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Abstract

Despite growing public attention and policy efforts for environmental sustainability, world-
wide energy consumption and greenhouse gas emissions are still increasing (International
Energy Agency, 2020a). Technological advances have enabled improvements in energy
efficiency, and hundreds of billions of US dollars are being invested in renewable energy
generation every year (International Energy Agency, 2020a), however, actually implement-
ing these technologies requires changes to commercial practices, regulatory frameworks,
and market structures. The replacement of conventional energy generation by renew-
able resources is advancing rather slowly (International Energy Agency, 2020b), as their
integration requires a fundamental transition in the energy sector. Energy that was tradi-
tionally supplied by few power plants is now generated in smaller, distributed renewable
generators that are not centrally controlled. The resulting growing number of stakeholders
and increasing volatility in supply challenges existing market structures, as well as the
grid infrastructure. Beyond technological and structural aspects, human behavior is what
ultimately drives energy consumption and the adoption of renewable technologies. Con-
sumer choices have a massive impact on resource use, as residential households consume
more than 20% of the worldwide total final energy consumption (International Energy
Agency, 2020a). Likewise, personal transportation makes up roughly the same amount
in most countries (eurostat, 2017; International Energy Agency, 2020a). However, em-
pirical data and research studies reveal a persistent gap between individuals’ intentions
for environmentally-friendly behavior and their actual energy consumption and associated
emissions.

Information and communication technology can play a pivotal role in advancing the
energy transition. Ubiquitous connected devices and the data they capture can be use-
ful tools to identify inefficient consumption patterns or the potential for investments in
new technologies. By capturing, analyzing, and evaluating energy data in high granu-
larity, information technology can support sustainable practices – not only on a macro-
or organizational level, but also on the individual level. Yet, given the recency and fast
pace of technological progress in this area, existing research has mostly focused on the
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technical capabilities of information and communication technologies in environmental
contexts. There is a lack of empirical and applicable knowledge on the impact of such
‘green’ information systems in the real world.

To tackle this issue, this thesis examines different ways in which information technology
can foster sustainability in the real world, a) among individual consumers and b) in inte-
grating renewable energy resources into the energy market. To that end, state-of-the-art
information systems designed in conceptual studies are deployed in field experiments. In
the studies presented, a smart metering device, a blockchain system, and an autonomous
intelligent agent are designed based on recent work from the computer science discipline.
To understand the behavioral effects in real-world settings, field experiments are con-
ducted. The design and implementation of these field experiments builds on theories from
psychology and economics research. Herein, the work presented in this thesis compli-
ments conceptual research on information systems (IS) with a social-science perspective
and empirical validations.

More precisely, Chapters 3 and 4 present data collected in two large field experiments
on feedback interventions for resource conservation during an energy-intensive activity –
namely showering. The results reveal significant savings effects induced by activity-specific
real-time feedback, even in the absence of monetary incentives. The presented findings
verify the effectiveness of behavioral interventions for resource conservation. They thus
provide robust and unique empirical evidence for real-time feedback as a scalable and cost-
efficient policy instrument for fostering resource conservation among the broader public.
More so, the results highlight the importance of understanding motivational drivers in
the design of behavioral interventions – in general, and in environmental contexts in
particular. For practitioners, as well as policy makers, these results represent applicable
and highly relevant insights for the design of conservation programs.

In a second set of studies (Chapters 5–7), this thesis examines smart energy markets
for the integration of distributed energy resources like rooftop solar systems. Based on
market design theory, a peer-to-peer (P2P) market in which households bid prices for local
solar energy is designed and implemented on a blockchain infrastructure. The system is
deployed in a field experiment and tested for the duration of an entire year. The collected
data is the first empirical evidence on a P2P energy market and on individual bidding
behavior in this context. The results show that P2P energy markets are technologically
feasible and that they can provide dynamic price incentives for balancing the grid, while
actively engaging consumers in the decision-making process on the energy market. These
studies generate first-hand empirical insights that scrutinize the (so far mostly theoreti-
cal) proposals on smart, consumer-centric energy markets. The observed behavior reveals
an intention–behavior gap in participants’ willingness to pay for local solar energy and
indicates learning effects on the market dynamics over time. These unique findings shed
light on the prices that can be expected on local energy markets and elucidate avenues
for future research on the trade-off between automation and consumer engagement. The
findings further serve as a decision basis for policy makers for creating a regulatory frame-
work for future energy markets. Capturing and processing high resolution energy data
is essential for coordinating decentralized energy resources and, thus, for delivering the
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energy transition. Furthermore, semi-autonomous agents, which elicit consumer prefer-
ences and then act on their behalf, emerge as a desirable system, combining consumer
engagement and efficiency in the future energy market.

A further simulation study addresses the need for such computational tools in smart en-
ergy markets due to the increasing complexity of high electricity demand and distributed
energy resources. Software agents that use reinforcement learning are employed to sched-
ule electricity loads created by electric vehicles. The results show that intelligent agents
are successful in coordinating loads to relieve the grid infrastructure in this simulation,
thus paving the way to facilitate the electrification of transportation in the existing grid.

All in all, this dissertation demonstrates that information systems can indeed spur the
energy transition and foster sustainability, both on the individual consumer level and on
the market level. The findings from large-scale field experiments generate novel empirical
insights and contribute to the impact-oriented work on green information systems. A
multi-disciplinary approach leveraging state-of-the-art technologies (blockchain technol-
ogy, agent-based simulation, and reinforcement learning) and testing them in the field
expands existing conceptual knowledge to a more holistic understanding. The research
presented shows that, by incorporating behavioral factors and economic incentives, infor-
mation systems can induce energy conservation in the real world and encourage renewable
energy generation – and thus tackle some of the wicked problems entailed in mitigating
climate change.
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Kurzfassung

Trotz öffentlicher Aufmerksamkeit und politischen Bemühungen für ökologische Nach-
haltigkeit steigen Treibhausgasemissionen und der weltweite Energieverbrauch unablässig
an (International Energy Agency, 2020a). Obwohl in den vergangenen Jahren deutliche
technische Fortschritte im Bereich der Energieeffizienz gemacht wurden und jährlich Hun-
derte Milliarden US-Dollar in erneuerbare Energieerzeugung investiert werden (Interna-
tional Energy Agency, 2020a), erscheint die tatsächliche Umsetzung von Einsparungs-
massnahmen in der Praxis schwer. Die Ablösung konventioneller Energieerzeugung durch
erneuerbare Ressourcen schreitet nur langsam voran (International Energy Agency, 2020b),
da deren Einbindung gleichzeitig eine Anpassung von Geschäftspraktiken, von rechtlichen
Rahmenbedingungen und von Marktstrukturen erfordert: Energie, die traditionell in
grossen Kraftwerken zentral erzeugt wurde, soll in der Zukunft von kleineren und örtlich
verteilten erneuerbaren Generatoren geliefert werden. Die dadurch wachsende Zahl von
Stakeholdern im Energiemarkt stellt bestehende Marktstrukturen in Frage, und die hohe
Volatilität erneuerbarer Energie belastet die Netzinfrastruktur. Neben technologischer
und struktureller Aspekte sind Energieverbrauch und Emissionen allerdings auch durch
individuelles Verhalten getrieben. Private Haushalte verbrauchen mehr als 20% des
weltweiten Energiebedarfs (International Energy Agency, 2020a) und der Personenverkehr
beläuft sich in den meisten Ländern auf weitere 20% (eurostat, 2017; International Energy
Agency, 2020a). Empirische Daten und Studien aus der Verhaltensforschung zeigen auf,
dass eine anhaltende Kluft zwischen der Absicht zu umweltfreundlichem Verhalten und
tatsächlichem Handeln besteht – was die Energiewende auch auf dieser Ebene verlangsamt.

Informations- und Kommunikationstechnologie (IKT) kann hier Abhilfe schaffen: Ver-
netzte Geräte und die von ihnen erfassten Daten können verwendet werden, um inef-
fiziente Verbrauchsmuster oder Potential für Investitionen in erneuerbare Technologien
zu erkennen. Durch die Erfassung, Analyse und Auswertung von hochaufgelösten En-
ergiedaten kann IKT ökologisch nachhaltiges Verhalten vorantreiben – nicht nur auf
makro-ökonomischer oder organisationaler, sondern auch auf individueller Ebene. An-
gesichts der rasanten Fortschritte im Bereich IKT konzentriert sich die Forschung zu In-
formationssystemen für Nachhaltigkeit bislang jedoch hauptsächlich auf deren rein tech-
nische Möglichkeiten; es mangelt an empirischer und anwendungsorientierter Forschung
zu den Effekten solcher ‘grünen’ Informationssysteme in der Praxis.

Die vorliegende Dissertation untersucht verschiedene Ansätze, um Nachhaltigkeit in der
Praxis mithilfe von IKT zu fördern. Zu diesem Zweck werden modernste Informationssys-
teme in konzeptionellen Studien entworfen und, insbesondere, in Feldexperimenten auch
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auf ihre Effekte hin empirisch untersucht. Auf Grundlage aktueller Forschung aus der In-
formatik, werden für die vorgestellten Studien ein intelligentes Messgerät, ein Blockchain-
basierter Markt und ein intelligenter Software-Agent entwickelt. Diese Systeme werden
in Feldexperimenten eingesetzt, um die aus ihrer Nutzung resultierenden Verhaltensef-
fekte in der realen Welt zu analysieren. Die Konzeption und Implementierung der Feld-
experimente baut dabei auf Theorien aus der Psychologie und der Ökonomie auf. So
ergänzt diese Dissertation die bisher hauptsächlich konzeptionelle Forschung zu IKT im
Nachhaltigkeitsbereich durch eine sozialwissenschaftliche Perspektive und empirische Va-
lidierungen.

Konkret stellen die Kapitel 3 und 4 zwei umfangreiche Feldexperimente zu Verhaltensin-
terventionen vor. Hierbei werden Individuen während einer energieintensiven Aktivität –
des Duschens – mit Echtzeit-Feedback zu ihrem Ressourcenverbrauch konfrontiert. Die
Experimentalergebnisse zeigen deutliche und statistisch signifikante Einsparungseffekte
dieser Feedback-Intervention. Beide Studien liefern robuste empirische Belege dafür, dass
Echtzeit-Feedback eine skalierbare und kosteneffiziente Maßnahme zur Förderung von
Ressourceneinsparungen in der breiten Öffentlichkeit darstellt.

In einer zweiten Reihe von Studien (Kapitel 5–7) untersucht die vorliegende Arbeit
digitale Energiemärkte für die Integration von verteilten Generatoren wie Solaranlagen.
Basierend auf der Markt-Design-Theorie wird eine Handelsplattform entworfen und en-
twickelt, über die private Haushalte online Solarenergie, die auf ihren Dächern produziert
wird, an Nachbarn verkaufen können. Das System wird auf einer Blockchain-Infrastruktur
implementiert und in einem Feldexperiment eingesetzt, in dem die Plattform über die
Dauer eines Jahres hinweg mit realen Nutzern getestet wird. Die gesammelten Daten
liefern die ersten empirischen Erkenntnisse zum Handel von Solarenergie unter privaten
Haushalten (auch ‘peer-to-peer’ Markt genannt). Die hier gezeigten Ergebnisse bele-
gen, dass solche lokalen, Nutzer-zentrierten Energiemärkte bereits technologisch umset-
zbar sind und dass ein solcher Marktplatz dynamische Preisanreize für den Ausgleich des
Stromnetzes bieten kann. Die Ergebnisse legen zudem eine Diskrepanz zwischen von den
Teilnehmern zuvor angegebener und während des Experiments tatsächlich beobachteter
Zahlungsbereitschaft für Solarenergie offen. Die hier enthaltenen Studien zu lokalen En-
ergiemärkten tragen hierin einzigartige empirische Erkenntnisse zur bisher meist theo-
retischen Erforschung solcher verbraucherzentrierten, digitalen Energiemärkte bei. Die
vorgestellten Erkenntnisse über individuelles Verhalten in diesem Kontext geben Einblicke
in Verbraucherpräferenzen für Solarenergie. Darüber hinaus erweisen sich Softwareagen-
ten, die Präferenzen von Verbrauchern erlernen und in deren Namen handeln, als ein
vielversprechendes Instrument, das Verbraucherengagement und Effizienz verbindet. Die
vorgestellten Studienergebnisse dienen als Grundlage für politische Entscheidungsträger
bei der Umsetzung der Energiewende und der Schaffung von verbraucherorientierten En-
ergiemärkten. Die Erfassung und Verarbeitung hochaufgelöster Energiedaten erweist sich
dabei für die Koordination dezentraler Energieressourcen als wesentlich.

Zum Abschluss befasst sich eine zusätzliche Simulationsstudie (Kapitel 8) mit dem
Einsatz von künstlicher Intelligenz im Energiemarkt, um die zunehmenden Komplex-
ität verteilter Energieressourcen beherrschbar zu machen. In einer Simulation werden
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Software-Agenten untersucht, die neuste Techniken des Maschinellen Lernens nutzen,
um Ladelasten von Elektrofahrzeugen zu koordinieren. Die Ergebnisse zeigen, dass es
intelligenten Software-Agenten gelingt, Lasten bei dynamischen Marktpreisen so zu ko-
ordinieren, dass die Netzinfrastruktur entlastet wird. Dies gelingt in der vorgestellten
Modellierung, ohne dass Daten über individuelle Fahrprofile oder deren Energiebedarf an
einen zentralen Aggregator kommuniziert werden müssen. Dieser Ansatz kann zur Elek-
trifizierung des Verkehrs in bestehender Netzinfrastruktur beitragen, die notwendig ist,
um eine deutlichen Emissionsreduktion zu erreichen.

Alles in allem belegt diese Dissertation, dass IKT die Energiewende vorantreiben und
Nachhaltigkeit sowohl auf der Ebene des einzelnen Haushalts, als auch auf kollektiver
Marktebene fördern kann. Die vorgestellte Forschung veranschaulicht wie Informations-
systeme Energieeinsparungen induzieren und die Erzeugung erneuerbarer Energie vo-
rantreiben können, wenn bei deren Gestaltung verhaltenswissenschaftliche Erkenntnisse
beachtet, und effektive Anreize gesetzt werden. So können Informationssysteme einige
der vielschichtigen Probleme lösen, die mit der Eindämmung des Klimawandels verbun-
den sind.
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1. Introduction

This chapter outlines the the general motivation and objectives of this dissertation and
provides an overview of the articles contained.

1.1 Motivation
Resource depletion and climate change are among the main threats to the well-being

of human society and the environment (Davis et al., 2018; Stanley, 2000; United Nations,
2019). Environmental concerns that seemed abstract in the past have started to materi-
alize in tangible effects, directly affecting the life of human individuals. Human-caused
climate change contributes to effects such as increased wildfire activity (Abatzoglou and
Williams, 2016), global spread of mosquito-borne infectuous diseases (Altizer et al., 2013;
Hales et al., 2002; Rocklöv and Dubrow, 2020) or urban freshwater shortages (Gober et al.,
2010; McDonald et al., 2011). As a result, public awareness for environmental concerns has
increased. In a historic landmark agreement in 2015, 195 countries have pledged to take
measures to limit climate change by reducing greenhouse gas (GHG) emissions (United
Nations Conference of the Parties (COP), 2015). Policy makers around the globe have
thus set out ambitious goals to reduce energy consumption and increase the share of re-
newable energy generation, also captured in the United Nations Sustainable Development
Goal Nr. 7 (United Nations, 2019).1

1 In addition, between 2017 – the year I started my PhD research – and today, the number of Google
searches for the terms ‘climate change’ and ‘sustainability’ have roughly doubled (Google Trends,
2020). Children and teenagers around the globe have started school strikes for climate change (The
Economist, 2019) demanding responsible resource use, and this year’s World Economic Forum featured
sustainability on the top of its agenda (World Economic Forum, 2020).
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Yet, statistics on ever-increasing energy consumption (International Energy Agency,
2020a) and emissions (International Energy Agency, 2020b) reveal that implementing ef-
fective measures to actually put these intentions into practice is difficult. Consuming
energy resources is deeply ingrained in human life, and resource use is determined by
a myriad of conscious and unconscious individual choices. Environmental sustainability
– the “conservation, deployment, and reuse of resources in responsible ways” (Malhotra
et al., 2013, p. 1265) – necessitates changing established usage patterns or establishing
new ones. This is difficult from many perspectives: For companies, technological inno-
vations that improve energy efficiency require considerable investments or adjustments in
their supply chains. From a structural perspective, the integration of renewable energy
resources adds complexity to the energy market. Established energy markets are strongly
centralized and hierarchical, with few power plants distributing energy to thousands of
households. Wind and solar energy generation, in contrast, is geographically distributed
and is dependent on local weather conditions; it cannot be simply switched on or off ac-
cording to power demand (Ketter et al., 2018; Ramchurn et al., 2012). To further increase
the share of renewable resources in total energy generation, electrification of transporta-
tion is required (Williams et al., 2012). This creates technical challenges, as the electricity
grid infrastructure is not built to cover the high loads that would result from uncoordi-
nated charging of large numbers of electric vehicles (Robu et al., 2013; Rogers et al., 2012).
Beyond technological and structural challenges, mitigating climate change also requires
changes in individual consumption behavior as residential households consume more than
20% of the worldwide total energy consumption (International Energy Agency, 2020a).
However, energy consumption is abstract to individuals, and the effects of one’s own con-
sumption behavior or sourcing choices seem minor, and they get lost in everyday business
(Tiefenbeck et al., 2018a).

Given the complexity of these issues, consumers, as well as decision makers, need sup-
port to actually be able to ‘walk the talk’ and reduce energy consumption and emissions.
Fortunately, help is around the corner. Information and communication technology pro-
vides powerful tools to empower individual consumers a) by actively supporting them in
formerly abstract decisions, or, in contrast, b) by automating complex processes to dis-
burden individuals in their everyday lives. Both of these approaches, ‘human-in-the-loop’
(Mattern et al., 2010) and ‘human-out-of-the-loop’ (Fleisch, 2010) computing, have their
place in the diverse and multi-layered problem settings relevant to foster sustainability
(Ketter et al., 2018; Tiefenbeck, 2017).

For instance, designing effective measures addressing individuals’ consumption behavior
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was difficult and costly in the past. Using information systems (IS), “data is democra-
tized from scientific practices and made universal and meaningful for use by all individ-
uals” (Swan, 2013, p. 95). Real-time information captured by smart meters and other
connected devices can be used to better manage energy resources (Gupta, 2017) and to
provide cost-efficient, individualized behavioral interventions (Loock et al., 2013; Melville,
2010; Tiefenbeck et al., 2018a). Consumption feedback during specific activities can make
resource consumption more salient and thus encourage conservation on an individual level
(Tiefenbeck et al., 2018a).

In other instances, IS can automate processes to save energy or utilize renewable energy
using computational tools. In particular, in the dynamic energy market, data on energy
demand and supply can be used to balance the grid and prevent technical failures without
overburdening individuals (Bichler et al., 2010; Gholami et al., 2016; Ketter et al., 2018).
In that, “[s]mart technologies will help consumers and energy service companies working
for them to reap the opportunities available on the energy market by taking control of
their energy consumption (and possible self-production).” (European Commission, 2015,
p. 11)

1.2 Objectives & Contribution
The objective of this thesis is to examine different ways in which information technology

can foster sustainability a) among individual consumers and b) in integrating renewable
energy resources into the energy market. The research studies presented employ, and
examine the effects of a smart metering device, a blockchain-based energy market, and an
intelligent software agent. Herein, the incentives that drive consumer behavior are in the
focus. The goal is to contribute to scientific theory and to create actionable implications
for practitioners on bringing effective and scalable ‘green’ IS solutions to the real world
that can help mitigate climate change.

The complexity of sustainability issues requires a multi-perspective approach examin-
ing not solely technological aspects, but also integrating social sciences (Melville, 2010;
Tiefenbeck, 2017). Goes (2013) argues that “[Recommendation and Personal Information
Systems] are designed for consumers to overcome their cognitive limitations when making
choices in IT-mediated environments. Ironically, by and large [these systems] have ignored
the cognitive biases that come into play in decision-making.”, p. v. And in the same vein,
“E-marketplaces continue to evolve, and behavioral economics can inform the design of
such platforms.” (Goes, 2013, p. v). Addressing potential cognitive biases and evaluating
the motivators for individual behavior seems particularly relevant in the sustainability
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context, as (long-term) effects of resource consumption or energy-efficiency investments
are not immediately perceptible by consumers (Tiefenbeck, 2017), and misconceptions
about effective conservation measures prevail (Lesic et al., 2018).

Furthermore, in this type of policy-relevant research, it is particularly important to
validate solution concepts empirically (Editorial, 2017). Research in various domains has
shown that theoretical predictions or laboratory studies may not provide a full picture
of behavioral effects that materialize in practice (Allcott et al., 2012b; List et al., 2006).
(Natural) field experiments can provide additional insights to garner a more nuanced
understanding of their real-world impact (Malhotra et al., 2013).

To address these issues, the research presented in this thesis draws on theoretical back-
ground from different disciplines, such as (behavioral) economics, and psychology, as well
as IS research. Although the latest technological innovations in blockchain technology and
machine learning are employed in the work presented here, this thesis does not focus on
either the technical aspects of an information system or user behavior in interaction with
it, but takes an integrative approach in the evaluation of the systems. Three unique field
experiments allow to investigate the empirical effects of the presented IS and contribute
novel insights on their performance and resulting user behavior in practice.

1.3 Approach
This dissertation comprises six research studies, which cover three distinct field exper-

iments. These field experiments are at the core of this thesis, creating unique insights on
consumer behavior and decision making in the energy market. They are complimented
by simulations and a conceptual framework that increase the background knowledge and
conceptual understanding of the technologies employed.

The first study (Chapter 3) investigates the effect of real-time feedback in the absence of
volunteer–selection bias and monetary incentives. In a natural field experiment, an unin-
formed sample of hotel guests was presented with a feedback intervention on resource con-
sumption during showering. Showering was chosen as an example of an energy-intensive,
habitual, low-involvement target activity. The individuals in the hotel setting do not incur
monetary savings from reducing their resource consumption; in addition, these individuals
have not self-selected into taking part in an energy-related research study, but rather are
merely guests of one of six hotels that partnered with us to conduct the experiment. The
data collected comprises a sample of n = 19, 596 showers, measured in 265 rooms in six
hotels.
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In a second field experiment (Chapter 4), n = 413 residential households were pre-
sented with the same feedback intervention on resource consumption in the shower for
two months. The study examined the role of self-set goals in IS-enabled feedback inter-
ventions. Based on the consumption data collected and on supplementary surveys, the
formation of self-set conservation goals in response to the feedback intervention and their
relationship to incurred savings was evaluated. Both studies on feedback interventions
used the same IS artefact – a smart shower meter produced by the ETH spin-off company
Amphiro AG.

The second part of this dissertation focuses on the creation of smart electronic markets
that can handle the complexity and volatility of distributed renewable energy resources.
This research includes a field experiment conducted within the research project Quartier-
strom. The project was a lighthouse project funded by the Swiss Federal Office of Energy,
and was conducted in cooperation with a consortium of industry and acadamic part-
ners, as well as a local utility provider (Wasser- und Elektrizitätswerk Walenstadt). In
this project, our research group had the opportunity to design, implement, and deploy
the first blockchain-based energy market in Switzerland in which households engaged in
peer-to-peer trading of solar energy via a blockchain-based information system. For the
duration of an entire year, n = 37 households interacted with the market using a web
application. Participants bid prices for local solar energy via an auction mechanism; the
prices settled in the auction had direct impact on participants’ real electricity bills. The
three articles presented in Chapters 5, 6 and 7 examine P2P energy markets, from con-
ceptualization to empirical evaluation: Chapter 5 presents a conceptual framework on
blockchain-based markets and a systematic literature review. Chapters 6 and 7 evaluate
the unique data collected in the field experiment in the SFOE lighthouse project to eval-
uate the market design and the user behavior of the deployed P2P energy market in the
real world.

As an outlook, Chapter 8 evaluates the possibilities of machine learning for scheduling
loads in a smart energy market. Using a simulation based on real consumption data and
synthetic driving profiles, autonomous intelligent agents coordinate charging schedules for
electric vehicles to reduce peak demands in the electricity grid. This project represents
the first step in a new research direction; it is summarized in Chapter 8, providing an
outlook on future research on artificial intelligence in smart energy markets.
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1.4 Thesis Outline
The remainder of this dissertation is structured as follows: Chapter 2 presents an

overview of the related research relevant to this thesis and highlights research gaps, pro-
viding a framework for the subsequent research articles. Chapters 3 - 7 represent separate
research articles that have already been published in, are currently under review at, or
are about to be submitted to peer-reviewed publications (see also Disclaimer). Chapter
8 presents a summary of recent work on a multi-agent simulation of intelligent agents for
load scheduling and provides an outlook on future research questions in this area. The
thesis closes with a synopsis of the findings of the different articles and a discussion of its
contributions and its limitations.
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2. Overview of the Related Work

This thesis examines the application of information systems (IS) to foster resource con-
servation and to create marketplaces for distributed energy resources. While each of the
subsequent chapters contains a more in-depth review of the related work for each respec-
tive article, this chapter provides an overview of the relevant literature to put the different
articles contained in the thesis into context. This overview starts with an introduction
of research streams on IS-enabled decision support in form of behavioral feedback and
intelligent agents (Section 2.1). Section 2.2 presents research on electronic smart markets,
explaining the basics of market design theory and P2P markets. Section 2.3 gives an
overview of the existing research in Green IS, as the overarching domain of the studies in
this thesis.

2.1 Decision Support Systems
In our lives, we are increasingly surrounded by sensors and connected devices that

measure our every-day activities like how many steps we take a day, or how much energy
we consume, but also capture our environment, e.g. weather or locational data. As
a result of ubiquitous data collection and communication technologies, IS can provide
decision support to individuals in many domains and in different ways.1

1Note that in this thesis, the term ‘decision support system’ is used in a broader definition to describe
information systems that support individuals in different types of choice situations (Banker and Kauff-
man, 2004; Bichler et al., 2010; Ketter et al., 2018). This can mean explicitly by providing feedback
to inform educated decision making, or, on the other end of the spectrum, automating specific choices
for an individual based on algorithmic rules.
The term is used in a more narrow meaning in some of the computer science literature, namely
referring to recommender systems, which is not intended here.
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On the one hand, IS can “help people collect personally relevant information for the
purpose of self-reflection and gaining self-knowledge” (Li et al., 2010, p.558), thus support-
ing individuals’ own insightful reflection. Personalized feedback can influence individuals’
behavior in habitual activities without actively interfering in their decisions. As an exam-
ple, according to Fox and Duggan (2012), already in 2012, 19% of the smartphone owners
in the US had downloaded an app to specifically track and improve their health. This
phenomenon is called ‘self-tracking’, ‘quantified self’, or ‘living by numbers’ (Consolvo
et al., 2009; Li et al., 2010; Lupton, 2014). As Swan (2012) states, the overarching goal
of such continuous monitoring and immediate feedback enabled by connected devices is
lasting behavior change.

At the same time, IS can also provide data-driven decision support in form of con-
crete advice or even automate decision processes for individuals (Bichler et al., 2010;
Ketter et al., 2018; Wooldridge and Jennings, 2018). Using distributed sensors, as well
as distributed computational power (Rogers et al., 2012), intelligent agents can process
information in real time and act accordingly in specific contexts.

2.1.1 Feedback Interventions

Feedback, i.e., informing individuals about their behavior in order to reinforce and/or
modify certain actions (Karlin et al., 2015), has proven to be successful in changing
individual behavior, not only in work-related, but also in private contexts (Kluger and
DeNisi, 1996; Moon and Sproull, 2008). Studies in various areas provide evidence that
individuals respond to feedback, in particular for habitual or ‘low-involvement’ activities,
which individuals perform in their everyday lives without extensive deliberation, such as
feedback on physical activity (Bravata et al., 2007), nutrition (Vandelanotte et al., 2005),
or energy consumption (Abrahamse et al., 2005; Allcott, 2011).

Originating in psychology research, ‘Feedback Intervention Theory’ (Kluger and DeNisi,
1996, p. 259) states that “feedback interventions change the locus of attention”, but
its effect depends on various moderators. While many studies find positive results for
feedback interventions, the observed effect sizes vary with the target activity, the general
setting, and the way feedback is presented (Kluger and DeNisi, 1996). A key finding
is that in particular for habitual activities, the more closely (in time and place) the
feedback is linked to a particular target activity, the better (Ehrhardt-Martinez et al.,
2010; Froehlich et al., 2010). This emphasizes the importance of the medium by which
the intervention is provided; ideally, it should be accessible during the targeted activity
and process information in real time (Tiefenbeck et al., 2018a). Personal IS increasingly
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make this possible at population level: Ubiquituous connected devices offer more and
more possibilities to deliver personalized feedback (Froehlich et al., 2010; Hermsen et al.,
2016). With smartphones, fitness trackers and other personal IS, feedback interventions
are scalable to the broad population and can be integrated easily into individuals’ everyday
activities (Consolvo et al., 2009; Hermsen et al., 2016; Saha and Mukherjee, 2003).

In the energy context, a number of field studies have found that feedback on energy
consumption is effective and reduces misconceptions in many cases (Abrahamse et al.,
2007; Allcott, 2011; Tiefenbeck et al., 2018a). For example, consumers are often unaware
of the energy efficiency of their homes and devices (Allcott et al., 2012b), or underestimate
the long-term benefits of potential investments into energy efficiency upgrades (Allcott
and Mullainathan, 2010). Feedback interventions can help mitigate these issues, and
technological advances make it increasingly feasible to monitor the energy consumption
of households, individual appliances or even specific activities in real time (Tiefenbeck,
2017). A series of studies using interventions such as monthly energy reports or real-time
feedback based on smart meter data have provided evidence that digital interventions
can be a scalable and cost-effective instrument for fostering energy savings (Loock et al.,
2013; Tiefenbeck et al., 2018a). Other programs send out “home energy reports”: periodic
mailings that compare the electricity use of individual households with similar homes in
the neighbourhood, thus tapping into social norms (Allcott and Mullainathan, 2010).
Yet, most existing feedback studies do not discuss the motivation or personal incentives for
users to change their behavior once they are presented with consumption feedback. Several
scholars point out that research on the drivers of effective use of IS-enabled feedback is still
sparse (Burton-Jones and Grange, 2013; Gimpel et al., 2013; Sjoeklint et al., 2015). Based
on a meta-study on digital technologies for disrupting and changing behavior, Hermsen
et al. (2016) conclude that more research should study the factors that drive and sustain
behavioral effects in order to design more effective interventions and necessary IS.

2.1.2 Intelligent Agents

While feedback interventions have been successful for changing consumption behavior
in specific activities, many consumption patterns are hard to change for us human beings
(Tiefenbeck et al., 2018a). In particular, the energy consumption of appliances which run
in the background, like heating or battery charging, seems abstract and its optimization
can easily overburden individuals (Ehrhardt-Martinez et al., 2010; Faruqui et al., 2010).
In environments in which resource consumption is non-tangible or supply is volatile (as is
the case with home energy control (Mattern et al., 2010; Strueker and Dinther, 2012) or

9



2.1. Decision Support Systems

renewable energy generation), the support of algorithms for their decision making can be
useful for humans for bare capacity reasons (Strbac, 2008; Valogianni and Ketter, 2016).
Here, IS cannot only serve as feedback instruments to prompt behavioral reactions, but
can also act in itself, automating processes for the user (Ketter et al., 2018; Melville, 2010;
Valogianni et al., 2019). In an agenda for “autonomous agents and multi-agent systems
research within the smart grid”, Rogers et al. (2012), p. 2167, highlight “Supporting
Consumers in the Transition to a Smart Grid” as a key research area. Intelligent agents
can provide (semi-)autonomous decision support for individuals by using algorithms which
analyze observed data and adhere to preferences defined by the users up front (Bapna
et al., 2004; Bollinger and Hartmann, 2020; Ketter et al., 2018; Rogers et al., 2012).

While it is hard to find a formal definition of ‘intelligent agents’ in the literature –
as it is for the term ‘artificial intelligence’ – Wooldridge and Jennings (2018) dare an
attempt: They define an intelligent agent as a computer system that operates without
the direct intervention of humans, interacts with others and acts and reacts depending
on information on the environment it perceives. Moreover, an agent may be “conceptu-
alised or implemented using concepts that are more usually applied to humans”, such as
“knowledge, belief, intention, and obligation” (Wooldridge and Jennings, 2018, p. 117).
The related research in the computer science discipline focuses on the optimization and
learning algorithms employed by these agents to adequatly react to their environment
(Valogianni et al., 2014; Wooldridge and Jennings, 2018). Most notably the evolution of
reinforcement learning in the past decade has led to the development of very sophisticated
adaptive strategies. Learning models allow agents to learn from past situations to improve
their reactions to new information they observe (Mnih et al., 2015; Peters et al., 2013;
Reddy and Veloso, 2011b; Valogianni et al., 2013; Vinyals et al., 2019; Yang et al., 2018).
Rogers et al. (2012) point out that the robustness of these machine learning approaches
to real-world deployment is key to their effectiveness.

Still, the success of intelligent agents in practice is not solely determined by their inner
machine learning mechanisms, but also by their acceptance and interactions with the
human user (Rahwan et al., 2019). Scholarly work has – rather recently – started to
investigate questions around trust in AI and the degree of automation which humans prefer
in different contexts (Bollinger and Hartmann, 2020; Komiak and Benbasat, 2006; Logg
et al., 2019; Wang and Benbasat, 2005). For instance, research on ‘algorithm appreciation’
challenges the widespread belief that individuals generally do not like to rely on algorithms
(i.e. that they exhibit ‘algorithm aversion’), and finds that they in fact appreciate advice
even from black box algorithms in some cases (Logg et al., 2019). Findings from another
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recent lab study, on the other hand, indicate that people prefer to use algorithms when
they can modify them slightly, and perform better overall then. Individuals seem to want
at least some control over an outcome rather than being out of the loop in the decision-
making process (Dietvorst et al., 2016). Rahwan et al. (2019) propose to establish ‘machine
behavior’ as a new research field with the objective to study how intelligent agents shape
human behavior and vice versa, as well as collective vs. individual machine behavior.
Along the same lines, Bichler et al. (2010) argue that “the degree of autonomy that an
agent or automated decision support system should have is a completely open research
question especially in dynamic and complex market environments [. . . ]”, p. 697.

Practical applications for intelligent software agents range across domains, from algo-
rithmic trading (Ketter et al., 2013; Rahwan et al., 2019), to digital health applications
(Barata et al., 2019; Tinschert et al., 2017) or driver assistance (Gahr et al., 2018; Sharon
and Stone, 2017). As touched upon above, in the energy sector alone, there are numerous
areas in which intelligent agents can be employed to reduce complexity for individuals.
One of the use cases which is gaining increasing importance with the electrification of
transportation (Williams et al., 2012) and the diffusion of distributed energy resources
(Ramchurn et al., 2012), is the smart scheduling of loads (also called autonomous demand
response (Ketter et al., 2018)). Based on (real-time) data and dynamic price signals,
intelligent agents can be used to schedule flexible electricity loads, like charging of electric
vehicles to times when electricity generation is cheapest or cleanest (Ketter et al., 2018;
Peters et al., 2013; Tiefenbeck, 2017; Vázquez-Canteli and Nagy, 2019). However, these
efforts need to be coordinated on a collective level in order to prevent high demand peaks
which strain the electricity grid (Flath et al., 2014; Valogianni et al., 2020). One way to
coordinate supply and demand patterns is to establish a central entity which aggregates
information from all parties and determines a distribution (or ‘allocation’) of resources
(‘top-down approach’) (Valogianni et al., 2015). Another, more decentralized way, is to
let a market govern the distribution among individual consumers based (‘bottom-up ap-
proach’) (Dietz et al., 2003; Slavova and Constantinides, 2017). Such so-called smart
markets can create incentives for efficient resource use while keeping the grid in balance
(Ketter et al., 2018).
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2.2 Smart Markets
Markets are institutions that govern resource allocation among a group of individuals

(Dietz et al., 2003). Basic research on the interactions of individuals on markets and
the incentives they face originates from micro-economics, and has developed into its own
field of ‘market design theory’, an overview of which is provided in the following Section
2.2.1. While the research on market mechanisms is rooted in economic theory, most new,
emerging markets are enabled by computational tools, advanced user interfaces, and smart
devices. The term ‘smart markets’ relates to computer-assisted markets relying on algo-
rithms and data to determine prices and allocation of goods (Bichler et al., 2010; Mccabe
et al., 1991). Understanding their impact in practice requires insights from economic the-
ory, computer science, operations research, and information systems (Bichler et al., 2010)
as both the facilitating technology, as well as the market design, strongly influence their
adoption and efficiency in practice (Bapna et al., 2004; Goes et al., 2012; Lampinen and
Brown, 2017). With the advent of easily accessible online platforms, smart markets have
attracted many private individuals and have thus enabled a move away from pipeline value
chains to P2P markets in which a variety of professional, but also private stakeholders
(consumers and producers) interact directly (Bichler et al., 2010; Constantinides et al.,
2018; Mccabe et al., 1991; Slavova and Constantinides, 2017).

In the sustainability context, smart energy markets have gained importance with the
transition to renewable energy resources. Numerous examples illustrate, however, that
individual sustainability efforts, such as investments in infrastructure or demand side
management, are often most efficient, if coordinated on the collective level (Slavova and
Constantinides, 2017). In combination with intelligent agents, smart energy markets
will be required to balance supply and demand in the highly complex environment with
distributed, volatile generators in the electricity grid (Ketter et al., 2018). In addition,
consumer-centric P2P markets for renewable energy are considered a promising vehicle for
integrating residential consumers in the energy transition (Morstyn et al., 2018; Slavova
and Constantinides, 2017; Weinhardt et al., 2019). Section 2.2.2 presents an overview of
the theoretical background on P2P markets. Large parts of this thesis will be dedicated
to P2P energy markets for integrating and incentivizing distributed renewable energy
generators.

2.2.1 Market Design Theory

The term ‘market design’ was coined most prominently by Roth (2000) who defines
it in its simplest form as “the creation of a venue for buyers and sellers, and a format
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for transactions.”, p. 8. Economic theory provides a whole set of tools to assess the
functioning of markets. The theoretical literature is mainly based in an area of game
theory called ‘mechanism design’ and was adapted to a more applied vocabulary in the
market design literature initiated by Roth. Mechanism design theory formally assumes
that a market mechanism is a function or algorithm that takes individual consumption
preferences as input and computes an outcome, which consists of an allocation of the
traded goods and the respective prices (Mas-Colell et al., 1995). In sum, allocation and
prices translate into transactions that must be settled once the outcome is determined.
The market design refers to the entire ecosystem around the market mechanism (Mas-
Colell et al., 1995; Roth, 2000, 2008): market participants, the bidding language, i.e.
in which way participants can express their preferences, a format for transactions and
settlements, the market mechanism itself, and finally the integration into the regulatory
environment.

While the central function of a market is allocation and pricing of the resources that
are to be sold, one should not underestimate the fact that markets essentially are social
systems that govern interactions between individuals and thus influence human behavior
depending on the defined rules (Dietz et al., 2003; Lampinen and Brown, 2017). Hence,
the incentives market participants face when interacting depend on every aspect of the
market design and must be well understood (Borenstein, 2005). If done thoroughly, the
market design itself can make sure to “align social goals with the profit motivated interests
of private parties by defining an appropriate set of rules and incentives” (Ketter et al.,
2013, p. 264). Roth (2008) defines four general conditions for a well-functioning market:

• Providing thickness: sufficient proportion of buyers and sellers on the market

• Avoiding congestion: transactions must be processed fast enough

• Providing safety: transactions must be simple and without risk of data loss

• Avoiding repugnance: ban transactions that are considered unethical because they
lead to undesired incentive structures

In addition, the domain and practical application also introduce several requirements
and limitations to the market design problem. Although strongly rooted in game theory
and sub-fields like auction theory, market design is not only relevant for economic theory,
but also from a practical (Levitt and List, 2008; Roth, 1991) and behavioral perspective
(List, 2011; List et al., 2006). In practice, market performance is strongly linked to
the form, frequency, accuracy, and distribution of information provided to participants.
Hence, the information systems implementing smart markets entail implications on a
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markets’ ability to achieve the conditions laid out by Roth (2008). Lampinen and Brown
(2017) thus suggest: “Since markets are often instantiated in a technological form, we
see an opportunity for our community to take an active role in designing markets and
intervening critically where they do not work fairly or effectively.” (Lampinen and Brown,
2017, p. 4331).

In particular, involving consumers in price-setting procedures in electronic markets has
become increasingly relevant in the digital economy, as market platforms for anything are
being created online and, oftentimes, accessible to almost anyone. Online auctions exem-
plify how the internet enables individual consumers to actively engage in pricing decisions
(Bapna et al., 2003). Bapna et al. (2003) argue that the influence of the internet and the
ubiquity of information are not fully understood yet in this context, and that classical
economic theory may not incorporate all of the newly arising phenomena. Assumptions of
rational, risk neutral bidders with perfect information, which are used in economic theory
to derive analytical models of markets, usually do not hold in practical applications (Ado-
mavicius et al., 2009; Klemperer, 2002). Additionally, even if they did, analytical models
for interaction of agents under uncertainty, with a large number of bidders, different types
of goods and/or in a repeated setting are highly complex and computationally hard to
solve (Bapna et al., 2003; Bichler et al., 2019; Cramton et al., 2006). Bichler et al. (2010)
thus argue that smart market design should, in a first step, focus on preference elicita-
tion and provide (agent-assisted) decision support thereupon. This is the reason why, for
decades now, IS research has been strongly involved in the creation and interactive design
of smart markets (Bichler et al., 2010; Ketter et al., 2018) and the analysis of individual
behavior in markets in practice (Goes et al., 2010; Lu et al., 2016).

2.2.2 P2P Markets

In recent years, research on electronic markets was particularly spurred by the rise
of online platforms like Ebay, Amazon Marketplace, Uber, and AirBnb (Constantinides
et al., 2018; Einav et al., 2016; Zimmermann et al., 2018). From an economic perspective,
these online platforms technically facilitate ‘P2P markets’, two-sided markets in which
neither side of the market is exclusively made up of professional companies (Einav et al.,
2016). P2P markets generally differ in many aspects from traditional markets. The
selling agents are usually not professionals producing a flexible quantity of goods for
sale, but private individuals selling excess capacities (Kiesling et al., 2017) like free labor
time, spare housing space, unused clothing, or excess electricity production. Moreover,
both buyers and sellers may be very heterogeneous in demand patterns and production

14



2.2. Smart Markets

capacities. Characteristics that make a certain domain attractive for peer production are
(Einav et al., 2016): variability in demand, low scalability of production, and existence of
accessible, well-functioning markets.

Peer-to-peer markets can be designed as mediated or as bilateral markets (Bichler and
Segev, 2001; Malinova and Park, 2016). In mediated markets, a central intermediary
collects demand and supply and determines the pricing. Purely bilateral peer-to-peer
markets, by contrast, are less organized, and trades are arranged directly between indi-
vidual buyers and sellers, which means that there is not a unique point of information
aggregation. Various combinations or hybrid models of mediated and bilateral market de-
signs can be implemented on digital platform (Tiwana, 2003). Airbnb for example hosts a
platform on which individuals can offer housing capacities, and users are free to determine
individual prices, but the monetary transaction runs through the platform (Lampinen and
Brown, 2017). Airbnb charges a fee on this transaction for the information aggregation,
the provision of the interface and the billing service. By contrast, Uber intervenes more
strongly in the participants’ interaction: It defines the prices for rides offered on their
platform using proprietary algorithms (Subramanian, 2017) and also takes care of ac-
counting and billing for the drivers. As opposed to centralized markets with mediating
resellers that aggregate supply from one side of the market, P2P markets often use auc-
tion mechanisms in which buyers and sellers post their respective willingness to pay or sell
for their supply and demand (Fontoura et al., 2005). Auctions allow for price discovery
in settings in which there is high uncertainty about preferences or volatility of prices by
letting buyers and sellers post their respective willingness to pay or sell for their supply
and demand (Lu et al., 2016). Auctions thus are appealing for markets with many small,
individual parties and iterative trading of similar items because auctions allow prices to
respond to market regimes (Ketter et al., 2012).

In a P2P market, information about offered goods and individuals’ preferences is dis-
persed over many individuals, so information aggregation is key for defining an efficient
market allocation (Einav et al., 2016). One intuitive possibility to aggregate information
is to centralize the process using a common communication platform, which is the ap-
proach companies like Uber take (Einav et al., 2016). The necessity to elicit and process
distributed information inherently creates transaction costs in form of search and process-
ing costs. From an economic perspective, transaction costs are the search, negotiation,
and enforcement costs involved in market exchange (Coase, 1937; Williamson, 1979), so
they include more than the settlement costs for processing a transaction – they include
the costs that were incurred to identify and build trust in the counterparty and to define
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and negotiate the transaction in question (Kiesling et al., 2017). In his seminal paper,
Coase (1937) argues that the search and structuring of information on the supply, quality,
and providers of goods on the market is too costly for individual agents, so they rely on
firms as intermediaries to aggregate relevant information based on which they can make a
buying decision. In smart markets without this type of intermediation, information must
thus be provided in an accessible and processable manner for individual participants to
make reasonable, possibly even automated, decisions.

2.3 Green IS
In recent years, it has become increasingly clear that information and communication

technology plays a crucial role in fostering sustainability (Seidel et al., 2017; vom Brocke
et al., 2012). As Watson et al. (2010) argue, information provision to enable and motivate
sustainable “economic and behaviorally driven solutions”, p.24, is vital to enable a more
efficient use of resources.

With this aim, Green IS has emerged as a new research area concerned with the ap-
plication of information systems to sustainability problems. It is a multi-disciplinary
research field tying together concepts known from research in the economics, psychology
and engineering disciplines. Malhotra et al. (2013) conducted a meta-review in which they
analyzed the existing literature on Green IS published in the top IS journals, and Gholami
et al. (2016) updated the review with literature published additionally until 2016.2 Both
meta-reviews find that existing Green IS literature published in top IS journals contains
mostly conceptual and analytical studies like reviews or case studies. In that, the au-
thors identify a lack of design-oriented and impact-oriented research that can really make
a difference in sustainability issues like reducing resource depletion and tackling climate
change. Figure 2.1 shows a further update of these two reviews, which was compiled
for this thesis. It contains the Green IS studies published since 2016, in addition to the
studies already identified in Malhotra et al. (2013) and Gholami et al. (2016).

The update for this dissertation was compiled using the same methodology used in Mal-
hotra et al. (2013) and Gholami et al. (2016), searching for the keywords ‘green’ and ‘envi-
ronmental sustainability’ in the IS senior scholars’ basket of eight journals.3 The identified

2Note that, obviously, there exist further articles that are published in other journals and still discuss
Green IS solutions, for instance in the managerial literature or in dedicated environmental journals,
e.g., Gottwalt et al. (2011); Hopf et al. (2017); Ketter et al. (2018); Orlov et al. (2020); Tiefenbeck
et al. (2018a, 2019)

3i.e. European Journal of Information Systems, Information Systems Journal, Information Systems
Research, Journal of AIS, Journal of Information Technology, Journal of MIS, Journal of Strategic
Information Systems, and MIS Quarterly

16



2.3. Green IS

articles were categorized as proposed by Malhotra et al. (2013), p.1266, in: “conceptualize
(review papers, conceptual frameworks, etc.); analyze (case studies, ethnographic analy-
ses, quantitative empirical analyses, hermeneutics, etc.); design oriented (design science);
or impact oriented (implementation and sustainability impacts using action research, in
vivo real-time approaches, etc.)”.

Figure 2.1: Updated literature review in the Green IS framework created by Malhotra et al.
(2013, in light green). The dark green box contains articles published since the
updated meta-review by Gholami et al. (2016, in green) . Existing research mostly
focuses on analyzing and designing Green IS solutions, neglecting the practical
design and impact of these.

In contrast to the strong focus on conceptual and analytic research that the earlier meta-
reviews found, the updated landscape shows that there has been a much stronger focus
on design-oriented research in the last five years. This is partially due to an EJIS special
issue, which contained three design science studies (Brandt et al., 2018; Kloör et al., 2018;
Seidel et al., 2018). However, the lack of impact-oriented research still persists.

In addition, the meta-reviews reveal that most existing work on energy-related topics
in the IS discipline focuses on the use of IS to foster sustainable business practices in
organizations (Malhotra et al., 2013; Watson et al., 2010). Just recently, few studies have
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started to follow a more consumer- rather than purely organization-centered approach,
e.g. Loock et al. (2013); Tim et al. (2018). However, keeping the human in the loop and
integrating individual, private consumers in the sustainability movement is just as crucial.
Residential households consume a large share of the worldwide total final energy consump-
tion (International Energy Agency, 2020a) and their individual consumption patterns and
sourcing preferences impact the sector as a whole. As the European Commission (2015,
p.1) argues: “We have to empower consumers through providing them with information,
choice and through creating flexibility to manage demand as well as supply.”.

2.4 Research Gaps
Reviewing the Green IS literature revealed that more impact-oriented empirical research

is needed for the IS discipline to truly contribute to a more sustainable society and to
tackling climate change. The present thesis aims at the empirical validation of consumer-
centric approaches for more sustainable resource use (an overview of the research studies
is provided in Figure 2.2). Leveraging the existing research on decision support systems
and smart markets (Sections 2.1 and 2.2), the articles in the following chapters address
individual consumption behavior by examining feedback interventions on the one hand,
and coordinating consumption patterns on the collective level using smart energy mar-
kets on the other. In that, the incentives consumers face in their resource consumption
and sourcing choices will be a recurring theme throughout this thesis. Moreover, the
tension between empowering conscious consumer choices by providing information ver-
sus automating decision processes using computational tools is discussed from different
perspectives. Based on the presented topics and literature streams, this thesis addresses
three research gaps in six research studies (Figure 2.2).
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Figure 2.2: Overview of the studies presented in this thesis within the Green IS framework by
Malhotra et al. (2013). The two major topics examined are feedback interventions
(light-green) and P2P energy markets (blue), aiming at practical impact of Green
IS with the human in the loop. Finally, Chapter 8 (green) combines research on
algorithmic decision support and smart markets.

The following paragraphs provide a short description of these research gaps and the
overarching research questions targeted in the subsequent articles (Chapters 3 – 8):

Real-Time Feedback & Incentives for Resource Conservation, Chapters 3 & 4

Technological advances enable the cost-effective provision of behavioral interventions to
large and diverse groups of people at virtually any place in real time (Saha and Mukherjee,
2003; Swan, 2012). In the sustainability context, previous studies have found that real-
time feedback on specific activities yields large and significant conservation effects in
resource consumption (Tiefenbeck et al., 2018a, 2016). Yet, as existing programs often
emphasize both financial and environmental benefits of energy savings, and consumers
usually incur monetary savings from reduced energy consumption, it is unclear which
motive primarily drives behavior change. Moreover, recent related work on feedback
indicates that participant recruitment in framed field experiments strongly influences the
motivation for and effects of feedback (Frederiks et al., 2016; Kelly and Knottenbelt,
2016). The lack of external validity of self-selected samples limits the generalizability of
reported results when it comes to estimating the savings effects that can be expected
among the general population (Allcott and Rogers, 2012; McKerracher and Torriti, 2013).
This is problematic as the efficacy of conservation measures among the broader public and
an understanding of motivational drivers for consumption behavior is crucial for policy
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makers.

The article presented in Chapter 3 addresses this issue by confronting an uninformed
sample of hotel guests with an IS-enabled feedback intervention on resource consumption.
The large-scale, natural field experiment takes place in six hotels (total of 265 rooms,
n = 19, 596 observations), to tackle the research question: Does real-time feedback induce
conservation effects even among a sample of uninformed individuals in the absence of
monetary incentives for resource conservation?

The article presented in Chapter 4 investigates self-set goals as further driver for behav-
ior change in response to feedback, examining the overarching question: Do individuals
define consumption goals when presented with real-time feedback on resource consump-
tion? In this second, large-scale field experiment, individuals in 413 residential house-
holds were presented with real-time feedback on resource consumption during showering.
Complementary surveys provide evidence on individuals’ self-set goals and their effects
on consumption behavior.

P2P Energy Markets in the Real World, Chapters 5 – 7

In the energy sector, P2P markets could provide an opportunity for smaller renewable
generators to participate in the energy market, and thus foster the integration of renewable
resources (Andoni et al., 2018; Burger et al., 2016; Mengelkamp et al., 2017a; Morstyn
et al., 2018; Ramchurn et al., 2012). Yet, while the integration of renewable energies and
distributed generation is an urgent practical problem, and the number of articles on the
topic has steeply grown over the past few years, existing studies on P2P energy markets
mostly remain on a conceptual or, at best, analytical level (Mengelkamp et al., 2017b) –
as is the case for a lot of Green IS research in general, see Section 2.3. This thesis tackles
this issue by examining P2P energy markets systematically on every level of the Green
IS framework (Malhotra et al., 2013), from the conceptualization through to an empirical
field experiment with a P2P energy market (see Figure 2.2).

The article presented in Chapter 5 investigates the characteristics of blockchain tech-
nology, to understand: What are the benefits and risks of implementing P2P markets on
a blockchain infrastructure? An analytical framework is created to characterize P2P mar-
kets based on economic theory and identify advantages and disadvantages of blockchain
technology in this context. Applied to the use case of a P2P energy market for renewable
energy, this framework condenses the specific features of the technology for this applica-
tion and derives implications for the market design.
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While market design theory provides a theoretical foundation (Bichler et al., 2010; Roth,
2008), there have been no empirical studies that examined the performance of P2P energy
markets in the real world. Chapter 6 and 7 present a unique one-year field experiment
with a P2P energy market in a local community in Switzerland: Chapter 6 describes the
concrete market design and examines the user value proposition of this P2P energy market
based on the data collected in the first three months of the experiment. This chapter
presents the design of the system and the impact in terms of energy allocation and prices
achieved to answer the question: Which value propositions do P2P markets create from
the user perspective and to what extent are they an effective measure to empower once
passive consumers to assume a more active role in these markets?

Empirical studies in various domains have shown that game-theoretical predictions on
bidding behavior or their underlying assumptions often fail in practice (Adomavicius et al.,
2009; Kahneman et al., 1990; Shogren et al., 2001). Chapter 7 presents a detailed analysis
of the prices bid for locally generated solar energy during the field experiment, examining
the questions: Does the bidding behavior observed in the field deviate from cost-minimizing
behavior? And how does it evolve over time? The bidding for solar energy observed
in the field and its evolution over time create novel insights on consumer preferences,
market outcomes and expected prices in P2P energy markets. The study further inquires
participants’ preferences for algorithmic decision support.

Multi-Agent Learning for Load Scheduling, Chapter 8

Smart energy markets promise to provide incentives to balance electricity supply and
demand in the grid, even incorporating the volatility of renewable and distributed energy
resources. Yet, these dynamic mechanisms are often too complex and energy demand
of larger appliances too abstract for individuals to adjust their consumption patterns
accordingly (Reddy and Veloso, 2011a; Tiefenbeck et al., 2018a; Vytelingum et al., 2010).
While the potential of decision support in form of providing feedback or recommendations
on consumption patterns is thus limited in this context, intelligent agents can be a useful
tool to manage the energy demand of appliances (semi-)autonomously (Ketter et al.,
2018). Recent studies show that agents employing reinforcement learning can control
electric loads to shift demand to times of renewable energy generation and to relieve
pressure off the grid infrastructure (Valogianni et al., 2014; Vázquez-Canteli and Nagy,
2019), see also Section 2.1.2. Yet, autonomous load control has been studied mostly for
individual agents with a focus on the employed machine learning techniques. So far, little
is known on the interaction of intelligent, learning agents on a collective level (Vázquez-
Canteli and Nagy, 2019).
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Chapter 8 first explains reinforcement learning as a technique and then presents early
research on reinforcement learning for load scheduling in a multi-agent setting: A simula-
tion study is summarized, in which an auction mechanism coordinates charging demand
for electric vehicles with very precise price signals for each consumer household (i.e.,
agent), tackling the question: Is multi-agent learning in a smart energy market effective
in reducing demand peaks while still respecting individual preferences? This study thus
connects the two research streams described in the previous sections, the application of
intelligent agents (Section 2.1.2) interacting within a smart market (Section 2.2).
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3. Article A) Real-Time Feedback
in the Absence of
Volunteer-Selection Bias and
Monetary Incentives

3.1 Motivation
Individuals’ choices and behavior are a key lever influencing energy consumption, along

with technical energy efficiency of the products and infrastructure used (Sovacool, 2014)).
To tackle environmental challenges, it is important to put people at the centre of energy
research, and to empirically validate how to promote sustainable decision-making among
individual consumers. Energy consumption is a low-involvement topic for most people;
many consumers are unaware of the energy efficiency of their homes and devices (Allcott
et al., 2012b), or underestimate the long-term benefits of potential investments into energy
efficiency upgrades (Allcott and Mullainathan, 2010).

As digitization advances, it becomes increasingly feasible to monitor the energy con-
sumption of households, specific appliances, or activities in real time (Tiefenbeck, 2017).
As a result, digitally enabled behavioral interventions can be deployed at population scale
and become more powerful through personalization and context specificity. Beyond that,
it becomes increasingly possible to systematically evaluate the impact of behavioral inter-
ventions with large and diverse samples of participants. The availability of high-resolution
consumption data enables more and more personalized and flexible interventions (Tiefen-
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beck, 2017). These developments may open up new avenues towards more powerful digital
strategies for behavior change.

Yet, while early feedback intervention studies in which people were provided with infor-
mation about their energy consumption reported large savings effects of 5-15% (Darby,
2006; Ehrhardt-Martinez et al., 2010) with small convenience samples, spurring the large-
scale roll-out of smart meters in many countries, those savings have not materialized in
larger field trials (Davis et al., 2013; Kelly and Knottenbelt, 2016; McKerracher and Tor-
riti, 2013). The most widespread form of feedback intervention are ‘home energy reports’:
periodic mailings that compare the electricity use of individual households with similar
homes in the neighbourhood, thus tapping into social norms (Allcott and Mullainathan,
2010). Deployed at population-level (households can opt out, but few do), those programs
typically yield electricity savings of 2% (Allcott et al., 2012a; Allcott and Mullainathan,
2010). Other programs use digital technologies, delivering feedback on electricity use via
web portals or in-home displays; studies with large opt-in samples report electricity sav-
ings in the range of 1-5% (Buchanan et al., 2015; Delmas et al., 2013; McKerracher and
Torriti, 2013; Schleich et al., 2013) – far less than the savings reported by earlier stud-
ies with smaller samples and a higher degree of involvement from study administrators
(Abrahamse et al., 2005; Ehrhardt-Martinez et al., 2010).

Early studies were subject to several methodological issues that compromised the in-
ternal and external validity of the results, overestimating the savings potential of these
feedback interventions (Davis et al., 2013; Delmas et al., 2013; McKerracher and Torriti,
2013). For instance, a meta-analysis of 156 field trials on energy conservation found sub-
stantially smaller savings effects of 1.99% for high-quality studies with adequate controls,
compared to studies without such controls (9.57%) (Delmas et al., 2013). Likewise, a
meta-analysis of 33 field trials on in-home displays found weighted mean conservation ef-
fects of 2.61% for high-quality (’class A’) studies using representative sampling techniques,
compared to 8.21% for ’class C’ studies characterized by small samples of volunteers and
a high degree of involvement from study administrators (McKerracher and Torriti, 2013).

Although randomized controlled trials eliminate most threats to the internal validity
of studies (Campbell, 1969; Haynes et al., 2012; Vine et al., 2014), the external validity
of the results may still be compromised if the people who choose to participate in a
study differ from the study’s intended population (Davis et al., 2013). The vast majority
of feedback programs on energy consumption use opt-in recruitment strategies, where
participants actively register for taking part in those programs (Davis et al., 2013; Kelly
and Knottenbelt, 2016). There is increasing evidence that individuals who sign up for
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energy efficiency studies or demand–side–management programs are indeed different from
the general population: Participation rates are higher amongst households with high
levels of education and income (Clark et al., 2003; Sulyma et al., 2008), amongst more
altruistic and environmentally concerned individuals (Clark et al., 2003), and amongst
those with a higher interest and expertise in energy topics than the general population
(Baladi et al., 1998; Kelly and Knottenbelt, 2016). Most behavioral programs do not even
provide information about the number of households initially contacted, and those that
do report participation rates in the range of 4-8% (Baladi et al., 1998; Ehrhardt-Martinez
et al., 2010; Herter et al., 2013; Lossin et al., 2016; Schleich et al., 2013). These numbers
have raised concerns that the results of opt-in studies may be largely biased by an already-
motivated sub-group of the general population (’energy enthusiasts’ or ’positive greens’),
who represent only a small fraction of the population (Behaviors Union, 2008; Kelly and
Knottenbelt, 2016). The response of these volunteers to the treatments may not be very
indicative for the response of the general population (volunteer–selection bias). On the one
hand, it is conceivable that those individuals are already more aware of effective energy
conservation measures and have already taken action prior to the intervention, making
it more difficult for them to realize additional savings in those studies (Tiefenbeck et al.,
2018a). On the other hand, it is likely that they are particularly open and receptive to
these interventions, thus inflating estimates of intervention effectiveness (Frederiks et al.,
2016).

One commonality that the majority of larger energy–feedback trials share is that they
provide aggregate consumption information at the household level. This makes it difficult
for the individual to establish a link between the current action and its impact on energy
consumption (Faruqui et al., 2010). The results of a recent randomized controlled field
trial suggests that real-time feedback on a specific, energy-intensive activity may induce
much larger savings (Tiefenbeck et al., 2018a). In a two-month study with an opt-in
sample of 697 Swiss households, the treatment group received real-time feedback on the
environmental impact of specific, energy-intensive activity (showering), while they could
directly take action. The intervention yielded large and stable energy savings of 22% on
the target behavior over the duration of the study. At the household level, this reduction
led to much larger conservation gains – also in absolute terms – than aggregate feedback
on energy use among the same pool of households. From a technology and cost per-
spective, the large-scale rollout of focused real-time interventions is increasingly feasible
(Tiefenbeck et al., 2018a). Yet, given the decline in the effect size and the resulting wave
of disillusionment once smart metering trials with aggregate feedback moved from small
convenience samples to a broader population, the key question is whether the promis-
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ing large savings effects of activity-specific real-time feedback will also materialize among
individuals who do not self-select into a research study.

Another controversial issue is that the communication strategies of most energy- conser-
vation programs focus on the financial benefits for the consumer as incentives for behavior
change (Allcott and Sweeney, 2017; German Federal Ministry for Economic Affairs and
Energy, 2016; Schwartz et al., 2015; United States Environmental Protection Agency,
2010). From a standard economics perspective, this approach makes sense, as rational
consumers should respond to monetary incentives in their resource-consumption decisions
(Goette et al., 2010; Karlan and List, 2007; Landry et al., 2006). Consequently, monetary
incentives play a key role in demand side management (Borenstein, 2005; Olmstead and
Stavins, 2009); they have the potential to break established consumer patterns and to
initiate the development of new patterns of behavior by making an alternative behavior
more attractive (Bamberg, 2006; Maki et al., 2016). However, in many contexts, financial
motives are not a viable strategy to promote energy conservation: employees, tenants
whose rents include utilities, or hotel guests do not pay the marginal cost of their energy
consumption. While the provision of large, persuasive monetary benefits does not scale
well to the wider population, monetary incentives may also crowd out the intrinsic mo-
tivation for pro-social behavior (Frey and Oberholzer-Gee, 1997; Sandel, 2012; Schwartz
et al., 2015) and generate adverse effects (Gneezy and Rustichini, 2000): As individuals
tend to internalize the logic of reward systems easily, monetary incentives can lead to the
deterioration of morals and reduce intrinsic motivation (Sandel, 2012; Thøgersen, 1994).

The present study evaluates whether the large savings effects from digital activity-
specific feedback (Tiefenbeck et al., 2018a) are also realistic in settings where a volunteer–
selection bias can be ruled out, and where study subjects have no financial incentives for
resource conservation. A smart device provides activity-specific feedback on resource
consumption to uninformed hotel guests during a habitual resource-intensive activity:
showering. The findings show that even in this setting, the digital behavioral interven-
tion creates large and significant conservation effects of 11.4% or 0.215 kWh per shower.
Given that most people take a daily shower, scaling up this kind of intervention could
produce substantial energy (and water) savings. More importantly, the results suggest
that activity-specific real-time feedback – and possibly other digital interventions – have
the potential to transform behavioral interventions into a highly relevant policy instru-
ment for fostering energy conservation and behavior change at population level (Allcott
and Mullainathan, 2010; Delmas et al., 2013; Karlin et al., 2015).
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3.2 Method

3.2.1 Experimental Setup

This article presents a natural field experiment which targets showering as an exam-
ple of a resource-intensive, low-involvement activity. Participants were not recruited as
individuals; instead, a collaboration with six hotels enabled the experiment to take place
in hotel rooms without the guests being informed about the experiment upfront. Shower
data was collected in batches after several weeks and without a time stamp, which guaran-
teed complete anonymity of the guests’ identity. The study was approved by the Internal
Review Board of the University of Bamberg. Similar natural field experiments in hotel
contexts have been conducted to investigate the impact of other behavioral interventions
such as commitment strategies (Baca-Motes et al., 2013) or social comparisons (Goldstein
et al., 2008; Schultz et al., 2008).

Overall, guests staying in 265 different hotel rooms took part in the experiment. Hotel
guests encountered smart shower meters as part of their rooms’ bathroom equipment. The
guests who stayed in rooms assigned to the treatment group received real-time feedback
on how much energy and water they consumed over the course of their shower (details
below). This activity-specific consumption feedback was displayed by a shower meter that
had previously been used in framed field experiments in private households (Tiefenbeck
et al., 2018a). Room assignment was randomized over floor levels and room categories to
minimize confounding factors from differences in infrastructure (e.g., water pressure) and
did not change throughout the study. Approximately 40% of the rooms were assigned
to the control group. They serve as reference group to calculate the treatment effect.
In those rooms, the same device was installed, but it displayed only water temperature.
While the temperature reading does not convey information about the resource use and
remains relatively static over the course of a shower, it indicates that the device measures
data, thus reducing potential differences between the treatment and control group due to
Hawthorne effects (Schwartz et al., 2013; Tiefenbeck, 2016).

As the smart shower meters are powered by the water flow via a small internal gener-
ator, the screen displaying the feedback switches on as soon as water flows through the
device and remains active for up to three minutes after the end of a shower. Thus, short
interruptions to the water flow (for instance while soaping) still result in a single shower
being recorded. Before the device switches off, it stores the final data in its internal
memory, which was read out at the end of the study.

The experiment took place in six different hotels in Switzerland, recruited based on ex-
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isting contacts. Data was collected between February and April 2016. Four of the hotels
focus on business customers and the other two on private tourists. The categorization
into business and tourism was defined based on information provided by the hotels’ man-
agement. Of course, it cannot be ruled out that business hotels also had guests on private
holidays, or that the tourism hotels hosted some business guests during the course of the
study. Depending on their size, the participating hotels allowed the installation of shower
meters in 10 to 96 of their guest rooms, respectively (see Table 3.1).

Hotel Category # Participating
Rooms

# Observations

Hotel 1 Business, four-star 96 7,923

Hotel 2 Business, four-star 67 6,123

Hotel 3 Business, four-star 43 2,789

Hotel 4 Business, three-star 11 1,494

Hotel 5 Tourism, four-star 42 814

Hotel 6 Tourism 10 453

Total 269 19,596

Table 3.1: Overview of the participating hotels.

Display content in the treatment group

Most feedback devices display a bundle of elements rather than a single numeric metric
in order to put the measurement data into context (Ableitner et al., 2017); frequently used
elements include historic comparisons, peer comparisons, analogies, and energy savings
tips. Likewise, the smart shower meters in rooms assigned to the treatment condition
displayed water consumption in litres (one decimal), energy use in (k)Wh, current water
temperature, a dynamic rating of the current energy-efficiency class (A-G) and a four-
stage animation of a polar bear standing on a melting ice floe with stage transitions at
predefined energy use thresholds. This is the same intervention with the same device and
display elements as the treatment group of the opt-in household sample in Tiefenbeck et al.
(2018a). The energy consumption displayed on the screen represents the lower bound of
the energy used (without losses), and is calculated using the standard engineering formula
for heat energy (Q = m ∗ cp ∗ ∆t, with heat energy Q, mass of water m, heat capacity
cp, and ∆t the difference between the measured water temperature of the ongoing shower
and the average cold-water temperature). In the analysis of energy savings, the same
average heating efficiency and losses as in Tiefenbeck et al. (2018a) are taken into account.
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The energy-efficiency class displayed was inspired by the (static) energy-efficiency class
scale indicated on household appliances in Europe. The smart shower meter dynamically
indicates the energy efficiency of the current shower based on the energy use in the ongoing
shower, starting in energy efficiency class A and progressing to B, C etc. at predefined
kWh-thresholds; the thresholds were defined based on the distribution of energy use per
shower in a pilot study. The four stages of the polar-bear animation are tied to the
energy-efficiency class, and change with the transitions from B to C, D to E and E to
F, respectively. While the polar bear may be an eye-catching and memorable display
element, it does not seem to drive savings effects. A related study specifically examined
the effect of variations of the design choices of the feedback elements; the results indicate
that if the polar bear animation makes any difference, it reduces rather than increases the
effectiveness of the display (Ableitner et al., 2017).

Figure 3.1: Smart shower meter. a) The smart shower meter for displaying real-time feedback
on resource consumption to hotel guests was installed between the showerhead and
shower hose; b) two snapshots of the treatment group’s display; c) control group
display.

3.2.2 Data

For each water extraction, the smart shower meter recorded energy and water con-
sumption, average water temperature, interruptions and the duration. In addition, in 168
of the rooms, the average flow rate per shower was also measured. Based on the data
stored on the device, energy consumption can be converted to water consumption and
vice versa. Given the high correlation between water and energy consumption per shower
(0.989), the choice of the unit of analysis does not change the results in any meaningful
way (Tiefenbeck et al., 2018a). This article focuses on resource consumption in units of
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energy in kWh. The raw data set included observations of 25,647 measured showers from
269 hotel rooms at six different hotels (Tiefenbeck et al., 2018b). In a first pre-processing
step, the data was cleaned by removing outliers from malfunctioning devices; to this end,
observations that deviated by over 3 standard deviations from the mean of the energy
consumed or water volume per shower were removed from the sample – i.e., only obser-
vations in the interval [(x− 3 ∗ sd), (x+ 3 ∗ sd)] were retained. Furthermore, data points
which most likely did not represent showers were removed – e.g. water extractions of vol-
umes below 6.5 litres and observations deviating over 2 standard deviations from average
temperature, which probably represent cleaning or other procedures. A member of the
research team accompanied cleaning personnel at one hotel for several hours to gather
information on cleaning practices to identify water extractions for cleaning. The specific
choice of 6.5 litres was based on this assessment; robustness checks with other threshold
values (5 litres or 10 litres) generated very similar results.

After this pre-processing step, the final data set included 19,596 showers from 265 hotel
rooms (11,384 observations in the treatment group and 8,212 in the control group). Since
the study is a natural field experiment with uninformed participants, there is no socio-
demographic data about the guests who stayed in the rooms with the smart shower meters
during the study.

3.2.3 Data analysis

The data points observed in the control group quantify the energy use per shower in the
participating hotels without feedback. A simple linear regression model (and a log-linear
transformation) estimates the treatment effect of the feedback intervention:

yi = β0 + β1xi + εi (3.1)

ln yi = β0 + β1xi + εi (3.2)

where the dependent variable yi is the energy consumption in shower i . The variable xi is
binary, indicating treatment (=1) or no treatment (=0), and thus coefficient β1 estimates
the treatment effect. The intercept β0 represents the control group mean in this model,
as xi = 0 for observations in the control group. The results of this analysis are reported
in Table 3.2, column 1, and in Table 3.3, column 1 with the natural logarithm of the
dependent variable.

For rooms in which the smart shower meter also measured the flow rate, an additional
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model that controls for the centred flow rate in litres fi is computed:

yi = β0 + β1xi + β2fi + εi (3.3)

ln yi = β0 + β1xi + β2fi + εi (3.4)

The results for Model (3.3), which includes the flow rate in the regression, are reported
in Table 3.2, column 2, and for Model (3.4) in Table 3.3, column 2, with log-linear trans-
formation. The average flow rate per shower could be measured only for 168 rooms and
8,824 observations, so only these data points are included in the estimation of these mod-
els. In both model specifications, standard errors were clustered at the room level to
account for infrastructural influences. Two-sided t-tests were conducted to test whether
the coefficients were significantly different from zero.

Finally, a fixed effects model with dummy variables for the individual hotels provides
more understanding of the effects of the six hotels with their different infrastructure and
setting. In this model, the constant represents the estimates for the largest hotel (Hotel
1) and dummy variables are included for the other hotels. Results are reported in Table
3.4.

yi = β0 + β1xi + α2h2i + α3h3i + α4h4i + α5h5i + α6h6i + εi (3.5)

3.3 Results
This article presents a natural field experiment in the context of an energy-intensive

habitual activity: showering. In a randomized controlled trial, guests at six Swiss hotels
(see Table 3.1) encountered a smart shower meter fitted to the shower in the bathroom
of their hotel room. The devices measured the energy and water consumption of every
shower taken, and displayed feedback on each ongoing shower in real time.

Hotel guests exposed to real-time feedback consumed significantly less energy per shower
than the control group (Figure 3.2). The treatment effect of the intervention is large and
significant: Guests in the treatment group used on average 0.215 kWh less energy per
shower than the control group mean of 1.883 kWh (Table 3.2, Column 1). This represents
a reduction of 11.4% (t(19,594)=-4.88, p<0.001). Controlling for flow rate (Column 2), the
effect is still highly significant, with a reduction of 0.188 kWh (t(8,822)=3.59, p<0.001), or
10.0%. To determine whether subsampling for observations in which flow rate is available
biases this results, a third model specification for this subsample is included without
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controlling for flow rate (Column 3). The treatment effect is significant in all three models
and large (ranging between 10.0% and 13.2%).

These results illustrate that activity-specific real-time feedback can be an efficient mea-
sure to foster energy conservation, not only among a volunteer sample, but also among a
random, uninformed sample of individuals.

Figure 3.2: Effect of consumption feedback. Group-wise distribution of energy use per shower
in hotel rooms with energy consumption feedback (treatment group) and the con-
trol group, shown as boxplots (n=19,596). The line in the middle of the box
represents the median, the diamond the mean energy use. The box spans the
first quartile to the third quartile, and the whiskers extend up to 1.5 times the
interquartile range from the top or bottom of the box.
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Energy use per shower [kWh]

Model (3.1) Model (3.3) Model (3.1’)

Consumption feedback (treatment=1,

control=0)

-0.215∗ ∗ ∗

(0.044)

-0.188∗ ∗ ∗

(0.050)

-0.252∗ ∗ ∗

(0.056)

Flow rate

(mean-centred, l/min)

- 0.098∗ ∗ ∗

(0.010)

-

Constant 1.884∗ ∗ ∗

(0.032)

1.881∗ ∗ ∗

(0.036)

1.902∗ ∗ ∗

(0.039)

Observations 19,596 8,824 8,824

R2 0.008 0.047 0.011

Table 3.2: Main treatment effect. Notes: Standard errors are in parentheses, adjusted for
clustering at the room level; *, ** and *** indicate significance at the 5%, 1% and
0.1% levels respectively.

3.4 Additional Analyses
A log-linear regression model provides an alternative functional form of the estimation.

The results (reported in Table 3.3) are consistent with the results of the non-transformed
version reported above and show a strong and significant treatment effect of the real-time
feedback. To further corroborate the reported results, the same models are run with
varying filter thresholds, reducing the data pre-processing to an absolute minimum, with
very similar results: Removing only observations deviating over five standard deviations
from mean energy or water consumption, and mean average temperature, yields a sample
of 25,490 out of the initial 25,647 observations. Running Model (3.1) on this sample yields
a slightly smaller, but still highly significant treatment effect of -0.182 kWh (standard error
of the mean 0.044, p<0.001). To get an understanding of the effects of the six hotels with
their different infrastructure and setting, a fixed effects model with dummy variables for
the individual hotels is computed. The results are presented in Figure 3.3 and Table 3.4
and show that the treatment effect is highly significant, albeit slightly smaller than in
Models (3.1) and (3.2). Only in Hotel 5, the energy use per shower differs significantly
from the other hotels, which may be due to different infrastructure (e.g., more low-flow
showerheads) or guest characteristics. Otherwise, the impact on energy use per shower
is very similar between the different hotels. Regardless of the model specification, the
treatment effect is large and significant; thus, non-self-selected participants also respond
to real-time feedback in the complete absence of monetary incentives.

Furthermore, a cost-benefit analysis for installing the metering device in the hotels’
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showers based on the treatment effect estimated in Model (3.1) provides insights on eco-
nomic effects. Tiefenbeck et al. (2018a) assumed a retail price of 40 CHF for the smart
shower meter and fuel cost for water heating of 0.128 CHF/kWh and water cost of 3.8
CHF/m3. Extrapolating from the treatment effect of 0.21 kWh and 3.56 litres per shower
and assume on average 1.2 showers per day per room, as observed during the period of
the present study, this results in an amortization time of 2.2 years.

Energy use per shower (log) [kWh]

Model (3.2) Model (3.4) Model (3.2’)

Consumption feedback (treatment=1,

control=0)

-0.124∗ ∗ ∗

(0.024)

-0.112∗ ∗ ∗

(0.028)

-0.148∗ ∗ ∗

(0.032)

Flow rate

(mean-centred, l/min)

- 0.056∗ ∗ ∗

(0.006)

-

Constant 0.413∗ ∗ ∗

(0.017)

0.410∗ ∗ ∗

(0.020)

0.422∗ ∗ ∗

(0.022)

Observations 19,596 8,824 8,824

R2 0.008 0.047 0.011

Table 3.3: Main treatment effect with log transformation of the dependent variable. Notes:
Standard errors are in parentheses, adjusted for clustering at the room level; ∗,
∗∗and ∗ ∗ ∗indicate significance at the 5%, 1% and 0.1% levels respectively.

Figure 3.3: Effect of consumption feedback in different hotels.
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Energy use per shower [kWh], Model (3.5)

Consumption feedback

(treatment=1, control=0)

-0.197∗ ∗ ∗

(0.041)

Hotel 2 0.037

(0.051)

Hotel 3 -0.072

(0.091)

Hotel 4 0.117

(0.090)

Hotel 5 -0.361 ∗ ∗ ∗

(0.058)

Hotel 6 -0.191

(0.127)

Constant (Hotel 1) 1.918∗ ∗ ∗

(0.045)

Observations 19,596

R2 0.021

Table 3.4: Treatment effect of consumption feedback and fixed effects for different hotels.
Notes: Standard errors are in parentheses, adjusted for clustering per room; *, **
and *** indicate significance at the 5%, 1% and 0.1% levels respectively

Comparisons with a volunteer-household sample

In line with the earlier findings on volunteer–selection bias (Davis et al., 2013; Kelly and
Knottenbelt, 2016; McKerracher and Torriti, 2013), the treatment effect in the previous
study with a volunteer-household sample (Tiefenbeck et al., 2018a, with 0.592 kWh, or
22%) was larger than the effect observed in the hotel setting (0.215 kWh, or 11.4%).
However, it is important to note that this study does not seek to quantify the self-selection
effect. The present hotel setting and the study context in (Tiefenbeck et al., 2018a) differ
in multiple aspects other than the two key variables of interest. First, this study examines
the behavioral response to feedback in the short term (one or a few nights spent per guest
at the hotel). Consequently, any attempt to compare the two studies would need to focus
on the short-term behavior of the household volunteer sample. Indeed, an analysis of the
first three showers only in the volunteer sample also yielded a smaller treatment effect
(17.8% or 0.46 kWh) than in the full two-month evaluation. Robustness checks using the
first two, four or five (instead of three) showers were conducted, with very similar results.
Second, individuals may react differently to feedback in their familiar environment at
home vs. in a hotel room, or guests may perceive the mere presence of the shower meter
as a signal that the hotel management cares about environmental issues and pays attention
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to how much energy and water their guests are using.

Another remarkable difference relates to participants’ energy use per shower in the
absence of feedback, measured in the respective control groups. Hotel guests in the control
group consumed 28% less (!) energy per shower, namely m = 1.88 kWh, sd = 1.25 kWh,
than the control group in the household setting, with a mean of m = 2.62 kWh, sd
= 1.67 kWh (Tiefenbeck et al., 2018a), t(20,236)=-11.1, p < 0.001. This difference is
noteworthy for two reasons. First, according to standard economic theory, one would
expect individuals to take longer showers at a hotel than at home, as they do pay a
marginal cost for every kWh of consumed energy. Yet, the results suggest that the hotel
guests did not exploit the zero marginal cost of consumption. The lower consumption in
the control group may be largely attributed to differences in the technical infrastructure
between the hotels and households: Lower flow rates in the hotel rooms are likely caused
by a higher share of water-saving showerheads installed in the hotel rooms. Second, this
difference may also partially explain the smaller treatment effect in the hotels. The study
in the household setting had revealed a strong positive interaction between the treatment
effect and baseline consumption: In the household study, a 1-kWh increase in baseline
consumption led to a 0.32 kWh increase in the savings effect (Tiefenbeck et al., 2018a).
To put it simply, it is far easier to cut a 20-minute shower short by a few minutes (and
kWh) than to realize substantial reductions on a one-minute shower. The control-group
mean of energy consumption per shower in the hotel sample is 1.88 kWh, compared to
2.62 kWh in the household sample (0.74 kWh difference). Interpreting the control group
mean as a proxy for baseline consumption, an increase in baseline consumption by 0.74
kWh would increase the savings effect by 0.24 kWh, which almost exactly matches the
difference in the observed savings effect. Thus, controlling for the lower consumption
at the hotels in the absence of feedback, the savings effects among the hotel guests and
among the volunteer household sample are in fact comparably large.

3.5 Discussion
In the case of aggregate feedback, most energy efficiency studies yielded much smaller

savings effects once those interventions were evaluated with large, non-self-selected sam-
ples (Davis et al., 2013; Kelly and Knottenbelt, 2016; McKerracher and Torriti, 2013). In
other words, those interventions resonated much less with broader, non-self-selected audi-
ences than with those individuals who had opted to participate. By contrast, with a highly
significant treatment effect of 11.4% among uninformed hotel guests, this study provides
empirical evidence that activity-specific real-time feedback can induce substantial behav-
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ior change among a broader population, even in a setting without monetary incentives for
resource conservation. Thus, providing real-time feedback on a specific energy-intensive
activity may not only generate large and persistent savings effects (Tiefenbeck et al.,
2018a) among the small percentage of the population who tend to opt into energy effi-
ciency studies (Baladi et al., 1998; Herter et al., 2013; Lossin et al., 2016; Schleich et al.,
2013); the results indicate that the intervention successfully induces substantial behavior
change and resource conservation among broader audiences.

Regarding the cost-effectiveness of the intervention in the hotel context studied, based
on the savings effects observed, the device pays itself off in a hotel within 2.2 years on
average, which is a very low amortization time as compared to other energy efficiency
investments (Allcott et al., 2012b; Schopfer et al., 2018). Thus, the results suggest that
even in settings where third parties pay for the marginal cost of resource consumption,
activity-specific feedback can be a cost-effective and scalable strategy to foster energy
conservation.

Despite all best efforts, there are limitations to this study. While effects for 100% of
the hotel guests are measured, these may not be representative of the general popula-
tion. Despite the diverse sample which includes different types of hotels, with different
comfort categories, room rates and primary target customers (business vs. tourism), and
in different locations, additional studies in other settings and other countries would be
valuable. Furthermore, despite the efforts to limit differences in potential Hawthorne ef-
fects by displaying real-time water temperature on the control group devices here, it is
conceivable that the treatment with real-time feedback on resource consumption draws
more attention to the fact that the smart shower meter measures data than does real-time
information on water temperature, conveying a stronger feeling of being monitored among
its users. Moreover, due to the short duration of guests’ hotel stays, this study is not able
to examine effects over time. While several studies (lasting between two and 16 months
(Tiefenbeck et al., 2018a, 2016)) document the mid-term effect stability of activity-specific
real-time feedback with opt-in samples, further research needs to investigate whether the
large savings effects also persist over time among non-self-selected participants.

This article provides robust empirical evidence that activity-specific real-time feedback
can induce substantial behavior change and resource conservation – even for a sample of
individuals who neither volunteered to participate in an environmental study, nor reaped
financial benefits from energy conservation. Given the debate on volunteer self-selection
(Davis et al., 2013) and the dwindling treatment effects of other feedback interventions
once they are deployed among broader samples (Buchanan et al., 2015; Davis et al., 2013;
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Kelly and Knottenbelt, 2016; McKerracher and Torriti, 2013), this empirical validation
is critical to provide solid recommendations for the design of future energy conservation
programs (Editorial, 2017). Information technology increasingly makes it possible to
monitor behavior in real time, to provide individuals with feedback on their ongoing
activities and to collect granular data on the real-world impact of interventions from
millions of individuals in the field (Tiefenbeck, 2017) at rapidly declining costs. The
results of this study highlight the potential of digital interventions to transform behavior
in energy-intensive activities, which can be implemented and monitored at the population
level.
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4. Article B) Self-Set Goals in
IS-Enabled Behavior Change

4.1 Introduction
Feedback (providing individuals with information regarding their actions/performance)

has proven to be successful in changing individual behavior, not only in work-related
contexts, but even in private contexts (Kluger and DeNisi, 1996; Moon and Sproull, 2008).
In particular for habitual or low-involvement activities, which individuals perform in their
everyday lives without extensive deliberation (Loock et al., 2013), studies in various areas
provide evidence that individuals respond to feedback, including feedback on physical
activity (Bravata et al., 2007) or energy consumption (Abrahamse et al., 2005; Allcott,
2011).

A vast body of literature in social psychology and behavioral economics has studied
personal motivation and behavior change, and integrating the principles and insights of
those fields can be beneficial to the IS discipline (Goes, 2013). One of the key mechanisms
governing behavior is goal setting. After a “35-year Odyssey” of empirical research on goal
setting, Locke and Latham (2002) attribute motivation for actions largely to task-related
goals. They argue that virtually “all action is the result of cognition and motivation”
(p. 707) and can thus be influenced by goal setting. Yet, the majority of their insights
is based on laboratory experiments, not on observable outcomes in the real world. This
article makes an attempt to link behavior change in the real world, induced by personal
IS, to the existing knowledge on goal-setting theory.

In many situations, individuals set goals by themselves: They strive to run a marathon
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in less than three hours (Allen et al., 2016), make an effort to attain a certain grade
(Levy and Baumgardner, 1991), or define a specific body weight they want to achieve or
maintain (Lupton, 2014). Goals can also be successful if assigned by an external party
like a principal (Latham and Locke, 1991), or a software artefact (McCalley and Midden,
2002). While the motivational effect of assigned goals has been observed in many different
settings, they can also be rejected or even backfire if applied in a wrong manner (Locke and
Latham, 2002; Ordóñez et al., 2009). Several scholars emphasize that assigned goals can
create unexpected, adverse reactions if they are not suited for the individual and suggest
that future research should test goal-setting theory not only in the lab, but especially in
natural settings (Loock et al., 2013; Lupton, 2014; Ordóñez et al., 2009). One difficulty
with assigning goals is how to define appropriate ones. Given individuals’ heterogeneous
preferences and living contexts, they may themselves be best qualified to judge their
specific situations and capabilities (Hinsz et al., 1997). Moreover, although externally
assigned goals have proven to be efficient in organizational contexts (Locke and Latham
2002), they may be perceived as intrusive in private activities such as consumer choice
(Camerer et al., 2003).

This raises the question whether in the design of feedback technologies it is necessary to
specify and communicate goals (e.g., 10,000 steps per day), or whether users will formulate
adequate goals by themselves even for habitual activities when exposed to feedback on
their behavior. More generally: Does IS-enabled feedback prompt individuals to self-set
goals for the measured behavior by themselves and if so, is there a relationship between the
difficulty of the self-set goals and the measured behavior?

To answer this question, this study seeks to understand the goal-setting behavior of in-
dividuals in response to personalized IS-enabled real-time feedback on a habitual activity.
In a framed field experiment, the goal-setting behavior of 413 participating households is
examined to see whether individuals set goals by themselves; how ambitious these goals
are; and what effect they have. To that end, individuals receive feedback on residential
energy consumption, more precisely a personal IS displays real-time feedback on the re-
source consumption of the ongoing shower. That particular activity was chosen for four
reasons: a) showering is an energy-intensive daily behavior that accounts for 12-16% of
residential energy use (Bertrand et al., 2017), b) the amount of energy and water con-
sumed is largely influenced by the individual’s daily decision-making (unlike the energy
use of most appliances, which is largely determined by technical characteristics), c) it is
a low-involvement activity (Loock et al., 2013), and d) it is an activity (typically) carried
out by an individual in isolation who is not being monitored by others and which is not
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subject to clear social norms (e.g., how many liters of water or kWh of energy would be
considered as a ‘normal’ shower).

The article is structured as follows: The first section presents related literature on
IS-enabled feedback interventions and on goal-setting theory along with the hypotheses
which will be examined, followed by a description of the experimental design and results.
The article closes with a discussion of these results and implications for future research.

4.2 Related Work

4.2.1 Feedback and Personal Information Systems

Feedback interventions have proven to successfully induce behavior change with and
without the use of personal IS in a variety of different applications. In the context of
resource consumption, Allcott (2011) analyzes a series of programs in which households
receive periodic Home Energy Reports that compare their electricity consumption to sim-
ilar homes in the neighborhood. The author shows that the program cost (dollars per
kWh saved) is substantially lower than the marginal cost of electricity production, which
implies that these programs yield net benefits, not costs. Abrahamse et al. (2005) conduct
a meta-study of over thirty experiments on different behavioral interventions for resource
conservation. They find that feedback is effective in most cases, yielding resource savings
of 2-28%, depending on the setting, yet the drivers of the observed behavior change are
unclear. Other applications of feedback interventions include health, nutrition and trans-
portation behavior. For instance, Vandelanotte et al. (2005) and Bravata et al. (2007)
find that feedback improves nutrition behavior and physical activity and is most effec-
tive if the information is personalized. Froehlich et al. (2009) create an application that
provides visual feedback on transportation behavior and find evidence that participants’
subsequent transportation behavior is more eco-friendly.

While all of the aforementioned studies report positive results for feedback interven-
tions, the observed effect sizes vary with the target activity, the general setting, and the
way feedback is presented (Kluger and DeNisi, 1996). A key finding is that in particular
for habitual activities, the more closely (in time and place) the feedback is linked to a par-
ticular target activity, the better (Ehrhardt-Martinez et al., 2010; Froehlich et al., 2010).
This emphasizes the importance of the medium by which the intervention is provided;
ideally, it should be accessible during the targeted activity and process information in
real time (Tiefenbeck, 2016). Personal IS increasingly make this possible at population
level: With the ubiquity of smartphones, sensors, and networks, IS-enabled behavioral
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interventions offer more and more possibilities to deliver personalized feedback (Froehlich
et al., 2010; Hermsen et al., 2016).

Still, although many self-tracking devices aim at enabling the user to change her behav-
ior in a desired way (Sjoeklint et al., 2015), a profound understanding of the motivations
and effects on the user is missing (Gimpel et al., 2013). Most of the feedback studies pre-
sented above do not discuss the motivation or personal incentives for users to change their
behavior once they are presented with IS-enabled feedback. Based on a meta-study on
digital technologies for disrupting and changing behavior, Hermsen et al. (2016) conclude
that more research should study the factors that drive and sustain behavioral effects in
order to design more effective IS. Sjoeklint et al. (2015) argue that personal IS providing
personalized feedback can represent an “instrument supporting the user’s willpower to
reach a specific daily goal”, p. 4. They conduct an explorative study on wearable devices
based on semi-structured interviews and identify activity-specific goals, partly assigned
and partly self-set, as motivators to change undesired habits. Yet, several interview par-
ticipants stated that that they used the feedback merely to learn about themselves and
not to actually change their behavior, or that the goals assigned by the devices were
inadequate or undesirable.

4.2.2 Goal Setting

The impact of goals on performance has been studied by psychologists and behavioral
economists for decades. The founding fathers of the empirically based ‘goal-setting theory’
that integrates insights from both disciplines are Edwin Locke and Gary Latham. While
they have focused on goals and performance in work-related tasks (Locke and Latham
2002), their studies are so extensive that many findings can be transferred to private
settings (Locke, 1996). Goals can be defined “as the object or aim of an action” (Locke,
1996, p.181), or as “internal standards that specify the conditional requirements for pos-
itive self-evaluation, which provides incentive for action” (Williams et al., 2000, p. 161).
According to goal-setting theory, goals regulate behavior by representing a conscious ref-
erence point that guides subsequent activities (Locke and Latham, 2006). They serve
as motivators because the achievement of a goal leads to satisfaction of the individual,
whereas goal failure leads to dissatisfaction (Locke, 1996). Outcomes of an activity are
thus evaluated as gains or losses against that reference point. In behavioral economics, a
reference point can be formally represented as a jump or discontinuity in an individual’s
utility function; or as kink or discontinuity in the first or the second derivative of the
utility function, depending on the model (Allen et al., 2016; Kahneman, 1992; Kahneman
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and Tversky, 1979). This implies that satisfaction and dissatisfaction are typically per-
ceived unsymmetrically: Failing a goal has a qualitatively stronger effect than achieving
it. This gives theoretical support for the motivational power of goals, as it disproportion-
ally increases the gain from achieving a goal compared to just missing it. In psychological
terminology, the interpretation as reference point translates to: Goals involve discrepancy
production (‘feedforward control’, i.e. initial motivation by setting goals above current
levels) and discrepancy reduction (‘feedback control’, i.e. adjustments of effort to achieve
desired goal) (Williams et al., 2000). For this mechanism to work, explicit feedback show-
ing progress on task-performance is crucial (Kluger and DeNisi, 1996; Locke, 1996).

Key moderators of goal setting are thus task complexity, situational constraints, com-
mitment to a goal and task-related feedback (Locke and Latham, 2006). In many daily
activities in private settings, task complexity is low and situational constraints often can-
not be circumvented for practical reasons. As there is no external control mechanism
to incite commitment, the individual’s own commitment to the goal is critical. Gain-
ing this commitment is easier for self-set goals (Hinsz et al., 1997; Locke, 1996), as they
have been chosen willingly and consciously by the individual. Moreover, self-set goals
do not run the risk of being rejected for being too difficult. Ordóñez et al. (2009) even
suggest that assigned goals can ‘go wild’ and create unexpected adverse reactions, for
example if the same goal is applied to a set of different people and does not match the
individual situation. This may explain why self-set goals have been more successful than
assigned ones in some experiments involving private activities: In a series of lab exper-
iments, McCalley and Midden (2002) provided feedback to n=100 participants on the
energy consumption of simulated washing cycles. The authors find that participants who
were explicitly prompted to self-set a goal by typing it into a user interface consumed
less energy than both, participants who were not asked to set a goal and those who were
assigned a fixed one. In a field study with 1,791 participants, Loock et al. (2013) presented
subjects with smart meter readings of their household energy consumption. While some
(randomly assigned) subjects were asked to freely set a goal for their energy consump-
tion, others received a predefined default goal. The results indicate that default goals can
have positive and negative influence on individual behavior, depending on goal difficulty;
medium-level default goals are most effective, whereas too low or too high defaults are
outperformed by self-set goals. In addition to being efficient, self-set goals do not have
to be derived in a complicated manner, but are often chosen by the individual by herself
(Locke, 1996, p.120): “When provided with feedback on their own performance or that of
others, people often spontaneously set goals to improve over their previous best or beat
the performance of others simply as a way of challenging themselves [...] The effect of
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performance feedback (knowledge of score) depends on the goals set in response to it.”
However, Locke (1996) states that one possible downfall is that individuals who self-set
goals may choose less ambitious, easier-to-reach goals than goals that are assigned by a
third party.

4.2.3 Research Gap & Hypotheses Development

Although goals have been shown to be important motivators of human behavior, the
role of implicit, self-set goals as motivators for behavior change is not well understood
yet, especially in the context of IS-enabled feedback that enables constant self-tracking
(Sjoeklint et al., 2015). It is not clear whether personal IS can best support the desired
behavior change by deriving and displaying explicit goals for the user or whether individ-
uals will set a goal by themselves that is ‘adequate’ (ambitious, but achievable) in their
specific situation in response to IS-enabled feedback. If the latter is the case, then IS
should not assign explicit goals, to avoid adverse reactions (e.g., of individuals rejecting
an assigned goal they perceive as too ambitious or as too easy to reach in their particular
situation). Therefore, this article aims to understand which role self-set goals play in
the behavior change triggered by activity-specific real-time feedback provided by personal
IS. More precisely, five hypotheses are developed to understand whether individuals set
goals by themselves (H1), whether self-set goals are ambitious (H2, H3), and what is the
relationship between self-set goals and actual energy savings (H4, H5). The hypotheses
apply knowledge from goal-setting theory and previous studies to IS-enabled behavioral
interventions. The study is placed in the context of a low-involvement behavior which
users typically are not highly interested in. Individuals receive real-time feedback on their
resource consumption (water and energy) in the shower. First, the study investigates
whether individuals choose a goal by themselves without being nudged to when presented
with consumption feedback, as suggested by Locke (1996) and Hermsen et al. (2016):

H1: When exposed to real-time feedback on their resource consumption, individuals are
likely to choose a conservation goal by themselves.

After having established whether individuals choose self-set goals when exposed to real-
time feedback on their resource consumption, the difficulty of those goals are examined. As
described earlier, self-set goals have several advantages over externally set goals: They do
not have to be derived by a second party for every individual and they do not run the risk
of being rejected for being inappropriate or too difficult. Yet, the disadvantage commonly
brought forward is that self-set goals will not be ambitious enough, as Locke (1996) argues
that individuals will choose their self-set goals below what they could actually reach. Since
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goal failure creates dissatisfaction, a tendency to choose goals which are easily achievable
seems intuitive. Based on this, the hypothesis that individuals will not choose ambitious
goals is tested. As it is hard to define what is ‘ambitious’ in the present context, goal
attainment is interpreted as a (negative) proxy for goal difficulty:

H2: Individuals’ self-set conservation goals are not too ambitious, i.e. they reach them
most of the time.

As several studies discuss whether gender plays a role in goal-directed behavior, differ-
ences among genders are examined. For instance, Venkatesh et al. (2000b) present several
arguments suggesting that men are more motivated by needs of achievement and more
directed towards goals than women. Likewise, Levy and Baumgardner (1991) show in an
experimental study that men choose more ambitious goals than women. Based on this
literature, H3 reads:

H3: Men choose more ambitious conservation goals than women.

Finally and most importantly, this study examines the relationship between goal setting
and resource conservation (i.e. task performance in the present setting). The theoretical
explanations for the motivational effect of goals presented earlier (Allen et al., 2016;
Locke, 1996; Locke and Latham, 2002; Sjoeklint et al., 2015), and empirical studies on the
provision of goals for resource conservation (Loock et al., 2013; McCalley and Midden,
2002) suggest the hypothesis:

H4: Individuals who set a conservation goal for themselves consume less resources dur-
ing the intervention phase than those who did not.

Locke and Latham (2002) further claim that the higher the goal, the better the individ-
ual’s task performance. One of the core findings of their work is that there exists a positive
linear relationship between goal difficulty and performance. Against this backdrop, this
study analyzes the relationship between goal difficulty and resource conservation:

H5: There is a positive linear relationship between goal difficulty and resource conser-
vation.

45



4.3. Methodology

4.3 Methodology

4.3.1 Experimental Setup

This paper presents a two-month framed field experiment which targeted showering as a
resource-intensive, low-involvement activity. Participants received a smart shower meter,
which displayed real-time feedback on their energy and water in the ongoing shower (see
Figure 3.1). Participants installed the IS artifact themselves (simple process, no tools re-
quired). The device recorded energy and water consumption, average water temperature,
interruptions, and duration of each shower. To collect data on the participants’ behav-
ior in the absence of feedback, all devices displayed only water temperature during the
first ten showers. That period serves as baseline measurement; afterwards, the feedback
intervention started. From then on, the device of two thirds of the households displayed
energy and water consumption in real time (see Figure 3.1). A third of the households
was assigned to the control group, which served as a reference group: Their shower meter
continued to display only water temperature. Participants were recruited among a sample
of 5,919 residential customers of the Swiss utility company ewz who had participated in an
electricity smart metering study. Only one- and two-person households were admitted due
to technical constraints in the storage capacity of the device. Individuals needed to opt in
by filling out an online survey and agree to share their shower data with the researchers.
Among the 1,348 households who registered, 700 were chosen on a first-come-first-served
basis due to cost and logistics limitations. For further details on the experimental set-up
and the randomization checks of the sample of participants, please refer to (Tiefenbeck
et al., 2018a).

In a pre-experimental survey, participants disclosed socio-demographic information and
answered several questions on personality and environmental attitudes. The questions on
individuals’ personality factors were based on the HEXACO Personality Inventory (Lee
and Ashton, 2004) and the questions on environmental attitudes had the same wording
and scales as the nationally representative Swiss Environmental Survey (Diekmann et al.,
2009). Comparisons to Swiss national statistics and a representative Swiss environmental
survey (Diekmann et al., 2009) indicate that the present sample is younger, more ur-
ban, and more educated, but slightly less (!) environmentally friendly than an average
Swiss person. Among other questions in the pre-experimental survey, participants were
asked how often they compared their own performance with others individuals’ (five-point
Likert-scale, 1 = never, 5 = often) and whether they acted environmentally friendly even
if this incurred costs and efforts (1 = do not agree, 5 = agree). After the experiment,
participants were asked to fill out a survey that included Likert scales assessing their per-
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ception of the shower meter and on their goal-setting behavior. The question regarding
goal setting was formulated as follows: “The smart shower meter displays information on
your water and energy consumption since the baseline phase has ended. Have you set
yourself a goal per shower that you try not to exceed (e.g., max. water volume or energy
efficiency class)?” The question could by answered by checking yes or now. Those who
responded yes were asked to specify that goal in a text box. A free text box was chosen
in order not to prime participants on particular numbers or metrics.

4.3.2 Data

A complete data set (both surveys and shower data for the entire study duration) is
available for 621 households. Among these, 208 had been assigned to the control group
and 413 to the treatment group. After the experiment, participants in the treatment group
received the post-experimental survey with the question on their goal-setting behavior.
The analyses will thus focus on these 413 households.

Since participants indicated their goal in a free text box, some of them stated multiple
goals or a range (e.g., “30-50 liters”). For the analyses, ranges were converted to the mean
value, (40 liters in the example), except for the analysis presented in Figure 4.1, for which
the upper and the lower bound of those responses were weighted with 0.5 each (otherwise
participants who indicated a range would be counted twice). As most of the participants
stated a goal related to water consumption in liters, the following analyses will focus on
water consumption in liters rather than on energy in kWh in the following analyses. In this
study, energy consumption can be easily converted to water consumption and vice versa
based on the data stored on the device. Given the high correlation between water and
energy consumption per shower (0.989), the choice of the unit of analysis does not change
the results in any meaningful way. If a participant stated multiple different types of goals,
like “below 39 °C and below 50 liters” (which happened in 16 cases), the water volume-
related goal or the one that was easiest to convert to water volume was chosen (to have
one common metric). Whereas the shower data recorded in two-person households include
observations from both household members, the survey was completed by one person per
household. As a result, answers to questions on attitudes or goals set thus solely reflect
the respondent’s perspective. Therefore, for data consistency, 2-person households were
excluded in the main numerical analyses that involve the shower measurement data, i.e.
for the evaluations of hypotheses H2, H4, and H5. The remaining subsample includes
196 individuals and 10,878 measured data points. (For the sake of completeness and
as additional sensitivity analysis, all analyses were also conducted with the full sample
including the 2-person households; the results are very similar.)
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4.4 Results
The real-time feedback provided by the smart shower meters results in substantial be-

havior change and resource savings. As soon as the device starts displaying feedback from
shower 11 on, resource consumption per shower in the treatment group drops consider-
ably. Overall, participants in the treatment groups reduce their water consumption per
shower by 9.5 liters compared to the control group. This amounts to 22% savings both
in water and energy consumption; the savings effects are stable over the duration of the
study. For a detailed description of the analysis and of the effects induced on consumption
behavior, please see Tiefenbeck et al. (2018a). While that article focused on the savings
effects of the intervention, their stability, and the cost-effectiveness of the intervention, the
present article digs deeper into the underlying psychological mechanisms. In particular,
this article assesses whether the large savings were mediated by the participants setting
goals for themselves in response to the feedback.

Survey statements are examined to answer the first hypothesis (H1), whether the partic-
ipants set themselves a goal regarding their maximum resource consumption per shower in
response to the real-time feedback. (Note that they had not been exhorted or encouraged
to do so at any point of the study.) The post-experimental survey shows that, indeed,
221 of the 413 questionnaire participants confirm that they have set a goal by themselves,
which implies: When exposed to real-time feed-back on their resource consumption, many
individuals (54%) in the sample did indeed set a conservation goal by themselves. To get
a better understanding of the goals individuals chose, Figure 4.1 depicts the absolute
frequency of goals stated as maximum water consumption goal in liters. This subset in-
cludes 154 surveys. As the figure illustrates, most participants specified round numbers
(i.e., multiples of tens), which is in line with existing studies on self-set goals (Allen et al.,
2016). A total of 94 of the 154 liter-goals (61%) were round numbers; overall, 127 goals
(83%) were multiples of five, whereas other numbers were hardly ever chosen. The most
popular goal was 30 liters, which was chosen by 23 participants.
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Figure 4.1: Self-set goals related to water consumption. Participants exhibit a clear propensity
for choosing multiples of 10.

The aim of H2 was to examine how ambitious the self-set goals were. The results
show that most individuals chose a goal well below their average water consumption
in the baseline period. This is consistent with other studies on resource consumption
behavior, which show that individuals try to conserve resources if presented with relevant
information (Abrahamse et al., 2005; Allcott, 2011). Yet, the relative difficulty of the
chosen goals is surprising: On average, people chose a goal 12.1 liters (sd 21.2) below
their average baseline consumption, which corresponds to a 20.1% reduction in their
water consumption (sd 26.7). Note that the high standard deviation indicates that the
goals vary substantially between individuals and that goals were not defined as percentage
savings relative to the baseline by the participants, but as absolute value or range they
tried not to exceed. Figure 4.2 depicts to what extent the participants who stated having
set themselves a maximum consumption goal reached that goal. The histogram displays
deviations between their self-set goal and their actual resource use in the intervention
phase (when the feedback was visible). The subset of observations from those individuals
includes 10,878 showers. A negative deviation from zero indicates that the individual used
less water than specified in the individual goal, i.e. the individual met her conservation
goal. The deviations are roughly normally distributed around the zero marker. The
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interpretation of this distribution is that the self-set goals serve as reference points for the
users.

Figure 4.2: Distribution of deviations from self-set goal. The bulging around (in particular just
below) 0 indicates that self-set goals serve as reference points for the individuals.

Still, remarkably, participants on average fail their goal by 2.7 liters (sd 25.3). Thus,
the prediction of H2 that individuals set themselves unambitious goals which they can
achieve easily is not confirmed. This is in clear contradiction to the literature on goal-
setting theory in which lacking goal difficulty is used as a key argument why goals should
be assigned externally, as opposed to encouraging self-set goals. Possible explanations are
that situational constraints did not allow for the desired, ambitious conservation, or that
the self-set goals were viewed as rough guide rather than as strict limits. For robustness,
additional analyses reconfirmed that the fact that the average shower does not meet
the goal is not biased by outliers: The median deviation is 1 liter above the individual
goal and participants fail their self-set goals in 50.2% of the showers. Regarding H3
(assessing gender differences in goal difficulty), men on average set goals 22.4% below their
baseline water consumption, whereas the average goal reported by women was 16.8% below
their baseline water consumption. This difference, however, is not statistically significant
(t(90)=-0.67, p=0.50), so the hypothesis that men choose more ambitious goals cannot be
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confirmed. Moreover, these numbers are confounded by the fact that men in this sample
started with a considerably higher average baseline consumption, 48.4 liters (sd 34.6) than
women, 40.3 liters (sd 22.5). Previous analyses (Tiefenbeck et al., 2018a) show that there
is a strong positive interaction between resource conservation and baseline consumption
– simply put, it is easier for high consumers to conserve resources.

To deduct practical implications for the design of IS-enabled behavioral interventions,
the crucial question is how self-set goals actually affect behavioral outcomes. In other
words, did participants who set themselves a goal use less resources than those who did
not? A linear regression model (4.1) is used to test the relationship between self-set
goals and resource conservation in this sample. Regression analysis is a very established
technique in behavioral research (Loock et al., 2013; Moon and Sproull, 2008; Venkatesh
et al., 2000a). In this linear regression, dependent variable yi is water consumption per
shower of household i in the intervention period. The independent variable x1i is a binary
variable indicating whether individual i reported a self-set goal (=1) or not (=0). The
model controls for baseline consumption xbi, which is the average water use of household
i during the first ten showers.

yi = β1x1i + βbxbi + εi (4.1)

The first column in Table 4.1 shows the regression results for all treatment participants in
1-person households. The average water consumption per shower during the intervention
phase was significantly (4.8 liters per shower) lower among those individuals who self-set
a goal. Thus, H4 is confirmed. The numbers also reveal the strong correlation between
baseline consumption and savings effects. Mean water consumption during the interven-
tion phase was 37.6 liters (sd 29.2) for participants who chose a goal as opposed to 40.8
liters (sd 40.6) for those who did not. Thus, not only are participants likely to set a goal
by themselves, but those who do consume significantly less resources than those who do
not (H4).

To evaluate the results for H5, the relationship between goal difficulty and conservation,
a second regression is conducted. The dependent variable, yi, in Model (4.2) is again
water consumption per shower for household i, but goal difficulty in liters now serves
as independent variable x2i instead of the binary value of having set a goal or not. As
described above, goal difficulty x2i is defined, for the households who chose a goal, by the
difference between stated goal and measured baseline consumption in liters.

yi = β2x2i + βbxbi + εi (4.2)
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The results for Model (4.2) can be found in the second column of Table 4.1. Coefficient
β2 = −0.56 is negative and highly significant, which implies that the more ambitious a goal
is, the more individuals conserve on average (Table 4.1, Column 2). Each liter the self-
set goal was below the individual baseline consumption yields 0.56 liters in average water
conservation per shower. This means that higher goal difficulty increased the conservation
effect, which confirms H5. These findings are in line with one of the key propositions of
Locke and Latham (2002), who argue that there is a positive linear relationship between
goal difficulty and task performance. Analyses of the consumption medians (instead of
means) that were conducted as robustness checks provide very similar results.

Note that the findings do not establish a causal relationship in H4 – based on the
regression results, it is not possible to say whether self-set goals cause the savings, or
whether the kind of individuals who set themselves a goal are also the ones who conserve
more resources. Therefore, confounding effects were assessed to evaluate whether indi-
viduals who are generally more concerned about the environment were more likely to set
themselves a conservation goal and to conserve more resources. If that were the case,
then goal setting might be merely another manifestation of interest in the topic, rather
than serve as mediator for behavior change. To evaluate whether goal-setting behavior
can be explained by other latent variables collected, like individuals’ personality traits,
their tendency to compare themselves to others, or environmental awareness, the results
of the pre-experimental survey served as input to estimate Model (4.3). Column 3 in
Table 4.1 contains the results of a third regression which included the same variables as
in Model (4.1) in addition to control variables for the self-reported environmental aware-
ness, tendency to compare oneself to others, and the six HEXACO-dimensions (honesty,
emotionality, extraversion, agreeableness, conscientiousness, openness). The results do
not detect any significant influence of these variables on resource conservation, whereas
self-set goals and baseline consumption are still highly significant in this extended model.
In particular, the estimates for goal-setting are barely affected by environmental attitudes
and personality traits. While confounding effects of other, unobserved variables on the
correlation of resource savings and goal setting cannot be ruled out, these results are
indicative of self-set goals acting as mediators of resource conservation.
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Model (4.1) Model (4.2) Model (4.3)

Goal set?

(0=no, 1=yes)

-4.75∗∗

(1.73)

- -5.11∗

(1.99)

Goal difficulty

(i.e. baseline - goal [L])

- -0.56∗ ∗ ∗

(0.16)

-

Baseline consumption [L] 0.72∗ ∗ ∗

(0.06)

0.86∗ ∗ ∗

(0.07)

0.68∗ ∗ ∗

(0.09)

Environmental awareness - - -3.13

(1.90)

Tendency to compare one-self to others - - -0.34

(0.94)

Honesty - - -0.21

(1.76)

Emotionality - - 3.16

(1.85)

Extraversion - - -0.28

(1.67)

Agreeableness - - -0.46

(1.48)

Conscentiousness - - -0.34

(1.74)

Openness - - -0.97

(1.43)

Constant 8.48∗∗

(2.58)

-3.71

(2.02)

19.08

(14.07)

Observations 196 90 153

R2 0.76 0.76 0.76

Table 4.1: Relationship between goal setting (Models (4.1) and (4.3)) / goal difficulty (Model
(4.2)) and water consumption in liters. Standard errors are in parentheses, adjusted
for clustering at the household level. (∗, ∗∗, and∗ ∗ ∗indicate significance at the
5%, 1%, and <0.1% levels, respectively.)
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4.5 Discussion & Conclusion

4.5.1 Discussion

This paper evaluates goal-setting behavior in response to IS-enabled real-time feedback
on the individual’s resource consumption in the ongoing shower. As a first result, the
majority (54%) of individuals set a conservation goal by themselves without being exhorted
or encouraged to do so in any way. While goal-directed behavior has been studied in the
context of various high-involvement activities (Allen et al., 2016; Levy and Baumgardner,
1991; Locke and Latham, 2002), it is remarkable that it also occurs in the context of a
low-involvement activity like showering and with respect to the consumption of the low-
involvement good energy, which individuals typically show little interest in (Attari, 2010).
It is important to note that there was no mentioning of the study investigating personal
motivation or goal-setting behavior at any previous point in the study, nor any exhortation
that participants should set themselves a goal – they simply did so by themselves in
response to the feedback intervention. Moreover, there is no evidence for significant
influence of any of the personality factors that were assessed in the pre-experimental
survey on goal setting in analyses that were conducted for completeness.

The results show that individuals chose ambitious conservation goals which they were
not able to meet on many occasions. Based on the results for H2, the concern raised by
Locke (1996) that individuals may not choose ambitious goals by themselves to avoid the
negative sensations associated with failure, does not seem warranted in the present setting.
Moreover, since goal difficulty has a positive impact on conservation in this study (Table
4.1), goal failure for an ambitious goal can still imply substantial resource conservation, i.e.
success of the intervention. Future research should thus investigate whether motivating
individuals to choose even more ambitious goals can further increase the effects.

The results on H4 indicate that individuals who self-set a goal used significantly less
water in response to the feedback intervention than those who did not. Moreover, for
H5, the data shows a positive correlation of goal difficulty and resource conservation:
Individuals who set themselves an ambitious goal (far below their resource consumption
in the baseline period) exhibit larger conservation effects. It is important to note, however,
that the research design does not allow for establishing a cause-effect relationship between
self-setting of goals and conservation behavior: It is both conceivable that a) the act of
self-setting a goal mediates conservation efforts and the associated savings, as McCalley
and Midden (2002) found, or that b) the kind of individuals who self-set a goal were
systematically different from those who did not in the first place (in a dimension that
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was not assessed). If the former is true (i.e., that the act of self-setting a goal induces
larger conservation effects by increasing task motivation), then personal IS should actively
prompt individuals to set themselves a goal. On the other hand, if the latter applies, then
the act of goal-setting could be just another manifestation of the individual’s interest and
commitment to the conservation task, which at the same time produces larger conservation
effects. Thus, it cannot be ruled out that the goal-setters in this study exhibited some
unobserved characteristic (e.g., general interest in technology or numbers) that caused
both the goal-setting and the higher conservation effects among that subset of participants.
However, the analyses did not reveal any indication that those who set a goal by themselves
were more environmentally aware, nor that they had a higher general tendency to compare
themselves to others. These results are indicators that self-set goals act as mediators of
resource conservation. Further IS-enabled field studies could improve the identification
and establishment of a causal relationship by random assignment, whereby one treatment
group is systematically prompted to self-set a goal, while another treatment group is not.

4.5.2 Limitations

Against all best efforts in the study design, there are some limitations to the results
of this study. Participants who indicated in the survey at the end of the study that
they had set themselves a maximum consumption goal were asked to state that goal in
a free text box. They answered in different metrics, some set multiple goals, and some
defined target ranges rather than maximum values. This introduces some blurriness in
the data that the study design cannot fully control for. However, the open way to answer
the question enables a less biased view of how individuals chose their personal goals.
Wherever possible, established validated scales like the HEXACO inventory were used
(Lee and Ashton, 2004). In order to compare the environmental attitudes of the sample
with the general population, the same wording as in the Swiss environmental survey
(Diekmann et al., 2009) was applied. Nevertheless, like any self-reported data, there is
a risk of social desirability bias. For the reported self-set goals, it is impossible to say
whether the participants set their goals at the beginning of the intervention phase or if
they adjusted their goals over time, as their task-related knowledge increased. Future
research should investigate how self-set goals evolve over time.

One limitation is the fact that participation in the study was voluntary. Despite the best
efforts to mitigate those issues by comparing socio-demographic data and environmental
attitudes with the general Swiss population, caution may be warranted with the external
validity of the results, as in any study with an opt-in sample (see Chapter 3). While there
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is no ‘baseline’ measure as to whether individuals also had maximum consumption goals
for the target behavior prior the feedback intervention, the survey asked participants how
much water they thought they used per shower, both before and after the study. The
results indicate that prior to the intervention, most individuals had a poor sense for their
actual water consumption, which improved significantly with the intervention (Tiefenbeck
et al., 2018a). Thus, it is not possible to establish a baseline for goal setting as individuals
cannot be expected to come up with meaningful goals for their shower-related resource
consumption by themselves in the absence of the feedback intervention.

Another aspect that should be tackled in future research is a systematic comparison
of self-set goals to externally assigned goals. On the one hand, the results suggest that
IS-enabled real-time feedback successfully induces many individuals to set themselves am-
bitious goals even for low-involvement activities, and that individuals who set themselves
ambitious goals in response to the feedback intervention conserve more resources. On the
other hand, future research should directly compare the impact of self-set and externally
assigned goals to determine in which situations which strategy is more effective and in
line with individuals’ preferences.

4.5.3 Conclusion

Personal information systems are becoming more and more pervasive and make it possi-
ble to reach mass audiences (almost) in real time. The combination of feedback interven-
tions with these technologies has the potential to support individuals in changing their
behavior into healthier, more sustainable, or socially desirable habits (Consolvo et al.,
2009; Hermsen et al., 2016; Li et al., 2010). It is thus in the interest of society to under-
stand the mechanisms that drive behavior change in response to that kind of increasingly
ubiquitous information.

Based on goal-setting theory, this study investigates self-set goals as mediators of
individual behavior change in response to real-time feedback in the context of a low-
involvement activity. The findings are based on real-world measurement data (over 10.000
observations) from a framed field experiment with 413 participating households. To the
study authors’ best knowledge, this is the first field study that investigates the formation of
self-set goals in response to IS-enabled feedback. In particular, the results show that even
in the context of a habitual activity and regarding the consumption of a low-involvement
good, many individuals set themselves a goal in response to real-time feedback, without
ever being encouraged to do so. Against the predictions of Locke (1996), the data illus-
trates that individuals tend to set themselves ambitious goals that they do not achieve
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easily. In line with goal-setting theory, the evidence reveals a positive relationship between
goal setting and resource conservation and, in particular, between goal difficulty and re-
source conservation, meaning the more ambitious the chosen goal is, the more resources
are conserved.

Since the majority of participants in this study set a goal by themselves even for the
consumption of a low-involvement good like energy, it is likely that most individuals
will set themselves goals for other activities tracked by IS as well. Combined with the
strong relationship of goal setting and effect size found, self-set goals may explain the
strong behavioral effects observed for existing self-tracking applications (Consolvo et al.,
2009; Froehlich et al., 2010; Lupton, 2014). Moreover, given the difficulty of defining
adequate goals externally, and the risk of goal rejection and adverse reactions associated
with external goals, these findings question whether IS artifacts should assign goals to
users. The results rather suggest that IS artifacts should encourage users to self-set goals
and provide functionalities to store and display them during the target activity.
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5. Article C) Blockchain
Technology as Enabler for P2P
Markets & Excerpt from Article
D) as Use Case Analysis for the
Energy Sector

5.1 Introduction
Various electronic markets which enable the exchange of goods or services between

peers have emerged in the past decades and enjoy increasing popularity among consumers
(Bichler et al., 2019; Einav et al., 2016; Parker and Van Alstyne, 2005). Technology-
enabled markets empower consumers to also become producers of goods or services that
they sell to others online in more and more sectors, so-called ‘prosumers’ (Ramchurn et al.,
2012). Airbnb, Amazon, Etsy, Uber, and other sharing platforms provide the possibility
to exchange goods, or service capacities among peers, or share knowledge, often in real
time (Einav et al., 2016; O’Reilly and Finnegan, 2010; Van Alstyne et al., 2016).

While these platforms experience great popularity, some critical issues persist: Platform
operators represent intermediaries that control market mechanisms and act as trusted
third parties to reduce friction on the market (O’Reilly and Finnegan, 2010). Con-
sumers and regulators are increasingly worried about increasing power of the few com-
panies that operate these markets and question their integrity (Constantinides et al.,
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2018; Roger Aitken, 2017; Subramanian, 2017). In various sectors, a small number of
internet companies have gained almost monopolistic power (Slavova and Constantinides,
2017). Blockchain-based markets promise to enable the same kind of peer-to-peer (P2P)
interactions as other market platforms, but can be operated by the market participants
themselves instead of being centrally controlled by one company hosting the platform
(Avital et al., 2016; Subramanian, 2017). This idea of decentralized marketplaces appeals
to many as it may offer an alternative way to enable exchange of goods and services be-
tween peers — which seems particularly attractive at a time in which trust in political
and corporate institutions has been shaken by the financial crisis and privacy concerns
(Beck et al., 2017b). While there is a growing body of literature on P2P markets instan-
tiated by digital platforms in the IS discipline (Constantinides et al., 2018; Parker and
Van Alstyne, 2005; Zimmermann et al., 2018), research on blockchain-based markets is
still in its infancy. There is still little understanding of the economic impact and of the
socio-technical systems and markets that are being created using blockchain technology
(Beck et al., 2017a; Malinova and Park, 2016) and a differentiation to existing, centrally
governed platforms is missing. Although multiple articles promote blockchain technology
for its potential of revolutionizing, for instance, the financial and the energy sector by
enabling decentralized P2P exchanges (Hasse et al., 2016; Kastrati and Weissbart, 2016;
Laszka et al., 2017; Mengelkamp et al., 2017a), only few provide concrete details on how
a successful market design should look like and what the challenges are. It is unclear to
what extent blockchain-based markets can meet the requirements that existing market
platforms successfully address and how they can create an added benefit compared to a
system with centralized governance (Constantinides et al., 2018). This article combines
technical aspects and an economic perspective to investigate what differentiates a me-
diated, centralized market platform from a blockchain-based market, thus tackling the
following research question:

RQ1: Can blockchain infrastructure meet the requirements that other digital platforms
successfully address and how can it create an added benefit compared to a system with
centralized governance?

An analytical framework is created that lays out the characteristics and requirements
of P2P markets. To that end, this study derives eight dimensions from economic theory
which contribute to the market performance and which provide a comprehensive guiding
structure to analyze the characteristics of different P2P markets and instantiations of
those. The framework is rooted in the four general market tasks defined by Roth (2008):
providing thickness, avoiding congestion, providing safety & simplicity, and avoiding re-
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pugnance. Seminal work on economic theory of market design (Akerlof, 1970; Roth, 2008;
Williamson, 1979) and on existing P2P markets (Ba and Pavlou, 2002; Constantinides
et al., 2018; Einav et al., 2016) identifies the characteristics of market instantiations that
feed into these tasks. On that basis, the characteristics of centrally mediated digital
platforms are compared to blockchain-based decentralized markets. This enables a dif-
ferentiated evaluation of the characteristics and potential benefits of blockchain-based
markets. To examine the implications of this assessment more concretely, one real-world
use case of societal relevance is investigated further: a local P2P energy market.

RQ2: Can blockchain technology facilitate the energy transition in local energy markets?

Providing access to resources and energy security is one of the most important challenges
for our society (Hentschel et al., 2018; Ketter et al., 2018). Due to environmental and
resiliency benefits, distributed energy resources (DER) are gaining importance for energy
supply as the costs of solar and wind power systems decrease (Hentschel et al., 2018;
Khalilpour and Vassallo, 2015). Given this decentralization of the energy sector, several
scholars and entrepreneurs suggest that the energy domain could strongly benefit from
blockchain technology in the creation of new, local marketplaces for renewable energy
(Basden and Cottrell, 2017; Creyts and Tribovich, 2018; Kastrati and Weissbart, 2016).

5.2 Background on Blockchain Technology
While transfer of information was simplified and scaled up by the internet, the transfer

of value over the internet is not inherently secure and often includes interactions with
unknown parties. The lack of trust, or transparency, is a key reason why third parties
or big, well-known platform operators that are able to provide institutional trust usually
organize and control online transactions (Pavlou and Gefen, 2004). The rise of large plat-
form operators is thus not only due to network effects, but also due to them guaranteeing
a certain level of trustworthiness and security of transactions (Coase, 1937; Einav et al.,
2016). Blockchain technology, on the other hand, promises to enable transparent and
secure transfer and enforcement of property rights between peers, without a central point
of authority (Catalini and Gans, 2016; Malinova and Park, 2016).

A ‘blockchain’ is a communication protocol that allows for “secure transfer and enforce-
ment of property rights” among participants of the system network (Catalini and Gans,
2016): It is a ledger, i.e. an account book that tracks the balance of all accounts in the sys-
tem by registering all transactions that take place. More specifically, the ledger contains
sets of transactions, the ‘blocks’, that are organized in a directed tree in chronological or-
der. All nodes in the blockchain network keep a local replica of the ledger, so it is actually
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a ‘distributed ledger’. For any new block to be added to the ledger and all its distributed
replica, all nodes in the system must come to an agreement that the transactions contained
in this block are valid, which is ensured by a ‘consensus mechanism’. Consensus mech-
anisms rely heavily on cryptographic methods to ensure tamper-proofness of the ledger
entries, anonymity of the network participants and to prevent attacks by compromised
nodes in the system to add invalid transactions to the ledger (Decker and Wattenhofer,
2013).

Different blockchain protocols differ in the degree of centralization, efficiency, and con-
sensus mechanisms (Schweizer et al., 2017). When designing a specific blockchain system,
different architecture choices are possible, e.g. choosing a private or public, and permis-
sioned or permissionless system architecture, and choosing between different blockchain
protocols, which have different implications for their fit to the requirements of the particu-
lar use case (Wüst and Gervais, 2017). Blockchains can be extended from recording mere
transactions to execute some code that does not only test whether a transaction is valid
based on the current account balances, but that includes other contractual clauses or mar-
ket rules that apply to the transaction of goods. The code containing such clauses is called
a ‘smart contract’ (Szabo, 1996). There are blockchains that provide Turing-complete
programming languages for smart contracts, which means they allow the scripting of any
arbitrary logic in the contract, which increases their universality of use (Buterin, 2014).
Smart contracts allow the implementation of a market mechanism in a way that is trans-
parent to every participant of a network without giving any single party the possibility
to change these rules (Mattila et al., 2016). A smart-contract-based market logic thus
signifies a digital institution that is controlled by the distributed network and not by a
single intermediary (Beck et al., 2018), as illustrated in Figure 5.1. Former intermediaries
are either removed or turned into just one of many market participants. Blockchain-based
markets also do not require a central infrastructure from a technical perspective, as the
blockchain is operated in a distributed ledger on the computing devices on all nodes in
the network.

In a broader sense, blockchains can thus be seen as ‘cryptographic economic systems’
(Beck et al., 2016), as an information system enabling economic interactions based on
cryptographic methods. Blockchains allow for the creation of new marketplaces and busi-
ness models for the transfer of value in domains “where there exists a need for a reliable
record of transactions in a decentralized environment where not all parties, whether hu-
mans or machines, can be fully trusted” (Beck et al., 2017b, p. 99). Some scholars
even argue that blockchain represents a general purpose technology (Catalini and Gans,
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Figure 5.1: P2P market, instantiated as mediated platform (left graph) or as blockchain-based
market (right graph). The market mechanism and transaction records are a black
box for users of mediated platforms. In a blockchain-based system, the market
mechanism is implemented as smart contract that is run by all network participants
and all transactions are stored in the distributed ledger.

2016), as it has the potential to disrupt different sectors (Beck et al., 2017b; Wörner
et al., 2016) by replacing platform intermediaries with smart contracts and creating de-
centralized marketplaces for P2P exchange (Figure 5.1). This article aims to analyse such
blockchain-based markets through an economic lens to provide insights on the value the
technology can bring to such applications.

5.3 Methodology
As the recent publication dates of most of the blockchain-related references indicate,

research on blockchain-based applications is only in its infancy (Lindman et al., 2017)
and a solid general understanding of emerging marketplaces built on a decentralized in-
frastructure is missing (Constantinides et al., 2018). At the same time, many of the
concepts coming together in decentralized P2P markets have been extensively studied
before (Lindman et al., 2017): market design and causes for market failure by economists
(Akerlof, 1970; Einav et al., 2016; Roth, 2008), and digital platforms and infrastructure
by information systems researchers (Ba and Pavlou, 2002; Bichler et al., 2010; Constan-
tinides et al., 2018; Yoo et al., 2010). Avital et al. (2016) argue that to design viable
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blockchain-based applications, it “might require experts like ‘coding economists’. Infor-
mation systems researchers with economic understanding should develop the systems and
theories to support them, serving as boundary spanners and driving forces.” (p. 4).

5.3.1 Analytical Framework for P2P Markets

To address the lack of understanding of blockchain-based markets from an economic
lens, an analytical framework is created to characterize P2P markets. Roth (2008) defines
the four market tasks as providing thickness, avoiding congestion, providing safety & sim-
plicity, and avoiding repugnance. Based on the extensive literature from the economics,
as well as IS discipline, eight dimensions are identified which influence to what extent
a market can fulfill these tasks. Following the approach by Lee (2001), the framework
allows the comparison of different types of marketplaces (in his case, physical and vir-
tual marketplaces). In contrast to existing work on market design from the economics
discipline, this study takes a more comprehensive set of dimensions: The framework also
integrates aspects influenced by the digital infrastructure a market is implemented on,
such as processing time and system security, which are crucial for the operation of elec-
tronic markets (Bichler et al., 2010; Constantinides et al., 2018). Using related literature
from the IS discipline, blockchain-based markets were compared to centrally mediated
market platforms along this framework.

5.3.2 Use Case Analysis: P2P Energy Market

As suggested by Risius and Spohrer (2017), designers of a blockchain system need to be
aware of the features that are relevant to the respective industry branch. Given its societal
relevance, the energy sector was chosen for a more detailed analysis as a concrete use case.
A systematic literature search provides an overview on the status quo of blockchain-based
electricity exchanges. The findings highlight potential success factors and implications
for a blockchain-based electricity markets on the dimensions of the analytical framework.
Relevant academic literature was identified in a broad search on Google Scholar and Web
of Science, as well as a forward and backward search using Google Scholar. The terms
‘blockchain renewable energy’, ‘blockchain microgrid’, and ‘blockchain electricity trading’
were used as search keywords. Given the early stage of the technology, the picture of the
status quo of the blockchain applications would be incomplete when focusing on academic
publications alone. Due to duration of the reviewing process, academic publications have
an inherent time lag; consequently, information on many existing projects so far has only
been published in industry white papers. Therefore, the literature search also covered
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a list of companies described in two industry guides on blockchain for the energy sector
by Montemayor and Boersma (2018) and Hasse et al. (2016), and related posts on the
publishing platform Medium.com, which is very popular in the blockchain community.

5.4 Analytical Framework & Evaluation

5.4.1 Analytical Framework

In contrast to many existing market platforms, blockchain-based markets are not run
by an intermediary. They remove the central platform from P2P markets, often simply
dubbed market platform or marketplace. The present study investigates, which conse-
quences this implies for the economics and the design of P2P markets. The four market
design tasks defined by Roth (2008) introduced in Section 2.2.1 serve as basis to further
derive dimensions that describe P2P markets. The resulting framework with the eight
dimensions derived is illustrated in Figure 5.2 and described in Table 5.1.

Figure 5.2: Analytical Framework for P2P Markets based on Market Design Theory (Roth,
2008).

Providing thickness: market participants and market mechanism
Providing thickness relates to the presence of sufficient supply and demand (also known
as liquidity) on a market. Peer-to-peer markets typically benefit from network effects or
positive externalities when there is a large number of users on both sides of the mar-
ket (Bakos and Katsamakas, 2008; Slavova and Constantinides, 2017; Van Alstyne et al.,
2016). Compared to other markets, the participants of peer-to-peer markets are usually
private individuals, so the marketplace needs to be accessible and attractive to achieve the
necessary amount of thickness on the market (Basu et al., 2019). These participants may
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switch from merely consuming a good or a service to also producing it depending on their
individual requirements (Ramchurn et al., 2011), so-called ‘prosumers’. Moreover, mar-
ket thickness is also influenced by the efficiency of matching supply and demand. Einav
et al. (2016) argue that peer-to-peer exchange is flourishing in applications with variabil-
ity in demand, low scalability of production, and existence of well-functioning market
mechanisms. A peer-to-peer exchange should thus establish a market mechanism that
aggregates information and determines market outcomes on that basis. The definition
of a specific market mechanism is a game-theoretical problem and should meet different
economic properties that are important in the application domain, for instance incentive
compatibility to reduce collusive behavior and efficiency to reduce welfare losses. Peer-
to-peer markets can be cleared using central market mechanisms, or bilateral negotiation
protocols (Bichler, 2001). On purely bilateral peer-to-peer markets, trades are arranged
directly between individual buyers and sellers, which means that there is no unique point
of information aggregation. However, purely bilateral governance is complex (Morstyn
et al., 2019) and may be inefficient on peer-to-peer markets due to the high communica-
tion necessary for arranging individual trades (Tiwana, 2003). Some scholars thus argue
this is not suitable for markets with many participants or recurrent trades (Williamson,
1979). In mediated markets, by contrast, a central intermediary collects demand and
supply (Lu et al., 2016), and sometimes also determines the pricing. This intermediary
is represented by a professional reseller in a wholesale market or a platform provider for
the provision of an infrastructure, on which users can interact, and of algorithms, which
implement a market mechanism. Many existing peer-to-peer platforms are currently im-
plemented via auction mechanisms in which buyers and sellers place bids for their goods
at distinct times (Rafaeli et al., 2002). On eBay for instance, individuals bid their willing-
ness to pay for the offered goods, whereas on Uber, drivers bid their service at a specific
time and place at fixed prices prescribed by the platform (Einav et al., 2016). For the
digital infrastructure, this implies that the information system should allow for a variety
of market mechanisms to be implemented. Therefore, it needs to provide an accessible
programming language and environment to implement the market mechanism. Airbnb,
for instance hosts a platform on which individuals can offer housing capacities, and users
are free to bilaterally determine prices, but the monetary transaction runs through the
platform (Lampinen and Brown, 2017). Airbnb charges a fee on this transaction for the
information aggregation, the provision of the interface, search algorithm, and billing ser-
vice. By contrast, Uber intervenes more strongly in participants’ interaction: It defines
the prices for rides offered on their platform using proprietary algorithms (Subramanian,
2017) and also takes care of accounting and billing for the drivers.
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Avoiding congestion: processing time and transaction costs
Avoiding congestion means that a market must be capable of processing the desired
thickness in supply and demand in a reasonable amount of time, and at limited effort
(Bichler et al., 2010). Many electronic markets today operate close to real time, and users’
willingness to interact depend on that speed (Xia et al., 2012). While processing input
from an entire network of participants instantaneously is not necessary for all use cases, it
may be beneficial or even mandatory for some time-critical application domains in which
prices are highly volatile, such as the financial or electricity sector (Rosen and Madlener,
2013). However, ‘congestion’ cannot only be caused by technical latency, but also by costs
for settling transactions between many individuals rather than few institutional entities:
The volume of each transaction on a peer-to-peer market will be much lower than the
volumes of goods or assets sold in traditional business interactions. Transaction costs
are thus another key dimension: The costs participants incur for aggregating information
on supply and demand, and on their trading partner must be low, so that costs do not
outweigh the benefit of the trade. Transaction costs hence include more than the settle-
ment costs for processing a transaction — they include costs that were incurred to identify
and build trust in the counterparty and to define, negotiate, and settle the transaction
in question. In his seminal paper, Coase (1937) argues that transaction costs are the
essential reason for the existence of firms. The search and structuring of information on
the supply, quality, and providers of goods on all of the different markets an individual
participates in, is too costly for individual agents. For that reason, we rely on firms as
intermediaries to aggregate relevant information based on which they can make a buying
decision (Coase, 1937). In in peer-to-peer markets, information is dispersed over many
individuals, so information aggregation is key for defining an efficient market allocation
(Einav et al., 2016). The necessity to elicit and process distributed information inherently
creates transaction costs in form of search and processing costs.

Providing safety and simplicity: usability, transparency and security
By Roth’s definition, safety and simplicity of use are necessary to engage participants
in interacting on any kind of market. In particular, for private individuals in electronic
market, who are not professionals in trading or may not by IT-savvy, good usability
and a low (perceived) risk are crucial, otherwise these individuals will not take part in
the market (Basu et al., 2019; Lampinen and Brown, 2017). The user interface must be
simple to understand and to access, so that the participants can state their preferences in
an easy way (Bichler et al., 2010; Lampinen and Brown, 2017).
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Market Task
(Roth, 2008)

Dimension Explanation

Providing
Thickness

Market Mechanism

(Bichler, 2001; Roth,

2008; Tiwana, 2003)

A market mechanism implements contractual clauses which establish rules

for market interactions. The main task is to elicit truthful information on

the participants’ preferences and to compute efficient allocations.

Market Participants

(Basu et al., 2019;

Lu et al., 2016; Roth,

2008)

Thickness, or liquidity, to create network effects on a P2P market requires a

sufficient number of market participants, which are brought together on one

platform. The market thus needs to be accessible for the relevant audience.

Overcoming
Congestion

Processing Time

(Lu et al., 2016;

Rosen and Madlener,

2013; Xia et al., 2012)

Transactions need to be processed fast enough, so that a marketplace can

handle the required thickness and allow participants to trade sufficiently fast.

Transaction Costs

(Coase, 1937; Einav

et al., 2016)

To keep the user experience convenient and reduce time for search and for

defining and settling transactions, transaction costs must be low. Costs

of information aggregation and of defining and settling transactions must

be low also due to the high number and lower volume of trades occurring

between peers.

Providing
Safety &
Simplicity

Usability

(Basu et al., 2019;

Lampinen and Brown,

2017; Roth, 2008)

Interaction on a P2P market must be easily understandable and accessible

for private individuals, the user interface must be simple and clearly state

the relevant information. Some applications may require software agents to

support participants in trading based on their preferences.

Transparency

(Akerlof, 1970; Pavlou

and Gefen, 2004; We-

ber, 2016)

Information asymmetry may lead to opportunistic or even fraudulent behav-

ior, which reduces the attractiveness of a market and can lead to market

failure. Information on quality of goods, pricing mechanisms, and reliability

of participants should thus be transparent and accessible to all participants

in the same way.

Security/Privacy

(Clemons et al., 2017;

Roth, 2018)

Reliable operation of the system must be guaranteed, and malicious attacks

prevented to avoid market failure due to technical issues and to support

participants’ trust in system integrity. Privacy concerns about personal data

need to be addressed.

Avoiding
Repugnance

Legal and Moral Com-

pliance

(Clemons et al., 2017;

Roth, 2008)

Moral and legal compliance of all transactions on a market should be war-

ranted by installed rules, in order not to create adverse reactions or encourage

undesired behavior (e.g. corruption, collusion, pollution).

Table 5.1: Analytical framework for P2P markets.
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For a market to be economically efficient, is further important for each party to trust
in the others’ integrity, e.g. to reliably execute the agreed transactions, to provide the
agreed upon quality, or to adhere to other conditions of the trade (Akerlof, 1970; Weber,
2016). Transparency reduces information asymmetry and is thus key on a market, on
which peers interact without quality control and reinforcement by a mediating institution
(Einav et al., 2016). However, the degree to which information asymmetry is an issue
varies with the traded goods (Ba et al., 2005), the market mechanism, and whether the
interacting peers know each other or not. One way to reduce information asymmetry is
the introduction of mediating institutions on markets who aggregate information for all
participants to provide some quality control (Akerlof, 1970; Ba et al., 2005; Pavlou and
Gefen, 2004). Pavlou and Gefen (2004) argue that due to the anonymity of the partici-
pants, institution-based trust in a well-known platform provider is particularly suitable to
build peer-to-peer markets. As an alternative option, many electronic markets reduce in-
formation asymmetry by implementing feedback mechanisms in which everyone can share
their experiences with another party, which creates transparency on other participants’
market behavior (Ba and Pavlou, 2002; Wu et al., 2013). These mechanisms, however,
still underlie the control of the platform operator and might be manipulated for their
needs (Zhang et al., 2018b). Furthermore, safety in the context of electronic markets also
relates to data privacy and system security. When interacting with other entities on
a market, individuals reveal information about their preferences concerning pricing, per-
sonal schedule, their identity, or their connections (Clemons and Row, 1988; Roth, 2018).
Security of the digital infrastructure against malicious attacks or events like electricity
outages is critical to guarantee reliable processing of all transactions.

Avoiding repugnance: legal and moral compliance
The fourth and final task for any market design is avoiding repugnance. A marketplace
should provide and enforce a clear set of rules to prevent activities or transactions that
are morally questionable or even illegal (Roth, 2018). Compliance to moral and legal
standards should be given on any market; yet, the large number of participants and inter-
actions within a peer-to-peer market made up of private individuals, and the anonymous
nature of many electronic markets may particularly promote opportunistic behavior or
collusion (Clemons and Row, 1988).
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5.4.2 Evaluation

Table 5.2 compares characteristics of blockchain-based markets to centralized markets
along the presented analytical framework based on existing literature on blockchain tech-
nology.

Most existing research on blockchain-based markets concern topics around market
mechanisms, transaction costs, and transparency: In a blockchain system, the im-
plementation of a market logic that is controlled by a distributed network and coded
into software thus leads to a reduction of search and administrative costs and an increase
in transparency by design. In a way, smart contracts can act as intermediary collecting
information and computing the resulting market outcome. However, contractual clauses
that can be implemented in smart contracts are limited to deterministic and objectively
testable conditions. It is thus difficult to include qualitative assessments of physical assets
or services into smart contract. Using the trading of real-world assets, namely cars, as an
example: There are possibilities to securely track data on mileage records (Chanson et al.,
2017), which could be used on a blockchain-based marketplace for real-world assets, but
it will be more difficult to check for rust spots or the cleanliness of a car’s interior using
a smart contract (unless there is a substantial upgrade in sensors collecting information
on this) (Notheisen et al., 2017). Hence, a blockchain-based market may not be able to
increase transparency with regard to characteristics that are difficult to quantify as ver-
ification issues arise for information about the physical world. However, transparency of
transactions on the blockchain ledger and distributed control over the market mechanism
reduces potential information asymmetry between the participants on a marketplace, and
thus creates value. Low information asymmetry or transparency is closely related to the
supposed trust created by blockchain technology, which is frequently brought up in the
broader media (The Economist, 2015). As pointed out by Milkau in Beck et al. (2017b),
Satoshi Nakamoto’s paper (Nakamoto, 2008) describing Bitcoin as the first application of
blockchain technology appeared right on the peak of the global financial crisis and bene-
fited from a momentum of distrust in official institutions and decentralization movements.
Markets in which the integrity of existing institutions is questionable – due to political
reasons or monopolistic market power for instance – are thus another major use case for
blockchain-based markets. On the flipside, as Carvalho (2020) puts it and others agree,
“if a central, third party is trusted, then there is no need to use a blockchain”, p. 3. If an
existing platform provider is trusted and puts an effort into providing transparency about
its governance practices and employed market mechanisms, the argument for removing
the intermediary loses its strength.
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Market Task Dimension
Blockchain-Based
Exchange

Mediated Platform

Providing
Thickness

Market
Mechanism

Turing-complete programming

language for smart contracts al-

lows for any kind of contract

or deterministic market mech-

anism to be implemented, like

on a centralized system. The

mechanism is transparent to all

participants and underlying net-

work consensus which may fos-

ter welfare maximization.

Most algorithms can be imple-

mented on a central server, even

non-deterministic ones. Market

mechanisms are usually inacces-

sible to the user, and platform

providers can execute and opti-

mizes the mechanism to its own

benefit, and may be willing to

incur losses in total welfare.

Market
Participants

Market participants need to be-

come part of the blockchain

network (e.g. use interface con-

necting to blockchain or even

run blockchain node), which

may be challenging to users that

are not tech-savvy at this stage,

but can be circumvented with a

good user interface.

Everyone can sign up online to

market platforms. Platform op-

erators define terms of partic-

ipation. Sign up procedures

are similar on most platforms

and familiar to most users, may

however require specific pay-

ment channels.

Overcoming
Congestion

Processing Time

A limited number of transac-

tions per time can be validated,

depending on the blockchain

protocol and the distributed

computational power. Transac-

tions involving a lot of data are

thus subject to high latency.

Centralized server computes

transactions, often in real time.

Yet, settling transactions in-

volving multiple institutions can

take very long, as they may in-

volve cross-system communica-

tion or offline settlement.

Transaction
Costs

Reduced validation costs for

transactions may give rise

to smaller players/smaller

market environments. Con-

versely, costs of coordination

and (re)negotiation of smart

contracts can also be high

depending on their complexity

and the number of involved

parties. Direct transaction fees

to run the network and incen-

tivize consensus vary strongly

and depend on the blockchain

protocol.

Participants remunerate inter-

mediary for operation of the

market and thus pay for infor-

mation aggregation and match-

ing. Providers often charge fees

for providing ancillary services

(e.g., recommender systems,

payment insurances). However,

direct costs for central servers

are usually lower than operating

a distributed network.
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Providing
Safety &
Simplicity

Usability

Simple user interface is needed

to allow users to safely inter-

act with the system. This is

not part of a blockchain pro-

tocol, but needs to connect to

it and to address existing user

concerns about the technology.

User interface and supporting

user interface/trading software

can be implemented on top of

the infrastructure, provided by

the intermediary.

Transparency

Immutable storage of trans-

actions provides transparency.

Market mechanism imple-

mented in smart contract is

accessible to all users.

Information on transaction his-

tory is not available or pro-

vided indirectly in form of feed-

back mechanisms. Participants

cannot access or control mar-

ket mechanism. Intermediary is

focused on establishing institu-

tional trust.

Security/
Privacy

Distributed blockchain system

has no single point of failure

and is thus resilient in opera-

tion of the market at all times.

However, privacy risks of link-

ing public keys to real iden-

tities are perceived as critical.

Perceived security is further re-

duced by lack of understanding

and trust in complex technology

and code.

Market data is stored on cen-

tral servers to which the identi-

ties of the participants may be

known, which also raises privacy

concerns. In terms of system

security, centralized servers are

more prone to server downtimes

or malicious attacks than a dis-

tributed system. Yet, perceived

security of established, success-

ful platforms is often high.

Avoiding Re-
pugnance

Legal and Moral
Compliance

Legal and moral compliance is

governed by the P2P network

as a whole and are subject to

network consensus. Legal com-

pliance of smart contracts gov-

erned by the network is difficult

to ensure. In addition, energy

consumption and hardware use

– i.e. environmental costs for

the operation of the system –

can be high, depending on the

blockchain protocol.

Intermediary has responsibility

for legal compliance as legal en-

tity. Stakeholders may pres-

sure intermediary to limit exter-

nal costs; environmental costs

for platform hosting are limited

to the operation of one central

server – but can be comparably

high to a blockchain network.

Table 5.2: Blockchain vs. centrally operated electricity exchange platform

Many articles on blockchain-based markets also argue that blockchain systems enable
low transaction costs, which were identified as key enablers of P2P markets (Beck et al.,
2017b; Catalini and Gans, 2016; Malinova and Park, 2016). Administrative transaction
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costs for search and negotiation, as well as for accounting and billing are reduced if a
mediating company is replaced by a market mechanism implemented in smart contracts.
Smart contracts can aggregate information algorithmically, determine market allocation
and prices automatically, and can include tests whether a transaction has been processed
on the blockchain. The smart contract logic can reduce the need for an institution to me-
diate between the participants within a network (Sikorski et al., 2017; Wüst and Gervais,
2017). This closely relates to Coase’s theory of the firm, which argues that firms are not
necessary if a market already provides transparency and aggregates relevant information
in a reliable manner (Coase, 1937). Blockchain-based markets may thus enable the market
entrance for small-scale producers in various industries like music or energy (Torbensen
and Ciriello, 2019), similar to the open source environment (Chong et al., 2019).

However, it is important to note that at this stage, low transaction costs and instanta-
neous processing are an idealistic aim of blockchain technology, which is not a reality (yet)
when it comes to the settlement of transactions on public blockchains (Beck et al., 2018;
Wüst and Gervais, 2017). The currently most widely used consensus algorithm, proof of
work, causes high external costs in form of energy consumption; furthermore, participants
incur high transaction fees and latency for the settlement of transactions on the chain.
The external costs in electricity consumption are, however, not an inherent problem to
all blockchains and can be overcome by alternative consensus mechanisms (e.g. proof
of stake) (Buterin, 2014) or alternative system architectures that leverage state channels
or permissioned blockchains. The ecosystem is not developed far enough for verification
costs on public blockchains to approach zero at this moment. Yet, extrapolating from the
developments in the past years, it is realistic that further improvements will solve these
issues in the near future (Yli-Huumo et al., 2016). Moreover, depending on the use case,
permissioned blockchains may be a suitable option to reduce transaction costs and pro-
cessing times while still meeting the use-case specific requirements for some marketplaces
(Wüst and Gervais, 2017).

Similarly, the transparency of blockchain-based systems is still controversial. On the
one hand, the distributed nature of a blockchain system helps to reduce information asym-
metry on the matching logic and transaction history; in the case of mediated platforms,
trading rules are determined by intermediaries and are not transparent to individual mar-
ket participants. On the other hand, this transparency is not necessarily perceived by
users, especially if they are not very tech-savvy. It seems like a strong assumption that
trust in institutions can be replaced by trust in algorithms, as is underlined by research
on ‘algorithm aversion’ from other domains, as well (Dietvorst et al., 2016).
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Dimensions that have so far received less attention in the literature on blockchain based-
markets are processing time, usability, and legal and moral compliance. Only
few studies discuss how users are attracted, or which users are targeted although this is
essential to provide liquidity (Basu et al., 2019; Roth, 2008) and to create network effects
on any exchange (Parker and Van Alstyne, 2005). While it may seem that this is not an
issue related to the technological infrastructure of a marketplace and thus not specific to
blockchain technology, missing understanding among nontechnical users and entry barriers
may represent an obstacle for applications to reach a minimum network size (Kazan et al.,
2018). Miscione et al. (2019) point out that although having the ideal to enable peers
to directly interact, this claim is reversed in practice, and organizations are the more
prominent users of blockchain. Cai et al. (2019) find that blockchain adoption is highly
influenced by peer influence. Furthermore, providing safety and security on a market is
not only a technical issue, but also relates to the perceived security and ease of use for the
participant. A large scale survey conducted by Abramova and Böhme (2016) shows that
there is a strong positive interaction between perceived ease of use and usage behavior of
Bitcoin. Other authors agree that it is crucial to improve usability of blockchain systems
and to reduce complexity and entry barriers for the user in order to attract participants
and make them feel confident in interacting with the system (Janze, 2017; Kazan et al.,
2018). It is striking that many studies neglect the role of the actual user in practice,
which is somewhat inconsistent with the notion of democratization by decentralization
(Buterin, 2014; Kranz et al., 2019), and central to economic decision making. Anecdotal
evidence from the blockchain industry emphasizes the lack of focus on the user, as many
of the early blockchain-based peer-to-peer markets never reach an effective network size
and suffer from distrust in the underlying market mechanisms and code integrity (Sun Yin
et al., 2019; Wu, 2019).

The last dimension in the framework, legal and moral compliance to avoid repugnant
actions on the market, may pose a further challenge to a blockchain-based system. A
platform operator may employ a legal expert to monitor transactions to ensure compliance
and can be held accountable by regulators. In the absence of a central intermediary, this
legal integrity is hard to ensure. It is difficult to define responsibilities without linking legal
entities to participants in a blockchain network (Beck et al., 2018). Sun Yin et al. (2019)
argue that pseudonymity in the Bitcoin ecosystem, for instance, leads to intransparency
and may foster criminal activities, which reduces trustworthiness and adoption of the
system. This can create difficulties in many use cases, for instance in the financial sector,
or illegal sharing of data or files, and will require further research and attention of policy
makers.
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5.5 Use Case Analysis: P2P Energy Exchange
Of the many opportunities for blockchain technology to create new marketplaces and

to enable the secure transfer of value (Constantinides et al., 2018), the energy domain
is among the most relevant for society. Energy provision is a highly complex challenge
that is of political, economic, and societal importance (Ketter et al., 2018). Substantially
reduced cost and improved technology in the smart grid are turning DER (Akorede et al.,
2010), such as wind and solar energy, into the key levers to change the electricity market
from a vertical structure to a decentralized, bottom-up landscape (Green and Newman,
2017; Hentschel et al., 2018; Khalilpour and Vassallo, 2015). To account for that, energy
markets in several countries are being liberalized, allowing smaller players to enter the
market (Ketter et al., 2018; Rosen and Madlener, 2013). Consequently, new concepts for
energy markets are being developed both by academic scholars and industry researchers:
virtual power plants, cooperatives or local P2P markets for DER (Hentschel et al., 2018;
Morstyn et al., 2018) – possibly enabled by blockchain technology (Basden and Cottrell,
2017; Hentschel et al., 2018; Meeuw et al., 2018; Mengelkamp et al., 2017a). P2P exchange
of electricity signifies a shift to a decentralized bottom-up market (illustrated in Figure
5.3, right side), in which individual consumers and prosumers can directly trade electricity
without the mediation of a central utility provider acting as reseller. Prosumers can
sell excess electricity to other consumers within local communities on the low-voltage
distribution grid level (Morstyn et al., 2018). This puts small generators in the focus and
creates a competitive environment for distributed generation (Basden and Cottrell, 2017).

Figure 5.3: Traditional hierarchical electricity market (left graph) versus decentralized electric-
ity market enabling P2P exchange of solar energy (right graph). Local electricity
sourcing from prosumers to consumers enables individual households to take a more
active role in electricity sourcing and pricing.

74



5.5. Use Case Analysis: P2P Energy Exchange

To get an understanding of the status quo of the research on blockchain-based energy
markets, a systematic literature review on the relevant academic articles, as well as the
industry projects, was conducted. Tables A.2 and A.1 in the appendix section provide an
overview of identified existing studies on P2P energy markets using blockchain technology.
All in all, academic and industry research on decentralized energy markets enabled by
blockchain technology is still in its infancy. While start-ups in particular were quick to
publish whitepapers, the majority of those articles provide only vague ideas. The academic
publications identified give a more refined view of the economic implications of the created
P2P markets; nevertheless, most of the research is still conceptual or presents a small
proof-of-concept. Most articles either focus on the practical reasoning for a decentralized
electricity market, e.g. (Mengelkamp et al., 2017a), or provide a technical description of
a planned blockchain system (Kang et al., 2017). Yet, the connection of the two, i.e. a
link between technical feasibility and implied practical value to the electricity market, is
missing. Most articles merely describe a proof of concept that focuses on the technical
feasibility of electricity trading, ignoring economic considerations or user-related aspects
of creating a novel energy market. However, the analytical framework and the evaluation
of blockchain-based P2P markets provided in Table 5.2 can put some of the arguments
made in the literature in context. Table 5.3 provides a concise overview of the literature
analysis for this use case, which have direct implications for the design of blockchain-based
energy markets in practice. The main implications are discussed below.

From a business perspective, small, local energy markets may not be very attractive to
operate for a platform company as they do not (and are not supposed to) scale up (Slavova
and Constantinides, 2017). In contrast, if a P2P market is operated in a decentralized
manner by the participants themselves, central operation is no longer necessary. This
may be one factor why ambitions to sell electricity from prosumers to consumers are only
gaining momentum now with the development of blockchain technology. Additionally,
the transaction volume for electricity consumed by a household in short time intervals is
very low (typically amounting to less than 0.05 USD in 2016 in the US in 15 minutes (US
Energy Information Administration, 2016)). For such low-volume transactions, minimal
costs for transaction matching, settlement, and billing are vital (Rosen and Madlener,
2013). This again reduces the incentive for competitive companies to host P2P electric-
ity markets – and makes a case for a decentralized, blockchain-based system owned by
the market participants. On the other hand, it excludes blockchain protocols with high
transaction fees or low throughput and suggests the use of a permissioned blockchain
(Wüst and Gervais, 2017). In fact, most academic studies on electricity exchange focus
on permissioned blockchains (Table A.2). By contrast, most of the industry projects plan
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to employ public blockchains in combination with payment channels to reduce settlement
costs and external costs.

Due to its infrastructural importance and environmental consequences of its sourcing,
a market mechanism for the allocation of electricity should adhere to social welfare, al-
locative efficiency, and incentive compatibility as much as possible (Rivola et al., 2018).
As in most other market applications for blockchain systems, a smart contract protocol
providing the tools to implement contractual clauses subject to consensus of the network
is thus necessary. The review of whitepapers in the energy sector (see Table A.1) indicates
that industry research seems to almost entirely neglect the mechanism design or implied
incentives.

In the energy sector, security and privacy have a high priority. Reliable operation of
a marketplace must thus be guaranteed, and malicious attacks prevented (Aitzhan and
Svetinovic, 2016; Ketter et al., 2013; Miller et al., 2017). The resilience of the distributed
transaction ledger in a blockchain creates a clear benefit over a centralized market, as
the market can keep running even if some nodes in the network are corrupted. On the
other hand, high-resolution electricity consumption data is sensitive data which provides
information on energy usage patterns and could even identify households within a local
community (Laszka et al., 2017), as well as details about their way of living (Hopf et al.,
2017). Production and consumption data will be traceable on a blockchain to some extent,
so transactions between nodes must be settled in an privacy-preserving manner (Aitzhan
and Svetinovic, 2016; Ketter et al., 2018), which still requires further research. In addition,
usability should not be underestimated in a market in which private individuals are not
used to take active decisions, but traditionally always have been price takers in a retail
market (Slavova and Constantinides, 2017). As the user interface of many blockchain-
based applications is still very complex to grasp for the ordinary citizen, and since there
are still hardly any applications out there for monitoring household energy sourcing, this
is an area with a lot of open questions for future research.

The final dimension is the risk of immoral or illegal activities on the market, which
could prevent individuals from wanting to trade on an electricity market. If regulation
generally allows for P2P energy trading, the opportunities for illegal or immoral behavior
may seem limited at first, but one aspect may create adverse reactions: External costs
in the form of environmental costs generated by the blockchain system must not exceed
the savings created on the local energy market (Ketter et al., 2013). The high energy
consumption of blockchains that rely on proof-of-work consensus (Beck et al., 2017a), for
instance, are thus not suitable for this use case from an environmental perspective.
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Market Task Dimension Implementation in Blockchain System

Providing
Thickness

Market
Mechanism

• Blockchain protocol with smart contract language, e.g.

Ethereum

• Auction mechanism implemented in smart contract, al-

lowing for preference elicitation on energy sourcing and

incentivizing local electricity consumption (Mengelkamp

et al., 2017a)

Market
Participants

• Consumers, Producers, utility provider

• Permissioned blockchain to limit participation to local

area

Overcoming
Congestion

Processing Time

• Online mechanism with iterative market clearing intervals

of short time intervals 24/7

• Permissioned blockchain to limit number of participants

Transaction
Costs

• Network consensus to ensure transaction integrity

• Automated matching and auction clearing on blockchain

system

• Automated billing in longer intervals

Providing
Safety &
Simplicity

Usability

• Simple and understandable user interface, abstracted

from blockchain technology

• Smart bidding agent to quote bids in real time for the

user might be necessary

Transparency

• Standardized, calibrated smart meters

• Distributed ledger of transactions

• Market mechanism in smart contract, changes underlying

community consensus

Security/Privacy

• Consensus-based market mechanism

• Signed messaging and data encryption

• Private blockchain

Avoiding
Repugnance

Legal and Moral
Compliance

• Consensus protocol with low external costs (i.e., no proof

of work)

Table 5.3: Implementation of market tasks in blockchain-based energy market
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5.6 Conclusion and Future Work
The power of P2P markets that connect individual users for sharing and trading has

been demonstrated by the steep success of digital market platforms like eBay, Uber,
Airbnb or Etsy. High hopes are put in blockchain technology to facilitate decentralization
of such markets to put the individual participant in a more active role and to reduce
the power of a single intermediary (Beck et al., 2016; Subramanian, 2017). Despite the
ongoing wave of enthusiasm for the technology itself, there is still little understanding of
the added value of running a P2P market on a blockchain infrastructure. This article
provides novel insights on these socio-technical systems, in particular, with the following
three contributions.

First, the study presents an analytical framework for characterizing P2P markets. Based
on Roth’s theory of market design and related literature from the economics and informa-
tion systems disciplines, eight dimensions are used to characterize a P2P market (Table
5.1). The framework can be used to analyze different P2P markets and to derive man-
agerial implications for the implementation and market design of a viable marketplace.
As a second contribution, the framework highlights dimensions in which a blockchain
system can add value to a marketplace as compared to when it is run by a central plat-
form (Table 5.2). One key benefit of blockchain technology is the automated execution
of contractual clauses and of billing procedures. This is particularly important in mar-
kets with frequent, low volume trades and in which there is a lack of trust in a central
intermediary. The distributed nature of a blockchain-based market helps to reduce infor-
mation asymmetry on the matching logic and pricing; in the case of mediated platforms,
these rules are determined by intermediaries and are not transparent to the individual
participants. At the same time, the characterization shows that with regard to markets
in which quality or physical aspects are hard to measure digitally (e.g. markets for used
cars, housing), it is difficult to establish transparency in a blockchain-based system or
to include such aspects in smart contracts. The evaluation further identifies processing
time, privacy concerns and legal compliance as potential challenges for a decentralized
system to successfully fulfill the key tasks of a market. Overall, the evaluation provides
focal points for both academic scholars and practitioners for assessing whether a specific
use case can benefit from blockchain technology. Third, an exemplary use case illustrates
this kind of analysis, namely for P2P energy market, in Section 5.5. The electricity sector
is currently undergoing a paradigm shift that involves the integration of an increasing
share of volatile renewable energies and decentralization of energy sourcing (Basden and
Cottrell, 2017; Hasse et al., 2016; Kastrati and Weissbart, 2016; Morstyn et al., 2018).
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In the context of this ongoing systemic decentralization, the findings of this study show
that many aspects of blockchain-based marketplaces suit the characteristics of the elec-
tricity domain well. Blockchain technology can add value when it comes to resilience of
the system and increased transparency of energy accounting, when there is distrust in
platforms handling sensitive energy data. However, these benefits can only be realized if
the system implements an efficient market mechanism and actively integrates participants
in the P2P market to realize the vision of a ‘democratized’ decision process. Moreover,
the metering of the physical energy flows provides a technological challenge and may raise
privacy concerns in a local community.

Given the current hype around blockchain technology, the technical focus (and technol-
ogy enthusiasm) of many developers outweighs the expected value propositions in practice
(Beck et al., 2017b). There is vast potential for further scientific research regarding the
examination of digital P2P markets and the role of intermediaries. Future work in the in-
formation systems domain should investigate user adoption, how well markets governed by
smart contracts work in practice (Beck et al., 2018), and by whom these smart contracts
will be implemented in the real world. In addition, it might be fruitful to study potential
business models for the implementation of blockchain-based markets. Despite the appar-
ent contradiction between the aim to create a profitable business and decentralization,
digital market platforms have brought businesses to life that had been unthinkable only
a few years earlier (Lee, 2001). Finally, scholars and policy makers will need to examine
which regulatory frameworks have to be in place to regulate blockchain-based markets
without central providers who can be held accountable for legal compliance of the market
activities.
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Energy Market in the Real
World

6.1 Introduction
Renewable energy generation plays an increasingly important role in meeting future

electricity demand and in reducing greenhouse gas emissions (Gholami et al., 2016; Ram-
churn et al., 2012). Yet, the integration of distributed energy resources (DER) creates
a challenge for the existing market structures (Koolen et al., 2017). Today’s established
power markets are strongly centralized and hierarchical with electricity distribution from
a few power plants down to thousands of households. Wind and solar energy genera-
tion, in contrast, is geographically distributed, strongly volatile, and cannot be simply
switched on or off according to the demand (Andoni et al., 2018; Ramchurn et al., 2012).
Moreover, the novel, more active role of consumers who own solar panels and produce
energy by themselves (‘prosumers’) creates challenges at different fronts, in particular for
industry incumbents and traditional electricity markets.

Information technology can play a key role in this transformation of electricity markets,
as it provides tools to control distributed networks and enable bidirectional communication
with the user (Ramchurn et al., 2012; Seidel et al., 2017). Electronic markets and digital
platforms have revolutionized a variety of industries by enabling a shift from traditional
pipeline markets to P2P platforms, which now shape these industries (Van Alstyne et al.,
2016). Information systems can provide personalized information (Tiefenbeck, 2017) and
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create electronic marketplaces that can handle stochastic supply and demand in real time
(Bichler et al., 2010; Gholami et al., 2016). Green IS research is thus in the ideal position
to study innovative platforms which seize the possibilities of technological advances to
market DER and foster sustainability among the broader public (Ketter et al., 2018;
Seidel et al., 2017; Slavova and Constantinides, 2017).

Recently, advances in distributed ledger technologies and the simultaneous decentral-
ization of energy supply and have led to ambitions to create decentralized energy markets
in which prosumers can directly sell excess renewable energy from peer to peer (Burger
et al., 2016; Mengelkamp et al., 2017a; Morstyn et al., 2018). Using a digital platform,
electricity from solar panels could be traded locally among neighbors, without a central
utility provider serving as intermediary for these transactions. P2P energy markets have
the potential to generate value on multiple levels: They allow for local matching of supply
and demand for renewable energy, enable consumers to actively influence energy sourc-
ing, and provide incentives for investments in renewable generation (Morstyn et al., 2018).
Overall, this may reduce depletion of natural resources and greenhouse gas emissions in
the long run, thus fostering sustainability (Andoni et al., 2018; Morstyn et al., 2018).
However, the performance of P2P energy markets has not been studied in practice yet.
While there are several conceptual articles on decentralized energy markets (Andoni et al.,
2018; Mengelkamp et al., 2017a; Morstyn et al., 2018), empirical evidence for the feasibil-
ity and impact in the real world is still missing. This is not only due to the early stage of
the technology or regulatory challenges. More importantly, like in other domains, energy
trading on P2P markets implies a fundamental shift regarding the role of the participating
citizens (Fridgen et al., 2018; Morstyn et al., 2018). This raises the question: Which value
proposition do P2P markets create from the user perspective, and to what extent are they
an effective measure to empower once passive consumers to assume a more active role in
these markets?

This article presents a framed field study to explore the impact of P2P energy markets in
the real world. More precisely, the research team implemented a platform for trading solar
energy among peers in a local community in Switzerland with 37 participating households.
After an intensive period of selecting, developing, testing and deploying the information
system, an active market phase with collection of trading data started in January 2019.
Based on market design theory, a double auction mechanism allocates solar energy and
determines prices on this market. Each household explicitly states their willingness to pay
for local solar energy and prosumers additionally define the conditions under which they
are willing to sell energy produced by their solar panels. By analyzing the three-month
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data set collected between January and March, this study examines energy matching,
preference satisfaction and resulting benefits in a real-world instance of a P2P electricity
market.

To the best of the study authors’ knowledge, this article presents the first empirical ev-
idence of this extent on a P2P electricity market in the field. This study contributes early
empirical research on a novel approach to tackle the energy transition using electronic
markets, thus addressing one of the most pressing societal problems (United Nations,
2019). By designing and implementing P2P trading in a local electricity market and
by evaluating its impact from the user perspective, this article goes beyond the stage
of merely conceptual or analytical research that characterizes the majority of research
projects in the Green IS area (Gholami et al., 2016; Malhotra et al., 2013). The findings
contribute to Green IS research and research on the sharing economy by testing an in-
novative solution concept to design electronic markets (Bichler et al., 2010) for fostering
sustainability in the field (Seidel et al., 2017). In particular, real price preferences for
local solar energy are collected in a real-world setting from the users’ input to the market
mechanism. These findings can serve as input to design local energy markets on a larger
scale and possibly, to create personalized trading agents for electricity trading. The data
thus provides meaningful information for policy makers to address the challenges of incor-
porating DER and to design future electricity markets. Furthermore, the results provide
empirical evidence for the user value proposition created on an electronic P2P market
enabled by a distributed information system.

6.2 Background & Related Work

6.2.1 Designing Smart Energy Markets

Different electronic peer-to-peer or ‘platform’ markets, which have emerged in recent
years, have been subject to research both by economists and information systems scholars
(Bichler et al., 2010; Slavova and Constantinides, 2017). While market design is routed
in economic theory, most new, emerging markets are enabled by computational tools and
smart devices which in turn strongly influence the efficiency of and human interaction with
these ‘smart markets’ (Bichler et al., 2010; Zimmermann et al., 2018). The peer-to-peer
exchange of goods and services on Airbnb, Uber and other sharing platforms represent
economic systems, but these systems are strongly influenced by the information systems
that support them (Glaser, 2017; Lampinen and Brown, 2017). This interdisciplinary na-
ture makes smart markets a subject of interest for information systems research (Bichler
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et al., 2010; Melville, 2010). Smart market design is concerned with the question how
information systems can be leveraged to design well-functioning markets and how the
user can be supported in the decision-making process without being overburdened with
information (Bichler et al., 2010). Bichler et al. (2010) argue that the first step in design-
ing smart markets is preference elicitation to understand and to model user behavior and
preferences. The user perspective is necessary to make the right design choices on market
mechanisms, input format and information provision. Furthermore, based on the user
preferences elicited, real-time decision support systems can be created that adapt to the
individual user and dynamic market conditions and that provide personalized recommen-
dations. Herein, market designers should strive to align participants’ incentives with the
social goals respecting the specific characteristics and requirements of the domain (Ketter
et al., 2013). Energy markets represent some of the most information-intensive instan-
tiations of markets due to the volatility in supply and demand and its dependency on
environmental conditions (Koolen et al., 2017). Given that providing sustainable energy
supply is one of the most critical societal tasks (United Nations 2015, 2019), several calls
in recent years have encouraged research on Green IS and smart markets for sustainable
energy (Gholami et al., 2016; Melville, 2010; Seidel et al., 2017; Watson et al., 2010).
Yet, the task of creating smarter energy markets is a wicked one, as the development of
solution concepts viable in the real world involves engineering problems as well as active
integration of the user (Seidel et al., 2017). Due to the complexity of impact-oriented
Green IS research that examines the actual “’in-field’ impact of such systems” (Malhotra
et al., 2013), p. 1270, is very scarce (Gholami et al., 2016). Based on the assumption
that energy is considered a homogeneous commodity, user preferences have been largely
ignored in this sector for a long time.

6.2.2 P2P Energy Markets

In recent years, the energy market is undergoing substantial changes, not only on the
physical, but also on the digital layer (Ketter et al., 2018). The deployment of smart
meters is enabling monitoring of the consumption of individual market participants in
real time (Gholami et al., 2016). Information systems can further support algorithmic
control within energy networks and bidirectional communication between consumers and
prosumers, making it possible to implement a market mechanism that matches supply and
demand based on real-time data and to provide decision support systems that individual
consumers can interact with (Bichler et al., 2010; Ramchurn et al., 2012; Watson et al.,
2010). Consequently, new markets for DER are being developed by both academic scholars
and industry research. One approach to better mirror the decentralization of energy
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supply in the energy market is to form local microgrids, i.e. electricity distribution systems
which attempt to balance supply and demand on a local level (Brandt et al., 2014; Slavova
and Constantinides, 2017). Due to an increasing share of generation assets that is operated
by private consumers and with the aim of creating a more consumer-centered market,
the concept of P2P trading of local electricity in such microgrids has attracted interest
among practitioners and scholars alike (Basden and Cottrell, 2017; Mengelkamp et al.,
2017a; Wörner et al., 2019b). P2P exchange of electricity signifies a paradigm shift to a
decentralized bottom-up market in which individual consumers and prosumers can directly
trade electricity on demand without the mediation of a central utility provider acting as
reseller. Morstyn et al. (2018) argue that, from the user perspective, the value proposition
of P2P trading of renewable energy is threefold, p. 95: energy matching, preference
satisfaction, and uncertainty reduction.

• Energy matching: The efficient coordination of supply and demand of energy
requires a market mechanism that incorporates the specific characteristics of elec-
tricity as well as prosumer preferences. Ideally, the market mechanism incentivizes
local production and storage capacities according to local demand in real time, thus
reducing transactions with the central utility provider and required generation from
centralized power plants (Ketter et al., 2013; Morstyn et al., 2018). Existing litera-
ture on P2P energy markets (Mengelkamp et al., 2017a; Morstyn et al., 2018) mostly
proposes some type of online, double auction as market mechanism, as market-based
prices reflect supply and demand on a market in real time while allowing to engage
the participant in the decision-making process at the same time.

• Preference satisfaction: Allowing consumers to state preferences on energy sourc-
ing and different resources to be traded according to these preferences. Several
studies (Capstick et al., 2015; Lee et al., 2015) as well as media reports (Aljazeera,
2019; The Economist, 2019) suggest that in many countries public awareness for
climate change and energy-related sustainability issues is rising. More and more
individuals do not perceive electricity as a homogeneous commodity anymore and
increasingly display preferences for local energy supply (Silva et al., 2012; Tabi
et al., 2014). Hence, the integration of renewable energy drives more user-centric
approaches (Andoni et al., 2018; Koolen et al., 2017). This trend is also reflected in
recent statements of the European Consumer Organisation (2016) and the European
Commission (2015), p. 1, who highlighted the need “to empower consumers through
providing them with information, choice and through creating flexibility to manage
demand as well as supply”. In a choice experiment with consumers in Germany,
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Tabi et al. (2014) find that a large majority of consumers displays a preference for
renewable energy supply and one quarter of them deem the location of electricity
generation an important attribute. Likewise, results from an online survey by Ecker
et al. (2018) suggest that consumers are willing to incur a price premium of 20% on
average for renewable energy produced in their own homes. Yet, all these findings
are based on self-reported survey data and an investigation of individual prefer-
ences and social behavior in a real market setting to develop efficient markets is still
missing (Andoni et al., 2018).

• Uncertainty reduction: As prices for residential photovoltaic systems have been
falling over the past years, the number of small generators has been increasing. This
has granted more and more consumers a new and more active role as prosumers
who “both produce and consume electricity depending on their local requirements”
(Ramchurn et al., 2012), p. 88. Yet, it is unclear for prosumers whether and how
they can market energy produced from their generators in the long run: Recently, in-
vestments in renewable generation are highly uncertain, as subsidized feed-in-tariffs
are declining or even abolished in many countries (Morstyn et al., 2018). Ideally,
trading energy within a local P2P market increases revenues for prosumers and cre-
ates incentives for investments in renewable energy, hence reducing uncertainty of
investments in DER. In turn, this may lead to investment spillovers (Bakos and
Katsamakas, 2008) increasing the adoption of renewable generators or smart load
scheduling solutions as has been observed in P2P markets in other domains (Van Al-
styne et al., 2016).

The Brooklyn Microgrid was the first running electricity exchange deployed in the field,
in which locally produced energy from solar systems was sold within a neighborhood, and
participants were directly involved in the trading (Mengelkamp et al., 2017a). The Brook-
lyn Microgrid currently applies a uniform double auction (Lacity, 2018; Mengelkamp et al.,
2017a), but so far, there is little information on the reasoning for the chosen market mech-
anism and there is no empirical data on the observed market outcomes available (yet).
There are some simulation studies that examine individual aspects of peer-to-peer energy
markets: In a simulation study based on load profiles from 4,190 households in Ireland,
Griego et al. (2019) compare different compositions of load profiles for P2P microgrids.
They find that communities of at least 10 households and a share of 40-60% perform
best in terms of self-sufficiency rate (SSR), i.e. the share of energy consumption the local
market can cover with local electricity production, and self-consumption rate (SCR), i.e.
the share of locally produced electricity that can be consumed locally. Mengelkamp et al.
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(2018) conduct a simulation with load profiles from Germany, in which they implement
a time-discrete double auction and use artificial bidding data. They find an overall SSR
of max. 42%, but point out that the prices and allocation they find need to be validated
with real field data on price preferences and bidding behavior. Block et al. (2008) de-
sign a combinatorial auction mechanism for electricity and heat trading in a microgrid,
but provide no quantitative evaluation or field testing. Several industry publications and
whitepapers (Hasse et al., 2016; LO3 Energy, 2017; Miller et al., 2017) present case stud-
ies with a stronger focus on the individual consumers. Yet, conceptual market designs
presented in these publications are not empirically validated either. Moreover, these pub-
lications do not consider a market environment that allows users to actively take part
in the pricing and allocation mechanism in the microgrid. To this date, there has not a
been any real-world data reported on trading within a P2P energy market that provides
empirical evidence to what extent the value propositions conjectured by Morstyn et al.
(2018) and supported by other proponents of decentralized energy markets translate to
the real world.

6.2.3 Energy auctions

The performance of a market depends on the interaction of the individual market par-
ticipants with the market mechanism, on the input language and on the settlement process
of triggered transactions (Ketter et al., 2013). Energy markets are complex multi-agent
systems with diverse market participants exhibiting different individual preferences and
trading strategies (Bichler et al., 2010; Ketter et al., 2013). Both supply and demand
are volatile; to avoid blackouts, it is critical that supply and demand match at all times.
Furthermore, electricity markets are vulnerable to strategic behavior, as participants have
abundant opportunities for (implicit) collusion (Klemperer, 2002). Consequently, the de-
sign of P2P energy markets – and electricity markets in general – needs to mitigate these
risks and constraints adequately.

Most existing electricity markets and concepts for P2P energy markets employ an auc-
tion mechanism (Dauer et al., 2015; Koolen et al., 2017; Mengelkamp et al., 2017a). This
means that the participants express their preferences as bids containing a price and a
quantity of electricity, which they want to purchase or sell. To balance supply and de-
mand, all bids are collected in an order book and matched according to specific rules,
similar to the operation of stock markets (Andoni et al., 2018; Fridgen et al., 2016). The
rules of an auction have strategic implications on how the market participants formulate
their bids to maximize their expected utility. Different types of auctions exhibit different
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properties, such as: Pareto efficiency, which means that individuals with higher willing-
ness to pay should be prioritized higher in the allocation of goods; incentive compatibility,
which demands that agents’ never have an incentive to misrepresent their true preferences
in their bids; or the expected prices on the market (Mas-Colell et al., 1995). Regarding
pricing rules, a main differentiation is whether prices are uniform (i.e. all bidders pay
the same market clearing price) or discriminatory (i.e. bidders prices differ depending on
their bids) (Fabra et al., 2002). Several studies show that discriminatory price auctions
for electricity foster a more competitive environment; uniform price auctions, on the other
hand, are more prone to collusive behavior on one side of the market (Fabra et al., 2002;
Klemperer, 2002). While a uniform price regime yields slightly lower average prices ac-
cording to several studies based on simulations and lab experiments, discriminatory-price
auctions can reduce volatility of prices (Rassenti et al., 2003). As market failure on a
local electricity market may reduce efforts to create new, innovative market structures for
the energy sector, it is crucial to study the design of electricity markets. The Californian
electricity market in 2000 and 2001 serves as a negative real-world example that illustrates
the potential real-world implications of a poor market design. During that period, the
Californian market experienced tremendous volatility in prices and even some blackouts
caused by poor auction design and strategic behavior of several market participants (in-
cluding utility providers and generation plant operators), among other factors (Borenstein
et al., 2002).

6.3 Method

6.3.1 Study Site and Setup

In a real-world market platform deployed for this study, prosumers can sell the (surplus)
energy produced by their solar panels directly to consumers within their neighborhood
using an auction mechanism. The study sample comprises 37 participants in a local
municipality in Switzerland, 31 of which are prosumers who own (part of) a PV panel.
Most of the participants are private households, with the exception of one flower shop and
one nursery home for elderly people with approximately 50 residents. All participants are
customers of the local utility provider (blinded for review), whose support and active
role has been vital to the launch and success of the project. Together with the academic
researchers, they selected and recruited the participants from a neighborhood with a high
penetration of residential PV panels and served as a trusted local point of contact.

The research team deployed smart meters, which measure electricity loads in time
intervals of 15 minutes, in every participating household. Each household received one
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device that measures electricity consumption. Prosumers received another smart meter for
measuring electricity production from their PV panels and participants who own a battery
storage system received a third smart meter for measuring battery loads. Altogether, the
research team installed 75 smart meters in the participating households; all devices are
connected to the internet.

6.3.2 Design and Implementation of the Market Mechanism

Based on experimental and simulation studies on auction mechanisms for electric-
ity trading (Klemperer, 2002; Nicolaisen et al., 2001; Rassenti et al., 2003; Rosen and
Madlener, 2013), a market mechanism that takes into account the specific setting of P2P
exchange between private households was implemented: a time-discrete, discriminative
double auction. A double auction was identified as the most suitable archetype of an
auction mechanism for the present setting to enable prosumers as well as consumers to
decide for which conditions they are willing to sell or buy sustainable electricity (Rosen
and Madlener, 2013). This double auction takes the prices defined by the participants, as
well as their consumption and production loads measured by the smart meters as input.
Due to the propensity of electricity markets for collusive behavior described above, dis-
criminatory pricing seemed more advantageous than uniform pricing (Klemperer, 2002).
In addition, the limited volatility observed for discriminatory pricing (Rassenti et al.,
2003) is critical to provide affordable and calculable costs for energy supply and not to
alienate households taking part in energy trading for the first time (Rosen and Madlener,
2013). Although prices are expected to be slightly higher in a discriminatory auction
than with a uniform pricing scheme (Fabra et al., 2002; Rassenti et al., 2003), this is not
necessarily a disadvantage in the local electricity exchange, as it benefits the prosumers
generating renewable energy and may thus foster the profitability and diffusion of DER.
Moreover, related literature has shown that many consumers state that they are willing
to incur higher costs for renewable or local energy (Ecker et al., 2018; Tabi et al., 2014).

The participants’ buy and sell orders for local electricity are collected over a ‘clearing
period’ of 15 minutes. After the orders are collected, the auction mechanism is run to
clear the market and determine the resulting electricity trades. The discriminative double
auction matches the highest buy order with the lowest sell order (in terms of price) and
progresses like this through the entire order book. The price for each matched trade is the
mean between the sell and the buy price of the respective orders (‘discriminative/midpoint
pricing’). A sample orderbook is depicted in Figure 6.1: The blue and green curve show
buy and sell orders, respectively. The dashed grey line indicates the realized prices result-
ing from the auction mechanism. As electricity supply and demand need to be balanced
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Figure 6.1: a) Extracts from a sample orderbook, containing energy loads and prices b) chart
of a sample order book of one time slot during the day.

at all times, the local utility provider serves as backup for the microgrid: When there
is not enough solar energy in the local market, or when there is more production than
demand within the local market, the local utility provider covers (and absorbs, respec-
tively) these undersupplied (and excess, respectively) capacities at its standard tariffs.
In the study location, the standard electricity tariff incurred by residential consumers is
20.75 × 10−2 CHF/kWh and the feed-in-tariff for local production that is fed back into
the grid is 9.79× 10−2 CHF/kWh (including network charges that have to be reimbursed
to the utility company).

6.3.3 Design and Implementation of the P2P Trading Platform

The software enabling the P2P trading and communication within the microgrid is
running in a decentralized manner on smart meters. Each of the participating households
was equipped with a smart meter (a Raspberry Pi with expansion modules to measure
voltage and current) which ran a permissioned blockchain system based on the Tendermint
consensus protocol (Kwon 2014) (an overview of the system is provided in Figure 6.2).
The auction mechanism was implemented on the application layer of this blockchain and
is running as a smart contract without using a central server. All bids were handled in a
pseudo-anonymous way, as each smart meter received an address which only the research
team knew. Hence, participants did not know with which of their neighbors they were
trading electricity with, or who asked for which price. More details on the technical details
of the system architecture are available in the technical report (Ableitner et al., 2019).

In order to encourage an active participation of the households and to elicit their price
preferences (Bichler et al., 2010) regarding local solar energy, the participants received
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access to a personalized web application for the P2P trading. The application allows them
to monitor real-time data on their energy consumption (and production, if applicable),
on their past trading behavior and, in particular, to place price bids: By moving a slider
element, they can state their willingness to pay for solar electricity produced by their
neighbors (Ableitner et al., 2019). Prosumers can further define their minimum ask price
for selling energy from their solar panels to their neighbors. The participants are free to
define their price bids just once or adjust them as often as they wish. The application
provided them with a concise overview of their energy data and their trading outcomes
on the local market in real-time at their discretion, as earlier research indicates that
participants may be interested in the local origin of the energy they buy (Ecker et al.,
2018; Meeuw et al., 2018). (Note that the details on the development of the user interface
and analyses related to user experience and system usage are beyond the scope of this
manuscript.)

While in theory, the participants have the possibility to adjust their maximum buy
and minimum sell price as often as they want, the research team did, obviously, not
expect them to continuously monitor the auction execution or to take action on a daily or
(sub)hourly basis. Once they have set their price bids in the web application, orders are
posted by the smart meters every 15 minutes. The auction is executed every 15 minutes
to clear the market so that prices reflect availability of solar energy in near real time
(Rosen and Madlener, 2013). Participants received a monthly report summarizing the
information available on the web application. It included their energy consumption and
production, resulting expenses, share of local energy supply and the average price they
incurred for local energy. The report was sent out at the end of each month via email.

A key feature that sets this field study apart from prior research is that the participants
are in fact charged according to the prices defined by the participants on the P2P market
and that the electricity trades computed by the described auction mechanism occur in
reality. Consequently, the price preferences elicited from the participants are not merely
responses to a hypothetical scenario in a survey, but they influence the actual electricity
costs participants incur. Participants have been made aware of this fact in an information
event prior to the study (attended by 29 out of 37 households) and all participants have
signed a letter of consent in advance.

6.3.4 Data Collection and Analyses

Data is collected in the P2P market for a duration of three months, from January
7, 2019 to March 31, 2019. In addition to the trading data, a pre-experimental sur-
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Figure 6.2: Schematic representation of the main system components of the P2P trading plat-
form: blockchain infrastructure, market mechanism, and user interface

vey gathered supplementary information on participants’ preferences and their socio-
demographics. The study sample comprises 37 participating households, including 31
prosumer households. The prosumers’ total peak production capacity exceeds 280 kWp.
Over the duration of the study, the solar panels have produced 48,981 kWh and the par-
ticipating households have consumed a total of 130,378 kWh. Over the study period of
three months (8,024 clearing periods), a total of 292,316 orders posted on the market were
collected. The time-discrete, discriminative double auction matched 424,049 trades from
these orders, which were stored on the blockchain.

Based on this data, this article examines to what extent the implemented market realizes
the value propositions laid out by Morstyn et al. (2018). To that end, this study analyzes
the energy allocation and market efficiency achieved during the study period of three
months, and examine the preferences elicited in form of prices bid by the participants.
Furthermore, prices and resulting savings and revenues for consumers and prosumers,
respectively, serve as performance indicators of the market. Most results are reported
as relative values, as the absolute values depend strongly on absolute prices of the local
utility provider and the absolute energy demand and production in the specific microgrid.

6.4 Results
Based on the data collected, this study analyzes the efficiency of the P2P market, par-

ticipants’ price preferences, and realized prices for local electricity to empirically evaluate
the value proposition of P2P trading from the user perspective along the three dimensions
described by Morstyn et al. (2018).
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Energy Matching

To evaluate the efficient coordination of supply and demand in the P2P market, the
following section examines how energy was allocated within the microgrid. More precisely,
the analyses reveal whether the P2P market for solar energy provided incentives for re-
newable energy consumption and production and led to energy matching on a local level.
Figure 6.3 depicts the weighted mean price to pay for energy by participants. The green
line depicts the average day from the study period of January to March, the light green
line the day with most solar production and the light blue line the day with least solar
energy. As the chart illustrates, the price for energy decreases over the course of each day
when orders could be matched, depending on the availability of solar energy and demand
within the local market (green bars depict solar production, blue bars consumption). This
type of price curve was also observed in related simulations (Mengelkamp et al., 2017a).
The fact that the market price represents the relation of supply and demand in this way is
desirable, as it incentivizes electricity consumption when there is most renewable produc-
tion and highlights the very idea of a functioning market (Ketter et al., 2013). The lowest
average market price was achieved at middays on the sunniest days of the study period.
In almost all clearing periods, average prices were between the feed-in tariff (9.79× 10−2

CHF/kWh) and the residential retail tariff (20.75× 10−2 CHF/kWh), except for very few
periods, in which consumers paid a price premium for local energy.

Figure 6.3: Price evolution over time of day during the three-month study period in winter:
average day (dark green line graph), sunniest day (light green line), least sunny
day (light blue line). The bar chart depicts average production and consumption
loads in kWh. Prices within the P2P exchange reflect availability of local energy
and range between feed-in and residential retail tariff.

92



6.4. Results

The influence of sunny hours on the average energy price depicted in Figure 6.3 within
the local market indicates that a considerable share of energy was indeed traded among
peers and not at the fixed tariff defined by the utility provider (20.75× 10−2 CHF/kWh).
As all participating households are located within the same neighborhood, consumption
profiles – and even more so production profiles – exhibit a high correlation between house-
holds (Griego et al., 2019). Given that, it is striking to what extent the local P2P trading
increased local consumption of solar production: Without P2P trading, the overall SSR at
community level corresponds to the share of electricity demand covered by the prosumers
consuming their own solar energy. Over the duration of the study, the participant’s total
SSR without P2P trading would have been 15.5%. With the P2P trading system enabled,
the collective SSR almost doubled to 26.3%. Similarly, in the absence of P2P trading,
the SCR, i.e. the share of produced solar energy that is consumed by the prosumers in
their own houses, would have been 41.2% over the duration of the study. With the P2P
trading system, the collective SCR of the market participants increased to 70.0%. These
results are remarkable given that the data comprises three winter months in a community
with a higher prosumer share than recommended in Griego et al. (2019) and assumed
in Mengelkamp et al. (2017a). Overall, by enabling P2P trading, transactions of 14,092
kWh that would normally have involved the utility company were replaced by transac-
tions among households within the microgrid. This implies that the load profiles and
preferences stated by the participants could be matched for transactions of this volume.

To get an understanding of the efficiency of the market, this volume is now compared to
the volume of energy that could have mathematically been traded within the P2P market
given local supply and demand – in other words, the local solar production that occurred
concurrently with consumption within the microgrid. Over the period of three months,
the collective self-sufficiency rate reaches 26.3%, and self-consumption rate 70.0% with
P2P trading. Local supply and demand actually concurred for 16,439 kWh and could
thus technically have been matched within the microgrid. This means that during the
three-month period of the study, 2,347 kWh of locally produced solar energy were not
sold within the P2P market although there was local demand for it, due to a mismatch
in participants’ bid prices. Since orders which cannot be filled within the P2P market
have to be settled with the utility provider in any case, these transactions represent an
inefficiency. If participants’ price bids had not been taken into account, the collective SSR
would have been 1.8 percentage points higher (i.e., 12.6% of energy consumed could have
been bought from the local market instead of 10.8%); yet, that fraction was supplied by
the utility company. The freedom of decision-making granted to participants by actively
including them in the pricing process thus comes at a trade-off of this decrease in SSR.
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Preference Satisfaction

To evaluate price preferences for local electricity and their satisfaction on the P2P
market, preferences stated in the pre-experimental survey are compared to prices bid in
the market setting. As a first step, participants were asked prior to the field experiment
whether they would be willing to incur higher costs for solar energy or for local energy
supply: In this survey, 13 out of 31 participants who filled out the survey stated that they
were willing to incur a price premium for solar energy and 17 that they would for local
energy. As a second step, the prices bid by the participants in the market environment are
put in relation individual preferences stated on the market: The histogram in Figure 6.4
displays all bids made on the P2P market. These bids reveal several interesting insights on
the preferences elicited from the study participants. First, 27 of the 37 participants chose
to define price bids other than the default prices, at least at some point during the study
which indicates their willingness to engage on the market. Consumers offered 19.23×10−2

CHF/kWH (sd=2.37) on average for solar energy. The average sell price that prosumers
wanted to earn was 13.67×10−2 CHF (sd=3.85). This implies that in general, many trans-
actions among the peers can be matched within the microgrid. However, a lot of buy prices
as well as sell prices bid intersect in the interval between 12.5 and 18× 10−2 CHF/kWh.
This indicates that there may occur cases in which sell orders ask for a higher price than
offered in the buy orders – which explains the inefficiencies identified above. Moreover,
the high standard deviation and broad distribution of bids indicates that participants
have heterogeneous preferences and that many participants did seize the opportunity to
influence the decision making process on the market. While some prosumers asked a price
premium be paid by the consumers (sell bids >20.75 × 10−2 CHF/kWh), none of them
is willing to incur opportunity costs for selling their energy locally by offering their solar
energy below the feed-in tariff (< 9.79× 10−2 CHF/kWh). Hence, the bids by prosumers
in this study do not display other-regarding preferences or prosocial behavior for selling
electricity locally. On the consumer side, 11% of the buy orders are higher than the util-
ity tariff; these orders were posted by 6 different participants. While these 6 participants
(temporarily) offered to incur a slight price premium for solar energy from the microgrid,
overall, the participants’ real-world price settings in the field study considerably deviate
from their self-reported preferences indicated in the pre-experimental survey. In other
words, once their choices were consequential for their real-world income, they were less
willing to pay a price premium for local solar energy (and to incur opportunity costs for
selling their energy locally, respectively) than their responses to the hypothetical scenario
in the survey prior to the field study had suggested. These findings call into question the
results of survey-based evaluations of individuals’ willingness to pay for renewable ener-
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Figure 6.4: Histogram of prices bid for local solar energy on log-scale: Sell prices bid are
displayed in green, buy prices bid in blue (default tariffs defined by the utility
provider: 9.79× 10−2 CHF/kWh and 20.75× 10−2 CHF/kWh).

gies (Ecker et al., 2018; Tabi et al., 2014). Participants’ self-reported inclination towards
renewable and local energy (as stated in the pre-experimental survey), which is in line
with preferences reported by other survey-based studies in the existing literature, does not
translate into their behavior in the market setting in which participants’ bids determine
the actual costs they incur.

Uncertainty Reduction

Having examined the preferences elicited, the prices realized are now examined to un-
derstand to what extent P2P trading may help to reduce uncertainty for the prosumers
(Morstyn et al., 2018). To that end, the transactions realized and their implications for the
users are assessed. The mean price per kWh for transactions among peers is 16.80× 10−2

CHF (sd 1.78). Except for a few cases, prices for almost all transactions fall within the
limits of the fixed feed-in tariff of 9.79 (as lower bound) and the residential retail tariff of
20.75 × 10−2 CHF (as upper bound). As illustrated in Figure 6.3, prices for local solar
energy vary over the course of the day, depending on the availability of solar energy. This
has two implications, both of which are in line with the results above: 1) On average,
both sellers and buyers benefit from the P2P transaction, as they trade at a price that is
below the price that the consumer would have to pay to the utility company and above
the revenue that the prosumer would earn for feeding into the grid. 2) The average prices
realized do not include a price premium over the grid tariffs.

In fact, the results imply that all users have benefited from the P2P trading in the field
study: Their incurred electricity costs in the P2P market are below the costs users would
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Figure 6.5: Savings and additional revenue incurred by each participant in the P2P market
relative to their expenses/revenue for trading electricity with traditional tariffs.

have incurred if they had not been part of the local market and had bought from and sold
to the electricity provider. Summing up the transactions for each user in this way, each
of the participants either saves electricity costs, earns more for the solar electricity she
produces, or both. The scatter plot in Figure 6.5 shows the relative increase in revenues
for sold electricity (on the y-axis) and relative savings on electricity expenses (on the x-
axis) by each of the users. Pure consumers are depicted in blue (no electricity sold, hence
no revenue increase), prosumers in green. On average, users earned 32.2% (sd=0.15) more
for the electricity they sell, and saved 1.8% (sd=0.022) of their electricity expenses. At
first glance, the relative savings on electricity purchased seem very small. Upon closer
inspection, the numbers are not surprising, as prosumers cannot save much in buying solar
energy, as they mostly consume solar energy from their own roofs during sunny hours –
they benefit from the peer-to-peer market on the seller side. Focusing on pure consumers
alone (who do not own a solar panel), these saved an average of 6.7% (sd=0.008) of
their electricity bill. Moreover, savings may likely increase in summer months with more
excess supply and prolonged hours of sunlight. Taken together, the results indicate that
the market design is supporting the overall goal of providing a profitable market for
renewable energy produced by small prosumers and reducing uncertainty for prosumers’
investments.
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6.5 Discussion & Conclusion

6.5.1 Discussion

This article investigates a P2P market for solar energy in the field and collects high-
resolution empirical data of 37 participating households over the duration of three months.
The article thus contributes to the discussion on smart markets for renewable energy
(Bichler et al., 2010; Ketter et al., 2013) and green IS (Gholami et al., 2016; Malhotra
et al., 2013; Melville, 2010). To the best of the study authors’ knowledge, this is the
first scientific evidence on trading conducted on a P2P energy market in the real world.
This study analyzes the data collected with respect to the three value propositions of P2P
trading proposed by Morstyn et al. (2018): energy matching, preference satisfaction, and
uncertainty reduction. It is important to note that the quantitative results achieved in
the study sample are not generalizable to the broader public. Given the novelty of this
research area and the complexity of the energy market (Ketter et al., 2013), this study
examines the value propositions of P2P markets that have been theorized in the literature
in the field and provide a first benchmark for the real-world impact of peer-to-peer energy
trading among users in the field. With this impact-oriented approach (Gholami et al.,
2016), the peresent study tackles the first stage of smart market design of understanding
the user value and eliciting user preferences, as described in Bichler et al. (2010).

Despite the local proximity of the participating households, the findings indicate that
by matching supply and demand within the P2P market, the share of self-sufficiency of the
P2P community can be increased by 70% (from SSR of 15.5% to 26.3%), even during the
winter months of January to March. These numbers will likely increase over the summer
months with longer hours of sunlight. Moreover, given that prosumers still sell around
one third of the solar energy to the utility provider, SSR and SCR could be increased
by shifting flexible loads or by deploying more storage capacities in the microgrid. The
double auction employs price limits stated by the users to match trades. Yet, there is
a tradeoff between computing an efficient energy matching on the one hand, and on the
other hand enabling individual preference satisfaction (Morstyn et al., 2018) of the users
by letting them bid prices: Energy that cannot be matched on the P2P market needs to
be supplied from the utility provider at the residential retail tariff, as security of supply
needs to be guaranteed at any time.

The inefficiency observed in this field study reduced the technically possible SSR by
1.8% percentage points – with a decreasing trend over time. This seems like an accept-
able trade-off; in exchange, the market design implemented in this study allowed a greater
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influence of the participants, as they could directly state their willingness to pay for lo-
cal solar power and thus actively influence prices. Aside from that, the real-time prices
achieved in the market reflect the relation of supply and demand on the market very well,
as is shown in Figure 6.3. The pricing achieved by the matching mechanism selected
thus also incentivizes shifting consumption loads to periods in which local solar energy
is available, which could be achieved using smart appliances or storage capacities in the
future (Fridgen et al., 2016). This result is also interesting beyond the context of the
energy domain, as it shows that with the right market design, a P2P market can be rela-
tively efficient while, at the same time, enabling individuals to participate in the decision
making on a market (Lampinen and Brown, 2017). The double auction mechanism can
handle manually defined, heterogeneous individual preferences and still run autonomously
in real-time.

Furthermore, in this field study, the vast majority of residential solar energy was sold
within the P2P market and increased revenues from renewable generation, thus reducing
uncertainty of returns on investments for prosumers. As argued above, the auction mech-
anism manages to provide incentives for local generation, which in turn creates incentives
for investments in renewable generation and reduces insecurity of investment. It is impor-
tant to note that the feed-in tariff granted in this field study is relatively low compared to
current, subsidized tariffs in European countries. However, this projects the future market
structure, as feed-in tariffs and their financial support schemes have been reduced in the
past years and might even disappear in some countries (Karneyeva and Wüstenhagen,
2017), which illustrates the importance of studying novel market structures integrating
distributed prosumers. The direct preference elicitation from the consumers (by letting
them bid a price per kWh of solar energy) may seem like an extreme approach to involve
the user in a rather abstract decision making process. Nevertheless, the results indicate
that direct involvement of consumers is indeed crucial to understand the heterogeneity of
preference profiles and consumer behavior in a real market environment, as this may differ
strongly from their statements made in surveys. Moreover, there may be additional so-
cietal benefits of engaging consumers directly in the energy market (European Consumer
Organisation 2016): By allowing consumers to influence the energy sources they use or
even the prices they pay, they assume a more active role.

This empowerment may increase the salience and the understanding of energy supply.
The double auction represents an extreme approach that directly allowed the users to bid
prices for different sources of energy. The results can now serve as empirical starting point
for designing decision support systems which automatize smart trading strategies adapting
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to the consumer type (Bichler et al. 2010) or which provide consumer analytics for energy
consumption. Also beyond the energy sector, information systems provide various avenues
to support users in decision processes both in their professional and private lives. Many
of these systems include autonomous agents and regardless of the specific application
context (Bichler et al., 2010; Gholami et al., 2016), a key question will be how to make
sure that these systems act according to the users’ preferences. The discrepancy between
the participants’ self-reported price preferences in a hypothetical scenario and their actual
price settings in the field study highlight the importance of empirical research to better
align the strategies of autonomous agents with the individuals’ actual preferences in the
real world.

Overall, the results presented here confirm the value propositions of P2P markets that
were theorized in the related literature (Andoni et al., 2018; Mengelkamp et al., 2017a;
Morstyn et al., 2018) and have, partially, been observed in electronic peer-to-peer markets
in other domains (Einav et al., 2016; Zimmermann et al., 2018). Trading energy directly
between private households may become part of a future energy landscape, since thus
field study shows that the technology to put such platforms into practice already exists.
Yet, future research needs to investigate whether these benefits are actually perceived and
appreciated by the individual user and whether they justify the costs, time, and efforts
involved in the deployment of a distributed information system. This article takes a step
to address the dearth of impact-oriented research in the field of green IS (Gholami et al.,
2016); yet, fostering sustainability is a wicked problem with many interrelated aspects and
consequently, the design of smart energy markets for the future requires further research.

6.5.2 Limitations & Outlook

Despite all best efforts, this study is not without limitations. The very complex technical
setting in the field and the criticality of energy supply for all users imposes some natural
restrictions to the study design. Due to the complexity of the study implementation, the
explorative approach on a critical infrastructure, and to the associated costs, the sample
was limited to 37 participating households. Furthermore, the sample recruited features
a high share of prosumers; as early adopters, they may be more interested in energy
or sustainability topics than the general public, therefore the results may be subject to
volunteer–selection bias (Tiefenbeck et al., 2019). Future research needs to investigate
to what extent a broader population is receptive to P2P energy markets and how these
markets and the user interfaces need to be designed not to overwhelm citizens who so far
did not have any active role in the electricity market. This being said, it is all the more
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remarkable that in the field study, the high willingness to pay for local solar power which
the same participants had stated in the pre-experimental survey and which is in line with
previous survey-based studies (Ecker et al., 2018; Tabi et al., 2014) is not reflected in the
bidding behavior.

From an economic perspective, a particular feature of the application context is that
the utility provider backs up every order that could not be matched within the microgrid.
If that was not the case, the strategic incentives in the market would have been reduced
and Pareto efficiency would have been fulfilled. However, it is a necessity to keep the
electricity grid in balance and to provide reliable electricity supply at all times, so the
trade-off between respecting individual preferences and accepting inefficiencies is a natural
property of market design in this domain.

One reason for the lack of empirical data on P2P electricity trading is that technological
advances in communication technology and distributed ledger technologies have spurred
the interest in decentralized platforms only in recent years (Albrecht et al., 2018; Basden
and Cottrell, 2017; Buterin, 2014; Hasse et al., 2016). Naturally, the field implementation
of such a complex socio-technical system raises various interesting questions in different
research areas, including human-computer interaction, technical aspects, and regulatory
issues. For instance, the choice of the technical system architecture is beyond the scope
of the present article. In particular, this article does not aim to evaluate the advantages
or disadvantages of the blockchain infrastructure implemented in this field test. Another
aspect requiring further investigation relates to the design choices of the user interface
implemented on this P2P market and its influence on the trading behavior and under-
standing of the users. In the course of the research project, several interventions will
be implemented and qualitative data collected to assess these questions in detail. Going
forward, it would be also interesting to investigate other market designs incorporating
forecasts and include decision support systems for the user (Bichler et al., 2010), e.g. ac-
tive control of flexible loads and storage capacities, or autonomous agents taking part in
the auction mechanism based on user input. For that purpose, it would be interesting to
examine spillover effects on renewable adoption and possible shifts in load profiles caused
by the real-time pricing and additional information provided to the users. Such effects
have been observed in other studies on P2P platforms (Bakos and Katsamakas, 2008).
Finally, the deployment of P2P energy markets on a larger scale will have implications
on the grid infrastructure, grid costs, and demand schedules which need to be carefully
investigated from an engineering perspective on a systemic level. In this context, an ob-
vious question relates to alternative models for grid fees and pricing schemes to recover
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the costs for (super)regional transmission lines if the diffusion of P2P markets picks up
and consequently, the share of locally produced and consumed energy increases (“Who
pays for the grid?”). In sum, while the variety and breath of important questions arising
in detail cannot all be addressed in this article, the empirical data collected provide a
concrete starting point to foster the debate across disciplines.

6.5.3 Conclusion

In recent years, advances in personal information systems and in blockchain technology
have enabled the creation of new marketplaces, in particular for trading or sharing of
goods among private consumers. Given the increase of distributed energy resources, the
energy sector can benefit from this evolution if a market design can be established that
is beneficial to the user (Bichler et al., 2010; Morstyn et al., 2018). This article presents
a framed field study to test a P2P energy market in the real world and provides early
empirical evidence on the impact of this novel market platform from the user perspective.
To that end, a P2P electricity exchange for solar energy was set up in a local community in
Switzerland. A time-discrete, iterative double auction with discriminative pricing was im-
plemented based on existing literature on P2P energy markets and market design theory.
The established utility pricing serves as benchmark for trading data observed in the field
study. Furthermore, the preferences displayed by the users on the real-world market are
compared to survey-based findings on consumer preferences for local or solar energy, both
elicited from the same participants, and reported in prior literature. The results suggest
that the value propositions theorized in the literature can actually be realized for the user
in P2P energy markets. If the regulatory framework allows, information systems can be a
viable option for prosumers to sell their excess production locally and directly instead of
being dependent on feed-in tariffs determined by regulators and utility companies. Policy
makers should facilitate the creation of user-centric market structures that allow for local
energy matching and provide the possibility to reflect heterogeneous consumer profiles.
When addressing the user needs and employing efficient market mechanisms, information
systems have the potential to create smart energy markets that foster sustainability on
its three levels: socially, economically, and ecologically.
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7. Article F) Bidding Behavior on
a P2P Energy Market

7.1 Motivation & Introduction
To mitigate climate change and achieve sustainability, energy systems need to move

towards low-carbon, affordable, and socially equitable energy services. Such aims have
been underscored by the Sustainable Development Goals of the United Nations (2019)
which call for clean and affordable energy supply, as greenhouse gas emitted by energy
generation from fossil fuels is likely the dominant cause of climate change (IPCC et al.,
2014). Distributed renewable electricity generators, together with an electrification of
transport, hold a pivotal role in cutting greenhouse gas emissions (International Energy
Agency, 2018; Siler-Evans et al., 2013; Williams et al., 2012). In this context, rooftop
solar photovoltaics (PV) have been promoted by policy incentives and subsidies in many
countries. However, owning solar panels is not yet popular among the masses: It is still
often an unsatisfying endeavor to invest in renewable generators, as solar production does
not usually coincide with residential energy demand, and consequently a considerable
share of solar generation is fed back into the grid (Schopfer et al., 2018) at tariffs defined
by regulators or utility providers. These feed-in tariffs, in turn, have been falling for the
past few years, prolonging amortisation periods (Hoppmann et al., 2014; Karneyeva and
Wüstenhagen, 2017). Moreover, such fixed-price mechanisms generally do not reflect real-
time market conditions (Morstyn et al., 2018; Ramchurn et al., 2012), and fail to provide
efficient incentives for generating or consuming renewable energy when it is available –
even less so on a local level. Beyond that, many people live in rented homes where they
cannot make long-term hardware investments (Andrews and Sánchez, 2011).
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Simultaneously, in many applications, the use of information systems has led to “on-
line auction markets for resource allocation in distributed systems” (Guo et al., 2012, p.
823). Two-sided platform, or ‘peer-to-peer’ (P2P) markets, like AirBnB, Uber and eBay,
have revolutionized the way goods are marketed online (Adomavicius et al., 2009; Bapna
et al., 2004; Einav et al., 2016). In the urgent ongoing discussion about climate change
and the transition to renewable energy, smart P2P markets in which owners of solar pan-
els can sell their energy to neighbors seem like a potential mechanism to facilitate the
integration of renewable energy generators (Gholami et al., 2016). P2P energy markets
are proposed as coordination mechanism for distributed energy resources (Morstyn et al.,
2018; Ramchurn et al., 2012; Zhang et al., 2018a), to provide an alternative to the often
rather crude top-down coordination of energy resources by regulatory frameworks or sub-
sidies which is currently in place (Siler-Evans et al., 2013). In combination with a surge in
household expenses for electricity that will result from electrification of transport, accessi-
ble online platforms may increase consumer interest in electricity sourcing and renewable
generation.1 Given the opportunity to sell their solar energy on such platforms, private
consumers may start leading the way into a radically transformed energy market and,
possibly, more efficient resource use, just like they did in other industries (e.g. real-estate,
transportation).

Yet, to date, there is no study that has examined trading on a P2P market for solar
generation between neighboring households in practice. In particular, there is a lack of
empirical research and of consumer focus in this field, as most existing studies on the
topic either (1) are of conceptual nature or (2) are empirical but focusing on hypothetical
situations, or (3) focus on the technical implementation of information systems to manage
solar PV (Andoni et al., 2018; Mengelkamp et al., 2017a; Morstyn et al., 2018). Research
from other application contexts illustrates that individual behavior in online markets often
deviates from theoretical predictions and can be very heterogeneous (Bapna et al., 2004;
Lu et al., 2016), which may impact the efficiency of market mechanisms. As standard
assumptions of rational, risk-neutral bidders with perfect information usually do not hold
true in practical applications, Bapna et al. (2003) argue that behavior of individuals in
online auctions is not fully understood yet, and that classical economic theory may not
incorporate all of the newly arising phenomena in electronic markets. All the more so, it
is crucial to carefully investigate novel market designs and arising behavior (Adomavicius
et al., 2009) in a domain as societally important (and as complex) as the energy sector

1Whereas electricity expenses currently represent roughly 1.4% of consumer expenditures by the average
Swiss household, this volume is likely to double or triple with the electrification of transport and
heating at current tariffs (Bundesamt für Statistik, 2020) – thus increasing its relevance.
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(Gupta, 2017; United Nations, 2019).

This article presents the first real-world evidence on behavior in an IS-enabled market-
place for P2P energy trading. In a year-long framed field study, residential households
were trading solar energy in an online auction market. 37 residential customers of a utility
provider in a town in Switzerland formed a local P2P market. A majority of the partici-
pants already owned solar panels (these will be called ‘prosumers’) and had hitherto sold
their excess production to their utility provider at fixed feed-in tariffs. This study ex-
amines the bidding behavior and market outcomes of this real-world implementation of a
P2P market for solar energy.

My colleagues and myself designed, implemented, and deployed a trading platform us-
ing a blockchain system that ran on smart meters installed in the participants’ homes.
Participants interacted with the P2P market using a personalized web application. No-
tably, they directly determined their maximal willingness to pay for locally produced solar
energy, as well as the minimum price at which prosumers were willing to sell, using the
application. Participants’ bidding behavior in this study did not merely represent inten-
tional statements, but directly influenced their electricity bill. The buy and sell prices
they stated on the web application were thus not a merely theoretical exercise, but had
actual consequences on their expenses during the entire year of the field study. Leveraging
the empirical evidence collected, this field study investigates the following question: Does
the individual behavior observed deviate from cost-minimizing behavior? The experimen-
tal period of an entire year further provides insights on effects such as learning behavior
or reactions to seasonal changes: Does bidding behavior evolve over time? The analysis of
this data, draws on the existing body of literature on bidding in online auction markets
(Bapna et al., 2003, 2004; Goes et al., 2012; Guo et al., 2012; Lu et al., 2016). Given
that bidding behavior translated to actual, incurred costs in the present study, these find-
ings complement survey statements observed in the related literature. Third, this article
discusses intelligent agents as a tool to incorporate individual user preferences, while dis-
burdening humans from making operative trading decisions (Bichler et al., 2010; Gupta,
2017). While autonomous agents could provide intelligence in this abstract domain of
electricity supply in which individuals tend to lack long term thinking, it is crucial to
understand individuals’ preferences for keeping ‘humans in the loop’. As Bichler et al.
(2010) argue, “the degree of autonomy that an agent or automated decision support sys-
tem should have is a completely open research question especially in dynamic and complex
market environments [. . . ]”, p. 697. To that end, participants’ reaction to an alternative
automated pricing mechanism that supplements the interactive auction mechanism for a
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period of four weeks is tested in the present field study. The within-subject design allows
capturing the reaction of participants who actually have experienced both regimes in the
real world: Do participants prefer an automated dynamic pricing system rather than bid-
ding prices themselves? A tentative explanatory model further deepens the understanding
of the data observed in the field and an agent-based simulation models different bidding
strategies to put the observed behavior into context (Ketter et al., 2013).

The present study complements conceptual reviews, theoretical analyses, and empirical
work with hypothetical situations of P2P energy markets by the human element and
brings this novel market design to the real world. Allowing actual human participants to
interact adds a behavioral perspective on such market structures in practice and evaluate
whether online market mechanisms can efficiently coordinate distributed energy resources
on the household level. To the best of the study authors’ knowledge, this is the first
study to collect empirical data bidding behavior on a P2P energy market. It provides
first evidence on a pure market mechanism for the direct allocation of renewable energy
among residential households. The implications of the findings may be instrumental for
creating smart sustainable energy markets (Bichler et al., 2010) and, further, for designing
autonomous agents providing algorithmic decision support in this context (Lu et al.,
2016). This study thus contributes to the work on Green IS (Gholami et al., 2016; Gupta,
2017), collecting real-world evidence on the use of an electronic market for renewable
energy. The article thereby goes “beyond conceptualizing, analyzing, and even designing”
by conducting research “with demonstrable impact on mitigating the threat of climate
change” (Malhotra et al., 2013, p. 1266), tackling one of the ‘wicked problems’ of our
time (Creutzig et al., 2018; Gupta, 2017; Ketter et al., 2015).

7.2 Related Literature and Theoretical Background

7.2.1 P2P Energy Markets

Despite growing public attention for environmental sustainability and tremendously
reduced costs for solar generation (International Energy Agency, 2018), the diffusion of
renewable energy generation is still advancing too slowly (International Energy Agency,
2020b). Researchers as well as practitioners hence examine different ways for fostering the
integration of individual solar panels or storage systems in the energy market (Parag and
Sovacool, 2016) and ways to actively engage individual consumers in the energy transition
(European Consumer Organisation, 2016). These activities have led to efforts to create
decentralized market models in which electricity is sold directly from peer to peer (Bas-
den and Cottrell, 2017; Morstyn et al., 2018; Parag and Sovacool, 2016). P2P exchange
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of electricity is a paradigm shift from a centralized energy landscape to a decentralized
bottom-up market model in which individual consumers and prosumers (households that
produce energy themselves using solar panels or other electricity-generation assets) can
directly trade electricity on demand without the mediation of a central utility provider
acting as reseller and defining tariffs (Mengelkamp et al., 2017a). Prosumers can sell ex-
cess electricity they produce directly to other consumers within local communities on the
local low-voltage distribution grid level. Thus, a higher share of the electricity demand
of a community can be covered locally, which may help avoid or delay the need for in-
vestments in centralized generation infrastructure and in transmission (Jain et al., 2017).
In addition, it grants the owners of renewable generators more choices; allows consumers
who do not have the knowledge or possibility to invest in own infrastructure to support
renewable generation; and it is hoped to reduce overhead costs levied by utility companies.
However, given the recent developments in distributed energy resources and distributed
communication, existing research on decentralized electricity exchange is still in an early
stage (Mengelkamp et al., 2017a; Morstyn et al., 2018; Zhang et al., 2018a); and there is
a lack of empirical data on P2P energy markets with real participants.

In a simulated P2P market with standardized consumption profiles, in which they imple-
ment a time-discrete double auction for solar energy, Mengelkamp et al. (2017b) construct
artificial bidding data. They compare a learning strategy to a zero-intelligence bidding
strategy in a uniform double auction market. They find that the self-consumption rate,
as well as market prices achieved, vary with the bidding strategies employed. Financial
outflow out of the P2P market is lower for the learning strategy. The authors point out,
however, that their findings need to be validated in the field.

Hahnel et al. (2019) conducted an online study in which a group of participants were
instructed to imagine they were owners of PV panels and were part of a P2P trading
community. The authors identified three clusters of prosumers in these scenarios: price
sensitive, autarky-focused, and heuristic prosumers. Participants’ decisions thus mainly
depended on electricity market prices (which they could not influence in this study) and
on their own storage charging states. For the largest cluster of participants, the authors
found a high price elasticity, highlighting the importance of financial factors and price
preferences in this trading.

To understand what generally drives consumers to subscribe to already existing green
electricity products, Tabi et al. (2014) conducted a conjoint analysis on a consumer survey
among German households. They found that although a majority of consumers state a
preference for renewable energy sources, only a small fraction had actually purchased a
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‘green’ electricity product. The authors identified different groups of consumers, which
differ in their sensitivity to prices and local sourcing, and in their likelihood of purchasing
green electricity. In their study, the majority of ‘potential adopters’ of green electricity
products do not state a high sensitivity to prices. In a survey conducted by Ecker et al.
(2018), consumers state a willingness to pay a price premium of 20% on average for
renewable energy produced in their own homes. In addition, they find that participants
propose equal buying and selling prices for trading electricity on P2P markets in this
survey.

All these results are based on hypothetical scenarios tested in an online study. As
pointed out by Andoni et al. (2018), there is a lack of empirical evidence on the bidding
of private individuals in such energy markets, and survey results do not always provide
a true representation of agents’ actions (Fishbein and Ajzen, 1975). Probably the first
prototype of a P2P energy market deployed in the field was the Brooklyn Microgrid, in
which locally produced power from solar systems was sold within the neighborhood. In
a case study, Mengelkamp et al. (2017a) describe the system components of this market.
Market clearing was implemented by a time-discrete double auction in 15-minute intervals,
but no data on the participants or their behavior has been made available.

7.2.2 Bidding in Online Auctions

Involving private individuals in price-setting procedures has become increasingly pop-
ular in the digital economy (Bapna et al., 2003). Online auctions are some of the purest
market design problems that arise in practice (Roth, 2008), and they provide an ideal
setting to study individuals’ bidding behavior. Here, empirical studies in various domains
have shown that game-theoretical predictions for bidding behavior or the underlying as-
sumptions often fail in practice, even in iterative auctions in which individuals have the
chance to learn from earlier clearing periods.

For instance, one of the concepts of classical economic theory relating to the bids for
buying and selling a good, says that willingness to pay (WTP) and willingness to accept
(WTA) should be similar on an active market (Shogren et al., 2001), as sellers can rebuy
a good they sell for a similar price and vice versa. However, seminal work from the
behavioral economics field has shown that in many contexts, individuals ask for a higher
price when selling a good than they would be willing to pay to buy it. Kahneman et al.
(1990) attribute this phenomenon to an ‘endowment effect’, which is observed even in
settings where no sentimental attachment to the traded good is expected. This effect is
closely related to the notion of loss aversion described by Kahneman (1992).

107



7.3. Study Design

Another essential economic concept in this context is equilibrium analysis in auction
markets. However, the computation of equilibria under imperfect information, especially
in sequential or multi-unit auctions, is often computationally intractable (Bapna et al.,
2004). All the more so, it is hard to capture bidder heterogeneity in such analyses. This
complexity limits the applicability of theoretical literature on auction design (Adomavicius
et al., 2009). In recent years, scholars in many domains have hence turned to empirical
experiments, as well as simulation models of markets, to complement theoretical analyzes.

Bapna et al. (2004) examined different types of bidding strategies and their resulting
economic welfare in online auctions. They identified heterogeneous bidding strategies
based on bidders’ time of entry, time of exit, and number of bids in an auction. The
surplus achieved in the auctions varied among different clusters. In a tentative analysis
using a subset of their data, they also investigated learning effects: with repetition, bidders
improved their performance. Lu et al. (2016) examined bidder heterogeneity in business-
to-business auctions and identified five statistically different types of bidders based on
these attributes, who also achieve varying levels of economic surplus. In an attempt to
identify drivers for these distinct strategic choices, they derived an explanatory model
based on factors like transaction costs and budget constraints rather than psychological
or social factors, as they are investigating professional bidders in a B2B context. Using a
similar approach, Goes et al. (2012) examined bidding behavior in sequential auctions of
a well-known online auction platform. They confirmed the set of strategy types identified
by Bapna et al. (2004) and further showed that bidders’ experience had a significant
effect on their behavior. Moreover, they find indications for the ‘declining price anomaly’.
The term describes the phenomenon that market prices in sequential auctions of identical
goods decline over time (McAfee and Vincent, 1993).

In a longitudinal field study, Goes et al. (2010) investigated drivers for willingness to pay
in sequential online auctions. Based on their data collected in online retail auctions, the
authors argue that willingness to pay is strongly influenced by heterogeneity in demand,
and by a bidder’s experience in previous instances of a sequential auction. In particular,
bidders successively reduce their WTP after winning in an instance of the auction.

7.3 Study Design
This framed field study examines bidding in P2P energy markets in the field: A

blockchain-based P2P market enables the trading of solar energy in the real world. The
study with n = 37 participants took place in a town in Switzerland and lasted for one
full calendar year. It is one of the first realizations of a peer-to-peer electricity exchange
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worldwide in which households can engage in direct trading of solar energy using an in-
formation system. Participants actively bid price preferences for locally produced solar
energy and collected these bids at 15-minute intervals throughout the experiment. The
information system that enabled P2P trading and the implementation of the study are
described in more detail in the next sections.

7.3.1 Information System

The devices and network, forming the infrastructure for the trading platform of the
layered, modular architecture described in Constantinides et al. (2018), are represented
by smart meters running a blockchain network. The auction mechanism determining
transactions on the P2P market constitutes the application layer. Finally, participants
interact with a user interface for this application, a web application displaying individual-
ized information. Each of these layers will be described in more detailed in the following
paragraphs. (An overview of the different layers of the information system deployed to
run the P2P energy market is shown in Figure 6.2.)

Infrastructure

To enable P2P trading among participants in real time, a distributed information system
that was developed for the purpose of this experiment was deployed: Each household
was equipped with one to three smart metering devices. Each household received one
device that measures electricity consumption. Prosumers received another smart meter
for measuring electricity production from their PV panels and participants who own a
battery storage system received a third smart meter for measuring battery loads. In
total, 75 metering devices were deployed. All devices are connected to the internet; they
measure electricity loads in time intervals of 15 minutes.

Application

In combination with the electricity loads e, measured by the smart meters, willingness
to pay pb and willingness to accept ps, defined by participants are input to a discriminatory
double auction (Borenstein et al., 2002; Fabra et al., 2002) for allocating electricity trades
within the market. The participants’ buy and sell orders, bB = (pb, e

+) and bS = (ps, e
−),

for local electricity were collected over a clearing period of 15 minutes. In theory, price
preferences could thus have been adjusted on a 15-minute basis, which is, however, virtu-
ally impossible in practice for a human user and is not to be expected. After the orders
are collected, an auction mechanism is run to clear the market and determine the resulting
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electricity trades. Prices thus reflect availability of solar energy in near real time (Rosen
and Madlener, 2013).

To enable prosumers and consumers to decide at which conditions they are willing to
sell or buy sustainable electricity, time-discrete, iterative double auction (Algorithm 1)
was implemented. The auction implements a discriminatory pricing rule, which means
that the price participants pay directly depends on their own bid (Fabra et al., 2002). This
increases comprehensibility for human participants as compared with a uniform market
clearing price. Furthermore, discriminatory price auctions for electricity tend to yield
lower volatility in prices and reduce vulnerability to implicit collusion – at the cost of
higher prices in off-peak periods (Fabra et al., 2002; Klemperer, 2002; Rassenti et al.,
2003).

Algorithm 1 Iterative Discriminatory Double Auction
1: initialize e = (e1, . . . , e37) = (0, . . . , 0);
2: initialize p = ((p1,b, p1,s), . . . , (p37,b, p37,s)) = ((20.75, 9.79) . . . , (20.57, 9.79));
3: loop
4: smart meters measure e = (e1, . . . , e37) for this timeslot
5: participants (may) adjust their price bids pi,b and pi,s

6: if clearing time is reached then
7: create buy and sell order books bB, bS ⊂ b:
8: if ei ≥ 0 then
9: bi = (pi,b, ei), bB ← bi

10: else if ei < 0 then
11: bi = (pi,s, ei), bS ← bi

12: end if
13: sort order books descp(bB) and ascp(bS)
14: match orders: (bB, bS) → t with t being the resulting set of trades th =

(ph,t, eh,t, i, j) with ph,t = 1
2 · (pi,b + pi,s)

15: settle remaining bids b′ with utility provider u: (b′B)→ t′B and (b′B)→ t′B, with
ti = (tu, e′i, i, u) and tj = (fu, e

′
j, u, j) respectively

16: end if
17: end loop
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The auction matches the highest buy offer with the sell order with the lowest ask price
(in terms of price) and progresses in descending/ascending order through the entire order
book (ties are resolved by a random draw). The price for each matched trade is the mean
between the sell and the buy price of the respective orders (‘discriminatory/midpoint
pricing’), p = 1

2 · (pbuyer,b + pseller,s).

All participants are customers of the local utility provider whose electricity tariff was
tu = 20.75 × 10−2 CHF/kWh2 and the feed-in-tariff granted to prosumers was fu =
9.79 × 10−2 CHF/kWh, including network fees. When electricity supply and demand
within the microgrid was not balanced, the utility provider bought or sold excess capacities
at these tariffs. The P2P market thus operated in grid-connected mode (Halu et al., 2016).

User Interface

Participants received access to an individualized web application, which had been de-
signed for the purpose of this study. The application allowed them (1) to monitor real-time
data on their energy consumption (and production, if applicable), and data on their past
trading behavior and, in particular, (2) to place price bids: By moving a slider element,
they could express pb, their willingness to pay (WTP) for solar electricity produced by
their neighbors in the microgrid.3 Prosumers were also able to define their willingness
to accept (WTA): ps, their minimum ask prices for selling energy from their solar panels
to other households, as opposed to selling it to the utility provider at feed-in tariff (fu).
The slider element is depicted in Figure 7.1 and thoroughly described in Ableitner et al.
(2020).

Figure 7.1: Slider elements included in the web application for prosumers of the P2P market.
The consumer version only includes the buying side on the left.

2Electricity prices are indicated in Swiss Francs (CHF) per kWh, as the study took place in Switzerland.
3The superscriptˆdenotes datapoints collected in this field study throughout this paper.
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Feed-in-tariff and retail tariff of the utility provider were indicated on the slider ele-
ments for orientation, but the slider range also allowed participants to set their purchase
bid above retail price (expressing a preference for green/local electricity) or to sell solar
energy for free within the neighborhood. Furthermore, the application provided a concise
overview of their energy data and their trading outcomes on the local market in real time
at their discretion, as earlier research indicates that participants may be interested in the
local origin of the energy they buy (Ecker et al., 2018; Meeuw et al., 2018). A screenshot
of the web application’s energy data visualization is also given in Figure B.4, with further
impressions in Appendix B.

7.3.2 Implementation of the Study and Participants

The field study took place from Jan. 7, 2019 until Jan. 6, 2020. During that year,
participants had access to the user interface and could adjust their bid price bids; the latter
was disabled during the month of April, as described below. An overview of the course of
the study is given in Figure 7.2. The study was conducted in collaboration with the local
utility provider. Together with the academic researchers, they selected and recruited the
participants from a neighborhood with a high penetration of residential PV panels and
served as a trusted local point of contact. The participant sample (n = 37) included 36
residential households and one retirement home for elderly people. The majority of the
participating households (np = 31) either already had solar panels on their own roof or
owned a share of a solar panel on the roof of their apartment building prior to the study;
these participants were hence considered prosumers. The aggregate peak PV capacity was
around 280 kW. In addition, nb = 7 prosumers owned (a share of) a home energy storage
system.

Figure 7.2: Course of the field study during 2019. The bidding in the discriminatory double
auction was interrupted by a one-month experiment in which participants faced
a dynamic uniform price. Reports on energy consumption and expenses/revenues
were sent out every month by email.

Among the 37 participants, 28 registered on the web application to actively participate
in the market. The remaining 9 households signed up for the study, but never registered
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on the web application; thus, they were ‘passive’ traders whose price bids remained at
default tariffs throughout the study. In addition to the real-time information on demand
and supply on the web application, participants received a monthly report summarizing
the information available on the web application. It included their energy consumption
and production, resulting expenses, share of local energy supply and the average price
they incurred for local energy for the last month. This report also stated the participant’s
average price bids, as well as the average price bid by all of the market participants. Par-
ticipants who had often failed to purchase electricity from the neighborhood when there
was local supply on the market in the past month received the note stating, “X% of your
electricity demand could have been met by local electricity. A local trade did not take
place, as your bid price was too low/the producers’ bid price was too high to be matched.”
Likewise, participants who defined a very high ask price received the respective message
if they had often not sold on the P2P market even when there was electricity demand on
the local market. The report was sent out at the end of each month via email. After six
months and twelve months (i.e. in July 2019 and January 2020), participants received a
bill sent out by the utility provider, which contained a financial summary of their local
trading activities based on the data collected by the research team. The bill contained
the same information as the monthly reports aggregated for six months, along with a
payment slip to settle the resulting amount due.
The electricity bill was based on the prices and trades arranged based on their bids in the
double auction. Their bidding behavior thus had actual monetary consequences, which
had been communicated to participants at an information event prior to the study (at-
tended by 29 out of 37 households) and on the user interface. In addition, all participants
had signed a letter of consent in advance. This sets the present study apart from prior
research, which oftentimes relied on survey results or laboratory studies on consumers’
willingness to pay for renewable or local energy. The study design allows for eliciting price
preferences from actual trading activity over the duration of an entire year.

An in-subject experiment with a different pricing mechanism examined participants’
preferences and the pricing mechanism more in detail. In April 2019, the price-setting
function of the sliders on the web application was disabled for one month. It was substi-
tuted by a simple pricing function that determined a dynamic, uniform market price for
local solar energy in real time (every 15 minutes) based on current supply and demand of
(solar) electricity. This pricing function was derived based on the trading prices observed
during the active bidding phase (i.e. Jan–March). That way, the average price levels did
not change during the experiment, hence avoiding the risk of biasing participants with
new price levels. After one month, the system was switched back to the auction mech-
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anisms, and the price sliders were enabled again. Prior to the one-month experiment,
participants were informed that the research team was testing another way to determine
prices on the P2P market during the month of April; while prices for local electricity
would be determined centrally during that period, participants would still be able to see
their resulting income and costs of local electricity trades on the web application. After
one month, participants were informed that the manual bidding function with the price
sliders would be reactivated.

7.3.3 Data

The one-year data collection resulted in an extensive data set containing cleaned 15-
minute load profiles, auction clearing and transactions from more than 35,000 periods, and
price preferences bid by the participants. The system measured electricity demand of 37
residential customers from a town in Switzerland and generation profiles from 31 of these
households. Moreover, it collected the price preferences that participants revealed using
the web application, as shown in Figure 7.1. In addition, demand profiles of residential
customers of another utility provider served for additional analyses. A summary of the
load profiles collected is provided in Table 7.1.

Sample n Time frame Mean energy consumption/
production p.a. (sd) [kWh]

Field Study Cons 37 full year 2019 11,737 (30,293)
Field Study Prod 31 full year 2019 6,173 (17,098)
Additional Cons 223 full year 2018 4,488 (2,725)

Table 7.1: Summary of the load profiles collected. All data collected in Swiss residential house-
holds at a 15-minute resolution.

Furthermore, pre- and post-experimental surveys gathered supplementary information
on participants’ preferences and their socio-demographics, complementing the bidding and
trading data. Among the ns1 = 32 participants who filled out the pre-experimental survey,
30 were male, 2 were female, and the average age was 55.2 years (sd 12.9). Participating
households mostly included couples and families with one or two children (in total 26/32).
Average household size was 2.9 people (sd 1.19), and the nursery home had over 100
habitants, for which one representative interacted with the application and filled out the
surveys. 21 of the survey respondents were employed, 10 were retired and 1 described
herself as ’stay-at-home mum’. Most of the respondents had lived in the region for a long
time; < 20% moved there only within the last 10 years.
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7.4 Experimental Results
This study creates a unique opportunity to study a peer-to-peer electricity exchange in

the field and to gather longitudinal data throughout all seasons, collecting real electricity
consumption and production data, as well as real behavior of participating households in
terms of their trading behavior and price preferences.

As Figure 7.3 shows, trading on the P2P market considerably almost doubled both
the ‘self-sufficiency rate’ and the ‘self-consumption rate’ of the community: The self-
sufficiency rate refers to the share of electricity consumed that originates from one of the
PV panels in the community. Without the P2P market, the community would have had a
self-sufficiency rate of 21%, resulting from prosumers who consume electricity from their
own roof (green block in figure). With the P2P market, the community’s collective self-
sufficiency rate increased to 39% – the delta resulting from electricity purchased from other
members of the community (turquoise block on top). The self-consumption rate refers to
the share of locally produced energy, which could be sold within the neighborhood instead
being sold at feed-in tariff. A third of the community’s energy production was consumed
within the household that produced it. With the P2P setting, the share of electricity that
stayed within the community increased to 60%4. When buy price bids did not match
prices asked by prosumers, both parties traded with the utility provider, which creates an
inefficiency, as there is concurrent consumption and production on the P2P market that
is not matched locally. Such inefficient trades make up 2% of the total consumption.

Overall, the self-sufficiency and self-consumption rates achieved in the field study are
in line with simulation studies on P2P energy markets, which project numbers in the
same range (Griego et al., 2019; Mengelkamp et al., 2017b). The fact that there is still a
relatively high share of solar energy sold to the utility company indicates that the share of
prosumers is very large, as compared with pure consumers in this sample of households;
hence, in the majority of ’sunny hours’ (i.e., the time period during which the market is
active), the supply on the P2P market exceeds local demand.

7.4.1 Observed Bidding Behavior

In the pre-experimental survey, participants of the field study were asked whether they
would be willing to pay a price premium for locally generated solar energy as opposed to
their standard electricity tariff (tu = 20.75× 10−2 CHF/kWh). 32 of the 37 study partici-
pants replied to the survey; most of them stated that they would indeed be willing to pay

4A more detailed explanation and evaluation of these metrics is provided in the article presented in
Chapter 6.
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Figure 7.3: Energy sourcing during the field study (entire year 2019), rounded to MWh. Self-
consumption in prosumers own houses in green, P2P trading in turquoise. P2P
trading increased self-sufficiency rate by 18 percentage points and self-consumption
rate by 27 p.p. on the collective level.

a price premium, and these participents indicated a WTP an average increase of roughly
13%. These findings are in line with existing literature in which survey participants state
an increased willingness to pay for local/renewable energy (Ecker et al., 2018).

During the experiment, participants had the chance to define their willingness to pay/will-
ingness to accept using price sliders in the web application. Most participants used
this functionality and changed their price settings, thus overruling the default bids of
pb = tu = 20.75 × 10−2 and ps = fu = 9.79 × 10−2 CHF/kWh. Figure 7.4 shows the
averages prices bid by the participants over the entire year on the left and resulting prices
paid by consumers on an average day on the right. The average price bid for buying
electricity on the local market was 18.48 × 10−2 CHF/kWh (sd 2.70), and 13.01 × 10−2

CHF/kWh (sd 3.38) for selling.

The bidding data reveals a different impression than the survey responses: Participants
defined almost exclusively prices below the utility’s electricity tariff in the web app; thus
hardly any participants were offering a price premium in the real market. And conversely,
prosumers usually defined ask prices above the feed-in tariff offered by the utility (fu) for
selling electricity on the local market. There is no evidence for a willingness to earn less
than the feed-in tariff in order to supply other households of the community.

Based on these bids, trades among peers cleared at an average price of p̂t = 15.65×10−2
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Figure 7.4: Bids and prices observed in the field. (Left graph:) Participants bid on average
18.48× 10−2 CHF/kWh to buy and 13.01× 10−2 CHF/kWh to sell energy on the
P2P market. (Right graph:) Resulting market prices paid by consumers on an
typical day in CHF/kWh. Prices drop during midday when solar energy is traded
within the local market (solid line).

CHF/kWh (sd 1.86) . The price for trading within the community was thus almost
25% lower than the utility tariff. The right hand side of Figure 7.4 depicts average
daily electricity prices for consumers on the market. These prices depicted are the prices
consumers in this market incur on average – namely a weighted average of the prices
among peers resulting from the auction mechanism and utility tariff tu = 20.75 × 10−2.
The black curve shows that average prices dropped during the day when solar power
is available hence creating an incentive for consuming solar energy when it is available.
Participants incurred a total average price per kWh of p̂c = 19.01× 10−2 CHF (sd 2.65).

Looking at participants individually, most prosumer households stated a buy price
higher than the price to which they were willing to sell. As Figure 7.5 shows, most
households’ average bids are in the same range, yet they are not on the identity line.
This indicates that WTP 6= WTA in this data set, in contrast to the findings of Ecker
et al. (2018), whose survey participants were willing to buy and to sell at roughly the
same price. One plausible interpretation is that prosumer households will be buyers in
time slots in which there is an undersupply of solar electricity on the local market, so one
could argue that their buy and sell bids are not for identical goods: while their bids for
selling electricity affect sunshine hours (at which time supply typically exceeds demand),
their bids for buying electricity affect hours when supply is low. Second, the electricity
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Figure 7.5: Average price bids observed in the field study. Each dot represents one participant.
Most combinations of buy offer and ask price deviate strongly from the identity
line, which represents WTP = WTA.

tariff charged by the utility is also considerably higher than the feed-in tariff prosumers
are granted (electricity tariffs charged to consumers include grid fees, taxes and duties
in addition to the energy price paid to producers). These tariffs where set as defaults in
the web application and most likely serve as reference point for participants. With that
in mind, it seems understandable for them to have a higher willingness to pay than to
accept. The plot also reveals a few outliers that ask for a higher price than they would
be willing to give. This seems counter-intuitive, but it might reflect an endowment effect
(Kahneman et al., 1990; Shogren et al., 2001).

Again, Figure 7.5 shows that (also on the individual level) participants did not live up
to their survey statements about offering a price premium for local solar energy. On the
other hand, there is no clear evidence cost minimizing behavior in a competitive market
sense either: Assuming individuals do not care about the origin of their energy supply,
their utility function is solely defined by the cost for energy they pay, which results
in prices equal to marginal costs of production in the long run. Thus, strictly profit-
maximizing sellers would reduce their ask price ps to the feed-in tariff, which represents
the marginal cost in the present setting (i.e., the opportunity cost of not selling to the
utility provider). (While initial investments may be high, the marginal costs of renewable
energy generation are generally low or close to zero (Koolen et al., 2017). In the case of
solar panels, prosumers do not incur marginal costs for an additional unit of electricity
being produced on their roof.)
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7.4.2 Evolution over time

Over the course of the study, there is a highly significant decreasing trend in buy price
bids at a −0.08 × 10−2 CHF/kWh (sd 0.1 × 10−4) change per month, and an even more
pronounced, highly significant decrease in sell price bids: −0.16 × 10−2 CHF/kWh each
month (sd 0.11 × 10−4). Table 7.2 summarizes monthly average price bids (pb, ps) and
illustrates an underlying decreasing trend in price bids. As the average bids illustrate,
the decline in sell price bids is even more pronounced than in sell prices, as the average
sell bid in December, ps,Dec = 12.78 × 10−2, is 12% below the average bid in January,
ps,Jan = 14.39× 10−2, whereas this decrease was only 4% on the buyer side.

Figure 7.6 depicts the average buy and sell bids over time aggregated over all partic-
ipants as well as the daily average market prices for locally produced solar energy. The
latter are not only subject to participants’ price bids; they are also a function of the
energy produced and consumed on the market. As to be expected by standard market
logic, the matched prices for solar energy decrease over the summer months, and increase
in the winter months, when supply of solar energy is limited and demand for electric-
ity is higher5. Moreover, in summer, average prices drop below the average ask price
of the prosumers. This can be explained by the large share of prosumer households in
the participant sample, which leads to an over-supply of solar power during very sunny
hours. In those situations, only the prosumers with the lowest ask prices are matched
with the few net consumers who actually have electricity demand in these instances –
namely consumers have a considerably higher market power during sunny hours.

Figure 7.6: Evolution of bids and resulting prices over the course of the study.

5In Switzerland, AC usage is less relevant than space and water heating.

119



7.4. Experimental Results

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Mean buy bid 19.37 19.27 18.72 18.12 18.53 17.79 17.85 17.88 18.04 18.35 18.59 18.66

pb (sd) (1.92) (2.31) (2.91) (3.28) (2.83) (3.27) (3.15) (2.66) (2.71) (2.43) (2.28) (2.16)
Mean sell bid 14.39 14.01 13.64 13.43 13.46 13.11 12.63 12.45 12.32 12.52 12.46 12.78

pb (sd) (4.31) (3.75) (3.72) (3.60) (3.57) (3.16) (3.17) (3.01) (2.95) (3.18) (3.05) (3.12)

Table 7.2: Average price bids per month in 10−2 CHF/kWh. Both buy and sell price bids
decrease significantly over time.

Figure 7.7: Number of price changes per month. Inefficiency in the market (dotted line) is
reduced as price changes decrease.

Figure 7.7 depicts the number of price changes as well as the inefficiency occurring
due to mismatching price bids on the market. While it is not surprising that most price
changes occur in the first months of the study, it is remarkable that there is an increased
bidding activity over the summer months. At the same time, there is a peak in allocative
inefficiency on the market due to mismatching bids. While increased bid changing in May
and June is likely to have caused some of the inefficiency during this time, it is important
to note that these are also months with high solar production: The more supply there is,
the deeper the order books can be matched. This means that the buy price bids too low
to be matched to sellers in June may have been this low all along, but before, there was
not enough supply on the market to even ‘reach’ these buy offers and result in allocative
inefficiency. Still, inefficiency decreases after June and from September on: it is lower
than it was from January to March.

When analyzing participants’ individual bid curves (see Appendix, Figure C.5), an
initial observation is that the bidding activity is relatively high. All the more so, as
energy is a low-involvement good and the potential financial benefits are relatively low in
absolute terms. Many participants did not stick to the default setting, but defined different
price bids (pb, ps). Among the 28 participants who registered for the web app, 18 defined
their own price bid at least once during the field study (64%). More surprisingly, many of
these participants returned to the web application at least at some point to adjust their
bids: In fact, 12 participants (43%) changed their bids at least twice, and 7 participants
(25%) changed their bids more than 3 times. Some of them adjusted their bids frequently,
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seemingly following a seasonal pattern – the two most active traders adjusted their price
levels more than 50 times each over the one-year duration of the experiment. Overall,
bidding activity in form of price changes decreased over the course of the study. A more
detailed analysis of participants’ perception, and interaction with the user interface is
available in (Ableitner et al., 2020).

A qualitative analysis of individual bidding behavior reveals that 10 (15) bidders re-
duced the buy (sell) prices they bid over time. Furthermore, among the buy (sell) prices
bid, 9 (2) participants seemed to follow a seasonal pattern, meaning that they bid lower
prices in the summer than in other months. Both of these patterns are incorporated in
the aggregated average bid curves depicted in Figure 7.6. In addition, there are a hand-
ful of bidders who changed their price settings over time, but did not follow an obvious
pattern, but seemed rather erratic. Interestingly, there is no evidence that show that the
monthly reports or semi-annual bills, which included the average buy and sell bids among
all participants, induced participants to adjust their bids.

7.4.3 Autonomous Control

The idea of P2P energy markets is, among other factors, driven by the aim to actively
engage end-consumers in the energy market and raise understanding and interest in the
topic of energy supply (Hahnel et al., 2019; Mengelkamp et al., 2017a). However, active
bidding in an auction mechanism may overburden residential households over time. There
is a trade-off between active integration of human decision making and handing off control
(Dietvorst et al., 2016) to a software agent or even a central algorithm to clear the market.
A within-subject experiment with an alternative market mechanism deployed during one
month of the study (April 1 to April 30, 2019) evaluates how the participants perceived
the possibility of defining prices for the P2P market themselves and thus of taking an
active role in the market, as opposed to relying on an automatic system that determines
a uniform price for all market participants. After disabling the price-setting function on
the web application during that time (see also Section 7.3.2), participants were asked
about their preferred pricing mechanism in a short survey in May and again a few months
later in the post-experimental survey. In May, around half of the participants who had
filled out the survey (ns2 = 24) preferred to manually bid prices for the auction to the
automated system with a uniform price (see also Ableitner et al. (2020)). After an entire
year had passed, in January 2020, only 21% favored the auction with manual price setting,
whereas the majority of participants preferred an automatic pricing mechanism (Figure
7.8). In addition, it seems reasonable to assume that participants who did not reply to the
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surveys were less engaged in the P2P energy market and would hence be likely to favor
an automated pricing mechanism, as well. Further, participants were asked in the post-

Figure 7.8: Survey on price bidding vs. automated pricing. Many participants appreciated
the possibility of bidding prices in the auction mechanism in the first months of
the study, but at the end of the study, the majority expressed a preference for an
automated pricing mechanism.

experimental survey whether they would like to use an autonomous agent to do the energy
trading on their behalf (agreement on a 5-point Likert scale). The average answer was
4.16: they rather agree that they would like to use such a system (ns3 = 19). Moreover,
the respondents stated that they would trust such a system to act in their best interest
(4.11, rather agree). Still, on average they stated that they would still be using the web
application of the platform just to check their own energy data (3.84, rather agree).

7.5 Further Analyses
Simulation of Benchmark Strategies:

A simulation of P2P energy trading was used, to put the results observed in the field
study into further context and evaluate the sensitivity of the market outcomes of this
market design to bidding behavior. Using simulations to understand market mechanics
is often proposed in the recent literature on behavioral economics and smart markets
(Bichler et al., 2010; Gode and Sunder, 1993; Ketter et al., 2013; List, 2004).

Leveraging a larger variety of real-world load profiles, the simulation model allows to
examine how the observed bidding strategies relate to intuitive benchmark strategies and
what effects these had on market outcomes. The simulation is based on electricity demand
profiles from a distinct, additional set of Swiss households from another rural area, hence
removing particularities in the load profiles of the study sample for this analysis. To
put the bidding behavior observed in the field study pb̂, pŝ into context, two benchmark
strategies are modelled that span a spectrum from cost-oriented to green preferences:
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a) Cost-Minimizer Strategy: As described above (see 7.2.2), the equilibrium price
for solar energy under perfect competition would be opportunity cost.6 Hence,
pbr = fu + ε with ε = 0.001 are defined as cost-minimizer strategy for the buying
and psr = fu for the selling side, i.e. assuming individuals have no preference for
green electricity sourcing.

b) Green Strategy: In the pre-experimental survey, as well as in the related literature,
many consumers state a higher willingness to pay for local or renewable energy. Bid
prices for buying in the ‘Green Strategy’ are defined to be pbg = tu + 0.10t. psg = pŝ

remains as observed in the field.

Figure 7.9 shows the average prices for buying electricity on the P2P market on an
average day in September. The figure illustrates that prices observed in the field study
(not surprisingly) resulted in between what would result in scenarios a) (blue line) and b)
(green line). However, the simulation also shows that the difference between the observed
behavior in the field (black line) and the Green Strategy is smaller. In turn, there is a
relatively large margin to the Cost-Minimizer strategy. In the simulated model, average
prices for consumers in scenario a) result in 16.26×10−2 CHF/kWh (sd 5.29), for scenario
b) in 18.83× 10−2 CHF/kWh (sd 2.79) and in 18.16× 10−2 CHF/kWh (sd 3.37) sampling
from the bids observed in the field. Remarkably, there is hardly any difference in the
volumes traded in different strategies which indicates the high level of efficiency achieved
by participants in the field.

Explanatory Modelling:

While the sample size of this study is too small to solely focus on statistical significance
testing, a number of explanatory models are computed to better understand the bid
choices that participants made. In Appendix C.2, a fixed effects model explores the
average prices bids per month per individual. While caution is warranted in interpreting
these results, the analysis indicates some interesting trends: The average prices bid by
other participants which were reported in monthly reports show a highly significant effect
on individuals’ buy and sell price bids. In addition, the sell prices bid, reacted to the
energy demand on the market, and display a significant relationship with the share of
solar production sold on the P2P market in the previous month.

6While there is no perfect competition in the field study, in practice, the P2P market would be open for
other prosumers to join; beyond that, even in the setting observed in the field study, there is affluence
of solar energy during most days as soon as the sun is shining. It would thus be the economically
rational strategy for consumers who do not care about the energy source to bid just above opportunity
costs – feed-in tariff, during the vast majority of time slots when solar energy is available at all.
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Figure 7.9: Simulation of different bidding strategies, aggregated to an average day in Septem-
ber. Average prices in the in the observed empirical behavior fall in between the
two extremal cases, volumes traded are almost identical.

Overall, the results of the model reveal that (1) the effects of market information on
sell prices were larger in size than for buy prices and (2) the explanatory power of these
variables is much higher for sell prices. This matches the observation that participants
changed their sell price bids more often and the fact that there are many prosumers in
the sample of participants for whom the selling side of the market is more relevant. The
fact that the share of previous P2P sales shows a highly significant effect on sell prices bid
indicates that participants learned from their previous behavior and reduced their sell bids
when they were successful in previous auctions. These findings are in line with related
research on learning from experience in sequential bidding in online auctions (Bapna
et al., 2004; Goes et al., 2010), but might not have been expected in a low-involvement,
low-incentive domain like the present application.

A further examination of demographic and personality-related items did not reveal any
significant effects on the observed bid prices. As already reported above, many participants
had stated a willingness to pay a price premium for local solar electricity, which did not
translate to bid prices above the utility tariff. Still, these participants bid an average buy
price 2 Rp/kWh above those who did not state they would be willing to incur a premium
on solar electricity. The difference is not statistically significant though, and neither were
effects of other items related to participants’ attitude towards environmental topics.
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7.6 Discussion & Conclusion
7.6.1 Discussion
In multi-unit, online auctions with real humans, many theoretical predictions for bidding

behavior have shown to be flawed or not to provide sufficient explanatory power for the
way individuals behave (Bapna et al., 2004; Goes, 2013). Therefore, in line with Bapna
et al. (2004) or Lu et al. (2016), this study takes an inductive approach and observes
behavior in this societally relevant context in a real-world setting, and tries to make sense
of these observations. Given the exploratory nature of the study, an ex-post analysis of
the bidding behavior observed is conducted, rather than testing of a preconceived theory
(Bapna et al., 2004).

Contrary to participants’ statements in the pre-experimental survey and contrary to
existing survey studies evaluating responses to hypothetical P2P scenarios (Ecker et al.,
2018; Hahnel et al., 2019), participants did not offer a price premium for buying on the
local market instead of from the utility provider. This is remarkable, as participants’
responses in the pre-experimental survey had suggested preferences for green and local
electricity generation and that they would perceive an increased utility in buying electricity
from local and/or renewable resources. On the other hand, participants also did not act
in a purely cost-minimizing way – bidding at a level of marginal costs (in this particular
case, opportunity costs in form of the feed-in tariffs). The bidding behavior observed
falls in between the spectrum ranging from acting upon pro-environmental preferences to
a purely monetary oriented cost-minimizer – with a trend towards the cost-minimizing
competitive equilibrium: Participants decreased their bids after winning an auction, hence
learning from previous experience on the market (Appendix C.2). It is indeed remarkable
that participants in this experiment seem to have understood the basic market logic
and implications on electricity supply and demand quite well. Not only the decreasing
bidding trend based on prior trading experience and efficiency provides evidence for this,
but also the participants’ basic market understanding revealed in the post-experimental
survey. It is remarkable that the explanatory model with solely market information as
independent variables reveals some effects that follow economic the profit-maximization
rationale and explain a reasonable degree in the variation of sell bids. In contrast, survey
items on sustainability-related topics were not reflected in the average bids observed. This
null-finding seems relevant, as it illustrates that statements made in surveys specifically
pointing out ‘green’ or ‘sustainable’ electricity schemes may deviate from individuals’
behavior in an actual market setting.

It is difficult to fathom what ultimately caused the discrepancy between participants’
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stated preferences for local solar energy and their bidding behavior: on the one hand,
it is conceivable that participants’ answers in the pre-experimental survey (and in other
related research) were subject to social desirability bias, leading them to indicate a higher
preference for local solar energy than they actually have. On the other hand, it is also
plausible that they were caught by the competitive notion of known market logic and did
not actually gauge that their bidding behavior was not leading to an active support of
renewable generation in the long run. Either way, the decline in price bids and increasing
efficiency could indicate the tâtonnement (gentle convergence) to the competitive market
equilibrium (Gode and Sunder, 1993), in which the price for solar energy is close to the
external feed-in tariff.

The intention–behavior gap is a known phenomenon established in several studies on
resource conservation (Gatersleben et al., 2002; Tiefenbeck et al., 2018a). The presented
evidence also shows that in the market context, statements made in surveys or in hypo-
thetical markets may not be representative of the way in which individuals will act once
they find themselves in a real market setting.

Overall, participants seemed to appreciate the possibility of influencing pricing on the
P2P market, mostly in the first months of the study when they actively used the bidding
function. However, after the year had passed, the survey results imply that participants
would be willing to hand over control to an automated agent acting on their behalf (Bapna
et al., 2004). In line with that, recent research on ‘algorithm appreciation’ challenges the
widespread belief that individuals do not like to rely on algorithms and in fact appreciate
advice, even if it comes from black-box algorithms (Logg et al., 2019). The decline in
the initially high bidding activity over time also supports this tendency. Smart trading
agents for P2P energy markets might be a valuable approach allowing for active preference
elicitation from participants without relying on their continuous interaction. Autonomous
agents pointing out the effect of price preferences for individuals and engaging them in
smart energy markets may help individuals make choices they truly prefer in the long run.
Using autonomous agents to point out environmental consequences of market interactions
by factoring in long-term external costs of alternative energy production may be one way
out of the zero-marginal-cost dilemma that renewable generators face, without going back
to top-down control of externally defined prices.

7.6.2 Limitations

Despite all best efforts, given the technical and operational complexity in conducting a
field study of this character, there are some limitations to the findings of this study. Most
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critically, the sample of 37 participating households (including one elderly residence) is
not representative of the larger population. All participants live in the same town and
are customers of the local utility provider (blinded for review), whose support and active
role has been vital to the launch and success of the project. Moreover, given that the
experiment had an impact on participants’ electricity bill, they had to opt into the study
at the invitation of their utility provider. The results may thus be subject to volunteer-
selection bias (Tiefenbeck et al., 2019). Hence, the sample size and recruitment does
not provide a sufficient basis for drawing conclusions about explanatory variables for
bidding behavior among the broader public. Additionally, the ratio of pure consumers
and prosumers is not representative of most neighborhoods today, and the imbalance of
electricity demand and solar supply during sunny hours may have biased participants’
behavior.

Future studies need to evaluate the extent to which results can be replicated with larger,
more diverse samples and in other locations. However, this study is probably the first
to observe actual price-bidding behavior with real financial consequences for participants
in a real-world local energy market. To control for special traits in the consumption
profiles of the study sample, which influence local market prices as well, additional sim-
ulations leverage electricity consumption profiles from another, unrelated sample of 223
Swiss households. Further research should examine bidding behavior beyond the prices
defined by participants, and also investigate whether load shifting activities result as a
consequence of local real-time pricing (i.e., potential adjustment in bid demand). To
that end, a considerably larger sample and a control group will be required to control for
unrelated shifts in energy demand.

A further limitation of the findings is that the behavior observed is subject to the
external market conditions – in particular, to the tariffs tu and fu participants face when
buying from or selling to the utility provider. In particular, dynamic external pricing
might impact bidding behavior in a more fundamental way than shifts in fixed tariffs.
An important research topic for the development of P2P energy markets will thus be the
economic environment in the form of external tariffs.

Moreover, it is important to note that the regulatory conditions for implementing P2P
energy markets in the real world are outside of the scope of this article. This work focuses
on the bidding behavior and potential application for intelligent agents to increase the
understanding of potential effects of such novel market structures.
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7.6.3 Conclusion & Outlook

This study presents a unique field experiment on a local P2P energy market, in which
37 participating households take part in an interactive double auction for solar power
generated within the neighborhood. Price preferences are elicited by having participants
bid their willingness to pay and their willingness to accept for trading solar power on
the local market. The evolution and learning effects in participants’ bidding behavior
is observed throughout an entire year. This represents the first empirical evidence on
participants bidding behavior in a P2P energy market of this kind.

The results presented indicate that participants’ bidding behavior does not reflect their
previously stated intentions regarding local solar energy, thus contributing to empiri-
cal studies in other contexts of pro-environmental behavior that have also reported an
intention–behavior gap. Moreover, the behavior observed indicates that residential con-
sumers do a reasonable job in approaching competitive market price and that they un-
derstand standard market logic relating supply and demand to resulting prices. The
decreasing price bids, despite ‘greener’ intentions, suggest that decision support may help
individuals to actually live up to their eco-friendly intentions. Still, the empowerment of
consumers and prosumers through active market participation leads to a welcome engage-
ment in the energy market. This will likely become increasingly relevant to individual
consumers, given the imminent rise in household expenses on electricity that will result
from the electrification of transport and heating.

These findings contribute to the research on behavior in online auctions and point
out domain-specific outcomes for the energy sector. P2P energy markets emerge as a
possibility to coordinate and incentivize renewable energy resource, providing a promising
alternative to top-down regulations and government subsidies (Siler-Evans et al., 2013).
Going forward, the design of smart agents acting on behalf of individual consumers should
incorporate individuals’ stated preferences. As pointed out by Bapna et al. (2004), the
identification of different types of bidders and understanding their motivational drivers
can improve the design of smart bidding agents that can act in line with the individuals’
interests and preferences in the long run. Similar to ‘Robo-advisors’ in the financial
industry (Logg et al., 2019), smart trading agents or advisors could be developed to make
sure individuals are aware of and approve of the long-term effects of their energy sourcing
choices and consumption decisions.
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8. Intelligent Agents for Smart
Load Scheduling

8.1 Motivation
Passenger cars are the number one CO2-emitting end use in many industrialized coun-

tries (residential appliances plus space heating are number two) (International Energy
Agency, 2019). Hence, the electrification of transportation in combination with renew-
able electricity generation is instrumental to reduce greenhouse gas emissions (Williams
et al., 2012). Williams et al. (2012) name decarbonized electrification as the “technol-
ogy path to deep greenhouse gas emissions cuts by 2050”, p.53. However, the electricity
demand that results from increasing electrification and from the higher diffusion of dis-
tributed generation (see Chapter 7) is challenging the stable operation of power grids.
Higher demand peaks and volatility of generation put a strain on the grid infrastructure
and may require costly balancing interventions (Fridgen et al., 2016). In addition, there
is often a mismatch between demand curves of, for instance, electric vehicles and the
volatile supply of wind or solar power (Ramchurn et al., 2012; Valogianni et al., 2020). To
optimally capture the value of renewable power when and where it is produced, flexible
demands like charging loads for electric vehicles or heat pump cycles need to synchronize
with the dynamics of renewable generation, while, at the same time, respecting physical
grid limitations (Ketter et al., 2018).

To create incentives to shift flexible demand to times when electricity generation is
cheapest, Schweppe et al. (1988) proposed spot prices providing feedback on electricity
generation costs back in 1988. This has led to considerable research on the resulting
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behavior on the demand side. Numerous studies have investigated ‘demand-side man-
agement’ or ‘demand response’ (Gillingham et al., 2015; Schmidt et al., 2015; Strbac,
2008; Valogianni and Ketter, 2016; Vázquez-Canteli and Nagy, 2019), and the intuition
behind it is the same for taking advantage of carbon-neutral generation in real time. How-
ever, the success of manual demand response programs has been limited as they require
consumers to actively change energy demand profiles (Bollinger and Hartmann, 2020;
Vázquez-Canteli and Nagy, 2019). On the other hand, real-time pricing may not be pre-
cise enough in a future scenario with increasingly flexible electricity loads, as price drops
which apply for a larger group of consumers may result in high demand peaks in their
distribution grid (the electricity grid level to which residential households are connected)
(Ramchurn et al., 2011). Existing research in this field indicates that the desired balance
of energy supply and demand can only be achieved if demand-response mechanisms are
automated and smarter market mechanisms are applied.

With the advances in distributed computation and intelligent devices, the coordination
of loads using intelligent agents has gained increasing attention (Gottwalt et al., 2011;
Peters et al., 2013; Robu et al., 2013; Valogianni et al., 2014). Complimentary to be-
havioral interventions to reduce individual resource consumption, information systems
can also provide tools to enable the integration of renewable resources. The volatility in
renewable generation and the interdependences of demand profiles on a collective level
are too abstract and complex, and too dynamic for individuals to keep track of (Peters
et al., 2013; Robu et al., 2013). Software agents using artificial intelligence (AI) can pro-
vide autonomous decision support to manage electricity consumption to electricity grid
by flattening peak demands and by moving demand to times when renewable electricity
is generated (Valogianni et al., 2020).

This chapter introduces reinforcement learning as a machine learning method for intel-
ligent agents in the smart grid. Autonomous learning agents can serve as demand-side
managers for utilizing renewable energy closest to when and where it is created, which
reduces the need for additional infrastructure like storage systems or upgrades of distri-
bution grids, and for costly grid balancing efforts (Fridgen et al., 2016). Intelligent agents
that serve as aggregators for individual end-consumers or control flexible loads can learn
from dynamic price incentives and plan load schedules. The following section presents the
basic intuition behind reinforcement learning (the theory and formalization is described in
more detail in Appendix D). Section 8.3 summarizes a simulation on multi-agent reinforce-
ment learning for smart scheduling of EV charging, followed by an outlook on questions
for future research.
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8.2 Reinforcement Learning
The basic idea behind reinforcement learning is that an agent that interacts with an

environment tries to maximize expected future rewards for her actions based on her ex-
periences (Mnih et al., 2015).

Markov Decision Processes (MDP) are used as a formal framework for this type of
decision making in AI as they provide a framework for simple representation of stochastic
environments over time (Sutton and Barto, 1998). In an MDP, an agent interacts with an
environment at discrete time steps (Sutton et al., 1999), Figure 8.1 illustrates this process
on a high level. In each time step, the agent perceives the state of the environment and
takes an action, which leads to a reward for the agent and influences the future state of the
environment. If the agent is equipped with intelligence, she will try to learn if and in what
way the environment reacts to her actions and which rewards result from each step she
takes to improve her choices in future steps. The agent’s intelligence can be represented
by different machine learning models with varying complexity and performance, ranging
from simple decision trees or regression models to deep neural networks. (Appendix D
contains a formal and more detailed explanation of Markov Decision Processes, Multi-
Agent Learning, and Deep Reinforcement Learning.)

Figure 8.1: Simplified scheme of a Markov Decision Process (MDP). An agent observes a state,
chooses an action, and observes the next state and reward she achieved with this
action. On that basis, she decides for the next action while adapting her expected
reward for her possible actions based on the past experiences (see Appendix D for
more details).

Reinforcement learning is not a new concept, but computer scientists (Littman, 1994;
Sutton and Barto, 1998), as well as economists (Erev and Roth, 1998), have formulated
these learning processes inspired by the psychology of human learning already decades ago.
However, the more recent improvements in machine learning and in computational power
have increased the applicability of such models to real-world applications. Earlier studies
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on reinforcement learning mostly focused on simple games, due to the clearly defined
action and state spaces in (computer) games, and the resulting direct applicability of
game theory (Erev and Roth, 1998). The difficulty of applying reinforcement learning in
practice lies in the perception and representation of real situations (Mnih et al., 2015).
To be able to learn from past experience, agents need to reduce the dimensionality of
complex environments to a level which provides enough information to derive successful
action policies, but is still computationally processable (Mnih et al., 2015). In recent
years, machine learning models have improved significantly in that respect (Vinyals et al.,
2019), driven, in particular, by the development of deep learning (Mnih et al., 2015). In
deep reinforcement learning, the agent iteratively trains a deep neural network (in the
blue box in Figure 8.1) based on the observed information about the environment and
actions taken in the past. The neural net can process and abstract from a wider variety
of input than simpler learning models, as it allows for non-linear function approximation
(Mnih et al., 2015).

8.3 Summary of Article G) Multi-Agent Reinforce-
ment Learning for Electric Vehicle Charging

This simulation addresses one of the use cases for intelligent agents in the smart grid,
in particular, examining a multi-agent setting. Existing research shows that autonomous
agents can learn from dynamic electricity prices and forecast demand to efficiently schedule
electricity loads to reduce electricity costs for the users (Ketter et al., 2013; Ramchurn
et al., 2011; Valogianni et al., 2020). However, if self-interested rational agents all receive
the same price signal, real-time pricing may lead to ‘herding behavior’ creating high peak
demands which can destabilize the grid (Fridgen et al., 2016; Valogianni et al., 2015). This
issue illustrates that it is not sufficient to look at load shifting as an isolated problem for
each individual consumer, but that the collective actions of load-shifting agents impact the
electric loads in the grid. Electricity supply and demand need to be matched subject to
grid constraints and to preferences of consumers and producers. Intelligent agents hence
actually act in a multi-agent setting which needs to be coordinated efficiently.

Market mechanisms can be used to coordinate demand, in order to mitigate situations
in which all agents defer their loads to the same time and thus create high peaks in power
demand. For instance, Valogianni et al. (2020) present an adaptive pricing mechanism
for EV charging. They propose a coordination mechanism in which a smart grid man-
ager is learning a pricing strategy that incentivizes the desired collective demand profile.
Given that actual costs for electricity consumption are not determined just by generation
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costs, but also by distribution costs, Li et al. (2014) propose a distribution locational
marginal pricing mechanism to alleviate congestion resulting from EV charging. Loca-
tional marginal prices for the next day are determined by a distribution system operator
based on a power flow optimization. Charging of electric vehicles (EVs) is controlled
by aggregators that minimize charging costs under this pricing mechanism and the con-
straint that EVs are charged within specific limits derived from driving patterns. Flath
et al. (2014) argue that such nodal prices may be too complex and hard to understand
for individual households. They thus propose area pricing zones instead, which follow
the same logic in a lower granularity. Vytelingum et al. (2010) introduce trading agents
for the electricity grid and compare different bidding strategies in a double auction with
dynamic locational marginal pricing for electricity. In a simulation assuming fixed elec-
tricity demand, they find that agents bidding prices with an adaptive strategy outperform
zero-intelligence agents that bid randomly in terms of resulting energy costs and that the
grid is used more efficiently.

With the evolution of reinforcement learning in the past decade, adaptive strategies have
become more sophisticated, as learning models allow agents to learn from past situations
to improve their reactions to the information they observe. The simulation presented
here employs learning agents for EV charging in a setting in which prices are determined
by a locational marginal (or ‘nodal’) pricing mechanism, similar to the mechanism in
Vytelingum et al. (2010), and uses real base-load data and simulated data for flexible EV
demands. The mechanism creates incentives for agents to schedule the flexible charging
loads such that it is most convenient for the grid while respecting user preferences.

8.3.1 Model & Simulation

An auction market allocates charging energy and determines nodal prices in the distri-
bution grid. The auction is cleared every 15 minutes and agents submit a bid for electricity
demand and valuation for every time step.

The agents in this environment are facing the task to minimize charging costs for the
EV owner, while ensuring that the state of charge (SOC) of the EV batteries meet the
driving needs at all times. Hence, an agent’s aim is to optimise the charging costs of their
household by moving the charging process to cheaper times (i.e. more convenient for the
grid), but still charging enough to fill the owner’s driving demand. In the present model,
agents decide on these schedules individually without communicating driving patterns to
a central aggregator. This represents a bottom-up coordination approach to the charging
problem.
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Market mechanism

In this model, multiple agents i ∈ {1, ..., n} in the same distribution grid face the
task to minimize EV charging costs. The cost minimization problem is subject to the
EVs’ hourly availability to be charged at home and, naturally, to the battery capacities
installed. In addition, agents incur a penalty if the SOC does not meet users’ driving
demand to prevent them from simply not charging. The optimization problem for an
agent i is formulated as a maximization problem of aggregated rewards Ri (i.e., negative
costs):

Ri =
T∑

t=1
ri,t = −

T∑
t=1

pi,t ∗ PEV,i,t ∗ 4t︸ ︷︷ ︸
Cost of electricity

+ ρ(1− SoCi,t) ∗ 1t∈TD,i︸ ︷︷ ︸
Penalty

(8.1)

SoCi,t+1 = SoCi,t + PEV,i,t ∗ 4t
Batteryi

(8.2)

Here, ri,t represents the instantaneous reward at time t and is input to the reinforcement
learning model. The price pi,t in the equation is determined by the auction mechanism
that determines nodal prices based on optimal power flows in the distribution grid and
on the bids entered by the agents. Prices are determined for each node in the distribution
grid individually by the auction mechanism (details on this mechanism are contained
in (Kienscherf et al., 2020)). In peak demand times, agents may have to pay a price
premium on top of the standard electricity tariff, if they reduce electricity availability for
other agents. The agents thus do not merely act as price takers like they do in traditional
retail markets, but have a strategic choice in their bidding behavior.

Learning Model

In this simulation, agents leverage machine learning capabilities, as large parts of the
environment are outside of the agents’ own strategy space (other electricity loads, grid
state), or even unobservable for them (others’ charging demands). The MDP for the
learning problem is defined by the state space S, the action space A, the transition
function, δ(s, a), and the reward function r(s, a) (Reddy and Veloso, 2011b):

M = 〈S,A, δ, r〉 (8.3)

The action policy Π that is to be learned chooses the action that maximizes aggregate
rewards in every state of the environment, i.e., Π : S×A → [0, 1] (Sutton et al., 1999). The
state space S includes current market information like the real-time locational marginal
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price at the agent’s location, time of day, the current SOC, as well as the prices most
recently paid.

The agents in this model have two decisions to make in each clearing period: Which
price to bid and how fast to charge (i.e. how much energy to buy in the next 15 minute
period)? In each auction clearing period, agents can choose among three price levels
A1 = {low, medium, high} and three charging powers A2 = {3.7, 11, 16.5} kW to bid.
The action space A = A1 × A2 thus consists of |A| = 9 discrete actions. Depending on
her charging decision, an agent is allocated energy (or not) by the auction mechanism and
her consumption is priced. Accordingly, if the agent bids high during high demand times,
she is allocated energy but has to pay a higher price as she imposes a charging reduction
on other agents. The transition function δ(s, a) depends, on the one hand, on her actions
taken, as these influence the charging state of her vehicle. On the other hand, numerous
external interactions influence the market prices which are only observed through the
resulting prices. Transition probabilities are thus non-stationary. The reward function
r(s, a) is determined by the market mechanism as described above, but not explicitly
known to the agents.

To evaluate learning strategies to established benchmark strategies, this study compares
the following strategies:

a) Benchmark Strategy: No agent reschedules flexible loads, real-time prices are
ignored (status quo). Agents start charging right when the EV is available for
charging at home.

b) Learning Strategy: The agent employs the deep Q-learning algorithm proposed
by Mnih et al. (2015). Here, the optimal action policy Π(s, a) is approximated by
a small, one-layer deep neural network. The RL agent learns from the payments
and penalty incurred in past periods and chooses bids on that basis (the learning
algorithm is explained explained in Appendix D, Algorithm 2). The mechanisms by
which prices in the distribution grid are computed (i.e., yielding the reward function)
and the driving schedules are not explicitly known or modelled by the agent.

Data

Different data sets serve as base for this simulation: Residential electricity load data
from Ireland is used to simulate the electricity demand of residential households (Com-
mission for Energy Regulation, 2012). The original data was collected between July 2009
and December 2010 and comprises load profiles from 4232 households. The sampled load
profiles are mapped to a distribution grid from an IEEE test case, which is representative
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for a European residential distribution grid. Driving data is simulated, given the lack
of empirical data on load profiles of electric vehicles. Arrival and departure times are
sampled from normal distributions with 8 AM and 6 PM mean and 30 minute standard
deviation, which caters to a pronounced, yet not overexaggerated demand peak in the
evening and is in line with data from European Travel Surveys (Pasaoglu et al., 2012; UK
Department for Transport, 2019; Wu et al., 2010). In addition, EVs are assumed to be
mainly charged when at home.

The simulation spans one work week (five days) with 480 auction clearing periods and
100,000 training runs. Agents’ performance is evaluated in on 1000 test runs.

8.3.2 Results

The results show that in this setting, agents using a neural network to learn reduce
average charging costs by 68% as compared to the default strategy, in which they would
just start charging as soon as the EV returns home. Especially in the evening hours,
nodal prices observed in the grid for all participants are kept at the minimum, thus
not indicating price premiums evoked by grid congestion. Moreover, many agents also
reduce their charging demand to a medium rather than high charging speed. While the
overall charging costs paid by the learning agents still exceed the absolute minimum by
roughly 18%, the learning agents outperform the benchmark strategy currently employed
for EV charging in practice by far (68%). Given that this is achieved in the absence of
load control by a central aggregator and preserving the individual users’ privacy on their
driving schedules and demands, the application of intelligent agents in this type of market
seems like a promising approach.

As related work illustrates, the application of intelligent agents in the smart grid may
lead to undesired effects, if incentive structures are not fully thought through, e.g. herding
effects as a result of learning real-time price. However, in an adequate market design,
artificial intelligence can contribute to grid stability and optimize resource use, without
the need for a central unit to control electricity loads. This aspect is particularly relevant
in the light of increasing privacy concerns, as central load control requires individual
households to communicate their electricity needs and EV usage schedules to a central
point of authority. The combination of smart market design and intelligent agents provides
an alternative solution for distributed load control, devoid of this need for information-
sharing.

An extended version of this simulation and the results are described in more detail in
Article G), (Kienscherf et al., 2020), an article that will be submitted to the Journal of
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Artificial Intelligence in July 2020. As stated in the Disclaimer of this thesis, I am the
second author of that article and have designed and drafted the study together with the
first author, Philipp Arthur Kienscherf.

8.4 Outlook
The use case presented in this simulation is only one of the applications for intelligent

agents in future electricity markets. As pointed out by Rogers et al. (2012) the transition
the energy market is going through to adapt to increasing electricity demand and to more
and more distributed energy resources is “one of the greatest engineering challenges of
our day”, p. 2166. Intelligent agents can support this transition and help delivering
the vision of a smart grid in a number of ways which entail fruitful avenues for future
research: Supporting consumers in analyzing their own energy data and in interacting
on smart energy markets is crucial. Individuals cannot follow the dynamics of renewable
energy generation in real time. As the study presented in Chapter 7 showed, individuals
are, however, generally interested in being integrated in the decision processes on the
energy market. (Semi-)Autonomous software agents can elicit consumer preferences, and
then act upon these in an autonomous way in the dynamic market environment, reducing
complexity for the human consumer (Peters et al., 2013). As the simulation presented
in this chapter (Section 8.3) shows, the tasks for such agents can go beyond bidding
prices, to actively coordinating flexible loads in individual households. To take advantage
of distributed resources, while respecting physical limitations of the grid requires smart
mechanism design and real-time price incentives. Herein, it is important to understand
the interaction of intelligent agents in smart energy markets with dynamic pricing also
in the field. While AI capabilities can been examined in simulations at first, real-world
studies for different use cases may also help to identify practical challenges in this context,
which hamper the adoption of intelligent agents in the smart grid in practice (Ramchurn
et al., 2012).

Furthermore, additional research for assessing the performance of different learning
models for concrete use cases is needed. The simulation presented in Section 8.3 compares
a very advanced learning model, namely a deep neural net, to the current default strategy.
While the possibility of capturing input variables from the environment without having
to pre-process them elaborately is an advantage of deep reinforcement learning, it is likely
that a slightly simpler learning model could already achieve similar results in the proposed
setting. As the complexity of learning models influences the requirements on distributed
computational power, a careful evaluation of the learning models implemented by smart
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grid agents is important. Further research will thus address this issue and assess the trade-
off between model complexity and performance improvements. To that end, expanding the
simulations presented above further, by using empirical data on different flexible loads
like heat pumps or home battery storage, will also be relevant for practitioners.
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9. General Discussion &
Conclusion

The objective of this cumulative dissertation is to examine different ways in which infor-
mation technology can foster sustainability with a focus on the individual consumer. The
thesis started out by presenting the motivation and background for the studies presented
in Chapters 3 – 8. The results of each individual study were explained and discussed in
the corresponding chapters, highlighting implications for future research and for fostering
sustainability, not only in theory, but in the real world. Chapter 9 now closes with a
concise summary of those findings and synthesizes and discusses their implications for
researchers, as well as for policy makers and practitioners.

9.1 Synopsis of Findings
The research gaps tackled in this thesis (introduced in Chapter 2.4) are threefold, and

they introduce different approaches to leverage information systems for sustainability:
Real-time feedback and incentives for resource conservation, P2P energy markets, and
intelligent agents for load scheduling in smart energy markets. The findings regarding
these research gaps are summarized in the following.

Real-Time Feedback & Incentives for Resource Conservation, Chapters 3 & 4

Previous research found personalized feedback to be effective in reducing resource con-
sumption of individuals (Allcott and Mullainathan, 2010), in particular when pertaining to
specific activities rather than consumption metrics aggregated to household level (Abra-
hamse et al., 2007; Tiefenbeck et al., 2018a). However, the drivers of these behavioral
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changes induced by feedback interventions remained largely unclear, raising the following
questions: Does real-time feedback induce conservation effects even among a sample of
uninformed individuals in the absence of monetary incentives? And do individuals de-
fine consumption goals when presented with real-time feedback on resource consumption?
Chapters 3 & 4 each present a large field experiment on a feedback intervention which fo-
cuses on these motivational drivers. Two distinct samples of participants were confronted
with real-time feedback on resource consumption during showering. The main effects (en-
ergy conservation and the effect of self-set goals on energy conservation, respectively) are
statistically significant in both studies. Robustness checks and additional analyses have
increased the confidence in these results and underpin the quality of the study design.

The data collected thus provides robust empirical evidence showing that a) individuals
reduce their resource consumption while showering in reaction to activity-specific consump-
tion feedback even if there are no monetary savings to be incurred, and b) these effects
persist in a natural field experiment among a sample of hotel guests who did not self-select
into a research study, in contrast to many study samples in existing experiments on sus-
tainable behavior (Chapter 3). Based on the results presented here, monetary incentives
of the size of energy and water tariffs are not the main driver for resource savings effects
and are not necessarily required in conservation programs – which increases the scalability
and cost-efficiency of such measures.

In addition, the findings presented in Chapter 4 show that c) individuals tend to set
themselves consumption goals once they are provided with activity-specific real-time feed-
back. These self-set goals even were relatively ambitious and correlated with increased
savings effects, which is in contrast to theoretical hypotheses proposed in goal-setting the-
ory (Locke, 1996). Based on these findings, self-set goals could explain some of the effects
of self-tracking enabled by personal IS which have been observed in many domains other
than resource conservation, as well (Consolvo et al., 2009; Froehlich et al., 2010; Lupton,
2014). Given the difficulty of defining adequate goals externally and the risk of adverse
reactions associated with external goals, these results question whether IS artifacts should
assign goals to users and rather suggest that IS artifacts encourage users to set their own
goals and provide functionality to store and display those.

P2P Energy Markets in the Real World, Chapters 5 – 7

The energy sector is undergoing a fundamental transformation to integrate renewable
generators that are spatially distributed and often privately owned. To examine new mech-
anisms for coordinating these resources in the future, the second set of studies presented
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in this thesis focuses on the design, implementation and impact of P2P energy markets,
in which these smaller generators can interact and sell renewable energy to neighboring
households. A lighthouse project funded by the Swiss Federal Office of Energy (SFOE)
provided the unique opportunity to implement and study a prototype of such an energy
market based on blockchain technology from the conceptual design, through to its impact
during a 1-year long field experiment. The research studies around this project are of a
more exploratory nature than the two preceding studies on feedback interventions, as the
project is one of the worldwide first implementations of a P2P energy market.

First, the conceptual study on the characteristics of blockchain technology in Chapter 5
examines blockchain as an enabler for P2P markets to understand: What are the benefits
and risks of implementing P2P markets on a blockchain infrastructure? A systematic lit-
erature review underlines that research on blockchain-based P2P markets is in a very early
stage. The identified advantages of blockchain technology as a platform for P2P markets
are mainly the independence from a central entity, resilience of the distributed system,
and – likely more relevant in the Swiss ecosystem – autonomous execution of market logic
and settling of transactions in smart contracts. However, cost-efficient operation, usabil-
ity, and governance of the decentralized system are still posing challenges to blockchain
applications in practice.

Chapter 6 presents the market design that was defined and implemented for the field
experiment based on insights derived in the preceding chapter. Furthermore, the study
examines data collected in the first three months of the experiment to understand: Which
value propositions do P2P markets create from the user perspective, and to what extent
are they an effective measure to empower once passive consumers to assume a more active
role in these markets? This study provides unique empirical evidence on the user value
propositions of P2P energy markets that had only been theorized in the literature thus far
(Morstyn et al., 2018): The auction mechanism implemented lead to real-time prices which
accurately reflected the local availability of the solar energy, thus providing incentives for
consuming locally generated solar energy. PV-owners sold a considerable share of their
excess production locally, which illustrates that P2P energy markets can reduce uncertainty
of returns for distributed renewable generators. This first evidence further reveals that
individuals interacted with the web application for the P2P market relatively frequently.

Focusing on behavioral aspects in more depth, the study presented in Chapter 7 ex-
amines the bidding behavior participants displayed during the one-year-long duration of
the field experiment. Existing survey and lab studies have found that individuals stated
a high willingness to pay for electricity if it is generated from renewable resources (Ecker
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et al., 2018; Tabi et al., 2014). It was unclear, however, whether this willingness to pay will
materialize in a real market setting, and whether individuals understand and are willing
to deal with the complexity of a local energy market, which raises the questions: Does the
bidding behavior observed in the field deviate from cost-minimizing behavior? And how
does it evolve over time? While the pre-experimental survey gives the same impression
as described in the literature (Chapter 7), i.e., participants stated a willingness to pay a
price premium for buying locally produced electricity, the prices bid by participants during
the field experiment with real consequences on their electricity bills conflicted with these
statements: The prices individuals offered for renewable energy on the P2P market were
lower than the utility’s standard electricity tariff. At the same time, PV-owners asked for
higher remuneration than the feed-in tariff they were granted by the utility. These results
illustrate that individuals’ behavior in a market context, in which bidding behavior trans-
lates to actual payments, may differ from survey statements on preferences for renewable
energy. Furthermore, the data collected provides interesting insights from a behavioral
economics perspective. Examining the bidding behavior over time, the price bids indicate
learning effects from previous periods (in line with Goes et al. (2010)) and reactions to
seasonal changes over the course of the year. These resulted in an increase in efficiency on
the market towards the second half of the experiment (see Figure 7.7). In addition, there
is a decreasing trend in bids on both sides of the market (corroborating findings of McAfee
and Vincent (1993)), which suggests an approach to the cost-minimizing equilibrium of a
fully competitive market.

Multi-Agent Learning for Load Scheduling, Chapter 8

As a final research project, the work presented in Chapter 8 provides an outlook on a
promising future research direction: autonomous load scheduling by intelligent agents in a
smart market. An agent-based simulation is used to examine the question: Is multi-agent
learning in a smart energy market effective in reducing demand peaks while still respecting
individual preferences? Chapter 8 introduces multi-agent reinforcement learning as a
powerful computational tool to automate decision processes in energy markets that would
otherwise overburden individuals. Dynamic and location specific market mechanisms can
provide price signals to individual households (thus in an even higher resolution than in
P2P markets) to relieve the grid infrastructure and capture the value of renewable energy.
The results of the agent-based simulation show that nodal prices provide precise enough
signals to incentivize more balanced load profiles without requiring central load control
by an aggregator collecting information from individual households. Using reinforcement
learning to act upon these price incentives, agents shift loads for electric vehicle charging –
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which reduces peak loads in the grid. Given the forecasted surge in electric mobility, these
insights are relevant to the design of smart energy markets that can sustain the resulting
increase in electricity demand. Future work might integrate this type of intelligent load
scheduling, for instance, in a P2P energy market to address both, consumer engagement,
as well as grid stability and efficient infrastructure use – thus tying together some of the
aspects of the studies presented before.

9.2 Contributions & Implications
Synthesizing the findings of the different studies presented in this thesis, several common

denominators emerge. While the studies tackle different concrete research gaps addressing
behavioral factors and the required technological facilitators, there are several recurring
themes that shape the contributions of this dissertation. The following paragraphs sum-
marize the key messages and contributions, and point out their implications.

Unique empirical evidence expands existing theoretical research and lab
experiments on consumer behavior: Examining consumer behavior in the field is
crucial for assessing the realistic impact of conservation programs or policy measures, as
human behavior is influenced by a complex set of psychological, economic, as well as socio-
cultural factors, and is highly context-dependent (Levitt and List, 2008). Experiments in
behavioral economics research have revealed biases and inconsistencies in human behavior
and decision making in various domains, which have primarily been studied in lab settings
due to the controlled environment (Kahneman, 1992; Kahneman et al., 1990; Shogren
et al., 2001), but are often even more complex in reality (Bapna et al., 2004; Levitt and
List, 2007). Yet, evidence from real-world environments is rare, as field research is time
consuming and costly (List, 2011).

Our research group had the exceptional opportunities to collect three unique data sets
with great effort in large and elaborate field experiments. The field studies presented in
this thesis (in Chapters 3, 4, 6 & 7) provide unique empirical evidence on the interaction
of individuals with information systems and analyze their impact in the real world. The
findings on consumer behavior and on bidding behavior derived thus represent highly
relevant insights for policy makers. In particular, whereas scientific research often tends
to focus mostly on counter-intuitive findings (e.g., preference reversals or cognitive biases
in behavioral economics (Fehr and Gächter, 2000; Gigerenzer and Brighton, 2009)), policy
makers need robust information on scalable conservation policies, regardless of whether
the results are surprising or ‘as expected’ from a theoretical perspective (Editorial, 2017).
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IS-enabled feedback represents a scalable conservation measure: Both stud-
ies on real-time feedback interventions (presented in Chapters 3 and 4) provide robust
empirical evidence collected in large samples of participants. The findings imply that us-
ing ubiquitous connected devices, real-time feedback can be a cost-effective and scalable
measure to reduce resource consumption during specific activities among the broader pop-
ulation. Given the rapidly declining costs of sensors and connected devices, governments
could lead the way into more sustainable consumption practices by equipping public fa-
cilities such as schools or public transportation with metering devices, which can provide
activity-specific feedback in real time. Similarly, companies could reduce their environ-
mental footprint by installing such devices in office buildings, and manufacturers could
integrate real-time consumption feedback in the design of new appliances.

As changing individuals’ consumption behavior in their everyday lives has proven to be
very difficult, real-time feedback stands out as a practicable and effective measure to foster
more sustainable consumption patterns based on the results presented in this thesis. The
societal relevance of these findings is illustrated by the fact that the study on real-time
feedback among uninformed, non-incentivized hotel guests (Chapter 3) was featured not
only in renowned scientific outlets, but also in large, international media outlets (e.g.,
Deutschlandfunk, GEO, Nature.com, Scientific American, Spiegel online)1.

Smart energy markets are technologically feasible in practice, but are chal-
lenged by data availability and regulatory issues: While several similar projects in
other countries have started in the last two years, the P2P energy market that my col-
leagues and myself designed, developed, and deployed within the SFOE lighthouse project
is the first of its kind in Switzerland and one of the first worldwide. The research in this
project tackles a crucial step in the energy transition, by creating a consumer-centric en-
ergy market that can address the challenges arising from the integration and coordination
of distributed energy resources. In this context, it is important to note that the focus of
the research presented in dissertation was on the market design, bidding behavior, and
resulting market outcomes. Beyond that, further work on the design of the user interface
and the performance of the blockchain infrastructure was conducted within the project
and has been published by our research team, which is outside the scope of this thesis,

1 www.nature.com/articles/d41586-018-07471-1, November 19, 2018,
www.scientificamerican.com/podcast/episode/smart-meters-speed-showers/, November 27, 2018
www.spiegel.de/wissenschaft/technik/energie-sparen-wie-wir-alle-beim-duschen-sparen-koennen-a-
1239593.html, November 21, 2018
www.geo.de/natur/nachhaltigkeit/19962-rtkl-emissionen-forscher-entwickeln-geraet-das-beim-
duschen-geld-und, November 21, 2018
www.deutschlandfunknova.de/nachrichten/wasserverbrauch-beim-duschen-echtzeitinfo-hilft-sparen,
November 22, 2018
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see Ableitner et al. (2020) and Meeuw et al. (2020).

The research presented here shows that leveraging information and communication
technology, market mechanisms can be applied to coordinate resources on the individual
household level. The studies illustrate that smart energy markets are technologically fea-
sible and can grant end-consumers an empowered role as active decision makers in the
energy market – if the infrastructure to measure electricity flows on household level is
in place. Beyond the scientific research that was conducted in the project, the imple-
mentation and operation of the system uncovered many practical challenges and created
insights on existing barriers for the diffusion of data-based, consumer-centric energy mar-
kets. These include a lack of communication infrastructure and of processing capabili-
ties for high resolution energy data, and regulatory issues in the regulated Swiss energy
market, which were discussed with the project partners and the SFOE. In April 2020,
the Swiss government has decided on the cornerstones of a legislative amendment to the
Swiss Electricity Supply Act, which enables the creation of local energy markets for renew-
able energy – and explicitly mentions ‘Quartierstrom’-approaches in this context (SFOE
(2020), p.3 “Wer beispielsweise Solarenergie produziert, kann den überschüssigen Strom
im Quartier verkaufen. Damit ermöglicht die Öffnung des Strommarkts lokale Lösungen
wie Quartierstrom-Märkte und Energiegemeinschaften.”).

Again, the insights presented in this thesis have thus generated considerable attention
from policy makers and other researchers internationally, as well as public media outlets
(e.g., SRF aktuell, CNN Money Switzerland, World Economic Forum Blog, interview in
SRF Kassensturz)2, and resulted in several invitations for talks including at Stanford
University and the research organization Pecan Street Inc. in Austin, TX (which unfor-
tunately had to be cancelled due to the Covid-19 outbreak in March 2020).

Preference elicitation in real energy auction reveals active user involvement,
but low price preferences for solar energy: The data set collected in the P2P
energy market represents the first empirical evidence on individual trading behavior in
this context that has been published in the scientific literature3. While the sample of
participants in the P2P energy market is small in comparison to the two experiments on

2Among others, the research project was featured twice in SRF Schweiz aktuell, the
major Swiss news show, www.srf.ch/play/tv/schweiz-aktuell/video/solarstrom-von-der-
quartierstromboerse?id=84984c0a-37e7-484f-b8ae-036650329273, and other major media outlets:
www.srf.ch/play/tv/kassensturz/video/warum-es-mit-dem-solarstrom-harzt?id=2b5c1e6f-5019-416d-
a1c5-58b6d024a37f
www.weforum.org/agenda/2019/09/are-our-smart-meters-smart-enough/
www.youtube.com/watch?v=QHjAPEkrGlo.

3Chapter 6 has already been published (Wörner et al., 2019a), Chapter 7 is about to be submitted.
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real-time feedback, the empirical bidding data collected goes beyond existing research that
relies on surveys or lab experiments with hypothetical scenarios. Furthermore, the data
was collected over a period of an entire year. This longitudinal data set hence provides the
first ever evidence on a P2P energy market’s performance, and participants’ behavior over
time and across different seasonal conditions. The insights on the evolution of bidding
behavior are unique and complement existing research on individual behavior in online
auctions.

Concretely, the empirical results indicate learning effects in their bidding behavior and
that participants understand the auction mechanism surprisingly well and many adjust
there bids several times in the first eight months of the study. These insights imply
that integrating consumers in decisions on energy sourcing can be successful if they are
provided with high resolution energy data in an accessible and personalized manner.
Nevertheless, the findings reveal an intention–behavior gap in participants’ willingness to
pay for local solar energy – a known phenomenon, which is still often ignored in the design
of sustainability programs and which is relevant for the expected prices on P2P energy
markets. Contrary to participants’ own prior statements in the pre-experimental survey
and contrary to existing survey studies evaluating responses to hypothetical P2P scenarios
(Ecker et al., 2018; Hahnel et al., 2019), participants did not offer a price premium for
buying on the local market in the actual auction when bids impacted their real electricity
bill. Intelligent agents pointing out environmental consequences of market interactions to
consumers may be one way to drive interest and investments in renewable energy resources
and to increase the salience of long-term external costs.

Field research and sound methodological approaches are key to derive mean-
ingful knowledge on consumer behavior: Related to the previous point, the research
presented highlights several instances in which survey statements were not sufficient to
predict individuals’ behavior or even contradicted their actual behavior. This phenomenon
is not restricted to but particularly pronounced in environmental contexts, where many
individuals feel moral obligations to favor environmental protection, but the implementa-
tion of these ideals is less vigorous (Allcott and Mullainathan, 2010; Gatersleben et al.,
2002). Researchers should pay attention to this potential bias in their study design and
treat survey or lab study results with the required caution.

In addition, the studies conducted discuss the importance of participant recruitment
for the external validity of experimental results. In a unique setting, the field experiment
conducted among hotel guests, Chapter 3, showed that real-time feedback on energy
consumption during showering was effective among a population of individuals that did
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not know they were part of a research study. Herein, IS-enabled feedback on resource
consumption emerges as scalable and cost-efficient policy instrument for the broader pop-
ulation, which does not necessarily hold for interventions tested among smaller, volunteer
samples. The savings effects observed among the uninformed sample of hotel guests was
large and significant, but it was still smaller in size than the effects found in other studies
with the same intervention among a sample of volunteering households (Tiefenbeck et al.,
2018a; Wörner and Tiefenbeck, 2018). As discussed in Chapter 3, while the difference in
effect sizes may be caused by the lower baseline consumption in the hotel study, volunteer-
selection bias in the referenced studies cannot be ruled out. A transparent discussion of
the limitations to such field studies on human behavior is crucial to warrant the value of
scientific research.

Multi-disciplinary approach increases applicability and accessibility of sci-
entific results on fostering sustainability: This thesis draws on a number of theories
from the related research fields computer science, psychology, behavioral economics, and
IS, e.g., goal-setting theory (Chapter 4), market design theory (Chapter 5 and 6), and
multi-agent learning (Chapter 8). The integration different scientific perspectives con-
tributes to a more holistic understanding of the impact of information technology in the
sustainability context (Melville, 2010). While some of the aspects could have been ana-
lyzed in more depth if a less broad research scope was chosen, the different theoretical
lenses inform the presented study designs and compliment in depth research conducted
in the respective disciplines to mutually enrich each other (Bichler et al., 2010). Simi-
larly, multiple methodological approaches are applied to generate the findings and to put
them into context: Field experiments producing empirical evidence constitute the core of
this thesis, but a systematic literature review providing an analytical framework, as well
as agent-based simulations, derive further background knowledge on the studied topics.
Herein, this thesis addresses calls for integrative and impact-oriented research on Green IS
(Gholami et al., 2016; Ketter et al., 2018; Malhotra et al., 2013). More so, this integrated
assessment contributes to the accessibility of study results to a broader community, as
well as to its value for practitioners.

‘Human-in-the-loop’ approaches should compliment ‘human-out-of-the-loop’
approaches in smart energy markets: In the same vein, this thesis examines ap-
proaches in which information systems are used to actively engage individuals in con-
sumption decisions on the one hand (Chapters 3 – 7) and points out meaningful use cases
for autonomous decision making by intelligent software agents on the other (Chapters 7
– 8). While research in social sciences traditionally focuses on the one side and computer
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science on the other, the combination of these approaches is crucial for tackling real-world
problems, and denotes a distinct contribution of this thesis. Some behavior patterns, like
showering behavior, have an immediate and measurable impact on resource consumption,
but other questions regarding energy sourcing or investments in renewable technologies
are way more complex and intangible. While all of the field experiments in this thesis
are testament to the fact that real-time feedback raises salience of, and interest in energy
consumption, the studies on smart energy markets also illustrate definite boundaries for
active consumer engagement. Adapting charging schedules or price bids to the dynam-
ically changing conditions of energy supply and demand cannot be done manually and
require computational tools for capacity, as well as velocity reasons. The surveys con-
ducted in the P2P energy market (Chapter 7) found that participants grew increasingly
willing to replace the interactive auction with an automatic pricing mechanism, and that
they were open to entrust control to an autonomous trading agent. In line with recent
studies on algorithm appreciation vs. aversion from other domains, semi-autonomous
agents eliciting and integrating consumer preferences and then acting on their behalf in
smart energy markets emerge as most desirable system, combining consumer engagement
and efficiency.

While the bottom line remains that automating processes using information technol-
ogy is required to address the dynamic and highly stochastic conditions in future energy
markets, the perspective that information systems can engage and empower individuals
to contribute to the energy transition at the same time is an important one, which should
be tackled in future research. Herein, human-in-the-loop and human-out-of-the-loop ap-
proaches do not have to be contradictory, but should be used as compliments to achieve
an impact in protecting the environment.

9.3 Limitations
Despite all best efforts, certain limitations have to be considered in all of the presented

findings. In particular, as argued by List (2011) “we must work carefully when drawing
conclusions based on the results of field experiments.”, p.9. First of all, one of the main
contributions of this thesis pinpoints a limitation to most of the other studies presented.
As argued in the article on a natural field experiment in hotels (Chapter 3), volunteer–
selection bias is likely to affect the results of many framed field experiments with volunteer
samples. Notably, in environmental contexts, individuals signing up for such experiments
often only represent a small fraction of the target population (Kelly and Knottenbelt,
2016). While the unique design of the hotel study strengthens the confidence in the
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generalizability of its results, this level of external validity is not granted in the remaining
studies in this thesis. As many research contexts inherently prohibit the recruitment of
uninformed participants for studies, or increase the practical complexity, it is important to
discuss this limitation in every scientific study on a field experiment and debate possible
biases in the results. All field studies presented in this thesis hence transparently explain
the recruitment process for study participants. The P2P energy market (Chapters 6
and 7), in particular, suffers from a small sample of volunteer participants. Here, it is
important to note that the experiment was of exploratory nature, and statistical analyses
of observed data has to be treated with caution.

External validity in field studies further often suffers from exogenous factors outside
the control of the researchers that introduce noise or even systematic biases to the study
results. One of the limitations to the findings presented in this thesis is that all concepts
for fostering more efficient resource use presented are subject to external conditions. For
instance, the behavior observed in the field studies may be impacted by energy tariffs,
which are relatively low in Switzerland compared to the income level. The incentives for
trading on the P2P energy market are particularly influenced by these tariffs, as well as
by the regulatory framework for selling solar production and for smart metering infras-
tructure. This limits the direct applicability of the design of the P2P market presented
in this thesis to other countries. In addition, all of the field experiments presented were
conducted in Switzerland, and cultural factors may limit the transferability of behavioral
results to other cultures.

One of the weaknesses of the studies on feedback interventions is the limited duration
of the experiments that prohibited the analysis of long term effects. In turn, this was one
of the learnings that could be addressed in the design of the P2P studies in which trading
was observed throughout an entire year, thus capturing seasonal variations and learning
effects over time.

Finally, it would have been interesting to combine the P2P market studied with in-
telligent agents directly in the field, by incorporating more automation for pricing and
smart scheduling of flexible loads. While it was not possible do deploy more intelligence
in the scope of the field experiment, participants were asked about their preference on
automation and agent-assistance in post-experimental survey. The findings across the
studies presented in this thesis illustrate that it is vital to understand the incentives that
drive individual behavior to foster sustainable consumption patterns, but at the same
time, they also highlight the boundaries of behavioral measures. Addressing all energy-
intensive activities with real-time feedback or asking consumers to change their entire
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electricity consumption profiles dynamically to capture the maximal benefit of renewable
energy would clearly overburden individuals. Taking all things together, finding the right
balance between directly addressing consumers in behavioral interventions and automat-
ing complex decisions on consumption patterns (always taking into account individual
preferences) emerges as key to fostering sustainability on the large scale. The intersection
of these efforts exhibits interesting avenues for future research, marrying machine learning
methods with social engineering.

As a final remark, it is important to note that the approaches studied in this thesis
present only a small selection of the many ways in which information technology can con-
tribute to fostering sustainability. This thesis has a strong focus on targeting individuals,
in providing decision support to consumers and creating consumer-centric smart markets
for residential customers. However, there are other instances in which information systems
can be used to support resource conservation or the transition to renewable energy gen-
eration, for example resource management in organisations or decision support for utility
providers in the wholesale market (Fridgen et al., 2016). As one of the greatest challenges
of our time, fostering sustainability requires the cooperation of individuals, organizations,
and policy makers.

9.4 Conclusion
The tech-philosopher Jaron Lanier once pointed out that “[i]t is impossible to work

in information technology without also engaging in social engineering” (Lanier, 2010, p.
4). This dissertation confirms this statement. Most information systems do not run in
isolation, but shape individuals’ economic and social environment, or support decision
processes and react to user input. The findings presented underscore the importance of a
nuanced understanding of consumers’ interaction with technology and their motivational
drivers in realistic settings, in order to create actual impact. In a domain as relevant as
environmental sustainability, it is paramount to not only improve energy-efficient tech-
nologies or computational tools, but technological advances must by accompanied by a
social–science perspective on how these technologies will be employed and integrated into
consumers’ decision processes and consumption patterns.

This dissertation draws on theories from social sciences to integrate this perspective
in applying information technology to sustainability problems. With three field exper-
iments, complimented by conceptual studies and simulations, this work contributes to
the impact-oriented work on Green IS and behavioral economics. The different studies
examined ways in which information technology can be used to foster sustainability in the
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real world a) by providing decision support for energy consumption and b) by creating
smart energy markets that integrate distributed renewable energy resources. Based on
the findings presented, behavioral interventions provided by smart devices at the point of
action in real time can yield large resource conservation effects, even among the broader
public. Furthermore, the studies illustrated that smart electronic markets can support
the integration of distributed renewable energy resources and the electrification of trans-
portation in established energy markets. The findings can support policy makers (and
have already) in creating a legal framework that promotes the energy transition and in
designing scalable conservation programs.

The study designs, the data sets collected and the implications drawn in this thesis are
the result of collaborations with multiple different partners, including scientific researchers
from other universities and countries, practitioners from the energy sector, as well as the
SFOE. The different perspectives introduced by all of these stakeholders have shaped the
work presented and have strengthened its value both for practitioners, as well as for policy
makers and the scientific community. As already pointed out in the introduction to this
dissertation, tackling a wicked problem like environmental sustainability requires multiple
perspectives and a whole set of measures, including technological solutions, behavioral
interventions, and economic programs to go hand in hand to compliment each other.

In conclusion, the presented research allows me to end this thesis on a hopeful note.
While information technology has arguably enabled some behavioral patterns that have
led to the environmental damage and resource depletion that we see today, it can also
be an efficient vehicle for fostering sustainable consumption patterns and for integrating
renewable resources – thus ultimately for mitigating climate change. I believe it is in
our hands as learning human beings to use the possibilities technology provides us for the
better and to adopt more sustainable behavior patterns. This dissertation takes one small
step in this direction; and I am sure that there are many more to come.
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Appendix

A Literature Review on Blockchain-Based Energy Mar-
kets

Project/ Com-
pany

Basic idea Market design Status Country
Blockchain
protocol

Grid+
Miller et al.
(2017)

P2P trading of elec-
tricity, and control-
ling activators

Different market
models possible

Development
phase

US

Public
blockchain
with pay-
ment channels
(Ethereum,
Raiden)

HivePower
Rivola et al.
(2018)

Platform for P2P
trading of renewable
energy

Different market
models possible
(e.g. central
optimization)

Development
phase, lab-scale
prototype

Switzerland

Public
blockchain +
state channels
(Ethereum,
custom chan-
nels)

LO3 Energy
LO3 Energy
(2017), Men-
gelkamp et al.
(2017a)

P2P trading of so-
lar energy within lo-
cal community

Auction mecha-
nism: Iterative
double auction

Field phase: local
exchange within
community in
Brooklyn

US
Private
blockchain
(Tendermint)

PowerLedger
PowerLedger
(2017)

P2P trading of re-
newable energy

Different market
models possible
(e.g. central
optimization,
auction)

Development
phase

Australia

Public-
private hybrid
blockchain
(Ethereum,
EcoChain)

WePower
WePower (2017)

P2P trading of re-
newable energy to-
kens

Auctions mecha-
nism: not further
defined

Development
phase

Gibraltar
Public
blockchain
(Ethereum)

Table A.1: Relevant industry articles/whitepapers discussing blockchain-based energy markets.
Most projects are still in an early development stage.
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Study Basic idea Market design Status Country Blockchain
protocol

Mihaylov et al.
(2014a);
Mihaylov et al.
(2014b)

P2P trading of NRG
coins within micro-
grid, obtained for lo-
cally produced en-
ergy

Externally fixed
pricing functions

Proof of Concept
(lab-scale proto-
type)

Spain, Bel-
gium

Public
blockchain
(custom proto-
col, NRGCoin)

Mattila et al.
(2016)

Trading electric-
ity between solar
panel, battery and
apartments

Bilateral or me-
diated market
between solar
panel and de-
vices within one
building

Case study Finland n.a.

Aitzhan and
Svetinovic (2016)

P2P trading of so-
lar energy and stor-
age capacity within
microgrid

Auction mecha-
nism for stored
energy, bilateral
market for ad-hoc
transactions

Proof of concept
(simulation)

United Arab
Emirates

Private
blockchain
(Bitcoin)

Hahn et al.
(2017)

Trading between dis-
tributed prosumers,
prototype using sim-
ulated building loads
and PV array

Buyers bid in
one-sided Vickrey
auction

Proof of concept
(on campus demo
with one solar
panel)

US, China
Private
blockchain
(Ethereum)

Kang et al.
(2017)

P2P trading of re-
newable energy for
plug-in hybrid elec-
tric vehicles

Iterative double
auction

Proof of concept
(auction simula-
tion, blockchain
system only de-
scribed)

China, Nor-
way, Canada

Private
blockchain
(custom proto-
col)

Laszka et al.
(2017)

P2P trading of re-
newable energy and
storage within mi-
crogrid

n.a. Conceptual case
study US

n.a. (PoS
blockchain
necessary)

Mengelkamp
et al. (2017a)

P2P trading of so-
lar energy within lo-
cal microgrid

Iterative double
auction with
uniform pricing

Field Phase Germany, US
Private
blockchain
(Tendermint)

Munsing et al.
(2017)

Coordination and
payment of DER in
a microgrid, active
control of batteries
and flexible loads
through smart
contracts

Distributed opti-
mal power flow
algorithm

Proof of concept
(simulation) US

Private
blockchain
(Ethereum)

Sikorski et al.
(2017)

M2M exchange of
energy in chemical
industry

Bilateral market

Proof of concept
(prototype of 2
prosumers and 1
consumer)

Uk, Singapore
Private
blockchain
(MultiChain)

Wang et al.
(2017)

P2P trading of
renewable energy
within microgrid

Continuous dou-
ble auction with
adaptive aggres-
siveness strategy

Case study New Zealand,
Singapore n.a.

Mengelkamp
et al. (2017a)

P2P trading of
renewable energy
within microgrid

Iterative double
auction Simulation Study Germany Private

blockchain

Table A.2: Relevant scientific articles discussing blockchain-based energy markets. Most of
the articles present case studies or proofs of concept.
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B Quartierstrom Webapp

Figure B.1: Landing page of the Quartierstrom Webapp
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Figure B.2: Bidding page of the Quartierstrom Webapp
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Figure B.3: Energy data of the community shown in the Quartierstrom Webapp
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B. Quartierstrom Webapp

Figure B.4: Energy data of a sample household shown in the Quartierstrom Webapp (text was
translated to English), see also Ableitner et al. (2020).
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C Additional Analyses on Bidding Behavior
C.1 Simulation of Benchmark Strategies
The simulation is based on electricity demand profiles from an additional set of Swiss

households from another rural area. The data constitutes a convenience sample of nsim =
223 households from a partner utility provider which already had smart meters installed in
apartment houses or single-family homes (see also Weigert et al. (2020)). The data is net-
metered with a 15-minute resolution. The data covers the entire year of 2018, however only
the month of September is used for the simulations. Energy consumption and production
in that month are close to the year-round monthly averages and bidding behavior does
not change as significantly anymore afterwards as it did for spring months. To put the
bidding choices made in the field study into context and to understand the potential
impact of extreme forms of bidding behavior, the simulation model serves as a ‘risk-free,
cost-effective environment’ (Bapna et al., 2003): An agent-based model simulates a P2P
market of the same size and setup, in which agents apply the a) Cost-minimizer and b)
‘Green’ bidding strategies, respectively, as defined in 7.5. The month of September for
these scenarios is simulated using 10 different samples of 40 consumption profiles from
the second dataset and 20 production profiles measured in the field study.

C.2 Explanatory Model for Bid Evolution
An explanatory data analysis supports the exploration of individuals’ bidding behavior

over time. Caution is warranted in interpretation of the results, as sample size is small
and activity in the auction varies strongly among participants.
Monthly average price bids by participants are modeled using market information as
independent variables:

yit = β0 + xitβ + uit (1)

with participants i = 1, . . . , 37 and months t = 1, . . . , 12 and yit and uit being scalars.
xit includes five independent variables with coefficients β. To explore the data observed,
models with multiple different combinations of independent variables are computed. Be-
low, the results for the model with independent variables xit ={month, total consumption,
total production, Average buy/sell bid of all participants in prev. month, P2P trades in
% of consumption/production} for each participant in each month. In this model, con-
sumption and production reflect the seasonality of solar energy availability, share of P2P
trades matched are a proxy for success in the auction. The average (sell/buy) bid by
other participants reflects others bidding behavior which is communicated to individuals
only in the monthly reports for the previous month.
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Buy price bid

[10−2 CHF/kWh]

Sell price bid

[10−2 CHF/kWh]

Month -0.002∗

(0.056)

-0.072

(0.057)

Total consumption [MWh] 0.017

(0.019)

0.060∗ ∗ ∗

(0.019)

Total solar production [MWh] 0.016

(0.019)

-0.031∗

(0.014)

Average buy/sell bid of all participants

in prev. month

0.184∗ ∗ ∗

(0.064)

0.805∗ ∗ ∗

(0.161)

% of own cons./prod. traded P2P in

prev. month

0.001

(0.012)

-0.014∗ ∗ ∗

(0.004)

Constant 13.406∗ ∗ ∗

(2.28)

7.28∗ ∗ ∗

(2.002)

R2 0.792 0.808

Participants 28 25

Observations 289 255

Table C.3: Analysis of average buy/sell price bid per participant per month (only for partic-
ipants who registered on the web application). The model is a linear regression
absorbing indicators for individual participants, standard errors are in parentheses;
∗, ∗∗and ∗ ∗ ∗indicate significance at the 5% 1% and 0.1% level respectively..
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Figure C.5: Bidding curves over time. Overall trend for buy and sell bids is decreasing. Some
individual bid curves display a seasonal pattern or slow, some seem erratic.
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D Reinforcement Learning
D.1 Markov Decision Processes

A Markov Decision Process (MDP) is defined by a state space S, an action space A, a
transition function δ(s, a), and a reward function r(s, a) (Sutton and Barto, 1998):

M = 〈S,A, δ, r〉 (9.1)

The action policy which is to be learned is defined by Π : S × A → [0, 1] and assigns a
probability of taking each possible action, based on the state of the environment. The
state space S includes information on the environment which is relevant for the agent to
choose its action. The state St is a vector describing the environment at timeslot t.

Note that, in the standard formulation, state space S and action space A are constant
finite states, such that the transition function δ can by modeled by one-step probabilities
(Sutton et al., 1999). The state transition δ(s, a) depends, on the one hand, on the
agent’s action. On the other hand, the environment state is determined by other state
variables which are not under the control of the agent. Transition probabilities are thus
non-stationary.

δ(s, a) = Pr{st+1 = s′|st = s, at = a} (9.2)

The reward function r(s, a) for the agent can be formulated as:

r(s, a) = E[rt+1|st = s, at = a] (9.3)

The action policy Π(s, a) should maximize the expected future reward discounted by a
factor γ which is defined by the action-value function, or ‘Q-value’ Q(s, a)Π:

Q(s, a)Π = E[rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a,Π]
=

∑
a∈A

Π(s, a)[r(s, a) + γv∗(δ(s, a)] (9.4)

This means that the agent’s objective is to learn the policy Π(s, a) which chooses the
action with maximal aggregate future rewards in each possible state of the environment:

Q(s, a)∗ = max
Π

Q(s)Π (9.5)

As solving this optimization problem requires the expected value of discounted future
rewards, the Q-value D.1, function approximators are usually used in practice. Initially,
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linear functions were used to approximate the Q-function, but more recently, non-linear
approximators such as neural networks have been used for this purpose, which will be
described in Section D.3.

D.2 Multi-Agent Learning

In many real-world applications, intelligent agents interact with one another, rather
than acting in an isolated single-player environment (Vinyals et al., 2019). The interaction
of competing intelligent agents in a multi-agent system poses another level of complexity
to the learning problem, as action spaces assume combinatorial structure in this setting.

Multi-agent learning can be modelled in the framework of markov games which extends
the single-agent MDP to a matrix structure: Rewards and state changes depend on the
actions of every one of the n agents, so they can be represented as an n-dimensional matrix
(Littman, 1994).
In the framework defined above, an agent i’s Q-value is then defined as (Littman, 1994):

Q(s, a)Π
i = Q(s, ai, a−i)Π

i =
∑

ai∈A
Π(s, ai)[r(s, ai, a−i) + γv∗(δ(s, ai, a−i)] (9.6)

with a−i representing a vector of the other n − 1 agents’ actions. It is conceivable
that maximizing the agent’s reward by solving this problem analytically can become very
complex already for only a few agents.

D.3 Deep Reinforcement Learning

The difficulty of applying reinforcement learning in practice lies in the perception and
representation of real situations (Mnih et al., 2015). To be able to learn from past experi-
ence, agents need to estimate expected rewards and reduce the dimensionality of complex
environments to a level which provides enough information to derive successful action
policies, but is still computationally processable (Mnih et al., 2015).
In recent years, reinforcement learning techniques have improved significantly (Vinyals
et al., 2019), in particular driven by the development of deep Q-learning (Mnih et al.,
2015). Deep reinforcement learning involves the iterative training of a deep neural net-
work based on the observed information about the environment and actions taken in the
past. The neural net can process a wider variety of input than a mere Q-learning model
can as it allows for non-linear function approximation (Mnih et al., 2015).

Deep reinforcement learning involves the iterative training of a neural network based
on the observed information about the environment and actions taken in the past. The
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neural net can process a wider variety of input than a simpler Q-learning model, as it
allows for non-linear function approximation (Mnih et al., 2015). Mnih et al. (2013) and
Mnih et al. (2015) propose the following algorithm for deep Q-learning with experience
replay (see Algorithm 2). As it is difficult to derive the Q-value D.1 analytically, the
optimal Q-value D.1 is approximated by a non-linear function approximator, in this case
a neural network:

Q(st, a; θ) ≈ Q(s, a)Π (9.7)

with θ describing the weights of the neural network. The approach is model-free which
means that the neural net does not explicitly estimate the transition function δ(·), but
learns how the environment behaves from the observed samples (Mnih et al., 2015).

The actions in each training step are chosen by an ε-greedy strategy, i.e. picking the
greedy strategy at = Π∗(st) which maximizes the expected cumulative reward Q(s, a)∗
with 1−ε probability, and picking a random action a ∈ A with probability ε. The rewards
achieved in each step are stored in a dataset D, also called replay memory. The agent then
draws samples from this replay memory to update the weights θ of the neural network,
i.e. the estimated Q-value iteratively, before making the next step. That way, she can
potentially use each experience for multiple weight updates and use existing data more
efficiently to learn (Mnih et al., 2013).

Algorithm 2 Deep Q-learning with Experience Replay (Mnih et al., 2013, p.5)
1: initialize replay memory D to capacity N (memory size)
2: initialize action-value function Q with random weights
3: for episode = 1 to M (training episodes) do
4: for t = 1 to T (timesteps per episode) do
5: with probability ε select a random action at

6: otherwise select at = maxa Q(st, a; θ)
7: execute action at and observe reward rt and state st+1
8: store transition (st, at, rt, st+1) in memory dataset D
9: sample random minibatch of transitions (sj, aj, rj, sj+1) from D

10: update yj = rj + γmaxa′ Q(sj+1, a
′; θ)

11: end for
12: end for
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