
de pairs de séquence et fonction correspondante, afin d’explorer le potentiel de la
modélisation des interactions pour une meilleure compréhension et prévision de
mécanismes biologiques.

Dans le premier chapitre de cette thèse, nous nous concentrerons sur les ap-
plications à des données d’étude d’association pangénomique (EAG), à savoir la
découverte de groupes de variants génétiques dont l’interaction serait responsable
d’un phénotype d’intérêt. La pertinence de cette application réside dans le fait qu’il
est possible qu’un groupe de variants génétiques soit responsable d’un phénotype
alors qu’aucun de ses sous-groupes n’altèrerait individuellement le phénotype. En
outre, les données d’EAG sont généralement sous l’influence de variables confon-
dantes, car ses échantillons peuvent avoir des origines différentes ou des variables
confondantes différentes, comme l’âge ou la taille. Effectuer des tests d’association
sur de telles données sans correction adéquate est très risqué parce-que cela peut
entraîner la découverte de nombreuses fausses associations. Par conséquent, ce n’est
qu’avec la capacité de corriger pour des facteurs confondants que les algorithmes qui
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tiennent compte des interactions peuvent être largement applicables aux ensembles
de données d’EAG. Dans le premier chapitre de la thèse, nous présentons deux algo-
rithmes qui sont capables de trouver des interactions entre variants génétiques, associées, de
manière statistiquement significative, à un phénotype d’intérêt en présence d’une variable
confondante catégorielle. Deux types d’interactions sont considérés, tout d’abord toutes les
interactions d’ordre supérieur, qui, comme leur nombre augmente de manière exponentielle
avec le nombre de variants génétiques, génèrent des défis statistiques et de temps d’exécution,
et deuxièmement, toutes les régions génomiques contiguës potentiellement à l’origine du
phénomène d’hétérogénéité génétique.

Dans le deuxième chapitre de cette thèse, nous nous concentrerons sur les appli-
cations à la génomique fonctionnelle, en particulier sur la prédiction de fonctions
à partir de séquences d’ADN régulatrices chez les bactéries. Pouvoir prédire avec
précision la fonction de séquences régulatrices est pertinent dans des domaines tels
que la biologie synthétique ou la bio-ingénierie. À cette fin, nous construisons un
modèle d’apprentissage approfondi afin de prédire avec précision les fonctions des séquences
régulatrices d’intérêt, modèle entraîné sur un grand jeu de donnée de pairs séquence-fonction.
Nous fournissons en outre des estimations de l’incertitude du modèle pour les valeurs pré-
dites, afin de comprendre quelles prédictions pourraient être utilisées en aval lors d’étude
de phénomènes biologiques. Enfin, nous comparons plusieurs méthodes d’interprétation et
montrons que le modèle est capable de detecter des déterminants séquentiels et de mesurer
leurs influences en fonction de leurs positions.

Conclusion. Nous montrons que les méthodes présentées dans ces deux chapitres
sont capables d’exploiter les interactions non linéaires pour améliorer les perfor-
mances de modèles d’apprentissage automatique en terme de sélection de caracté-
ristique ou de prédiction, respectivement. Nous fournissons également un logiciel
et un serveur web afin de participer ouvertement à l’effort et aux progrès de la
communauté. Il serait possible d’étendre davantage les concepts et les modèles
présentés dans cette thèse, soit pour prendre en compte des hypothèses plus faibles,
soit pour incorporer des informations propres au domaine étudié, soit pour aborder
des problèmes connexes d’importance similaire et cruciale, comme l’intégration de
données ou la génération de nouvelles molecules. Nous pensons que les récents
progrès de l’apprentissage automatique, de la bioinformatique et de la biologie sont
très prometteurs pour les années à venir.
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1
I N T R O D U C T I O N T O T H E I M P O RTA N C E O F I N T E R A C T I O N S I N
G E N E T I C S A N D B I O E N G I N E E R I N G

Molecular interactions are omnipresent at all levels of biological systems, such as
protein-protein interactions [1–3], DNA-binding proteins [4, 5] or DNA-RNA interac-
tions [6]. Being able to decipher the role of interactions in biological phenomena can
lead to a large amount of discoveries, potentially revolutionising the medical field in
all its dimensions, for prevention, diagnosis and treatment. For example, in complex
diseases such as asthma [7] or diabetes [8], it is possible that interacting DNA loci
are responsible for the variance of the phenotypic trait or disease risk, besides
existing or non-existing marginal effects (see Figure 1.1). Finding these interacting
DNA loci could lead to a better molecular understanding of the diseases of inter-
est and help to address which genes or molecules to target in drug discovery [9–
11]. Additionally, interactions play a fundamental role in cancer where somatic
mutations can be mutually exclusive or co-occurring, leading to different cancer
pathways or different responses to treatment [12, 13]. An enhanced understanding
of interactions between somatic mutations could help tackle the complexity behind
cancer development to design better drugs and find effective drug combinations [14].

Our ability to collect biological data, and its ever-growing quantity and diver-
sity, have enabled to push forward the research on biomarker discovery during
the last years [15–17]. Together with information about the patients’ environment
and lifestyle, using the large pool of biological data available, towards a better
understanding of interactions that drive diseases, could allow making personalised
medicine a reality [18]. However, while the available large-scale datasets have led
to the identification of several thousands of relevant biomarkers [19], less has been
done in the domain of interaction discovery. A reason to explain this phenomenon
is the size of the studied datasets, which fit the large-p small-n framework. For
example, genome-wide association studies can contain a few hundreds to thousands
of samples but several millions of DNA loci [10, 11]. In this setup, the detection of
individual markers can be difficult due to the lack of statistical power and sizeable
computational runtime. The detection of interacting markers is even more chal-
lenging, as the number of interactions grows exponentially with the number of
individual markers. This could explain why very few methods enable an exhaustive
search of biomarker interactions and why this topic remains an open problem.

However, the challenges behind modelling interactions do not only lie with the
exponential number of interactions but also with the fact that often the identities
of the interacting markers and the way they interact are unknown. In fact, the
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Figure 1.1: Example of feature interaction. None of the blue individual features are as-
sociated with the phenotype but the AND combination of these blue features
(right) is associated.

term interaction can broadly refer to either physical interactions between molecules,
such as among DNA and/or proteins molecules, or to indirect interactions between
genes and/or non-coding DNA sequences, rendering its modelling complex. Due
to the diversity of biological interactions, the literature refers to very different sta-
tistical and biological concepts when studying molecular interactions associated
to a phenotype [20]. The commonly-used term to describe interactions between
biological markers is epistasis, whose high-level definition refers to departure from
additivity of the effects of two different features, at the penetrance scale, on a trait or
disease. In practice, accepted models that test epistasis are additive, with additional
multiplicative terms between different loci [21]. In these cases, epistasis is close
to the concept of statistical interactions, which indicates departure from a specific
linear model that describes the relationship of predictive factors with a phenotype
of interest. As a consequence, there is a large variety of manners to model statistical
interactions, and the biological meaning is dictated by the modelling choices.

Typical biomarker discovery methods often resort, in the large-p small-n frame-
work, to univariate testing or regularised multivariate regression [22, 23]. There-
fore, such methods are unable and insufficient to account for interactions between
markers [11], which leads to the existence of missing heritability [24, 25]. Missing
heritability conveys the idea that the variation of the trait under study is often poorly
explained by the associated biomarkers. Therefore, novel methods are needed to be
able to account for interacting biological markers in such a way that they describe
the underlying biological mechanism, making possible to better explain the emer-
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gence of a phenotypic trait. To this end, machine learning can be used as a tool to
discover or exploit these interactions, using feature selection algorithms [26] or pre-
diction models [27], to solve biological questions. We will use throughout this thesis
different types of models and features when considering statistical interactions and
we will concentrate on their influence at two different biological levels.

In a first step, we will study interactions between loci in genes and/or non-coding
DNA elements, and their impacts on a global phenotype, such as disease state or a
physical trait under study. In this first chapter we will focus on different definitions
of statistical interactions and will therefore interpret the results in terms of different
types of biological interactions. However, as global phenotypes are often affected by
several factors, some of them being difficult to control, we will explore a molecular
phenotype, known to be mostly explainable from genetic variations alone, in the
second part of the thesis. Therefore, in a second step, we will focus on nucleotide
interactions in RNA sequences, using non-linear machine learning models, to deter-
mine the activity of a regulatory sequence of interest. The thesis is more precisely
structured as follows.

The first chapter of this thesis, titled Higher-order interaction discovery in genome-
wide association studies, focuses on different types of interactions between genetic
variants. This chapter aims to enhance traditional genome-wide association studies
(GWAS) methods to account for interactions when selecting statistically significantly
associated genetic variants. Traditionally, univariate GWAS look for associations be-
tween single features and a phenotype of interest [11]. However, while this approach
has had its successes, it has been hypothesised that accounting for interactions in
GWAS [11] might partly alleviate this issue. These interactions are supported by
biological phenomena, such as protein-protein interactions or DNA-protein interac-
tions. As an example, we might observe that genetic features have an impact on the
phenotype when both are minor alleles and no impact when only one of them is
a minor allele. In this chapter, we will also focus on another specificity of GWAS
studies, namely population structure or, more broadly, the presence of confounding
covariates [28]. These covariates can give rise to spurious associations [28, 29], most
commonly, when a feature and the phenotype are both associated to the covariate,
therefore appearing marginally associated, although the feature and the phenotype
are independent given the covariate. In summary, the first chapter of this thesis
will present novel methods developed in order to discover statistically significant
interactions of genetic variants in GWAS datasets, while correcting for a confound-
ing covariate. This chapter will first give a broad introduction to GWAS, including
a discussion on its common limitations, as well as to pattern mining techniques
that have been used as building blocks of our proposed approach, to solve some
of these limitations. Then, we will detail the methods we developed, and present
comprehensive experimental results on both simulated and real-world GWAS data
to assess the performance of our proposed approaches relative to the state of the art
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in the field.

The second chapter of this thesis, titled Deep-learning enables accurate predictions
of ribosome binding site activity, aims to learn non-linear functions of multiple nu-
cleotides in regulatory regions in order to predict their corresponding activities.
With the emergence of large-scale labelled datasets in functional genomics [30,
31], there is a new opportunity to use complex, highly flexible models to fully
benefit from the large available sample size. To this end, deep learning represents
a promising approach due to its ability to model complex interactions between
features in a data-driven fashion, as well as due to its scalability [32]. In this thesis,
we will present a deep learning model tailored to the problem of predicting the
activity of a specific regulatory region in bacteria, which obtains state-of-the-art per-
formance. We will also show that we are able to assign well-calibrated uncertainty
estimates to each predicted value, thereby providing guidance to design regulatory
region sequences for downstream biological experiments. We will also show that,
by applying SOTA interpretability techniques to the deep learning model, one
can recover known motifs and positions of importance in the regulatory region of
interest. This chapter is structured as follows. First, it will give a broad introduction
to state-of-the-art methods in activity prediction for the regulatory region of interest
and describe the wet lab experimental setting at the origin of the datasets used
throughout the chapter. It will then detail the proposed approach we developed and
present the experimental results we obtained in terms of prediction performance
and model interpretability.

Finally, the thesis concludes with the chapter Discussion and conclusion, which
will give a summary of the methods developed in this thesis, discuss some of
their limitations and describe future research leads that could be explored towards
solving some of these limitations or tackling related problems.



2
H I G H E R - O R D E R I N T E R A C T I O N D I S C O V E RY I N
G E N O M E - W I D E A S S O C I AT I O N S T U D I E S

2.1 introduction to genome-wide association studies

In this section, we will first introduce genome-wide association studies, why it
became popular, what do the datasets consist of and what type of analyses are
traditionally performed on these datasets (Section 2.1.1). Second, we will present
the main challenges and limitations when looking for associated genetic variants on
GWAS datasets (Section 2.1.2).

2.1.1 Detecting associations between genetic variants and phenotypic traits with GWAS

Genome-wide association study (GWAS) is an experimental design that has been
created towards the goal of facilitating the detection of associations between genetic
variants and phenotypic traits in groups of samples [10, 11]. Compared to linkage
studies, which pre-existed GWAS, a main advantage of GWAS was that it was
agnostic. There was no need in GWAS to select candidate-genes a priori as studied
SNPs were distributed genome-wide. GWAS was also more flexible as it was able
to focus on case/control population data rather than families. As a consequence
of these studies, the underlying biology of a trait or a disease would be better
understood. It would allow hopefully to design a better treatment of a disease or
more efficient prevention and early detection policies. The path from GWAS to a
macroscopic phenomenon such as a trait or a disease is highly complex and not
systematically informative about the associated genetic variant itself. For example,
associated variants might not be causal of the disease or trait study. Nevertheless,
GWAS can be understood as a first step towards screening genetic variants of
interest among millions of other genetic variants. By finding significant associations
between genetic variants and a phenotype in samples of populations, GWAS discov-
eries have been successful and had a major impact in autoimmune disease research
and therapeutics [33, 34], in the understanding of metabolic diseases biological
mechanisms [35] or identification of genes co-responsible for disease quantitative
risk factors [36].

Typically, the datasets extracted from genome-wide association studies are used
to test the association of individual genetic markers, such as single-nucleotide
polymorphisms (SNPs), with a phenotypic trait of interest [37, 38]. These datasets
are obtained experimentally using SNP arrays [39]. These SNP arrays scan from
hundreds of thousands to millions of common genetic variants [10]. In the last years,

5
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the amount of data available is growing at an unprecedented rate, while keeping
the amount of features orders of magnitude larger than the sample size. Therefore,
statistical inference in high-dimensional spaces has become a tool of the utmost
importance for practitioners in those fields. These datasets contain information
on hundred of thousands to millions of SNPs. These SNPs are mostly biallelic,
with a major or a minor allele. For analysis purposes, SNPs from the same loci
in homologous chromosomes are combined into a categorical variable with three
categories: homozygote major alleles, homozygote minor alleles and heterozygote
alleles. The frequency of the second most common allele of each SNP is given by
the minor allele frequency (MAF). It is usual to further binarise such encoding into
a dominant encoding (homozygote major alleles are encoded as a 0 and the rest as
a 1) or a recessive encoding (homozygote minor alleles are encoded as a 1 and the
rest as a 0). The phenotypic trait is traditionally a binary label, i.e. presence (case) or
absence (control) of a disease. However categorical, i.e. different stages of a disease,
or continuous, i.e. quantitative traits such as body-mass index, variables can also be
found. Figure 2.1 shows an example of GWAS dataset.
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Figure 2.1: Example of a GWAS dataset. The phenotypic trait is the presence (represented
by a 1) or the absence (represented by a 0) of a disease. The ten SNPs are either
homozygote with two major alleles (encoded as a 0), heterozygote (encoded as
a 1) or homozygote with two minor alleles (encoded as a 2).

Common analyses of GWAS datasets consist of performing univariate tests. These
univariate tests consider the effect of each SNP in isolation from the rest. Statistical
tests used can be for example the c2 test [40], Fisher’s exact test [41], the likelihood
ratio test [42] or the Cochran-Mantel-Haenszel (CMH) test [43, 44] in the presence
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of a categorical covariate. The resulting p-values are used to assess the significance
of the association between each genetic variant and the phenotypic trait.

2.1.2 Limitations and challenges in GWAS

However, traditional GWAS studies have shown limitations and challenges [10, 11],
three of them are explained in this section, namely the existence of SNP interactions
(Section 2.1.2.1), the multiple hypothesis testing problem (Section 2.1.2.2) and the
existence of confounding factors (Section 2.1.2.3).

2.1.2.1 Finding interactions

First, traditional GWAS studies systematically miss associated non-linear interac-
tions between genetic variants by being restricted to univariate tests. However,
non-linear statistical interactions originate from biological interactions between
genetic variants. These interactions are either indirect, such as interactions between
proteins operating in the same pathway, or direct, such as physical interactions
between proteins or between a protein and a regulatory region [20, 45]. The conse-
quence of missing interactions is twice. First, a loss of power can occur due to the
fact that interacting SNPs are not detected with univariate analyses. For example,
an interaction could be significantly associated with a phenotypic trait while its
individual variants would not be. Second, failing to test for genetic variant interac-
tions can result in a loss of biological understanding of the emergence of molecular
and macroscopic phenotypes. Third, the existence of biological interactions have
led to the phenomenon known as missing or phantom heritability, which is the
fact that the maximum variance of the phenotype that can be explained by a linear
combinations of the individual features is in general low when interactions are not
accounted for [25]. Several studies have tempted to account for interactions using
exhaustive enumeration methods, filtering approaches, index structure approaches
and machine-learning driven approaches [20, 46–48]. However, the exact formu-
lation of the statistical interactions leads to different hypotheses being tested and
in consequence to different types of biological mechanisms being explored. Com-
mon interaction modelling choices will be more extensively introduced Section 2.2
together with a short note on interaction discovery in cancer research.

2.1.2.2 Correcting for the multiple hypothesis problem

Second, GWAS datasets typically fit the "large-p, small-n" framework, with hundreds
or thousands of samples (n), and hundreds of thousands to millions of SNPs (p). In
traditional univariate analyses, the number of statistical tests performed is as large
as the number of features (here SNPs) p, which leads to the multiple comparisons
or multiple hypothesis testing (MHT) problem [49, 50]. To briefly illustrate the
MHT problem, let’s assume a GWAS dataset contains n = 1000 samples and
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p = 100,000 features. With univariate methods, p = 100,000 statistical tests would
be performed and a p-value would be computed for each feature under the null
hypothesis of independence between the feature and the phenotypic trait. Let us
assume the significance threshold is set to d = 0.05. Let us also choose a test
statistic that measures independence between a feature and the phenotypic trait.
A null distribution can be defined that holds (asymptotically or not) in the case
of independence. In this setting, a p-value smaller than the significance threshold
would indicate that if we were to sample random values under the null distribution,
less than 5% of the values would be more extreme than the test statistics of interest.
Therefore, a p-value smaller than the significance threshold indicates that the null
distribution most likely does not hold for the variant of interest. The SNP is therefore
considered as associated. However, it would also be possible that such an extreme
value is correctly modelled by the null distribution even if being rare. In this case,
the null hypothesis would actually hold and be rejected by mistake. The SNP
would be in practice not associated but would appear associated by random chance.
Importantly, with a significance threshold of d (here d = 0.05), the likeliness of the
mistake would be small and correspond to a fraction d (here 5%) of the number
of tests performed under the null hypothesis. Therefore, in a dataset of 100,000
SNPs, approximately 5000 SNPs would be deemed false positives. In order to reduce
the number of false positives, it is common to use multiple hypothesis correction
procedures. However, standard MHT correction methods have a tendency to be too
conservative and to, by contrast, yield too many false negatives [51], see Section 2.3.1.
Therefore, we will introduce alternative methods that lead to an increase of statistical
power compared to standard methods, see Section 2.3.1.3.

2.1.2.3 Correcting for confounding factors

Third, GWAS datasets often present confounding factors that influence both the
phenotypic trait and some genetic variants. As a consequence, several spurious asso-
ciations can be detected. Examples of confounding factors are population structure
or covariate variables such as sex or BMI, as illustrated Figure 2.2. For illustra-
tion purposes, let us assume a GWAS dataset contains samples that belong to
different BMI level groups (high and low BMI) and that the phenotypic trait is
binary (presence or absence of a disease). It is possible that these BMI level groups
show differences in prevalence of some genetic variants, which are associated with
high BMI for example. When, additionally, the BMI level groups are unevenly
distributed across phenotypic classes, it can result in false associations between the
genetic variants and the phenotypic trait [28]. Therefore, it is necessary to model the
presence of confounding factors in order to correct for their effects and eliminate
potential false positive associations. An overview of methods that allow accounting
for confounding factors will be presented Section 2.3.2.
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Figure 2.2: Example of a GWAS dataset with one categorical covariate. In addition to
the GWAS dataset described Figure 2.1, BMI level is accounted for as binary
covariate.

Significant pattern mining (SPM) [52, 53] is a data mining subfield that consists of
finding sets of features that are significantly more frequently present in a group of
samples than in another one. In pattern mining, the features are represented with
binary vectors, whose elements indicate the presence or absence of the feature in
each sample of the dataset. A pattern is a subset of features and is represented by a
binary vector. Each element of the representative vector indicates whether all the
features of the pattern occur in the given sample. In significant pattern mining, the
samples are further labelled with a binary encoding, splitting the samples of the
population into two groups. For each pattern, the objective of SPM is to determine
whether the pattern is statistically significantly enriched in samples that belong
to one of the two classes. This is equivalent to testing the statistical association
between the binary label and the pattern vector. Several developments have enabled
SPM methods to be applicable to large-scale datasets [48, 54, 55]. The setting of
significant pattern mining is particularly relevant to case/control studies in GWAS,
where the features can be binarised, using a dominant or recessive encoding, and
the labels are naturally binary (cases and controls).

The aim of this chapter is therefore to introduce a series of methods that are able
to find interactions of genetic variants significantly associated with a phenotypic
trait of interest, while correcting for both (i) the multiple hypothesis testing problem,
to increase the true positive rate compared to standard MHT correction methods,
and (ii) covariates, to reduce the false positive rate due to confounding. This chapter
is organised as follows:
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• Section 2.2, we will first introduce previous work in interaction discovery.

• Section 2.3, we will then present some significant pattern mining background
work in multiple hypothesis testing correction and confounder correction.

• Section 2.4, a novel significant pattern mining method (Fast Automatic Con-
ditional Search, FACS) will be described [56], which handles binary feature
interactions while accounting for categorical covariates, together with a strict
MHT correction. We will show that FACS is able to find associated interactions
of genetic variants in GWAS in a proof-of-concept experiment. The work
presented in this section is available in the following publication, for which
the two first authors contributed equally.

– Papaxanthos, L., Llinares-López, F., Bodenham, D. & Borgwardt, K. Find-
ing significant combinations of features in the presence of categorical covariates
in Advances in Neural Information Processing Systems (2016), 2271–2279

• Section 2.5, another significant pattern mining algorithm (FastCMH) that fo-
cuses on detecting genetic heterogeneity in GWAS data will be presented [57].
This method has been published under the following reference, work for
which the two first authors contributed equally.

– Llinares-López, F., Papaxanthos, L., Bodenham, D., Roqueiro, D., COPD
Investigators & Borgwardt, K. Genome-wide genetic heterogeneity discovery
with categorical covariates in Bioinformatics 33, i1820–i1828 (2017)

• Section 2.6, a ready-to-use software package, that includes the above sig-
nificant pattern mining methods together with some predecessor methods,
will be introduced [58]. The software package originates from the following
publication, where the two first authors contributed equally.

– Llinares-López, F., Papaxanthos, L., Roqueiro, D., Bodenham, D., & Borg-
wardt, K. CASMAP: detection of statistically significant combinations of SNPs
in association mapping in Bioinformatics (2019)

Please note that the text of Sections 2.4 to 2.6 have been largely inspired from the
existing publications they are describing.
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2.2 state of the art in interaction discovery in gwas

Notation: We assume n samples and p genetic variants arranged in a n⇥ p design
matrix XXX, such that the columns of the matrix XXX.,i = (X1i, X2i, ..., Xni) correspond
to each variant i 2 [[1,p]] and the rows XXXi,. = (Xi1, Xi2, ..., Xip) correspond to each
sample i 2 [[1,n]]. A subset of variants of XXX is written as S = {XXX.,i1 , XXX.,i2 , ..., XXX.,ik } and
a contiguous interval of variants of XXX is written as I = {XXX.,s, XXX.,s+1, XXX.,s+2,..., XXX.,e},
where 1  s  e  p, s being the starting position of the region and e the ending po-
sition. In this thesis, the terms ’genomic interval’ and ’genomic region’ will be used
indistinguishably. Let yyy define the phenotypic trait vector, where yi corresponds
to the phenotype of sample i. Let µ be the empirical mean of yyy. Additionally, we
assume that CCC is a matrix of covariate variables, with n rows that correspond to
samples and c columns that correspond to individual covariates.

In this section, we describe a first part of the necessary background on which
the methods we propose are built. First, in Section 2.2.1, we introduce intrinsic
limitations of univariate genome-wide association studies. Then, Sections 2.2.2, 2.2.3
and 2.2.4 present state-of-the-art approaches in GWAS in interaction discovery.

2.2.1 Problem statement

Several plausible mechanisms by which genetic variation could be linked to phe-
notypes cannot be captured by traditional univariate GWAS studies [24] and in-
clude (i) low-frequency (i.e. with a minimum allele frequency (MAF) such that
0.5%  MAF < 5%) or rare genetic variants (i.e. MAF < 0.5%), with possibly strong
effects [59], (ii) epistasis, which can be defined as non-linear higher-order interac-
tions between common variants, (iii) genetic heterogeneity, which consists of the
production of single or similar phenotypes through different genetic mechanisms,
therefore leading to multiple distinct genetic variants being weakly associated,
and/or (iv) other environmental phenomena. Mechanisms explained by hypothesis
(i) cannot be captured by common GWAS analyses as SNPs arrays mostly record
common variants, present on 5% or more of a population omitting rare variants,
and GWAS studies often fail to detect associations to rare variants or to variants
with weak effects, due to the large number of tests performed and the relatively
low sample size. In other words, the individual signal carried by some variants
is too weak to be discovered in a single SNP study. Additionally, hypotheses (ii)
and (iii), which existence has been corroborated by several studies [60], are missed
by univariate testing of single SNPs. Finally, environmental phenomena (iv) are
not captured by traditional SNP genotyping. Therefore, conditions (i) to (iv) are in
general leading to a low statistical power in GWAS studies. As explained, due to
the intrinsic properties of the GWAS datasets, the opportunity to study hypotheses
(i) and (iv) can be discarded. In addition, from a biological point of view, there is a
priori no reason to expect that traits should be additive. Biology consists of many
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non-linearities, from the saturation of enzymes with substrate concentration, the
cooperative binding of proteins or redundant pathways. However, traditional GWAS
studies heavily rely on univariate testing, finding individual loci and potentially
missing interactive SNPs. When estimating the maximum variance of the phenotype
that can be explained by a linear combination of allele counts, termed narrow sense
heritability [24, 25], researchers have realised the existence of a missing or phantom
heritability, i.e. the contribution of the individual loci to the total variation of the
phenotype is rather low. This missing heritability has been explained partly by the
fact that total variation of the phenotypic trait was overestimated, due to the fact
that its estimation did not include non-additive terms. The existence of missing
heritability corroborates the importance of hypotheses (ii) and (iii), towards which
our research projects have been directed.

State-of-the-art methods that handle hypotheses (ii) and (iii) in GWAS include
aggregation tests (region-based and gene-based) such as burden tests among oth-
ers [61] (hypothesis (ii)), epistasis studies [46, 47, 62] (hypothesis (iii)) and more
recently significant pattern mining methods developed with the GWAS application
in mind [48] (hypothesis (ii)). A brief description of these three types of approaches
is given below.

2.2.2 Burden tests

Burden tests evaluate the cumulative effects of multiple genetic variants in a gene
or region. They are motivated by the fact that if several variants in a group are
associated to the given disease or trait, statistical power will increase compared to
testing individual SNPs. Several modifications have been brought to the original
burden tests, such as including effect signs or null variants in the group, however
most burden tests still consist of (i) summarising a region with a summary genetic
score, (ii) building a corresponding score statistic and (iii) testing the null hypoth-
esis, which assumes no association between the region of interest, as represented
by the summary score, and the phenotypic trait. Following the above notations,
assuming the region of interest is the SNP window [[is, ie]], a common choice for
summary genetic score can be written as sss = Âie

j=is
wjXXX.,j where wj is a fixed weight

for variant j. The null hypothesis H0 of independence between the region and the
phenotypic trait is tested in the model yyy = b0 + bsss (assuming no covariate variable,
see Section 2.3.2). Extensions to binary yyy (case/control) are possible. The correspond-
ing score statistic to test H0 : b = 0 is then qburden = (Âie

j=is
wj Ân

i=1 Xij(yi � µ))2.
The advantages of burden tests are two-fold: (i) the ability to aggregate additive
weak effects in order to increase the corresponding signal and (ii) in the case of
available prior knowledge of the regions of interest, the possibility to reduce the
number of tests to a bare minimum, therefore not being penalised by a traditionally
conservative multiple hypothesis testing correction (see Section 2.3.1). However, in
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the absence of prior biological knowledge, such as the location of genes and exons
likely to be associated with the trait of interest, the positions and lengths of the
studied regions would be arbitrarily chosen, therefore potentially missing regions
that would be associated and leading to a loss of statistical power.

2.2.3 Epistasis studies

There is a large body of work covering epistasis studies. Ideally, epistasis methods
should be exhaustive in terms of length of the sets of SNPs that are tested, handle
homozygous and heterozygous SNPs to be applicable to human GWAS and scale to
hundred of thousands of SNPs at least and thousands of samples. However, as this
ideal objective is computationally and statistically extremely challenging, existing
methods impose constraints on these aspects. State-of-the-art epistasis methods
can be broadly classified into four categories: exhaustive enumeration methods,
filtering approaches, index-structure approaches and machine-learning driven ap-
proaches [46, 47, 62, 63].

Exhaustive approaches aim at testing all sets of SNPs exhaustively. As the number
of sets of SNPs scale exponentially with the number of SNPs, some methods limit
themselves to testing sets of SNPs of bounded size, in general pairs of SNPs (a set
of size two). Testing all pairs corresponds to the large-p small-n setting and leads
to computational and statistical challenges. To this end, [64, 65] introduce methods
that use computing clusters and works on graphical processing units, optimized for
basic matrix operations. However, these methods are not able to handle higher-order
interactions. Another approach that aims at searching for higher-order interactions
is proposed in [66]. The latter uses multifactor-dimensionality reduction (MDR) as
a model-free (it does not assume any inheritance model) and non-parametric (no
hypothesis is made about the value of statistical parameters) approach to avoid
choosing a priori a type of encoding, which might affect the results in the absence of
prior knowledge. MDR first selects a set of SNPs, reduces the dimension of the table
recording case-control ratio for each combination of locus/SNP encoding and uses
prediction accuracy on the selected multifactor model to learn the most relevant set
of SNPs. The procedure is repeated several times. However, this method encounters
scalability issues when the number of features is large and is mainly applicable to
balanced case-control datasets. Later, model-based MDRs have beens developed [67,
68], with a focus on pairs of SNPs most often. At last, [69, 70] propose an exhaus-
tive search of pairwise interactions, using bitwise encodings, to save memory and
computational runtime, and the likelihood ratio test, to measure departure from the
additive model for each pair of SNPs.

Another group of approaches rely on a first filtering step. These approaches
use a two-stage procedure, first reducing the set of SNPs based on statistical cri-
teria [71–74] or biological criteria [75, 76] and then computing all remaining pairs
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exclusively or running a L2-regularised linear regression on the remaining SNPs [77].

Third, index-structure approaches can be used in order to save memory and
computational runtime. [78] (respectively [79]) proposes to build on the ANOVA
test (respectively across different test statistics) to find all pairs of binary SNPs
that are significantly associated with a phenotype, while controlling for the FWER.
Its advantage in computational runtime comes from the fact that it uses an upper
bound to filter out SNP-pairs having no chance to become significant, computes
efficiently the upper bound and identifies redundant cases in the permutation tests.
Another example is [80], which utilises the minimum spanning tree structure in a
depth-first search algorithm to update contingency tables of the pairs containing
a SNP of interest, without scanning all individuals. It allows performing efficient
epistasis detection on homozygous and heterozygous data, controls for both FWER
and FDR and is efficient in large sample studies.

Fourth, several bayesian methods have been proposed, where the objective is
ideally to learn the dependency structure between SNPs, and with the phenotype. A
first one [81] relies on Markov Chain Monte Carlo (MCMC) to test iteratively each
marker conditioning on the previous ones, and distribute them among three groups,
unlinked to the phenotype, contributing independently or contributing together
with other SNPs to the phenotype. Then markers are further filtered to obtain a
reduced set of important SNPs. As MCMC can present scalability issues, several
extensions have been proposed afterwards. [82] considers that the SNPs are causal
to the phenotype, proposing a prior to the directed acyclic graph joining SNPs and
phenotype and replaces the MCMC step by a branch-and-bound strategy. [83–85]
rely on a Markov-blanket strategy that consists of finding the smallest set of influ-
encing SNPs. A notable sampling approach is the epistasis lightbulb algorithm [86,
87], which detects pairs of homozygous or heterozygous SNP interactions, by phras-
ing epistasis detection as a difference in correlation problem between cases and
controls. The estimated maximum correlation in cases or controls can be calculated
sub-quadratically in the number of SNPs, by estimating a correlation between two
vectors sampling only k rows several times. Finally, [88–90] are tree-based algo-
rithms that rely on variable importance techniques to find the sets of SNPs the most
associated with a phenotype of interest.

While the studies presented above have proven their importance in disease under-
standing and disease risk prediction, epistasis has been extensively studied in other
domains and in particular in the domain of cancer research. When studying cancer,
epistasis search has integrated different sources of data, such as mutation, copy
number and mRNA expression datasets. Identifying epistasis in cancer genome
is at the heart of understanding cancer evolution, cancer pathways [91] and iden-
tifying effective combination therapies [14]. Epistasis is studied between somatic
mutations on the same genomes and can refer to, for example, mutually exclusive
mutations or to co-occurring mutations for example. Mutually exclusive mutations
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could happen when a driver mutation is less likely to occur when an earlier mu-
tation has a redundant functional effect in the same molecular pathway. Inversely,
a driver mutation could arise if it acts synergistically with a previous mutation.
Several studies have tackled mutual exclusivity of cancer mutations [92, 93] or have
modelled tumour mutational profiles and interactions between mutated genes [94]
with the objective to allow genomic stratification for clinical trials and identifying
drug targets. Numerous studies have also searched cancer genome for synthetic
lethal genetic interactions for understanding genotype-phenotype relationship or
identifying drug-targets against cancer [95–97]. These cancer studies together with
the studies presented earlier show the importance of research in epistasis in or-
der to uncover biological mechanisms and push medical discoveries forward [98, 99].

2.2.4 Interval search algorithm

More recently, the Fast Automatic Interval Search (FAIS) algorithm [48] enables to
detect any GWAS contiguous region that would be significantly associated with a
binary phenotypic trait. This method tackles the problem of genetic heterogeneity,
by searching for genomic intervals I in which the occurrence of a type of sequence
variant (e.g. a point mutation or minority allele) present in at least one genetic variant
of the genomic region is significantly more frequent in one of the two phenotypic
classes. Formally, each SNP has a binary encoding (dominant or recessive) and the
encoding of the interval implements the OR operation between the SNPs that it
contains: zzzI = XXX.,s _XXX.,s+1 _ ..._XXX.,e, with 1  s  e  p, as illustrated Figure 2.3.
This method’s main assets are (i) the possibility to perform an exhaustive search
among all contiguous intervals. The algorithm automatically finds the starting and
end positions of the significantly associated intervals, without requiring any prior
knowledge on the length or position of the associated regions. (ii) The method
leverages the aggregation of weak effects to improve statistical power. (iii) Finally, it
is able to properly correct for multiple hypothesis testing, as we will explain in the
following section (2.3.1).
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Figure 2.3: Examples of genomic intervals. Two genomic intervals and their encoding are
represented in blue and red in the rightmost part of the figure. The encoding of
a genomic interval takes the OR operation of the SNPs contained in the interval.
In this thesis, the terms genomic interval and genomic region are going to be
used interchangeably.



2.3 state of the art in significant pattern mining 17

2.3 state of the art in significant pattern mining

In this section, we describe the necessary background on which the methods we
propose are built. First, in Section 2.3.1, we present the multiple hypothesis testing
problem and some state-of-the-art solutions. Genome-wide association studies lead
to the multiple hypothesis testing problem as, typically, the datasets contain a large
number of features, and the associations of every feature with the label are being
tested individually. Second, in Section 2.3.2, we describe the effect of confounding
factors on GWAS results and several approaches that have been used to correct for
it when performing hypothesis testing.

2.3.1 Multiple hypothesis testing correction

Notation: In this section and the next one, we will use the notation provided
Section 2.2 and the following notation. We denote d the significance threshold under
which we consider an association significant, dM the significance threshold under
the multiple hypothesis testing correction method M and a the multiple hypothesis
testing threshold target error. FP is the total number of false positives and TP the
total number of true positives. As previously, we denote by S a feature subset, also
called pattern in data mining, and zzzS the corresponding feature combination that
encodes as a vector the feature subset. P describes the set of all feature subsets.

2.3.1.1 Problem statement

The multiple hypothesis testing problem [100] arises when several statistical tests
are conducted in parallel and is exacerbated when the number of statistical tests
performed is high, as seen in the introduction. It can result in a large number of
false positives. In order to control for the number of false positives in multiple
testing, frequentist practitioners often use metrics such as the Family-Wise Error
Rate (FWER) or the False Discovery Rate (FDR) [101]. The FWER is the probability
that at least one significant association is a false positive and can be written as:
P(FP > 0) where FP corresponds to the number of false positives. The false discov-
ery proportion (FDP) is the proportion of false discoveries among all discoveries.
Controlling its expectation, commonly referred as the false discovery rate (FDR), is
given by E( FP

max(FP+TP,1) ) and is a popular, less stringent alternative to the FWER
control. In both cases, we aim to control these rates with a threshold a, such that
FWER  a or FDR  a.

In GWAS, both metrics can be used to control the error rate in multiple testing.
While FDR has the main advantage over FWER that it is less conservative, by being
more flexible in the number of false positives allowed, therefore leading to a higher
statistical power, we chose to focus the study on the FWER for several reasons.
First, controlling the FWER allows to guarantee that the probability of any false
discoveries is upper bounded, which gives a meaningful measure of confidence
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independent of the number of total discoveries. Moreover, as we will see in the
next section (2.3.1.3), existing algorithms that apply multiple hypothesis testing
correction to test feature interactions in significant pattern mining aim to control
the FWER. Additionally, controlling the FWER does not require any hypothesis on
the joint distribution of the tests statistics performed. As encoded interactions of
features can be highly correlated between each other, the respective statistical tests
are very likely to also present strong correlations, therefore making this last property
extremely important when working with interactions of features. In contrast, many
FDR-controlling procedures require either independence on certain restricted forms
of dependence, where validity is hard to verify in the context of interaction search.

2.3.1.2 Bonferroni’s family-wise error rate estimate

As there does not exist any general closed-form expression for the FWER, the
Bonferroni estimate dFWERbon f is often used instead [51]. As dFWERbon f is an upper
bound of the true FWER, controlling the Bonferroni FWER estimate at level a
implies that the true FWER is also controlled at level a, i.e. a � dFWERbon f � FWER.
In practice, the Bonferroni estimate is equal to dFWERbon f = d⇥ p0 where d is the
significance threshold per p-value and p0 is the total number of tests performed.
Therefore, applying a Bonferroni correction is equivalent to fixing the significance
threshold d to dbon f = a/p0. For example, if we have p = 100 features and test all
p0 = |P| = 2p � 1 ⇡ 1030 interactions of features, if we wish to control the FWER
at level a = 0.05, the adjusted significance threshold would be dbon f ⇡ 5⇥ 10�32,
which can be overly stringent and lead to a significant loss of power. For this reason,
several significant pattern mining methods restrict the search space by implicit or
explicit constraints which results in a less stringent Bonferroni correction, as the
number of tested patterns are reduced [102–104].

2.3.1.3 Tarone’s family-wise error rate estimate

Another less conservative approach was introduced by Tarone [105] and consists of
an adjusted Bonferroni correction for discrete test statistics. As the novel algorithms
described in this manuscript build on [105], we detail Tarone’s process hereafter.

Tarone primarily applied his method to univariate association tests, therefore
in this section we only consider single features. Let a feature Z and a label Y be
two binary random variables for which we observe n realisations {(zi, yi)}n

i=1. It is
possible to build a contingency table, as follows:

y=1 y=0 total

z = 1 a x� a x
z = 0 n1 � a n� x� n1 + a n� x
total n1 n� n1 n
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In the contingency table, n corresponds to the total number of samples, n1 is
the number of samples whose label takes value 1, x the support of the feature,
i.e. the total number of samples for which the feature of interest takes value 1,
a the number of samples that belong to the positive class and for which the fea-
ture of interest zzz takes value 1. To test the null hypothesis H0 : Y ?? Z, a test
statistic is chosen and a p-value is computed. Test statistics that fit Tarone’s frame-
work are, for example, Pearson’s c2-test, the Mann-Whitney U test or Fisher’s
exact test. For illustration purposes, we use the latter throughout this section.
The test statistic is therefore a and a corresponding p-value, in the case of a two-

sided test, can be written as: p(a|x, n1, n) = Â
a02A

Pr(a0|x, n1, n) = Â
a02A

Ca0
n1

Cx�a0
n�n1

Cn�x
n

with A = {a0|Pr(a|x, n1, n) � Pr(a0|x, n1, n)}. If the p-value is smaller than a
significance threshold d, then the association between Z and Y is deemed sig-
nificant. Notably, Tarone made the observation that there exists a minimum at-
tainable p-value for each contingency table that only depends on the margins
of the contingency table (n, x and n1). Given the margins, the test statistic a
can only take values in [[amin, amax]] = [[max(0, x + n1 � n), min(x, n1)]]. There-
fore, at fixed margins, a p-value can take at most amax � amin + 1 different val-
ues. Given these observations, one can compute a minimum attainable p-value
as Y(x, n1, n) = min{p(k|x, n1, n)|k 2 [[amin, amax]]}. When studying a dataset with
multiple features instead of one as in this preliminary example, a contingency table
and a minimum attainable p-value can be computed for each feature that is tested.

The concept of minimum attainable p-value has important implications in multiple
hypothesis testing for discrete test statistics. The minimum attainable p-value quanti-
fies the strongest association possible given the number of samples n, the number of
positive cases in yyy and the number of samples for which zzz is active. Comparing the
minimum attainable p-value to the significance threshold d allows to quantify how
strong the association could be given the margins. Therefore, if the strongest associ-
ation possible were not significant, i.e. if Y(x, n1, n) > d, any other outcome given
the same margins could also not be significant, i.e. p(a|x, n1, n) � Y(x, n1, n) > d,
cannot regardless of the value of the test statistic a.

More importantly, as the minimum attainable p-values are only functions of the
margins of the contingency table and not of the labels yyy, it is possible to use them in
order to prune features that cannot be significant. This property is key in the context
of multiple hypothesis testing correction: as features that are pruned away have
a minimum attainable p-value larger than the significance threshold, they cannot
be deemed significant, they cannot be false positives and finally do not need to be
accounted for in the FWER. Therefore the feature is said to be untestable and can
be ignored. By contrast, if the minimum attainable p-value of a feature is smaller
than the significance threshold, the feature is considered testable. Therefore, the
total number of tests performed |Ptar(d)|, equal to the number of testable features,
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is reduced and verifies |Ptar(d)|  |P|. As a consequence, the Bonferroni correction
is modified and the FWER estimate becomes dFWERtar = dtar|Ptar(dtar)|. Tarone
leverages the reduction in statistical tests performed, |Ptar(dtar)|  |P|, to obtain an
adjusted significance threshold dtar that is larger than Bonferroni’s adjusted signifi-
cance threshold dbon f and de facto leads to a gain in statistical power. To summarise,
Tarone’s statistical framework uses properties of some discrete statistics to increase
the statistical power in the context of multiple hypothesis testing, while controlling
for the FWER.

However, as the number of testable features is a function of the significance
threshold d, the calculation of dtar is less straightforward than in Bonferroni’s
correction, but can be expressed as dtar = max{d | d⇥ |Ptar(d)| <= a}. In order to
find dtar, Tarone suggests to compute all the maximum achievable significance levels
(the test statistics that results into the minimum attainable p-value defined above)
and to incrementally increase the correction factor of the significance threshold,
until, increasing one more time the correction factor leads to a number of tests
performed (equivalently testable features) smaller than the correction factor.

While Tarone’s framework allowed to use a less conservative Bonferroni’s correc-
tion, Tarone’s method (i) did not consider higher-order interactions, which would be
the regime where the method is most advantageous, i.e. where the number of tests
|P| is a priori very large and (ii) computed dtar in a brute-force manner, which does
not scale to a large number of tests. Next, we will present an algorithm developed
more recently that tackled both limitations successfully.
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2.3.1.4 Tarone’s adjusted significance threshold in the case of higher-oder interactions with
the LAMP algorithm
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XXX .,8
<latexit sha1_base64="S0lmu+YOexjvK0/cjyfshoXTKIw=">AAAB+HicbVC7TsMwFHXKq5RHA4wsFi0SA4qSMtCxgoWxSPQhtVHkuE5r1XYi20EqUb6EhQGEWPkUNv4Gt80ALUe60tE59+ree8KEUaVd99sqbWxube+Udyt7+weHVfvouKviVGLSwTGLZT9EijAqSEdTzUg/kQTxkJFeOL2d+71HIhWNxYOeJcTnaCxoRDHSRgrsan2Y8DDr50HmXDbzemDXXMddAK4TryA1UKAd2F/DUYxTToTGDCk18NxE+xmSmmJG8sowVSRBeIrGZGCoQJwoP1scnsNzo4xgFEtTQsOF+nsiQ1ypGQ9NJ0d6ola9ufifN0h11PQzKpJUE4GXi6KUQR3DeQpwRCXBms0MQVhScyvEEyQR1iarignBW315nXQbjnflNO4btdZNEUcZnIIzcAE8cA1a4A60QQdgkIJn8ArerCfrxXq3PpatJauYOQF/YH3+AJKfkl8=</latexit>

XXX .,9
<latexit sha1_base64="TaHVx3Y4gvE8ZZI4CC/BpM6ZmCc=">AAAB+HicbVC7TsMwFHXKq5RHA4wsFi0SA4qSMgBbBQtjkehDaqPIcZ3Wqu1EtoNUonwJCwMIsfIpbPwNbpsBWo50paNz7tW994QJo0q77rdVWlvf2Nwqb1d2dvf2q/bBYUfFqcSkjWMWy16IFGFUkLammpFeIgniISPdcHI787uPRCoaiwc9TYjP0UjQiGKkjRTY1fog4WHWy4PMOb/O64Fdcx13DrhKvILUQIFWYH8NhjFOOREaM6RU33MT7WdIaooZySuDVJEE4Qkakb6hAnGi/Gx+eA5PjTKEUSxNCQ3n6u+JDHGlpjw0nRzpsVr2ZuJ/Xj/V0ZWfUZGkmgi8WBSlDOoYzlKAQyoJ1mxqCMKSmlshHiOJsDZZVUwI3vLLq6TTcLwLp3HfqDVvijjK4BicgDPggUvQBHegBdoAgxQ8g1fwZj1ZL9a79bFoLVnFzBH4A+vzB5QlkmA=</latexit>

XXX .,10
<latexit sha1_base64="s4TPerqaUt3gJCQFrz1FDjp+7OI=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCBylJPeix6MVjBfsBbQib7aZdutmE3U2hhPwTLx4U8eo/8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3SxubW9k55t7K3f3B4ZB+fdFScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTO7nfndKpWKxeNKzhHoRHgkWMoK1kXzbrg2SKMh6uZ/Vr1wnr/l21ak7C6B14hakCgVavv01GMYkjajQhGOl+q6TaC/DUjPCaV4ZpIommEzwiPYNFTiiyssWl+fowihDFMbSlNBoof6eyHCk1CwKTGeE9VitenPxP6+f6vDWy5hIUk0FWS4KU450jOYxoCGTlGg+MwQTycytiIyxxESbsComBHf15XXSadTd63rjsVFt3hVxlOEMzuESXLiBJjxAC9pAYArP8ApvVma9WO/Wx7K1ZBUzp/AH1ucP+qiSkg==</latexit>yyy

<latexit sha1_base64="aiqNqUTbLxo02662QvSvrk7Efsc=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsotCTaWGIiHwYuZG/Zgw27e5fdPZPLhV9hY6Extv4cO/+NC1yh4EsmeXlvJjPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9Hbud5+o0iySDyaNqS/wWLKQEWys9FgdxCLI0ll1WK64NXcBtE68nFQgR2tY/hqMIpIIKg3hWOu+58bGz7AyjHA6Kw0STWNMpnhM+5ZKLKj2s8XBM3RhlREKI2VLGrRQf09kWGidisB2CmwmetWbi/95/cSE137GZJwYKslyUZhwZCI0/x6NmKLE8NQSTBSztyIywQoTYzMq2RC81ZfXSade8xq1+n290rzJ4yjCGZzDJXhwBU24gxa0gYCAZ3iFN0c5L86787FsLTj5zCn8gfP5A3DWkCo=</latexit>

zzzI1<latexit sha1_base64="/oeoBWJwSZk2N2y3cGX6P+oq74k=">AAACAnicbVDLSsNAFJ3UV62vqCtxM9gKrkpSEV0W3eiugn1AE8JkOmmHTiZhZiLUENz4K25cKOLWr3Dn3zhps9DWAxcO59zLvff4MaNSWda3UVpaXlldK69XNja3tnfM3b2OjBKBSRtHLBI9H0nCKCdtRRUjvVgQFPqMdP3xVe5374mQNOJ3ahITN0RDTgOKkdKSZx7UnDj004fMS50QqRFGLL3JPDureWbVqltTwEViF6QKCrQ888sZRDgJCVeYISn7thUrN0VCUcxIVnESSWKEx2hI+ppyFBLpptMXMnislQEMIqGLKzhVf0+kKJRyEvq6Mz9Tznu5+J/XT1Rw4aaUx4kiHM8WBQmDKoJ5HnBABcGKTTRBWFB9K8QjJBBWOrWKDsGef3mRdBp1+7R+dtuoNi+LOMrgEByBE2CDc9AE16AF2gCDR/AMXsGb8WS8GO/Gx6y1ZBQz++APjM8fTbyXXQ==</latexit>

zzzS1 = XXX .,2 ^ XXX .,4 ^ XXX .,6 ^ XXX .,9
<latexit sha1_base64="NZXYg4a5vtYF1nJH6cC68MPDCGE="></latexit>

encoded pattern
<latexit sha1_base64="xpmGafOnEfvN0CWa3YYCQmyfv1M=">AAAB+HicbVA9SwNBEN2LXzF+JGppsxgEq3AXCy2DNpYRzAckR9jbmyRL9m6P3TkhHvklNhaK2PpT7Pw3bpIrNPHBwOO9GWbmBYkUBl332ylsbG5t7xR3S3v7B4flytFx26hUc2hxJZXuBsyAFDG0UKCEbqKBRYGETjC5nfudR9BGqPgBpwn4ERvFYig4QysNKmWIuQohpAlDBG2VqltzF6DrxMtJleRoDipf/VDxNIIYuWTG9Dw3QT9jGgWXMCv1UwMJ4xM2gp6lMYvA+Nni8Bk9t0pIh0rbipEu1N8TGYuMmUaB7YwYjs2qNxf/83opDq/9TMRJivbB5aJhKikqOk+BhkIDRzm1hHEt7K2Uj5lm3GZgSjYEb/XlddKu17zLWv2+Xm3c5HEUySk5IxfEI1ekQe5Ik7QIJyl5Jq/kzXlyXpx352PZWnDymRPyB87nD9c2kzM=</latexit>

phenotypic
<latexit sha1_base64="5z9NhCXf0mXYh46GHD8SI+mYnsM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqST1oMeiF48V7AekoWy203bpZjfsboQS+jO8eFDEq7/Gm//GTZuDtj4YeLw3w8y8KOFMG8/7dkobm1vbO+Xdyt7+weFR9fiko2WqKLap5FL1IqKRM4FtwwzHXqKQxBHHbjS9y/3uEyrNpHg0swTDmIwFGzFKjJWCZIJCWp3RyqBa8+reAu468QtSgwKtQfWrP5Q0jVEYyonWge8lJsyIMoxynFf6qcaE0CkZY2CpIDHqMFucPHcvrDJ0R1LZEsZdqL8nMhJrPYsj2xkTM9GrXi7+5wWpGd2EGRNJalDQ5aJRyl0j3fx/d8gUUsNnlhCqmL3VpROiCDU2pTwEf/XlddJp1P2reuOhUWveFnGU4QzO4RJ8uIYm3EML2kBBwjO8wptjnBfn3flYtpacYuYU/sD5/AE+7pE3</latexit>

trait
<latexit sha1_base64="AD7vGgwks3icH/04GnDawhZPkQ4=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LHoxWMF+wFtKJvtpl272YTdiVBC/4MXD4p49f9489+4aXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7RT3t3bPzisHB23TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFqpjZoKLA8qVbfmzkFWiVeQKhRoDipf/WHM0ogrZJIa0/PcBP2MahRM8lm5nxqeUDahI96zVNGIGz+bXzsj51YZkjDWthSSufp7IqORMdMosJ0RxbFZ9nLxP6+XYnjtZ0IlKXLFFovCVBKMSf46GQrNGcqpJZRpYW8lbEw1ZWgDykPwll9eJe16zbus1e/r1cZNEUcJTuEMLsCDK2jAHTShBQwe4Rle4c2JnRfn3flYtK45xcwJ/IHz+QM9+I7m</latexit>

Figure 2.4: Example of a feature subset. A subset of features and its encoding zzzS1 is
represented in blue in the rightmost part of the figure. The encoding of the
feature subset takes the AND operation of the features vectors it includes.

Terada [54] introduces the Limitless Arity Multiple-testing Procedure (LAMP) algo-
rithm, which uses Tarone’s statistical framework in the context of significant pattern
mining. Later, [55] proposes a new LAMP algorithm that is much faster than the
original one. In the following paragraphs, we will focus the description on this
second, faster version. The LAMP algorithm efficiently finds dtar and all significantly
associated feature combinations in a dataset composed of binary variables and label.
In the publication, features {XXX.,i}n

i=1 have a binary encoding and feature subsets
S are summarised using the logical AND operation on the feature vectors that
compose zzzS , such as shown Figure 2.4. For each sample i, the element zS ,i indicates
whether all features contained in S are active in sample i (zS ,i = 1) or not (zS ,i = 0).
We note the set of feature subsets P . The total number of features being p, there
is a total of |P| = 2p � 1 non-empty feature subsets. LAMP uses Fisher’s exact test
to quantify the association between feature combinations and the binary label, but
could be applied to the c2-test and to the Mann-Whitney U test. The pseudo-code
of the LAMP algorithm is presented in Algorithms 1 and 2.
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Algorithm 1 LAMP

Input: Dataset D = {(XXX, yyy)}, target FWER = a
Output: {S|pS  dtar}

1: Initialise global variables dtar = 1 and Ptar(dtar) = ∆
2: tarone(∆)
3: Return {S 2 Ptar(dtar)|pS  dtar}

Algorithm 2 tarone

Input: Current subset of feature being processed S
Output: Adjusted significance threshold dtar, set of testable feature subsets
Ptar(dtar)

1: if is_testable(S , dtar) then
2: Append S to Ptar(dtar)
3: dFWERtar(dtar) dtar|Ptar(dtar)|
4: while dFWERtar(dtar) > a do
5: Decrease dtar
6: Ptar(dtar) {S 2 Ptar : is_testable(S , dtar)}
7: dFWERtar(dtar) dtar|Ptar(dtar)|
8: end while
9: end if

10: if not is_prunable(S , dtar) then
11: for S 0 2 Children(S) do
12: tarone(S 0)
13: end for
14: end if

The core operation of LAMP, described Algorithm 1, is Line 2, an efficient imple-
mentation of the routine tarone, detailed in Algorithm 2, that computes dtar and the
corresponding set of testable patterns. This is followed by Line 3, that evaluates the
statistical association of the feature combination zzzS of each testable feature subset
S 2 Ptar(dtar) with the class labels yyy. The routine tarone uses a branch-and-bound
approach to efficiently compute Tarone’s corrected significance threshold dtar and
the set of testable feature subsets Ptar(dtar). This processes one subset S at a time.
The subsets are arranged in a tree as in Figure 2.5, such that parents are subsets of
their descendants, i.e. S 0 2 Children(S) =) S ⇢ S 0. The tree is explored with a
depth-first search approach with the enumeration scheme proposed in [55, 106].
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{�}
<latexit sha1_base64="CrB3NSDLS7lJuzmbKGcaeguCIPo=">AAAB+HicbVC7TsNAEDyHVwiPGChpLBIkqsgOBZQRNJRBIg8ptqLzZZ2ccn7obo1krHwJDQUI0fIpdPwNl8QFJIy00mhmV7s7fiK4Qtv+Nkobm1vbO+Xdyt7+wWHVPDruqjiVDDosFrHs+1SB4BF0kKOAfiKBhr6Anj+9nfu9R5CKx9EDZgl4IR1HPOCMopaGZrXu5i6ECWYK0J3Vh2bNbtgLWOvEKUiNFGgPzS93FLM0hAiZoEoNHDtBL6cSORMwq7ipgoSyKR3DQNOIhqC8fHH4zDrXysgKYqkrQmuh/p7IaahUFvq6M6Q4UaveXPzPG6QYXHs5j5IUIWLLRUEqLIyteQrWiEtgKDJNKJNc32qxCZWUoc6qokNwVl9eJ91mw7lsNO+btdZNEUeZnJIzckEcckVa5I60SYcwkpJn8krejCfjxXg3PpatJaOYOSF/YHz+AKRUkxI=</latexit>

{1}
<latexit sha1_base64="DUBSSgaDBWdFZdzjONnQ3bpqpFA=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQsugjWUE8wG5I+xtNsmSvb1jd04IR36EjYUitv4eO/+Nm+QKTXww8Hhvhpl5YSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6SGS6F4CwVK3k00p1EoeSec3M39zhPXRsTqEacJDyI6UmIoGEUrdap+5vmzar9ccWvuAmSdeDmpQI5mv/zlD2KWRlwhk9SYnucmGGRUo2CSz0p+anhC2YSOeM9SRSNugmxx7oxcWGVAhrG2pZAs1N8TGY2MmUah7Ywojs2qNxf/83opDm+CTKgkRa7YctEwlQRjMv+dDITmDOXUEsq0sLcSNqaaMrQJlWwI3urL66Rdr3lXtfpDvdK4zeMowhmcwyV4cA0NuIcmtIDBBJ7hFd6cxHlx3p2PZWvByWdO4Q+czx9bNY7r</latexit>

{2}
<latexit sha1_base64="Pps9SgJHMJlH48HVITD76uhNUxc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLaCp5LEgx6LXjxWsB/QhLLZbtqlu5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzopQzbVz32yltbG5t75R3K3v7B4dH1eOTjk4yRWibJDxRvQhrypmkbcMMp71UUSwiTrvR5G7ud5+o0iyRj2aa0lDgkWQxI9hYqVsPcj+Y1QfVmttwF0DrxCtIDQq0BtWvYJiQTFBpCMda9z03NWGOlWGE01klyDRNMZngEe1bKrGgOswX587QhVWGKE6ULWnQQv09kWOh9VREtlNgM9ar3lz8z+tnJr4JcybTzFBJlovijCOToPnvaMgUJYZPLcFEMXsrImOsMDE2oYoNwVt9eZ10/IZ31fAf/FrztoijDGdwDpfgwTU04R5a0AYCE3iGV3hzUufFeXc+lq0lp5g5hT9wPn8AXLyO7A==</latexit>

{3}
<latexit sha1_base64="9vpfZ7Ct/jFXZ3OWyM2k5TYSWo0=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYiJYhbuk0DJoYxnBfEDuCHubTbJkb+/YnRPCkR9hY6GIrb/Hzn/jJrlCEx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaNnGqGW+xWMa6G1LDpVC8hQIl7yaa0yiUvBNO7uZ+54lrI2L1iNOEBxEdKTEUjKKVOhU/q/uzSr9UdqvuAmSdeDkpQ45mv/TlD2KWRlwhk9SYnucmGGRUo2CSz4p+anhC2YSOeM9SRSNugmxx7oxcWmVAhrG2pZAs1N8TGY2MmUah7Ywojs2qNxf/83opDm+CTKgkRa7YctEwlQRjMv+dDITmDOXUEsq0sLcSNqaaMrQJFW0I3urL66Rdq3r1au2hVm7c5nEU4Bwu4Ao8uIYG3EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx9eQ47t</latexit>

{4}
<latexit sha1_base64="iUtgypt1RQZ0CRrFOpaRsoKCYKg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxVbwVJIq6LHoxWMF+wFNKJvttF262YTdjVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJoJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqhFSj4BKbhhuBnUQhjUKB7XB8N/PbT6g0j+WjmSQYRHQo+YAzaqzUrvjZlT+t9Eplt+rOQVaJl5My5Gj0Sl9+P2ZphNIwQbXuem5igowqw5nAadFPNSaUjekQu5ZKGqEOsvm5U3JulT4ZxMqWNGSu/p7IaKT1JAptZ0TNSC97M/E/r5uawU2QcZmkBiVbLBqkgpiYzH4nfa6QGTGxhDLF7a2EjaiizNiEijYEb/nlVdKqVb3Lau2hVq7f5nEU4BTO4AI8uIY63EMDmsBgDM/wCm9O4rw4787HonXNyWdO4A+czx9fyo7u</latexit>

{5}
<latexit sha1_base64="BlqbVjepZtI4bYxyb6eMdFl1518=">AAAB7nicbVBNS8NAEJ34WetX1aOXxVbwVJKK6LHoxWMF+wFNKJvttF262YTdjVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJoJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqhFSj4BKbhhuBnUQhjUKB7XB8N/PbT6g0j+WjmSQYRHQo+YAzaqzUrvjZlT+t9Eplt+rOQVaJl5My5Gj0Sl9+P2ZphNIwQbXuem5igowqw5nAadFPNSaUjekQu5ZKGqEOsvm5U3JulT4ZxMqWNGSu/p7IaKT1JAptZ0TNSC97M/E/r5uawU2QcZmkBiVbLBqkgpiYzH4nfa6QGTGxhDLF7a2EjaiizNiEijYEb/nlVdKqVb3Lau2hVq7f5nEU4BTO4AI8uIY63EMDmsBgDM/wCm9O4rw4787HonXNyWdO4A+czx9hUY7v</latexit>

{1, 2}
<latexit sha1_base64="dJKgI3P9n4PUy5F8n8wffGPAco8=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFhPBQsLdWWgZtLGMYD4kd4S9zSZZsrt37O4J4civsLFQxNafY+e/cZNcoYkPBh7vzTAzL0o408Z1v53C2vrG5lZxu7Szu7d/UD48auk4VYQ2Scxj1YmwppxJ2jTMcNpJFMUi4rQdjW9nfvuJKs1i+WAmCQ0FHko2YAQbKz1Wg8y78INptVeuuDV3DrRKvJxUIEejV/4K+jFJBZWGcKx113MTE2ZYGUY4nZaCVNMEkzEe0q6lEguqw2x+8BSdWaWPBrGyJQ2aq78nMiy0nojIdgpsRnrZm4n/ed3UDK7DjMkkNVSSxaJBypGJ0ex71GeKEsMnlmCimL0VkRFWmBibUcmG4C2/vEpafs27rPn3fqV+k8dRhBM4hXPw4ArqcAcNaAIBAc/wCm+Ocl6cd+dj0Vpw8plj+APn8wc3PI9d</latexit>

{1, 3}
<latexit sha1_base64="Qe6jdwUkHGotMGM/I5t5V7ZW0GI=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYiJYSLhLCi2DNpYRzIfkjrC32UuW7O4du3tCOPIrbCwUsfXn2Plv3CRXaOKDgcd7M8zMCxPOtHHdb2dtfWNza7uwU9zd2z84LB0dt3WcKkJbJOax6oZYU84kbRlmOO0mimIRctoJx7czv/NElWaxfDCThAYCDyWLGMHGSo8VP/Mu6/600i+V3ao7B1olXk7KkKPZL335g5ikgkpDONa657mJCTKsDCOcTot+qmmCyRgPac9SiQXVQTY/eIrOrTJAUaxsSYPm6u+JDAutJyK0nQKbkV72ZuJ/Xi810XWQMZmkhkqyWBSlHJkYzb5HA6YoMXxiCSaK2VsRGWGFibEZFW0I3vLLq6Rdq3r1au2+Vm7c5HEU4BTO4AI8uIIG3EETWkBAwDO8wpujnBfn3flYtK45+cwJ/IHz+QM4w49e</latexit>

{1, 4}
<latexit sha1_base64="qApNV0HIHPEtDi+uf3YPAZR88FE=">AAAB8HicbVBNSwMxEJ31s9avqkcvwVbwIGW3CnosevFYwX5IdynZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH8w4oYHAA8kiRrCx0mPFz7zzS39S6ZXKbtWdAS0TLydlyNHolb78fkxSQaUhHGvd9dzEBBlWhhFOJ0U/1TTBZIQHtGupxILqIJsdPEGnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5ua6DrImExSQyWZL4pSjkyMpt+jPlOUGD62BBPF7K2IDLHCxNiMijYEb/HlZdKqVb2Lau2+Vq7f5HEU4BhO4Aw8uII63EEDmkBAwDO8wpujnBfn3fmYt644+cwR/IHz+QM6So9f</latexit>

{1, 5}
<latexit sha1_base64="UbNAvc8XToLQTBPPd11FUF9dSNQ=">AAAB8HicbVBNSwMxEJ31s9avqkcvwVbwIGW3InosevFYwX5IdynZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH8w4oYHAA8kiRrCx0mPFz7zzS39S6ZXKbtWdAS0TLydlyNHolb78fkxSQaUhHGvd9dzEBBlWhhFOJ0U/1TTBZIQHtGupxILqIJsdPEGnVumjKFa2pEEz9fdEhoXWYxHaToHNUC96U/E/r5ua6DrImExSQyWZL4pSjkyMpt+jPlOUGD62BBPF7K2IDLHCxNiMijYEb/HlZdKqVb2Lau2+Vq7f5HEU4BhO4Aw8uII63EEDmkBAwDO8wpujnBfn3fmYt644+cwR/IHz+QM70Y9g</latexit>

{2, 3}
<latexit sha1_base64="IL3bvJYRXMC+4auxpklRDh/tQAU=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYiJYSLi7FFoGbSwjmA/JHWFvs0mW7O4du3tCOPIrbCwUsfXn2Plv3CRXaOKDgcd7M8zMixLOtHHdb2dtfWNza7uwU9zd2z84LB0dt3ScKkKbJOax6kRYU84kbRpmOO0kimIRcdqOxrczv/1ElWaxfDCThIYCDyUbMIKNlR4rQeZf1oJppVcqu1V3DrRKvJyUIUejV/oK+jFJBZWGcKx113MTE2ZYGUY4nRaDVNMEkzEe0q6lEguqw2x+8BSdW6WPBrGyJQ2aq78nMiy0nojIdgpsRnrZm4n/ed3UDK7DjMkkNVSSxaJBypGJ0ex71GeKEsMnlmCimL0VkRFWmBibUdGG4C2/vEpaftWrVf17v1y/yeMowCmcwQV4cAV1uIMGNIGAgGd4hTdHOS/Ou/OxaF1z8pkT+APn8wc6TI9f</latexit>

{2, 4}
<latexit sha1_base64="YycibKdqbA8NaexXCSd4NZPa23k=">AAAB8HicbVBNSwMxEJ31s9avqkcvwVbwIGV3FfRY9OKxgv2QbinZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHTR2nitAGiXms2iHWlDNJG4YZTtuJoliEnLbC0e3Ubz1RpVksH8w4oV2BB5JFjGBjpcdKkPnnl8Gk0iuV3ao7A1omXk7KkKPeK30F/ZikgkpDONa647mJ6WZYGUY4nRSDVNMEkxEe0I6lEguqu9ns4Ak6tUofRbGyJQ2aqb8nMiy0HovQdgpshnrRm4r/eZ3URNfdjMkkNVSS+aIo5cjEaPo96jNFieFjSzBRzN6KyBArTIzNqGhD8BZfXiZNv+pdVP17v1y7yeMowDGcwBl4cAU1uIM6NICAgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wc7049g</latexit>

{2, 5}
<latexit sha1_base64="y2MB2EauC0O0PDrrGKr3fNYDOmU=">AAAB8HicbVBNSwMxEJ31s9avqkcvwVbwIGV3RfRY9OKxgv2QbinZNNuGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2CxsFbd3dvf2SweHTR2nitAGiXms2iHWlDNJG4YZTtuJoliEnLbC0e3Ubz1RpVksH8w4oV2BB5JFjGBjpcdKkPnnl8Gk0iuV3ao7A1omXk7KkKPeK30F/ZikgkpDONa647mJ6WZYGUY4nRSDVNMEkxEe0I6lEguqu9ns4Ak6tUofRbGyJQ2aqb8nMiy0HovQdgpshnrRm4r/eZ3URNfdjMkkNVSS+aIo5cjEaPo96jNFieFjSzBRzN6KyBArTIzNqGhD8BZfXiZNv+pdVP17v1y7yeMowDGcwBl4cAU1uIM6NICAgGd4hTdHOS/Ou/Mxb11x8pkj+APn8wc9Wo9h</latexit>

{3, 4}
<latexit sha1_base64="p2VEHkPSL5SZshpa7medK/cRF9c=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCBym7raDHohePFeyHdJeSTdM2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8acaeO6305ubX1jcyu/XdjZ3ds/KB4etXSUKEKbJOKR6oRYU84kbRpmOO3EimIRctoOx7czv/1ElWaRfDCTmAYCDyUbMIKNlR7Lflq7uPSn5V6x5FbcOdAq8TJSggyNXvHL70ckEVQawrHWXc+NTZBiZRjhdFrwE01jTMZ4SLuWSiyoDtL5wVN0ZpU+GkTKljRorv6eSLHQeiJC2ymwGellbyb+53UTM7gOUibjxFBJFosGCUcmQrPvUZ8pSgyfWIKJYvZWREZYYWJsRgUbgrf88ippVSterVK9r5bqN1kceTiBUzgHD66gDnfQgCYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8APVyPYQ==</latexit>

{3, 5}
<latexit sha1_base64="12NMRYtSbwdB+UeCFzlff1p0gKk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCBym7LaLHohePFeyHdJeSTdM2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8acaeO6305ubX1jcyu/XdjZ3ds/KB4etXSUKEKbJOKR6oRYU84kbRpmOO3EimIRctoOx7czv/1ElWaRfDCTmAYCDyUbMIKNlR7Lflq7uPSn5V6x5FbcOdAq8TJSggyNXvHL70ckEVQawrHWXc+NTZBiZRjhdFrwE01jTMZ4SLuWSiyoDtL5wVN0ZpU+GkTKljRorv6eSLHQeiJC2ymwGellbyb+53UTM7gOUibjxFBJFosGCUcmQrPvUZ8pSgyfWIKJYvZWREZYYWJsRgUbgrf88ippVSterVK9r5bqN1kceTiBUzgHD66gDnfQgCYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8APuOPYg==</latexit>

{4, 5}
<latexit sha1_base64="J+OmMnM75xQeOqnenHiA1OZsATA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCBym7VdFj0YvHCvZDukvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2POtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItUOsKWeSNgwznLZjRbEIOW2Fo9up33qiSrNIPphxTAOBB5L1GcHGSo9lP704u/Qn5W6x5FbcGdAy8TJSggz1bvHL70UkEVQawrHWHc+NTZBiZRjhdFLwE01jTEZ4QDuWSiyoDtLZwRN0YpUe6kfKljRopv6eSLHQeixC2ymwGepFbyr+53US078OUibjxFBJ5ov6CUcmQtPvUY8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpViveeaV6Xy3VbrI48nAEx3AKHlxBDe6gDg0gIOAZXuHNUc6L8+58zFtzTjZzCH/gfP4AQGyPYw==</latexit>

{1, 2, 3}
<latexit sha1_base64="KxnYsf8w6HG9XZ77+stV82PReWk=">AAAB8nicbVBNT8JAEJ3iF+IX6tFLI5h4IKQtBz0SvXjERJCkbch22cKG7W6zuzUhDT/DiweN8eqv8ea/cYEeFHzJJC/vzWRmXpQyqrTjfFuljc2t7Z3ybmVv/+DwqHp80lMik5h0sWBC9iOkCKOcdDXVjPRTSVASMfIYTW7n/uMTkYoK/qCnKQkTNOI0phhpI/n1IHcbXqMVzOqDas1pOgvY68QtSA0KdAbVr2AocJYQrjFDSvmuk+owR1JTzMisEmSKpAhP0Ij4hnKUEBXmi5Nn9oVRhnYspCmu7YX6eyJHiVLTJDKdCdJjterNxf88P9PxdZhTnmaacLxcFGfM1sKe/28PqSRYs6khCEtqbrXxGEmEtUmpYkJwV19eJz2v6baa3r1Xa98UcZThDM7hEly4gjbcQQe6gEHAM7zCm6WtF+vd+li2lqxi5hT+wPr8ARWOj9A=</latexit>

{1, 2, 4}
<latexit sha1_base64="EGupzda/5thldprZrP6ISYgukoM=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BFvBQylJFPRY9OKxgrWFJJTNdtMu3eyG3YlQQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZF6WcaXCcb6u0tr6xuVXeruzs7u0fVA+PHrXMFKEdIrlUvQhrypmgHWDAaS9VFCcRp91ofDvzu09UaSbFA0xSGiZ4KFjMCAYj+fUgdxte4zKY1vvVmtN05rBXiVuQGirQ7le/goEkWUIFEI619l0nhTDHChjhdFoJMk1TTMZ4SH1DBU6oDvP5yVP7zCgDO5bKlAB7rv6eyHGi9SSJTGeCYaSXvZn4n+dnEF+HORNpBlSQxaI44zZIe/a/PWCKEuATQzBRzNxqkxFWmIBJqWJCcJdfXiWPXtO9aHr3Xq11U8RRRifoFJ0jF12hFrpDbdRBBEn0jF7RmwXWi/VufSxaS1Yxc4z+wPr8ARcVj9E=</latexit>

{1, 2, 5}
<latexit sha1_base64="DmZlz84vDPxir/r3iKMpT5c2nfY=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BFvBQylJRPRY9OKxgrWFJJTNdtMu3eyG3YlQQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZF6WcaXCcb6u0tr6xuVXeruzs7u0fVA+PHrXMFKEdIrlUvQhrypmgHWDAaS9VFCcRp91ofDvzu09UaSbFA0xSGiZ4KFjMCAYj+fUgdxte4zKY1vvVmtN05rBXiVuQGirQ7le/goEkWUIFEI619l0nhTDHChjhdFoJMk1TTMZ4SH1DBU6oDvP5yVP7zCgDO5bKlAB7rv6eyHGi9SSJTGeCYaSXvZn4n+dnEF+HORNpBlSQxaI44zZIe/a/PWCKEuATQzBRzNxqkxFWmIBJqWJCcJdfXiWPXtO9aHr3Xq11U8RRRifoFJ0jF12hFrpDbdRBBEn0jF7RmwXWi/VufSxaS1Yxc4z+wPr8ARicj9I=</latexit>

{1, 3, 4}
<latexit sha1_base64="/gIdOLCj8rZZ1g7G0Yi2A8R6YTI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSVtBj0YvHCvYDklA22027dJMNuxuhhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0g4U9q2v63CxubW9k5xt7S3f3B4VD4+6SqRSkI7RHAh+wFWlLOYdjTTnPYTSXEUcNoLJndzv/dEpWIiftTThPoRHsUsZARrI7lVL3NqzdqVN6sOyhW7bi+A1omTkwrkaA/KX95QkDSisSYcK+U6dqL9DEvNCKezkpcqmmAywSPqGhrjiCo/W5w8QxdGGaJQSFOxRgv190SGI6WmUWA6I6zHatWbi/95bqrDGz9jcZJqGpPlojDlSAs0/x8NmaRE86khmEhmbkVkjCUm2qRUMiE4qy+vk26j7jTrjYdGpXWbx1GEMziHS3DgGlpwD23oAAEBz/AKb5a2Xqx362PZWrDymVP4A+vzBxiej9I=</latexit>

{1, 3, 5}
<latexit sha1_base64="5K2JXs+Kza4Ky00v0bzBsxk2phM=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSFtFj0YvHCvYDklA22027dJMNuxuhhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0g4U9q2v63CxubW9k5xt7S3f3B4VD4+6SqRSkI7RHAh+wFWlLOYdjTTnPYTSXEUcNoLJndzv/dEpWIiftTThPoRHsUsZARrI7lVL3NqzdqVN6sOyhW7bi+A1omTkwrkaA/KX95QkDSisSYcK+U6dqL9DEvNCKezkpcqmmAywSPqGhrjiCo/W5w8QxdGGaJQSFOxRgv190SGI6WmUWA6I6zHatWbi/95bqrDGz9jcZJqGpPlojDlSAs0/x8NmaRE86khmEhmbkVkjCUm2qRUMiE4qy+vk26j7jTrjYdGpXWbx1GEMziHS3DgGlpwD23oAAEBz/AKb5a2Xqx362PZWrDymVP4A+vzBxolj9M=</latexit>

{1, 4, 5}
<latexit sha1_base64="kDL3oaLOxOMpb2mp1Jd4HxhdZNs=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSquix6MVjBfsBSSib7aZdutmE3Y1QQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyScKW3b31ZhbX1jc6u4XdrZ3ds/KB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbjO9mfveJSsVi8agnCfUjPBQsZARrI7lVL3Nql7Urb1rtlyt23Z4DrRInJxXI0eqXv7xBTNKICk04Vsp17ET7GZaaEU6nJS9VNMFkjIfUNVTgiCo/m588RWdGGaAwlqaERnP190SGI6UmUWA6I6xHatmbif95bqrDGz9jIkk1FWSxKEw50jGa/Y8GTFKi+cQQTCQztyIywhITbVIqmRCc5ZdXSadRdy7qjYdGpXmbx1GEEziFc3DgGppwDy1oA4EYnuEV3ixtvVjv1seitWDlM8fwB9bnDxuuj9Q=</latexit>

{1, 2, 3, 4}
<latexit sha1_base64="QKmyq/lHs1hXgod1ODGesCV3UI0=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSVNBj0YvHCvYDmlA22227dLOJu5tCCf0dXjwo4tUf481/47bNQVsfDDzem2FmXhBzprRtf1u5jc2t7Z38bmFv/+DwqHh80lJRIgltkohHshNgRTkTtKmZ5rQTS4rDgNN2ML6b++0JlYpF4lFPY+qHeCjYgBGsjeSXvdSpuJVa5cqblXvFkl21F0DrxMlICTI0esUvrx+RJKRCE46V6jp2rP0US80Ip7OClygaYzLGQ9o1VOCQKj9dHD1DF0bpo0EkTQmNFurviRSHSk3DwHSGWI/UqjcX//O6iR7c+CkTcaKpIMtFg4QjHaF5AqjPJCWaTw3BRDJzKyIjLDHRJqeCCcFZfXmdtNyqU6u6D26pfpvFkYczOIdLcOAa6nAPDWgCgSd4hld4sybWi/VufSxbc1Y2cwp/YH3+APYekEQ=</latexit>

{1, 2, 3, 5}
<latexit sha1_base64="NvU7QSg+RuINWDOLxkrZkJCd0v8=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSFNFj0YvHCvYDmlA22227dLOJu5tCCf0dXjwo4tUf481/47bNQVsfDDzem2FmXhBzprRtf1u5jc2t7Z38bmFv/+DwqHh80lJRIgltkohHshNgRTkTtKmZ5rQTS4rDgNN2ML6b++0JlYpF4lFPY+qHeCjYgBGsjeSXvdSpuJVa5cqblXvFkl21F0DrxMlICTI0esUvrx+RJKRCE46V6jp2rP0US80Ip7OClygaYzLGQ9o1VOCQKj9dHD1DF0bpo0EkTQmNFurviRSHSk3DwHSGWI/UqjcX//O6iR7c+CkTcaKpIMtFg4QjHaF5AqjPJCWaTw3BRDJzKyIjLDHRJqeCCcFZfXmdtNyqU6u6D26pfpvFkYczOIdLcOAa6nAPDWgCgSd4hld4sybWi/VufSxbc1Y2cwp/YH3+APelkEU=</latexit>

{1, 2, 4, 5}
<latexit sha1_base64="VtZ/jSBetv9jQ7gR30sQGk4XKr8=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSqOix6MVjBfsBTSib7bZdutnE3U2hhP4OLx4U8eqP8ea/cdvmoK0PBh7vzTAzL4g5U9q2v63c2vrG5lZ+u7Czu7d/UDw8aqookYQ2SMQj2Q6wopwJ2tBMc9qOJcVhwGkrGN3N/NaYSsUi8agnMfVDPBCszwjWRvLLXupU3Mpl5cqblrvFkl2150CrxMlICTLUu8UvrxeRJKRCE46V6jh2rP0US80Ip9OClygaYzLCA9oxVOCQKj+dHz1FZ0bpoX4kTQmN5urviRSHSk3CwHSGWA/VsjcT//M6ie7f+CkTcaKpIItF/YQjHaFZAqjHJCWaTwzBRDJzKyJDLDHRJqeCCcFZfnmVNN2qc1F1H9xS7TaLIw8ncArn4MA11OAe6tAAAk/wDK/wZo2tF+vd+li05qxs5hj+wPr8AfkukEY=</latexit>

{1, 2, 3, 4, 5}
<latexit sha1_base64="BZqkEt2vFmQg3OpH1ZfeUtOTybM=">AAAB+HicbVBNS8NAEJ34WetHox69BFvBQyhJquix6MVjBfsBTSib7bZdutmE3Y1QQ3+JFw+KePWnePPfuG1z0NYHA4/3ZpiZFyaMSuU438ba+sbm1nZhp7i7t39QMg+PWjJOBSZNHLNYdEIkCaOcNBVVjHQSQVAUMtIOx7czv/1IhKQxf1CThAQRGnI6oBgpLfXMUsXPXNuza/aFfelPKz2z7FSdOaxV4uakDDkaPfPL78c4jQhXmCEpu66TqCBDQlHMyLTop5IkCI/RkHQ15SgiMsjmh0+tM630rUEsdHFlzdXfExmKpJxEoe6MkBrJZW8m/ud1UzW4DjLKk1QRjheLBimzVGzNUrD6VBCs2EQThAXVt1p4hATCSmdV1CG4yy+vkpZXdWtV794r12/yOApwAqdwDi5cQR3uoAFNwJDCM7zCm/FkvBjvxseidc3IZ47hD4zPH1DQkOo=</latexit>

{2, 3, 4}
<latexit sha1_base64="l4IuTl6rSigIlNbhMihjZGLVz64=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BFvBQylJKuix6MVjBfsBSSib7bZdutkNuxuhhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0oYVdpxvq3CxubW9k5xt7S3f3B4VD4+6SiRSkzaWDAhexFShFFO2ppqRnqJJCiOGOlGk7u5330iUlHBH/U0IWGMRpwOKUbaSH41yLxao3YVzKr9csWpOwvY68TNSQVytPrlr2AgcBoTrjFDSvmuk+gwQ1JTzMisFKSKJAhP0Ij4hnIUExVmi5Nn9oVRBvZQSFNc2wv190SGYqWmcWQ6Y6THatWbi/95fqqHN2FGeZJqwvFy0TBlthb2/H97QCXBmk0NQVhSc6uNx0girE1KJROCu/ryOul4dbdR9x68SvM2j6MIZ3AOl+DCNTThHlrQBgwCnuEV3ixtvVjv1seytWDlM6fwB9bnDxopj9M=</latexit>

{2, 3, 5}
<latexit sha1_base64="oDbCNkcdGbNOGrPAqn/OACqySEU=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BFvBQylJiuix6MVjBfsBSSib7bZdutkNuxuhhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0oYVdpxvq3CxubW9k5xt7S3f3B4VD4+6SiRSkzaWDAhexFShFFO2ppqRnqJJCiOGOlGk7u5330iUlHBH/U0IWGMRpwOKUbaSH41yLxao3YVzKr9csWpOwvY68TNSQVytPrlr2AgcBoTrjFDSvmuk+gwQ1JTzMisFKSKJAhP0Ij4hnIUExVmi5Nn9oVRBvZQSFNc2wv190SGYqWmcWQ6Y6THatWbi/95fqqHN2FGeZJqwvFy0TBlthb2/H97QCXBmk0NQVhSc6uNx0girE1KJROCu/ryOul4dbdR9x68SvM2j6MIZ3AOl+DCNTThHlrQBgwCnuEV3ixtvVjv1seytWDlM6fwB9bnDxuwj9Q=</latexit>

{2, 4, 5}
<latexit sha1_base64="SfkRD0xxDQ+91n0dXOiyfanbW94=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCh1KSqOix6MVjBfsBSSib7bZdutmE3Y1QQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyacKW3b31ZhbX1jc6u4XdrZ3ds/KB8etVWcSkJbJOax7IZYUc4EbWmmOe0mkuIo5LQTju9mfueJSsVi8agnCQ0iPBRswAjWRvKqfubWLmtX/rTaK1fsuj0HWiVOTiqQo9krf/n9mKQRFZpwrJTn2IkOMiw1I5xOS36qaILJGA+pZ6jAEVVBNj95is6M0keDWJoSGs3V3xMZjpSaRKHpjLAeqWVvJv7neake3AQZE0mqqSCLRYOUIx2j2f+ozyQlmk8MwUQycysiIywx0SalkgnBWX55lbTdunNRdx/cSuM2j6MIJ3AK5+DANTTgHprQAgIxPMMrvFnaerHerY9Fa8HKZ47hD6zPHx05j9U=</latexit>

{3, 4, 5}
<latexit sha1_base64="YCmf6ASRbuaqsH39rZxr/OGN1CY=">AAAB8nicbVBNT8JAEJ3iF+IX6tHLRjDxQEgLGj0SvXjERISkbch22cKG7bbZ3ZqQhp/hxYPGePXXePPfuEAPCr5kkpf3ZjIzL0g4U9q2v63C2vrG5lZxu7Szu7d/UD48elRxKgntkJjHshdgRTkTtKOZ5rSXSIqjgNNuML6d+d0nKhWLxYOeJNSP8FCwkBGsjeRWvaxZu6hdetNqv1yx6/YcaJU4OalAjna//OUNYpJGVGjCsVKuYyfaz7DUjHA6LXmpogkmYzykrqECR1T52fzkKTozygCFsTQlNJqrvycyHCk1iQLTGWE9UsveTPzPc1MdXvsZE0mqqSCLRWHKkY7R7H80YJISzSeGYCKZuRWREZaYaJNSyYTgLL+8Sh4bdadZb9w3Kq2bPI4inMApnIMDV9CCO2hDBwjE8Ayv8GZp68V6tz4WrQUrnzmGP7A+fwAexI/W</latexit>

{1, 3, 4, 5}
<latexit sha1_base64="JB5kUZHUdOBZ/3nBf7NMB9Xmvv4=">AAAB9HicbVBNS8NAEJ34WetX1aOXxVbwUErSKnosevFYwX5AE8pmu2mXbjZxd1Moob/DiwdFvPpjvPlv3LY5aOuDgcd7M8zM82POlLbtb2ttfWNzazu3k9/d2z84LBwdt1SUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj+5mfntMpWKReNSTmHohHggWMIK1kbySmzrlWvmyfOVOS71C0a7Yc6BV4mSkCBkavcKX249IElKhCcdKdR071l6KpWaE02neTRSNMRnhAe0aKnBIlZfOj56ic6P0URBJU0Kjufp7IsWhUpPQN50h1kO17M3E/7xuooMbL2UiTjQVZLEoSDjSEZolgPpMUqL5xBBMJDO3IjLEEhNtcsqbEJzll1dJq1pxapXqQ7VYv83iyMEpnMEFOHANdbiHBjSBwBM8wyu8WWPrxXq3Phata1Y2cwJ/YH3+APq5kEc=</latexit>

{2, 3, 4, 5}
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Figure 2.5: Example of a depth-first search tree. The dataset used to build the tree contains
five features. Each node is a subset S , represented by the set of indices of the
features that are contained in the feature subset. Grey nodes are traversed first,
then green, red and blue ones.

Before invoking tarone, in Line 1 of Algorithm 2 the significance threshold dtar is
initialised to 1, the largest value it can take, and the set of testable feature subsets
Ptar(dtar) is initialized to the empty set. The enumeration procedure is started by
calling tarone with the empty feature subset S = ∆, which acts as the root of the
enumeration tree. All 2p � 1 non-empty feature subsets will then be explored recur-
sively by traversing the enumeration tree depth-first. Each time a feature subset S
is visited, Line 1 checks if the combination zzzS is testable. If it is testable, the feature
subset is appended to the set of testable feature subsets (Line 2) and the estimated
FWER is recomputed (Line 3). The FWER condition for Tarone’s testability criterion
is checked in Line 4. If it is violated, the threshold d is decreased incrementally
(Line 5) requiring to decrease the number of testable feature subsets Ptar(dtar) (Line
6) and to reevaluate the FWER estimation (Line 7). This step is repeated until the
FWER condition of testability is again verified. Before continuing the traversal of
the tree by exploring the children of the current feature subset S , Line 8 checks if
the pruning criterion applies. Only if it does not apply are all children of S visited
recursively in Lines 9 and 10. The testability and pruning conditions in Lines 1 and
8 become more stringent as dtar decreases. Because of this, as dtar decreases along
the enumeration procedure (Line 5), increasingly larger parts of the search space
are pruned. Thus, the algorithm terminates when, for the current value of dtar and
Ptar(dtar), all feature subsets that cannot be pruned have been visited.

Without the pruning criterion Line 8, all the subsets S would need to be enumer-
ated and processed, which scales exponentially with p and therefore is a severe
computational bottleneck. The pruning criterion allows to limit the number of
subsets S that are being processed by inferring the testability properties of children
of the feature subset being visited. To this end, the pruning criterion exploits the fact
that the minimum attainable p-value function Y(S) obeys a simple monotonicity
property: S ✓ S 0 =) Y(S)  Y(S 0) provided that the support of the feature
subset xS  min(n1, n� n1). This leads to a remarkably simple pruning criterion:
if a feature subset S is non-testable, i.e. Y(S) > dtar, and its support xS is smaller
or equal to min(n1, n � n1), then all children S 0 of S , which satisfy S ⇢ S 0 by
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construction of the enumeration tree, will also be non-testable and can be pruned
from the search space.

To conclude, the algorithm Limitless Arity Multiple-testing Procedure is able to
find all feature interactions in a binary dataset, which are significantly associated
with a binary class-label, while controlling for the number of false positives with
Tarone’s FWER estimate, therefore obtaining a higher statistical power than a simple
Bonferroni correction. Since then, alternative methods have been developed [106],
in particular an extension of LAMP that explores permutation testing to exploit
redundancy between tested patterns (as patterns are sub- or super- patterns of other
ones) and gain statistical power.

2.3.1.5 FAIS as first application of Tarone’s FWER estimate to GWAS datasets

The method FAIS implements a modification of LAMP in order to efficiently find
significant contiguous genomic regions in GWAS, i.e. genomic intervals or regions
such that the occurrence of a least one of its variants encoded as a 1 (for instance a
minor allele or recessive genotype) is statistically significantly associated with the
occurrence of a phenotype of interest. The main novelties introduced in FAIS are
the following:

1. the regions are encoded as: zzzI = XXX.,s _ XXX.,s+1 _ ... _ XXX.,e. The objective of
this encoding is to account for genetic heterogeneity, by grouping together
SNPs that would have a too small effect to be detected alone but that are
all associated to the same phenotype, under the assumption that they play a
sufficiently similar role in giving rise to the phenotype.

2. the regions that are parsed are contiguous intervals of SNPs instead of any
subset of SNPs, as the authors were interested in local regions of genetic
heterogeneity, and this greatly enhances scalability, albeit that the cost of
generality.

3. the intervals are visited according to a breadth-first search arrangement as
shown Figure 2.6, instead of a depth-first search one, which allows making a
more efficient use of pruning while being feasible, as the memory requirements
are drastically less stringent when testing intervals compared to all feature
subsets.

The intervals found by this algorithm share promising candidates for regions of
genetic heterogeneity underlying phenotypic variation and aim to be functionally
investigated.
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Figure 2.6: Example of a breadth-first search tree. The dataset used to build the tree
contains five features. Each node is a subset S , represented by the set of indices
of the features that are contained in the feature subset. Grey nodes are traversed
first, then green, red and blue ones.

2.3.2 Correction for confounders

Methods that correct for confounding effects are fundamental in GWAS analyses.
If unaccounted for, one may find many false positives that are actually associated
with a covariate and not with the phenotypic trait of interest [107]. Formally, let
X be a regressor, Y a phenotypic trait and C a confounding covariate, such that
X 6?? Y but X ?? Y|C as illustrated Figure 2.7. In this case, we would like that the
statistical framework treats X as false positive. For example, in clinical case/control
association studies, it is common to search for subsets of genetic variants that are
associated with a disease of interest. In this setting, the class labels are the health
status of individuals, e.g. sick or healthy, and the features represent binary genetic
variants. However, it can often be the case that the studied samples belong to several
subpopulations or have different physical attributes, which moreover show differ-
ences in the prevalence of some altered genetic variants. When, additionally, these
clusters are unevenly distributed across classes, it can result in false associations
to the disease of interest [28]. As confounding factors are commonly present in
GWAS data and practitioners aim to have a precise control of the number of false
positives, it is necessary to model ancestry differences between cases and controls
in the presence of population structure or to correct for any additional confounding
covariate when necessary.
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Figure 2.7: Graphical model. X 6?? Y but X ?? Y|C

In GWAS, the confounding effect is often measured with the genomic inflation
factor l [108]. This parameter is equal to the ratio between the empirical median of
the test statistic divided by the theoretical median, under the global null hypothesis
in a theoretical unconfounded analysis. Thus, the medians of the empirical and
theoretical test statistic for the association between the genetic variants and the
phenotype are taken as representatives of the two distributions. l ⇡ 1 is inter-
preted as the two distributions being close to identical while a medium to strong
divergence, i.e. l > 1 or l < 1, means that the two distributions are far apart. In
the case of GWAS, the theoretical median under the global null is a reasonable
approximation under the conservative assumption that very few genetic variants
are associated to the phenotype of interest compared to the total count of genetic
variants. As a consequence, an empirical median much larger than the theoretical
one would indicate that many more variants than expected show some association
to the phenotype. A factor that can explain genomic inflation is the presence of
confounder. Therefore, an inflated genomic factor l is often used as proxy for
confounding effects on the statistical tests, effects that are potentially responsible
for an unwanted large number of false positives.

Common methods that enable to reduce genomic inflation are: regression models
to which regressors representing confounding effects are adjoined, either as con-
tinuous, discretised or dummy variables, stratification methods, using for example
the Cochran-Mantel Hanzel (CMH) test [43, 44] and linear-mixed models (LMM)
where confounding effects are modelled as a random effect following a gaussian
distribution [29, 108, 109].

In regression models, the covariates are known and modelled explicitly as ad-
ditional fixed effects. We would write such a model as: yyy = b0 + Âp

i=1 biXXX.,i +
Âc

i=1 giCCC.,i, where the vectors XXX.,i correspond to genetic variants, CCC.,i to covariates
and c to the number of covariates. Most often, univariate t-tests under a FWER
control are used and lead to adjusted odds ratios or p-values of the features of
interest that measure the impact of the features on the phenotype after accounting
for confounding factors. Additionally, multivariate regularised linear or logistic
regressions are also common tools, with the downside that p-values are not com-
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monly provided in this case as it would require to account for the use of labels in
the variable selection step.

Another approach is to stratify the data according to the covariate of interest,
which requires the covariate to be categorical, and then use a conditional test. For
example, let zzz be n binary feature realisations, yyy n binary phenotype realisations
and ccc the categorical covariate we would like to correct for. Let us further assume
that the covariate has k categories. A conditional test that is adapted to this setting is
the Cochran-Mantel-Haenszel (CMH) test, which requires to compute k contingency
tables, one for each category of the covariate. Let j 2 {1,...,k}, for each contingency
table we denote cj the value of the covariate, nj the total number of samples with
covariate value cj and, among these samples, n1,j the number of samples that
belong to the positive class and xj the number of samples whose feature zi = 1.
Additionally, aj corresponds to the number of samples that belong to the positive
class and for which zi = 1. Based on these values {nj, n1,j, xj, aj}k

j=1, the p-value for
feature zzz can be computed as:

p({nj, n1,j, xj, aj}k
j=1) = 1� Fc2

1
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where Fc2
1

is the distribution function of a c2 random variable with 1 degree of
freedom. Finally, the feature zzz will be deemed significantly associated to the binary
label if the p-value p({nj, n1,j, xj, aj}k

j=1) falls below a significance threshold d, that

is, if p({nj, n1,j, xj, aj}k
j=1)  d. As illustrated, the CMH test can be understood as

a form of meta-analysis applied to k disjoint datasets {Dj}k
j=1, where Dj contains

only observations for which the covariate variable ccc takes value cj. For confounded
features, the association might be large in the entire dataset D, but small for
conditional datasets Dj. Thus, the CMH test will not deem such features significant.

As a third option, in linear-mixed models, the confounding effects are modelled as
random effects which do not need to be observed directly. Formally, the dependence
between the phenotypic trait and the regressors can be written as the sum of genetic
effects and confounding influences, yyy = b0 + Âp

i=1 biXXX.,i + uuu, where the vectors XXX.,i
correspond to genetic variants and uuu to the confounding influence. The distribution
of uuu is assumed Gaussian uuu ⇠ N (0, s2

gKKK), with KKK the covariance of the data, which
models deviations from the usual i.i.d. scenario arising due to confounding. While
LMMs are very efficient at accounting for confounding effects both implicitly and
explicitly, it is either used in univariate settings neglecting feature interactions, in
set-based settings where defining the sets requires prior biological information [29],
or in multivariate additive settings such as LMM-Lasso [109].

The results obtained by the three types of approaches reinforce the importance of
confounding correction as they are shown to reduce the number of false positives
in simulation settings and the genomic inflation in real data [110, 111]. However,
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no method that allows to apply fixed or random effects models, that scales to
interactions of any order and corrects for the multiple hypothesis testing problem
in that regime, exists yet. This leaves the combination of LAMP and CMH as most
promising option, which did not exist at the time of the development of our models
as the CMH test does not lead to a simple pruning criteria, unlike Fisher’s exact
test or the c2 test. The next sections will therefore be devoted to explain how to
combine LAMP and CMH, resulting in the first method for interaction search with
covariate correction.
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2.4 significant combinations of features in the presence of cate-
gorical covariates

This section introduces the Fast Automatic Conditional Search (FACS) algorithm, the
first approach that allows finding all interactions of binary features statistically asso-
ciated with a binary label while correcting for a categorical covariate and controlling
for the FWER. Until the development of our methods, it was not possible to use
LAMP while correcting for confounding covariates, as the mathematical properties of
Fisher’s exact test or of the c2 test that enabled defining a computationally efficient
pruning are not verified by conditional tests. Section 2.4.1 formalises the problem
statement. Section 2.4.2 provides a high-level description of the algorithm. Then,
Sections 2.4.3 and 2.4.4 detail the two key steps of FACS, which are also the main
algorithmic contributions of this work. Finally, simulation experiments show the
statistical and computational superiority of our method compared to state-of-the-art
approaches in Section 2.4.5, and Section 2.4.6 demonstrates the usefulness of such
method in a proof-of-concept GWAS experiment.

2.4.1 FACS: main objective

The main objective of the FACS algorithm can be summarised as:
Objective: Given a dataset D = (XXX, yyy, ccc), the goal of FACS is to:

1. Compute Tarone’s corrected significance threshold dtar.

2. Retrieve all feature subsets S whose p-value pS is below dtar when testing
the null hypothesis H0: ZS ?? Y|C of conditional independence given the
covariates –rather than normal independence.

For both (1) and (2), the test statistic of choice will be the CMH test, which is
a conditional test statistic for discrete values, thus allowing to correct for a con-
founding categorical covariate as described in Section 2.3.2. The key contribution of
our work is to bridge the gap between Tarone’s testability criterion and the CMH
test. The resulting algorithm, described in Section 2.4.2, relies on two key novel
theoretical results. In Section 2.4.3, we show for the first time that Tarone’s method
can be applied to the CMH test. More importantly, in Section 2.4.4, we introduce a
novel branch-and-bound algorithm to efficiently compute dtar without requiring the
function Y computing Tarone’s minimum attainable p-value to be monotonic. This
allows us not only to apply Tarone’s testability criterion to the CMH test, but to do
so as efficiently as existing methods not able to handle confounding covariates.

2.4.2 FACS: high-level description and pseudocode

As shown in the pseudocode in Algorithm 3, conceptually, FACS’s structure is very
similar to LAMP’s, presented Section 2.3.1.4. FACSs performs two main operations.
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Algorithm 3 FACS

Input: Dataset D = {(XXX, yyy, ccc)}, target FWER = a
Output: {S|pS  dtar}

1: Initialise global variables dtar = 1 and Ptar(dtar) = ∆
2: tarone_cmh(∆)
3: Return {S 2 Ptar(dtar)|pS  dtar}

Algorithm 4 tarone_cmh

Input: Current subset of features being processed S
Output: Adjusted significance threshold dtar, set of testable subsets Ptar(dtar)

1: if is_testable_cmh(S , dtar) then
2: Append S to Ptar(dtar)
3: dFWERtar(dtar) dtar|Ptar(dtar)|
4: while dFWERtar(dtar) > a do
5: Decrease dtar
6: Ptar(dtar) {S 2 Ptar : is_testable_cmh(S , dtar)}
7: dFWERtar(dtar) dtar|Ptar(dtar)|
8: end while
9: end if

10: if not is_prunable_cmh(S , dtar) then
11: for S 0 2 Children(S) do
12: tarone_cmh(S 0)
13: end for
14: end if

Before invoking tarone_cmh, first in Line 1 of Algorithm 3 the significance thresh-
old dtar is initialized to 1, the largest value it can take, and the set of testable
feature combinations Ptar(dtar) is initialised to the empty set. Second, Line 2 of
Algorithm 3 invokes the routine tarone_cmh, described in Algorithm 4. This rou-
tine uses our novel branch-and-bound approach to efficiently compute Tarone’s
corrected significance threshold dtar and the set of testable feature subsets Ptar(dtar),
when using the CMH test. Third, using the significance threshold dtar obtained in
the previous step, Line 3 of Algorithm 3 evaluates the conditional association of the
feature combination zzzS of each testable feature subset S 2 Ptar(dtar) with the class
labels, given the categorical covariate, using the CMH test as shown in Section 2.3.2.
Note that, according to Tarone’s testability criterion, untestable feature subsets
S /2 Ptar(dtar) cannot be significant and therefore do not need to be considered in
this step. Since in practice |Ptar(dtar)| ⌧ 2p � 1, the procedure tarone_cmh is the
most critical part of FACS. The routine tarone_cmh uses the enumeration scheme
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first proposed in [55, 112]. All 2p feature subsets are arranged in an enumeration
tree such that S 0 2 Children(S)) S ⇢ S 0. In other words, the children of a feature
subset S in the enumeration tree are obtained by adding an additional feature to S .

The enumeration procedure is started by calling tarone_cmh with the empty
feature subset S = ∆, which acts as the root of the enumeration tree. All 2p � 1
non-empty feature subsets will then be explored recursively by traversing the
enumeration tree depth-first, as illustrated Figure 2.5. Every time a feature subset
S in the tree is visited, Line 1 of Algorithm 4 checks if it is testable, as detailed in
Section 2.4.3. If it is, S is appended to the set of testable feature subsets Ptar(dtar)
in Line 2. Line 3, the FWER estimate is updated. The FWER condition for Tarone’s
testability criterion is checked in Line 4. If it is found to be violated, the significance
threshold dtar is decreased in Line 5 until the condition is satisfied again, removing
from Ptar(dtar) any feature subsets made untestable by decreasing dtar in Line 6
and re-evaluating the FWER condition accordingly in Line 7. Before continuing the
traversal of the tree by exploring the children of the current feature subset S , Line 8
checks if our novel pruning criterion applies, which is described in Section 2.4.4.
Only if it does not apply are all children of S visited recursively in Lines 9 and 10.
The testability and pruning conditions in Lines 1 and 8 become more stringent as
dtar decreases. Because of this, as dtar decreases along the enumeration procedure
(see Line 5), increasingly larger parts of the search space are pruned. Thus, the
algorithm terminates when, for the current value of dtar and Ptar(dtar) , all feature
subsets that cannot be pruned have been visited. Despite the structural similarity
with LAMP, both approaches differ drastically on the two most challenging steps
of FACS, the design of (i) an appropriate testability criterion is_testable_cmh and
(ii) an efficient, principled pruning criterion, is_prunable_cmh. These are crucial in
overcoming the limitations of the current state of the art and be able to account for
confounding in SPM. These are now each described in detail.

2.4.3 FACS: testability criterion for the CMH test

As mentioned in Section 2.3.1.3, Tarone’s testability criterion has only been applied
to test statistics such as Fisher’s exact test, Pearson’s c2 test and the Mann-Whitney
U test, none of which allows incorporating covariates. However, the following
proposition shows that the CMH test also has a minimum attainable p-value
Ycmh(S):

Proposition 1 The CMH test has a minimum attainable p-value Ycmh(S), which can
be computed in O(k) time as a function of the margins {nj, n1,j, xS ,j}k

j=1 of the k 2⇥ 2
contingency tables.

As detailed below, the proof of Proposition 1 involves showing that Ycmh(S) can
be computed from the k 2 ⇥ 2 contingency tables corresponding to the feature
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combination zzzS by optimising the p-value pS with respect to
n

aS ,j

ok

j=1
while

keeping the table margins {nj, n1,j, xS ,j}k
j=1 fixed.

proof : Equation 2.1 in Section 2.3.2 can be rewritten as:

pS = 1� Fc2
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= 1� Fc2
1
(TS (aS ,tot, xS )) (2.2)

where aS ,tot = Âk
j=1 aS ,j and xS = (xS ,1, . . . ,xS ,k). Because Fc2

1
(·) is a monoton-

ically increasing function of its argument TS (aS ,tot, xS ), pS is minimized when
TS (aS ,tot, xS ) is maximized. TS (aS ,tot, xS ) depends on aS ,tot as a quadratic function
with positive definite Hessian, hence, pS is minimized as a function of aS ,tot at the
most extreme values aS ,tot can attain. Since aS ,j 2 JaS ,j,min, aS ,j,maxK 8j 2 J1,kK,
with aS ,j,min = max(0, xS ,j � nj + n1,j) and aS ,j,max = min(xS ,j,n1,j), we have
aS ,min  aS ,tot  aS ,max, where aS ,min = Âk

j=1 aS ,j,min and aS ,max = Âk
j=1 aS ,j,max.

Thus:
Ycmh(S) = 1� Fc2

1
(Tmax

S (xS)) (2.3)

with Tmax
S (xS) = max

�
TS
�
aS ,min,xS

�
,TS (aS ,max,xS )

�
satisfies pS � Ycmh(S), for

all S that have the same margins. Also, Ycmh(S) as defined above depends only on
{nj, n1,j, xS ,j}k

j=1 and can be evaluated in O(k) time, which completes the proof.

2.4.4 FACS: pruning criterion for the CMH test

State-of-the-art methods [54, 106], all of which are limited to unconditional associ-
ation testing, exploit the fact that the minimum attainable p-value function Y(S),
using either Fisher’s exact test or Pearson’s c2 test on a single contingency table,
obeys a simple monotonicity property: S ✓ S 0 ) Y(S)  Y(S 0) provided that
xS  min(n1, n � n1). This leads to a remarkably simple pruning criterion: if a
feature subset S is non-testable, i.e. Y(S) > d, and its support xS is smaller or equal
to min(n1, n� n1), then all children S 0 of S , which satisfy S ⇢ S 0 by construction
of the enumeration tree, will also be non-testable and can be pruned from the search
space. However, such a monotonicity property does not hold for the CMH minimum
attainable p-value function Ycmh(S), severely constraining the development of an
effective pruning criterion.

In the next section, we show how to circumvent this limitation by introducing a
novel pruning criterion based on defining a monotonic lower envelope eYcmh(S) 
Ycmh(S) of the original minimum attainable p-value function Ycmh(S) and prove
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that it leads to a valid pruning strategy. Finally, in Section 2.4.4.2, we provide
an efficient algorithm to evaluate eYcmh(S) in O(k log k) time, instead of a naive
implementation whose computational complexity would scale exponentially with k,
the number of categories for the covariate.

2.4.4.1 Definition and correctness of the pruning criterion

As mentioned above, existing unconditional significant discriminative pattern min-
ing methods only consider feature subsets S with support xS  min(n1, n� n1) to
be potentially prunable. Analogously, we consider as potentially prunable the set
of feature subsets PP =

n
S | xS ,j  min(n1,j,nj � n1,j), 8 j = 1, . . . ,k

o
. Note that for

k = 1, our definition reduces to that of existing work. In pattern mining, a very large
proportion of all feature subsets will have small supports. Therefore, restricting the
application of the pruning criterion to potentially prunable feature subsets does not
cause a substantial loss of performance in practice. We can now state the definition
of the lower envelope for the CMH minimum attainable p-value:

Definition 1 Let S 2 PP be a potentially prunable feature subset. The lower envelope
eYcmh(S) is defined as eYcmh(S) = min {Ycmh(S 0) | S 0 ◆ S}.

Note that, by construction, eYcmh(S) satisfies eYcmh(S)  Ycmh(S) for all feature
subsets S in the set of potentially prunable feature subsets. Next, we show that
unlike for the minimum attainable p-value function Ycmh(S), the monotonicity
property holds for the lower envelope eYcmh(S):

Lemma 1 Let S , S 0 2 PP be two potentially prunable feature subsets such that S ✓ S 0.
Then, eYcmh(S)  eYcmh(S 0) holds.

proof : The statement follows directly from the definition of the lower envelope
for the CMH minimum attainable p-value. We have eYcmh(S) = min

S 00◆S
Ycmh(S 00) and

eYcmh(S 0) = min
S 00◆S 0

Ycmh(S 00), respectively. Also, S 00 ◆ S 0 ) S 00 ◆ S . Thus, the set

of feature subsets over which Ycmh(S 00) is minimized to compute eYcmh(S 0) is a
subset of the set of feature subsets over which Ycmh(S 00) is minimized to compute
eYcmh(S).

Next, we state the main result of this section, which establishes our search space
pruning criterion:

Theorem 1 Let S 2 PP be a potentially prunable feature subset such that eYcmh(S) > d.
Then, Ycmh(S 0) > d for all S 0 ◆ S , i.e. all feature subsets containing S are non-testable at
level d and can be pruned from the search space.

proof : Let S 0 be an arbitrary feature subset containing S , i.e. S 0 ◆ S . Then we
have Ycmh(S 0) � eYcmh(S 0) �

Lemma 1
eYcmh(S). Therefore, eYcmh(S) > d) Ycmh(S 0) >

d. This proves that all feature subsets containing S are non-testable at level d.
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Moreover, since during the enumeration procedure described in Algorithm 4, the
significance threshold d can only decrease, those feature subsets can be pruned from
the search space.

To summarize, the pruning criterion is_prunable_cmh in Line 10 of Algorithm 4
evaluates to True if and only if S 2 PP , xS ,j  min(n1,j, nj � n1,j) 8 j = 1, . . . ,k
and eYcmh(S) > dtar.

2.4.4.2 Evaluating the pruning criterion in O(k log k) time

In FACS, the pruning criterion stated above will be applied to all enumerated feature
subsets. Hence, it is mandatory to have an efficient algorithm to compute the lower
envelope for the CMH minimum attainable p-value eYcmh(S) for any potentially
prunable feature subset S 2 PP.

As shown in the proof of Proposition 1, Ycmh(S) depends on the feature subset
S through its k-dimensional vector of supports xS = (xS ,1, . . . ,xS ,k). Also, the
condition S 0 ◆ S implies that xS 0 ,j  xS ,j 8 j = 1, . . . , k. As a consequence, one
can rewrite Definition 1 as eYcmh(S) = min

xS 0 xS
Ycmh(xS 0 ), where the vector inequality

xS 0  xS holds component-wise. Thus, naively computing eYcmh(S) would require
optimizing Ycmh over a set of size ’k

j=1 xS ,j = O(mk), where m is the geometric

mean of
n

xS ,j

ok

j=1
. This scaling is clearly impractical, as even for moderate k it

would result in an overhead large enough to outweigh the benefits of pruning.
Because of this, we proposed the last key part of FACS: an efficient algorithm

which evaluates eYcmh(S) in only O(k log k) time. We will arrive at our final result
in two steps, contained in Lemma 2 and Theorem 2.

Lemma 2 Let S 2 PP be a potentially prunable feature subset. The optimum x⇤S 0 of the
discrete optimization problem min

xS 0 xS
Ycmh(S 0) satisfies x⇤S 0 ,j = 0 or x⇤S 0 ,j = xS ,j for each

j = 1, . . . ,k.

In short, Lemma 2 shows that the optimum x⇤S 0 = arg min
xS 0 xS

Ycmh(S 0) of the discrete

optimization problem defining eYcmh(S) is always a vertex of the discrete hypercube
J0, xS K. Thus, the computational complexity of evaluating eYcmh(S) can be reduced
from O(mk) to O(2k), where m� 2 for most feature subsets. Finally, building upon
the result of Lemma 2, Theorem 2 below shows that one can in fact find the optimal
vertex out of all O(2k) vertices in O(k log k) time.

Theorem 2 Let S 2 PP be a potentially testable feature subset and define bl
S ,j =

nj�n1,j
nj

⇣
1� xS ,j

nj

⌘
and br

S ,j =
n1,j
nj

⇣
1� xS ,j

nj

⌘
for j = 1, . . . , k. Let pl and pr be per-

mutations pl ,pr : J1, kK 7! J1, kK such that bl
S ,pl(1)  . . .  bl

S ,pl(k) and br
S ,pr(1) 

. . .  br
S ,pr(k), respectively.
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Then, there exists an integer k 2 J1,kK such that the optimum x⇤S 0 = arg min
xS 0 xS

Ycmh(S 0)

satisfies one of the two possible conditions: (I) x⇤S 0 ,pl(j) = xS ,pl(j) for all j  k and
x⇤S 0 ,pl(j) = 0 for all j > k or (II) x⇤S 0 ,pr(j) = xS ,pr(j) for all j  k and x⇤S 0 ,pr(j) = 0 for all
j > k.

The proofs of Lemma 2 and Theorem 2 are available in the Appendix, Sections A.1
and A.2. In summary, Theorem 2 above implies that the 2k candidates to be the
optimum x⇤S 0 according to Lemma 2 can be narrowed down to only 2k vertices:
k candidates satisfying the first condition and k the second condition. Moreover,
evaluating Ycmh for all k candidates satisfying the first condition (resp. the second
condition) can be done in O(k) time rather than O(k2). This is due to the fact that
each of the k candidate vertices for each condition can be obtained by changing a
single dimension with respect to the previous one. Therefore, the operation dominat-
ing the computational complexity is the sorting of the two k-vectors (bl

S ,1, . . . ,bl
S ,k)

and (br
S ,1, . . . ,br

S ,k). As a consequence, the runtime required to evaluate the lower
envelope eYcmh(S), and thus our novel pruning criterion is_prunable_cmh, scales
as O(k log k) with the number of categories of the covariate.
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2.4.4.3 Pseudocode of the pruning criterion

Algorithm 5 is_prunable_cmh

Input: Current subset of features being processed S and corresponding
k-dimensional vectors {xxxS , nnn1, nnn}, corrected significance threshold dtar
Output: A boolean indicating whether the feature subset S is pruned (True) or not
(False)

1: for j = 1, . . . , k do
2: if xS ,j  min(n1,j, nj � n1,j) then
3: Return False
4: end if
5: end for
6: for j = 1, . . . ,k do
7: bl

S ,j =
nj�n1,j

nj
(1� xS ,j

nj
)

8: br
S ,j =

n1,j
nj

(1� xS ,j
nj

)

9: end for
10: pl(1), . . . , pl(k) = arg sort([bl

S ,1, . . . , bl
S ,k])

11: pr(1), . . . , pr(k) = arg sort([br
S ,1, . . . , br

S ,k])

12: eYcmh(S) Ycmh(S)
13: xxxl

tmp  [0, . . . , 0] . Initialisation as a k-dimensional null vector
14: xxxr

tmp  [0, . . . , 0] . Initialisation as a k-dimensional null vector
15: for j = 1, . . . , k do
16: xxxl

tmp  update(xxxl
tmp) . Only one element is updated, therefore this step

scales in O(1). xxxl
tmp is equal to [xS ,pl(1), xS ,pl(2), . . . , xS ,pl(j), 0, . . . , 0]

17: if Ycmh(xxxl
tmp)  eYcmh(S) then

18: eYcmh(S) = Ycmh(xxxl
tmp)

19: end if
20: end for
21: for j = 1, . . . , k do
22: xxxr

tmp  update(xxxr
tmp) . Only one element is updated, therefore this step

scales in O(1). xxxr
tmp is equal to [xS ,pr(1), xS ,pr(2), . . . , xS ,pr(j), 0, . . . , 0]

23: if Ycmh(xxxr
tmp)  eYcmh(S) then

24: eYcmh(S) = Ycmh(xxxr
tmp)

25: end if
26: end for
27: if eYcmh(S) > dtar then
28: Return False
29: end if
30: Return True
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Algorithm 5 first verifies if the feature subset is potentially prunable, i.e. if it belongs
to PP =

n
S | xS ,j  min(n1,j,nj � n1,j), 8 j = 1, . . . ,k

o
, Lines 1 to 5. Then Lines 6 to

9, the vectors bbbl
S and bbbr

S , introduced in Theorem 2, are computed. Both vectors
are sorted in increasing order, Lines 10 and 11, and the respective arguments are
retrieved. This step is the most computationally expensive and scales in O(k log k).
Lines 12 to 14 initialise the lower envelope of the minimum attainable p-value
and the support vectors among which the smallest lower envelope value can be
found. From Line 15 to Line 20 and from Line 21 to 25, these support vectors are
updated and the corresponding attainable p-value computed, keeping the lowest
one. The final condition is evaluated Line 27, by comparing the lower envelope
value eYcmh(S) to the corrected, temporary, significance threshold dtar. If the lower
envelope is smaller than the corrected significance threshold, the feature subset is
kept in and will be enumerated, if not the feature subset is discarded as it cannot
become significant.

This last algorithm concludes the description of the algorithm FACS, which has
been built in order to find all significantly statistically feature subsets whose rep-
resentation zzzS would be significantly associated with the class label. In the next
sections, we will focus on the experimental work in order to evaluate the perfor-
mance of the algorithm.

2.4.5 Simulation experiments

In this section, the proposed approach, FACS, is evaluated in terms of computa-
tional runtime, statistical power and ability to correct for a confounding categorical
covariate, on synthetic datasets. As the main characteristic of FACS compared to
existing significant pattern mining methods is being able to account for a categorical
covariate, this set of experiments has been designed to answer two major questions:

1. Is FACS actually able to account for a categorical covariate and to reduce the
number of false positives due to confounding?

2. How does the ability to correct for confounding variables affect other aspects
of FACS, such as statistical power or computational runtime?

2.4.5.1 Comparison partners

For all significant pattern mining algorithms presented in this section, we used a
simplified version of the Eclat algorithm [113, 114], based on the implementation
presented in [115], for the underlying closed pattern mining algorithm. FACS and all
baselines were written in C++ and compiled with gcc 4.8.2 with -03 optimisation.
Each experiment was executed on a 2.5 Ghz Intel Zeon CPU with 64 GB of memory
available, using a single thread.

We compared FACS with four significant discriminative pattern mining methods:
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1. LAMP-c2 [54, 55] was the state-of-the-art in discriminative pattern mining. It
uses Tarone’s testability criterion but is based on Pearson’s c2 test and thus
cannot account for covariates. It is the comparison partner the closest to FACS
from an algorithmic and statistical perspectives, the only difference lies in
the test statistic used. Therefore comparing FACS to LAMP-c2 provides relevant
answers to both questions above.

2. Bonf-CMH uses the CMH test, therefore is able to correct for confounders, but
together with Bonferroni’s correction, resulting in a considerable loss of statis-
tical power. Comparing FACS to Bonf-CMH sheds light on the computational
and statistical advantages gained by using Tarone’s statistical framework to-
gether with our novel pruning criterion, when using the CMH test to account
for a categorical covariate.

3. 2k-FACS is a suboptimal version of FACS that implements the pruning criterion
using the approach shown in Lemma 2, which scales as O(2k). This com-
parison partner differs from FACS only in the way the pruning criterion is
implemented, and shows the impact of Theorem 2 compared to Lemma 2 in
terms of computational efficient.

4. mk-FACS is a suboptimal version of FACS which brute-force searches for the
pruning criterion for each feature subset, scaling as O(mk). The objective of this
baseline is to show how the brute-force computation of the pruning criterion
compares to the use of Theorem 2 and would be prohibitive for medium to
large k, highlighting the importance of our algorithmic contributions.

2.4.5.2 Statistical metrics

We describe the performance of FACS in terms of: (a) statistical power, defined as
the proportion of truly associated subsets that are deemed significant, and (b) false
discovery rate (FDR), defined as the proportion of subsets deemed significant which
are false discoveries.

Both metrics, statistical power and false discovery rate, had to be adjusted in
order to integrate characteristics of pattern mining algorithm outputs. First, we
redefined the counts of false positives and of true positives to account for the fact
that combinations of subsets or supersets of Strue might be associated with the
label conditioning on the categorical covariate. Similarly, combinations of subsets
or supersets of Scon f might be associated with the label and create false positives.
Therefore, we decided to use the following approach. We considered a significantly
associated feature combination to be a true positive if strictly more than half of
its features belonged to the true feature subset, i.e. if zzzS is significantly associated
and |S \ Strue| > |S|

2 . Analogously, such feature combination was counted as a false
positive if strictly less than half of its features belonged to the true feature subset, i.e.
if zzzS is significantly associated and |S \ Strue| < |S|

2 . If |S \ Strue| = |S|
2 , we added

0.5 to both counts of false and true positives. Using these novel definitions, we
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computed the false discovery rate as usual, i.e. FDR = E( FP
max(TP+FP,1)

). Second,
we used a conservative approach of the definition of statistical power by computing
the probability that Strue was deemed significantly associated, ignoring subsets of
Strue. However, to compare against a more challenging univariate baseline, Bonf-CMH
was evaluated with an anti-conservative approach, such that Strue was considered
to have been retrieved as long as any of its features is deemed significant.

2.4.5.3 Data generation

For each experiment, we generate synthetic datasets XXX containing n observations
and p binary features, a label-vector yyy and a categorical covariate ccc with k categories.

In experiments evaluating the runtime of FACS and of its comparison partners,
as a function of the number of features p or of the number of categories of the
covariate variable k, correlations between features, labels and covariates play a
minor role. Therefore XXX, yyy and ccc were generated according to a fully-factorised
generating distribution. Each element Xi,j (resp. yi) takes the value 1 or 0 according
to the realisations of a Bernoulli random variable with parameter pX (resp. py). The
elements of the categorical covariate ccc are generated i.i.d. according to a categorical
distribution with parameters pppc.

For experiments that evaluated statistical power and false discovery rate, we
had to generate realistic statistical dependencies between the truly associated feature
combinations and the label, and between the confounded feature combinations, the
label and the categorical covariate. To this end, a true associated feature combination
zzztrue is generated as a binary vector correlated to the label-vector yyy but not correlated
to the covariate-vector ccc. A confounded feature combination zzzcon f is generated as a
binary vector almost fully correlated to the covariate-vector ccc. The strength of the
correlations between the truly associated feature combination (resp. the covariate)
and the label-vector is controlled by r0. As r0 strictly controls the association between
the class label and the covariate ccc, it controls as well the association between the
confounded feature subset and the class label, because their correlation almost
reaches one (see the following paragraph).

The procedure used to generate a confounded significant feature combination
is the following. Consider the correlation matrix

S =

0

B@
1 0 r0

0 1 r0

r0 r0 1

1

CA

We sample ooo from the multivariate Bernoulli distribution with mean (ptrue, pc, py) =
(0.5,0.5,0.5) and correlation matrix S, as many times as the number of samples n
for each dataset [116] (bindata package in R). This results in n i.i.d three-vectors
ooo = (z, c, y). For iteration i 2 J1,nK, the first component o1 is an indicator function,
which indicates if that feature interaction zi contains the studied feature combination
for sample i (zi = 1), or not (zi = 0). The second component o2 is the categorical
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covariate ci that we assume binary taking values in {0,1}, and the third component
o3 is the class label yi. In this way, we generate the covariate vector ccc, the label yyy
and the true associated significant feature combination zzztrue. For the confounded
feature subsets, each feature combination zcon f ,i is obtained from the values of the
binary covariate ci by flipping its value with a low probability pe = 0.05. We sample
e ⇠ B(1, pe) and then

zcon f ,i = ci � e,

where � is the XOR operator. Thus, zzzcon f and ccc are strongly correlated. By looking
at S, we see that the parameter r0 controls the degree of association between ccc and
yyy. For high values of r0, the vectors ccc and zzzcon f are highly correlated with yyy .

Those two feature combinations (zzztrue and zzzcon f ) are further decomposed into
two subsets of five feature vectors (Strue and Scon f ) such that the AND operation
of those individual feature vectors gives the respective combination features. For
samples for which the feature combination zzzS takes value 1, the corresponding
elements of all five feature vectors that compose S have to take value 1 as well.
For samples for which the feature combination zzzS takes value 0, the corresponding
element of at least one feature among the five feature vectors that compose S has to
take value 0. We choose this feature uniformly at random and keep the other ones
with a value 1 to minimise the univariate association between individual features in
S and the class label, making the discovery of S more challenging.

In addition, the n⇥ p elements of the dataset XXX are generated by taking the value
1 or 0 according to the realisation of a Bernoulli random variable with parameter
pX . Different realisations are i.i.d. across observations and features. Then, each of
the observations XXXi,. was assigned a binary class label yi and a categorical covariate
value ci that belongs to {0,1}. The ten feature vectors that compose zzztrue and zzzcon f
replace ten distinct features chosen at random in the generated dataset, Scon f and
Strue.

Throughout the simulation experiments, both truly associated and confounded
subsets Strue and Scon f have five interacting features each and are non-overlapping.
Moreover the correlation r = 2r0 varies in [0,1] in the experiments and represents
the strength of the signal in the data. It corresponds to the proportion of variance of
the phenotype yyy explained by the truly associated and confounded subsets. Let us
note that all methods were run in the same system and programmed in the same
language making the runtime of the different approaches comparable.
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Figure 2.8: Results of the simulation experiments. (a) Runtime as a function of the number
of features, p. (b) Runtime as a function of the number of categories of the
covariate, k. (c) Statistical power as a function of the signal strength, r. (d) False
discovery rate as a function of the strength of the signal r.

2.4.5.4 Evaluation of runtime complexity

We evaluated the runtime of our method while varying two fundamental parameters:
the number of features p and the number of categories for the covariate k. For the
runtime experiments we considered 100 datasets generated as stated above and
containing n = 500 samples. When p was fixed, its value was p = 5000 and when
k was fixed its value was k = 2 categories for the covariate. In both simulation
experiments, both class labels and all categories for the covariate were equiprobable
a priori, that is, py = 0.5 and pppc = 1

k 111k. Finally, the probability pX of any feature
being positive was 0.1.

Figure 2.8(a) shows the runtime as a function of the number of features, p.
This is a fundamental parameter, as datasets in the applications we target such as
computational biology, are often characterized by a small sample size n and a large
number of input features p. The main observation one can derive from Figure 2.8(a)
is that FACS scales as the state of the art, LAMP-c2, when increasing the number of
features p, while the Bonferroni-based method Bonf-CMH scales considerably worse.
This indicates both that FACS is able to incorporate covariates with virtually no
runtime overhead with respect to LAMP-c2 and confirms the efficacy of Tarone’s
testability criterion compared to Bonferroni-based method Bonf-CMH. The difference
in performance gets particularly relevant for sufficiently large p where Bonf-CMH
would not be feasible. The differences between significant pattern mining methods
are coming from constant overheads: (i) the difference between FACS and mk-FACS is
in the order of O(mk) which is a constant in terms of p, so O(1), (ii) FACS and 2k-FACS
differ by O(2k) which is also a constant in terms of p, therefore can be written O(1)
and (iii) the difference between LAMP-c2 and FACS comes from accounting covariates
and scales in O(k log k), which corresponds to O(1) when studying the influence of
p.

As previously we fixed k = 2, we also wanted to study the impact of increasing
k. To this end, Figure 2.8(b) shows the runtime as a function of the number of
categories for the covariate, k. The runtime of FACS can be seen to scale slowly
with k, as expected from the result in Theorem 2. The overhead with respect to
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unconditional pattern mining, represented by LAMP-c2, is small even for as many
as k = 26 different categories for the covariate. In contrast, the runtime of mk-FACS,
which uses a naive-implementation of the pruning criterion, and of 2k-FACS, which
uses a suboptimal implementation based on Lemma 2, increases exponentially with
k, which matches the theoretical analyses in the previous section. Additionally,
we note that Theorem 2 is key as FACS is the only algorithm that scales better
than Bonf-CMH for any value of k, especially from k = 14 to k = 28. In summary,
this experiment demonstrates that FACS can scale to large values of k with only a
minor computational overhead over LAMP and shows the importance of our efficient
implementation of the pruning criterion to accomplish that result.

2.4.5.5 Evaluation of statistical power and false discovery rate

As announced Section 2.4.5.2, we describe the performance of FACS and its the
comparison partners in terms of: (a) statistical power, defined as the proportion of
truly associated subsets that are deemed significant, and (b) false discovery rate
(FDR), defined as the proportion of subsets deemed significant which are false
discoveries.

To compare the different approaches, we generated 300 synthetic datasets as
described in Section 2.4.5.3 for different values of r. Choosing the same strength of
association r between the label and the confounded feature combination, respectively
the truly associated one, ensures that we do not favour the detection of true feature
subsets over confounded feature subsets or vice versa. All synthetic datasets were
generated using n = 200, p = 5000 and k = 2. The generation of the true and
confounded feature subsets follows previous section 2.4.5.3. Both class labels and
both categories of the covariate were equiprobable a priori with py = 0.5 and
pc = 0.5. As explained above, the probability of having the true feature combination
is set to ptrue = 0.5 for each sample. Finally, the probability pX of being positive for
any element of features that do not belong to Strue nor Scon f is 0.1.

Figures 2.8(c) compares FACS, LAMP-c2 and Bonf-CMH. Figure 2.8(c) shows that
FACS has a similar statistical power as LAMP-c2, being slightly worse for weak signals
and slightly better for stronger signals. Again, the performance of the Bonferroni-
based method Bonf-CMH is drastically worse. More importantly, in Figure 2.8(d)
we observe that unconditional significant discriminative pattern mining methods
such as LAMP-c2 have an unacceptably high proportion of confounded features
being deemed significant. In contrast, FACS greatly reduces the false discovery rate
by conditioning on an appropriate covariate. Finally, the false discovery rate of
BONF-CMH is even lower than that of FACS, a consequence of the low statistical power
of methods based on Bonferroni’s correction.

2.4.6 Proof-of-concept application to GWAS datasets

We perform a proof-of-concept experiment on GWAS datasets in order to assess
the ability of FACS to correct for confounders while keeping a high statistical power.
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In this proof-of-concept experiment, we look for significantly associated subsets
of genetic variants in two Arabidopsis thaliana genome-wide association studies
datasets [117], which we obtain from the easyGWAS online resource [118].

2.4.6.1 Description of the datasets and preprocessing

We chose two datasets from the plant model organism A. thaliana among datasets
available in [117] that exhibit the highest amount of confounding, as measured by
the genomic inflation factor l described in [108] and that have binary labels. The
datasets contain 84 and 95 samples, respectively. The labels of each dataset indicate
the presence/absence of a plant defence-related phenotype: LY (yellowing leaves)
and avrB (hypersensitive-response traits). In the two datasets, each plant sample is
represented by a sequence of approximately 214,000 genetic bases. In both datasets,
the SNPs were encoded as a binary vector as each plant-sample is inbred.

We consider the datasets of each plant trait separately, LY or avrB, and downsam-
ple the two datasets into smaller datasets: (1) according to which chromosome the
genomic bases belong to because interactions between chromosomes are unlikely
and (2) by downsampling evenly every 20 bases, and using different starting posi-
tions each time (i.e. 20 different offsets), to minimise the effect of the evolutionary
correlations between nearby bases (< 10 kilo-bases). This enables us to get rid of
redundancy between bases while looking for mid-to-long range interactions. We
note that each genomic base is included in one and only one dataset, and each
chromosome is split in 20 subdatasets. It resulted in 5⇥ 20 = 100 complemen-
tary datasets containing between 1,423 and 2,661 features each. Our results for all
methods are aggregated across all downsampled versions, per plant trait.

In both datasets we apply FACS and compare its results to two baselines already
introduced above, LAMP-c2 and Bonf-CMH. The first one allows to find interactions of
biomarkers but does not allow to correct for confounding effects, therefore poten-
tially leading to a large number of spurious associations. The second one is able to
correct for covariates, however the Bonferroni correction is more conservative than
Tarone’s statistical framework, which contributes to a loss of statistical power.

2.4.6.2 Definition of the covariates

As the datasets exhibit high genomic inflation factors, as indicated in Table 2.1,
one needs to correct for the confounding effect of population structure to avoid
many spurious associations. To this end, we condition on a categorical covariate
that is representative of the population structure for the two datasets LY and avrB.
We obtain this categorical covariate by running k-means on the first five principal
components of the kinship matrix of the dataset, which represents the genetic
relatedness of the plants [28, 119]. We then select the number of clusters k in a range
from 2 to 8 that results in the best genomic inflation factor (the closest to 1). As a
consequence, we consider k = 3 subpopulation clusters for avrB and k = 5 for LY.
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2.4.6.3 Results

Table 2.1 shows the number of interactions of genetic variants reported as significant
by each method, as well as the corresponding genomic inflation factor l [108]. When
compared to LAMP-c2, we observe a severe reduction in the number of interactions
deemed significant by FACS, as well as a sharp decrease in l. This seems to indicate
that many SNPs interactions reported by LAMP-c2 are affected by confounding. The
high l values of LAMP-c2 show strong marginal associations between many feature
interactions and labels, inflating the corresponding Pearson c2-test statistic values
compared to the expected c2 null distribution and resulting in many spurious
associations. However, since most of those feature interactions are independent of
the labels given the covariates, the CMH test statistic values are much closer to the
c2 distribution, leading to a lower l and resulting in hits that are corrected for the
covariate. Moreover, the lack of power of Bonf-CMH results in a very small number
of hits, which is also the expected behaviour. We can expect that, as Bonf-CMH is also
able to correct for confounding effects, the reduction in the number of hits this time
corresponds to false negatives.

Datasets FACS LAMP-c2 Bonf-CMH

hits l hits l hits
LY 433 1.17 100,883 3.18 19

avrB 43 1.21 546 2.38 1

Table 2.1: Significantly associated interactions in GWAS data. Total number of significant
interactions of SNPs found by LAMP-c2, FACS and Bonf-CMH and average genomic
inflation factor l. l for Bonf-CMH is similar to FACS since both use the CMH test.
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2.5 genome-wide genetic heterogeneity discovery with categorical
covariates

As exposed at the beginning of this thesis, genetic heterogeneity is a phenomenon
that cannot be easily modelled or exploited by means of classical univariate test-
ing. This chapter introduces a novel method FastCMH that is able to account for
confounding factors, as FACS does, together with exploiting genetic heterogeneity,
similarly to FAIS. The potential of the method is illustrated in a thorough application
to GWAS datasets, which goes beyond the proof-of-concept experiment presented
in Section 2.4.5 and the experiments performed in [48] that could not account for
confounding factors. In this chapter, we first present Section 2.5.1 a model of genetic
heterogeneity and the main objectives of the algorithm FastCMH, which we developed
to find significantly associated regions of genetic heterogeneity. Second, the FastCMH
algorithm is described Section 2.5.2. Finally the results we obtained on simulated
and real GWAS datasets are presented Sections 2.5.3 and 2.5.4, respectively.

2.5.1 FastCMH: main objective

Similarly to the notations introduced Section 2.3.1.3, we consider a dataset consisting
of n samples subdivided into n1 cases and n� n1 controls according to a binary phe-
notype yyy. For each individual i 2 J1,nK, we assume a genotypic representation in the
form of an ordered sequence of p binary genetic variants, XXXi,. =

⇣
Xi,1,Xi,2 . . . ,Xi,p

⌘

with Xi,t 2 {0,1}. For example, these binary variants could be the result of a domi-
nant or recessive encoding of SNPs. Furthermore, for each individual i 2 J1,nK, we
record a categorical covariate ccc with k states, i.e. ci 2 J1,kK.
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Figure 2.9: Example of aggregation of weak signals. Individual SNPs in each genomic
region I1 and I2 do not show an association with the binary label yyy. By contrast,
their combinations into a region vector do. While both zzzI1 (blue) and zzzI2 (red)
show an association with yyy, we can notice that zzzI2 is very correlated to the
binary covariate ccc indicating the BMI levels of the samples. Therefore, I1 is
likely to be a truly associated region and I2 a spurious one. In this example,
n = 10, n1 = n� n1 = 5, p = 10 and k = 2.

Under a model of genetic heterogeneity, several genetic variants in close proximity
might have evolved to affect the phenotype in a similar manner. However, their
individual effect sizes might be too weak to reach significance in a single-marker
GWAS. Assuming that most individual variants in a genomic region j 2 I , where
I = Js, eK, have the same direction of effect motivates aggregating them into a new
feature zI ,i = max

�
Xi,s,Xi,s+1, . . . ,Xi,e

�
for the entire region. This is equivalent to

defining zI ,i = 1 if the genomic region Js,eK for individual i contains any genetic
variant encoded as 1 (typically minor alleles or risk alleles under the model of
choice), and zI ,i = 0 if it only contains genetic variants encoded as 0. More generally,
the region can be encoded with a logical OR combination zI ,i = Xi,s _ Xi,s+1 _ . . . _
Xi,e. For genomic regions for which these assumptions apply, the region vector
zzzI will exhibit a stronger signal than any of the individual variants, allowing the
discovery of novel genome-wide significant multivariate associations. This situation
is illustrated in Figure 2.9, where the variants contained in regions I1 (in blue)
and I2 (in red) are all weakly associated with the phenotype yyy. In contrast, their
respective vectors zzzI1 and zzzI2 exhibit a much stronger association.

Nevertheless, as stated above, significant associations in a GWAS often originate
merely as the result of confounding by external covariates such as gender, age,
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population structure or environmental factors. It is therefore essential to account for
these covariates in any method that tries to assess the association between genotype
and phenotype. This is also represented in Figure 2.9. The association with the
phenotype yyy of the region vector zzzI2 is a spurious association exclusively mediated
by the covariate ccc (BMI level of the sample), while the region vector zzzI1 remains
associated after correcting for the effect of the covariate.

The main objective of the FastCMH algorithm can be summarised as:
Objective: Given a dataset D = (XXX, yyy, ccc), the goal of FastCMH is to:

1. Compute Tarone’s corrected significance threshold dtar.

2. Retrieve all contiguous genomic regions I ⇢ {Js, eK|1  s  e  p} such
that the p-value pI is below dtar when testing the null hypothesis H0: ZI ?
? Y|C of conditional independence given the covariates –rather than normal
independence.

To achieve its goal, FastCMH combines the scheme proposed in FAIS [48] to explore
the search space consisting of all possible genomic regions with the novel approach
FACS presented Section 2.4 of this thesis, to correct for categorical covariates in
significant pattern mining. A full description of FastCMH is provided in the Sec-
tion 2.5.2. The test statistic of choice is the CMH test, similarly to the algorithm
FACS, which allows to account for a confounding categorical covariate. To the extent
of our knowledge, FastCMH is the first method that exploits genetic heterogeneity to
retrieve associated variants in GWAS while accounting for a categorical covariate.

2.5.2 FastCMH: description and pseudocode

In this section, we will first give a very high-level description of the algorithm
of FastCMH (Section 2.5.2.1), then describe in more detail two key elements of the
algorithm: the get_testable_regions algorithm that allows to efficiently imple-
ment Tarone’s procedure in order to calculate the corrected significance threshold
(Section 2.5.2.2), and the filtering procedure’s filter_overlapping_regions that
groups together overlapping significant genomic regions in order to correct for
potential redundancy in the results (Section 2.5.2.3).

2.5.2.1 FastCMH: high-level pseudo-code

The high-level pseudocode of FastCMH is shown in Algorithm 6. Conceptually, our
method follows a similar sketch as FACS and involves five main steps.
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Algorithm 6 FastCMH

Input: Dataset D =
�
(Xi,.,yi,ci)

 n
i=1, desired FWER a

Output: Set of non-overlapping conditionally associated genomic regions
Psig, f ilt = {I | I = Js,eK, 1  s  e  p, pI  dtar}

1: Initialise global variables dtar = 1 and Ptar(dtar) = ∆
2: get_testable_regions(D, a)
3: Psig,raw  {I 2 Ptar(dtar) | pI  dtar}
4: Psig, f ilt  filter_overlapping_regions(Psig,raw)
5: Return Psig, f ilt

First, in Line 1, the global variables dtar and Ptar(dtar) are initialised. Second, in
Line 2, we invoke the routine get_testable_regions to compute Tarone’s adjusted
significance threshold dtar and retrieve the corresponding set of testable genomic
regions Ptar(dtar) under the CMH test. The enormous number of candidate genomic
regions, often in the order of hundreds of billions, or even trillions, makes the
routine get_testable_regions, described in detail in Algorithm 7 below, the most
challenging and crucial part of FastCMH.

Third, in Line 3, p-values pI obtained from CMH tests are evaluated for all
testable genomic regions I 2 Ptar(dtar). Since a large proportion of all candidate
genomic regions are not testable, and thus can never be significant, Tarone’s trick
allows us to greatly reduce the computational burden of this step without incurring
any additional false negatives. Those testable regions I 2 Ptar(dtar) whose p-values
pI are below Tarone’s adjusted significance threshold dtar are deemed significant
and stored in Psig,raw.

Fourth, while all genomic regions in Psig,raw are significantly associated with the
phenotype –given the effect of the covariate– both, the exhaustive nature of the
search and linkage disequilibrium, tend to generate disjoint clusters of significant
genomic regions that have a high overlap with each other. To eliminate this redun-
dancy which might otherwise complicate the analysis of the results, we invoke
the routine filter_overlapping_regions in Line 4. This procedure groups all sig-
nificant genomic regions in Psig,raw into disjoint clusters of overlapping regions,
generating a new set Psig, f ilt containing only the most significant genomic region
for each cluster and the cluster boundaries, discarding the other significant regions.
Finally, the set Psig, f ilt is returned as FastCMH’s output, Line 5.

2.5.2.2 FastCMH: getting testable regions

As mentioned before, efficiently finding Tarone’s adjusted significance threshold
dtar and the set of testable genomic regions Ptar(dtar) is the key algorithmic step
in FastCMH. A naive enumeration approach, which would require computing the
minimum attainable p-value YI for all p(p�1)

2 = O(p2) candidate regions, would
not scale to the number of genetic variants p in typical GWAS datasets. For this



2.5 genome-wide genetic heterogeneity discovery with categorical covariates 49

reason, the routine get_testable_regions of FastCMH combines the branch-and-
bound approach used by its predecessor FAIS with the a modification of novel
search space pruning criterion developed for the CMH test in Section 2.4.4.

Algorithm 7 get_testable_regions

Input: Dataset D =
�
(Xi,.,yi,ci)

 n
i=1, desired FWER a

Output: Tarone’s adjusted significance threshold dtar and set of testable genomic
regions Ptar(dtar)

1: Rqueue  {I | I = Je, eK, 1  e  p}
2: while Rqueue 6= ∆ do . Regions in Rqueue enumerated firstly in increasing

order of length and then starting position
3: I  dequeue(Rqueue) . I = Js, eK
4: if is_testable_cmh(I , dtar) then
5: Ptar(dtar) Ptar(dtar) [ I
6: while dFWERtar(dtar) > a do
7: Decrease dtar
8: Ptar(dtar) {I 2 Ptar(dtar) : is_testable_cmh(I , dtar)}
9: dFWERtar(dtar) dtar|Ptar(dtar)|

10: end while
11: end if
12: if non_prunability_condition(Js� 1, eK) then . See below for a detailed

description of non_prunability_condition
13: Rqueue  Rqueue [ Js� 1, eK
14: end if
15: end while

The routine get_testable_regions of Algorithm 7 first initialises the search
space of genomic regions Rqueue in Line 1 to contain candidate genomic regions of
length 1.

After initialisation, in Line 2, the algorithm starts enumerating the genomic
regions in Rqueue in the same order as the FAIS algorithm in [48]: enumerating first
in increasing order of region length, i.e. smaller regions first, and then, among all
regions having the same length, in increasing order of starting position. For each
genomic region I being processed, we perform the steps described below.

First, in Line 4, we compute the minimum attainable p-value for the CMH test, YI ,
using the closed-form expression Equation 2.2. If implemented naively, this would
have complexity O(n(e � s + 1)). However, since candidate genomic regions are
numerated in increasing order of length, it is possible to obtain the genomic region
vector zzzJs,eK from either the genomic region vector zzzJs,e�1K or by zzzJs,e+1K. Therefore,
the complexity can be reduced to O(n). Moreover, since zzzi,Js,e�1K = 1 or zzzi,Js,e+1K = 1
implies that zzzi,Js,eK = 1, the complexity can be further reduced to O(n� xprev), where
xprev is the number of individuals that have the genomic region vector equal to 1
in either region Js, e� 1K or region Js, e + 1K. Implementing the computation of the
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genomic region vector in this manner, in Line 4 of Algorithm 7, greatly increases
the efficiency of the algorithm with only a moderate increase in memory usage,
equivalent to storing a second copy of the original dataset in memory. Then, we
check if the region vector is testable at the current significance threshold dtar, i.e.
if YI  dtar. If it is, the region is added to the set of testable regions Ptar(dtar)
in Line 5 and Tarone’s condition dFWERtar(dtar) = dtar/|Ptar(dtar)| > a is checked
in the following line. If the condition is found to be violated, it means that the
current significance threshold dtar is too large and must be decreased (Line 7). In
practice, we implement this step as d  10�Dd, where D is an implementation-
dependent hyperparameter. This is equivalent to performing grid-search on d, with
logarithmically-spaced candidate values with step-size D in the log scale. Provided
that D is not too large, we found this hyperparameter to have a negligible effect
on the result. We fixed D = 0.06 throughout our experiments, corresponding to
considering 500 values of d in a logarithmic grid between d = 1 and d = 10�30. By
decreasing dtar, some already processed genomic regions which were found to be
testable, i.e. YI  dtar for a larger value of dtar, might now become untestable. Those
genomic regions are retrieved and removed from Ptar(dtar) in Lines 8. Based on the
scheme to decrease dtar described in the paragraph above, the set of genomic regions
to be removed from Ptar(dtar) is composed of those genomic regions I currently
in Ptar(dtar) that do not satisfy dtar < YI  10Ddtar. This property shows that it is
possible to implement Line 8 with O(1) complexity by using a data-structure for
Ptar(dtar) that stores genomic regions in different bins according to their minimum
attainable p-value. More precisely, we assign a genomic region I to the i-th bin
if 10�iD < YI  10�(i�1)D. With this data-structure, each execution of Line 8
corresponds to removing exactly one bin from Ptar(dtar), an operation that requires
no search. dFWERtar(dtar) is finally updated Line 9.

The last step in processing a candidate genomic region I is also the most relevant
for computational efficiency, the prunability step in Line 12 of Algorithm 7. As the
significant region mining algorithm follows a breadth-first enumeration strategy,
enumerating regions by increasing order of length and starting position, the objective
is to evaluate whether the region Js� 1, eK is prunable. Choosing this particular
region allows to save runtime complexity, as the prunability step mainly requires
to compute minimum attainable p-values, leading to only using information that
is either readily available, i.e. that concerns its parents in the enumerating tree, or
that scales in O(1). In this enumeration scheme, the currently processed region
I = Js, eK has in general two children supersets that are only one element longer,
Js� 1, eK and Js, e + 1K. The only exceptions occur when s = 1 or when e = p, in
which case one superset that is only one element longer exists (or zero for s = 1
and e = p). If s = 1, Js� 1, eK does not exist. If s 6= 1, we evaluate the prunability
of Js � 1, eK, the direct child of I in the enumeration tree for which the second
direct parent Js� 1, e� 1K has already been processed or pruned, as the regions are
enumerated in increasing order of length and starting position. In this situation, if I
is prunable, all its descendants can be pruned as well, which holds in particular for
Js� 1, eK. If I is not prunable, then Js� 1, eK is either prunable or not. Notably, if its
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second direct parent Js� 1, e� 1K was evaluated as prunable or has already been
pruned, then Js� 1, eK is prunable. As a conclusion the non-prunability condition
non_prunability_condition can be summarised as:

non_prunability_condition =(s 6= 1^ Js� 1, e� 1K has not been pruned

^ not(is_prunable_cmh(Js� 1, e� 1K)
_ is_prunable_cmh(Js, eK)))

If this non-prunability condition, non_prunability_condition, evaluates to True,
the region Js� 1, eK is added to the queue of regions to be processed Rqueue. In
the non-prunability condition expression, is_prunable_cmh is the pruning condi-
tion and evaluates to True if the minimum attainable p-value of the region being
evaluated is smaller than the current corrected significant threshold and if the
condition on the support is respected, and to False if not. The pseudocode of the
algorithm used to evaluate the pruning condition as well as the mathematical details
describing its derivation in the context of mining significantly associated genomic
regions can be found in Section 2.4.4. However, the features are combined differently
in FACS and FastCMH, using a logical AND or logical OR, respectively. Therefore,
the pruning condition developed for FACS needs to be adapted to FastCMH. The
required changes are two-fold. First, the condition Line 2 of Algorithm 5 needs
to change from xS ,j  min(n1,j, nj � n1,j) to xS ,j � max(n1,j, nj � n1,j). The reason
is that, as we progress down the tree, the number of active elements (zzzI = 1) of
each genomic region vector increases due to the OR operation, while the support
is decreasing when the logical AND operation is used instead. Therefore, the non-
testability relationship –between parents and children– that can be exploited is the
one that implies that if the support of a feature is sufficiently large, rendering the
feature subset vector non-testable, its children in the enumerating tree, with an even
larger support, won’t be testable either. Second, the change from the AND to the
OR combination leads to a change in the definition of the vectors bbbl

I and bbbr
I . In

FastCMH, Lines 8 and 9 would change to bl
S ,j =

nj�n1,j
nj

(
xS ,j
nj

) and bl
S ,j =

nj�n1,j
nj

(
xS ,j
nj

),
respectively.

The routine get_testable_regions naturally terminates when all candidate
regions in Rqueue have either been pruned or processed. At that point, the algorithm
has converged and the final values of dtar and Ptar(dtar) are available.

2.5.2.3 FastCMH: filtering procedure

Algorithm 8 describes the filter_overlapping_regions method used in Step 4 in
Algorithm 6 above. This filtering procedure was first used in [48].
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Algorithm 8 filter_overlapping_regions

Input: Set of regions with the associated p-values, Psig,raw = {(I , pI ) |pI  dtar}
Output: Set of significantly associated, non-overlapping regions which are most
significant in each cluster and boundaries of each cluster Psig, f ilt

1: Determine disjoint clusters C1, C2, . . . , C`, where each cluster is the union of a
subset of Psig,raw

2: Assign each interval I 2 Psig,raw the label v if it belongs to cluster Cv
3: For all clusters Cv 2 {C1, . . . , C`} , find the region Iv 2 Cv that has the smallest

p-value pIv amongst all regions in Cv
4: For all clusters Cv 2 {C1, . . . , C`}, find the boundaries Jsv, evK of Cv
5: Return Psig, f ilt = {(Iv, Jsv, evK) | v 2 J1,`K}

In simple terms, the regions in Psig,raw are first grouped into clusters; if one
considers the union of all regions in Psig,raw, then there would be several groups
of overlapping regions which each form larger contiguous regions. We call each
of these larger disjoint contiguous regions a cluster. Note that the clusters do not
overlap, but the regions within each cluster do overlap. Figure 2.10 shows an
example of Algorithm 8 applied to a cluster containing four regions. The clusters
can be determined in Line 1 by following two rules: (i) every regions must belong
to one cluster, and (ii) if two regions overlap, they belong to the same cluster. After
the clusters C1, C2, . . . , C` have been determined, another pass is made through the
regions and each region is given the label v 2 J1,`K of the cluster to which it belongs
(Line 2). Next, we chose two types of summarisation of the clusters. First, we find
the region in each cluster which has the smallest p-value. In the case of ties (two
or more regions with the same minimum p-value), the region that has the longest
length is returned. If the lengths are the same, then the region with the smallest
starting point is returned. This view point allows to access the core of the region and
eliminate potential noisy variants at the end points (Line 3). Second, we retrieve the
boundaries of the clusters, which are determined as the boundaries of the union of
the regions in the cluster. This second approach allows to reduce the risk of missing
potentially important variants (Line 4).

Finally, we construct Psig, f ilt in Line 5 as the collection of tuples that contain
for each cluster the region that is the most significant and the boundaries of the
cluster. Figure 2.10 illustrates the procedure for a single cluster; it shows how four
overlapping regions (red) form a single cluster (magenta), and how the filtering
process identifies the region with the smallest p-value (green, p-value = 10�9).
Additionally the total number of associated regions is returned.
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Figure 2.10: An illustrative example of filter_overlapping_regions. There are four over-
lapping significant regions (in red), which together form a single cluster (ma-
genta). The result of the filtering in this cluster is the green region since it has
the smallest p-value, p=1e-9, and the boundaries of the cluster are indicated
by the magenta left and right end points.

2.5.3 Simulation experiments

The objective of the simulation experiments is to answer the following questions in
a setting where the ground truth is known:

1. Is FastCMH able to correct for confounders without affecting the statistical
power and how does it impact runtime?

2. Does searching among all intervals allow to discover novel associations that
would not be found with state-of-the-art methods such as burden tests?

2.5.3.1 Statistical metrics

In the following sections, we will use the metrics introduced hereafter:

1. The power, calculated as the number of non-confounded, truly associated re-
gions that are retrieved, divided by the number of regions deemed significant.
This ratio is then average over 200 iterations. This metric shows the ability of
the different algorithms to find truly associated regions.

2. The confounded positive rate (CPR), defined as the number of confounded
regions that are deemed significantly associated, divided by the total number
of confounded regions. This proportion is then average over 200 iterations. It is
a variant of the false positive rate (FPR), which only accounts for confounded
regions when evaluating the number of false positives and true negatives,
instead of any non-associated region. This metric helps to understand the
ability of FastCMH and of the different baselines to account for confounding
when selecting regions.
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3. The FWER, which stands for the family-wise error rate. In our experiments,
FWER only accounts for the non-confounded regions in the calculation of
the number of false positives. This metric shows how the algorithms behave
with regard to false positives that do not emerge because of confounding,
while, complementarily, CPR examines and summarises the number of false
positives originating from confounding factors.

2.5.3.2 Evaluation of the computational and statistical impacts of correcting for con-
founders

Comparison partners: We compare FastCMH, our proposed method, with two alter-
native approaches: (1) FAIS-c2, a version of the method in [48] employing Pearson’s
c2 test, which uses Tarone’s approach but cannot account for confounding and (2)
Bonf-CMH, which does not use Tarone’s statistical framework, but does use the CMH
test.

Data generation: Datasets are generated, containing p features and n samples,
where p and n can vary depending on the experiment. Each element is sampled
i.i.d. from a Bernoulli distribution with probability pX of being 1 equal to 0.3. When
needed, associated genomic regions are inserted in the generated datasets. When
this is the case, it consists of exactly one truly significantly associated genomic
region vector and one confounded genomic region vector, that is, a region vector
that is highly correlated with the (confounding) covariate ccc, ccc being itself correlated
with the phenotype yyy. In our experiments, both regions contain 5 variants each.
The parameter r 2 [0,1] controls the strength of the signal of the truly significant
region and of the confounding covariate, and thus of the confounded region. The
generation process is similar to the one presented Section 2.4.5.3, with the main
differences that the five variants in both regions are restricted to be contiguous and
that each region vector is the OR combination of the variants that compose it, rather
than the AND combination. In turn, the latter change requires adapting the way the
individual variants of interest are generated so that their OR combination matches
the derived vectors zzztrue and zzzcon f . In this case, when ztrue,i = 0 (resp. zcon f ,i = 0),
all variants in Strue (resp. Scon f ) must take value 0 for the i-th sample, whereas
when ztrue,i = 1 (resp. zcon f ,i = 1) a single variant in Strue (resp. Scon f ) is sampled
uniformly at random and set to 1, and all others are set to 0, once again minimising
the univariate association of the single variants of the associated regions with the
phenotype.
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Figure 2.11: Results of the simulation experiments. (a) A comparison of the power of
FastCMH, FAIS-c2 and Bonf-CMH for detecting true significant regions, as
r varies. The parameters are chosen as: n = 500, p = 106, k = 2 and
r 2 [0.05, 0.95]. (b) The proportion of confounded significant regions falsely
detected by each of those three algorithms (CPR). The parameters have the
same values as for (a). (c) A comparison of the runtimes for the three meth-
ods as a function of the number of features p, where the dashed section for
Bonf-CMH represents extrapolated values. Both axes are plotted on the log-
scale. The set of parameters is as follows: n = 500, k = 4, p 2 [102, 107]. (d)
The difference in runtime between FastCMH and a naive implementation of a
procedure combining Tarone’s trick and the CMH test, as a function of the
number of categories of the covariate. The dashed section of the naive method
represents extrapolated values. We chose: n = 500, p = 105, k 2 J1,30K.

Power, confounded positive rate and FWER: There are two complementary situa-
tions where FastCMH has improved performance. First, it has improved detection
performance of truly significant regions, due its use of Tarone’s testability criterion,
when compared to Bonf-CMH. In Figure 2.11(a), both FastCMH and FAIS-c2 have
higher power than Bonf-CMH for r 2 [0.3, 0.8]. Second, it will often (correctly) omit
regions which appear to be significant, but are actually highly correlated with
the covariate rather than the phenotype. Figure 2.11(b) shows that FastCMH and
Bonf-CMH do not detect these confounded genomic regions as opposed to FAIS-c2.
We consider the detection of these regions to be false positives. Furthermore, Fig-
ure 2.12 shows that both FastCMH and its comparison partners satisfy FWER control.
As explained in Section 2.5.3, only false positive regions that were non-confounded
were taken into account, to disentangle the effect of confounding with respect to
the evaluation of the FWER control. In Figure 2.13, a variation of these experiments
is performed in which we show that the power, confounded positive rate and the
FWER of FastCMH are mostly unaffected by the number of categories, provided the
resulting contingency tables have enough observations.
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Figure 2.12: Comparison of family-wise error rates. Family-wise error rate of FastCMH,
FAIS-c2 and Bonf-CMH, when each algorithm specifies the target FWER to
be a = 0.05. In this experiment, the FWER is also controlled with the use
of FAIS-c2 as the false positives that are accounted for are only the non-
confounded ones.
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Figure 2.13: Impact of the number of categories of the covariate on statistical metrics.
A comparison of (a) statistical power, (b) proportion of confounded regions
falsely detected and (c) FWER for FastCMH, FAIS-c2 and Bonf-CMH as the
number of categories of the covariate, k, varies.

Speed: Figure 2.11(c) shows that FastCMH is also dramatically faster than Bonf-CMH
for large p. In these two experiments, we did not include associated regions as
preliminary experiments showed that it did not have influence on the runtime.
For example, Bonf-CMH would take over 24 hours to process a dataset with p ⇡
5⇥ 105 (vertical grey dashed line), whereas FastCMH would take less than a minute.
Moreover, FastCMH is virtually as fast as FAIS-c2, showing that our method can
correct for confounders with negligible runtime overhead. Figure 2.14 also contains
experiments which show that the runtime of FastCMH scales linearly with the number
of samples n. In addition to the methods described above, we show in Figure 2.11(d)
that our implementation of FastCMH is several orders of magnitude faster that a
naive implementation of Tarone’s trick applied to CMH, as described Section 2.4.4,
Lemma 2 and Theorem 2. In fact, the computation time of this naive method
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increases exponentially as k increases, while FastCMH increases only almost linearly,
in O(k log k). This empirically confirms the theoretical result described Section 2.4.4
regarding the scalability of their search space pruning condition for the CMH test,
also in the context of genetic heterogeneity discovery.
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Figure 2.14: Impact of the number of samples on runtime. Runtime of FastCMH, FAIS-c2

and Bonf-CMH, as the number of samples, n, varies.

2.5.3.3 Evaluation of the ability of FastCMH to find regions of genetic heterogeneity

This section is devoted to describing an exhaustive comparison between FastCMH
and multiple variations of burden tests. Importantly, we will consider two types of
encodings to summarise SNPs in a genomic region into a single genomic score (OR
and sum), as well as two ways to select the set of candidate regions to be tested
(window-based and gene-based), as detailed next.

Encoding in burden tests: Two alternative encodings have been used to collapse
the SNPs in each candidate region into a region vector:

(I) an indicator of the presence of any number of minor allele in the region,
equivalent to the encoding used by FastCMH.

(II) the count of minor alleles in the region.

Moreover, burden tests were evaluated under different simulation setups. There-
fore, in addition to the presentation of the results we will also describe the data
generation process of the different simulation experiments in the paragraphs below.

Window-based burden tests:
Data generation: To represent the biological diversity of causal regions each dataset

included seven truly associated genomic regions of different length `, with ` 2
[2, 4, 6, 8, 10, 12, 14]. The same layout was applied to the confounded genomic regions.
When simulating the data, we ensured that the confounded regions were far apart
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from each other in order to have distinct signals for all associated regions. The
strength of the associations between the truly associated and confounded genomic
regions and the phenotypic trait are controlled by r 2 [0, 1].

Burden test: We used two types of windows in the burden tests, namely non-
overlapping and sliding windows. For both of them, w was the size of the window
that was tested and varied across the burden tests. For the burden tests with sliding
windows, inc = 1 was the number of variants (or stride) between the starting
positions of two consecutive windows. This is illustrated in Figure 2.15. In the
literature [120, 121], strides of length inc 2 J1, 2K are considered, as well as a stride
of length inc = w/2, however the most common choice is inc = 1. For the burden
tests with non-overlapping windows, the alignment of the window boundaries
with the boundaries of the truly associated genomic regions has a strong influence
on the power of the burden test. In the analysis described below, our goal is to
compare FastCMH against the most favourable scenario for burden tests. Therefore,
the starting position of all truly associated regions is chosen to coincide with the
starting position of one of the windows tested by the non-overlapping burden test
baseline. The tested windows can be smaller or bigger than the truly associated
region, but since there will always be a window that starts in the same location as
the region, this puts the burden tests in a more favourable position by minimising
the impact of the fragmentation of the genome in windows of size w. Note that,
additionally, this unrealistic advantage we concede the non-overlapping window
burden tests in our simulation setup implies they will dominate the sliding-window
baselines.

Figure 2.15: Illustration of the sliding windows mechanism. Sliding windows (in blue)
containing w = 8 genomic variants. The stride of one variant (inc = 1) between
two consecutive windows is indicated in green. All of the windows are tested.
Two truly associated genomic regions are represented in red with lengths
` = 10 and `0 = 6.

Gene-based burden tests: As opposed to window-based burden tests, gene-based
burden tests do not take into account all genomic variants but only predefined
regions of interest, normally based on prior biological knowledge.

Data generation: In the simulations, two associated regions of length 8 are gen-
erated, one truly associated with the phenotype and one confounded with the
phenotype.

Burden test: In the gene-based burden tests, the genomic regions that are tested
–also referred as windows in this analysis– are all of length w and each pair of
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consecutive tested windows are separated by exactly w variants. The idea behind
this setting is to simulate the existence of variants that are never tested by gene-
burden tests. In order to define the tested windows, two parameters w and f were
used. One of the windows overlaps with the truly associated region and one window
overlaps with the confounded region. The parameter f measures the overlap of a
region (either the truly associated or the confounded) to a tested window. More
precisely, f is equal to the proportion of the w variants of the tested window that are
contained in a region (again, truly associated or confounded). Intuitively, f allows
controlling the amount of misspecification between the prior knowledge and the
ground-truth, allowing to study the robustness of gene-based burden tests.

The gene-based burden tests were performed under seven combinations of (w, f )
as shown in Table 2.2. Figure 2.16 illustrates the interplay of the parameters w, f
and ` in the simulated data.

Case Parameters
w f

(a) 8 0
(b) 8 1

4
(c) 8 1

2
(d) 8 3

4
(e) 10 4

5
(f) 4 1
(g) 8 1

Table 2.2: Combinations of parameters w and f used in simulation experiments for bur-
den tests.

Figure 2.16: Illustration of the gene-based burden test mechanism. The burden tests will
only be conducted on the regions of w variants marked in blue. For simplicity,
we assume that these regions correspond to genes and that all genes have the
same number of variants (w = 8 in the figure). The region highlighted in red
with length ` = 8 is the truly associated genomic region. The overlap between
the truly associated region and a gene is shown in green. The value of f is
equal to the proportion of the w variants in the gene that are also contained in
the truly associated genomic region. In this example, f = 5

8 .

Experimental setup: Unless stated otherwise, for all methods, the target FWER
is set to a = 0.05. All experiments are performed with n = 500 samples and
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l = 100,000 variants. All results are averaged over 200 iterations. We compare
FastCMH to FAIS-c2 and Bonf-CMH. For each fixed r, we calculate the power, the
confounded positive rate and the FWER by averaging the results over all associated
genomic regions and by correcting with a Bonferroni correction factor equal to the
total number of tests performed. In this study we did not take into account the
dependence between the tests. The encoding of the burden tests is detailed in each
simulation separately.

Confounded positive rate and FWER in window-based burden tests: In Fig-
ures 2.17(a) and 2.18(a), all conditional tests succeed in not discovering the con-
founded genomic regions while FAIS-c2, which does not condition on confounders,
reports them. Figures 2.17(b) and 2.18(b) show that FastCMH and the burden tests
ensure a good control of the FWER; in particular FastCMH has a FWER below the
threshold a = 0.05.
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Figure 2.17: Confounded positive rate and FWER in window-based burden tests, with
non-overlapping windows. Burden tests, FAIS-c2 and FastCMH are compared.
The length of the windows w in the burden tests varies between 2 and 10. (a)
Proportion of confounded regions falsely detected (confounded positive rate).
(b) FWER for FastCMH and for the burden tests. Burden tests use Encoding (I)
in this figure, however the results are similar with Encoding (II).
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Figure 2.18: Confounded positive rate and FWER in window-based burden tests, with
sliding windows. Burden tests, FAIS-c2 and FastCMH and compared. The
length of the windows w in the burden tests varies between 2 and 10. (a)
Proportion of confounded regions falsely detected (confounded positive rate).
(b) FWER for FastCMH and for the burden tests. Burden tests use Encoding (I)
in this figure, however the results are similar with Encoding (II).

Statistical power in window-based burden tests: Figure 2.19 shows the power of
the burden tests with Encoding (II), and the power of FastCMH as a function of
the strength of the association r between the associated genomic regions and the
phenotype. The figure illustrates the results for both non-overlapping windows
(Figure 2.19(a)) and for sliding windows (Figure 2.19(b)). In both cases, we observe
that FastCMH achieves better power than both window-based tests, regardless of
the size of the tested windows. This is mainly due to the flexibility of our method
FastCMH, which is able to simultaneously detect associated regions of different
lengths, combined with an efficient correction for multiple hypothesis testing. In
contrast, the window-based tests exhibit low power for all window sizes. This is
due to the fact that the associated genomic regions are split over several tested win-
dows, which are in general weakly correlated with the phenotype as they combine
part of the associated variants with non-associated ones. Moreover, as soon as the
correlation between the signal and the phenotype is large enough, i.e. larger than
r = 0.6, FastCMH’s statistical power remains very close to 1.
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Figure 2.19: Statistical power in window-based burden tests. Burden tests and FastCMH
are compared. The length of the windows w in the burden tests varies between
2 and 10. (a) FastCMH is compared to non-overlapping window-based burden
tests. (b) FastCMH is compared to sliding window-based burden tests. The
results are obtained with Encoding (II), as it is slightly more favorable than
Encoding (I) in the case of window-based burden tests with non-overlapping
windows.

Statistical power with varying length of the associated regions in window-based
burden tests: We perform an additional set of experiments to evaluate the impact of
the length ` of the associated genomic regions on the statistical power of the burden
tests with non-overlapping and sliding windows.

Figure 2.20 shows how ` strongly impacts the power of the burden tests with non-
overlapping windows of size w. We observe that, except in some rare configurations
of parameters (w = `), FastCMH’s statistical power is higher than the power of the
burden tests in all settings, independently of the lengths of the window being
tested w and of the associated region `. When w = `, the non-overlapping windows
burden test achieves a similar power to that of FastCMH. This setting is particularly
beneficial to the burden tests using non-overlapping windows, in particular in the
setup we chose where each associated genomic region is perfectly aligned with
one tested window. In other words, this special setting corresponds to assuming
that the prior knowledge is perfectly aligned with the ground truth. However, the
statistical power of the burden tests drops rapidly when |`� w| increases (length
mismatch or misalignment). In practice, neither the location of the truly associated
genomic regions nor their length are known a priori. Thus, different tests with
non-overlapping windows of different lengths have to be performed, leading to a
loss of power as the Bonferroni correction becomes larger, or alternatively, power
might be lost due to misspecification, as shown in the experiments.



2.5 genome-wide genetic heterogeneity discovery with categorical covariates 63

�
<latexit sha1_base64="W0oAflQKaL4tjGYUjj6ljtJg3PA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYCt4Krv1oMeiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfaG19Y3Nru7BT3N3bPzgsHR23jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq9LTI1Xpl8pe1ZsDrxI/J2XI0eiXvnoDRdOYSUsFMabre4kNMqItp4JNi73UsITQMRmyrqOSxMwE2fzaKT53ygBHSruSFs/V3xMZiY2ZxKHrjIkdmWVvJv7ndVMbXQcZl0lqmaSLRVEqsFV49joecM2oFRNHCNXc3YrpiGhCrQuo6ELwl19eJa1a1b+s1u5r5fpNHkcBTuEMLsCHK6jDHTSgCRQe4Rle4Q0p9ILe0ceidQ3lMyfwB+jzB9mpjqU=</latexit>

�
<latexit sha1_base64="W0oAflQKaL4tjGYUjj6ljtJg3PA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYCt4Krv1oMeiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfaG19Y3Nru7BT3N3bPzgsHR23jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq9LTI1Xpl8pe1ZsDrxI/J2XI0eiXvnoDRdOYSUsFMabre4kNMqItp4JNi73UsITQMRmyrqOSxMwE2fzaKT53ygBHSruSFs/V3xMZiY2ZxKHrjIkdmWVvJv7ndVMbXQcZl0lqmaSLRVEqsFV49joecM2oFRNHCNXc3YrpiGhCrQuo6ELwl19eJa1a1b+s1u5r5fpNHkcBTuEMLsCHK6jDHTSgCRQe4Rle4Q0p9ILe0ceidQ3lMyfwB+jzB9mpjqU=</latexit>

�
<latexit sha1_base64="W0oAflQKaL4tjGYUjj6ljtJg3PA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYCt4Krv1oMeiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfaG19Y3Nru7BT3N3bPzgsHR23jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq9LTI1Xpl8pe1ZsDrxI/J2XI0eiXvnoDRdOYSUsFMabre4kNMqItp4JNi73UsITQMRmyrqOSxMwE2fzaKT53ygBHSruSFs/V3xMZiY2ZxKHrjIkdmWVvJv7ndVMbXQcZl0lqmaSLRVEqsFV49joecM2oFRNHCNXc3YrpiGhCrQuo6ELwl19eJa1a1b+s1u5r5fpNHkcBTuEMLsCHK6jDHTSgCRQe4Rle4Q0p9ILe0ceidQ3lMyfwB+jzB9mpjqU=</latexit>

Figure 2.20: Comparison of statistical power, between FastCMH and burden tests, with
non-overlapping windows. The lengths w of the windows and of the truly
associated genomic region ` vary, w 2 [2,4,6] and ` 2 [2,4,6,8,10,12,14]. The
thick red curves describe the statistical power of FastCMH. The other thick
curves indicate the average of the statistical power across all burden tests for
all genomic regions lengths `. The thin dashed curves represent the statistical
power of the burden tests for each length of the associated region separately.
Encoding (I) is used, however the results obtained with encoding (II) lead to
the same conclusions.

Figure 2.21 shows how the length ` of the associated genomic regions has an
impact in the power of the burden tests with sliding windows of size w. FastCMH
clearly outperforms the burden tests in all settings, independently of w and `.
For a fixed window-size w, the statistical power of the burden tests varies with
the length of the associated region `. Indeed, for each length of the associated
region, it partially or fully overlaps with several windows. The distribution of the
partial or full overlaps of the tested windows with respect to the associated region,
depends on: a) the stride (inc) between two consecutive windows, b) the length
of the associated region ` and c) the size of the windows w. These three factors
strongly influence the power of the window-based tests. For example, if the window
is large compared to the size of the associated region w > ` (cases w = 6 with ` = 2
and ` = 4), the power of the tests has a dramatic drop as the window includes
many, relative to `, irrelevant variants that contaminate the signal with noise. If
w ⌧ ` (cases w = 2 with ` = 10 and ` = 12 and case w = 4 with ` = 12), the
windows do not contain enough of the truly associated variants to be significantly
associated with the phenotype and the burden tests also perform poorly in these
cases. The power of the burden tests with sliding windows increases when the
overlapping windows are both small enough to only include associated variants
and large enough to include a large fraction of the signal, so that the region can be
detected (case w = 2 with ` = 4 and case w = 4 with ` = 6).
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Figure 2.21: Comparison of statistical power, between FastCMH and burden tests, with
sliding windows. The lengths w of the windows and of the truly associated
genomic region ` vary, w 2 [2,4,6] and ` 2 [2,4,6,8,10,12,14]. The thick red
curves describes the statistical power of FastCMH. The other thick curves indi-
cates the average of the statistical power across all burden tests for all genomic
regions lengths `. The thin dashed curves represent the statistical power of
the burden tests for each length of the associated region separately. Encoding
(I) is used, however the results obtained with encoding (II) lead to the same
conclusions.

To conclude, we want to stress the fact that burden tests with window-based
approaches are very sensitive to inaccuracies due to incomplete or erroneous cov-
erage of the associated regions by the tested windows. Contrary to this, FastCMH
successfully circumvents the problem by testing all possible lengths/starting posi-
tions of (testable) genomic regions. We believe this to be a better fit to the reality
of genome-wide association studies, which in practice are often exploratory and
little is known about the size and the position of associated genomic regions a priori.
The experiments presented above confirm the effectiveness of our method FastCMH
when compared to window-based burden tests in settings when little is known
about the ground truth.

Statistical power, confounded positive rate and FWER in gene-based burden
tests: Here we present simulations to compare FastCMH with burden tests that
only test predefined regions of interest. For our simulations, we consider both
encodings, i.e. Encoding (I) and Encoding (II). The generated data contains one
truly associated region and a confounded one, both of length 8. On the y-axis of
Figures 2.22, 2.23 and 2.24 we show the resulting values of three statistical metrics:
1) the power, 2) the proportion of confounded regions falsely detected (CPR) and
3) the FWER, respectively. The x-axis represents the strength of the association r
between each of the two associated regions and the phenotype. Burden tests give
different results in all seven settings, because they ignore variants outside genomic
windows; this is not the case for the two Tarone-based algorithms nor for Bonf-CMH.
In Figure 2.22, we observe that the burden tests have a higher power in case (g) than
FastCMH and FAIS-c2 because exactly all the variants of the associated genomic
region are combined in the tested window, while FastCMH performs better in all the
other settings, despite the much larger number of tests. We observe that Encoding
(II) is slightly more favorable to the burden tests as it sums the single signals, instead
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of taking the maximum as in Encoding (I), making the combination more robust to
noise.
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Figure 2.22: Statistical power as a function of the strength of the signal r. Comparison
between FastCMH, FAIS-c2, Bonf-CMH and the gene-based burden tests. (i) and
(ii) refer to the encoding, Encoding (I) or Encoding (II) respectively, that is
used for the gene-based burden tests. The labels (a) to (g) refer to the seven
parameter settings for the burden test baselines, which describe different
windows sizes and levels of overlap between the tested windows and the
associated region. The power of gene-based burden tests in cases (a), (b) and
(c) is close to 0.

Regarding the probability of detecting the confounded genomic region, shown
in Figure 2.23, all tests, except for FAIS-c2 that does not condition on confounders,
succeed in ignoring the confounded region. Finally, in Figure 2.24, we observe that
all the Tarone-based methods (FastCMH and FAIS-c2) ensure a slightly better control
of the FWER than the burden tests do, the probability to have at least one non-
confounded false positive is marginally smaller when using FastCMH and FAIS-c2

than with its comparison partners.
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Figure 2.23: Confounded positive rate as a function of the strength of the signal r. Com-
parison between FastCMH, FAIS-c2, Bonf-CMH and the gene-based burden tests.
(i) and (ii) refer to the encoding, Encoding (I) or Encoding (II) respectively,
that is used for the gene-based burden tests. The labels (a) to (g) refer to
the seven parameter settings for the burden test baselines, which describe
different windows sizes and levels of overlap between the tested windows and
the associated region. None of the methods, except for FAIS-c2, retrieve the
confounded genomic region.
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Figure 2.24: FWER as a function of the strength of the signal r. Comparison between
FastCMH, FAIS-c2, Bonf-CMH and the gene-based burden tests. (i) and (ii) refer
to the encoding, Encoding (I) or Encoding (II) respectively, that is used for
the gene-based burden tests. The labels (d) and (g) refer to two of the seven
parameter settings for the burden test baselines, which describe different
windows sizes and levels of overlap between the tested windows and the
associated region. For the sake of clarity, only two burden test cases are
shown, cases (d) and (g). However, the FWER variations for the other gene-
based burden tests were similar. As explained above, the FWER measures the
probability that at least one non-confounded false positive region is deemed
significantly associated.

In summary, gene-based burden tests exhibit low statistical power and appear to
be inefficient at finding genomic regions that are not almost identical to predefined
regions of interest. In contrast, FastCMH retrieves associated genomic regions with
high power, without the need for predefined biological knowledge to guide the
search, while also correcting for confounders.

Combining the simulation results presented for window-based burden tests
with the results on gene-based burden tests suggests that FastCMH has superior
performance in exploratory genome-wide association studies, due to being robust
to misspecification of the set of genomic regions to be tested.

2.5.4 Application to GWAS datasets

In this section, we present the real-world GWAS datasets that we use to evaluate
FastCMH: i) a case/control study of association with chronic obstructive pulmonary
disease (COPD) in humans and ii) five plant datasets of the model organism A.
thaliana involving different binary phenotypic traits.
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2.5.4.1 Description of the datasets and preprocessing

Human data: We analyzed samples from the COPDGene study [122] whose goal is
to identify genetic risk factors for COPD. Participants of the study belong to two
different ethnic groups: African Americans and non-Hispanic whites. The samples
of the two populations were combined and 615,906 SNPs found in the intersection
were kept. The combined dataset contains 7,993 samples of which 3,633 are cases
and 4,360 are controls. Finally, each SNP was binarised according to a dominant
encoding. In this way, significantly associated genomic regions can be interpreted
as regions for which the presence/absence of at least one minor allele in the entire
region of interest is associated with disease risk for COPD. We use the dominant
encoding to binarise the SNPs, i.e. each pair of SNPs containing at least one minor
allele is encoded as a 1 and pairs of SNPs containing major alleles only are encoded
as 0. We chose this encoding as we were preliminary interested in regions where
the presence of at least one minor allele would be associated to the phenotype of
interest. However, other encodings could alternatively be tested.
Plant data: We analyzed a widely used A. thaliana GWAS dataset by [117] from
the easyGWAS online resource [118]. This dataset contains a large collection of 107
phenotypes, 21 of which are dichotomous. We kept five phenotypes: LY and LES
(lesioning or yellowing leaves traits) and avrB, avrPphB and avrBpm1 (hypersensitive-
response traits) with large genomic inflation factors (see Table 2.3 in Section 2.5.4.3).
Each of the five A. thaliana datasets contains between 84 and 95 inbred samples and
approximately 214,050 homozygous SNPs. For each A. thaliana dataset, the SNPs
were encoded as binary vectors as each plant-sample is inbred.

2.5.4.2 Definition of the covariates

The ability of FastCMH to handle categorical covariates can be used to correct for
confounding variables. In the COPD study, defining the covariate is straightforward:
we define the categorical covariate ccc as the (known) genetic ancestry of the individu-
als, namely African Americans or non-Hispanic whites. To illustrate both the ability
of FastCMH to cope with several covariates simultaneously and to handle a large
number of categories k for each covariate, we also consider “height” [123] as an
additional covariate, discretised into decile bins. For each of the A. thaliana datasets,
the categorical covariate ccc we condition on to correct for population structure was
defined using k-means clustering on the three principal components of the empirical
kinship matrix [28], with k optimized to minimize genomic inflation (see Table 2.3).

2.5.4.3 Results

Here we discuss the results we obtained when analysing the human and plant
data. We first present our findings with respect to the correction of confounding
factors, followed by a description of the significant genomic regions that our method
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discovered. Finally, we provide a comparison with burden tests [61].

Dataset and
phenotype

Samples
n

Cases
%

k FAIS-c2 FastCMH

l Hits l Hits
COPDGene

. COPD 7,993 45.4 20 16.70 88,403 1.05 3
A. thaliana

. avrB 87 63.2 3 1.66 14 1.17 11

. avrRpm1 84 66.7 3 1.53 15 1.13 13

. avrPphB 90 51.1 4 1.70 6 1.22 5

. LES 95 22.1 3 2.05 20 1.21 3

. LY 95 30.5 5 2.51 26 1.30 1

Table 2.3: FastCMH and FAIS-c2 results on the GWAS datasets. FastCMH is compared to the
previous state-of-the-art algorithm (FAIS-c2), which cannot correct for covariates.
For each method, the columns l and “Hits” refer to the genomic inflation
factor and the resulting number of non-overlapping genomic regions deemed
significant, respectively. The value of l is computed based on the test statistics
of all testable regions.

Population structure correction: In Table 2.3 we show that the results of FAIS-c2

for all five A. thaliana datasets exhibit a moderate-to-severe degree of genomic
inflation [108], with l ranging between 1.53 and 2.51. In all instances, FastCMH
successfully manages to correct for population structure, reducing the inflation to a
range of 1.13 to 1.30.

The ability of FastCMH to correct for population structure becomes even more
evident with the results from COPDGene. Firstly, there are marked genetic differ-
ences between individuals of African American and non-Hispanic white ancestry,
as illustrated Figure 2.25. This coupled with the shift in the ratio of cases/controls
across populations (30.81% for African Americans versus 52.81% for non-Hispanic
whites) causes an extreme level of inflation that FAIS-c2 is unable to correct for.
With a genomic inflation factor of l = 16.70, any hit reported by FAIS-c2 becomes
unreliable. In contrast, FastCMH eliminates the inflation almost entirely by reducing
it to l = 1.05. To further illustrate the effects of population structure correction
when using FastCMH versus FAIS-c2, in Figure 2.26 we show QQ-plots of p-values
for all testable genomic regions in three selected datasets: two for A. thaliana (LES
and LY) and the COPDGene study. Based on Figure 2.26, we can conclude that
FastCMH can successfully correct severe levels of genomic inflation. Additionally,
we investigated the possibility of further correcting for population structure in the
COPDGene study by defining the categorical covariate using k-means on the top
three principal components of the empirical kinship matrix, as we did when analyz-
ing the A. thaliana datasets. This leads to a further decrease in genomic inflation,
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as shown in Figure 2.25(b), without affecting the set of genomic regions deemed
significantly associated by the FastCMH algorithm.

(a) (b)

Figure 2.25: Two-dimensional representation of all 7,993 samples in the COPDGene
study. The embedding of the samples in the COPDGene study is done accord-
ing to the two principal components of the kinship matrix: (a) Individuals
coloured according to ethnicity (l = 1.048). (b) Individuals coloured according
to the category assigned by k-means clustering (k = 3) on the three principal
components of the kinship matrix (l = 1.016).

Figure 2.26: Comparison of the QQ-plots for the p-values of all testable genomic regions ob-
tained with FastCMH (red) and the previous state-of-the-art algorithm FAIS-c2

(blue) for three datasets: (a) A. thaliana LES (b) A. thaliana LY (c) COPDGene.
Horizontal lines correspond to the adjusted significance thresholds.

Finally, Figure 2.27, we study the impact of k, the number of categories of the co-
variate, on the runtime of FastCMH. We ran the analysis on the COPDGene data with
different levels of discretisation of the covariate “height”. Our results are consistent
with the trend observed in Figure 2.11(d): the runtime of FastCMH scales smoothly
with k, while approaches based on naive evaluations of the pruning criterion scale
exponentially with k. This severely limits their applicability, being only feasible for
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k < 16, a limitation not present for FastCMH.

Figure 2.27: Runtime of FastCMH and a naive implementation of the lower envelope for
the CMH test in the COPDGene study. The x-axis represents different values
of the number of categories for the covariate.

Significantly associated genomic regions: In Table 2.3, we also show the number
of non-overlapping genomic regions deemed statistically significant (hits) by our
method, FastCMH, and our comparison partner, FAIS-c2. Both algorithms were run
with a target FWER of a = 0.05.

Across all five A. thaliana datasets, we observe that FastCMH retrieves systematically
less genomic regions (33 in total) than FAIS-c2 (81 in total). Moreover, the decrease
in the number of hits is larger for those datasets with stronger genomic inflation. For
instance, in LY (l = 2.51 for FAIS-c2), our method retrieves a single genomic region,
while FAIS-c2 retrieves 26. Similarly, in LES (l = 2.05 for FAIS-c2), our method
has 3 hits while FAIS-c2 reports 20. Based on the results presented in Section 2.5.3,
and the correlation in the decrease of number of hits with genomic inflation, it
is plausible to conclude that the results of FAIS-c2 can be inflated by population
structure, while FastCMH successfully corrects for such inflation. Finally, it is worth
noting that out of the 33 significantly associated genomic regions retrieved by
FastCMH in the A. thaliana datasets, 17 of them did not contain any SNPs which
were deemed significant by a single-SNP association study, illustrating how mining
genomic regions can lead to the discovery of novel associations. The most significant
genomic regions and their respective p-values are shown in Appendix Section A.3.

Our results for the COPDGene study also clearly demonstrate the need to cor-
rect for population structure while mining significant genomic regions. FAIS-c2

reports a very large number of hits (88,403 hits), mainly due to the extreme genomic
inflation (l = 16.70). In contrast, FastCMH reports only 3 significantly associated
genomic regions. Each of the three regions respectively overlaps with a gene in the
gene cluster known as the (CHRNA5-CHRNA3-CHRNB4) nicotinic acetylcholine
receptor (nAChR), located on chromosome 15q25.1. Independent studies have re-
ported individual as well as joint association of some of these genes to COPD [123,
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124]. What is remarkable about our results is that the 3 regions detected by FastCMH
are formed by SNPs, each of which do not seem to have an association to COPD
individually, but it is their joint effect across genetically different populations that is
strongly associated to the disease. Details about the SNPs involved, their locations,
and individual as well as region-based p-values are shown in Appendix Section A.4.
When analysing both populations independently with FAIS-c2, no significant region
was found in the African American cohort whereas only one region was reported
for the non-Hispanic whites. With this, we conclude that the main advantage of our
method relies on attaining statistical power, not only through an efficient mechanism
that avoids testing untestable regions, but also by allowing the analysis of larger
datasets with samples of mixed populations thanks to a reliable and computation-
ally efficient correction of confounding factors.

Comparison with burden tests: While FastCMH aims to test all genomic regions,
burden tests are often applied to genes exclusively, or other predefined genomic
regions, because their runtime and/or statistical power degenerates when testing
all possible genomic regions. To illustrate the usefulness of exploring all genomic
regions we ran different kinds of burden tests for all five A. thaliana datasets as
well as for the COPDGene study as additional baselines. We ran (a) gene-based
burden tests on genomic regions defined by all genes extended by 10kb on both
sides, resulting in 24,426 regions for A. thaliana and 17,817 regions for COPDGene,
and (b) window-based burden tests on contiguous non-overlapping windows of
either 500 kilobases or 1 megabase. We used Encodings (I) and (II). All types of
burden tests were performed using both the likelihood ratio test under a logistic
regression model with the categorical covariate encoded using k dummy indicator
variables as well as using the CMH tests in the same way FastCMH does.

For A. thaliana, 45% of all the SNPs discovered by FastCMH are not inside genes
and, as a result, were not discovered by the gene-based burden tests. FastCMH also
leads to results complementary to those of the gene-based burden tests at the
gene level: 21% of the genes reported by any of the burden tests are also found
by FastCMH, including the most significant ones. However, it is important to note
that the different variations of the gene-based burden-tests in this study show
a substantial variability in the set of genomic regions deemed significant. This,
together with the fact that, as shown in Figure 2.28 and Table 2.4, many of the gene-
based burden tests appear to suffer from confounding more strongly than FastCMH,
as quantified by the genomic inflation factor l, suggest that FastCMH retrieving
only 27% of the hits of all burden tests is neither surprising nor indicative of low
power. Window-based burden tests found no hit in any of the A. thaliana datasets
for variants of Encoding (I) and three for those using Encoding (II). At last, out of
all genes deemed significant by at least one method, 40% were only retrieved by
FastCMH. Details of the SNPs found are reported in Appendix Section A.5.
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Figure 2.28: Venn diagram for the genes found by the gene-based burden tests and/or
FastCMH. Encoding (I) represents the union of all the hits of gene-based burden
tests that use encoding (I). Likely, Encoding (II) represents the union of all the
hits of the gene-based burden tests that use Encoding (II). FastCMH considers
both intervals inside genes or intersecting genes (normal font) and intervals
fully outside genes (italic font) that are only retrieved by FastCMH. We note that
the comparison of FastCMH to gene-based burden tests in the Venn diagram
is conservative in the sense that burden test hits are "pooled" across multiple
variations of the method, corresponding to different choices for the statistical
tests, without an additional correction for the multiple hypothesis testing
problem.

Phenotype FastCMH
Burden tests

dummy - (I) dummy - (II) PCs - (I) PCs - (II) CMH
avrB 1.17 1.12 1.22 1.07 1.17 1.05
avrRpm1 1.13 1.13 1.24 1.07 1.15 1.03
avrPphB 1.22 1.41 1.62 1.15 1.27 1.12
LES 1.21 1.43 1.68 1.23 1.43 1.16
LY 1.30 1.44 1.63 1.44 1.63 1.20

Table 2.4: Genomic inflation factors for all gene-based burden tests and for FastCMH.
Note that for FastCMH, the genomic inflation factor is calculated using p-values
for testable genomic regions only, leading to an inflated genomic inflation factor.
dummy indicates that the covariates are coded as k dummy indicator variables,
PCs means that we chose the three first principal components of the kinship
matrix as covariates, (I) and (II) correspond to the encodings described above.
Finally, CMH corresponds to the gene-based burden test using the CMH test
applied to encoding (I) for each gene.

Concerning the COPD study, none of the three genes (CHRNA5-CHRNA3-
CHRNB4) found by FastCMH were significant using any of the gene-based or
window-based burden tests. Taking the smallest p-value across all burden tests
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performed, only CHRNB4 was close to significance (p-value 5.72 · 10�6) while
CHRNA5 and CHRNA3 had p-values 0.24 and 0.41, respectively. While each of the
three significantly associated genomic regions found by FastCMH overlaps with one
gene in the cluster (CHRNA5-CHRNA3-CHRNB4), the significant regions do not
span the entire gene, suggesting that the ability of FastCMH to efficiently test regions
of any size and starting position might be instrumental in successfully retrieving
there association. Complementary details of the results of burden tests on the COPD
dataset are available in Appendix Section A.6.

In summary, FastCMH is not to be understood as a substitute for burden tests,
but as a complementary approach that allows testing a much broader range of
hypotheses, allowing the discovery of novel associations which would otherwise be
missed by burden tests.
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2.6 software package for the detection of statistically significant
snp combinations

In order to give access to methods inspired from the field of significant pattern
mining to a broader audience, we built an open source, efficient, user-friendly
software package called CASMAP. Although the software package allows for general
applications of significant pattern mining, it was developed with a strong focus
towards GWAS. In particular, the software package leverages FAIS-c2, FastCMH and
FACS in order to be able to account for higher-order feature interactions and genetic
heterogeneity in GWAS studies. Additionally, both methods FastCMH and FACS leave
the possibility to account for a categorical confounding covariate, such as age or
gender, making it particularly suitable for GWAS.

Compared to MP-LAMP [125], the state-of-the-art significant pattern mining-based
software package for GWAS at the time of publication, the contributions of CASMAP
are twofold: i) it allows for the correction of covariates, such as age or population
structure, which could lead to the detection of spurious associations if not taken
into account and ii) it provides methods to carry out region-based association
study accounting for all starting positions and lengths of the regions, in addition to
conducting higher-order epistasis search.

The CASMAP toolbox is easy to install and easy to use. Implemented in C++, it
is available both in Python and R and is compatible with tab-delimited text files.
The input files consist of the sample data, the phenotype and an optional covari-
ate file. After running the analysis, the output of the tools are text files whose
contents will depend on which analysis was conducted. The statistical tests used
are either the CMH test if the user provides a covariate file or the c2 statistical
test. For region-based association studies, the main output consists of significantly
associated genomic regions, marked by a start and end positions (SNPs), with their
respective p-value. To avoid reporting numerous overlapping regions, a clustering
post-processing step is performed and the final output contains the results of this
step. In higher-order epistasis analyses, the main output reports the sets of SNPs
whose association to the phenotype was found to be statistically significant. In
addition, the tool creates output files that contain detailed profiling results and a
summary of statistical results.

As proof-of-concept example of the software package, we used the algorithm
FastCMH present in CASMAP on the COPD genome-wide association study dataset [122]
that was already presented in the experiment section of FastCMH, Section 2.5.4. As
a recall, the dataset comprises 7,993 individuals and a total of 615,906 SNPs. Each
SNP was binarised according to a dominant encoding. Without stratifying the data,
the genomic inflation factor is equal to l = 16.70, indicating strong population
structure. Therefore, to correct for confounding, a categorical covariate was obtained
by clustering in four clusters the six principal components obtained with the method
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from [28], which led to a reduced genomic inflation factor l = 1.02. This example
had for objective to demonstrate the computational efficiency of one of our method
FastCMH and we measured that it ran in approximately 7 minutes.
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D E E P - L E A R N I N G E N A B L E S A C C U R AT E P R E D I C T I O N S O F
R I B O S O M E B I N D I N G S I T E A C T I V I T Y

3.1 state of the art in ribosome binding site activity prediction

Quantitatively mapping a function to a regulatory sequence is key in multiple bio-
logical domains, in particular in synthetic biology where one aims at controlling the
circuitry of a cell or component. To this end, models have been built for diverse reg-
ulatory regions [30, 31, 126, 127], with the objective to be able to predict accurately
and quantitatively the corresponding protein level. Among these regulatory regions,
the ribosome binding site (RBS) has been particularly studied [128, 129]. RBSs are
part of the 5’-untranslated region (5’-UTR) of mRNAs and controls the rate-limiting
initiation of translation. As a few mutations in the RBS sequence can lead to several
order-of-magnitude differences between the expression of the regulated gene, RBSs
are often used in synthetic biology to optimise protein level [129]. Therefore, in this
part of the thesis we will focus on ribosome binding sites.

Several state-of-the-art prediction models have been developed in order to be able
to predict quantitatively the function of the regulatory sequence of interest, here
the ribosome binding site. Existing models can be classified in several categories,
a) models that use a mechanistic hypothesis, such as the RBS calculator [128], b)
classical machine learning models such as random forests [130] or c) deep learning
models, including convolutional neural networks and fully-connected networks [131,
132]. While using a mechanistic model has the advantage to inject prior information
into the model, it is mostly beneficiary to cases where the labelled data available
to fit the model has a small sample size (a few hundred samples). As soon as the
dataset size increases, it is possible to use classical machine learning models as
presented in [130]. However, [130]’s limitations are first that the sequence space
observed is rather short (six nucleotides) and second that the sample size is only a
few thousands, rendering the usage of more complex, potentially highly accurate
models, such as deep learning ones not as valuable as it could be. Two recent publi-
cations [131, 132] have shown the importance of generating datasets that contain
hundred of thousands of samples. Both studies build a deep learning model that
allows to accurately predict RBS function, reaching unprecedented performance
above R2 = 0.9 in biology, characterising human and yeast 5’-UTRs, respectively.

With the emergence of this pioneering large sample size work, several questions
remain. From the biological side, one central question is the generalisation of the
data generation method to other regulatory regions. From the machine learning
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side, one can ask whether these extremely accurate performance are reliable or not,
in other words, how certain is the model about the predicted values in order to be
able to use the prediction in downstream tasks.

In summary, the objective of the machine learning part of this project was to
support experiment design and to build accurate deep learning models in order to
go beyond state-of-the-art performance in function prediction from the sequence
without prior mechanistic knowledge. The organisation of this chapter is the follow-
ing:

• Section 3.2 presents the data generation method designed by the biologists
in order to obtain large datasets characterising hundreds of thousands of
ribosome binding site sequences.

• Section 3.3 describes the preprocessing step from the raw next-generation-
sequencing (NGS) data to the identification of the diversifier sequences, and
the steps used to optimise the throughput of the biological experiment from a
first proof-of-concept dataset.

• Section 3.4 presents the criteria by which the labels used for training the
machine learning model are defined and how well these labels correlate to a
standard measure of gene expression in biology.

• Section 3.5 describes the model architecture of SAPIENs (Sequence-Activity
Prediction In Ensemble of Networks), which is the proposed deep learning
model that allows to predict function from sequence in our project. This section
also explains how SAPIENs obtains well-calibrated uncertainty estimates of
the individual predictions.

• Section 3.6 describes the experimental design of the machine learning experi-
ments, and shows how SAPIENs compares to off-the-shelf machine learning
models.

• Section 3.7 describes the insight obtained about the influence of positions and
bases of the RBS sequences on their activities.

The manuscript related to this project, entitled Large-scale DNA-based phenotypic
recording and deep learning enable highly accurate sequence-function mapping, has been
accepted in Nature Communications [133]. Further details of the machine learning
approach that is described in this thesis are available in the Machine Learning Annex
of the paper and the code is available in github.com/LaetitiaPapaxanthos/SAPIENs.
This chapter of the thesis is highly inspired from the sections describing the data
analysis and machine learning methods of the paper published in Nature Commu-
nications. As a reminder, the contributions of the authors to Large-scale DNA-based
phenotypic recording and deep learning enable highly accurate sequence-function mapping
are, as written in the paper: M.J. and Y.B. conceived the project. M.J., Y.B., and K.B.
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coordinated the study. K.B. conceived and supervised machine learning analyses.
M.J. supervised experimental work. S.H., K.F., and M.J. performed experiments. S.H.,
K.F., L.P., A.C.G., and M.J. analyzed data. A.C.G., L.P., and M.J. developed measures
to increase throughput. S.H. and L.P. developed the algorithm for processing of
NGS data. L.P. conceived, developed, and analyzed machine learning models. C.B.
advised design of DNA adapters and NGS. M.J., L.P., and Y.B. wrote the manuscript
with input from all authors.
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3.2 introduction to uaspire for the generation of large sequence-
function datasets

Linking variants of genetic regulatory elements to their activity at large scale is a
difficult task in biology, and most of the current approaches either yield datasets
containing up to 103 samples [134], are case-specific and technically challenging [132,
135] or are error- and bias-prone [31, 136]. However, sequence-function mapping is
at the center of many biological domains, in particular in synthetic biology. To this
end, collaborators in the department of biosystems science and engineering (DBSSE)
at ETH Zürich have developed a method in order to yield large-scale datasets,
mapping hundred of thousands of sequences of a genetic regulatory element of
interest to their respective function, with the potential to map millions.

However, while we are at the verge of being able to generate millions of sequence-
function pairs, the sequence space to explore remains too large to hope to be able
to cover it entirely. For example, the total number of sequences of length l = 17,
with an alphabet of four letters (A, C, G, T/U), reaches N = 417 ⇡ 1010 distinct
sequences. Therefore, beyond the generation of large datasets, being able to predict
accurately the function of any genetic regulatory element sequence becomes crucial
for biological research. To this end, deep learning maximises the benefit of large
data collection owing to its ability to capture complex, non-linear dependencies and
to its computational scalability [32]. Deep learning models can exploit patterns and
dependencies in the sequence data in order to predict accurately the function of
any input sequence, mapping sequence to function without any prior mechanistic
knowledge, and have had a few great successes in applications such as genomics or
proteomics [137–142].

In order to obtain a large dataset, the biologists in the collaboration built a three-
component DNA construct that contains, on the same DNA molecule, a diversifier
that is the regulatory element sequence, a modifier that is the gene coding for a
recombinase whose expression is controlled by the diversifier and a discriminator
which sequence is modified by the recombinase protein. The state of the discrimina-
tor, indicated by its sequence, is binary, modified or non-modified, and is a proxy
for recombinase expression, which is regulated by the diversifier sequence (all other
regulating factors kept constant). Additionally, we assume that the recombinase is
itself a proxy for the expression of any gene that would be regulated by the diver-
sifier. Therefore, the discriminator state is a proxy for the ability of the diversifier
sequence to upregulate or downregulate any gene, which we denote the diversifier
activity. Figure 3.1 shows the interaction between the three components of the DNA
construct. The link between the regulatory sequence (diversifier) and its activity
(state of the discriminator) is done with next-generation-sequencing (NGS), as on
the same paired-read (forward and backward) both the regulatory sequence and
the sequence of the discriminator (modified or unmodified) are present. However, if
we only had one discriminator per regulatory element sequence, the resolution of
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the diversifier activity by a binary state discriminator would be insufficient. There-
fore, several copies of the DNA construct containing the same regulatory element
sequence are sampled, both at the same time point and at different time points,
pooled and fed to NGS together. Therefore the resolution of the activity at a specific
time point is increased from a binary state to a ratio of modified discriminators,
and this ratio can be obtained at multiple chosen time points. Logically, the more
copies per diversifier sequence, the better the resolution. For example, let us assume
two regulatory element sequences, one that leads to an increase in recombinase
expression and the other one to a non-expressed gene, at a given time point. The
more copies, the closer the ratio of modified discriminators will be to 1 in the
first case, and to 0 in the second case. In the end, a kinetic profile is obtained for
each diversifier sequence, that gives a temporal indication of the evolution of the
corresponding gene expression. Each of these kinetic profiles is later aggregated
into a single scalar (see Section 3.4.2), which is used as a proxy for the diversifier
sequence’s activity and therefore of the corresponding gene expression (all other
factors controlled).

modifier diversifier discriminator

forward read

reverse read

Figure 3.1: Representation of the three-component DNA construct. The diversifier
(green), for example a regulatory sequence, influences the expression of the
modifier (purple). If the modifier is expressed, it will change the state of the
discriminator (red). By sequencing a single DNA sequence, both the discrimi-
nator state and the diversifier will be on the same read, therefore allowing to
obtain the sequence and function pair simultaneously.

The idea behind the three-component DNA construct is to be able to trade-off
accuracy in the measure of gene expression, substituting GFP measurements against
a summary statistic of the kinetic profile, by sample-size, as the new approach
would be able to label hundred of thousands of different diversifier variants as its
capacity is uniquely limited by the NGS machine capacity.

In practice, the biological experiments are performed in E. coli. The diversifier
used is a ribosome binding site (RBS) in E. coli, the modifier is a coding sequence of
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the protein recombinase Bxb1 and the discriminator is a short DNA sequence. As
said above, RBSs are of high interest in synthetic biology as a few mutations can
lead to orders of magnitude of differences between the expression of the regulated
gene. The recombinase Bxb1 is a protein that leads to an irreversible DNA sequence
inversion (referred as flipping later on). The location of sequence that is inverted
induced by the recombinase is highly specific as the sequence that is flipped (the
discriminator) is characterised by two attachment sites attB and attP, which are
long (50 pb and 53 pb), therefore avoiding off-target effects. The discriminator is
the DNA sequence flanked by the two attachment sites attB and attP, such that the
recombinase being expressed leads to its irreversible flipping.
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3.3 data preprocessing and optimisation of the experimental through-
put

3.3.1 Data preprocessing of the output of NGS

The data preprocessing is composed of two steps, a first step presented Section 3.3.1.1
that describes how we preprocessed the fastq files obtained from the NGS machine
(Illumina NextSeq, ⇠400 millions reads) to pairs of RBS sequence-discriminator
sequence, and a second step Section 3.3.1.2 that consists of aggregating the discrimi-
nator sequences per RBS sequence and time point.

3.3.1.1 From raw data to RBS-discriminator pairs

The output of NGS is composed of fastq files as shown Figure 3.2. Each fastq file is
composed of groups of four lines annotating one read and is coupled to another
fastq file. One of the four lines corresponds to the actual read of interest. The reads
are paired into a forward and a reverse read, extracted from two coupled fastq files.
In our experiment, the reverse read contains the RBS sequence of interest together
with the 5’-end of the protein Bxb1 and the forward read contains the discriminator
sequence, flipped or non-flipped. A first filtering step consists of removing all
the paired-reads that contain more than six consecutive unidentified nucleotides
(denoted as N). A second filtering step consists of keeping only all paired-reads
that contain the 10-bp constant sequence GAGCTCGCAT (5’-end extract of the
bxb1 coding sequence), while allowing for 3 mismatches. Among the remaining
reverse reads, the positions of the constant sequences are recorded and the 17-bp
RBS sequences are localised directly to the right of the constant sequence. The
discriminator sequences are extracted from the forward reads, searching for parts
of the part of attP and attR sites, i.e. for the sequences GGGTTTGTACCGTACA and
GCCCGGATGATCCTGAC, allowing for three mistmatches. As a last step, reads
that contained more than 8% of errors in the coding sequence were removed to
exclude some off-target mutations. In the end of this first preprocessing step, the
dataset contained pairs of "RBS sequence-discriminator sequence", grouped by the
time point at which the DNA samples were collected.

AAAAAEEE/EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE<EEEEEE
@NS500318:459:HVLC5BGX5:1:11101:21748:10659 2:N:0:1
ATCGATGTGAGCTCGCATTCTGTAAGTCAACATCGATAAATTAAATATTTA
+
AAAAA6E/AEEEA/<EEEAE<AEEE/EAEEEE/EE/AEAEEE6EEEE<AEE
@NS500318:459:HVLC5BGX5:1:11101:12719:10659 2:N:0:1
TCGATACAGTGGAGCTCGCATTTCGCCACAAGTTCGATATAAATTAAATAT
+
AAAAAEEEEEEEEEEEEEEEEEAEEEEEEEEEEEEEAEEEEEEEE6EEEEE
@NS500318:459:HVLC5BGX5:1:11101:12273:10659 2:N:0:1
ATCGATGTGAGCTCGAGTTGGTGTAATAAATTAAATATTTATTTCATTCTT

Figure 3.2: Example of two reads in a fastq file.
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3.3.1.2 From RBS-discriminator pairs to kinetic profiles

The datasets generated with the method uASPIre (ultradeep Acquisition of Sequence-
Phenotype Interrelations) are composed of RNA sequence-flipping profile pairs.
The RNA sequences are 17 bp long and located directly upstream of the start codon
(Figure 3.3(a)). The flipping profiles are built according to the following steps. The
preprocessing pipeline described above allows to record together millions of pairs
of forward and reverse reads, which contain respectively the RBS sequence and
the discriminator sequence, the latter being in a flipped state or a non-flipped
state. At each chosen time point, it allows to collect such pairs for several RBS
sequences and multiple times per RBS sequence. For each RBS, at each time point, it
is therefore possible to register the counts of flipped and non-flipped discriminator
reads (Figure 3.3(b)). For each RBS, the ratio of flipped discriminator reads at each
time point enables to estimate the translation kinetics on a predefined time period
(Figure 3.3(c)). As a consequence, the datasets that are generated with uASPIre
are composed of pairs of 17-bp long RBS sequences and their kinetic profiles (Fig-
ure 3.3(d)).

In total, two datasets were generated. A small one, composed of ⇠10,000 sequence-
profile pairs. It is used as a proof-of-concept dataset for the biological experiments
to optimise the generation of the larger one. A large dataset was created afterwards,
composed of ⇠300,000 sequence-profile pairs. This last dataset is used to train
off-the-shelf machine learning models, to develop a tailored deep learning model
SAPIENs (Sequence-Activity Prediction In Ensemble of Networks), interpret the
later and do subsequent data analysis.
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UGAGAUGGAGGGAUAGU CGUGGCGGGGGGAUAUU

Figure 3.3: From the read counts to the flipping profiles. (a) Localisation of the ran-
domised RBS sequence. (b) Flipped and non-flipped discriminator read counts
across time, for a single RBS sequence. (c) Flipping ratio across time for a single
RBS sequence. (d) RBS sequences and their flipping profiles for several RBS
sequences taken at random.

3.3.2 Simulation and library design to optimise the throughput of NGS

The small dataset contained approximately 10,000 RBS variants sampled uniformly
at random (Section 3.3.2.1). This dataset was used to improve the generation of the
second dataset, first by running simulations to have an estimate of the number of
RBS variants that are retrieved after NGS as a function of the input (Section 3.3.2.2)
and by enriching the library in RBSs exhibiting a high activity (Section 3.3.2.3).

3.3.2.1 Description of the small, proof-of-concept dataset

The small dataset was composed of 10,427 RBS variants sampled uniformly at
random. For this first dataset, a provisory label was built by aggregating each
flipping profile. The aggregation was done by taking the integral of the flipping
profile using the trapezoidal rule and dividing the latter by the interval length on
which the integral was estimated. This label is referred to as IFPtrz and is contained
in [0, 1]. The IFPtrz scalar value is therefore a normalised estimate of the RBS activity
and is used as proxy for the protein level regulated by the RBS sequence. A first
analysis of the labels of this dataset shows that the distribution of RBS activities is
strongly skewed towards weak RBSs, as shown Figure 3.4. This proof-of-concept
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dataset is then used to optimise the generation of the large dataset as explained
below. a b

Figure 3.4: Label distribution of the proof-of-concept dataset. The proof-of-concept RBS
library with 17 consecutive, fully randomised bases (N17) upstream of the
GFP start codon shows a strong skew towards weak RBSs as represented by
the integral of the flipping profile between 0 and 360 minutes after induction
approximated using the trapezoidal rule (IFPtpz[0� 360] min).

3.3.2.2 Optimisation of NGS loading

To increase the throughput of uASPIre, we analysed the data from the proof-of-
concept (poc) experiment, which contained kinetic data of approximately 10,000
RBS variants. We sought to estimate an optimal number of variants to be loaded into
NGS in order to retrieve a maximised number of variants with high quality data (i.e.
above different thresholds q for the minimal read count of discriminators per RBS
sequence per time point). For this simulation, we assumed that the limiting factor is
the NGS throughput and that the maximal number of valid reads (i.e. reads that pass
the preprocessing pipeline quality constraints) retrieved by NGS is constant across
experiments under the same experimental conditions. This simulation is based
on the idea that increasing the number of RBS variants reduces the coverage and
vice versa, as the maximum number of valid reads is constant. For the distribution
of read counts we assumed that it follows a log-normal distribution and that its
variance is independent of the coverage. The proof-of-concept dataset is composed
of approximately 2⇥ 108 valid reads, which are spread among nt = 18 time points
and npoc = 10,427 variants with an average coverage of cov ⇠ 1000 reads per variant
per time point. If the coverage of the small dataset is reduced by a factor of rc > 1,
and the number of time points by a factor of rt > 1, the total number of variants
that could be loaded into NGS without loss would be ninput(rc, rt) = npoc ⇥ rc ⇥ rt,
by conservation of the maximal number of valid reads. However, out of these
ninput(rc, rt) variants, only noutput(q, rc, rt) < ninput(rc, rt) would pass the quality
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control as enforced by the minimal read threshold q. To simulate the effect of the
minimal read threshold, we downsampled the read counts of the proof-of-concept
dataset by a factor rc and applied to it the minimal read threshold q resulting in a
number of variants above threshold nsimul(q, rc) < npoc. The estimated final number
of variants is therefore noutput(q, rc, rt) = nsimul(q, rc)⇥ rc ⇥ rt. Figure 3.5 shows the
estimation of the number of variants noutput(q, rc, rt) as a function of the minimal
read count threshold q and of the total library size ninput(rc, rt), as well as the
experimental library size values.
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Figure 3.5: Optimisation by adjustment of NGS loading. The effect of the total library
size on throughput (i.e. number of variants above read-count threshold) of
uASPIre for the optimised sampling schedule is shown for different read-count
thresholds. The experimental library size values are shown with diamond shape.

3.3.2.3 RBS library design

Initial efforts for training a convolutional neural network (CNN [143], described
below) based on the proof-of-concept dataset resulted in a systematic underestima-
tion of RBS strength, in particular for strong RBSs (see Figure 3.6). This is likely
due to the library being skewed towards weak sequences as a result of the full
randomisation of the 17 bases upstream of the Bxb1 start codon Figure 3.4. To over-
come this, three libraries (High1� 3) presumably enriched in moderate-to-strong
RBSs are designed in silico based on the proof-of-concept dataset and added to a
fully randomised library (N17). The three libraries are downsampled from three
degenerate RBSs, which are constrained to the IUPAC notation. As a reminder, the
IUPAC notation is a standard DNA (or RNA) representation where each character
encodes a set of nucleotides. The single nucleotides {A, C, G, T, U} are represented
as such, {W, S, M, K, R, Y} represent pairs of nucleotides, {B, D, H, V} triplets
of nucleotides and N any nucleotide. Libraries High1 and High2 are designed
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using position probability matrices (PPMs), 2D matrices in which each element
represents the proportion of times a nucleotide occurs at a given position in the
sequence. To this end, RBSs from the proof-of-concept dataset were grouped into
10 linearly distributed bins according to a proxy for the normalised integral of
their flipping profile (IFPtrz), for each of which a PPM was computed. Degenerate
RBS sequences for High1 and High2 were designed with the goal to obtain IUPAC
PPMs that most closely resemble (minimal mean-squared error) the PPMs of the
highest and second highest bins, respectively. Finally, the creation of the library
High3 involved the coupling of a prediction model and a genetic algorithm. To
this end, we first investigated whether a deep learning-based model trained on the
proof-of-principle dataset could achieve non-trivial predictive performance, despite
the relatively small sample size, in order to meaningfully guide library design. For
this purpose, a convolutional neural network (CNN) composed of one convolutional
layer and two fully-connected layers, the last one’s output being a scalar value,
was used. The predictive performance of such a model was explored by means of
5-fold cross-validation on the proof-of-concept dataset, such that for each fold, 70%
of the data is used for model fitting, 10% for model selection and the remainder
20% a held-out test set. The hyperparameters were selected with grid search on
each validation set. As shown in 3.6, despite being outperformed by SAPIENs when
trained on the final dataset, this smaller model achieves sufficient predictive power
(R2 = 0.644, MAE= 0.055) to guide library design. Therefore, we selected a final
model by an additional 5-fold cross-validation, in this case using 80% of the data in
each fold for model fitting and the remainder 20% for model selection. The best set
of hyperparameters found in this manner was composed of a filter size of 5 and a
number of filters of 128 for the first convolutional layer, 16 output elements for the
first fully-connected layer, a weight decay of 0.005, the learning rate equal to 0.0001
and the batch size set to 512. Once this final model was selected and fitted, the RBS
sequences from the three highest bins were randomly mutated for 200 iterations,
with 1 or 2 mutations, keeping only the mutations that led to an increase in IFPtrz
as measured by the predicted values of the CNN. The PPM of the pool of mutated
sequences was calculated, a subsample of 20,000 sequences was randomly generated
from this PPM and the predicted IFPtrz was computed for each generated sequence
of the subsample using the trained CNN. Starting with a random degenerate RBS
sequence, we mutated it iteratively one position at a time (random ordering of the
positions), and kept the IUPAC nucleotide at the corresponding position that led
to the smallest Kolmogorov-Smirnov (KS) distance between the predicted IFPtrz
distribution of the subsample and the predicted IFPtrz distribution of the 1000
sequences generated from the new degenerate RBS sequence. This iterative process
was continued until the relative decrease in KS distance was less than e = 10�3 for
three consecutive iterations. Figure 3.7 shows that the sequence design experiments
were successful as the enriched libraries, indicated by High1� 3, contain a larger
proportion of medium-to-strong sequences compared to the fully-randomised li-
brary N17. We can also notice that High3 contains a larger percentage of strong
RBSs than all other libraries, which corresponds to the original design goal.
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a b

Figure 3.6: Preliminary CNN predictions on the proof-of-concept dataset. Initial pre-
dictions obtained with a convolutional neural network model (5-fold cross-
validation) trained on the proof-of-concept RBS library. Coefficient of determi-
nation (R2) and mean absolute error (MAE) are obtained based on predictions
on held-out data.
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Figure 3.7: Composition of the fully-randomised library and of the designed ones.
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3.4 definition of the label used by the machine learning models ,
in the large dataset

As briefly mentioned above, the flipping profiles were summarised into a scalar
value that is representative of the RBS activity. In order to do so, it was necessary
to find a summary statistic that is well correlated to the standard measurements
of gene expression. To this end, 31 internal-standard RBSs were defined to span
the full range of gene expression as measured by the preliminary proxy IFPtrz. The
preliminary label IFPtrz was compared to the GFP measurements using different
curve fits to choose the best one for the machine learning model, as presented
Section 3.4.1, and the chosen label was further refined to reduce the influence of
noise in the measurements, Section 3.4.2. We also showed that labels that come from
different biological replicate datasets can be successfully mapped to each other, as
explained Section 3.4.3, indicating that training on one replicate is enough to predict
on other potential replicates, conditioning on a pre-normalisation step.

3.4.1 The label can be used as proxy for RBS activity

In order to convert Bxb1-catalysed discriminator flipping into cellular Bxb1 con-
centrations, we compared the recorded cellular fluorescence profiles for the 31
internal-standard RBSs with their corresponding flipping profiles as collected by
NGS (see Figure 3.8). To this end, we sought to i) establish a combination of sum-
mary statistics that exhibit a high degree of correlation between the two measured
quantities across the entire range of RBS strengths, ii) identify the best (potentially
non-linear) fit between the two summary statistics, and iii) ensure that a high degree
of diversity is maintained for the representation of the discriminator flipping across
the entire set of sequences in the dataset.

Figure 3.8: Comparison of the cell-specific GFP fluorescence kinetic profile (green) with
the flipping kinetic profile (blue) for one internal-strandard RBS sequence.
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We used integral-based (i.e. area under the curve) summary statistics for the
flipping profiles and slope-based representations (i.e. slope of the linear fit) for
the fluorescence profiles (Figure 3.9(a) and (b)). For the flipping statistics we also
quantified the diversity of each representation by estimating the differential en-
tropy [144] of its probability density (Figure 3.9(c)). In order to obtain robust GFP
measurements, the fluorescence profiles of each of the 31 standard-inner RBSs were
measured three times. Before calculating summary statistics of the fluorescence
profiles, we preprocessed the fluorescence profiles as follows. The preprocessing step
consisted of imputing the fluorescence values a) for time points of profiles that are
missing or b) at time point 0 for profiles that showed a fluorescence at 0 higher than
the one at the following time point (50 minutes). To do so we fitted each of the bio-
logical replicate curves with a generalised logistic function (x ! K

(1+Q exp(�Bx))1/v )
using the values available and imputed the missing values or the inflated values (at
0) with the value of the fitted function at this time point. For each type of summary
statistic, we additionally treated the time ranges over which both the fluorescence
and flipping summaries are computed as additional hyperparameters to be opti-
mised. To compute the summary statistics, the intervals of interest for the flipping
profiles are [0, 360], [0, 480] and [0, 720] (minutes). Similarly, the fluorescence profiles
intervals of interest are [0, 225], [0, 290], [0, 360] and [0, 480] (minutes). Integral-based
summary statistics for the flipping profiles are estimated using the trapezoidal rule.
Slope-based representations for the fluorescence profiles are calculated by fitting
a linear regression to the datapoints within the interval of interest (boundaries
included) of the three biological replicates together. The slope of the fit serves
as slope-based representation and the standard deviation of the slope is used to
estimate the deviation around the estimated slope. Once the representations for
both profiles are estimated, fits were evaluated from representatives of the flip-
ping profiles to those of the fluorescence profiles. To do so linear (x ! Ax + B),
log-linear (x ! A log x + B) and general logistic fits (x ! A + K�A

1+Q exp(�Bx) ) were
used. We quantified the quality of each pair of summary statistics using the re-
sulting coefficient of determination R2 of the fit as evaluated using leave-one-out
cross-validation on the pool of 31 internal standard RBSs in order to compensate
for potential effects of overfitting in the analysis. The leave-one-out cross-validation
consisted of learning the free parameters of the fitted functions on all but one
internal-standard RBSs (here 30 = 31� 1 datapoints) and predicting the output
for the last datapoint that was not used for fitting. This step was performed 31
times (one time per inner-standard RBSs). The coefficient of determination was then
calculated between the 31 inner-standard RBS representations of the fluorescence
profiles and the 31 predictions. Moreover, the standard deviation of each summary
statistic for fluorescence was computed for all internal standard RBSs relying on the
three biological replicates.
As shown Figure 3.9, we observe that the pairs of summary statistics correlate
strongly, indicating that the normalised integral of the flipping profile is strongly in-
dicative of the prevailing cellular GFP concentration. We observe that the coefficients
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of determination between pairs of summary statistics after the leave-one-out cross-
validation are better with a logistic fit (Figure 3.9(a)). As a compromise between a
high correlation with GFP concentration with a logistic fit and a high diversity of
the label (Figure 3.9(c)), we chose integral of the flipping profile between 0 and 480
minutes after induction as label for the further data analysis and machine learning
steps. The curve representing the mapping between the two summary statistics, the
slope of the GFP profile between 0 and 290 minutes and the integral of the flipping
profiles between 0 and 480 is shown Figure 3.9(b) in the center.
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a b
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Figure 3.9: Identification of optimal parameters to correlate Bxb1-mediated recombina-
tion with cellular GFP levels. (a) Coefficient of determination after leave-one-
out cross validation (loo-CV) (R2

val) between different slope- and integral-based
summary statistics for cell-specific fluorescence and the flipping profiles of the
31 internal-standard RBSs using linear and logistic fits. Note that slope-based
summary statistics for the flipping profiles failed to deliver robust fits (R2

val
consistently below 0.5) and were therefore not included in this figure. (b) Se-
lected logistic fits involving the integral of the flipping profile (IFP) for different
time spans and the slope of the cell-specific fluorescence curve between 0 and
290 min after induction. The standard deviation of three biological replicates
for the fluorescence profiles is indicated by vertical error bars and coefficients
of determination without (R2) and with loo-CV (R2

v) are displayed. (c) IFP
distribution across the entire larger RBS library for different integration inter-
vals. The differential entropies of the respective IFP probability densities are
indicated. IFP [0, t]: normalised integral of the flipping profile between 0 and t
minutes after induction; slopeGFP [0, t]: slope of the cell-specific fluorescence
curve between 0 and t minutes after induction; max slopeGFP: maximum slope
(minimum three timepoints) of the cell-specific fluorescence curve.

3.4.2 Creation of the label, as normalised integral of the flipping profile

A majority of flipping profiles present moderate irregularities, such as measurements
at later time points might yield lower values than earlier ones. As the flipping
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profiles represent cumulative distributions of the proportion of flipped discriminator
reads, this type of irregularities should ideally not be present. However, it is hardly
possible to perfectly control all factors of the experimental protocol and this creates
irreducible random noise. In order to smooth out the noise, it is possible to fit the
profiles using a generalised logistic function. We used the following generalised
logistic fit as it is a non-decreasing function and shows the same S-shape as the one
observed on many of the profiles (see Figure 3.3(d)):

f (t; A,D,E,t0,v) =
A

(E + e�D(t�t0))
1
v

(3.1)

The fit summarises the relationship between the time and the proportion of flipped
discriminators per RBS. As the profiles are numerous and diverse, > 105 observa-
tions, it is not possible to fit automatically all the profiles with the default parameters
as it leads to several errors and unfitted profiles. To this end, we implemented a
preprocessing algorithm to find automatically better initialisation parameters, fit all
the profiles in parallel and evaluate the normalised fitted flipping profile integrals.
The algorithm can be described as follows:
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Algorithm 9 Pseudocode to fit the profiles and compute the normalised integral of
the flipping profiles IFP0�480min.
Input: Y profiles array, tstart = 0 minutes beginning of integration interval,
tend = 480 minutes end of integration interval, R total reads array (same sample
ordering as Y), q = 20 minimal read count threshold (see Section 3.6.1), bC = 10
number of bins, nK = 50 number of clusters.
Output: I normalised integrals array.

1: Crop the flipping profiles Y outside of the integration interval [tstart, tend].
2: Select all the flipping profiles that verify the minimal read count threshold in

the integration interval q. Let Sq be the set of profiles to be fitted.
3: Remove from Sq the flipping profiles that are constant and equal to 0 or to 1.
4: Evaluate the integral values of every profile in Sq according to the trapezoidal

rule.
5: Rank the samples according to their integral values and cluster them by bins Bi

of size 1/bC , the bins boundaries are [1/bC ⇥ (i� 1), 1/bC ⇥ i], for i 2 J1, bCK.
6: for b from 1 to bC do:
7: Cluster the profiles in bin Bb with k-means, among nK clusters.
8: Compute the centroid profile C.,b,k in for each cluster Cb,k, for k 2 J1, nKK.
9: for k from 1 to nK do:

10: Fit the centroid profile C.,b,k. Save the parameters of the fit Pinit
.,b,k.

11: end for
12: for k from 1 to nK do: . Step done in parallel on 32 CPU cores.
13: Initialise the fitting functions for the cluster Cb,k with Pinit

.,b,k.
14: Fit all profiles in Cb,k and save the new parameters P:,b,k.
15: end for
16: end for
17: Fit manually the profiles that are constant and equal to 0 or 1 (trivial fit).
18: Compute the normalised integrals of all the fitted flipping profiles I. . Step

done in parallel on 32 CPU cores.
19: Return I

An example of such fit is provided Figure 3.10. This algorithm allowed us to
obtain the final labels IFP0�480min for each RBS sequence in the large dataset.
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Figure 3.10: Example of logistic fit (yellow) of one flipping profile (blue) and of the area
that is used to calculate the label (light blue)

3.4.3 Normalisation of the label between biological replicates

In order to facilitate the comparison of biological replicates we capitalised on the 31
internal-standard RBSs. These serve as internal references spanning a large range
of RBS activities and allow to compensate for potential batch effects and other
systematic biases between replicates. Formally, for each of the 31 internal-standard
RBSs, we denote by x and y the measured normalised integral of the flipping
profile (IFP) for the biological replicate to be normalised and the reference replicate,
respectively. We fit either a polynomial function of degree two, f : [0, 1] ! R

with f (x) = I + Ax + Bx2, or its inverse f (x) = g�1(x) with g(z) = I + Az + Bz2,
such that the mean squared error between f (x) and y is minimised across the
31 measurement pairs. Moreover, we impose the following constraints on the
parameters of f : first, RBSs that show no activity in one replicate should remain
inactive in the other replicates ( f (0) = 0). Second, RBSs whose discriminators are
entirely flipped before induction in one replicate should exhibit that behaviour
in the other replicates ( f (1) = 1). Third, the ranking of RBSs according to their
strength should be preserved across replicates ( f is monotonically non-decreasing
in [0, 1]). It should be noted that, empirically, these assumptions appear to hold
across the three biological replicates in this study. Imposing the first two constraints
above reduces the number of free parameters of the polynomial function from three
to one, resulting in the following family of functions, parametrised by A:

f (x) = Ax + (1� A)x2 (3.2)

Moreover, the third constraint translates into the following bounds on the set of
allowed values for the free parameter A: 0  A  2. This procedure was carried
out for each pair of biological replicates. The quality of the resulting fits was then
evaluated on the full datasets, excluding the 31 internal-standard RBSs that were
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used to optimise A.
Figure 3.11 shows pairwise comparisons between the replicate datasets, before (a)
and after (b) the normalisation. We observe that the fit learned on the 31 internal-
standard RBSs allows to correct for batch effects almost perfectly in all cases for the
remaining sequences.

a

b

Figure 3.11: Biological replicates. A total of three independent biological replicates (i.e.
individual shake flask cultivations) of the large dataset were subjected to the
uASPIre workflow. Relying on the spiked-in 31 internal-standard RBSs, a nor-
malisation curve was constructed and used to normalise the IFP0�480min values
between replicates. (a) Comparison between IFP of independent biological
replicates before normalisation. The yellow curve shows the polynomial fit
on the 31 internal-standard RBS. (b) Comparison between IFP of independent
biological replicates after normalisation. Coefficient of determination R2 and
standard error std_err are calculated on the full dataset but the 31 reference
sequences.
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3.5 development of the neural network SAPIENs as rbs predictor

Once the label has been defined, we build a deep learning model to accurately
predict the RBS strength and to have a measure of uncertainty of the prediction for
future usage of the predictions of the model. The model developed is an ensemble of
residual convolutional neural networks whose architecture is described Section 3.5.1.
From this model, well-calibrated estimates are obtained as explained Section 3.5.2
by parametrising the label distribution as a mixture of beta distributions.

3.5.1 Description of the machine learning model SAPIENs

The input of the model is an RNA sequence sss = (s1, ..., sl) for length l, where each
element si, i 2 J1, lK, represents a base 2 {A,C,G,U} [138]. As the neural network
requires a numerical input, the sequences are one-hot encoded into numerical arrays,
with length l and c = 4 channels, one for each base: the A-channel, the C-channel,
the G-channel and the U-channel, as illustrated Figure 3.12. We fit the flipping profile
of each RBS with a generalised logistic function (Section 3.4.2), integrating the fitted
kinetic curves between the time points at 0 and 480 minutes and normalising the
integral value by dividing by 480 (minutes). The resulting normalised integral value
(range between 0 and 1; IFP0�480min) is used as a descriptor of RBS behaviour and
is selected as an exemplary target for prediction since it exhibits high correlation
with cellular GFP levels and a high diversity across the RBS libraries (Figure 3.9).

0 0 0 1
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0 0 0 1

0100

A C G U

AUCGGCU l
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Figure 3.12: One-hot encoding. The genomic sequence AUCGGCU is one-hot encoded.
The resulting array is a 2D matrix that has as many rows as the genomic
sequence is long (l) and that has 4 channels (c). As are represented by a one in
the first column and zeros in the other columns, Cs are represented by a one
in the second column and a zero in the other three, Gs are represented by a
one in the third column and a zero elsewhere and Us are represented by a one
in the fourth column and a zero in the other columns.

Initially, we define a set of preliminary candidate deep-learning architectures for
a predictive model according to standard practices [138, 145, 146]. These include
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convolutional neural networks (CNNs) with and without residual blocks, as well
as multilayer perceptrons. These architectures are assessed as part of the hyperpa-
rameter selection process, which indicate superior performance of the CNN with
residual blocks (ResNet) [147, 148] for this particular application, resulting in a
model with three residual blocks of two convolutional layers and two sets of two
fully-connected layers. We apply three main variations to the ResNet model in order
to improve predictive accuracy and additionally provide a measure for predictive
uncertainty. First, we choose the negative log-likelihood, which is a proper scoring
rule, as the training criterion to achieve better uncertainty estimates [149]. The
predicted IFP0�480min is modelled using a beta distribution, as it provides a flexible
distribution with support in the interval [0, 1]. Second, the last two fully-connected
layers in the network are modified to output two values instead of one, thereby
allowing to independently parametrise the two shape parameters of the predictive
beta distribution for each input sequence. Equivalently, as the first two moments
of the beta distribution are functions of the shape parameters, we were able to
retrieve the mean and the standard deviation of the predictive distribution for each
input sequence. Third, we use an ensemble of N = 2⇥ 5 ResNet models [149], each
trained separately with a different random initialisation of network parameters, a
random order of training sequences during stochastic gradient-based optimisation
and different architecture and optimiser hyperparameters. This third variation helps
increase predictive accuracy and capture epistemic uncertainty.

The final model, Sequence-Activity Prediction In Ensemble of Networks (SAPIENs),
is an ensemble composed of five ResNet models with three residual blocks of two
convolutional layers, composed of 64 filters of sizes 9 and 1 respectively, followed by
two sets of two fully connected layers with 64 units each (weight decay parameter:
10�6, learning rate: 0.01) and five ResNet models with three residual blocks of two
convolutional layers, composed of 512 filters of sizes 10 and 1 respectively, followed
by two sets of two fully connected layers with 64 units each (weight decay param-
eter: 10�6, learning rate: 0.001). The architecture of an element of the ensemble is
shown Figure 3.13. In all cases, we keep a held-out test set and split the remaining
dataset into a training and a validation set while keeping the same proportion of
strong RBSs as defined by the 15th percentile of the IFP0�480min distribution. We
use batch-normalisation [150] followed by LeakyReLU activation functions [151]
between each layer. For optimisation, we used the Adam optimiser [152]. The model
is implemented in Keras with the Tensorflow [153] backend. All hyperparameters
(number of filters and layers, filters sizes, number of units of the fully-connected lay-
ers, weight decay, learning rate, batch size) were selected with random search [154]
on the basis of their performance on the validation set.
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Figure 3.13: Schematic architecture of a single ResNet. One-hot encoded 17-bp RBS se-
quences are fed into three residual blocks, composed of two convolutional
layers (conv1, conv2), and two sets of two fully-connected layers (fc1/fc3,
fc2/fc4). Yellow and purple boxes represent the output of the convolutional
and fully-connected layers, respectively. The grey box represents the output
of the flattening operation. The model yields a probability distribution of
the normalised IFP0�480min for each sequence from which the corresponding
predicted IFP0�480min value (mean µ) and an uncertainty estimate (standard
deviation s) can be calculated. SAPIENs overall architecture is a combination
of ten individually parametrised ResNets.

3.5.2 Uncertainty estimation for the predicted IFP0�480min value

3.5.2.1 Modelling of the experimental measured values IFP0�480min

In our study, the ground truth values to be predicted by the model are the experimen-
tally measured normalised integrals of the flipping profiles (IFP0�480min) that quan-
tify RBS strength. As described above, the IFP0�480min values are continuous and de-
fined on the interval [0, 1]. Several approaches can be used to model such an output.
In the context of neural networks, the most straight-forward way would be to use an
appropriate activation function for the single output of the last fully-connected layer.
Such activation function can be a sigmoid function ( f : R ! [0, 1]; x ! 1

1+exp(�x) )

or a soft-clipping function ( f : R⇥R ! [0, 1]; (x, v) ! 1
v log( 1+exp(vx)

1+exp(v(x�1)) ) with
v a hyperparameter) and the model output would then be defined on [0, 1], as the
ground truth value. However, as explained above, we aim to estimate the uncer-
tainty of the prediction together with the IFP0�480min values, which is generally not
feasible with a single output value, as it is not sufficient in itself to estimate the
uncertainty of each output value. Therefore, we choose to model each IFP0�480min
value as a random variable whose distribution allows to get an estimate for the
uncertainty of the prediction as well.

Towards this aim, we look for a distribution that satisfies the following desider-
ata: i) be supported on the interval [0, 1], ii) be differentiable with respect to its
parameters, iii) be flexible enough to model the mean and the standard deviation
independently, iv) be flexible enough to take a large number of shapes, such as
asymmetric, non-monotonic or skewed distributions and v) be parsimonious, i.e.
depend on a small number of parameters. Commonly-used distributions that match
these requirements are the beta distribution, the logit-normal distribution and
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the truncated normal distribution. We discard the logit-normal distribution as
i) its mean and variance do not have a closed-form expression and have to be
approximated differently, for example with a quasi Monte Carlo estimator and
ii) preliminary experiments show that the model had difficulties in parametrising
output distributions whose predictive mean ought to be close to the extremes of its
support, i.e. near 0 or near 1. We also observe this difficulty in modelling very weak
or very strong RBS activities when using the truncated normal distribution, albeit to
a lesser extent. By contrast, the beta distribution does not suffer from any of those
problems, and performs consistently well throughout the entire [0, 1] range.

3.5.2.2 Introduction to the beta distribution

The beta probability density function (pdf) is defined as follows:

f (x; a, b) =
xa�1(1� x)b�1

B(a, b)
(3.3)

where a and b are the two shape parameters of the beta pdf and B(a, b) =R 1
0 ua�1(1� u)b�1du is the beta function, which is a normalisation constant that en-

sures that the total probability is 1. Roughly, the beta distribution can be interpreted
as a generalisation of the Bernoulli distribution and the shape parameters can be
seen as expected numbers of draws of the two classes when they are larger than one.
For example, in our context, the normalised integral can be seen as representing
a proportion of flipped discriminator reads if we were looking at only one time
point. If the total number of flipped discriminator reads would be a and the total
number of non-flipped discriminator reads would be b, then we could estimate
the proportion of flipped reads to be equal a

a+b , which is exactly the mean of

x ! f (x; a, b) for x 2 [0, 1], as
R 1

0
ua�1(1�u)b�1

B(a,b) udu = a
a+b .

3.5.2.3 Negative log-likelihood as a proper scoring rule

The first step towards getting valid uncertainty estimates is to choose a proper
scoring rule as training criterion [149]. A scoring rule is a function that assigns
a numerical score to a predictive distribution pW⇤ (y|XXX) (here the weights W⇤ are
the optimised ones) and rewards better calibrated predictive distributions, i.e. that
are closer to the ground-truth conditional distribution of the targets given the
samples q(y|XXX). Let S(pW⇤ , (y,XXX)) be a scoring rule that evaluates how well the
predictive distribution matches the ground-truth conditional distribution q(y|XXX)
relative to the event y|XXX. The expected scoring rule can be written S(pW⇤ , q) =R

pW⇤ (y,XXX)q(y,XXX)dydXXX. Most importantly, S(pW⇤ , q) is a proper scoring rule if for
all pW⇤ , S(pW⇤ , q)  S(q, q), with equality if and only if pW⇤ (y|XXX) = q(y|XXX) for all
sample-target pairs (y,XXX) in the dataset D.

We choose the log-likelihood as proper scoring rule, or equivalently the negative
log-likelihood as loss function. Let B be a batch with nB samples, let i 2 J1, nBK
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be a sample number in the batch B, XXX:,i a one-hot encoded genetic sequence, yi its
ground truth target value and W the weights of the model (we ignore the biases
for simplicity of notation). The likelihood of having the ground truth target value
yi given XXX:,i as input of the model is pW(yi|XXX:,i), which depend on the parameters
W. We do not write the dependence on the hyperparameters as we can assume
that they have been already selected on the validation set. The cost function can
therefore be written as follows:

F(X, y; W) = � 1
nB

nB

Â
i=1

log(pW(yi, XXX:,i)) + l||W||22 (3.4)

where the left part of the right term is equal to the averaged negative log-likelihood
over the samples in batch B, and the rightmost term is the regularization term,
which is the sum of the square of each weight. It is multiplied by the weight decay
hyperparameter l.

Minimizing the cost function amounts to: i) maximising the averaged log-likelihood
and to ii) shrinking the weights in order to prevent the model from overfitting to
the training data and to increase the ability of the model to generalise on an unseen
test data. The objective is to find the optimal parameters that would ensure that for
all elements in the batch, yi is very likely to be the output of the model when XXX:,i is
the input.

As we choose to model the target variable with a beta probability density function,

the likelihood can be written as pW(yi|X:,i) =
y

aW (X:,i )�1
i (1�yi)

bW (X:,i )�1

B(aW(X:,i),bW(X:,i))
.The functions

aW and bW in the likelihood are both neural network functions, whose weights W
are learned during training. Furthermore, XXX ! (aW(XXX), bW(XXX)) defines a space
of beta pdfs and establishes a correspondence between an input sample X:,i and a
beta distribution. As the space of beta pdfs is constrained by the parameters W, it
is in principle not possible for the model to find the beta distributions that would
maximize pW(yi|X:,i) for each sample X:,i. However, we can hope that the model
finds a space of beta distributions that allows to make the output yi very probable
given X:,i for all i.

3.5.2.4 Mean and variance of the beta distribution

The mean and the variance of the beta distribution are functions of the shape
parameters. Let i 2 J1, nBK be a sample number in a batch B, X:,i a one-hot encoded
genetic sequence, yi its ground truth target and W⇤ the weights of the model
estimated after minimisation of the cost function. After optimisation, the mean of
the beta pdf for sample X:,i can be expressed as follows:

µW⇤ (X:,i) =
aW⇤ (X:,i)

aW⇤ (X:,i) + bW⇤ (X:,i)
(3.5)
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The corresponding variance can be written as:

s2
W⇤ (X:,i) =

aW⇤ (X:,i)bW⇤ (X:,i)

(aW⇤ (X:,i) + bW⇤ (X:,i))2(aW⇤ (X:,i) + bW⇤ (X:,i) + 1)
(3.6)

For each sample, it is therefore possible to access the predicted mean and variance
of its beta distribution once we learn the shape parameters. The predicted mean
µW⇤ (X:,i) of a sample i is the predicted target value and is an estimation for the
ground truth target yi. The predicted variance s2

W⇤ (X:,i) contributes to the predictive
uncertainty.

3.5.2.5 Ensembling leads to a mixture of beta distributions

The measured IFP0�480min for each RBS is modelled as a draw from a beta distri-
bution. The mean and variance of this distribution estimated by the ResNet model
(see above) correspond to the predicted IFP0�480min value and an indication of the
aleatoric uncertainty of prediction (see Section 3.5.2.6), respectively. To complement
this aleatoric estimate with an estimate of epistemic uncertainty (see Section 3.5.2.7),
we first used an ensemble of N = 5 ResNet models with identical architecture
and optimizer hyperparameters but different random parameter initialisation and
ordering of the input sequences. The uncertainty estimate is therefore given by the
standard deviation of the mixture of N = 5 beta distributions (Figure 3.14(a)-(b)).
Furthermore, we extended this ensemble strategy at a later stage by also including
M different configurations for the higher level hyperparameters, such as architec-
ture and optimizer hyperparameters, with five ResNet models per configuration,
resulting in a total of N = M⇥ 5 ResNet models in the ensemble. Finally, a num-
ber of configurations M = 2 (Figure 3.14(c)), therefore an ensemble 10 ResNets,
was fixed as a trade-off between predictive performance and computational com-
plexity. Figure 3.14(d) shows how the mixture of beta distributions for a held-out
sequence approximates in average better the ground truth than the individual beta
distribution.
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mixture

Figure 3.14: Uncertainty estimation. (a) Each single ResNet models the label IFP0�480min
for each RBS sequence as a beta distribution whose mean (µ) and standard
deviation (s) can be computed. While the mean corresponds to the predicted
IFP0�480min value, the standard deviation represents a measure of the un-
certainty of the prediction. (b) Combining multiple ResNet models into an
ensemble allows modeling the label IFP0�480min as a mixture of beta distribu-
tions, for each RBS sequence. (c) Example of the predicted mixture of beta
distributions (in blue) of an ensemble of ten models for a given RBS sequence.
The ensemble achieves a better prediction than the individual models as can be
appreciated from its mean (green dashed line) which is in close proximity to
the experimentally determined ground truth IFP0�480min value (black dashed
line). (d) The validation coefficient of determination R2 increases with the
number of ensemble members. An ensemble size of 2⇥ 5 (red circle), cor-
responding to two hyperparameter configurations with five independently
trained ResNets per configuration, was selected as a trade-off between accuracy
and computational demand.

Let m 2 J1, nMK be a model number, i 2 J1, nBK be a sample number in a batch B,
X:,i a one-hot encoded genetic sequence, yi its ground truth target, W⇤m the optimised
weights of model m, µW⇤

m
(X:,i) the mean of the beta pdf obtained with model m

for input X:,i and s2
W⇤

m
(X:,i) the variance of the beta pdf obtained with model m for

input X:,i. The output of the ensemble for each sample is a uniformly-weighted
mixture of beta pdfs whose mixture density is as below:

pmixt(yi|X:,i) =
1

nM

nM

Â
m=1

pW⇤
m
(yi|X:,i) (3.7)

=
1

nM

nM

Â
m=1

y
aW⇤m (X:,i)�1
i (1� yi)

bW⇤m (X:,i)�1

B(aW⇤
m
(X:,i), bW⇤

m
(X:,i))

(3.8)
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The predicted mean and variance of the mixture would then write as:

µmixt(X:,i) =
1

nM

nM

Â
m=1

µW⇤
m
(X:,i) (3.9)

s2
mixt(X:,i) =

1
nM

nM

Â
m=1

(s2
W⇤

m
(X:,i) + µ2

W⇤ (X:,i))� µmixt(X:,i)
2 (3.10)

The mixture mean and variance are functions of the means and variances of each
model in the ensemble, and by definition, of the respective shape parameters. When
using an ensemble, we make the hypothesis that the normalised integral of the
flipping profile (IFP0�480min) is a random variable that follows a mixture of beta
distributions, and not a beta distribution as it would be the case for a single model.
The mixture mean corresponds to the predicted target and the mixture variance
contributes to the predictive uncertainty. It is possible to decompose this uncertainty
in an aleatoric uncertainty and an epistemic uncertainty representing two sources
of uncertainty of the prediction, as explained below.

3.5.2.6 Estimation of the aleatoric uncertainty

The aleatoric uncertainty refers to the intrinsic uncertainty of the data, which would
remain if we repeated the same experiment in the same conditions several times.
It can for example be directly linked to a noisy observation process that cannot be
reduced or captured with more datapoints under the same experimental conditions.
In order for a single model to express a tailored aleatoric uncertainty, it is possible
to model the target as a random variable and predict the variance s2

W⇤ of the
distribution of the target for every sequence input, in addition to the mean. In
practice, the variance of the predictive distribution pW⇤ (y|XXX) is a measure of the
aleatoric uncertainty at each datapoint XXX, assuming the weights W⇤ correspond to
the true (unknown) weights.

3.5.2.7 Estimation of the epistemic uncertainty

The epistemic uncertainty or model uncertainty refers to sources of uncertainty
that would be reduced if additional information were given, for example a larger
sample size. An example of such uncertainty is that the mathematical model could
neglect certain measurable effects. In practice, this uncertainty can be accounted
for by taking into consideration the uncertainty of the optimised parameters W⇤

of the single model pW⇤ (y|XXX). As a matter of fact, the parameters W⇤ of the
predictive distribution pW⇤ (y|XXX) are estimated and do not necessarily correspond
to the unknown ground truth parameters. In order to capture the uncertainty of
these parameters, it is possible to use an ensemble of models, i.e. to average the
predictive distributions over several models that are either initialised differently,
use different random batches or have different hyperparameters. If we were to
consider one model to predict the target, it would be equivalent to assuming that
the parameters W⇤ are equal to the ground truth ones and therefore we would not
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account for the model uncertainty in the variance of the predictive distribution. By
contrast, if we could learn all possible models, we could marginalise (i.e. integrate
over) the parameters W⇤ to estimate the ground truth conditional distribution,
q(y|XXX), as the average over all the predictive distributions corresponding to the
infinitely many optimised models: q(y|XXX) =

R
pW⇤ (y|XXX)r(W⇤|D)dW⇤ where D is

the dataset of interest and r(W⇤|D) is the posterior probability of the parameters
given the dataset. However, in practice this is unfeasible, and the ensembles are
a mean to capture some uncertainty, by estimating the posterior probability of
the parameters W⇤, r(W⇤|D), as a sum of Dirac delta functions centered on the
optimised parameters of the nM models of the ensembles, such that the predictive
distribution can be estimated by pmixt(y|XXX) = ÂnM

m=1
R

pW⇤ (y|XXX)d(W⇤ �W⇤m)dW⇤.
Therefore, calculating the variance s2

mixt of the predictive distribution pmixt(y|XXX)
allows to capture some epistemic uncertainty, together with the aleatoric uncertainty.
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3.6 experimental design, evaluation and benchmarking of SAPIENs

A set of experiments is performed to assess the performance of the model in
different conditions. Section 3.6.1 explains why and how a minimum read count of
20 has been chosen to filter the dataset before the machine learning experiments.
Sections 3.6.2 and 3.6.3 compare the performance of SAPIENs to various off-the-shelf
machine learning models. Section 3.6.4 shows how the model behaves when the
training sets and and test sets do not necessarily follow the same distribution.
Section 3.6.5 shows the ability of the model to yield well-calibrated uncertainty
estimates. Section 3.6.6 discusses the performance of the model on the biological
replicates. Section 3.6.7 shows that the predicted IFP0�480min values correlate with
the standard measures of gene expression, which conclude that the predictions can
be used as proxy for RBS activity, therefore alleviating the need to sequence the
entire space of the 417 RBS sequences.

3.6.1 Minimal read number threshold

A minimal threshold for the number of NGS reads per RBS is determined as a
quality control criterion for both training and test sets. Increasing this threshold
is expected to trade off two opposite effects since it increases the average quality
of the data leading to a decrease in the underlying aleatoric uncertainty but at the
same time reduces the dataset size available for training, which generally lowers
predictive performance. To this end, we first define six filtered datasets obtained
by keeping only RBS sequences with at least 10, 15, 20, 30, 40 or 50 reads per
sampling time point. Then, we randomly split each filtered dataset into training,
validation and test sets as described above and made sure that for each split the high-
quality training, validation and test sets were contained in the lower quality training,
validation and test sets, respectively. Moreover, a test set is held out for the following
prediction experiments. In order to identify an optimal lower read count threshold,
we train a single ResNet model for 150 epochs. We randomise the search for
hyperparameters [154] (see Section 3.5.1) used the same 150 sets of hyperparameters
for each filtered training dataset and calculated the coefficient of determination
on the validation set. Hence, the minimal threshold is effectively treated as a
hyperparameter. This analysis indicates that a minimal read count threshold of
20 reads per time point is optimal for predictive performance, which saturates
for lower thresholds despite the increase in overall dataset size (Figure 3.15(a)).
We keep this training/validation/test split (“split0”) for the following prediction
experiments. Finally, we confirm that these conclusions are not an artifact of the
random split of the original dataset by repeating this analysis using five different
training, validation and test set splits (Figure 3.15(b)).
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a b

Figure 3.15: Effect of the minimal read threshold on the predictive performance of one
ResNet model. (a) ResNet models were trained on different subsets of the
training data corresponding to different minimal read count thresholds, and
were evaluated in terms of the coefficient of determination R2 in different
subsets of the validation set also corresponding to different minimal read count
thresholds. The data training/validation/test split (“split0”) corresponds to
the one we use to obtain the results in Figure 3.16 The experiment shown in
(a) is repeated four times for different random splits to assess robustness. Data
points in (b) represent the average of five random splits with two-standard-
deviation intervals shown as shaded areas.

3.6.2 Performance of SAPIENs on the entire dataset

Using “Split0”, we evaluate our model in more detail. Importantly, this implies that
the test set had not been used in previous experiments in order to avoid overfitting.
First, we used random search for selecting the best combination among 150 sets of
hyperparameters on the validation set (see Section 3.5.1), let SAPIENs run for 300
epochs and used an early stopping criterion on the validation set to avoid overfitting
by selecting the epoch with the best validation R2. Figure 3.16 shows a comparison
of IFP0�480min values as predicted by SAPIENs with the corresponding experimental
values measured by uASPIre, for which we reach a coefficient of determination of
R2 = 0.927 and a mean absolute error (MAE) of 0.039. Moreover, the systematic
inaccuracy in predicting strong RBSs is eliminated as a result of the addition of the
three designed sub-libraries High1� 3.
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Figure 3.16: Prediction performance of SAPIENs in the large dataset. The x-axis represents
experimentally measured IFP0�480min values in the test set and the y-axis
represents the corresponding predicted values by SAPIENs. Sequences in the
test set were binned (bin size: 0.05) according to measured IFP0�480min. Violins
comprise percentiles 0.5 to 99.5 of predicted values per bin with median and
outliers represented as white circles and blue dots, respectively. Black bars
contain the 25th to 75th percentiles.

3.6.3 Performance of SAPIENs compared to off-the-shelf machine learning models as a
function of the training set size

We train SAPIENs and several classical linear and non-linear machine learning
models on the same 248,451 RBS sequences chosen at random from the larger
uASPIre dataset, issued from “split0”. Hyperparameters are optimised exclusively
on a validation set (⇠ 30,000 sequences) and afterwards all models are evaluated on
a held-out test set (⇠ 30,000 sequences). The single ResNet and SAPIENs models are
trained for a maximum of 150 epochs, using early stopping. A total of 100 randomly
generated models with 1 � 3 residual blocks are considered. Hyperparameters
tuned for the other models are regularisation strength for ridge regression [23],
number of neighbours K for k-nearest neighbours [155], number of trees for random
forests [156], and maximum depth and learning rate for gradient tree boosting [157],
the later also benefits from early stopping in the validation set. The impact of the
training set size on predictive performance, Figure 3.17, is evaluated by training the
different models on different smaller datasets, while ensuring that the training and
validation sets are contained in the training and validation sets of higher sample
size experiments (i.e. nested training and validation sets). Hyperparameters for all
models are optimised independently for each training set size on the corresponding
validation set.

As illustrated Figure 3.17, in the largest training set, the linear model ridge
regression (R2 = 0.678) is clearly outperformed by non-linear models k-nearest
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neighbours (k-NN, R2 = 0.738), random forest (R2 = 0.835) and gradient tree
boosting (GTB, R2 = 0.893), which highlights the importance of interactions between
nucleotides in the RBS. Notably, SAPIENs outperforms all other approaches reaching
an R2 of 0.927 and MAE of 0.039. Importantly, except for the overall weakest-
performing Ridge Regression, prediction accuracy increases with training set size
for all models as reflected by rising prediction performance (R2 and % within 2-fold
error). While a general trend towards saturation is observed, no plateau is reached
even for the largest training set of 248,451 sequences.

a

b

Figure 3.17: Comparison between SAPIENs and state-of-the-art machine learning mod-
els. SAPIENs, a ResNet model, gradient tree boosting, random forest, nearest
neighbours and ridge regression are compared for different training set sizes,
from 2500 to 248,451 samples. (a) The performance metrics used in the com-
parison is the coefficient of determination R2. (b) The performance metrics
used in the comparison is the percentage of predicted values within two-fold
of the ground-truth values. The x-axis is represented in log scale.
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3.6.4 Effect of the designed sub-libraries on performance

The effect of adding designed sub-libraries to increase the fraction of stronger RBSs
in the bulk library is further analysed to evaluate a potential gain in predictive
performance for the intermediate and strong sequences. To this end, we perform
cross-analyses with the fully degenerate sub-library (N17) and the bulk library
(N17+High1 � 3). We train on N17 and predict on unseen subsets of N17 and
N17+High1� 3, and train N17+High1� 3 and predict on unseen subsets of N17
and N17+High1� 3 (Figure 3.18(a)). In another set of analyses, we omit each of the
enriched sub-libraries while training by moving them to the test sets and evaluate
the corresponding effect (Figure 3.18(b)). In each case, we train a single ResNet
model for 300 epochs for computational considerations and we use early stopping
in the validation set. The hyperparameters are tuned independently for each dataset
and selected from 150 random configurations in the corresponding validation set.
All analyses are done with the same training and validation set sizes. Comparative
analyses were performed with the same test set.

a b

IFP0�480min
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Figure 3.18: Effect of designed sub-libraries on the prediction accuracy of the ResNet
model. (a/b) The mean absolute error (MAE) is evaluated for different bins of
the experimentally determined IFP0�480min value and several combinations of
training and test sets composed of the fully degenerate RBS library (N17) and
the designed libraries (High1� 3). 95% confidence intervals are indicated by
shaded areas.

In Figure 3.18(a), we observe that compared to training on the fully degenerate
library (N17), training on the sequences from the enriched library (N17+High1�
3) leads to i) lower MAE for intermediate to strong ground truth IFP0�480min
values when testing on sequences distributed according to the enriched library
(N17+High1� 3) (green vs black) and to ii) lower MAE for very high ground truth
IFP values when testing on sequences distributed according to the fully degenerate
library (N17) (blue vs yellow). Figure 3.18(b) complements this analysis to estimate
the capacity of the model to generalise across High1, High2 and High3. This last
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figure shows a lower MAE for medium-to-strong or for strong sequences when
training on the fully degenerate library to which two enriched libraries out of three
were added.

3.6.5 Calibration of the uncertainty estimate

For any prediction model, it is common to evaluate the accuracy of the predicted
targets with metrics such as MAE or RMSE. In a similar way, it is also key to be able
to evaluate predicted variances, which serve as proxy for predictive uncertainty. As
we do not know the ground truth variances, it is not possible to directly compare
the predicted values to the ground truth values with common metrics. To this end,
different approaches have been developed, one of them is building a reliability
diagram [149]. The reliability diagram aims at establishing whether the predicted
uncertainty is well-calibrated. It displays the percentage of ground truth values
in the test set that fall into the t%-confidence interval of their predicted beta
probability density functions, for any t 2 [0,100]. This number is then compared
to the theoretical percentage of ground truth values that should fall in the t%-
confidence interval, which is exactly t%. If these two percentages agree for any
t%-confidence interval, i.e. if the identity mapping holds, we say that the model is
well-calibrated and the predictive uncertainty is meaningful. If the percentage of
ground truth values in a given t%-confidence interval is smaller than t%, it means
that the model is over-confident and tends to be certain about weak predictions. In
the opposite case, if the number of ground truth values in a given t%-confidence
interval is larger than t%, it means that the model is underconfident and that the
variances tend to be too large.

In order to build the reliability diagram Figure 3.19(a), we use the estimated
variances s2

mixt of the mixture of the beta probability density functions in order
to calculate the boundaries of the t%-confidence interval for each sample and
each t. As the resulting curve is perfectly aligned with the diagonal, these results
indicate that our uncertainty estimates are very well-calibrated, indicating that
the uncertainty of each predicted target value seems to be accounted for. This is
confirmed by the fact that the mean absolute error is positively correlated with the
predicted standard deviations (Figure 3.19(b)). Both these results suggest that the
predicted standard deviations can be used as scores to evaluate the quality of each
individual prediction.
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a b

Figure 3.19: Evaluation of the uncertainty estimates. (a) The confidence intervals of the
predicted probability distributions (horizontal axis) fully assess the uncertainty
of the prediction values (vertical axis). (b) The mean absolute error (MAE), per
bin of 0.01 of standard deviation, is almost linear as a function of the binarised
standard deviation of the prediction.

3.6.6 Generalisation across biological replicates

We evaluate the ability of our model to generalise across biological replicates, that
is, we would like to assess whether a model trained on measurements from one
batch can accurately predict targets whose ground-truth values were measured on
a different batch. To this end, we first collected data from three distinct biological
replicates (batches). Next, each replicate dataset was randomly split into (stratified)
training, validation and test subsets as previously done. Then, we removed any
sequences from the test sets which did not pass the quality control criteria for all
three replicates, allowing our results to be directly comparable across replicates.
Finally, we considered test datasets where the targets are normalised to the training
replicate (see Section 3.4.3) and where they are not.

After these preprocessing steps, we trained six instances of our model indepen-
dently on the training subset of each replicate, normalised and not normalised,
using the corresponding validation subset to select any hyperparameters. In practice,
we ran the models for 150 epochs, used an early-stopping criterion on the validation
set and performed random search among 150 sets of hyperparameters.

For each of the six models, we evaluate its predictive performance on: 1) test
labels measured in the same batch, to assess the within-replicate performance; 2)
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test labels measured in the other two batches before normalisation; 3) test labels
measured in the other two batches after normalisation, to assess cross-replicate
performance before and after proper normalisation.

Figure 3.20: Cross-training between biological replicates. Six instances of the model are
trained (indicated by ’trained on’) and tested (indicated by ’tested on’) inde-
pendently on each biological replicate, with (blue) and without normalisation
(purple). The normalisation consists of using the internal-standard RBSs, as
shown Figure 3.11. The replicates are indicated by r1, r2 and r3. The perfor-
mance is reported with the coefficient of determination R2.

Figure 3.20, we observe that SAPIENs loses performance when testing cross repli-
cates on non-normalised replicate labels, in particular when training on replicate
r1 (R2 = 0.95), and predicting on r2 (R2 = 0.83) or r3 (R2 = 0.87). However, nor-
malising as shown Section 3.4.3 allows the model to be able to generalise between
biological replicates. When training on replicate r1 and testing on normalised labels
from replicates r2 or r3, we do not observe any significant decrease of the coefficient
of determination (R2 = 0.94 in both cases).

3.6.7 Correlation between the predicted flipping integrals and cellular GFP concentrations

A last experiment consisted of comparing the measured genetic expression of Bxb1,
as obtained with cellular-specific GFP measurements, to the corresponding predicted
flipping integrals, as given by the predicted IFP0�480min values. As an intermediary
step, Figure 3.21(a) shows that the ground truth IFP0�480min values of the 31 internal-
standard RBSs are very well predicted from SAPIENs. In Figure 3.21, we observe
that cellular GFP concentrations can be reliably predicted from experimentally
determined as well as from predicted IFP0�480min values as shown for the 31
internal-standard RBSs. This indicates that our model reliably predicts cellular
protein levels even for unseen sequences.
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Figure 3.21: Correlation of the ground truth GFP concentrations and IFP0�480min val-
ues with SAPIENs predictions. (a) The IFP0�480min values for the 31 internal-
standard RBSs as predicted by SAPIENs are highly correlated with the corre-
sponding values experimentally determined by uASPIre, which were held
out during training. (b) Correlations between cellular GFP concentrations,
as measured by the slope of the cell-specific GFP signal between 0 and 290
minutes after induction, and estimates of GFP concentration calculated from
experimentally determined as well as predicted flipping integral (IFP0�480min)
values. The estimates of GFP concentration rely on the logistic fit parameters
determined earlier (Figure 3.9(b) in the center).
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3.7 influence of relevant sequence motifs and model interpreta-
tions

This last section presents different approaches that have been explored in order to
gain some knowledge on the space of RBS sequence space, and the importance of
bases and positions in these sequences. Section 3.7.1 presents descriptive statistics
that point up positions of influence of known motifs of importance. Section 3.7.2
analyses the first layer of the network and feature attribution scores in order to
highlight the bases and positions of importance according to the model SAPIENs
when predicting RBS’s activity. Section 3.7.3 shows typical changes that happen
when mutating a strong sequence to a weak one and vice-versa.

3.7.1 Analysis of relevant sequence motifs

We analyse the fully degenerate sub-library (N17) in order to measure the impact of
the position of known motifs of influence on the RBS activity, such as start-codons
(AUG, GUG, UUG) or the consensus Shine-Dalgarno (SD) sequence (AGGAGG and
subsequences). To this end, for each position, for each group of RBSs that present
the motif of interest at the given position, we calculate simple statistics (median,
interquartile ranges, 20/80 percentiles) on the target IFP0�480min of the sequences
in the group. We exclude from these groups RBSs that contained at least one start
codon other than the one at the position of interest.

Clearly, SD-like motifs exhibit a strong positive effect on translation, which is
lost (or even slightly inverted) if the motif is too close to the translational start
(Figure 3.22). Similarly, a positive effect was observed for additional in-frame AUG
codons (Figure 3.23(a)) and, to a lesser extent, for GUG and UUG (Figure 3.23(b,c)).
By contrast, out-of-frame start codons showed no globally consistent tendency but
overall favored translation, in particular for positions �17 to �8. This is likely due
to Gs in the start codons facilitating 16S-rRNA binding, which expectedly is most
prevalent for GUG and difficult to disentangle from a genuine start codon effect.
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Figure 3.22: Influence of subsequences of the Shine-Dalgarno consensus motif on the
RBS strength.
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Figure 3.23: Influence of AUG (a), UUG (b) and GUG (c) codons in the RBS sequence
on RBS strength. The dark blue line represents the median IFP0�480min per
position, for the relevant sequences. The shaded area corresponds to the
IFP0�480min values between the 20th and 80th percentiles. In-frame positions
are highlighted in red.
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3.7.2 Model interpretation reveals the existence of positions and bases of influence

We also analyse the filters of the first convolutional layer (excluding the first skip
connection) of a ResNet model of the ensemble chosen at random. To this end,
the effect of each filter is evaluated by calculating Pearson’s correlation coefficient
between the filter activations at each position and the flipping integral for all se-
quences in the test set. As a consequence, each filter is represented by a vector of
correlations of size 17, which corresponds to the number of positions at which the
filter influence is estimated. Finally, the filter representations are then clustered in
twelve groups, with a complete linkage clustering method with hamming distance
as the underlying metric between individual sequences, in order to group filters
of similar influence. This analysis allows us to gain an understanding about the
relative importance of RBS bases and positions. As illustrated Figure 3.24, we find
that the first layer of the model has captured translation-promoting (A, G) and
translation-reducing (C) effects of bases. Moreover, a positioning effect is observable:
filters with large positive weight for Gs or negative weight for Us/Cs correlate
positively with RBS activity when scanning upstream regions but negatively when
closer to the translational start (centroids 1� 4). By contrast, filters promoting Us/Cs
correlate negatively with RBS strength for most positions (centroid 5).
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Fig. 5. Interpretation of uASPIre data and SAPIENs. (A/B) Influence of Shine-Dalgarno-like motifs (A) and AUG codons (B) 
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Figure 3.24: SAPIENs first convolutional layer. Each element in the heatmap represents the
correlation between the values of the output of the first convolutional layer
and the respective labels IFP0�480min for all RBS sequences in the test test. The
rows of the heatmap are then clustered and centroids of five of the twelve
clusters are displayed on the right.

A second method is introduced to further deepen our understanding of the
model insights. To this end, we use the integrated gradients [158] method, which
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assigns attribution scores to each base and position by computing the linear path
integral between the sequence of interest and a baseline sequence chosen a priori.
The attribution scores measure the effect of individual bases on the predicted
IFP0�480min, relative to a baseline. We apply the integrated gradients method to
SAPIENs and choose a ’blank’ one-hot encoded sequence as a neutral baseline (i.e.
an all-zeros array). We first use a dimension reduction method, the t-distributed
stochastic neighbour embedding (tSNE) method, to visualise how sequences behave
in a low dimensional space (perplexity=12, early exaggeration=30) (Figure 3.25).
This indicates a clear structure with strong and weak sequences separated almost
linearly. We then perform a global analysis of the integrated gradients scores by
averaging the attribution scores of all sequences in the test set, per base and per
position. It allows to get a better understanding of the important positions and
bases, which contribute either to a high RBS activity or to a low one (Figure 3.26).
Substantiating the observation from Figure 3.24, Gs strongly promote translation
while Cs appear to be consistently adverse. The translation-promoting effect for Gs
is only observable if the distance from the start codon is at least 7 bp, while a neutral
or even unfavourable effect prevails for other regions. However, no distinct SD-like
motif appears because this global analysis only represents per-base and -position
averages. Finally, in order to account for non-linearities between positions and to
understand the drivers of very strong or very weak sequences, we selected the top
5% and the bottom 5% sequences in the test set after removing outlier sequences
and clustered each pool with k-means according to their attribution score profiles
into five clusters. The medoids of these five clusters are displayed for the strong
(Figure 3.27(a)) and weak RBSs (Figure 3.27(b)). It reveals that SD-like motifs are
the most impactful with positions ranging from �13 to �6 and invariance or slight
preference for weakly pairing bases (A, U) outside the motif. Hence, our model
successfully reconstructed SD-like patterns, notably without any prior knowledge
about the process of translation.
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t-S
NE

 2

t-SNE 1

Figure 3.25: Visualization of the integrated gradients scores of SAPIENs in a low-
dimensional space. T-distributed stochastic neighbour embedding (t-SNE)
is applied to the integrated gradient scores of the RBS sequences from the test
set. t-SNE dim1/2 are the two dimensions resulting from the t-SNE algorithm.

Figure 3.26: Impact of bases and positions in the 5’-UTR on the RBS activity. Using an
all-zeros input as baseline, the average attribution score per base and position
is displayed as determined for the sequences in the test set. The size of the
letters corresponds to their importance score and their orientation to the
direction of effect (i.e. upward/downward corresponding to a tendency to
increase/decrease IFP0�480min).
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a b

Figure 3.27: Attribution of bases and positions of strong RBSs (a) and weak RBSs (b).
The strongest 5% (respectively weakest) of sequences in the test set were
distributed into five clusters using k-means algorithm. For both (a) and (b), the
displayed motifs are the five medoids of each cluster (i.e. the five individual
sequences closest to the respective cluster centroid).

3.7.3 In silico sequence design confirms previous findings

For in silico evolution, we selected the weakest (respectively strongest) sequence
in the test set and aimed to mutate it progressively to a sequence presenting a
maximum (respectively minimum) attainable RBS activity as predicted by SAPIENs.
To do so, we considered all sequences that could result from applying one or two
mutations to the current sequence and kept the strongest (respectively weakest) one
in each round until no candidate exhibited a change in predicted IFP0�480min in the
desired direction.

Figure 3.28 is the result of using SAPIENs to perform in silico evolution. Confirming
our previous findings, the model systematically mutates U or C to A or G to form
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SD-like motifs or create in-frame start codons upon increasing RBS strength (Fig-
ure 3.28(a)), whilst removing Gs and adding Cs when decreasing it (Figure 3.28(a)).
Moreover, we observe that evolving a strong sequence (’gain of function’) requires
more steps than diminishing RBS activity (’loss of function’) due to the sparsity of
strong sequences within the search space.
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Figure 3.28: In silico evolution of RBSs. Starting from the sequence with the lowest (left)
and highest (right) predicted IFP0�480min in the test set, pairwise mutations are
greedily applied until no further increase (left) or decrease (right) in IFP0�480min
is observed (total of 10 and 8 rounds for (left) and (right), respectively).
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3.8 the "rbs predictor" as an easy-to-use webserver

We built a webserver, called the "RBS predictor", whose function is to predict the
RBS activity of any RBS sequence that has been uploaded. The core of the webserver
is the trained deep learning ensemble SAPIENs. As in the related preprint described
in this chapter and entitled Large-scale DNA-based phenotypic recording and deep learn-
ing enable highly accurate sequence-function mapping, the prediction study focuses on
ribosome binding sites of 17-pb DNA sequences, located right upstream of the start
codon of the gene it is regulating, as shown Figure 3.29.

UUUAUNNNNNNNNNNNNNNNNNAUG ……

coding sequence

randomised sequence

upstream part of 5’-UTR

Figure 3.29: Location of the 17-bp randomised RBS sequence.

Once the user is connected to the webserver "RBS predictor", she has the possibility
to:

• Select the regulatory sequence to analyse (RBS or promoter). The promoter
option is not available yet and will be when the data will be shared from the
biologists to the machine learning team.

• Upload a text file containing the sequences or write the sequences that the
user wants to get predicted. In practice, it is possible to submit sequences
identifier with the IUPAC code, up to 410 sequences.

• Name to the three output files, containing respectively the sequences, the
predictions and both the sequences and predictions. Each line corresponds to
one sequence. The files are tab-separated.

• Submit the prediction job.

# sequences c.-s. GFP IFP uncertainty
CCCCCCCCCCCCCCCTT 7.522769 0.090757 0.274143
CCCCCCACCCCCCCCTT 7.262478 0.008950 0.021882
CCCCCCGCCCCCCCCTT 7.264429 0.009835 0.021488

Figure 3.30: Example of output of the webserver for three sequences.

The output of the combined file, containing the sequences and the respective
predictions is illustrated Figure 3.30. The first column indicates the sequences that
have been analysed. The second column represents the predicted cell-specific GFP
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concentration, the third columns the predicted normalised integral of the flipping
profiles (IFP0�480min) and the fourth column the uncertainty of the prediction of
IFP0�480min. The predictions of the cell-specific GFP concentration are obtained by
using the fitting curve between GFP and flipping integral shown Figure 3.31.
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Fig. S12. Identification of optimal parameters to correlate Bxb1-mediated recombination 
with cellular Bxb1-sfGFP levels. 
(A) Coefficient of determination after leave-one-out cross validation (loo-CV) (Rv

2) between 
different slope- and integral-based summary statistics for cell-specific fluorescence and the 
flipping profiles of the 31 internal-standard RBSs using linear and logistic fits. Note that slope-
based summary statistics for the flipping profiles failed to deliver robust fits (Rv

2 consistently 
below 0.5) and were therefore not included in this figure. (B) Selected logistic fits involving the 
integral of the flipping profile (IFP) for different time spans and the slope of the cell-specific 
fluorescence curve between 0 and 290 min after induction. The standard deviation of three 
biological replicates for the fluorescence profiles is indicated by vertical error bars and coefficients 
of determination without (R2) and with loo-CV (Rv

2) are displayed. (C) IFP distribution across the 
entire larger RBS library for different integration intervals. The differential entropies of the 
respective IFP probability densities are indicated. IFP0-t min: normalized integral of the flipping 
profile between 0 and t min after induction; slope GFP0-t min: slope of the cell-specific fluorescence 
curve between 0 and t min after induction; max. slope GFP: maximum slope (minimum three 
timepoints) of the cell-specific fluorescence curve.  

Figure 3.31: Correlation between Bxb1-mediated recombination (IFP0�480min) with cellu-
lar GFP levels.

The code runs one a single GPU. The webserver is free and its usage only requires
the creation of a personal account. The user can access her previous and current jobs
by going to the History page. Predicting 410 sequences takes less than 25 minutes.

This webserver "RBS predictor" makes the predictions available from a general
public and can help biologists, working with bacteria, design RBSs that would
better fit their need. The webserver will be available under the link https://rbs-
predictor.bs-ci05.ethz.ch/, upon publication.



4
C O N C L U S I O N A N D D I S C U S S I O N

4.1 conclusions on the role of interactions in genetics and bio-
engineering

In this thesis, we introduced several models that allow taking into account interac-
tions between features, either by (1) explicitly searching for them with the proposed
significant pattern mining algorithms to retrieve novel associations that would
remain undetectable when using univariate or additive models Section 2, or (2) by
leveraging information interactions between features to increase prediction perfor-
mance with the deep learning model SAPIENs Section 3. Both directions successfully
find key interactions for their respective tasks, namely, feature selection or predic-
tion. Most importantly, we show through these two representative applications that
accounting for interactions is essential in genomics and synthetic biology to increase
performance.

First, we have focused on the thesis on methods that show the importance of
interactions in feature selection tasks. To this end, we have introduced FACS and
FastCMH, the first algorithms that are capable of discovering statistically significant
interactions of features and genomic regions exhibiting genetic heterogeneity, respec-
tively, while correcting for a categorical covariate. With FACS, we have developed a
method that is able to test all interactions of genomic variants for association with a
phenotype of interest while correcting for covariates, without sacrificing statistical
power or computational efficiency. We also present FastCMH, an algorithm similar
to FACS that focuses on contiguous genomic regions instead of all interactions. Ad-
ditionally, FastCMH composes representative vectors for interactions with a logical
OR operation instead of a logical AND operation. Different types of biological
interactions can therefore be considered. In the case of the OR operator, we assume
that at least one minor allele among all loci in the set of genetic variants considered
is enough to potentially induce biological modifications that can later alter the
phenotype. This phenomenon corresponds to the setting of genetic heterogeneity
where several genetic variants have a weak but similar effect on a same phenotype.
In the case of the AND operator, all loci must display a minor allele to consider that
the genes (or coding regions or corresponding proteins) interact and potentially
induce a change to the phenotype. For both methods, our experiments on simu-
lated data and COPDGene and/or A. thaliana datasets result in improved detection
performance and superior computational power, compared to univariate baselines
using the CMH test and a naive Bonferroni procedure for multiple testing correction.
Additionally, we show that we obtain reduce the number of false discoveries due
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confounding compared to baselines that do not account for confounding factors
such as FAIS-c2 (see Figure 2.8 and Table 2.1 for FACS, and Figure 2.11, Figure 2.12
and Table 2.3 for FastCMH).

In the second part of the thesis, we zoomed in a deep learning predictor that lever-
ages non-linear interactions to obtain highly accurate predictive performance. We
present a deep learning model SAPIENs that obtains a coefficient of determination
R2 = 0.93 on a held-out test set when predicting the activity of ribosome binding site
sequences (see Figures 3.16 and 3.17), while providing well-calibrated uncertainty
estimates for each predicted value (see Figure 3.19). These accurate predictions
enable researchers to obtain a sequence to activity mapping over all the sequence
space, which would be unfeasibly costly in practice with wet-lab experiments alone.
However, for downstream tasks such as precise manipulation and reprogramming
of cells, it would be of interest to know which sequences have predicted functions
that can be trusted. While global performance metrics like R2 or RMSE only give
an average (over a large collection of held-out sequences) of the accuracy of the
predictions, individual uncertainty estimates per predicted value crucially permit
prioritising these sequences for which the model confidently predicts that they pos-
sess the sought biological function. To this end, we show that we are able to obtain
well-calibrated uncertainty estimates, accounting for data and model uncertainties
(see Figure 3.19). In this work, we also showed in a proof-of-concept experiment
that a simple genetic algorithm, coupled with a preliminary deep-learning predictor,
can design sequences whose activity is in the range of interest, here strong RBSs,
even if the initial datasets is skewed towards weak RBSs (see Figure 3.7). Most
importantly, we have shown that biologists and machine learning researchers can
work together towards thoroughly optimised datasets that are nicely exploitable
by machine learning models, and especially deep learning models. Combining
emergent technologies that allow to create large labelled datasets in biology, and
scalable and highly-performant deep learning models enable to address fundamen-
tal questions in regulatory circuits and genotype to phenotype relationship.

However, as will be discussed next, all the approaches developed in this thesis
could be enhanced by either removing limitations and assumptions, integrating
domain knowledge or solving different but related tasks.
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4.2 discussion and future work

4.2.1 Future work in significant pattern mining applied to GWAS and other biological
data types

While the methods presented showed superior performance on binarised GWAS
datasets with a categorical covariate to find either SNP interactions or regions
of genetic heterogeneity, their applicability to other data formats requires further
development. To this end, several directions for future work could be considered.

First, it would be possible to extend the notion of testability and of prunability
to non-binarised GWAS datasets. FastCMH has been applied under a dominant
encoding hypothesis, i.e., the SNP is encoded as a 1 if at least one of the two copies
of the variant in a locus is altered, and as a 0 otherwise. However, this leads to a
loss of information as the encodings for the presence of one minor allele and of two
minor alleles collide. Therefore, being able to use the GWAS data without alteration,
i.e. where each SNP is represented by a categorical covariate with three categories,
could in principle lead to a better power. However, we would first need to explore
how to properly define interactions between such features. Two options could be
tried at first, one is to seek for a definition that allows to, when combining n SNPs,
keep the number of categories (here 3) constant in the resulting representative vector.
This constraint comes from the fact that we would like the minimum attainable
p-values to be comparable across tests. However, as an alternative option, it would
also be conceivable to find other solutions to relax this constraint. Another question
could concern the underlying biological meaning of combining categorical features,
such as how to meaningfully combine features that are encoded as a 2 with features
that are encoded as a 0. Additional steps in this topic would require to use the
CMH or c2 test for non-binary features [159], to prove the existence of a minimum
p-value, which now depends on a multidimensional support due to the number of
categories of the feature, and if the minimum attainable p-value is not monotonic,
to efficiently derive a lower bound to the minimum attainable p-value. Another
extension to the use of binarised features by FastCMH and FACS, aside categorical,
would be to handle continuous features. It would be of great interest in many
biological applications, for example, to find associations between sets of genes and
a molecular phenotype in gene expression data. It is even more challenging to fit
continuous features to Tarone’s framework due to the non-discretness of the data
and the resulting non-existence of a minimum attainable p-value. In this context
naive discretisation is possible but not ideal. Early work has began exploring more
comprehensive discretisation. [160] proposes to use the G-test [161] in order to
discover statistically significant interactions of continuous features with a binary
class label of interest. This paper is inspired by [162], which defines a notion of
support for multiplicative interactions between continuous features as the average
support of the interaction over an ensemble of binarised datasets obtained by taking
all possible discretisation thresholds into account (with equal weights and inde-
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pendently for each features). [160]’s core contribution is to identify the potential of
the concept proposed by [161] to apply significant pattern mining for real-valued
features, thus going beyong simple frequent (real-valued) itemset mining. Moreover,
starting from the definition of support in [162], [160] shows that it is possible to
apply Tarone’s framework in this new setting. [160] derives a monotonous minimum
attainable p-value and the corresponding pruning criterion, for the G-test, which is
a test statistic that can handle fractional counts such as those arising from averages
over discretised datasets.

Second, besides extending the approaches proposed in this thesis by making them
generally applicable to non-binary features, it would be possible to extend them to
handle more complex covariates. An example of such complex covariates would be a
structured categorical covariate, thus introducing a hierarchy between covariate cat-
egories. This is of particular importance in bacterial lineages, where the population
structure is strong and can be naturally modelled in a hierarchical manner, for ex-
ample, with species and genus. This would therefore allow applying SPM-inspired
methods to bacterial GWAS, where the hierarchical relationship between bacteria
is strongly present and observable [163, 164], as illustrated in Figure 4.1(a). To this
end, if we were to correct for a single, non-hierarchal categorical covariate, a key
question would be how to automatically detect the level of confounding for which
we want to correct, having the possibility to define a covariate at different levels in
the hierarchy, thus correcting, for example, for a fine-grained species classification
or for a more coarse genus or family grouping structure. Then, other methods that
take into account the population structure on its original hierarchical description
could be considered, such as using a probabilistic framework or a linear-mixed
model.

u1

u2

u3

u4

u5

u6

u7

u8

a b

Figure 4.1: (a) Example of population structure in bacteria population. (b) Example of
protein-protein interaction network.

Third, biological prior knowledge and more complex assumptions could be incor-
porated in the SPM-based algorithms. This could be done in two complementary
ways, either by (1) changing the representations used for combining features or
(2) by modifying the search space. In this paragraph, we will give an example of
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both cases. On the one hand, we can notice that both FACS and FastCMH define the
representative vector of combinations of the features to be tested in different ways
depending on the phenomenon that we are willing to study. FACS uses a product of
the individual SNPs as the representative vector and FastCMH uses the OR operator
between features (equivalent to taking the MAX operation sample per sample).
However, a large number of meaningful ways to combine SNPs exist and could be
further explored. A first example would be to account for the direction of effect of
each individual SNP. This would enable to detect combinations of SNPs that jointly
affect a phenotype, but with some being correlated and others anti-correlated to
the phenotype. To this end, one possibility would be to create additional features
that are simply obtained by inverting the original features, that is, substituting 1
with 0 and vice-versa. To integrate this idea into an SPM algorithm, we would
need to change how patterns are enumerated to find an efficient filtering scheme in
this context and limit the additional runtime complexity caused by doubling the
number of features. On the other hand, there is an abundance of prior knowledge
in the form of biological networks, where nodes correspond to features (e.g. genes)
and edges to known (biological) interactions between features (e.g. protein-protein
interactions), as illustrated Figure 4.1(b). This observation motivates studying how
to exploit graph-structured prior knowledge when searching for multiplicative
feature interactions significantly associated with a target of interest. A natural first
step in this direction would be to investigate how to best use the graph to restrict the
search space. A naive approach would consider to test all feature subsets that form
connected subgraphs in the prior knowledge graph. While this sounds biologically
plausible, exhaustive and conceptually simple, it would lead to a similar computa-
tional and statistical burden as in FACS, as the number of graph-based interactions
would be closer to scale as the total number of subsets rather than as the total
number of regions, unless the graph is extremely sparse. Potential solutions would
be to explore alternative schemes to filter feature subsets based on the graph that
lead to a greater reduction in the number of candidate interactions, while keeping
those with high a priori (biological) plausibility.

Fourth, Tarone’s framework as used in FACS and FastCMH is not able to account
for correlations between test statistics which can lead to a loss of power when
using Tarone’s framework. To this end, [106] presents an adaptation of LAMP in the
context of permutation testing, using the Westfall-Young algorithm. Permutation
testing applied to FastCMH or FACS would lead to a gain in statistical power with the
downside of a higher computational complexity. Such as extension could however
be of interest when analysing small scale datasets harbouring weak signals.

Fifth, another direction of research towards gaining power by using adequate
statistical tests, without however relying on permutation testing, is to use an uncon-
ditional test, such as the Barnard’s exact test as proposed in [165]. As opposed to
Fisher’s exact test used in LAMP or to the CMH test used in FACS, which condition on
all the margins of the contingency tables, i.e. the number of samples in each classes
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and the support of the pattern under study, the Barnard’s exact test only conditions
on the number of samples in each class and on a nuisance variable p. The nuisance
variable p is the assumed probability to have a 0 or a 1 for each pattern, under
the null hypothesis that both probabilities are equal to 0.5. The authors of [165]
show that it is possible to derive a lower bound to the Barnard’s test statistics in
order to prune efficiently patterns and avoid enumerating all of them. In simulation
experiments, they show that their method, which controls the FWER, has finally a
very comparable –slightly lower– power than LAMP. The method developed in [165]
could be further extended, using permutation testing or correcting for covariates.

Sixth, in the thesis, we mainly focused on FWER control, as it combines well with
Tarone’s method, can be controlled regardless of the joint distribution of the test
statistics and has been widely adopted to control error rate. However, as mentioned
Section 2.3.1, another popular error rate in GWAS analyses is the false discovery
rate (FDR) as it is does not have some of the limitations of the FWER. The main
disadvantage of the FWER is that it can be overly conservative as it requires that not
a single error is made. However, in several tasks, this can be stringent and lead to a
too large loss of truly associated patterns. In these tasks, it would be interesting to
integrate FDR to significant pattern mining algorithms to obtain a larger statistical
power. To this end, it would be possible to use adequate procedures that control the
FDR. The most common is the Benjamini-Hochberg (BH) procedure [101], which is
correct under the assumption, violated in pattern mining, that the test statistics are
independent and under certain assumptions of dependence [166]. In case the BH
procedure does not apply, the Benjamini-Yekutieli (BY) [166] has been proposed,
which is valid in any condition of dependence between the test statistics. However,
this BY procedure might lose the main advantage that BH has over FWER, as it
is known to be overly conservative. Additionally, in significant pattern mining,
determining which approach applies to the problem at stake is in general not trivial.
Another obstacle towards using FDR in significant pattern mining is its computa-
tional feasibility. Both BH and BY procedures require to compute all p-values and
to sort them, from the least to the most significant, to find the set of hypotheses
to be rejected. As we saw in this thesis, computing all p-values naively would
be computationally unfeasible. Thus, developing step-down procedures together
with an adequate pruning criterion, such as done in the algorithms presented in
this thesis, could be more promising. Some algorithms have been developed in
this direction. [167] proposes to combine Tarone with the BH procedure, however
without implementing an efficient pruning criterion. [168] proposes a pioneer pat-
tern mining algorithm to control the FDR. This novel algorithm is based on two
aspects. First, it relies on the notion of quasi-testability, which substitutes the notion
of testability introduced by Tarone and requires to know a priori the number of
patterns that would be deemed significant. Second, it requires to split the dataset to
estimate the number of significant patterns. However, this method could be further
improved, as the use of data splitting might be inefficient in terms of statistical
power and lead to unstable results. Therefore, further developing FDR-based sig-
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nificant pattern mining algorithms remains an important and active area of research.

At last, moving away from Tarone’s framework, it would be possible to use newly
developed statistical frameworks such as the model-X knockoff introduced in [169]
to control the false discovery rate (FDR). In summary, model-X knockoffs provide a
flexible framework to perform hypothesis testing with false discovery rate control.
In particular, they can be used in combination with any machine learning model
as long as it is possible to generate a set of “knockoff” features that have the same
joint distribution as the original features in addition to satisfying two properties: 1)
the swap property – informally, the joint distribution of original and “knockoffs”
features must be invariant to interchanging any subset of original features with
their knockoffs – and 2) being independent of the labels given the original features.
Combining the knockoff framework with a graph regularisation constraint [170]
would make it possible to discover associated SNPs, guided by the graph prior
knowledge, under false discovery rate control. Towards this objective, several ques-
tions would need to be answered. A first one concerns the fact that the knockoff
framework loses power when features are correlated, which is the case of GWAS
datasets. To this end, it would be possible to explore different manners to filter
correlated SNPs, the one proposed in [169] would be a good starting point. Another
crucial question concerns the need to correct for population structure in GWAS
datasets in order to make the method widely applicable. A correction similar to
the one introduced in [109] applied to the design matrix could be examined, in
which case it would be necessary to verify that the two knockoff conditions still
hold. It would also be possible to generate the knockoffs with a (deep) generative
model [171–173], as GWAS data contains binary, non-symmetric features, for which
the gaussian assumption in [169] no longer applies. Finally, one could also explore
various graph regularisation constraints to find the one that fits best the problem at
stake.

4.2.2 Large-scale sequence-function datasets unleash multiple opportunities in machine
learning

While the model SAPIENs presented in this thesis allowed to obtain high predictive
performance and showed a proof-of-concept example of sequence design, SAPIENs
could be extended in several directions in order to either improve performance or
characterise different aspects of the regulatory region of interest.

First, it would be interesting to train the model on a different types of input
sequence, either on longer ribosome binding sites, or on other regulatory regions
such as promoters, on the ribosome binding site together with the start codon or
5’-end of the coding sequence of interest. In these cases, as the length of the input
might vary across samples, the neural network could use padding or recurrent
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neural networks [174] to adapt to the input length. It would also be possible to
combine the sequence information with secondary structure information obtained
with packages such as RNAfold [175].

Second, while we showed with a proof-of-concept experiment that we could
successfully design a degenerate RBS whose related library would be enriched in
strong RBSs compared to a fully uniformly randomised RBS library, it would be
interesting to continue to explore how to best design RBSs. More generally, this fits
into the more general problem of sequence design, which includes other regulatory
sequences or protein sequences, among others. Such tasks would be particularly
interesting when designing sequences that have a given activity and respect de-
sign constraints such as length or position-specific nucleotides. Existing generative
models [176, 177] would be an interesting first step towards this goal. However,
these models would generate sequences that follow the distribution of the training
set and are not specific enough. To overcome this problem, it is possible to guide
the model towards designing sequences with the activity of interest, as proposed
in [178, 179]. However, to the best of my knowledge no generative model to date
includes constraints in the generative phase, which would not be simply solved by a
filtering step after the generation. Additionally, unlike with text or image generation
which can be, preliminary, validated with common sense, the safest way to validate
generate DNA or protein sequences is to generate them and measure their activity
in the lab. However, this can be costly and time consuming. Therefore, finding a
meaningful measure of performance of generative models that design sequences
with a minimal access to wet-lab would be a first interesting problem [180, 181].

Third, as we saw in this thesis, several interpretability methods were used to
validate prior knowledge or gain new insight on the constituents of the ribosome
binding sites. Towards this end, the integrated gradient-based approaches are
promising as they enable to attribute to bases and positions in the sequence part
of the predicted value. However, this method has a few downsides, such as the
need to (often arbitrarily) choose a baseline that might greatly impact the resulting
attribution scores and the fact that the attribution scores are sequence-dependent,
lacking a principled approach to aggregate them into global feature or motif impor-
tance scores. [182] proposes a heuristic approach to aggregate the scores by means
of clustering similar informative subsequences together in order to reveal motifs
of importance. However, there is still a need for approaches that would directly
find regions of interest across a subset of or all samples, accounting for translation
invariance. Another interpretability method would be to use an attention mecha-
nism [183] to the model used to perform the predictions, in order to select bases and
positions of interest, regardless of the sequence. In summary, the development of
interpretable methods for supervised methods in deep learning applied to genomics
remains an important domain yet to be explored.
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4.2.3 Closing remarks

Due to the high complexity of biological mechanisms, accounting for interacting
features in machine learning tasks, when attempting to solve biological problems,
has been shown to be unavoidable. However, the complexity in the bioinformatics
field is, nowadays, not only induced by biological mechanisms but also by the large
diversity of biological datatypes. This diversity has grown exponentially the last few
years thanks to technologies such as next-generation sequencing, flow cytometry
or microfluidics. These different datasets, such as GWAS datasets, single-cell data,
protein-protein networks and molecular pathways, epigenetic databases, to only
cite a few, call for the development of methods that can account for this technical
complexity beyond feature interactions. However, while still being extremely chal-
lenging, the substantial progress of machine learning and of bioinformatics in the
last few years suggest that working in machine learning applied to biology would
stay a promising research topic for the next years to come.
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where we have used that S 2 PP ) xS ,j  min(n1,j, n2,j) 8 j = 1, . . . ,k and
defined the class ratios gj := min(n1,j,n2,j)/nj for each j = 1, . . . ,k. Note also that
minimising Ycmh(xS 0 ) on xS 0  xS is in this case equivalent to maximising between
Tl(xS 0 ) and Tr(xS 0 ).

As a first step towards proving Lemma 2, we will show that the functions
Tl(xS 0 ) and Tr(xS 0 ) are both maximised with respect to a single argument xS 0 ,i
while keeping the other arguments xS 0 ,j, j 6= i fixed at either: (I) xS 0 ,i = 0 or (II)
xS 0 ,i = xS ,i. To show that, we compute the partial derivative of Tl(xS 0 ) and Tr(xS 0 )
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Because Ll(xS 0 ) � 0 and Lr(xS 0 ) � 0, the sign of the partial derivatives are de-
termined by the sign of Al(xS 0 ) and Ar(xS 0 ) respectively. In both cases, A(xS 0 )
can be expressed as A(xS 0 ) = b(x¬i,S 0 ) + µ(x¬i,S 0 )xS 0 ,i, with x¬i,S 0 containing
n

xS 0 ,j
ok

j=1,j 6=i
. That is, A(xS 0 ) is an affine function of xS 0 ,i where the intersect

and slope is controlled by all other k � 1 variables. Moreover, for any x¬i,S 0
we have µ(x¬i,S 0 ) � 0. Therefore the partial derivatives are either always posi-
tive, always negative, or negative until a unique point where it crosses zero and
then positive. As a consequence, it follows that the only possible maximizers
of Tl(xS 0 ) and Tr(xS 0 ) with respect to xS 0 ,i are at the boundary of the domain,
i.e. either xS 0 ,i = 0 or xS 0 ,i = xS ,i. In other words, we have max
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1,2, . . . ,k and xS 0  xS , the argument can be applied recursively to each of the two
terms in the RHS of the last expression. The same reasoning holds for Tr. This
completes the proof.
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satisfies one of the two possible conditions: (I) x⇤S 0 ,pl(j) = xS ,pl(j) for all j  k and
x⇤S 0 ,pl(j) = 0 for all j > k or (II) x⇤S 0 ,pr(j) = xS ,pr(j) for all j  k and x⇤S 0 ,pr(j) = 0 for all
j > k.
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proof : The functions Tl(xS 0 ) and Tr(xS 0 ) defined in the proof of Lemma 2 above
can be rewritten generically as:
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for Tr(xS 0 ). Since T is permutation invariant, we assume without loss of generality
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holds with r > 0. Informally, Equation (A.13) being true would imply that the
maximum is achieved by keeping the terms in the summation corresponding to the
r smallest b j. From Lemma 2, we know that Tl(xS 0 ) and Tr(xS 0 ) are maximised for
x⇤S 0 ,j = 0 or x⇤S 0 ,j = xS ,j for all j = 1,2, . . . ,k. Thus, if Equation (A.13) holds and we
have bi > b j and x⇤S 0 ,i = xS ,i then it follows that x⇤S 0 ,j = xS ,j. The alternative case
x⇤S 0 ,j = 0 cannot occur, since it would contradict Equation (A.13). This would suggest
the following strategy to solve min
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Tl and Tr in the form of Equation (A.11). The computational complexity of that
step would be dominated by the sorting steps, hence being O(k log(k)). Then, by
Equation (A.13) and Lemma 2, we can solve the subproblems arg max Tl(xS 0 )
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from 1 up to at most k. Note that this is exactly the strategy suggested by Theorem 2.
In summary, proving Theorem 2 amounts to showing the validity of Equation (A.13)
for functions of the form given in Equation (A.12).

We will prove it by induction. First, we show that the statement holds for k = 2.
That is, we want to show that:
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The only possible contradicting case would be arg max
d1,d2

T(d1,d2) = (0,1), since the

case (0,0) yields a trivial value for the function T. We show directly that under the
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Since li(bi) � 0 and b1  b2, it follows that the numerator in the expression above
is positive, thus T(1,1) > T(0,1) contradicting the statement that arg max
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Next we prove the induction step. Suppose the statement holds for an arbitrary

dimension k, we will show then it also holds for dimension k + 1. That is, if we
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Then we want to show that:
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We can start by writing:
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Then the statement is trivially true. Suppose now that Equation (A.19) does not
hold. We show next that:
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which would complete the proof. To show that Equation (A.20) is true when Equa-
tion (A.19) does not hold, we proceed by contradiction in two steps. First we prove
that there is at most a single j 2 {1, . . . ,k} | d̂j = 0. To see that, we assume 9j | d̂j = 0
and 9j | d̂j = 0 such that:
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At the same time, as we assume Equation (A.19) does not hold, we have:
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However, we could also write:
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By Equation (A.25), we know that:
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We can write that:
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As this last equation corresponds to the optimisation done with only k variables,
as written Equation (A.13), and as dk+1 = 1, we can conclude that:
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Therefore, in the case with k + 1 variables and if Equation (A.19) does not hold,
there is at most a single index that can be equal to 0.

To end the proof, we need to show that, indeed, it is not possible to have d̂j = 0
either. To do so we will show that the statement of monotonicity holds for k = 3,
then we could easily show d̂j = 1. We use a change of variables to make it clearer.

Indeed, we rewrite T(d1,d2,...,dj,...,dk�1,dk) the following way :

T(d1,d2,...,dk�1,dk) =
(l00 + ljdj + lk)2

b00l00 + b j ljdj + bklk

with

l00 =
k�1

Â
l=1,l 6=j

ll

and

l00b00 =
k�1

Â
l=1,l 6=j

ll bl , b00 =
Âk�1

l=1,l 6=j ll bl

Âk�1
l=1,l 6=j ll

Then, if Equation (A.19) does not hold, we would have:
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max
d1,...,dk ,dk+1

T(d1, . . . ,dk,dk+1) = max
d0,dj ,dk+1

(d0l00 + dj lj + dk+1lk+1)
2

d0b00l00 + djb j lj + dk+1bk+1lk+1
(A.33)

where we know, by assumption, that the optimum in the right hand side is achieved
when d0 = 1 and dk+1 = 1. If we knew monotonicity holds for k=3, it would then
follow that dj = 1 if b j � b00.

To rephrase it, we want to show that the two following cases: T(dj = 1,d0 =
1,dk = 1) < T(dj = 0,d0 = 1,dk = 1) with b j < b00 and T(dj = 1,d0 = 1,dk = 1) <
T(dj = 0,d0 = 1,dk = 1) with b j > b00 are impossible with the hypothesis that
8 {d1, d2,..., dk�1} T(d1,d2,...,dk�1,0) < max

d1,...,dk�1
T(d1,d2,...,dk�1,1)

First, we show that when b j < b00, then T(dj = 1,d0 = 1,dk = 1) > T(dj = 0,d0 =
1,dk = 1). Indeed, after developing the difference we obtain :

T(dj = 1,d0 = 1,dk = 1)� T(dj = 0,d0 = 1,dk = 1) (A.34)

=
lj

(l00b00 + lkbk)(ljb j + l00b00 + lkbk)
(A.35)

⇥ (l20
0 (2b00 � b j) + l2

k (2bk � b j) + l00lk(2b00 + 2bk � b j + l00ljb
0
0 + lkljbk)) (A.36)

> 0 (A.37)

As b j < b00 < bk, all the terms of the previous sum are positive, which implies
that T(dj = 1,d0 = 1,dk = 1) > T(dj = 0,d0 = 1,dk = 1).

In a second time we want to show that the case T(d0 = 1,dj = 1,dk = 1) <
T(d0 = 1,dj = 0,dk = 1) with b j > b00 is not possible either. In this case we
use a Reductio ad absurdum: we are going to show that we can not have both
T(d0 = 1,dj = 0,dk = 1) > T(1,1,1) and T(d0 = 1,dj = 0,1) > T(d0 = 0,dj = 1,0).
Indeed after developing both inequalities, we find

T(d0 = 1,dj = 0,1) > T(1,1,1), b00 <
1
l0

(b j
(l00 + lk)2

2(l00 + lk) + lj
� bklk) (A.38)

T(d0 = 1,dj = 0,1) > T(d0 = 1,dj = 0,0), b00 >
l00

2l00 + lk
bk (A.39)

The first inequality of Equation (A.38) can be simplified the following way, by
using the following inequalities b00 < b j < bk and 8i li > 0.

b00 <
1
l00

(bi
(l00 + lk)2

2(l00 + lk) + lj
� bklk) (A.40)

<
1
l00

(bk
(l00 + lk)2

2(l00 + lk) + lj
� bklk) = bk(

1
l00

(l00 + lk)2

2(l00 + lk) + lj
� lk) (A.41)



144 appendix

Using Equation (A.38) and Equation (A.40) we have the following result :

l00
2l00 + lk

bk < b00 < bk
1
l00

(
(l00 + lk)2

2(l00 + lk) + lj
� lk) (A.42)

)
l00

2l00 + lk
<

1
l00

(
(l00 + lk)2

2(l00 + lk) + li
� lk) (A.43)

) 0 < �(l00 + lk)2(lk + lj) (A.44)

The last line of the previous equation set shows clearly the contradiction.
Those two results Equation (A.34) and Equation (A.42) end the proof.
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a.3 statistically significant genomic regions found by FastCMH (A.
thaliana)

SNPs in the significant genomic region Gene overlap p-values FastCMH

avrB
. Chr3_2225653 - Chr3_2225893 NA 3.15e-13
. Chr3_2221399 - Chr3_2222856 AT3G07020 1.61e-10
. Chr3_2227817 AT3G07040 1.69e-10
. Chr3_2288913 - Chr3_2289178 - Chr3_2289559 AT3G07195 5.34e-10
avrRpm1
. Chr3_2225653 - Chr3_2225893 NA 3.00e-13
. Chr3_2227817 AT3G07040 1.15e-11
. Chr3_2310055 - Chr3_2311035 - Chr3_2311574 AT3G07260 6.90e-11
avrPphB
. Chr1_4146714 AT1G12220 1.87e-13
. Chr1_4143163 AT1G12210 1.87e-13
. Chr1_4141624 AT1G12210 1.17e-12
. Chr1_4139802 - Chr1_4140044 AT1G12200 2.43e-12
LES
. Chr4_8297892 AT4G14400 1.37e-09
. Chr5_6485290 NA 7.39e-09
. Chr4_8307440 - Chr4_8307761 - Chr4_8307910 -

Chr4_8308076 - Chr4_8308306 - Chr4_8308768 - Chr4_8308977 AT4G14440 2.25e-08
LY
. Chr5_18925351 AT5G46640 1.27e-08

Table A.1: Details of the most statistically significant genomic regions reported by
FastCMH in the A. thaliana datasets. Underlined SNPs are contained in genes
(including markers at a distance smaller than 10 kb). The SNP notation in the
format: Chr4_2398754 indicates a SNP located on the 4th chromosome at the
position 2398754.
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a.4 statistically significant genomic regions found by FastCMH
(copd)

Genomic region Gene overlap p-values FastCMH

region single SNP
chr15 78863472–78865893 CHRNA5 2.03e-10

rs667282 9.06e-08
rs6495306 4.60e-02

chr15 78907656–78909480 CHRNA3 4.54e-10
rs6495308 3.55e-05
rs12443170 2.96e-03
rs3743074 4.30e-02

chr15 78917399–78928264 CHRNB4 1.41e-10
rs1948 1.00e-02
rs950776 6.18e-02
rs12441088 1.70e-05

Table A.2: Details of the statistically significant genomic regions reported by FastCMH
and of the SNPs they contain in the COPD dataset.

Corrected significance threshold for:

• all testable intervals: 7.26e-09

• all testable single SNPs: 8.12e-08
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a.5 statistically significant genomic regions found by burden
tests (A. thaliana)

Significant gene Number of SNPs FastCMH
Burden tests and p-values

dummy - (I) dummy - (II) PCs - (I) PCs - (II) CMH
avrB
. AT3G07050 10 1.66e-09 | 1.01e-06 | 1.76e-07 |
. AT3G07195 4 5.34e-10 1.23e-10 6.45e-10 2.01e-11 1.78e-10 2.77e-10
. AT3G07010 10 5.24e-09 1.44e-06 | | | |
. AT3G07020 | 1.61e-10 | | | | |
. AT3G07040 | 1.69e-10 | | | | |
. AT3G07060 | 3.58e-09 | | | | |
. AT3G07070 | 3.58e-09 | | | | |
. AT3G07260 | 6.68e-10 | | | | |
. AT3G07330 | 2.12e-09 | | | | |
avrRpm1
. AT3G07050 10 6.42e-10 | 4.04e-07 | 8.75e-08 |
. AT3G07195 4 5.06e-10 4.04e-10 1.07-10 5.11e-11 1.39e-11 5.07e-10
. AT3G07005 10 | 7.20e-07 7.20e-07 | | |
. AT3G07020 | 1.81e-10 | | | | |
. AT3G07040 | 1.15e-11 | | | | |
. AT3G07060 | 6.26e-09 | | | | |
. AT3G07070 | 6.26e-09 | | | | |
. AT3G07200 | 1.77e-08 | | | | |
. AT3G07250 | 1.77e-08 | | | | |
. AT3G07260 | 6.90e-11 | | | | |
. AT3G07330 | 7.5e-09 | | | | |
avrPphB
. AT1G12210 9 1.87e-13 1.67e-06 1.18e-15 6.02e-08 7.94e-20 |
. AT1G12220 3 1.87e-13 3.92e-14 6.18e-16 3.25e-17 2.43e-19 6.12e-13
. AT1G12230 3 | 7.78e-14 3.83e-15 2.76e-14 1.57e-16 3.19e-12
. AT5G11340 5 | | | | 8.91e-07 |
. AT5G11350 3 | 1.08e-06 | 4.77e-08 1.58e-07 9.94e-07
. AT1G12170 5 | | | 7.89e-07 | |
. AT1G12200 | 2.43e-12 | | | | |
. AT1G12190 | 7.95e-09 | | | | |
LES
. AT3G06120 3 | | 2.01e-07 | | |
. AT4G28890 7 | 4.38e-07 4.28e-07 1.77e-07 1.77e-07 |
. AT4G14410 9 | | | | 2.74e-07 |
. AT1G34420 3 | | | | 1.87e-06 |
. AT1G08500 2 | | | 1.28e-07 1.28e-07 |
. AT5G45780 6 | | | 3.99e-07 2.45e-07 |
. AT3G18535 5 | | | | | 1.25e-06
. AT4G39955 7 | | | | | 4.36e-07
. AT4G14440 | 2.25e-08 | | | | |
. AT4G14400 | 1.37e-09 | | | | |
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Significant gene Number of SNPs FastCMH
Burden tests and p-values

dummy - (I) dummy - (II) PCs - (I) PCs - (II) CMH
LY
. AT1G34420 3 | | 1.21e-07 | | |
. AT2G38995 8 | | 1.63e-06 | | |
. AT3G61480 5 | 1.57e-06 1.57e-06 | | |
. AT5G46660 5 | | 1.99e-06 | 5.06e-07 |
. AT5G49620 1 | 1.61e-06 1.61e-06 | | |
. AT5G45780 6 | | | | 1.49e-06 |
. AT1G08500 2 | | | 3.36e-08 3.36e-08 |
. AT2G18120 3 | | 2.08e-07 1.87e-06 | |
. AT5G46640 | 1.27e-08 | | | | |

Table A.3: The statistically significant genomic regions reported by the different gene-
based burden tests (resp. FastCMH) and the corresponding gene (resp. ge-
nomic region) p-values when significant. A vertical bar | indicates that the
gene is not significant for the given test. In bold, we indicate genes that are
found by FastCMH. Keys to abbreviations: dummy indicates that the covariates are
coded as k dummy indicator variables, PCs means that we chose the three first
principal components of the kinship matrix as covariates, (I) and (II) correspond
to the encodings described in Section 2.5.4.3. Finally, CMH corresponds to the
burden test using the CMH test applied to encoding (I) for each gene.

a.6 statistically significant genomic regions found by burden
tests (copd)

For the COPDGene study, when performing the gene-based burden tests as de-
scribed Section 2.5.4.3, none of the three genes (CHRNA5-CHRNA3-CHRNB4)
found by FastCMH were significant using any of the burden tests. When taking the
smallest p-value across all burden tests performed, only CHRNB4 was close to sig-
nificance (p-value 5.72e-6) while CHRNA5 and CHRNA3 had p-values 0.24 and 0.41,
respectively. While each of the three significantly associated genomic regions found
by FastCMH overlaps with one gene in the cluster (CHRNA5-CHRNA3-CHRNB4),
the significant regions do not span the entire gene. Burden tests, which do not con-
sider sub-regions, include too many markers in the test, diluting the signal among
noise and missing the association. In contrast, gene-based burden tests identified
the gene ZRANB3 as significant, with the smallest p-value across all burden tests
being 1.56e-6. FastCMH assigns the genomic region corresponding to ZRANB3 a
very similar p-value, 2.31e-6. However, ZRANB3 is not significantly associated for
FastCMH because it uses a more stringent significance threshold. This behavior is to
be expected, as there are many more testable genomic regions (⇡ 7 · 106) than genes
(⇡ 1.7 · 103) in the COPDGene dataset.

When the window-based burden tests were conducted on the two window sizes
used to partition the genome (500 kilobases and 1 megabase) as described Sec-
tion 2.5.4.3, the results coincided with the findings of the gene-based tests (i.e., over-
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lap with the gene ZRANB3). For 500 kb windows, only the region chr2:136,018,946:136,518,946
is found when the encoding is (I). Likewise, for 1 megabase windows, the region
chr2:136,018,810:137,018,810 is found when the encoding used is (II).
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