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BEACHES: Beamspace Channel Estimation for
Multi-Antenna mmWave Systems and Beyond

Ramina Ghods, Alexandra Gallyas-Sanhueza, Seyed Hadi Mirfarshbafan, and Christoph Studer

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY; email: studer@cornell.edu

Abstract—Massive multi-antenna millimeter wave (mmWave)
and terahertz wireless systems promise high-bandwidth commu-
nication to multiple user equipments in the same time-frequency
resource. The high path loss of wave propagation at such
frequencies and the fine-grained nature of beamforming with
massive antenna arrays necessitates accurate channel estimation
to fully exploit the advantages of such systems. In this paper,
we propose BEAmspace CHannel EStimation (BEACHES), a
low-complexity channel estimation algorithm for multi-antenna
mmWave systems and beyond. BEACHES leverages the fact
that wave propagation at high frequencies is directional, which
enables us to denoise the (approximately) sparse channel state
information in the beamspace domain. To avoid tedious param-
eter selection, BEACHES includes a computationally-efficient
tuning stage that provably minimizes the mean-square error of
the channel estimate in the large-antenna limit. To demonstrate
the efficacy of BEACHES, we provide simulation results for line-
of-sight (LoS) and non-LoS of mmWave channel models.

1. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output
(MIMO) [1] and millimeter-wave (mmWave) communica-
tion [2], [3] are among the key technologies of next-generation
wireless systems. The high path loss of wave propagation at
mmWave or terahertz frequencies and the fact that massive
MU-MIMO enables fine-grained beamforming, requires the
basestations (BSs) to acquire accurate channel state informa-
tion (CSI) [4], [5]. In addition, the trend towards low-precision
data converters in all-digital massive MU-MIMO BSs to reduce
power, interconnect bandwidth, and costs [6] renders accurate
channel estimation increasingly important.

At mmWave or terahertz frequencies, wave propagation is
highly directional and real-world channels typically comprise
only a small number of dominant propagation paths [2], [3].
These unique properties enable the deployment of channel
estimation algorithms that effectively suppress noise [7]-[9].
As a consequence, compressive sensing (CS)-based methods
have been proposed for mmWave channel estimation in [10],
[11]. Most of such methods use a discretization procedure
of the number of propagation paths that can be resolved in
the beamspace domain [12], resulting in the well-known
basis mismatch problem [13]. Methods that perform off-
grid CS, such as atomic norm minimization (ANM) [14]
or Newtonized orthogonal matching pursuit (NOMP) [15],
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Fig. 1. Massive MU-MIMO mmWave uplink system: U UEs transmit pilots
over a mmWave/THz wireless channel, which are used to estimate the channel
vectors associated to each UE at the B-antenna basestation.

avoid this basis mismatch problem. These methods, however,
exhibit excessively high complexity, which renders the design
of corresponding hardware designs challenging.

A. Contributions

We propose a new channel estimation algorithm for massive
MU-MIMO mmWave/terahertz communication systems that
relies on Stein’s unbiased risk estimator (SURE). Our algo-
rithm is called BEAmspace CHannel EStimation (BEACHES),
which exploits sparsity of mmWave/terahertz channels in the
beamspace domain and adaptively denoises the channel vectors
at low complexity. We prove that BEACHES minimizes the
mean square error (MSE) of the channel estimate in the large-
antenna limit. We evaluate BEACHES for LoS and non-LoS
mmWave channels and demonstrate that it performs on par with
ANM and NOMP but at orders-of-magnitude lower complexity.

B. Notation

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. For a vector a, the kth entry
is [a]r = ay; the real and imaginary parts are [a]g = ag and
[a]z = az, respectively. The transpose and conjugate transpose
of matrix A are AT and AH, respectively. A complex Gaussian
vector a with mean vector m and covariance matrix K is
written as a ~ CN (m, K) and its probability density function
(PDF) as fV (a;m, K). A real Gaussian vector a with mean
vector m and covariance matrix K is written as a ~ A (m, K)
and its PDF as fV(a; m, K). The expectation operator is E[-].

II. SYSTEM MODEL AND BEAMSPACE REPRESENTATION

A. System Model

We consider a massive MU-MIMO mmWave/THz uplink
system as illustrated in Fig. 1. The BS is equipped with a
B-antenna uniform linear array (ULA) and communicates



with U single-antenna user equipments (UEs) in the same
time-frequency resource. For simplicity, we focus on pilot-
based channel estimation for flat-fading channels, where the
BS estimates the B-dimensional complex channel vector
h € CP for each UE. By assuming that (i) wave propagation
is predominantly directional [4], [16], and (ii) the distance
between UEs and BS is sufficiently large, the channel vectors
in the antenna domain can be modeled as follows [17]:

h= Zaga(Qg), a(Q):[ejOQ,ejlﬂ,...,ej(B_l)Q]T. (1)

Here, L refers to the total number of paths arriving at the
antenna array (including a potential LoS path), ay € C is
the complex-valued channel gain of the /th path, and a(£2)
represents a complex-valued sinusoid containing the relative
phases between BS antennas, where 2, € [0, 27) is determined
by the incident angle of the /th path to the antenna array. We
model the estimated channel vector in the antenna domain as
y =h+ e, where e ~ CN(0p«1, Folp) represents channel
estimation error with variance Fy per complex entry.

B. Beamspace Channel Vector Denoising

The channel vectors h as modeled in (1) are a superposition
of L complex-valued sinusoids. Hence, it is useful to transform
the vector h into the discrete Fourier transform (DFT) domain,
h= Fh, where F is the B x B unitary DFT matrix, which is
known as the beamspace domain. In the beamspace domain,
each entry of h is associated to a specific incident angle with
respect to the BS antenna array [12]. If the number of paths L is
smaller than the qumber of BS antennas B, then the beamspace
channel vector h will be (approximately) sparse [8]. This
key property enables the use of denoising algorithms. More
specifically, by transforming y into the beamspace domain
y = Fy = h + &, where € = Fe has the same statistics as e,
one can suppress noise while preserving the strong beamspace
components. Prominent methods for beamspace denoising are
ANM [14] or NOMP [15], which require high complexity.

IIT. BEACHES: BEAMSPACE CHANNEL ESTIMATION
A. Channel Vector Denoising via Soft-Thresholding

A widely-used sparsity-based denoising method is the least
absolute shrinkage and selection operator (LASSO) [18], [19],
which corresponds to the following optimization problem:

h* = arg min 4[|y — 0|3 + 7[|b/||;. )
h’'eCB
Here, 7 € R, is a suitably-chosen denoising parameter. The
solution to (2) in the complex case is the well-known soft-
thresholding operator 1n(y, ) defined as [20, App. Al

Y
[W(Y7T)]b = |:’Jb|

7,0}, b=1,....,B, (3)

where we define y/|y| = 0 for y = 0. For sparsity-based
denoising via soft-thresholding, the performance strongly
depends on the choice of the denoising parameter 7 [18],
[21]. In wireless systems, it is particularly important to design
robust methods to select this parameter, as many factors such

as the propagation conditions, the number of arriving paths,
and the signal and noise power, can vary widely over time.

B. Computing the Optimal Denoising Parameter

In what follows, we are interested in the optimal parame-
ter 7* that minimizes the estimation MSE defined as

_ 1 [ 12
MSE = —E|[||h* — k3], (4)

where, h* = n(y,7*) is the associated denoised beamspace
vector. Determining the optimal parameter 7* requires knowl-
edge of the noiseless beamspace vector h, which is unknown.
To avoid the need of the ground truth h, we propose to use
Stein’s unbiased risk estimate (SURE) [18] as a proxy for the
MSE function. The following result provides SURE in the
complex domain and shows that it is an unbiased estimator
for the MSE. The proof is given in Appendix A.

Theorem 1. Let h € CB be an unknown vector andy € CBa
noisy observation vector distributed as y ~ CN (h, Eglp). Let
w(y) be an estimator of h from ¥ that is weakly differentiable
and operates element-wise on vectors. Then,

1 . .
SURE = —||u(¥) = ¥115 + Eo
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= MSE.

The following theorem shows that SURE for the soft-
thresholding operator 7(y,7) converges to the MSE in the
large-antenna limit B — oco. The proof is given in Appendix B.

is an unbiased estimate of the MSE, i.e., E[SURE]

Theorem 2. For the soft-thresholding function pu(y) = n(y,7)
in (3), SURE in (5) is given by'

1 o, 1 ,
b:|gy | <T b\@b\>"’
E
-5 > 5 2L ©
B \yb|
bl gy |>T bi|gy|<T

which, in the limit B — oo converges to the MSE, i.e.,
lim SURE, = MSE @)
B—oo

SURE in (6) is independent of the true beamspace channel
vector h. In fact, the result (6) only depends on the magnitudes
of the observed beamspace channel vector ¥, the channel
estimation error variance F, the number of BS antennas B,
and the denoising parameter 7. Thanks to (7) and the fact
that B is large in massive MU-MIMO systems, we can use
SURE as a surrogate to minimize MSE and determine the
optimal denoising parameter. While no closed-form expression
for the minimum of (6) is known, reference [21] proposes
a bisection procedure to approximate the optimal value of a
similar expression for sparse recovery. We next propose an
efficient algorithm that computes the optimal parameter 7*
using a deterministic procedure with complexity O(B log(B)).

!'As discussed in Appendix B, the value of SURE is undefined for T = g,
forb=1,..., B. due to the non-differentiability of 7.



Algorithm 1 BEACHES: BEAmspace CHannel EStimation

1: input y = FFT(y) and Ej

2: S =0 and SURE i, = 00

3. y° = sort{|y|, ‘ascend’}

& V=30 (1)1 v = 0, and g, = oo
s5:fork=1,...,B+1do

6: 7 =max{y;_,, min{y;, ﬁ‘/}}.

7 SURE, = 5+ B=ktl2 gy Bopy _9Bop 1)
8: if SURE, < SURE;, then

9: SUREqpn = SURE,

10: TN =1

11:  end if

122 S=S+ (@) and V=V —(g;)"*

13: end for

14: [h*}k:ﬁé—zlmax{|@k|—7*,0},kzl,...,B

15: return h* = IFFT(h*)

C. The BEACHES Algorithm

Reference [18] outlines an efficient procedure to minimize
SURE for real-valued wavelet denoising. We propose a similar
strategy to minimize (6) for the complex-valued case with soft-
thresholding. We first sort the absolute values of the vector ¥ in
ascending order which we call °. For values of the denoising
parameter 7 that are in between any two consecutive elements
of the sorted vector, SURE is a quadratic function in 7, i.e.,
for 7 € (y;_,,y;) we have

k—1
(W) (B-k+1) ,
SURET: + T+ Ey
P B B
B+1
E w41 JE
ffOTb_k(yb) P2 (k-1), @)

where, k =1,..., B+1. Here, we define y5 = 0 and y3, =
oo to account for the first (0,33) and last region (y%, 00).
Starting from & = 1 towards £k = B + 1, we compute
the optimal value of 7 that minimizes SURE in each region
7 € (yi_1,v;). Noting that there is a discontinuity in the
SURE expression when progressing from one region to the
next, the minimal value in each region is either the minimum of
the quadratic function (8) or one of the boundaries of the region
yi_, and y3.?> The minimum of the quadratic function (8) is
given by 7',? = ﬁziﬁ (y;)~!. Since the function
SURE; is convex, we can determine the optimal parameter 7
in the region k£ by knowing location of T,? with respect to the
boundaries y;,_; and y;. Put simply, the optimal denoising

parameter 77 in each region £ =1,..., B + 1 is given by
v <7 <y
=Sy T <Uio

Yr T,? > yr,

2Note that SURE is not defined for 7 = yi_, and 7 = y;. Instead, we
can compute SURE - for two values arbitrarily close to these boundaries, i.e.,
T=yj_, +e€and 7 = y; — ¢, where € > 0 is small compared to 7.
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Fig. 2. Uncoded bit error-rate (BER) of various channel denoising methods
for LoS and non-LoS channels. We see that BEACHES performs on par with
atomic norm minimization (ANM) and Newtonized OMP, and provides 2 dB
to 3dB SNR improvements over ML channel estimation at BER = 103,

or simply 77 = max{yz_l,min{yz,TE}}. By knowing the
optimal value of 7 in each region, we only need to find the
minimal value of SURE» for k =1,..., B+1. It is now key
to realize that we do not need to recalculate SURE in (8) from
scratch while scanning through £ = 1,..., B + 1. We only
need to update the following quantities S = Z’;;& (y;)? and
V= Zf:kl (ys)~'. The resulting procedure is summarized
in Algorithm 1 and is called BEACHES. Note that the
computational complexity of BEACHES is only O(Blog(B)),
which is caused by the FFT, sorting, and IFFT operations.

IV. PERFORMANCE AND RUNTIME OF BEACHES

A. Bit Error-Rate Performance

To assess the performance of BEACHES, we consider
a massive MU-MIMO scenario in which U = 16 UEs
communicate with a B = 256 antenna BS. We focus on the
situation in which the UEs first send orthogonal pilots, which
are used to acquire maximum-likelihood channel estimates y,,
for each UE w = 1,...,U. The channel matrices are generated
for both a LoS and a non-LoS conditions using the QuaDRiGa
mmMAGIC UMi model [22] at a carrier frequency of 60 GHz
with a ULA using A\/2 antenna spacing. The UEs are placed
randomly within a 120° circular sector with minimum and
maximum distance of 10 and 110 meters from the BS antenna
array, respectively. We enforce UE separation of at least 1°



TABLE 1
MATLAB RUNTIMES IN MILLISECONDS (AND NORMALIZED RUNTIMES).
Scenario BEACHES NOMP ANM
LoS 1.64 (1x) 199.9 (120x) 47968 (29000x)
non-LoS 1.45 (1x) 2204 (1500x) 83750 (58000x)

(relative to the BS antenna array) and assume optimal UE
power control. We then use different channel vector denoising
methods, including (i) ANM-based denoising, where we use
the debiased output of the code provided in [14], (ii)) NOMP
with a false alarm rate of Pz, = 0.5 using the code provided in
[15], and (iii) “perfect CSI” which uses the noiseless channel
vectors and serves as a baseline. Finally, we transmit data
using 16-QAM and perform linear minimum MSE (L-MMSE)
equalization with the denoised matrix to detect the transmitted
bits. The resulting uncoded bit error-rate (BER) is used to
assess the performance of various channel denoising methods.
Figure 2 shows that channel vector denoising in the
beamspace domain provides 2dB to 3dB SNR performance
improvements at BER = 1072 compared to conventional
ML channel estimation. The achieved performance gains are
more pronounced under LoS conditions. More importantly,
we observe that BEACHES performs on par to ANM and
NOMP. This observation indicates that off-the-grid denoising
methods, such as ANM and NOMP, do not provide a critical
performance advantage over BEACHES (in terms of BER).

B. Runtime Comparison

While the BER performance of BEACHES is comparable
to ANM and NOMP, it exhibits significantly lower complexity.
To support this claim, we measured their MATLAB runtimes in
milliseconds on an Intel core i5-7400 CPU with 16 GB RAM
at an SNR of 5dB. Table I demonstrates that the runtime of
BEACHES is orders of magnitude lower than that of NOMP
(up to 1500x) and ANM (up to 58 000x ), while the speedup
is more pronounced for the non-LoS scenario.

V. CONCLUSIONS

We have proposed a new channel denoising algorithm for
massive MU-MIMO mmWave and terahertz communication
systems called BEAmspace CHannel EStimation (BEACHES).
BEACHES exploits sparsity of mmWave/terahertz channels in
the beamspace domain to perform adaptive soft-thresholding
via Stein’s unbiased risk estimate (SURE). We have shown
that BEACHES minimizes the mean square error in the large-
antenna limit and performs on par with sophisticated channel
estimation algorithms for realistic LoS and non-LoS channel
models but at orders-of-magnitude lower complexity. There
are many avenues for future work. An extension of BEACHES
to systems with low-precision quantizers and single-carrier
transmission is a challenging open research problem.

APPENDIX A
PROOF OF THEOREM 1
The MSE for h* = p(y) is defined as

MSE =E | 4[| — h|3] = B[4 )u(s) - B3],

where we decompose the complex-valued vector ¥ into the
real part §r ~ N(hg,£2Ip) and imaginary part y7 ~

N (hz, 5 Loy 5). Note that expectation is with respect to the
noisy observatlon y. Define g(y) = u(y) — y. Hence,
MSE = E|llg(3) + ¥ - B3]
= E[4l9@)I3] +E[ 1y - B3]
+E[3 |90 - )] ©)

The last term can be simplified as
2E[[95) 5 —B)| | =2 E|9r(3) (5 — hr)]
+2E [QI(S’)T(S’I - flz)}
We can now expand % E [gR(S’)T(S’R - flg)] which yields
#E [QR(S’)T(S’R - ER)} (10)

@
22 fyIfN (}’I,hl, 2 IB) Zb 1fynﬁx

_ 2
exp <— HyRQ E:SR” ) E20 agf;;yz]bdyndyz (11)
B ([ 0[ur(y
~BE[YD, (Lsek 1)), (12)

where (a) follows from integration by parts. Similarly, we have
2E[92(9)" (72 —ho)| = ZE[T, (%S 1) a3)

Recall that g(y) = p(y) — ¥ and replace (12) and (13) in the
original MSE expression in (9). This leads to

1 1. .
MSE=E [HM()’) - YII§] +E [Iy - hll%]
4+ B Olur(¥)] Oluz(M)y _
3 E{Zb 1 ( [?R]bb + o 2)}

olyzls
The second term in the MSE expression above equals Ey. For
the first and third term we remove their Expectations to arrive
at the following SURE expression:

SURE = || u(y) — I3 + Eo
Ty A (¥)] Olpz (¥)]
B Zb 1 ( m;?:]’bb + g{;gbb B 2)’
which establishes E[SURE] = MSE.
APPENDIX B

PROOF OF THEOREM 2

SURE in (5) for u(y) = n(y, 7) is derived as follows. The
only unknowns in the expression of SURE are its derivative
of real and imaginary parts. For |§,| < 7, we have

e (¥:m)le _ Oz e _
olyrle ayzls :
For |gp| > 7, we have
e (D _ __ 0 [$r] — YrloT
S T T R Y (o P
=1—-7 [YI]h

([FrZ+¥z])*?



and

—r =z )
(FRI+yz1?)*/?

Note that at || = 7, there is a discontinuity and thus the

derivative and consequently SURE are not defined for this

value. The complex-valued SURE expression reduces to

SURE, = % 3" min{|g], 7}* + Eq

Ozl _ 1
lyzls

Ly S S
B Lo (2 T VBRRbR 2>
+ % Zb;\gb|<T (0-2)

We now prove the convergence of SURE in (7). In [23,
Lemma 4.3.], the authors prove convergence of SURE to
MSE in the real domain for the soft-thresholding function. We
follow the same procedure for the complex domain. Using [20,
Thm. II.15 & III1.16], we have that for any pseudo-Lipschitz
function v : C — R the following equality holds:

3113100 LS (G, ), )
=E[y(n(H +VEoZ,7),H)|, (14)

Here, Z ~ CN(0,1) and H is a random variable with the
sparse distribution of the channel vector in the beamspace
domain hy. Using (14), we have the following result

. B ~ ~ ~ ~
Jim S 0 7) — bl = g, (1955, 7) — 5517]

where, §; is any element of the random vector y. The
expression above can be rewritten as

Jim E 0, 7) = ol13 = By [51n(3,7) = ¥I5] . (15)
Now, since 8[7’87[‘;%]:”1’ 0[7’81()7:)“ is bounded, it is pseudo-
Lipschitz and hence we can use (14) to obtain the following
convergence result

. B o) y
Jim T (M 4

_ %E[Ele (3[#72(9)]17 + Olpz(M)]s 2)} .

Iyr]s Iyzl

Olpz ()]
8[§I]b - 2)

(16)

Summing (15) and (16) and E [%Ily - B||§} = E,, we have
established that limg_,.o SURE, = MSE.
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