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Abstract

The past decades have been coined by technological advancements at remarkable rates,
leading to the generation and collection of unprecedented amounts of data. This is es-
pecially the case in the field of genetic research: novel technologies enable a faster and
cheaper collection of data at large scales, sparking the hope that the holy grail of person-
alised medicine is within reach. However, getting there is conditioned on our capability
to make sense of this ever-growing wealth of data. While data obtained from different
experiments can differ widely, many genetic data sets are governed by an underlying graph
structure, and leveraging this graph structure holds great potential to better understand
complex molecular processes underlying complex traits or diseases. This dissertation de-
scribes the combination of molecular networks with genetic data in two different contexts,
that is network-guided association studies, and network-guided discovery of cancer driver
genes.

The first part of the thesis evolves around network-guided association studies which ex-
tend classical genome-wide association studies (GWASs) with molecular networks. In a
traditional GWASs individual point-mutations in the human genome are tested for their
association with a trait of interest. The loci discovered in those studies often fail to fully
explain the observed trait — a phenomenon called missing heritability. Different hypoth-
esis that try to explain missing heritability exist. One of them, the existence of non-linear
interactions between genetic loci, is at the heart of our contributions. We focus on the
non-linear interaction model of genetic heterogeneity, which assumes that multiple loci
might influence the phenotype in a similar direction. Hence, our goal is to find interac-
tions between genetic loci that are associated to a phenotype of interest under a model
of genetic heterogeneity. This search is complicated by the vast number of potential in-
teractions, posing a statistical challenge in the form of an immense multiple hypothesis
testing problem, and a computational challenge, as a combinatorial number of interactions
has to be explored. To address these challenges, we leverage two concepts. Firstly, we
integrate molecular networks that describe interactions between genes in the form of a
graph. Instead of testing all possible interactions between genotyped variants, we only
test interactions that are supported by a molecular network. This reduces the search
space significantly. Secondly, we exploit concepts from the field of significant pattern min-
ing, a recently emerging field of machine learning. Significant pattern mining concepts
have proven useful in addressing statistical and computational challenges that arise when
searching for interactions in large-scale genetic analyses.

We developed two different approaches, tNeAT and SiNIMin to enable network-guided
association studies. Extensive studies on simulated and real-world data sets indicate that
genetic heterogeneity takes place at small scales, which means interactions within a single
gene, or between pairs of genes, but rarely at the level of multiple genes. Especially with
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our proposed SiNIMin approach, we were able to identify novel genetic interactions in the
plant Arabidopsis thaliana, and in a cohort of migraine patients.

The second part of this thesis evolves around the integration of molecular networks with
genetic mutation scores to discover genes that are, upon mutation, implicated in can-
cer. While there exists a rich body of literature on this topic, most existing methods
approach this task from a purely unsupervised perspective, ignoring the knowledge of
well-established cancer genes. We propose a new node embedding scheme that creates a
feature representation for each gene based on the molecular network in a two-step pro-
cedure: first, each gene is described by the distribution of features in its neighbourhood
via moments of the distribution, and in the second step, those moments are propagated
through the network. We refer to this two-step embedding procedure as moment prop-
agation (MoPro) embeddings, and use them as input to binary classifiers to predict the
cancer status of a gene. To enable this classification, we use a set of well-established cancer
driver genes as the true positive class label. This creates two major challenges: (i) a highly
imbalanced data set, as the number of known cancer drives is relatively small compared
to the body of all genes, and (ii) a lack of a high-quality negative class, which we address
with a sophisticated cross-validation scheme. Our proposed approach led to the discovery
of a set of fourteen cancer driver genes that show strong links to cancer, and that consti-
tute promising candidates for further biological evaluation. Their detection showcases the
potential of combining network-derived features with supervised machine learning for the
discovery of genes implicated in cancer.

Our results illustrate the usefulness of integrating genetic analysis with molecular net-
works to enhance our understanding of the genetics underlying complex traits. Molecular
networks that capture complex cellular processes enable a holistic view of trait-causing
mechanisms at various scales. Adopting this holistic view of genetics is, and will remain,
a promising line of research.
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Zusammenfassung

Die vergangenen Jahrzehnte waren geprägt von technologischem Fortschritt, der dazu
führte, dass immer grössere Mengen an Daten in zunehmend kürzerer Zeit erhoben wer-
den konnten. Dies betrifft vor allem die Genetik: die stete Entwicklung neuer und die
Verbesserung bestehender Technologien beschleunigt die Erhebung grosser Datensätze.
Das Ziel der personalisierten Medizin scheint in greifbare Nähe zu rücken. Es zu er-
reichen setzt jedoch voraus, dass wir systematisch Wissen aus der stets wachsenden Menge
an Daten generieren können. Netzwerke, die vielen dieser genetischen Daten zugrunde
liegen, können uns dabei helfen. Sie beschreiben typischerweise Interaktionen zwischen
verschiedenen genetischen Einheiten, zum Beispiel die Interaktion zweier Gene. Die Ein-
bindung solcher Netzwerkstrukturen in Analysen erlaubt es, ein umfassendes Bild kom-
plexer, molekularer Prozesse zu zeichnen, die für die Ausbildung komplexer Merkmale
oder Krankheitsbilder bei Menschen verantwortlich sind. In der vorliegenden Disserta-
tion haben wir uns zum Ziel gesetzt, Methoden zur Kombination genetischer Daten mit
molekularen Netzwerken, im Kontext klassischer Assoziationsstudien und Krebsstudien,
zu entwickeln.
Im ersten Teil dieser Dissertation widmen wir uns einer Einführung in biologische Netz-
werke, bevor wir im zweiten Teil die Erweiterung klassischer genomweiter Assoziations-
studien um molekulare Netzwerke beschreiben. In einer klassischen Assoziationsstudie
wird der Einfluss einzelner Punktmutationen in der DNA auf einen Phänotypen durch
statistische Tests untersucht. Die Punktmutationen, die in solchen Studien gefunden
werden, können häufig nur einen Teil der genetischen Heritabilität, also Vererbbarkeit,
erklären. Eine Hypothese, die dieses Phänomen zu erklären versucht, ist, dass sich ein
Teil der genetischen Heritabilität durch nicht-lineare Interaktionen mehrerer genetischer
Varianten begründen lässt. Ein solches Modell bildet das Kernstück unserer Arbeit: die
genetische Heterogenität. Sie besagt, dass ein phänotypisches Merkmal durch mehrere
unterschiedliche genetische Varianten auf eine ähnliche Art und Weise beeinflusst werden
kann. Unser Ziel ist es, Interaktionen zwischen mehreren Punktmutationen zu finden,
die unter eine statistisch signifikante Assoziation mit einem phänotypischen Merkmal
aufweisen. Den kompletten Raum aller möglichen Interaktionen zu erfassen ist jedoch aus
statistischer und rechnerischer Sicht aufgrund der Vielzahl an Tests herausfordernd. Um
die Suche dennoch zu ermöglichen, binden wir molekulare Netzwerke in den Suchprozess
ein. Anstatt alle möglichen Interaktionen zu betrachten, beschränken wir uns auf die
Varianten, die auch im Netzwerk miteinander verbunden sind. Zusätzlich formulieren wir
unser Problem aus dem Blickwinkel der signifikanten Mustererkennung, einem neuartigen
Feld im Bereich des Maschinellen Lernens, dessen Methoden und Konzepte sich besonders
für grosse genetische Analysen bewährt haben.
Wir haben zwei neue Methoden entwickelt, tNeAT und SiNIMin. Beide kombinieren
Netzwerke auf unterschiedliche Art und Weise mit genetischen Assoziationsstudien. Aus-
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führliche Simulationsstudien, sowie die Anwendung auf mehreren Datensätzen deuten an,
dass genetische Heterogenität vor allem in einem kleinen Massstab eine wichtige Rolle zu
spielen scheint. So haben wir hauptsächlich Interaktionen innerhalb einzelner Gene, oder
zwischen Paaren von Genen nachweisen können. Besonders SiNIMin fand bisher unbekan-
nte Interaktionen im Modellorganismus Arabidopsis thaliana, sowie in einer Studie über
Migränepatienten.

Im dritten Teil dieser Dissertation beschreiben wir unseren Beitrag zur netzwerkbasierten
Identifikation von Genen, die im mutierten Zustand Krebs zur Folge haben können. Viele
unterschiedliche Methoden haben diese Fragestellung untersucht, die meisten jedoch aus
einer unüberwachten Perspektive, in der das Wissen über etablierte Krebsgene nicht Teil
der Methode ist. Wir haben einen neuartigen Ansatz entwickelt, um Deskriptoren für Gene
aus einem Netzwerk zu errechnen. Dazu wird zunächst ein Wert für jedes Gen errechnet,
der die Mutationslast des Gens beschreibt. Anschliessend wird jedes Gen durch diese
Werte seiner Nachbarn im Netzwerk beschrieben. Die daraus resultierenden Deskriptoren
können nun zusammen mit Algorithmen für überwachtes maschinelles Lernen zur Klas-
sifikation von Krebsgenen eingesetzt werden. Dies erfordert Beispiele aus einer positiven
und negativen Klasse, die wir aus den etablierten Krebsgenen ableiten. Daraus resultieren
zwei grosse Herausforderungen: (i) die positive Klasse enthält nur einen Bruchteil der
Gene, während für die meisten Gene keine positive Klasse vorhanden ist, und (ii) es gibt
keine eindeutige negative Klasse, da jedes Gen, das noch nicht als Krebsgen klassifiziert
wurde, potentiell zur Entwicklung von Krebs beitragen kann. Um die beiden obenge-
nannten Punkte zu adressieren, entwickelten wir ein durchdachtes Schema zur Kreuzva-
lidierung. Unsere neuartigen Deskriptoren haben es uns ermöglicht, in Kombination mit
dem überwachten Ansatz und unserer Kreuzvalidierung, vierzehn Gene zu identifizieren,
deren Verbindung zu Krebs durch eine Literaturrecherche bestätigt werden konnte. Sie
stellen damit vielversprechende Kandidaten für eine biologische Validierung dar. Dies
verdeutlicht das Potential eines kombinierten Ansatzes aus überwachtem Lernen mit net-
zwerkbasierten Deskriptoren von Genen, um neue Krebsgene zu finden.

Durch die Ergebnisse der vorliegenden Dissertation kommen wir zu dem Schluss, dass
die Entwicklung von Methoden, die genetische Daten in Einklang mit molekularen Netz-
werken analysieren, wertvolle Beiträge zu unserem Verständnis komplexer phänotypischer
Merkmale und deren genetischen Ursachen leisten können. Dieser gesamtheitliche Ansatz,
der nicht nur Gene in Isolation, sondern auch deren Wechselwirkungen betrachtet, ist und
bleibt eine vielversprechende Forschungsrichtung.
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Part I.

Introduction to biological networks
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1. The age of network biology

The technological advancements over the past decades enabled the collection of unprece-
dented amounts of data, ushering in the so-called age of Big Data [1]. The availability of
more and larger data sets is continuously transforming many scientific disciplines towards a
more data-driven discovery and decision making, impacting social and computer sciences,
economics, transportation and telecommunication, biology, medicine and health care [2–
8]. The Big Data revolution presumably has the potential to impact many aspects of our
society, by improving the forecasts of environmental, political or financial crises, allowing
to predict an individual’s risk to develop a disease, enhancing personalised treatments of
cancer, or making every-day life easier by increasing customer satisfaction [9–15].
While the data obtained from different experiments can differ widely, many data sets are
governed by an underlying graph structure. From a mathematical point of view, a graph
represents a set of elements (nodes or vertices) and a set of, potentially directed, rela-
tionships between those elements (edges). In practise, this graph structure constitutes a
different view of the data that potentially encodes useful prior knowledge and upon in-
tegration with other data sources, can serve as a guide during data analysis or for the
interpretation of results. A prominent example of graph-structured data is the represen-
tation of individuals in a social network, where each individual is represented as a node
in the network, and two nodes are connected by an edge if the corresponding individuals
know each other. This network-representation of social interactions can help in various
tasks, such as personalised advertisement: each individual, i.e. node, in the network could
be represented by a set of features, such as age, gender, favourite music, films and books.
In order to suggest a novel book to an individual, the graph structure can be leveraged
by using the assumption that a person might prefer a book that a friend, i.e. a connected
node, enjoyed.
Especially in biology graph structures are omnipresent. As opposed to analysing biologi-
cal entities such as genes or proteins in isolation, graphs give a holistic view of complete
systems on different scales, ranging from the structural representations of molecules and
proteins to large scale networks that represent relationships and mechanisms in human
cells, or even ecological networks that illustrate relationships in whole ecosystems. There
exist countless examples where graphs naturally represent biological objects and relation-
ships between their components. Proteins, for instance, can be represented as graphs,
where nodes correspond to amino acids, and edges correspond to physical interactions be-
tween them [16]; Another option is to represent proteins as graphs where nodes correspond
to secondary structure elements, and nodes are connected by physical proximity [17]; the
cell can be represented as a graph, where nodes correspond to molecules in the cell, and
interactions represent thermodynamics of binding between them [18]; the human genome
can be viewed from a graph perspective using so-called protein-protein interaction net-
works, where nodes correspond to gene products (proteins) and an edge between genes
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1. The age of network biology

indicates an interaction between them [19].

Those biological networks originate from various sources, including systematic experimen-
tal screens, literature curation or computational inference [20]. With the ever-accelerating
technological progress in those areas, the graph structures themselves are subject to the
Big Data revolution. The last decade has seen a steep increase in both, the number of
available molecular networks, as well as the size of those networks with respect to the num-
ber of nodes and edges contained in them [20]: for example, in January 2010, the BioGRID
database [21] that describes protein-protein interactions, contained protein interactions for
17 organisms, including 27′695 genetic interactions between 8′754 unique proteins in homo
sapiens [22]. Ten years later, in February 2020, BioGRID contained information on phys-
ical and genetic interactions for 70 organisms, with 417′446 unique interactions between
24′730 human proteins [23], describing a 16-fold increase in the number of interactions,
and a 3-fold increase in the number of known proteins.

The tremendous increase in the dimensionality of data coupled with the ever-increasing
availability of graph-structured data exceeds the statistical and computational capabilities
of standard analyses that worked well on small- to mid-sized data sets. Hence, parallel to
and in line with the technological developments, computational and statistical methods
are required to fully exploit the knowledge contained in those large-scale graph-structured
data sets.

1.1. Biological networks and their application in biomedical
research

Biological networks are diverse [20]: there exists a vast amount of different network types
that describe distinct biological elements and processes and that cover a wide range of
interaction types on different scales (for in-depth review, see Liu et al. [24]). Which
network to use strongly depends on the research question and focus, as well as the data
at hand. Different research goals ask for different network types, and integrating distinct
network types for the same problem might emphasise distinct aspects of the same problem.
In this section, we give an overview over a variety of such network types that are commonly
used in biomedical research, and highlight some of their areas of application.

Protein-protein interaction (PPI) networks represent physical contacts between proteins
in a cell. The nature of those contacts can be stable, as is the case for the formation
of protein complexes, or transient, e.g. the short contact between proteins during
carrying or modification of proteins [19]. PPIs can be derived from different ex-
periment types, such as yeast two-hybid assays to measure interactions in cells, or
affinity-purification-mass spectrometry to measure the composition of protein com-
plexes [24]. Additionally, edges can be inferred by orthology mapping from other
organisms [25], and there exist PPI networks containing interactions that were pre-
dicted using computational tools [26]. Some PPI networks contain edge weights
that indicate the confidence of an edge [25]. Commonly, interactions that have been
validated experimentally obtain high edge weights, while edges that are inferred com-
putationally or from orthology are provided with lower weights. PPI networks are
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1. The age of network biology

inherently noisy which implies that our knowledge about PPI is incomplete, as well as
that interactions that are present in the network correspond to false-positives [27].
PPI networks have been used widely to increase the power of genetic association
studies [28–30], and were especially successful in the identification of novel genes
associated to cancer development and progression [31, 32].

Metabolic pathways describe reactions in cells that modulate cell growth, reproduction
or response to environmental changes [27]. The nodes in the networks correspond
to enzymes, proteins, macromolecules, lipids, nucleic acids and carbohydrates, and
the links indicate biochemical interactions between them [24]. Other than PPI net-
works, metabolic pathways are commonly directed, and the edges describe a cascade
of chemical processes that subsequently take place in the cell. A comprehensive re-
source describing the most common pathways is the KEGG pathway database [33].
Metabolic pathways have enabled the interpretation of biological mechanisms un-
derlying many diseases, such as Parkinson’s disease [34] and age-related macular
degeneration [35].

Isoform-isoform networks are related to PPI networks, but do not describe interactions
between individual proteins, but their isoforms. Protein-isoforms constitute differ-
ent variants of a single gene, that can be formed e.g. through alternative splicing,
alternative transcription, translation, 3′-end formation, or post-transcriptional mod-
ifications [36]. It has been shown that isoforms originating from the same gene might
have different functions, or even opposite effects in certain processes [37]. This vari-
ety of function is not represented in PPI networks, where isoforms of the same protein
are grouped into the same node. Isoform-isoform networks account for this variety
of descendants of the same gene: each node corresponds to an isoform and edges to
interactions between those [38]. It is assumed that the approximately 20′000 human
proteins give rise to approximately 100′000 distinct isoform transcripts [39]. Isoform-
isoform networks capture those interactions between the genes’ isoform transcripts,
and hence deliver more detail than PPI networks. For example in autism, the gener-
ation of isoform-isoform networks helped to improve understanding the mechanisms
underlying the disease [40].

Genetic interaction networks represent functional relationships (edges) between the genes (nodes).
The networks are phenotype-specific, and describe the response to a non-linear per-
turbation to the connected genes in the cell. An interaction implies that the cell
will show a phenotypic effect, such as cell death, upon simultaneous perturbation of
both genes, but not upon perturbation of one of the genes [41]. Finding these genetic
interactions is its own field of research, as the genetic interaction networks represent
dynamics of perturbations involved in the phenotype. Genetic interactions are com-
monly inferred from RNA inference or CRISPR-Cas9 assays, and provide promising
targets especially for drug development [42].

Gene-regulatory network are biological networks that are derived from gene expression
data. Various types of biological entities, such as genes, proteins or RNAs constitute
the nodes, and edges indicate regulatory relationships between them. Gene regula-
tory networks are highly phenotype- and tissue-specific [43], and there exist different
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1. The age of network biology

computational approaches to assemble networks from gene expression data, ranging
from highly biologically motivated to graph-theory driven ones [44].

Brain networks correspond to a graph-based representation of the brain, where nodes
correspond to different brain regions. The brain regions can be identified using
structural or functional magnet resonance imaging. The edges in the network can
either describe physical connections inferred from the image data [45] or functional
correlations between the brain regions derived from signal series analyses [46].

Drug target networks are bipartite graphs that describe interactions between drugs and
targets (such as genes or proteins). The latter represent the two groups of nodes
in the graph, and an edge between a drug and a target indicates that the drug
binds the target. Those networks intrinsically contain both therapeutic indications
as well as adverse drug effects, and potentially contain valuable information for the
identification of novel drug targets, as well as for drug repurposing [47].

Disease networks (diseasomes) can be categorized into two groups: (i) homogeneous
networks, in which nodes correspond to diseases, and nodes are linked based on
similarities between the corresponding diseases; (ii) heterogeneous networks, that
can mathematically be represented as bipartite graphs, in which one node set cor-
responds to the diseases, and the other node set corresponds to, e.g. disease genes
or symptoms. In those heterogeneous networks, nodes from the disease set are con-
nected to nodes from the second set, if the disease is associated with the specific
gene or symptom [48].

Biological knowledge graphs are a emerging object of biomedical research. Knowledge
graphs are a graph-based representation of knowledge bases that emphasise relations
between objects [49]. Within one graph, nodes can correspond to a variety of different
biological entities, and edges to relationships between them. As opposed to PPI
networks, the edges in knowledge graphs preserve the semantics of different types of
associations, such as phosphorylation, inhibition, or activation [50]. A main task in
those knowledge graphs is link prediction [49], which refers to the inference of novel
edges in the graph. This can for instance be achieved by leveraging vectorial latent-
space representations of nodes, so called node-embeddings, in the knowledge graph.
Successful examples of knowledge graph applications in biomedical research include
the prediction of adverse drug effects [51] or the prediction of drug targets [52, 53].

Biological networks have become a major mode of analysis in various disciplines in com-
putational biology [54]. Especially molecular networks, such as protein-protein interac-
tion networks, regulatory networks or metabolic pathways, have been extensively used in
biomedical applications [20]. This focus on molecular networks brought some interesting
properties regarding their architecture and topology to light. As opposed to random net-
works that assume a uniform distribution of edges across the network, molecular networks
are often found to be scale-free. This implies that their degree distribution follows a power
law distribution [55], where most nodes only have few links, while few nodes have a large
number of links. The latter are often referred to as hubs in the network [56]. The existence
of hub nodes promotes the second important property, which is the so called small world
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effect: most nodes in the network can be connected with a path that only contains few
edges. In protein-protein interaction networks those hub nodes exhibit a disassortative
behaviour, which means that hub nodes tend to be connected to nodes with only few
neighbours, rather than other hub nodes.

Molecular networks offer a compelling strategy to represent the complexity of the genome.
Consequently, those networks were extensively leveraged in studies that aim to unravel
genetic causes underlying complex traits and diseases [20] – traits and diseases that are
presumably co-determined by a multitude of genetic and environmental factors. Along
those lines, an important task is the identification of genes and interactions among genes
that jointly form the basis of complex traits and diseases.

1.2. Discovering gene-interactions underlying complex traits
with molecular networks

The field devoted to the discovery of novel genes that are implicated in complex traits
has flourished in the last decade. Be it via gene-expression analysis or the analysis of ge-
nomic data in genome-wide association studies, discovering genes that presumably cause
the development of complex traits is at the forefront of science. To achieve the goal of
‘deciphering the genetics underlying complex diseases’, more and more analyses adopt a
network-based perspective of genetics and the genome. This network-based perspective
is encoded in molecular networks. Integrating molecular networks with genetic data is
mainly motivated by the combination of two observations: (i) many complex traits cannot
be explained by individual genes alone, and it is rather hypothesised that they are the
consequence of a complex interplay between multiple genetic variants [56, 57], and (ii) Goh
& Choi [58] observed that genes implicated in the same cellular processes or same diseases
tend to cluster in biological networks (guilt by association). Taken together, this sparked
the idea that genes that contribute to the same trait share more interactions with each
other than with randomly chosen genes in the network. Hence, genes that are in close
proximity to each other in molecular networks build interesting candidates for joint genetic
analyses. From a biological viewpoint, this is corroborated by the fact that cells are capa-
ble of rewiring processes in the presence of perturbations to maintain homoeostasis [59].
Consequently, such perturbations have to be present at multiple spots simultaneously in
order to lead to the manifestation of a (disease) phenotype.

Including molecular networks into analysis pipelines of genetic data is promising for two
reasons: (i) they help to interpret and understand results of genetic associations by eluci-
dating the biological mechanisms the genetic variants are involved in, and (ii) they might
help to guide the discovery of novel interactions between genes that confer an individual’s
susceptibility to a complex trait where the individual genes might show only weak or even
no association to the trait. This interaction-based view of genetics is a deviation from
the paradigm of classical genetic association studies where commonly proteins and genes
are analysed in isolation. However, this deviation constitutes a presumably decisive step,
as it remains difficult to understand disease-causing mechanisms and develop therapeutic
strategies without this holistic view of genetic mechanisms [57], especially in the case of
complex diseases.
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This interaction-perspective of complex traits sparked the development of a plethora of
computational methods and approaches that exploit network and interaction information
between (genetic) entities, by making use of the existing interaction and network informa-
tion in various ways. They can broadly be categorized into two different groups, namely
those methods that leverage network information as a post-processing step to interpret
results of genetic analyses, and those approaches that integrate network information into
the knowledge generation process. Prominent examples of the first group are gene-set
enrichment analyses [60], that associate, for example, individual genes to a trait, and
subsequently test whether the detected genes are overrepresented in pre-defined gene sets,
such as metabolic pathways. Furthermore, methods that aid the visualisation of results
from genetic analysis by means of molecular networks pertain to the first group [61, 62].
The second class of methods incorporate the network information directly into the pro-
cess of understanding complex traits, and use the network as an input data type. Those
approaches mostly rely on gene-based summary statistics, such as association scores to
the trait of interest, that are superimposed on the nodes in the network, followed by an
exploration of the network. The result commonly are sub-modules of nodes that constitute
interesting candidate genes for downstream analysis. Widely-adopted methods rely on a
greedy exploration of the network [63, 64]. A graph-theoretical approach that recently
gained a lot of attention is network propagation [65]. Methods based on this framework
rely on the stepwise propagation of node features along shortest paths through the net-
work. During the propagation, each node updates its feature according to the features
in its local neighbourhood, such that nodes lying on shortest paths between high-scoring
nodes will eventually end up with higher scored features themselves. Those nodes will be
prioritized in follow-up analyses. Network propagation has been successfully applied to
different problems, such as the prediction of protein function and the characterization of
disease genes, and we refer the interested reader to the review by Cowen et al. [65].

In summary, the last decade has seen a steep increase in the availability of data describing
biological networks in general, and of molecular networks in particular. They contribute to
a holistic understanding of biological processes on various scales, and represent knowledge
that has been aggregated from various sources and experiments. The networks them-
selves are a subject of extensive research, existing networks are continuously refined and
extended, and novel networks are inferred using experimental data or computational infer-
ence. In combination with genetic data, those networks have shown to be instrumental for
the interpretation of genetic analysis, as well as for the discovery of novel trait-associated
genes and gene-sets. This thesis is dedicated to the development of novel methods to inte-
grate molecular networks with genetic analyses in two different disciplines, namely genetic
association studies, and the discovery of novel cancer driver genes.

1.3. Contributions of the thesis
The topic of this dissertation is the development of methods for the identification of novel
genes associated to complex traits with the help of molecular networks. In Part I, we
gave an extensive introduction to biological networks and their biomedical implications in
general, and to the application of molecular networks for the discovery of trait-associated
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genes in particular. Part II and Part III introduce the main contributions of the thesis,
that is the implication of molecular networks in genetic association studies, and in the
discovery of cancer driver genes, respectively. Due to the diversity of those two topics,
an outlook specific to each one can be found at the end of Part II and Part III. We
conclude this thesis with a broader discussion of current trends and challenges in the field
of graph-structured learning in Part IV.

Part II: Network-guided genetic association studies
Genetic association studies aim at discovering genes or other types of genetic variants that
are associated to complex traits by analysing the DNA-sequence of individuals. While this
led to the discovery of many genotype to phenotype associations, complex traits most of-
ten cannot be sufficiently explained by additive effects of individual genetic variants, and
this phenomenon is referred to as the missing heritability. A common hypothesis to ex-
plain missing heritability is that classical association studies neglect non-linear interaction
effects between multiple genetic variants that might confer an individual’s susceptibility
to the trait. However, addressing interaction effects between genetic variants constitutes
a challenging undertaking. The sheer number of possible interactions creates an immense
statistical burden in form of a multiple hypothesis testing problem, as well as a computa-
tional burden due to the enumeration of the vast search space. To this end, we propose
two different methods to address those challenges and enable the search for non-linear
interactions in the genome by combining genomic data with molecular networks. Further-
more, we leverage concepts from the field of significant pattern mining to alleviate the
implicit statistical and computational limitations. Those contributions are explicated in
Part II of the thesis at hand.

This second part starts with Chapter 2 which constitutes an introduction to classical
genetic association studies. This includes a detailed description of the genetic data that
is used throughout this part of the thesis, along with standard methods and approaches
for their analysis. It furthermore discusses the limitations of those methods, and how
biological networks represent an promising candidate data representation to resolve them.
This chapter is based on, but not restricted to, the author’s book chapter

Gumpinger, A.C., Roqueiro, D., Grimm, D.G., Borgwardt, K.M. Methods
and tools in genome-wide association studies in Computational Cell Biology
(2018), 93–136

As detailed above, to address the complex challenges imposed by the analysis of interac-
tions between genetic variants, we turn to concepts and tools from the field of significant
pattern mining. Hence, the subsequent Chapter 3 gives a self-contained introduction to
the field of significant pattern mining. It introduces how concepts and techniques pertain-
ing to significant pattern mining can be used to alleviate the statistical and computational
challenges in interaction mining, and how they can be integrated with genetic association
analyses. Importantly, this chapter is purely based on prior art.

Our first contribution is presented in Chapter 4. It is based on unpublished work
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Gumpinger, A.C., Llinares-López, F., Roqueiro, D., Borgwardt, K.M. Network-
guided association mapping of local neighbourhoods (2019).

and describes a method called tNeAT (thresholded Neighbourhood Aggregation with Test-
ing) to find sets of genes that form neighbourhoods in a biological network, and that
are, upon combination, statistically significantly associated to a case-control phenotype
of interest under model of genetic heterogeneity. It does so by exploiting concepts from
significant pattern mining to handle the vast search space efficiently, and to correct for the
resulting multiple hypothesis burden. The output of the method are local neighbourhoods
in a gene-network, a fact that facilitates easier interpretation in downstream analyses. We
designed a comprehensive simulation study, accounting for various network configurations,
to measure performance and evaluate limitations of our method. Additionally, we apply
tNeAT to a study of twenty phenotypes in the plant Arabidopsis thaliana.
Our second contribution to the realm of network-guided association studies is described
in Chapter 5, which is based on the paper

Gumpinger, A.C., Rieck, B., Grimm, G.D., International Headache Genetics
Consortium, Borgwardt, K.M. Network-guided search for genetic heterogeneity
between gene pairs. In press at OUP Bioinformatics (2020).

In this paper, we describe a novel method called SiNIMin to find pairs of genes that
(i) interact within a network, and (ii) are associated to a case-control phenotype under a
model of genetic heterogeneity. Similar to the method presented in the previous chapter, it
is based on principles of significant pattern mining to address computational and statistical
challenges. In contrast to tNeAT, the way the network is integrated to guide the search
for interactions varies strongly. In order to evaluate the performance of our method, we
conducted a variety of simulated studies to illustrate the successful control of the type-I
error, as well as its superiority to comparison partners with respect to statistical power and
computational efficiency. Application of the method to 20 Arabidopsis thaliana phenotypes
and a study of low-frequency variants for migraine showed the method’s great potential
to uncover novel gene interactions driving the development of phenotypes.
We end this second part of the thesis with an extensive summary of our contributions to
network-guided association studies, followed by an outlook into promising future directions
in Chapter 6.

Part III: Network-guided prediction of cancer driver genes
Part III of this thesis addresses a different topic. While still evolving around the integration
of molecular networks with genetic data, the focus is shifted to cancer studies. To be more
precise, the central project described in this part aims at the discovery of novel cancer
driver genes by combining somatic mutation scores with molecular networks.
We start this part with an introduction to computational cancer genetics in Chapter 7,
that elucidates the implication of genetic aberrations on the development and progression
of cancer. Furthermore, available data resources are discussed, followed by an overview
over established concepts and methods for the discovery of genes and mutations that
presumable transform healthy cells into malignant tumours.
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Following this introduction, Chapter 8 presents our contribution

Gumpinger, A.C., Lage, K., Horn, H., Borgwardt, K.M., Prediction of can-
cer driver genes through network based moment propagation of mutation scores.
In press at OUP Bioinformatics (2020).

In this project, we developed a novel node embedding approach for the supervised predic-
tion of cancer driver genes based on mutation scores and molecular networks. As opposed
to most existing methods, we approach the problem of cancer gene identification from a
supervised, rather than an unsupervised perspective, by leveraging the knowledge about
well-established cancer driver genes. We propose a novel representation of each node
(gene) in a biological network, that is based on descriptors of its local neighbourhoods in
the network, followed by a network propagation, a strategy we named moment propaga-
tion embeddings, short MoPro embeddings. Together with the set of well-established cancer
driver genes, the MoPro embeddings can be subjected to a binary classifier. We developed
a sophisticated cross-validation procedure to account for the class-imbalance and lack of
a high-quality negative class, two challenges inherent to our problem definition. We apply
our newly designed MoPro embeddings to a pan-cancer analysis of data from The Cancer
Genome Atlas (TCGA). We show that the supervised formulation of the problem com-
bined with MoPro embeddings achieves better performance than unsupervised approaches,
and that the knowledge contamination inherent to protein-protein interaction networks is
successfully addressed. We furthermore identified fourteen genes that were predicted to be
cancer drivers, and that could not have been detected with the comparison partners. An
extensive literature search indicated that those gene exhibited promising links to cancer,
deeming them ideal candidates for further biological validation.

We end the chapter on cancer gene prediction with a summary of our proposed approach
and findings, and present exciting future directions for the network-guided classification
of cancer genes in Chapter 9.

Part IV: Discussion and outlook – learning from structured data
The final Part IV of this thesis is devoted to the discussion of recent advances in ‘learning
from (graph-) structured data’. We start this part with a short diversion into another type
of structured data, namely time-structure. In this context, we briefly outline a contribution
of the author to a synthetic biology project, that entailed experimental design for time-
resolved data, namely

Höllerer, S., Papaxanthos, L, Gumpinger, A.C., Fischer, K., Beisel, C.,
Borgwardt, K, Benenson, Y., and Jeschek, M.. Large-scale DNA-based phe-
notypic recording and deep learning enable highly accurate sequence-function
mapping. In press at Nature communications (2020).

We continue to summarise and discuss the contributions in this thesis, and conclude this
dissertation with a discussion of trends and challenges in learning from graph-structured
data.
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Context and overview

This second part of the thesis is devoted to network-guided association studies for complex
traits. The first part introduced the main theme and the frame of the thesis, that is the
implication of molecular networks in the discovery of genetic causes underlying complex
traits. As such, it constituted a comprehensive overview over different types of biological
networks, their implications in computational biology in general, and in genetic association
studies in particular. In this chapter, we will focus on the latter, i.e. their implication
in genetic association studies of complex traits. This is achieved by an integration of
concepts from the realm of genome-wide association studies with biological networks,
while formulating the task of finding network-guided associations as a significant pattern
mining problem. This reformulation will prove itself useful, as significant pattern mining
provides a flexible toolbox to address the statistical and computational challenges arising
in network guided association studies.

To this end, we start this part of the thesis with an introduction to genetic association
studies, that covers the most important ideas and methods (Chapter 2). We devote the
last two sections of this introduction to the combination of genetic association studies with
molecular networks. We continue with a comprehensive summary of the field of significant
pattern mining in Chapter 3, and present concepts that will be at the very heart of our
contributions. Both chapters present the background that builds the foundation of this
part of the thesis, and both exclusively describe prior art. Our main contributions to the
field of network-guided association studies can be found in Chapters 4 and 5. We end
this part of the thesis with a summary and outlook into future directions of research in
Chapter 6.
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studies

2.1. Deciphering the genetics underlying complex traits
Disentangling the genetic underpinnings of human diseases is among the big goals of
biomedical research. It holds the promise of personalised medicine: estimation of an
individuals susceptibility to disease long before the outbreak of the disease, enabling pre-
vention, early interventions as well as personalised treatment [66]. The first successes in
this field were achieved for monogenic diseases, that is diseases caused by mutations in
single genes, by conducting linkage analysis on large-scale pedigrees [67]. Prominent ex-
amples of those efforts are the identification of loci associated to Huntingtons disease [68]
and cystic fibrosis [69]. Despite those successes, genetic causes underlying complex dis-
eases that presumably are co-determined by a multitude of genetic factors [70], such as
type II diabetes, migraine, chronic obstructive pulmonary disorder (COPD), or migraine
could not be detected with linkage studies. Only the mapping of the human genome [71],
and community efforts such as the HapMap Project [72] or the 1000 Genomes Project [73]
brought the field forward, enabling the stable inference of genetic causes underlying com-
mon diseases and ushering in the era of genome wide association studies (GWASs) [e.g.
74–76]. Ever since, GWASs have been instrumental in linking diverse disease phenotypes
to genotypes [77–80].

Over the last decades, the advent of novel sequencing technologies combined with the de-
creasing cost of genomic sequencing [81] has lead to an ever-increasing wealth of genomic
data [82], both in terms of the number of sequenced variants, as well as sequenced indi-
viduals, substantially outpacing Moore’s law [81]. Large biobank [e.g. 83–85] efforts aim
at making genetic data available to researchers all over the world to enhance our under-
standing of the contribution of genetics to disease development and progression. While
larger data sets that include more samples and more sequenced variants presumably con-
tain novel insights, they also induce inherent statistical and computational challenges that
have to be addressed, requiring the development of new methods to efficiently analyse
those large-scale data sets.

This chapter gives a self-contained summary of the field of genome-wide association studies.
The first part introduces classical (univariate) GWASs, and discusses the data types and
data representations, followed by an overview over the standard methods to analyse them.
A discussion of the limitations motivates the second part, which is the integration of
GWASs using network information, and the most prevalent approaches to address this.
The section ends with an outlook of what we consider important challenges to address
next in the field of network-guided association studies.
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2.2. Concepts and methods
Genome-wide association studies aim at deciphering the genetics underlying complex
traits, that is traits that are presumably caused by a multitude of factors, as opposed
to monogenic phenotypes. An important hypothesis underlying GWAS is the common
disease/common variant one: diseases that are common in a population are supposedly
caused by variants that are common in the population as well, and each of those variants
contributes to the overall risk to develop the phenotype [86]. As opposed to rare variants,
those common variants have lower effect sizes, and it is assumed that the joint effect of
those common variants gives rise to complex traits [87]. While many GWASs discovered
genetic variants that follow the common disease/common variant hypothesis, this does not
imply that all common diseases are exclusively explained by common genetic variants [87].
However, the design of GWASs is laid out to discover common variation in the genome,
in that the study object are genetic loci of common variation in the population.

This section provides an introduction to concepts and methods in GWASs, as well as their
limitations. It continues to give an overview over novel approaches that combine GWASs
with biological networks, in order to overcome some of the limitations inherent to GWASs,
and ends with a motivational outlook for further analysis.

2.2.1. Genomic data
Genomic data describes the entirety of DNA pertaining to an organism, and is organised
in only four letters: A, T, G, and C, corresponding to the four nucleic acids Adenine,
Thymine, Guanine, and Cytosine. The haplotype human genome comprises more than
three billion base pairs, and according to the 100 genomes project [73], each individual
deviates from the reference genome at approximately 4.1 to 5.0 million base pairs. In-
terestingly, most genetic diversity is constrained to specific loci of common variation in
the genome, so-called single nucleotide polymorphisms, short SNPs. There exist approxi-
mately 84.7 million SNPs in humans across all populations [73], making up ∼ 3.0% of the
human genome. They are the objects under study in a genome-wide association study.
SNPs can be obtained for an individual either via next-generation sequencing (NGS, [88,
89]) or chip-based microarrays [reviewed in 90]. While NGS technologies enable sequencing
of whole exomes or genomes, chip-based microarrays build upon the principle of linkage
disequilibrium (LD) and tag SNPs: Linkage disequilibrium describes non-random corre-
lations between SNPs throughout the genome. It arises due to different factors including
recombination, genetic linkage, recombination, mutation, genetic drift, non-random mat-
ing, and population structure [90]. LD has important implications when capturing genetic
variations in populations via genotyping arrays. Those arrays do not survey the complete
entirety of all 84.7 million SNPs, but rely on choosing and genotyping a representative
from each LD region, a so-called tag SNP. In case a tag SNP is found to be associated with
the phenotype, it is assumed to be in high LD with the presumably causal SNP. With
older populations having undergone more cycles of recombination, they exhibit shorter
LD patterns than younger populations, necessitating the need for different tag SNPs and
genotyping arrays. Identifying patterns of highly correlated SNPs throughout the human
genomes for different ethnicities was one of the self-proclaimed goals of the International
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Figure 2.1.: Representation of single nucleotide polymorphisms (SNPs) in a genome-wide as-
sociation study. (a) Each individual has two copies of each chromosome, resulting in biallelic
SNPs. Since each nucleic acid pairs with its complement (A – T, C – G), only the allele on one
DNA strand is considered. (b) The genotypes for three individuals. The minor alleles at each
locus are highlighted in red. The right tables show the additive (ADD), dominant (DOM) and
recessive (REC) encoding of SNPs with respect to the three individuals. (This figure is adapted
from Figure 1 in Gumpinger et al. [92]).

HapMap Project [91].

This thesis focusses on diploid organisms, i.e. organisms that have two copies of each
chromosome. As a consequence, each SNP can be represented by two (possibly different)
alleles, corresponding to the bases on both copies of the chromosome (see Figure 2.1a).
The allele that occurs more frequently in a reference population is referred to as the
major allele, and the less frequent one inversely as the minor allele. The frequency of the
minor allele is denoted as the minor allele frequency (MAF), and SNPs with minor allele
frequencies below 1.0% are called rare variants. Rare variants are commonly removed in
classical GWASs, as standard methods are underpowered to detect their effects, unless
sample sizes are very large or the penetrance of the variants is very high.
In order to conduct a GWAS the data has to be represented in numerical form, as opposed
to the letters A, T, G, and C. There exist different schemes for encoding the SNPs, and each
of them emulates different prior assumptions about the underlying modes of inheritance.
The most commonly used schemes for this encoding are (i) additive, (ii) recessive and
(iii) dominant. In the additive case, an individual’s SNP is represented as the number of
minor alleles, resulting in values {0, 1, 2} for each SNP. In the recessive encoding, a SNP
is represented as 1 if both of its alleles are minor alleles, otherwise it is represented as 0.
In the dominant encoding, a SNP is represented as 1 if at least one minor allele is present,
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otherwise it is represented as 0 (see Figure 2.1b). Which of the encodings is chosen
depends on the specific problem at hand, and should be considered when interpreting
GWAS results [92].

2.2.2. Classical genome-wide association studies
The goal in classical genome-wide association studies is to find genetic variants that are
associated to a phenotype or trait of interest. This phenotype can have various forms, with
the most common ones being dichotomous/binary and quantitative/continuous. Dichoto-
mous phenotypes arise mostly in so-called case-control studies, where individuals belong
to one of two classes, for instance affected by a disease (case) or healthy (control). Quan-
titative phenotypes, on the other hand, are measurable and live on a continuous scale.
Prominent examples are height, blood pressure or weight. The nature of the phenotype in
a genetic association study is a decisive factor for the type of method used in the study,
as will be discussed in Section 2.2.2.3.

During the GWAS, the genomic data from multiple individuals and their corresponding
phenotypes are pooled. A score of dependence between each genetic variant (SNP) and
the phenotype is derived, and a p-value can be computed. It represents the probability
of obtaining a more extreme score than the observed one under the null-hypothesis of no
association. In general, the p-value of such a statistical test is considered to be significant
in case it falls below a pre-defined significance level α, where commonly α = 0.01 or
α = 0.05.

2.2.2.1. Multiple hypothesis testing in GWASs

In GWASs it is common to test hundreds of thousands to millions of SNPs for their asso-
ciation to a phenotype [87]. This implies that the same number of statistical tests have
to be conducted, resulting in a multiple hypothesis testing problem that, if not properly
accounted for, leads to the discovery of large numbers of false-positive, or spurious, as-
sociations. Especially if the SNPs detected in a GWAS should be evaluated in follow-up
studies, avoiding large numbers of false positives is of utmost importance. For instance,
if a significance threshold α = 0.05 is chosen, the simultaneous testing of t = 10′000 hy-
pothesis leads to α × t = 500 associations by random chance alone. A prevalent way to
restrict the number of false positives is by controlling the so-called family-wise error rate
(FWER). It is defined as the probability to observe at least one false-positive association:

FWER = P(number of false positives ≥ 1) (2.1)

If no correction for multiple hypothesis testing is applied, the FWER increases rapidly
for low numbers of tests, indicating the presence of false-positive associations. This is
illustrated in Figure 2.2. It is common practise in statistical hypothesis testing to control
the FWER at the significance threshold α, that is to ensure that FWER ≤ α. A prominent
way to achieve this is by applying the so-called Bonferroni correction [93]. It corresponds
to testing every hypothesis at the Bonferroni threshold δBonf = α/t, where t corresponds
to the number of simultaneous tests. While the Bonferroni correction provably guarantees
FWER control, it is known to be stringent for large numbers of tests: with an increasing
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Figure 2.2.: Family-wise error rates for varying numbers of tests and varying values of the
significance level α

correction factor t, the p-value a hypothesis must reach in order to be considered significant,
decreases. Eventually, avoiding false positives is at the expense of potentially missing weak
associations. An alternative way to control the number of false positives is to restrict
the false discovery rate (FDR). It is defined as the expected value of the false-discovery
proportion, which in turn describes the fraction of false associations among all detected
associations. Different methods exist to control the FDR [94–97], with the most widely
used one being the Benjamini-Hochberg procedure [94].

Whether the FWER or the FDR should be controlled in a GWAS depends on the choice
of design. If the FWER is controlled at level α = 0.05, there is at most a 5.0% chance
that one or more of the significant associations are false positives. If by contrast the FDR
is controlled at level α = 0.05, on average 5.0% of the significant associations might be
false positives. Hence, for both methods there is a trade-off between the number of false
positives and false negatives one is willing to accept.

2.2.2.2. Confounding factors

Another cause for false-positive associations is the presence of confounding factors, such
as age, gender, population structure, or cryptic relatedness between individuals [98–100].
A confounder corresponds to a variable that is, for a given data set, correlated with
the phenotype of interest, violating the assumption of independently distributed pheno-
types across samples underlying many GWAS methods [100]. As a result, genetic variants
that are associated to the confounder, not the phenotype, might become significant in a
GWAS [99], as illustrated in Figure 2.3. Cryptic relatedness, for instance, describes the
presence of hidden family structure in the data. This results in some individuals to share
similar genetic variants, and probably also more similar phenotypes. If not accounted for,
those genetic variants might bias the results of a genetic association study. Correction for
confounding variables, if available, is indispensable to avoid spurious associations. Many
models allow including covariates into the hypothesis testing, and especially mixed linear
model have proven instrumental to address the problem of population structure in data.
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Figure 2.3.: Example of a genome-wide association study with a dichotomous case-control
phenotype. Each row in the data set corresponds to one sample that is either classified to be a
case, or a healthy control with respect to a disease. Each column corresponds to one genotyped
SNP using an additive encoding. Additionally, the country of origin of each individual is given
as a covariate, and each sample comes from one of two countries, also indicated by the colours
in the data table. In a GWAS, each SNP is tested for its association to the phenotype. Two
SNPs that are associated to the case-control phenotype are highlighted with a grey box. The
right SNP constitutes a spurious association: it is actually associated to the covariate. The
association to the phenotype vanishes if additionally a correction for the covariate takes place.

2.2.2.3. Statistical association testing in GWASs

There exist a multitude of statistical tests in GWASs, and the choice of test depends
on the type of trait. Quantitative traits, such as height or body-mass-index, are mostly
studied in linear model frameworks. Such frameworks understand the phenotype as a
linear combination between the SNP and, if available, covariates such as age, gender or
clinical covariates, and commonly include a residual noise term, modelling uncertainty in
the data [92].
Especially the class of linear mixed models (LMMs) has proven to successfully correct for
cryptic relatedness and population structure in GWASs [101–104]. Those models assume
that the phenotype follows a continuous probability distribution (commonly a Gaussian),
and explain the phenotype as a linear combination of fixed and random effects. For most
applications, the offset, genotype and the covariates are modelled as fixed effects, while the
relatedness between samples is modelled as a random effect. This emphasises the under-
lying assumption that the phenotypic variance is an additive combination of the genetic
variance between individuals and normally-distributed residual noise. Mathematically,
these models can be described as

y ∼ N (Xβ, σ2
gK+ σ2

ε I) (2.2)

where y is the vector that holds the phenotypes for n samples, and N (µ, σ) denotes the
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Table 2.1.: Example of a contingency table to test the association between a SNP (represented
by the occurrence of minor alleles) and a case-control trait. The columns indicate the number
of minor alleles, the rows indicate the trait, i.e. case or control, n denotes the total number of
samples in the dataset.

number of MA = 0 number of MA ≥ 1 row total
case a n1 − a n1

control z − a n− n1 − (z − a) n− n1

column total z n− z n

normal distribution with mean µ and standard deviation σ. Hence, from this formulation
it becomes clear that the phenotype is assumed to follow a normal distribution. In the
equation, the explanatory variables, i.e. the model bias, the (optional) covariates, and
most importantly the genotype, are stored in the n × d-dimensional matrix X. The
variables stored in X are also referred to as the fixed effects. The covariance of the normal
distribution consists of two components, the n×n-dimensional matrix K that stores genetic
similarities between the n samples, and a residual variance component, included by the
n × n-dimensional identity matrix I. The d-dimensional vector β describes the weights
of the fixed effects, and σ2

g , σ
2
ε ∈ R describe the magnitude of the genetic and residual

variance, respectively. Importantly, the LMM is highly flexible, in that other variance
components can be added into the model [105]. The statistical association can be tested
by conducting a likelihood ratio test, in which the likelihood of the model including the
genotype is compared to the likelihood of the model excluding the genotype.

In the case of dichotomous/binary traits, the assumption of a normally distributed pheno-
type is violated. In order to still leverage the benefits of the LMM frameworks, instead of
modelling the phenotype, the logarithm of the odds is modelled [e.g. 106], i.e. Equation 2.2
becomes

log
(

P(y = 1)

1− P(y = 1)

)
∼ N (Xβ, σ2

gK+ σ2
ε I). (2.3)

Alternatively, common methods applied for binary traits are two-sample tests that are
based on contingency tables, such as Fisher’s exact test, Pearson’s χ2 test [107] or the
Cochran-Mantel-Haenszel test [108, 109], with the latter allowing the inclusion of cate-
gorical covariates. Those methods aim at testing whether the distributions of a SNP’s
alleles are independent between the case and control class. While they are less flexible
than linear mixed models, they have the advantage of being computationally efficient, as
p-values can be computed in closed form from the contingency tables (see Table 2.1 for
example).

2.2.3. Limitations
The importance of the contribution of GWASs to our current understanding of genetics un-
derlying complex traits cannot be overstated: of February 2020, the GWAS-catalogue [110],
a comprehensive resource of GWAS results, contained 175′870 associations from 4′439 pub-
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lications spanning a multitude of phenotypes and traits. Despite those successes, GWASs
still suffer from certain limitations, and we refer to Tam et al. [111] for a comprehensive
review of benefits and limitations of GWASs. We address some of the most pressing ones
in the following.

Identification of causal variants One major challenge in GWASs is the inference of causal
relationships between genetic variants and a phenotype [111]. Linkage disequilibrium
hinders the interpretation of GWAS results, as a SNP that is found to be significantly
associated to a phenotype is not necessarily the causal variant, but might be linked to the
causal variant — if there exists any causal relationship at all. Furthermore, most tag SNPs
in genotyping arrays (∼ 88.0%, [112]) lie in intronic or intergenic regions of the genome,
resulting in many significantly associated SNPs that cannot directly be mapped to a gene.
The interpretation of those associations, let alone the inference of causality, is inherently
difficult and requires additional steps, such as re-sequencing, functional analyses or in vitro
and in vivo verifications [112].

Another important concern in GWASs is that the genetic variants detected in those studies
often only explain a small part of the phenotypic heritability, a phenomenon called the
missing heritability [113]. Different hypotheses that aim at explaining missing heritability
in GWASs exist: (i) the impact of rare variants [114, 115], (ii) the multiple hypothesis
testing burden [111], and (iii) the existence of non-linear interactions between genetic
loci [116].

Rare variants One potential explanation for the missing heritability is that rare variants
of large effects substantially contribute to an individuals’ risk to develop a disease [115].
A genetic variant is considered to be a rare variant if it is observed in less than γ percent
of the samples, with γ commonly ≤ 1.0%. Those infrequent genetic variants cannot be
detected with standard statistical tests used in GWASs given their low prevalence in the
population [117]. In order to resolve the rare-variant challenge, a common approach is
to combine rare variants based on their position in the genome, using different collapsing
strategies [118], or specifically designed multi-marker tests [119].

Multiple comparisons problem A second potential cause explaining the missing heri-
tability is the burden of controlling the number of false positives in statistical testing (see
Section 2.2.2.1). GWASs often contain hundreds of thousands to millions of SNPs, and
are hence affected by a severe multiple comparisons problem. Due to the large number
of simultaneous tests in a GWAS, most of the tested variants do not reach the stringent
significance threshold imposed e.g. by the Bonferroni correction [111]. A large part of the
missing heritability might lie within variants that are only moderately associated to the
phenotype.

Interactions between genetic loci A third potential cause explaining missing heritabil-
ity is that GWASs analyse genetic variants in isolation, and do not consider non-linear
interaction effects between multiple loci [116]. This hypothesis is at the core of epista-
sis research, a type of genetic analysis that is focussing on interactions between pairwise

20



2. Introduction to genetic association studies

genetic loci, such as single variants or genes [120–122]. The main idea behind epistasis
research is that the effect of one genetic locus might be masked by another locus, resulting
in a non-linear effect between the two. While addressing the challenge of incorporating
interactions between genetic loci seems promising, it complicates the multiple compar-
isons problem described in the previous paragraph: by testing pair-wise interactions, the
number of statistical tests corresponds to the square of the genetic variants to be tested,
such that the chances that any interaction reaches the significance threshold is further
reduced. To circumvent this, other directions of research approach the interaction search
by exploiting biological prior knowledge in the form of molecular networks.

The last aspect, that is the analysis of interactions between genetic loci, has recently
gained a lot of attention, and finding association signals beyond single variant analysis has
become a research paradigm [123]. However, the space of potential interactions between
genetic variants increases exponentially with the variants: the number of possible interac-
tions between d SNPs equals 2d, posing a severe computational and statistical challenge.
Given the ever-increasing number of biological, and in particular molecular networks, novel
methods emerged that are based on an integration of genetic data with the biological prior
knowledge encoded in those networks [54]. The hypothesis underlying those methods is
that multiple genetic variants interact and thereby lead to the manifestation of a phe-
notype. Those interactions do not take place between random variants, but follow the
complex blueprint of cellular organisation that is captured in molecular networks. This
deems some interactions more likely than others, and by restricting the search for interac-
tions to those that are supported by the network, the search space of potential interactions
is reduced drastically. This integration of biological networks transforms the problem of
exploring all possible sets of interacting genetic variants to the problem of exploring sets of
variants that form connected modules in a network. As opposed to evaluating all possible
interactions, this approach gives rise to interpretable and meaningful variant sets. The
approach to guide interaction analyses by molecular networks is further corroborated by
the observation that genes implicated in the same phenotypes tend to cluster within the
network [58]. Over the last decades, a variety of different approaches have been devel-
oped that are based on the integration of molecular networks with genetic data. The next
section gives an overview over the main methodical concepts underlying those analyses.

2.3. An overview of network based genetic analysis
2.3.1. From SNPs to genes to networks
Since molecular networks are based on interactions between genes, combining them with
SNP data requires a mapping of SNPs to genes. Commonly, SNPs are mapped to genes
by proximity, i.e. genes are represented by those SNPs that overlap with them. Different
approaches exist for this mapping, such as mapping all SNPs to a gene that lie within its
coding region (exon), or mapping all SNPs that lie either in the exons or introns of a gene.
Furthermore, it is common to also map SNPs to genes that lie within a certain number
of bases up- and downstream of the genes, sometimes referred to as a window around
the gene [125–127]. This window can be symmetrical or asymmetrical, and accounts
for mutations that might affect the binding of regulatory elements, such as transcription
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(a) Mapping SNPs to genes (b) gene network

Figure 2.4.: Integration of genetic data with biological networks. (This figure is adapted from
Figure 1 in Gumpinger et al. [124])

factors (see Figure 2.4a). It is important to be aware that an increased window around
genes might result in mapping a single SNP to multiple genes, which might lead to an
inflation of the results [128].

The mapping of SNPs to genes is followed by the derivation of a scalar representation of
the genes. In the context of genome-wide association studies, this is mostly done in form of
a p-value of association to the phenotype of interest, or a test statistic. Different methods
exist, how a gene-wise p-value can be computed, and they can be mainly grouped into two
classes [129]: (i) two-step approaches, that first compute univariate, SNP-wise p-values
and combine them in a second step to a gene-based statistic, or (ii) one-step approaches,
where gene p-values are computed by jointly analysing all SNPs in the gene.
The two-step methods start by computing a test statistic and p-value of association for
every individual SNP mapped to the gene. The second step consists of the generation of
a gene-based test statistic and/or p-value from the SNP-based ones. Different schemes
to achieve this exist, ranging from very simple aggregations, such as picking the most
significant p-value within a gene as a representative [127, 129], or using the sum or average
of χ2 statistics of the SNPs overlapping with the gene [126, 127]. Alternatively, all SNP
p-values in a gene can be combined, for instance with Fisher’s method [130]. Some of those
statistics are confounded by the size of the gene, as well as the LD structure (for example
when picking the lowest p-value within a gene, the probability to observe low p-values
increases with increasing gene sizes). It is important to correct for this confounding in
order to obtain unbiased gene representations [127].
The one-step approaches do not test each SNP individually, but consider all SNPs mapping
to a single gene as a set, and test them jointly [104, 131, 132]. Those so-called set-tests have
been applied successfully to identify genes associated to various diseases, and especially
for the analysis of rare variants, set-tests show increased power when close-by rare variants
are aggregated compared to testing rare variants in isolation [132]. There exist different
regimes of how variants can be tested jointly. One way is to represent all SNPs that are
mapped to a gene in a data matrix and test them jointly. For example the FastLMM-set
method [104] achieves this by extending the linear mixed model in Equation 2.2, i.e. the
design matrix X contains all SNPs that map to the gene. Another option is to first collapse
all SNPs in a gene into an n-dimensional vector, and regress this representation onto the
phenotype. This is the mode of analysis in so-called burden tests [133–135].
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After this step, each gene can be represented by a scalar value, that is either a p-value or
a test statistic. We refer to the representation of a gene in the following very generally as
a gene score. The last step is the mapping of the gene-scores to the network. This is done
by superimposing the gene scores to the network of interest. This results in a gene-gene
network, where each gene is represented by a score that measures the relevance of a gene
in the phenotype of interest (see Figure 2.4b).
Those network representations build the basis of many network-based approaches to
GWAS. There exist various ways how they can be used to discover novel disease-associated
genes, ranging from greedy approaches, to graph regularisation approaches, to network
propagation. We start by introducing some notation used throughout this section, and
continue to present major ideas and concepts at the core of network guided genetic analysis
methods.

Notation

We describe a network, or graph, as G = (V,E,W), where V denotes the set of d vertices,
and E the set of m edges between them, and write (v, u) to denote an edge between two
vertices u, v ∈ V . Hence, the edge set E can be written as E = {(u, v) |u, v ∈ V }. The
matrix W is the, potentially weighted, d × d adjacency matrix. The entries contain the
edge weights, that for instance could describe the confidence of the edge. Without loss of
generality, we assume the weights to be normalised to the range between 0 and 1, with 0
denoting absence of an edge, and 1 indicating high confidence of the edge. We denote this
edge weight as ω(u, v) ∈ [0, 1], u, v,∈ V . In the absence of weighted edges, the matrix W
corresponds to the binary adjacency matrix of the network. We furthermore assume that
every node v ∈ V has a scalar feature xv ∈ R assigned to it, which is also referred to as
the score of the node.

2.3.2. Finding subgraphs enriched in low p-value genes
One group of methods that incorporate networks with genomic data are focussed on find-
ing subgraphs that are enriched with low p-value genes, also denoted as modules. This is
related to the maximum-weight connected subgraph (MWCS) problem, which is known
to be NP-hard [136]. Different strategies to solve the problem have been introduced [63,
137–139], for instance based on a greedy exploration of the search space [63] or simu-
lated annealing [137]. While greedy approaches take the locally optimal decision at each
step [140], simulated annealing based approaches allow non-optimal decisions with certain
probabilities. The results found with both strategies might only result in local optima
that deviate from the global optimum, but have proven very useful for the exploration of
genetic networks.
A prominent greedy approach to explore networks is dmGWAS [63]. It aims at finding
subgraphs in the network that are connected and enriched in low p-value genes. For
this purpose, dmGWAS applies a greedy strategy that is based on iterating through all
d genes in the network, and greedily growing subgraphs at each gene until a stopping
criterion is met. In total, d potential subgraphs are evaluated, hence between 0 and
d potential subgraphs can be detected. Due to the greedy nature of the exploration,
detected subgraphs commonly exhibit high similarity, as subgraphs rooted at close-by
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vertices are often overlapping. A further development, termed edge weighted dmGWAS
(ew_dmGWAS) [64] enabled the incorporation of edge weights into the approach, that e.g.
could be inferred from gene expression data.
The jActiveModules method [137], implemented as a Cytoscape [141] plug-in, finds the
maximum-weighted connected subgraph via simulated annealing [142]. It uses simulated
annealing to determine active versus inactive genes in a network, and the final reported
subnetwork is the largest connected component consisting of active nodes in a network.
To achieve this, each node is assigned to the active/inactive class with probability 50.0%,
followed by toggling the state of random nodes. In case this leads to a higher-scoring
subnetwork, the toggled state is kept, in case the score for the subnetwork decreased,
the score is kept with a probability depending on the annealing temperature and the
score-delta. While initially developed for gene expression data [137], jActiveModules can
readily be applied to any study in which genes can be represented by p-values.

2.3.3. Network propagation methods
Another concept that has proven itself valuable for the discovery of disease genes are
methods based on graph diffusion, also known as network propagation [65]. Prominent
methods, such as HotNet [143, 144] , HotNet2 [145] and hierarchical HotNet [146] are
based on network propagation. While they were initially developed to discover previously
unknown cancer genes, those methods were successfully applied to other types of data as
well, including genome-wide association studies [20, 147]. Network propagation methods
represent each gene in the network with a score (see Section 2.3.1), and propagate those
scores through the network. During propagation, each vertex’s score is updated based
on the scores in its local neighbourhood. Conceptually, this can be best explained by
interpreting the node score as an amount of fluid, heat or information, that is assigned to
the node. In each propagation step, nodes pass their heat to, and receive a certain amount
of heat from their neighbours. This is repeated, until a steady state of the vertex scores
is reached, corresponding to the final state of the network.
Mathematically, this can be described as follows: if the score of vertex v at propagation
step t is denoted as x

(t)
v , the score of v is updated at every propagation step as

x(t+1)
v =

∑
e(u,v)∈E

ω(u, v)x(t)u . (2.4)

This can equivalently be written in matrix notation as

x(t) = W(t)x0, (2.5)

where x(0) is the initial state of the network [65], and W is the d×d-dimensional (weighted)
adjacency matrix. Another concept related to network propagation are random walks with
restart (RWR), mathematically described as

x(t+1) = αx(0) + (1− α)Wx(t), (2.6)

where α ∈ [0, 1]. That is, at every time step, the state of the vertex will return to its
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original value with probability α. For connected networks, and weighted adjacency matrix
W with eigenvalues smaller than or equal to 1, the steady state distribution of node
weights converges to

x̄ = α(I− (1− α)W)−1x(0). (2.7)

A common way to use the steady state distribution is as a criterion to rank genes [65],
and prioritise top-ranked genes in follow up analysis.
A recently developed method called uKIN, short for using Knowledge In Networks, [148]
incorporates prior knowledge in the form of known disease genes with novel information,
e.g. from genome-wide association studies, by implementing a guided random walk with
restart. It has shown to improve the classification of cancer driver genes for multiple cancer
types, and has been applied to GWASs of age-related macular degeneration, amyotrophic
lateral sclerosis and epilepsy.
Other approaches, such as hierarchical HotNet [146] use random walks with restart in
the network, and construct a similarity matrix between nodes from the resulting steady-
state distribution. This similarity matrix serves as the input to a hierarchical clustering
of nodes, giving rise to ‘interesting’ subgraphs. Different permutation schemes are ap-
plied to test the significance of the size of the observed largest cluster, resulting in an
empirical p-value. Ruffalo et al. [149] suggest the separate propagation of mutation and
gene-expression indicators through a network using random walks with restart, and sub-
sequently generate features from the resulting steady state distribution to predict the
disease-causing status of genes.

2.3.4. Using networks as regularisers
Linear models have been used extensively to model the additive effect of genetic markers,
such as SNPs or genes, on a phenotype of interest. Mathematically, those models can be
expressed as

y = β0 + x1β1 + ...+ xdβd

= Xβ
(2.8)

for an n-dimensional phenotype vector y and d genetic features, denoted with xi, i =
1, ..., d. Importantly, those models do not use a summary-statistic representation of the
genes in the network as described in Section 2.3.1, but are n-dimensional vectors describing
the feature value for each of the samples. For ease of notation, we use the matrix notation,
that is an n× (d+1)-dimensional design matrix X = [1,x1, ..,xd], and β = [β0, ..., βd]

T ∈
Rd+1. In order to determine the best coefficients βi for i = 0, ..., d, a loss function

L(β) = ||y −Xβ||f (2.9)

that measures the model error is minimised with respect to a norm || · ||f . Those models
can be extended to incorporate molecular networks by including regularisation terms into
the loss function.

The group Lasso [150] is a basic method that can be used to include network information,
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by grouping genetic markers according to subnetworks in a molecular network. In order to
achieve this, the group Lasso extends the loss in Equation 2.9 with a regularisation term
that jointly selects grouped variables. Therefore, variables have to be grouped together
prior to the analysis into J groups, and the loss-function becomes [151]:

Lgroup(β) = ||y −Xβ||f + λ

J∑
j=0

||β[j]||. (2.10)

where β[j] are the β values belonging to the markers in the j-th group. However, the
group Lasso assumes non-overlapping groups, an assumption that is often violated. A
variation of this group Lasso is the so-called overlapping group Lasso [152, 153], that
selects features that belong to the union of few feature groups. This enables the incor-
poration of network knowledge by defining those groups as node-pairs (i.e. edges) in the
network, giving rise to the so-called graph Lasso. However, the combinatorial explosion
of possible subnetworks in large molecular networks hinders the exhaustive exploration of
all subnetworks.

Li & Li [154] developed a network-constrained regularisation that extends the loss function
L(β) in Equation 2.9 with two regularisation terms:

L(β) = ||y −Xβ||f + λ1||β||1 + λ2β
TLβ. (2.11)

The L1 regularisation term induces a sparse solution with parameter λ1 ∈ R, while the
second regularisation term gives a smooth solution of the coefficients over the network by
inclusion of the graph Laplacian L with parameter λ2 ∈ R. The graph Laplacian is defined
as

L = I−D−1/2WD−1/2, (2.12)

where the matrix D is a diagonal matrix containing the degrees of the nodes, and W is
the weighted adjacency matrix. The loss function in Equation 2.11 leads to neighbouring
nodes in the network having similar coefficients if they are correlated [see Theorem 1 in
154]. While the method was originally applied to analyse gene expression data, it can be
readily extended to discrete SNP data, where each feature in the design matrix X can for
instance represent a gene, and count the number of minor alleles in that gene.

A slightly different, yet related, approach was suggested by Azencott et al. [155]. They
developed a method called SConES, short for Selecting Connected Explanatory SNPs. As
the name suggests, the method was originally developed for SNP-SNP networks, rather
than molecular networks where nodes correspond to genes. While the method is agnostic
to the type of underlying data, it is able to deal with large-scale SNP-SNP networks
that might contain millions of nodes. Given a SNP-SNP network, that for instance can
describe connections between neighbouring SNPs, SNPs within genes, or SNPs within
interacting genes, the method aims at identifying a minimal set of SNPs that is associated
to the phenotype, sparse (with respect to the set of all SNPs), and contains SNPs that are
connected in the underlying network. This can be formulated as an optimisation problem,
and Azencott et al. show that this problem can be solved efficiently by interpreting it as
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a minimum cut problem.

2.4. New directions in network based genetic analyses
The aforementioned list of methods is far from complete, but should give an idea of
existing directions and approaches of how networks can be integrated with genetic analyses.
Without any doubt, those methods have shown successes and led to the discovery of novel
disease associated genes and molecular mechanisms. Two interesting aspects presumably
have high potential to further advance the field of network-guided association studies.
The first one concerns the mode of interaction between genetic entities, the second one
the representation of data in molecular networks. As outlined in the remainder of this
Part II of the thesis, addressing those two challenges poses important statistical and
computational challenges. Interestingly, a seemingly unrelated field, that is the field of
significant pattern mining, holds the tools and concepts necessary to deem those analyses
feasible.

Genetic heterogeneity as an alternative mode of interaction

There exist different hypothesis how genetic entities, such as SNPs or genes, interact with
each other. For instance linear models mostly adopt an additive perspective, i.e. the effect
of an interaction is the sum of the effects of its individual participants. However, there
exists another mode of interaction, namely genetic heterogeneity. It refers to an interac-
tion model in which different genetic variants affect a phenotype in a similar way [156].
On a molecular level, this is corroborated by the ability of cells to rewire processes to
maintain homoeostasis in the presence of perturbation, such that non-linear interaction
effects of perturbations cannot be detected by looking at the additive effects of individual
variants [57]. Non-linear interactions in the form of genetic heterogeneity are assumed to
play an important role in different diseases and phenotypes, with cancer being a prominent
example [157]. In the field of complex disease research, genetic heterogeneity presumably
underlies diseases caused by multiple rare-variants [156]. Developing models that analyse
the effect of genetic heterogeneity promise to enable new insights into genetic interactions
underlying complex traits.

From summary statistics to SNP-based representations of genes

Most approaches for network guided association studies rely on summary statistics to
represent genes in networks, as described in Section 2.3.1. This representation corresponds
to a compression of all information that is available for a single gene into one summary
statistic. Especially for large genes that are represented with hundreds of SNPs, this
potentially leads to an unwanted loss of information. Assuming that there exists a small
subunit of the gene that has a high effect on the phenotype, this effect might remain
undiscovered, as the majority of SNPs in the gene mask the effect. We believe that
representing a gene as a set of SNPs rather than a summary statistic holds potential to
increase the power of network guided association studies.
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The role of significant pattern mining in the discovery of biomarkers

Recent advances in the field of significant pattern mining lead to the development of
statistical methods that address the computational and statistical challenges associated
to the testing of large numbers of interactions in binary transaction databases [158–163].
While this may seem like an unrelated topic at first, different biological problems, such as
the search for genetic interactions between consecutive SNPs in the DNA [164, 165], can be
reformulated to fit the framework of significant pattern mining, and allowing to leverage
sophisticated methods and algorithms from this field of research. This enabled analysis
that were previously not possible due to statistical and/or computational limitations, and
resulted in an increase in the power to discover novel genetic biomarkers [166]. The next
section introduces the theoretical foundations of significant pattern mining, and presents
how those concepts can be integrated into the analysis of genetic interactions.
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3.1. Significant pattern mining
Significant pattern mining, sometimes also referred to as discriminative itemset mining,
is a rather new approach in machine learning research, that combines concepts from the
fields of association rule mining and frequent pattern mining principles with statistical
association testing [166]. While the goal in frequent pattern mining and association rule
mining is to detect patterns in data that follow certain rules or frequency constraints,
significant pattern mining assumes the existence of two or more classes, and the goal is
to find patterns that occur significantly more often in one class as opposed to the other
classes.

The field of pattern mining originated from the task to analyse shopping baskets [167]: In
shopping basket analysis, the data describes shopping baskets and the items they contain.
The goal of frequent pattern mining is to find patterns, for example sets of items, that are
frequently bought together. For instance, if the items {onions, leek} are contained in more
than 50.0% of shopping baskets, it is considered a frequent itemset at any user-defined
threshold ≤ 50.0%. Association rule mining evolves around detecting rules of the form
a⇒ b, for example 20.0% of individuals that bought onions and leek also bought carrots,
in which case the rule is described as {onions, leek} ⇒ {carrots}. As for frequent itemset
mining, the threshold at which the association rule is considered to be of interest (in the
example 20.0%), is user-defined.

In contrast to frequent pattern mining and association rule mining, significant pattern
mining assumes the existence of an additional binary class label of the data, such as
whether the shopping basket belongs to a vegetarian or a meat-eater. The goal is to
identify patterns that occur significantly more often in one class versus the other class.
For example for the vegetarian versus meat-eater example, one probably finds the set
{chicken, onion, leek} more often in the class of meat-eaters than in the class of vege-
tarians. The degree to which this more frequent occurrence is present in the data set is
quantified using statistical testing.

This chapter is devoted to an introduction to significant pattern mining, and exclusively
summarises prior art. The chapter is based on the doctoral dissertation by Llinares López
[168], and the review by Llinares-López & Borgwardt [166] which offers a comprehensive
review of the field. We start by introducing the notation used throughout this chapter, give
a formal definition of the problem, and explain the main challenges in significant pattern
mining. In the remainder, we explain the concepts and ideas underlying the solutions
to those challenges. We end with an overview of how significant pattern mining have
previously been exploited to enhance analyses in the field of biomedical research.
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3.2. Notation and problem statement
Consider an index-set I = {1, ..., n} indexing n samples, and an index-set J = {1, ..., d}
indexing d discrete items, also referred to as features. Let D = {(xi, yi)}ni=1 be a data
set that contains n samples. Each sample i consists of a transaction xi ⊆ J , i.e. a finite
subset of J , and a binary class label yi ∈ {0, 1}. For example, xi = {3, 5, 7} indicates
that the 3rd, 5th and 7th feature are present for the ith sample. Such a data set is in the
pattern mining literature often referred to as a transaction database. Alternatively, the
data can also be represented as a binary matrix X ∈ {0, 1}n×d that describes the presence
or absence of d features for each of n samples, such that Xi,j = 1 indicates that feature
j is present for sample i, where j ∈ J , i ∈ I. The class assignment can be stored in an
n-dimensional binary label vector y ∈ {0, 1}n. Every discrete substructure S of the index-
set J is called a pattern, S ⊆ J . By definition, patterns exhibit sub- and super-pattern
relationships. If S ⊆ S ′, we refer to S as a sub-pattern of S ′ and inversely to S ′ as a
super-pattern of S. We furthermore define a pattern indicator function gS : xi → {0, 1}
that indicates whether a pattern S is present in sample i.

The goal of significant pattern mining is to find patterns S that occur significantly more
often in one of the two classes. More formally, for a fixed pattern S we can evaluate the
pattern indicator function gS for every sample, resulting in an n-dimensional binary vector
that indicates the presence or absence of the pattern. We denote the vector that contains
the evaluation of the function gS for all samples i ∈ I as

gS = [gS(x1), .., gS(xn)] ∈ {0, 1}n. (3.1)

The sum over this vector, i.e. the number of occurrences of the pattern, is referred to as
its support. Together with the label vector y, a contingency table can be derived, which
counts the number of patterns in both classes (see Figure 3.1b). This contingency table
can be analysed with a discrete statistical test, such as Fisher’s exact test, to obtain a
p-value of association between the labels and the occurrence of the pattern. Such a test is
useful in evaluating whether the support of the pattern is distributed equally across both
classes in the dataset.

On the pattern indicator function gS

The choice of the function gS depends on the problem, and there exist different options.
For instance, in classical frequent pattern mining, a pattern is considered to be present in
a transaction if it is fully contained in the transaction. We evaluate this with the minimum
pattern indicator function gmin

S (·) that takes the following form:

gmin
S (xi) =

{
1 if and only if S ⊆ xi

0 else.
(3.2)

The minimum in the name is inspired by the matrix notation of the problem, where
evaluating the function corresponds to taking the minimum over features in the pattern.
Another choice for the pattern indicator function that has been successfully applied in
the literature [164, 165] is the maximum pattern indicator function gmax

S , that measures
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whether there is any overlap between a pattern S and the transaction xi, that is

gmax
S (xi) =

{
1 if and only if S ∩ xi 6= ∅
0 else.

(3.3)

Analogously to the minimum indicator function, the maximum in the name is inspired by
the matrix notation of the problem, where the function can be evaluated by taking the
maximum over the features in the pattern. An example of the maximum pattern indicator
function is illustrated in Figure 3.1a.
Alternatively, an approach that relies on choosing thresholds could be used, for example

gthres
S (xi) =

{
1 if and only if |S∩xi|

|S| ≥ τ

0 else,
(3.4)

where τ is a user-defined threshold. However, this reliance on a user-defined threshold can
be challenging, as choosing a suitable threshold τ apriori is not a trivial task.

Remark 3.2.1 (On the use of pattern indicator functions). While the minimum pattern
indicator is the most widely-used function in classical frequent pattern mining, the methods
developed in this thesis use the maximum pattern indicator gmax

S . This choice is motivated
biologically, and will be explained in further detail in the chapters describing the contribu-
tion of this thesis. For this reason, the remainder of this chapter is written to support the
maximum encoding. This implies that some descriptions of the methods that were origi-
nally used with the minimum indicator had to be reformulated, and hence do not exactly
follow the description in the original publications. It is important to note that all methods
only require minor reformulations to be used with the minimum pattern indicator.

Remark 3.2.2 (Notation). For notational simplicity, we omit the max and write gS to
mean gmax

S , unless explicitly stated otherwise.

Challenges in significant pattern mining

The space of all possible patterns is called the search space or hypothesis space, denoted
by H. Its size depends on the type of patterns to be analysed. The most general instance
of significant pattern mining is so-called significant itemset mining, where all possible
patterns are explored. Hence, the search space consists of all possible subsets of the
feature-index set J , denoted with the power set P(J ) of the feature-indices. The number
of possible itemsets scales exponentially with the number of features: there are a total of
2|J | such combinations. Already small data sets with only a few hundred features thus
give rise to an enormous search space. To give an example [taken from 166], for a data set
with d = 266 features, the search space in itemset mining consists of approximately 1080

higher-order feature combinations, corresponding to the number of electrons estimated to
be in the observable universe. Hence, an exhaustive exploration of the search space poses
two challenges:

1. a statistical challenge, caused by the excessive number of patterns that have to be
tested, imposing a severe multiple hypothesis testing burden in order to avoid the
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(a) Data set and pattern representation
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(b) Contingency table

gS = 1 gS = 0 total row
y = 1 aS n1 − aS n1

y = 0 zS − aS n− n1 − (zS − aS) n− n1

column total zS n− zS n

Figure 3.1.: Example of significant itemset mining. (a) Data set for n = 12 samples and d = 10
features. The itemset to be tested contains the third, the sixth and the ninth item. The pattern
is considered to be present, if at least one of the features is 1 for a sample, corresponding to the
maximum pattern indicator function gmax

S in Equation 3.3. (b) Contingency table derived from
comparing the label vector y with the maximum pattern indicator function gmax

S . The counts
according to (a) are n = 12, n1 = 6, zS = 6 and aS = 5.

discovery or large numbers of false positive associations, and

2. a computational challenge, as all patterns pertaining to the vast search space have
to be enumerated.

In order to make significant pattern mining feasible, both challenges have to be addressed.
Decades of research went into resolving the second challenge, and led to the development of
efficient data mining algorithms that are based on sophisticated data representations and
pruning schemes [e.g. 169–178]. Only recently, novel approaches emerged that targeted
the statistical challenge, which is of utmost importance when restricting the number of
false positive associations has a high priority [158–163].
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3.3. Association testing and the multiple comparison problem
As described in the previous section, significant pattern mining is based on a statistical
test of association between a pattern S and the binary class label. We will adopt the
vector-based representation of the data here, such that the task of statistical association
testing becomes a task of testing the association between two binary vectors, one of them
being the label vector y, that assigns each sample to one of two classes, and the other
one the pattern indicator gS , as illustrated in Figure 3.1. It is important to note that
this representation of a pattern is agnostic to the underlying pattern type, i.e. whether
the pattern is an itemset or any other predefined sub-structure of the feature index-set J
does not affect the representation in a contingency table.

Those vectors are assumed to be draws from the distribution of two unobserved random
variables, Y and GS , and the two variables are said to be statistically associated, if they
are not independent from each other, i.e. if their joint probability distributions P(Y,GS)
does not factorise as P(Y )P(GS). In an ideal scenario, this criterion would be checked.

In practice however, the probability distributions underlying the data are unknown, such
that independence cannot be assessed. Instead, the binary vectors y and gS are assumed
to be independent, identical draws from the underlying data-generating distributions, and
the joint probability distribution can be approximated by counting the four configurations
of the random variables, that is (yi = 1,gS,i = 1), (yi = 1,gS,i = 0), (yi = 0,gS,i = 1)
and (yi = 0,gS,i = 0). Those are the counts represented in the 2 × 2 contingency table
(see Figure 3.1b), such that all those approximations can be read from the table as

P(yi = 1,gS,i = 1) =
aS
n

P(yi = 1,gS,i = 0) =
n1 − aS

n

P(yi = 0,gS,i = 1) =
zS − aS

n

P(yi = 0,gS,i = 0) =
n− n1 − (zS − aS)

n

(3.5)

Those probabilities sum up to one, and the marginal probabilities, i.e. P(y = 1) and
P(gS = 1) can be estimated as n1/n and zS/n, respectively.

Given the counts n, n1 and zS , the contingency table only has one degree of freedom,
i.e. fixing one count in the table determines all other counts. Without loss of generality,
we chose the count aS . The classical Fisher’s exact test and Pearson’s χ2 test both treat
the table margins zS , n and n1 as fixed quantities, focussing on the cell count aS as
the only random quantity, and thus the central object in the test statistic. Both tests
derive a test statistic that depends on the random variable AS , assuming that the cell
count aS is a realisation of AS , and establish its distribution under the null hypothesis
of independence between the random variables Y and GS . We denote this test statistic
as T (AS). It can be shown [see 166, for proof] that under the null hypothesis H0 of
independence between Y and GS , the conditional probability of the cell count aS follows
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a hypergeometric distribution, that is

P(AS = aS |XS = zS , N1 = n1,H0) = hypergeom(aS |n, n1, zS)

=

(
n1

aS

)(
n−n1

zS−aS

)(
n
zS

) .
(3.6)

In the following, we will explain the test statistics and resulting null-distributions for Pear-
son’s χ2 test and Fisher’s exact test, following the description in the review by Llinares-
López & Borgwardt [166].

3.3.1. Pearson’s χ2 test
The test statistic in Pearson’s χ2 test [107] is based on a z-score like transformation of the
cell count aS , i.e.

ZPearson =
aS − E[aS |n, n1, zS ]√

σ[aS |n, n1, zS ]
(3.7)

where E[aS |n, n1, zS ] corresponds to the expected value of aS , and σ[aS |n, n1, zS ] to the
standard deviation of aS under the null distribution. As stated above, this null distribution
corresponds to a hypergeometric distribution, such that [see, e.g. 179]

ZPearson =
aS − zS

n1
n√

zS(n−zS)(n−n1)
n2(n−1)

n1

. (3.8)

The central limit theorem implies that for large sample sizes n, and independently and
identically distributed samples, the statistic ZPearson converges to a standard normal distri-
bution under the null hypothesis. The test statistic used in Pearson’s χ2 test corresponds
to the square of the test statistic ZPearson and as such follows a χ2 distribution with one
degree of freedom, i.e.

TPearson = Z2
Pearson ∼ χ2

1. (3.9)

To obtain a p-value from the Pearson test, the probability of the observed value of the
test statistic T obs

Pearson under the null-distribution is computed, that is:

pS,Pearson(aS |n, n1, zS) = Fχ2
1
(T obs

Pearson(aS |n, n1, zS)), (3.10)

where Fχ2
1
(·) indicates the survival function of the χ2 distribution with one degree of free-

dom. Intuitively, the test statistic TPearson will take larger values when the observed table
count aS deviates from the expected table count, given the margins. This hints towards
a dependence between the random variables, and hence the existence of an association.
For those cases, the p-value will take low values, and indicate that the null-hypothesis of
independence can be rejected.

It is important to note that Pearson’s χ2 test relies on the central limit theorem, and on
that account on an approximation of the distribution of the test statistic. This approxima-
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tion is valid for large sample sizes, and identically and independently distributed samples.
In cases where only few samples are present, or the independence between samples is vi-
olated, the approximation might be inaccurate and lead to false conclusions with respect
to the rejection of the null hypothesis.

3.3.2. Fisher’s exact test
Fisher’s exact test [180] is, similarly to Pearson’s χ2 test, applied to assess the inde-
pendence of categorical random variables stored in contingency tables. As opposed to
Pearson’s test, it does not rely on the approximation of the null distribution, but its exact
computation, making it the method of choice in the presence of only few samples.

The test statistic used for Fisher’s exact test corresponds to the probability under the
hypergeometric distribution itself (see Equation 3.6), i.e.

TFisher(aS |n, n1, zS) = hypergeom(aS |n, n1, zS) =

(
n1

aS

)(
n−n1

zS−aS

)(
n
zS

) . (3.11)

Hence, the probability of a configuration of the contingency table is given as

P(aS |n, n1, zS) = TFisher(aS |n, n1, zS) (3.12)

To obtain a two-sided p-value of association, Fisher’s exact test adds the probabilities of
all configurations that are less probable than the observed one, given the margins zS , n1

and n. More formally [following the notation in 166], for an observed table count aS ,
we denote the set A(aS) = {a′S |hypergeom(aS |n, n1, zS) ≤ hypergeom(aS |n, n1, zS)}, and
write the p-value as

pFisher(aS |n, n1, zS) =
∑

aS∈A(aS)

hypergeom(aS |n, n1, zS). (3.13)

3.3.3. Correction for multiple hypothesis testing in significant pattern mining
As we have seen in the introduction to this chapter, one major challenge in pattern mining
is the statistical burden induced by the exploration of large numbers of patterns [181].
Some of the concepts in this chapter have been introduced previously in Section 2.2.2.1
that covered the problem of multiple hypothesis testing in the context of genome-wide
association studies. In order to make this introduction self-contained, we repeat those
concepts here.

To assess the association of a pattern S with the label, a contingency table as in Figure 3.1b
is created, and a p-value pS of association is computed, as described in the preceding
section. Based on the evidence in the data in the form of this p-value, one decides whether
the null hypothesis H0 of independence between y and gS should be rejected. To achieve
this, a significance level α is set, commonly to a value of 0.05 or 0.01, and the null
hypothesis is rejected for a single pattern S if its p-value falls below this significance level,
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i.e.

if pS,·(aS |n, n1, zS) ≤ α then reject H0, (3.14)

where pS,· indicates the p-value obtained either with Fisher’s exact test or Pearson’s χ2

test. If this is the case, the pattern is said to be statistically significantly associated to
the label.

However, when testing large numbers of patterns simultaneously, as is the case in signif-
icant pattern mining, this potentially induces a large number of false positives. p-values
are by definition uniformly distributed under the null hypothesis H0, implying that each
test for which H0 is true has a α×100.0% chance to be incorrectly reported as significant.
This incorrect rejection of the null hypothesis is also referred to as committing a type-I
error. Hence, when testing a single pattern, there is a α×100.0% probability to commit a
type-I error. If multiple tests are performed simultaneously, and each one of them is tested
at significance level α, the probability to observe one or more false positive associations
increases far above α, giving rise to a severe multiple hypothesis testing problem, and
potentially leading to a large amount of false positive associations. The concept of the
number of false positive associations is formalised in the family-wise error rate (FWER),
that is the probability of committing at least one type-I error:

FWER = P(number of false positives ≥ 1). (3.15)

A widely-used approach to reduce the number of type-I errors evolves around control of
the FWER, that is the FWER should meet the pre-defined significance level α. This
is achieved by finding a significance threshold δ ≤ α at which each individual hypoth-
esis is tested, such that the chance of observing a false positive association stays below
α× 100.0%. Importantly, the number of false positive associations depends on this sig-
nificance threshold δ: When testing all hypothesis is the hypothesis space H, the total
number of tests corresponds to |H|. For those |H| tests, and a significance threshold δ,
the FWER can be estimated using the following equation:

FWER(δ) = P(number of false positives ≥ 1 | δ)
= 1− P(number of false positives = 0 | δ)

= 1−
|H|∏
i=1

P(pi ≥ δ)

= 1−
|H|∏
i=1

(1− P(pi ≤ δ))

= 1− (1− δ)|H|

(3.16)

The last step follows due to the p-values being uniformly distributed. The FWER for
different values of δ is illustrated in Figure 2.2 (where δ is replaced by α) for varying
numbers of tests. It can be seen that for large numbers of tests the probability to observe
one or more false positive associations increases, and correction for MHT is indispensable.
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Formally, the goal of FWER control is to find a δ ∈ (0, 1), such that

FWER(δ) ≤ α (3.17)

From Equations 3.16 and 3.17, it follows that the FWER is controlled for |H| = 1 by
setting δ = α. However, as soon as |H| exceeds 1, the threshold δ has to be adapted.

A widely-used approach to guarantee control of the FWER is the Bonferroni correc-
tion [182], that defines the significance threshold as δ = α/|H|. The Bonferroni correction
guarantees control of the FWER, which can be shown using Bool’s inequality: assuming
that H0 is the set of all hypothesis for which the null hypothesis is true, and pi indicates
the p-value of the i-th hypothesis, the FWER at threshold δ = α/|H| can be estimated as

FWER (δ) =P


|H0|⋃
i=1

(pi ≤ δ)

 ≤
|H0|∑
i=1

P (pi ≤ δ)

(∗)
= |H0| δ = |H0|

α

|H|
≤ |H| α

|H|
= α,

(3.18)

where (∗) follows from the fact that p-values are uniformly distributed under the null
hypothesis. Alternatively, when inserting the threshold δ = α/|H| into Equation 3.16, one
can show that

lim
|H|→∞

1−
(
1− α

|H|

)|H|
= 1− e−α < α ∀α ∈ R+. (3.19)

In an ideal scenario, one is interested in finding the largest possible threshold δ∗ that still
guarantees control of the FWER, i.e. one is interested in finding

δ∗ = max {δ | FWER(δ) ≤ α} (3.20)

such that δ∗ achieves highest possible statistical power, i.e. minimises the type-II error.
While Bonferroni’s method is widely used to control the FWER, it is known to be very
conservative, that is δBonf � δ∗. The Bonferroni correction controls the type-I error
at the expense of the type-II error: one accepts missing true associations to avoid false
associations. In significant pattern mining, the number of simultaneous hypothesis tests is
often so large such that none of the patterns reach the very stringent significance threshold
imposed by the Bonferroni correction, especially when sample sizes are low. This stresses
the need for different approaches to address the problem of control of the FWER.

3.3.4. Tarone’s procedure: an improved Bonferroni correction for discrete
test statistics

An important contribution to the field of type-I error control using the FWER was made
by Tarone [183], hereafter referred to as Tarone’s procedure. Tarone observed that for
discrete tests a significance threshold δTar can be found that satisfies

δBonf � δTar ≤ δ∗ (3.21)
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that still guarantees control of the type-I error, but decreases the type-II error compared
to the standard Bonferroni correction. Tarone’s threshold is computed as δTar = α/|Htest|,
where Htest is the subset of testable hypotheses Htest ⊂ H, and generally |Htest| � |H|.
The following sections explain how this set of testable hypothesis is defined. It is based
on the concept of the minimum p-value of a discrete test.

3.3.4.1. The concept of the minimum p-value

Assume a 2×2 contingency table is used to assess the independence between a pattern and
a label, based on the binary label vector y and the indicator function gS of the pattern S
for n independent and identically distributed (i.i.d.) samples, as illustrated in Figure 3.1b.
This contingency table is uniquely defined by the table margins n1, n and zS , as well as
the table count aS .
Given a pattern S, we can compute the table margins. Given only those margins, the
table has exactly one degree of freedom, i.e. by setting one of the table counts, all other
table counts are defined. We chose without loss of generality the table count aS , i.e. the
number of samples in the positive class that contain the pattern S. Due to the discreteness
of the test and the fixed margins, there exists only a finite number of possible aS values
for the contingency table. We denote those values as the set AS = {aS | amin

S ≤ aS ≤
amax
S , aS ∈ N}, where

amax
S = min(zS , n1)

amin
S = max(0, n1 + zS − n),

(3.22)

and the number of possible configurations of the table corresponds to the size of this set,
i.e. |AS | = amax

S − amin
S + 1.

For each of the table configurations induced by the set AS a p-value can be computed,
and the minimum p-value of a pattern corresponds to the smallest p-value among those.
Formally, we define the minimum p-value as

Φ(n1, n, zS) = min
p
{pS,·(aS |n, n1, zS) | aS ∈ AS} , (3.23)

where pS,· corresponds to p-value, e.g. obtained from a χ2 test or Fisher’s exact test for
pattern S. Since we assume the label vector for a data set to be fixed, the table margins
n and n1 are constants, and we write the minimum p-value as a function of the support
zS only, i.e. Φ(zS). The minimum p-value Φ(zS) corresponds to a lower bound of the
observed p-value, i.e.

pS,·(aS |n, n1, zS) ≥ Φ(zS). (3.24)

As such, the minimum p-value indicates the strongest possible association for a pattern
S. For Pearson’s χ2 test and Fisher’s exact test, the minimum p-values can be computed
in closed form, as described in the following.

Remark 3.3.1 (Minimum p-value computation does not require labels). Importantly, for
pattern S, the table margin n1 is a function of the label vector y, i.e. n1 = f(y), and gS
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is a function of the pattern indicator gS , i.e. zS = f(gS), where f(·) returns the sum over
the input vector. Hence, computing the table margins does not require any combination of
the pattern indicator and the labels, and to derive the minimum p-value of a pattern, this
information is not used.

The minimum p-value for Pearson’s χ2 test

For Pearson’s χ2 test, a minimum p-value can be computed in closed form [see Proposition
8.3 in 166]. We define na = min(n1, n− n1) and nb = max(n1, n− n1). For Pearson’s χ2

test, the minimum p-value is given as

ΦPearson(zS) =



Fχ2
i

(
(n− 1) nb

na

zS
n−zS

)
if 0 ≤ zS ≤ na

Fχ2
i

(
(n− 1)na

nb

n−zS
zS

)
if na ≤ zS ≤ n

2

Fχ2
i

(
(n− 1)na

nb

zS
n−zS

)
if n

2 ≤ zS ≤ nb

Fχ2
i

(
(n− 1) nb

na

n−zS
zS

)
if nb ≤ zS ≤ n

(3.25)

where Fχ2
1

corresponds to the survival function of the χ2 distribution with one degree of
freedom. A proof of the minimum p-value for Pearson’s χ2 test can be found in Llinares-
López & Borgwardt [166].

The minimum p-value for Fisher’s exact test

For Fisher’s exact test, a minimum p-value can be computed in closed form [see Proposition
8.4. in 166]. We define na = min(n1, n−n1) and nb = max(n1, n−n1). For Fisher’s exact
test, the minimum p-value is given as

ΦFisher(zS) =



(
na

zS

)
/
(
n
zS

)
if 0 ≤ zS ≤ na(

nb
n−zS

)
/
(
n
zS

)
if na ≤ zS ≤ n

2(
nb
zS

)
/
(
n
zS

)
if n

2 ≤ zS ≤ nb(
na

n−zS

)
/
(
n
zS

)
if nb ≤ zS ≤ n

(3.26)

A proof of the minimum p-value function for Fisher’s exact test can be found in Llinares-
López & Borgwardt [166].

Figure 3.2 illustrates the minimum p-values for Pearson’s χ2 test and Fisher’s exact test for
n = 100 samples. In the case of balanced data, i.e. n1 =

n
2 , the resulting minimum p-value

functions Φ·(zS) exhibit a V-like shape with one global minimum at n1 (see Figure 3.2a).
In the case of an unbalanced data set, the minimum p-value function exhibits a W-like
shape with two minima, reached at n1 and n − n1 (see Figure 3.2b). For both scenarios,
the minimum p-value functions are symmetric around n

2 .

3.3.4.2. Testability and the improved Bonferroni correction

Tarone used the minimum p-value to define an improved Bonferroni correction [183] by
introducing the concept of testability. Let us for now assume a fixed significance threshold
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(a) Balanced data set: n = 100, n1 = 50.
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(b) Unbalanced data set: n = 100, n1 = 30.

Figure 3.2.: Minimum p-values for Pearson’s χ2 test (dark red) and Fisher’s exact test (light
red) for (a) a balanced data set where n1 = n

2 , and (b) an unbalanced data set where n1 < n
2 .

(This figure is adapted from Figure 8.4 in Llinares-López & Borgwardt [166].)

δ, and denote with Htest(δ) the set of all patterns that have a minimum p-value that fall
below δ, i.e.

Htest(δ) = {S | Φ·(zS) ≤ δ} , (3.27)

where Φ· indicates a minimum p-value obtained from any discrete test. This is called the
set of testable hypotheses at threshold δ, and a pattern S ∈ Htest(δ) is called testable at
threshold δ. This is illustrated in Figure 3.3 by means of the minimum p-value function
for Fisher’s exact test (Pearson’s χ2 test follows analogously).
This number of testable hypotheses |Htest(δ)| can be used to derive an improved Bonferroni
threshold, by replacing the correction factor |H| with |Htest(δ)|, i.e. Tarone’s threshold
is defined as δTar = α/|Htest(δ)|. Since |Htest(δ)| ≤ |H| is trivially fulfilled, the Bonferroni
threshold δBonf constitutes a lower bound of the resulting Tarone threshold δTar. Further-
more, using Bool’s inequality, one can show that δ |Htest(δ)| constitutes an upper bound
to the family-wise error rate at threshold δ:

FWER(δ) = P

 ⋃
S∈H0

(pS ≤ δ)

 (1)
= P

 ⋃
S∈Htest(δ)

(pS ≤ δ)


≤

∑
S∈Htest(δ)

P (pS ≤ δ) ≤ |Htest(δ)| δ
(3.28)

where (1) follows from the fact that a pattern that is not testable at threshold δ, i.e.
S ∈ H0/Htest(δ) does not have a p-value below δ by definition, and is subsequently not
contained in the union [166]. The intuition behind Tarone’s threshold is simple: a pattern
that is not testable at an adjusted significance threshold δ can by definition of testability
never become significant, hence it cannot become a false positive association and as such
does not contribute to the FWER.
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(b) Unbalanced data set: n = 100, n1 = 30.

Figure 3.3.: Illustration of testability at threshold δ for (a) balanced data set, and (b) unbal-
anced data set with minimum p-values computed from Fisher’s exact test. The grey horizontal
line indicates the significance threshold. All hypotheses with minimum p-value below δ are
testable at threshold δ (dark red), and other hypotheses are untestable (light red). (This figure
is adapted from Figure 8.5 in Llinares-López & Borgwardt [166])

Two major challenges have to be considered when applying Tarone’s procedure:

1. the choice of the significance threshold δ, and

2. the enumeration of the set |Htest(δ)|.

The first challenge can be addressed by using the approximation to the FWER in Equa-
tion 3.28. That is, assuming we can evaluate |Htest(δ)|, δ is chosen such that

δ∗ = max
δ
{δ | FWER(δ) ≤ α} = max

δ
{δ | |Htest(δ)| δ ≤ α} . (3.29)

This threshold guarantees control of the FWER while enabling maximal statistical power.
The second challenge, i.e. the enumeration of the testable sets, naïvely requires the com-
putation of the minimum p-values of all patterns in the hypothesis space H. Due to the
excessive size of the H for most problems in significant pattern mining, this naïve enumer-
ation is infeasible. Fortunately, the minimum p-values exhibit favourable monotonicity
properties that can be used to efficiently prune the hypothesis space H, and lighten the
burden of an exhaustive enumeration [158, 159, 161, 164].

3.4. Enabling significant pattern mining with Tarone’s testability
criterion

In the previous section we identified the multiple hypothesis testing problem as one of
the major impairments in significant pattern mining. The Tarone procedure provides an
improvement over the classical Bonferroni correction, however if applied in a naïve way, it
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requires the enumeration of all patterns S in the hypothesis space H and the evaluation of
their minimum p-values. For most significant pattern mining problems, the search space
H is excessive in size, thus an enumeration is infeasible.

This limitation inhibited the usage of Tarone’s procedure until recently: Terada et al. [158]
showed that discrete tests, such as Pearson’s χ2 test and Fisher’s exact test, exhibit certain
properties that enable an efficient pruning of the search space H, and thereby reduce the
computational burden of enumerating all hypothesis substantially. This contribution laid
the cornerstone for further development and improvement of algorithms that incorporate
Tarone’s correction into significant pattern mining [159–161, 163]. In this section, we
present those contributions for the task of significant pattern mining, without focussing on
a specific type of pattern, such that a pattern can be defined as any discrete substructure
of the features in the dataset.

Enabling Tarone’s procedure in significant pattern mining mainly relies on two impor-
tant monotonicity properties that can be exploited to efficiently prune the search space.
We refer to the first one as the Apriori property as it was exploited in the Apriori algo-
rithm for association rule mining [169]. The second type of monotonicity is the piecewise
monotonicity of the minimum p-value, which will be explained later.

3.4.1. The Apriori property
The Apriori algorithm is an algorithm for association rule mining, i.e. one is interested
in finding relationships of the form S ⇒ S ∪ {j}, where j ∈ J is a feature index that is
not yet contained in S, i.e. S ∩ {j} = ∅. The association rule holds with confidence c,
if c% of the samples in the data set that contain S also contain {j}, and the association
rule has support s, if s% of samples in the dataset contain S ∪ {j}. The goal is to find
association rules, that exceed both, a user defined minimum support, as well as a user-
defined minimum confidence [169].

Agrawal, Srikant, et al. [169] developed an algorithm for the efficient search of such
association rules, called the Apriori algorithm. It is based on a two-step procedure,
where in the first step all itemsets that exceed the user defined support are enumerated,
giving rise to a set of frequent itemsets, and in the second step, subsets of those frequent
itemsets are searched for association rules that satisfy the confidence threshold. The first
step of this Apriori algorithm is based on the observation that subsets of frequent itemsets
have to be frequent themselves. This observation has profound implications for finding
the Tarone threshold as well, and we will define it formally. Importantly, depending on
whether the minimum or the maximum pattern indicator function is used, the Apriori
properties proposes a monotonic, or an anti-monotonic behaviour.

Proposition 3.4.1 (Apriori property using the maximum indicator function). Given two
patterns S,S ′ ⊂ J , such that S ⊂ S ′. Then the corresponding supports of the patterns zS
and zS′ with respect to the maximum pattern indicator function gmax satisfy the following
monotonicity property: zS ≤ zS′.

Proof. For the purpose of the proof, let us decompose the pattern S ′ into S and its
complement S̄ = S ′ \ S. For an individual sample i, we can decompose the maximum
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Algorithm 3.1 Significant pattern mining with Tarone’s correction
Input: Data set D = (X,y), target family-wise error rate α
Output: Hsig(δTar)
1: n← y.size
2: n1 ← y.sum
3: δTar,Htest(δTar)← find_tarone_threshold(X, n, n1, α)
4: Hsig(δTar)← {S | S ∈ Htest(δTar), pS ≤ δTar}

combination of patterns as gmax
S′ (i) = max(gmax

S (xi), g
max
S̄ (xi)). Hence, gmax

S′ (xi) ≥ gmax
S (xi)

for each sample i. Since zS =
∑n

i=1 g
max
S (xi) and zS′ =

∑n
i=1 g

max
S′ (xi), it follows that

zS′ ≥ zS .

Proposition 3.4.2 (Apriori property using the minimum indicator). Given two patterns
S,S ′ ⊂ J , such that S ⊂ S ′. Then the corresponding supports of the patters zS and
zS′ with respect to the minimum pattern indicator function gmin fulfil the following anti-
monotonicity property: zS ≥ zS′.

Proof. For the purpose of the proof, let us decompose the pattern S into S ′ and its
complement S̄ = S ′ \ S. For an individual sample i, we can decompose the minimum
combination of patterns as gmin

S′ (xi) = min(gmin
S (xi), g

min
S̄ (xi)). Hence, gmin

S′ (xi) ≤ gmin
S (xi)

for each sample i. Since zS =
∑n

i=1 g
min
S (xi) and zS =

∑n
i=1 g

min
S′ (xi), it follows that

zS′ ≤ zS .

3.4.2. A generic significant pattern mining algorithm
The last sections introduced the concepts underlying significant pattern mining and Tarone’s
procedure to control the FWER. Herein, we explain how those concepts can be combined
to give rise to efficient algorithms to solve the statistical and computational challenges of
significant pattern mining. We do so by means of a generic pattern mining algorithm (this
section follows Section 8.3 by Llinares-López & Borgwardt [166]).
The main routine in significant pattern mining is given in Algorithm 3.1. We will go
through each line of the code separately to explain the individual steps.

At initialisation, the method requires two different types of input. The first one is the
data set D, consisting of the binary data matrix X ∈ {0, 1}n×d that describes the presence
(Xi,j = 1) or absence (Xi,j = 0) of feature j in sample i, as well as the binary label
y ∈ {0, 1}n that assigns each sample to one of two distinct classes. Without loss of
generality, we assume the minority class to have label 1, i.e. n1 ≤ n−n1 in a contingency
table as the one indicated in Figure 3.1b. Furthermore, the target FWER α has to be
supplied. Line 1 and 2 set the number of samples and the number of samples in the
minority class with label 1.

The main contribution lies in Line 3, i.e. the call to the function that determines the
Tarone-corrected significance threshold δTar and the testable patterns at this threshold,
Htest(δTar). Importantly, this function does not depend on the label vector, but only on
the marginal counts n and n1. It is explained in greater detail in Algorithm 3.2.
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Algorithm 3.2 Significant pattern mining with Tarone’s correction: specifics
1: function find_tarone_threshold(X, n, n1, α)
2: Initialise global variables δ̂ ← α, Htest ← ∅
3: process_pattern(∅, n, n1, α)
4: δTar ← α/|Htest|
5: return δTar, Htest
6: end function
7:
8: function process_pattern(S, n, n1, α)
9: Compute the minimum p-value Φ(zS) given n, n1

10: if Φ(zS) ≤ δ̂ then . Pattern is testable.
11: Htest ← Htest ∪ S . Add to list of testables.
12: while δ̂ × |Htest| ≥ α do
13: Decrease δ̂ . Adapt significance threshold.
14: Htest ← Htest \ {S |Φ(zS) ≥ δ̂} . Remove untestable patterns from Htest.
15: end while
16: end if
17: if not is_prunable(S) then
18: for all super-patterns S ′ of S do
19: process_pattern(S ′, n, n1, α) . Explore all super-patterns of S.
20: end for
21: end if
22: end function

After the Tarone-corrected significance threshold δTar has been computed, all testable
patterns are tested for association with the label vector y. Two things should be noted
here: (i) this is the first time the label vector is used in conjunction with the patterns,
namely to compute the actual contingency table and the corresponding p-value pS , and
(ii) the set of significant hypothesis is a subset of the testable hypothesis at threshold
δTar, i.e. Hsig(δTar) ⊂ Htest(δTar). The subset that have p-values pS below the corrected
threshold δTar are considered statistically significant, and the set is denoted by Hsig.

The function find_tarone_threshold is the core routine of the significant pattern
mining algorithm with Tarone’s correction. It is described in Algorithm 3.2. Upon initial-
isation, two global variables are set: δ̂, which is the significance threshold that determines
the current set of testable patterns, and that will be decreased successively as more and
more patterns are explored. The second variable is the set Htest that will hold testable
patterns at the current significance threshold δ̂. At the beginning, this set is empty, as
none of the patterns have been explored. Line 3 calls the main routine process_pat-
tern, a recursive function that explores patterns organised in a pattern enumeration tree
using a depth-first search strategy. An example of a pattern enumeration tree for the
task of itemset mining can be found in Figure 3.4. Those trees are organised such that
every node represents a pattern S, and moving deeper into the tree corresponds to ex-
tending, or growing, the pattern by adding additional features. With this, the relation
S ′ ∈ child(S) ⇔ S ⊂ S ′ holds. We will see later that this organisation enables efficient
pruning of the search space H.
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Figure 3.4.: Example of a pattern enumeration tree for d = 4 features. The tree contains all
possible 2d itemsets, such that each node corresponds to one itemset S, and if a itemset S ′ is in
the set of children of S, the relationship S ⊂ S ′ holds. (This figure is adapted from Figure 8.6
in Llinares-López & Borgwardt [166]).

The function process_pattern takes a pattern S as input, and evaluates its support
zS and minimum p-value Φ(zS) given n, n1. The latter is in the next step (Lines 10 to
15) used to assess testability of the pattern. If a pattern is testable, i.e. if Φ(zS) ≤ δ̂,
the pattern is added to the set of testables Htest. Since the number of testable patterns
increased, the FWER estimate δ̂×|Htest| might have changed, and line 12 checks whether
the current threshold still guarantees control of the FWER at the target threshold α. If
this is the case, nothing has to be done. On the other hand, if the FWER criterion is
violated, the threshold δ̂ is currently too high, and has to be decreased. In the case of
Pearson’s χ2 and Fisher’s exact test, there are only a finite number of minimum p-values
that can be attained. To be precise there exist at most n+1/2 such values (see Figure 3.2),
and those values can be precomputed, such that upon decreasing, δ̂ will take on the next-
lowest value. This results in a decremental search strategy, which has a very important
implication: patterns can only become untestable when lowering the threshold, but never
become testable. In other words: a pattern that has been shown to be untestable will
always remain untestable when lowering δ̂, such that a pattern that has been deemed
untestable does not have to be considered when the threshold is modified. The next step
in Line 14 removes those patterns from Htest that are not testable at the new threshold
δ̂. The lowering δ̂ and updating Htest are repeated until the FWER estimate δ̂ × |Htest|
falls below the target FWER α.
After the threshold δ̂ has been updated, Lines 17 to 21 check if super-patterns of the
current pattern can be pruned from the search space. This step has profound implications
for the computational efficiency of the algorithm, as it greatly prunes the search space H,
such that commonly only a small fraction of patterns in H have to be enumerated. To
enable pruning, two observations are essential:

1. Since patterns are explored according to a pattern enumeration tree (see Fig. 3.4)
it follows from the Apriori property in Proposition 3.4.1 that when moving deeper
into the tree, the support zS can only increase.

2. If the support exceeds n− n1, we can see that the minimum p-value Φ(zS) is mono-
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tonically increasing in zS for Pearson’s χ2 test and Fisher’s exact test (i.e. we are
on the right of the rightmost minimum in Figure 3.3.

Taken together, we can conclude that if a pattern S is untestable, and its support zS ≥
n− n1, any pattern S ′ containing S is untestable as well, and hence can be pruned from
the search space. Since patterns are organised in the pattern enumeration tree, we know
that these super-patterns are the children of S in the tree. In summary, if for a pattern S
holds that Φ(zS) > δ̂ and zS > n− n1, all children of S in the search tree can be pruned
from the search space. If a pattern cannot be pruned, the function process_patterns
is called recursively on all children of S in the enumeration tree.

After the complete pattern enumeration tree has been explored and hence all patterns
have been processed, the recursion of process_pattern stops and the set Htest contains
the final set of testable patterns. From this, the Tarone-corrected significance threshold
is computed as δTar = α/|Htest|, together with the set of testable patterns.

3.5. Accounting for pattern dependence: extension to
permutation testing

The implementation of Tarone’s procedure is a major leap forward in addressing the prob-
lem of multiple hypothesis testing in significant pattern mining. Not only does it address
the MHT problem, but it also gave a criterion for efficient pruning of the search space. De-
spite those advantages, a big challenge that effects the ability of significant pattern mining
approaches to detect true positive associations is the presence of dependencies between
patterns [see e.g. 184]. This dependence is caused by the high correlation between patterns
due to the sub- and superset relationships among them. Many procedures to correct for
multiple hypothesis testing assume independence between the tests, for example the Bon-
ferroni correction, as well as Tarone’s correction introduced earlier in this chapter. If this
assumption of independence is violated, those procedures tend to give more conservative
estimations of the FWER, which in turn leads to a decrease in statistical power. Hence,
methods that take dependencies between tests into account are required.

A common framework to estimate the FWER in the presence of dependent tests are per-
mutation tests. In permutation testing, the distribution of the test statistic is inferred
from the data rather than assumed to follow a parametric distribution (e.g. a χ2 distri-
bution for Pearson’s test, or the hypergeometric distribution for Fisher’s exact test). This
can be achieved by conducting so-called Westfall-Young permutations [185], i.e. repeat-
edly permuting the label vector y at random, a process that destroys any true association
that is present in the data set. Hence, any statistically significant signal that occurs for a
random permutation of the label inevitably corresponds to a false positive association.

More formally, for a fixed significance threshold δ, and a random permutation y(p) of
the label vector, we define pmin as the smallest p-value obtained for any pattern S, i.e.
p
(p)
min = min{pS | S ∈ P(I)}. If the smallest p-value obtained under the permutation is

smaller than the threshold, p(p)min ≤ δ, at least one false-positive association has occurred.
If this procedure is repeated a sufficient number of times, that is mostly between 1’000
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and 10’000 random permutations of the label vector, the following can be used to estimate
the FWER at significance threshold δ:

FWER(δ) =
1

np

np∑
p=1

1
(
p
(p)
min ≤ δ

)
, (3.30)

where p
(p)
min corresponds to the smallest p-value found for the p-th permutation of the label

vector, and 1 (·) corresponds to the indicator function that evaluates to 1 if the argument
is true, and to 0 otherwise. To control the FWER at a predefined significance level α,
the per-hypothesis significance level δ is chosen as the lower α-quantile of the set of all
smallest p-values

{
p
(p)
min

}np

p=1
.

While permutation testing results in a tight control of the FWER in theory, it is impos-
sible to realise for a significant pattern mining problem in practice due to computational
restrictions. In the last sections we have seen that the task of enumerating and testing the
complete hypothesis space H is an incredibly demanding task on its own, and additionally
generating permutations complicates this even further.

However, Terada et al. [160] presented a novel algorithm called Fast Westfall-Young
(FastWY) that exploited Tarone’s concept of the minimum p-value of discrete test statis-
tics to make Westfall Young permutations feasible in a significant pattern mining set-
ting. The method was further improved by Llinares-López et al. [161], giving rise to the
Westfall-Young light algorithm, a fast and efficient algorithm for permutation testing
in significant pattern mining. It is built on the observation that the margins of a con-
tingency table, and hence the corresponding minimum p-value Φ(zS), for a pattern S are
unaffected by permutations of the p-value. The Westfall-Young light algorithm consti-
tutes the foundation for algorithms developed in this thesis, and this Section is devoted
to establishing the basic principles. The method was originally described in [161], and
slightly modified in [164] to incorporate (i) the minimum pattern indicator function, and
(ii) an additional check for testability of the patterns which constitutes an additional algo-
rithmic improvement. However, the method described in the latter publication is a special
case for sequence-like patterns, and has to be modified slightly to be applicable to general
patterns. Here, we introduce a hybrid of both approaches, that describes the method for
the minimum pattern indicator function, including additional algorithmic improvements
described in [164], and for any type of pattern S, assuming that that the search space is
organised in a pattern enumeration tree.

The main method is described in Algorithm 3.3. It expects three different types of input
data. The first one is a data set D = (X,y) consisting of the n × d-dimensional, binary
data matrix X, and the n-dimensional binary label vector y, that assigns every sample
to one of two classes. As with the Tarone approach in the previous section, we assume
without loss of generality that the class 1 constitutes the minority class with n1 samples,
such that there are n − n1 samples in the class with label 0. We furthermore assume a
target FWER α to be given, and a constant np indicating the number of permutations
that should be conducted.

The main methods starts with the initialisation of three global variables in Lines 1-5, that
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Algorithm 3.3 Westfall-Young light: main.
Input: Data set D = (X,y), target family-wise error rate α, number permutations np

Output: Corrected significance threshold δPerm
1: δ̂ ← α
2: for p ∈ {0, ..., np} do
3: y(p) ← random permutation of y
4: p

(p)
min ← 1

5: end for
6: process_patterns(∅)
7: δPerm ← α-quantile of

{
p
(p)
min

}np

p=1

is (i) the significance threshold δ̂ which is initialised to the target FWER; (ii) np random
permutations of the class labels y, as well as (iii) a vector that will store the smallest
p-value across all np permutations, that is initialised to 1. This vector will be updated
during the exploration of patterns, and is essential for the estimation of the FWER, as it
will contain the smallest p-value that is obtained for any pattern S for the pth permutation
of the labels.

The core of the method is implemented in process_pattern, a recursive function that
explores the patterns organised in a pattern enumeration tree (see Figure 3.4) using a
depth-first search strategy. For a given pattern S, the support zS and corresponding
minimum p-value Φ(zS) are computed to determine the testability of a pattern S (note
that the check for testability is not part of the original method [161], but was described in
a later application [164]). If a pattern is untestable, we know that also all np permutations
will be untestable, as the margins of the contingency table (zS , n1 and n) are not affected
by the permutation. Hence, if a pattern is untestable, it does not have to be accounted
for during permutation testing, as, by definition of testability, none of the permutations
will result in a false positive association at threshold δ̂. If a pattern is testable, its support
is used to evaluate the p-values for all np permutations. This is done by calling the
routine compute_permutation_pvalues. This routine accesses the table count a

(p)
S

and computes the p-value pS(a
(p)
S ) between the pattern and the pth permutation for all

p = 1, ..., np. The p-value for the pth permutation is stored in the vector p
(p)
min. In case

of Fisher’s exact test, the p-values are pre-computed, as the computational complexity of
evaluating the p-value for a single value aS is the same as evaluating the p-values of all
values a ∈

[
amin
S , amax

S
]
.

After the p-values have been updated, the FWER is updated according to Equation 3.30
in Lines 5-9. In case the FWER estimate exceeds the target significance value α, the
threshold δ is lowered. This lowering is identical to the one described in the previous
section (Section 3.4.2), i.e. based on a pre-computation of the finite number of minimum
p-values that can be attained for Pearson’s χ2 test or Fisher’s exact test. The lowering of
the threshold is repeated until the FWER is controlled at the target value α. Lines 11 to
15 check whether all patterns S ′ containing S, can be pruned from the search space H. As
for the classical Tarone approach, this pruning criterion follows from the Apriori property
described in Proposition 3.4.1 and the monotonicity of the minimum p-value function
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Algorithm 3.4 Westfall-Young light: specific functions.
1: function process_patterns(S)
2: Compute the support zS and minimum p-value Φ(zS)

3: if Φ(zS) ≤ δ̂ then
4: compute_permutation_pvalues(zS)
5: FWER(δ) = 1

np

∑np

p=1 1
(
p
(p)
min ≤ δ

)
6: while FWER(δ̂) ≥ α do
7: Decrease δ̂
8: FWER(δ) = 1

np

∑np

p=1 1
(
p
(p)
min ≤ δ

)
9: end while

10: end if
11: if not is_prunable(S) then
12: for all super-patterns S ′ of S do
13: process_pattern(S ′)
14: end for
15: end if
16: end function
17:
18: function compute_permutation_pvalues(zS)
19: If Fisher’s exact test: Pre-compute p-values pS(a) for all a ∈

[
amin
S , amax

S
]

20: for p ∈ {1, ..., np} do
21: Compute a

(p)
S

22: p
(p)
min ← min

(
p
(p)
min, pS(a

(p)
S )

)
23: end for
24: end function

Φ(zS) for zS ≥ n− n1. Details on the pruning condition can be found in Section 3.4.2).

After all patterns have been explored, {p(p)min}
np

p=1 will contain the smallest p-value that has
been obtained for any pattern in each of the np permutations. If any of the np entries fall
below the significance threshold δ̂, then at least one false positive association did occur
for that permutation. Hence, the final significance threshold obtained with permutation
testing can be defined as the α quantile of values in {p(p)min}

np

p=1.

3.6. Accounting for categorical covariates
One major drawback of Pearson’s χ2 test and Fisher’s exact test is their incapability
to correct for covariates. However, in significant pattern mining, it might be the case
that significant results are confounded by an observable covariate, such that including the
covariate into the model is indispensable if it is a goal to avoid false positive associations.
While this is straightforward for linear models, where any type of covariate can be included
as an additional additive factor, this is more complicated for models based on contingency
tables. However, the Cochran-Mantel-Haenszel (CMH) test [108, 109] is able to correct
for a categorical covariate. It has been shown that the computation of a minimum p-
value is possible for the CMH test, and that an efficient pruning criterion can be derived,
such that the CMH test can be used in combination with Tarone’s procedure during
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Table 3.1.: A contingency table Cr for the covariate class r in the CMH test. Derived from
comparing the label vector y with the binary pattern indicator function gS for samples in
covariate class r.

gr
S = 1 gr

S = 0 total row
yr = 1 arS nr

1 − arS nr
1

yr = 0 zrS − arS nr − nr
1 − (zrS − arS) nr − nr

1

column total zrS nr − zrS nr

significant pattern mining, while enabling the correction for covariates [163]. This section
is devoted to an introduction of the CMH test, including the testability and prunability
criteria required for significant pattern mining with Tarone’s correction, as described by
Papaxanthos et al. [163].

3.6.1. The CMH test
In order to apply the CMH test, we assume the existence of a categorical covariate c ∈
{1, ..., r}n. It assigns each sample in the data set to one of r distinct covariate groups.
For each of the covariate groups, a separate contingency table is generated, as illustrated
in Table 3.1, giving rise to a total of r different contingency tables per pattern S. As a
result, the previously (Person’s χ2 and Fisher’s exact test) scalar table margins and table
counts become r-dimensional vectors now, where each entry indicates the values for one
of the r covariate classes, i.e. the support is denoted as zS =

[
z1S , ..., z

r
S
]
, the number of

cases per covariate class as n1 =
[
n1
1, ..., n

r
1

]
, the number of samples per covariate class as

n =
[
n1, ..., nr

]
, and the table counts as aS =

[
a1S , ..., a

r
S
]
. The total number of samples

still is denoted as n, with n =
∑r

i=1 n
i. Note furthermore that the following equalities

hold: aS =
∑r

i=1 a
i
S , n1 =

∑r
i=1 n

i
1, zS =

∑r
i=1 z

i
S , where zS , aS and n1 are the support,

table count and number of samples in the positive class for the complete data set, i.e.
the quantities used for Pearson’s χ2 test and Fisher’s exact test. The test statistic in the
CMH test is the following quantity:

TCMH(aS | zS ,n,n1) =

(∑r
i=1 a

i
S −

ni
1z

i
S

ni

)2

∑r
i=1

ni
1(n

i−ni
1)z

i
S(n

i−xi
S)

(ni)2(ni−1)

(3.31)

=

(
aS −

∑r
i=1

ni
1z

i
S

ni

)2

∑r
i=1

ni
1(n

i−ni
1)z

i
S(n

i−xi
S)

(ni)2(ni−1)

. (3.32)

Under the null hypothesis of independence it follows a χ2 distribution with 1 degree of
freedom, such that the p-value of the CMH test is computed as

pS = Fχ2
1
(TCMH(aS | zS ,n,n1)) (3.33)
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where Fχ2
1
(·) denotes the survival function of the χ2

1 distribution. Interestingly, the p-
value of the CMH test does not depend on the distribution of the table counts on the
individual covariate classes, but solely the number of occurrences in positive cases. The
CMH test can be interpreted as a meta-analysis of r disjoint data sets, where the idea is
that if a significant pattern is associated to a covariate instead of the label, we can remove
this spurious association by evaluating the association within each of the covariate classes
separately. Within those classes, the association is presumably small, and hence the CMH
test will not deem those patterns significant.

3.6.2. Significant pattern mining with Tarone’s correction and the CMH test
In order to conduct significant pattern mining with Tarone’s procedure as detailed in
Algorithm 3.2, two criteria have to be fulfilled:

1. a minimum p-value has to be computed to evaluate testability, and

2. a criterion to check whether a pattern can be pruned from the search space has to
be established.

Papaxanthos et al. [163] showed that both concepts, testability and prunability of pat-
terns can be computed efficiently for the CMH test, such that it can be integrated into
Algorithm 3.2. We give here a brief summary of their results.

Minimum p-value of CMH test

The survival function Fχ2
1

is a monotonically-decreasing function in the test statistic
TCMH(aS | zS ,n,n1), and hence the p-value is minimised if the test statistic is maximised,
and we denote the maximal test statistic as Tmax

CMH. This is achieved when the table count
aS takes on its maximum value amin

S , or its minimum value amin
S . Analogously to the

tests discussed before, for each table i = 1, .., r the table count aiS takes on values be-
tween ai,min

S = max(0, ni
1 + ziS − ni) and ai,max

S = min(ziS , n
i
1). This implies that the

global minimum is achieved at amin
S =

∑r
i=1 a

i,min
S , and the global maximum is achieved

at amax
S =

∑r
i=1 a

i,max
S . Hence, the p-value of the CMH test reaches its minimum value at

pS = Fχ2
1
(Tmax

CMH)

= Fχ2
1

(
max

(
TCMH(a

min
S | zS ,n,n1), TCMH(a

max
S ) | zS ,n,n1

))
,

(3.34)

and this value can be computed efficiently in O(r) time for each pattern S.

3.6.2.1. Pruning condition for the CMH test

We have seen that the support zS of pattern S gives an efficient pruning condition in
Pearson’s χ2 test and Fisher’s exact test, and the underlying strategy is to show that
no pattern S ′ containing S has a smaller minimum p-value, i.e. Φ(zS) ≤ Φ(zS′) for any
S ⊆ S ′. This holds true for all zS that satisfy n−n1 ≤ zS ≤ n, i.e. when the support lies
in the range in which the minimum p-value function Φ(zS) is monotonically increasing.
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For the CMH test there does not exist such a monotonicity criterion of the minimum
p-value function.
Papaxanthos et al. [163] have shown that for all patterns that are potentially prunable,
i.e. those patterns that satisfy ziS ≥ ni − ni

1, for all values i = 1, ..., r, a monotonic
lower bound Φ̃(zS) to the minimum p-value function exists, i.e. Φ̃(zS) ≤ Φ(zS), which is
referred to as the lower envelope of the minimum p-value. This envelope function depends
on the pattern S through its r-dimensional support vector zS . It was shown that (i) this
envelope is monotonic and hence can be used to prune the search space during significant
pattern mining, and (ii) that the envelope can be computed efficiently in O(r log(r)) time.
While the complete proof of the prunability criterion is beyond the scope of this thesis, we
outline the main steps in the following, and refer the interested reader to the supplementary
material of the original publication [163].

The lower envelope of a pattern S is defined as Φ̃(zS) = {Φ(zS′) | S ′ ⊇ S}, i.e. the
smallest minimum p-value attained by any pattern S ′ fully containing S. This lower
envelope trivially satisfies the following monotonicity: if S ⊆ S ′, then Φ̃(zS) ≤ Φ̃(zS′).
Given the lower envelope, the pruning criterion of the CMH test follows analogously to
Pearson’s χ2 or Fisher’s exact test: Given a testability threshold δ̂ and a pattern S that
satisfies

1. ziS ≥ ni − ni
1 for all i = 1, ..., r, and

2. Φ̃(zS) > δ̂,

it follows from the definition of the lower envelope that for any pattern S ′ that is a
super-pattern of S, i.e. for which S ⊂ S ′ holds, its minimum p-value Φ(zS′) exceeds the
significance threshold δ̂. Hence S ′ is by definition non-testable at threshold δ̂. In this case,
all patterns S ′ that satisfy S ⊂ S ′ can be pruned from the search space.

Due to the Apriori property in Proposition 3.4.2, it follows for the i-th component in the
support vector that ziS ≤ ziS′ for all S ⊆ S ′, such that the lower envelope function can be
rewritten as Φ̃(zS) = minzS′≥zS Φ(zS′), where the inequality zS′ ≥ zS holds component-
wise. Naively computing the lower envelope by evaluating all possible configurations of the
r contingency tables for each potentially prunable pattern is computationally infeasible.
Papaxanthos et al. [163] derive an algorithm that solves the discrete optimisation problem

min
zS′≥zS

Φ(zS′) (3.35)

in O(r log(r)) time. This result is stated in the following theorem.

Theorem 3.6.1 (Papaxanthos et al. (2016), theorem 2). Let S be a pattern, and zS its r-
dimensional support vector, where the ith entry ziS counts the pattern in samples belonging
to covariate class i, i = 1, ..., r, and r being the number of states of the categorical covariate.
We define βi

l =
ziS
ni

ni
1

ni and βi
r =

ziS
ni

(
1− ni

1

ni

)
for each i = 1, ..., r. Furthermore, let πl and

πr be permutations that order the sets {βi
l | i = 1, ..., r} and {βi

r | i = 1, ..., r} in ascending
order. The solution ẑ to the discrete optimisation problem in Equation 3.35 that induces
the lower envelop of pattern S satisfies one of the following conditions:
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1. ẑπl(j) = z
πl(j)
S for j ≤ ρ and ẑπl(j) = 0 for j > ρ, ρ ∈ {1, ..., r}

2. ẑπr(j) = z
πr(j)
S for j ≤ ρ and ẑπr(j) = 0 for j > ρ, ρ ∈ {1, ..., r}

This implies that, in order to find the solution to the optimisation problem in Equa-
tion 3.35, the 2r different configurations of the vector ẑ and their corresponding minimum
p-values have to be evaluated. These operations give rise to a linear runtime O(r). How-
ever, the overall runtime is dominated by the sorting of the r-dimensional vectors βl and
βr, an O(r log(r)) operation, such that the total time complexity of computing the lower
envelope equals O(r log(r)).

3.7. Significant pattern mining in biology and medicine
The procedures introduced in this chapter describe statistical and computational concepts
that address three different challenges in significant pattern mining, that is (i) the multiple
hypothesis testing problem that arises naturally when analysing higher order interactions
between features, (ii) the problem of dependencies between patterns, and (iii) the problem
of correcting for potentially confounding variables. While pattern mining approaches
initially arose in fields such as market basket analysis, they have proven useful in other
areas as well, one of them being biomedical research.

The paper that first introduced the Tarone procedure into significant pattern mining did
so to solve the problem of finding higher order interactions between transcription factors
in yeast and human breast cancer transcriptomes [158]. As the significant pattern mining
approaches rely on binary input data, i.e. each feature must be assigned either one of
two discrete values (commonly 0 and 1, indicating presence/absence, activity/inactivity,
above/below threshold). In the case of the transcriptomic data used in [158], and in their
follow-up work [159], this has been achieved by assessing whether a gene is over-/under-
expressed with respect to a baseline condition. Reformulating this problem in terms of a
significant pattern mining problem lead to the discovery of novel higher-order interactions
for both the study in yeast as well as the study of human breast cancer.

Another prominent field of application of Tarone’s procedure is in the realm of genetic
studies. Llinares-López et al. [164, 165] focussed on the analysis of mutational patterns
in plant and human DNA, where patterns were defined as coherent regions of mutation
on the DNA. The required binary representation of the genetic data could be achieved
by assessing whether or not a genetic locus contains a mutation, where a mutation was
considered as a deviation from the majority in the data set. Those applications lead to the
discovery of novel genetic loci in both, plant genetics and human genetics for a case-control
study of patients suffering from chronic obstructive pulmonary disorder (COPD).

A third area that recently adopted a significant pattern mining perspective is the field of
time series analysis. Bock et al. [186] developed a significant pattern mining approach
based on Tarone’s procedure to tackle the problem of finding significant shapelets, i.e.
short fragments within time series, that occur significantly more often in one class of time
series compared to a second class of time series. While their approach is in general agnostic
to the type of time series, they apply it to find significant shapelets that are indicative of
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a future sepsis event, based on time resolved measurements of heart and respiratory rates
as well as blood pressure in the ICU.

3.7.1. Significant pattern mining for network-guided association studies
Significant pattern mining approaches were successfully incorporated into various biomedi-
cal tasks [158, 159, 164, 165, 186], as described above, one of them being genetic association
studies [164, 165]. They have shown to successfully tackle the multiple hypothesis prob-
lems arising when testing combinations of features. Furthermore, by incorporating the
CMH test, covariates could be integrated that correct for confounders which often inflate
the results obtained from genetic association studies. However, those approaches so far
only considered the effect of neighbouring mutations on the DNA. As introduced in the
beginning of this thesis, current research indicates the importance of interactions between
genetic markers to further explain the contribution of genetics to the development and
progression of complex traits and diseases. At the same time, our biological prior knowl-
edge of genetic interactions is increasing at unprecedented rates, captured in the form of
molecular networks.
While different routes were taken to integrate network information into genetic analysis,
such as network diffusion or network regularisation, the existing methods suffer from at
least one of the following shortcomings:

i. Genes in the network are represented by summary statistics, losing the resolution of
individual genetic markers

ii. Reliance on heuristics, such as greedy exploration of the hypothesis space, instead
of exhaustively exploring the hypothesis space

iii. The statistical association of the reported interactions to the phenotype is not as-
sessed

iv. Focus on linear interactions between genetic markers, while ignoring non-linear or
heterogeneity effects

v. Large computational complexity restricting the use to small data sets

In this thesis, we aim at addressing the above challenges and shortcomings of existing
methods, by (i) combining genetic data with molecular networks and (ii) developing algo-
rithms that rely on the concepts and procedures from significant pattern mining introduced
in the previous sections to analyse them. We show that the significant pattern mining in-
terpretation of network genetics is a promising addition to the toolbox of methods for the
network analysis of genetic data.
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neighbourhoods

Gumpinger, A.C., Llinares-López, F., Roqueiro, D., Borgwardt, K.M. Network-
guided association mapping of local neighbourhoods. Unpublished (2019).

In this chapter we introduce an approach to find interactions between genes that are
associated with a complex trait of interest. The approach is based on the principles of
significant pattern mining that were presented in the preceding chapters. The problem
of finding interactions between genes can be formulated as a significant pattern mining
problem by identifying the interactions between genes as patterns. Since the hypothesis
space of all interactions H between genes scales exponentially with the number of genes,
i.e. |H| = 2d, where d is the number of genes, or features, and d commonly lies in the tens
of thousands, an exhaustive exploration of the search space exceeds our computational
and statistical capacities. Hence, we include biological prior knowledge in the form of
molecular networks, in which nodes constitute genes, and edges constitute interactions of
various forms between them. In that sense, the network captures our prior beliefs about
the features, and prioritises relationships between feature pairs. We use those networks
as guides to our search for interactions. The advantages of this approach are twofold:
(i) it reduces the number of interactions, addressing the statistical and computational
bottlenecks, and (ii) using interactions within a network results in biologically meaningful
sets of genes for downstream analyses.

There exist various ways how networks can be used to guide the search for significant
interactions. A compelling strategy is to analyse all possible connected sub-graphs within
a network. However, exhaustively enumerating all such sub-graphs scales exponentially
in the number of edges in a network, and hence remains computationally and statistically
inaccessible in large molecular networks. In order to circumvent the associated exponen-
tial runtime of the sub-graph enumeration, we use the concept of k-hop neighbourhoods
in networks. Neighbourhoods have shown to contain valuable information across many
different tasks, for example in the Weisfeiler-Lehman procedure to test whether two la-
belled graphs are isomorphic [187]. The concept of local neighbourhoods is also central
in the field of graph and node classification with graph-convolutional networks [e.g. 188],
it underlies network propagation [65], and has shown success in the field of cancer-gene
identification [32]. Hence we consider neighbourhoods in graphs as promising candidate
patterns for network guided association studies.

This section is organised as follows: we start with a theoretical introduction to the prob-
lem of identifying significant neighbourhoods in networks. This introduction comprises a
formal problem statement, that introduces the data, and the types of patterns our pro-
posed approach evolves around. We present how we can solve the problem of identifying
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Figure 4.1.: Example of data sets used in tNeAT approach. (a) Example of the data matrix X
for 12 samples and 10 features. Each sample is assigned to the case or control class, resulting in
the binary label vector y. An optional covariate vector c, here corresponding to the origin of the
sample, can be included. In our case, the features correspond to genes, and each measurement
in X to the fraction of minor alleles within the gene. (b) Example of a graph that represents
relationships between features, such as physical interactions between proteins defined by the
genes in (a).

neighbourhoods that are significantly associated to the trait by interpreting it as a sig-
nificant pattern mining problem which entails reformulating the problem such that it fits
the premises presented in the preceding sections. Following this description of concepts
and principles, we introduce our novel method tNeAT (thresholded Neighbourhood Aggre-
gation with Testing) and its Westfall-Young permutation based counterpart tNeAT-WY
(thresholded Neighbourhood Aggregation with Testing using Westfall-Young permutations)
in detail. We continue this chapter with an application to simulated data, and an appli-
cation to a data set of patients suffering from migraine. We conclude with a discussion of
the method, its usefulness as well as an outlook for further development.

4.1. Finding significant neighbourhoods in networks
4.1.1. Problem statement and notation
Consider a data set that contains data for n samples, where each of those samples comes
from one of two phenotypic classes. We store this class assignment in a binary label vector
y ∈ {0, 1}n. We furthermore have measurements of d features for each sample, and we
denote the set of feature indices as J . We assume all measurements to be normalised
to the range [0, 1], and to be stored in an n × d dimensional data matrix X ∈ [0, 1]n×d.
Additionally, each of the n samples is assigned to one of k discrete covariate classes, and
this information is stored in a covariate vector c ∈ {1, .., r}n, such that the ith entry ci
contains the covariate class of sample i (see Fig. 4.1a for an example).
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Assume there is an additional layer of information readily available, that is information on
relationships between the d features, that can be represented in form of a graph G = (V,E)
with vertex set V and edge set E in the following way: in G, every vertex in v corresponds
to one of the d features measured in the data set X, and an edge between two vertices
u and v with u, v ∈ V , denoted as tuple (u, v) ∈ E indicates the presence of a specific
relationship between two adjacent features. Hence E = {(u, v) |u, v ∈ V }, and we denote
the number of edges in the graph with m. Our goal is to find sets of features, that (i)
show a statistically significant association to the binary phenotype y, and (ii) form a k-hop
neighbourhood in the graph G. An example of such a data set is illustrated in Figure 4.1.

4.1.2. Patterns as local neighbourhoods in a graph
In the introduction to significant pattern mining, all concepts were presented for arbitrary
patterns S. As we have seen, a pattern is any discrete substructure of the features J ,
and hence an element of the power set of J , i.e. S ∈ P(J ). The space of all patterns
that we consider in an analysis was referred to as the search space, or hypothesis space,
denoted by H. We denote the full hypothesis space, that contains all possible patterns in
the power set of features, as Hfull = P(J ).
In our approach, where we assume the existence of a graph G that represents relationships
between features, we use this additional type of information as a guide to choose the
features constituting a pattern S, and hence to design our hypothesis space HG . In other
words, all patterns that do not obey our network-based design criteria are removed from
the hypothesis space of all possible patterns Hfull.
A straightforward way to define network-based patterns is the following: instead of mining
all possible patterns, we could restrict ourselves to those that form connected components
in the network, thereby reducing the problem of mining all patterns in Hfull to the problem
of mining sub-graphs in a network. However, the enumeration of all possible connected
sub-graphs is computationally intractable for large networks.
For this reason, we resort to mining k-hop neighbourhoods in a network, where k ∈ N0

+

is arbitrary. More formally, given the graph G = (V,E) of d vertices and m edges as
described above, we denote a k-hop neighbourhood at anchor or source node v as N k

v . It
corresponds to the set of all nodes that are reachable from v with at most k edges. It can
be defined recursively as

N k
v = N k−1

v ∪ {u | (u,w) ∈ E, w ∈ N k−1
v } (4.1)

where the 0-hop neighbourhood corresponds to the anchor node itself, i.e. N 0
v = {v}.

Those neighbourhoods from the central entity of interest in our proposed pattern mining
approach.

4.1.3. Finding neighbourhoods by significant pattern mining
We aim at finding k-hop neighbourhoods in a network that are significantly associated
with a binary trait of interest. In order to improve statistical power while controlling
the number of false positive associations we turn to the framework of significant pattern
mining, that is Tarone’s procedure and the concept of testability of discrete test statistics.
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Those approaches were described in great detail in Chapter 3. In essence, they exploit
an observation made by Tarone [183] that allows to find a less stringent correction factor
in the Bonferroni correction, while still guaranteeing control of the family-wise error rate.
While the correction factor in the Bonferroni correction corresponds to the total number
of hypotheses tested, in Tarone’s procedure this correction factor is reduced to a subset
of all hypotheses, called the set of testable hypotheses (see Section 3.3.4.2). The set of
testable hypotheses exists for discrete test statistics, and can be computed by removing
those hypotheses that have a minimum p-value (see Section 3.3.4.1) above the significance
threshold, and hence cannot become testable, from the hypothesis space. This results in
an improved Bonferroni threshold, called Tarone threshold δTar that is always greater or
equal to the classical Bonferroni correction δBonf, increasing statistical power to detect
true positive associations. We showed how to integrate significant pattern mining and
Tarone’s procedure for the Pearson’s χ2 test and Fisher’s exact test in Section 3.4, and that
permutation testing with Westfall-Young permutations can be enhanced by incorporating
them with Tarone’s testability criteria in Section 3.5. We furthermore introduced how
Tarone’s procedure can be integrated with the Cochran-Mantel-Haenszel test, an extension
of Pearson’s χ2 test that enables the correction for categorical covariates during testing
(see Section 3.6). For the remainder of this section, we assume those concepts and ideas
to be known.
To enable an efficient exploration of the neighbourhoods, the problem has to be formulated
in a way that it fits the premises of significant pattern mining. In order to achieve this,
the following two requirements have to be satisfied:

i. We can define a binary pattern indicator function gS(·) that indicates whether a
pattern is present for a given sample, and

ii. the patterns can be organised in a pattern enumeration tree that allows for efficient
pruning of the hypothesis space.

We show in the following how both requirements can be fulfilled in our problem setting.
More specifically, we will show how the design of the pattern indicator function allows us
to test for genetic heterogeneity, a potential source of the missing heritability of genetic
analysis (see Section 2.4).

4.1.3.1. Formal definition of a pattern and a pattern indicator function

In the problem statement (Section 4.1.1) we saw that the data matrix X contains mea-
surements in the range [0, 1], e.g. corresponding to the fraction of minor alleles per gene.
Significant pattern mining approaches require a binary representation of each pattern.
To achieve this binary representation, we define a set of thresholds T in the range of
[0, 1], where each threshold increments the previous one by a value of 0.05. This means,
T = {0.00, 0.05, 0.10, ..., 0.90, 0.95, 1.00}. These thresholds are used to binarise the data
set X, such that

Xti
i,j = 1 (Xi,j ≥ ti) , (4.2)

where ti ∈ T and 1(·) is the indicator function that returns 1 if the statement is true, 0
otherwise. This procedure yields a binary data matrix for each of the thresholds in T .

58



4. Network-guided testing of local neighbourhoods

FEATURES
S
A
M
P
L
E
S

C
A
S
E

C
O
N
T
R
O
L

IC E JBA HD F G

0.70

0.45

0.50

0.15 0.50

0.65

0.450.55

0.75

0.80

0.65

0.30

0.85

0.400.15

0.75

0.40 0.15

0.45

0.50

0.35 0.10

0.35 0.95

0.65

0.70

0.200.550.50 0.65

0.50

0.10

0.50

0.45

0.40

0.15

0.70

0.250.15

0.75

0.30

0.40

0.75

0.35

0.95

0.35

0.55

0.25

0.10

0.25

0.60

0.95

0.35

0.20

0.30

0.45

0.50

0.25

0.250.10

0.25

0.60

0.30

0.30

0.15

0.20

0.15

0.20

0.05

0.35

0.35

0.65

0.95

0.35

0.65

0.60

0.30

0.25

0.10

0.15

0.35

0.15

0.40

0.15

0.35

0.15

0.50

0.05

0.25

0.95

0.35 0.10

0.65

0.95

0.50

0.75

0.60

0.35

0.55

0.05

0.10

0.85 0.95

0.35

0.05

0.10

0.75

0.70

0.20

0.15

0.60

0.20

0.50

0.45

0.95

0.25

0.25

0.35

0.15

0.25
A

E

F

D

C

B

G

H

I

J

(a) Example of neighbourhood
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(b) Pattern indicator gmax
S , where S = N 0,t

E .
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(c) Pattern indicator gmax
S , where S = N 1,t

E .

Figure 4.2.: Example of the maximum pattern indicator gmax
S , where S = N k,t

v at varying
thresholds. (a) Example of data matrix X and feature network G. The 1-hop neighbourhood of
anchor vertex E, denoted as N 1

E is highlighted in the data matrix and in the network on the left.
Figures (b) and (c) show the values of the pattern indicator function of the patterns N 0,t

E , i.e.
the anchor vertex E, and the patterns N 1,t

E , i.e. the 1-hop neighbourhoods, at all binarisation
thresholds t ∈ T , respectively. Supports zk,tv are indicated with the row at the bottom.
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4. Network-guided testing of local neighbourhoods

Table 4.1.: Contingency table for a pattern S = N k,t
v . In case of Fisher’s exact test and

Pearson’s χ2 test this contingency table is created once for every pattern. In case of the CMH
test, this contingency table is built r times for each pattern, one for each covariate class in the
data set (see Section 3.6.1 for details).

gS = 1 gS = 0 total row
y = 1 ak,tv n1 − ak,tv n1

y = 0 zk,tv − ak,tv n− n1 − (zk,tv − ak,tv ) n− n1

column total zk,tv n− zk,tv n

We defined a pattern S as a k-hop neighbourhood N k
v of vertex v in the network G

(Section 4.1.2). The threshold t introduces an additional parameter, such that we write
N k,t

v for a pattern, with v indicating the anchor vertex, k the neighbourhood, and t the
binarisation threshold. For notational simplicity, we continue to denote a pattern as S in
the pattern indicator function. Given the binary matrix Xt as defined in Equation 4.2,
where ti ∈ T , we define a pattern indicator function gS(Xi) for the i-th sample as follows:

gS(Xi) = max
({

Xti
i,j | j ∈ S, where S = N k

v

})
. (4.3)

This implies that a pattern is present for sample i at threshold ti, if at least one feature
in the pattern S exceeds the threshold ti. An example of this binarisation of a pattern
at various thresholds is illustrated in Fig. 4.2: Subfigure 4.2a contains a data matrix X
with the 1-hop neighbourhood of anchor vertex E highlighted in red. The Subfigures 4.2b
and 4.2c contain the binarisation of the anchor vertex and the 1-hop neighbourhood,
respectively, for all thresholds ti ∈ T . This binary pattern indicator function can be used
to set up a contingency table as in Table 4.1, which in turn is used to compute a p-value
of association.

Remark 4.1.1 (Genetic heterogeneity). We would like to emphasise at this point that the
choice of this encoding allows us to incorporate the concept of genetic heterogeneity into
the model. As explained in greater detail in Section 2.4, genetic heterogeneity refers to the
phenomenon that the same phenotype might be caused by different variants for different
individuals, and this mode of interaction might be instrumental to explain the missing
heritability of genetic analyses. By encoding neighbourhoods as illustrated in Equation 4.3,
the pattern will be considered present if a single gene within a neighbourhood exhibits
mutation rates above the threshold. This holds true irrespective of which or how many
genes in the neighbourhood show this behaviour.

4.1.3.2. Construction of a pattern enumeration tree for an efficient pruning of the
search space

Before constructing a pattern enumeration tree, we formalise the hypothesis space associ-
ated to our problem. By enumerating all k-hop neighbourhoods N k,t

v of all vertices v ∈ V
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4. Network-guided testing of local neighbourhoods

in a network, at all binarisation thresholds t ∈ T , the hypothesis space becomes

HG =
{
N k,t

v | v ∈ V, t ∈ T , k ∈ N0
+

}
. (4.4)

This emphasises the dependency of the size of the hypothesis space HG on three different
variables: the number of nodes in the network, |V | = d, the number of thresholds, |T | = 21
as well as the largest possible neighbourhood, represented by the value k. This value is
upper-bounded by the diameter of the network, i.e. the length of the longest shortest path
within the network.
Analogously to the significant pattern mining approaches introduced in Section 3.4.2, our
goal is to organise the hypothesis space HG in a way that allows for an efficient pruning
when using the concept of the minimum p-value. This requires organising the patterns
in a pattern enumeration tree such that the support zk,tv of a pattern is monotonically
increasing when moving deeper into the tree. This enables pruning of the search space
analogously to the procedure described in Section 3.4.2 for Pearson’s χ2 and Fisher’s
exact test, and in Section 3.6.2.1. In the case of the k-hop neighbourhoods, there exist
two important monotonicities of the support zk,tv for anchor node v.

i. monotonicity with respect to parameter k, i.e. zk,tv ≤ zk+1,t
v , i.e. the support is

increasing upon growing the neighbourhood from k to k + 1.
ii. monotonicity with respect to threshold ti, i.e. zk,tiv ≥ z

k,ti+1
v , i.e. the support is

increasing upon lowering the threshold from ti+1 to ti.

The first monotonicity follows from the Apriori property (Proposition 3.4.1), as for any
neighbourhood the following sub-/super-pattern relationship holds: N k,t

v ⊆ N k+1,t
v . We

see this also for the example illustrated in Figure 4.2, where the 0-hop neighbourhood al-
ways has lower supports (see Figure 4.2b) at each threshold than the 1-hop neighbourhood
(see Figure 4.2c).
The second monotonicity becomes apparent when considering an individual measurement
of feature j for sample i, i.e. Xi,j . If this measurement exceeds threshold ti, i.e. Xi,j ≥ ti,
it will also exceed any threshold tj ≤ ti, and hence

Xti
i,j = 1 =⇒ X

tj
i,j = 1 ∀ tj ≤ ti, ti, tj ∈ T . (4.5)

This monotonicity is illustrated in Figures 4.2b and 4.2c, where we can also observe that
the support of each pattern N k,t

v increases with decreasing thresholds t ∈ T .

Remark 4.1.2 (Monotonicity criteria for the CMH test). We would like to note that both
monotonicity criteria hold true for all discrete tests described in the introduction, that
is Fisher’s exact test, Pearson’s χ2 test and the CMH test. While for the first two, the
support of a pattern zk,tv is a scalar, in case of the CMH test it is a vector of length r,
where r is the number of discrete covariate classes (see Section 3.6 for details). In this
case, the monotonicity criteria hold element-wise, following the same argumentation as
for Pearson’s and Fisher’s tests.

Those monotonicity criteria can be used to explore and prune the hypothesis space. This
is illustrated in Figure 4.3 for all patterns grown from an individual anchor vertex v. Given
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Figure 4.3.: Two pattern enumeration schemes for a single anchor vertex v, indicated by the
two orange arrows. Each field in the table represents a patten N k,t

v . As soon as a pattern N kp,tp
v

can be pruned (indicated with a white P on red background), all patterns with k ≥ kp and
t ≤ tp can be pruned from the search space as well. This is indicated with white arrows on red
background. The dark red fields indicate the part of the search space that can be pruned.

v, patterns can be enumerated either by first exploring all k-hop neighbourhoods at a fixed
threshold t, or by exploring all thresholds t ∈ T at a fixed value of k. These directions are
indicated with the orange arrows. As soon as a pattern can be pruned from the search
space, the two monotonicity criteria listed above allow us to remove all super-patterns
from the search space, where a super-pattern is a pattern that either exhibits a higher
value of k, or a lower value of t.

We implement our method tNeAT using the first exploration scheme, that is by fixing a
threshold and iterating the neighbourhood-depth k. This is beneficial from a computa-
tional perspective, as the computational bottleneck of the exploration is the aggregation
of neighbourhoods. By growing them successively, we can use information from the k hop-
neighbourhood to compute the pattern indicator function of the k+1-hop neighbourhood.
We furthermore process all anchor vertices in parallel, corresponding to a breadth-first like
search strategy of all nodes in the network. The next section details our novel proposed
algorithms.

4.2. The tNeAT method
Our proposed approach thresholded Neighbourhood Aggregation and Testing (tNeAT) effi-
ciently combines key concepts from significant pattern mining discussed before. In essence,
it is a novel algorithm to find feature sets that (i) form neighbourhoods in a feature-graph
G, and that (ii) are statistically significantly associated to a phenotype of interest. The
association is evaluated for different instances of the binarised data, when using a set of
thresholds T . We describe the method in Algorithm 4.1. The pseudocode is kept agnostic
to the type of test used, where possible options are Pearson’s χ2 test, Fisher’s exact test
and, if a categorical covariate is available, the CMH test. We discuss modifications to the
code that are necessary to accommodate the specific tests in the description of the code.
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4. Network-guided testing of local neighbourhoods

Algorithm 4.1 tNeAT (thresholded Neighbourhood Aggregation with Testing), main
body
Input: Data matrix X, class labels y, covariate vector c (optional), network G = (V,E), target

family-wise error rate α
Output: corrected significance threshold δTar, set of significant neighbourhoods Hsig(δTar)

1: Initialise global δ̂tar ← 1, and global Htest ← ∅,
2: Initialise thresholds T ← {0.05, 0.1, ..., 0.95, 1.0};
3: Initialise pruning marker xprune ← {d− 1}d
4: for t in T .reversed do
5: Xt ← binarise X at threshold t
6: k ← 0
7: Compute supports {zk,tv }v∈V

8: while
∑d

i=1 1(xprune[i] = 0) > 0 and not all k explored do
9: xprune ← process_neighbourhood( {zk,tv }v∈V , k, xprune)

10: k ← k + 1
11: Update supports {zk,tv }v∈V

12: end while
13: end for
14: δTar ← α

|Htest|
15: Hsig(δTar)←

{
N k,t

v | N k,t
v ∈ Htest and pk,tv ≤ δTar

}

Main body

The main routine of the tNeAT method is outlined in Algorithm 4.1. It starts with the
initialisation of the global variables, that is the testability threshold δ̂ is set to one, and
the set of testable hypotheses Htest to an empty list. In Line 2 we set the binarisation
thresholds T that cover the range from 0.05 to 1.0 in 0.05 increments. The data set will
be binarised at those thresholds, and they determine the granularity of testing. Line 3
sets a vector with d entries, corresponding to the d anchor vertices in the graph. This
vector is essential to the pruning strategy: its i-th entry will store the value of k at which
the preceding pattern anchored at vertex i became untestable. The vector is initialised to
d− 1, as this is the largest possible k-hop value for any arbitrary graph (to be precise, the
line graph). Line 4 to 13 contain the heart of the algorithm, that is the enumeration of
patterns, and the computation of the corrected significance threshold. Line 4 starts with
the iteration of the thresholds in reversed order, i.e. the first processed threshold is t =
1.00. The data set is binarised at this threshold as described in Section 4.1.3.1, and the k-
hop parameter is initialised to 0, which means that in the first iteration individual vertices
are explored. The supports for each vertex are initialised in Line 7 (we should note that
they just correspond to the measurements in the binarised data matrix Xt). Subsequently,
a while-loop is called that will (i) process the current k-hop neighbourhoods (Line 9), and
continue to grow the patterns by increasing k (Lines 10/11), unless all possible values of
k have been explored, or all patterns have been deemed prunable. Whenever the value
of k is increased, the supports have to be recomputed (Line 11). This step is a major
computational bottleneck, and it can be optimised by only updating the support of those
vertices v that are not yet deemed prunable (stored in the vector xprune). Furthermore,
the step can be trivially parallelised. After all thresholds have been processed, the Tarone
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4. Network-guided testing of local neighbourhoods

threshold δTar is computed, and p-values of all testable hypotheses are computed. Those
that are significant at threshold δTar are stored in Hsig(δTar) and, together with the Tarone
threshold δTar, reported as final output.

Processing of neighbourhoods

The core of the method is the function process_neighbourhood (see Algorithm 4.2).
It processes the current neighbourhoods to find the testable ones, adapts the testability
threshold δ̂ to guarantee control of the FWER, and determines whether patterns are
prunable. It takes the supports of the current patterns, as well as the current value of k,
and the vector indicating the k-values at which each pattern was prunable as input. Line 2
invokes an iteration over all vertices, and skips those that are prunable at the current value
of k, and the ones that are redundant (Lines 3-5). A pattern is redundant if its support
did not change during the last update of k, i.e. zk−1,t

v = zk,tv . This step is included to
avoid testing highly redundant patterns multiple times. In the next step, the minimum
p-values corresponding to the current pattern are computed (Line 6), and if the pattern
is found to be testable, it is added to the set of testable patterns Htest. The increase
in the number of testables potentially affects the FWER, and the significance threshold
is lowered until the FWER criterion is fulfilled. In Section 3.4.2 we explained that there
exist at most n+1

2 minimum p-values that can be attained in Pearson’s χ2 test and Fisher’s
exact test, and that those values can be precomputed, sorted and δ̂ is lowered along those
values. For the CMH test, we define a fixed range of those values, as precomputing all
attainable minimum p-values is computationally expensive. By lowering the significance
threshold, previously testable patterns might become untestable, and those are removed
from Htest in Line 11. After the significance threshold has been adapted, Lines 14-17 test
whether a pattern can be pruned from the search space. This depends on the choice of the
test, i.e. whether a correction for covariates is included or not. In case of non-existence of
covariates, Pearson’s χ2 test or Fisher’s exact test is applied. For those, the support zk,tv

of a pattern is a scalar, and the function is_prunable_no_cov is invoked, that checks
whether the minimum p-value lies in the range of monotonic increase (see Figure 3.3), and
whether the pattern is untestable. If both criteria are satisfied, the pattern is prunable,
and the function evaluates to true. The check for prunability in case of the CMH test is
similar, and outlined in the function is_prunable_cov. In contrast to the other two
test, the support zt,kv is a vector of length r, where r is the number of covariates, and
counts the support per table in each covariate class. In Section 3.6.2.1, we saw that the
minimum p-value function is not monotonic for the CMH test, but that a monotonic lower
bound to the minimum p-value can be found, called the lower envelope Ψ̃(·). With this
lower bound, the check for prunability follows analogously to the one in the non-covariate
based tests. After all vertices have been processed, the for-loop initiated in Line 2 finishes,
and the updated vector xprune is returned.

4.3. The tNeAT-WY method
One major challenge when testing neighbourhoods in a network are the sub- and super-
set relationships between the patterns. We have seen in Section 3.5 that dependencies
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4. Network-guided testing of local neighbourhoods

Algorithm 4.2 tNeAT functions.
1: function process_neighbourhood({zk,tv }v∈V , k,xprune)
2: for v in V do
3: if xprune[i] < k or is_redundant( N k,t

v ) then
4: continue
5: end if
6: Compute the minimum p-value Φ(zk,tv ) . described in Section 3.3.4.1.
7: if Φ(zk,tv ) ≤ δ̂ then . Pattern is testable.
8: Htest ← Htest ∪N k,t

v . Add to list of testables.
9: while δ̂ × |Htest| ≥ α do

10: Decrease δ̂ . Adapt significance threshold.
11: Htest ← Htest \ {N k,t

v |Φ(zk,tv ) ≥ δ̂} . Remove untestables.
12: end while
13: end if
14: if is_prunable_spec(zk,tv ) then
15: xprune[i]← k . Mark super-patterns as prunable.
16: end if
17: end for
18: return xprune
19: end function
20:
21: function is_prunable_no_cov(zk,tv ) . Pearson’s χ2 or Fisher’s exact test.
22: Compute minimum p-value Φ(zk,tv ) . described in Section 3.3.4.1.
23: if zk,tv ≥ n− n1 and Φ(zk,tv ) > δ̂ then
24: return True
25: else
26: return False
27: end if
28: end function
29:
30: function is_prunable_cov(zk,tv ) . CMH test.
31: Compute lower envelope Φ̃(zk,tv ), . described in Section 3.6.2.1.
32: if zk,tv ≥ n− n1 and Φ̃(zk,tv ) > δ̂ then
33: return True
34: else
35: return False
36: end if
37: end function
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Algorithm 4.3 tNeAT-WY (thresholded Neighbourhood Aggregation with Testing and
Westfall-Young permutations). Modifications of the tNeAT algorithm in Algorithm 4.1
required to incorporate Westfall-Young permutations are highlighted in red.
Input: Data matrix X, class labels y, covariate vector c (optional), network G = (V,E), target

family-wise error rate α, number of permutations np

Output: corrected significance threshold δPerm, set of significant neighbourhoods Hsig(δTar)

1: Initialise global δ̂ ← 1, and global Htest ← ∅,
2: Initialise thresholds T ← {0.05, 0.1, ..., 0.95, 1.0};
3: Initialise pruning marker xprune ← {d − 1}d
4: for i ∈ {0, ..., np} do . initialisation of WY variables (see Section 3.5)
5: Initialise global y(p) ← random permutation of y
6: Initialise global p(p)min ← 1
7: end for
8: for t in T .reversed do
9: Xt ← binarise X at threshold t

10: k ← 0
11: Compute supports {zk,tv }v∈V

12: while
∑d

i=1 1(xprune[i] = 0) > 0 and not all k explored do
13: xprune ← process_neighbourhood_wy( {zk,tv }v∈V , k, xprune)
14: k ← k + 1
15: Update supports {zk,tv }v∈V

16: end while
17: end for
18: δPerm ← α-quantile of

{
p
(p)
min

}np

p=1

19: Hsig(δPerm)←
{
N k,t

v | N k,t
v ∈ Htest and pk,tv ≤ δPerm

}
20: return δPerm,Hsig(δPerm)

between patterns can diminish the power of significant pattern mining, and when patterns
correspond to neighbourhoods, this dependence might be strong. To address this we
turn to Westfall-Young permutations, and integrate the Westfall-Young light method
presented in Section 3.5 with the neighbourhood detection. We call this permutation-based
method tNeAT-WY (thresholded Neighbourhood Aggregation with testing and Westfall-Young
permutations) and describe it in more detail below.

Main body

The main corpus of the tNeAT-WY method can be found in Algorithm 4.3. It is based
on the tNeAT method introduced in the preceding Section (Algorithm 4.1), but instead
of estimating the FWER using the set of testable hypotheses, it estimates the FWER
from permutations. In order to achieve this, the method tNeAT has to be modified in
three places: (i) in the initialisation of additional parameters, (ii) in the function pro-
cess_neighbourhood_wy that estimates the FWER from permutations, and (iii) in
the computation of the corrected significance threshold. We highlighted those modified
parts in the pseudocode in Algorithm 4.3 and 4.4 in red.

tNeAT-WY requires the same inputs as the tNeAT approach plus the number of permutations
np that should be used to estimate the FWER. This hyperparameter is commonly set to
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np = 1′000, and its choice is the dominating factor in the computational runtime. As for
tNeAT, the output is the corrected significance threshold, δPerm, and the neighbourhoods
that are significant at that threshold Hsig(δPerm). Lines 1-4 initialise the same parameters
that are used in the tNeAT approach, that is the temporary threshold δ̂, the set of testable
patterns Htest, the binarisation thresholds T and the pruning marker xprune. In Lines 4-7,
the Westfall-Young specific parameters are initialised. This entails the permutations of
the label vector y, as well as the set pmin, that will keep track of the smallest observed
permutation p-value per permutation (for an in-depth description, see Section 3.5). Lines
8-17 contain the core of the method, i.e. the enumeration of patterns and the adaption
of the significance threshold based on the estimation of the FWER rate. This part is
identical to the core part of tNeAT, with the only exception that the function process_-
neighbourhood_wy is called, that estimates the FWER from permutations, in Line
13. After all patterns have been processed, the final significance threshold is computed
as the α-quantile of the set {p(p)min}

np

p=1, and the p-values of all testable patterns in Htest
are tested. Those that are significant, i.e. whose p-value falls below δPerm are reported as
final output, together with the threshold δPerm.

Processing of edges (Westfall-Young)

The core of the method lies in the function process_neighbourhood_wy. Algo-
rithm 4.4 contains a detailed description of the steps in the method. The method still
closely follows the procedure of tNeAT, the only difference is the estimation of the FWER.
While in tNeAT this is done based on the number of testable patterns, in Westfall-Young
permutations this is achieved by evaluating the strongest observed association under the
null hypothesis, i.e. for the permuted labels. This takes place in Lines 7 to 16 in the
pseudocode. If a pattern N k,t

v is testable, it is added to set of testable hypotheses, and
the p-values of the np permutations for the pattern are computed by calling the function
compute_permutation_pvalues. The ith entry of the set {p(p)min}

np

i=1 contains the low-
est p-values for any processed pattern for permuted label y(i). Hence, the set can be used
to estimate the number of false-positives that occur at the current threshold δ̂ (Line 10).
If this exceeds the target FWER, the significance threshold has to be lowered until control
of the FWER can be guaranteed (for details, see Section 3.5), which takes place in Lines
11-14. After the threshold δ̂ has been adapted, untestable patterns are removed from the
set Htest (Line 17), and prunability of patterns is assessed analogously to tNeAT.

4.4. Implementation details
The runtime of both methods, tNeAT and tNeAT-WY, scales with the number of nodes in
the network d, the diameter of the network σ, and the number of thresholds |T |. Since
we fix the number of thresholds T to 21, we treat this a constant, such that the runtime
becomes O(dσ), which is linear in the number of nodes. We implemented both methods in
C++. One of the bottlenecks is the update of the supports of the neighbourhoods (Line 11
in Algorithm 4.1 and Line 15 in Algorithm 4.3). We use OpenMP to parallelise this step.
In order to speed-up the execution times of the costly Westfall-Young permutations, we
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Algorithm 4.4 tNeAT-WY functions. Modifications of tNeAT specific functions (Algo-
rithm 4.2) required to incorporate Westfall-Young permutations are highlighted in red.
1: function process_neighbourhood_wy({zk,tv }v∈V , k,xprune)
2: for v in V do
3: if xprune[i] < k or is_redundant( N k,t

v ) then
4: continue
5: end if
6: Compute the minimum p-value Φ(zk,tv ) . described in Section 3.3.4.1.
7: if Φ(zk,tv ) ≤ δ̂ then . Pattern is testable.
8: Htest ← Htest ∪N k,t

v . Add to list of testables.
9: compute_permutation_pvalues(zk,tv )

10: fwer(δ̂) = 1
np

∑np

p=1 1
(
p
(p)
min ≤ δ̂

)
11: while fwer(δ̂) ≥ α do
12: Decrease δ̂
13: fwer(δ̂) = 1

np

∑np

p=1 1
(
p
(p)
min ≤ δ̂

)
14: end while
15: Htest ← Htest \ {N k,t

v |Φ(zk,tv ) ≥ δ̂} . Remove untestables.
16: end if
17: if is_prunable_spec(zk,tv ) then . See Algorithm 4.2
18: xprune[i]← k . Mark super-patterns as prunable.
19: end if
20: end for
21: return xprune
22: end function
23:
24: function compute_permutation_pvalues(zk,tv )
25: for p ∈ {1, ..., np} do
26: Compute p-value of pth permutation p

k,t,(p)
v

27: p
(p)
min ← min

(
p
(p)
min, p

k,t,(p)
v

)
28: end for
29: end function

furthermore parallelise the computation of the permutation p-values (function compute_-
permutation_pvalues in Lines 25-28, Algorithm 4.4).

4.5. Simulation study
We first evaluate the performance of our methods tNeAT and tNeAT-WY on a range of
artificially generated data sets. In this supervised simulation study, where the ground
truth is known, we are able to assess the capacities of our methods with respect to type-I
and type-II errors. We furthermore compare our methods against a variety of methods
designed to find meaningful interactions in networks.
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(a) star-shaped subgraph (b) incomplete subgraph (c) random subgraph

Figure 4.4.: Example of the three different configurations of induced subgraphs in the simula-
tion study. (a) star-shaped subgraph, where genes in the truly-associated subgraph correspond
to a complete neighbourhood in the network, (b) incomplete subgraph with f = 0.5, i.e. the
genes in the truly-associated subgraph correspond to 50.0% of nodes of a neighbourhood, and (c)
a random subgraph, where nodes in the truly-associated subgraph form any connected subgraph
in the network. In (a) and (b), the anchor of the neighbourhood is highlighted in red, and the
complete neighbourhood is shadowed in grey.

4.5.1. Experimental setup
4.5.1.1. Data set generation

We generate artificial data using the connectivity structure of a real KEGG pathway:
(hsa05205) Proteoglycans in cancer [189, 190]. The pathway contains 224 nodes and 1’324
edges. We randomly generate data for 500 samples divided into two phenotypic groups,
and assign each sample to one of two covariate classes. Each gene is represented with a
fixed number of ng SNPs that is drawn at random from the range [1, 20], and for each
sample we draw the number of observed minor alleles for that gene uniformly from the
range [0, ng]. We normalise the count of minor alleles with the length of the genes. This
produces a data matrix X500×224, where 0 ≤ Xi,j ≤ 1 with i = 0, ..., 499 and j = 0, ...223,
a binary label vector y and a binary covariate vector c. We repeat this data generation
process 50 times, and in each of those 50 random folds generate one truly-significant
subgraph of size five, and a second subgraph of size five that is only associated to the
covariate which in turn is associated to the phenotype. We call the latter a confounded
subgraph. Both subgraphs are induced with strengths of association to the phenotype ps
and pcon, for the significant and confounded subgraph, respectively. We vary both ps and
pcon between 0 and 1, with 1 indicating a very strong association to the phenotype. A
detailed description of the data generation process can be found in Appendix A.

4.5.1.2. Subgraph configurations

Our proposed methods tNeAT and tNeAT-WY test the hypothesis whether a complete k-hop
neighbourhood is associated with the phenotype. In order to evaluate the performance of
tNeAT/tNeAT-WY given that the ground truth deviates from this hypothesis, we simulate
data for different types of truly-associated and confounded subgraphs. We consider three
types of subgraph configurations: (i) star-shaped, (ii) incomplete, and (iii) random. In
the star-shaped configuration, the truly-significant subgraph fits the hypothesis, i.e. it
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corresponds to all nodes in a 1-hop neighbourhood of an anchor node in the network (Fig-
ure 4.4a). In the incomplete configuration, the subgraph corresponds to a fraction f of the
neighbourhood. For example if f = 0.5, half of the nodes in the neighbourhood correspond
to the significantly associated subgraph, and half of the nodes are randomly simulated (Fig-
ure 4.4b). In the random configuration, we simulate a subgraph as a connected component
without any constraints concerning the topology of nodes in the network (Figure 4.4c).

4.5.1.3. Comparison partners

We compare our methods tNeAT and tNeAT-WY against a variety of baselines and well-
established network models. The baselines can be categorised into three different classes
of methods: (i) Tarone-based methods, (ii) methods based on logistic regression followed
by a likelihood ratio test, and (iii) network propagation.

Tarone-based methods

The comparison partners in this category use the same Tarone procedure to account
for multiple testing as in tNeAT, but test other types of patterns. To be precise, we
implemented two different methods:

i. tUniT (thresholded Univariate Testing), that only tests individual genes, i.e. vertices
in the network, at all binarisation thresholds.

ii. tEdgeT (thresholded Edge Testing), that tests all pairs of genes that are connected
by an edge in the network. It uses the same pattern indicator function as tNeAT,
with the only difference that the pattern is an edge between two genes.

The purpose of those baseline comparison partners is to establish whether the neighbour-
hoods contain meaningful information that cannot be obtained from the individual genes
or edges alone. Since they are based on Tarone’s procedure to correct for multiple testing,
they benefit from the same increase in power as our proposed methods do.

Logistic regression-based method

Comparison partners in this category are based on a logistic regression followed by a
likelihood ratio test to obtain a p-value of association. The patterns analysed with those
methods are either the individual genes, or the complete 1-hop neighbourhoods. We
furthermore create two different representations of the patterns: one counts the minor
alleles in a pattern, creating an n-dimensional count vector for each pattern. Counting
the number of minor alleles is a strategy that is commonly used in burden tests [119]. The
second representation is based on the n×dp-dimensional data matrix of the dp genes in the
current pattern. The representation of a pattern is given as input to a logistic regression
model, together with the same binary covariate vector as is used by tNeAT/tNeAT-WY.
These approaches for the representation of patterns lead to the following comparison
partners:

i. burden_k0 that tests each individual gene using the counts of minor alleles in the
gene to represent a pattern in the logistic regression.
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ii. burden_k1 that tests 1-hop neighbourhoods using the counts of minor alleles in the
gene to represent a pattern in the logistic regression.

iii. regress_k1 that tests each individual gene for association, using the fractions of
minor alleles per gene in a pattern in the logistic regression.

iv. regress_seq sequential regression that is similar to regress_k1, but compares
against a different null-model in the likelihood ratio test: instead of comparing
the 1-hop neighbourhood against the null-model using no genetic information, it
compares against the null-model that includes the anchor gene.

To correct for multiple hypothesis testing we apply a standard Bonferroni correction in
those cases. Note that there exists no regress_k0 baseline, as those results are identical to
the ones obtained with burden_k0. The purpose of the logistic regression based baselines
is to evaluate the effect of the encoding of a pattern, or in other words, to evaluate whether
information is lost by binarising a pattern.

Network methods

This class of comparison partners contains two methods:

i. Hierarchical HotNet [146], an approach that is based on a network propagation,
and requires the computation of a summary statistic for each node in the network.
Those so-ccalled ‘scores’ are superimposed on nodes in the network and subsequently
propagated through the network, until a steady state distribution is reached. This
distribution serves as similarity measure between nodes, and as input for a hierar-
chical clustering. Hierarchical HotNet returns a so-called ‘hot subnetwork’ together
with an empirical p-value indicating whether the size of the observed largest ‘hot
subnetwork’ is likely to occur by random chance. In our application, we use the
χ2 statistic obtained from the likelihood-ratio test conducted with the burden_k0
method as initial node scores in the network.

ii. dmGWAS [63], an approach that was designed for a network guided exploration of
GWAS summary statistics. Similarly to hierarchical HotNet, marginal statistics
of the genes, commonly p-values, are superimposed on nodes in the network, and
subgraphs in the network are identified as connected components in the network
that are enriched in low p-value genes. Those components are identified with a
greedy search strategy. In our application, we use the p-values from the burden_k0
to represent genes in the network, and choose the hyperparameters of the method
according to the recommendations of the authors.

4.5.2. Application of tNeAT to simulated data
We analyse the synthetically generated data sets with our proposed methods tNeAT and
tNeAT-WY using the CMH test, to account for categorical covariates. The performance is
evaluated in the form of the type-I and the type-II error. Since we generated 50 simulated
data sets for each association strength ps and each subgraph configuration, the reported
results correspond to averages across 50 simulation runs for each combination of ps and
configuration.
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Figure 4.5.: Family-wise error rate estimates of tNeAT/tNeAT-WY for varying association
strengths ps. Each figure corresponds to the estimate for a specific subgraph-configuration.
The shaded areas around the lines indicate the standard deviation of FWER estimates obtained
for the 50 simulations per ps-values.

4.5.2.1. Type-I error analysis: estimate of family-wise error rate

Each run of tNeAT and tNeAT-WY resulted in a significance threshold δTar and δPerm, respec-
tively. To evaluate the type-I error, that is the occurrence of false-positive associations,
we estimate the family-wise error rate from each simulation using 1′000 random permu-
tations of the phenotype vector. For those 1′000 permutations, we test all patterns at
the respective significance threshold (δTar, δPerm), and since the permutations destroyed
any true signal in the data, each pattern that is deemed significant can be considered a
false-positive association. The FWER is then estimated as the fraction of permutations
for which at least one significant pattern was detected. We would like to note that, since
tNeAT-WY is based on this permutation scheme, we use the FWER estimated from the
execution of tNeAT-WY directly. The results of this analysis are illustrated in Figure 4.5
for all four types of subgraph configurations. All methods were invoked with a target
FWER of α = 0.05, and we observe that both methods successfully control the FWER
at this target level (indicated with black horizontal line in figures). We furthermore ob-
serve that tNeAT-WY which takes dependencies between patterns into account results in a
substantially higher power than its purely Tarone-based counterpart tNeAT.

4.5.2.2. Type-II error analysis: estimation of power

The type-II error is the error incurred by missing a true association, that is a so-called
false-negative. We estimate this error using power, i.e. the capability of a method to
detect the true positive associations. We are able to evaluate this, as in the simulation
study the underlying ground truth is known. To evaluate the performance of our proposed
methods tNeAT and tNeAT-WY with respect to power, we define power as the probability
to completely recover the initially induced subgraph, and count it as a success if the truly-
significant subgraph can be fully recovered with a method for a simulation. We then report
the fraction of success across the 50 simulations as the final power of the method. The
same procedure is applied for all comparison partners that rely on the discovery subgraphs
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(c) incomplete: f = 0.50
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(d) random

Figure 4.6.: Power analysis of tNeAT, tNeAT-WY and comparison partners on simulated data
for different subgraph configurations: (a) star-shaped, (b) incomplete (f = 0.83), (c) incomplete
(f = 0.5) and (d) random. The first column of each subplot contains the methods using Tarone,
the second column contains methods based on logistic regression, and the third column contains
network-based methods. In the plots of the second and third column, the power of tNeAT and
tNeAT-WY is indicated in grey, to allow for an easier comparison.
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within a network. However, for methods that only test individual genes or edges this
‘success’ cannot be achieved due to the type of tested patterns. In those cases, we report
the fraction of the truly-significant subgraph that could be recovered when combining all
significant hits found with the respective method.

The results of this analysis are illustrated in Figure 4.6. Each row in this plot illus-
trates the power of methods falling into the three different categories of comparison part-
ners, with Tarone-based methods on the left, regression-based methods in the centre, and
network-based methods on the right. We observe that tNeATand tNeAT-WY outperform
all competitors for the star-shaped subgraph configuration, i.e. the configuration that
matches the patterns tested in those approaches (see Figure 4.6a). This remains true, if
the subgraph configuration only diverges little from the tested patterns, as is the case for
the incomplete setting with f = 0.83 (i.e. the five truly-associated genes lie within a 1-hop
neighbourhood of size 6, see Figure 4.6b). As this deviation gets larger, the stronger the
decrease in power for tNeAT and tNeAT-WY. For the incomplete setting with f = 0.50, i.e.
the truly-significant subgraph makes up only 50.0% of a neighbourhood, tEdgeT starts
to perform very similar to tNeAT and tNeAT-WY, as do the regression-based methods that
analyse 1-hop neighbourhoods (see Figure 4.6c). For the random subgraphs we observe a
poor performance of all methods (see Figure 4.6d), except for the tEdgeT approach.

In general we observe that univariate analysis, i.e. those that only test individual genes for
association, are underpowered to recover the truly-associated subgraph. The non-linear
nature of interaction between genes results in genes that only exhibit a significant asso-
ciation upon combination, while the individual genes themselves do not necessarily show
strong marginal associations to the phenotype. While the edge-based approach tEdgeT is
not able to outperform tNeAT and tNeAT-WY, with exception of the random configuration
of subgraphs, we observe that its performance stays similar across all different configura-
tions of the true subgraph. Since tEdgeT is taking pairwise interactions into account, it is
recovering some parts of the true underlying subgraphs, and the edge-based exploration
allows for more flexibility to recover patterns that are not full neighbourhoods. As the data
was simulated according to a model of genetic heterogeneity, we observe that methods that
do not account for this non-linear mode of interaction, such as the regression models and
the network-based models, have difficulties in recovering the truly-associated subgraph.
This is especially the case for network-based methods, that rely on strong marginal signals
of the genes in the network.

4.6. Application to 20 Arabidopsis thaliana phenotypes
The simulation study indicated that tNeAT and tNeAT-WY clearly outperform comparison
partners if the true signal overlaps with genes that form neighbourhoods in a network.
While a deviation from this configuration might lead to a loss in power, we still consider it
worthwhile to analyse if there exist neighbourhoods in networks that are jointly associated
to a binary trait under a model of genetic heterogeneity. We hence apply our methods to
analyse a range of genetic data sets of the model organism Arabidopsis thaliana (short A.
thaliana).
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Table 4.2.: Description of A. thaliana phenotypes. The column ‘class n1’ contains the number
of samples in the minority class, the column ‘baseline λgc’ corresponds to the genomic inflation
obtained with tNeAT-WY if no covariates are used. The column ‘best λgc’ indicates the genomic
inflation after using a categorical covariate to correct for population structure. The number of
covariates used to achieve this is listed in the column r.

samples class n1 baseline λgc r best λgc

Anthocyanin10 177 33 1.55 5 1.17
Anthocyanin16 176 70 1.21 4 1.00
Anthocyanin22 177 64 1.29 8 0.99
Chlorosis10 177 28 0.95 3 0.99
Chlorosis16 176 84 1.00 1 1.00
Chlorosis22 176 66 1.48 7 1.01
Emco5 86 17 1.16 5 1.12
Emoy 76 35 1.21 9 0.97
Emwa1 85 32 1.66 5 1.18
Hiks1 84 33 1.33 5 1.26
LES 95 21 2.21 9 1.18
LY 95 29 2.33 10 1.17
Leafroll10 177 78 1.55 5 0.99
Leafroll16 176 37 1.35 9 1.02
Leafroll22 176 31 1.38 10 1.32
Noco2 87 39 1.38 5 0.97
avrB 87 32 1.74 10 1.06
avrPphB 90 44 1.65 6 1.07
avrRpm1 84 28 1.69 2 1.07
avrRpt2 89 17 1.21 5 1.05

4.6.1. Experimental setup
We apply our methods to widely used A. thaliana data sets from Atwell et al. [191]. We
downloaded those data sets from easyGWAS [192] and AraPheno [193, 194]. The data set
contains genetic data of 1′307 A. thaliana accessions, and a total of 214′051 genotyped
SNPs. Furthermore, there exists a collection of 107 phenotypes covering various traits
of the plants. Among those, 21 phenotypes are dichotomous and hence qualify for an
analysis with our proposed approach. Their respective sample sizes range between 84
and 177. After an initial analysis, we excluded the YEL phenotype due to its large class
imbalance. We provide an overview of the phenotypes, the total samples sizes and the
number of samples in the minority class in Table 4.2.

To represent genetic interactions, we use the A. thaliana protein-protein interaction net-
work provided by ‘The Arabidopsis Information Resource’ (TAIR) [195, 196]. It is a
protein-protein interaction network curated from literature by TAIR and BIOGRID. Orig-
inally, the network contains 1′627 interactions between 1′325 A. thaliana proteins. In order
to map the genetic data in the form of SNPs to the network, we proceed as follows: In
the first step, we map the SNPs in the Atwell data set to genes in the network. A SNP is
mapped to a gene based on physical proximity, i.e. if it overlaps with introns or exons of a
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Figure 4.7.: Distributions of k-hop neighbourhood sizes in the TAIR (A. thaliana) network.
The average degree (1-hop neighbourhood size) of the network is 2.39. For the 2-hop, 3-hop and
4-hop neighbourhoods, the average size increases to 13.96, 62.03 and 457.74 nodes, respectively.

gene (see Figure 2.4a). For this mapping we used the Araport11 genome annotation [197,
198]. With this, a gene can be represented by a set of SNPs, and we refer to the number
of SNPs mapped to a gene as the gene size. In the next step, we created a representation
of the gene based on the minor allele counts of SNPs within a gene for each sample. That
is, if a gene is represented by ng SNPs, it can contain between 0 and 2ng minor alleles.
Depending on the method, we either rescaled the gene-count to the range of [0, 1] by di-
viding the minor allele counts by 2ng, or in case of the burden tests, worked on the count
data.

We removed all genes and their adjacent edges from the network, if the gene in the network
did not contain any of the 214′051 SNPs. This was the case for 88 genes. In total, we were
able to represent 1′237 genes using the SNPs in the Atwell data set, resulting in a network
with 1′237 vertices, and 1′435 edges between them. Figure 4.7 illustrates the sizes of the
1-hop to 4-hop neighbourhoods in the network, with average sizes of 2.39, 13.96, 62.03
and 457.74, respectively.

To account for population structure or cryptic relatedness between samples, we generated
categorical covariates. For this purpose, we applied a k-means clustering to the three
leading principal components of the empirical kinship matrix [following 164]. With this
procedure, the value of k in k-means clustering determines the number of covariate classes,
and eventually the number of contingency tables created for each CMH test. Since the
best number of covariate classes is unknown apriori, we chose it by running the Tarone
based methods (tNeAT, tNeAT-WY, tUniT, tEdgeT) for values of k in the range of 1 to 10,
and report the results for the value of k that led to the best genomic inflation factor λgc.

4.6.2. Results
Since we observed a slightly improved performance of tNeAT-WY compared to tNeAT in the
simulation study, we focus on the results obtained with the Westfall-Young permutation
scheme. We focus the evaluation of the results on three different aspects: (i) the reduction
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Table 4.3.: Number of significant hits found with each method for the A. thaliana data sets.
Each entry indicates the number of significant patterns detected for a phenotype, and the number
in parentheses corresponds to the mean size of the patterns.

tNeAT-WY tUniT tEdgeT burden_k0 burden_k1 regress_k1

Anthocyanin10 - 2 - 1 (1.0) - 1 (2.0)
Anthocyanin16 1 (2.0) - - 1 (1.0) - -
Chlorosis10 - 5 - - - -
Chlorosis22 1 (1.0) 1 - 1 (1.0) 1 (2.0) 2 (5.5)
Emco5 - - - - - 4 (28.8)
Emoy - - - - - 2 (32.5)
Emwa1 - - - - - 1 (35.0)
Hiks1 1 (3.0) - 1 1 (1.0) 2 (6.0) 7 (11.7)
LES - - - 1 (1.0) - 7 (18.0)
LY - - - 1 (1.0) - 4 (22.8)
Leafroll16 - - 1 - - -
Noco2 - - - - - 2 (19.5)
avrB 1 (1.0) 1 2 1 (1.0) 1 (2.0) 7 (10.7)
avrPphB 2 (1.5) 1 - 1 (1.0) 2 (2.0) 4 (17.3)
avrRpm1 1 (1.0) 1 3 2 (1.0) 1 (2.0) 7 (10.7)
avrRpt2 6 (2.0) 1 7 2 (1.0) 6 (2.2) 19 (8.7)

of the genomic inflation λgc, (ii) the number of significant hits detected with tNeAT-WY
and the comparison partners, and (iii) the qualitative analysis of the significant hits found
with tNeAT-WY.

The genomic inflation factor λgc is a well-established metric to determine the degree of
in- or deflation of test statistics. Values close to 1.0 indicate absence of inflation, while
values significantly larger or smaller indicate inflation and deflation of the test statistics,
respectively. Deviations of more than 0.1 suggest a correction for hidden structure. This
is mostly achieved by including covariates into the model. We initially applied tNeAT-WY
to all 20 data sets without using covariates. In 18 out of 20 cases, test statistics were
inflated by more than 0.1, in one case we observed a slight deflation (Chlorosis10 ), in one
case the inflation factor was equal to 1.0 (Chlorosis16 ). As described in greater detail in
the previous section, we included between 2 and 10 covariates derived from the empirical
kinship matrix between samples into the analysis to correct for structure. We chose the
best number of covariates as the one that resulted in the λgc-value closest to 1.0. The
number of covariates and the resulting λgc values are listed in Table 4.2. We observe a
consistent improvement of the genomic inflation and deflation across all 19 phenotypes
upon including covariates. While the target range of [0.9, 1.1] can be achieved for 13 out
of 19 phenotypes by including covariates, for six phenotypes the inflation still exceeds
1.1. However, similar dynamics were observed in the original publication of the data [see
supplementary material in 191]. In summary, including covariates leads to the desired
reduction of genomic inflation.

We compared our approach tNeAT-WY against the most promising comparison partners
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from the simulation study, that is the two significant pattern mining approaches based
on Tarone’s procedure tUnit and tEdgeT, the burden tests burden_k0 and burden_-
k1, and the regression test regression_k1 (see Section 4.5.1.3 for details). In order
to allow for a fair comparison, we give all comparison partners access to covariates to
correct for population structure. In the case of tUnit and tEdgeT the procedure to
find the best number of covariates is identical to the one applied in tNeAT-WY. For the
regression and burden tests we incorporate the three leading principal components of
the empirical kinship matrix as covariates into the test to correct for inflation. Those
are the same principal components that are used to derive covariates for the tNeAT-WY,
tUnit, and tEdgeT approaches. We run all methods on the 20 A. thaliana phenotypes.
Table 4.3 reports the number of significant hits for each of the methods. In 16 out of
20 phenotypes, at least one method found significant hits. tNeAT-WY discovers significant
patterns for 7 phenotypes, with patterns comprising between 1 and 3 genes. tUniT and
tEdgeT discover significant patterns in 7 and 5 phenotypes, respectively. The number of
significant hits discovered with burden and regression based tests exceeds those based on
significant pattern mining approaches. Especially the regress_k1 method, that tests the
additive effect of all genes in 1-hop neighbourhoods discovers significant hits in 13 out of
the 20 phenotypes, and we observe that the sizes of the neighbourhoods clearly exceed
those of neighbourhoods detected with tNeAT-WY.

There exist two main hypotheses that attribute to the superiority of regression based
approaches compared to the tNeAT/tNeAT-WY in this setting. The first main difference be-
tween the regression based approaches and the tNeAT-WY method is the representation of
genes, and the thereby implicated mode of interaction between genes in neighbourhoods.
While the regression based approach models a linear additive effect of interactions be-
tween genetic entities, tNeAT and tNeAT-WY test for genetic heterogeneity between genetic
variants at various thresholds. Given this modelling assumption, tNeAT and tNeAT-WY
are more closely related to the burden test, and we observe that the landscape of results
obtained with tNeAT-WY resembles the one of the burden test. In summary, one potential
explanation for the observed differences is this underlying model assumption.

Furthermore, a potential factor explaining the numerous significant results obtained with
the regression based method is the reduced burden of statistical hypothesis testing due to
the different hypothesis spaces. While tNeAT-WY accounts for all possible k-hop neighbour-
hoods at various threshold values, the number of tests conducted with the regression based
test corresponds to the number genes in the network. Even when using the conservative
Bonferroni correction, the number of tests by far falls below the number of hypotheses in
the space explored by tNeAT-WY.

Last, we analyse those neighbourhoods that were deemed significant with the tNeAT-WY
approach. A detailed summary of the significant hits can be found in Table 4.4. tNeAT-WY
detected a total of 13 neighbourhoods across seven A. thaliana phenotypes. Five out of
those thirteen neighbourhoods correspond to ‘0-hop’ neighbourhoods, i.e. genes in the
network. The remaining significant hits are 1-hop neighbourhoods containing two or three
genes. In the case of the avrPphB phenotype, the anchor gene of the significant 1-hop
neighbourhood is found to be significant itself. A similar behaviour can be observed for the
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Table 4.4.: Analysis of significant tNeAT-WY hits in A. thaliana. Each row corresponds to one
significant hit found with tNeAT-WY. The ‘gene name’ column indicates the name of the anchor
gene, the ‘k-hop’ value the depth of th neighbourhood, and the ‘size’ column the size of the
k-hop neighbourhood around the anchor gene. The threshold indicates the lowest threshold at
which the pattern was found significant, with the corresponding p-value in the second column.
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Anthocyanin16 8.77× 10−7 AT4G36800 1 2 0.05 0 0 0 0 0

Chlorosis22 2.43× 10−7 AT3G26730 0 1 0.20 1 0 1 1 1

Hiks1 8.40× 10−7 AT5G56280 1 3 0.20 0 1 1 1 1

avrB 1.05× 10−7 AT3G07040 0 1 0.25 1 1 1 1 1

avrPphB 2.61× 10−9 AT1G12220 0 1 0.05 1 0 1 1 1
7.88× 10−6 AT1G12220 1 2 0.05 1 0 1 1 1

avrRpm1 6.31× 10−7 AT3G07040 0 1 0.25 1 1 1 1 1

avrRpt2

9.83× 10−10 AT4G08850 1 2 0.35 1 1 1 1 1
1.44× 10−9 AT4G26090 0 1 0.30 1 1 1 1 1
6.13× 10−9 AT3G45780 1 2 0.40 1 1 1 1 1
2.11× 10−8 AT2G45960 1 3 0.40 1 1 1 1 1
5.85× 10−8 AT3G01290 1 2 0.30 1 1 1 1 1
2.99× 10−7 AT3G14210 1 2 0.40 1 1 1 1 1

avrRpt2 phenotype, for which six significant hits are detected. All 1-hop neighbourhoods
that are found to be significant also contain the gene AT4G26090, that is itself significantly
associated to the phenotype. For three other phenotypes, that is Chlorosis22, avrB and
avrRpm1 the only significant pattern are genes, but not k-hop neighbourhoods. Only in
the case of Hiks1 and Anthocyanin16 we were able to discover significant 1-hop neighbour-
hoods that did not contain single genes that were identified as significant with tNeAT-WY.
In summary, all significant neighbourhoods discovered with the tNeAT-WY approach were
either driven by individual genes, or contained only up to three genes.

We next compared those 13 significant neighbourhoods against the significant hits from
the comparison partners. To this end, we report whether a pattern deemed significant
with tNeAT-WY overlaps with any pattern deemed significant by one of the comparison
methods. Those results can be found in the last 5 columns in Table 4.4. We observe that
in 12 out of the 13 tNeAT-WY patterns, at least one gene could also have been detected
with other methods. Especially the regression based methods burden_k0, burden_k1, and
regress_k1 show a consistent overlap across all candidate patterns, with an exception for
the 1-hop neighbourhood detected in the Anthocyanin16 phenotype. When evaluating
those results, one should take into account that the regression-based comparison partners
in this study are analysing smaller hypothesis spaces. As mentioned above, this attributes
those methods with higher power due the smaller number of hypotheses and a reduced
multiple hypothesis testing burden compared to the Tarone-based methods. However, even
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if the regression-based methods are not considered in this comparison, the Tarone-based
methods tUniT and tEdgeT are are still able to partially recover the same 12 significant
patterns detected with tNeAT-WY. This further corroborates the conclusion of the previ-
ous paragraph, that is that genetic heterogeneity can be best discovered at the level of
individual genes or interactions between gene pairs, i.e. edges in the network.

4.7. Summary and discussion
In this section, we introduced two novel methods, called tNeAT and tNeAT-WY, to find
sets of genes that are statistically significantly associated to a binary phenotype of inter-
est under a model of genetic heterogeneity. Testing sets of genes jointly for association
instead of testing individual genes allows us to identify sets of genes whose aggregated
risk in the form of minor alleles is different between two phenotypic groups. Since it is
computationally and statistically infeasible to enumerate all possible of sets of genes, we
included biological prior-knowledge in the form of molecular networks into the analysis.
In those networks, genes correspond to nodes, and edges indicate the presence of physical
interactions between genes. Instead of exploring all possible gene sets, we generated sets
of genes as local k-hop neighbourhoods in the network, thereby (i) reducing the search
space of all gene sets, and at the same time the burden of multiple hypothesis testing,
as well as (ii) creating interpretable sets of genes for downstream analyses. Furthermore,
these approaches exhibit runtimes that are linear in the number of nodes in the network,
resulting in desirable linear runtimes.

To address the inherent problem of multiple hypothesis testing caused by the simultaneous
testing of large numbers of hypotheses, we formulate the task of testing k-hop neighbour-
hoods in a network as a significant pattern mining problem. This allows us to leverage
concepts and principles from this area of research, namely the Tarone procedure, that
enable large-scale statistical testing in scenarios in which a classical Bonferroni correction
restricts power to find associations. Our methods build on established methods in the field
of significant pattern mining, and extend those existing approaches in two ways. Firstly,
instead of testing arbitrary sets of features, k-hop neighbourhoods are explored. This re-
sults in interpretable sets of features and alleviates computational bottlenecks compared to
classical itemset mining approaches. Secondly, tNeAT and its Westfall-Young permutation
counterpart tNeAT-WY use non-binary input data, and apply a thresholding scheme to take
full advantage of concepts that boost both, the processing and pruning of a feature set,
as well as statistical power. It is important to highlight that, without taking advantage
of testability and prunability of the search space, any implementation that considers all
different thresholds to discretise data in a brute force manner would otherwise incur in a
large correction for multiple hypothesis testing. And this, in turn, would have a negative
effect in power.

We evaluated the performance of our methods on a wide range of simulated data sets,
and analysed various local configurations of subgraphs and their effect on the type-I and
type-II errors of the methods. We found that both proposed methods successfully control
type-I error across all subgraphs configurations, where we report the type-I error in the
form of the estimated family-wise error rate. Furthermore we observed that our method
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is well-powered to detect sets of genes that overlap with local neighbourhoods in networks
under the proposed model of genetic heterogeneity. We benchmarked tNeAT and tNeAT-WY
against various approaches based on the Tarone procedure and regression based tests, as
well as two well-established network approaches, and found that it is competitive with
those methods. However, when a significant subgraph does not obey the hypothesis un-
derlying tNeAT/tNeAT-WY, i.e. that the significant subgraph corresponds to a full k-hop
neighbourhood, we observed a drop in power. Notably, a Tarone-based method that tests
individual edges in the network showed consistent power across all subgraph configura-
tions. While this method, called tEdgeT, could not outperform the neighbourhood based
methods in cases where the associated subgraph formed a k-hop neighbourhood-like sub-
graph in the networks, it outperformed methods based on local neighbourhoods if the
truly-associated subgraph was a random connected component in the graph.

When applying our methods and the comparison partners to various real-world data
sets of the plant Arabidopsis thaliana, we observed various interesting findings that are
in line with observations made on the simulated data sets. For a total of 13 out of
20 A. thaliana phenotypes, significant neighbourhoods were detected with at least one
method (tNeAT/tNeAT-WY or neighbourhood-based comparison partner). This suggests
that local neighbourhoods in molecular networks contain valuable information to discrim-
inate phenotypic groups, and hence constitute interesting patterns to analyse. However,
we observe that methods based on genetic heterogeneity (tNeAT and tNeAT-WY) mainly dis-
cover small neighbourhoods, the largest discovered neighbourhood was of size three, while
regression based approaches that assume additivity between genes in neighbourhoods dis-
covered larger neighbourhoods (maximum size: 35 genes). We furthermore observed that
the signal of neighbourhoods discovered with tNeAT-WY is in most cases driven by the
signal of individual genes or pairs of genes. Combining those two findings motivates the
following interpretation: neighbourhoods constitute interesting patterns, but our findings
indicate that neighbourhoods might not be meaningful objects to study under the model
of genetic heterogeneity, which mainly seems to be due to their size (see Figure 4.7).
According to our observations, genetic heterogeneity does not take place on the scale of
neighbourhoods in the network, but rather on the scale of genes or gene pairs.

Those findings pave the way for further research, and at the same time motivate the next
chapter in this thesis: while neighbourhoods might not be the optimal candidate patterns
to mine in biological networks under models of genetic heterogeneity, an interesting further
direction is to focus on smaller entities in networks, such as individual interactions. Our
findings indicate that edges in the network constitute promising candidates to study when
considering genetic heterogeneity.
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Gumpinger, A.C., Rieck, B., Grimm, G.D., International Headache Genetics
Consortium, Borgwardt, K.M. Network-guided search for genetic heterogeneity
between gene pairs. In press at OUP Bioinformatics (2020).

One of the major challenges in genome-wide association studies is the phenomenon of miss-
ing heritability. It refers to the fact that individual genetic variants that have shown to be
associated to a complex trait only explain a small fraction of the heritability of that trait.
In the introduction to GWASs (Section 2) we argued that the missing heritability might
be attributed to different phenomena, and one of them is omitting non-linear interaction
effects between genetic variants. One such non-linear mode of interaction that was already
discussed in previous sections of this thesis is genetic heterogeneity, meaning that different
genetic variants influence a phenotype in a similar direction. Another mode of interac-
tion is epistasis [120], which refers in the classical sense to non-linear interaction effects
between pairs of single nucleotide polymorphisms (SNPs). Given the ever-increasing size
of genetic data sets in the number of genotyped or sequenced variants, testing all pairwise
interactions between SNPs poses not only a computational, but a statistical challenge due
to the simultaneous testing of large numbers of hypothesis. In Chapter 3, we introduced
the field of significant pattern mining which provides tools and concepts to address the
multiple hypothesis testing problem that commonly arises in large-scale genetic analysis
when considering (higher-order) interactions between genetic markers. However, testing all
pairwise interactions between genetic markers in data sets with high-dimensional feature
spaces largely remains an open challenge.

At the same time, biological networks that describe interactions between genes and their
proteins products on various scales have become available for various model organisms.
Those networks are themselves subject to the ever-accelerating collection of data, such
that they are constantly growing in size, with respect to the number of genetic entities
(nodes), and to the number of interactions (edges) (see Chapter 1). Those networks can
be interpreted as a form of biological prior knowledge, deeming some interactions between
genetic regions, such as genes, more likely than others. As such, they constitute an ideal
guide for network analysis, and they have been leveraged in genomic analysis in various
settings [e.g. 63, 146]. In the previous chapter we combined genetic data with molecular
networks and set out to find neighbourhoods in networks that were associated to the
trait of interest under a model of genetic heterogeneity. We found that the interesting
interactions took place on the scale of edges, i.e. interactions, in the network, rather than
on the level of complete neighbourhoods. This inspired us to analyse smaller network
components under the model of genetic heterogeneity, that is individual edges. However,
when genes get large, i.e. they are represented by many genetic variants, aggregating all
variants within a gene might lead to a loss of power if not all variants in the gene are causal,
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or if they influence the phenotype in different directions. To overcome this, we propose
a method that is based on testing interactions between sub-units of genes, so called gene
segments, and we analyse interactions between those. However, we restrict our analysis
to interactions between gene-segments that come from two genes that are connected in
the network. This yields two main advantages: (i) it reduces the otherwise very large
hypothesis space, alleviating the computational and statistical burden, and (ii) it yields
interpretable interactions, as interactions between genes in the network have a biological
interpretation assigned to them.
This chapter is organised as follows: we start with a formal problem statement, and con-
tinue to outline how the concepts from significant pattern mining (Chapter 3) can be lever-
aged to achieve the goal by defining segment interactions as patterns. Next, we explain
our main contribution, that is the Significant Interaction Mining in Networks (SiNIMin)
method, as well as its Westfall-Young permutation based counterpart (SiNIMin-WY). To
evaluate the capacities of our methods, we conducted an extensive simulation study to
explore different properties of the methods compared to well-established methods such as
SKAT-O [132] and FastLMM [103, 104]. Subsequently, we apply our methods to 20 Ara-
bidopsis thaliana phenotypes, and conduct a study of low-frequency variants in migraine
patients. We conclude this chapter with a summary and discussion of our results, followed
by an outlook for network-guided association studies.

5.1. Finding significant segment interactions
5.1.1. Problem statement and notation
We consider a data set consisting of n samples, where each sample is represented by
its g dimensional binary genotype. For each sample, the jth genotype, or feature, could
correspond to a genetic variant, such as a SNP or rare variant, in a dominant encoding (see
Section 2.2.1). We store the data in an n × g dimensional data matrix, which we denote
as X = {0, 1}n×g. Each of the n samples comes from one of two phenotypic classes, such
that a binary label vector y = {0, 1}n exists. In case there exists an additional categorical
covariate for each sample, with a total of r covariate classes, we store this information in
the n dimensional vector c = {1, ..., r}n. Such a covariate vector could correspond to the
origin of a sample, or arise from a clustering of non-categorical data describing the samples.
An example of such a data set is illustrated in Figure 5.1a. As for the last chapter, we
assume the existence of prior knowledge about interactions between genetic regions that
can be represented in the form of a graph G = (V,E), where V corresponds to the set of
vertices in the graph, and E to the set of interactions, or edges, between those vertices,
such that E = {(u, v) |u, v ∈ V }. This could for instance correspond to a protein-protein
interaction network, where vertices correspond to genes, and edges correspond to physical
interactions between the proteins defined by the genes (see Figure 5.1b).
We can combine those two types of data by mapping the genetic variants in the data set X
to vertices in the network G. One way to do this is for example by physical proximity, i.e. a
genetic variant is mapped to a vertex in the network, if it overlaps with the genetic location
of the vertex. In case a vertex represents a gene, its genetic location could be defined as the
entirety of its exons and introns. An example of this mapping is illustrated in Figure 5.1c.
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Figure 5.1.: Overview of concepts for gene-segment interaction detection. (a) The binary data
set X, the phenotype vector y and the covariate vector c. Two genes are highlighted in dark
and light red, represented by six and five genetic variants, respectively. For each gene the black
box indicates a segment within the gene. (b) The molecular network, where nodes correspond
to genes, and edges correspond to interactions between genes. The dark and light red vertices
indicate the same genes as in (a), and they are connected with an edge in the network. (c) The
representation of a gene by the genetic variants that overlap with its introns and exons (darker red
shade), as well as an optional window up- and downstream of the gene (light red). The triangles
indicate the position of the genetic variants. (d) Illustration of the gene-segment interactions
between genes highlighted in (a) and (b). All possible segments within each of the two genes are
indicated with the black horizontal lines, and each possible combination between segments from
both genes has to be evaluated. (e) Computation of the pattern indicator function gEτ1||τ2

for
the two segments highlighted with black boxes in (a). This serves as the representation used for
testing in a contingency table. (This figure is adapted from Figure 1 in Gumpinger et al. [124]).
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For the remainder of this chapter, we assume that vertices in the network correspond to
genes. Note however, that networks could in general describe interactions between any
type of genetic regions, and that all methods introduced in this chapter are applicable
to any type of molecular network. The mapping represents each vertex in the network
as a set of genetic variants. The object under study in this project are so-called genetic
segments, that is a set of subsequent variants along the sequenced or genotyped genome
(see Figure 5.1d). We denote a genetic segment as the tuple (s, l), where s denotes the
starting position of the segment, and l corresponds to its length. For example, the segment
(5, 3) corresponds to the set of variants at the 5th, 6th, and 7th position of the genome.
We restrict ourselves to segments within genes, and refer to those as gene segments in the
following.

The goal of this project is to discover pairs of gene segments that (i) are statistically
significantly associated to the binary phenotype y under a model of genetic heterogeneity
and that (ii) interact within the network, i.e. each segment comes from one of two genes
in the network that are connected by an edge.

5.1.2. Patterns as gene segment interactions
We have defined a pattern as any discrete substructure of the set of features J , i.e.
each pattern corresponds to a member of the power set of J , denoted as P(J ) (see
Section 3.2). In the previous chapter, we restricted our analysis to pattens that represent
neighbourhoods in an underlying feature network. In this chapter, we will also leverage
information of interactions between features in the form of a network, but this time those
two data sets live on different scales: while the data matrix represents individual genetic
variants, such as SNPs or rare variants, the vertices in the network correspond to genes,
i.e. specific regions in the genome. As opposed to the previous approach presented in
Chapter 4, each vertex in the network is now represented by a set of consecutive features,
instead of a single feature, as described above.
Hence, herein we define a pattern as a gene segment interaction, that is the interaction
between any two consecutive feature subsets in any pair of interacting genes. The resulting
hypothesis space HG will contain all possible such segment interactions. More formally,
we describe a vertex v ⊂ J as a subset of the g features in the dataset, and we assume
the set to be ordered in a meaningful way, e.g. the genetic variants are ordered by their
position in the genome. A segment τ = (s, l) is then formally defined as an ordered subset
of the vertex, i.e. τ ⊂ v, where s denotes its starting position and l denotes its length.
This leads to the following formal definition of a segment:

τ = (s, l), corresponding to {j | s ≤ j < s+ l, j ⊆ v ⊂ J } (5.1)

Given two segments τ1 = (s1, l1) and τ2 = (s2, l2) pertaining to two interacting genes (i.e.
vertices) v1 and v2 in the network, where v1, v2 ∈ V , and (v1, v2) ∈ E, we denote the gene-
segment interaction between segments τ1 and τ2 as Eτ1||τ2 . It corresponds to the union of
features that fall in any of the two segments τ1 or τ2, i.e.

Eτ1||τ2 = τ1 ∪ τ2. (5.2)
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By defining patterns as segment interactions, patterns naturally exhibit strong sub- and
super-pattern relationships. This is the case already on the level of segments, and prop-
agates to the level of segment interactions. Each segment τ = (s, l) is a super-pattern to
1
2 l(l + 1) other patterns. This implies that on the level of interactions the same sub- and
super-pattern relationships hold. Given two segments τ1 = (s1, l1) and τ2 = (s2, l2), the
interaction Eτ1||τ2 is a super-pattern to 1

4 l1(l1 + 1) l2(l2 + 1) segment interactions.

5.1.3. Significant pattern mining to find significant gene segment interactions
Our goal is to test interactions between gene segments for their association to the pheno-
type under a model of genetic heterogeneity. Due to the ever-increasing sizes of genetic
data sets and networks, the hypothesis space containing all such segment interactions HG
is large. It can effectively contain millions of pattern. This poses three challenges: (i) the
enumeration of all segment interactions between any pair of interacting genes, i.e. within
any edge in the network, (ii) the statistical testing of each hypothesis, which induces a large
multiple hypothesis testing burden, and (iii) the correction for the dependency structure
between the patterns.
The framework of significant pattern mining offers tools and concepts to address all three
of the above mentioned challenges. Those concepts were introduced in great detail in
Section 3, and we resort to a brief description of the main idea in the following. At
the heart of those significant pattern mining approaches lies an observation made by
Tarone [183] that facilitates the control of the family-wise error rate: for a discrete test
statistic, a minimum p-value can be computed based on the margins of a contingency table
for each hypothesis. Only if the minimum p-value lies below the significance threshold, a
pattern can potentially become significant, and contributes to the family-wise error rate.
Those hypothesis are called testable, and the number of testable hypothesis is used to
compute an improved version of the classically conservative Bonferroni correction that
still guarantees control of the FWER, but increases statistical power to detect significant
hypothesis. Research in the field of significant pattern mining has leveraged this idea in
various forms [158, 160, 161, 163], and the key concepts were presented in Chapter 3,
where we showed how Tarone’s concept can be integrated with classical contingency based
tests such as Pearson’s χ2 test and Fisher’s exact test (Section 3.4). We furthermore
introduced how Tarone’s idea can improve permutation-based testing with Westfall-Young
permutations (Section 3.5), and how it can be incorporated into the Cochran-Mantel-
Haenszel (CMH) test that extends Pearson’s χ2 test such that categorical covariates can
be incorporated (see Section 3.6).
The significant patten mining framework offers the computational and statistical power
required to enable testing of segment interactions in genes, which would otherwise be
infeasible for large molecular networks due to computational and statistical limitations.
In order to fully leverage those tools, we need to reformulate the problem of finding
significant segment interactions, which implies that the following two requirements are
satisfied:

i. we have to define a binary pattern indicator function gS(·) that indicates whether a
pattern is present for a given sample, and
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Table 5.1.: Contingency table for a gene segment interaction pattern Eτ1||τ2 , where τ1 and τ2
correspond to two gene segments, coming from genes that are connected in the underlying graph
G. For the ease of notation, we drop the subscript Eτ1||τ2 and write E in the pattern indicator
function instead. In case of Fisher’s exact test and Pearson’s χ2 test this contingency table is
created once for every pattern. In case of the CMH test, this contingency table is built r times
for each pattern, one for each covariate class in the data set (see Section 3.6.1 for details).

gE = 1 gE = 0 total row
y = 1 aτ1||τ2 n1 − aτ1||τ2 n1

y = 0 zτ1||τ2 − asi n− n1 − (zτ1||τ2 − aτ1||τ2) n− n1

column total zτ1||τ2 n− zτ1||τ2 n

ii. the patterns can be organised in a pattern enumeration tree that allows for efficient
pruning of the hypothesis space.

The first requirement is necessary for the generation of a contingency table, that is the
representation of a hypothesis in significant pattern mining. From a biological perspective,
it allows us to formulate our prior assumption about the mode of interaction between
genetic components, and we focus on the analysis of genetic heterogeneity. The second
requirement is essential for the computational efficiency of our approach. A well-chosen
organisation of the hypothesis space enables pruning large parts of it, such that a large
fraction of hypothesis does not have to be enumerated and tested. We will address both
requirements in the following.

5.1.3.1. Definition of a pattern indicator function

In the problem statement, we assumed the existence of a binary data matrix X ∈ {0, 1}n×g,
where each of the g features corresponds to a genetic variant, and Xi,j = 1 could indicate
the existence of a mutation of variant j for sample i.
We create a binary representation of a segment interaction Eτ1||τ2 in a two-step process.
For this purpose, we first define the pattern indicator function for any general pattern
S ⊂ J :

gS(Xi) = max ({Di,j | j ∈ S}) . (5.3)

This function encodes a pattern such that for the ith sample, the pattern S ⊂ J is present,
if any of the features in the pattern are present. This was introduced as the maximum
pattern indicator function in Equation 3.3 in Section 3.2.
In order to represent a segment interaction, we apply this pattern indicator first on the
individual segments in the interaction, and subsequently on their resulting binary repre-
sentations to represent the interaction, by taking the maximum. Formally, this is defined
as

gEτ1||τ2 (Xi) = max (gτ1(Xi), gτ2(Xi)) , (5.4)

and is illustrated in Figure 5.1e. While this is equivalent to applying the pattern indicator
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function on the set τ1∪τ2 directly, this two-step procedure is computationally more efficient
as the representation of each interval τ1 and τ2 can be stored, and hence we do not have
to recompute it for every edge adjacent to vertices v1 and v2, respectively.

Furthermore, this encoding emphasises two different types of genetic heterogeneity, that is
allelic heterogeneity and locus heterogeneity. While allelic heterogeneity refers to genetic
heterogeneity within a single locus, such as a gene, locus heterogeneity refers to genetic
heterogeneity across different loci, i.e. multiple loci might lead to similar phenotypes. The
combination of SNPs within each segment gτ1(·) and gτ2(·) represents allelic heterogeneity
within a gene, since multiple variants in the segment lead to the same binary representation
of the segment. The pairwise combination of segments Eτ1||τ2 in turn describes locus
heterogeneity, since the presence of a 1 at any one of the two loci, τ1 and τ2 results in the
same binary representation.

The binary representation of a segment interaction, Eτ1||τ2 , can then be used to derive
a contingency table (see Table 5.1), the central representation of a hypothesis in the
significant pattern mining based approaches. We would like to note that in Table 5.1 a
single contingency table is shown, which corresponds to the representation in Pearson’s
χ2 test and Fisher’s exact test. In the case of the CMH test, one such contingency table is
derived for each of the r covariate classes, i.e. all samples with the same covariate class are
grouped together. In those cases, all table counts are r dimensional vectors, as opposed
to scalars.

5.1.3.2. Pattern enumeration

In order to derive a scheme for the enumeration of patterns that enables the efficient
pruning of the search space, we start by formalising the hypothesis space. It contains all
possible segment interactions between all interacting genes, i.e.

HG =
{
Eτ1||τ2 | τ1 ⊆ v1, τ2 ⊆ v2, v1, v1 ⊂ J , (v1, v2) ∈ E

}
(5.5)

The size of the hypothesis space depends on various parameters, that is (i) the number
of edges m in the network, (ii) the size of the genes, i.e. the number of variants they
are represented with, and (iii) the distribution of gene sizes across the network. The
importance of the third point is discussed in more detail below, when analysing the runtime
of our proposed approaches.
Especially for large molecular networks with thousands of nodes, the hypothesis space
potentially becomes very large, such that an exhaustive exploration of all segment interac-
tions becomes computationally challenging. However, we can exploit monotonicity criteria
of the supports of patterns (zτ1||τ2 in Table 5.1) to prune the search space, and avoid enu-
merating untestable patterns. Analogously to the approaches presented in Sections 3.4
and 4.1.3.2, we are going to exploit the Apriori property of frequent itemset mining to
derive this monotonicity, see Proposition 3.4.1.

Proposition 5.1.1 (Monotonicity of support). Assuming we are given interactions be-
tween two segments τ1 and τ2, and their support is denoted by zτ1||τ2. For any sub-segment
τ̂1 ⊆ τ1 and any sub-segment τ̂2 ⊆ τ2, the support zτ̂1||τ̂2 fulfills the following monotonicity
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Algorithm 5.1 SiNIMin (significant Network Interaction Mining), main body
Input: data matrix X, class labels y, covariate vector c (optional), edge-list E, target family-wise

error rate α;
Output: corrected significance threshold δTar, set of significant segment interactions Hsig(δTar);
1: Initialize global δ̂ ← 1, global Htest ← ∅,
2: for (v1, v2) ∈ E do . Iterate all edges.
3: process_edge(X, c, (v0, v1))
4: end for
5: δTar ← α/|Htest| . corrected significance threshold.
6: Hsig(δTar)←

{
Eτ1||τ2 | Eτ1||τ2 ∈ Htest and pτ1||τ2 ≤ δTar

}
. find significant patterns.

criterion:

zτ̂1||τ̂2 ≤ zτ1||τ2 . (5.6)

Proof. Follows directly from proof of Apriori property in Proposition 3.4.1.

Remark 5.1.1 (Monotonicity in the CMH test). The monotonicity in Proposition 5.1.1
assumes a scalar support zτ1||τ2, which is valid in Pearson’s χ2 test and Fisher’s exact
test. For the CMH test, the support is an r dimensional vector, where r corresponds to
the number of covariate classes. In this case, the monotonicity holds element-wise, i.e.

zriτ̂1||τ̂2 ≤ zriτ1||τ2 , (5.7)

where ri marks the support in the rth
i contingency table, 1 ≤ ri ≤ r.

This monotonicity criterion can be used to enumerate the hypothesis space, and potentially
prune patterns, i.e. segment interactions, from the search space. We have seen in the
introduction to significant pattern mining (Section 3.4.2 and 3.6.2.1) that the pruning
condition for all three discussed tests only depends on the support of the pattern, and
that, once a pattern is found to be prunable, all patterns with higher support can be
pruned from the search space as well. When patterns correspond to segment interactions,
we enumerate them such that this monotonicity can be exploited efficiently, that is by
successively growing patterns. The exact enumeration procedure is explained in the next
section by means of pseudo-code.

5.2. The SiNIMin method
In this section, we introduce our method Significant Network-Interaction Mining, short
SiNIMin. It is a novel algorithm to find interactions between gene segments that are
(i) statistically significantly associated to a binary phenotype of interest, and (ii) originate
from two genes interacting according to a molecular network G. It addresses computational
and statistical challenges associated with the exploration of a large hypothesis space by
applying concepts from significant pattern mining. To be precise, it leverages Tarone’s
procedure to derive an improved Bonferroni threshold δTar, and tests all gene segment
interactions for their association with a binary phenotype at that threshold. The main
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routine is outlined in Algorithm 5.1. The pseudocode is kept general, such that it is
valid for Person’s χ2 test, Fisher’s exact test and the CMH test. Whenever test-specific
modification are required, we indicate them.

Main body

SiNIMin requires the binary n× g-dimensional data matrix X, the binary, n-dimensional
class labels y, the edge list E as well as the target FWER α as input. In case a categor-
ical covariate is available, it can be included. In this case the CMH test will be invoked.
SiNIMin computes the Tarone-corrected significance threshold δTar, and return those seg-
ment interactions that are significant at the threshold δTar. At initialisation, the testability
threshold δ̂ is set to 1, and the list of testable patterns Htest is set to the empty set (Line
1), both are global variables and accessible to all functions. The core of the method lies
in Lines 2-4, and consists of the iteration of all edges in the network. For each edge, the
method process_edge is called. The purpose of this function is fourfold: it (i) enumer-
ates all segment interactions within the edge, (ii) adjusts the testability threshold δ̂ to
ensure that the FWER is controlled at the target value α, (iii) reports testable patterns,
and (iv) potentially prunes the search space. After all edges in the network have been
processed, the set Htest contains all testable patterns at threshold δ̂, and the final Tarone
threshold is set in Line 5, using the number of testable hypotheses as the correction factor.
Line 6 finds those testable hypothesis that have p-values below δTar, hence are significant.
Importantly, this is the first time the phenotypes are used.

Processing of edges

The call to the method process_edge in Line 3 of the main SiNIMin body contains
the core of the method. It constitutes SiNIMin’s depth-first search strategy, which suc-
cessively increases the length of the gene segments. This depth-first strategy is outlined
in Algorithm 5.2. It consists of four main steps, that is (i) the enumeration of a segment
interaction, (ii) the assessment of testability of the interaction, (iii) the adjustment of
the testability threshold δ̂ to guarantee the control of the FWER, and (iv) the potential
pruning of patterns from the search space. The first step, i.e. the enumeration of seg-
ment interactions takes place in Lines 2 to 8 in the pseudocode. Segments are grown in a
depth-first manner, i.e. that for a given starting position si, all segments starting at this
position are enumerated by increasing the length of the segment. Only if the longest pos-
sible segment has been explored, the starting position is increased by one, and the length
of the segment is reset to 1. This is done for both segments in parallel, such that initially
the segment τ1 in gene v1 is kept constant, while exploring all segments in the second
gene v2. Only after all segments in the second gene have been explored in a depth-first
search, the segment τ1 is grown, and again compared against all segments in the second
gene. For each of the segment interactions Eτ1||τ2 , we compute the support zτ1||τ2 and the
corresponding minimum p-value Φ(zτ1||τ2) (Line 9), depending on the choice of the test.
Independently of the test, the pattern is deemed testable if the minimum p-value falls
below the testability threshold. In this case, the function process_testable is invoked.
As in previously presented algorithms (see Algorithm 4.2 or 3.2), the testable pattern is
added to the set of testable hypothesis. Since for Tarone’s procedure the estimate of the
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Algorithm 5.2 SiNIMin functions
1: function process_edge(X, c, (v1, v2))
2: for s1 ∈ v1 do . Process first gene.
3: l1 ← 0
4: while s1 + l1 ≤ |v1| do
5: l1 ← l1 + 1; τ1 ← (s1, l1) . Enumerate segment τ1.
6: for s2 ∈ v2 do . Process second gene.
7: l2 ← l2 + 1; l2 ← 0
8: while s2 + l2 ≤ |v2| do . Enumerate segment τ2.
9: Compute the minimum p-value Φ(zτ1||τ2)

10: if Φ(zτ1||τ2) ≤ δ̂ then . Evaluate testability.
11: process_testable(Eτ1||τ2)
12: end if
13: if is_prunable_spec(zτ1||τ2) then . Evaluate prunability.
14: break
15: end if
16: end while
17: end for
18: end while
19: end for
20: end function
21:
22: function process_testable(Eτ1||τ2)
23: Htest ← Htest ∪ Eτ1||τ2 . Add pattern to testables.
24: while δ̂ ×Htest ≥ α do
25: Decrease δ̂ . Adapt significance threshold.
26: Htest ← Htest \ {Eτ1||τ2 |Φ(zτ1||τ2) ≥ δ̂} . remove untestables.
27: end while
28: end function
29:
30: function is_prunable_no_cov(zτ1||τ2) . Pearson’s χ2 or Fisher’s exact test.
31: Compute minimum p-value Φ(zτ1||τ2) . described in Section 3.3.4.1.
32: if zτ1||τ2 ≥ n− n1 and Φ(zτ1||τ2) > δ̂ then
33: return True . Pattern can be pruned.
34: else
35: return False . Pattern cannot be pruned.
36: end if
37: end function
38:
39: function is_prunable_cov(zτ1||τ2) . CMH test.
40: Compute lower envelope Φ̃(zτ1||τ2), . described in Section 3.6.2.1.
41: if zriτ1||τ2 ≥ nri − nri

1 ∀ri ∈ [1, .., r] and Φ̃(zτ1||τ2) > δ̂ then
42: return True . Pattern can be pruned.
43: else
44: return False . Pattern cannot be pruned.
45: end if
46: end function
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FWER is computed based on the number of testable hypotheses (see Section 3.3.4.2), any
addition to the set requires the re-evaluation of the current FWER estimate. Lines 24-27
check whether control of the FWER is still guaranteed, and adapt the testability threshold
if this is not the case. Lowering the threshold might deem previously testable patterns
untestable, such that those have to be removed from Htest in Line 26. Since the testa-
bility threshold δ̂ only decreases during execution, untestable patterns can never become
testable, guaranteeing that the correction remains valid. After the segment interaction
has been processed, Lines 13 to 15 check if super-patterns can be pruned from the search
space.

Testing whether a pattern is prunable depends on the choice of test. In the case of Pear-
son’s χ2 test and Fisher’s exact test, the super-patterns of any untestable pattern whose
support fulfils zτ1||τ2 ≥ n− n1 can be pruned from the hypothesis space (see Section 3.4.2
for details). This test for prunability is computed by invoking the function is_prun-
able_no_cov in Lines 30-37 in Algorithm 5.2. For the CMH test it is more involved to
check whether super-patterns of a segment interaction can be pruned (see function is_-
prunable_cov). First, it is important to note that in the case of the CMH test, the
support zτ1||τ2 is an r dimensional vector, as opposed to a scalar. Checking the prunabil-
ity is based on the lower envelope of a pattern, which is defined as the smallest p-value
obtained for any super-pattern, and denoted as Φ̃(zτ1||τ2) (computed in Line 40). If this
value lies above the current testability threshold δ̂, and furthermore zriτ1||τ2 ≥ nri − nri

1 is
fulfilled for all covariate classes ri ∈ [1, ..., r], the super-patterns of the current segment
interactions can be pruned from the search space (see Section 3.6.2.1 for the more detailed
explanation of prunability in the case of the CMH test).

5.3. The SiNIMin-WY method
Gene segment interactions exhibit by definition strong sub- and superset relationships (see
Section 5.1.2). This violates the assumption of independence between patterns that under-
lies parametric significance tests, and reduces the statistical power in significance testing,
as the dependence between patterns affects the null-distribution of the test-statistics. In
Section 3.5, we introduced Westfall-Young permutations that address exactly this problem.
Instead of assuming a parametric null-distribution, they estimate the distribution from the
data by means of random permutations of the label vector, which can greatly improve the
statistical power of tests, but comes at the price of an increased computational cost. We
showed how Tarone’s procedure can be leveraged to enhance the costly Westfall-Young
permutations for generic significant pattern mining approaches in Section 3.5. Here, we
present the Westfall-Young based counterpart of the SiNIMin approach, which we call
SiNIMin-WY (Significant Network-Interaction Mining with Westfall-Young permutations).
The main body of this method is outlined in Algorithm 5.3. It differs from the SiNIMin
approach (Algorithms 5.1 and 5.2) in the estimation of the family-wise error rate (see Sec-
tion 3.5 for details). While for SiNIMin the FWER is estimated by means of the testable
hypothesis, it is estimated from permutations in the SiNIMin-WY approach. We high-
light additions and changes required to incorporate the permutations in the SiNIMin-WY
pseudocode compared to SiNIMin in red.
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Algorithm 5.3 SiNIMin-WY (significant Network Interaction Mining with Westfall-Young
permutation testing), main body
Input: data matrix X, class labels y, covariate vector c (optional), edge-list E, target family-wise

error rate α, number of permutations np

Output: corrected significance threshold δPerm, set of significant segment interactionsHsig(δPerm)

1: Initialise global δ̂ ← 1, global Htest ← ∅,
2: for i ∈ {0, ..., np} do . initialisation of WY variables (see Section 3.5)
3: Initialise global y(p) ← random permutation of y
4: Initialise global p(p)min ← 1
5: end for
6: for (v1, v2) ∈ E do
7: process_edge_wy(X, c, (v0, v1))
8: end for
9: δPerm ← α-quantile of

{
p
(p)
min

}np

p=1

10: Hsig(δPerm)←
{
Eτ1||τ2 | Eτ1||τ2 ∈ Htest and pτ1||τ2 ≤ δPerm

}

Main body

The SiNIMin-WY method requires the same input as SiNIMin, i.e. the data matrix X,
the labels y, the list of edges E in the network, the target family wise error rate α, and
optionally the covariate vector c, Additionally, the number of permutations np is required,
and a common choice is np = 1′000. Similarly to the SiNIMin method, SiNIMin-WY
returns the corrected significance threshold δPerm, and the set of significant hypothesis at
that threshold δPerm.
At initialisation, the testability threshold δ̂ is set to 1, and the set of testable hypothesis
Htest to the empty set, both are global variables. While Htest is not required to compute
the corrected significance threshold in the case of Westfall-Young permutations, it is used
to keep track of those hypothesis that will be tested for significance later on. Lines 2 to
5 in Algorithm 5.3 initialise the parameters specific to the Westfall-Young permutations.
Those are the permuted phenotypes y(p) and an np-dimensional vector to store the smallest
p-value that has been observed per permutation. This vector is key to the permutation
based testing, as it enables control of the FWER and the computation of the corrected
significance threshold. Lines 6 to 8 contain the core of the method, that is a call to
the function process_edges for each edge in the network. It iterates all hypothesis,
thereby iteratively updating the set of testable hypothesis and the testability threshold
to guarantee control of the FWER at the desired level. The function is described in
Algorithm 5.4 and discussed in greater detail in the next paragraph. After all edges
have been processed, all segment interactions have been processed as well (excluding the
prunable ones), and p(i)min will contain the lowest p-value that has been observed for any
hypothesis in HG for the ith permutation. Hence, the final corrected significance threshold
can be chosen as the α-quantile of {p(p)min}

np

p=1 (Line 9). Line 10 tests all hypotheses that
are testable at threshold δ̂ for their significance, and all hypothesis with a p-value below
the threshold will be reported as final output (the set Hsig(δPerm)) together with the
significance threshold δPerm.
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Processing of edges (Westfall-Young)

Algorithm 5.4 contains a description of the process_edge_wy function, the central
part of the SiNIMin-WY method. The enumeration of the gene segment interactions is
identical to the enumeration in SiNIMin (see Algorithm 5.2), i.e. a gene-wise, nested
depth-first search. This implies that for a fixed segment in the first gene, v1, all segments
in the second gene v2 are enumerated (Lines 2-8). SiNIMin-WY first computes the sup-
port zτ1||τ2 , and from the support the minimum p-value ˜Φ(zτ1||τ2) for each enumerated
interaction Eτ1||τ2 between segments τ1 and τ2 (Line 9). If the interaction is testable, it is
processed accordingly by calling the function process_testable_wy. Upon invoking
this function, the pattern Eτ1||τ2 is added to the set of testable hypothesis (Line 23), and
the permutation p-values for all np permutations are computed for pattern Eτ1||τ2 by call-
ing the function compute_permutation_pvalues in Line 24. If the p-value obtained
for the ith permutation is smaller than all observed p-values for any other pattern seen so
far for the ith permutation, the p

(p)
min will be updated accordingly. Hence, {p(p)min}

np

p=1 will
contain the smallest p-value for each permutation. If this value falls below the testability
threshold δ̂, a false positive has occurred, and the threshold δ̂ might have to be lowered to
control the FWER. This takes place in Lines 25 through 29 in Algorithm 5.4. After the
testable pattern has been processed, the next step is to determine whether super-patterns
of Eτ1||τ2 can be pruned from the search space, see Lines 13 to 15. This is done by calling
the function is_prunable_no_cov or is_prunable_cov described in Algorithm 5.2.
The choice of the function depends on the statistical test. In the case of Fisher’s exact test
or Pearson’s χ2 test, where the support zτ1||τ2 is a scalar, a pattern can be pruned based on
the support value and the corresponding minimum p-value Φ(zτ1||τ2). For the CMH test,
where zτ1||τ2 is an r-dimensional vector, the lower envelope Φ̃(zτ1||τ2) has to be computed
to determine whether or not a pattern qualifies for pruning (see Algorithm 5.2 for details).
After processing all segment interactions in the two genes v1 and v2, the function returns
to the main algorithm, and will be called to process the next edge in the network.

5.4. Implementation details
Since the hypothesis space linked to testing all gene segment interactions is commonly
large, we implemented both methods, SiNIMin and SiNIMin-WY, in C++ to optimise
performance. To improve the computational runtime, we include the following speed-ups
that are not described in the pseudocode:

i. Each gene is processed multiple times. Specifically, the degree of a gene determines
how often it is included when invoking the function process_edge or process_-
edge_wy. In order to avoid re-computing the same segments multiple times, we
created a data class to store the segments and their supports for each gene.

ii. We furthermore observed a large redundancy of the pattern’s supports, i.e. many
patterns share the same support. Hence, in order to avoid re-computing the mini-
mum p-values for the same supports multiple times, we store the supports and their
corresponding minimum p-values in a data structure.
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Algorithm 5.4 SiNIMin-WY functions. Highlighted in red are modifications of the
SiNIMin specific functions (Algorithm 5.2) that are necessary to incorporate Westfall-
Young permutations.
1: function process_edge(X, c, (v1, v2))
2: for s1 ∈ v1 do
3: l1 ← 0
4: while s1 + l1 ≤ |v1| do
5: l1 ← l1 + 1; τ1 ← (s1, l1) . Enumerate segment τ1.
6: for s2 ∈ v2 do
7: l2 ← l2 + 1; l2 ← 0
8: while s2 + l2 ≤ |v2| do . Enumerate segment τ2.
9: Compute the minimum p-value Φ(zτ1||τ2)

10: if Φ(zτ1||τ2) ≤ δ̂ then
11: process_testable_wy(Eτ1||τ2)
12: end if
13: if is_prunable_spec(zτ1||τ2) then
14: break
15: end if
16: end while
17: end for
18: end while
19: end for
20: end function
21:
22: function process_testable_wy(Eτ1||τ2) . WY-specific processing.
23: Htest ← Htest ∪ Eτ1||τ2
24: compute_permutation_pvalues(zτ1||τ2)
25: FWER(δ̂) = 1

np

∑np

p=1 1
(
p
(p)
min ≤ δ̂

)
26: while FWER(δ̂) ≥ α do
27: Decrease δ̂
28: FWER(δ̂) = 1

np

∑np

p=1 1
(
p
(p)
min ≤ δ̂

)
29: Htest ← Htest \ {Eτ1||τ2 |Φ(zτ1||τ2) ≥ δ̂} . remove untestables.
30: end while
31: end function
32:
33: function compute_permutation_pvalues(zτ1||τ2)
34: for p ∈ {1, ..., np} do
35: Compute p-value of pth permutation p

(p)
τ1||τ2

36: p
(p)
min ← min

(
p
(p)
min, p

(p)
τ1||τ2

)
37: end for
38: end function
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iii. In the case of SiNIMin-WY, we parallelise the computation of p-values of the permu-
tations using OpenMP. This is a trivial parallelisation and reduces execution times.

We implemented a user-friendly command-line tool. All source code, accompanied by a
documentation and small example of how to work with the tool is openly available on
GitHub at https://github.com/BorgwardtLab/SiNIMin.

5.5. Simulation study
In order to show the potential of our newly proposed methods SiNIMin and SiNIMin-WY
to detect gene segment interactions that are associated to a binary trait of interest, we
design a comprehensive simulation study. We focus on various criteria to evaluate the
performance of our methods, namely (i) the computational runtime„ (ii) their type-I and
type-II error estimates, as well as (iii) their robustness towards network modifications.

5.5.1. Experimental setup
5.5.1.1. Data set generation

Each simulated data set consists of four different components, that is (i) the network,
(ii) the binary data, (iii) the binary phenotype, and (iv) a covariate vector. We generated
the networks at random, each containing 75 nodes that represent the genes, and 100 edges,
that represent interactions between genes. Next, we generate binary data for n = 500 sam-
ples. To obtain the binary data matrix X ∈ [0, 1]n×g, we first draw the number of genetic
variants mapping to each gene from a uniform distribution U(1, 10), and furthermore allow
genes to overlap with a probability of 30.0%, where the overlap is limited to at most half
of the variants mapping to a gene. Due to the random sampling of the number of genetic
variants per gene, the resulting data matrix X ∈ [0, 1]n×g varies in its dimensionality, such
that 75 ≤ g ≤ 750. Furthermore, we assign each of the n samples to one of two binary
phenotype classes, and to one of two covariate classes, where the covariate is correlated to
the phenotype.

For each simulated data set we generate a truly significant segment interaction and a
confounded segment interaction. The truly significant interaction is associated to the
phenotype, while the confounded interaction is associated to the covariate, which in turn is
associated to the phenotype. Both associations follow the model of genetic heterogeneity.
We fix the combined length of the interaction to six, and draw the number of genetic
variants per gene participating in the interaction at random to be either two or three.
In other words, each induced segment interaction comprises two segments τ1 = (s1, l1)
and τ2 = (s2, 6 − l1), where l1 ∈ {2, 3}. We chose τ1 and τ2 such that they fall into two
vertices/genes v1 and v2, that are connected in the randomly generated network. Both
segment interactions are are induced with strengths of associations ps and pcon for the
truly significant, and the confounded segment interaction, respectively. For all simulation
analyses, we set ps = pcon, and vary ps between 0 and 1, with 0 indicating low association,
and 1 indicating a very strong association to the phenotype. A detailed description of the
simulation study can be found in Appendix A.
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5.5.1.2. Comparison partners

We compare our models against a variety of baseline comparison partners that can be
broadly categorised into two groups, depending on the genetic entities they analyse, and
the degree of interaction information they use: (i) univariate approaches that do not
take network information into account and (ii) network-based approaches that consider
interaction between genetic loci, where interactions are defined based on the molecular
network. We focus on three different tools, or frameworks, to test those entities: (i) Tarone-
based methods, (ii) the FastLMM framework that uses linear mixed models for testing [103,
104], and (iii) the SKAT/SKAT-O framework that implements kernel-burden tests [131, 132].
We would like to note that this is a subset of well-established methods and frameworks
that have proven successful in testing the joint effects of genetic variants under different
assumptions. For example, the FastLMM-based methods use a linear mixed model to
measure the joint effect of genetic variants on a phenotype of interest, while SKAT and
SKAT-O are inspired by the classical rare variant burden tests.

Univariate approaches

Comparison partners that fall into this group of methods test one of three different types
of genetic variants, that are

i. individual genetic loci, i.e. for the n× g dimensional binary data matrix, g different
tests are conducted.

ii. gene segments, i.e. for every of the 75 genes in the data set, all possible gene segments
τ = (s, l) are tested.

iii. genes, i.e. for every of the 75 genes, one statistical test is conducted.

This leads to the following list of baselines:

i. FastLMM-single, which tests all g genetic variants for their association with the
phenotype using the FastLMM method [103], followed by a Bonferroni correction to
control the FWER.

ii. FastLMM-segment, which tests all gene segments in the 75 genes for their association
with the phenotype using the FastLMM-set method [104], followed by a Bonferroni
correction to control the FWER.

iii. SKATO-segment, which tests all gene segments in the 75 genes for their associa-
tion with the phenotype using the SKAT-O method [132], followed by a Bonferroni
correction to control the FWER.

iv. FastLMM-gene, which tests all 75 genes for their association with the phenotype
using the FastLMM-set method [104], followed by a Bonferroni correction to control
the FWER.

v. SKATO-gene, which tests 75 genes for their association with the phenotype using the
SKAT-O method [132], followed by a Bonferroni correction to control the FWER.

For all of the baselines listed above we include the binary covariate vector into the model
to correct for confounding. The purpose of comparing against those methods is to analyse
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the effect of including interactions into the model for the discovery of the ground-truth
association.

Network-based approaches

This group of methods comprises all comparison partners that include the network infor-
mation, and we focus on the following patterns:

i. edges, i.e. we conduct one test for each of the m edges in the network.
ii. gene variant interactions, i.e. we test pairwise genetic variants that stem from genes

interacting in the network. This corresponds to a variant of the gene segment inter-
actions, where segment interactions are restricted to length 1.

iii. gene segment interactions, i.e. the patterns central to our proposed approaches
SiNIMin and SiNIMin-WY.

This results in the following list of comparison partners:

i. FastLMM-edge, which jointly tests the genetic variants falling into any of the 100
edges for their association with the phenotype using the FastLMM-set method [104],
followed by a Bonferroni correction to control the FWER.

ii. SKATO-edge, which jointly tests the genetic variants falling into any of the 100 edges
for their association with the phenotype using the SKAT-O method [132], followed by
a Bonferroni correction to control the FWER.

iii. edgeEpi, which tests gene-variant interactions while leveraging Tarone’s procedure
to improve statistical power. It is identical to the SiNIMin approach when restricting
the length of the segments to 1.

iv. edgeEpi-WY, which is an extension of edgeEpi that leverages Westfall-Young permu-
tations to account for dependence between patterns. It is identical to the SiNIMin-WY
approach when restricting the length of the segments to 1.

v. FastLMM-interact, which generates segment interactions as sets of features, and
conducts a FastLMM-set [104] test for each enumerated segment interaction. This
requires creating a file that contains a list of variant sets, where each variant corre-
sponds to one segment interaction, prior to the analysis. The analysis is followed by
a Bonferroni correction to control the FWER.

vi. SKATO-interact, which generates segment interactions as sets of features, and con-
ducts a SKAT-O test [132] for each enumerated segment interaction. As for FastLMM,
this requires creating a file that contains a list of variant sets, where each variant cor-
responds to one segment interaction, prior to the analysis. The analysis is followed
by a Bonferroni correction to control the FWER.

All methods include the binary covariate vector to correct for confounding. The purpose of
this group of comparison partners is to analyse whether different network-based tests reach
similar performance. In the case of the edgeEpi approaches, the hypothesis is changed
with respect to the patterns, but still assumes a model of genetic heterogeneity. In case
of FastLMM-interact and SKATO-interact, different modes of interaction are analysed
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Figure 5.2.: Runtimes of methods for the detection of gene segment interactions. The markers
indicate measured runtimes of the methods when executed on a high-performance cluster. The
dotted lines correspond to linear interpolations and indicate estimates of unmeasured runtimes.
The red horizontal line indicates 120h, the maximal tested runtime. Grey lines indicate one
minute (m), one hour (h), one day (d), one month (M) and one year (Y). (This figure is adapted
from from supplementary Figure S4 in Gumpinger et al. [124]).

on the same patterns. That is, while SiNIMin/SiNIMin-WY test for genetic heterogeneity,
FastLMM-interact uses an additive model, and SKATO-interact uses a model inspired
by burden-tests.

5.5.2. Application to simulated data
We apply our methods and the comparison partners to simulated data. We first show
that our methods SiNIMin and SiNIMin-WY show improved runtimes compared to the two
other baselines that test for the association between gene segment interactions and the
binary phenotype. Next, we show that our proposed methods control the type-I error,
and have larger power than the comparison partners to detect gene-segment interactions.
Lastly, we evaluate the effect of network modifications in the form of adding and removing
edges to the performance of our methods.
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5.5.2.1. Runtime analysis

The runtime of methods that test gene segment interactions for association to a pheno-
type are dominated by two factors, that is the number of edges m in the network, and
the number of genetic variants that represent each gene, ng. Those two factors determine
the number of segment interactions that exist for a given data set. We vary those pa-
rameters such that m ∈ {10, 25, 50, 100, 250, 500, 1000} and ng ∈ {5, 10, 15, 25, 35, 50}, and
simulate 10 data sets for each combination of ng and m. While in a real data set gene
sizes ng commonly differ for each gene, we leave this number constant. While we have
shown that the uniform distribution of genetic variants to genes leads to the worst case
runtime [see supplementary Section 1.2 in 124], it gives us a comparable scenario across
all simulations. We compare our methods SiNIMin and SiNIMin-WY against the two most
direct competitors that test gene segment interactions, that is FastLMM-interact and
SKATO-interact. Both competitors require the exhaustive enumeration of all segment in-
teraction prior to the analysis, a time and memory consuming task. We do not count this
pre-processing step towards the runtime. Importantly, SiNIMin and SiNIMin-WY enumer-
ate the segment interaction on the fly, such that the enumeration step is counted towards
the runtime for those methods. We compare the execution times of all four methods,
when run on a high-performance cluster, and set the time cut-off to 120 h. The resulting
runtimes are illustrated in Figure 5.2. We clearly observe that SiNIMin shows the most
beneficial runtime, followed by its permutation-based counterpart SiNIMin-WY. Especially
SKATO-interact could not be executed for most settings due to its prohibitive runtime.
FastLMM-interact could be applied to obtain to some of the settings, such that estimates
of runtimes for unobserved settings could be computed via extrapolation. We observe
that for the most difficult setting, i.e. a network with m = 1′000 and ng = 50, a SiNIMin
execution takes less than an hour and a SiNIMin-WY execution takes few hours, while
FastLMM-interact would require several months to run. One of the main reasons for this
improved runtime is the pruning of the search space, i.e. while FastLMM-interact and
SKATO-interact have to test the complete hypothesis space, SiNIMin and SiNIMin-WY
prune the search space, such that only a fraction of hypothesis have to be evaluated.

5.5.2.2. Type-I error analysis: estimation of family-wise error rate

One of the major challenges when testing gene segment interactions for association with a
phenotype is the resulting multiple comparisons problem. The commonly-used Bonferroni
correction is too conservative and we have seen before that Tarone’s procedure yields an
improved significance threshold that still guarantees control of the type-I error in the form
of the family-wise error rate. To validate that this holds true in practice, we evaluate the
empirical FWER by randomly permuting the class labels 1′000 times. If for a permutation
a significant association occurs at the given threshold, we know that this corresponds to
a false-positive, since the permutations supposedly destroy any true association signal.
The empirical FWER is then computed as the fraction of permutations for which at least
one such false-positive association occurred. The results of this analysis are illustrated in
Figure 5.3. We observe that both methods, SiNIMin and SiNIMin-WY successfully control
the FWER at the target significance level α = 0.05 across all association strengths ps.
Furthermore, we observe that the Westfall-Young permutations result in a less stringent
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Figure 5.3.: Family-wise error rate estimates of SiNIMin/SiNIMin-WY for varying association
strengths ps. The shaded areas around the lines indicate the standard deviation of FWER
estimates obtained for the 50 simulations per ps-values. (This figure is adapted from Figure 2c
in Gumpinger et al. [124].

control of the FWER. We will see in the following section that this leads to an increased
power for the permutation based approach.

5.5.2.3. Type-II error analysis: estimation of power

Next we set out to evaluate the performance of our method by evaluating the statistical
power, i.e. their capability to recover the truly significant segment interactions. The re-
sults of this analysis are visualised in Figure 5.4 for methods using Tarone’s procedure
(Figure 5.4a), FastLMM (Figure 5.4b) and SKAT-O (Figure 5.4c), where plots in the left
column contain methods that make use of the network information, and the right column
contains methods that do not use the available network information. We simulated arti-
ficial data as described in Section 5.5.1.1, where the rather small network size is chosen
to allow application of all comparison partners. For each association strength ps we sim-
ulated 50 data sets, and the reported power in Figure 5.4 corresponds to the fraction of
those data sets for which the truly significant segment interaction was detected. In case of
segment interaction methods, we consider the truly-associated segment interaction to be
recovered, if it is recovered exactly. In case of the remaining methods we consider it to be
recovered if the detected hits overlap with any genetic variant contained in the truly associ-
ated segment interaction. We would like to emphasise four main observations made in the
power analysis. Firstly, we observe that Tarone-methods based on Westfall-Young permu-
tations (SiNIMin-WY and edgeEpi-WY) show a slight increase in power compared to their
non-permutation based counterparts (SiNIMin and edgeEpi, respectively). Secondly, we
observe that SiNIMin and SiNIMin-WY outperform all comparison partners that are based
on Tarone’s procedure but do not consider gene segment interactions (see Figure 5.4a).
Those methods also assume the model of genetic heterogeneity, but differ in the patterns
they test for association. Thirdly, SiNIMin and SiNIMin-WY also outperform all methods
based on FastLMM, the version that tests segment interactions (FastLMM-interact) as
well as all ‘univariate’ methods (Figure 5.4b, right). This shows that if the association
is caused by a model of genetic heterogeneity, linear mixed models are not equipped to
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(a) Tarone-based methods.
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(b) FastLMM-based methods.
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(c) SKAT-O-based methods.

Figure 5.4.: Power analysis of SiNIMin, SiNIMin-WY and comparison partners on simulated
data. (a) Power of methods that build on Tarone’s procedure. WY indicates that methods use
Westfall-Young permutations to estimate the FWER and compute the significance threshold.
(b) Power of methods that use the FastLMM framework, i.e. linear mixed models, to compute p-
values. (c) Power of methods that use the SKAT-O framework, i.e. tests inspired by burden tests.
For all plots, the left column describes the power of methods that are based on network-guided
associations, the right column those of methods that do not take interactions into account. To
ease the comparison, the power of SiNIMin and SiNIMin-WY are indicated in grey in the right
column. (This figure is adapted from Figure 2a/b in Gumpinger et al. [124]).
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(a) Randomly removing edges. (b) Randomly adding edges.

Figure 5.5.: Effect of network modifications on power of SiNIMin. (a) random removal of edges
from network, (b) random adding of edges to network. The colors indicate the fraction of removed
and added edges from the original network with 100 edges, the grey markers indicate power in
the original network. (This figure is adapted from supplementary Figure S3 in Gumpinger et al.
[124]).

explain the non-linear dependency between genetic variants. The fourth, and presumably
most interesting observation, is that testing segment interactions and edges with SKAT-O
shows results that are competitive with our proposed methods. While the SKATO-interact
performance is comparable, we have seen in Section 5.5.2.1 that its application remains
restricted to smaller networks and datasets. The second method that shows comparable
performance to our proposed approaches is SKATO-edge, where all genetic variants within
two connected genes are tested jointly for their association with the phenotype. While the
method is well-powered to recover the true association, it tests all variants jointly, while
our proposed methods have the advantage of analysing the data at a higher-resolution:
we can pinpoint the variants that drive the association, as opposed to recovering the edge
that harbours the signal.

5.5.2.4. Sensitivity to network modifications

Our proposed methods depend on a network to generate the hypothesis space HG . In
this experiment, we tested the effect of modifying the hypothesis space, by randomly
removing and adding edges to the network. The results of this analysis can be found
in Figure 5.5. For this study, we used the same simulated data as in Sections 5.5.2.3
and 5.5.2.2, but randomly removed and added a fraction fr of the original edges, with
fr ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. We observe a strong effect when removing edges from the
network (Figure 5.5a): with an increasing fraction of removed edges, the power decreases
substantially. This is to be expected, as with increasing values of fr, the chance to remove
the edge that harbours the true association increases as well. On the other hand we
observe that our approach is robust to adding up to 50.0% of new edges to the network,
which is an encouraging observation. It is a well-known fact that molecular networks are
incomplete, as our knowledge about interaction between genetic entities is continuously
increasing, and there exists a presumably large number of interactions that yet remain to
be discovered [20]. However, one should note that with increasing the hypothesis space, the
burden of multiple hypothesis testing is increasing as well, so that substantially increasing
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Figure 5.6.: Number of SNPs mapping to A. thaliana genes. The left dashed horizontal line
corresponds to the 25-th percentile, the right dashed horizontal line to the 75-th percentile. On
average, each gene is represented by 5.56 SNPs. (This figure is adapted from supplementary
Figure S5 in Gumpinger et al. [124]).

the number of interactions might result in a loss of power due to the increased number of
tested hypothesis.

5.6. Application to 20 Arabidopsis thaliana phenotypes
Our simulation study showed the potential of our proposed methods SiNIMin and SiNIMin-WY
to detect gene segment interactions that are associated to a phenotype of interest under a
model of genetic heterogeneity. To show the utility of our methods on real data, we apply
it to a widely-used Arabidopsis thaliana (short A. thaliana) data set created by Atwell
et al. [191].

5.6.1. Experimental setup
We downloaded the A. thaliana data set collected by Atwell et al. from easyGWAS [192],
which contains a total of 214′051 SNPs for 1′307 A. thaliana samples. We represent each
SNP using the dominant encoding introduced in Section 2.2.1, i.e. for each sample, a
SNP is encoded as 1 if it contains at least one minor allele. Furthermore there exists
a collection of 107 phenotypes, out of which 21 correspond to dichotomous traits. We
downloaded those from AraPheno [194], and omit the YEL phenotype due to its large
class imbalance. For each of the remaining 20 phenotypes, the data sets contain between
84 and 176 accessions (see Table 5.2). To represent interactions between genes, we use
the Interactome network [199] that contains 11′373 interactions between 4‘866 A. thaliana
genes. We downloaded gene annotations from AraPort [197], and represent each gene with
those SNPs that map to its exons and introns. We removed a gene and its adjacent edges
from the network, if the gene could not be represented with at least one SNP in the data
set. This led to a total of 4′431 genes and 9′380 interactions from the Interactome network.
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Table 5.2.: Description of A. thaliana data sets and their genomic inflation values. The column
‘base λgc’ indicates the genomic inflation for the SiNIMin-WY method if one covariate is used,
i.e. all samples are in the same covariate class. The column ‘best λgc’ contains the lowest
genomic inflation value reached when testing r = 1, ..., 5 covariates. The column r contains the
corresponding number of covariates that gave the result.

samples class n1 baseline λgc r best λgc

Anthocyanin10 177 33 1.46 5 1.17
Anthocyanin16 176 70 1.22 5 0.99
Anthocyanin22 177 64 1.43 5 1.10
Chlorosis10 177 28 1.03 1 1.03
Chlorosis16 176 84 0.99 5 0.99
Chlorosis22 176 66 1.77 5 1.10
Emco5 86 17 1.10 4 1.01
Emoy 76 35 1.17 3 1.11
Emwa1 85 32 1.35 3 1.06
Hiks1 84 33 1.23 2 1.16
LES 95 21 1.87 4 1.30
LY 95 29 2.35 3 1.27
Leafroll10 177 78 1.57 5 1.13
Leafroll16 176 37 1.45 5 1.15
Leafroll22 176 31 1.14 1 1.14
Noco2 87 39 1.34 4 1.13
avrB 87 32 1.59 2 1.10
avrPphB 90 44 1.76 5 1.24
avrRpm1 84 28 1.51 2 1.09
avrRpt2 89 17 1.33 2 1.25

In total, 24′571 SNPs were mapped to genes. Figure 5.6 shows the distribution of SNPs
to genes. On average, each gene in the network is represented by 5.56 SNPs. This results
in an hypothesis space that comprises 6′614′466 gene segment interactions.

We furthermore generated categorical covariates to correct for population structure and
cryptic relatedness between samples from the leading principal components of the empirical
kinship matrix, following the approach suggested by Llinares-López et al. [165]. We used
the leading three principal components, and applied a k-means clustering on those, with
k varying between 2 and 10, resulting in r = {2, ..., 5} categorical covariate classes. We
chose the ‘best’ categorical covariate by running SiNIMin/SiNIMin-WY and estimating the
genomic inflation from the p-values of all testable patterns. We picked the number of
covariate classes that resulted in the genomic inflation factor λgc closest to 1, and report
the significant hits found for that number of covariates at the final result. This was
done for all methods that rely on Tarone’s procedure (with and without Westfall-Young
permutations). An overview of the genomic inflation values is given in Table 5.2.

5.6.2. Results
We apply our methods SiNIMin and SiNIMin-WY to the 20 dichotomous A. thaliana pheno-
types described in Table 5.2. We analyse our results in three different directions: (i) reduc-
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tion of genomic inflation by including categorical covariates into the model, (ii) discovery
of novel gene-segment interactions with SiNIMin/SiNIMin-WY and the comparison part-
ners, and (iii) a qualitative analysis of the novel gene-pairs that harboured the significant
gene segment interactions.
As described in the previous section, we include categorical covariates obtained from k-
means clustering the leading principal components of the empirical kinship matrix to
correct for population structure. Population structure is measured using the genomic
inflation factor λgc, and we target a value of λgc = 1 that indicates the absence of structure
in the data. While values in the range of [0.9, 1.1] are widely considered acceptable, values
of λgc outside of this range indicate that a correction for population structure should take
place. We run SiNIMin-WY without covariates, and observe that 18 out of 20 phenotypes
show inflation (column ‘baseline λgc’ in Table 5.2). Upon including covariates, we observe
that the genomic inflation factor decreases for all 18 phenotypes (see column ‘best λgc’
in Table 5.2). Although the inflation factor could not be fully reduced to fall into the
range [0.9, 1.1] for 11 out of 18 phenotypes, we would like to point out that similar results
could be observed in the original publication Atwell et al. [see supplementary material in
191]. However, since the inflation could be reduced consistently across all phenotypes, we
consider this a success.
Next we set out to analyse the significant hits found with the SiNIMin and SiNIMin-WY
approaches. Table 5.3 contains the number of significant hits that were detected with each
of the baseline methods. In this table, each column corresponds to a different method,
and the values in the table indicate the significant patterns, as well as the number of net-
work components (i.e. genes and edges) the significant patterns fall into. We observe that
SiNIMin found significant hits for 6 out of 20 A. thaliana phenotypes, and SiNIMin-WY
found significant hits for 10 out of 20 A. thaliana phenotypes, highlighting the improved
power of Westfall-Young permutations compared to the parametric test used in SiNIMin.
Note that we do not report results for SKATO-interact, as the execution did not finish
within 120 h. We also observe that testing genes and edges with FastLMM resulted in
significant hits for phenotypes where SiNIMin and SiNIMin-WY did not recover any sig-
nificant interactions. It is important to be aware of the difference in hypothesis spaces
between those methods, i.e. the hypothesis space analysed in gene-segment interaction
methods exceeds the one associated with gene- or edge-based testing by far, leading to
a disproportional burden of multiple hypothesis testing. The fairest comparison partner
is hence FastLMM-interact, which explores the same hypothesis space as SiNIMin and
SiNIMin-WY do. We next determine the novel hits detected with our proposed meth-
ods. We consider a SiNIMin/SiNIMin-WY hit to be novel if none of the significant hits
found with any comparison partners overlaps with the SiNIMin/SiNIMin-WY hit. We
found this to be the case for 60 segment interactions, mapping to 9 gene-gene interactions
across 7 different phenotypes for the SiNIMin-WY method (see Table 5.4). In the case of
SiNIMin, 26 gene segment interactions were detected, falling into two gene interactions
across two different phenotypes. Again, the increased amount of significant hits detected
for the Westfall-Young permutation based method suggests that permutation tests im-
prove statistical power. When restricting the length of the segments to 1, which yields
the edgeEpi-WY methods, we discovered two additional SNP-SNP interactions falling into
two edges for two different phenotypes.
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Table 5.3.: Number of significant hits found for the different A. thaliana phenotypes. The first
count indicates the number of significant hits that were found with each method, the number in
brackets indicates the number of higher-level genetic entities the hits maps to. For example, for
the avrRpt2 phenotype, SiNIMin-WY detected 114 significant segment interactions that map to
9 gene-interactions. The Anthocyanin phenotypes were abbreviated to fit the table. (This table
is adapted from supplementary Table S3 in Gumpinger et al. [124]).
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Anthocy.10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Anthocy.16 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Anthocy.22 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Chlorosis10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Chlorosis16 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Chlorosis22 3 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1) 4 (2) x 1 (1) 1 (1) 0 (0)
Emco5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 15 (15) 15 (15) 2 (2)
Emoy 3 (2) 0 (0) 4 (2) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1) x 0 (0) 0 (0) 0 (0)
Emwa1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Hiks1 26 (7) 0 (0) 3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) x 0 (0) 0 (0) 0 (0)
LES 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) x 0 (0) 0 (0) 0 (0)
LY 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) x 5 (5) 5 (5) 1 (1)
Leafroll10 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Leafroll16 23 (1) 10 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) x 0 (0) 0 (0) 0 (0)
Leafroll22 16 (1) 16 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
Noco2 2 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) x 0 (0) 0 (0) 0 (0)
avrB 70 (6) 29 (4) 35 (5) 27 (5) 341 (6) 24 (2) 2 (2) 1 (1) 4 (2) x 0 (0) 0 (0) 1 (1)
avrPphB 15 (1) 10 (1) 4 (1) 4 (1) 13 (1) 6 (1) 1 (1) 1 (1) 2 (1) x 0 (0) 0 (0) 1 (1)
avrRpm1 74 (6) 43 (5) 37 (5) 28 (5) 827 (6) 20 (2) 2 (2) 2 (2) 4 (2) x 2 (2) 2 (2) 1 (1)
avrRpt2 114 (9) 82 (9) 108 (11) 102 (11) 50310 (12) 57 (2) 10 (10) 2 (2) 6 (2) x 7 (7) 7 (7) 3 (3)

We investigated the novel hits found with the SiNIMin-WY method from a biological per-
spective by using the TAIR resource [195]. We found that all gene-gene interactions in
Table 5.4 consisted of gene-pairs that are involved in similar biological processes, are lo-
cated in same cellular components, share molecular functions or are expressed either in
similar plant structures or during similar developmental stages. We list the gene-gene
interactions and their biological interpretations in the following. For the avrB phenotype
and avrRpm1 phenotype, both phenotypes of bacterial resistance, we discovered signifi-
cant segment interactions between the two genes AT1G15750 — AT1G17380 with p-values
p = 6.76 × 10−8 for avrB and p = 1.15 × 10−7 for avrRpm1. Both genes are known to
be involved in the jasmonic acid-mediated signalling pathway. Jasmonic acid mediates
the stress responses in plants [200]. Furthermore the gene AT1G17380 is known to be
involved in the defence response and the response to wounding. For the Leafroll16 phe-
notype, we found 23 significant segment interactions overlapping with genes AT5G25150
and AT5G45600 (p = 3.89 × 10−9). Both genes encode proteins that from subunits of
the General Transcription Factor IID (TFIID) in A. thaliana [201]. In the case of the
Leafroll22 phenotype, we discovered 16 segment interactions within the AT3G18490 and
the AT5G42980 gene. The most significant segment interaction exhibited a p-value of
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Table 5.4.: The last four columns contain the number of significant gene-segment interactions
(SiNIMin, SiNIMin-WY) and SNP interactions (edgeEpi, edgeEpi-WY) in the novel hit. We report
the lowest p-value for any pair of segments within the novel hit, and highlight that method in
bold for which this p-value is obtained. (This Table is adopted from Table 3 in Gumpinger et al.
[124]).
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avrB AT1G15750 - AT1G17380 6.76× 10−8 2 0 0 0
avrRpm1 AT1G15750 - AT1G17380 1.15× 10−7 2 0 0 0
Chlorosis22 AT1G74490 - AT2G41100 9.47× 10−8 2 0 0 0
Hiks1 AT1G15760 - AT5G43460 2.19× 10−7 10 0 0 0
Hiks1 AT4G16845 - AT5G57380 4.26× 10−8 1 0 0 0
Hiks1 AT4G19030 - AT5G43460 2.19× 10−7 2 0 0 0
Leafroll16 AT5G25150 - AT5G45600 3.89× 10−9 23 10 0 0
Leafroll22 AT3G18490 - AT5G42980 5.24× 10−9 16 16 0 0
Noco2 AT2G01950 - AT3G43850 1.75× 10−7 2 0 0 0.
avrRpt2 AT3G15660 - AT4G15730 1.15× 10−7 0 0 1 1
Leafroll10 AT2G04630 - AT3G56270 3.59× 10−7 0 0 1 0

p = 5.24 × 10−9. The two genes are involved in similar biological processes: AT3G18490
is involved in the response to water deprivation, and AT5G42980 is involved in the plants
heat-response. Other gene-gene interactions that harboured significant segment interac-
tions link related genes, as is the case for the interaction AT4G16845 — AT5G57380,
discovered in Hiks1, a protist disease resistance phenotype. Both genes are involved in
the vernalisation response in A. thaliana. However, the interactions connection to the
phenotype Hiks1 remains to be uncovered.

5.7. Study on low-frequency variants in migraine
As a second application, we use our novel methods to analyse two different migraine
subtypes, that is migraine with aura and migraine without aura. Patients that suffer
from migraine with aura commonly experience visual disturbances prior to the onset of
migraine symptoms, such as flashes of light or blind spots. We set out to analyse the genetic
causes discriminating those two subtypes. In this study, we focus on genetic variants with
minor allele frequencies below 5.0%. It is important to note that by combining those
low-frequency variants using the maximum pattern indicator function (see Equation 5.4),
frequencies larger than 5.0% can still be achieved.

5.7.1. Experimental setup
We had access to five different migraine cohorts, namely a Dutch cohort with (DMA)
and without aura (DMO), a German cohort with (GMA) and without aura (DMO) and
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Table 5.5.: Dimensions of migraine cohorts. The column ‘SNPs’ indicates the number of SNPs
with minor allele frequency less than 0.05 that can be mapped to a gene (including a 50kb
window up- and downstream of the gene). The column ‘genes’ indicates the number of genes
that can be encoded in this way, and ‘edges’ corresponds to the number of interactions between
the encoded genes in the InBio network, i.e. the number of interactions among which segment
interactions will be tested. The columns ‘SNP interactions’ and ’segment interactions’ contain
the number of interactions between SNPs and segments that will be tested with the edgeEpi-
based and SiNIMin-based approaches. (This table is adapted from supplementary Table S7 in
Gumpinger et al. [124]).

data set samples cases SNPs genes edges SNP inter-
actions

segment in-
teractions

MaMo 5′013 2′275 15′935 7′994 81′793 629′191 8′743′261
dMaMo 1′849 734 16′285 8′092 82′567 646′407 9′133′634
gMaMo 2′231 1′071 15′947 7′993 81′057 629′923 8′502′931

a Finnish cohort with aura (FMA). We pooled the data from the five different cohorts
by combining the cases, and created a binary phenotype by assigning the patients that
suffer from migraine with aura the phenotype 1, and the patients that suffer from migraine
without aura the phenotype 0. We did this for three different cohort combinations, giving
rise to the following three data sets:

MaMo The data set originating from merging patients from all five of the above data
sets, resulting in a data set containing 5′013 samples.

gMaMo The data set originating from merging patients from the German cohorts, i.e.
GMA and GMO, resulting in a data set containing 2′231 samples.

dMaMo The data set originating from merging patients from the Dutch cohorts, i.e.
DMA and DMO, resulting in a data set containing 1′849 samples.

Since we only had access to one Finnish cohort that contained patients suffering from
migraine with aura (FMA), Finnish patients are only present in the MaMo data set. See
Table 5.5 for a detailed description of the data dimensions.
In order to represent interactions between genes, we used the InBio protein-protein inter-
action network [25]. In order to map low-frequency variants to genes in the network, we
first filter all SNPs from the three data sets above that exhibit minor allele frequencies
below 5.0%. This resulted in the number of low frequency SNPs listed in Table 5.5. We
mapped those variants to genes in the network that overlap with exons and introns of the
genes, and additionally those variants that fell within a 50 kb window up- and downstream
of the genes (see Figure 5.1c). In case a gene in the InBio network could not be represented
with any of the low-frequency variants, we removed the gene and all of its adjacent edges
from the network. The number of genes and edges that could be represented for each of
the data sets are listed in Table 5.5.
Similarly to the A. thaliana data sets, we generate covariates to correct for structure in
the data. For the migraine cohorts, we use two different data sources to generate them:
(i) the leading principal components of the variance-standardised relationship matrix, and
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Table 5.6.: The genomic inflations λgc for different types of covariates and the three migraine
data sets, obtained with SiNIMin-WY and edgeEpi-WY. (This table is adapted from supplemen-
tary Table S11 in Gumpinger et al. [124]).

(a) SiNIMin-WY

gMaMo dMaMo MaMo

None 1.19 1.21 4.85
PC 1.14 1.11 1.03
gender 1.19 1.22 4.84
gender + PC 1.17 1.19 1.05

(b) edgeEpi-WY

gMaMo dMaMo MaMo

None 1.10 1.12 5.19
PC 1.05 1.06 1.14
gender 1.11 1.11 5.17
gender + PC 1.06 1.07 1.15

(ii) the gender of the samples, as migraine is commonly more prevalent in women than in
men. Importantly, we use all SNPs in the data set to compute the relationship matrix,
not only the low-frequency variant ones. We create three different types of covariates,
derived from:

i. the leading principal components (PC), followed by a k-means clustering, such that
k determines the number of covariate classes

ii. the gender, i.e. a covariate vector containing two classes
iii. the principal components combined with gender, followed by a k-means clustering,

such that k determines the number of covariate classes

There are two hyperparameters that affect the genomic inflation, that is the number of
leading principal components, as well as the number of covariate classes to generate. In
order to determine the best setting, we let both parameters vary between 1 and 10, and
conduct a grid search by running our proposed methods for all combinations. We report
the one that resulted in the genomic inflation factor λgc closest to 1. An overview of the
obtained genomic inflation values λgc can be found in Table 5.6.

5.7.2. Results
Similarly to the A. thaliana data set, we analyse the results we obtain for the three migraine
data sets with respect to three different aspects: (i) the reduction of the genomic inflation
factor λgc, (ii) the number of significant hits found with our newly proposed methods,
as well as (iii) a qualitative analysis of the gene segments and the gene-gene interactions
those gene segments fall into.
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As explained in the previous section, we correct for population structure using different
types of covariates, derived either from the relationship matrix between patients, gen-
der, or a mixture of both. The genomic inflations λgc before and after correction with
the different types of covariates are displayed in Table 5.6, for the SiNIMin-WY and the
edgeEpi-WY methods. First of all, we observe that the test statistics are inflated, with
an especially high inflation in the MaMo cohort, i.e. the data set that comprises different
populations, while the population-specific data sets dMaMo and gMaMo only show mod-
erate inflation. When including covariates that are derived from the relationship matrix
between samples (columns ‘PC’ and ‘PC + gender’), we observe a drop in inflation, while
this is more pronounced for the MaMo data set, as it is for the dMaMo and gMaMo data
sets. We hypothesise that the MaMo data sets exhibit stronger inflation due to population
structure caused by the aggregation of different nationalities in the data set, while in the
case of gMaMo and dMaMo, population admixture might be less pronounced. Principal
components of relationship matrices have shown to successfully correct for inflation if the
underlying cause is indeed population structure [98]. In the dMaMo and gMaMo data
sets, the reason for the inflation might be a different one, hence explaining the only weak
reduction of inflation.
We furthermore observe that using only the gender as a covariate does not lead to a
decrease in inflation. This indicates that gender does not confound the results we obtain,
and hence including the gender as a covariate does not lead to a reduction of genomic
inflation. One possible explanation of this behaviour is the fact that we are not comparing
migraine patients against healthy controls, but test two different subtypes (migraine with
and without aura). While gender might confound a case-control study, where cases might
be enriched with female patients, this does not seem to be the case in this ‘case-case’
study.
Next, we compare the results obtained with our newly-proposed methods SiNIMin and
SiNIMin-WY against the baseline comparison partners. We first focus on the number of
significant hits detected with each of the methods. Those results are listed in Table 5.9,
where each row indicates one of the comparison partners, and each column indicates one
of the three data sets. Those methods marked with an ‘x’ did not finish within 120 hours,
and hence were terminated, such that no results can be reported. This is the case for the
two comparison methods FastLMM-interact and SKATO-interact, i.e. the only other
methods that test the same hypothesis space as our proposed methods do. This is a first
indicator of the utility of our methods, as they are capable of exploring the hypothesis
space of all segment interactions, which exceeds the computational capacities of existing
methods. We observe that while SiNIMin-WY discovers the largest number of segment
interactions across all five data sets, when restricting the length of the segments to 1,
resulting in the edgeEpi-WY method, the obtained gene-gene interactions those signifi-
cant hits map to are more diverse. For example, for the MaMo data set, we discover
1′304 segment interactions mapping to 199 gene interactions with SiNIMin-WY, and with
edgeEpi-WY we discover 554 segment interactions mapping to 209 gene-gene interactions.
Similar dynamics can be observed for the dMaMo and gMaMo data sets as well. We again
observe the increase in statistical power when including Westfall-Young permutations, as
can be seen by the increased amount of significant hits detected. The set of significant
segment interactions detected with SiNIMin constitutes a subset of those detected with
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Table 5.8.: Number of significant hits found for the different migraine data sets. The counts in
the table indicate the significant patterns detected with each method, the count in parenthesis
indicates the number of network components (vertices/edges) the hits map to. For example for
the SiNIMin-WY method, 1′304 significant segment interactions were detected that map to 199
edges in the network. (This table is adapted from adapted from supplementary Table S8 in
Gumpinger et al. [124]).

MaMo gMaMo dMaMo

SiNIMin-WY 1′304 (199) 737 (149) 1′126 (219)
SiNIMin 1′006 (166) 429 (93) 819 (181)
edgeEpi-WY 554 (209) 429 (216) 489 (220)
edgeEpi 527 (202) 319 (169) 467 (215)
FastLMM-interact x x x
FastLMM-segment 35 (22) 40 (12) 40 (17)
FastLMM-edge 155 (155) 228 (228) 203 (203)
FastLMM-gene 18 (18) 10 (10) 16 (16)
FastLMM-single 27 (27) 15 (15) 21 (20)
SKATO-interact x x x
SKATO-segment 20 (20) 40 (40) x
SKATO-edge 181 (181) 179 (179) x
SKATO-gene 9 (9) 13 (13) 19 (19)

Table 5.9.: Novel hits for migraine cohorts. The last four columns contain the number of
significant gene segment interactions (SiNIMin, SiNIMin-WY) and SNP interactions (edgeEpi,
edgeEpi-WY) in the novel hit. We report the lowest p-value for any pair of segments within the
novel hit, and highlight that method in bold for which this p-value is obtained. (This table is
adapted from Table S4 in Gumpinger et al. [124]).

data set gene-interaction p-value SiNIMin-WY SiNIMin edgeEpi-WY edgeEpi

dMaMo EPHA6 - TIAM1 2.64× 10−8 1 0 1 1
gMaMo BMP4 - BMPR1B 1.50× 10−7 0 0 1 0
gMaMo HAO1 - VDAC3 1.33× 10−7 0 0 2 0

SiNIMin-WY, such that we focus on the significant results obtained with SiNIMin-WY for
the next analyses.

To analyse the novelty of the results, we define a significant segment interaction to be
novel if none of the genes the segment interaction maps to has been discovered by any
other method. We would like to note that this puts our methods SiNIMin and SiNIMin-WY
at a disadvantage, as they explore the by far largest hypothesis space, compared to all
other explored methods (see Table 5.5), and hence have to cope with an increased multiple
hypothesis testing burden. The only methods that are based on the same hypothesis space,
that is FastLMM-interact and SKATO-interact, could not be evaluated on the migraine
data sets due to their extensive computational demands.

We find one novel interaction for the dMaMo data set between genes EPHA6 and TIAM1
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(p = 2.64×10−8). Both genes are involved in ephrin signalling, and the ephrin-B signalling
pathway has been previously associated with migraine [202]. Notably, this is an interaction
between length-1 segments, and hence could also be detected with edgeEpi-WY. When
restricting the length of intervals to 1 (edgeEpi-WY), we detect two other novel significant
hits for the gMaMo data sets. One interaction falls into the interaction between genes
BMP4 and BMPR1B (p = 1.50×10−7). The two genes interact within the BMP signalling
pathway, which in turn has been linked to neural development [203]. The interaction
between the genes HAO1 and VDAC3 contained a significant segment interaction (p =
1.33 × 10−7). However the edge between those genes is a low-confidence interaction in
the InBio network (score 0.247), which means it is not included in any of the underlying
pathway or interaction data bases that build the foundation of the InBio network, but it
could have been inferred e.g. by ontology. As a result, we could not deduct any biological
interpretation of the interaction. However, reporting edges that show no strong evidence in
networks so far illustrate the potential of our methods to provide further support for such
low-confidence interactions, and might mark the starting point for further experiments.

5.8. Summary and discussion
In this chapter, we introduced two novel methods SiNIMin and SiNIMin-WY, short for Sig-
nificant Network Interaction Mining (with Westfall-Young permutations) to find sub-units
of pairs of genes, so-called segments, that are jointly associated to a binary phenotype
of interest under a model of genetic heterogeneity. This approach was inspired by our
contribution presented in Chapter 4, where we found that the drivers of genetic hetero-
geneity seem to be pairwise interactions, rather than higher-order interactions, between
genes. While it would be desirable to test all possible such segment-interactions between
any two genes in a data set, this creates a hypothesis space that cannot be explored
exhaustively, neither from a computational nor a statistical point of view due to the
resulting multiple hypothesis testing problem. To alleviate this, we included biological
prior knowledge in form of molecular networks into our approach. Instead of exploring all
possible segment-interactions between all pairs of genes, we focus our analysis on segment-
interactions between pairs of genes that are connected in the network. The benefits of the
inclusion of networks are twofold: first, it decreases the size of the hypothesis space, as
segment-interactions between non-connected genes are removed, and thereby reduces the
burden of multiple hypothesis testing. Second, it creates meaningful interactions that can
be interpreted biologically.
Although including network information reduces the hypothesis space, the number of
segment interactions to test still lies in the hundreds of thousands or millions, such that
the computational and statistical challenges prevail. In Chapter 3, we gave an introduction
to significant pattern mining, a field that is devoted to finding patterns that occur more
frequently in one of two phenotypic classes. The methods developed for significant pattern
mining have shown successful in addressing the statistical and computational challenges
associated with the analysis of large-scale biological data sets [158, 164, 165]. Hence, we set
out to formulate the problem of finding network-guided pairwise gene-segment interactions
as a significant pattern mining problem. This reformulation requires binary data, both
for the genotypic and phenotypic data, as well as categorical data for the covariates.
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While this requirement can be seen as a limitation at first, it enables the exploration
of a hypothesis space that cannot not be tackled with other methods and hence deems
a previously infeasible problem feasible. Using other methods, that for example rely on
linear mixed models, falls short in two aspects: (i) there is no way to prune the search space
efficiently, as can be done with approaches based on significant pattern mining, which leads
to in an immense computational burden, and (ii) they suffer from an extensive multiple
hypothesis testing problem that can prohibit the detection of significant interactions.

We evaluated the performance of our methods with respect to various aspects, namely
(i) runtime, (ii) type-I and type-II error control, and (iii) robustness towards network
modifications. We compared the runtimes of our methods against two baselines that test
gene segment interactions using a linear mixed model approach and a burden-test inspired
approach, and showed that our methods outperform the comparison partners significantly:
while our methods remained applicable across all simulation scenarios, this was not the case
for the baselines, with one of them not being applicable to intermediate-sized data sets.
We furthermore confirmed by means of a simulation study that SiNIMin and SiNIMin-WY
successfully control the type-I error, measured as the empirical family-wise error rate, and
that they are well-powered to detect true associations in the data. While some of the
competitors showed performances comparable to our proposed methods, they all fall short
with respect to at least one of the two following aspects: they are either (i) restricted to
small data sets due to excessive runtimes on larger data sets, or (ii) cannot resolve the
signal at the same level of coarseness, that is on the level of gene-segment interactions.
We furthermore evaluated the effect of network modifications onto the performance of
our method, and observed that, while the method is robust to adding new interactions
to the network, power drops if edges are removed. This is an encouraging observation
for two reasons: (i) since molecular networks are known to be incomplete, i.e. there are
supposedly many more interactions to be discovered, we will not observe a loss of power,
and (ii) it indicates that by adding new edges to the network, we will most likely be able
to discover more novel significant interactions.

To show the utility of our method, we applied it to two different real world data sets.
The first data set was a set of 20 A. thaliana phenotypes, for which we were able to
discover novel interactions in 9 out of the 20 phenotypes. The significant segment inter-
actions that were detected fell into 11 gene-gene interactions, and we showed that our
detected results are meaningful from a biological point of view. The second data set was
a low-frequency study of two migraine subtypes, namely migraine with and without aura.
While all novel significant hits detected with our proposed approaches corresponded to
interactions between length-1 segments, i.e. individual genetic markers, our method was
the only one to test gene-segment interactions and that could be applied to those data
sets. All direct competitors that tested gene segment interactions could not be evaluated
as their runtime requirements exceeded the capacities of the high-performance computing
cluster. In general, the way we assessed the novelty of detected patterns put our methods
in disadvantage, as other methods had to explore a significantly smaller hypothesis space,
and hence did not suffer from a comparable burden of multiple hypothesis testing.

In contrast to methods that rely on the estimation of joint effects of variants based on the
variant’s marginal statistics [e.g. 63, 146, 155], our approach is not restricted to detecting
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interactions in which at least one of the interaction partners shows marginal associations.
Rather does the model of genetic heterogeneity allow us to detect interactions that become
drivers of a signal upon combination. Furthermore, our method works on a more fine-
grained level of genetic entities, that is individual variants, as opposed to whole genes,
where signal might get diluted if not all variants within a gene are ‘causal’ or influence a
phenotype in the same direction.

In summary, we consider our approaches to be well-powered to detect novel, biologically
driven interactions between gene segments, while stringently controlling the number of
false positive associations. The following chapter will give an outlook into future work in
the realm of network-guided association studies.
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Summary
This second part of the thesis was devoted to the development of novel algorithms for
network-guided genetic association studies. Both methods presented in the preceding
chapters are motivated by the problem of missing heritability in genome-wide association
studies, i.e. the phenomenon that individual genetic mutations, such as single nucleotide
polymorphisms, can in most cases only account for a small fraction of the heritability of
a trait. It is a widely-accepted paradigm that parts of the missing heritability could be
explained by higher-order, non-linear interaction effects between multiple genetic variants.
The ever-increasing sizes of genetic data sets, especially with respect to the number of
sequenced or genotyped variants, pose immense computational and statistical challenges
when considering higher order interactions. For example, in a data set with only 100
variants, testing all possible combinations of variants results in 2100 ∼ 1.268 × 1030 sta-
tistical hypothesis tests. However, current data sets often contain hundreds of thousands
to millions of variants, such that an exhaustive enumeration of interactions is infeasible.
Apart from the computational problem of executing such a number of enumeration and
testing steps, the sheer amount of pattern imposes a statistical challenge that exceeds the
capacities of standard techniques for the absolutely necessary control of false-positives.
The two approaches tNeAT and SiNIMin (and their respective permutation based counter-
parts) address these challenges. To achieve this, they build upon two important pillars,
the first one being the representation of interactions via molecular networks, and the sec-
ond one being the exploitation of concepts from significant pattern mining. The idea
underlying the incorporation of biological networks to guide interactions is inspired by the
observation that genetic entities, such as genes. They do not randomly interact with each
other, but are organised in complexes and pathways, and hence some interaction effects
are more likely than others. It is further corroborated by the observation that genes that
influence the same phenotype often cluster within the network [58]. Hence, in order to
reduce the space of all interactions between genetic variants, we proposed to focus on
interactions that are supported by the network. However, despite the incorporation of
networks, exploring all possible interactions within a network remains computationally
and statistically challenging in large networks. Those problems can be addressed with the
second pillar, that is the reformulation of the network-guided association study in terms
of a significant pattern mining problem. This reformulation provides us a toolbox to make
the search for interactions feasible, both from a computational and a statistical point of
view. This can be achieved by relying on an observation made by Tarone [183]: in the
case of discrete test-statistics, a significance threshold can be found that improves upon
the highly conservative Bonferroni correction, while still guaranteeing control of the family
wise error rate. This procedure relies on the concept of the minimum p-value of a discrete
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test, and the observation that some hypotheses cannot become significant at a given sig-
nificance threshold, in which case they cannot contribute to the number of false positives.
Those untestable hypotheses hence to not contribute to the family-wise error rate. Not
only does this observation reduce the statistical burden of the multiple hypothesis testing
problem, it furthermore exhibits beneficial monotonicity properties that enable efficient
pruning of the search space, and hence reduce the computational burden.
To this end, we contributed the two methods tNeAT and SiNIMin that differ in the way
the data is represented and aggregated across the network. The tNeAT approach assumes
a data set that represents each gene in the network with a scalar value in the range [0, 1]
for all samples. It explores all k-hop neighbourhoods of a gene in the network, binarised at
a set of defined thresholds, and tests them for their association with a binary phenotype
under a model of genetic heterogeneity. We evaluated the method on a range of simulated
data sets, and applied it to a data set of twenty Arabidopsis thaliana phenotypes. While
we found significant neighbourhoods that were associated with the phenotype, the main
discovery of this project was the fact that interactions under a model of genetic hetero-
geneity appeared to exist on a level of individual genes, or pairwise interactions between
genes, rather than by whole neighbourhoods. This observation sparked the development
of our second contribution.
The SiNIMin approach works on the level of individual genetic variants, as opposed to
genes. Those variants are mapped to genes in a network based on physical proximity,
such that each gene in the network can be represented by a set of binary variants for each
individual, as opposed to a scalar value in the tNeAT approach. Using this type of data,
SiNIMin searches for gene-segment interactions, where a segment is defined as a range
of subsequent variants along the sequenced gene, and we consider interactions between
segments for any pair of segments that lie within two interacting genes. In this way,
SiNIMin is capable of identifying pairs of genes that interact with each other, and that
contain regions within the genes that are associated to the phenotype. We applied SiNIMin
and its permutation-based counterpart SiNIMin-WY to a data set of 20 Arabidopsis thaliana
data sets, and a study of low-frequency variants in migraine patients. Our findings revealed
the presence of genetic heterogeneity at the level of gene-segment interactions that could
not be discovered with established methods.

Outlook
Network-guided association studies are an exciting field of research that have been ap-
proached from different angles. Many valuable contributions have been made to address
this challenging task, covering different techniques and concepts. Those are ranging form
network regularisation approaches [134, 150, 155], to the greedy enumeration of subgraphs
within networks [63, 64, 137] to network propagation approaches [65, 146, 148]. Our con-
tribution to this field differ from existing approaches in various ways:

i. we address the statistical and computational challenges inherent to network-guided
genetic association studies by incorporating concepts and methods from the realm
of significant pattern mining,

ii. our proposed methods do not require any hyperparameters or heuristics,
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iii. we explore the complete hypothesis space, the employed pruning criterion only re-
moves tests from the hypothesis space that cannot become significant,

iv. existing methods that rely on linear models usually assume an additive model of
interaction between variants, while we assume a model of genetic heterogeneity,

v. while existing methods compute summary-statistics of genes and represent those
genes by scalars, our SiNIMin approach preserves the information of individual vari-
ants within the gene. The resulting high-resolution representation of genetic hetero-
geneity allows us to pinpoint the signal to variants within the gene, as opposed to
the whole gene.

Given our proposed methods, we envision several interesting directions of further research
in the field of network-guided associations studies supported by significant pattern mining,
addressing some of the challenges and limitations of the current approaches.

Exploring other network-derived patterns

Our work has shown that patterns derived from the integration of molecular networks with
the variant-based representation of genes seems to be a promising direction. Based on the
results presented in Chapters 4 and 5, we hypothesise that genetic heterogeneity takes place
on small scales: interactions between individual genes seem to contain more heterogeneity-
interactions than larger network modules, such as neighbourhoods. Hence we believe that
focussing on interaction effects between small sets of genetic variants, such as SNPs or rare
variants, is more meaningful than first aggregating variants into one meta-representation
for a gene and then testing combinations of multiple gene meta-representations, as we
did in Chapter 4. One major reason for this hypothesis is the fact that the aggregation
into gene-wise meta-representatives is very sensitive towards the number of aggregated
variants. For large genes, aggregating tens to hundreds of variants dilutes the signal of
those variants within a gene that truly follow a model of genetic heterogeneity due to the
introduction of noise, thus biasing the results towards interactions between genes where
genes are represented with only few variants. By analysing segments within genes, we
removed this bias. While we proposed to focus on interactions between segments of genes
that are connected in the network, two potential extensions would be to (i) focus on
pairwise interactions between all subsets of genetic variants within genes, or (ii) focus
on higher-order interactions between multiple segments that form subunits of connected
genes as opposed to analyse pairwise interactions.
Approach (i) corresponds to a ‘within-gene itemset mining approach’ that requires the
enumeration of all subsets of genetic variants within the gene. This would lead to a total
of 2ng variant-sets for a gene of size ng, and hence 2ng1 ×2ng2 interactions for every edge in
the network, where ng1 and ng2 correspond to the sizes of the adjacent genes. Depending
on the size of the data set and the network, this would incur a large computational and
statistical burden, and whether or not this remains feasible with Tarone based methods
remains to be evaluated.
The second approach (ii), that is the mining of higher-order segment interactions, is an
interesting extension as well. However, in order to achieve this, certain design choices
that affect the composition of the hypothesis space have to be made. The most general
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design is to focus on all connected gene modules in the network, and enumerate all possible
segment-interactions within those genes. However, this leads to an enormous hypothesis
space, which in turn inflicts an extensive computational and statistical burden, that might
well exceed the capacities of significant pattern mining approaches. A potential remedy
to reduce the hypothesis space is to limit the length of segments, the order of interactions,
or the size of the gene-modules that should be explored.

Pattern importance

The second important direction of further research evolves around the idea of pattern
importance, interestingness, and the representative value of a pattern. Those concepts are
well known in frequent pattern mining, and there exists a multitude of approaches, ranging
from relatively simple techniques such as maximal and closed pattern mining, to elaborate
generative model approaches [204], or approaches that set out to find the patterns that
best describe the essence of a data set [e.g. 205, 206]. The rationale underlying the concept
of interesting itemset mining is that patterns are informative, surprising, non-redundant
or describe the dynamics in a data set. To some extent, mining significant patterns can
already be understood as mining interesting patterns itself. An interesting line of research
is to combine concepts from significant pattern mining with those concepts that focus on
finding interesting patterns, to further reduce the hypothesis space. One option could be to
determine interesting patterns apriori to hypothesis testing, such that the hypothesis space
is filtered before testing. However, it might be the case that patterns that are interesting
are not informative to discriminate between phenotypic classes. Another idea is to measure
interestingness of patterns during the exploration of the hypothesis space, i.e. whenever a
pattern is explored and evaluated with a Tarone-based approach, its interestingness with
respect to an appropriate measure is evaluated, and the pattern will only be considered if
it is deemed interesting. For such an ‘in-line’ approach, the choice of the interestingness
measure is crucial, as it has to be deterministic and cannot depend on the previously
enumerated patterns, as this might have an effect on the testability.

As opposed to the purely pattern-mining driven derivation of interestingness scores, an-
other potential direction of further research is to focus on the derivation of biologically
motivated interestingness. By using network information to guide the generation of seg-
ment interactions we already did include biological prior knowledge into significant pattern
mining, as it determines which interactions to explore. For example, many biological net-
works contain the confidence of an interaction as an additional layer of information [e.g.
25] and a potential further development could be to integrate such confidence scores di-
rectly into the process of pattern exploration. Different computational biology methods
leverage this type of information [64, 65], and especially network propagation approaches
have successfully included weighted edges for different types of biological studies. In-
cluding edge weights into significant pattern mining approaches to generate and explore
patterns could potentially be instrumental to further reduce the hypothesis space arising
in network-guided genetic association studies, while at the same time increasing biological
interpretability of the significant patterns.
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Runtime improvements

One of the major practical shortcomings of the methods driven by significant pattern min-
ing is the computational demand, especially for the permutation-based approaches. This
is of high concern from a practical point of view. With the ever-increasing sizes of genetic
data sets with respect to the number of features, the number of potential interactions
between variants grows even-handedly, whether one includes network information, or not.
An important future goal is to ensure that the significant pattern mining inspired methods
remain applicable to data sets containing hundreds of thousands or millions of features.
This goal could be achieved with two different approaches: (i) through algorithmic devel-
opment, or (ii) through the reduction of the search space.

To achieve the first goal, that is speeding-up existing and future significant pattern min-
ing approaches, an obvious approach is to exploit modern computational resources. This
implies both, aiming at a parallelisation of the methods, as well as developing GPU imple-
mentations. While we already incorporated a parallelisation step in our network-guided
approaches to compute pattern indicator functions and compute permutation based p-
values, parallelising the exploration of multiple patterns at the same time is a non-trivial
task due to the various dependencies between patterns. Furthermore, Tarone-based pro-
cedures rely on the sequential processing of patterns and updating of the family-wise
error rate estimate, such that an update for one pattern would influence the testability of
other patterns. Upon parallelisation, those relations have to be considered. To this end,
Yoshizoe et al. [207] presented MP-LAMP, a parallelised version of the LAMP algorithm
[158], which was the first algorithm to exploit Tarone’s procedure for the discovery of
higher-order interactions between genetic variants. The proposed parallelisation relies on
the message passing interface which has also been leveraged in other approaches to make
the search for higher-order interactions between genetic markers feasible [208]. Further-
more, Terada et al. [209] developed a high-speed version of the computationally expensive
Westfall-Young permutations, that relies on parallelisation on a GPU, that achieves a
619-fold runtime improvement compared to standard Westfall-Young permutations.

The second way to speed up the computationally demanding significant pattern mining
approaches is through a reduction of the search space. Notably, by integrating molecular
networks into the mining process, we already took a first step into this direction. However,
this search space could be further reduced, e.g. by incorporating interestingness measures
as described in the last paragraph which would reduce the redundancy between patterns.

Extension to real-valued features

One of the key requirements underlying significant pattern mining approaches is the binary
nature of the data. Tarone’s principle is based on the application of a discrete test to
evaluate the association of a pattern with the phenotype, as the concept of the minimum
p-value is only valid if the set of attainable test-statistics is countable. While binary data
can be derived relatively easy e.g. for single nucleotide polymorphisms, where a recessive
or dominant encoding will result in the desired outcome, this might change for other
settings. We observed this in the case of the tNeAT method, each gene was represented
by the fraction of minor alleles across the SNPs mapping to the gene. This led to a real-
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valued data set, and in order to apply principles of significant pattern mining, the data
was binarised at various thresholds.

This binarisation has various disadvantages: first and foremost, as opposed to conducting
one statistical test for each pattern, we have to conduct as many tests as there are thresh-
olds, imposing an increased burden of multiple hypothesis testing, as well as increasing
computational demands. As a consequence, the granularity of thresholds hugely impacts
the final outcome, as the multiple hypothesis testing problem is less severe for lower num-
bers of thresholds. As such, the choice of thresholds is a main concern when working with
data that cannot be trivially binarised. By choosing a coarse set of thresholds one might
reduce the burden of multiple hypothesis testing, but possibly miss patterns that would
have been significant at different thresholds. By choosing a fine-grained set of thresholds,
one reduces this risk, but at the same time loses statistical power, i.e. one might miss
significant hits due to the increased burden of multiple hypothesis testing imposed by a
larger number of thresholds. Hence, working on real-valued features directly, such that
only a single test is conducted for each pattern, would help to circumvent this dilemma.

Sugiyama & Borgwardt [210] recently developed an extension of Tarone’s procedure to
continuous features, which they named C-Tarone. The main gist of this approach lies in
the computation of the copula support [211], which estimates the probability to observe
a pattern of continuous features. Intuitively, this probability increases, if features in an
interaction are ranked similarly. To test for association, a G-test is applied [212]. Its test-
statistic is based on the Kulback-Leibler divergence between the observed and expected
probabilities of a pattern across two phenotypic classes, which can be computed based on
the copula supports, and follows a χ2 distribution with one degree of freedom. Sugiyama
& Borgwardt [210] showed that the test-statistic is upper-bounded, and that the upper
bound can be computed based on the copula supports and class ratios. This enables
the estimation of a minimum p-value for a pattern, which in turn can be used to deem
patterns untestable. The copula support fulfils a monotonicity criterion similar to the
Apriori property, enabling pruning of the search space.

Integration of the C-Tarone approach with molecular networks is a highly promising direc-
tion for further research. It resolves the problems associated to the binarisation of data,
and opens the door to many more fields of applications. For example, an integration of
networks with other continuous data types, such as gene expression data, could contribute
to the further understanding of complex traits.
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Part III.

Network-based identification of
cancer driver genes

122



Context and overview

This third part of this thesis is devoted to the discovery of novel cancer driver genes, i.e.
genes that are implicated in the development and progression of cancers. The previous
chapters aimed at developing significant pattern mining approaches for network-guided
genetic association studies, with the main goal to discover interactions between genes and
their sub-units that are associated to a binary phenotype of interest under a model of
genetic heterogeneity. While this was addressed with the tools of statistical association
testing, in this chapter we change the realm of methods from statistical testing to super-
vised machine learning with biological networks. The projects are related in that they
both leverage the vast information that is present in biological networks, but the way this
information is used differs. While in the previously-discussed projects, the network was
used to create a hypothesis space, now the network will be used to generate features that
help the prediction of cancer driver genes. Furthermore, both projects combine the net-
work information with genetic data. While the approaches presented so far assumed the
availability of genetic data in the form of single nucleotide polymorphisms or rare variants
for each sample, in this project we will be working on summary statistics of genes that
are derived from mutational profiles of tumour cells. That is, while in previous projects,
each gene could be represented by an n × ng dimensional vector, where n corresponds
to the number of samples, and ng corresponded to either 1 for the method presented in
Chapter 4 or to the number of SNPs that mapped to the gene for the approach presented
in Chapter 5, in this project, each gene in the network will be represented by a scalar
value. Superimposing those scalars onto the network opens the door for network-guided
feature extraction. By leveraging the information on well-established cancer driver genes,
we can create a supervised approach for the prediction of cancer driver genes.

Since the goal of this project is the prediction of novel cancer driver genes, we start with
an introduction to cancer biology, and introduce the data sources used in this project.
We continue to present well-established methods for the discovery of cancer driver genes,
before delving into our contribution, which will be presented in Chapter 8. We end this
third part of this thesis in Chapter 9 with a discussion of our method, as well as an outlook
into promising next steps.
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7. Introduction to computational cancer
genetics

Cancer (also known as malignant tumours or neoplasms [213]) is an umbrella term for
a collection of diseases that can affect any part of the human body. It is a disease of
unchecked cellular growth, i.e. abnormal cells start to divide and grow beyond their
boundaries. Often those cells start to invade other parts of the body and spread to different
organs, a process called metastasis. The generation of such metastases contributes largely
to the mortality of cancer-related diseases [213]. From a global health perspective, cancer-
related diseases constitute an important problem. Alongside ischaemic heart diseases,
stroke, and chronic obstructive pulmonary diseases, cancer is among the leading causes of
deaths worldwide [214, 215], with an estimated 9.6 million deaths in 2018 [213].

7.1. Cancer as a result of genetic aberrations
Cancer is a genetic disease. This entails that it is caused by aberrations of genes that
control normal cell functions such as cell growth, cell division and programmed cell death
(called apoptosis) [216]. Aberrations in specific genes allow cancerous cells to ignore sig-
nals that control those functions in healthy cells, such that cancer cells continue to grow,
divide and proliferate. Genes that are, upon alteration, linked to the development and
progression of cancers are referred to as cancer driver genes, and previously-identified can-
cer driver genes can be broadly categorised into oncogenes and tumour suppressor genes.
Oncogenes are altered forms of genes (so-called proto-oncogenes) that are involved in cell
proliferation and apoptosis, or both [217]. Proto-oncogenes can be activated, thus turn-
ing into oncogenes, through various structural alterations, such as mutation, gene fusion,
juxtaposition to enhancer elements, or amplification [217]. Upon activation, those genes
may exhibit their cancerous potential by promoting uncontrollable cell growth, referred to
as a gain of function [218]. Prominent examples of oncogenes are the KRAS, HER-2 and
EGFR genes. Tumour suppressor genes on the other hand are genes that regulate diverse
cellular activities, including cell cycle checkpoint responses, detection and repair of DNA
damage, protein ubiquitination and degradation, mitogenic signalling, cell specification,
differentiation and migration, and tumour angiogenesis [219]. Hence, tumour suppressor
genes have a protective function by suppressing tumourigenicity, and become cancer driver
genes through a loss of function. Prominent examples of well-known tumour suppressor
genes are TP53, PTEN, BRCA1, and BRCA2. As opposed to oncogenes, tumour sup-
pressor genes are commonly recessive, as a single copy of a functional gene is sufficient
to maintain the protective effect [219]. In the literature, this is often referred to as the
‘two-hit’ inactivation of tumour suppressor genes [220], as both copies of the gene have to
be affected by an aberration.
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There is a multitude of factors that contribute to the genetic modifications incurring
cancer risk. While a genetic predisposition to certain tumour types can be inherited from
the parents in the form of germ-line mutations [221, 222], tumours typically arise due to
somatic mutations that are acquired during an individual’s lifetime, for example due to
contact with carcinogenic agents, due to environmental effects and lifestyle choices [223,
224], as well as ageing [225–227].

According to the World Health Organisation (WHO), carcinogenic agents can be classified
into three different categories, that is

i. physical carcinogens, including ultraviolet and ionising radiation
ii. chemical carcinogens, including asbestos, components of tobacco smoke, aflatoxin

and arsenic
iii. biological carcinogens, including infections from certain viruses, bacteria or parasites,

and exposure to those have been linked to cancer [list adapted from 213]. Another factor
contributing to cancer risk and development is attributed to the lifestyle of individuals.
Anand et al. [223] ranked diet, physical activity, stress, and environmental pollutants as
important criteria that contribute to an individual’s risk to develop cancer. Lastly, it has
been observed that cancer incidence increases with age, and cancer is the top one cause
of death for individuals between 60 and 79 years in the US [215], independent of gender.
The mechanisms of cancer development and ageing both underlie the accumulation of
cellular damage over time [225], and many of the hallmarks of ageing are shared with
cancers [226]. Especially the increasing risk of cancer with increasing age [215] incurs a
serious socio-economic challenge, as the advances in medicine, healthcare and technology
lead to progressively longer life expectancies. Hence, the importance of cancer research
cannot be overstated: better understanding the causes underlying the disease facilitates
novel mechanistic, diagnostic and therapeutic insights that are urgently needed to help
large numbers of patients.

7.1.1. Challenges in identifying cancer driver genes
The identification of genes involved in cancer requires the molecular characterisation of
tumour profiles and matched normal samples to identify differences between the two, while
correcting for differences specific to the patient. Collaborative projects such as The Cancer
Genome Atlas (TCGA) [228] set out to sequence thousands of tumour exomes and to make
them available to the scientific community, which sparked the development of a plethora
of computational tools for the analysis of the genetic sequences [229]. Initial analyses
revealed mutations in hundreds of genes in certain adult tumours, as well as the presence
of gene copy number variants, translocations of sequence, and gene fusions [230]. The
predominant mutation type as well as the mutation load varies across tumour subtypes,
and between samples within the same tumour type [231]. One important observation is
the so-called long-tail phenomenon, i.e. the distribution of somatic mutations typically
includes only few genes that are mutated at frequencies larger than 10.0%, and most genes
are altered at frequencies of 5.0% or lower [232]. Many of the putative cancer drivers genes
identified from early analyses were shown to be false positive findings [230], and this large
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number of false positives is partially attributed to this excessive background mutation
in cancers, such that one important challenge becomes to distinguish true cancer-causing
mutations from so-called passenger mutations, that randomly perturb genes [233]. Detect-
ing infrequently mutated cancer driver genes requires large samples sizes and an accurate
estimation of the background mutation rates, which is a highly non-trivial task [231].
Currently existing computational tools for the identification of cancer driver genes from
somatic mutations or copy number variations [230, 233] have identified cancer drivers that
exhibit high mutation rates. Developing computational methods to identify cancer driver
genes that are mutated at intermediate and low frequencies is an active field of research,
and methods range from the assessment of functional impact of variations [234, 235] to
network-inspired methods [32, 143–146].

A central assumption of mathematical modelling and machine learning is that increasing
the sample size increases the predictive power of the method to describe the data. The
same assumption was made in the context of cancer gene identification: increasing sam-
ple sizes should lead to an increased power to detect true cancer driver genes as well as
improve the estimation of the background mutation in tumour profiles. In practice, the
opposite was observed: by increasing sample sizes, increasing numbers of significant, but
implausible, cancer driver genes were reported [230]. While some of the reported genes
did indeed correspond to known cancer drivers, they were often accompanied by genes
whose involvement in cancer was questionable due to their functional impact or genomic
properties. Lawrence et al. [230] attributed the occurrence of false-positive findings to
the heterogeneity in the mutational processes of cancer, and the lack of methods to ac-
count for this heterogeneity. They show the effect of three different types of mutational
heterogeneity on different scales, that is (i) heterogeneity across patients with the same
cancer type, (ii) heterogeneity within the mutational spectrum of tumours and (iii) the
regional heterogeneity across the genome. Statistical and mathematical models that are
over-simplistic and do not take the mutational heterogeneities in cancer into account tend
to discover large numbers of false-positive associations. This highlights the urgent need
for sophisticated models that are capable of identifying cancer driver genes in the presence
of the complex mutational patterns typically observed in cancer.

7.2. Data availability
The importance of cancer research from a global health perspective cannot be overstated.
The advances in medicine, health care, and technology lead to ever-increasing lifespans of
individuals, and hence an increasing occurrence of cancer diseases in the human popula-
tion. Improving our understanding of the genetics underlying the development of the dis-
ease is hence key to enable prevention, diagnosis, treatment and rehabilitation of patients.
In line with this challenge, multi-national landmark sequencing projects were founded with
the self-proclaimed goal to identify all human cancer genes, thereby contributing to our
understanding of cancer on a molecular level. In this chapter, we will be focussing on two
such projects, the first one being The Cancer Genome Atlas [TCGA, 228] and the second
one being the Cancer Gene Census [CGC, 236]. We briefly describe those programs in
the following.
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TCGA – The Cancer Genome Atlas

The Cancer Genome Atlas [228] is a project that aims at gaining a comprehensive un-
derstanding of the genomic alterations that underlie all major cancers by characterising
them on a molecular basis. It is a joint effort between the National Cancer Institute
and the National Human Genome Research Institute that started in 2006, and brings to-
gether researchers from different disciplines and institutes. To date, the TCGA contains
molecular profiles of more than 20’000 tumours and the matched samples from more than
11′000 patients, covering 33 cancer subtypes. Different molecular data sets were collected,
including clinical information, DNA sequencing (e.g. whole genome/exome sequencing,
SNP arrays), copy number variation (e.g. SNP microarrays, copy number microarrays),
imaging data (e.g. tissue images, radiological images), methylation data, miRNA via
miRNA sequencing and protein expression, amongst others.

The TCGA makes their data publicly available for the research community, and the col-
lected data have already lead to improvements in diagnosis, treatment and prevention of
cancer diseases, either by mining efforts through TCGA researchers, or through indepen-
dent researches that used the data provided by TCGA [237–240].

CGC – The Cancer Gene Census

The Cancer Gene Census [236] aims at creating a comprehensive catalogue of genes that
have been implicated in cancers, the so called Catalogue of Somatic Mutations in Cancer
(COSMIC). The COSMIC data base contains over 700 genes, including functional and
mechanistic annotations describing their role in cancer development and progression in
terms of key cancer hallmarks1 and the impact of mutations on the gene and protein
function. Genes in the COSMIC data base are functionally associated with the hallmarks
of cancer, and are in most cases characterised by somatic or germ-line mutations in their
coding regions, thereby changing the functional mechanisms of the gene products. The
COSMIC data base contains genes that were curated from literature, and can be cate-
gorised into two tiers, with Tier 1 describing well-established cancer genes, and Tier 2
describing newly emerging cancer genes. A gene is classified as Tier 1, if it fulfils two re-
quirements: (i) its role in cancer must be documented and reproducible, and (ii) evidence
must exist that mutations of the gene change the activity of the gene product in a way
that promotes tumourigenesis. Prominent examples of genes in Tier 1 include the BRCA1
and BRCA2 genes, PTEN and PIK3CA, as well as TP53 and KRAS. If a gene shows a
strong indication of a role in cancer, but there is less strong mechanistic or functional
evidence available, a gene is classified as a Tier 2 gene. This is mainly the case for two
types of genes: genes with mutational patterns that are commonly found in oncogenes
or tumour suppressor genes, but the functional evidence is less well established in the
scientific literature, or genes for which functional evidence exists, but that exhibit unclear
mutation patterns [236]. Genes contained in Tier 2 include SOX21 that presumably is
involved in mutliple types of myeloma, A1CF, and BMP5, both involved in melanoma.

1Six biological capabilities acquired during the multi-step development of human tumours. As normal
cells progress to tumour cells, they successively acquire those hallmark capabilities [218, 241]. The
hallmarks are: sustaining proliferative signalling, evading growth suppressors, activating invasion and
metastasis, enabling replicative immortality, inducing angiogenesis and resisting cell death.
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At the time of writing this thesis, the COSMIC data base contained 723 genes, with 576
cancer driver genes in Tier 1, and 147 genes in Tier 2.

7.3. Detection of cancer driver genes from somatic mutations
Due to its prevalence and morbidity in the human population, the study of cancer has
become one of the big topics in biomedical research. As we have seen in the last section,
community efforts evolved to share data and knowledge to improve our understanding of
the molecular causes of cancer. In line with the data collection efforts, many computational
models and methods targeted the discovery of genes that are involved in the development,
progression and treatment of cancer. Here, we focus on those methods that infer the
cancer driver status from somatic mutations. Following Cheng et al. [242], we classify
methods explicitly designed to fulfil this task into five different categories based on their
major features:

Mutational frequency: The idea underlying the frequency-based approaches is to derive
a score or p-value for each gene that quantifies the extend to which the mutational
frequency in the gene exceeds the background mutation (or passenger-mutations).
The models differ in how the background mutations are estimated, and in the types
of mutational patterns that are analysed. Methods falling into this category include
MuSIC [243], MutSig [233], and OncoDriveCLUST [244].

Functional impact of mutations: This group of methods includes tools such as RAE [235],
OncoDrive [234], SIFT [245], and PolyPhen-2 [246]. Those methods assess the func-
tional impact of mutations by estimating the deleterious effects of mutations. This
is often done by evaluating amino acid conservation at the specific positions. Many
methods that evaluate the functional impact are machine learning based, and those
methods are challenged by the lack of both, a gold-standard positive set, as well as
a high-quality negative data set to learn from.

Structural genomics: Another set of methods evolves around structural genomics, with
the goal to understand the impact of somatic mutations on the level of protein
structures. The functional features that lie at the core of such methods include
specific protein regions, post-translational modification sites, or protein pockets.
Results from studies that analyse the functional impact of mutations on the 3D
structure of proteins constitute promising drug targets, and presumably find many
applications in clinical settings. One major impairment of those approaches is the
limited number of proteins for which high-resolution 3D structures are available (at
the time of writing this thesis, the protein data base [247] contains a total of 2′236
human protein structures). Methods included in this group are ActiveDriver [248],
iPAC [249], and Protein-Pocket [250].

Data integration: The combination of multiple data sources, such as somatic mutations,
transcriptome, methylation and proteomics profiles of tumour and matched normal
samples allows researchers to systematically analyse the state of potential cancer
genes from a holistic perspective, thereby improving the detection of previously
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unknown cancer driver genes. This is the rationale underlying e.g. the HELIOS
method [251]. Tamborero et al. [252] suggested to combine multiple complementary
methods to discover cancer driver genes, thereby leveraging tumourigenic potential of
genes manifesting in different data types, and outperforming each individual method.

Pathways and networks: Another branch of methods to describe the molecular basis of
cancers leverages the biological information present in molecular networks. These
approaches are corroborated by the observation that cancers appear to be complex
diseases that are caused by aberrations in multiple genes, as opposed to monogenic
diseases [242]. As discussed earlier, high mutation rates in tumour samples com-
plicate the differentiation between genes that only carry passenger mutations and
rarely mutated cancer genes. One potential explanation of this is that genes inter-
act in complex pathways and protein complexes, and the cancerous potential of a
cell is caused by a disruption of the pathway, rather than one specific gene within
the pathway [241]. This sparked the development of various methods that focussed
on a network-based interpretation of cancer genomes. Prominent methods in this
group are the series of network-propagation based HotNet methods [143–146], and a
method based on local neighbourhoods in molecular networks called NetSig [32].

While this list is by no means a full review of all available methods for the identification of
cancer driver genes, it constitutes an overview over the most commonly applied concepts
in the field. For a more thorough review, we refer the reader to Cheng et al. [242] and
Tokheim et al. [253].
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Gumpinger, A.C., Lage, K., Horn, H., Borgwardt, K.M., Prediction of can-
cer driver genes through network based moment propagation of mutation scores.
In press at OUP Bioinformatics (2020).

Gaining a comprehensive understanding of the mechanisms that drive the development
and progression of human cancers is an important target in biomedical research. As it is
among the leading causes of death [215], combating cancer is a major goal from a global
health perspective. While there exist many factors that influence the development of
cancer, such as contact with carcinogenic substances, diet, and ageing, cancer is known to
be a genetic disease. This entails that all those factors result in genetic aberrations that
confer a selective growth advantage to affected cells, and eventually promote the step-wise
transition of healthy cells into malignant tumour cells. Many years of research have shown
that there exist mainly two classes of genes and mechanisms that are responsible for this
transition: the gain of function of oncogenes, and the loss of function of tumour suppressor
genes. While there also exists a hereditary component to tumour development in the form
of germ-line mutations, the majority of tumours is driven by somatic mutations acquired
during an individual’s lifetime. Identifying genes that are causally implicated in various
cancers promises key mechanistic, diagnostic and therapeutic insights, and is one of the
major goals of cancer research.
Large collaborative projects, such as The Cancer Genome Atlas (TCGA) or the Cancer
Gene Census (CGC) emerged that aim at collecting various types of molecular character-
istics of tumour and matched normal samples. Those collections comprise data obtained
from various experiments, spanning whole genome or exome sequencing, DNA methyla-
tion, and imaging, among others. The resulting data sets are made available to the research
community to enhance the detection of novel cancer causing genes, henceforth referred to
as cancer driver genes. The availability of high-quality data sets sparked the development
of a plethora of computational tools for the discovery of novel cancer drivers, from various
data types. One major mode of analysis is the statistical assessment of mutational burden
of genes. i.e. whether a gene exceeds the mutational burden compared to the background
distribution of somatic mutations. However, those analyses are complicated by the ex-
tensive mutational heterogeneity: commonly hundreds of genes are mutated in a small
number of samples, while only very few genes are mutated across many samples [254].
The so-called long-tail phenomenon poses a challenge to identify rarely-mutated cancer
genes from passenger mutations that do not contribute to the cancerous potential of the
cells. Hence, methods that evaluate the excess mutation rate in genes can prioritise genes
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for follow-up studies, but fail to reliably identify driver genes that exhibit low mutation
frequencies.

Vogelstein et al. [254] suggest to adopt a different perspective of the cancer genome,
one that is based on pathways. They noted that all cancer driver genes identified share
one property, that is the fact that they directly or indirectly confer a growth advantage,
and that the number of signalling pathways through which such a growth advantage can
be incurred, is limited. Those pathways can be broadly grouped into three major cellu-
lar processes, that is (i) cell survival, (ii) cell fate, and (iii) genome maintenance. This
introduced the idea that several different genes can lead to the same selective growth ad-
vantage, by disrupting the same pathway [254], and inspired network-guided approaches
for the identification of cancer driver genes.
The concept underlying most of the network-guided approaches is the computation of
a score for each gene that measures the degree of implication in cancer, e.g. based on
mutational frequency patterns [233, 243, 244], or functional impact of mutations [234, 235,
245, 246]. Those scores are then superimposed on nodes in a network representing gene-
gene interactions, such as protein-protein interaction networks. Well-established methods
use those vertex-weighted networks in an unsupervised network propagation setting to
identify genes implicated in cancer [reviewed in 65, 143–146]. Other methods, such as
NetSig [32], exploit the information contained in the direct neighbourhood of genes by
aggregating scores in a node’s neighbourhood and computing a representation inspired
by meta-p-values, followed by a permutation procedure to evaluate the significance of the
node representations.

While those methods have led to the identification of novel genes implicated in cancer,
they all approach the problem from an unsupervised perspective, disregarding one impor-
tant layer of information: the existence of well-established cancer genes [236]. This idle
pool of information is typically only used during post-processing of the results to validate
the findings of new methods, but rarely integrated into the model itself. To the best of
our knowledge, only very few existing methods use this additional data for the predic-
tion of cancer driver genes, such as Bayesian modelling [251] and unsupervised network
propagation [148].

In this project we set out to learn from what we already know, by formulating the problem
of predicting new cancer driver genes as a supervised classification problem. In addition
to the well-established cancer driver genes, we also leverage biological prior knowledge
describing the interactions between genes in the form of protein-protein interaction net-
works. With this, we adopt a holistic view of the cancer genome, that does not analyse
genes in isolation, but acknowledges processes within the cell that might confer the can-
cerous potential of the cell. We propose a novel approach for the supervised classification
of cancer driver genes, leveraging the set of well-established cancer genes from the CGC in
the COSMIC data base [236]. For this purpose, we formulate the problem of cancer gene
prediction as a node-classification task in a protein-protein interaction network. The core
of our contribution is a novel embedding of nodes in the network, which we named moment
propagation embeddings. The embedding is based on the distributions of node-features in
k-hop neighbourhoods, combined with network propagation. Those embeddings can then
be subjected to state-of-the-art machine learning classification algorithms to achieve the
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supervised prediction of each gene.

One major challenge induced by the definition of the cancer genes is that the positive class
only contains few hundred genes, and that there does not exist a high-quality negative
class. Any gene that is not classified as a cancer driver gene might potentially be a yet-to-
discover cancer gene. To address this, we develop a sophisticated cross-validation scheme
that takes both types of biases into account, and allows for a robust prediction of cancer
driver genes. This chapter is organised as follows: it starts with an introduction of the
notation, followed by the problem statement. We continue to introduce our contribution,
that is the moment propagation embeddings. The major part of this chapter is devoted
to the application of the embeddings to a pan-cancer analysis of TCGA data, and the
quantitative and qualitative analysis of the results. We end this section with a discussion
of our results and an outlook into future work.

8.1. Network-based moment propagation of mutation scores
8.1.1. Notation and problem statement
As in Chapters 4 and 5, we consider a molecular network, such as a protein-protein in-
teraction network, that describes m interactions between d genes. Each node in the
network corresponds to a gene, and each interaction between two genes is represented
by an edge. Mathematically, an interaction network can be represented as a graph
G = (V,E, ω), where V corresponds to the set of nodes, E corresponds to the set of
edges, i.e. E = {(u, v) |u, v ∈ V }, and ω : V × V → [0, 1] is a weighting function that as-
signs a weight in the range between 0 and 1 to each pair of nodes. The weighting function
takes on a value of 0 if there is no edge between two nodes, and a value greater than 0 if
an edge is present, i.e. ω(u, v) > 0 iff (u, v) ∈ E. In protein-protein interaction networks,
edge weights can for example indicate the confidence of an interaction: edges that have
been observed experimentally might have higher confidence than edges that were predicted
with machine learning tools. In the case of networks without edge weights, ω is a binary
function that indicates the presence of an edge, i.e. ω(u, v) = 1 iff (u, v) ∈ E. In addition
to the network we assume that each gene has a g-dimensional feature vector assigned to
it that describes g properties of each gene. We denote this feature vector as xv for every
vertex v ∈ V , or as X ∈ Rd×g in matrix notation. We furthermore assume that the set of
nodes is partially labelled, i.e. there exists a subset of nodes Vl ⊂ V that are assigned a
class label l. We denote the label assignment of those nodes v ∈ Vl as yv = l.

Problem statement

Let us assume that we are given the partially labelled data set consisting of the network
G = (V,E, ω), the vertex feature matrix X, as well as the class assignment yv = l for
vertices v ∈ Vl described above. Our goal is to develop a node embedding γG(·) based
on the feature representation X and the network G for each vertex v ∈ V that, used in
conjunction with a binary classifier C, predicts the probability with which each unlabelled
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vertex u ∈ V \ Vl belongs to the class l, i.e.

C(γG(xu)) = P(yu = l). (8.1)

So in essence, our goal is the creation of node embeddings that serve as input for the
supervised, binary classification task of identifying cancer driver genes. To achieve this,
we integrate protein-protein interaction networks with vertex scores xv, that indicate the
marginal association of the corresponding gene with cancer. Those scores are superim-
posed on the nodes in the network, and we create node embeddings from the vertex-, and
potentially edge weighted network.

8.1.2. Generation of node embeddings for the prediction of cancer driver
genes

The node embeddings proposed in this chapter consist of two different embeddings that
are combined. The first one is based on the representation of each node in the network
by its local neighbours. To be precise, we describe each node by the distribution across
its neighbours’ feature vectors. This is inspired by the success of the NetSig method [32]
that identified novel cancer drivers based on the 1-hop neighbourhood of each gene in
a protein-protein network. In our approach, we extend this idea in three different ways:
(i) we do not restrict ourselves to 1-hop neighbourhoods, (ii) we allow for the incorporation
of edge weights into the model, and (iii) while NetSig applies a sum aggregation across
neighbourhood scores, we condense the distribution of neighbour-features by computing
the moments of the distributions. This last step is essential to our approach, and brings
two main benefits: first of all, it is computationally efficient, and second, it addresses
the problem of knowledge contamination in networks, as moments of a distribution are
theoretically independent of the sample size.

The second part of our node-embeddings is a Weisfeiler-Lehmann [187] like aggregation
of features in a node’s local neighbourhood. This concept has been widely exploited in
different tasks, such as network propagation approaches [65] for the detection of cancer
driver genes [143–146]. However, it is also central to a emerging branch of deep learn-
ing, that is graph convolutional networks [188, 255]. There exists a variety of how local
neighbourhoods can be aggregated, and this question still is a topic of active research.

Before we give a detailed description of our node embeddings, we start by formalising the
concept of a neighbourhood in a graph G: we define a k-hop neighbourhood of a vertex v
as the subset of all genes that can be reached from v with exactly k edges1. More formally,
we define a k-hop neighbourhood recursively as

N k
v =

{
u | (w, u) ∈ E ∀w ∈ N k−1

v , u /∈ N l
v ∀l ∈ {0, ..., k − 1}

}
, (8.2)

where N 0
v = v. In other words, if a gene has already appeared in any l-hop neighbourhood,

where l ∈ N and l < k, it cannot be part of the k-hop neighbourhood. Hence, we are
defining neighbourhoods incrementally.

1Note that this definition is different from the one introduced in Chapter 4.
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Figure 8.1.: Schematic representation of moment embeddings. (a) Illustration of an anchor
vertex v, and its 1-hop (dark red) and 2-hop (light red) neighbourhood. (b) The distributions
of the ith feature in the 1-hop and 2-hop neighbourhoods. (c) Moment propagation of the ith

feature. (This figure is adapted from Figure 1 in Gumpinger et al. [256]).

Remark 8.1.1 (Incremental neighbourhoods). We would like to point out that the defi-
nition of a k-hop neighbourhood in Equation 8.2 is different from the one used previously
in this thesis (see Equation 4.1).

8.1.2.1. Embedding genes using moments of local neighbourhood distributions

We start by defining the moment embeddings for every node v ∈ V . Each node v ∈ V
in the network has a g dimensional feature vector xv assigned to it. We denote the ith

entry in this feature vector as xv:i, and compute the moment embeddings with respect to
each feature separately. The resulting moments for each feature are eventually stacked
together. First, we assume that there exists a distribution Pk

v:i that generates the observed
values of feature i in the k-hop neighbourhood of vertex v. That is, there exists a random
variable Xk

v:i that follows the distribution Pk
v:i, i.e. Xk

v:i ∼ Pk
v:i, and the observed values of

feature i in node v’s k-hop neighbourhood xu:i, where u ∈ N k
v , correspond to realisations

of this random variable. This is illustrated schematically in Figures 8.1a, and 8.1 b.
We create the moment embeddings as concise descriptions of the distributions Pk

v:i for
i = 1, ..., g, and hyperparameter k ∈ N+. To achieve this, we initially define a function
ν̄(X) that maps a scalar random variable X ∼ P to its first four moments.

ν̄(X) =
[
EP [X], EP [X

2], EP [X
3], EP [X

4]
]
, (8.3)

where EP denotes the expectation under the distribution of random variable X. In prac-
tice, we replace the expectations with the sample mean µ(·), the variance σ(·), the skewness
ξ(·) and the kurtosis κ(·). This results in the function

ν(x) = [µ(x), σ(x), ξ(x), κ(x)] , (8.4)

where x denotes a set of realisations of the random variable X. We call the function ν(·)
a moment embedding function. For a given vertex v ∈ V , we denote with X k

v:i the values
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(a) propagation embedding (b) higher-order edge-weights

Figure 8.2.: (a) Schematic representation of the propagation embedding: an anchor node,
highlighted in black, is updated based on its 1-hop neighbours. (b) Computation of higher-order
edge weights ω2(u, v) between the nodes u and v. There are two paths of length 2 between them,
highlighted in dark red (q21(u, v)) and in light red (q22(u.v)). To obtain the weights of the paths,
the edge weights pertaining to each path are multiplied, giving rise to ω2

1(u, v) and ω2
2(u, v),

and the final weight is computed by combining those two weights. (This figure is adapted from
Figure 2 in Gumpinger et al. [256]).

of the ith feature of vertices u in the k-hop neighbourhood of v, i.e.

X k
v:i =

{
xu:i | u ∈ N k

v

}
. (8.5)

Those values constitute draws from the distribution Pk
v:i, and we define the moment em-

bedding of vertex v with respect to feature i by applying the function ν(·) to its 1-hop
through k-hop neighbourhoods, that is

ηki (v) =
[
xv:i, ν(X 1

v:i), ..., ν(X k
v:i)

]
. (8.6)

This embedding function creates an (1 + 4k)-dimensional representation of each vertex/-
gene in the network, that is ηki : V → R1+4k, and is illustrated by means of an example in
Figure 8.1c. It depends on one hyperparameter, that is the value of k indicating the order
of the neighbourhoods that should be considered. By applying it to all g features sepa-
rately, and successively stacking the resulting representations, we obtain the final moment
embedding function as

ηk(v) =
[
ηk1 (v), ..., η

k
d(v)

]T
. (8.7)

This results in a g(1 + 4k)-dimensional representation for each gene in the network, i.e.
ηk(v) : V → Rg(1+4k), which constitutes the first building block of our node embeddings.
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8.1.2.2. Embeddings using network propagation

The second part of our proposed node embeddings rely on a Weisfeiler-Lehman like aggre-
gation of vertex scores in the local neighbourhood [187], which we refer to as a propagation
embedding. Those propagation embeddings are reminiscent of approaches commonly used
in network propagation [65], hence the name. In this type of embedding, we assume again
that each node v ∈ V is represented by its g-dimensional feature vector xv. The propaga-
tion embeddings depend on a hyperparameter t that indicates the number of Weisfeiler-
Lehman propagation steps. In each propagation step, the vertex scores xv are updated
simultaneously for all nodes in the network, according to the following equation:

xtv =
1

|N 1
v |

∑
u∈N 1

v

xt−1
u , (8.8)

where x0v = xv corresponds to the initial vertex feature vector. This is illustrated schemat-
ically in Figure 8.2a. Hence, the propagation embedding corresponds to an average across
all scores at the previous iteration t−1 in the 1-hop neighbourhood. Note that the average
is taken for each of the g dimensions separately, such that the feature vector xtv is again a
g-dimensional vector. In order to aggregate multiple such iterations, we stack them across
the t iterations, such that the final propagation embedding becomes

ρt(xv) =
[
x0v, x

1
v, ..., x

t
v

]
, (8.9)

and ρt : Rg → R(t+1)×g.

8.1.2.3. Combining moment and propagation embeddings to represent genes in a
network

In order to arrive at our final node embeddings, we combine the moment embeddings
introduced in Section 8.1.2.1, and the propagation embeddings proposed in Section 8.1.2.2,
giving rise to the moment propagation embeddings, short MoPro embeddings embeddings.
They correspond to the composition

γt,k(v) = (ρt ◦ ηk)(v). (8.10)

This function first represents each node in the network by means of the feature-distributions
in its leading k-hop neighbourhoods by applying the function ηk. To be precise, the first
four moments of those distributions are used, giving a concise and computationally effi-
cient representation of the underlying distributions. Those node representations are then
aggregated across local neighbourhoods for each node, by applying the function ρt. Hence,
the composition function γt,k : V → R(1+t)(1+4k)×g maps the vertices in the network to a
higher-dimensional feature space. The function contains two hyperparameters, k and t,
both coming from one of the node embeddings. Those can be tuned during training.
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8.1.2.4. Extension to edge weighted networks

In Section 8.1.1, we mentioned the potential existence of a weighting function ω : V ×
V → [0, 1], that assigns a weight to each of the edges in the network, and that evaluates
to 0 if there does not exist a direct link between two nodes. This edge weight can be
incorporated into the MoPro embeddings, thereby distributing importance of neighbours
in the local neighbourhood. Intuitively, if two nodes u, v ∈ V are connected by a low-
confidence edge, i.e. ω(u, v)� 1 we assume that the node u should contribute less in the
moment propagation ηk(v) of node v, and vice versa. We can achieve this by rescaling
the vertex-score of node u with the edge weight. This rescaling is done for each of the g
features identically and independently, and the set of realisations from the neighbourhood
distribution introduced in Equation 8.5 becomes

X k
v:i =

{
f(xu:i, ω(u, v)) | u ∈ N k

v

}
, (8.11)

where f(·, ·) is a rescaling function, such as a multiplication, that takes the scalar value of
the ith feature of each k-hop neighbour of vertex v, and rescales it with the corresponding
edge weight.

Remark 8.1.2 (Choice of the weighting function). It is important to note that the weight-
ing function used here should respect the nature and directionality of the node features.
That is, if the node features correspond to log-transformed p-values, the features can be
rescaled by a simple multiplication, as 0 ≤ ω(·, ·) ≤ 1. However, in case that node fea-
tures correspond to p-values, a multiplication with a weight smaller than 1 would result in
stronger p-values, which is the opposite of the desired effect.

For k-hop neighbourhoods with k ≥ 2, this rescaling becomes more involved. Given a
root node v, and its, e.g., 2-hop neighbour u, i.e. u ∈ N 2

v , it holds that (v, v) /∈ E, and
hence ω(u, v) = 0. In order to still rescale those higher-order neighbours, we have to define
the concept of a higher-order weight between two nodes that do not share a direct edge.
We denote the corresponding weight as ωk(u, v), where u ∈ N k

v , and its computation is a
multi-step procedure:

i. Enumeration of all paths of length k between the nodes u and v. We denote the
ith such path as qki (u, v). It corresponds to a set of edges that form a part in the
path, such that qki (u, v) ⊂ E, and store them in the set Qk

u,v. This is illustrated in
Figure 8.2b.

ii. To compute a weight for each of the paths qki (u, v), we multiply the weights of all
edges assigned to them, i.e.

ω̂k
i (u, v) =

∏
(x,y)∈qki (u,v)

ω(x, y),

and store those weights in the set Wk
(u,v).

iii. To compute the final weight ωk(u, v), we use an aggregation function g : S → R that
maps an arbitrary set of scalars S to a scalar weight. It summarises the weights
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across all paths in the set Wk
u,v, that is

ωk
g (u, v) = g

({
ω̂k
i (u, v) | ω̂k

i (u, v) ∈ Wk
(u,v)

})
.

Remark 8.1.3 (Choice of the aggregation function). There exist various ways to combine
multiple weights into the final k-hop weight ωk(u, v), u ∈ N k

v . Here, we either apply the
maximum or the mean function, i.e.

ωk
max(u, v) = max

({
ω̂k
i (u, v) | ω̂k

i (u, v) ∈ Wk
(u,v)

})
, or (8.12)

ωk
mean(u, v) = mean

({
ω̂k
i (u, v) | ω̂k

i (u, v) ∈ Wk
(u,v)

})
. (8.13)

The choice of this function is treated as a hyperparameter in our approach, and is hence
tuned during training.

8.2. Prediction of cancer driver genes for a TCGA pan-cancer
study

After the introduction of our MoPro embeddings in the last section, this section describes
the application of the node embeddings to the task of a network-based, supervised classifi-
cation of cancer driver genes from mutation scores of TCGA tumour profiles. This requires
the existence of three different types of data, namely (i) the gene-wise mutation scores,
(ii) a high-quality molecular network, and (iii) a set of well-established cancer driver genes.
We will first elaborate those data sets, before explaining how they can be combined to
fulfil the task of supervised cancer driver gene classification. We will see that a supervised
classification requires a sophisticated cross-validation procedure, that takes two types of
biases into account, that is (i) the highly imbalanced data set caused by the small number
of cancer driver genes, and (ii) the non-existence of a high-quality negative class. We will
continue to compare the combination of our proposed cross-validation procedure with the
MoPro embeddings against a variety of comparison partners, and evaluate the robustness of
our method. This section is concluded with a qualitative analysis of the newly discovered
cancer driver genes.

8.2.1. Data set description
As mentioned above, three different types of data are required to be readily available,
namely mutation scores of genes, a high-quality network, and a set of well-established
cancer driver genes.
For the first type of data, we used MutSig mutation scores [233] that were derived from
a TCGA pan-cancer study that comprises 9′423 tumour exomes, spanning 33 different
cancer types. We combine this genetic data with the well-established InBio Map protein-
protein interaction network [25, 257] to represent interactions between genes. The task of
supervised prediction requires the notion of a class label. We derive this type of information
from the Cancer Gene Census data, i.e. from the Catalogue of Somatic Mutations In
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Cancer, short COSMIC, data base [236]. All three data sources are described in greater
detail below.

MutSig— mutation scores

The MutSig scores are p-values that assess the significance of three different aspects of mu-
tational patterns within genes between tumour samples and matched normals: (i) the fre-
quency of mutation (MutSigCV), (ii) the clustering of mutations (MutSigCL), and (iii) the
functional impact of mutations (MutSigFN). Each of the three parts result in a p-value
themselves, and those p-values are combined to yield the final MutSig p-value. The
MutSigCV statistic [230] evaluates the mutational frequency of non-silent mutations within
a gene, while estimating the background mutation rate from silent and non-coding mu-
tations within the same gene, and neighbouring genes. MutSigCL and MutSigFN [both
introduced in 258] are permutation-based methods, and computed from random permu-
tations of the positions of non-silent mutations in a gene, while preserving the mutational
category. For each random permutation, two different statistics are computed, one that
assess the positional clustering, and one that assesses the functional impact. The permu-
tations generate the null-distribution, and the p-value is computed as the empirical p-value
based on this null-distribution. A joint p-value of MutSigCL and MutSigFN is computed
from the joint probability distribution estimated from the permutations. The resulting
p-value is then combined with the MutSigCV p-value either by using Fisher’s method, or
the truncated product method.
From the TCGA exomes, a total of 18′154 genes could be attributed with their MutSig
p-value, and we applied a -log10 transformation to each of them. We refer to those as
MutSig scores in the following.

InBio Map — interaction between genes

Our newly proposed MoPro embeddings require a notion of interaction between genes. To
represent this, we use a well-established protein-protein interaction network, called InBio
Map [25, 257]2. This network will constitute our view of interactions between genes on a
protein level. The network contains in its raw form 390′424 interactions between 12′369
genes, the average degree is 63.13 (±136.12). For each interaction in the network a score
in the range (0, 1] is provided. It quantifies the confidence of the interaction. Interactions
derived from pathway databases are assigned the highest confidence score of 1, while
interactions between genes that are, e.g., inferred from orthology have scores < 1. For a
detailed description of the inference of interaction confidence score, we refer to Li et al.
[25].

COSMIC — A set of well-established cancer-driver genes

The supervised classification of cancer driver genes requires access to labelled data in order
to train a classifier. The CGC initiated the COSMIC data base, a well-established data
resource for genes that are implicated in cancer [236], see also Section 7.2. At the time

2We are working on the same version of the network as in [32] to allow for a one-to-one comparison with
NetSig.
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(a) Edge weights. (b) Neighbourhood sizes.

Figure 8.3.: Description of the InBio Map network after mapping the MutSig scores. (a) Dis-
tribution of edge weights in the network, (b) sizes of the 1-hop, 2-hop and 3-hop neighbourhoods.
(This figure is adapted from Figure 2 in Gumpinger et al. [256]).

of publication, the COSMIC data base contained 723 genes that were separated into two
tiers, indicating the evidence of the gene’s implication in cancer. Genes in Tier 1 show a
documented and reproducible activity relevant to cancer (576 genes), while genes in Tier
2 are considered to be newly emerging cancer genes that possess strong evidence to play a
role in cancer (147 genes). For the purpose of our supervised classification, we treat both
tiers equally, and assign the cancer driver gene class label to those genes that are either
in Tier 1 and Tier 2.

Bringing everything together — The final data set

Our goal is to derive a data set in the form of a graph, where nodes correspond to genes
and edges correspond to interactions. Furthermore, each node is equipped with a mutation
score and a label that identifies the gene as either a known cancer driver, or an unlabelled
gene. For this purpose we integrate the three data sources mentioned above, that is the
MutSig scores, the InBio Map network, and the COSMIC genes. We achieve this by first
removing all nodes from the network that cannot be represented with a MutSig score,
as well as removing all isolated nodes (i.e. those nodes with degree 0). This results in
a substantially reduced data set containing 11′449 genes and 349′311 interactions among
those. The average degree of the network, i.e. the size of the 1-hop neighbourhoods, is
reduced to 61.02 (±128.33). The sizes of the 1 to 3-hop neighbourhoods are illustrated
in Figure 8.3b. Out of the 349′311 remaining edges, 67′894 have a confidence score of 1
assigned to them (see Figure 8.3a for the distribution), and out of the 723 known cancer
driver genes, 635 are represented in the network.

Using the CGC genes as set of cancer drivers, we can observe a knowledge bias in the InBio
Map protein-protein interaction network: genes that are classified as cancer genes tend to
have higher degrees than unlabelled genes (see Figure 8.4a). Furthermore, genes that have
low MutSig p-values exhibit a slightly higher correlation with degree (Pearson correlation:
0.17) compared to the set of unlabelled genes (Pearson correlation: 0.10), as illustrated
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(a) Degree. (b) MutSig scores. (c) Degree –MutSig scores.

Figure 8.4.: Description of the TCGA data set after mapping MutSig p-values to the InBio Map
network. (a) degree distributions of nodes classified as cancer drivers (CGC), and unlabelled
nodes. (b) MutSig p-values of gene that are classified as cancer drivers (CGC) and unlabelled
genes; (c) correlation between degree and MutSig scores, for cancer driver genes (CGC, in dark
red), and unlabelled genes (light red). The R2 value corresponds to the Pearson correlation
between the degree and the MutSig scores. (This figure is adapted from Figure 2 in Gumpinger
et al. [256]).

in Figure 8.4c. While CGC genes tend to exhibit lower MutSig p-values compared to the
unlabelled genes, it is noteworthy that there exist CGC genes with high MutSig p-values,
hence those genes could not have been detected with the MutSig approach alone (see
Figure 8.4b).

The data set created as described above raises three challenges that have to be addressed
in order to enable a supervised prediction of cancer driver genes: (i) there is no well-
established set of non-cancer driver genes, i.e. a lack of a high-quality negative class;
(ii) the resulting data set is imbalanced, with approximately 5.9% of genes falling into
the ‘positive’ cancer driver gene class, and the remaining 94.1% falling into the class
of unlabelled genes; (iii) the data set shows some effect of knowledge contamination, i.e.
well established cancer driver genes exhibit on average higher degrees, such that the degree
could function as a confounder in the prediction.

To address the first and second challenge, we develop a sophisticated cross-validation
procedure that takes both aspects, i.e. the class imbalance and the lack of a negative
class, into account. This cross-validation procedure will be discussed in the following
section. The third challenge, i.e. the knowledge contamination is addressed by the moment
component in the proposed MoPro embeddings.

8.2.2. Experimental setup
8.2.2.1. Cross-validation procedure

To address the challenges imposed by the class imbalance and the lack of a negative class,
we develop a cross-validation procedure that is based on the repeated undersampling of the
majority class. This procedure has been shown effective in the absence of a negative class
label [259]. A schematic representation of the cross-validation procedure can be found in
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random split
Dl Du

(a)

(b)

genes

features

(c)
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Learn and evaluate classifier based on 

labelled data set.            
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5-fold CV to determine the 
best hyper parameters.

Result: best classifier 

Test set: Evaluation of      
(AUPRC, precision, recall, 
F1-score)

C
′

Classify 

unlabelled genes. 

Prediction set: 

apply classifier      
to obtain cancer 
status of 5’099 
genes.

(d)

C
′

Unlabelled 
genes (10’814)

Cancer 
genes (635)

Figure 8.5.: Illustration of the cross-validation procedure for one random split of the data
set. (a) The data set consists of 11′449 genes, each one is described by a fixed set of features.
635 genes have a cancer gene label assigned to them (dark red), while the remaining 10′814
genes are unlabelled. (b) The data set is randomly split into two sets, a labelled set Dl and
an unlabelled set Du. The 635 cancer genes form part of the labelled data set Dl, together
with 5′715 unlabelled genes. For the sake of training a classifier, those genes are assigned a
non-cancer gene label. (c) The data set Dl is used to train a classifier in a supervised fashion.
For this purpose, we do a stratified split into a cross-validation set containing 80.0% of Dl data,
and a 20.0% test split for the evaluation of the classifier. Hyperparameters are selected on the
cross-validation set using 5-fold cross-validation, and the best hyperparameters give rise to the
best classifier C′, whose performance is evaluated on the hold-out test split. (d) Eventually, C′
is used to predict the cancer status of the genes in the unlabelled data set Du. (This figure is
adapted from Figure 3 in Gumpinger et al. [256]).
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Figure 8.5 for one cycle of undersampling. The starting point is a data matrix containing
the 11′449 genes, where each of the genes is represented by a fixed set of features, generated
with the MoPro embeddings. That is, we have a data matrix D11449×p, where p indicates
the number of features. Furthermore we know that 635 of those genes are well-established
cancer driver genes (see Figure 8.5a). The cross-validation procedure consists of three
main steps:

Step 1 — Data splits: We start by splitting the data set D into two disjoint sets, a
labelled data set Dl and an unlabelled data set Du (see Figure 8.5b). The labelled set
Dl contains all 635 cancer genes, and a random sample of the 10′814 unlabelled genes.
To achieve this, we subsample the unlabelled genes such that the 635 cancer genes make
up 10% of the data, and the remaining 90% (corresponding to 5′715 genes) correspond to
genes that are not implicated in cancer. Since we are training a binary classifier, we assign
the cancer driver genes to the positive, and the remaining genes in Dl to the negative
class. We assume this to be the true label for the current random split of the data. The
data set Dl will be used in the next steps to train and evaluate a classifier, and we use the
classifier trained on Dl to predict the cancer status of the genes in the data set Du.

Step 2 — Training and evaluating the classifier: Next, the data set Dl will be used
to train and evaluate a classifier. At this stage, the data set Dl contains samples that
are assigned to one of two labels, and the positive class makes up 10% of the samples
in Dl. We generate a stratified 80/20 split of the data. We refer to the split containing
80% of samples as the cross-validation set. We use it to select hyperparameters of the
classifier with a 5-fold cross-validation scheme, and eventually train the classifier using
the best hyperparameters on the complete cross-validation set. We denote the resulting
best classifier as C′. The split containing 20% of the samples is referred to as the hold-
out test set. It is exclusively used to evaluate the performance of the classifier C′ with
respect to the area under the precision recall curve (AUPRC), precision, recall and F1-
score. Importantly, this hold-out test set is neither seen during training, nor used to select
hyperparameters, i.e. the cross-validation and test-set are kept separate at all times, such
that there is no information leakage.

Setp 3 — Prediction of cancer driver genes: In this last step, we use the classifier C′
obtained in the previous step, and predict the cancer status of the genes in the unlabelled
data set Du (see Figure 8.5d). By design of the cross-validation procedure, those samples
have not been seen during the hyperparameter selection process, during training, or during
evaluation.

The goal of our approach is to obtain a prediction for each of the 10′814 genes that are part
in the network, but are not contained in the set of CGC cancer driver genes. However,
with one iteration of the aforementioned procedure, only genes that are in the set Du

obtain a prediction. For this, and another reason that will become apparent in the next
paragraph, we repeat the cross-validation procedure multiple times for different random
splits of the data, and we denote this number of repetitions as nr. As a consequence,
(i) nr classifiers will be trained on different splits of the data set, (ii) nr classifiers will
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be evaluated on the respective test sets, allowing us to compute the mean and standard
deviation of the performance metrics, and (iii) each unlabelled gene will be classified with
a subset of those classifiers, corresponding to those iterations for which it was in the Du

set. We require at least five predictions for each gene, which leads to a minimum number
of nr = 11 iterations of the cross-validation scheme. In order to ultimately classify a
gene as a cancer driver, we take a majority vote across the predictions from the set of
classifiers for which the gene was in the prediction set. In the case of ties we resort to the
conservative prediction of no cancer gene. Importantly, as there exist no known labels for
those genes, we analyse them qualitatively.

With the above described cross-validation procedure, we set out to address two major
challenges inherent to the supervised prediction of cancer driver genes, that is (i) the class
imbalance, and (ii) the lack of a high quality negative class. The proposed undersampling
scheme results in a data set Dl for training and testing of a classifier, in which the class
imbalance is less severe than in the original data set, i.e. the positive class has a prevalence
of 10%. The nr repetitions of this random undersampling ensure that the results are not
confounded by sampling biases caused by the splitting of the data. The second challenge
is addressed by the assignment of the negative class to a random sample of the unlabelled
genes for each split (i.e. the unlabelled genes in the Dl set). Hence, in each split, the
classifier learns to distinguish cancer genes from this random set of unlabelled genes. This
is, however, a possibly incorrect assumption, as there might be yet-to-discover cancer
drivers among those genes. By repeating this cross-validation procedure nr times, we
address this incorrect assumption: due to the random splitting of the data, the distribution
of the ‘negative’ genes varies from split to split, such that the classifier C′i trained on the ith

split of the data learns the modalities of the negative genes in this current split. Intuitively,
the classifier focusses on those properties that distinguish cancer genes from unlabelled
genes in the current split, and those properties vary from split to split. Since every gene
is predicted with every classifier3, it might be classified as a cancer gene by some of the
classifiers, but not by others. Hence, the gene might be more similar to a cancer gene in
some aspects, and dissimilar in other aspects. The majority vote across multiple classifiers
consolidates the predictions across multiple splits.

8.2.2.2. Classification details

Using the data described in Section 8.2.1, we represent each node in the network us-
ing the MoPro embeddings on the − log10-transformed MutSig p-values, referred to as
MutSig scores in the following. We apply four state-of-the-art classification algorithms
for the prediction of the cancer driver status of the genes, that is logistic regression,
random forests, support vector machine, and gradient boosting, implemented in
the python-based scikit-learn library [260]. For all methods we optimise over a grid of
standard hyperparameters, as well as the following set of data and method-specific hyper-
parameters: (i) whether or not to include a scaling step into the classification pipeline,
(ii) whether to include the edge weights in the network for the MoPro embeddings (see
Section 8.1.2.4) and how to compute the higher-order weights ωk(u, v) between nodes u
and v, i.e. whether to use the mean or the maximum aggregation (see Section 8.1.2.4),

3Excluding those that were trained on the gene, i.e. whenever the gene was in the Dl set
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(iii) the number of propagation steps t as well as (iv) the number of k-hop neighbourhoods
to explore in the moment embeddings. For the last two parameters, we explore the fol-
lowing ranges: t ∈ {1, ..., 6}, k ∈ {1, 2}. We restrict the value of k to a maximum of 2, as
the in the InBio Map network, neighbourhoods of size 3 already span large parts of the
network (see Figure 8.3b). In case edge weights are used, we rescale the node-features (see
function f(·, ·) in Equation 8.11) by multiplying the MutSig score with the corresponding
edge weights. Since the MutSig scores correspond to − log10-transformed p-values, multi-
plying them with values in the range [0, 1] results in a reduction of the significance signal.
We would like to note that all the above parameters are treated as hyperparameters that
are optimised during training, and the best-performing hyperparameters are chosen on the
cross-validation set.

In order to evaluate the predictive performance of the classification we use the area under
the precision-recall curve (AUPRC), precision, recall, and the F1-score. Although the area
under the receiver operator characteristic curve (AUROC) is often used to evaluate the
performance of a binary classifier, it is not an appropriate metric in our setting. This is
due to the high class imbalance, and our primary interest in detecting the minority class,
i.e. the class of cancer driver genes. As a consequence, we report this metric, but would
like to note its difficult interpretation. Since the cross-validation procedure yields a set of
classifiers, one for each of the nr splits of the data, we also obtain performance metrics on
the test-sets in each split, and we report the mean and standard deviation across those
metrics. We furthermore report the number of novel cancer driver genes, i.e. those genes
that were predicted as cancer drivers, but are not contained in the set of CGC genes.

8.2.2.3. Comparison partners

We compare our proposed MoPro embeddings combined with the cross-validation proce-
dure to a variety of baseline methods. They can be broadly categorised into degree-based
baselines, MutSig-based baselines, and NetSig-based baselines.

8.2.2.4. Degree-based baselines

The degree-based baselines use only the degree as a feature for each gene, and aim at
predicting the cancer status of a gene based on this information alone. Those baselines
are supposed to show the knowledge contamination in the network. We use the node-
degree in two different settings, which we refer to as ranking and LogReg. In the ranking
setting, genes are ranked based on the degree, and the performance metrics are computed
for the ranking. Since there is only one ranking, no standard deviations are reported.
The second setting, LogReg, applies the proposed cross-validation procedure for a logistic
regression classifier. Hence, standard deviations can be reported.

8.2.2.5. MutSig-based baselines

The second class of baseline methods uses the MutSig statistic [233] as the key concept. As
for the degree-based baselines, the two settings ranking and LogReg are used (analogously
to the degree-based methods). Additionally, we use a Benjamini-Hochberg correction at
a false-discovery rate of 10.0% to determine significantly mutated genes, and predict those
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significant gene as cancer drivers. We compute evaluation metrics for this criterion, and
since there is only one resulting classification, there are no standard deviations reported.
Additionally, we apply two different methods based on network propagation to identify
novel cancer driver genes from the MutSig statistic, that is hierarchical HotNet [146],
as well a uKIN4 [148]. While the hierarchical HotNet method is a fully unsupervised ap-
proach, uKIN leverages labels of cancer genes during the propagation of the signal through
the network. In the case of hierarchical HotNet, we consider all genes in the largest
reported cluster as predicted cancer driver genes, hence we cannot report AUPRC. In the
case of uKIN, we implement the same cross-validation procedure as suggested in the orig-
inal publication, using 10 repetitions [for details on implementation, see supplementary
material in 256].

8.2.2.6. NetSig-based baselines

The last class of baselines is based on the NetSig statistic [32]. NetSig is a computational
method for the identification of cancer driver genes based on aggregating the MutSig scores
of a genes local neighbourhood in a network. As such, it is the most direct comparison
partner of our proposed MoPro embeddings. The NetSig method returns an empirical
p-value for each gene in the network, obtained from a permutation procedure of the node-
scores that corrects for knowledge contamination. We evaluate the NetSig p-values in three
different settings, that is ranking, LogReg and Benjamini-Hochberg. The evaluation is
identical as in the MutSig case.

8.2.3. Results
After establishing all theory and the experimental design, this section is devoted to the
quantitative and qualitative analysis of the MoPro embeddings combined with our cross-
validation scheme. We start with the quantitative analysis by reporting the performance
metrics obtained with our proposed approach and the baselines, and continue to evaluate
the robustness of our methods for different settings, and address the problem of knowledge
contamination. The last part of this section is devoted to the qualitative analyses of the
novel cancer driver genes that were discovered with our proposed approach.

8.2.3.1. Cancer gene classification with MoPro embeddings

The classification performances obtained are listed in Table 8.1, where Table 8.2a contains
the baseline results, and Table 8.2b contains the results of the classification with MoPro
embeddings. We evaluate the four classifiers on a range of hyperparameters as described in
Section 8.2.2.2, and report the best setting in Table 8.2b. We observe that all four classi-
fiers show similar performances with respect to AUPRC, with the exception of the random
forest classifier, which stays approximately three percent points behind logistic regression,
support vector machines and gradient boosting. Most importantly, we observe that the
combination of MoPro embeddings with the proposed cross-validation procedure consis-
tently outperforms all baseline methods. When focussing on AUPRC, the best baseline

4At the time of publication, the uKIN code was not yet available, such that we implemented the method
ourselves.
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Table 8.1.: Results of cancer gene classification for (a) the baselines and (b) the MoPro em-
beddings. AUROC is the area under the receiver operating characteristic, AUPRC is the area
under the precision recall curve. The last column with title novel indicates the number of de
novo cancer genes, i.e. those genes that are not contained in the set of cancer genes. The we
highlight the best-performing method with respect to AUPRC and AUROC in red. (This table
is adapted from Table 1 in Gumpinger et al. [256]).

(a) Results of baseline methods. The first column indicates the feature that was used to represent each
gene during classification, the second column indicates the method that was used for classification. In
case of LogReg, we used the cross-validation procedure described in Section 8.2.2.1 and fixed the recall
at 23.5%.

feature method AUROC AUPRC precision recall F1 novel

degree ranking 0.683 0.096 0.105 0.436 0.169 2368
degree LogReg 0.700 (0.006) 0.199 (0.007) 0.243 (0.012) 0.236 (0.000) 0.239 (0.006) 905

MutSig ranking 0.643 0.248 0.474 0.202 0.283 142
MutSig LogReg 0.620 (0.005) 0.312 (0.007) 0.552 (0.060) 0.236 (0.000) 0.330 (0.011) 243
MutSig BH 0.643 0.248 0.490 0.191 0.274 126
MutSig Hi. HotNet - - 0.137 0.111 0.123 444
MutSig uKIN 0.732 (0.016) 0.296 (0.037) 0.428 (0.097) 0.233 (0.004) 0.298 (0.027) 187

NetSig ranking 0.657 0.158 0.219 0.235 0.226 532
NetSig LogReg 0.674 (0.006) 0.275 (0.012) 0.278 (0.019) 0.228 (0.000) 0.250 (0.008) 704
NetSig BH 0.657 0.158 0.263 0.169 0.205 300

(b) Classification results for different classifiers using the proposed MoPro embeddings. The columns 2-5
indicate the hyperparameters that gave the best classification performance for each set of classifiers. t
and k are the hyperparameters of the MoPro embeddings, namely the number of propagation steps and
the neighbourhood degree up to which moments are computed, respectively.

method scale path t k AUROC AUPRC precision recall F1 novel

LogReg True - 3 2 0.799 (0.008) 0.434 (0.014) 0.572 (0.046) 0.236 (0.000) 0.334 (0.009) 202
SVM False - 6 2 0.793 (0.005) 0.431 (0.012) 0.584 (0.058) 0.236 (0.000) 0.336 (0.010) 198
RandFor True mean 3 1 0.781 (0.009) 0.396 (0.021) 0.560 (0.057) 0.234 (0.004) 0.330 (0.011) 193
GradBoost True max 3 2 0.796 (0.008) 0.437 (0.020) 0.636 (0.088) 0.236 (0.000) 0.343 (0.012) 150

comparison partner is the logistic regression of the MutSig statistics (AUPRC=31.2%),
followed by the uKIN approach (AUPRC=29.6%). The best baseline with respect to AU-
ROC is logistic regression on the node degree (AUROC=70.0%). The fact that predicting
only on the degree achieves such a performance hints towards the presence of knowledge
contamination in the network, and we devote Section 8.2.3.4 to the discussion of this bias
in the light of MoPro embeddings. With the MoPro embeddings, AUPRC values of up to
43.7% can be achieved with gradient boosting, and we observe similar trends for the AU-
ROC values. This constitutes a major improvement compared to the baselines. A general
trend that becomes apparent when looking at the results is that incorporating the knowl-
edge about established cancer driver genes results in an improvement of performance. This
is the case for the classical supervised machine learning setting that is at the heart of our
cross-validation scheme, as well as for the uKIN method, that exploits this information in a
semi-supervised way. Furthermore, our results indicate that networks contain information
that is helpful when predicting the cancer driver status of genes. We can see this by the
performance gain of network-driven methods compared to methods that do not consider
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(a) (b)

Figure 8.6.: Dependence of classification performance on cross-validation hyperparameters. We
evaluate a set of logistic regression classifiers with hyperparameters as in Table 8.2b. (a) AUPRC
upon varying the number of random data splits nr in the cross-validation procedure, and there-
fore also the number of classifiers. (b) Evaluation metrics as a function of the training size.
(This figure is adapted from Figure 4 in Gumpinger et al. [256]).

network information, such as logistic regression of the MutSig p-values.

For all the analyses in Table 8.1 the classification threshold was chosen such that the recall
matched the recall obtained by ranking the NetSig scores, i.e. at a value of approximately
23.5%. Compared to the NetSig approach, MoPro embeddings achieve an up to three-
fold improvement in precision at the same recall (NetSig: 21.6%, GradBoost: 63.6%).
The best performing baseline with respect to precision is logistic regression of the MutSig
scores, and achieves values of 55.2%, i.e. approximately eight percent points lower that
what we observe with the MoPro embeddings.

The optimisation of data-specific hyperparameters yields that at least three propagation
steps enables the best classification. All methods with exception of the random forest clas-
sifiers worked best when exploring moments of the 2-hop neighbourhoods. Edge weights
do not result in an improved classification performance for logistic regression and support
vector machines, but are useful in the tree-based approaches, i.e. random forests and
gradient boosting. While random forests achieve better performance when averaging path
weights, in the case of gradient boosting it appears beneficial to aggregate path weights
using the maximum function (see Equation 8.12), such that we cannot determine a clear
pattern of which aggregation is superior.

8.2.3.2. Dependence on cross-validation parameters

Next, we set out to analyse the dependence of the results on two hyperparameters of
the cross-validation scheme, that is the number of data splits nr, as well as the size of
the training data set. In the results presented in Table 8.1, all results are obtained from
nr = 11 splits of the data into the labelled set Dl and the unlabelled set Du. We evaluate
the performance of logistic regression using the MoPro embeddings, and vary the number
of data splits nr in the range from [5, 500]. All other data specific parameters, such as
the number of propagation steps t or the neighbourhood degree k remain fixed to the
values in Table 8.2b. We evaluate the resulting performance with respect to AUPRC, and
visualise the results in Figure 8.6a. We observe that the classification performance is not
affected by changes in the parameter nr. We would like to note that the slight decrease
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Table 8.3.: Results of the ablation study for the set of logistic regression classifiers. In propaga-
tion only, the node feature is propagated, but no moment embedding is computed. In moments
only, moments are computed, but no propagation embedding is computed. The first row repeats
the baseline results (MoPro embeddings) for comparability reasons. (This table is adapted from
Table 2 in Gumpinger et al. [256]).

setting method AUROC AUPRC
MoPro embeddings LogReg 0.799 (0.008) 0.434 (0.014)
propagation only LogReg 0.717 (0.006) 0.348 (0.010)
moments only LogReg 0.772 (0.007) 0.406 (0.011)

in performance of approximately 2% is due to fixing the data hyperparameters.

The results of the second analysis, that is the effect of the training set size on the classifi-
cation performance, is visualised in Figure 8.6b. In the proposed cross-validation scheme,
and the results in Table 8.1, the training set contains 4′064 samples. This number is
defined by the 5-fold cross-validation (the cross-validation set contains 5′080 genes, such
that during 5-fold cross-validation 4′064 genes are used for training, and 1′016 for vali-
dation). In this experiment, we reduced the number of training samples to values in the
range [10, 4′000], and evaluate the classification performance with respect to AUROC and
AUPRC. We observe a steep increase in the performance metrics for up to 1′000 training
samples, and a saturation in performance when using more than a 1′000 samples. Those
results indicate that at least 1′000 samples are necessary to represent the data distribution,
and successfully classify the genes.

8.2.3.3. Ablation study

The proposed MoPro embeddings are a composition of two node embeddings, that is the
moment, and the propagation embeddings. We conduct an ablation study in which we
remove one of the two components, and evaluate the classification performance. The goal
of this is to understand to what extent the two embeddings contribute to the improved
performance. The results of this ablation study can be found in Table 8.3. Upon removing
moments, and only propagating the MutSig scores through the network (setting ‘propa-
gation only’), we observe a drop in classification performance with respect to AUPRC of
approximately eight percent points. When generating node features via moments, but
not propagating those through the network (setting ‘moments only’), the observed drop
in performance is less severe, with only about three percent points. This leads us to the
following conclusions two conclusions: (i) describing genes by their neighbours in the net-
work using moments of the feature distribution results in a significant gain of classification
performance, and (ii) while the propagation alone only leads to a minor improvement of
classification performance compared to the best baseline, it is the combination of both,
the computation of the moments followed by propagation, that gives the best classification
performance.
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Figure 8.7.: The first four moments in the 1-hop neighbourhood for all nodes in the network,
plotted against the respective node degree. Dark red markers correspond to the 635 cancer genes,
light red markers to the unlabelled genes. The R

2-value corresponds to the Pearson correlation
between the respective moment and the degree. All moments were normalised to the range [0, 1]
for the ease of visualisation. (This figure is adapted from supplementary Figure S1 in Gumpinger
et al. [256]).

8.2.3.4. Addressing knowledge bias in networks

As a last analysis of our results we are interested in how knowledge contamination is
addressed. We stated earlier that the moment embeddings address this issue, as they
describe the distribution of node features. However, empirically we find that especially
the third and fourth moments are correlated with the degree of a node (see Figure 8.7),
as the estimation of skewness and kurtosis becomes more accurate with increasing sample
sizes. As a result, the degree could potentially work as a confounder. Importantly, we
observe that cancer genes and unlabelled genes cannot be distinguished based on the
moments, i.e. the positive correlations are present for both labels equally. We furthermore
analyse those genes that were predicted as cancer driver genes with the logistic regression
classifier, and observe that the degree distribution follows the degree distribution of the
CGC cancer genes (p = 0.06, with a Kolmogorov-Smirnov test that assesses whether the
degree distributions are significantly di�erent), i.e. cancer genes are found within high- and
low-degree nodes (see Figure 8.8). This result leads to the conclusion that our proposed
approach empirically addresses the knowledge contamination present in the InBio Map
network.
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8.2.3.4. Addressing knowledge bias in networks

As a last analysis of our results we are interested in how knowledge contamination is
addressed. We stated earlier that the moment embeddings address this issue, as they
describe the distribution of node features. However, empirically we find that especially
the third and fourth moments are correlated with the degree of a node (see Figure 8.7),
as the estimation of skewness and kurtosis becomes more accurate with increasing sample
sizes. As a result, the degree could potentially work as a confounder. Importantly, we
observe that cancer genes and unlabelled genes cannot be distinguished based on the
moments, i.e. the positive correlations are present for both labels equally. We furthermore
analyse those genes that were predicted as cancer driver genes with the logistic regression
classifier, and observe that the degree distribution follows the degree distribution of the
CGC cancer genes (p = 0.06, with a Kolmogorov-Smirnov test that assesses whether the
degree distributions are significantly different), i.e. cancer genes are found within high- and
low-degree nodes (see Figure 8.8). This result leads to the conclusion that our proposed
approach empirically addresses the knowledge contamination present in the InBio Map
network.
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Figure 8.8.: The degree distribution of the 202 novel cancer driver genes predicted with logistic
regression using the MoPro embeddings. The boxplots show the degree distributions of the CGC
cancer genes (dark red), the unlabelled genes (light red), and the predicted genes (white). (This
figure is adapted from supplementary Figure S2 in Gumpinger et al. [256]).

8.2.3.5. Qualitative evaluation of novel genes

Following the quantitative analysis of the results, we now focus on the qualitative analysis
of the genes that were detected with the MoPro embeddings. To this end, we generate
a set of consensus genes to focus on. The consensus set consists of those genes that
were predicted as novel cancer drivers by any of the four classifiers logistic regression,
support vector machine, random forest and gradient boosting5. The resulting consensus
set contains a total of 50 candidate genes. Out of those 50 genes, 31 were significant
according to MutSig (p = 8.04 × 10−42), 10 were significant according to NetSig (p =
1.07 × 10−6), and 12 were detected with hierarchical HotNet (p = 2.04 × 10−7). The
p-values are computed with a hypergeometric test, and measure whether the consensus
set is significantly enriched with MutSig, NetSig, and hierarchical HotNet genes. We
remove the genes detected with those baselines from the consensus set. As a result, the
final consensus set containing our suggested candidate cancer driver genes consists of 14
novel genes, for which we conducted a literature review for evidence of links between the
genes and cancer.

Three genes, namely GATA4, ID2, and FOS, were found to have a direct link to tumouri-
genesis in humans. GATA4 is a transcription factor that negatively regulates the normal
astrocyte6 proliferation. It appears to be a driver in glioma formation and fulfils the
hallmarks of a tumour suppressor gene in Glioblastoma Multiforme [261]. Kijewska et al.
[262] identified ID2 as a key regulator of breast cancer metastasis to the brain. It has been
found up-regulated in brain metastasis, and elevated ID2 levels in breast cancer patients
are linked to an increased risk of developing metastatic relapses in the brain. Lastly, the
transcription factor FOS is implicated in the pathogenesis of bone tumours [263]. It has
been shown to exhibit recurrent rearrangements in Osteoblastoma.

Five other genes (ACVR1B, CASP10, RAP1A, MYLK, CSNK1A1) exhibit strong links to

5The sizes of the set of novel cancer drivers for each individual method can be found in Table 8.2b, column
‘novel’.

6An astrocyte is a star-shaped cell type that can be found in the brain and spinal cord.
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tumours relevant behaviour in cells, and pathways involved in tumourigenesis. The gene
ACVR1B (also known as ALK4) interacts with activin-A, and is associated to tumouri-
genesis via this interaction [264, 265]. The gene has furthermore been shown to exhibit
somatic mutations in pancreatic cancers [266]. The CASP10 gene initiates cell apoptosis,
such that inhibition of CASP10 effects apoptosis [267], which constitutes one of the hall-
marks of cancer. The RAP1A gene is a member of the RAS oncogene family, and promotes
cell migration an invasion, and has been linked to metastasis in oesophageal cancer [268].
MYLK (also known as MLCK) plays important roles in cell migration and tumour metas-
tasis in breast [269] and colon cancers [270]. The CSNK1A1 gene is a member of the CK1
kinase family and regulates the autophagic pathway in RAS-driven cancers. Experiments
that knocked-out the gene showed cell death in Multiple Myeloma [271, 272].

We analysed the remaining six genes CASP1, CASP14, RBL1, HNF4A, RALA, and
DLGAP2, and found weaker links to cancer for all but DLGAP2, for example via expres-
sion or pathway membership [273–277]. However, we could not find a clear experimental
evidence of their implication in cancer. For the DLGAP2 gene we could not find any
evidence.
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Discussion
The focus of this chapter was the development of a novel approach for the network-guided
detection of cancer driver genes from genetic mutation scores. While there exists a plethora
of methods for the identification of those so-called cancer driver genes with the help of
molecular networks, most approach this problem from an unsupervised perspective [32,
143–146], e.g. by exploiting principles of network propagation [65]. In this project, we
aimed to identify cancer driver genes by adopting a supervised classification perspective.
We achieved this by integrating the MutSig scores [233] with a protein-protein interaction
network [25, 257] and with a set of well-established cancer driver genes, namely the genes
collected by the Cancer Gene Census [236]. This set of cancer genes can be leveraged by
reformulating the task of identifying cancer driver genes as a supervised classification task.
In that sense, we are learning from what we already know: by incorporating information
about the feature distributions of cancer driver genes, we can learn from those distributions
to perform the prediction task.
To achieve the supervised classification, each gene has to be represented by a set of fea-
tures. The main contribution in this project is a novel node-embedding which we call
moment propagation embedding, short MoPro embeddings, that creates representations of
each gene based on somatic mutation scores and the topology of the molecular network
representing interaction effects between genes. Specifically, the MoPro embeddings consist
of two components. The first component is the representation of each gene by the distri-
bution of mutation scores of its k-hop neighbourhood in the network. Instead of working
on the distributions directly, we represent the core-properties of each distribution by its
first four moments, that is the mean, variance, skewness and kurtosis of the feature dis-
tributions. This constitutes a computationally efficient way of representing distributions
for the classification task. The second component is inspired by procedures such as the
Weisfeiler-Lehman aggregation [187] of features in a network, or network propagation [65],
which inspired the name propagation embedding. The idea is that across a fixed number
of propagation steps, the feature vector of each node in the network is updated based on
the feature vectors in its local neighbourhood. The composition of those two components
yields the MoPro embeddings, and we use those as features for the supervised classification
of the genes in the network.
The reformulation as a supervised classification task bears two major challenges: (i) due
to the small number of known cancer driver genes compared to the entirety of genes in
protein-protein interaction networks, the data is highly imbalanced, and (ii) while the
CGC genes provide us with a high-quality ‘positive’ class, we do not have a high-quality
‘negative’ class. In theory, each gene in the network is a potential cancer gene candidate.
To address both challenges, we developed a sophisticated cross-validation scheme that
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relies on a repeated undersampling of the majority class, i.e. those genes that have not
been identified as cancer driver genes by the CGC. This results in a different data set for
each repetition. As we train a separate classifier for each of those data sets, we obtain
a set of classifiers, each focussing on properties of the cancer genes of the current data
set. This undersampling has the advantage of (i) reducing the class imbalance, as we can
influence this by the undersampling rate, and (ii) for each repetition and resulting data
set, the classifier learns to distinguish cancer driver genes from unlabelled genes.

We applied the MoPro embeddings combined with the proposed cross-validation using four
well-established classification algorithms scheme to discover novel cancer driver genes in
a TCGA cancer data set. We compared our proposed approach to a variety of baseline
methods, some of which identify cancer driver genes in an unsupervised setting, while
others exploit the knowledge about the cancer driver status of genes. Those analysis indi-
cated that methods which exploit the known cancer status of genes lead to an improved
performance. We also compared our approach against two well-established network-guided
methods, namely hierarchical HotNet [146] and NetSig [32], as well as a recently pub-
lished network-propagation approach called uKIN. uKIN, in addition to propagating muta-
tion scores, also propagates class labels through the network [148]. We observed that uKIN
is superior to the other two network-based methods, hence corroborating our above con-
clusion that including prior-knowledge in the form of known cancer driver genes improves
performance.

We furthermore analysed different aspects of the model, such as the dependence on cross-
validation hyperparameters. Those analyses showed the robustness of the predictive per-
formance to the number of undersampling iterations in the cross-validation procedure.
Furthermore, we evaluated the dependence of the performance metrics on the number of
samples in the training set, and found that a training set size of 1′000 samples constitutes
the lower bound to guarantee a satisfactory predictive performance. An ablation study
showed that the main improvement in predictive performance is presumably caused by the
representation of genes based on moments of feature-distributions in its neighbourhoods,
and to a lesser extent by applying the network propagation step. One important aspect
when working with molecular networks in the context of cancer is the so-called knowledge
contamination, i.e. the phenomenon that well-studied cancer genes tend to have more
neighbours in those networks. In the light of classification, this implies that the degree
potentially constitutes a confounder. We observed that this is indeed the case in the InBio
Map network, as predicting based on the degree already achieved a high performance with
respect to the area under the receiver operating characteristic. We empirically found that
the proposed moment embeddings address the knowledge contamination in the network,
and that the degree-distribution of the predicted genes follows the degree-distribution of
the known cancer driver genes.

We concluded our analyses with a qualitative evaluation of a set of consensus genes that
were detected using the MoPro embeddings. This set consisted of 50 genes, and contained
both genes that could be discovered with established methods such as MutSig, NetSig,
or hierarchical HotNet, as well as 14 ‘novel’ cancer driver genes that none of those
methods were able to discover. Through a literature review of those 14 novel genes, we
found evidence for their implication in cancer for all but one gene, and for three of those
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genes, we found strong evidence. This shows the power of our proposed approach to
discover biologically meaningful novel cancer driver genes, and the set of proposed cancer
drivers constitutes a promising target for future biological validation.

In conclusion, we proposed a framework to generate network-derived features that enable
the supervised classification of cancer driver genes by applying a sophisticated cross vali-
dation procedure. This cross-validation scheme addresses the class imbalance and lack of
a high-quality negative class, induced by the small number of cancer drivers in comparison
to the body of all genes. The proposed node embeddings address the problem of knowl-
edge contamination in the network, and enable in combination with the cross-validation
procedure a robust classification of cancer driver genes. Combining both, we were able
to identify novel, and most importantly biologically meaningful, cancer driver genes, that
constitute promising targets for follow-up experiments.

Outlook
Cancer is a widespread disease and among the leading causes for death [215] across most
age groups. Due to its prevalence in the human population and the global health chal-
lenges it imposes, combating cancer has become one of the biomedical goals of the century.
To achieve this goal, collecting and sharing of data, knowledge and information is indis-
pensable. To this end, various large-scale collaborative projects, such as The Cancer
Genome Atlas, the International Cancer Genome Consortium [278] and the Cancer Gene
Census [236] aim at sharing a variety of cancer-related data with the research community.
Cancer is a genetic disease that it is predominantly caused by the aggregation of genetic
aberrations during an individual’s lifespan. Hence, one major mode of analysis in cancer
related research focuses on the analysis of tumour genomes compared to matched normal
tissues, with the goal to identify genes that are, upon alteration, linked to the development
and progression of cancer. Those genes constitute promising candidates for diagnostic
and therapeutic development. A plethora of computational and statistical tasks for this
purpose has been developed over the past 20 years, and lead to the discovery of novel genes
implicated in cancer. Recently, methods that incorporate interaction information between
genes derived from molecular networks into this process have shown great successes [32,
146, 148].
This part of the thesis was devoted to the description of an approach that integrates genetic
mutation scores with molecular networks for the supervised prediction of cancer driver
genes and as such differs from most established methods in that it leverages information
on well-known cancer driver genes. There exist various directions for further research,
focussing either on technical aspects of the method, or on biological ones. We discuss
those directions in the following.

Representation of distributions

The main contribution of this project was the derivation of novel node embeddings, which
we gave the name moment propagation embeddings (MoPro embeddings). They constitute
a two-step approach that first describes the gene by the distribution of features in its k-hop
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neighbourhoods. We described those distributions via their first four moments. The second
step is inspired by a network propagation, i.e. the moments are successively propagated
through the network. An ablation study showed that the main improvement of predictive
power compared to baselines can be attributed to the computation of the moments, rather
than the propagation step. Hence, information that is helpful during prediction appears to
be contained in the neighbourhood distributions. While the representation via moments
is computationally appealing, there exist other options to achieve the classification of
two genes based on their neighbourhood distributions. One compelling concept is that of
optimal transport [279]. Togninalli et al. [280] developed a family of graph kernels called
Wasserstein Weisfeiler-Lehman graph kernels. They are based on Wasserstein distances
for the classification of graphs, and their idea can be readily extended to the task of node
classification.

The intuition underlying the Wasserstein distance is the computation of a distance between
two probability distributions by finding the cheapest way to move all the probability mass
of one distribution to match the second distribution. Intuitively, this distance will be
small for distributions that exhibit similar probability masses, and larger for distributions
whose probability masses are very dissimilar.

In our setting, each gene can be represented by feature values in its k-hop neighbourhood
in the molecular network, constituting a random sample from the underlying probability
distribution. The Wasserstein distance for discrete distributions, proposed in [280, Equa-
tion (2)], can hence be used to compute pairwise distances between the genes, resulting
in a kernel matrix that can be subjected e.g. to a support vector machine for the classi-
fication of the genes. This classification is compatible with the cross-validation procedure
described in this project, hence challenges caused by class imbalance and lack of a nega-
tive class can be addressed in the same way. One major impairment of the Wasserstein
Weisfeiler-Lehman kernels proposed in [280] is the computational complexity of the anal-
ysis. However, in case of our cross-validation procedure all pairwise distances would have
to be precomputed only once, as the cross-validation does not affect the distances.

Graph convolutional networks

The proposed MoPro embeddings constitute a way of representing each gene in a molec-
ular network by a set of features. The computation of those features is defined by the
propagation of moments that describe the k-hop neighbourhoods of nodes through the
network. While there are some hyperparameters to the generation of the features, such as
the number of k-hop neighbourhoods to explore or the number of propagation steps, the
feature generation process is completely deterministic given those parameters.

An exiting direction of further research is to deviate from this deterministic approach, and
move towards a setting in which the embeddings are learned in an end-to-end manner to
improve the prediction of nodes. This idea is at the core of graph neural networks [reviewed
in 281], an area of deep learning that gained a lot of traction over the last couple of years.
The gist of those methods is the classification of graphs, or of nodes within one single
graph, by learning graph (or node) representations that incorporate the network topology
as well as node-level information. One prominent member of this group of methods are
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graph convolutional networks (GCN) that generalise the concept of convolution underlying
convolutional neural networks (CNN) to the graph domain. The main idea is to represent
each node in a network by aggregating its own feature with features from its neighbours
in the network, and there exists a rich body of literature how this aggregation can be
achieved [see 281, Table 3].

Especially the semi-supervised approach to train graph neural networks proposed by Kipf
& Welling [188] appears promising in our setting. The proposed GCN aims at the classi-
fication of nodes in a network, where labels are only available for a small subset of nodes,
which they refer to as semi-supervised classification. The resemblance of this task to our
problem statement in supervised cancer gene classification is conspicuous. While Kipf &
Welling [188] proposed a GCN with layers as first-order approximations of spectral graph
convolutions [282], the idea of training a GCN in a semi-supervised fashion can readily be
translated to any other GCN architecture.

In the context of cancer driver gene prediction, we envision the representation of nodes
in a network by a features, such as mutation scores. In case other node-level features,
such as structural properties of genes, or deleteriousness scores, are available, those could
be readily integrated. Next, those features can be superimposed to nodes in a molecular
network and be used as input to a GCN. Training the GCN in the semi-supervised manner
proposed by Kipf & Welling [188], thereby learning the node representations instead of
defining them, appears as a compelling direction of future research.

Representation of genes

In this project, we initially represented each gene in a network by its MutSig statistic [233]
which measures frequency, clustering and functional impact of somatic mutations in the
gene. When superimposing those scores on the network, the resulting weighted network
represents the distribution of mutational patterns across human gene-gene-interactions.
This vertex-weighted network is then subjected to the proposed moment propagation
embeddings, such that the resulting embedded node features represent this distribution of
mutational patterns across the network, without explicitly requiring the network topology,
thereby enabling the classification with off-the-shelf machine learning algorithms.

There are other statistics and methods to measure the functional or structural impact of
somatic mutations, and we reviewed some of those methods in the introduction (Section 7).
By the initial representation of a gene with a score, we determine our prior hypothesis
about the emergence of cancer, and by changing the score, we thus also change our prior
assumptions. Hence, while the MutSig scores are clearly a well-established tool for the
representation of the degree to which a gene is involved in cancer, it might well be the
case that genes which drive tumourigenesis via different processes, such as structural
modifications of the protein, are missed. Applying the moment propagation embeddings
with a different initial score might hence shed light on genes that drive cancer by different
mechanisms. Along those lines, a single gene can also be represented by more than one
feature, and the can still be computed in this setting. The combination of multiple somatic
mutation scores might lead to a more holistic description of the mechanisms underlying
cancer.
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One could take this even one step further: while somatic point mutations unarguably
harbour potential to drive cancer development, other types of genetic aberrations have
been linked to the malignant transformation of cells as well. Examples are translocations,
deletions, copy number variations, or the fusion of genes [254]. Including this type of in-
formation into the generation of the moment propagation embeddings of genes constitutes
a promising line of future research.

Cancer subtype analysis

In this chapter, we focussed on the pan-cancer analysis of TCGA tumour profiles. This
implies that all tumour profiles were combined and analysed jointly, irrespective of the
tumour subtype. However, the TCGA does not only provide the tumour profiles, but
also a classification of each tumour into 33 tumour subtypes. Similarly, the Cancer Gene
Census annotations of known cancer drivers contain not only well-established cancer genes,
but also the tumour type the genes were implicated in, such that the data for a tumour-
subtype-specific analysis is readily available.

While a pan-cancer analysis sheds light on the genetic causes that are shared by many
tumours, it might gloss over details for each of the subtypes. It is a well-established
fact that different tumour types are driven by alterations of different genes, and while a
gene might be found to be heavily mutated in one cancer type, the same gene might not
be significantly mutated for another type [254]. Furthermore, different tumour subtypes
exhibit highly heterogeneous mutation rates, for example melanomas and lung tumours
typically exhibit high numbers of non-synonymous mutations1, while paediatric tumours
and leukaemia are less frequently mutated [254].

Especially from a diagnostic and therapeutic viewpoint, disentangling the genetic causes
underlying specific tumour types is of utmost importance. It allows for the administration
of so-called targeted cancer therapies [283] that inhibit cancer growth by interfering with
specific molecular targets. The development of such a targeted anticancer treatment is at
the heart of personalised cancer treatment: based on the mutational patterns of an individ-
ual’s tumour, driver genes can be identified and targeted with specific drugs. For example,
the cancer drug Vemurafenib targets a mutation of the BRAF protein that is often present
in melanomas, and is administered to patients with inoperable or metastatic melanomas
with this mutation [283]. As opposed to standard generic therapies such as chemotherapy
that exhibit cytotoxic effects on fast-growing and dividing cells, those targeted therapies
are often cytostatic, i.e. they block the proliferation of tumour cells. Those drugs can be
developed by identifying the molecular targets (i.e. cancer driver genes), and developing
a drug that interferes with the target’s potential to drive tumourigenesis [283]. Hence,
understanding the genetic causes underlying individual tumour subtypes can spark the
development of anticancer drugs that target the respective cancer driver, and hold great
potential for the personalised treatment for all forms of cancer.

1A mutation that alters the amino acid sequence of the protein product.
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Discussion and outlook – Learning
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Context and overview
This concluding part of the thesis is devoted to the discussion of (graph-) structured data.
It starts with a short digression into another form of structure that often underlies data,
namely time-structure, and we briefly describe a contribution of the thesis’ author to this
topic in the field of synthetic biology.
While the general theme of this dissertation was the implication of molecular networks to
decipher the genetics underlying complex traits, contributions were made to two particular
areas, that is the implication of molecular networks in genetic association studies in Part II,
and in the discovery of cancer driver genes in Part III. We discussed each of those topics
in detail, and provided a specific outlook at the end of those two parts (see Chapter 6 and
Chapter 9). Here, we would like to briefly summarise the main gist of the contributions
in the light of network-biology.
The remainder of this thesis describes recent trends and challenges in learning from graph-
structured data, and we conclude with a brief statement about their inclusion into the
analysis genetics underlying complex traits and diseases.
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10.1. Time-structured data
The focus of this dissertation was to leverage molecular networks to unravel the genetics
underlying complex traits. Consequently, the thesis was centred around the concept of
graphs. However, there is another important form of structure that can underlie data,
namely a time-resolution [284]. This is the case in various disciplines, including economy,
physics, medicine, and biology. In the following, we will focus on the latter two groups,
medicine and biology.

An important field of research is the analysis of medical time series, as they allow for the
early prediction of events in patients. Those time series commonly track the development
of physiological variables of patients over time, which includes measurements such as heart
rate, blood pressure and temperature. Hyland et al. [285] have shown the value of this
type of data for the early prediction of circulatory failure in patients in the intensive care
unit, and algorithms that aim to discover patterns in medical time series are an active
field of research [186, 286].

Biological time series commonly measure cellular properties, such as cell morphology or
fluorescence1 over time. This data can be obtained from optical measurements, for ex-
ample from microscopy images, both for single cells and whole cell cultures [287]. This
constitutes a compelling approach, as most biological processes are governed by defined
spatio-temporal dynamics. In consequence, end-point measurements of cellular properties
are not always sufficient and are prone to losing important information.

One interesting application is to measure gene expression over time as a response to DNA
alterations, thereby addressing the question to what extent a modified genetic sequence
leads to a change in gene expression over time. Answering this question requires a data set
that links genetic sequences to a time-resolved curve that measures the gene expression
given the genetic sequence. This type of data opens the door to an exciting machine
learning task, namely the prediction of function from sequence. However, such an approach
also raises a challenge with respect to experimental design: the choice of the time points
at which measurements should be taken, such that the dynamics are still represented
without losing important information. Our collaborators Dr. Markus Jeschek, Prof. Dr.
Kobi Benenson and Simon Höllerer developed a novel approach to enable these kinds of
measurements in Escherichia coli, short E. coli, and the authors of this thesis contributed
to the experimental design regarding the time series. We briefly outline this contribution
in the following section, and refer to the original publication for an in-depth description
of the whole project:

1Where fluorescence could be linked to the expression of a specific gene.
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Höllerer, S., Papaxanthos, L, Gumpinger, A.C., Fischer, K., Beisel, C.,
Borgwardt, K, Benenson, Y., and Jeschek, M.. Large-scale DNA-based phe-
notypic recording and deep learning enable highly accurate sequence-function
mapping. In press at Nature communications (2020), bioArxiv preprint: [288].

Optimising sampling times for sequence to function mapping in synthetic biology

A major challenge in biology is to understand the effect of genetic modifications of gene-
regulatory elements (GREs) on gene expression. Existing protocols focus on finding genetic
variants that exhibit desired properties, such as expression of a specific gene in a target
range, rather than systematically exploring the vast space of variants. This is mostly
achieved by expensive multi-step screening experiments that (i) generate libraries con-
taining hundreds of thousands of modified GREs at random, (ii) transform or transfect
those modified GREs back into cells, (iii) select cells that show the desired behaviour, e.g.
based on fluorescence, and (iv) sequence the genetic code of those variants. This commonly
results in data sets containing the genetic sequences of tens to hundreds of cells, combined
with their respective functional readout. While those experiments might result in genetic
variants that exhibit the desired properties, they are insufficient to foster a comprehensive
understanding of the genetic landscape underlying gene expression, as they are are limited
to a few hundred variants. Höllerer et al. [288] developed an innovative genetic construct
to address those limitations. It is based on recording the phenotype on the same DNA
molecule as the genotype, such that genotype and phenotype can be determined in a single
sequencing read. Using next-generation sequencing NGS, this approach enables the gen-
eration of large-scale sequence-function data sets. These can be leveraged in combination
with deep learning, not only to predict function from sequence, but also to enhance our
understanding of the genetic mechanisms that give rise to the function.

The core of the approach is a three-component genetic construct, consisting of a site-
specific DNA recombinase (modifier), a GRE that controls the expression of the recombi-
nase (diversifier), and the recombinase substrate (discriminator). All three components
are all located on the same DNA molecule. The modifier element alters the genetic se-
quence of the discriminator, such that the discriminator can only exist in one of two
mutually exclusive states, native or modified, corresponding to the phenotype. The diver-
sifier, which in our context is the genotype under investigation, regulates the expression
of the modifier. As a consequence, the genotype and the phenotype (i.e. the discrimina-
tor in its innate or flipped state) can be read off the same DNA molecule. This genetic
construct was named uASPIre (ultra-deep Acquisition of Sequence-Phenotype Interrela-
tions). Importantly, the modification of the discriminator results in a binary phenotype on
the level of single DNA molecules. However, by repeating this for many DNA molecules
that share the same diversifier, we can compute the fraction of flipped discriminators for
the given sequence at a specific time point. A time component can be added by taking
measurements at various time points after initiating the experiment. As a result, for one
diversifier, or genotype, we can obtain a time-series like curve that represents the fraction
of flipped diversifiers over time, which we refer to as the modifier’s flipping profile. Intu-
itively, ‘strong’ genotypes will result in curves that quickly reach 100.0% flipping, while
‘weaker’ phenotypes result in less steep curves.
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The DNA molecules that contain the genotype and phenotypes obtained with uASPIre can
be sequenced leveraging high-throughput next-generation sequencing techniques. How-
ever, since the number of DNA molecules that can be analysed in one next-generation
sequencing run is limited, various design choices have to be made to guarantee a high
quality of the resulting genotypes and flipping profiles, while maximising the number of
investigated sequences. One of the most important design principles is the optimal se-
lection of sampling points, which determines the granularity of the resulting time series.
While high numbers of samples increase the dynamic resolution, they use up more ca-
pacities during sequencing. Hence, our goal was to reduce the number of samples, while
preserving the flipping dynamics.
This optimisation was done in a first proof-of-principle experiment in E. coli. The serine
recombinase Bxb1 was chosen to be the modifier, and the GRE was a library of ribo-
some binding sites (RBS) which control the expression of Bxb1. The proof-of-principle
library contained roughly 10′000 sequences and was subjected to the uASPIre workflow
[288]. Flipping profiles of all 10′000 genetic sequences were recorded over 24 hours with
18 sampling points. To further increase the throughput of uASPIre, a reduction of sam-
pling time points was necessary. Hence, we optimised the sampling regime to reduce the
number of sampling times by applying a greedy search strategy. It consists of a multi-step
procedure that first approximates each flipping profile by a logistic function to account for
measurement noise, and fixes the first time sample at the time of induction, and the last
sample at 720 minutes after induction. Subsequently, the following steps were repeated
iteratively, until 18 time points were chosen: (i) find the next time point that, when added
to the sampling regime, reduces the average error between the fit to each profile, and the
linear approximation through the currently chosen sampling times, the most, and (ii) add
that time point to the sampling regime, and return to (i). This led to a set of nine time
points, that were used for the next large-scale experiment. This sampling optimisation2

was performed in second large-scale RBS experiment, that resulted in a data set of 303′503
RBSs and their respective flipping profiles, constituting over 2.7 million sequence-function
pairs. Notably, this increase in throughput was achieved without changing the NGS device
or protocol.
This large-scale data set of unprecedented size was subsequently exploited to train a deep
neural network, named SAPIENs, for the quantitative prediction of function from se-
quence. SAPIENs was able to confidently predict RBS activity, and consistently outper-
formed off-the-shelf machine learning classifiers. Analysing the model in greater detail
shed light on different properties of RBSs, such as the translations- promoting effect of
Guanine nucleotides, and the translation-reducing effect of Cytosine nucleotides, as well
as the presence of Shine-Dalgarno motifs in sufficient distance to the start codon in strong
RBSs [289].
This joint project emphasises the potential of combining machine learning, deep learning,
and synthetic biology to enhance our understanding underlying the sequence-function
landscape. An integral part of this project is to dynamically resolve sequence-function
behaviours as opposed to end-point measurements, as is often the case in high-throughput
experiments.

2Other optimisations were performed by other parts of the collaboration, see Höllerer et al. [288].
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10.2. Summary and Discussion
The dissertation at hand focussed on the development of novel machine learning techniques
that aim at unravelling the genetics underlying complex traits by integrating genetic data
with molecular networks. While the first part of this thesis contained an introduction
to network biology in general, we focussed in particular on molecular protein-protein
interaction networks that describe physical interactions between genetic products in the
form of graphs. Those networks offer a holistic view of molecular processes taking place
on various scales and promise to shed light on complex mechanisms that potentially lead
to the development of complex traits.

Network-guided association studies

In the second part we described two contributions that extend classic genome-wide as-
sociation studies with network information to address the problem of missing heritability
which is assumed to be partially attributed to the negligence of non-linear interactions
between genetic variants. We contributed to this task by developing two methods which
are capable of integrating molecular networks into genetic association studies to serve
as biological prior knowledge. This is achieved by only analysing interactions between
genetic variants that are harboured within genes that interact according to a network.
The benefit of biological networks in this context is twofold: firstly, it reduces the vast
search space containing all possible interactions between all genetic variants. This search
space is immense, posing a statistical challenge in the form of a multiple hypothesis test-
ing problem, and a computational challenge, as those interactions have to be enumerated
and tested. By focussing only on interactions that are supported by the network, these
challenges are not completely resolved, but alleviated. Additionally combining those ap-
proaches with concepts from significant pattern mining that have proven especially suc-
cessful in further reducing the statistical and computational challenges, eventually makes
a previously-infeasible problem tangible, so that the methods can be applied in practice.
Secondly, deriving interactions from networks implies that the combined variants can be
interpreted biologically by means of the edge type, as edges in the network commonly
imply either an experimentally validated or theoretically predicted interaction3.

Some protein-protein interaction networks, such as String [26] or the InBio Map [25], con-
tain edge weights that indicate the confidence of an interaction. Our proposed methods
currently do not account for edge weights, and this surely constitutes an interesting direc-
tion of future work. However, including low-confidence interactions into analyses is highly
promising, as in those cases, our methods allow to corroborate low-confidence edges, if
a significant hit is found within the edge. We did observe this for a study of migraine
patients, where a significant interaction was found within a low-confidence edge. This
further confirms the existence of the edge in the network.

Our models investigate network-guided interactions between genetic variants under a
model of genetic heterogeneity. It assumes that multiple genetic variants influence a
phenotype in a similar way. The results obtained with our approaches indicated that this

3Of course this might vary from network to network.
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type of non-linear interaction takes place on the scale of only few genetic variants, such as
single nucleotide polymorphisms or rare variants. In other words, we found interactions in
the form of edges and segments within those to be the most informative parts of a network
when it comes to genetic heterogeneity.

Classification of cancer driver genes

The third part of the thesis focussed on a different task, namely the identification of
cancer driver genes, i.e. genes that are, upon mutation, implicated in the development and
progression of cancer in humans. To achieve this, we developed a novel node embedding
that is based on the representation of each gene by a mutation score. For each gene, this
score measures to what degree the frequency, clustering and functional impact of mutations
differs between a tumour and a matched normal sample. Combining this information with
network information is inspired by the observation that network and pathway information
is central to cancers, and that cancer genes are commonly involved in pathways that
regulate cell growth and cell fate [254]. The underlying hypothesis is that cancer is a
consequence of the disruption of a pathway, rather than a specific gene within a pathway.

To achieve this, we developed a node embedding of mutation scores that combines two
major concepts. The first one is the representation of each gene by the distribution of
its neighbours’ mutation scores in the network. To obtain a vectorial representation of
those distributions, we describe the distributions by their moments. The second concept
are network propagations that have proven successful in a variety of tasks in computa-
tional biology, described by Cowen et al. [65], including the identification of cancer driver
genes [32, 143–146]. The so created node embeddings, which we named moment propa-
gation (MoPro) embeddings, can then readily be used as an input to any binary classifier,
where well-established cancer driver genes constituted the positive class which we aimed
to predict. To this end, a specific cross-validation scheme was implemented to address the
resulting high class-imbalance as well as the lack of a high-quality negative class.

Interestingly we observed that the major improvement of classification performance com-
pared to the baselines can be attributed to the moment embedding, as opposed to the
propagation embeddings, indicating that describing a node’s neighbourhood is more mean-
ingful than aggregating a node’s neighbourhood in the network. One important property
of protein-protein interaction networks is the so-called knowledge contamination, i.e. that
well-studied cancer genes tend to have higher degrees in the network. This phenomenon
results in a bias when incorporating network-information into the prediction task, as the
degree of a gene potentially acts as a confounder. We observed empirically that our MoPro
embeddings enable the prediction of both, low-degree and high-degree cancer driver genes,
which is a desirable outcome. As opposed to existing methods that mostly approach the
task of cancer gene prediction form an unsupervised perspective [32, 146, 233], we set
out to classify cancer driver genes in a supervised setting. We found that including the
knowledge of well-established cancer driver genes greatly helps the discovery of previously
unknown cancer drivers.
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10.3. Trends and challenges in learning from graph-structured
data

We are living in a world full of networks, may they be maps, telecommunication networks,
social networks, citation networks, cells, or proteins. Most complex systems can be repre-
sented by means of networks in one way or the other. The ever-accelerating technological
advances result in a growth of those networks at remarkable rates. They grow with respect
to both the number of nodes as well as the number edges contained in them, and their
analysis becomes an increasingly important topic across various research fields [290]. The
past decades have seen an increase in methods and tools that are developed for exactly this
purpose, that is the extraction of knowledge from graphs across different disciplines. Not
only do those contributions span various research areas, but also different theoretical con-
cepts, ranging from graph kernels to node embeddings and graph convolutional networks.
Here, we would like to outline the current hot topics evolving around graph-structures,
and their implications in biomedical research.

Graph kernels are among the most prominent and well-established approaches for classifi-
cation tasks related to graphs [291]. They constitute a versatile approach to either classify
nodes within a single graph, or to consider a graph itself as an object that is to be clas-
sified, as could for example be the case for the task of protein function prediction, where
each protein is represented as a graph. The underlying idea is to compute a kernel that
represents similarities between two objects, i.e. between two nodes or graphs, in a usually
high-dimensional, or even infinite-dimensional feature space, without having to define the
function that maps the objects to this space (kernel trick). The kernel should be able to
capture the essence of the graph required when subjected to a kernel machine (such as
support vector machines) for a successful classification. The development of novel graph
kernels has been an active field of research for almost two decades [290] with many famous
examples, such as Weisfeiler-Lehman kernels [187], shortest path kernels [292], or hash
graph kernels [293], as well as fairly new approaches [280, 294]. Graph kernels have been
successful across various tasks in biology, such as prediction of protein function [17, 280,
295] and the identification of disease genes [296] as well as in chemo-informatics, where
they were, e.g., leveraged to predict molecule properties [280, 295].

A recently emerging field of research are node embeddings, often also referred to as graph
representation learning or graph embeddings (for a detailed review, we refer the interested
reader e.g. to Hamilton et al. [297] and Zhang et al. [298]). At the core of those methods
lies the learning of low-dimensional representations of vertices in networks that account
for the local and global network structure. In other words, the often notoriously complex
network structure is translated into a vectorial representation of nodes. Similarly to graph
kernels, such embeddings can be leveraged for both node and graph classification. Other
than graph kernels that do not rely on an explicit representation in the feature space,
node embeddings create such an explicit representation, sometimes called the latent rep-
resentation. To be more precise, they learn this representation in a way that facilitates
downstream supervised or unsupervised machine learning tasks, such as node or graph
classification, link prediction or clustering. Those embeddings can either be trained for a
specific classification task end-to-end, or they can be trained in an unsupervised manner
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which requires the definition of a meaningful objective function. Prominent graph embed-
dings include the DeepWalk algorithm [299], node2vec [300], or the LINE method [301].
Those graph embeddings are agnostic to the underlying network type, such that they
can be leveraged across various fields, including social networks, citation networks or
molecular networks. Yue et al. [302] provide a systematic evaluation of different node
embedding methods in the realm of biomedical networks, with a focus on link prediction
in drug-disease association networks and drug-drug interaction networks, as well as node
classification for the prediction of protein functions. They find that node embeddings are
a highly promising concept that is competitive with or superior to traditional methods
that rely e.g. on matrix factorization.

Furthermore, a deep-learning inspired approach that gained a lot of attention in the re-
cent years are graph convolutional networks (GCNs).The central idea underlying graph
convolutional networks is to translate the concept of convolution, which has proven highly
successful in the field of image classification [303], to graph-structured data. This is
mostly achieved by iteratively aggregating the signal of individual nodes based on their
local neighbourhoods in networks, an idea reminiscent of the Weisfeiler-Lehman graph
kernel. A plethora of different types of graph convolutional networks have been proposed
over the last five years that present different architectures and aggregation functions, and
they have been useful for many different applications, ranging from computer vision to
natural language processing and chemistry. Graph neural networks, such as graph autoen-
coders have been used to generate embeddings of nodes, emphasising the relatedness to
the aforementioned node embeddings. We refer to Wu et al. [281] for a comprehensive
review of different neural network architectures on graphs, including graph convolutional
networks. While the application of GCNs to biomedicine is a recently-emerging field, ini-
tial research shows the potential of marrying biological networks with graph convolutions.
Zitnik et al. [304] applied GCNs to the task of predicting polypharmacy side effects4 from
networks containing three different types of interactions, that is protein-protein interac-
tions, protein-drug interactions, and drug-drug side-effect interactions. Another promising
application was presented by Fout et al. [305] that successfully leveraged GCNs for the
prediction of protein interface interactions based on the 3D structures of proteins.

Those success stories of graph-based learning across various disciplines and questions in
biomedical research emphasise the benefit of including graph-structured data into the
processes we use to generate new knowledge. Not only do they enable a holistic view of
whole systems by taking interactions into account, but they also improve our capabilities to
predict and understand molecular mechanisms that, for example, lead to complex traits
and diseases. The fact that methods evolving around the graph-structures underlying
many data sets continuously gain attention is highly promising, although there still lie
challenges ahead.

Interpretability of learning-based approaches

One long standing challenge in deep learning based approaches is the interpretability
of the mechanisms that give rise to predictions. While machine learning methods have

4Side effects arising due to administering multiple drugs at the same time.
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reached near-human performances across various tasks, many algorithms continue to be
treated as black boxes. Digressing from this notion to an interpretability-driven evaluation
of predictions is a critical challenge to all learning-based methods, including the ones
mentioned in the preceding paragraphs.

Especially in the biomedical field, where predictions potentially form targets for novel
diagnostic or therapeutic tools, it is indispensable to fully understand the mechanisms
that give rise to the predicted values [306]. It is this concept of interpretability that allows
humans to assign a level of confidence to the predictions [307]. Taking an example from
Pope et al. [308] that analyses a data set of molecules with the goal to predict whether
or not the molecule permeates the blood brain barrier, a task that is of specific interest
in drug development. While it is without a doubt a successful outcome being able to
predict whether or not the molecule possesses this ability, it is even more important to
understand which properties of the molecule are the decisive factor for this ability. In
the same publication Pope et al. [308] describe steps to enable such interpretations, by
extending interpretability methods from the domain of convolutional neural networks to
the graph convolutional network domain.

Time-varying graphs

Another important challenge for future work is to account for graph structures that vary
over time. Methods such as graph convolutional networks or node embeddings, com-
monly assume graphs to be static, which means that neither nodes nor edges nor their
attributes or labels vary over time [309]. However, for many graph-based problems this is
not necessarily the case. Thinking of social networks, nodes might be added or removed
upon individuals joining or leaving a social network, new edges might arise due to new
friendships being made, and so on. Similarly, biological process underlie time-dependent
behaviours, might this be the up- or down-regulation of the expression of genes in re-
sponse to environmental or cell-cycle related stimuli, or the rewiring of a protein-protein
interaction network as a consequence of the mutation of specific genes [57]. Including the
concept of time-varying graphs into recently emerging graph-based learning procedures
constitutes a highly-promising and relevant direction of further research.

10.4. Closing remarks
The ever-increasing speed of technological advancement leads to the collection and avail-
ability of equally growing data sets. Parallel to and in line with this data revolution
increases the need for scalable algorithms to mine the knowledge that is hidden in those
large-scale data sets. Machine and especially deep learning techniques that are capable
of leveraging, and even more so require those massive amounts of data, are gaining more
and more attention, especially in fields such as image recognition or natural language
processing [310].

Deep learning techniques have also proven successful for various biological tasks, including
analyses of the genome, such as prediction of the methylation status, gene expression or
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the control of splicing, as described in Zou et al. [311]. However their application to
discover genetic causes underlying complex traits is still in its infancy.
Despite large-scale bio-bank efforts, such as the ones described in Bycroft et al. [83], Nagai
et al. [84], and Chen et al. [85], that aim to sequence hundreds of thousands of individuals,
most genomic data sets are affected by the n� p problem5, hindering the training of the
highly parametrised models used in deep learning approaches. Related to this, those data
sets are inherently imbalanced and noisy, meaning that the number of non-trait-causing
variants exceeds the number of trait-causing variants by far. In other words, most features
are uninformative for the trait of interest, further complicating the application of deep
learning approaches. On the contrary, classical methods that analyse the impact of mu-
tations on a phenotype allow for an easier interpretation of the findings, albeit suffering
from other limitations, such as the multiple hypothesis testing burden, or the negligence of
non-linear interactions between mutated positions that might lead to downstream effects
on the phenotype. This led to the development of a vast number of methods that incor-
porate network information to overcome those limitations in different ways. For example
methods based on network propagation [65, 143, 144, 146, 148], the greedy exploration of
sub-modules within networks [63, 64], or the local aggregation of features [32] have shown
to successfully identify novel genes presumably implicated in the traits of interest. Simi-
larly, the methods proposed in this thesis live at the intersection between machine learning
and genetics, and allow by design an interpretation of results, as the analysed patterns
were described explicitly by leveraging the underlying graph structures. We have shown
that they constitute valuable tools to decipher the genetics underlying various complex
traits that yield salient patterns for further biological validation.

However, jointly exploring genomic data and molecular networks in a deep learning setting
appears a compelling direction for future work. It requires addressing the different chal-
lenges inherent to genomic data, molecular networks as well as deep learning approaches,
and to bring those different concepts in line. This entails addressing problems induced
by (i) the data dimensionality in the form of the n � p problem, (ii) the large number
of uninformative features, (iii) the noisy and incomplete network structures, as well as
(iv) the interpretability of the output.

Given the traction the various types of methods for the analysis of graph-structured data
have gained over the past decades, we look curiously into the future, with the hope that
existing and emerging methods will continue to transform our understanding of complex
traits, molecular dynamics, and diseases. We envision that methods which adopt holistic
views by incorporating network-based information will thrive to become a central pillar
of various research disciplines and be firmly integrated into the toolbox of every data
scientist.

5The number of features exceeds the number of samples by far
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Simulation of binary data
Disclaimer: the core of this simulation procedure follows the one proposed by Llinares-
López et al. [165]. We first start by describing the generation of the binary phenotype, as
well as the pattern indicator for the truly associated pattern, and the confounded pattern.
We create them as n-dimensional binary vectors, where n is the number of samples in
the data set, and denote them as y, gt and gc, respectively. To achieve this, we draw the
three vectors from a multivariate Binomial distribution with mean vector µ and covariance
matrix Σ, using the R-package binsim, where

µ =
[
0.5 0.5 0.5

]
, (A.1)

Σ =

 1 ps/2
pcon/2

ps/2 1 0
pcon/2 0 1

 (A.2)

The parameters ps and pcon can be used to regulate the strength of the association signal
between the phenotype and the significant and confounded subgraph, respectively, and we
chose ps = pcon. Following Llinares-López et al. [165], we add a small disturbance to the
vector gc by flipping each of its values with low probability pε = 0.05, resulting in the
covariate vector c.
The pattern indicator vectors gt and gc will be used to derive a contingency table, from
which the statistical association is derived. The process of generating the data that results
in the pattern indicator of the truly associated and confounded pattern is identical, hence
we will explain this procedure only for the truly associated pattern. Importantly, for all
simulations it is ensured that the truly associated and the confounded pattern do not
overlap in the network.

Simulation of data for the tNeAT methods
To simulate data for the tNeAT method, we generate artificial data for the KEGG pathway
with identifier hsa05205, ‘Proteoglycans in cancer’. The pathway contains d = 224 nodes
and m = 1′324 edges. In each simulation, we generate a data set with 224 features,
corresponding to the 224 nodes in the pathway, and n = 2′000 samples. All simulated
patterns comprise five genes, and form different types of subgraphs in the network, that is
either (i) a star-shaped subgraph, i.e. a full neighbourhood, (ii) an incomplete subgraph,
in which only a specific fraction of genes within a neighbourhood are associated, or (iii) a
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random subgraph of size five in the network. Simulating the data is a three-step procedure:
in the first step, we simulate the background data, i.e. data for those genes that are not
part of the induced pattern, in the second step, we expand the pattern indicator gt to
obtain the data for features in the pattern, and in the third step, we plant the pattern in
the network.

Simulation of data matrix
We simulate a data matrix D ∈ [0, 1]224×2000 in the following way. For every gene j =
1, ..., d we simulate the maximal number of minor alleles uniformly from the range [2, 40],
and store the value in the jth entry of a d-dimensional vector nmax. Next, for every sample
i and every gene j, we draw x from U(0,nmax[j]) and set D[i, j] = x/nmax[j].

Generation of features participating in pattern
We need to expand the encoding vector gt, to result in a 5× 2′000 matrix S ∈ [0, 1]5×2′000

with values between 0 and 1 that will be incorporated into the data matrix D. In order
to do so, we fix the threshold t at which the subgraph should be significant to 0.70. This
means that, if S is binarised at threshold t as described in Equation 4.2, and the encoding
of the pattern is computed according to Equation 4.3, this results in the vector gt. In order
to do so, we proceed as follows: First, we again randomly generate the maximal number of
minor alleles that overlap with each of the five genes in the true subgraph uniformly from
the range [2, 40], resulting in the vector nmax. Next, we simulate the matrix S such that,
at threshold t = 0.7 the following holds: gt[i] = 0, ∀i = 1, ..., 2′000. We do so by repeating
the following two steps for every sample i, and every one of the five genes j = 1, ..., 5:

1. simulate a random value x such that x < nmax[j]× 0.70, and
2. set S[i, j] = x

nmax[j]

In the end, we guarantee that for every sample i with y[i] = 1, exactly one of the five
genes exceeds the threshold t = 0.70. We do this to emphasise the genetic heterogeneity
model, i.e. that there is one gene within the pattern that contains at least 70% minor
alleles, but it is not important which one of those genes this is the case for. To achieve
this, we repeat the following three steps for every sample i with gt[i] = 1:

1. chose the index j of the gene at random form {1, ..., 5}, then
2. simulate a random value x such that x ≥ nmax[j]× 0.70, and
3. set S[i, j] = x

nmax[j]

Remark A.1 (Count based data). For the burden tests that use the count of minor alleles
in a gene, as opposed to the ratio, the bare counts of minor alleles per gene are used, i.e.
the values x in the above steps.

Implantation into the network
In the graph G = (V,E), every node has a label ranging from 1 to 244, and the data
matrix D contains the measurements corresponding to the jth node in the jth row. When
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implanting the data corresponding to a pattern, S, into the data matrix, we sample nodes
from the graph G that obey the desired subgraph configuration, and replace the rows in
D corresponding to the subgraph with S.

Simulation of data for the SiNIMin methods
This description of the simulation closely follows the one described in the supplement of
our original publication, that is Gumpinger et al. [124].

We simulate data for a randomly generated network consisting of 75 nodes, that represent
the genes, and 100 edges that represent interactions between genes. In each simulation, we
generate data for 500 samples. For each of the 75 genes, which we index with j = 1, ..., 75 ,
we simulate a random number nj of SNPs that are mapped to gene j, by drawing nj from
a uniform distribution over the range [1, 10]. Furthermore, we allow two genes to overlap
with a probability of 30%, which implies that SNPs between the two genes are shared.
The extend of overlap is limited to at most half of the SNPs per gene. This results in a
varying number of features g per data set, where g =

∑75
j=1 nj , where 75 ≤ g ≤ 750, since

1 ≤ nj ≤ 10.

Simulation of data matrix
We simulate a binary data matrix D ∈ [0, 1]g×500 at random, where the probability of
observing a 1 at any position equals 0.3, to roughly approximate the density in a genetic
data set under a dominant encoding of minor alleles.

Generation of features participating in pattern
We simulate patterns as gene-segment interactions between two segments, such that their
combined length equals six variants, and each individual segment consists of at least two,
and at most four variants. Hence, we need to expand the pattern indicator vector gt

to a 6 × 500-dimensional binary matrix S ∈ [0, 1]6×500 that will be inserted into the
data matrix D at the position of the SNPs that are part of the segment interaction. When
expanding the encoding vector, we guarantee that for every sample i with gt[i] = 1 exactly
one of the six SNPs gets assigned a 1. In this way, we create an association of genetic
heterogeneity, that at the same time minimises the association signal of individual variants
in the interaction.

Implantation into the network
To insert the pattern into the network, we randomly draw an edge from the network,
and chose the lengths and starting positions of the SNPs in the interacting segments. We
randomly split the matrix S according to the randomly chosen segment lengths, and insert
the resulting two parts into the data matrix.
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SiNIMin

The SiNIMin-software, together with instructions for installation and examples, is available
at https://github.com/BorgwardtLab/SiNIMin. SiNIMinis implemented in C++, and
we provide a command-line tool for its execution. Below, we show an example of how to
invoke the method from the command line.

Listing B.1: Calling SiNIMin method
#!/bin/bash
# Input flags of \sinimin method:
# -i: (string) file containing binary data with g rows (SNPs), n columns.
# -l: (string) file containing n binary labels.
# -c: (string) file containing n rows, each row indicates covariate class.
# -m: (string) file indicating mapping of SNPs to genes (nodes in graph).
# -e: (string) file containing one row per gene in the network.
# -s: (string) name of features, ordered as in data_file.
# -f: (double) target family-wise error rate.
# -o: (string) prefix of output files.
# -d: (integer) maximum length of segments to explore. If not specified, all
# possible lengths are explored.
# -n: (integer) number of threads, default=1.
# -p: (integer) number of permutations. If this is set, Westfall-Young
# permutations are invoked, default=1.

# Example of running SiNIMin approach.
./sinimin \

-i "${data_file}" \
-l "${labels_file}" \
-c "${covariate_file}" \
-m "${mapping_file}" \
-e "${edge_file}" \
-s "${feature_file}" \
-f 0.05 \
-o "${output_prefix}" \

MoPro embeddings
The MoPro embeddings are implemented in python, and source-code for their generation
can be downloaded from https://github.com/BorgwardtLab/MoProEmbeddings. We pro-
vide two ipython notebooks detailing (i) the pre-processing of the data, as well as (ii) the
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generation of MoPro embeddings from the pre-processed data.

Listing B.2: Computation of MoPro embeddings
import numpy as np
import pandas as pd

from MoProEmbeddings import basegraph
from MoProEmbeddings import utils
from MoProEmbeddings import path_weights
from MoProEmbeddings import features

# file containing the network and vertex features.
network_file = "./data/network.txt"
score_file = "./data/gene_features.txt"
labels_file = "./data/labels.txt"

# load the data.
edges = np.loadtxt(network_file, dtype=str)
scores = pd.read_csv(score_file, delim_whitespace=True, index_col=0)
labels = np.loadtxt(labels_file, dtype=int)

# create the basegraph object, log-transform node-features and add labels.
bg = basegraph.create(edges, scores)
bg = features.log_transform(bg, ’pvalue’)
bg.vs[’class_label’] = labels

# compute the higher-order weights.
weights = path_weights.ShortestPathWeights(

bg, max_k=2, mode=’max’, weight=’std’)

# create the moment embeddings.
for m in [’mean’, ’std’, ’skew’, ’kurt’]:

for k in [1, 2]:
bg, _ = features.weighted_attr_kx(

bg, ’log_pvalue’, stat=m,
k=k, weight=’std’, weight_dict=weights.shortest_path_weights

)

# save.
moment_embeddings_pkl = ’./data/moment_embeddings.pkl’
utils.write_pickle(bg, moment_embeddings_pkl)

# propagation embeddings.
mp_data = data.MomProp(

moment_embeddings_pkl, ’log_pvalue’, 2, n_hops=2,
moments=[’mean’, ’std’, ’skew’, ’kurt’], edge_weight=’std’,
path_weight=’max’)
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Acronyms

CMH Cochran-Mantel-Haenszel [test]. 49

CNN convolutional neural network. 157

FDR false discovery rate. 17

FWER family-wise error rate. 16, 36

GCN graph convolutional network. 157, 167

GRE gene-regulatory element. 162

GWAS genome-wide association study. 13

LD linkage disequilibrium. 14

LMM linear mixed model. 18

MAF minor allele frequency. 15

NGS next-generation sequencing. 14, 162

PPI protein-protein interaction. 3

RBS ribosome binding site. 163

RWR random walk with restart. 24

SNP single nucleotide polymorphism. 14, 15, 82
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Glossary

Bonferroni correction Method to restrict the number of false positives during simultane-
ous testing of many statistical hypotheses. 16

common disease/common variant Hypothesis that common diseases arise due to multi-
ple genetic factors that are common in the population. 14

epistasis Analysis of non-linear effects between two genetic variants on phenotype. 20

false discovery rate Expectation of the proportion of false discoveries among all discov-
eries. 17

family-wise error rate Probability to observe at least one false-positive association during
statistical testing. 16, 36

gene segment A set of subsequent variants along the sequenced genome within a gene
(where gene is defined as the entirety of its introns and exons). 85

gene size The number of genetic variants that map to a gene. 76

genetic heterogeneity Model of non-linear interaction between genetic variants (e.g. SNP).
The same phenotype might be caused by different genetic variants for different in-
dividuals. 27, 60, 82

genetic segment A set of subsequent variants (e.g. SNPs, rare variants) along the se-
quenced genome. 85

hypothesis space The set of all possible patterns of specific type (synonym: search space).
31

linkage disequilibrium The non-random correlation between close-by SNPs caused by re-
combination patterns. 14

major allele The more prevalent allele at a genetic locus. 15

minor allele The less prevalent allele at a genetic locus. 15

missing heritability Phenomenon that SNPs found in GWAS only partially explain the
phenotypic heritability. 20, 60

multiple hypothesis testing problem The creation of a large amount of false positive as-
sociations caused by the simultaneous testing of many hypotheses. 16, 36
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Glossary

oncogenes An altered form of a gene that is involved in cell proliferation and apoptosis.
An oncogene develops its tumourigenic potential upon structural alteration of the
so-called proto-oncogenes. 124, 130

passenger mutations Mutations that have no effect on the tumourigenic potential of a
cell. 126

pattern A finite set of discrete features. 30

pattern indicator function A function that indicates whether a pattern is present in a
sample or not. 30

rare variant A genetic variant with minor allele frequencies below a threshold γ, where
commonly γ ≤ 0.01. 20

search space The set of all possible patterns of specific type (synonym: hypothesis space).
31

single nucleotide polymorphism A locus of common genetic variation in a population,
abbreviated as SNP. 14

support Count of occurrence of a pattern in a database. 30

tag SNP A single nucleotide polymorphism (SNP) that represents a region of high LD in
the genome. 14

Tarone’s procedure Improvement of Bonferroni correction, based on identifying testable
hypotheses in a data set. 37

testability The concept underlying Tarone’s correction. A hypothesis tested with a dis-
crete test is said to be testable, if, based on it’s marginal probabilities, the strongest
possible association p-value is larger than a pre-defined threshold. 39

transaction Description of a sample as a set of features in pattern mining.. 30

transaction database Data structure that represents data in pattern mining. 30

tumour suppressor genes Genes that have a protective function by suppressing tumouri-
genicity. 124, 130

type-I error Error caused by falsely rejecting a true null hypothesis. 36

type-II error Error caused by falsely accepting the null hypothesis. 37
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