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Abstract

In virtually any scenario where there is a desire to make quantitative or qualitative pre-
dictions, mathematical models are of crucial importance for predicting quantities of in-
terest. Unfortunately, many models are based on mathematical objects that cannot be
calculated exactly. As a consequence, numerical approximation algorithms that approx-
imate such objects are indispensable in practice. These algorithms are often stochastic
in nature, which means that there is some form of randomness involved when running
them. In this thesis we consider four possibly high-dimensional approximation problems
and corresponding stochastic numerical approximation algorithms. More specifically, we
prove essentially sharp rates of convergence in the probabilistically weak sense for spatial
spectral Galerkin approximations of semi-linear stochastic wave equations driven by mul-
tiplicative noise. In addition, we develop an abstract framework that allows us to view
full-history recursive multilevel Picard approximation methods from a new perspective
and to work out more clearly how these stochastic methods beat the curse of dimen-
sionality in the numerical approximation of semi-linear heat equations. Furthermore, we
tackle high-dimensional optimal stopping problems by proposing a stochastic numerical
approximation algorithm that is based on deep learning. And finally, we study conver-
gence in the probabilistically strong sense of the overall error arising in deep learning
based empirical risk minimisation, one of the main pillars of supervised learning.
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Zusammenfassung

In geradezu jeder Situation, in der quantitative oder qualitative Prognosen gefragt sind,
sind mathematische Modelle von enormer Wichtigkeit, um relevante Grössen vorauszu-
berechnen. Unglücklicherweise beruhen viele Modelle auf mathematischen Objekten, die
nicht exakt berechenbar sind. Folglich sind numerische Näherungsverfahren, die solche
Objekte approximieren, in der Praxis unabdingbar. Oft sind diese Verfahren stochasti-
scher Natur, was bedeutet, dass eine Art von Zufälligkeit bei ihrer Ausführung involviert
ist. In vorliegender Dissertation betrachten wir vier möglicherweise hochdimensionale Nä-
herungsprobleme und zugehörige stochastische numerische Näherungsverfahren. Genauer
gesagt beweisen wir Raten der Konvergenz im probabilistisch schwachen Sinne, die im We-
sentlichen scharf sind, für räumliche spektrale Galerkinapproximationen von semilinearen
stochastischen Wellengleichungen, die von multiplikativem Rauschen angetrieben werden.
Ausserdem entwickeln wir einen abstrakten Formalismus, der uns erlaubt, vollhistorisch
rekursive Multilevel-Picard-Approximationsverfahren aus einem neuen Blickwinkel zu be-
trachten und klarer herauszuarbeiten, wie diese stochastischen Verfahren den Fluch der
Dimensionalität in der numerischen Approximation von semilinearen Wärmeleitungsglei-
chungen überwinden. Des Weiteren gehen wir hochdimensionale optimale Stoppprobleme
an, indem wir ein stochastisches numerisches Näherungsverfahren einführen, das auf Deep
Learning beruht. Und schliesslich untersuchen wir Konvergenz im probabilistisch starken
Sinne des Gesamtfehlers, der bei Deep-Learning-basierter empirischer Risikominimierung
entsteht, einem der zentralen Standbeine des überwachten Lernens.
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Preface

The present thesis is a cumulative dissertation. More precisely, Section 1.1 combined with
Chapter 2 is a slightly modified version of the preprint Jacobe de Naurois, Jentzen, &
Welti [185], Section 1.2 combined with Chapter 3 is a slightly modified version of the
preprint Giles, Jentzen, & Welti [134], Section 1.3 combined with Chapter 4 is a slightly
modified version of the preprint Becker, Cheridito, Jentzen, & Welti [30], and parts of
two paragraphs in the beginning of Chapter 1 combined with Section 1.4 and Chapter 5
are a slightly modified version of the preprint Jentzen & Welti [196].

In the case of each of the preprints [134, 185, 196] I have made major contributions
in all aspects of the creation of the work, that is, in the development of the ideas in the
work, in the development of the proofs in the work, and in the writing of the work. In
the case of the preprint [30] I have made major contributions in the development of the
proofs in the work, in the development of the computational examples in the work, in the
development of the Matlab source codes in the work, and in the writing of the work.
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Chapter 1
Introduction

Mathematical modelling is ubiquitous. In virtually any scenario where there is a desire
to make quantitative or qualitative predictions, theoretical insights and gathered data
are used to derive mathematical models with the aim to predict values of quantities of
interest. To name but a few examples, mathematical models for randomness allow us
to make predictions based on statistics, mathematical models for the lift force enable us
to construct wings that carry a modern airplane, mathematical models from quantum
mechanics pave the way for the design and study of quantum computers, mathematical
models that find a majority in parliament and the electorate tell us how much taxes we are
obligated to pay, and mathematical models for infectious diseases provide us with possible
scenarios for the evolution of a pandemic. In many cases reaching an actual prediction
from the derived mathematical model requires solving equations or computing numbers
that are not given in an explicit way. Unfortunately, this cannot be done exactly for the
vast majority of mathematical models of practical relevance. For this reason, numerical
approximation algorithms which are capable of approximatively solving certain equations
or approximatively computing certain numbers are required.

Often such numerical approximation algorithms are stochastic in nature, which means
that there is some form of randomness involved when running them. On the one hand,
this randomness may stem directly from the mathematical model, which may incorporate
randomness itself in order to achieve more realistic predictions. This is, for example, the
case when numerically approximating solutions of stochastic partial differential equations
(SPDEs), when numerically solving optimal stopping problems, and when using machine
learning algorithms in order to approximatively solve supervised learning problems. On
the other hand, randomness in numerical approximation algorithms may be beneficial
even though the mathematical model under consideration is purely deterministic. Ex-
amples for this situation include Monte Carlo methods for approximatively computing
high-dimensional deterministic integrals or stochastic numerical approximation methods
for solving deterministic partial differential equations (deterministic PDEs). In this the-
sis we consider four possibly high-dimensional approximation problems and corresponding
stochastic numerical approximation algorithms.

We first analyse spatial spectral Galerkin approximations of a certain class of semi-
linear stochastic wave equations (cf. Section 1.1 and Chapter 2). In order to develop our
analysis for the approximation error and to prove essentially sharp convergence rates, we
interpret solutions of the considered stochastic wave equations as solutions of suitable

1



Chapter 1. Introduction

infinite-dimensional stochastic evolution equations. In this sense the problem of numeri-
cally approximating semi-linear stochastic wave equations is extremely high-dimensional.

Thereafter, we examine full-history recursive multilevel Picard (MLP) approximation
methods (cf. E et al. [111] and Hutzenthaler et al. [181]), which are stochastic numer-
ical approximation methods capable of solving high-dimensional PDEs (cf. Section 1.2
and Chapter 3). We establish an abstract framework for suitably generalised MLP ap-
proximation methods which take values in possibly infinite-dimensional Banach spaces
and use this framework to prove a computational complexity result for suitable MLP
approximation methods for semi-linear heat equations. This computational complexity
result illustrates, in particular, how the overall computational cost grows with the space
dimension of the approximated semi-linear heat equation.

In connection with the third and fourth numerical approximation problems, we con-
sider stochastic numerical approximation algorithms that are based on deep learning.1
Deep learning based algorithms have been applied extremely successfully to overcome
fundamental challenges in many different areas, such as image recognition, natural lan-
guage processing, game intelligence, autonomous driving, and computational advertising,
just to name a few. Accordingly, researchers from a wide range of different fields, includ-
ing, for example, computer science, mathematics, chemistry, medicine, and finance, are
investing significant efforts into studying such algorithms and employing them to tackle
challenges arising in their fields. In this spirit we propose a deep learning based stochastic
numerical approximation algorithm for solving possibly high-dimensional optimal stop-
ping problems (cf. Section 1.3 and Chapter 4). We provide evidence for the effectiveness
and efficiency of the proposed algorithm in the case of high-dimensional optimal stop-
ping problems by presenting results for many numerical example problems with different
numbers of dimensions.

In spite of the, as mentioned, broad research interest and the accomplishments of deep
learning based algorithms in numerous applications, at the moment there is still no rig-
orous understanding of the reasons why such algorithms produce useful results in certain
situations.2 Consequently, there is no rigorous way to predict, before actually implement-
ing a deep learning based algorithm, in which situations it might perform reliably and in
which situations it might fail. This necessitates in many cases a trial-and-error approach
in order to move forward, which can cost a lot of time and resources. A thorough math-
ematical analysis of deep learning based algorithms (in scenarios where it is possible to
formulate such an analysis) seems to be crucial in order to make progress on these issues.
Moreover, such an analysis may lead to new insights that enable the design of more ef-
fective and efficient algorithms. With this situation in mind, we investigate deep learning
based empirical risk minimisation, a stochastic numerical approximation algorithm that
is one of the main pillars of supervised learning (cf. Section 1.4 and Chapter 5). More
specifically, we prove mathematically rigorous convergence results for the overall error by
deriving convergence rates for the three different sources of error, that is, for the approx-
imation error, the generalisation error, and the optimisation error. These convergence
results are applicable without any restriction on the number of dimensions of the domain
on which the function to be learned is defined.

In the following we explain our work on these four numerical approximation problems
and the corresponding stochastic numerical approximation algorithms in more detail.

1Parts of this paragraph are a slightly modified extract of the preprint Jentzen & Welti [196].
2Parts of this paragraph are a slightly modified extract of the preprint Jentzen & Welti [196].
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1.1. Stochastic wave equations

1.1 Stochastic wave equations
In the field of numerical approximation of stochastic evolution equations one distinguishes
between two conceptually fundamentally different error criteria, that is, strong conver-
gence and weak convergence. In the case of the finite-dimensional stochastic ordinary
differential equations, both strong and weak convergence are quite well understood nowa-
days; cf., e.g., the standard monographs Kloeden & Platen [203] and Milstein [246]. How-
ever, the situation is different in the case of the infinite-dimensional SPDEs (cf., e.g.,
Walsh [299], Da Prato & Zabczyk [94], Liu & Röckner [230]). In the case of SPDEs with
regular non-linearities, strong convergence rates are essentially well understood, whereas
a proper understanding of weak convergence rates has still not been reached (cf., e.g.,
[7, 8, 54–56, 82, 86, 98–100, 132, 162, 165, 166, 185, 191, 210–212, 214, 215, 228, 283,
302–304] for several weak convergence results in the literature). In Chapter 2 and the
preprint Jacobe de Naurois, Jentzen, & Welti [185], of which the current section com-
bined with Chapter 2 is a slightly modified version, we derive weak convergence rates for
stochastic wave equations. Stochastic wave equations can be used for modelling several
evolutionary processes subject to random forces. Examples include the motion of a DNA
molecule floating in a fluid and the dilatation of shock waves throughout the sun (cf., e.g.,
Dalang [95, Section 1]) as well as heat conduction around a ring (cf., e.g., Thomas [292]).
Unfortunately, such problems usually involve complicated non-linearities and are inac-
cessible for current numerical analysis approaches. Nonetheless, rigorous examination of
simpler model problems such as the ones considered in Chapter 2 and the preprint [185],
respectively, is a key first step. Even though a number of strong convergence rates for
stochastic wave equations are available (cf., e.g., [9, 79, 80, 213, 265, 300, 302, 305]), apart
from the findings of the preprint [185] and of the subsequent works Harms & Müller [162]
and Cox, Jentzen, & Lindner [86] the existing weak convergence results for stochastic
wave equations in the literature (cf., e.g., [166, 211, 212, 214, 302, 303]) assume that the
diffusion coefficient is constant or, in other words, that the equation is driven by additive
noise.

The main contribution of Chapter 2 and the preprint [185], respectively, is the deriva-
tion of essentially sharp weak convergence rates for a class of stochastic wave equations
large enough to also include the case of multiplicative noise. Roughly speaking, the main
result of Chapter 2 (cf. Theorem 2.12 in Subsection 2.2.2) and of the preprint [185] (cf.
[185, Theorem 3.7]), respectively, establishes upper bounds for weak errors associated to
spatial spectral Galerkin approximations of semi-linear stochastic wave equations under
suitable Lipschitz and smoothness assumptions on the drift non-linearity and on the dif-
fusion coefficient as well as under suitable integrability and regularity assumptions on the
initial value. In order to employ a mild solution framework, the second-order stochas-
tic wave equations are formulated as first-order two-component systems of stochastic
evolution equations on an extended state space. The first component process of the
solution process of such a first-order system corresponds to the solution process of the
original second-order equation, while the second component process corresponds to the
time derivative of the first component process. As is often the case in the context of spa-
tial spectral Galerkin approximations, convergence is obtained in terms of the in absolute
value increasing sequence of eigenvalues of a symmetric linear operator.

To illustrate the main result of Chapter 2 and the preprint [185], respectively, in
more detail, we consider the following setting as a special case of our general framework
(cf. Subsection 2.2.1). Consider the notation in Subsection 2.1.1, let (H, 〈·, ·〉H , ‖·‖H)

3



Chapter 1. Introduction

and (U, 〈·, ·〉U , ‖·‖U) be separable R-Hilbert spaces, let T ∈ (0,∞), let (Ω,F ,P) be a
probability space with a normal filtration (Ft)t∈[0,T ], let (Wt)t∈[0,T ] be an idU -cylindrical
(Ω,F ,P, (Ft)t∈[0,T ])-Wiener process, let (en)n∈N={1,2,3,...} ⊆ H be an orthonormal basis
of H, let (λn)n∈N ⊆ (0,∞) be an increasing sequence, let A : D(A) ⊆ H → H be the
linear operator which satisfies D(A) =

{
v ∈ H :

∑∞
n=1|λn〈en, v〉H |2 < ∞

}
and ∀v ∈

D(A) : Av =
∑∞

n=1−λn〈en, v〉Hen, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family of interpola-
tion spaces associated to −A (cf., e.g., [279, Section 3.7]), let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R,
be the family of R-Hilbert spaces which satisfies for all r ∈ R that (Hr, 〈·, ·〉Hr , ‖·‖Hr) =(
Hr/2 × Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2

, ‖·‖Hr/2×Hr/2−1/2

)
, let PN ∈ L(H0), N ∈ N ∪ {∞}, be

the linear operators which satisfy for all N ∈ N ∪ {∞}, v, w ∈ H that PN(v, w) =(∑N
n=1〈en, v〉Hen,

∑N
n=1〈en, w〉Hen

)
, let A : D(A) ⊆ H0 → H0 be the linear operator

which satisfies D(A) = H1 and ∀(v, w) ∈ H1 : A(v, w) = (w,Av), and let γ ∈ (0,∞),
β ∈ (γ/2, γ], ρ ∈ [0, 2(γ−β)], %, CF, CB ∈ [0,∞), ξ ∈ L2(P|F0 ; H2(γ−β)), F ∈ Lip0(H0,H0),
B ∈ Lip0(H0, L2(U,H0)) satisfy (−A)−β ∈ L1(H), F(Hρ) ⊆ H2(γ−β), (Hρ 3 v 7→ F(v) ∈
H2(γ−β)) ∈ Lip0(Hρ,H2(γ−β)), ∀v ∈ Hρ, u ∈ U : B(v)u ∈ Hγ, ∀v ∈ Hρ : (U 3 u 7→
B(v)u ∈ Hρ) ∈ L2(U,Hρ), (Hρ 3 v 7→ (U 3 u 7→ B(v)u ∈ Hρ) ∈ L2(U,Hρ)) ∈
Lip0(Hρ, L2(U,Hρ)), ∀v ∈ Hρ : (U 3 u 7→ B(v)u ∈ Hγ) ∈ L(U,Hγ), (Hρ 3 v 7→ (U 3
u 7→ B(v)u ∈ Hγ) ∈ L(U,Hγ)) ∈ Lip0(Hρ, L(U,Hγ)), F|H% ∈ C2(H%,H0), B|H% ∈
C2(H%, L2(U,H0)), CF = supx,v1,v2∈∩r∈RHr,max{‖v1‖H0

,‖v2‖H0
}≤1‖F′′(x)(v1, v2)‖H0 < ∞, and

CB = supx,v1,v2∈∩r∈RHr,max{‖v1‖H0
,‖v2‖H0

}≤1‖B′′(x)(v1, v2)‖L2(U,H0) <∞.

Theorem 1.1. Assume the above setting. Then

(i) it holds that there exist up to modifications unique (Ft)t∈[0,T ]-predictable stochastic
processes XN = (XN ,XN) : [0, T ]× Ω→ PN(Hρ), N ∈ N ∪ {∞}, such that for all
N ∈ N ∪ {∞}, t ∈ [0, T ] it holds that sups∈[0,T ] E

[
‖XN

s ‖2
Hρ

]
<∞ and P-a.s. that

XN
t = etAPNξ +

∫ t

0

e(t−s)APNF(XN
s ) ds+

∫ t

0

e(t−s)APNB(XN
s ) dWs (1.1)

and

(ii) it holds that

sup
N∈N

sup
ϕ∈C2

b(H0,R)\{0}

(
(λN)γ−β

∣∣E[ϕ(X∞T )]− E
[
ϕ
(
XN
T

)]∣∣
‖ϕ‖C2

b(H0,R)

)
≤ max

{
1,E

[
‖ξ‖2

Hρ

]}[
E
[
‖ξ‖H2(γ−β)

]
+ T

∥∥F|Hρ

∥∥
Lip0(Hρ,H2(γ−β))

+ 2T ‖(−A)−β‖L1(H)

∥∥B|Hρ

∥∥2

Lip0(Hρ,L(U,Hγ))

]
max

{
1,
[
T
(
(CF)2 + 2(CB)2

)]1/2}
· exp

(
T
[

1
2

+ 3 |F|Lip0(H0,H0) + 4 |B|2Lip0(H0,L2(U,H0))

])
(1.2)

· exp
(
T
[
2
∥∥F|Hρ

∥∥
Lip0(Hρ,Hρ)

+
∥∥B|Hρ

∥∥2

Lip0(Hρ,L2(U,Hρ))

])
<∞.

Theorem 1.1 follows directly from Remark 2.7 and Corollary 2.14 in Subsection 2.2.2, the
latter of which is a consequence of Theorem 2.12 in Subsection 2.2.2. Let us now add a
few remarks regarding Theorem 1.1.

First, we briefly outline our proof of Theorem 1.1. As usual in the case of weak
convergence analysis, the Kolmogorov equation (cf. (2.58) in the proof of Theorem 2.12)
is used. Another key ingredient is the Hölder inequality for Schatten norms (cf. (2.61) in
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1.1. Stochastic wave equations

the proof of Theorem 2.12). In addition, the proof of Theorem 1.1 employs the mild Itô
formula (cf. Da Prato, Jentzen, & Röckner [93, Corollary 1]) to obtain suitable a priori
estimates for solutions of (1.1) above (cf. Lemma 2.8 in Subsection 2.2.2 for details). The
detailed proof of Theorems 1.1 and 2.12, respectively, can be found in Subsection 2.2.2.

Second, we would like to emphasise that in the general setting of Theorem 1.1, the
weak convergence rate established in Theorem 1.1 can essentially not be improved. More
precisely, Jacobe de Naurois, Jentzen, & Welti [186, Theorem 1.1] proves that for every
η ∈ (0,∞) and every infinite-dimensional separable R-Hilbert space (H, 〈·, ·〉H , ‖·‖H) there
exist (U, 〈·, ·〉U , ‖·‖U), A : D(A) ⊆ H → H, γ, c ∈ (0,∞), (Cε)ε∈(0,∞) ⊆ [0,∞), ρ ∈ [0, γ/2],
ξ ∈ L2(P|F0 ; Hγ), ϕ ∈ C2

b(H0,R), F ∈ C2
b(H0,H0), B ∈ C2

b(H0, L2(U,H0)) such that
F(Hρ) ⊆ Hγ, (Hρ 3 v 7→ F(v) ∈ Hγ) ∈ Lip0(Hρ,Hγ), ∀v ∈ Hρ, u ∈ U : B(v)u ∈ Hγ,
∀v ∈ Hρ : (U 3 u 7→ B(v)u ∈ Hρ) ∈ L2(U,Hρ), (Hρ 3 v 7→ (U 3 u 7→ B(v)u ∈ Hρ) ∈
L2(U,Hρ)) ∈ Lip0(Hρ, L2(U,Hρ)), ∀v ∈ Hρ : (U 3 u 7→ B(v)u ∈ Hγ) ∈ L(U,Hγ), and
(Hρ 3 v 7→ (U 3 u 7→ B(v)u ∈ Hγ) ∈ L(U,Hγ)) ∈ Lip0(Hρ, L(U,Hγ)) and such that for
all ε ∈ (0,∞), N ∈ N it holds that

c · (λN)−η ≤
∣∣E[ϕ(X∞T )]− E

[
ϕ
(
XN
T

)]∣∣ ≤ Cε · (λN)ε−η. (1.3)

Further results on lower bounds for strong and weak errors for stochastic parabolic equa-
tions can be found, e.g., in Davie & Gaines [96], Müller-Gronbach, Ritter, & Wagner [251],
Müller-Gronbach & Ritter [250], Conus, Jentzen, & Kurniawan [82], and Jentzen & Kur-
niawan [191].

Third, we illustrate Theorem 1.1 by a simple example (cf. Corollary 2.18 in Sub-
section 2.2.3). For this let PN ∈ L(H), N ∈ N ∪ {∞}, be the linear operators which
satisfy for all N ∈ N ∪ {∞}, v ∈ H that PN(v) =

∑N
n=1〈en, v〉Hen. In the case

where (H, 〈·, ·〉H , ‖·‖H) = (U, 〈·, ·〉U , ‖·‖U) =
(
L2(µ(0,1);R), 〈·, ·〉L2(µ(0,1);R), ‖·‖L2(µ(0,1);R)

)
,

ξ = (ξ0, ξ1) ∈ H1
0 ((0, 1);R) ×H, and F = 0, where A : D(A) ⊆ H → H is the Laplacian

with Dirichlet boundary conditions on H, and where B : H ×H−1/2 → L2(H,H ×H−1/2)
is the function which satisfies for all (v, w) ∈ H × H−1/2, u ∈ C([0, 1],R) and µ(0,1)-a.e.
x ∈ (0, 1) that

(
B(v, w)u

)
(x) =

(
0, v(x)u(x)

)
, the first component processes XN : [0, T ]×

Ω→ PN(H), N ∈ N ∪ {∞}, are mild solutions of the SPDEs

Ẍt(x) = ∂2

∂x2Xt(x) + PNXt(x)Ẇt(x) (1.4)

with X0(x) = (PNξ0)(x), Ẋ0(x) = (PNξ1)(x), and Xt(0) = Xt(1) = 0 for x ∈ (0, 1),
t ∈ [0, T ], N ∈ N∪ {∞}. In the case N =∞, (1.4) is known as the continuous version of
the hyperbolic Anderson model in the literature (cf., e.g., Conus et al. [83]). Theorem 1.1
applied to (1.4) ensures for all ϕ ∈ C2

b(H,R), ε ∈ (0,∞) that there exists a real number
C ∈ [0,∞) such that for all N ∈ N it holds that∣∣E[ϕ(X∞T )]− E

[
ϕ
(
XN
T

)]∣∣ ≤ C ·N ε−1 (1.5)

(cf. Corollary 2.18). We thus prove that the spatial spectral Galerkin approximations
converge with weak rate 1- to the solution of the continuous version of the hyperbolic
Anderson model. The weak rate 1- is exactly twice the well-known strong convergence
rate for the continuous version of the hyperbolic Anderson model. To the best of our
knowledge, Theorem 1.1 and the corresponding result [185, Theorem 1.1], respectively,
are the first result in the literature that establishes an essentially sharp weak convergence
rate for the continuous version of the hyperbolic Anderson model. Theorem 1.1 also
establishes essentially sharp weak convergence rates for more general semi-linear stochastic
wave equations (cf. Corollaries 2.16 and 2.18 in Subsection 2.2.3).
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Chapter 1. Introduction

1.2 Generalised multilevel Picard approximations

It is one of the most challenging problems in applied mathematics to approximatively
solve high-dimensional PDEs. In particular, most of the numerical approximation schemes
studied in the scientific literature, such as finite differences, finite elements, and sparse
grids, suffer under the curse of dimensionality (cf. Bellman [32]) in the sense that the
number of computational operations needed to compute an approximation with an error
of size at most ε > 0 grows at least exponentially in the PDE dimension d ∈ N or in
the reciprocal of ε. Computing such an approximation with reasonably small error thus
becomes unfeasible in dimension greater than, say, ten. Therefore, a fundamental goal of
current research activities is to propose and analyse numerical methods with the power
to beat the curse of dimensionality in such way that the number of computational oper-
ations needed to compute an approximation with an error of size at most ε > 0 grows at
most polynomially in both the PDE dimension d ∈ N and the reciprocal of ε (cf., e.g.,
Novak & Woźniakowski [253, Chapter 1; 254, Chapter 9]). In the recent years a number
of numerical schemes have been proposed to tackle the problem of approximately solving
high-dimensional PDEs, which include deep learning based approximation methods (cf.,
e.g., [21–23, 28, 30, 45, 66, 75, 106, 110, 117, 123, 127, 146, 158, 159, 169, 178, 187,
231, 234, 238, 262, 266, 288] and the references mentioned therein), branching diffusion
approximation methods (cf., e.g., [1, 31, 46, 51, 52, 67, 168, 170–172, 241, 267, 289, 306,
307]), approximation methods based on discretising a corresponding backward stochas-
tic differential equation (BSDE) using iterative regression on function Hamel bases (cf.,
e.g., [13, 40, 43, 53, 68–71, 87–90, 101, 107, 137–142, 177, 219, 225, 229, 235–237, 247,
248, 261, 272–274, 296, 312] and the references mentioned therein) or using Wiener chaos
expansions (cf. Briand & Labart [57] and Geiss & Labart [131]), and MLP approximation
methods (cf. [25, 26, 111, 112, 134, 179, 181–183]). So far, deep learning based approxi-
mation methods for PDEs seem to work very well in the case of high-dimensional PDEs
judging from a large number of numerical experiments. However, there exist only partial
results (cf., e.g., [47, 120, 144, 148–150, 180, 194, 218, 268]) and no full error analysis in
the scientific literature rigorously justifying their effectiveness in the numerical approxi-
mation of high-dimensional PDEs. Moreover, while for branching diffusion methods there
is a full error analysis available proving that the curse of dimensionality can be beaten
for instances of PDEs with small time horizon and small initial condition, respectively,
numerical simulations suggest that such methods fail to work if the time horizon or the
initial condition, respectively, are not small anymore. To sum it up, MLP approximation
methods currently are, to the best of our knowledge, the only methods for parabolic semi-
linear PDEs with general time horizons and general initial conditions for which there is a
rigorous proof that they are indeed able to beat the curse of dimensionality.

The main purpose of Chapter 3 and the preprint Giles, Jentzen, & Welti [134], of
which the current section combined with Chapter 3 is a slightly modified version, is to
investigate MLP methods in more depth, to reveal more clearly how these methods can
overcome the curse of dimensionality, and to generalise the MLP scheme proposed in
Hutzenthaler et al. [181]. In particular, in the main result of Chapter 3 (cf. Theorem 3.14
in Subsection 3.1.6) and of the preprint [134] (cf. [134, Theorem 2.14]), respectively, we
develop an abstract framework in which suitably generalised MLP approximations can be
formulated (cf. (1.6) in Theorem 1.2 below) and analysed (cf. (i)–(iii) in Theorem 1.2)
and, thereafter, apply this abstract framework to derive a computational complexity re-
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1.2. Generalised multilevel Picard approximations

sult for suitable MLP approximations for semi-linear heat equations (cf. Corollary 1.3
below). These resulting MLP approximations for semi-linear heat equations essentially
are generalisations of the MLP approximations introduced in [181]. To make the reader
more familiar with the contributions of Chapter 3 and the preprint [134], respectively,
we now illustrate in Theorem 1.2 below the findings of the main result of Chapter 3 (cf.
Theorem 3.14 in Subsection 3.1.6 and [134, Theorem 2.14]) in a simplified situation.

Theorem 1.2. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-Banach
space, let z,B, κ, C, c ∈ [1,∞), Θ =

⋃∞
n=1 Zn, (Mj)j∈N ⊆ N, y ∈ Y satisfy lim infj→∞Mj

= ∞, supj∈N Mj+1/Mj ≤ B, and supj∈N Mj/j ≤ κ, let (Z,Z ) be a measurable space, let
Zθ : Ω → Z, θ ∈ Θ, be i.i.d. F/Z -measurable functions, let (H, 〈·, ·〉H, ‖·‖H) be a sep-
arable R-Hilbert space, let S be the strong σ-algebra on L(Y ,H), let ψk : Ω → L(Y ,H),
k ∈ N0 = {0, 1, 2, . . .}, be F/S -measurable functions, assume that (Zθ)θ∈Θ and (ψk)k∈N0

are independent, let Φl : Y×Y×Z → Y, l ∈ N0, be (B(Y)⊗B(Y)⊗Z )/B(Y)-measurable
functions, let Y θ

n,j : Ω→ Y, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪{−1}), satisfy for all n, j ∈ N, θ ∈ Θ
that Y θ

−1,j = Y θ
0,j = 0 and

Y θ
n,j =

n−1∑
l=0

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
, (1.6)

let (Costn,j)(n,j)∈(N0∪{−1})×N ⊆ [0,∞) satisfy for all n, j ∈ N that Cost−1,j = Cost0,j = 0
and

Costn,j ≤ (Mj)
nz +

n−1∑
l=0

[
(Mj)

n−l(Costl,j + Costl−1,j + 2z)
]
, (1.7)

and assume for all k ∈ N0, n, j ∈ N, u, v ∈ Y that E
[
‖Φk(Y

0
k,j, Y

1
k−1,j, Z

0)‖Y
]
<∞ and

max
{
E
[
‖ψk(Φ0(0, 0, Z0))‖2

H
]
,E
[
‖ψk(y)‖2

H
]}
≤ C2

k!
, (1.8)

E
[
‖ψk(Φn(u, v, Z0))‖2

H
]
≤ cE

[
‖ψk+1(u− v)‖2

H
]
, (1.9)

E
[∥∥ψk(y −∑n−1

l=0 E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∥∥2

H

]
≤ cE

[∥∥ψk+1

(
Y 0
n−1,j − y

)∥∥2

H

]
. (1.10)

Then

(i) it holds for all n ∈ N that
(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ C

[
5ceκ

Mn

]n/2
<∞,

(ii) it holds for all n ∈ N that Costn,n ≤ (5Mn)nz, and

(iii) there exists (Nε)ε∈(0,1] ⊆ N such that it holds for all ε ∈ (0, 1], δ ∈ (0,∞) that
supn∈{Nε,Nε+1,...}

(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ ε and

CostNε,Nε ≤ 5zeκC2(1+δ)
(
1 + supn∈N

[
(Mn)−δ(25ce2κB)(1+δ)

]n)
ε−2(1+δ) <∞. (1.11)

Theorem 1.2 follows directly from the more general result in Corollary 3.15 in Subsec-
tion 3.1.6, which, in turn, is a consequence of the main result of Chapter 3, Theorem 3.14
in Subsection 3.1.6 (cf. [134, Theorem 2.14]).

In the following we provide some intuitions and further explanations for Theorem 1.2
and illustrate how it is applied in the context of numerically approximating semi-linear
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Chapter 1. Introduction

heat equations (cf. Corollary 1.3 below and Setting 3.1 in Section 3.2). Theorem 1.2 es-
tablishes an upper error bound (cf. (i) in Theorem 1.2) and an upper cost bound (cf. (ii)
in Theorem 1.2) for the generalised MLP approximations in (1.6) as well as an abstract
complexity result (cf. (iii) in Theorem 1.2), which states that for an approximation ac-
curacy ε in a suitable root mean square sense the computational cost is essentially of
order ε−2. The separable R-Banach space (Y , ‖·‖Y) is a set which the exact solution y
is an element of and where the generalised MLP approximations Y θ

n,j : Ω → Y , θ ∈ Θ,
j ∈ N, n ∈ (N0 ∪ {−1}), which are random variables approximating y ∈ Y in an appro-
priate sense, take values in. When y ∈ Y is the solution of a suitable semi-linear heat
equation (cf. (1.12) below), elements of Y are at most polynomially growing functions
in C([0, T ] × Rd,R), where T ∈ (0,∞), d ∈ N (cf. (3.129) in Subsection 3.2.2.1). The
randomness of the generalised MLP approximations Y θ

n,j, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪ {−1}),
stems from the i.i.d. random variables Zθ : Ω→ Z, θ ∈ Θ, taking values in a measurable
space (Z,Z ), which in our example about semi-linear heat equations correspond to stan-
dard Brownian motions and on [0, 1] uniformly distributed random variables (cf. (1.13)
below). Observe that the generalised MLP approximations in (1.6) above are full-history
recursive since each iterate depends on all previous iterates. Together with the random
variables Zθ, θ ∈ Θ, the previous iterates enter through the functions Φl : Y×Y×Z → Y ,
l ∈ N0, which thus govern the dynamics of the generalised MLP approximations. This
recursive dependence, the consequential nesting of the generalised MLP approximations,
and the Monte Carlo sums in (1.6) necessitate a large number of i.i.d. samples indexed
by θ ∈ Θ =

⋃∞
n=1 Zn in order to formulate the generalised MLP approximations. In

connection with this note that it holds for every n ∈ (N0 ∪{−1}), j ∈ N that Y θ
n,j, θ ∈ Θ,

are identically distributed (cf. (v) in Proposition 3.8 in Subsection 3.1.3).
On the other hand, the parameter j ∈ N of the generalised MLP approximations

Y θ
n,j, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪ {−1}), specifies the respective element of the sequence

of Monte Carlo numbers (Mj)j∈N ⊆ N (which are assumed to grow to infinity not faster
than linearly) and thereby determines the numbers of Monte Carlo samples to be used
in (1.6). Thus for every j ∈ N we can consider the family (Y 0

n,j)n∈(N0∪{−1}) of generalised
MLP approximations with Monte Carlo sample numbers based on Mj, of which we pick
the j-th element Y 0

j,j to approximate y ∈ Y (cf. (iii) in Theorem 1.2). More precisely, for
every n ∈ N the approximation error for Y 0

n,n is measured in the root mean square sense
in a separable R-Hilbert space (H, 〈·, ·〉H, ‖·‖H), after linearly mapping it from Y to H
using the possibly random function ψ0 : Ω → L(Y ,H) (cf. (i) and (iii) in Theorem 1.2
above). In our example about semi-linear heat equations, H is nothing but the set of real
numbers R and ψ0 is the deterministic evaluation of a function in Y ⊆ C([0, T ]× Rd,R)
at a deterministic approximation point in [0, T ]× Rd (cf. (3.132) in Subsection 3.2.2.1).

Conversely, the functions ψk : Ω → L(Y ,H), k ∈ N, correspond in our example to
evaluations at suitable random points in [0, T ]× Rd multiplied with random factors that
diminish quickly as k ∈ N increases (cf. (3.132) in Subsection 3.2.2.1). Indeed assump-
tion (1.8) above essentially demands that mean square norms of point evaluations of the
functions ψk, k ∈ N0, diminish at least as fast as the reciprocal of the factorial of their
index. Due to this, the functions ψk, k ∈ N0, can be thought of encoding magnitude in
an appropriate randomised sense. Assumption (1.9) hence essentially requires for every
k ∈ N0, n ∈ N that the k-magnitude of the dynamics function Φn can be bounded (up
to a constant) by the (k+ 1)-magnitude of the difference of its first two arguments, while
assumption (1.10), roughly speaking, calls for suitable telescopic cancellations (cf. (3.194)
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1.2. Generalised multilevel Picard approximations

in Subsection 3.2.2.5) such that for every k ∈ N0 the k-magnitude of the probabilistically
weak approximation error of a given MLP iterate (cf. (3.44)–(3.45) in Subsection 3.1.4)
can be bounded (up to a constant) by the (k + 1)-magnitude of the approximation error
of the previous MLP iterate.

Furthermore, we think of the real number z ∈ [1,∞) as a parameter associated to
the computational cost of one realisation of Z0 and for every n ∈ (N0 ∪ {−1}), j ∈ N
we think of the real number Costn,j ∈ [0,∞) as an upper bound for the computational
cost associated to one realisation of ψ0(Y 0

n,j) (cf. (1.7) above). In our application of the
abstract framework outlined above, we have that z corresponds to the spacial dimension
of the considered semi-linear heat equation and we have for every n ∈ (N0∪{−1}), j ∈ N
that the number Costn,j corresponds to an upper bound for the sum of the number of
realisations of standard normal random variables and the number of realisations of on
[0, 1] uniformly distributed random variables used to compute one realisation of ψ0(Y 0

n,j)
(cf. (3.204) in Subsection 3.2.3.1).

The abstract framework in Theorem 1.2 can be applied to prove convergence and
computational complexity results for MLP approximations in more specific settings. We
demonstrate this for the example of MLP approximations for semi-linear heat equations.
In particular, Corollary 1.3 below (cf. [134, Corollary 1.2]) establishes that the MLP
approximations in (1.13), which essentially are generalisations of the MLP approximations
introduced in [181], approximate solutions of semi-linear heat equations (1.12) at the
origin without the curse of dimensionality (cf. [181, Theorem 1.1] and [182, Theorems 1.1
and 4.1]).

Corollary 1.3. Let T ∈ (0,∞), p ∈ [0,∞), Θ =
⋃∞
n=1 Zn, (Mj)j∈N ⊆ N satisfy supj∈N

(Mj+1/Mj + Mj/j) <∞ = lim infj→∞Mj, let f : R→ R be a Lipschitz continuous function,
let gd ∈ C(Rd,R), d ∈ N, satisfy supd∈N supx∈Rd |gd(x)|/max{1,‖x‖p

Rd
} < ∞, for every d ∈ N

let yd ∈ C([0, T ]× Rd,R) be an at most polynomially growing viscosity solution of(
∂yd
∂t

)
(t, x) + 1

2
(∆xyd)(t, x) + f(yd(t, x)) = 0 (1.12)

with yd(T, x) = gd(x) for (t, x) ∈ (0, T ) × Rd, let (Ω,F ,P) be a probability space, let
U θ : Ω → [0, 1], θ ∈ Θ, be independent on [0, 1] uniformly distributed random variables,
let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, d ∈ N, be independent standard Brownian motions,
assume that (U θ)θ∈Θ and (W d,θ)(d,θ)∈N×Θ are independent, let Y d,θ

n,j : [0, T ]× Rd × Ω→ R,
θ ∈ Θ, d, j ∈ N, n ∈ (N0 ∪{−1}), satisfy for all n, j, d ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that
Y d,θ
−1,j(t, x) = Y d,θ

0,j (t, x) = 0 and

Y d,θ
n,j (T − t, x) =

n−1∑
l=0

t
(Mj)n−l

[
(Mj)

n−l∑
i=1

[
f
(
Y
d,(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t

))
(1.13)

− 1N(l)f
(
Y
d,(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t

))]]
+ 1

(Mj)n

[
(Mj)

n∑
i=1

gd
(
x+W

d,(θ,0,i)
t

)]
,

and for every d, n ∈ N let Costd,n ∈ N0 be the number of realisations of standard nor-
mal random variables used to compute one realisation of Y d,0

n,n (0, 0) (cf. (3.229) in Sub-
section 3.2.3.2 for a precise definition). Then there exist (Nd,ε)(d,ε)∈N×(0,1] ⊆ N and
(Cδ)δ∈(0,∞) ⊆ (0,∞) such that it holds for all d ∈ N, ε ∈ (0, 1], δ ∈ (0,∞) that
Costd,Nd,ε ≤ Cδd

1+p(1+δ)ε−2(1+δ) and

supn∈{Nd,ε,Nd,ε+1,...}
(
E
[
|Y d,0
n,n (0, 0)− yd(0, 0)|2

])1/2 ≤ ε. (1.14)
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Corollary 1.3 is a direct consequence of Corollary 3.34 in Subsection 3.2.3.2, while the lat-
ter is a direct consequence of Theorem 3.33 in Subsection 3.2.3.2. Theorem 3.33, in turn,
follows from either Corollary 3.15 in Subsection 3.1.6 or Theorem 1.2 above. Furthermore,
Theorem 3.33 and the corresponding result [134, Theorem 3.17], respectively, essentially
are a slight generalisation of [181, Theorem 1.1]. More specifically, the MLP approxima-
tions in (3.220) in Theorem 3.33 and in (1.13) above allow for general sequences of Monte
Carlo numbers (Mj)j∈N ⊆ N satisfying supj∈N(Mj+1/Mj + Mj/j) < ∞ = lim infj→∞Mj.
This includes, in particular, the special case where ∀ j ∈ N : Mj = j, which essentially
corresponds to the MLP approximations in [181] (cf. [181, (1) in Theorem 1.1]).

1.3 Optimal stopping problems

Nowadays many financial derivatives which are traded on stock and futures exchanges,
such as American or Bermudan options, are of early exercise type. Contrary to European
options, the holder of such an option has the right to exercise before the time of maturity.
In models from mathematical finance for the appropriate pricing of early exercise options
this aspect gives rise to optimal stopping problems. The dimension of such optimal stop-
ping problems can often be quite high since it corresponds to the number of underlyings,
that is, the number of considered financial assets in the hedging portfolio associated to
the optimal stopping problem. Due to the curse of dimensionality (cf. Bellman [32]),
high-dimensional optimal stopping problems are, however, notoriously difficult to solve.
Such optimal stopping problems can in nearly all cases not be solved explicitly and it is
an active topic of research to design and analyse approximation methods which are capa-
ble of approximately solving possibly high-dimensional optimal stopping problems. Many
different approaches for numerically solving optimal stopping problems and, in particular,
American and Bermudan option pricing problems have been studied in the literature; cf.,
e.g., [3, 5, 6, 14, 15, 19, 20, 28–30, 33–39, 41–43, 48, 53, 58–61, 65, 73, 75, 77, 81, 97,
104, 118, 119, 126, 127, 129, 135, 139, 143, 146, 155, 164, 188, 189, 197, 204–209, 217,
219–221, 223, 224, 232, 233, 257, 270, 271, 276, 278, 287, 288, 293–295, 301]. For ex-
ample, such approaches include approximating the Snell envelope or continuation values
(cf., e.g., [15, 65, 232, 293]), computing optimal exercise boundaries (cf., e.g., [5]), and
dual methods (cf., e.g., [164, 270]). Whereas in [164, 207] artificial neural networks with
one hidden layer have been employed to approximate continuation values, more recently
numerical approximation methods for American and Bermudan option pricing that are
based on deep learning have been introduced; cf., e.g., [28–30, 75, 127, 221, 287, 288].
More precisely, in [287, 288] deep neural networks (DNNs) are used to approximately solve
the corresponding obstacle PDE problem, in [28, 30] the corresponding optimal stopping
problem is tackled directly with deep learning based algorithms, [127] applies an extension
of the deep BSDE solver from [110, 158] to the corresponding reflected BSDE problem,
[75] suggests a different deep learning based algorithm that relies on discretising BSDEs,
and in [29, 221] DNN based variants of the classical algorithm introduced by Longstaff &
Schwartz [232] are examined.

In Chapter 4 and the preprint Becker et al. [30], of which the current section com-
bined with Chapter 4 is a slightly modified version, we propose an algorithm for solving
general possibly high-dimensional optimal stopping problems; cf. Framework 4.2 in Sub-
section 4.2.2 and [30, Framework 3.2]. In spirit it is similar to the algorithm introduced in
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Becker, Cheridito, & Jentzen [28]. The proposed algorithm is based on deep learning and
computes both approximations for an optimal stopping strategy and the optimal expected
pay-off associated to the considered optimal stopping problem. In the context of pricing
early exercise options these correspond to approximations for an optimal exercise strategy
and the price of the considered option, respectively. The derivation and implementation
of the proposed algorithm consist of essentially the following three steps.

(I) A neural network architecture for in an appropriate sense ‘randomised’ stopping
times (cf. (4.31) in Subsection 4.1.4) is established in such a way that varying the
neural network parameters leads to different randomised stopping times being ex-
pressed. This neural network architecture is used to replace the supremum of the
expected pay-off over suitable stopping times (which constitutes the generic opti-
mal stopping problem) by the supremum of a suitable objective function over neural
network parameters (cf. (4.38)–(4.39) in Subsection 4.1.5).

(II) A stochastic gradient ascent-type optimisation algorithm is employed to compute
neural network parameters that approximately maximise the objective function (cf.
Subsection 4.1.6).

(III) From these neural network parameters and the corresponding randomised stopping
time, a true stopping time is constructed which serves as the approximation for an
optimal stopping strategy (cf. (4.44) and (4.46) in Subsection 4.1.7). In addition, an
approximation for the optimal expected pay-off is obtained by computing a Monte
Carlo approximation of the expected pay-off under this approximately optimal stop-
ping strategy (cf. (4.45) in Subsection 4.1.7).

It follows from (III) that the proposed algorithm computes a low-biased approximation
of the optimal expected pay-off (cf. (4.48) in Subsection 4.1.7). Yet a large number of
numerical experiments where a reference value is available (cf. Section 4.3) show that the
bias appears to become small quickly during training and that a very satisfying accuracy
can be achieved in short computation time, even in high dimensions (cf. the introductory
paragraph of Chapter 4 for a brief overview of the numerical computations that have
been performed). Moreover, in (I) we resort to randomised stopping times in order to
circumvent the discrete nature of stopping times that attain only finitely many different
values. As a result it is possible in (II) to tackle the arising optimisation problem with a
stochastic gradient ascent-type algorithm. Furthermore, while the focus in Chapter 4 lies
on American and Bermudan option pricing, the proposed algorithm can also be applied
to optimal stopping problems that arise in other areas where the underlying stochastic
process can be efficiently simulated. Apart from this, we only rely on the assumption that
the stochastic process to be optimally stopped is a Markov process (cf. Subsection 4.1.4).
But this assumption is no substantial restriction since, on the one hand, it is automat-
ically fulfilled in many relevant problems and, on the other hand, a discrete stochastic
process that is not a Markov process can be replaced by a Markov process of higher di-
mension that aggregates all necessary information (cf., e.g., [28, Subsection 4.3] and, e.g.,
Subsection 4.3.4.4).

Next we make a short comparison to the algorithm introduced in [28]. The latter
is based on introducing for every point in time where stopping is permitted an auxiliary
optimal stopping problem, for which stopping is only allowed at that point in time or later
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(cf. [28, (4) in Subsection 2.1]). Starting at maturity, these auxiliary problems are solved
recursively backwards until the initial time is reached. Thereby in every new step neural
network parameters are learned for an objective function that depends, in particular, on
the parameters found in the previous steps (cf. [28, Subsection 2.3]). In contrast, in (I)
a single objective function is designed. This objective function allows to search in (II)
for neural network parameters that maximise the expected pay-off simultaneously over
(randomised) stopping times which may decide to stop at any of the admissible points
in time. Therefore, the algorithm proposed here does not rely on a recursion over the
different time points. In addition, the construction of the final approximation for an
optimal stopping strategy in (III) differs from a corresponding construction in [28].

1.4 Empirical risk minimisation

The aim of Chapter 5 and the preprint Jentzen & Welti [196], of which the current
section combined with Chapter 5 is a slightly modified version, is to provide a mathe-
matically rigorous full error analysis of deep learning based empirical risk minimisation
with quadratic loss function in the probabilistically strong sense, where the underly-
ing DNNs are trained using stochastic gradient descent (SGD) with random initialisa-
tion (cf. Theorem 1.4 below and [196, Theorem 1.1]). For a brief illustration of deep
learning based empirical risk minimisation with quadratic loss function, consider natu-
ral numbers d,d ∈ N, a probability space (Ω,F ,P), random variables X : Ω → [0, 1]d

and Y : Ω → [0, 1], and a measurable function E : [0, 1]d → [0, 1] satisfying P-a.s. that
E(X) = E[Y |X]. The goal is to find a DNN with appropriate architecture and ap-
propriate parameter vector θ ∈ Rd (collecting its weights and biases) such that its re-
alisation Nθ : Rd → R approximates the target function E well in the sense that the
error E[|Nθ(X) − E(X)|p] =

∫
[0,1]d
|Nθ(x) − E(x)|p PX(dx) ∈ [0,∞) for some p ∈ [1,∞)

is as small as possible. In other words, given X we want Nθ(X) to predict Y as re-
liably as possible. Due to the well-known bias–variance decomposition (cf., e.g., Beck,
Jentzen, & Kuckuck [27, Lemma 4.1]), for the case p = 2 minimising the error function
Rd 3 θ 7→ E[|Nθ(X) − E(X)|2] ∈ [0,∞) is equivalent to minimising the risk function
Rd 3 θ 7→ E[|Nθ(X) − Y |2] ∈ [0,∞) (corresponding to a quadratic loss function). Since
in practice the joint distribution of X and Y is typically not known, the risk function is
replaced by an empirical risk function based on i.i.d. training samples of (X, Y ). This
empirical risk is then approximatively minimised using an optimisation method such as
SGD. As is often the case for deep learning based algorithms, the overall error arising
from this procedure consists of the following three different parts (cf. [27, Lemma 4.3] and
Proposition 5.37 in Subsection 5.5.1): (i) the approximation error (cf., e.g., [16, 17, 49,
78, 92, 122, 128, 163, 173–176, 226, 255] and the references in the introductory paragraph
in Section 5.2), which arises from approximating the target function E by the considered
class of DNNs, (ii) the generalisation error (cf., e.g., [18, 27, 47, 91, 113–115, 156, 240,
281, 297]), which arises from replacing the true risk by the empirical risk, and (iii) the
optimisation error (cf., e.g., [10, 12, 22, 27, 44, 72, 102, 103, 108, 109, 124, 161, 190, 195,
200, 222, 282, 311, 313]), which arises from computing only an approximate minimiser
using the selected optimisation method.

In Chapter 5 and the preprint [196], respectively, we derive strong convergence rates
for the approximation error, the generalisation error, and the optimisation error separately
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and combine these findings to prove strong convergence results for the overall error (cf.
Subsections 5.5.2 and 5.5.3), as illustrated in Theorem 1.4 below. The convergence speed
we obtain (cf. (1.18) in Theorem 1.4) suffers under the curse of dimensionality (cf., e.g.,
Bellman [32] and Novak & Woźniakowski [253, Chapter 1; 254, Chapter 9]) and is, as a
consequence, very slow. To the best of our knowledge, we establish in Chapter 5 and the
preprint [196], however, the first full error analysis in the scientific literature for a deep
learning based algorithm in the probabilistically strong sense and, moreover, the first
full error analysis in the scientific literature for a deep learning based algorithm where
SGD with random initialisation is the employed optimisation method. We now present
Theorem 1.4, the statement of which is entirely self-contained, before we add further
explanations and intuitions for the mathematical objects that are introduced.

Theorem 1.4. Let d,d,L,J,M,K,N ∈ N, γ, L ∈ R, c ∈ [max{2, L},∞), l = (l0, . . . , lL)
∈ NL+1, N ⊆ {0, . . . , N}, assume 0 ∈ N, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), for

every m,n ∈ N, s ∈ N0, θ = (θ1, . . . , θd) ∈ Rd with d ≥ s+mn+m let Aθ,sm,n : Rn → Rm

satisfy for all x = (x1, . . . , xn) ∈ Rn that

Aθ,sm,n(x) =


θs+1 θs+2 · · · θs+n
θs+n+1 θs+n+2 · · · θs+2n

...
... . . . ...

θs+(m−1)n+1 θs+(m−1)n+2 · · · θs+mn



x1

x2
...
xn

+


θs+mn+1

θs+mn+2
...

θs+mn+m

 , (1.15)

let ai : Rli → Rli, i ∈ {1, . . . ,L}, satisfy for all i ∈ N ∩ [0,L), x = (x1, . . . , xli) ∈
Rli that ai(x) = (max{x1, 0}, . . . ,max{xli , 0}), assume for all x ∈ R that aL(x) =
max{min{x, 1}, 0}, for every θ ∈ Rd let Nθ : Rd → R satisfy Nθ = aL ◦Aθ,

∑L−1
i=1 li(li−1+1)

lL,lL−1
◦

aL−1 ◦Aθ,
∑L−2
i=1 li(li−1+1)

lL−1,lL−2
◦ . . . ◦ a1 ◦Aθ,0l1,l0

, let (Ω,F ,P) be a probability space, let Xk,n
j : Ω→

[0, 1]d, k, n, j ∈ N0, and Y k,n
j : Ω → [0, 1], k, n, j ∈ N0, be functions, assume that

(X0,0
j , Y 0,0

j ), j ∈ N, are i.i.d. random variables, let E : [0, 1]d → [0, 1] satisfy P-a.s.
that E(X0,0

1 ) = E[Y 0,0
1 |X0,0

1 ], assume for all x, y ∈ [0, 1]d that |E(x) − E(y)| ≤ L‖x −
y‖1, let Θk,n : Ω → Rd, k, n ∈ N0, and k : Ω → (N0)2 be random variables, assume(⋃∞

k=1 Θk,0(Ω)
)
⊆ [−c, c]d, assume that Θk,0, k ∈ N, are i.i.d., assume that Θ1,0 is

continuous uniformly distributed on [−c, c]d, let Rk,n
J : Rd × Ω → [0,∞), k, n, J ∈ N0,

and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈
Rd : (Rk,n

J (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that Gk,n(θ, ω) = (∇θRk,n
J )(θ, ω),

assume for all k, n ∈ N that Θk,n = Θk,n−1− γGk,n(Θk,n−1), and assume for all k, n ∈ N0,
J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|Nθ(X
k,n
j (ω))− Y k,n

j (ω)|2
]

and (1.16)

k(ω) ∈ arg min(l,m)∈{1,...,K}×N, ‖Θl,m(ω)‖∞≤cR
0,0
M (Θl,m(ω), ω). (1.17)

Then

E
[∫

[0,1]d
|NΘk

(x)− E(x)|PX0,0
1

(dx)
]

≤ dc3

[min{L, l1, . . . , lL−1}]1/d
+
c3L(‖l‖∞ + 1) ln(eM)

M 1/4
+

L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]
.

(1.18)
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Recall that we denote for every p ∈ [1,∞] by ‖·‖p :
(⋃∞

n=1 Rn
)
→ [0,∞) the p-norm

of vectors in
⋃∞
n=1 Rn (cf. Definition 5.9 in Subsection 5.2.1). In addition, note that the

function Ω×[0, 1]d 3 (ω, x) 7→ |NΘk(ω)(ω)(x)−E(x)| ∈ [0,∞) is measurable (cf. Lemma 5.38
in Subsection 5.5.2) and that the expression on the left hand side of (1.18) above is thus
well-defined. Theorem 1.4 follows directly from Corollary 5.45 in Subsection 5.5.3, which,
in turn, is a consequence of the main result of Chapter 5, Theorem 5.41 in Subsection 5.5.2
(cf. [196, Theorem 6.5]).

In the following we provide additional explanations and intuitions for Theorem 1.4.
For every θ ∈ Rd the function Nθ : Rd → R is the realisation of a fully connected feedfor-
ward artificial neural network with L + 1 layers consisting of an input layer of dimension
l0 = d, of L − 1 hidden layers of dimensions l1, . . . , lL−1, respectively, and of an output
layer of dimension lL = 1 (cf. Definition 5.8 in Subsection 5.1.3). The weights and biases
stored in the DNN parameter vector θ ∈ Rd determine the corresponding L affine linear
transformations (cf. (1.15) above). As activation functions we employ the multidimen-
sional versions a1, . . . , aL−1 (cf. Definition 5.3 in Subsection 5.1.2) of the rectifier function
R 3 x 7→ max{x, 0} ∈ R (cf. Definition 5.4 in Subsection 5.1.2) just in front of each of
the hidden layers and the clipping function aL (cf. Definition 5.6 in Subsection 5.1.2) just
in front of the output layer.

Furthermore, observe that we assume the target function E : [0, 1]d → [0, 1], the values
of which we intend to approximately predict with the trained DNN, to be Lipschitz
continuous with Lipschitz constant L. Moreover, for every k, n ∈ N0, J ∈ N the function
Rk,n
J : Rd×Ω→ [0,∞) is the empirical risk based on the J training samples (Xk,n

j , Y k,n
j ),

j ∈ {1, . . . , J} (cf. (1.16) above). Derived from the empirical risk, for every k, n ∈ N the
function Gk,n : Rd × Ω → Rd is a (generalised) gradient of the empirical risk Rk,n

J with
respect to its first argument, that is, with respect to the DNN parameter vector θ ∈ Rd.
These gradients are required in order to formulate the training dynamics of the (random)
DNN parameter vectors Θk,n ∈ Rd, k ∈ N, n ∈ N0, given by the SGD optimisation
method with learning rate γ. Note that the subscript n ∈ N0 of these SGD iterates (i.e.,
DNN parameter vectors) is the current training step number, whereas the subscript k ∈ N
counts the number of times the SGD iteration has been started from scratch so far. Such
a new start entails the corresponding initial DNN parameter vector Θk,0 ∈ Rd to be drawn
continuous uniformly from the hypercube [−c, c]d, in accordance with Xavier initialisation
(cf. Glorot & Bengio [136]). The (random) double index k ∈ N× N0 represents the final
choice made for the DNN parameter vector Θk ∈ Rd (cf. (1.18) above), concluding the
training procedure, and is selected as follows. During training the empirical risk R0,0

M has
been calculated for the subset of the SGD iterates indexed by N ⊆ {0, . . . , N} provided
that they have not left the hypercube [−c, c]d (cf. (1.17) above). After the SGD iteration
has been started and finished K times (with maximally N training steps in each case) the
final choice for the DNN parameter vector Θk ∈ Rd is made among those SGD iterates
for which the calculated empirical risk is minimal (cf. (1.17) above). Observe that we
use mini-batches of size J consisting, during SGD iteration number k ∈ {1, . . . , K} for
training step number n ∈ {1, . . . , N}, of the training samples (Xk,n

j , Y k,n
j ), j ∈ {1, . . . ,J},

and that we reserve the M training samples (X0,0
j , Y 0,0

j ), j ∈ {1, . . . ,M}, for checking the
value of the empirical risk R0,0

M .
Regarding the conclusion of Theorem 1.4, note that the left hand side of (1.18) is the

expectation of the overall L1-error, that is, the expected L1-distance between the trained
DNN NΘk and the target function E . It is bounded from above by the right hand side
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of (1.18), which consists of following three summands: (i) the first summand corresponds
to the approximation error and converges to zero as the number of hidden layers L − 1
as well as the hidden layer dimensions l1, . . . , lL−1 increase to infinity, (ii) the second
summand corresponds to the generalisation error and converges to zero as the number
of training samples M used for calculating the empirical risk increases to infinity, and
(iii) the third summand corresponds to the optimisation error and converges to zero as
the total number of times K the SGD iteration has been started from scratch increases
to infinity. We would like to point out that the second summand (corresponding to the
generalisation error) does not suffer under the curse of dimensionality with respect to any
of the variables involved.

The main result of Chapter 5 (cf. Theorem 5.41 in Subsection 5.5.2) and of the
preprint [196] (cf. [196, Theorem 6.5]), respectively, covers, in comparison with Theo-
rem 1.4, the more general cases where Lp-norms of the overall L2-error instead of the
expectation of the overall L1-error are considered (cf. (5.163) in Theorem 5.41), where
the training samples are not restricted to unit hypercubes, and where a general stochastic
approximation algorithm (cf., e.g., Robbins & Monro [269]) with random initialisation is
used for optimisation. Our convergence proof for the optimisation error relies, in fact, on
the convergence of the Minimum Monte Carlo method (cf. Proposition 5.34 in Section 5.4)
and thus only exploits random initialisation but not the specific dynamics of the employed
optimisation method (cf. (5.151) in the proof of Proposition 5.39 in Subsection 5.5.2). In
this regard, note that Theorem 1.4 above also includes the application of deterministic
gradient descent instead of SGD for optimisation since we do not assume the samples
used for gradient iterations to be i.i.d.
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Chapter 2
Weak convergence rates for spatial spectral
Galerkin approximations of semi-linear
stochastic wave equations with
multiplicative noise

The content of this chapter is a slightly modified extract of the preprint Jacobe
de Naurois, Jentzen, & Welti [185].

In this chapter we investigate weak convergence rates for stochastic wave equations that
may be driven by multiplicative noise (cf. Section 1.1 in Chapter 1). More precisely,
Theorem 2.12 in Subsection 2.2.2, which is the main result of this chapter, yields upper
bounds for weak errors associated to spatial spectral Galerkin approximations of abstract
wave-type stochastic evolution equations (SEEs). With the help of Theorem 2.12 we
establish, in particular, Theorem 1.1 in Section 1.1, which provides more explicit estimates
for weak errors in the case of suitably numbered spatial spectral Galerkin approximations.

This chapter is organised as follows. In Subsection 2.1.1 we present some notation often
used in this chapter. Subsection 2.1.2 states mostly well-known existence, uniqueness,
and regularity results, while Subsection 2.1.4 collects basic properties about interpolation
spaces and semigroups associated to deterministic wave equations. The main result of this
chapter, Theorem 2.12, is stated and proven in Subsection 2.2.2. Finally, Subsection 2.2.3
shows how Theorem 2.12 can be applied to stochastic wave equations and, in particular,
to the continuous version of the hyperbolic Anderson model (cf. Corollaries 2.16 and 2.18).

2.1 Preliminary results
For the proof of our key results in Section 2.2 below we require a number of basic prop-
erties of solutions of Kolmogorov equations and of semigroups associated to wave-type
evolution equations, which we collect in this section. More concretely, after presenting
some notation in Subsection 2.1.1 we state in Subsection 2.1.2 a well-known existence
and uniqueness result for solutions of SEEs with Lipschitz continuous drift and diffusion
coefficients (cf. Proposition 2.1) as well as an elementary result providing bounds for so-
lutions of Kolmogorov equations associated to finite-dimensional SEEs (cf. Lemma 2.2).
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Furthermore, in Subsection 2.1.4 we recall several elementary and well-known facts about
linear operators, semigroups, and interpolation spaces associated to deterministic linear
wave-type evolution equations (cf. the setting in Subsection 2.1.3).

2.1.1 Notation

In this subsection we introduce some notation which we employ throughout this chapter.
For a set A we denote by P(A) the power set of A and by P0(A) the set of all finite
subsets of A. For a metric space (E, dE), a dense subset A ⊆ E, a complete metric space
(F, dF ), a uniformly continuous function f : A→ F , and the unique function f̃ ∈ C(E,F )
which satisfies f̃ |A = f we often write, for simplicity of presentation, f instead of f̃ . For
two R-Banach spaces (V, ‖·‖V ) and (W, ‖·‖W ) with V 6= {0}, a natural number k ∈ N =
{1, 2, 3, . . .}, and a function f ∈ Ck(V,W ) we denote by |f |Ckb (V,W ), ‖f‖Ckb (V,W ) ∈ [0,∞]
the extended real numbers given by

|f |Ckb (V,W ) = sup
x∈V
‖f (k)(x)‖L(k)(V,W ) = sup

x∈V
sup

v1,...,vk∈V \{0}

‖f (k)(x)(v1, . . . , vk)‖W
‖v1‖V · . . . · ‖vk‖V

, (2.1)

‖f‖Ckb (V,W ) = ‖f(0)‖W +
k∑
`=1

|f |C`b(V,W ) (2.2)

and we denote by Ck
b(V,W ) the set given by Ck

b(V,W ) =
{
g ∈ Ck(V,W ) : ‖g‖Ckb (V,W ) <

∞
}
. For two R-Banach spaces (V, ‖·‖V ) and (W, ‖·‖W ) with V 6= {0}, a number k ∈ N0 =

{0, 1, 2, . . .}, and a function f ∈ Ck(V,W ) we denote by |f |Lipk(V,W ), ‖f‖Lipk(V,W ) ∈ [0,∞]
the extended real numbers given by

|f |Lipk(V,W ) =


supx,y∈V,

x 6=y

(
‖f(x)−f(y)‖W
‖x−y‖V

)
: k = 0

supx,y∈V,
x 6=y

(‖f (k)(x)−f (k)(y)‖
L(k)(V,W )

‖x−y‖V

)
: k ∈ N

, (2.3)

‖f‖Lipk(V,W ) = ‖f(0)‖W +
k∑
`=0

|f |Lip`(V,W ) (2.4)

and we denote by Lipk(V,W ) the set given by Lipk(V,W ) =
{
g ∈ Ck(V,W ) : ‖g‖Lipk(V,W )

< ∞
}
. For two R-inner product spaces (V, 〈·, ·〉V , ‖·‖V ) and (W, 〈·, ·〉W , ‖·‖W ) we denote

by (V × W, 〈·, ·〉V×W , ‖·‖V×W ) the R-inner product space which satisfies for all x1 =
(v1, w1), x2 = (v2, w2) ∈ V ×W that 〈x1, x2〉V×W = 〈v1, v2〉V + 〈w1, w2〉W . For R-Hilbert
spaces (Hi, 〈·, ·〉Hi , ‖·‖Hi), i ∈ {1, 2}, a real number p ∈ [1,∞), and linear operators
A ∈ L(H1, H2) and B ∈ L(H1) we denote by ‖A‖Lp(H1,H2) ∈ [0,∞] the extended real
number given by ‖A‖Lp(H1,H2) = [traceH1((A?A)p/2)]1/p, we denote by ‖B‖Lp(H1) ∈ [0,∞]
the extended real number given by ‖B‖Lp(H1) = ‖B‖Lp(H1,H1), we denote by Lp(H1, H2)
the set given by Lp(H1, H2) =

{
C ∈ L(H1, H2) : ‖C‖Lp(H1,H2) < ∞

}
, and we denote by

Lp(H1) the set given by Lp(H1) = Lp(H1, H1). For an R-Hilbert space (H, 〈·, ·〉H , ‖·‖H),
an orthonormal basis B ⊆ H of H, a function λ : B → R, a linear operator A : D(A) ⊆
H → H which satisfies D(A) =

{
v ∈ H :

∑
b∈B|λb〈b, v〉H |2 <∞

}
and ∀v ∈ D(A) : Av =∑

b∈B λb〈b, v〉Hb, and a function ϕ : R → R we denote by ϕ(A) : D(ϕ(A)) ⊆ H → H
the linear operator which satisfies D(ϕ(A)) =

{
v ∈ H :

∑
b∈B|ϕ(λb)〈b, v〉H |2 < ∞

}
and

∀v ∈ D(ϕ(A)) : ϕ(A)v =
∑

b∈B ϕ(λb)〈b, v〉Hb. For a Borel measurable set A ∈ B(R) we
denote by µA : B(A)→ [0,∞] the Lebesgue–Borel measure on A.

18



2.1. Preliminary results

2.1.2 Existence, uniqueness, and regularity results for SEEs

Proposition 2.1 below is a direct consequence of Da Prato & Zabczyk [94, Theorem 7.4].

Proposition 2.1. Consider the notation in Subsection 2.1.1, let T ∈ (0,∞), p ∈ [2,∞),
let (H, 〈·, ·〉H , ‖·‖H) and (U, 〈·, ·〉U , ‖·‖U) be separable R-Hilbert spaces with H 6= {0}, let
(Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ], let (Wt)t∈[0,T ] be an
idU -cylindrical (Ω,F ,P, (Ft)t∈[0,T ])-Wiener process, let S : [0,∞) → L(H) be a strongly
continuous semigroup, and let F ∈ Lip0(H,H), B ∈ Lip0(H,L2(U,H)), ξ ∈ Lp(P|F0 ;H).
Then there exists an up to modifications unique (Ft)t∈[0,T ]-predictable stochastic process
X : [0, T ]× Ω→ H such that for all t ∈ [0, T ] it holds that sups∈[0,T ] E

[
‖Xs‖pH

]
<∞ and

P-a.s. that

Xt = Stξ +

∫ t

0

St−sF (Xs) ds+

∫ t

0

St−sB(Xs) dWs. (2.5)

In the next elementary and well-known result, Lemma 2.2, we present bounds for
spatial derivatives of solutions of Kolmogorov equations associated to finite-dimensional
SEEs.

Lemma 2.2. Consider the notation in Subsection 2.1.1, let (H, 〈·, ·〉H , ‖·‖H) be a finite-
dimensional R-vector space with H 6= {0}, let (U, 〈·, ·〉U , ‖·‖U) be a separable R-Hilbert
space, let U ⊆ U be an orthonormal basis of U , let T ∈ (0,∞), A ∈ L(H), F ∈ C2

b(H,H),
B ∈ C2

b(H,L2(U,H)), ϕ ∈ C2
b(H,R), let (Ω,F ,P) be a probability space with a normal fil-

tration (Ft)t∈[0,T ], let (Wt)t∈[0,T ] be an idU -cylindrical (Ω,F ,P, (Ft)t∈[0,T ])-Wiener process,
let Xx : [0, T ]×Ω→ H, x ∈ H, be (Ft)t∈[0,T ]-predictable stochastic processes such that for
all x ∈ H, t ∈ [0, T ] it holds that sups∈[0,T ] E

[
‖Xx

s ‖2
H

]
<∞ and P-a.s. that

Xx
t = etAx+

∫ t

0

e(t−s)AF (Xx
s ) ds+

∫ t

0

e(t−s)AB(Xx
s ) dWs, (2.6)

and let u : [0, T ] × H → R be the function which satisfies for all t ∈ [0, T ], x ∈ H that
u(t, x) = E[ϕ(Xx

t )]. Then

(i) it holds that u ∈ C1,2([0, T ]×H,R),

(ii) it holds for all (t, x) ∈ [0, T ]×H that(
∂
∂t
u
)
(t, x) =

(
∂
∂x
u
)
(t, x)[Ax+ F (x)] + 1

2

∑
b∈U

(
∂2

∂x2u
)
(t, x)(B(x)b, B(x)b), (2.7)

(iii) it holds that

sup
t∈[0,T ]

|u(t, ·)|C1
b(H,R) ≤ |ϕ|C1

b(H,R)

[
sup
s∈[0,T ]

‖esA‖L(H)

]
· exp

(
T
[
|F |C1

b(H,H) + 1
2
|B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖2
L(H)

)
<∞,

(2.8)

and
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(iv) it holds that

sup
t∈[0,T ]

|u(t, ·)|C2
b(H,R)

≤ ‖ϕ‖C2
b(H,R)

[
sup
s∈[0,T ]

‖esA‖3
L(H)

]
max

{
1,
[
T
(
|F |2C2

b(H,H) + 2 |B|2C2
b(H,L2(U,H))

)]1/2}
· exp

(
T
[

1
2

+ 3 |F |C1
b(H,H) + 4 |B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖4
L(H)

)
<∞. (2.9)

Proof of Lemma 2.2. Note that it is well-known (cf., e.g., Krylov [216, Sections 4 and 5
and Lemma 5.10]) that the assumption that H is finite-dimensional and the assump-
tions that ϕ ∈ C2

b(H,R), F ∈ C2
b(H,H), and B ∈ C2

b(H,L2(U,H)) imply (i), (ii),
that there exist up to modifications unique (Ft)t∈[0,T ]-predictable stochastic processes
Xx,v1 , Xx,v1,v2 : [0, T ] × Ω → H, x, v1, v2 ∈ H, such that for all x, v1, v2 ∈ H, t ∈ [0, T ],
p ∈ [2,∞) it holds that sups∈[0,T ]

(
E
[
‖Xx,v1

s ‖pH
]

+ E
[
‖Xx,v1,v2

s ‖pH
])
<∞ and P-a.s. that

Xx,v1
t = etAv1 +

∫ t

0

e(t−s)AF ′(Xx
s )Xx,v1

s ds+

∫ t

0

e(t−s)AB′(Xx
s )Xx,v1

s dWs, (2.10)

Xx,v1,v2
t =

∫ t

0

e(t−s)A(F ′′(Xx
s )(Xx,v1

s , Xx,v2
s ) + F ′(Xx

s )Xx,v1,v2
s

)
ds

+

∫ t

0

e(t−s)A(B′′(Xx
s )(Xx,v1

s , Xx,v2
s ) +B′(Xx

s )Xx,v1,v2
s

)
dWs,

(2.11)

and that it holds for all (t, x) ∈ [0, T ]×H, v1, v2 ∈ H that(
∂
∂x
u
)
(t, x)v1 = E

[
ϕ′(Xx

t )Xx,v1
t

]
, (2.12)(

∂2

∂x2u
)
(t, x)(v1, v2) = E

[
ϕ′′(Xx

t )(Xx,v1
t , Xx,v2

t ) + ϕ′(Xx
t )Xx,v1,v2

t

]
. (2.13)

It thus remains to prove (iii)–(iv). For this let ψp : H → R, p ∈ [2,∞), be the functions
which satisfy for all p ∈ [2,∞), x ∈ H that ψp(x) = ‖x‖pH . Observe that it holds for all
p ∈ [2,∞), x, v1, v2 ∈ H that ψp ∈ C2(H,R), ψ′p(x)v1 = p‖x‖p−2〈x, v1〉H , and

ψ′′p(x)(v1, v2)

=


2〈v1, v2〉H : p = 2

0 : (p 6= 2) ∧ (x = 0)

p‖x‖p−2
H 〈v1, v2〉H + p(p− 2)‖x‖p−4

H 〈x, v1〉H〈x, v2〉H : x 6= 0

.
(2.14)

An application of the mild Itô formula in Da Prato, Jentzen, & Röckner [93, Corollary 1]
on the test functions ψp, p ∈ [2,∞), and the Cauchy–Schwarz inequality hence yield for
all p ∈ [2,∞), x, v ∈ H, t ∈ [0, T ] that

E
[
‖Xx,v

t ‖
p
H

]
= E

[
ψp(X

x,v
t )
]

= ψp(e
tAv) +

∫ t

0

E
[
ψ′p(e

(t−s)AXx,v
s )e(t−s)AF ′(Xx

s )Xx,v
s

]
ds

+ 1
2

∑
b∈U

∫ t

0

E
[
ψ′′p(e(t−s)AXx,v

s )
(
e(t−s)A(B′(Xx

s )Xx,v
s )b, e(t−s)A(B′(Xx

s )Xx,v
s )b

)]
ds
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≤ ‖v‖pH
[

sup
s∈[0,T ]

‖esA‖pL(H)

]
+ p

[
sup
s∈[0,T ]

‖esA‖pL(H)

]
|F |C1

b(H,H)

∫ t

0

E
[
‖Xx,v

s ‖
p
H

]
ds

+ p
2

[
sup
s∈[0,T ]

‖esA‖pL(H)

]
|B|2C1

b(H,L2(U,H))

∫ t

0

E
[
‖Xx,v

s ‖
p
H

]
ds (2.15)

+ p(p−2)
2

[
sup
s∈[0,T ]

‖esA‖pL(H)

]
|B|2C1

b(H,L2(U,H))

∫ t

0

E
[
‖Xx,v

s ‖
p
H

]
ds

= ‖v‖pH
[

sup
s∈[0,T ]

‖esA‖pL(H)

]
+ p

[
sup
s∈[0,T ]

‖esA‖pL(H)

](
|F |C1

b(H,H) + p−1
2
|B|2C1

b(H,L2(U,H))

) ∫ t

0

E
[
‖Xx,v

s ‖
p
H

]
ds.

This and Gronwall’s lemma show for all p ∈ [2,∞), x, v ∈ H that

sup
t∈[0,T ]

‖Xx,v
t ‖Lp(P;H) (2.16)

≤ ‖v‖H
[

sup
s∈[0,T ]

‖esA‖L(H)

]
exp

(
T
[
|F |C1

b(H,H) + p−1
2
|B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖pL(H)

)
.

Furthermore, applying again [93, Corollary 1] on the test function ψ2, the Cauchy–Schwarz
inequality, and the fact that ∀a, b ∈ R : ab ≤ a2+b2

2
imply for all x, v1, v2 ∈ H, t ∈ [0, T ]

that

E
[
‖Xx,v1,v2

t ‖2
H

]
= 2

∫ t

0

E
[〈
e(t−s)AXx,v1,v2

s , e(t−s)A(F ′′(Xx
s )(Xx,v1

s , Xx,v2
s ) + F ′(Xx

s )Xx,v1,v2
s

)〉
H

]
ds

+

∫ t

0

E
[∥∥e(t−s)A(B′′(Xx

s )(Xx,v1
s , Xx,v2

s ) +B′(Xx
s )Xx,v1,v2

s

)∥∥2

L2(U,H)

]
ds

≤
∫ t

0

E
[
‖e(t−s)AF ′′(Xx

s )(Xx,v1
s , Xx,v2

s )‖2
H

]
+ E

[
‖e(t−s)AXx,v1,v2

s ‖2
H

]
ds

+ 2

[
sup
s∈[0,T ]

‖esA‖2
L(H)

]
|F |C1

b(H,H)

∫ t

0

E
[
‖Xx,v1,v2

s ‖2
H

]
ds (2.17)

+ 2

∫ t

0

E
[
‖e(t−s)AB′′(Xx

s )(Xx,v1
s , Xx,v2

s )‖2
L2(U,H) + ‖e(t−s)AB′(Xx

s )Xx,v1,v2
s ‖2

L2(U,H)

]
ds

≤
[

sup
s∈[0,T ]

‖Xx,v1
s ‖2

L4(P;H)‖Xx,v2
s ‖2

L4(P;H)

]
T
(
|F |2C2

b(H,H) + 2|B|2C2
b(H,L2(U,H))

)[
sup
s∈[0,T ]

‖esA‖2
L(H)

]
+ 2

[
sup
s∈[0,T ]

‖esA‖2
L(H)

](
1
2

+ |F |C1
b(H,H) + |B|2C1

b(H,L2(U,H))

) ∫ t

0

E
[
‖Xx,v1,v2

s ‖2
H

]
ds.

Gronwall’s lemma and (2.16) hence imply for all x, v1, v2 ∈ H that

sup
t∈[0,T ]

‖Xx,v1,v2
t ‖L2(P;H)

≤
[

sup
s∈[0,T ]

‖Xx,v1
s ‖L4(P;H)‖Xx,v2

s ‖L4(P;H)

][
T
(
|F |2C2

b(H,H) + 2|B|2C2
b(H,L2(U,H))

)]1/2

·
[

sup
s∈[0,T ]

‖esA‖L(H)

]
exp

(
T
[

1
2

+ |F |C1
b(H,H) + |B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖2
L(H)

)
(2.18)
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≤ ‖v1‖H‖v2‖H
[

sup
s∈[0,T ]

‖esA‖3
L(H)

][
T
(
|F |2C2

b(H,H) + 2|B|2C2
b(H,L2(U,H))

)]1/2

· exp

(
T
[

1
2

+ 3|F |C1
b(H,H) + 4|B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖4
L(H)

)
.

Next note that (2.12), (2.13), (2.16), and (2.18) ensure for all (t, x) ∈ [0, T ]×H, v1, v2 ∈ H
that ∣∣( ∂

∂x
u
)
(t, x)v1

∣∣ = |E[ϕ′(Xx
t )Xx,v1

t ]| ≤ |ϕ|C1
b(H,R)E[‖Xx,v1

t ‖H ]

≤ ‖v1‖H |ϕ|C1
b(H,R)

[
sup
s∈[0,T ]

‖esA‖L(H)

]
· exp

(
T
[
|F |C1

b(H,H) + 1
2
|B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖2
L(H)

) (2.19)

and∣∣( ∂2

∂x2u
)
(t, x)(v1, v2)

∣∣ =
∣∣E[ϕ′′(Xx

t )(Xx,v1
t , Xx,v2

t ) + ϕ′(Xx
t )Xx,v1,v2

t

]∣∣
≤ |ϕ|C2

b(H,R)‖Xx,v1
t ‖L2(P;H)‖Xx,v2

t ‖L2(P;H) + |ϕ|C1
b(H,R)E[‖Xx,v1,v2

t ‖H ]

≤ ‖v1‖H‖v2‖H |ϕ|C2
b(H,R)

[
sup
s∈[0,T ]

‖esA‖2
L(H)

]
· exp

(
T
[
2|F |C1

b(H,H) + |B|2C1
b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖2
L(H)

)
+ ‖v1‖H‖v2‖H |ϕ|C1

b(H,R)

[
sup
s∈[0,T ]

‖esA‖3
L(H)

][
T
(
|F |2C2

b(H,H) + 2|B|2C2
b(H,L2(U,H))

)]1/2

(2.20)

· exp

(
T
[

1
2

+ 3|F |C1
b(H,H) + 4|B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖4
L(H)

)
≤ ‖v1‖H‖v2‖H‖ϕ‖C2

b(H,R)

[
sup
s∈[0,T ]

‖esA‖3
L(H)

]
max

{
1,
[
T
(
|F |2C2

b(H,H) + 2|B|2C2
b(H,L2(U,H))

)]1/2}
· exp

(
T
[

1
2

+ 3|F |C1
b(H,H) + 4|B|2C1

b(H,L2(U,H))

]
sup
s∈[0,T ]

‖esA‖4
L(H)

)
.

This completes the proof of Lemma 2.2.

2.1.3 Setting

Setting 2.1. Consider the notation in Subsection 2.1.1, let (H, 〈·, ·〉H , ‖·‖H) be a sepa-
rable R-Hilbert space, let H ⊆ H be a non-empty orthonormal basis of H, let λ : H → R
be a function which satisfies suph∈H λh < 0, let A : D(A) ⊆ H → H be the linear oper-
ator which satisfies D(A) =

{
v ∈ H :

∑
h∈H|λh〈h, v〉H |2 < ∞

}
and ∀v ∈ D(A) : Av =∑

h∈H λh〈h, v〉Hh, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family of interpolation spaces associ-
ated to −A, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be the family of R-Hilbert spaces which satisfies
for all r ∈ R that (Hr, 〈·, ·〉Hr , ‖·‖Hr) =

(
Hr/2 ×Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2

, ‖·‖Hr/2×Hr/2−1/2

)
,

and let A : D(A) ⊆ H0 → H0 be the linear operator which satisfies D(A) = H1 and
∀(v, w) ∈ H1 : A(v, w) = (w,Av).
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2.1.4 Basic properties of deterministic linear wave equations

The following elementary result, Lemma 2.3, provides a characterisation for the family of
R-Hilbert spaces (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, from the setting in Subsection 2.1.3.

Lemma 2.3. Assume Setting 2.1 and let Λ : D(Λ) ⊆ H0 → H0 be the linear operator
which satisfies for all (v, w) ∈ H1 that D(Λ) = H1 and

Λ(v, w) =

(∑
h∈H|λh|

1/2〈h, v〉Hh∑
h∈H|λh|

1/2〈h,w〉Hh

)
. (2.21)

Then the R-Hilbert spaces (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, are a family of interpolation spaces
associated to Λ.

Proof of Lemma 2.3. Observe that Λ : D(Λ) ⊆ H0 → H0 is a symmetric diagonal linear
operator (cf., e.g., Sell & You [279, Section 3.2]) with inf(σP(Λ)) > 0 and that for all
r ∈ [0,∞) it holds that

D(Λr) =

{
x ∈ H0 :

∑
h∈H

(
|λh|r|〈(h, 0), x〉H0 |2 + |λh|r

∣∣〈(0, |λh|1/2h), x〉H0

∣∣2) <∞}
=

{
(v, w) ∈ H0 :

∑
h∈H

(
|λh|r|〈h, v〉H |2 + |λh|r

∣∣〈|λh|1/2h,w〉H−1/2

∣∣2) <∞} (2.22)

=

{
v ∈ H :

∑
h∈H
|λh|r|〈h, v〉H |2 <∞

}
×
{
w ∈ H−1/2 :

∑
h∈H
|λh|r−1

∣∣〈h,w〉H∣∣2 <∞}
= Hr/2 ×Hr/2−1/2 = Hr.

Moreover, note that for all r ∈ [0,∞), x1 = (v1, w1), x2 = (v2, w2) ∈ Hr it holds that

〈Λrx1,Λ
rx2〉H0 =

〈∑
h∈H
|λh|r/2〈h, v1〉Hh,

∑
h∈H
|λh|r/2〈h, v2〉Hh

〉
H

+

〈∑
h∈H
|λh|r/2

〈
|λh|1/2h,w1

〉
H−1/2
|λh|1/2h,

∑
h∈H
|λh|r/2

〈
|λh|1/2h,w2

〉
H−1/2
|λh|1/2h

〉
H−1/2

= 〈(−A)
r/2v1, (−A)

r/2v2〉H + 〈(−A)
r/2w1, (−A)

r/2w2〉H−1/2
(2.23)

= 〈v1, v2〉Hr/2 + 〈w1, w2〉Hr/2−1/2
= 〈x1, x2〉Hr .

In addition, observe that for all r ∈ (−∞, 0], x = (v, w) ∈ H0 it holds that

‖Λrx‖2
H0

=

∥∥∥∥∑
h∈H
|λh|r/2〈h, v〉Hh

∥∥∥∥2

H

+

∥∥∥∥∑
h∈H
|λh|r/2

〈
|λh|1/2h,w

〉
H−1/2
|λh|1/2h

∥∥∥∥2

H−1/2

= ‖(−A)
r/2v‖2

H + ‖(−A)
r/2w‖2

H−1/2
= ‖v‖2

Hr/2
+ ‖w‖2

Hr/2−1/2
= ‖x‖2

Hr
.

(2.24)

This completes the proof of Lemma 2.3.

The next elementary and well-known result, Lemma 2.4, can be found, e.g., in a
slightly different form in Lindgren [227, Section 5.3].
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Lemma 2.4. Assume Setting 2.1 and let S : [0,∞) → L(H0) be the function which sat-
isfies for all t ∈ [0,∞), (v, w) ∈ H0 that

St

(
v
w

)
=

(
cos
(
t(−A)1/2

)
v + (−A)−1/2 sin

(
t(−A)1/2

)
w

−(−A)1/2 sin
(
t(−A)1/2

)
v + cos

(
t(−A)1/2

)
w

)
. (2.25)

Then S : [0,∞) → L(H0) is a strongly continuous semigroup of bounded linear operators
on H0 and A : D(A) ⊆ H0 → H0 is the generator of S.

The following two elementary and well-known assertions state that the semigroup
in Lemma 2.4 above is a semigroup of isometries and that both this semigroup and its
generator commute with Galerkin projections.

Lemma 2.5. Assume Setting 2.1. Then

(i) it holds for all t ∈ [0,∞), x ∈ H0 that ‖etAx‖H0 = ‖x‖H0 and

(ii) it holds that supt∈[0,∞)‖etA‖L(H0) = 1.

Proof of Lemma 2.5. Lemma 2.4 implies for all t ∈ [0,∞), x = (v, w) ∈ H1 that

‖etAx‖2
H0

=
∥∥cos

(
t(−A)

1/2
)
v + (−A)−

1/2 sin
(
t(−A)

1/2
)
w
∥∥2

H

+
∥∥−(−A)

1/2 sin
(
t(−A)

1/2
)
v + cos

(
t(−A)

1/2
)
w
∥∥2

H−1/2

=
∥∥cos

(
t(−A)

1/2
)
v
∥∥2

H
+
∥∥(−A)−

1/2 sin
(
t(−A)

1/2
)
w
∥∥2

H

+
∥∥(−A)

1/2 sin
(
t(−A)

1/2
)
v
∥∥2

H−1/2
+
∥∥cos

(
t(−A)

1/2
)
w
∥∥2

H−1/2

+ 2
〈
cos
(
t(−A)

1/2
)
v, (−A)−

1/2 sin
(
t(−A)

1/2
)
w
〉
H

− 2
〈
sin
(
t(−A)

1/2
)
v, (−A)

1/2 cos
(
t(−A)

1/2
)
w
〉
H−1/2

=
∥∥cos

(
t(−A)

1/2
)
v
∥∥2

H
+
∥∥sin

(
t(−A)

1/2
)
v
∥∥2

H

+
∥∥sin

(
t(−A)

1/2
)
w
∥∥2

H−1/2
+
∥∥cos

(
t(−A)

1/2
)
w
∥∥2

H−1/2

= ‖v‖2
H + ‖w‖2

H−1/2
= ‖x‖2

H0
.

(2.26)

This shows (i). In addition, note that (i) implies (ii). The proof of Lemma 2.5 is thus
complete.

Lemma 2.6. Assume Setting 2.1 and let PI ∈ L(H0), I ∈ P(H), be the linear operators
which satisfy for all I ∈ P(H), v, w ∈ H that PI(v, w) =

(∑
h∈I〈h, v〉Hh,

∑
h∈I〈h,w〉Hh

)
.

Then

(i) it holds for all I ∈ P(H), x ∈ H1 that API(x) = PIAx and

(ii) it holds for all I ∈ P(H), t ∈ [0,∞), x ∈ H0 that etAPI(x) = PIe
tAx.

Proof of Lemma 2.6. Throughout this proof let PI ∈ L(H−1/2), I ∈ P(H), be the linear
operators which satisfy for all I ∈ P(H), w ∈ H−1/2 that

PI(w) =
∑
h∈I

〈
|λh|1/2h,w

〉
H−1/2
|λh|1/2h. (2.27)
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Observe that for all I ∈ P(H), x = (v, w) ∈ H1 it holds that

PIAx = PI(w,Av) = (PI(w), PIAv) = (PI(w), API(v)) = API(x). (2.28)

This proves (i). In addition, Lemma 2.4 ensures for all I ∈ P(H), t ∈ [0,∞), x = (v, w) ∈
H0 that

etAPI(x) =

(
cos
(
t(−A)1/2

)
PI(v) + (−A)−1/2 sin

(
t(−A)1/2

)
PI(w)

−(−A)1/2 sin
(
t(−A)1/2

)
PI(v) + cos

(
t(−A)1/2

)
PI(w)

)
=

(
PI
[
cos
(
t(−A)1/2

)
v + (−A)−1/2 sin

(
t(−A)1/2

)
w
]

PI
[
−(−A)1/2 sin

(
t(−A)1/2

)
v + cos

(
t(−A)1/2

)
w
])

= PIe
tAx.

(2.29)

This establishes (ii) and thus completes the proof of Lemma 2.6.

2.2 Upper bounds for weak errors

In this section we establish upper bounds for weak errors associated to spatial spec-
tral Galerkin approximations of semi-linear stochastic wave equations; cf. Theorem 2.12
and Corollaries 2.13, 2.14, 2.16, and 2.18 below.

For many results in this section we consider an abstract setting of wave-type SEEs
with appropriate Lipschitz and smoothness assumptions on the corresponding drift non-
linearity and diffusion coefficients; cf. the setting in Subsection 2.2.1. In Subsection 2.2.2
we first present a suitable a priori estimate and a suitable perturbation estimate for solu-
tions of certain wave-type SEEs; cf. Lemmas 2.8 and 2.9, respectively. Thereafter, we show
an estimate for first and second order spatial derivatives of solutions to Kolmogorov equa-
tions associated to certain finite-dimensional wave-type SEEs; cf. Lemma 2.10. Following
an elementary auxiliary lemma (cf. Lemma 2.11), we demonstrate the main theorem of this
chapter, Theorem 2.12, which provides upper bounds for weak errors involving, among
other terms, quantities depending on solutions of certain finite-dimensional wave-type
SEEs as well as quantities depending on solutions of Kolmogorov equations associated
to these SEEs (cf. also Corollary 2.13). Using the a priori estimate in Lemma 2.8 and
the estimate for solutions of Kolmogorov equations in Lemma 2.10, the upper bounds in
Theorem 2.12 are subsequently specialised in order to obtain upper bounds depending in
an explicit way on the drift non-linearity, the diffusion coefficient, and the initial value;
cf. Corollary 2.14.

Finally, in Subsection 2.2.3 we apply Corollary 2.13 to prove essentially sharp weak
convergence rates for spatial spectral Galerkin approximations of semi-linear stochastic
wave equations. In Corollary 2.16 we consider a setting with specialised drift non-linearity
but still quite general diffusion coefficient, while in Corollary 2.18 we consider a class of
semi-linear stochastic wave equations driven by multiplicative noise, that includes, in
particular, the continuous version of the hyperbolic Anderson model. For the proofs
of these results we recall two well-known facts about families of interpolation spaces
associated to symmetric diagonal linear operators (cf., e.g., Sell & You [279, Section 3.2]);
cf. Lemmas 2.15 and 2.17.
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Chapter 2. Stochastic wave equations

2.2.1 Setting

Setting 2.2. Consider the notation in Subsection 2.1.1, let (H, 〈·, ·〉H , ‖·‖H) and (U,
〈·, ·〉U , ‖·‖U) be separable R-Hilbert spaces, let H ⊆ H be a non-empty orthonormal ba-
sis of H, let λ : H → R be a function which satisfies suph∈H λh < 0, let A : D(A) ⊆
H → H be the linear operator which satisfies D(A) =

{
v ∈ H :

∑
h∈H|λh〈h, v〉H |2 < ∞

}
and ∀v ∈ D(A) : Av =

∑
h∈H λh〈h, v〉Hh, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family

of interpolation spaces associated to −A, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be the fam-
ily of R-Hilbert spaces which satisfies for all r ∈ R that (Hr, 〈·, ·〉Hr , ‖·‖Hr) =

(
Hr/2 ×

Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2
, ‖·‖Hr/2×Hr/2−1/2

)
, let PI ∈ L(H0), I ∈ P(H), be the linear op-

erators which satisfy for all I ∈ P(H), v, w ∈ H that PI(v, w) =
(∑

h∈I〈h, v〉Hh,∑
h∈I〈h,w〉Hh

)
, let A : D(A) ⊆ H0 → H0 be the linear operator which satisfies D(A) =

H1 and ∀(v, w) ∈ H1 : A(v, w) = (w,Av), let Λ : D(Λ) ⊆ H0 → H0 be the linear
operator which satisfies D(Λ) = H1 and ∀(v, w) ∈ H1 : Λ(v, w) =

(∑
h∈H|λh|

1/2〈h, v〉Hh,∑
h∈H|λh|

1/2〈h,w〉Hh
)
, let T ∈ (0,∞), let (Ω,F ,P) be a probability space with a normal fil-

tration (Ft)t∈[0,T ], let (Wt)t∈[0,T ] be an idU -cylindrical (Ω,F ,P, (Ft)t∈[0,T ])-Wiener process,
and let γ ∈ (0,∞), β ∈ (γ/2, γ], ρ ∈ [0, 2(γ−β)], %, CF, CB ∈ [0,∞), ξ ∈ L2(P|F0 ; H2(γ−β)),
F ∈ Lip0(H0,H0), B ∈ Lip0(H0, L2(U,H0)) satisfy Λ−β ∈ L2(H0), F(Hρ) ⊆ H2(γ−β),
(Hρ 3 v 7→ F(v) ∈ H2(γ−β)) ∈ Lip0(Hρ,H2(γ−β)), ∀v ∈ Hρ, u ∈ U : B(v)u ∈ Hγ,
∀v ∈ Hρ : (U 3 u 7→ B(v)u ∈ Hρ) ∈ L2(U,Hρ), (Hρ 3 v 7→ (U 3 u 7→ B(v)u ∈ Hρ) ∈
L2(U,Hρ)) ∈ Lip0(Hρ, L2(U,Hρ)), ∀v ∈ Hρ : (U 3 u 7→ B(v)u ∈ Hγ) ∈ L(U,Hγ), (Hρ 3
v 7→ (U 3 u 7→ B(v)u ∈ Hγ) ∈ L(U,Hγ)) ∈ Lip0(Hρ, L(U,Hγ)), F|H% ∈ C2(H%,H0),
B|H% ∈ C2(H%, L2(U,H0)), CF = supx,v1,v2∈∩r∈RHr,max{‖v1‖H0

,‖v2‖H0
}≤1‖F′′(x)(v1, v2)‖H0

<∞, and CB = supx,v1,v2∈∩r∈RHr,max{‖v1‖H0
,‖v2‖H0

}≤1‖B′′(x)(v1, v2)‖L2(U,H0) <∞.

2.2.2 Weak convergence rates for Galerkin approximations

Remark 2.7. Assume Setting 2.2. Then note that the assumption that (Hρ 3 v 7→ F(v) ∈
H2(γ−β)) ∈ Lip0(Hρ,H2(γ−β)) ensures that (Hρ 3 v 7→ F(v) ∈ Hρ) ∈ Lip0(Hρ,Hρ). The
assumption that (Hρ 3 v 7→ (U 3 u 7→ B(v)u ∈ Hρ) ∈ L2(U,Hρ)) ∈ Lip0(Hρ, L2(U,Hρ))
and Proposition 2.1 hence show that there exist up to modifications unique (Ft)t∈[0,T ]-
predictable stochastic processes XI : [0, T ] × Ω → PI(Hρ), I ∈ P(H), such that for all
I ∈ P(H), t ∈ [0, T ] it holds that sups∈[0,T ] E

[
‖XI

s ‖2
Hρ

]
<∞ and P-a.s. that

XI
t = etAPIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs. (2.30)

The next elementary result, Lemma 2.8, provides global a priori L2-bounds for the
stochastic processes XI : [0, T ]× Ω→ PI(Hρ), I ∈ P(H), from Remark 2.7.

Lemma 2.8. Assume Setting 2.2 and let XI : [0, T ] × Ω → PI(Hρ), I ∈ P(H), be
(Ft)t∈[0,T ]-predictable stochastic processes such that for all I ∈ P(H), t ∈ [0, T ] it holds
that sups∈[0,T ] E

[
‖XI

s ‖2
Hρ

]
<∞ and P-a.s. that

XI
t = etAPIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs. (2.31)
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Then

sup
I∈P(H)

sup
t∈[0,T ]

max
{

1,E
[
‖XI

t ‖2
Hρ

]}
≤ max

{
1,E

[
‖ξ‖2

Hρ

]}
exp
(
T
[
2
∥∥F|Hρ

∥∥
Lip0(Hρ,Hρ)

+
∥∥B|Hρ

∥∥2

Lip0(Hρ,L2(U,Hρ))

])
<∞.

(2.32)

Proof of Lemma 2.8. Observe that Da Prato, Jentzen, & Röckner [93, Corollary 1],
Lemma 2.5, and the Cauchy–Schwarz inequality ensure for all I ∈ P(H), t ∈ [0, T ]
that

E
[
‖XI

t ‖2
Hρ

]
= E

[
‖etAPIξ‖2

Hρ

]
+ 2

∫ t

0

E
[〈
e(t−s)AXI

s , e
(t−s)APIF(XI

s )
〉
Hρ

]
ds

+

∫ t

0

E
[
‖e(t−s)APIB(XI

s )‖2
L2(U,Hρ)

]
ds

≤ E
[
‖PIξ‖2

Hρ

]
+ 2

∫ t

0

‖PIF(0)‖HρE
[
‖XI

s ‖Hρ

]
+
∣∣PIF|Hρ

∣∣
Lip0(Hρ,Hρ)

E
[
‖XI

s ‖2
Hρ

]
ds

+

∫ t

0

‖PIB(0)‖2
L2(U,Hρ) + 2‖PIB(0)‖L2(U,Hρ)

∣∣PIB|Hρ

∣∣
Lip0(Hρ,L2(U,Hρ))

E
[
‖XI

s ‖Hρ

]
+
∣∣PIB|Hρ

∣∣2
Lip0(Hρ,L2(U,Hρ))

E
[
‖XI

s ‖2
Hρ

]
ds (2.33)

≤ E
[
‖PIξ‖2

Hρ

]
+
(

2
∥∥PIF|Hρ

∥∥
Lip0(Hρ,Hρ)

+
∥∥PIB|Hρ

∥∥2

Lip0(Hρ,L2(U,Hρ))

)∫ t

0

max
{

1,E
[
‖XI

s ‖2
Hρ

]}
ds.

Gronwall’s lemma hence implies for all I ∈ P(H) that

sup
t∈[0,T ]

max{1,E
[
‖XI

t ‖2
Hρ

]}
≤ max

{
1,E

[
‖PIξ‖2

Hρ

]}
exp
(
T
[
2
∥∥PIF|Hρ

∥∥
Lip0(Hρ,Hρ)

+
∥∥PIB|Hρ

∥∥2

Lip0(Hρ,L2(U,Hρ))

])
≤ max

{
1,E

[
‖ξ‖2

Hρ

]}
exp
(
T
[
2
∥∥F|Hρ

∥∥
Lip0(Hρ,Hρ)

+
∥∥B|Hρ

∥∥2

Lip0(Hρ,L2(U,Hρ))

])
. (2.34)

The proof of Lemma 2.8 is thus complete.

In the next result, Lemma 2.9, we present an elementary perturbation estimate.

Lemma 2.9. Assume Setting 2.2 and let XI : [0, T ] × Ω → PI(H0), I ∈ P(H), be
(Ft)t∈[0,T ]-predictable stochastic processes such that for all I ∈ P(H), t ∈ [0, T ] it holds
that sups∈[0,T ] E

[
‖XI

s ‖2
H0

]
<∞ and P-a.s. that

XI
t = etAPIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs. (2.35)

Then it holds for all I, J ∈ P(H) that

sup
t∈[0,T ]

E
[
‖XI

t −XJ
t ‖2

H0

]
≤ 2

[
sup
t∈[0,T ]

E
[
‖PI\JX

I
t + PJ\IX

J
t ‖2

H0

]]
· exp

([√
2T |PI∩JF|Lip0(H0,H0) +

√
2T |PI∩JB|Lip0(H0,L2(U,H0))

]2)
<∞.

(2.36)
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Proof of Lemma 2.9. Note that Jentzen & Kurniawan [191, Corollary 3.1] and Lemma 2.5
imply for all I, J ∈ P(H) that

sup
t∈[0,T ]

∥∥XI
t −XJ

t

∥∥
L2(P;H0)

≤
√

2 exp
(

1
2

[√
2T |PI∩JF|Lip0(H0,H0) +

√
2T |PI∩JB|Lip0(H0,L2(U,H0))

]2)
· sup
t∈[0,T ]

∥∥∥∥XI
t −

[∫ t

0

e(t−s)API∩JF(XI
s ) ds+

∫ t

0

e(t−s)API∩JB(XI
s ) dWs

]
+

[∫ t

0

e(t−s)API∩JF(XJ
s ) ds+

∫ t

0

e(t−s)API∩JB(XJ
s ) dWs

]
−XJ

t

∥∥∥∥
L2(P;H0)

=
√

2 exp
(

1
2

[√
2T |PI∩JF|Lip0(H0,H0) +

√
2T |PI∩JB|Lip0(H0,L2(U,H0))

]2) (2.37)

· sup
t∈[0,T ]

∥∥∥∥XI
t −PJ

(
e(t−s)APIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs

)
+ PI

(
e(t−s)APJξ +

∫ t

0

e(t−s)APJF(XJ
s ) ds+

∫ t

0

e(t−s)APJB(XJ
s ) dWs

)
−XJ

t

∥∥∥∥
L2(P;H0)

=
√

2 exp
(

1
2

[√
2T |PI∩JF|Lip0(H0,H0) +

√
2T |PI∩JB|Lip0(H0,L2(U,H0))

]2)
· sup
t∈[0,T ]

∥∥PI\JX
I
t −PJ\IX

J
t

∥∥
L2(P;H0)

.

This implies (2.36) and thus completes the proof of Lemma 2.9.

Lemma 2.10. Assume Setting 2.2, let XJ,x : [0, T ] × Ω → PJ(H0), x ∈ PJ(H0), J ∈
P0(H), be (Ft)t∈[0,T ]-predictable stochastic processes such that for all J ∈ P0(H), x ∈
PJ(H0), t ∈ [0, T ] it holds that sups∈[0,T ] E

[
‖XJ,x

s ‖2
H0

]
<∞ and P-a.s. that

XJ,x
t = etAx+

∫ t

0

e(t−s)APJF(XJ,x
s ) ds+

∫ t

0

e(t−s)APJB(XJ,x
s ) dWs, (2.38)

let ϕ ∈ C2
b(H0,R), and let uJ : [0, T ] × PJ(H0) → R, J ∈ P0(H), be the functions which

satisfy for all J ∈ P0(H), (t, x) ∈ [0, T ]×PJ(H0) that uJ(t, x) = E
[
ϕ
(
XJ,x
t

)]
. Then

(i) it holds for all J ∈ P0(H) that uJ ∈ C1,2([0, T ]×PJ(H0),R),

(ii) it holds that

sup
J∈P0(H)

sup
t∈[0,T ]

|uJ(t, ·)|C1
b(PJ (H0),R)

≤ |ϕ|C1
b(H0,R) exp

(
T
[
|F|Lip0(H0,H0) + 1

2
|B|2Lip0(H0,L2(U,H0))

])
<∞,

(2.39)

and

(iii) it holds that

sup
J∈P0(H)

sup
t∈[0,T ]

|uJ(t, ·)|C2
b(PJ (H0),R) ≤ ‖ϕ‖C2

b(H0,R) max
{

1,
[
T
(
(CF)2 + 2(CB)2

)]1/2}
· exp

(
T
[

1
2

+ 3 |F|Lip0(H0,H0) + 4 |B|2Lip0(H0,L2(U,H0))

])
<∞. (2.40)
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Proof of Lemma 2.10. Observe that it holds for all J ∈ P0(H) that PJ(H0) ⊆
(⋂

r∈R Hr

)
is a finite-dimensional R-vector space. The assumptions that F|H% ∈ C2(H%,H0), B|H% ∈
C2(H%, L2(U,H0)), F ∈ Lip0(H0,H0), B ∈ Lip0(H0, L2(U,H0)), and CF +CB <∞ hence
ensure for all J ∈ P0(H) that (PJ(H0) 3 v 7→ PJF(v) ∈ PJ(H0)) ∈ C2

b(PJ(H0),PJ(H0))
and (PJ(H0) 3 v 7→ (U 3 u 7→ PJB(v)u ∈ PJ(H0)) ∈ L2(U,PJ(H0))) ∈ C2

b(PJ(H0),
L2(U,PJ(H0))). Therefore, Lemma 2.2 and Lemma 2.5 prove for all J ∈ P0(H) that

uJ ∈ C1,2([0, T ]×PJ(H0),R), (2.41)
sup
t∈[0,T ]

|uJ(t, ·)|C1
b(PJ (H0),R) ≤

∣∣ϕ|PJ (H0)

∣∣
C1

b(PJ (H0),R)

· exp
(
T
[∣∣PJF|PJ (H0)

∣∣
C1

b(PJ (H0),PJ (H0))
+ 1

2

∣∣PJB|PJ (H0)

∣∣2
C1

b(PJ (H0),L2(U,PJ (H0)))

])
,
(2.42)

and

sup
t∈[0,T ]

|uJ(t, ·)|C2
b(PJ (H0),R) ≤

∥∥ϕ|PJ (H0)

∥∥
C2

b(PJ (H0),R)
(2.43)

·max
{

1,
[
T
(∣∣PJF|PJ (H0)

∣∣2
C2

b(PJ (H0),PJ (H0))
+ 2

∣∣PJB|PJ (H0)

∣∣2
C2

b(PJ (H0),L2(U,PJ (H0)))

)]1/2}
· exp

(
T
[

1
2

+ 3
∣∣PJF|PJ (H0)

∣∣
C1

b(PJ (H0),PJ (H0))
+ 4

∣∣PJB|PJ (H0)

∣∣2
C1

b(PJ (H0),L2(U,PJ (H0)))

])
<∞.

This implies (i)–(iii) and thus completes the proof of Lemma 2.10.

Before we present the main result of this chapter, Theorem 2.12 below, we recall the
following elementary and well-known lemma, which is employed in the proof of Theo-
rem 2.12.

Lemma 2.11. Let p ∈ [0,∞), let Jn, n ∈ N0, be sets which satisfy for all n ∈ N that
Jn ⊆ Jn+1 and

⋃∞
m=1 Jm = J0, and let g : J0 → (0,∞) be a function which satisfies∑

h∈J0
(gh)

p <∞. Then

lim sup
n→∞

sup
(
{gh : h ∈ J0 \ Jn} ∪ {0}

)
= 0. (2.44)

Proof of Lemma 2.11. Without loss of generality we assume that p ∈ (0,∞) (other-
wise (2.44) is clear). Observe that for all n ∈ N it holds that[

sup
(
{gh : h ∈ J0 \ Jn} ∪ {0}

)]p ≤ ∑
h∈J0\Jn

(gh)
p =

∑
h∈J0

(gh)
p −

∑
h∈Jn

(gh)
p. (2.45)

Moreover, note that Lebesgue’s theorem of dominated convergence proves that

lim sup
n→∞

[∑
h∈J0

(gh)
p −

∑
h∈Jn

(gh)
p

]
= 0. (2.46)

Combining this with (2.45) completes the proof of Lemma 2.11.

Theorem 2.12. Assume Setting 2.2, let XI : [0, T ] × Ω → PI(Hρ), I ∈ P(H), and
XJ,x : [0, T ] × Ω → PJ(H0), x ∈ PJ(H0), J ∈ P0(H), be (Ft)t∈[0,T ]-predictable stochastic
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processes such that for all I ∈ P(H), J ∈ P0(H), x ∈ PJ(H0), t ∈ [0, T ] it holds that
sups∈[0,T ] E

[
‖XI

s ‖2
Hρ

+ ‖XJ,x
s ‖2

H0

]
<∞ and P-a.s. that

XI
t = etAPIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs, (2.47)

XJ,x
t = etAx+

∫ t

0

e(t−s)APJF(XJ,x
s ) ds+

∫ t

0

e(t−s)APJB(XJ,x
s ) dWs, (2.48)

let ϕ ∈ C2
b(H0,R), and let uJ : [0, T ] × PJ(H0) → R, J ∈ P0(H), be the functions which

satisfy for all J ∈ P0(H), (t, x) ∈ [0, T ] × PJ(H0) that uJ(t, x) = E
[
ϕ
(
XJ,x
t

)]
. Then it

holds for all I ∈ P(H) \ {H} that∣∣E[ϕ(XH
T

)]
− E

[
ϕ
(
XI
T

)]∣∣
≤
([

sup
J∈P0(H)

sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C1

b(PJ (H0),R)

][
E
[
‖ξ‖H2(γ−β)

]
+ sup
J∈P0(H)

∫ T

0

E
[∥∥F(XJ

s )
∥∥
H2(γ−β)

]
ds

]
+ ‖Λ−β‖2

L2(H0)

[
sup

J∈P0(H)

sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C2

b(PJ (H0),R)

]
sup

J∈P0(H)

∫ T

0

E
[∥∥B(XJ

s )
∥∥2

L(U,Hγ)

]
ds

)
·
[

inf
h∈H\I

|λh|
]β−γ

<∞. (2.49)

Proof of Theorem 2.12. Throughout this proof let U ⊆ U be an orthonormal basis of U ,
let vJ , vJ1,0 : [0, T ]×PJ(H0)→ R, J ∈ P0(H), and vJ0,` : [0, T ]×PJ(H0)→ L(`)(PJ(H0),R),
` ∈ {1, 2}, J ∈ P0(H), be the functions which satisfy for all J ∈ P0(H), (k, `) ∈
{(1, 0), (0, 1), (0, 2)}, (t, x) ∈ [0, T ]×PJ(H0) that vJ(t, x) = E

[
ϕ
(
XJ,x
T−t
)]

and vJk,`(t, x) =(
∂k+`

∂tk∂x`
vJ
)
(t, x), and let RI,J,s : Ω → L(PJ(H0)), I ∈ P(J), J ∈ P0(H), s ∈ [0, T ], be the

functions which satisfy for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J), ω ∈ Ω, y1, y2 ∈ PJ(H0)
that

vJ0,2
(
s,XI

s (ω)
)
(y1, y2) = 〈y1, RI,J,s(ω)y2〉H0 . (2.50)

Note that for all J ∈ P0(H), (t, x) ∈ [0, T ]×PJ(H0) it holds that vJ(t, x) = uJ(T − t, x).
Next observe that for all J ∈ P0(H), x ∈ PJ(H0) it holds that

ϕ(x) = E[ϕ(x)] = uJ(0, x) = vJ(T, x). (2.51)

Moreover, note that for all J ∈ P0(H) it holds that

E
[
ϕ
(
XJ
T

)]
= E

[
uJ
(
T,XJ

0

)]
= E

[
vJ
(
0, XJ

0

)]
. (2.52)

Combining (2.51) and (2.52) shows for all J ∈ P0(H), I ∈ P(J) that∣∣E[ϕ(XJ
T

)]
− E

[
ϕ
(
XI
T

)]∣∣ =
∣∣E[ϕ(XI

T

)]
− E

[
ϕ
(
XJ
T

)]∣∣
=
∣∣E[vJ(T,XI

T

)]
− E

[
vJ
(
0, XJ

0

)]∣∣
≤
∣∣E[vJ(T,XI

T

)]
− E

[
vJ
(
0, XI

0

)]∣∣+
∣∣E[vJ(0, XI

0

)]
− E

[
vJ
(
0, XJ

0

)]∣∣. (2.53)

In a first step we establish an estimate for the second summand on the right hand side
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of (2.53). For this observe that for all J ∈ P0(H), I ∈ P(J) it holds that∣∣E[vJ(0, XI
0

)]
− E

[
vJ
(
0, XJ

0

)]∣∣
=

∣∣∣∣E[∫ 1

0

vJ0,1
(
0, XI

0 + τ
(
XJ

0 −XI
0

))(
XJ

0 −XI
0

)
dτ

]∣∣∣∣
≤
∣∣uJ(T, ·)

∣∣
C1

b(PJ (H0),R)
E
[∥∥XJ

0 −XI
0

∥∥
H0

]
=
∣∣uJ(T, ·)

∣∣
C1

b(PJ (H0),R)
E
[∥∥PI

(
XJ

0

)
−PJ

(
XJ

0

)∥∥
H0

]
.

(2.54)

In addition, it holds for all x ∈ H2(γ−β), I, J ∈ P(H) with I 6= J that

‖PI(x)−PJ(x)‖H0 ≤ ‖Λ2(β−γ)P(I\J)∪(J\I)‖L(H0)‖P(I\J)∪(J\I)(x)‖H2(γ−β)

=

[
inf

h∈(I\J)∪(J\I)
|λh|
]β−γ
‖P(I\J)∪(J\I)(x)‖H2(γ−β)

≤
[

inf
h∈(I\J)∪(J\I)

|λh|
]β−γ
‖x‖H2(γ−β)

.

(2.55)

Putting (2.54) and (2.55) together proves for all J ∈ P0(H), I ∈ P(J) \ {H} that∣∣E[vJ(0, XI
0

)]
− E

[
vJ
(
0, XJ

0

)]∣∣
≤
[

sup
K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C1

b(PK(H0),R)

]
E
[
‖ξ‖H2(γ−β)

][
inf

h∈H\I
|λh|
]β−γ

<∞.
(2.56)

Inequality (2.56) provides an estimate for the second summand on the right hand side
of (2.53). In a second step we establish an estimate for the fist summand on the right
hand side of (2.53). The chain rule and Lemma 2.2 show that for all J ∈ P0(H), (t, x) ∈
[0, T ]×PJ(H0) it holds that

vJ1,0(t, x) = −vJ0,1(t, x)
[
Ax+ PJF(x)

]
− 1

2

∑
u∈U

vJ0,2(t, x)(PJB(x)u,PJB(x)u). (2.57)

The standard Itô formula and (2.57) prove for all J ∈ P0(H), I ∈ P(J) that

E
[
vJ
(
T,XI

T

)]
− E

[
vJ
(
0, XI

0

)]
=

∫ T

0

E
[
vJ1,0
(
s,XI

s

)]
ds+

∫ T

0

E
[
vJ0,1
(
s,XI

s

)
AXI

s

]
ds

+

∫ T

0

E
[
vJ0,1
(
s,XI

s

)
PIF(XI

s )
]

ds+ 1
2

∑
b∈U

∫ T

0

E
[
vJ0,2
(
s,XI

s

)(
PIB(XI

s )b,PIB(XI
s )b
)]

ds

=

∫ T

0

E
[
vJ0,1
(
s,XI

s

)
PIF(XI

s )
]

ds−
∫ T

0

E
[
vJ0,1
(
s,XI

s

)
PJF(XI

s )
]

ds (2.58)

+ 1
2

∑
b∈U

∫ T

0

(
E
[
vJ0,2
(
s,XI

s

)(
PIB(XI

s )b,PIB(XI
s )b
)]

− E
[
vJ0,2
(
s,XI

s

)(
PJB(XI

s )b,PJB(XI
s )b
)])

ds.

This shows for all J ∈ P0(H), I ∈ P(J) that∣∣E[vJ(T,XI
T

)]
− E

[
vJ
(
0, XI

0

)]∣∣ ≤ ∫ T

0

∣∣E[vJ0,1(s,XI
s

)(
PIF(XI

s )−PJF(XI
s )
)]∣∣ ds (2.59)

+

∣∣∣∣12 ∑
b∈U

∫ T

0

E
[
vJ0,2
(
s,XI

s

)(
PIB(XI

s )b+ PJB(XI
s )b,PIB(XI

s )b−PJB(XI
s )b
)]

ds

∣∣∣∣.
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Inequality (2.55), Lemma 2.10, and Lemma 2.8 thus prove for all J ∈ P0(H), I ∈ P(J) \
{J} that∫ T

0

∣∣E[vJ0,1(s,XI
s

)(
PIF(XI

s )−PJF(XI
s )
)]∣∣ ds

≤
∫ T

0

E
[∣∣vJ0,1(s,XI

s

)(
PIF(XI

s )−PJF(XI
s )
)∣∣] ds

≤ sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C1

b(PJ (H0),R)

∫ T

0

E
[∥∥PIF(XI

s )−PJF(XI
s )
∥∥
H0

]
ds

≤
[

sup
K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C1

b(PK(H0),R)

]
sup

K∈P0(H)

∫ T

0

E
[∥∥F(XK

s )
∥∥
H2(γ−β)

]
ds

·
[

inf
h∈J\I

|λh|
]β−γ

<∞.

(2.60)

This estimates the first summand on the right hand side of (2.59). Next we consider the
second summand on the right hand side of (2.59). Note that the Hölder inequality for
Schatten norms implies for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J) that∥∥B(XI

s )?(PI + PJ)RI,J,s(PI −PJ)B(XI
s )
∥∥
L1(U)

(2.61)

≤
∥∥B(XI

s )?(PI + PJ)
∥∥
L(2β)/γ

(H0,U)
‖RI,J,s‖L(PJ (H0))

∥∥(PI −PJ)B(XI
s )
∥∥
L(2β)/(2β−γ)

(U,H0)
.

Moreover, observe that for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J) \ {J} it holds that∥∥B(XI
s )?(PI + PJ)

∥∥
L(2β)/γ

(H0,U)
=
∥∥B(XI

s )?ΛγΛ−γ(PI + PJ)
∥∥
L(2β)/γ

(H0,U)

≤
∥∥B(XI

s )?Λγ
∥∥
L(H0,U)

‖Λ−γ‖L(2β)/γ
(H0)‖PI + PJ‖L(H0) (2.62)

=
∥∥B(XI

s )
∥∥
L(U,Hγ)

‖Λ−β‖γ/βL2(H0)‖PI + PJ‖L(H0) ≤ 2
∥∥B(XI

s )
∥∥
L(U,Hγ)

‖Λ−β‖γ/βL2(H0) <∞

and∥∥(PI −PJ)B(XI
s )
∥∥
L(2β)/(2β−γ)

(U,H0)
≤ ‖(PI −PJ)|Hγ‖L(2β)/(2β−γ)

(Hγ ,H0)

∥∥B(XI
s )
∥∥
L(U,Hγ)

≤ ‖(PI −PJ)Λ2(β−γ)‖L(H0)‖Λ2(γ−β)|Hγ‖L(2β)/(2β−γ)
(Hγ ,H0)

∥∥B(XI
s )
∥∥
L(U,Hγ)

(2.63)

=

[
inf
h∈J\I

|λh|
]β−γ
‖Λ−β‖(2β−γ)/β

L2(H0)

∥∥B(XI
s )
∥∥
L(U,Hγ)

<∞.

In addition, Lemma 2.10 establishes for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J) that

‖RI,J,s‖L(PJ (H0)) ≤ sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C2

b(PJ (H0),R)
<∞. (2.64)

Combining (2.61)–(2.64) shows for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J) \ {J} that∥∥B(XI
s )?(PI + PJ)RI,J,s(PI −PJ)B(XI

s )
∥∥
L1(U)

≤ 2‖Λ−β‖2
L2(H0)

[
sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C2

b(PJ (H0),R)

]∥∥B(XI
s )
∥∥2

L(U,Hγ)

[
inf
h∈J\I

|λh|
]β−γ

<∞.
(2.65)
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This and (2.50) imply for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J) \ {J} that∣∣∣∣∑
b∈U

E
[
vJ0,2
(
s,XI

s

)(
(PI + PJ)B(XI

s )b, (PI −PJ)B(XI
s )b
)]∣∣∣∣

=

∣∣∣∣E[∑
b∈U

〈(PI + PJ)B(XI
s )b, RI,J,s(PI −PJ)B(XI

s )b〉H0

]∣∣∣∣
=

∣∣∣∣E[∑
b∈U

〈b,B(XI
s )?(PI + PJ)RI,J,s(PI −PJ)B(XI

s )b〉U
]∣∣∣∣ (2.66)

=
∣∣E[traceU(B(XI

s )?(PI + PJ)RI,J,s(PI −PJ)B(XI
s ))
]∣∣

≤ E
[∥∥B(XI

s )?(PI + PJ)RI,J,s(PI −PJ)B(XI
s )
∥∥
L1(U)

]
≤ 2‖Λ−β‖2

L2(H0)

[
sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C2

b(PJ (H0),R)

]
E
[∥∥B(XI

s )
∥∥2

L(U,Hγ)

][
inf
h∈J\I

|λh|
]β−γ

.

Lemma 2.8 and Lemma 2.10 hence prove for all J ∈ P0(H), I ∈ P(J) \ {J} that∣∣∣∣12 ∑
b∈U

∫ T

0

E
[
vJ0,2
(
s,XI

s

)(
PIB(XI

s )b+ PJB(XI
s )b,PIB(XI

s )b−PJB(XI
s )b
)]

ds

∣∣∣∣
≤ ‖Λ−β‖2

L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C2

b(PK(H0),R)

]
sup

K∈P0(H)

∫ T

0

E
[∥∥B(XK

s )
∥∥2

L(U,Hγ)

]
ds

·
[

inf
h∈J\I

|λh|
]β−γ

<∞. (2.67)

Combining this with (2.59) and (2.60) ensures for all J ∈ P0(H), I ∈ P(J) \ {H} that∣∣E[vJ(T,XI
T

)]
− E

[
vJ
(
0, XI

0

)]∣∣
≤
([

sup
K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C1

b(PK(H0),R)

]
sup

K∈P0(H)

∫ T

0

E
[∥∥F(XK

s )
∥∥
H2(γ−β)

]
ds

+ ‖Λ−β‖2
L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C2

b(PK(H0),R)

]
sup

K∈P0(H)

∫ T

0

E
[∥∥B(XK

s )
∥∥2

L(U,Hγ)

]
ds

)
·
[

inf
h∈H\I

|λh|
]β−γ

<∞. (2.68)

This constitutes an estimate for the first summand on the right hand side of (2.53).
Inequalities (2.68), (2.53), and (2.56) show for all J ∈ P0(H), I ∈ P(J) \ {H} that∣∣E[ϕ(XJ

T

)]
− E

[
ϕ
(
XI
T

)]∣∣
≤
([

sup
K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C1

b(PK(H0),R)

][
E
[
‖ξ‖H2(γ−β)

]
+ sup
K∈P0(H)

∫ T

0

E
[∥∥F(XK

s )
∥∥
H2(γ−β)

]
ds

]
+ ‖Λ−β‖2

L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C2

b(PK(H0),R)

]
sup

K∈P0(H)

∫ T

0

E
[∥∥B(XK

s )
∥∥2

L(U,Hγ)

]
ds

)
·
[

inf
h∈H\I

|λh|
]β−γ

<∞. (2.69)
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In a third step Lemma 2.9, Lemma 2.5, Lemma 2.6, the Cauchy–Schwarz inequality, and
the Burkholder–Davis–Gundy-type inequality in Da Prato & Zabczyk [94, Lemma 7.7]
imply for all n ∈ N, (Jk)k∈N0 ⊆ P(H) with

⋃∞
k=1 Jk = J0 and ∀k ∈ N : Jk ⊆ Jk+1 ∈ P0(H)

that

sup
t∈[0,T ]

(
E
[∥∥XJ0

t −XJn
t

∥∥2

H0

])1/2

≤
√

2

[
sup
t∈[0,T ]

(
E
[∥∥PJ0\JnX

J0
t

∥∥2

H0

])1/2
]

· exp
(

1
2

[√
2T |PJnF|Lip0(H0,H0) +

√
2T |PJnB|Lip0(H0,L2(U,H0))

]2)
≤
√

2 exp
(

1
2

[√
2T |F|Lip0(H0,H0) +

√
2T |B|Lip0(H0,L2(U,H0))

]2)
·
((

E
[
‖PJ0\Jnξ‖2

H0

])1/2
+

[
T

∫ T

0

E
[∥∥PJ0\JnF(XJ0

s )
∥∥2

H0

]
ds

]1/2

+

[∫ T

0

E
[∥∥PJ0\JnB(XJ0

s )
∥∥2

L2(U,H0)

]
ds

]1/2)
.

(2.70)

Therefore, Lebesgue’s theorem of dominated convergence proves for all (Jk)k∈N0 ⊆ P(H)
with

⋃∞
k=1 Jk = J0 and ∀k ∈ N : Jk ⊆ Jk+1 ∈ P0(H) that

lim sup
n→∞

sup
t∈[0,T ]

(
E
[∥∥XJ0

t −XJn
t

∥∥2

H0

])1/2
= 0. (2.71)

Moreover, observe that (2.69) ensures for all n ∈ N, I ∈ P0(H) \ {H}, (Jk)k∈N ⊆ P0(H)
with

⋃∞
k=1 Jk = H and ∀k ∈ N : I ⊆ Jk ⊆ Jk+1 that∣∣E[ϕ(XH
T

)]
− E

[
ϕ
(
XI
T

)]∣∣ ≤ ∣∣E[ϕ(XH
T

)]
− E

[
ϕ
(
XJn
T

)]∣∣+
∣∣E[ϕ(XJn

T

)]
− E

[
ϕ
(
XI
T

)]∣∣
≤ |ϕ|C1

b(H0,R)

(
E
[∥∥XH

T −XJn
T

∥∥2

H0

])1/2

+

([
sup

K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C1

b(PK(H0),R)

][
E
[
‖ξ‖H2(γ−β)

]
+ sup
K∈P0(H)

∫ T

0

E
[∥∥F(XK

s )
∥∥
H2(γ−β)

]
ds

]
+ ‖Λ−β‖2

L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

∣∣uK(t, ·)
∣∣
C2

b(PK(H0),R)

]
sup

K∈P0(H)

∫ T

0

E
[∥∥B(XK

s )
∥∥2

L(U,Hγ)

]
ds

)
·
[

inf
h∈H\I

|λh|
]β−γ

. (2.72)

Note that (2.71) and letting n→∞ in (2.72) complete the proof of Theorem 2.12 in the
case that I ∈ P0(H) \ {H}. In a last step we prove the remaining cases. Estimate (2.72)
ensures for all n ∈ N, I0 ∈ P(H) \ {H}, (Ik)k∈N ⊆ P0(I0) with

⋃∞
k=1 Ik = I0 and ∀k ∈

N : Ik ⊆ Ik+1 that∣∣E[ϕ(XH
T

)]
− E

[
ϕ
(
XI0
T

)]∣∣ ≤ ∣∣E[ϕ(XH
T

)]
− E

[
ϕ
(
XIn
T

)]∣∣+
∣∣E[ϕ(XI0

T

)]
− E

[
ϕ
(
XIn
T

)]∣∣
≤
([

sup
J∈P0(H)

sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C1

b(PJ (H0),R)

][
E
[
‖ξ‖H2(γ−β)

]
+ sup
J∈P0(H)

∫ T

0

E
[∥∥F(XJ

s )
∥∥
H2(γ−β)

]
ds

]
+ ‖Λ−β‖2

L2(H0)

[
sup

J∈P0(H)

sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
C2

b(PJ (H0),R)

]
sup

J∈P0(H)

∫ T

0

E
[∥∥B(XJ

s )
∥∥2

L(U,Hγ)

]
ds

)
·
[

inf
h∈H\I

|λh|
]β−γ

+ |ϕ|C1
b(H0,R)

(
E
[∥∥XI0

T −X
In
T

∥∥2

H0

])1/2
. (2.73)
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Equation (2.71) and Lemma 2.11 thus complete the proof of Theorem 2.12.

The next corollary is a direct consequence of Theorem 2.12 and Lemma 2.8.

Corollary 2.13. Assume Setting 2.2, let XI : [0, T ] × Ω → PI(Hρ), I ∈ P(H), and
XJ,x : [0, T ] × Ω → PJ(H0), x ∈ PJ(H0), J ∈ P0(H), be (Ft)t∈[0,T ]-predictable stochastic
processes such that for all I ∈ P(H), J ∈ P0(H), x ∈ PJ(H0), t ∈ [0, T ] it holds that
sups∈[0,T ] E

[
‖XI

s ‖2
Hρ

+ ‖XJ,x
s ‖2

H0

]
<∞ and P-a.s. that

XI
t = etAPIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs, (2.74)

XJ,x
t = etAx+

∫ t

0

e(t−s)APJF(XJ,x
s ) ds+

∫ t

0

e(t−s)APJB(XJ,x
s ) dWs, (2.75)

let ϕ ∈ C2
b(H0,R), and let uJ : [0, T ] × PJ(H0) → R, J ∈ P0(H), be the functions which

satisfy for all J ∈ P0(H), (t, x) ∈ [0, T ] × PJ(H0) that uJ(t, x) = E
[
ϕ
(
XJ,x
t

)]
. Then it

holds for all I ∈ P(H) \ {H} that∣∣E[ϕ(XH
T

)]
− E

[
ϕ
(
XI
T

)]∣∣
≤
[

max
i∈{1,2}

sup
J∈P0(H)

sup
t∈[0,T ]

∣∣uJ(t, ·)
∣∣
Cib(PJ (H0),R)

]
sup

J∈P0(H)

sup
t∈[0,T ]

max
{

1,E
[
‖XJ

t ‖2
Hρ

]}
·
(
E
[
‖ξ‖H2(γ−β)

]
+ T

∥∥F|Hρ

∥∥
Lip0(Hρ,H2(γ−β))

+ T ‖Λ−β‖2
L2(H0)

∥∥B|Hρ

∥∥2

Lip0(Hρ,L(U,Hγ))

)
·
[

inf
h∈H\I

|λh|
]β−γ

<∞. (2.76)

The last result in this subsection, Corollary 2.14 below, follows immediately from
Corollary 2.13 and Lemmas 2.10 and 2.8.

Corollary 2.14. Assume Setting 2.2 and let XI : [0, T ] × Ω → PI(Hρ), I ∈ P(H), be
(Ft)t∈[0,T ]-predictable stochastic processes such that for all I ∈ P(H), t ∈ [0, T ] it holds
that sups∈[0,T ] E

[
‖XI

s ‖2
Hρ

]
<∞ and P-a.s. that

XI
t = etAPIξ +

∫ t

0

e(t−s)APIF(XI
s ) ds+

∫ t

0

e(t−s)APIB(XI
s ) dWs. (2.77)

Then it holds for all ϕ ∈ C2
b(H0,R), I ∈ P(H) \ {H} that∣∣E[ϕ(XH

T

)]
− E

[
ϕ
(
XI
T

)]∣∣ ≤ ‖ϕ‖C2
b(H0,R) max

{
1,E

[
‖ξ‖2

Hρ

]}
·
(
E
[
‖ξ‖H2(γ−β)

]
+ T

∥∥F|Hρ

∥∥
Lip0(Hρ,H2(γ−β))

+ T ‖Λ−β‖2
L2(H0)

∥∥B|Hρ

∥∥2

Lip0(Hρ,L(U,Hγ))

)
·max

{
1,
[
T
(
(CF)2 + 2(CB)2

)]1/2}
exp
(
T
[

1
2

+ 3 |F|Lip0(H0,H0) + 4 |B|2Lip0(H0,L2(U,H0))

])
· exp

(
T
[
2
∥∥F|Hρ

∥∥
Lip0(Hρ,Hρ)

+
∥∥B|Hρ

∥∥2

Lip0(Hρ,L2(U,Hρ))

])[
inf

h∈H\I
|λh|
]β−γ

<∞. (2.78)
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2.2.3 Semi-linear stochastic wave equations and the continuous
version of the hyperbolic Anderson model

Roughly speaking, the following elementary and well-known lemma provides a useful cri-
terion for determining whether a vector belonging to an interpolation space associated to
a symmetric diagonal linear operator possesses more regularity (cf., e.g., Sell & You [279,
Example 37.1]).

Lemma 2.15. Consider the notation in Subsection 2.1.1, let K ∈ {R,C}, let (H, 〈·, ·〉H ,
‖·‖H) be a K-Hilbert space, let H ⊆ H be a non-empty orthonormal basis of H, let
A : D(A) ⊆ H → H be a symmetric diagonal linear operator with inf(σP(A)) > 0, and let
(Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family of interpolation spaces associated to A. Then

(i) for all v ∈
⋃
s∈RHs, r ∈ R it holds that v ∈ Hr if and only if

sup
w∈spanH(H)\{0}

|〈w, v〉H |
‖w‖H−r

<∞, (2.79)

(ii) for all s ∈ R, v ∈ H−s, r ∈ [−s,∞) it holds that v ∈ Hr if and only if

sup
w∈Hs\{0}

|〈w, v〉H |
‖w‖H−r

<∞, (2.80)

and

(iii) for all r ∈ R, v ∈ Hr, s ∈ [−r,∞) it holds that

‖v‖Hr = sup
w∈spanH(H)\{0}

|〈w, v〉H |
‖w‖H−r

= sup
w∈Hs\{0}

|〈w, v〉H |
‖w‖H−r

. (2.81)

Proof of Lemma 2.15. Note that for all r ∈ R, v ∈ Hr, w ∈ H−r it holds that

|〈w, v〉H | = |〈A−rw,Arv〉H | ≤ ‖w‖H−r‖v‖Hr . (2.82)

This proves the “⇒” direction in the statement of (i). Next we consider the “⇐” direction
in the statement of (i) and the first equality in (2.81). For this let s ∈ R, r ∈ [s,∞),
v ∈ Hs satisfy

sup
w∈spanH(H)\{0}

|〈w,v〉H |
‖w‖H−r

<∞. (2.83)

Observe that it holds that

sup
w∈spanH(H)\{0}

|〈v, w〉Hr|
‖w‖Hr

= sup
w∈spanH(H)\{0}

|〈Arv, Arw〉H |
‖A2rw‖H−r

= sup
w∈spanH(H)\{0}

|〈v, A2rw〉H |
‖A2rw‖H−r

= sup
w∈spanH(H)\{0}

|〈v, w〉H |
‖w‖H−r

= sup
w∈spanH(H)\{0}

|〈w,v〉H |
‖w‖H−r

<∞.

(2.84)
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This ensures that there exists ϕ ∈ L(Hr,K) such that for all w ∈ spanH(H) it holds
that ϕ(w) = 〈v, w〉Hr . The Riesz–Fréchet representation theorem hence proves that there
exists a vector u ∈ Hr such that ∀w ∈ Hr : 〈u, w〉Hr = ϕ(w) and

‖u‖Hr = ‖ϕ‖L(Hr,K) = sup
w∈spanH(H)\{0}

|〈v, w〉Hr|
‖w‖Hr

. (2.85)

This implies for all w ∈ Hs that

〈u, w〉Hs = 〈As−ru, As−rw〉Hr = 〈u, A2(s−r)w〉Hr = ϕ(A2(s−r)w) = 〈v, w〉Hs . (2.86)

Combining this with (2.84) and (2.85) demonstrates that v = u ∈ Hr and

‖v‖Hr = ‖u‖Hr = sup
w∈spanH(H)\{0}

|〈v, w〉Hr|
‖w‖Hr

= sup
w∈spanH(H)\{0}

|〈w,v〉H |
‖w‖H−r

. (2.87)

This and the fact that ∀s ∈ R, r ∈ (−∞, s] : Hs ⊆ Hr establish (i) and the first equality
in (2.81). Next note that the “⇒” direction in the statement of (ii) follows directly from
(2.82), while the “⇐” direction in the statement of (ii) is a consequence of (i). Finally,
(2.82) also shows for all r ∈ R, v ∈ Hr, s ∈ [−r,∞) that

‖v‖Hr = sup
w∈spanH(H)\{0}

|〈w, v〉H |
‖w‖H−r

≤ sup
w∈Hs\{0}

|〈w, v〉H |
‖w‖H−r

≤ sup
w∈H−r\{0}

|〈w, v〉H |
‖w‖H−r

≤ ‖v‖Hr .
(2.88)

This proves (iii). The proof of Lemma 2.15 is thus complete.

In the next result, Corollary 2.16, we specialise Corollary 2.13 above to the case of
semi-linear stochastic wave equations. Corollary 2.16 is an elementary consequence of
Corollary 2.13.

Corollary 2.16. Consider the notation in Subsection 2.1.1, let T, ϑ ∈ (0,∞), γ ∈
(1/4, 1/2), ρ ∈ [0, 2γ − 1/2), % ∈ [1/6,∞), let (Ω,F ,P) be a probability space with a nor-
mal filtration (Ft)t∈[0,T ], let (H, 〈·, ·〉H , ‖·‖H) =

(
L2(µ(0,1);R), 〈·, ·〉L2(µ(0,1);R), ‖·‖L2(µ(0,1);R)

)
,

let (Wt)t∈[0,T ] be an idH-cylindrical (Ω,F ,P, (Ft)t∈[0,T ])-Wiener process, let (en)n∈N ⊆ H

satisfy for all n ∈ N and µ(0,1)-a.e. x ∈ (0, 1) that en(x) =
√

2 sin(nπx), let A : D(A) ⊆
H → H be the Laplacian with Dirichlet boundary conditions on H multiplied by ϑ, let
(Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family of interpolation spaces associated to −A, let
PN ∈ L(H × H−1/2), N ∈ N ∪ {∞}, be the linear operators which satisfy for all N ∈
N ∪ {∞}, v, w ∈ H that PN(v, w) =

(∑N
n=1〈en, v〉Hen,

∑N
n=1〈en, w〉Hen

)
, let A : D(A) ⊆

H × H−1/2 → H × H−1/2 be the linear operator which satisfies D(A) = H1/2 × H and
∀(v, w) ∈ H1/2 × H : A(v, w) = (w,Av), let ξ ∈ L2(P|F0 ;H1/2 × H), ϕ ∈ C2

b(H ×
H−1/2,R), f ∈ Lip2((0, 1) × R,R), B ∈ Lip0(H,L2(H,H−1/2)) satisfy ∀v ∈ Hρ, u ∈
H : B(v)u ∈ Hγ−1/2, ∀v ∈ Hρ : (H 3 u 7→ B(v)u ∈ Hρ−1/2) ∈ L2(H,Hρ−1/2), (Hρ 3
v 7→ (H 3 u 7→ B(v)u ∈ Hρ−1/2) ∈ L2(H,Hρ−1/2)) ∈ Lip0(Hρ, L2(H,Hρ−1/2)), ∀v ∈
Hρ : (H 3 u 7→ B(v)u ∈ Hγ−1/2) ∈ L(H,Hγ−1/2), (Hρ 3 v 7→ (H 3 u 7→ B(v)u ∈
Hγ−1/2) ∈ L(H,Hγ−1/2)) ∈ Lip0(Hρ, L(H,Hγ−1/2)), B|H% ∈ C2

b(H%, L2(H,H−1/2)), and
supx,v1,v2∈H%, max{‖v1‖H ,‖v2‖H}≤1‖B′′(x)(v1, v2)‖L2(H,H−1/2) < ∞, and let F : H × H−1/2 →
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H1/2 × H and B : H × H−1/2 → L2(H,H × H−1/2) be the functions which satisfy for all
v, u ∈ H, w ∈ H−1/2 and µ(0,1)-a.e. x ∈ (0, 1) that

(
F(v, w)

)
(x) =

(
0, f(x, v(x))

)
and

B(v, w)u =
(
0, B(v)u

)
. Then

(i) it holds that F ∈ Lip0(H×H−1/2, H1/2×H), F|H%×H%−1/2
∈ Lip2(H%×H%−1/2, H1/2×H),

B ∈ Lip0(H ×H−1/2, L2(H,H ×H−1/2)), ∀v ∈ Hρ ×Hρ−1/2, u ∈ H : B(v)u ∈ Hγ ×
Hγ−1/2, ∀v ∈ Hρ ×Hρ−1/2 : (H 3 u 7→ B(v)u ∈ Hρ ×Hρ−1/2) ∈ L2(H,Hρ ×Hρ−1/2),
(Hρ × Hρ−1/2 3 v 7→ (H 3 u 7→ B(v)u ∈ Hρ × Hρ−1/2) ∈ L2(H,Hρ × Hρ−1/2)) ∈
Lip0(Hρ × Hρ−1/2, L2(H,Hρ × Hρ−1/2)), ∀v ∈ Hρ × Hρ−1/2 : (H 3 u 7→ B(v)u ∈
Hγ × Hγ−1/2) ∈ L(H,Hγ × Hγ−1/2), (Hρ × Hρ−1/2 3 v 7→ (H 3 u 7→ B(v)u ∈ Hγ ×
Hγ−1/2) ∈ L(H,Hγ×Hγ−1/2)) ∈ Lip0(Hρ×Hρ−1/2, L(H,Hγ×Hγ−1/2)), B|H%×H%−1/2

∈
C2

b(H% ×H%−1/2, L2(H,H ×H−1/2)), and

∀δ ∈ (−∞, 1/4) : sup
x∈H%×H%−1/2,

v1,v2∈H%×H%−1/2\{0}

‖F′′(x)(v1,v2)‖Hδ×Hδ−1/2
+‖B′′(x)(v1,v2)‖L2(H,H×H−1/2

)

‖v1‖H×H−1/2
‖v2‖H×H−1/2

<∞,

(2.89)

(ii) it holds that there exist up to modifications unique (Ft)t∈[0,T ]-predictable stochastic
processes XN : [0, T ] × Ω → PN(Hρ × Hρ−1/2), N ∈ N ∪ {∞}, such that for all
N ∈ N ∪ {∞}, t ∈ [0, T ] it holds that sups∈[0,T ] E

[
‖XN

s ‖2
Hρ×Hρ−1/2

]
< ∞ and P-a.s.

that

XN
t = etAPNξ +

∫ t

0

e(t−s)APNF(XN
s ) ds+

∫ t

0

e(t−s)APNB(XN
s ) dWs, (2.90)

and

(iii) it holds for all ε ∈ (4(1/2 − γ),∞) that there exists a real number C ∈ [0,∞) such
that for all N ∈ N it holds that∣∣E[ϕ(X∞T )]− E

[
ϕ
(
XN
T

)]∣∣ ≤ C ·N ε−1. (2.91)

Proof of Corollary 2.16. Throughout this proof let fk,` : (0, 1) × R → R, k, ` ∈ {0, 1, 2}
with k + ` ≤ 2, be the functions which satisfy for all k, ` ∈ {0, 1, 2}, (x, y) ∈ (0, 1) × R
with k + ` ≤ 2 that fk,`(x, y) =

(
∂k+`

∂xk∂y`
f
)
(x, y) and let F : H → H be the function which

satisfies for all v ∈ H and µ(0,1)-a.e. x ∈ (0, 1) that
(
F (v)

)
(x) = f(x, v(x)). Then note

that for all u, v ∈ H, w ∈ H−1/2 it holds that F(v, w) =
(
0, F (v)

)
and

‖F (u)− F (v)‖H =

(∫ 1

0

|f(x, u(x))− f(x, v(x))|2 dx

)1/2

≤ |f |Lip0((0,1)×R,R)‖u− v‖H .
(2.92)

This proves that F ∈ Lip0(H,H). Hence, we obtain that F ∈ Lip0(H ×H−1/2, H1/2 ×H).
Next observe that the Sobolev embedding theorem ensures for all δ ∈ [1, 6] that

sup
w∈H%\{0}

‖w‖Lδ(µ(0,1);R)

‖w‖H%
<∞. (2.93)
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Moreover, note that it holds for all v, h ∈ H and µ(0,1)-a.e. x ∈ (0, 1) that

|f(x, v(x) + h(x))− f(x, v(x))− f0,1(x, v(x))h(x)|

=

∣∣∣∣∫ 1

0

[
f0,1(x, v(x) + yh(x))− f0,1(x, v(x))

]
h(x) dy

∣∣∣∣ ≤ |f |Lip1((0,1)×R,R)|h(x)|2.
(2.94)

This, Hölder’s inequality, and (2.93) imply for all v ∈ H%, h ∈ H% \ {0} that

1

‖h‖H%

(∫ 1

0

|f(x, v(x) + h(x))− f(x, v(x))− f0,1(x, v(x))h(x)|2 dx

)1/2

(2.95)

≤ |f |Lip1((0,1)×R,R)

‖h‖2
L4(µ(0,1);R)

‖h‖H%
≤ |f |Lip1((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L4(µ(0,1);R)

‖w‖H%

)2

‖h‖H% <∞.

In addition, observe that it holds for all v, h ∈ H% that(∫ 1

0

|f0,1(x, v(x))h(x)|2 dx

)1/2

≤ |f |C1
b((0,1)×R,R)‖h‖H

≤ |f |C1
b((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖H
‖w‖H%

)
‖h‖H%

= |f |Lip0((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖H
‖w‖H%

)
‖h‖H% <∞.

(2.96)

Inequalities (2.95)–(2.96) prove that F |H% : H% → H is Fréchet differentiable, that for all
v, h ∈ H% and µ(0,1)-a.e. x ∈ (0, 1) it holds that(

F ′(v)h
)
(x) = f0,1(x, v(x))h(x), (2.97)

and that supv∈H%‖F ′(v)‖L(H%,H) ≤ |f |C1
b((0,1)×R,R) < ∞. Furthermore, Hölder’s inequality

and (2.93) show for all u, v, h ∈ H% that

‖(F ′(u)− F ′(v))h‖H =

(∫ 1

0

∣∣[f0,1(x, u(x))− f0,1(x, v(x))
]
h(x)

∣∣2 dx

)1/2

≤ |f |Lip1((0,1)×R,R)‖u− v‖L4(µ(0,1);R)‖h‖L4(µ(0,1);R)

≤ |f |Lip1((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L4(µ(0,1);R)

‖w‖H%

)2

‖u− v‖H%‖h‖H% <∞.

(2.98)

This ensures that F |H% ∈ Lip1(H%, H). Similarly, observe that for all v, h, g ∈ H and
µ(0,1)-a.e. x ∈ (0, 1) it holds that

|f0,1(x, v(x) + g(x))h(x)− f0,1(x, v(x))h(x)− f0,2(x, v(x))h(x)g(x)|

=

∣∣∣∣∫ 1

0

[
f0,2(x, v(x) + yg(x))− f0,2(x, v(x))

]
h(x)g(x) dy

∣∣∣∣
≤ |f |Lip2((0,1)×R,R)|h(x)||g(x)|2.

(2.99)
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This, Hölder’s inequality, and (2.93) establish for all v, h ∈ H%, g ∈ H% \ {0} that

1

‖g‖H%

(∫ 1

0

|f0,1(x, v(x) + g(x))h(x)− f0,1(x, v(x))h(x)− f0,2(x, v(x))h(x)g(x)|2 dx

)1/2

≤
|f |Lip2((0,1)×R,R)

‖g‖H%

(∫ 1

0

|h(x)|2|g(x)|4 dx

)1/2

≤ |f |Lip2((0,1)×R,R)

‖h‖L6(µ(0,1);R)‖g‖2
L6(µ(0,1);R)

‖g‖H%
(2.100)

≤ |f |Lip2((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L6(µ(0,1);R)

‖w‖H%

)3

‖h‖H%‖g‖H% <∞.

Furthermore, Hölder’s inequality and (2.93) also prove for all v, h, g ∈ H% that(∫ 1

0

|f0,2(x, v(x))h(x)g(x)|2 dx

)1/2

≤ |f |C2
b((0,1)×R,R)‖h‖L4(µ(0,1);R)‖g‖L4(µ(0,1);R)

≤ |f |C2
b((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L4(µ(0,1);R)

‖w‖H%

)2

‖h‖H%‖g‖H%

= |f |Lip1((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L4(µ(0,1);R)

‖w‖H%

)2

‖h‖H%‖g‖H% <∞.

(2.101)

Combining (2.100)–(2.101) ensures that F |H% : H% → H is twice Fréchet differentiable,
that for all v, h, g ∈ H% and µ(0,1)-a.e. x ∈ (0, 1) it holds that(

F ′′(v)(h, g)
)
(x) = f0,2(x, v(x))h(x)g(x), (2.102)

and that

sup
v∈H%
‖F ′′(v)‖L(2)(H%,H) ≤ |f |C2

b((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L4(µ(0,1);R)

‖w‖H%

)2

<∞. (2.103)

In addition, Hölder’s inequality and (2.93) establish for all u, v, h, g ∈ H% that

‖(F ′′(u)− F ′′(v))(h, g)‖H =

(∫ 1

0

∣∣[f0,2(x, u(x))− f0,2(x, v(x))
]
h(x)g(x)

∣∣2 dx

)1/2

≤ |f |Lip2((0,1)×R,R)‖u− v‖L6(µ(0,1);R)‖h‖L6(µ(0,1);R)‖g‖L6(µ(0,1);R)

≤ |f |Lip2((0,1)×R,R)

(
sup

w∈H%\{0}

‖w‖L6(µ(0,1);R)

‖w‖H%

)3

‖u− v‖H%‖h‖H%‖g‖H% <∞.

(2.104)

This shows that F |H% ∈ Lip2(H%, H). This proves that F|H%×H%−1/2
∈ Lip2(H% × H%−1/2,

H1/2 × H). Next, note that the assumptions that B ∈ Lip0(H,L2(H,H−1/2)), ∀v ∈
Hρ, u ∈ H : B(v)u ∈ Hγ−1/2, ∀v ∈ Hρ : (H 3 u 7→ B(v)u ∈ Hρ−1/2) ∈ L2(H,Hρ−1/2),
(Hρ 3 v 7→ (H 3 u 7→ B(v)u ∈ Hρ−1/2) ∈ L2(H,Hρ−1/2)) ∈ Lip0(Hρ, L2(H,Hρ−1/2)),
∀v ∈ Hρ : (H 3 u 7→ B(v)u ∈ Hγ−1/2) ∈ L(H,Hγ−1/2), (Hρ 3 v 7→ (H 3 u 7→ B(v)u ∈
Hγ−1/2) ∈ L(H,Hγ−1/2)) ∈ Lip0(Hρ, L(H,Hγ−1/2)), and B|H% ∈ C2

b(H%, L2(H,H−1/2)) en-
sure that B ∈ Lip0(H × H−1/2, L2(H,H × H−1/2)), ∀v ∈ Hρ × Hρ−1/2, u ∈ H : B(v)u ∈
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Hγ ×Hγ−1/2, ∀v ∈ Hρ ×Hρ−1/2 : (H 3 u 7→ B(v)u ∈ Hρ ×Hρ−1/2) ∈ L2(H,Hρ ×Hρ−1/2),
(Hρ × Hρ−1/2 3 v 7→ (H 3 u 7→ B(v)u ∈ Hρ × Hρ−1/2) ∈ L2(H,Hρ × Hρ−1/2)) ∈
Lip0(Hρ × Hρ−1/2, L2(H,Hρ × Hρ−1/2)), ∀v ∈ Hρ × Hρ−1/2 : (H 3 u 7→ B(v)u ∈ Hγ ×
Hγ−1/2) ∈ L(H,Hγ × Hγ−1/2), (Hρ × Hρ−1/2 3 v 7→ (H 3 u 7→ B(v)u ∈ Hγ × Hγ−1/2) ∈
L(H,Hγ ×Hγ−1/2)) ∈ Lip0(Hρ ×Hρ−1/2, L(H,Hγ ×Hγ−1/2)), and B|H%×H%−1/2

∈ C2
b(H% ×

H%−1/2, L2(H,H ×H−1/2)). In addition, Lemma 2.15 proves for all δ ∈ (−∞, 1/4), v, h, g ∈
H% that

‖F ′′(v)(h, g)‖Hδ−1/2
= sup

w∈H1/2−δ\{0}

〈w,F ′′(v)(h, g)〉H
‖w‖H1/2−δ

≤ |f |C2
b((0,1)×R,R)

(
sup

w∈H1/2−δ\{0}

‖w‖L∞(µ(0,1);R)

‖w‖H1/2−δ

)
‖h‖H‖g‖H <∞.

(2.105)

This and the assumption that

sup
x,v1,v2∈H%, max{‖v1‖H ,‖v2‖H}≤1

‖B′′(x)(v1, v2)‖L2(H,H−1/2) <∞ (2.106)

show (2.89). The proof of (i) is thus complete. Furthermore, observe that (ii) follows
directly from (i) and Remark 2.7. It thus remains to prove (iii). For this let ε ∈ (4(1/2−
γ), 1 − 2ρ], β ∈ (1/2, 2γ] and λn ∈ R, n ∈ N, be real numbers which satisfy for all n ∈ N
that β = 1/2 + (ε−4(1/2−γ))/2 and λn = −ϑπ2n2 and let Λ : D(Λ) ⊆ H ×H−1/2 → H ×H−1/2

be the linear operator which satisfies for all (v, w) ∈ H1/2×H that D(Λ) = H1/2×H and

Λ(v, w) =

(∑∞
n=1|λn|

1/2〈en, v〉Hen∑∞
n=1|λn|

1/2〈en, w〉Hen

)
. (2.107)

Then note that for all v ∈ H1 it holds that Av =
∑∞

n=1 λn〈en, v〉Hen and ‖Λ−β‖L2(H×H−1/2)

< ∞. Furthermore, observe that (i) and the fact that 2γ − β = (1−ε)/2 ≤ 1/2 imply that
(H×H−1/2 3 v 7→ F(v) ∈ H2γ−β×H2γ−β−1/2) ∈ Lip0(H×H−1/2, H2γ−β×H2γ−β−1/2). This,
the fact that 2ρ ≤ 1− ε = 2(2γ − β), and again (i) enable us to apply Corollary 2.13 to
obtain that there exists a real number C ∈ [0,∞) such that for all N ∈ N it holds that∣∣E[ϕ(X∞T )]− E

[
ϕ
(
XN
T

)]∣∣ ≤ C |λN+1|β−2γ ≤ Cϑ
(ε−1)/2 ·N ε−1. (2.108)

The proof of Corollary 2.16 is thus complete.

In the proof of Corollary 2.18 below we employ the following elementary and well-
known result, Lemma 2.17.

Lemma 2.17. Let K ∈ {R,C}, let (H, 〈·, ·〉H , ‖·‖H) be a K-Hilbert space, let H ⊆ H be a
non-empty orthonormal basis of H, let A : D(A) ⊆ H → H be a symmetric diagonal linear
operator with inf(σP(A)) > 0, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family of interpolation
spaces associated to A, and let q, s ∈ R, p ∈ [q,∞), r ∈ [s,∞). Then

(i) for all B ∈ L(Hq, Hs) it holds that
(
B(Hq) ⊆ Hr and (Hq 3 v 7→ Bv ∈ Hr) ∈

L(Hq, Hr)
)
if and only if(

B(spanH(H)) ⊆ Hr and sup
w∈spanH(H)\{0}

‖Bw‖Hr
‖w‖Hq

<∞
)
, (2.109)
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(ii) for all B ∈ L(Hq, Hs) it holds that
(
B(Hq) ⊆ Hr and (Hq 3 v 7→ Bv ∈ Hr) ∈

L(Hq, Hr)
)
if and only if(

B(Hp) ⊆ Hr and sup
w∈Hp\{0}

‖Bw‖Hr
‖w‖Hq

<∞
)
, (2.110)

and

(iii) for all B ∈ L(Hq, Hr) it holds that

‖B‖L(Hq ,Hr) = sup
w∈spanH(H)\{0}

‖Bw‖Hr
‖w‖Hq

= sup
w∈Hp\{0}

‖Bw‖Hr
‖w‖Hq

. (2.111)

Corollary 2.18. Consider the notation in Subsection 2.1.1, let T, ϑ ∈ (0,∞), α, β ∈ R,
let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ], let (H, 〈·, ·〉H , ‖·‖H) =(
L2(µ(0,1);R), 〈·, ·〉L2(µ(0,1);R), ‖·‖L2(µ(0,1);R)

)
, let (Wt)t∈[0,T ] be an idH-cylindrical (Ω,F ,P,

(Ft)t∈[0,T ])-Wiener process, let (en)n∈N ⊆ H satisfy for all n ∈ N and µ(0,1)-a.e. x ∈
(0, 1) that en(x) =

√
2 sin(nπx), let A : D(A) ⊆ H → H be the Laplacian with Dirichlet

boundary conditions on H multiplied by ϑ, let (Hr, 〈·, ·〉Hr , ‖·‖Hr), r ∈ R, be a family
of interpolation spaces associated to −A, let PN ∈ L(H × H−1/2), N ∈ N ∪ {∞}, be
the linear operators which satisfy for all N ∈ N ∪ {∞}, v, w ∈ H that PN(v, w) =(∑N

n=1〈en, v〉Hen,
∑N

n=1〈en, w〉Hen
)
, let A : D(A) ⊆ H ×H−1/2 → H ×H−1/2 be the linear

operator which satisfies D(A) = H1/2 × H and ∀(v, w) ∈ H1/2 × H : A(v, w) = (w,Av),
let ξ ∈ L2(P|F0 ;H1/2×H), ϕ ∈ C2

b(H ×H−1/2,R), f ∈ Lip2((0, 1)×R,R), and let F : H ×
H−1/2 → H1/2×H and B : H×H−1/2 → L2(H,H×H−1/2) be the functions which satisfy for
all (v, w) ∈ H×H−1/2, u ∈ H1 and µ(0,1)-a.e. x ∈ (0, 1) that

(
F(v, w)

)
(x) =

(
0, f(x, v(x))

)
and

(
B(v, w)u

)
(x) =

(
0, (α + βv(x))u(x)

)
. Then

(i) it holds that there exist up to modifications unique (Ft)t∈[0,T ]-predictable stochastic
processes XN : [0, T ] × Ω →

(⋂
ρ∈[0,1/4) PN(Hρ ×Hρ−1/2)

)
, N ∈ N ∪ {∞}, such that

for all ρ ∈ [0, 1/4), N ∈ N∪{∞}, t ∈ [0, T ] it holds that sups∈[0,T ] E
[
‖XN

s ‖2
Hρ×Hρ−1/2

]
<∞ and P-a.s. that

XN
t = etAPNξ +

∫ t

0

e(t−s)APNF(XN
s ) ds+

∫ t

0

e(t−s)APNB(XN
s ) dWs (2.112)

and

(ii) it holds for all ε ∈ (0,∞) that there exists a real number C ∈ [0,∞) such that for
all N ∈ N it holds that∣∣E[ϕ(X∞T )]− E

[
ϕ
(
XN
T

)]∣∣ ≤ C ·N ε−1. (2.113)

Proof of Corollary 2.18. Throughout this proof let B : H → L2(H,H−1/2) be the func-
tion which satisfies for all v ∈ H, u ∈ H1 and µ(0,1)-a.e. x ∈ (0, 1) that

(
B(v)u

)
(x) =

(α + βv(x))u(x). Note that it holds for all ρ ∈ [0, 1/4), v, u ∈ H that B(v)u ∈ Hρ−1/2,
(H 3 y 7→ B(v)y ∈ Hρ−1/2) ∈ L2(H,Hρ−1/2), and (H 3 x 7→ (H 3 y 7→ B(x)y ∈
Hρ−1/2) ∈ L2(H,Hρ−1/2)) ∈ Lip0(H,L2(H,Hρ−1/2)). Remark 2.7 and (i) in Corollary 2.16

42



2.2. Upper bounds for weak errors

thus prove (i). Next observe that the Sobolev embedding theorem proves for all ρ ∈ (0, 1/4)
that [

sup
w∈H1\{0}

‖w‖L1/(2ρ)(µ(0,1);R)

‖w‖H1/4−ρ

]
+

[
sup

w∈Hρ\{0}

‖w‖L2/(1−4ρ)(µ(0,1);R)

‖w‖Hρ

]
<∞. (2.114)

This and Hölder’s inequality ensure for all ρ ∈ (0, 1/4), v ∈ Hρ, u ∈ H1 that

sup
w∈H1\{0}

|〈w,B(v)u〉H |
‖w‖H1/4−ρ

≤
[

sup
w∈H1\{0}

‖w‖L1/(2ρ)(µ(0,1);R)

‖w‖H1/4−ρ

]
‖α + βv‖L2/(1−4ρ)(µ(0,1);R)‖u‖L2(µ(0,1);R) (2.115)

≤
[

sup
w∈H1\{0}

‖w‖L1/(2ρ)(µ(0,1);R)

‖w‖H1/4−ρ

][
sup

w∈Hρ\{0}

‖w‖L2/(1−4ρ)(µ(0,1);R)

‖w‖Hρ

]
‖α + βv‖Hρ‖u‖H <∞.

Lemma 2.15 hence shows for all ρ ∈ (0, 1/4), v ∈ Hρ, u ∈ H1 that B(v)u ∈ Hρ−1/4. In
addition, (2.115), Lemma 2.15, and Lemma 2.17 prove for all ρ ∈ (0, 1/4), v ∈ Hρ, u ∈ H
that B(v)u ∈ Hρ−1/4 and (H 3 y 7→ B(v)y ∈ Hρ−1/4) ∈ L(H,Hρ−1/4). Furthermore,
Lemma 2.15 and Hölder’s inequality show for all ρ ∈ (0, 1/4), v1, v2 ∈ Hρ, u ∈ H1 that

‖(B(v1)−B(v2))u‖Hρ−1/4
= sup

w∈H1\{0}

|〈w, (B(v1)−B(v2))u〉H |
‖w‖H1/4−ρ

(2.116)

≤
[

sup
w∈H1\{0}

‖w‖L1/(2ρ)(µ(0,1);R)

‖w‖H1/4−ρ

][
sup

w∈Hρ\{0}

‖w‖L2/(1−4ρ)(µ(0,1);R)

‖w‖Hρ

]
|β|‖v1 − v2‖Hρ‖u‖H <∞.

This and Lemma 2.17 establish for all ε ∈ (0, 1], γ ∈ (1/2− ε/4, 1/2), ρ ∈ [γ − 1/4,min{2γ −
1/2, 1/4}) that (Hρ 3 v 7→ (H 3 u 7→ B(v)u ∈ Hγ−1/2) ∈ L(H,Hγ−1/2)) ∈ Lip0(Hρ,
L(H,Hγ−1/2)). Corollary 2.16 thus completes the proof of Corollary 2.18.
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Chapter 3
Generalised multilevel Picard
approximations

The content of this chapter is a slightly modified extract of the preprint Giles,
Jentzen, & Welti [134].

In this chapter we develop an abstract framework for full-history recursive multilevel Pi-
card (MLP) approximation methods and use this framework to study variants, which
essentially are generalisations, of the MLP approximations for semi-linear heat equations
introduced in Hutzenthaler et al. [181] (cf. Section 1.2 in Chapter 1). In particular, the
main result of this chapter, Theorem 3.14 in Subsection 3.1.6, concerns the approximation
error and, in a suitable sense, the computational complexity of generalised MLP methods,
while Theorem 3.33 in Subsection 3.2.3 reveals that the variants for numerically approx-
imating semi-linear heat equations have the power to beat the curse of dimensionality.
The introductory results in Section 1.2, Theorem 1.2 and Corollary 1.3, are a consequence
of Theorems 3.14 and 3.33, respectively, and provide similar conclusions under simplified
assumptions.

This chapter is structured in the following way. Section 3.1 is devoted to the abstract
framework of generalised MLP approximations. In particular, we study several elemen-
tary but crucial properties of such approximations in Proposition 3.8 in Subsection 3.1.3.
Moreover, we derive in Subsection 3.1.4 an error analysis for generalised MLP approxi-
mations, which relies on suitably generalised versions of well-known identities involving
bias and variance in Hilbert spaces (cf. Corollaries 3.5 and 3.7 in Subsection 3.1.2). This
error analysis is subsequently combined with the cost analysis in Subsection 3.1.5 to es-
tablish a complexity analysis for generalised MLP approximations in Subsection 3.1.6
(cf. Theorem 3.14 and Corollary 3.15 in Subsection 3.1.6). Throughout Section 3.1 the
measurability results in Subsection 3.1.1 are used. In Section 3.2 we employ the abstract
framework for generalised MLP approximations from Section 3.1 to analyse numerical ap-
proximations for semi-linear heat equations. Subsection 3.2.1 collects several elementary
and well-known auxiliary results, which are used in Subsection 3.2.2 to verify that the
main assumptions of the abstract complexity result in Corollary 3.15 are fulfilled in the
case of the example setting for numerical approximations for semi-linear heat equations.
Finally, in Subsection 3.2.3 we combine the results from Subsection 3.2.2 with Corol-
lary 3.15 to obtain a complexity analysis for MLP approximations for semi-linear heat
equations (cf. Proposition 3.32, Theorem 3.33, and Corollary 3.34 in Subsection 3.2.3).
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3.1 Generalised MLP approximations

In this section we introduce generalised MLP approximations and provide an error analysis
(cf. Subsection 3.1.4), cost analysis (cf. Subsection 3.1.5), and complexity analysis (cf.
Subsection 3.1.6) for such approximations.

For the formulation of the error analysis for generalised MLP approximations we re-
quire random variables which take values in the Banach space L(Y ,H) of continuous lin-
ear functions between a separable Banach space (Y , ‖·‖Y) and a separable Hilbert space
(H, 〈·, ·〉H, ‖·‖H) equipped with the strong σ-algebra. Let us recall that the strong σ-
algebra on L(Y ,H) is nothing but the trace σ-algebra of the product σ-algebra on the set
HY of all functions from Y to H. Having this in mind, Subsection 3.1.1 collects three ele-
mentary measurability results (cf. Lemmas 3.1 and 3.2 and Corollary 3.3) about functions
whose domains or codomains involve a set of functions equipped with the trace σ-algebra
of the product σ-algebra.

In Subsection 3.1.2 we first recall the elementary and well-known bias–variance de-
composition of the mean square error for random variables that take values in a separable
Hilbert space (cf. Lemma 3.4). Thereafter, we present in Corollary 3.5 a generalised
bias–variance decomposition, where the mean square error, the bias, and the variance are
measured in a certain randomised sense. Analogously, we also recall the elementary and
well-known result that the mean square norm of the sum of independent zero mean random
variables in a separable Hilbert space is equal to the sum of the individual mean square
norms (cf. Lemma 3.6) and prove a randomised generalisation thereof (cf. Corollary 3.7).
This generalisation as well as the generalised bias–variance decomposition in Corollary 3.5
are used in our error analysis for generalised MLP approximations (cf. (3.38), (3.39), and
(3.42) in the proof of Proposition 3.9).

Subsequently, Proposition 3.8 in Subsection 3.1.3 establishes several elementary but
crucial properties of generalised MLP approximations, which are a consequence of their
definition.

Subsection 3.1.4 is devoted to the error analysis for generalised MLP approximations.
Proposition 3.9 specifies the most general hypotheses in this thesis (cf. (3.29)–(3.32) in
Proposition 3.9) under which we prove an error estimate for generalised MLP approxi-
mations. The upper bound for the error in Proposition 3.9 (cf. (3.33) in Proposition 3.9)
can be much shortened by choosing a natural number M ∈ N = {1, 2, 3, . . .} such that
for every n ∈ N, l ∈ {0, 1, . . . , n − 1} the Monte Carlo sample number Mn,l ∈ N in the
generalised MLP approximations (cf. (3.29) in Proposition 3.9) is equal to Mn−l, which
is the assertion of Corollary 3.10 (cf. (3.54) in Corollary 3.10).

The subject of Subsection 3.1.5 is the cost analysis for generalised MLP approxima-
tions. The cost estimate in Proposition 3.11 follows from an application of the discrete
Gronwall-type inequality in Agarwal [2, Theorem 4.1.1]. The second cost estimate in
Subsection 3.1.5 (cf. Corollary 3.13), in turn, is a consequence of Proposition 3.11 and
the elementary and well-known estimate in Lemma 3.12.

In Subsection 3.1.6 the error analysis from Subsection 3.1.4 and the cost analysis
from Subsection 3.1.5 are combined to derive a complexity analysis for generalised MLP
approximations. More precisely, the main result of this chapter, Theorem 3.14, relates the
error estimate in Corollary 3.10 to the cost estimate in Corollary 3.13 in order to arrive at a
complexity estimate (cf. (3.81) in Theorem 3.14). The subsequent result, Corollary 3.15, is
obtained by replacing assumption (3.78) in Theorem 3.14 by the simpler assumption (3.93)
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and choosing for every k ∈ N0 = {0, 1, 2, . . .} the coefficient ck ∈ (0,∞) in Theorem 3.14
to be equal to k!. Finally, the elementary result in Lemma 3.16 shows that a strictly
increasing and at most linearly growing sequence of natural numbers automatically fulfils
the hypotheses on the sequence (Mj)j∈N ⊆ N in Corollary 3.15.

3.1.1 Measurability involving the strong σ-algebra

Lemma 3.1. Let E be a set, let (F ,F ) and (G,G ) be measurable spaces, let S ⊆ FE ,
let S = σS

({
{ϕ ∈ S : ϕ(e) ∈ A} ⊆ S : e ∈ E , A ∈ F

})
, and let ψ : G → S be a

function. Then it holds that ψ is G /S -measurable if and only if it holds for all e ∈ E
that G 3 ω 7→ [ψ(ω)](e) ∈ F is G /F -measurable.

Proof of Lemma 3.1. Throughout this proof let Pe : S → F , e ∈ E , satisfy for all e ∈ E ,
ϕ ∈ S that Pe(ϕ) = ϕ(e). Observe that it holds that

S = {(A ∩ S) ⊆ S : A ∈ (⊗e∈EF )} = σS
(
(Pe)e∈E

)
. (3.1)

This ensures for all e ∈ E that Pe : S → F is an S /F -measurable function. Equa-
tion (3.1) hence shows that ψ : G → S is G /S -measurable if and only if it holds for
all e ∈ E that Pe ◦ ψ : G → F is G /F -measurable. The proof of Lemma 3.1 is thus
complete.

Lemma 3.2. Let (E , dE) be a separable metric space, let (F , dF) be a metric space, let
S ⊆ C(E ,F), and let S = σS

({
{ϕ ∈ S : ϕ(e) ∈ A} ⊆ S : e ∈ E , A ∈ B(F)

})
. Then it

holds that S × E 3 (ϕ, e) 7→ ϕ(e) ∈ F is an (S ⊗B(E))/B(F)-measurable function.

Proof of Lemma 3.2. Throughout this proof let f : S×E → F satisfy for all ϕ ∈ S, e ∈ E
that f(ϕ, e) = ϕ(e). Note that it holds for all ϕ ∈ S that

(E 3 e 7→ f(ϕ, e) ∈ F) = ϕ ∈ S ⊆ C(E ,F). (3.2)

In addition, observe that it holds for all e ∈ E , A ∈ B(F) that

{ϕ ∈ S : f(ϕ, e) ∈ A} = {ϕ ∈ S : ϕ(e) ∈ A} ∈ S . (3.3)

This proves for all e ∈ E that S 3 ϕ 7→ f(ϕ, e) ∈ F is an S /B(F)-measurable function.
Combining this and (3.2) with Aliprantis & Border [4, Lemma 4.51] (see also, e.g., Beck et
al. [22, Lemma 2.4]) establishes that f : S ×E → F is an (S ⊗B(E))/B(F)-measurable
function. The proof of Lemma 3.2 is thus complete.

Corollary 3.3. Let (Ω,F ) be a measurable space, let (V , ‖·‖V) be a separable normed
R-vector space, let Y : Ω → V be an F/B(V)-measurable function, let (W , ‖·‖W) be a
normed R-vector space, let S = σL(V,W)

({
{ϕ ∈ L(V ,W) : ϕ(v) ∈ B} ⊆ L(V ,W) : v ∈

V , B ∈ B(W)
})

, and let ψ : Ω→ L(V ,W) be an F/S -measurable function. Then

(i) it holds that L(V ,W)×V 3 (ϕ, v) 7→ ϕ(v) ∈ W is an (S⊗B(V))/B(W)-measurable
function and

(ii) it holds that ψ(Y ) = (Ω 3 ω 7→ [ψ(ω)](Y (ω)) ∈ W) is an F/B(W)-measurable
function.

Proof of Corollary 3.3. Observe that Lemma 3.2 (with E ← V , F ← W , S ← L(V ,W) in
the notation of Lemma 3.2) implies (i). In addition, the fact that Ω 3 ω 7→ (ψ(ω), Y (ω)) ∈
L(V ,W) × V is an F/(S ⊗B(V))-measurable function and (i) show (ii). The proof of
Corollary 3.3 is thus complete.
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3.1.2 Identities involving bias and variance in Hilbert spaces

3.1.2.1 Bias–variance decomposition

Lemma 3.4. Let (Ω,F ,P) be a probability space, let (H, 〈·, ·〉H, ‖·‖H) be a separable R-
Hilbert space, let h ∈ H, and let X : Ω → H be an F/B(H)-measurable function which
satisfies E[‖X‖H] <∞. Then

E
[
‖X − h‖2

H
]

= E
[
‖X − E[X]‖2

H
]

+ ‖E[X]− h‖2
H. (3.4)

Proof of Lemma 3.4. Note that the Cauchy–Schwarz inequality implies that

E
[
|〈X − E[X],E[X]− h〉H|

]
≤ E

[
‖X − E[X]‖H

]
‖E[X]− h‖H <∞. (3.5)

This ensures that

E
[
‖X − h‖2

H
]

= E
[
‖X − E[X] + E[X]− h‖2

H
]

= E
[
‖X − E[X]‖2

H + ‖E[X]− h‖2
H + 2〈X − E[X],E[X]− h〉H

]
= E

[
‖X − E[X]‖2

H
]

+ ‖E[X]− h‖2
H + 2〈E[X]− E[X],E[X]− h〉H

= E
[
‖X − E[X]‖2

H
]

+ ‖E[X]− h‖2
H.

(3.6)

The proof of Lemma 3.4 is thus complete.

3.1.2.2 Generalised bias–variance decomposition

Corollary 3.5. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-Banach
space, let y ∈ Y, let Y : Ω → Y be an F/B(Y)-measurable function which satisfies
E[‖Y ‖Y ] <∞, let (H, 〈·, ·〉H, ‖·‖H) be a separable R-Hilbert space, let S = σL(Y,H)

({
{ϕ ∈

L(Y ,H) : ϕ(x) ∈ B} ⊆ L(Y ,H) : x ∈ Y , B ∈ B(H)
})

, let ψ : Ω→ L(Y ,H) be an F/S -
measurable function, and assume that Y and ψ are independent. Then

E
[
‖ψ(Y − y)‖2

H
]

= E
[
‖ψ(Y − E[Y ])‖2

H
]

+ E
[
‖ψ(E[Y ]− y)‖2

H
]

(3.7)

(cf. (ii) in Corollary 3.3).

Proof of Corollary 3.5. The fact that it holds for all x ∈ Y that L(Y ,H)×Ω 3 (ϕ, ω) 7→
(ϕ, Y (ω) − x) ∈ L(Y ,H) × Y is an (S ⊗ σΩ(Y ))/(S ⊗B(Y))-measurable function and
the fact that L(Y ,H) × Y 3 (ϕ, x) 7→ ϕ(x) ∈ H is an (S ⊗B(Y))/B(H)-measurable
function (cf. (i) in Corollary 3.3) imply for all x ∈ Y that

L(Y ,H)× Ω 3 (ϕ, ω) 7→ ϕ(Y (ω)− x) ∈ H (3.8)

is an (S ⊗ σΩ(Y ))/B(H)-measurable function. Lemma 2.2 in Hutzenthaler et al. [181]
(with G ← σΩ(Y ), (S,S) ← (L(Y ,H),S ), U ← (L(Y ,H) × Ω 3 (ϕ, ω) 7→ ‖ϕ(Y (ω) −
y)‖2
H ∈ [0,∞)), Y ← ψ in the notation of [181, Lemma 2.2]) and Lemma 3.4 hence yield

that

E
[
‖ψ(Y − y)‖2

H
]

=

∫
L(Y,H)

E
[
‖ϕ(Y − y)‖2

H
]

(ψ(P)S )(dϕ)

=

∫
L(Y,H)

E
[
‖ϕ(Y )− ϕ(y)‖2

H
]

(ψ(P)S )(dϕ)

=

∫
L(Y,H)

E
[
‖ϕ(Y )− E[ϕ(Y )]‖2

H
]

+ ‖E[ϕ(Y )]− ϕ(y)‖2
H (ψ(P)S )(dϕ).

(3.9)
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This, the fact that L(Y ,H) 3 ϕ 7→ ϕ(E[Y ] − y) ∈ H is an S /B(H)-measurable func-
tion (cf. Lemma 3.1), (3.8), and again [181, Lemma 2.2] (with G ← σΩ(Y ), (S,S) ←
(L(Y ,H),S ), U ← (L(Y ,H) × Ω 3 (ϕ, ω) 7→ ‖ϕ(Y (ω) − E[Y ])‖2

H ∈ [0,∞)), Y ← ψ in
the notation of [181, Lemma 2.2]) establish that

E
[
‖ψ(Y − y)‖2

H
]

=

∫
L(Y,H)

E
[
‖ϕ(Y − E[Y ])‖2

H
]

(ψ(P)S )(dϕ)

+

∫
L(Y,H)

‖ϕ(E[Y ]− y)‖2
H (ψ(P)S )(dϕ)

= E
[
‖ψ(Y − E[Y ])‖2

H
]

+ E
[
‖ψ(E[Y ]− y)‖2

H
]
.

(3.10)

The proof of Corollary 3.5 is thus complete.

3.1.2.3 Variance identity

Lemma 3.6. Let n ∈ N, let (Ω,F ,P) be a probability space, let (H, 〈·, ·〉H, ‖·‖H) be
a separable R-Hilbert space, and let X1, X2, . . . , Xn : Ω → H be independent F/B(H)-
measurable functions which satisfy for all i ∈ {1, 2, . . . , n} that E[‖Xi‖H] <∞. Then

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥2

H

]
=

n∑
i=1

E
[
‖Xi − E[Xi]‖2

H
]
. (3.11)

Proof of Lemma 3.6. Observe that the Cauchy–Schwarz inequality, the fact that X1, X2,
. . . , Xn are independent, and the fact that it holds for all independent random variables
Y, Z : Ω→ R with E[|Y |+ |Z|] <∞ that E[|Y Z|] <∞ and E[Y Z] = E[Y ]E[Z] (cf., e.g.,
Klenke [202, Theorem 5.4]) demonstrate for all i, j ∈ {1, 2, . . . , n} with i 6= j that

E
[
|〈Xi − E[Xi], Xj − E[Xj]〉H|

]
≤ E

[
‖Xi − E[Xi]‖H‖Xj − E[Xj]‖H

]
= E

[
‖Xi − E[Xi]‖H

]
E
[
‖Xj − E[Xj]‖H

]
<∞.

(3.12)

Moreover, the fact that X1, X2, . . . , Xn are independent ensures for all i, j ∈ {1, 2, . . . , n}
with i 6= j that

(Xi, Xj)(P)B(H)⊗B(H) = [(Xi)(P)B(H)]⊗ [(Xj)(P)B(H)]. (3.13)

Fubini’s theorem and (3.12) hence show for all i, j ∈ {1, 2, . . . , n} with i 6= j that

E
[
〈Xi − E[Xi], Xj − E[Xj]〉H

]
=

∫
H×H
〈x− E[Xi], y − E[Xj]〉H

(
(Xi, Xj)(P)B(H)⊗B(H)

)
(dx, dy)

=

∫
H×H
〈x− E[Xi], y − E[Xj]〉H

(
[(Xi)(P)B(H)]⊗ [(Xj)(P)B(H)]

)
(dx, dy)

=

∫
H

∫
H
〈x− E[Xi], y − E[Xj]〉H

(
(Xi)(P)B(H)

)
(dx)

(
(Xj)(P)B(H)

)
(dy)

=

∫
H
E
[
〈Xi − E[Xi], y − E[Xj]〉H

] (
(Xj)(P)B(H)

)
(dy)

=

∫
H
〈E[Xi]− E[Xi], y − E[Xj]〉H

(
(Xj)(P)B(H)

)
(dy)

= 〈E[Xi]− E[Xi],E[Xj]− E[Xj]〉H = 0.

(3.14)
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This and again (3.12) prove that

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥2

H

]
= E

[〈
n∑
i=1

(Xi − E[Xi]),
n∑
j=1

(Xj − E[Xj])

〉
H

]

= E
[

n∑
i,j=1

〈Xi − E[Xi], Xj − E[Xj]〉H
]

=

[
n∑
i=1

E
[
〈Xi − E[Xi], Xi − E[Xi]〉H

]]
+

n∑
i,j=1, i 6=j

E
[
〈Xi − E[Xi], Xj − E[Xj]〉H

]
=

n∑
i=1

E
[
‖Xi − E[Xi]‖2

H
]
.

(3.15)

The proof of Lemma 3.6 is thus complete.

3.1.2.4 Generalised variance identity

Corollary 3.7. Let n ∈ N, let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a sep-
arable R-Banach space, let Y1, Y2, . . . , Yn : Ω → Y be independent F/B(Y)-measurable
functions which satisfy for all i ∈ {1, 2, . . . , n} that E[‖Yi‖Y ] <∞, let (H, 〈·, ·〉H, ‖·‖H) be
a separable R-Hilbert space, let S = σL(Y,H)

({
{ϕ ∈ L(Y ,H) : ϕ(y) ∈ B} ⊆ L(Y ,H) : y ∈

Y , B ∈ B(H)
})

, let ψ : Ω→ L(Y ,H) be an F/S -measurable function, and assume that
(Yi)i∈{1,2,...,n} and ψ are independent. Then

E

[∥∥∥∥ n∑
i=1

ψ(Yi − E[Yi])

∥∥∥∥2

H

]
=

n∑
i=1

E
[
‖ψ(Yi − E[Yi])‖2

H
]

(3.16)

(cf. (ii) in Corollary 3.3).

Proof of Corollary 3.7. The fact that it holds for all i ∈ {1, 2, . . . , n} that L(Y ,H)×Ω 3
(ϕ, ω) 7→ (ϕ, Yi(ω) − E[Yi]) ∈ L(Y ,H) × Y is an (S ⊗ σΩ((Yj)j∈{1,2,...,n}))/(S ⊗B(Y))-
measurable function and the fact that L(Y ,H) × Y 3 (ϕ, y) 7→ ϕ(y) ∈ H is an (S ⊗
B(Y))/B(H)-measurable function (cf. (i) in Corollary 3.3) ensure for all i ∈ {1, 2, . . . , n}
that

L(Y ,H)× Ω 3 (ϕ, ω) 7→ ϕ(Yi(ω)− E[Yi]) ∈ H (3.17)

is an (S ⊗ σΩ((Yj)j∈{1,2,...,n}))/B(H)-measurable function. This and [181, Lemma 2.2]
(with G ← σΩ((Yi)i∈{1,2,...,n}), (S,S) ← (L(Y ,H),S ), U ← (L(Y ,H) × Ω 3 (ϕ, ω) 7→
‖
∑n

i←1 ϕ(Yi(ω)−E[Yi])‖2
H ∈ [0,∞)), Y ← ψ in the notation of [181, Lemma 2.2]) establish

that

E

[∥∥∥∥ n∑
i=1

ψ(Yi − E[Yi])

∥∥∥∥2

H

]
=

∫
L(Y,H)

E
[∥∥∑n

i=1 ϕ(Yi − E[Yi])
∥∥2

H

]
(ψ(P)S )(dϕ)

=

∫
L(Y,H)

E
[∥∥∑n

i=1(ϕ(Yi)− E[ϕ(Yi)])
∥∥2

H

]
(ψ(P)S )(dϕ).

(3.18)

Lemma 3.6, (3.17), and [181, Lemma 2.2] (with G ← σΩ((Yj)j∈{1,2,...,n}), (S,S)←(L(Y ,H),
S ), U ← (L(Y ,H) × Ω 3 (ϕ, ω) 7→ ‖ϕ(Yi(ω) − E[Yi])‖2

H ∈ [0,∞)), Y ← ψ for i ∈
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{1, 2, . . . , n} in the notation of [181, Lemma 2.2]) hence show that

E

[∥∥∥∥ n∑
i=1

ψ(Yi − E[Yi])

∥∥∥∥2

H

]
=

∫
L(Y,H)

n∑
i=1

E
[
‖ϕ(Yi)− E[ϕ(Yi)]‖2

H
]

(ψ(P)S )(dϕ)

=
n∑
i=1

∫
L(Y,H)

E
[
‖ϕ(Yi − E[Yi])‖2

H
]

(ψ(P)S )(dϕ)

=
n∑
i=1

E
[
‖ψ(Yi − E[Yi])‖2

H
]
.

(3.19)

The proof of Corollary 3.7 is thus complete.

3.1.3 Properties of generalised MLP approximations

Proposition 3.8. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-
Banach space, let Θ =

⋃∞
n=1 Zn, (Mn,l)(n,l)∈N×N0 ⊆ N, let (Z,Z ) be a measurable space,

let Zθ : Ω → Z, θ ∈ Θ, be i.i.d. F/Z -measurable functions, let Φl : Y × Y × Z → Y,
l ∈ N0, be (B(Y) ⊗B(Y) ⊗ Z )/B(Y)-measurable functions, let Y θ

−1 : Ω → Y, θ ∈ Θ,
be i.i.d. F/B(Y)-measurable functions, let Y θ

0 : Ω → Y, θ ∈ Θ, be i.i.d. F/B(Y)-
measurable functions, assume that (Y θ

−1)θ∈Θ, (Y θ
0 )θ∈Θ, and (Zθ)θ∈Θ are independent, and

let Y θ
n : Ω→ Y, θ ∈ Θ, n ∈ N, satisfy for all n ∈ N, θ ∈ Θ that

Y θ
n =

n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

Φl

(
Y

(θ,l,i)
l , Y

(θ,−l,i)
l−1 , Z(θ,l,i)

)]
. (3.20)

Then

(i) it holds for all n ∈ (N0 ∪ {−1}), θ ∈ Θ that Y θ
n : Ω→ Y is an F/B(Y)-measurable

function,

(ii) it holds for all n ∈ N, θ ∈ Θ that σΩ(Y θ
n ) ⊆ σΩ

(
(Y

(θ,ϑ)
−1 )ϑ∈Θ, (Y

(θ,ϑ)
0 )ϑ∈Θ, (Z

(θ,ϑ))ϑ∈Θ

)
,

(iii) it holds for every n,m ∈ (N0 ∪ {−1}), k ∈ N, θ1, θ2, ϑ ∈ Zk with θ1 6= θ2 that Y θ1
n ,

Y θ2
m , and Zϑ are independent,

(iv) it holds for every θ ∈ Θ that
(
Y

(θ,l,i)
l , Y

(θ,−l,i)
l−1 , Z(θ,l,i)

)
, i ∈ N, l ∈ N0, are independent,

(v) it holds for every n ∈ (N0 ∪ {−1}) that Y θ
n , θ ∈ Θ, are identically distributed, and

(vi) it holds for every θ ∈ Θ, l ∈ N0, i ∈ N that Ω 3 ω 7→ Φl

(
Y

(θ,l,i)
l (ω), Y

(θ,−l,i)
l−1 (ω),

Z(θ,l,i)(ω)
)
∈ Y and Ω 3 ω 7→ Φl

(
Y 0
l (ω), Y 1

l−1(ω), Z0(ω)
)
∈ Y are identically dis-

tributed.

Proof of Proposition 3.8. Throughout this proof let Rθ,l,i : Ω→ Y×Y×Z, i ∈ N, l ∈ N0,
θ ∈ Θ, satisfy for all θ ∈ Θ, l ∈ N0, i ∈ N that

Rθ,l,i(ω) =
(
Y

(θ,l,i)
l (ω), Y

(θ,−l,i)
l−1 (ω), Z(θ,l,i)(ω)

)
(3.21)

and let Ψn : (Y × Y × Z){0,1,...,n−1}×N → Y , n ∈ N, satisfy for all n ∈ N, r =

(rl,i)(l,i)∈{0,1,...,n−1}×N ∈ (Y × Y × Z){0,1,...,n−1}×N that Ψn(r) =
∑n−1

l=0
1

Mn,l

[∑Mn,l

i=1 Φl(r
l,i)
]
.
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First, note that the assumption that it holds for all θ ∈ Θ that Y θ
−1 : Ω → Y and

Y θ
0 : Ω → Y are F/B(Y)-measurable functions, the assumption that it holds for all
θ ∈ Θ that Zθ : Ω → Z is an F/Z -measurable function, the assumption that it holds
for all l ∈ N0 that Φl : Y × Y × Z → Y is an (B(Y) ⊗B(Y) ⊗ Z )/B(Y)-measurable
function, the assumption that (Y , ‖·‖Y) is a separable R-Banach space, and induction on
N0 prove (i).

Second, we show (ii) by induction on n ∈ N. For the base case n = 1 observe that it
holds for all θ ∈ Θ that

Y θ
1 = 1

M1,0

M1,0∑
i=1

Φ0

(
Y

(θ,0,i)
0 , Y

(θ,0,i)
−1 , Z(θ,0,i)

)
. (3.22)

This demonstrates for all θ ∈ Θ that

σΩ(Y θ
1 ) ⊆ σΩ

(
(Y

(θ,0,i)
−1 )i∈N, (Y

(θ,0,i)
0 )i∈N, (Z

(θ,0,i))i∈N
)

⊆ σΩ

(
(Y

(θ,ϑ)
−1 )ϑ∈Θ, (Y

(θ,ϑ)
0 )ϑ∈Θ, (Z

(θ,ϑ))ϑ∈Θ

)
.

(3.23)

This establishes (ii) in the base case n = 1. For the induction step N 3 n − 1 → n ∈
{2, 3, . . .} let n ∈ {2, 3, . . .} and assume for all l ∈ {1, . . . , n− 1}, θ ∈ Θ that

σΩ(Y θ
l ) ⊆ σΩ

(
(Y

(θ,ϑ)
−1 )ϑ∈Θ, (Y

(θ,ϑ)
0 )ϑ∈Θ, (Z

(θ,ϑ))ϑ∈Θ

)
. (3.24)

This and (3.20) imply for all θ ∈ Θ that

σΩ(Y θ
n ) ⊆ σΩ

(
(Y

(θ,−l,i)
l−1 )(l,i)∈{0,1,...,n−1}×N, (Y

(θ,l,i)
l )(l,i)∈{0,1,...,n−1}×N, (Z

(θ,l,i))(l,i)∈N0×N
)

⊆ σΩ

(
(Y

(θ,z)
l )(l,z)∈{1,...,n−1}×Z2 , (Y

(θ,z)
−1 )z∈Z2 , (Y

(θ,z)
0 )z∈Z2 , (Z(θ,z))z∈Z2

)
⊆ σΩ

(
(Y

(θ,z,ϑ)
−1 )(z,ϑ)∈Z2×Θ, (Y

(θ,z,ϑ)
0 )(z,ϑ)∈Z2×Θ, (Z

(θ,z,ϑ))(z,ϑ)∈Z2×Θ, (3.25)

(Y
(θ,ϑ)
−1 )ϑ∈Θ, (Y

(θ,ϑ)
0 )ϑ∈Θ, (Z

(θ,ϑ))ϑ∈Θ

)
= σΩ

(
(Y

(θ,ϑ)
−1 )ϑ∈Θ, (Y

(θ,ϑ)
0 )ϑ∈Θ, (Z

(θ,ϑ))ϑ∈Θ

)
.

Induction hence establishes (ii).
Third, observe that the assumption that (Y θ

−1)θ∈Θ, (Y θ
0 )θ∈Θ, and (Zθ)θ∈Θ are indepen-

dent ensures that it holds for every k ∈ N, θ1, θ2, ϑ ∈ Zk with θ1 6= θ2 that σΩ

(
(Y

(θ1,z)
−1 )z∈Θ,

(Y
(θ1,z)

0 )z∈Θ, (Z
(θ1,z))z∈Θ

)
, σΩ

(
(Y

(θ2,z)
−1 )z∈Θ, (Y

(θ2,z)
0 )z∈Θ, (Z

(θ2,z))z∈Θ

)
, and σΩ(Zϑ) are inde-

pendent. Combining this with (ii) proves (iii).
Fourth, note that the assumption that the family (Y θ

−1)θ∈Θ is independent, the as-
sumption that the family (Y θ

0 )θ∈Θ is independent, the assumption that the family (Zθ)θ∈Θ

is independent, and the assumption that (Y θ
−1)θ∈Θ, (Y θ

0 )θ∈Θ, and (Zθ)θ∈Θ are independent
imply for every θ ∈ Θ that the family

N0×N 3 (l, i) 7→


σΩ

(
Y

(θ,0,i)
−1 , Y

(θ,0,i)
0 , Z(θ,0,i)

)
: l = 0

σΩ

(
(Y

(θ,l,i,ϑ)
−1 )ϑ∈Θ, (Y

(θ,l,i,ϑ)
0 )ϑ∈Θ, (Z

(θ,l,i,ϑ))ϑ∈Θ, (Y
(θ,−l,i,ϑ)
−1 )ϑ∈Θ,

(Y
(θ,−l,i,ϑ)

0 )ϑ∈Θ, (Z
(θ,−l,i,ϑ))ϑ∈Θ, Z

(θ,l,i)
) : l 6= 0

is independent. This, (3.21), and (ii) ensure for every θ ∈ Θ that the family[
N0 × N 3 (l, i) 7→

(
Y

(θ,l,i)
l , Y

(θ,−l,i)
l−1 , Z(θ,l,i)

)]
= (Rθ,l,i)(l,i)∈N0×N (3.26)
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is independent. This finishes the proof of (iv).
Fifth, we establish (v) by induction on n ∈ N. For the base case n = 1 note that the

assumption that Y θ
−1, θ ∈ Θ, are identically distributed, the assumption that Y θ

0 , θ ∈ Θ,
are identically distributed, the assumption that Zθ, θ ∈ Θ, are identically distributed, the
assumption that (Y θ

−1)θ∈Θ, (Y θ
0 )θ∈Θ, and (Zθ)θ∈Θ are independent, and (3.21) establish for

every θ ∈ Θ, i ∈ N that

Rθ,0,i =
(
Y

(θ,0,i)
0 , Y

(θ,0,i)
−1 , Z(θ,0,i)

)
and (Y 0

0 , Y
1
−1, Z

0) (3.27)

are identically distributed. In particular, this shows for every i ∈ N that Rθ,0,i, θ ∈ Θ, are
identically distributed. Combining this with (3.26) proves that

(
Ω 3 ω 7→ (Rθ,0,i(ω))i∈N ∈

(Y×Y×Z)N
)
, θ ∈ Θ, are identically distributed. The fact that ∀ θ ∈ Θ, ω ∈ Ω: Y θ

1 (ω) =
Ψ1

(
(Rθ,0,i(ω))i∈N

)
hence implies that Y θ

1 , θ ∈ Θ, are identically distributed. This, the
assumption that Y θ

−1, θ ∈ Θ, are identically distributed, and the assumption that Y θ
0 ,

θ ∈ Θ, are identically distributed show (v) in the base case n = 1. For the induction step
N 3 n−1→ n ∈ {2, 3, . . .} let n ∈ {2, 3, . . .} and assume for every l ∈ {−1, 0, 1, . . . , n−1}
that Y θ

l , θ ∈ Θ, are identically distributed. This, the assumption that Zθ, θ ∈ Θ, are
identically distributed, (iii), and (3.21) ensure for every θ ∈ Θ, l ∈ {1, . . . , n − 1}, i ∈ N
that

Rθ,l,i =
(
Y

(θ,l,i)
l , Y

(θ,−l,i)
l−1 , Z(θ,l,i)

)
and (Y 0

l , Y
1
l−1, Z

0) (3.28)

are identically distributed. Combining this and (3.27) establishes for every l ∈ {0, 1, . . . ,
n − 1}, i ∈ N that Rθ,l,i, θ ∈ Θ, are identically distributed. This and (3.26) demon-
strate that

(
Ω 3 ω 7→ (Rθ,l,i(ω))(l,i)∈{0,1,...,n−1}×N ∈ (Y × Y × Z){0,1,...,n−1}×N), θ ∈

Θ, are identically distributed. Therefore, the fact that ∀ θ ∈ Θ, ω ∈ Ω: Y θ
n (ω) =

Ψn

(
(Rθ,l,i(ω))(l,i)∈{0,1,...,n−1}×N

)
shows that Y θ

n , θ ∈ Θ, are identically distributed. In-
duction hence proves (v).

Sixth, observe that (3.27) and (3.28) establish (vi). The proof of Proposition 3.8 is
thus complete.

3.1.4 Error analysis

Proposition 3.9. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-
Banach space, let C, c ∈ (0,∞), (ck)k∈N0 ⊆ (0,∞), Θ =

⋃∞
n=1 Zn, y ∈ Y, for every n ∈ N

let (Mn,l)l∈{0,1,...,n} ⊆ N satisfy Mn,1 ≥ Mn,2 ≥ . . . ≥ Mn,n, let (Z,Z ) be a measurable
space, let Zθ : Ω→ Z, θ ∈ Θ, be i.i.d. F/Z -measurable functions, let (H, 〈·, ·〉H, ‖·‖H) be
a separable R-Hilbert space, let S = σL(Y,H)

({
{ϕ ∈ L(Y ,H) : ϕ(x) ∈ B} ⊆ L(Y ,H) : x ∈

Y , B ∈ B(H)
})

, let ψk : Ω → L(Y ,H), k ∈ N0, be F/S -measurable functions, let
Φl : Y × Y × Z → Y, l ∈ N0, be (B(Y) ⊗B(Y) ⊗ Z )/B(Y)-measurable functions, let
Y θ
−1 : Ω → Y, θ ∈ Θ, be i.i.d. F/B(Y)-measurable functions, let Y θ

0 : Ω → Y, θ ∈ Θ,
be i.i.d. F/B(Y)-measurable functions, assume that (Y θ

−1)θ∈Θ, (Y θ
0 )θ∈Θ, (Zθ)θ∈Θ, and

(ψk)k∈N0 are independent, let Y θ
n : Ω→ Y, θ ∈ Θ, n ∈ N, satisfy for all n ∈ N, θ ∈ Θ that

Y θ
n =

n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

Φl

(
Y

(θ,l,i)
l , Y

(θ,−l,i)
l−1 , Z(θ,l,i)

)]
, (3.29)
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and assume for all k ∈ N0, n ∈ N that E
[
‖Φk(Y

0
k , Y

1
k−1, Z

0)‖Y
]
<∞ and

max
{
E
[
‖ψk(Φ0(Y 0

0 , Y
1
−1, Z

0))‖2
H
]
,1N(k)E

[
‖ψk(Y 0

0 − y)‖2
H
]}
≤ C2

ck
, (3.30)

E
[
‖ψk(Φn(Y 0

n , Y
1
n−1, Z

0))‖2
H
]
≤ cE

[
‖ψk+1(Y 0

n − Y 1
n−1)‖2

H
]
, (3.31)

E

[∥∥∥∥ψk(y − n−1∑
l=0

E
[
Φl(Y

0
l , Y

1
l−1, Z

0)
])∥∥∥∥2

H

]
≤ 2c

Mn,n
E
[
‖ψk+1(Y 0

n−1 − y)‖2
H
]
. (3.32)

Then it holds for all N ∈ N that(
E
[
‖ψ0(Y 0

N − y)‖2
H
])1/2

≤ C(1 + 4c)
N/2

[
min

({
min{Mlk,0ck,Mlk,1ck+1}

k∏
j=1

Mlj−1,lj+1 :

k ∈ N ∩ [0, N − 1], (li)i∈{0,1,...,k} ⊆
{1, 2, . . . , N}, N = l0 > l1 > . . . > lk

}
∪
{

min{MN,0c0,MN,1c1}
})]−1/2

<∞.

(3.33)

Proof of Proposition 3.9. First of all, note that the assumption that ∀ l ∈ N0 : E
[
‖Φl(Y

0
l ,

Y 1
l−1, Z

0)‖Y
]
<∞ and (vi) in Proposition 3.8 establish for all l ∈ N0, i ∈ N that

E
[∥∥Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)∥∥
Y

]
= E

[
‖Φl(Y

0
l , Y

1
l−1, Z

0)‖Y
]
<∞. (3.34)

This, (i) in Proposition 3.8, and (3.29) ensure for all n ∈ N that Y 0
n : Ω → Y is an

F/B(Y)-measurable function and

E
[
‖Y 0

n ‖Y
]

= E

[∥∥∥∥n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)]∥∥∥∥
Y

]

≤
n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

E
[∥∥Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)∥∥
Y

]]
=

n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

E
[
‖Φl(Y

0
l , Y

1
l−1, Z

0)‖Y
]]

=
n−1∑
l=0

E
[
‖Φl(Y

0
l , Y

1
l−1, Z

0)‖Y
]
<∞.

(3.35)

In addition, (ii) in Proposition 3.8 yields for all n ∈ N, θ ∈ Θ that

σΩ(Y θ
n ) ⊆ σΩ

(
(Y

(θ,ϑ)
−1 )ϑ∈Θ, (Y

(θ,ϑ)
0 )ϑ∈Θ, (Z

(θ,ϑ))ϑ∈Θ

)
⊆ σΩ

(
(Y ϑ
−1)ϑ∈Θ, (Y

ϑ
0 )ϑ∈Θ, (Z

ϑ)ϑ∈Θ

)
.

(3.36)

Note that this implies that σΩ

(
(Y θ

n )(n,θ)∈(N0∪{−1})×Θ, (Z
θ)θ∈Θ

)
⊆ σΩ

(
(Y θ
−1)θ∈Θ, (Y

θ
0 )θ∈Θ,

(Zθ)θ∈Θ

)
. This and the assumption that (Y θ

−1)θ∈Θ, (Y θ
0 )θ∈Θ, (Zθ)θ∈Θ, and (ψk)k∈N0 are

independent demonstrate for every k ∈ N0 that

σΩ

(
(Y θ

n )(n,θ)∈(N0∪{−1})×Θ, (Z
θ)θ∈Θ

)
and ψk (3.37)
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are independent. Corollary 3.5 and (3.35) hence show for all k ∈ N0, n ∈ N that

E
[
‖ψk(Y 0

n − y)‖2
H
]

= E
[
‖ψk(Y 0

n − E[Y 0
n ])‖2

H
]

+ E
[
‖ψk(E[Y 0

n ]− y)‖2
H
]
. (3.38)

Next observe that (3.29), (3.34), (iv) in Proposition 3.8, (3.37), and Corollary 3.7 (with
n←

∑n−1
l=0 Mn,l, ψ ← ψk for n ∈ N, k ∈ N0 in the notation of Corollary 3.7) prove for all

k ∈ N0, n ∈ N that

E
[
‖ψk(Y 0

n − E[Y 0
n ])‖2

H
]

= E

[∥∥∥∥ψk(n−1∑
l=0

1
Mn,l

Mn,l∑
i=1

(
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)
− E

[
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)]))∥∥∥∥2

H

]

= E

[∥∥∥∥n−1∑
l=0

Mn,l∑
i=1

ψk

(
1

Mn,l

(
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)
− E

[
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)]))∥∥∥∥2

H

]

=
n−1∑
l=0

Mn,l∑
i=1

E
[∥∥ 1

Mn,l
ψk
(
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)
− E

[
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)])∥∥2

H

]
=

n−1∑
l=0

1
(Mn,l)2

[
Mn,l∑
i=1

E
[∥∥ψk(Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)
(3.39)

−E
[
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)])∥∥2

H

]]
.

Moreover, the fact that it holds for all k ∈ N0, x ∈ Y that Ω 3 ω 7→ [ψk(ω)](x) ∈ H is an
F/B(H)-measurable function (cf. Lemma 3.1) and the fact that it holds for all k ∈ N0,
ω ∈ Ω that Y 3 x 7→ [ψk(ω)](x) ∈ H is a continuous function demonstrate that

Y × Ω 3 (x, ω) 7→ [ψk(ω)](x) ∈ H (3.40)

is a continuous random field. This, (3.37), (vi) in Proposition 3.8, and Hutzenthaler,
Jentzen, & von Wurstemberger [182, Lemma 3.5] (with S ← Y , E ← H, U = V ←
(Y×Ω 3 (x, ω) 7→ [ψk(ω)](x) ∈ H),X ← Φl(Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)), Y ← Φl(Y

0
l , Y

1
l−1, Z

0)
for i ∈ N, l, k ∈ N0 in the notation of [182, Lemma 3.5]) ensure for all k, l ∈ N0, i ∈ N
that

Ω 3 ω 7→ [ψk(ω)]
(
Φl

(
Y

(0,l,i)
l (ω), Y

(0,−l,i)
l−1 (ω), Z(0,l,i)(ω)

))
∈ H and

Ω 3 ω 7→ [ψk(ω)]
(
Φl(Y

0
l (ω), Y 1

l−1(ω), Z0(ω))
)
∈ H

(3.41)

are identically distributed. This, (3.39), (3.34), (3.37), and Corollary 3.5 (with y ← 0,
Y ← Φl(Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)), ψ ← ψk for i ∈ {1, 2, . . . ,Mn,l}, l ∈ {0, 1, . . . , n − 1},

n ∈ N, k ∈ N0 in the notation of Corollary 3.5) imply for all k ∈ N0, n ∈ N that

E
[
‖ψk(Y 0

n − E[Y 0
n ])‖2

H
]
≤

n−1∑
l=0

1
(Mn,l)2

[
Mn,l∑
i=1

E
[∥∥ψk(Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

))∥∥2

H

]]
=

n−1∑
l=0

1
(Mn,l)2

[
Mn,l∑
i=1

E
[
‖ψk(Φl(Y

0
l , Y

1
l−1, Z

0))‖2
H
]]

=
n−1∑
l=0

(
1

Mn,l
E
[
‖ψk(Φl(Y

0
l , Y

1
l−1, Z

0))‖2
H
])

= 1
Mn,0

E
[
‖ψk(Φ0(Y 0

0 , Y
1
−1, Z

0))‖2
H
]

+
n−1∑
l=1

(
1

Mn,l
E
[
‖ψk(Φl(Y

0
l , Y

1
l−1, Z

0))‖2
H
])
.

(3.42)
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Assumptions (3.30)–(3.31), the fact that ∀ a, b ∈ R : (a + b)2 ≤ 2(a2 + b2), (3.40), (3.37),
(v) in Proposition 3.8, [182, Lemma 3.5] (with S ← Y , E ← H, U = V ← (Y × Ω 3
(x, ω) 7→ [ψk(ω)](x) ∈ H), X ← Y 1

l − y, Y ← Y 0
l − y for l, k ∈ N0 in the notation of [182,

Lemma 3.5]), and the assumption that ∀n ∈ N : Mn,1 ≥ Mn,2 ≥ . . . ≥ Mn,n hence prove
for all k ∈ N0, n ∈ N that

E
[
‖ψk(Y 0

n − E[Y 0
n ])‖2

H
]
≤ C2

Mn,0ck
+

[
n−1∑
l=1

c
Mn,l

E
[
‖ψk+1(Y 0

l − Y 1
l−1)‖2

H
]]

= C2

Mn,0ck
+

[
n−1∑
l=1

c
Mn,l

E
[
‖ψk+1(Y 0

l − y) + ψk+1(y − Y 1
l−1)‖2

H
]]

≤ C2

Mn,0ck
+

[
n−1∑
l=1

c
Mn,l

E
[
(‖ψk+1(Y 0

l − y)‖H + ‖ψk+1(Y 1
l−1 − y)‖H)2

]]
≤ C2

Mn,0ck
+

[
n−1∑
l=1

2c
Mn,l

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

+

[
n−1∑
l=1

2c
Mn,l

E
[
‖ψk+1(Y 1

l−1 − y)‖2
H
]]

= C2

Mn,0ck
+

[
n−1∑
l=1

2c
Mn,l

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

+

[
n−2∑
l=0

2c
Mn,l+1

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

≤ C2

Mn,0ck
+

[
n−1∑
l=1

2c
Mn,l+1

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

+

[
n−2∑
l=0

2c
Mn,l+1

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

= C2

Mn,0ck
+

[
n−1∑
l=0

2(2−1{0}(l)−1{n−1}(l))c

Mn,l+1
E
[
‖ψk+1(Y 0

l − y)‖2
H
]]
.

(3.43)

Furthermore, note that (3.35), (3.29), (3.34), and (vi) in Proposition 3.8 show for all
n ∈ N that

E[Y 0
n ] = E

[
n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)]]
=

n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

E
[
Φl

(
Y

(0,l,i)
l , Y

(0,−l,i)
l−1 , Z(0,l,i)

)]]
=

n−1∑
l=0

1
Mn,l

[
Mn,l∑
i=1

E
[
Φl(Y

0
l , Y

1
l−1, Z

0)
]]

=
n−1∑
l=0

E
[
Φl(Y

0
l , Y

1
l−1, Z

0)
]
.

(3.44)

This and assumption (3.32) establish for all k ∈ N0, n ∈ N that

E
[
‖ψk(E[Y 0

n ]− y)‖2
H
]

= E

[∥∥∥∥ψk([n−1∑
l=0

E
[
Φl(Y

0
l , Y

1
l−1, Z

0)
]]
− y
)∥∥∥∥2

H

]
≤ 2c

Mn,n
E
[
‖ψk+1(Y 0

n−1 − y)‖2
H
]
.

(3.45)

Combining (3.38) with (3.43) and assumption (3.30) hence proves for all k ∈ N0, n ∈ N
that

E
[
‖ψk(Y 0

n − y)‖2
H
]
≤ C2

Mn,0ck
+

[
n−1∑
l=0

2(2−1{0}(l))c
Mn,l+1

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

= C2

Mn,0ck
+ 2c

Mn,1
E
[
‖ψk+1(Y 0

0 − y)‖2
H
]

+

[
n−1∑
l=1

4c
Mn,l+1

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]

≤ C2

Mn,0ck
+ 2C2c

Mn,1ck+1
+

[
n−1∑
l=1

4c
Mn,l+1

E
[
‖ψk+1(Y 0

l − y)‖2
H
]]
.

(3.46)
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Next we introduce some additional notation. For the remainder of this proof let N ∈ N,
let εn ∈ [0,∞], n ∈ {1, 2, . . . , N}, satisfy for all n ∈ {1, 2, . . . , N} that

εn = max

({(
Mlk−1,n+1

k−1∏
j=1

Mlj−1,lj+1

)−1

E
[
‖ψk(Y 0

n − y)‖2
H
]
: (3.47)

k ∈ N ∩ [0, N − n], (li)i∈{0,1,...,k−1} ⊆ {n+ 1,
n+ 2, . . . , N}, N = l0 > l1 > . . . > lk−1

}
∪
{
1{N}(n)E

[
‖ψ0(Y 0

N − y)‖2
H
]})

,

and let a ∈ [0,∞) be given by

a = C2(1 + 2c)

[
min

({
min{Mlk,0ck,Mlk,1ck+1}

k∏
j=1

Mlj−1,lj+1 :

k ∈ N ∩ [0, N − 1], (li)i∈{0,1,...,k} ⊆
{1, 2, . . . , N}, N = l0 > l1 > . . . > lk

}
∪
{

min{MN,0c0,MN,1c1}
})]−1

.

(3.48)

Observe that (3.46)–(3.48) establish for all n ∈ N ∩ [0, N − 1], k ∈ {1, 2, . . . , N − n},
(li)i∈{0,1,...,k−1} ⊆ {n+ 1, n+ 2, . . . , N} with l0 = N and ∀ i ∈ N ∩ [0, k − 1] : li−1 > li that(
Mlk−1,n+1

k−1∏
j=1

Mlj−1,lj+1

)−1

E
[
‖ψk(Y 0

n − y)‖2
H
]

≤
(

C2

Mn,0ck
+ 2C2c

Mn,1ck+1

)(
Mlk−1,n+1

k−1∏
j=1

Mlj−1,lj+1

)−1

+ 4c
n−1∑̀
=1

[(
Mn,`+1Mlk−1,n+1

k−1∏
j=1

Mlj−1,lj+1

)−1

E
[
‖ψk+1(Y 0

` − y)‖2
H
]]

≤ C2(1 + 2c)

[
max

lk∈{1,2,...,lk−1−1}

(
min{Mlk,0ck,Mlk,1ck+1}Mlk−1,lk+1

k−1∏
j=1

Mlj−1,lj+1

)−1
]

+ 4c
n−1∑̀
=1

max
lk∈{`+1,`+2,...,lk−1−1}

[(
Mlk,`+1Mlk−1,lk+1

k−1∏
j=1

Mlj−1,lj+1

)−1

E
[
‖ψk+1(Y 0

` − y)‖2
H
]]

= C2(1 + 2c)

[
min

lk∈{1,2,...,lk−1−1}

(
min{Mlk,0ck,Mlk,1ck+1}

k∏
j=1

Mlj−1,lj+1

)]−1

(3.49)

+ 4c
n−1∑̀
=1

max
lk∈{`+1,`+2,...,lk−1−1}

[(
Mlk,`+1

k∏
j=1

Mlj−1,lj+1

)−1

E
[
‖ψk+1(Y 0

` − y)‖2
H
]]

≤ a+ 4c
n−1∑̀
=1

ε`.

In addition, (3.46)–(3.48) ensure that

εN = E
[
‖ψ0(Y 0

N − y)‖2
H
]
≤ C2

MN,0c0
+ 2C2c

MN,1c1
+

[
N−1∑̀

=1

4c
MN,`+1

E
[
‖ψ1(Y 0

` − y)‖2
H
]]

≤ C2(1 + 2c)(min{MN,0c0,MN,1c1})−1 + 4c

[
N−1∑̀

=1

(MN,`+1)−1 E
[
‖ψ1(Y 0

` − y)‖2
H
]]

≤ a+ 4c
N−1∑̀

=1

ε`.

(3.50)
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This, (3.47), and (3.49) show for all n ∈ {1, 2, . . . , N} that

εn ≤ a+ 4c
n−1∑̀
=1

ε`. (3.51)

The fact that a+ c <∞ and the discrete Gronwall-type inequality in Agarwal [2, Corol-
lary 4.1.2] hence establish for all n ∈ {1, 2, . . . , N} that

εn ≤ a(1 + 4c)n−1 <∞. (3.52)

This and (3.47)–(3.48) imply that

E
[
‖ψ0(Y 0

N − y)‖2
H
]

= εN ≤ a(1 + 4c)N−1

≤ C2(1 + 4c)N
[
min

({
min{Mlk,0ck,Mlk,1ck+1}

k∏
j=1

Mlj−1,lj+1 :

k ∈ N ∩ [0, N − 1], (li)i∈{0,1,...,k} ⊆
{1, 2, . . . , N}, N = l0 > l1 > . . . > lk

}
∪
{

min{MN,0c0,MN,1c1}
})]−1

<∞.

(3.53)

The proof of Proposition 3.9 is thus complete.

Corollary 3.10. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-
Banach space, let C, c ∈ (0,∞), (ck)k∈N0 ⊆ (0,∞), Θ =

⋃∞
n=1 Zn, M ∈ N, y ∈ Y,

let (Z,Z ) be a measurable space, let Zθ : Ω → Z, θ ∈ Θ, be i.i.d. F/Z -measurable
functions, let (H, 〈·, ·〉H, ‖·‖H) be a separable R-Hilbert space, let S = σL(Y,H)

({
{ϕ ∈

L(Y ,H) : ϕ(x) ∈ B} ⊆ L(Y ,H) : x ∈ Y , B ∈ B(H)
})

, let ψk : Ω → L(Y ,H), k ∈ N0, be
F/S -measurable functions, let Φl : Y×Y×Z → Y, l ∈ N0, be (B(Y)⊗B(Y)⊗Z )/B(Y)-
measurable functions, let Y θ

−1 : Ω → Y, θ ∈ Θ, be i.i.d. F/B(Y)-measurable functions,
let Y θ

0 : Ω → Y, θ ∈ Θ, be i.i.d. F/B(Y)-measurable functions, assume that (Y θ
−1)θ∈Θ,

(Y θ
0 )θ∈Θ, (Zθ)θ∈Θ, and (ψk)k∈N0 are independent, let Y θ

n : Ω → Y, θ ∈ Θ, n ∈ N, satisfy
for all n ∈ N, θ ∈ Θ that

Y θ
n =

n−1∑
l=0

1
Mn−l

[
Mn−l∑
i=1

Φl

(
Y

(θ,l,i)
l , Y

(θ,−l,i)
l−1 , Z(θ,l,i)

)]
, (3.54)

and assume for all k ∈ N0, n ∈ N that E
[
‖Φk(Y

0
k , Y

1
k−1, Z

0)‖Y
]
<∞ and

max
{
E
[
‖ψk(Φ0(Y 0

0 , Y
1
−1, Z

0))‖2
H
]
,1N(k)E

[
‖ψk(Y 0

0 − y)‖2
H
]}
≤ C2

ck
, (3.55)

E
[
‖ψk(Φn(Y 0

n , Y
1
n−1, Z

0))‖2
H
]
≤ cE

[
‖ψk+1(Y 0

n − Y 1
n−1)‖2

H
]
, (3.56)

E

[∥∥∥∥ψk(y − n−1∑
l=0

E
[
Φl(Y

0
l , Y

1
l−1, Z

0)
])∥∥∥∥2

H

]
≤ 2cE

[
‖ψk+1(Y 0

n−1 − y)‖2
H
]
. (3.57)

Then it holds for all N ∈ N that(
E
[
‖ψ0(Y 0

N − y)‖2
H
])1/2 ≤ C

[
1+4c
M

]N/2
max

k∈{0,1,...,N}

√
Mk

ck
<∞. (3.58)
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Proof of Corollary 3.10. Throughout this proof let Mn,l ∈ N, l ∈ {0, 1, . . . , n}, n ∈ N,
be the natural numbers which satisfy for all n ∈ N, l ∈ {0, 1, . . . , n} that Mn,l = Mn−l.
Note that it holds for all n ∈ N that Mn,1 ≥ Mn,2 ≥ . . . ≥ Mn,n. The fact that
∀n ∈ N : Mn,n = 1 and Proposition 3.9 hence ensure for all N ∈ N that(

E
[
‖ψ0(Y 0

N − y)‖2
H
])1/2

≤ C(1 + 4c)
N/2

[
min

({
min{Mlk,0ck,Mlk,1ck+1}

k∏
j=1

Mlj−1,lj+1 :

k ∈ N ∩ [0, N − 1], (li)i∈{0,1,...,k} ⊆
{1, 2, . . . , N}, N = l0 > l1 > . . . > lk

}
∪
{

min{MN,0c0,MN,1c1}
})]−1/2

.

(3.59)

Next observe that it holds for all N ∈ N, k ∈ N ∩ [0, N − 1], (li)i∈{0,1,...,k} ⊆ {1, 2, . . . , N}
with l0 = N and ∀ i ∈ {1, 2, . . . , k} : li−1 > li that

min{Mlk,0ck,Mlk,1ck+1}
k∏
j=1

Mlj−1,lj+1 = min{M lkck,M
lk−1ck+1}

k∏
j=1

M lj−1−lj−1

= min{M lkck,M
lk−1ck+1}M l0−lk−k = min{MN−kck,M

N−(k+1)ck+1}.
(3.60)

This and (3.59) establish for all N ∈ N that(
E
[
‖ψ0(Y 0

N − y)‖2
H
])1/2

≤ C(1 + 4c)
N/2
[
min

({
min{MN−kck,M

N−(k+1)ck+1} : k ∈ N ∩ [0, N − 1]
}

∪
{

min{MNc0,M
N−1c1}

})]−1/2

= C(1 + 4c)
N/2

[
min

k∈{0,1,...,N−1}
min{MN−kck,M

N−(k+1)ck+1}
]−1/2

= C(1 + 4c)
N/2

[
min

k∈{0,1,...,N}
(MN−kck)

]−1/2

= C
[

1+4c
M

]N/2[
min

k∈{0,1,...,N}
ck
Mk

]−1/2

= C
[

1+4c
M

]N/2
max

k∈{0,1,...,N}

√
Mk

ck
<∞.

(3.61)

The proof of Corollary 3.10 is thus complete.

3.1.5 Cost analysis

Proposition 3.11. Let M ∈ (0,∞), (αl)l∈N0 , (βl)l∈N0 , (γl)l∈N0 , (Costn)n∈N0∪{−1} ⊆ [0,∞)
satisfy for all n ∈ N that

Costn ≤
n−1∑
l=0

[
Mn−l(αlCostl + βlCostl−1 + γl)

]
. (3.62)

Then it holds for all n ∈ N that

Costn ≤Mn

(
β0Cost−1 +

(
α0 + β1

M

)
Cost0 +

n−1∑
l=0

[M−lγl]

)
n−1∏
l=1

(
1 + αl + βl+1

M

)
. (3.63)
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Proof of Proposition 3.11. Observe that it holds for all n ∈ N that

Costn ≤Mn

n−1∑
l=0

[
M−l(αlCostl + βlCostl−1 + γl)

]
= Mn

(
β0Cost−1 +

[
n−1∑
l=0

M−l(αlCostl + γl)

]
+

[
n−1∑
l=1

M−lβlCostl−1

])

= Mn

(
β0Cost−1 +

[
n−1∑
l=0

M−l(αlCostl + γl)

]
+ 1

M

[
n−2∑
l=0

M−lβl+1Costl

])

≤Mn

(
β0Cost−1 +

[
n−1∑
l=0

M−lγl

]
+

[
n−1∑
l=0

M−lαlCostl

]
+ 1

M

[
n−1∑
l=0

M−lβl+1Costl

])

= Mn

(
β0Cost−1 +

[
n−1∑
l=0

M−lγl

]
+

[
n−1∑
l=0

M−l(αl + βl+1

M

)
Costl

])
(3.64)

= Mn

(
β0Cost−1 +

(
α0 + β1

M

)
Cost0 +

n−1∑
l=0

[M−lγl]

)
+Mn

[
n−1∑
l=1

M−l(αl + βl+1

M

)
Costl

]
.

Theorem 4.1.1 in Agarwal [2] (with a← 1, u(k)← Costk, p(k)← Mk(β0Cost−1 + (α0 +
β1

M
)Cost0 +

∑k−1
l=0 [M−lγl]), q(k)←Mk, f(k)←M−k(αk + βk+1

M
) for k ∈ N in the notation

of [2, Theorem 4.1.1]) hence establishes for all n ∈ N that

Costn ≤Mn

(
β0Cost−1 +

(
α0 + β1

M

)
Cost0 +

n−1∑
l=0

[M−lγl]

)

+Mn

n−1∑
l=1

[
M l

(
β0Cost−1 +

(
α0 + β1

M

)
Cost0 +

l−1∑
i=0

[M−iγi]

)
M−l(αl + βl+1

M

)
·
n−1∏
i=l+1

[
1 +M iM−i(αi + βi+1

M

)]]

≤Mn

(
β0Cost−1 +

(
α0 + β1

M

)
Cost0 +

n−1∑
l=0

[M−lγl]

)

·

(
1 +

n−1∑
l=1

[(
αl + βl+1

M

) n−1∏
i=l+1

(
1 + αi + βi+1

M

)])
.

(3.65)

This and [2, Problem 1.9.10] show for all n ∈ N that

Costn ≤Mn

(
β0Cost−1 +

(
α0 + β1

M

)
Cost0 +

n−1∑
l=0

[M−lγl]

)
n−1∏
l=1

(
1 + αl + βl+1

M

)
. (3.66)

The proof of Proposition 3.11 is thus complete.

Lemma 3.12. Let a, b ∈ [0,∞). Then it holds for all n ∈ N that

(an+ b)bn−1 ≤ (a+ b)n. (3.67)
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Proof of Lemma 3.12. We prove (3.67) by induction on n ∈ N. Note that the base case
n = 1 is clear. For the induction step N 3 n − 1 → n ∈ {2, 3, . . .} let n ∈ {2, 3, . . .} and
assume that (a(n− 1) + b)bn−2 ≤ (a+ b)n−1. This ensures that

(an+ b)bn−1 = abn−1 + (a(n− 1) + b)bn−1 ≤ abn−1 + b(a+ b)n−1

≤ a(a+ b)n−1 + b(a+ b)n−1 = (a+ b)n.
(3.68)

Induction hence completes the proof of Lemma 3.12.

Corollary 3.13. Let M ∈ [1,∞), z, α, β, γ ∈ [0,∞), (Costn)n∈N0∪{−1} ⊆ [0,∞) satisfy
for all n ∈ N that Cost−1 = Cost0 = 0 and

Costn ≤Mnz +
n−1∑
l=0

[
Mn−l(αCostl + βCostl−1 + γz)

]
. (3.69)

Then it holds for all n ∈ N that

Costn ≤ (1 + α + β + γ)nMnz. (3.70)

Proof of Corollary 3.13. Note that Proposition 3.11 demonstrates for all n ∈ N that

Costn ≤Mn

(
z + γz

n−1∑
l=0

M−l

)
n−1∏
l=1

(
1 + α + β

M

)
≤

(
1 + γ

n−1∑
l=0

M−l

)
(1 + α + β)n−1Mnz.

(3.71)

In addition, observe that it holds for all n ∈ N that

n−1∑
l=0

M−l ≤
n−1∑
l=0

1 = n. (3.72)

Furthermore, Lemma 3.12 implies for all n ∈ N that

(1 + γn)(1 + α + β)n−1 ≤ (γn+ 1 + α + β)(1 + α + β)n−1 ≤ (1 + α + β + γ)n. (3.73)

This, (3.71), and (3.72) prove for all n ∈ N that

Costn ≤ (1 + γn)(1 + α + β)n−1Mnz ≤ (1 + α + β + γ)nMnz. (3.74)

The proof of Corollary 3.13 is thus complete.

3.1.6 Complexity analysis

Theorem 3.14. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-Banach
space, let z, γ ∈ [0,∞), B, b, C ∈ [1,∞), c ∈ (0,∞), (ck)k∈N0 ⊆ (0,∞), Θ =

⋃∞
n=1 Zn,

(Mj)j∈N ⊆ N, y, y−1, y0 ∈ Y satisfy lim infj→∞Mj = ∞, supj∈N Mj+1/Mj ≤ B, and ∀n ∈
N : maxk∈{0,1,...,n} (Mn)k/ck ≤ bn, let (Z,Z ) be a measurable space, let Zθ : Ω→ Z, θ ∈ Θ,
be i.i.d. F/Z -measurable functions, let (H, 〈·, ·〉H, ‖·‖H) be a separable R-Hilbert space,
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let S = σL(Y,H)

({
{ϕ ∈ L(Y ,H) : ϕ(x) ∈ B} ⊆ L(Y ,H) : x ∈ Y , B ∈ B(H)

})
, let

ψk : Ω → L(Y ,H), k ∈ N0, be F/S -measurable functions, assume that (Zθ)θ∈Θ and
(ψk)k∈N0 are independent, let Φl : Y×Y×Z → Y, l ∈ N0, be (B(Y)⊗B(Y)⊗Z )/B(Y)-
measurable functions, let Y θ

n,j : Ω → Y, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪ {−1}), satisfy for all
n, j ∈ N, θ ∈ Θ that Y θ

−1,j = y−1, Y θ
0,j = y0, and

Y θ
n,j =

n−1∑
l=0

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
, (3.75)

let (Costn,j)(n,j)∈(N0∪{−1})×N ⊆ [0,∞) satisfy for all n, j ∈ N that Cost−1,j = Cost0,j = 0
and

Costn,j ≤ (Mj)
nz +

n−1∑
l=0

[
(Mj)

n−l(Costl,j + Costl−1,j + γz)
]
, (3.76)

and assume for all k ∈ N0, n, j ∈ N that E
[
‖Φk(Y

0
k,j, Y

1
k−1,j, Z

0)‖Y
]
<∞ and

max
{
E
[
‖ψk(Φ0(y0, y−1, Z

0))‖2
H
]
,1N(k)E

[
‖ψk(y0 − y)‖2

H
]}
≤ C2

ck
, (3.77)

E
[∥∥ψk(Φn

(
Y 0
n,j, Y

1
n−1,j, Z

0
))∥∥2

H

]
≤ cE

[∥∥ψk+1

(
Y 0
n,j − Y 1

n−1,j

)∥∥2

H

]
, (3.78)

E

[∥∥∥∥ψk(y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∥∥∥∥2

H

]
≤ 2cE

[∥∥ψk+1

(
Y 0
n−1,j − y

)∥∥2

H

]
. (3.79)

Then

(i) it holds for all n ∈ N that

(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ C

[
b(1 + 4c)

Mn

]n/2
<∞, (3.80)

(ii) it holds for all n ∈ N that Costn,n ≤ (3 + γ)n(Mn)nz, and

(iii) there exists (Nε)ε∈(0,1] ⊆ N such that it holds for all ε ∈ (0, 1], δ ∈ (0,∞) that
supn∈{Nε,Nε+1,...}

(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ ε and

CostNε,Nε ≤ zbc1(3 + γ)C2(1+δ)

(
1 + sup

n∈N

[
[Bb2(3 + γ)(1 + 4c)](1+δ)

(Mn)δ

]n)
ε−2(1+δ) <∞.

(3.81)

Proof of Theorem 3.14. Throughout this proof let (Nε)ε∈(0,1] ⊆ N be the family of natural
numbers which satisfies for all ε ∈ (0, 1] that

Nε = min

{
N ∈ N : sup

n∈{N,N+1,...}
C

[
b(1 + 4c)

Mn

]n/2
≤ ε

}
. (3.82)

Observe that Corollary 3.10 and the assumption that ∀n ∈ N : maxk∈{0,1,...,n} (Mn)k/ck ≤ bn

establish for all n ∈ N that(
E
[
‖ψ0(Y 0

n,n−y)‖2
H
])1/2 ≤ C

[
1 + 4c

Mn

]n/2
max

k∈{0,1,...,n}

√
(Mn)k

ck
≤ C

[
b(1 + 4c)

Mn

]n/2
<∞. (3.83)
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This proves (i). In addition, (3.76) and Corollary 3.13 demonstrate for all n ∈ N that

Costn,n ≤ (3 + γ)n(Mn)nz. (3.84)

This finishes the proof of (ii). It thus remains to show (iii). Observe that (3.83) and
(3.82) ensure for all ε ∈ (0, 1] that

sup
n∈{Nε,Nε+1,...}

(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ sup

n∈{Nε,Nε+1,...}
C

[
b(1 + 4c)

Mn

]n/2
≤ ε. (3.85)

Furthermore, note that (3.82) implies for all ε ∈ (0, 1] with Nε ≥ 2 that

C

[
b(1 + 4c)

MNε−1

](Nε−1)/2

> ε. (3.86)

This, (3.84), the assumption that supj∈N Mj+1/Mj ≤ B, and the fact that ∀n ∈ N : Mn/c1 ≤
bn show for all ε ∈ (0, 1], δ ∈ (0,∞) with Nε ≥ 2 that

CostNε,Nε ≤ (3 + γ)Nε(MNε)
Nεz

≤ (3 + γ)Nε(MNε)
Nεz

[
C

[
b(1 + 4c)

MNε−1

](Nε−1)/2

ε−1

]2(1+δ)

= zC2(1+δ)ε−2(1+δ)

[
(3 + γ)Nε(MNε)

Nε [b(1 + 4c)](Nε−1)(1+δ)

(MNε−1)(Nε−1)(1+δ)

]
≤ zC2(1+δ)ε−2(1+δ) sup

n∈N

[
(3 + γ)n+1(Mn+1)n+1[b(1 + 4c)]n(1+δ)

(Mn)n(1+δ)

]
≤ z(3 + γ)C2(1+δ)ε−2(1+δ) sup

n∈N

[
Mn+1(Mn+1)n[b(3 + γ)(1 + 4c)]n(1+δ)

(Mn)n(Mn)nδ

]
≤ zc1(3 + γ)C2(1+δ)ε−2(1+δ) sup

n∈N

[
bn+1Bn[b(3 + γ)(1 + 4c)]n(1+δ)

(Mn)nδ

]
≤ zbc1(3 + γ)C2(1+δ)ε−2(1+δ) sup

n∈N

[
[Bb2(3 + γ)(1 + 4c)](1+δ)

(Mn)δ

]n
≤ zbc1(3 + γ)C2(1+δ)

(
1 + sup

n∈N

[
[Bb2(3 + γ)(1 + 4c)](1+δ)

(Mn)δ

]n)
ε−2(1+δ).

(3.87)

Moreover, (3.76), the fact that M1/c1 ≤ b, and the fact that C ≥ 1 ensure for all ε ∈ (0, 1],
δ ∈ (0,∞) that

Cost1,1 ≤ z(1 + γ)M1 ≤ zbc1(3 + γ)

≤ zbc1(3 + γ)C2(1+δ)

(
1 + sup

n∈N

[
[Bb2(3 + γ)(1 + 4c)](1+δ)

(Mn)δ

]n)
ε−2(1+δ).

(3.88)

Combining this with (3.87) establishes for all ε ∈ (0, 1], δ ∈ (0,∞) that

CostNε,Nε ≤ zbc1(3+γ)C2(1+δ)

(
1+sup

n∈N

[
[Bb2(3 + γ)(1 + 4c)](1+δ)

(Mn)δ

]n)
ε−2(1+δ)<∞. (3.89)

The proof of Theorem 3.14 is thus complete.
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Corollary 3.15. Let (Ω,F ,P) be a probability space, let (Y , ‖·‖Y) be a separable R-
Banach space, let z, γ ∈ [0,∞), B, κ, C ∈ [1,∞), c ∈ (0,∞), Θ =

⋃∞
n=1 Zn, (Mj)j∈N ⊆ N,

y, y−1, y0 ∈ Y satisfy lim infj→∞Mj = ∞, supj∈N Mj+1/Mj ≤ B, and supj∈N Mj/j ≤ κ,
let (Z,Z ) be a measurable space, let Zθ : Ω → Z, θ ∈ Θ, be i.i.d. F/Z -measurable
functions, let (H, 〈·, ·〉H, ‖·‖H) be a separable R-Hilbert space, let S = σL(Y,H)

({
{ϕ ∈

L(Y ,H) : ϕ(x) ∈ B} ⊆ L(Y ,H) : x ∈ Y , B ∈ B(H)
})

, let ψk : Ω → L(Y ,H), k ∈ N0,
be F/S -measurable functions, assume that (Zθ)θ∈Θ and (ψk)k∈N0 are independent, let
Φl : Y × Y × Z → Y, l ∈ N0, be (B(Y) ⊗B(Y) ⊗ Z )/B(Y)-measurable functions, let
Y θ
n,j : Ω → Y, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪ {−1}), satisfy for all n, j ∈ N, θ ∈ Θ that
Y θ
−1,j = y−1, Y θ

0,j = y0, and

Y θ
n,j =

n−1∑
l=0

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
, (3.90)

let (Costn,j)(n,j)∈(N0∪{−1})×N ⊆ [0,∞) satisfy for all n, j ∈ N that Cost−1,j = Cost0,j = 0
and

Costn,j ≤ (Mj)
nz +

n−1∑
l=0

[
(Mj)

n−l(Costl,j + Costl−1,j + γz)
]
, (3.91)

and assume for all k ∈ N0, n, j ∈ N, u, v ∈ Y that E
[
‖Φk(Y

0
k,j, Y

1
k−1,j, Z

0)‖Y
]
<∞ and

max
{
E
[
‖ψk(Φ0(y0, y−1, Z

0))‖2
H
]
,1N(k)E

[
‖ψk(y0 − y)‖2

H
]}
≤ C2

k!
, (3.92)

E
[
‖ψk(Φn(u, v, Z0))‖2

H
]
≤ cE

[
‖ψk+1(u− v)‖2

H
]
, (3.93)

E

[∥∥∥∥ψk(y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∥∥∥∥2

H

]
≤ 2cE

[∥∥ψk+1

(
Y 0
n−1,j − y

)∥∥2

H

]
. (3.94)

Then

(i) it holds for all n ∈ N that

(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ C

[
eκ(1 + 4c)

Mn

]n/2
<∞, (3.95)

(ii) it holds for all n ∈ N that Costn,n ≤ (3 + γ)n(Mn)nz, and

(iii) there exists (Nε)ε∈(0,1] ⊆ N such that it holds for all ε ∈ (0, 1], δ ∈ (0,∞) that
supn∈{Nε,Nε+1,...}

(
E
[
‖ψ0(Y 0

n,n − y)‖2
H
])1/2 ≤ ε and

CostNε,Nε ≤ z(3 + γ)eκC2(1+δ)

(
1 + sup

n∈N

[
[Be2κ(3 + γ)(1 + 4c)](1+δ)

(Mn)δ

]n)
ε−2(1+δ) <∞.

(3.96)

Proof of Corollary 3.15. Throughout this proof let (ck)k∈N0 ⊆ (0,∞) be the family of
real numbers which satisfies for all k ∈ N0 that ck = k!. Note that the assumption that
supj∈N Mj/j ≤ κ ensures for all n ∈ N that

max
k∈{0,1,...,n}

(Mn)k

ck
= max

k∈{0,1,...,n}

(Mn)k

k!
≤
∞∑
k=0

(Mn)k

k!
= eMn ≤ eκn = (eκ)n. (3.97)
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Next observe that (ii) in Proposition 3.8 implies for all n, j ∈ N, θ ∈ Θ that σΩ(Y θ
n,j) ⊆

σΩ

(
(Z(θ,ϑ))ϑ∈Θ

)
. This demonstrates for all n, j ∈ N that σΩ

(
Y 0
n,j, Y

1
n−1,j

)
⊆ σΩ

(
(Z(0,θ))θ∈Θ,

(Z(1,θ))θ∈Θ

)
. The fact that it holds for every k ∈ N0 that σΩ

(
(Z(0,θ))θ∈Θ, (Z

(1,θ))θ∈Θ

)
, Z0,

and ψk are independent hence shows for every k ∈ N0, n, j ∈ N that

σΩ

(
Y 0
n,j, Y

1
n−1,j

)
and σΩ(ψk, Z

0) (3.98)

are independent. Furthermore, the fact that it holds for all k ∈ N0, x ∈ Y that Ω 3 ω 7→
[ψk(ω)](x) ∈ H is an F/B(H)-measurable function (cf. Lemma 3.1) and the fact that it
holds for all k ∈ N0, ω ∈ Ω that Y 3 x 7→ [ψk(ω)](x) ∈ H is a continuous function yield
that

Y × Y × Ω 3 (u, v, ω) 7→ [ψk(ω)](u− v) ∈ H (3.99)

is a continuous random field. Moreover, note that the fact that (Y , ‖·‖Y) is separable
ensures that B(Y)⊗B(Y) = B(Y×Y). This, (i) in Corollary 3.3, (3.98), [181, Lemma 2.2]
(with G ← σΩ(ψk, Z

0), (S,S)← (Y × Y ,B(Y)⊗B(Y)), U ← (Y × Y × Ω 3 (u, v, ω) 7→
‖[ψk(ω)](Φn(u, v, Z0(ω)))‖2

H ∈ [0,∞)), Y ← (Y 0
n,j, Y

1
n−1,j) for j, n ∈ N, k ∈ N0 in the

notation of [181, Lemma 2.2]), (3.93), (3.99), and [181, Lemma 2.3] (with S ← Y × Y ,
U ← (Y×Y×Ω 3 (u, v, ω) 7→ ‖[ψk(ω)](u−v)‖2

H ∈ [0,∞)), Y ← (Y 0
n,j, Y

1
n−1,j) for j, n ∈ N,

k ∈ N0 in the notation of [181, Lemma 2.3]) establish for all k ∈ N0, n, j ∈ N that

E
[∥∥ψk(Φn

(
Y 0
n,j, Y

1
n−1,j, Z

0
))∥∥2

H

]
=

∫
Y×Y

E
[
‖ψk(Φn(u, v, Z0))‖2

H
] ((

Y 0
n,j, Y

1
n−1,j

)
(P)B(Y)⊗B(Y)

)
(du, dv)

=

∫
Y×Y

E
[
‖ψk(Φn(u, v, Z0))‖2

H
] ((

Y 0
n,j, Y

1
n−1,j

)
(P)B(Y×Y)

)
(du, dv)

≤ c

∫
Y×Y

E
[
‖ψk+1(u− v)‖2

H
] ((

Y 0
n,j, Y

1
n−1,j

)
(P)B(Y×Y)

)
(du, dv)

= cE
[∥∥ψk+1

(
Y 0
n,j − Y 1

n−1,j

)∥∥2

H

]
.

(3.100)

Combining (3.97) and (3.100) with Theorem 3.14 shows (i)–(iii). The proof of Corol-
lary 3.15 is thus complete.

Lemma 3.16. Let κ ∈ [1,∞), (Mj)j∈N ⊆ N satisfy for all j ∈ N that Mj < Mj+1 and
Mj ≤ κj. Then

(i) it holds for all j ∈ N that j ≤Mj ≤ κj,

(ii) it holds that lim infj→∞Mj =∞, and

(iii) it holds that supj∈N Mj+1/Mj ≤ 2κ.

Proof of Lemma 3.16. Note that the assumption that ∀ j ∈ N : Mj < Mj+1 and induction
show (i). Next observe that (i) implies (ii). Furthermore, the assumption that ∀ j ∈
N : Mj ≤ κj and (i) ensure for all j ∈ N that

Mj+1

Mj

≤ κ(j + 1)

j
= κ+

κ

j
≤ 2κ. (3.101)

The proof of Lemma 3.16 is thus complete.
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3.2 MLP for semi-linear heat equations

In this section we employ the abstract framework for generalised MLP approximations
developed in Section 3.1 to prove that appropriate MLP approximations, which essentially
are generalised versions of the MLP approximations proposed in Hutzenthaler et al. [181],
are able to overcome the curse of dimensionality in the numerical approximation of semi-
linear heat equations (cf. Theorem 3.33 and Corollary 3.34 in Subsection 3.2.3.2).

In the context of applying the abstract complexity result about generalised MLP ap-
proximations in Corollary 3.15 above to numerical approximations for semi-linear heat
equations, the separable R-Banach space (Y , ‖·‖Y) in Corollary 3.15 is chosen to be a
subspace of the vector space of real-valued at most polynomially growing continuous
functions defined on [0, T ]×Rd equipped with a suitable polynomial growth norm, where
T ∈ (0,∞), d ∈ N (cf. (3.129)–(3.130) in Subsection 3.2.2.1). In Subsection 3.2.1 we
derive several elementary and well-known properties of these and related function spaces
and their elements. In particular, Subsection 3.2.1.1 deals with completeness and sepa-
rability of such function spaces. Lemma 3.17 recalls that the vector space of real-valued
at most polynomially growing continuous functions defined on a non-empty subset of Rd

equipped with an appropriate polynomial growth norm is complete. Thereafter, we state
in Proposition 3.18 the well-known fact that the vector space of real-valued continuous
functions defined on a non-empty compact subset of Rd equipped with the uniform norm
is a separable R-Banach space, which follows directly from Lemma 3.17 and, e.g., Con-
way [84, Theorem 6.6 in Chapter V]. Using Proposition 3.18 we deduce the elementary
fact that also the vector space of real-valued continuous functions with compact support
defined on a non-empty closed subset of Rd equipped with a suitable polynomial growth
norm is separable (cf. Lemma 3.19). Subsection 3.2.1.1 is concluded by the well-known
result in Proposition 3.20, which establishes a characterisation of the above mentioned
choice for the vector space (Y , ‖·‖Y) (cf. (3.129)–(3.130) in Subsection 3.2.2.1) and shows
that it is indeed a separable R-Banach space. Subsequently, we provide in Lemmas 3.21
and 3.22 and Corollary 3.23 in Subsection 3.2.1.2 three elementary results about suffi-
cient conditions under which suitable functions and suitable compositions of functions
grow strictly slower than a given polynomial order. These results are used to ensure well-
definedness of certain functions introduced in (3.133) in Subsection 3.2.2.1. Furthermore,
Lemma 3.24 in Subsection 3.2.1.3 offers an elementary polynomial growth estimate for
suitable compositions of functions.

In Subsection 3.2.2 we specify a number of the objects appearing in Corollary 3.15
above for the example of MLP approximations for semi-linear heat equations and verify
that the main assumptions of Corollary 3.15 are fulfilled in this context. In particular, we
first present in Setting 3.1 in Subsection 3.2.2.1 the framework which we refer to through-
out Subsection 3.2.2. In the subsection that follows, Subsection 3.2.2.2, we establish
measurability properties of several of the involved functions (cf. Lemmas 3.25 and 3.26).
Subsequently, Lemma 3.27 in Subsection 3.2.2.3 shows that the MLP approximations in-
troduced in (3.128) in Setting 3.1 fit into the abstract framework for generalised MLP
approximations developed in Section 3.1 (cf. (3.90) in Corollary 3.15). Moreover, Subsec-
tion 3.2.2.4 is devoted to proving certain integrability properties of the MLP approxima-
tions introduced in (3.128) in Setting 3.1 (cf. Lemma 3.28), while in Subsection 3.2.2.5
we verify that the estimates assumed in (3.92)–(3.94) in Corollary 3.15 hold true for the
functions introduced in Setting 3.1 (cf. Lemmas 3.29, 3.30, and 3.31).
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Finally, in Subsection 3.2.3 we combine the results from Subsection 3.2.2 with Corol-
lary 3.15 to obtain a complexity analysis for MLP approximations for semi-linear heat
equations. In Proposition 3.32 in Subsection 3.2.3.1 this is done for semi-linear heat
equations of fixed space dimension d ∈ N (cf. [181, Theorem 3.8]). Thereafter, Proposi-
tion 3.32 is used to establish Theorem 3.33 in Subsection 3.2.3.2, which reveals that the
MLP approximations in (3.220) overcome the curse of dimensionality in the numerical
approximation of semi-linear heat equations and which essentially is a slight generalisa-
tion of [181, Theorem 1.1]. The last result in this section, Corollary 3.34, is a direct
consequence of Theorem 3.33 and describes the special case of Theorem 3.33 in which
the non-linearity in the semi-linear heat equations is the same for every dimension (cf. (i)
in Corollary 3.34) and in which the constants in the complexity estimate are not given
explicitly (cf. (ii) in Corollary 3.34).

3.2.1 Properties of spaces of at most polynomially growing con-
tinuous functions

3.2.1.1 Completeness and separability

Lemma 3.17. Let d ∈ N, p ∈ [0,∞), let A ⊆ Rd be a non-empty set, let V =
{
v ∈

C(A,R) : supx∈A |v(x)|/max{1,‖x‖p
Rd
} < ∞

}
, and let ‖·‖V : V → [0,∞) satisfy for all v ∈ V

that ‖v‖V = supx∈A |v(x)|/max{1,‖x‖p
Rd
}. Then it holds that (V , ‖·‖V) is an R-Banach space.

Proof of Lemma 3.17. Observe that it holds that (V , ‖·‖V) is a normed R-vector space.
It thus remains to prove that (V , ‖·‖V) is complete. For this let W ⊆ C(A,R) be the set
given by

W =
{
w ∈ C(A,R) : supx∈A |w(x)| <∞

}
, (3.102)

let ‖·‖W : W → [0,∞) satisfy for all w ∈ W that ‖w‖W = supx∈A |w(x)|, and let I : V →
W and J : W → V satisfy for all v ∈ V , w ∈ W , x ∈ A that [I(v)](x) = v(x)/max{1,‖x‖p

Rd
}

and [J(w)](x) = w(x) max{1, ‖x‖pRd}. Note that (W , ‖·‖W) is a normed R-vector space.
Furthermore, Jentzen, Mazzonetto, & Salimova [192, Corollary 2.3] shows that

(W , ‖·‖W) (3.103)

is complete. Next observe that it holds for all v ∈ V that

‖I(v)‖W = sup
x∈A
|[I(v)](x)| = sup

x∈A

[
|v(x)|

max{1, ‖x‖pRd}

]
= ‖v‖V . (3.104)

In addition, note that it holds for all w ∈ W , x ∈ A that

[I(J(w))](x) =
[J(w)](x)

max{1, ‖x‖pRd}
=
w(x) max{1, ‖x‖pRd}

max{1, ‖x‖pRd}
= w(x). (3.105)

Combining this with (3.104) ensures that I : V → W is a bijective linear isometry and
I−1 = J . This and (3.103) establish that (V , ‖·‖V) = (I−1(W), ‖·‖V) is complete and thus
finish the proof of Lemma 3.17.

Proposition 3.18. Let d ∈ N, let A ⊆ Rd be a non-empty compact set, and let ‖·‖C(A,R) :
C(A,R) → [0,∞) satisfy for all f ∈ C(A,R) that ‖f‖C(A,R) = supx∈A |f(x)|. Then it
holds that (C(A,R), ‖·‖C(A,R)) is a separable R-Banach space.
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Lemma 3.19. Let d ∈ N, p ∈ [0,∞), let A ⊆ Rd be a non-empty closed set, and let
|||·||| : Cc(A,R) → [0,∞) satisfy for all f ∈ Cc(A,R) that |||f ||| = supx∈A |f(x)|/max{1,‖x‖p

Rd
}.

Then it holds that (Cc(A,R), |||·|||) is a separable normed R-vector space.

Proof of Lemma 3.19. Throughout this proof let y ∈ A, let N = min([‖y‖Rd ,∞)∩N), let
Sn ⊆ Cc(A,R), n ∈ {N,N + 1, . . .}, be the sets which satisfy for all n ∈ {N,N + 1, . . .}
that

Sn =
{
f ∈ C(A,R) : {x ∈ A : f(x) 6= 0} ⊆ [−n, n]d

}
, (3.106)

let J·Kn : C(A∩[−n, n]d,R)→ [0,∞), n ∈ {N,N+1, . . .}, satisfy for all n ∈ {N,N+1, . . .},
f ∈ C(A ∩ [−n, n]d,R) that

JfKn = sup
x∈A∩[−n,n]d

[
|f(x)|

max{1, ‖x‖pRd}

]
, (3.107)

and let In : Sn → C(A∩[−n, n]d,R), n ∈ {N,N+1, . . .}, satisfy for all n ∈ {N,N+1, . . .},
f ∈ Sn that In(f) = f |A∩[−n,n]d . Note that (3.106) proves for all n ∈ {N,N + 1, . . .},
f ∈ Sn that

JIn(f)Kn = sup
x∈A∩[−n,n]d

[
|f(x)|

max{1, ‖x‖pRd}

]
= sup

x∈A

[
|f(x)|

max{1, ‖x‖pRd}

]
= |||f |||. (3.108)

This and the fact that it holds for all n ∈ {N,N + 1, . . .} that (Sn, |||·||||Sn) and (C(A ∩
[−n, n]d,R), J·Kn) are normed R-vector spaces ensure for all n ∈ {N,N + 1, . . .} that

In : Sn → C(A ∩ [−n, n]d,R) (3.109)

is a linear isometry. Next observe that it holds for all n ∈ {N,N + 1, . . .}, f ∈ C(A ∩
[−n, n]d,R) that

JfKn ≤ sup
x∈A∩[−n,n]d

|f(x)| ≤ sup
x∈A∩[−n,n]d

[
|f(x)|

(
n
√
d
)p

max{1, ‖x‖pRd}

]
= JfKn

(
n
√
d
)p
. (3.110)

In addition, the assumption that A ⊆ Rd is a closed set and the fact that y ∈ A ensure
for all n ∈ {N,N + 1, . . .} that A∩ [−n, n]d is a non-empty compact set. Proposition 3.18
and (3.110) hence show for all n ∈ {N,N + 1, . . .} that (C(A ∩ [−n, n]d,R), J·Kn) is a
separable R-Banach space. This implies for all n ∈ {N,N+1, . . .} that (In(Sn), J·Kn|In(Sn))
is a separable normed R-vector space. Combining this with (3.109) hence establishes for
all n ∈ {N,N + 1, . . .} that

(Sn, |||·||||Sn) (3.111)
is a separable normed R-vector space. Furthermore, the assumption that A ⊆ Rd is a
closed set and (3.106) demonstrate that

Cc(A,R) =
{
f ∈ C(A,R) :

(
∃n ∈ N : {x ∈ A : f(x) 6= 0}

Rd
⊆ A ∩ [−n, n]d

)}
=
{
f ∈ C(A,R) :

(
∃n ∈ N : {x ∈ A : f(x) 6= 0} ⊆ [−n, n]d

)}
=
{
f ∈ C(A,R) :

(
∃n ∈ {N,N + 1, . . .} : {x ∈ A : f(x) 6= 0} ⊆ [−n, n]d

)}
=

∞⋃
n=N

{
f ∈ C(A,R) : {x ∈ A : f(x) 6= 0} ⊆ [−n, n]d

}
=

∞⋃
n=N

Sn.

(3.112)

This and (3.111) establish that (Cc(A,R), |||·|||) is a separable normed R-vector space. The
proof of Lemma 3.19 is thus complete.
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Proposition 3.20. Let d ∈ N, T ∈ (0,∞), p ∈ [0,∞), let Y =
{
y ∈ C([0, T ]× Rd,R) :

lim supN3n→∞ sup(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n
|y(t,x)|/‖x‖p

Rd
= 0

}
, and let ‖·‖Y : Y → [0,∞) satisfy

for all y ∈ Y that ‖y‖Y = sup(t,x)∈[0,T ]×Rd
|y(t,x)|/max{1,‖x‖p

Rd
}. Then

(i) it holds that Y = Cc([0, T ]× Rd,R)
Y
and

(ii) it holds that (Y , ‖·‖Y) is a separable R-Banach space.

Proof of Proposition 3.20. Throughout this proof let τn ∈ C(Rd, [0, 1]), n ∈ N, satisfy for
all n ∈ N, x ∈ Rd that

τn(x) = max{min{n+1−‖x‖Rd , 1}, 0} =


1 : ‖x‖Rd ≤ n

n+ 1− ‖x‖Rd : n ≤ ‖x‖Rd ≤ n+ 1

0 : n+ 1 ≤ ‖x‖Rd
, (3.113)

let y ∈ Y , and let yn ∈ C([0, T ] × Rd,R), n ∈ N, satisfy for all n ∈ N, t ∈ [0, T ], x ∈ Rd

that yn(t, x) = τn(x) y(t, x). Note that it holds that (yn)n∈N ⊆ Cc([0, T ]×Rd,R) ⊆ Y and

lim sup
N3n→∞

‖y − yn‖Y = lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd

[
|y(t, x)− τn(x) y(t, x)|

max{1, ‖x‖pRd}

]
= lim sup

N3n→∞
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

[
(1− τn(x))|y(t, x)|

‖x‖pRd

]
≤ lim sup

N3n→∞
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|y(t, x)|
‖x‖pRd

= 0.

(3.114)

This proves that Y ⊆ Cc([0, T ]× Rd,R)
Y
. In addition, observe that the fact that Y ⊇

Cc([0, T ]× Rd,R) ensures that Y ⊇ Cc([0, T ]× Rd,R)
Y
. This finishes the proof of (i). It

thus remains to show (ii). For this let V ⊆ C([0, T ]× Rd,R) be the set given by

V =
{
v ∈ C([0, T ]× Rd,R) : sup(t,x)∈[0,T ]×Rd

[
|v(t,x)|

max{1,‖x‖p
Rd
}

]
<∞

}
, (3.115)

let ‖·‖V : V → [0,∞) satisfy for all v ∈ V that

‖v‖V = sup
(t,x)∈[0,T ]×Rd

[
|v(t, x)|

max{1, ‖x‖pRd}

]
, (3.116)

let v ∈ V , and let (vn)n∈N ⊆ Y ⊆ V be a sequence which satisfies lim supN3n→∞ ‖v− vn‖V
= 0. Note that this implies that

lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|v(t, x)|
‖x‖pRd

≤ lim sup
N3m→∞

lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|v(t, x)− vm(t, x)|
‖x‖pRd

+ lim sup
N3m→∞

lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|vm(t, x)|
‖x‖pRd

≤ lim sup
N3m→∞

sup
(t,x)∈[0,T ]×Rd

[
|v(t, x)− vm(t, x)|

max{1, ‖x‖pRd}

]
= lim sup

N3m→∞
‖v − vm‖V = 0.

(3.117)
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This establishes that v ∈ Y . Therefore, it holds that Y ⊆ V is a closed set. The fact that
(V , ‖·‖V) is an R-Banach space (cf. Lemma 3.17) hence demonstrates that (Y , ‖·‖Y) =
(Y , ‖·‖V |Y) is an R-Banach space. Moreover, note that the fact that (Cc([0, T ] × Rd,R),
‖·‖Y |Cc([0,T ]×Rd,R)) is a separable normed R-vector space (cf. Lemma 3.19) and (i) assure
that

(Y , ‖·‖Y) =
(
Cc([0, T ]× Rd,R)

Y
, ‖·‖Y

∣∣
Cc([0,T ]×Rd,R)

Y

)
(3.118)

is separable. This establishes (ii). The proof of Proposition 3.20 is thus complete.

3.2.1.2 Sufficient conditions for strictly slower growth

Lemma 3.21. Let d ∈ N, T ∈ (0,∞), p ∈ [0,∞), q ∈ (p,∞) and let y ∈ C([0, T ]×Rd,R)
satisfy sup(t,x)∈[0,T ]×Rd

|y(t,x)|/max{1,‖x‖p
Rd
} <∞. Then

lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|y(t, x)|
‖x‖qRd

= 0. (3.119)

Proof of Lemma 3.21. Throughout this proof let C ∈ [0,∞) be the real number which
satisfies C = sup(t,x)∈[0,T ]×Rd

|y(t,x)|/max{1,‖x‖p
Rd
}. Observe that it holds that

lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|y(t, x)|
‖x‖qRd

= lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

[
|y(t, x)|

max{1, ‖x‖pRd}
max{1, ‖x‖pRd}
‖x‖qRd

]
≤ C lim sup

N3n→∞
sup

x∈Rd, ‖x‖Rd≥n

[
max{1, ‖x‖pRd}
‖x‖qRd

]
= C lim sup

N3n→∞
sup

x∈Rd, ‖x‖Rd≥n

1

‖x‖q−pRd
= C lim sup

N3n→∞

1

nq−p
= 0.

(3.120)

The proof of Lemma 3.21 is thus complete.

Lemma 3.22. Let d ∈ N, T, q ∈ (0,∞), let Y =
{
y ∈ C([0, T ] × Rd,R) : lim supN3n→∞

sup(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n
|y(t,x)|/‖x‖q

Rd
= 0
}
, let % = (%1, %2) ∈ C([0, T ]×Rd, [0, T ]×Rd) satisfy

sup(t,x)∈[0,T ]×Rd
‖%2(t,x)‖Rd/max{1,‖x‖Rd} <∞, and let y ∈ Y. Then it holds that y ◦ % ∈ Y.

Proof of Lemma 3.22. Throughout this proof let ε ∈ (0,∞) and let L,N, N ∈ N sat-
isfy sup(t,x)∈[0,T ]×Rd

‖%2(t,x)‖Rd/max{1,‖x‖Rd} ≤ L, sup(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N
|y(t,x)|/‖x‖q

Rd
≤ ε

Lq
, and

ε−1/q sup(t,x)∈[0,T ]×Rd, ‖x‖Rd≤N
|y(t, x)|1/q ≤ N . Observe that it holds for all t ∈ [0, T ], x ∈ Rd

with ‖x‖Rd ≥ N and ‖%2(t, x)‖Rd ≤ N that

|y(%(t, x))| = |y(%1(t, x), %2(t, x))| ≤ sup
(s,x)∈[0,T ]×Rd, ‖x‖Rd≤N

|y(s,x)| ≤ εN q ≤ ε‖x‖qRd . (3.121)

In addition, note that it holds for all t ∈ [0, T ], x ∈ Rd with ‖x‖Rd ≥ 1 and ‖%2(t, x)‖Rd ≥
N that

|y(%(t, x))| ≤

[
sup

(s,x)∈[0,T ]×Rd, ‖x‖Rd≥N

|y(s,x)|
‖x‖qRd

]
‖%2(t, x)‖qRd

≤ ε

Lq
· Lq max{1, ‖x‖qRd} = ε‖x‖qRd .

(3.122)
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This and (3.121) establish for all n ∈ {N,N + 1, . . .} that

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|y(%(t, x))|
‖x‖qRd

≤ sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

|y(%(t, x))|
‖x‖qRd

≤ ε. (3.123)

The fact that y ◦ % ∈ C([0, T ]× Rd,R) thus completes the proof of Lemma 3.22.

Corollary 3.23. Let d ∈ N, T ∈ (0,∞), L, p ∈ [0,∞), q ∈ (p,∞), let Y =
{
y ∈

C([0, T ] × Rd,R) : lim supN3n→∞ sup(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n
|y(t,x)|/‖x‖q

Rd
= 0

}
, and let % =

(%1, %2) ∈ C([0, T ], [0, T ]×Rd), f ∈ C([0, T ]×Rd ×R,R), y ∈ Y satisfy for all t ∈ [0, T ],
x ∈ Rd, v, w ∈ R that |f(t, x, 0)| ≤ Lmax{1, ‖x‖pRd} and |f(t, x, v)−f(t, x, w)| ≤ L|v−w|.
Then

(i) it holds that ([0, T ]× Rd 3 (t, x) 7→ y(%1(t), x+ %2(t)) ∈ R) ∈ Y and

(ii) it holds that ([0, T ]× Rd 3 (t, x) 7→ f(%1(t), x+ %2(t), y(t, x)) ∈ R) ∈ Y.

Proof of Corollary 3.23. Note that it holds that

sup
(t,x)∈[0,T ]×Rd

[
‖x+ %2(t)‖Rd
max{1, ‖x‖Rd}

]
≤ sup

(t,x)∈[0,T ]×Rd

[
‖x‖Rd

max{1, ‖x‖Rd}
+

‖%2(t)‖Rd
max{1, ‖x‖Rd}

]
≤ 1 + sup

t∈[0,T ]

‖%2(t)‖Rd <∞.
(3.124)

Lemma 3.22 (with d ← d, T ← T , q ← q, Y ← Y , % ← ([0, T ] × Rd 3 (t, x) 7→
(%1(t), x + %2(t)) ∈ [0, T ]× Rd), y ← y in the notation of Lemma 3.22) hence shows that
([0, T ] × Rd 3 (t, x) 7→ y(%1(t), x + %2(t)) ∈ R) ∈ Y . This proves (i). Next observe that
Lemma 3.21 (with d← d, T ← T , p← p, q ← q, y ← ([0, T ]×Rd 3 (t, x) 7→ f(t, x, 0) ∈ R)
in the notation of Lemma 3.21) ensures that ([0, T ] × Rd 3 (t, x) 7→ f(t, x, 0) ∈ R) ∈ Y .
Combining this with (i) implies that ([0, T ]×Rd 3 (t, x) 7→ f(%1(t), x+%2(t), 0) ∈ R) ∈ Y .
Therefore, we obtain that

lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

[
|f(%1(t), x+ %2(t), y(t, x))|

‖x‖qRd

]
≤ lim sup

N3n→∞
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

[
|f(%1(t), x+ %2(t), 0)|

‖x‖qRd

]
(3.125)

+ lim sup
N3n→∞

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

[
|f(%1(t), x+ %2(t), y(t, x))− f(%1(t), x+ %2(t), 0)|

‖x‖qRd

]
≤ L lim sup

N3n→∞
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|y(t, x)|
‖x‖qRd

= 0.

This and the fact that ([0, T ]×Rd 3 (t, x) 7→ f(%1(t), x+ %2(t), y(t, x)) ∈ R) ∈ C([0, T ]×
Rd,R) establish (ii). The proof of Corollary 3.23 is thus complete.

3.2.1.3 Growth estimate for compositions

Lemma 3.24. Let d ∈ N, T ∈ (0,∞), p ∈ [0,∞), L ∈ [1,∞), let J·K : C([0, T ]×Rd,R)→
[0,∞] satisfy for all v ∈ C([0, T ]× Rd,R) that JvK = sup(t,x)∈[0,T ]×Rd

|v(t,x)|/max{1,‖x‖p
Rd
}, let
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% = (%1, %2) ∈ C([0, T ]×Rd, [0, T ]×Rd) satisfy for all t ∈ [0, T ], x ∈ Rd that ‖%2(t, x)‖Rd ≤
Lmax{1, ‖x‖Rd}, and let v ∈ C([0, T ]×Rd,R). Then it holds that v◦% ∈ C([0, T ]×Rd,R)
and Jv ◦ %K ≤ LpJvK.

Proof of Lemma 3.24. Observe that it holds that v ◦ % ∈ C([0, T ] × Rd,R). In addition,
note that it holds that

Jv ◦ %K = sup
(t,x)∈[0,T ]×Rd

[
|v(%(t, x))|

max{1, ‖x‖pRd}

]
≤ JvK sup

(t,x)∈[0,T ]×Rd

[
max{1, ‖%2(t, x)‖pRd}

max{1, ‖x‖pRd}

]
≤ JvK sup

x∈Rd

[
max

{
1, Lp max{1, ‖x‖pRd}

}
max{1, ‖x‖pRd}

]
= LpJvK.

(3.126)

The proof of Lemma 3.24 is thus complete.

3.2.2 Verification of the assumed properties

3.2.2.1 Setting

Setting 3.1. Let d ∈ N, ξ ∈ Rd, T ∈ (0,∞), L, p ∈ [0,∞), q ∈ (p,∞), Θ =
⋃∞
n=1 Zn,

(Mj)j∈N ⊆ N, let (Ω,F ,P) be a probability space, let U : Ω → [0, 1] and U θ : Ω → [0, 1],
θ ∈ Θ, be on [0, 1] uniformly distributed random variables, let W : [0, T ] × Ω → Rd and
W θ : [0, T ]×Ω→ Rd, θ ∈ Θ, be standard Brownian motions with continuous sample paths,
assume that (U θ,W θ), θ ∈ Θ, are independent, assume that U, W, (U θ)θ∈Θ, and (W θ)θ∈Θ

are independent, let f ∈ C([0, T ]×Rd×R,R), g ∈ C(Rd,R), y ∈ C([0, T ]×Rd,R) satisfy
for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that max{|f(t, x, 0)|, |g(x)|} ≤ Lmax{1, ‖x‖pRd},
|f(t, x, v)− f(t, x, w)| ≤ L|v − w|, sup(s,x)∈[0,T ]×Rd

|y(s,x)|/max{1,‖x‖p
Rd
} <∞, and

y(t, x) = E
[
g(x+ WT−t) +

∫ T

t

f
(
s, x+ Ws−t, y(s, x+ Ws−t)

)
ds

]
, (3.127)

let Y θ
n,j : [0, T ] × Rd × Ω → R, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪ {−1}), satisfy for all n, j ∈ N,

θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that Y θ
−1,j(t, x) = Y θ

0,j(t, x) = 0 and

Y θ
n,j(T − t, x) = 1

(Mj)n

[
(Mj)

n∑
i=1

g
(
x+W

(θ,0,i)
t

)]
+

n−1∑
l=0

t
(Mj)n−l

[
(Mj)

n−l∑
i=1[

f
(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))
(3.128)

− 1N(l)f
(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))]]
,

let Y ⊆ C([0, T ]× Rd,R) be the set given by

Y =

{
v ∈ C([0, T ]× Rd,R) : lim sup

N3n→∞
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|v(t, x)|
‖x‖qRd

= 0

}
, (3.129)

let ‖·‖Y : Y → [0,∞) satisfy for all v ∈ Y that

‖v‖Y = sup
(t,x)∈[0,T ]×Rd

[
|v(t, x)|

max{1, ‖x‖qRd}

]
, (3.130)
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let Z = [0, 1] × C([0, T ],Rd), let dZ : Z × Z → [0,∞) satisfy for all z = (u,w),Z =
(U,W) ∈ Z that

dZ(z,Z) = |u− U|+ ‖w−W‖C([0,T ],Rd) = |u− U|+ sup
t∈[0,T ]

‖w(t)−W(t)‖Rd , (3.131)

let Zθ : Ω→ Z, θ ∈ Θ, satisfy for all θ ∈ Θ that Zθ = (U θ,W θ), let ψk : Ω→ Y∗, k ∈ N0,
satisfy for all k ∈ N0, ω ∈ Ω, v ∈ Y that

[ψk(ω)](v) =

{
v(0, ξ) : k = 0√

(U(ω))k−1

(k−1)!
v
(
U(ω)T, ξ + WU(ω)T (ω)

)
: k ∈ N

, (3.132)

and let Φl : Y × Y × Z → Y, l ∈ N0, satisfy for all l ∈ N0, v, w ∈ Y, z = (u,w) ∈ Z,
t ∈ [0, T ], x ∈ Rd that

[Φl(v, w, z)](T − t, x)

=


g(x+ wt) + tf

(
T − t+ ut, x+ wut, v(T − t+ ut, x+ wut)

)
: l = 0

t
[
f
(
T − t+ ut, x+ wut, v(T − t+ ut, x+ wut)

)
− f
(
T − t+ ut, x+ wut, w(T − t+ ut, x+ wut)

)] : l ∈ N
(3.133)

(cf. Lemma 3.21 and Corollary 3.23).

3.2.2.2 Measurability

Lemma 3.25. Assume Setting 3.1 and let S = σY∗
({
{ϕ ∈ Y∗ : ϕ(v) ∈ B} ⊆ Y∗ : v ∈

Y , B ∈ B(R)
})

. Then it holds for all k ∈ N0 that ψk : Ω → Y∗ is an F/S -measurable
function.

Proof of Lemma 3.25. Note that it holds for all k ∈ N0, v ∈ Y that Ω 3 ω 7→ [ψk(ω)](v) ∈
R is an F/B(R)-measurable function. Lemma 3.1 (with E ← Y , (F ,F ) ← (R,B(R)),
(G,G ) ← (Ω,F ), S ← Y∗, S ← S , ψ ← ψk for k ∈ N0 in the notation of Lemma 3.1)
hence proves for all k ∈ N0 that ψk : Ω→ Y∗ is an F/S -measurable function. The proof
of Lemma 3.25 is thus complete.

Lemma 3.26. Assume Setting 3.1. Then

(i) it holds for all l ∈ N0 that Φl : Y × Y × Z → Y is a continuous function and

(ii) it holds for all l ∈ N0 that Φl : Y × Y × Z → Y is a (B(Y) ⊗B(Y) ⊗Z )/B(Y)-
measurable function.

Proof of Lemma 3.26. Throughout this proof let ϕ1 : Z → C([0, T ],Rd), ϕ2, ϕ3, F : Y ×
Z → Y , ϕ4 : Y → Y , Ψ1,Ψ2 : Y ×Z → Y ×Z, g ∈ Y , G : Z → Y satisfy for all v, w ∈ Y ,
z = (u,w) ∈ Z, t ∈ [0, T ], x ∈ Rd that

[ϕ1(z)](t) = wut, Ψ1(v, z) = (v, u, ϕ1(z)), (3.134)
[ϕ2(v, z)](t, x) = v(T − t+ ut, x+ wt), Ψ2(v, z) = (ϕ2(v, z), z), (3.135)
[ϕ3(v, z)](t, x) = tf

(
T − t+ ut, x+ wt, v(t, x)

)
, g(t, x) = g(x), (3.136)

[ϕ4(v)](t, x) = v(T − t, x), G(z) = ϕ4(ϕ2(g, z)), (3.137)

73



Chapter 3. Generalised multilevel Picard approximations

and F = ϕ4 ◦ ϕ3 ◦ Ψ2 ◦ Ψ1 (cf. Corollary 3.23). Note that it holds for all v ∈ Y ,
z = (u,w) ∈ Z, t ∈ [0, T ], x ∈ Rd that

[G(z)](T − t, x) = [ϕ4(ϕ2(g, z))](T − t, x) = [ϕ2(g, z)](t, x)

= g(T − t+ ut, x+ wt) = g(x+ wt)
(3.138)

and

[F (v, z)](T − t, x) =
[
ϕ4

(
(ϕ3 ◦Ψ2 ◦Ψ1)(v, z)

)]
(T − t, x)

= [(ϕ3 ◦Ψ2 ◦Ψ1)(v, z)](t, x) =
[
(ϕ3 ◦Ψ2)

(
v, u, ϕ1(z)

)]
(t, x)

=
[
ϕ3

(
ϕ2

(
v, u, ϕ1(z)

)
, u, ϕ1(z)

)]
(t, x)

= tf
(
T − t+ ut, x+ [ϕ1(z)](t),

[
ϕ2

(
v, u, ϕ1(z)

)]
(t, x)

)
= tf

(
T − t+ ut, x+ [ϕ1(z)](t), v

(
T − t+ ut, x+ [ϕ1(z)](t)

))
= tf

(
T − t+ ut, x+ wut, v(T − t+ ut, x+ wut)

)
.

(3.139)

Combining (3.138)–(3.139) with (3.133) ensures for all l ∈ N, v, w ∈ Y , z ∈ Z that

Φ0(v, w, z) = G(z) + F (v, z) and Φl(v, w, z) = F (v, z)− F (w, z). (3.140)

In the following we establish that G : Z → Y and F : Y×Z → Y are continuous functions.
First, we show that ϕ1 : Z → C([0, T ],Rd) is a continuous function. Throughout this

paragraph let ε ∈ (0,∞), Z = (U,W) ∈ Z and let ∆, δ ∈ (0,∞) be real numbers which
satisfy sups,t∈[0,T ], |s−t|≤∆‖Ws −Wt‖Rd ≤ ε

2
and δ = min

{
∆
T
, ε

2

}
. Observe that it holds for

all z = (u,w) ∈ Z with dZ(z,Z) = |u− U|+ ‖w−W‖C([0,T ],Rd) ≤ δ that

‖ϕ1(z)− ϕ1(Z)‖C([0,T ],Rd) = sup
t∈[0,T ]

‖wut −WUt‖Rd

≤
[

sup
t∈[0,T ]

‖wut −Wut‖Rd
]

+

[
sup
t∈[0,T ]

‖Wut −WUt‖Rd
]

≤
[

sup
t∈[0,T ]

‖wt −Wt‖Rd
]

+

[
sup

s,t∈[0,T ], |s−t|≤Tδ
‖Ws −Wt‖Rd

]
≤ ‖w−W‖C([0,T ],Rd) +

[
sup

s,t∈[0,T ], |s−t|≤∆

‖Ws −Wt‖Rd
]

≤ δ + ε
2
≤ ε

2
+ ε

2
= ε.

(3.141)

It thus holds that ϕ1 : Z → C([0, T ],Rd) is a continuous function. Note that this ensures
that Ψ1 : Y × Z → Y ×Z is a continuous function.

Second, we claim that ϕ2 : Y × Z → Y is a continuous function. Throughout this
paragraph let ε ∈ (0,∞), v ∈ Y , Z = (U,W) ∈ Z and let N ∈ N, R,∆, δ ∈ (0,∞) be real
numbers which satisfy

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

|v(t, x)|
‖x‖qRd

≤ ε

12 + 6 ‖W‖C([0,T ],Rd)

, (3.142)

R = 1 + ‖W‖C([0,T ],Rd), sup
(s,x),(t,x)∈[0,T ]×{w∈Rd : ‖w‖Rd≤N+2R},

|s−t|+‖x−x‖Rd≤∆

|v(s,x)− v(t, x)| ≤ ε
3
, (3.143)
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and
δ = min

{
1,

∆

max{1, T}
,

ε

3 (2 + ‖W‖C([0,T ],Rd))q

}
. (3.144)

Note that it holds for all w ∈ C([0, T ],Rd), t ∈ [0, T ], x ∈ Rd with ‖w−W‖C([0,T ],Rd) ≤ 1
that

‖x+ wt‖Rd ≤ ‖x‖Rd + ‖wt‖Rd ≤
(
1 + ‖w‖C([0,T ],Rd)

)
max{1, ‖x‖Rd}

≤
(
1 + ‖w−W‖C([0,T ],Rd) + ‖W‖C([0,T ],Rd)

)
max{1, ‖x‖Rd}

≤
(
2 + ‖W‖C([0,T ],Rd)

)
max{1, ‖x‖Rd}.

(3.145)

This and Lemma 3.24 (with d ← d, T ← T , p ← q, L ← 2 + ‖W‖C([0,T ],Rd), % ←
([0, T ] × Rd 3 (t, x) 7→ (T − t + ut, x + wt) ∈ [0, T ] × Rd), v ← v − v for (u,w) ∈ Z,
v ∈ Y with ‖w −W‖C([0,T ],Rd) ≤ 1 in the notation of Lemma 3.24) imply for all v ∈ Y ,
(u,w) ∈ Z with ‖w−W‖C([0,T ],Rd) ≤ 1 that

sup
(t,x)∈[0,T ]×Rd

[
|v(T − t+ ut, x+ wt)− v(T − t+ ut, x+ wt)|

max{1, ‖x‖qRd}

]
≤
(
2 + ‖W‖C([0,T ],Rd)

)q‖v − v‖Y .
(3.146)

In addition, observe that it holds for all w ∈ C([0, T ],Rd), t ∈ [0, T ], x ∈ Rd with
‖w−W‖C([0,T ],Rd) ≤ 1 and ‖x‖Rd ≥ N +R that

‖x+ wt‖Rd ≥ ‖x‖Rd − ‖wt‖Rd ≥ N + 1 + ‖W‖C([0,T ],Rd) − ‖w‖C([0,T ],Rd) ≥ N. (3.147)

This, (3.145), and (3.142) establish for all v ∈ Y , (u,w) ∈ Z with ‖w−W‖C([0,T ],Rd) ≤ 1
that

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N+R

[
|v(T − t+ ut, x+ wt)|

‖x‖qRd

]
= sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N+R

[ ‖x+ wt‖qRd
max{1, ‖x‖qRd}

|v(T − t+ ut, x+ wt)|
‖x+ wt‖qRd

]
≤
[

sup
(t,x)∈[0,T ]×Rd

‖x+ wt‖qRd
max{1, ‖x‖qRd}

][
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

|v(t, x)|
‖x‖qRd

]
≤
(
2 + ‖W‖C([0,T ],Rd)

) ε

12 + 6 ‖W‖C([0,T ],Rd)

= ε
6
.

(3.148)

Furthermore, note that it holds for all z = (u,w) ∈ Z, t ∈ [0, T ], x ∈ Rd with dZ(z,Z) =
|u− U|+ ‖w−W‖C([0,T ],Rd) ≤ δ and ‖x‖Rd ≤ N +R that

‖x+ wt‖Rd ≤ ‖x‖Rd + ‖wt‖Rd ≤ N +R + ‖w‖C([0,T ],Rd)

≤ N +R + ‖w−W‖C([0,T ],Rd) + ‖W‖C([0,T ],Rd)

≤ N +R + 1 + ‖W‖C([0,T ],Rd) = N + 2R

(3.149)

and

|T − t+ ut− (T − t+ Ut)|+ ‖x+ wt − (x+ Wt)‖Rd = |u− U|t+ ‖wt −Wt‖Rd
≤ |u− U|T + ‖w−W‖C([0,T ],Rd) ≤ max{1, T}δ.

(3.150)
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Combining (3.149)–(3.150) with (3.146), (3.148), (3.144), and (3.143) ensures for all v ∈ Y ,
z = (u,w) ∈ Z with ‖v − v‖Y + dZ(z,Z) ≤ δ that

‖ϕ2(v, z)− ϕ2(v,Z)‖Y

= sup
(t,x)∈[0,T ]×Rd

[
|v(T − t+ ut, x+ wt)− v(T − t+ Ut, x+ Wt)|

max{1, ‖x‖qRd}

]
≤
[

sup
(t,x)∈[0,T ]×Rd

|v(T − t+ ut, x+ wt)− v(T − t+ ut, x+ wt)|
max{1, ‖x‖qRd}

]
+

[
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≤N+R

|v(T − t+ ut, x+ wt)− v(T − t+ Ut, x+ Wt)|
max{1, ‖x‖qRd}

]
+

[
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N+R

|v(T − t+ ut, x+ wt)− v(T − t+ Ut, x+ Wt)|
max{1, ‖x‖qRd}

]
(3.151)

≤
(
2 + ‖W‖C([0,T ],Rd)

)q‖v − v‖Y + sup
(s,x),(t,x)∈[0,T ]×{w∈Rd : ‖w‖Rd≤N+2R},

|s−t|+‖x−x‖Rd≤max{1,T}δ

|v(s,x)− v(t, x)|

+ sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N+R

[
|v(T − t+ ut, x+ wt)|

‖x‖qRd
+
|v(T − t+ Ut, x+ Wt)|

‖x‖qRd

]
≤
(
2 + ‖W‖C([0,T ],Rd)

)q
δ + 2ε

6
+ sup

(s,x),(t,x)∈[0,T ]×{w∈Rd : ‖w‖Rd≤N+2R},
|s−t|+‖x−x‖Rd≤∆

|v(s,x)− v(t, x)|

≤ ε
3

+ ε
3

+ ε
3

= ε.

This proves that ϕ2 : Y ×Z → Y is a continuous function. Observe that this implies that
Ψ2 : Y × Z → Y ×Z is a continuous function.

Third, we establish that ϕ3 : Y × Z → Y is a continuous function. Throughout this
paragraph let ε ∈ (0,∞), v ∈ Y , Z = (U,W) ∈ Z and let N ∈ N, R,∆, δ ∈ (0,∞) be real
numbers which satisfy N ≥ (6LT (2 + ‖W‖C([0,T ],Rd))

pε−1)1/(q−p) and

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

[
L|v(t, x)|+ |f(T − t+ Ut, x+ Wt,v(t, x))|

‖x‖qRd

]
≤ ε

6T
, (3.152)

R = 1+‖W‖C([0,T ],Rd), sup
(s,x),(t,x)∈[0,T ]×{w∈Rd : ‖w‖Rd≤N+R},
v∈R, |v|≤‖v‖YNq , |s−t|+‖x−x‖Rd≤∆

|f(s,x, v)−f(t, x, v)| ≤ ε
3T
, (3.153)

and

δ = min

{
1,

∆

max{1, T}
,

ε

3 max{1, LT}

}
(3.154)

(cf. (ii) in Corollary 3.23). Note that it holds for all v ∈ Y , z = (u,w) ∈ Z that

‖ϕ3(v, z)− ϕ3(v,Z)‖Y

= sup
(t,x)∈[0,T ]×Rd

[
t|f(T − t+ ut, x+ wt, v(t, x))− f(T − t+ Ut, x+ Wt,v(t, x))|

max{1, ‖x‖qRd}

]
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≤ T sup
(t,x)∈[0,T ]×Rd

[
|f(T − t+ ut, x+ wt, v(t, x))− f(T − t+ ut, x+ wt,v(t, x))|

max{1, ‖x‖qRd}

]
(3.155)

+ T sup
(t,x)∈[0,T ]×Rd,
‖x‖Rd≤N

[
|f(T − t+ ut, x+ wt,v(t, x))− f(T − t+ Ut, x+ Wt,v(t, x))|

max{1, ‖x‖qRd}

]

+ T sup
(t,x)∈[0,T ]×Rd,
‖x‖Rd≥N

[
|f(T − t+ ut, x+ wt,v(t, x))− f(T − t+ Ut, x+ Wt,v(t, x))|

‖x‖qRd

]
.

Next observe that it holds for all z = (u,w) ∈ Z, t ∈ [0, T ], x ∈ Rd with dZ(z,Z) =
|u − U| + ‖w −W‖C([0,T ],Rd) ≤ δ and ‖x‖Rd ≤ N that ‖x + wt‖Rd ≤ N + R, |v(t, x)| ≤
‖v‖Y max{1, ‖x‖qRd} ≤ ‖v‖YN

q, and

|T − t+ ut− (T − t+ Ut)|+ ‖x+ wt − (x+ Wt)‖Rd ≤ max{1, T}δ. (3.156)

This and (3.153) show for all z = (u,w) ∈ Z with dZ(z,Z) ≤ δ that

sup
(t,x)∈[0,T ]×Rd,
‖x‖Rd≤N

[
|f(T − t+ ut, x+ wt,v(t, x))− f(T − t+ Ut, x+ Wt,v(t, x))|

max{1, ‖x‖qRd}

]
≤ sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≤N
|f(T − t+ ut, x+ wt,v(t, x))− f(T − t+ Ut, x+ Wt,v(t, x))|

≤ sup
(s,x),(t,x)∈[0,T ]×{w∈Rd : ‖w‖Rd≤N+R},

v∈R, |v|≤‖v‖YNq , |s−t|+‖x−x‖Rd≤max{1,T}δ

|f(s,x, v)− f(t, x, v)| (3.157)

≤ sup
(s,x),(t,x)∈[0,T ]×{w∈Rd : ‖w‖Rd≤N+R},
v∈R, |v|≤‖v‖YNq , |s−t|+‖x−x‖Rd≤∆

|f(s,x, v)− f(t, x, v)| ≤ ε
3T
.

Furthermore, (3.152) and (3.145) ensure for all (u,w) ∈ Z with ‖w −W‖C([0,T ],Rd) ≤ 1
that

sup
(t,x)∈[0,T ]×Rd,
‖x‖Rd≥N

[
|f(T − t+ ut, x+ wt,v(t, x))− f(T − t+ Ut, x+ Wt,v(t, x))|

‖x‖qRd

]

≤ sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

[
|f(T − t+ ut, x+ wt,v(t, x))− f(T − t+ ut, x+ wt, 0)|

‖x‖qRd

+
|f(T − t+ ut, x+ wt, 0)− f(T − t+ Ut, x+ Wt,v(t, x))|

‖x‖qRd

]
≤
[

sup
(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

L|v(t, x)|+ |f(T − t+ Ut, x+ Wt,v(t, x))|
‖x‖qRd

]
(3.158)

+

[
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

|f(T − t+ ut, x+ wt, 0)|
‖x‖qRd

]
≤ ε

6T
+ L

[
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥N

max{1, ‖x+ wt‖pRd}
‖x‖qRd

]
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≤ ε
6T

+ L
(
2 + ‖W‖C([0,T ],Rd)

)p[
sup

x∈Rd, ‖x‖Rd≥N

1

‖x‖q−pRd

]
= ε

6T
+ L

(
2 + ‖W‖C([0,T ],Rd)

)p 1

N q−p ≤
ε

6T
+ ε

6T
= ε

3T
.

Combining (3.155) with (3.157), (3.158), and (3.154) establishes for all v ∈ Y , z = (u,w) ∈
Z with ‖v − v‖Y + dZ(z,Z) ≤ δ that

‖ϕ3(v, z)− ϕ3(v,Z)‖Y ≤ LT‖v − v‖Y + 2ε
3
≤ LTδ + 2ε

3
≤ ε

3
+ 2ε

3
= ε. (3.159)

From this it follows that ϕ3 : Y × Z → Y is a continuous function.
As a next step observe that the fact that ϕ2, Ψ1, Ψ2, and ϕ3 are continuous functions,

the fact that Z 3 z 7→ (g, z) ∈ Y×Z is a continuous function, and the fact that ϕ4 : Y → Y
is a linear isometry demonstrate that G : Z → Y and F : Y × Z → Y are continuous
functions. Combining this with (3.140) proves (i). Finally, the fact that (Y , ‖·‖Y) is a
separable R-Banach space (cf. (ii) in Proposition 3.20), the fact that (Z,dZ) is a separable
metric space, and (i) establish (ii). The proof of Lemma 3.26 is thus complete.

3.2.2.3 Recursive formulation

Lemma 3.27. Assume Setting 3.1. Then

(i) it holds for all n ∈ (N0 ∪ {−1}), j ∈ N, θ ∈ Θ that Y θ
n,j(Ω) ⊆ Y,

(ii) it holds for all n, j ∈ N, θ ∈ Θ that Y θ
−1,j = Y θ

0,j = 0 and

Y θ
n,j =

n−1∑
l=0

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
, (3.160)

and

(iii) it holds for all n ∈ (N0 ∪ {−1}), j ∈ N, θ ∈ Θ that Ω 3 ω 7→ Y θ
n,j(ω) ∈ Y is an

F/B(Y)-measurable function.

Proof of Lemma 3.27. We show (i)–(ii) by induction on n ∈ N. For the base case n = 1
note that the fact that ∀ j ∈ N, θ ∈ Θ: Y θ

−1,j = Y θ
0,j = 0 implies for all j ∈ N, θ ∈ Θ that

Y θ
−1,j, Y

θ
0,j ∈ Y . (3.161)

Next observe that (3.128) and (3.133) ensure for all j ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

Y θ
1,j(T − t, x) = 1

Mj

[
Mj∑
i=1

g
(
x+W

(θ,0,i)
t

)]

+ t
Mj

[
Mj∑
i=1

f
(
T − t+ U (θ,0,i)t, x+W

(θ,0,i)

U(θ,0,i)t
, Y

(θ,0,i)
0,j

(
T − t+ U (θ,0,i)t, x+W

(θ,0,i)

U(θ,0,i)t

))]

= 1
Mj

[
Mj∑
i=1

[
Φ0

(
Y

(θ,0,i)
0,j , Y

(θ,0,i)
−1,j , Z(θ,0,i)

)]
(T − t, x)

]
. (3.162)
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This and (3.161) prove (i)–(ii) in the base case n = 1. For the induction step N 3 n−1→
n ∈ {2, 3, . . .} let n ∈ {2, 3, . . .} and assume for all l ∈ {−1, 0, 1, . . . , n− 1}, j ∈ N, θ ∈ Θ
that Y θ

l,j(Ω) ⊆ Y . Equations (3.128) and (3.133) hence demonstrate for all j ∈ N, θ ∈ Θ,
t ∈ [0, T ], x ∈ Rd that

Y θ
n,j(T − t, x) = 1

(Mj)n

[
(Mj)

n∑
i=1

g
(
x+W

(θ,0,i)
t

)]
+

n−1∑
l=0

t
(Mj)n−l

[
(Mj)

n−l∑
i=1[

f
(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))
− 1N(l)f

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))]]

= 1
(Mj)n

[
(Mj)

n∑
i=1

g
(
x+W

(θ,0,i)
t

)]

+ t
(Mj)n

[
(Mj)

n∑
i=1

f
(
T − t+ U (θ,0,i)t, x+W

(θ,0,i)

U(θ,0,i)t
, Y

(θ,0,i)
0,j

(
T − t+ U (θ,0,i)t, x+W

(θ,0,i)

U(θ,0,i)t

))]

+
n−1∑
l=1

t
(Mj)n−l

[
(Mj)

n−l∑
i=1

(3.163)[
f
(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))
− f

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))]]

= 1
(Mj)n

[
(Mj)

n∑
i=1

[
Φ0

(
Y

(θ,0,i)
0,j , Y

(θ,0,i)
−1,j , Z(θ,0,i)

)]
(T − t, x)

]

+
n−1∑
l=1

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

[
Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
(T − t, x)

]

=
n−1∑
l=0

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

[
Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
(T − t, x)

]
.

Induction hence establishes (i)–(ii).
Furthermore, combining (i)–(ii) with (ii) in Lemma 3.26 and (i) in Proposition 3.8

shows (iii). The proof of Lemma 3.27 is thus complete.

3.2.2.4 Integrability

Lemma 3.28. Assume Setting 3.1. Then it holds for all l ∈ N0, j ∈ N, r ∈ [0,∞) that

E
[∥∥Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)∥∥r
Y +

∥∥Y 0
l−1,j

∥∥r
Y

]
<∞ (3.164)

(cf. (iii) in Lemma 3.27).
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Proof of Lemma 3.28. First of all, note that it holds for all (u,w) ∈ Z, t ∈ [0, T ], x ∈ Rd

that

‖x+ wut‖Rd ≤ ‖x‖Rd + ‖wut‖Rd ≤
(

1 + sup
s∈[0,T ]

‖ws‖Rd
)

max{1, ‖x‖Rd}. (3.165)

This and Lemma 3.24 (with d ← d, T ← T , p ← p, L ← 1 + supt∈[0,T ]‖wt‖Rd , % ←
([0, T ] × Rd 3 (t, x) 7→ (t, x + wt) ∈ [0, T ] × Rd), v ← ([0, T ] × Rd 3 (t, x) 7→ g(x) ∈ R)
for w ∈ C([0, T ],Rd) in the notation of Lemma 3.24) show for all w ∈ C([0, T ],Rd) that

sup
(t,x)∈[0,T ]×Rd

[
|g(x+ wt)|

max{1, ‖x‖qRd}

]
≤ sup

(t,x)∈[0,T ]×Rd

[
|g(x+ wt)|

max{1, ‖x‖pRd}

]
≤
(

1 + sup
t∈[0,T ]

‖wt‖Rd
)p

sup
(t,x)∈[0,T ]×Rd

[
|g(x)|

max{1, ‖x‖pRd}

]
≤ L

(
1 + sup

t∈[0,T ]

‖wt‖Rd
)p
.

(3.166)

Similarly, (3.165) and Lemma 3.24 (with d← d, T ← T , p← p, L← 1+supt∈[0,T ]‖wt‖Rd ,
%← ([0, T ]×Rd 3 (t, x) 7→ (T − t+ut, x+wut) ∈ [0, T ]×Rd), v ← ([0, T ]×Rd 3 (t, x) 7→
tf(t, x, 0) ∈ R) for (u,w) ∈ Z in the notation of Lemma 3.24) ensure for all (u,w) ∈ Z
that

sup
(t,x)∈[0,T ]×Rd

[
|tf(T − t+ ut, x+ wut, 0)|

max{1, ‖x‖qRd}

]
≤ sup

(t,x)∈[0,T ]×Rd

[
|tf(T − t+ ut, x+ wut, 0)|

max{1, ‖x‖pRd}

]
≤
(

1 + sup
t∈[0,T ]

‖wt‖Rd
)p

sup
(t,x)∈[0,T ]×Rd

[
|tf(t, x, 0)|

max{1, ‖x‖pRd}

]
(3.167)

≤ T

(
1 + sup

t∈[0,T ]

‖wt‖Rd
)p

sup
(t,x)∈[0,T ]×Rd

[
|f(t, x, 0)|

max{1, ‖x‖pRd}

]
≤ LT

(
1 + sup

t∈[0,T ]

‖wt‖Rd
)p
.

Combining (3.133), (3.166), and (3.167) implies for all w ∈ Y , z = (u,w) ∈ Z that

‖Φ0(0, w, z)‖Y = sup
(t,x)∈[0,T ]×Rd

[
|[Φ0(0, w, z)](T − t, x)|

max{1, ‖x‖qRd}

]
≤
[

sup
(t,x)∈[0,T ]×Rd

|g(x+ wt)|
max{1, ‖x‖qRd}

]
+

[
sup

(t,x)∈[0,T ]×Rd

|tf(T − t+ ut, x+ wut, 0)|
max{1, ‖x‖qRd}

]
≤ L(T + 1)

(
1 + sup

t∈[0,T ]

‖wt‖Rd
)p
.

(3.168)

In addition, (3.133), (3.165) and Lemma 3.24 (with d ← d, T ← T , p ← q, L ←
1 + supt∈[0,T ]‖wt‖Rd , % ← ([0, T ] × Rd 3 (t, x) 7→ (T − t + ut, x + wut) ∈ [0, T ] × Rd),
v ← v − w for (u,w) ∈ Z, v, w ∈ Y in the notation of Lemma 3.24) prove for all l ∈ N,
v, w ∈ Y , z = (u,w) ∈ Z that

‖Φl(v, w, z)‖Y = sup
(t,x)∈[0,T ]×Rd

[
|[Φl(v, w, z)](T − t, x)|

max{1, ‖x‖qRd}

]
= sup

(t,x)∈[0,T ]×Rd

[
t

max{1, ‖x‖qRd}
∣∣f(T − t+ ut, x+ wut, v(T − t+ ut, x+ wut)

)
− f
(
T − t+ ut, x+ wut, w(T − t+ ut, x+ wut)

)∣∣]
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≤ LT sup
(t,x)∈[0,T ]×Rd

[
|v(T − t+ ut, x+ wut)− w(T − t+ ut, x+ wut)|

max{1, ‖x‖qRd}

]
(3.169)

≤ LT

(
1 + sup

t∈[0,T ]

‖wt‖Rd
)q

sup
(t,x)∈[0,T ]×Rd

[
|v(t, x)− w(t, x)|
max{1, ‖x‖qRd}

]
= LT

(
1 + sup

t∈[0,T ]

‖wt‖Rd
)q
‖v − w‖Y .

Next we claim that it holds for all l ∈ N0, j ∈ N, r ∈ [0,∞) that

E
[∥∥Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)∥∥r
Y +

∥∥Y 0
l,j

∥∥r
Y +

∥∥Y 0
l−1,j

∥∥r
Y

]
<∞. (3.170)

We establish (3.170) by induction on l ∈ N0. For the base case l = 0 observe that (3.168)
and the fact that ∀ a, b, r ∈ [0,∞) : (a + b)r ≤ 2max{r−1,0}(ar + br) show for all j ∈ N,
r ∈ [0,∞) that

E
[∥∥Φ0

(
Y 0

0,j, Y
1
−1,j, Z

0
)∥∥r
Y

]
= E

[∥∥Φ0

(
0, 0, U0,W 0

)∥∥r
Y

]
≤ Lr(T + 1)r E

[(
1 + sup

t∈[0,T ]

‖W 0
t ‖Rd

)pr ]
≤ 2max{pr−1,0}Lr(T + 1)r

(
1 + E

[
sup
t∈[0,T ]

‖W 0
t ‖

pr
Rd

])
<∞.

(3.171)

This and the fact that ∀ j ∈ N, r ∈ [0,∞) : E
[
‖Y 0

0,j‖rY + ‖Y 0
−1,j‖rY

]
= 0 <∞ prove (3.170)

in the base case l = 0. For the induction step N0 3 l − 1 → l ∈ N let l ∈ N and assume
that it holds for all k ∈ {0, 1, . . . , l − 1}, j ∈ N, r ∈ [0,∞) that

E
[∥∥Φk

(
Y 0
k,j, Y

1
k−1,j, Z

0
)∥∥r
Y +

∥∥Y 0
k,j

∥∥r
Y +

∥∥Y 0
k−1,j

∥∥r
Y

]
<∞. (3.172)

Note that this, (ii) in Lemma 3.27, and (vi) in Proposition 3.8 ensure for all j ∈ N,
r ∈ [1,∞) that

(
E
[∥∥Y 0

l,j

∥∥r
Y

])1/r

=

(
E

[∥∥∥∥∥
l−1∑
k=0

1
(Mj)l−k

[
(Mj)

l−k∑
i=1

Φk

(
Y

(0,k,i)
k,j , Y

(0,−k,i)
k−1,j , Z(0,k,i)

)]∥∥∥∥∥
r

Y

])1/r

≤
l−1∑
k=0

1
(Mj)l−k

[
(Mj)

l−k∑
i=1

(
E
[∥∥Φk

(
Y

(0,k,i)
k,j , Y

(0,−k,i)
k−1,j , Z(0,k,i)

)∥∥r
Y

])1/r
]

=
l−1∑
k=0

(
E
[∥∥Φk

(
Y 0
k,j, Y

1
k−1,j, Z

0
)∥∥r
Y

])1/r

<∞.

(3.173)

Hölder’s inequality, (3.169), the fact that ∀ a, b, r ∈ [0,∞) : (a+ b)r ≤ 2max{r−1,0}(ar + br),
(v) in Proposition 3.8, and (3.172) hence demonstrate for all j ∈ N, r ∈ [1,∞) that(

E
[∥∥Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)∥∥r
Y

])1/r

≤ LT

(
E
[(

1 + sup
t∈[0,T ]

‖W 0
t ‖Rd

)qr∥∥Y 0
l,j − Y 1

l−1,j

∥∥r
Y

])1/r

≤ LT

(
E
[(

1 + sup
t∈[0,T ]

‖W 0
t ‖Rd

)2qr ])1/(2r)(
E
[∥∥Y 0

l,j − Y 1
l−1,j

∥∥2r

Y

])1/(2r)

(3.174)
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≤ 2max{q−1/(2r),0}LT

(
1 + E

[
sup
t∈[0,T ]

‖W 0
t ‖

2qr
Rd

])1/(2r)

·
[(

E
[∥∥Y 0

l,j

∥∥2r

Y

])1/(2r)

+
(
E
[∥∥Y 0

l−1,j

∥∥2r

Y

])1/(2r)
]
<∞.

Combining this with (3.173) and (3.172) establishes for all j ∈ N, r ∈ [0,∞) that

E
[∥∥Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)∥∥r
Y +

∥∥Y 0
l,j

∥∥r
Y +

∥∥Y 0
l−1,j

∥∥r
Y

]
<∞. (3.175)

Induction hence proves (3.170). The proof of Lemma 3.28 is thus complete.

3.2.2.5 Estimates

Lemma 3.29. Assume Setting 3.1 and let C ∈ [0,∞) be given by

C = eLT
[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]
. (3.176)

Then it holds for all k ∈ N0 that

max
{
E
[
|ψk(Φ0(0, 0, Z0))|2

]
,E
[
|ψk(y)|2

]}
≤ C2

k!
. (3.177)

Proof of Lemma 3.29. Throughout this proof let F : C([0, T ]×Rd,R)→ C([0, T ]×Rd,R)
satisfy for all v ∈ C([0, T ]× Rd,R), t ∈ [0, T ], x ∈ Rd that

[F (v)](t, x) = f(t, x, v(t, x)). (3.178)

Observe that (3.132), the fact that U and W are independent, and Hutzenthaler et
al. [181, Lemma 2.3] (with S ← [0, 1], U ← ([0, 1] × Ω 3 (s, ω) 7→ sk−1/(k−1)!|y(sT, ξ +
WsT (ω))|2 ∈ [0,∞)), Y ← U for k ∈ N in the notation of [181, Lemma 2.3]) imply for all
k ∈ N that

E
[
|ψk(y)|2

]
= E

[
Uk−1

(k−1)!
|y(UT, ξ + WUT )|2

]
= 1

(k−1)!

∫ 1

0

sk−1 E
[
|y(sT, ξ + WsT )|2

]
ds ≤ 1

k!

[
sup
t∈[0,T ]

E
[
|y(t, ξ + Wt)|2

]]
.

(3.179)

This, the fact that E[|ψ0(y)|2] = |y(0, ξ)|2 = E[|y(0, ξ + W0)|2], and [181, Lemma 3.4]
establish for all k ∈ N0 that

E
[
|ψk(y)|2

]
≤ 1

k!

[
sup
t∈[0,T ]

E
[
|y(t, ξ + Wt)|2

]]
≤ e2LT

k!

[(
E
[
|g(ξ + WT )|2

])1/2
+
√
T
(∫ T

0
E
[
|[F (0)](t, ξ + Wt)|2

]
dt
)1/2
]2

= e2LT

k!

[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]2

= C2

k!
.

(3.180)

Next note that (3.133) shows for all t ∈ [0, T ], x ∈ Rd that

[Φ0(0, 0, Z0)](t, x) = g(x+W 0
T−t) + (T − t)f

(
t+ (T − t)U0, x+W 0

(T−t)U0 , 0
)
. (3.181)

82



3.2. MLP for semi-linear heat equations

This, (3.132), and Hölder’s inequality demonstrate for all k ∈ N that(
E
[
|ψk(Φ0(0, 0, Z0))|2

])1/2
= E

[
Uk−1

(k−1)!
|[Φ0(0, 0, Z0)](UT, ξ + WUT )|2

]
=
(
E
[

Uk−1

(k−1)!

∣∣g(ξ + WUT +W 0
(1−U)T )

+ (1−U)Tf
(
UT + (1−U)U0T, ξ + WUT +W 0

(1−U)U0T , 0
)∣∣2])1/2

≤
(
E
[

Uk−1

(k−1)!
|g(ξ + WUT +W 0

(1−U)T )|2
])1/2

+
(
E
[

Uk−1

(k−1)!

∣∣(1−U)Tf
(
UT + (1−U)U0T, ξ + WUT +W 0

(1−U)U0T , 0
)∣∣2])1/2

.

(3.182)

The fact that U, W, and W 0 are independent and [181, Lemma 2.3] (with S ← [0, 1],
U ← ([0, 1]×Ω 3 (s, ω) 7→ sk−1/(k−1)!|g(ξ+ WsT (ω) +W 0

(1−s)T (ω))|2 ∈ [0,∞)), Y ← U for
k ∈ N in the notation of [181, Lemma 2.3]) ensure for all k ∈ N that

E
[

Uk−1

(k−1)!
|g(ξ + WUT +W 0

(1−U)T )|2
]

=

∫ 1

0

sk−1

(k−1)!
E
[
|g(ξ + WsT +W 0

(1−s)T )|2
]

ds

= 1
(k−1)!

[∫ 1

0

sk−1 ds

]
E
[
|g(ξ +W 0

T )|2
]

= 1
k!
E
[
|g(ξ +W 0

T )|2
]
.

(3.183)

In addition, the fact that U, U0, W, and W 0 are independent, [181, Lemma 2.3] (with
S ← [0, 1], U ← ([0, 1]×Ω 3 (s, ω) 7→ sk−1/(k−1)!|(1−s)Tf(sT+(1−s)U0(ω)T, ξ+WsT (ω)+
W 0

(1−s)U0(ω)T (ω), 0)|2 ∈ [0,∞)), Y ← U for k ∈ N in the notation of [181, Lemma 2.3]),
and [181, Lemma 2.10] (with k ← k, U ← ([0, T ] × Rd × Ω 3 (t, x, ω) 7→ f(t, x, 0) ∈ R),
r← U0, W← W 0 for k ∈ N in the notation of [181, Lemma 2.10]) establish for all k ∈ N
that

E
[

Uk−1

(k−1)!

∣∣(1−U)Tf
(
UT + (1−U)U0T, ξ + WUT +W 0

(1−U)U0T , 0
)∣∣2]

=

∫ 1

0

sk−1

(k−1)!
E
[∣∣(1− s)Tf(sT + (1− s)U0T, ξ + WsT +W 0

(1−s)U0T , 0
)∣∣2] ds

= 1
Tk

∫ T

0

tk−1

(k−1)!
E
[∣∣(T − t)f(t+ (T − t)U0, ξ + Wt +W 0

(T−t)U0 , 0
)∣∣2] dt

= 1
Tk

∫ T

0

tk−1

(k−1)!
E
[∣∣(T − t)f(t+ (T − t)U0, ξ + Wt +W 0

t+(T−t)U0 −W 0
t , 0
)∣∣2] dt

≤ T 2

Tk+1

∫ T

0

tk

k!
E
[
|f(t, ξ + Wt, 0)|2

]
dt ≤ T

k!

∫ T

0

E
[
|f(t, ξ + Wt, 0)|2

]
dt

= T
k!

∫ T

0

E
[
|f(t, ξ +W 0

t , 0)|2
]

dt.

(3.184)

Combining (3.182) with (3.183)–(3.184) yields for all k ∈ N that

E
[
|ψk(Φ0(0, 0, Z0))|2

]
≤ 1

k!

[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]2

≤ e2LT

k!

[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]2

= C2

k!
.

(3.185)
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Moreover, (3.181), (3.132), Hölder’s inequality, the fact that U0 and W 0 are independent,
and [181, Lemma 2.3] imply that

E
[
|ψ0(Φ0(0, 0, Z0))|2

]
= E

[
|g(ξ +W 0

T ) + Tf(U0T, ξ +W 0
U0T , 0)|2

]
≤
[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
(
T 2 E

[
|f(U0T, ξ +W 0

U0T , 0)|2
])1/2

]2

=
[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
(
T 2
∫ 1

0
E
[
|f(sT, ξ +W 0

sT , 0)|2
]

ds
)1/2
]2

=
[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
(
T
∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]2

≤ e2LT
[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]2

= C2

0!
.

(3.186)

The proof of Lemma 3.29 is thus complete.

Lemma 3.30. Assume Setting 3.1. Then it holds for all k ∈ N0, n ∈ N, u, v ∈ Y that

E
[
|ψk(Φn(u, v, Z0))|2

]
≤ (LT )2 E

[
|ψk+1(u− v)|2

]
. (3.187)

Proof of Lemma 3.30. Throughout this proof let u, v ∈ Y . Observe that (3.133) shows
for all t ∈ [0, T ], x ∈ Rd that

|[Φ1(u, v, Z0)](t, x)|
= (T − t)

∣∣f(t+ (T − t)U0, x+W 0
(T−t)U0 , u

(
t+ (T − t)U0, x+W 0

(T−t)U0

))
− f
(
t+ (T − t)U0, x+W 0

(T−t)U0 , v
(
t+ (T − t)U0, x+W 0

(T−t)U0

))∣∣
≤ L(T − t)

∣∣u(t+ (T − t)U0, x+W 0
(T−t)U0

)
− v
(
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣
= L

∣∣(T − t) · [u− v]
(
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣.
(3.188)

Equation (3.132), the fact that U, U0, W, andW 0 are independent, [181, Lemma 2.3], and
[181, Lemma 2.10] (with k ← k, U ← ([0, T ]×Rd×Ω 3 (t, x, ω) 7→ u(t, x)− v(t, x) ∈ R),
r ← U0, W ← W 0 for k ∈ N in the notation of [181, Lemma 2.10]) hence prove for all
k ∈ N that

E
[
|ψk(Φ1(u, v, Z0))|2

]
= E

[
Uk−1

(k−1)!
|[Φ1(u, v, Z0)](UT, ξ + WUT )|2

]
≤ L2 E

[
Uk−1

(k−1)!

∣∣(1−U)T · [u− v]
(
UT + (1−U)U0T, ξ + WUT +W 0

(1−U)U0T

)∣∣2]
= L2

∫ 1

0

sk−1

(k−1)!
E
[∣∣(1− s)T · [u− v]

(
sT + (1− s)U0T, ξ + WsT +W 0

(1−s)U0T

)∣∣2] ds

= L2

Tk

∫ T

0

tk−1

(k−1)!
E
[∣∣(T − t) · [u− v]

(
t+ (T − t)U0, ξ + Wt +W 0

(T−t)U0

)∣∣2] dt

= L2

Tk

∫ T

0

tk−1

(k−1)!
E
[∣∣(T − t) · [u− v]

(
t+ (T − t)U0, ξ + Wt +W 0

t+(T−t)U0 −W 0
t

)∣∣2] dt

≤ (LT )2

Tk+1

∫ T

0

tk

k!
E
[
|[u− v](t, ξ + Wt)|2

]
dt (3.189)

= (LT )2

∫ 1

0

sk

k!
E
[
|[u− v](sT, ξ + WsT )|2

]
ds

= (LT )2 E
[
Uk

k!
|[u− v](UT, ξ + WUT )|2

]
= (LT )2 E

[
|ψk+1(u− v)|2

]
.
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In addition, (3.132), (3.188) and the fact that (U0,W 0) and (U,W) are identically dis-
tributed ensure that

E
[
|ψ0(Φ1(u, v, Z0))|2

]
= E

[
|[Φ1(u, v, Z0)](0, ξ)|2

]
≤ (LT )2 E

[
|[u− v](U0T, ξ +W 0

U0T )|2
]

= (LT )2 E
[
|[u− v](UT, ξ + WUT )|2

]
= (LT )2 E

[
|ψ1(u− v)|2

]
.

(3.190)

This, (3.189), and the fact that ∀n ∈ N : Φn = Φ1 complete the proof of Lemma 3.30.

Lemma 3.31. Assume Setting 3.1. Then it holds for all k ∈ N0, n, j ∈ N that

E

[∣∣∣∣ψk(y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∣∣∣∣2

]
≤ (LT )2 E

[∣∣ψk+1

(
Y 0
n−1,j − y

)∣∣2]. (3.191)

Proof of Lemma 3.31. Throughout this proof let Ψn,j : [0, T ] × Rd → [0,∞), j ∈ N, n ∈
N0, satisfy for all n, j ∈ N, t ∈ [0, T ], x ∈ Rd that

Ψn−1,j(t, x) = E
[∣∣(T − t) · [Y 0

n−1,j − y
](
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣2] (3.192)

(cf. Lemma 3.28). To start with, observe that (3.133), (i)–(ii) in Lemma 3.27, (ii) in
Lemma 3.26, and (iii) and (v) in Proposition 3.8 show for all l, j ∈ N, t ∈ [0, T ], x ∈ Rd

that

E
[[

Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]

(T − t, x)
]

= tE
[
f
(
T − t+ U0t, x+W 0

U0t, Y
0
l,j

(
T − t+ U0t, x+W 0

U0t

))
− f
(
T − t+ U0t, x+W 0

U0t, Y
1
l−1,j

(
T − t+ U0t, x+W 0

U0t

))]
= tE

[
f
(
T − t+ U0t, x+W 0

U0t, Y
0
l,j

(
T − t+ U0t, x+W 0

U0t

))
− f
(
T − t+ U0t, x+W 0

U0t, Y
0
l−1,j

(
T − t+ U0t, x+W 0

U0t

))]
.

(3.193)

Again (3.133) hence ensures for all n, j ∈ N, t ∈ [0, T ], x ∈ Rd that[
n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]]

(T − t, x)

=
n−1∑
l=0

E
[[

Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]

(T − t, x)
]

= E[g(x+W 0
t )] + tE

[
f
(
T − t+ U0t, x+W 0

U0t, Y
0

0,j

(
T − t+ U0t, x+W 0

U0t

))]
+ t

n−1∑
l=1

E
[
f
(
T − t+ U0t, x+W 0

U0t, Y
0
l,j

(
T − t+ U0t, x+W 0

U0t

))
(3.194)

− f
(
T − t+ U0t, x+W 0

U0t, Y
0
l−1,j

(
T − t+ U0t, x+W 0

U0t

))]
= E[g(x+W 0

t )] + tE
[
f
(
T − t+ U0t, x+W 0

U0t, Y
0
n−1,j

(
T − t+ U0t, x+W 0

U0t

))]
.

In addition, (3.127), the fact that W and W 0 are identically distributed, the fact that
W 0 and U0 are independent, and [181, Lemma 2.4] (with S ← [0, 1], U ← ([0, 1] × Ω 3
(u, ω) 7→ f(t + (T − t)u, x + W 0

(T−t)u(ω), y(t + (T − t)u, x + W 0
(T−t)u(ω))) ∈ R), Y ← U0
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for x ∈ Rd, t ∈ [0, T ] in the notation of [181, Lemma 2.4]) imply for all t ∈ [0, T ], x ∈ Rd

that

y(t, x) = E[g(x+ WT−t)] +

∫ T

t

E
[
f
(
s, x+ Ws−t, y(s, x+ Ws−t)

)]
ds

= E[g(x+W 0
T−t)] +

∫ T

t

E
[
f
(
s, x+W 0

s−t, y(s, x+W 0
s−t)
)]

ds

= E[g(x+W 0
T−t)] (3.195)

+ (T − t)
∫ 1

0

E
[
f
(
t+ (T − t)u, x+W 0

(T−t)u, y
(
t+ (T − t)u, x+W 0

(T−t)u
))]

du

= E[g(x+W 0
T−t)]

+ (T − t)E
[
f
(
t+ (T − t)U0, x+W 0

(T−t)U0 , y
(
t+ (T − t)U0, x+W 0

(T−t)U0

))]
.

This and (3.194) demonstrate for all n, j ∈ N, t ∈ [0, T ], x ∈ Rd that∣∣∣∣[y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]]

(t, x)

∣∣∣∣
≤ (T − t)E

[∣∣f(t+ (T − t)U0, x+W 0
(T−t)U0 , y

(
t+ (T − t)U0, x+W 0

(T−t)U0

))
− f
(
t+ (T − t)U0, x+W 0

(T−t)U0 , Y 0
n−1,j

(
t+ (T − t)U0, x+W 0

(T−t)U0

))∣∣]
≤ L(T − t)E

[∣∣y(t+ (T − t)U0, x+W 0
(T−t)U0

)
− Y 0

n−1,j

(
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣]
= L(T − t)E

[∣∣[Y 0
n−1,j − y

](
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣]. (3.196)

Jensen’s inequality and (3.192) hence ensure for all n, j ∈ N, t ∈ [0, T ], x ∈ Rd that∣∣∣∣[y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]]

(t, x)

∣∣∣∣2
≤ L2(T − t)2

(
E
[∣∣[Y 0

n−1,j − y
](
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣])2

≤ L2(T − t)2 E
[∣∣[Y 0

n−1,j − y
](
t+ (T − t)U0, x+W 0

(T−t)U0

)∣∣2] = L2Ψn−1,j(t, x).

(3.197)

Furthermore, (3.192), the fact that it holds for every n, j ∈ N that W, Y 0
n−1,j, U0, andW 0

are independent (cf. Lemma 3.27 and (ii)–(iii) in Proposition 3.8), and [181, Lemma 2.3]
(with S ← Rd, U ← (Rd × Ω 3 (w, ω) 7→ |(T − t) · [Y 0

n−1,j(ω) − y](t + (T − t)U0(ω), ξ +
w + W 0

(T−t)U0(ω)(ω))|2 ∈ [0,∞)), Y ←Wt for t ∈ [0, T ], j, n ∈ N in the notation of [181,
Lemma 2.3]) prove for all n, j ∈ N, t ∈ [0, T ] that

E[Ψn−1,j(t, ξ + Wt)] =

∫
Rd

Ψn−1,j(t, ξ + w)
(
Wt(P)B(Rd)

)
(dw)

=

∫
Rd

E
[∣∣(T − t) · [Y 0

n−1,j − y
](
t+ (T − t)U0, ξ + w +W 0

(T−t)U0

)∣∣2] (Wt(P)B(Rd)

)
(dw)

= E
[∣∣(T − t) · [Y 0

n−1,j − y
](
t+ (T − t)U0, ξ + Wt +W 0

(T−t)U0

)∣∣2] (3.198)

= E
[∣∣(T − t) · [Y 0

n−1,j − y
](
t+ (T − t)U0, ξ + Wt +W 0

t+(T−t)U0 −W 0
t

)∣∣2].
Combining (3.132) with (3.197), the fact that U and W are independent, [181, Lemma 2.3]
(with S ← [0, 1], U ← ([0, 1]× Ω 3 (s, ω) 7→ sk−1/(k−1)! Ψn−1,j(sT, ξ + WsT (ω)) ∈ [0,∞)),
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3.2. MLP for semi-linear heat equations

Y ← U for j, n, k ∈ N in the notation of [181, Lemma 2.3]), (3.198), again the fact
that it holds for every n, j ∈ N that W, Y 0

n−1,j, U0, and W 0 are independent, and [181,
Lemma 2.10] (with k ← k, U ← ([0, T ]×Rd ×Ω 3 (t, x, ω) 7→ [Y 0

n−1,j(ω)](t, x)− y(t, x) ∈
R), r ← U0, W ← W 0 for j, n, k ∈ N in the notation of [181, Lemma 2.10]) establishes
for all k, n, j ∈ N that

E

[∣∣∣∣ψk(y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∣∣∣∣2

]

= E

[
Uk−1

(k−1)!

∣∣∣∣[y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]]

(UT, ξ + WUT )

∣∣∣∣2
]

≤ L2 E
[

Uk−1

(k−1)!
Ψn−1,j(UT, ξ + WUT )

]
= L2

∫ 1

0

sk−1

(k−1)!
E[Ψn−1,j(sT, ξ + WsT )] ds

= L2

Tk

∫ T

0

tk−1

(k−1)!
E[Ψn−1,j(t, ξ + Wt)] dt (3.199)

= L2

Tk

∫ T

0

tk−1

(k−1)!
E
[∣∣(T − t) · [Y 0

n−1,j − y
](
t+ (T − t)U0, ξ + Wt +W 0

t+(T−t)U0 −W 0
t

)∣∣2] dt

≤ (LT )2

Tk+1

∫ T

0

tk

k!
E
[∣∣[Y 0

n−1,j − y
]
(t, ξ + Wt)

∣∣2] dt.

This, the fact that it holds for every n, j ∈ N that Y 0
n−1,j, W, and U are independent,

[181, Lemma 2.3] (with S ← [0, 1], U ← ([0, 1]×Ω 3 (s, ω) 7→ sk/k!|[Y 0
n−1,j(ω)− y](sT, ξ +

WsT (ω))|2 ∈ [0,∞)), Y ← U for j, n, k ∈ N in the notation of [181, Lemma 2.3]), and
(3.132) show for all k, n, j ∈ N that

E

[∣∣∣∣ψk(y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∣∣∣∣2

]

≤ (LT )2

∫ 1

0

sk

k!
E
[∣∣[Y 0

n−1,j − y
]
(sT, ξ + WsT )

∣∣2] ds

= (LT )2 E
[
Uk

k!

∣∣[Y 0
n−1,j − y

]
(UT, ξ + WUT )

∣∣2] = (LT )2 E
[∣∣ψk+1

(
Y 0
n−1,j − y

)∣∣2].
(3.200)

Moreover, (3.132), (3.197), and the fact that it holds for all n, j ∈ N that (Y 0
n−1,j, U

0,W 0)
and (Y 0

n−1,j,U,W) are identically distributed demonstrate for all n, j ∈ N that

E

[∣∣∣∣ψ0

(
y −

n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∣∣∣∣2

]
=

∣∣∣∣[y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)]]

(0, ξ)

∣∣∣∣2
≤ (LT )2 E

[∣∣[Y 0
n−1,j − y

](
U0T, ξ +W 0

U0T

)∣∣2] (3.201)

= (LT )2 E
[∣∣[Y 0

n−1,j − y
](

UT, ξ + WUT

)∣∣2] = (LT )2 E
[∣∣ψ1

(
Y 0
n−1,j − y

)∣∣2].
The proof of Lemma 3.31 is thus complete.
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3.2.3 Complexity analysis

3.2.3.1 MLP approximations in fixed space dimensions

Proposition 3.32. Let d ∈ N, ξ ∈ Rd, T ∈ (0,∞), L, p,B, κ, C ∈ [0,∞), Θ =
⋃∞
n=1 Zn,

(Mj)j∈N ⊆ N satisfy lim infj→∞Mj = ∞, supj∈N Mj+1/Mj ≤ B, and supj∈N Mj/j ≤ κ, let
f ∈ C([0, T ] × Rd × R,R), g ∈ C(Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R
that max{|f(t, x, 0)|, |g(x)|} ≤ Lmax{1, ‖x‖pRd} and |f(t, x, v) − f(t, x, w)| ≤ L|v − w|,
let (Ω,F ,P) be a probability space, let U θ : Ω → [0, 1], θ ∈ Θ, be independent on [0, 1]
uniformly distributed random variables, let W θ : [0, T ] × Ω → Rd, θ ∈ Θ, be indepen-
dent standard Brownian motions with continuous sample paths, assume that (U θ)θ∈Θ and
(W θ)θ∈Θ are independent, assume that

C = max
{

1, eLT
[(
E
[
|g(ξ +W 0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|f(t, ξ +W 0

t , 0)|2
]

dt
)1/2
]}
, (3.202)

let Y θ
n,j : [0, T ] × Rd × Ω → R, θ ∈ Θ, j ∈ N, n ∈ (N0 ∪ {−1}), satisfy for all n, j ∈ N,

θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that Y θ
−1,j(t, x) = Y θ

0,j(t, x) = 0 and

Y θ
n,j(T − t, x) = 1

(Mj)n

[
(Mj)

n∑
i=1

g
(
x+W

(θ,0,i)
t

)]
+

n−1∑
l=0

t
(Mj)n−l

[
(Mj)

n−l∑
i=1[

f
(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))
(3.203)

− 1N(l)f
(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t
, Y

(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

(θ,l,i)

U(θ,l,i)t

))]]
,

and let (Costn,j)(n,j)∈(N0∪{−1})×N ⊆ N0 satisfy for all n, j ∈ N that Cost−1,j = Cost0,j = 0
and

Costn,j ≤ (Mj)
nd+

n−1∑
l=0

[
(Mj)

n−l(Costl,j + Costl−1,j + d+ 1)
]
. (3.204)

Then

(i) there exists a unique at most polynomially growing viscosity solution y ∈ C([0, T ]×
Rd,R) of (

∂y
∂t

)
(t, x) + 1

2
(∆xy)(t, x) + f(t, x, y(t, x)) = 0 (3.205)

with y(T, x) = g(x) for (t, x) ∈ (0, T )× Rd,

(ii) it holds for all n ∈ N that

(
E
[
|Y 0
n,n(0, ξ)− y(0, ξ)|2

])1/2 ≤ C

[
eκ(1 + (2LT )2)

Mn

]n/2
<∞, (3.206)

(iii) it holds for all n ∈ N that Costn,n ≤ (5Mn)nd, and

(iv) there exists (Nε)ε∈(0,1] ⊆ N such that it holds for all ε ∈ (0, 1], δ ∈ (0,∞) that
supn∈{Nε,Nε+1,...}

(
E
[
|Y 0
n,n(0, ξ)− y(0, ξ)|2

])1/2 ≤ ε and

CostNε,Nε ≤ 5deκC2(1+δ)
(

1 + supn∈N

[
[5Be2κ(1+(2LT )2)](1+δ)

(Mn)δ

]n)
ε−2(1+δ) <∞. (3.207)
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3.2. MLP for semi-linear heat equations

Proof of Proposition 3.32. Throughout this proof assume w.l.o.g. that L > 0, assume
w.l.o.g. that there exist an on [0, 1] uniformly distributed random variable U : Ω→ [0, 1]
and a standard Brownian motion W : [0, T ] × Ω → Rd with continuous sample paths
such that U, W, (U θ)θ∈Θ, and (W θ)θ∈Θ are independent, let z, γ ∈ [0,∞), c ∈ (0,∞),
y−1, y0 ∈ C([0, T ] × Rd,R) be given by z = d, γ = 2, c = (LT )2, and y−1 = y0 = 0, let
q ∈ (p,∞), let Y ⊆ C([0, T ]× Rd,R) be the set given by

Y =

{
v ∈ C([0, T ]× Rd,R) : lim sup

N3n→∞
sup

(t,x)∈[0,T ]×Rd, ‖x‖Rd≥n

|v(t, x)|
‖x‖qRd

= 0

}
, (3.208)

let ‖·‖Y : Y → [0,∞) satisfy for all v ∈ Y that

‖v‖Y = sup
(t,x)∈[0,T ]×Rd

[
|v(t, x)|

max{1, ‖x‖qRd}

]
, (3.209)

let (Z,Z ) =
(
[0, 1] × C([0, T ],Rd),B([0, 1]) ⊗ B(C([0, T ],Rd))

)
, let Zθ : Ω → Z, θ ∈

Θ, satisfy for all θ ∈ Θ that Zθ = (U θ,W θ), let (H, 〈·, ·〉H, ‖·‖H) = (R, 〈·, ·〉R, |·|), let
S = σL(Y,H)

({
{ϕ ∈ L(Y ,H) : ϕ(v) ∈ B} ⊆ L(Y ,H) : v ∈ Y , B ∈ B(H)

})
, let ψk : Ω →

L(Y ,H), k ∈ N0, satisfy for all k ∈ N0, ω ∈ Ω, v ∈ Y that

[ψk(ω)](v) =

{
v(0, ξ) : k = 0√

(U(ω))k−1

(k−1)!
v
(
U(ω)T, ξ + WU(ω)T (ω)

)
: k ∈ N

, (3.210)

and let Φl : Y × Y × Z → Y , l ∈ N0, satisfy for all l ∈ N0, v, w ∈ Y , z = (u,w) ∈ Z,
t ∈ [0, T ], x ∈ Rd that

[Φl(v, w, z)](T − t, x)

=


g(x+ wt) + tf

(
T − t+ ut, x+ wut, v(T − t+ ut, x+ wut)

)
: l = 0

t
[
f
(
T − t+ ut, x+ wut, v(T − t+ ut, x+ wut)

)
− f
(
T − t+ ut, x+ wut, w(T − t+ ut, x+ wut)

)] : l ∈ N
(3.211)

(cf. Lemma 3.21 and Corollary 3.23). Note that the assumption that ∀ t ∈ [0, T ], x ∈
Rd, v, w ∈ R :

(
max{|f(t, x, 0)|, |g(x)|} ≤ Lmax{1, ‖x‖pRd} and |f(t, x, v) − f(t, x, w)| ≤

L|v − w|
)
ensures that there exists a unique at most polynomially growing viscosity

solution y ∈ C([0, T ]× Rd,R) of(
∂y
∂t

)
(t, x) + 1

2
(∆xy)(t, x) + f(t, x, y(t, x)) = 0 (3.212)

with y(T, x) = g(x) for (t, x) ∈ (0, T )×Rd (cf., e.g., Hairer, Hutzenthaler, & Jentzen [157,
Section 4], Hutzenthaler et al. [181, Corollary 3.11], and Beck et al. [24, Theorem 1.1]).
This shows (i). Moreover, the Feynman–Kac formula proves for all t ∈ [0, T ], x ∈ Rd that

y(t, x) = E
[
g(x+ WT−t) +

∫ T

t

f
(
s, x+ Ws−t, y(s, x+ Ws−t)

)
ds

]
(3.213)

(cf., e.g., [157, Section 4], [181, Corollary 3.11], and [24, Theorem 1.1]). Combining this
with [181, Corollary 3.11] demonstrates that

sup
(t,x)∈[0,T ]×Rd

[
|y(t, x)|

max{1, ‖x‖pRd}

]
<∞. (3.214)

Next observe that
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• it holds that (Y , ‖·‖Y) is a separable R-Banach space (cf. (ii) in Proposition 3.20),

• it holds that min{B, κ, C} ≥ 1, y ∈ Y (cf. (3.214) and Lemma 3.21), and y−1,
y0 ∈ Y ,

• it holds that (Z,Z ) is a measurable space,

• it holds that Zθ : Ω→ Z, θ ∈ Θ, are i.i.d. F/Z -measurable functions,

• it holds that (H, 〈·, ·〉H, ‖·‖H) is a separable R-Hilbert space,

• it holds that ψk : Ω → L(Y ,H), k ∈ N0, are F/S -measurable functions (cf. Lem-
ma 3.25),

• it holds that (Zθ)θ∈Θ and (ψk)k∈N0 are independent,

• it holds that Φl : Y×Y×Z → Y , l ∈ N0, are (B(Y)⊗B(Y)⊗Z )/B(Y)-measurable
functions (cf. (ii) in Lemma 3.26),

• it holds for all n ∈ (N0 ∪ {−1}), j ∈ N, θ ∈ Θ that Y θ
n,j(Ω) ⊆ Y (cf. assump-

tion (3.203) and (i) in Lemma 3.27),

• it holds for all n, j ∈ N, θ ∈ Θ that Y θ
−1,j = y−1, Y θ

0,j = y0, and

Y θ
n,j =

n−1∑
l=0

1
(Mj)n−l

[
(Mj)

n−l∑
i=1

Φl

(
Y

(θ,l,i)
l,j , Y

(θ,−l,i)
l−1,j , Z(θ,l,i)

)]
(3.215)

(cf. assumption (3.203) and (ii) in Lemma 3.27),

• it holds for all n, j ∈ N that Cost−1,j = Cost0,j = 0 and

Costn,j ≤ (Mj)
nd+

n−1∑
l=0

[
(Mj)

n−l(Costl,j + Costl−1,j + d+ 1)
]

≤ (Mj)
nz +

n−1∑
l=0

[
(Mj)

n−l(Costl,j + Costl−1,j + γz)
] (3.216)

(cf. assumption (3.204)),

• it holds for all k ∈ N0, j ∈ N that E
[
‖Φk(Y

0
k,j, Y

1
k−1,j, Z

0)‖Y
]
<∞ (cf. Lemma 3.28),

and

• it holds for all k ∈ N0, n, j ∈ N, u, v ∈ Y that

max
{
E
[
‖ψk(Φ0(y0, y−1, Z

0))‖2
H
]
,1N(k)E

[
‖ψk(y0 − y)‖2

H
]}
≤ C2

k!
, (3.217)

E
[
‖ψk(Φn(u, v, Z0))‖2

H
]
≤ cE

[
‖ψk+1(u− v)‖2

H
]
, (3.218)

E

[∥∥∥∥ψk(y − n−1∑
l=0

E
[
Φl

(
Y 0
l,j, Y

1
l−1,j, Z

0
)])∥∥∥∥2

H

]
≤ 2cE

[∥∥ψk+1

(
Y 0
n−1,j − y

)∥∥2

H

]
(3.219)

(cf. (3.213), assumption (3.202), Lemma 3.29, Lemma 3.30, and Lemma 3.31).

Corollary 3.15 hence establishes (ii)–(iv). The proof of Proposition 3.32 is thus complete.
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3.2. MLP for semi-linear heat equations

3.2.3.2 MLP approximations in variable space dimensions

Theorem 3.33. Let T ∈ (0,∞), K,L, p,B, κ ∈ [0,∞), Θ =
⋃∞
n=1 Zn, (Mj)j∈N ⊆ N

satisfy lim infj→∞Mj = ∞, supj∈N Mj+1/Mj ≤ B, and supj∈N Mj/j ≤ κ, let ξd ∈ Rd,
d ∈ N, satisfy supd∈N‖ξd‖Rd ≤ K, for every d ∈ N let fd ∈ C([0, T ] × Rd × R,R),
gd ∈ C(Rd,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that max{|fd(t, x, 0)|, |gd(x)|} ≤
Lmax{1, ‖x‖pRd} and |fd(t, x, v) − fd(t, x, w)| ≤ L|v − w|, let (Ω,F ,P) be a probability
space, let U θ : Ω → [0, 1], θ ∈ Θ, be independent on [0, 1] uniformly distributed random
variables, for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard
Brownian motions, assume for every d ∈ N that (U θ)θ∈Θ and (W d,θ)θ∈Θ are independent,
let Y d,θ

n,j : [0, T ]×Rd×Ω→ R, θ ∈ Θ, d, j ∈ N, n ∈ (N0∪{−1}), satisfy for all n, j, d ∈ N,
θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that Y d,θ

−1,j(t, x) = Y d,θ
0,j (t, x) = 0 and

Y d,θ
n,j (T − t, x) = 1

(Mj)n

[
(Mj)

n∑
i=1

gd
(
x+W

d,(θ,0,i)
t

)]
+

n−1∑
l=0

t
(Mj)n−l

[
(Mj)

n−l∑
i=1[

fd

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t
, Y

d,(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t

))
(3.220)

− 1N(l)fd

(
T − t+ Ud,(θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t
, Y

d,(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t

))]]
,

and let (Costd,n,j)(d,n,j)∈N×(N0∪{−1})×N ⊆ N0 satisfy for all d, n, j ∈ N that Costd,−1,j =
Costd,0,j = 0 and

Costd,n,j ≤ (Mj)
nd+

n−1∑
l=0

[
(Mj)

n−l(Costd,l,j + Costd,l−1,j + d+ 1)
]
. (3.221)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing viscosity solution
yd ∈ C([0, T ]× Rd,R) of(

∂yd
∂t

)
(t, x) + 1

2
(∆xyd)(t, x) + fd(t, x, yd(t, x)) = 0 (3.222)

with yd(T, x) = gd(x) for (t, x) ∈ (0, T )× Rd and

(ii) there exists (Nd,ε)(d,ε)∈N×(0,1] ⊆ N such that it holds for all d ∈ N, ε ∈ (0, 1], δ ∈
(0,∞) that supn∈{Nd,ε,Nd,ε+1,...}

(
E
[
|Y d,0
n,n (0, ξd)− yd(0, ξd)|2

])1/2 ≤ ε and

Costd,Nd,ε,Nd,ε ≤
[
[4p+2 max{L, 1}(1 + T )

p/2+1eLT (max{K, p, 1})p]2(1+δ)eκ

·
(

1 + supn∈N

[
[5Be2κ(1+(2LT )2)](1+δ)

(Mn)δ

]n)]
d1+p(1+δ)ε−2(1+δ) <∞.

(3.223)

Proof of Theorem 3.33. Throughout this proof assume w.l.o.g. for every d ∈ N that
W d,θ : [0, T ]× Ω→ Rd, θ ∈ Θ, are independent standard Brownian motions with contin-
uous sample paths (cf., e.g., Klenke [202, Definition 21.8]) and throughout this proof let
Cd ∈ [1,∞), d ∈ N, be the real numbers which satisfy for all d ∈ N that

Cd = max
{

1, eLT
[(
E
[
|gd(ξd +W d,0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|fd(t, ξd +W d,0

t , 0)|2
]

dt
)1/2
]}
.

(3.224)
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First of all, observe that the Burkholder–Davis–Gundy-type inequality in Da Prato &
Zabczyk [94, Lemma 7.7] establishes for all r ∈ [2,∞), d ∈ N, t ∈ [0, T ] that(

E
[
‖W d,0

t ‖rRd
])1/r ≤

√
1
2
r(r − 1)td ≤ r

√
Td
2
. (3.225)

Jensen’s inequality and the fact that ∀ a, b, r ∈ [0,∞) : (a+b)r ≤ 2max{r−1,0}(ar+br) hence
prove for all d ∈ N that(

E
[
|gd(ξd +W d,0

T )|2
])1/2

+
√
T
(∫ T

0
E
[
|fd(t, ξd +W d,0

t , 0)|2
]

dt
)1/2

≤ L
(
E
[
max

{
1, ‖ξd +W d,0

T ‖
2p
Rd
}])1/2

+ L
√
T
(∫ T

0
E
[
max

{
1, ‖ξd +W d,0

t ‖
2p
Rd
}]

dt
)1/2

≤ L
(

1 +
(
E
[
‖ξd +W d,0

T ‖
2p
Rd
])1/2

)
+ LT

(
1 + 1

T

∫ T
0
E
[
‖ξd +W d,0

t ‖
2p
Rd
]

dt
)1/2

≤ L(1 + T ) + L
((

E
[
‖ξd +W d,0

T ‖
2 max{p,1}
Rd

]) 1
2 max{p,1}

)p
+ LT

((
1
T

∫ T
0
E
[
‖ξd +W d,0

t ‖
2 max{p,1}
Rd

]
dt
) 1

2 max{p,1}
)p

≤ L(1 + T ) + L
(
‖ξd‖Rd +

(
E
[
‖W d,0

T ‖
2 max{p,1}
Rd

]) 1
2 max{p,1}

)p
(3.226)

+ LT
(
‖ξd‖Rd +

(
1
T

∫ T
0
E
[
‖W d,0

t ‖
2 max{p,1}
Rd

]
dt
) 1

2 max{p,1}
)p

≤ L(1 + T ) + L
(
‖ξd‖Rd + max{p, 1}

√
2Td

)p
+ LT

(
‖ξd‖Rd + max{p, 1}

√
2Td

)p
≤ L(1 + T ) + L(1 + T )2max{p−1,0}(‖ξd‖pRd + max{pp, 1}(2Td)

p/2
)

≤ d
p/22max{p,1}+p/2L(1 + T )

p/2+1
(
Kp + max{pp, 1}

)
≤ d

p/24p+1L(1 + T )
p/2+1(max{K, p, 1})p.

This and (3.224) show for all d ∈ N, δ ∈ (0,∞) that

5(Cd)
2(1+δ) ≤ 5[d

p/24p+1 max{L, 1}(1 + T )
p/2+1eLT (max{K, p, 1})p]2(1+δ)

≤ [4p+2 max{L, 1}(1 + T )
p/2+1eLT (max{K, p, 1})p]2(1+δ)dp(1+δ).

(3.227)

Combining this with Proposition 3.32 completes the proof of Theorem 3.33.

Corollary 3.34. Let T ∈ (0,∞), p ∈ [0,∞), Θ =
⋃∞
n=1 Zn, (Mj)j∈N ⊆ N, (ξd)d∈N ⊆ Rd

satisfy supj∈N(Mj+1/Mj +Mj/j+‖ξj‖Rj) <∞ = lim infj→∞Mj, let f : R→ R be a Lipschitz
continuous function, let gd ∈ C(Rd,R), d ∈ N, satisfy supd∈N, x∈Rd |gd(x)|/max{1,‖x‖p

Rd
} < ∞,

let (Ω,F ,P) be a probability space, let U θ : Ω → [0, 1], θ ∈ Θ, be independent on [0, 1]
uniformly distributed random variables, let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, d ∈ N, be
independent standard Brownian motions, assume that (U θ)θ∈Θ and (W d,θ)(d,θ)∈N×Θ are
independent, let Y d,θ

n,j : [0, T ]×Rd ×Ω→ R, θ ∈ Θ, d, j ∈ N, n ∈ (N0 ∪ {−1}), satisfy for
all n, j, d ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that Y d,θ

−1,j(t, x) = Y d,θ
0,j (t, x) = 0 and

Y d,θ
n,j (T − t, x) =

n−1∑
l=0

t
(Mj)n−l

[
(Mj)

n−l∑
i=1

[
f
(
Y
d,(θ,l,i)
l,j

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t

))
(3.228)

− 1N(l)f
(
Y
d,(θ,−l,i)
l−1,j

(
T − t+ U (θ,l,i)t, x+W

d,(θ,l,i)

U(θ,l,i)t

))]]
+ 1

(Mj)n

[
(Mj)

n∑
i=1

gd
(
x+W

d,(θ,0,i)
t

)]
,
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and let (Costd,n,j)(d,n,j)∈N×(N0∪{−1})×N ⊆ N0 satisfy for all d, n, j ∈ N that Costd,−1,j =
Costd,0,j = 0 and

Costd,n,j ≤ (Mj)
nd+

n−1∑
l=0

[
(Mj)

n−l(Costd,l,j + Costd,l−1,j + d+ 1)
]
. (3.229)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing viscosity solution
yd ∈ C([0, T ]× Rd,R) of(

∂yd
∂t

)
(t, x) + 1

2
(∆xyd)(t, x) + f(yd(t, x)) = 0 (3.230)

with yd(T, x) = gd(x) for (t, x) ∈ (0, T )× Rd and

(ii) there exist (Nd,ε)(d,ε)∈N×(0,1] ⊆ N and (Cδ)δ∈(0,∞) ⊆ (0,∞) such that it holds for all
d ∈ N, ε ∈ (0, 1], δ ∈ (0,∞) that Costd,Nd,ε,Nd,ε ≤ Cδd

1+p(1+δ)ε−2(1+δ) and

sup
n∈{Nd,ε,Nd,ε+1,...}

(
E
[
|Y d,0
n,n (0, ξd)− yd(0, ξd)|2

])1/2 ≤ ε. (3.231)
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Chapter 4
Solving high-dimensional optimal stopping
problems using deep learning

The content of this chapter is a slightly modified extract of the preprint Becker
et al. [30].

In this chapter we propose a deep learning based algorithm for solving general possibly
high-dimensional optimal stopping problems (cf. Section 1.3 in Chapter 1). Step by
step we present the derivation and implementation of the algorithm, that is described in
Framework 4.2 in Subsection 4.2.2, and provide more details of our approach summarised
in (I)–(III) in Section 1.3. In addition, we report a large number of numerical experiments,
which demonstrate that the algorithm is highly effective for solving high-dimensional
optimal stopping problems, in terms of both accuracy and speed.

This chapter is organised in the following way. In Section 4.1 we present the main
ideas from which the proposed algorithm is derived. More specifically, in Subsection 4.1.1
we illustrate how an optimal stopping problem in the context of American option pric-
ing is typically formulated. Thereafter, a replacement of this continuous time problem
by a corresponding discrete time optimal stopping problem is discussed by means of an
example in Subsection 4.1.2. Subsection 4.1.3 is devoted to the statement and proof of an
elementary, but crucial result about factorising general discrete stopping times in terms of
compositions of measurable functions (cf. Lemma 4.2), which lies at the heart of the neu-
ral network architecture we propose in Subsection 4.1.4 to approximate general discrete
stopping times. This construction, in turn, is exploited in Subsection 4.1.5 to transform
the discrete time optimal stopping problem from Subsection 4.1.2 into the search of a
maximum of a suitable objective function (cf. (I) in Section 1.3). In Subsection 4.1.6
we suggest to employ stochastic gradient ascent-type optimisation algorithms to find ap-
proximate maximum points of the objective function (cf. (II) in Section 1.3). As a last
step, we explain in Subsection 4.1.7 how we calculate final approximations for both the
American option price as well as an optimal exercise strategy (cf. (III) in Section 1.3). In
Section 4.2 we introduce the proposed algorithm in a concise way, first for a special case
for the sake of clarity (cf. Subsection 4.2.1) and second in more generality so that, in par-
ticular, a rigorous description of our implementations is fully covered (cf. Subsections 4.2.2
and 4.2.3). Following this, in Section 4.3 first a few theoretical results are presented (cf.
Subsection 4.3.1), which are used to design numerical example problems and to provide
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reference values. Thereafter, we describe in detail a large number of example problems,
on which our proposed algorithm has been tested, and present numerical results for each
of these problems. In particular, the examples include the optimal stopping of Brownian
motions (cf. Subsection 4.3.3.1), the pricing of certain exotic American geometric aver-
age put and call-type options (cf. Subsection 4.3.3.2), the pricing of Bermudan max-call
options in up to 5000 dimensions (cf. Subsection 4.3.4.1), the pricing of an American
strangle spread basket option in five dimensions (cf. Subsection 4.3.4.2), the pricing of
an American put basket option in Dupire’s local volatility model in five dimensions (cf.
Subsection 4.3.4.3), and the pricing of an exotic path-dependent financial derivative of
a single underlying, which is modelled as a 100-dimensional optimal stopping problem
(cf. Subsection 4.3.4.4). The numerical results for the examples in Subsections 4.3.3.1.2,
4.3.3.2.1, 4.3.3.2.2, 4.3.3.2.3, and 4.3.4.1.3 are compared to calculated reference values
that can be easily obtained due to the specific design of the considered optimal stopping
problem. Moreover, the examples in Subsections 4.3.3.2.2, 4.3.4.1.1, 4.3.4.1.3, 4.3.4.2,
4.3.4.3, and 4.3.4.4 are taken from the literature and our corresponding numerical results
are compared to reference values from the literature (where available).

4.1 Main ideas of the proposed algorithm
In this section we outline the main ideas that lead to the formulation of the proposed
algorithm in Subsections 4.2.1 and 4.2.2 by considering the example of pricing an Amer-
ican option. The proposed algorithm in Framework 4.2 in Subsection 4.2.2 is, however,
general enough to also be applied to optimal stopping problems where there are no specific
assumptions on the dynamics of the underlying stochastic process, as long as it can be
cheaply simulated (cf. Subsection 4.2.3). Furthermore, often in practice and, in partic-
ular, in the case of Bermudan option pricing (cf. many of the examples in Section 4.3)
the optimal stopping problem of interest is not a continuous time problem but is already
formulated in discrete time. In such a situation there is no need for a time discretisation,
as described in Subsection 4.1.2 below, and the proposed algorithm in Framework 4.2 can
be applied directly.

4.1.1 The American option pricing problem

Let T ∈ (0,∞), d ∈ N = {1, 2, 3, . . .}, let (Ω,F ,P) be a probability space with a fil-
tration F = (Ft)t∈[0,T ] that satisfies the usual conditions (cf., e.g., [199, Definition 2.25
in Section 1.2]), let ξ : Ω → Rd be an F0/B(Rd)-measurable function which satisfies for
all p ∈ (0,∞) that E

[
‖ξ‖pRd

]
< ∞, let W : [0, T ] × Ω → Rd be a standard (Ω,F ,P,F )-

Brownian motion with continuous sample paths, let µ : Rd → Rd and σ : Rd → Rd×d

be Lipschitz continuous functions, let X : [0, T ] × Ω → Rd be an F -adapted continuous
solution process of the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = ξ, t ∈ [0, T ], (4.1)

let F = (Ft)t∈[0,T ] be the filtration generated by X, and let g : [0, T ] × Rd → R be a
continuous and at most polynomially growing function. We think of X as a model for the
price processes of d underlyings (say, d stock prices) under the risk-neutral pricing measure
P (cf., e.g., Kallsen [198]) and we are then interested in approximatively pricing the
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American option on the process (Xt)t∈[0,T ] with the discounted pay-off function g : [0, T ]×
Rd → R, that is, we intend to compute the real number

sup
{
E
[
g(τ,Xτ )

]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.2)

In addition to the price of the American option in the model (4.1) there is also a high
demand from the financial engineering industry to compute an approximately optimal
exercise strategy, that is, to compute a stopping time which approximately reaches the
supremum in (4.2).

In a very simple example of (4.1)–(4.2), we can think of an American put option in
the one-dimensional Black–Scholes model, in which there are an interest rate r ∈ R, a
dividend rate δ ∈ [0,∞), a volatility β ∈ (0,∞), and a strike price K ∈ (0,∞) such
that it holds for all x ∈ R, t ∈ [0, T ] that d = 1, µ(x) = (r − δ)x, σ(x) = β x, and
g(t, x) = e−rt max{K − x, 0}.

4.1.2 Temporal discretisation

To derive the proposed approximation algorithm we first apply the Euler–Maruyama
scheme to the stochastic differential equation (4.1) (cf. (4.5)–(4.6) below) and we employ
a suitable time discretisation for the optimal stopping problem (4.2). For this let N ∈ N
be a natural number and let t0, t1, . . . , tN ∈ [0, T ] be real numbers with

0 = t0 < t1 < · · · < tN = T (4.3)

(such that the maximal mesh size maxn∈{0,1,...,N−1}(tn+1−tn) is sufficiently small). Observe
that (4.1) ensures that for all n ∈ {0, 1, . . . , N − 1} it holds P-a.s. that

Xtn+1 = Xtn +

∫ tn+1

tn

µ(Xs) ds+

∫ tn+1

tn

σ(Xs) dWs. (4.4)

Note that (4.4) suggests for every n ∈ {0, 1, . . . , N − 1} that

Xtn+1 ≈ Xtn + µ(Xtn) (tn+1 − tn) + σ(Xtn)
(
Wtn+1 −Wtn

)
. (4.5)

The approximation scheme associated to (4.5) is referred to as the Euler–Maruyama
scheme in the literature (cf., e.g., Maruyama [239] and Kloeden & Platen [203]). More
formally, let X : {0, 1, . . . , N} × Ω → Rd be the stochastic process which satisfies for all
n ∈ {0, 1, . . . , N − 1} that X0 = ξ and

Xn+1 = Xn + µ(Xn) (tn+1 − tn) + σ(Xn)
(
Wtn+1 −Wtn

)
(4.6)

and let F = (Fn)n∈{0,1,...,N} be the filtration generated by X . Combining this with (4.5)
suggests the approximation

sup
{
E
[
g(tτ ,Xτ )

]
: τ : Ω→{0,1,...,N} is an

F-stopping time

}
≈ sup

{
E
[
g(τ,Xτ )

]
: τ : Ω→[0,T ] is an

F-stopping time

}
(4.7)

for the price (4.2) of the American option in Subsection 4.1.1. Below we employ, in
particular, (4.7) to derive the proposed approximation algorithm.
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4.1.3 Factorisation lemma for stopping times

The derivation of the proposed approximation algorithm is in parts based on an elementary
reformulation of time-discrete stopping times (cf. the left hand side of (4.7) above) in terms
of measurable functions that appropriately characterise the behaviour of the stopping
time; cf. (4.10) and (4.9) in Lemma 4.2 below. The proof of Lemma 4.2 employs the
following well-known factorisation result, Lemma 4.1. Lemma 4.1 follows, e.g., from
Klenke [202, Corollary 1.97].

Lemma 4.1 (Factorisation lemma). Let (S,S) be a measurable space, let Ω be a set, let
B ∈ B(R∪{−∞,∞}), and let X : Ω→ S and Y : Ω→ B be functions. Then it holds that
Y is {X−1(A) : A ∈ S}/B(B)-measurable if and only if there exists an S/B(B)-measurable
function f : S → B such that

Y = f ◦X. (4.8)

We are now ready to present the above mentioned Lemma 4.2. This elementary lemma
is a consequence of Lemma 4.1 above.

Lemma 4.2 (Factorisation lemma for stopping times). Let d,N ∈ N, let (Ω,F ,P) be
a probability space, let X : {0, 1, . . . , N} × Ω → Rd be a stochastic process, and let F =
(Fn)n∈{0,1,...,N} be the filtration generated by X . Then

(i) for all Borel measurable functions Un : (Rd)n+1 → {0, 1}, n ∈ {0, 1, . . . , N}, with
∀x0, x1, . . . , xN ∈ Rd :

∑N
n=0 Un(x0, x1, . . . , xn) = 1 it holds that the function

Ω 3 ω 7→
N∑
n=0

nUn

(
X0(ω),X1(ω), . . . ,Xn(ω)

)
∈ {0, 1, . . . , N} (4.9)

is an F-stopping time and

(ii) for every F-stopping time τ : Ω → {0, 1, . . . , N} there exist Borel measurable func-
tions Un : (Rd)n+1 → {0, 1}, n ∈ {0, 1, . . . , N}, which satisfy ∀x0, x1, . . . , xN ∈
Rd :

∑N
n=0 Un(x0, x1, . . . , xn) = 1 and

τ =
N∑
n=0

nUn(X0,X1, . . . ,Xn). (4.10)

Proof of Lemma 4.2. Note that for all Borel measurable functions Un : (Rd)n+1 → {0, 1},
n ∈ {0, 1, . . . , N}, with ∀x0, x1, . . . , xN ∈ Rd :

∑N
n=0 Un(x0, x1, . . . , xn) = 1 and all k ∈

{0, 1, . . . , N} it holds that{
ω ∈ Ω:

N∑
n=0

nUn

(
X0(ω),X1(ω), . . . ,Xn(ω)

)
= k

}
=
{
ω ∈ Ω: Uk

(
X0(ω),X1(ω), . . . ,Xk(ω)

)
= 1
}

=

ω ∈ Ω: (X0(ω),X1(ω), . . . ,Xk(ω)) ∈ (Uk)
−1({1})︸ ︷︷ ︸

∈B((Rd)k+1)

 ∈ Fk.

(4.11)
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This establishes (i). It thus remains to prove (ii). For this let τ : Ω→ {0, 1, . . . , N} be an
F-stopping time. Observe that for every function % : Ω→ {0, 1, . . . , N} and every ω ∈ Ω
it holds that

%(ω) =
N∑
n=0

n1{%=n}(ω). (4.12)

Next note that for every n ∈ {0, 1, . . . , N} it holds that the function

Ω 3 ω 7→ 1{τ=n}(ω) ∈ {0, 1} (4.13)

is Fn/B({0, 1})-measurable. This and the fact that

∀n ∈ {0, 1, . . . , N} : σΩ

(
(X0,X1, . . . ,Xn)

)
= Fn (4.14)

ensures that for every n ∈ {0, 1, . . . , N} it holds that the function

Ω 3 ω 7→ 1{τ=n}(ω) ∈ {0, 1} (4.15)

is σΩ((X0,X1, . . . ,Xn))/B({0, 1})-measurable. Lemma 4.1 hence demonstrates that there
exist Borel measurable functions Vn : (Rd)n+1 → {0, 1}, n ∈ {0, 1, . . . , N}, which satisfy
for all n ∈ {0, 1, . . . , N}, ω ∈ Ω that

1{τ=n}(ω) = Vn

(
X0(ω),X1(ω), . . . ,Xn(ω)

)
. (4.16)

Next let Un : (Rd)n+1 → R, n ∈ {0, 1, . . . , N}, be the functions which satisfy for all
n ∈ {0, 1, . . . , N}, x0, x1, . . . , xn ∈ Rd that

Un(x0, x1, . . . , xn)

= max{Vn(x0, x1, . . . , xn), n+ 1−N}

[
1−

n−1∑
k=0

Uk(x0, x1, . . . , xk)

]
.

(4.17)

Observe that (4.17), in particular, ensures that for all x0, x1, . . . , xN ∈ Rd it holds that

UN(x0, x1, . . . , xN) =

[
1−

N−1∑
k=0

Uk(x0, x1, . . . , xk)

]
. (4.18)

Hence, we obtain that for all x0, x1, . . . , xN ∈ Rd it holds that

N∑
k=0

Uk(x0, x1, . . . , xk) = 1. (4.19)

In addition, note that (4.17) assures that for all x0 ∈ Rd it holds that

U0(x0) = V0(x0). (4.20)

Induction, the fact that

∀n ∈ {0, 1, . . . , N}, x0, x1, . . . , xn ∈ Rd : Vn(x0, x1, . . . , xn) ∈ {0, 1}, (4.21)
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and (4.17) hence demonstrate that for all n ∈ {0, 1, . . . , N}, x0, x1, . . . , xn ∈ Rd it holds
that{

U0(x0),U1(x0, x1), . . . ,Un(x0, x1, . . . , xn),
n∑
k=0

Uk(x0, x1, . . . , xk)

}
⊆ {0, 1}. (4.22)

Moreover, note that (4.17), induction, and the fact that the functions Vn : (Rd)n+1 →
{0, 1}, n ∈ {0, 1, . . . , N}, are Borel measurable ensure that for every n ∈ {0, 1, . . . , N} it
holds that the function

(Rd)n+1 3 (x0, x1, . . . , xn) 7→ Un(x0, x1, . . . , xn) ∈ {0, 1} (4.23)

is also Borel measurable. In the next step we observe that (4.20), (4.17), (4.21), and
induction assure that for all n ∈ {0, 1, . . . , N}, x0, x1, . . . , xn ∈ Rd with n + 1 − N ≤∑n

k=0 Vk(x0, x1, . . . , xk) ≤ 1 it holds that

∀ k ∈ {0, 1, . . . , n} : Uk(x0, x1, . . . , xk) = Vk(x0, x1, . . . , xk). (4.24)

In addition, note that (4.16) shows that for all ω ∈ Ω it holds that
N∑
k=0

Vk

(
X0(ω),X1(ω), . . . ,Xk(ω)

)
=

N∑
k=0

1{τ=k}(ω) = 1. (4.25)

This, (4.24), and again (4.16) imply that for all k ∈ {0, 1, . . . , N}, ω ∈ Ω it holds that

Uk

(
X0(ω),X1(ω), . . . ,Xk(ω)

)
= Vk

(
X0(ω),X1(ω), . . . ,Xk(ω)

)
= 1{τ=k}(ω). (4.26)

Equation (4.12) hence proves that for all ω ∈ Ω it holds that

τ(ω) =
N∑
n=0

nUn

(
X0(ω),X1(ω), . . . ,Xn(ω)

)
. (4.27)

Combining this with (4.19) and (4.23) establishes (ii). The proof of Lemma 4.2 is thus
complete.

4.1.4 Neural network architectures for stopping times

In the next step we employ multilayer neural network approximations for the functions
Un : (Rd)n+1 → {0, 1}, n ∈ {0, 1, . . . , N}, in the factorisation lemma, Lemma 4.2 above.
In the following we refer to these functions as ‘stopping time factors’. Consider again the
setting in Subsections 4.1.1 and 4.1.2, for every F-stopping time τ : Ω→ {0, 1, . . . , N} let
Un,τ : (Rd)n+1 → {0, 1}, n ∈ {0, 1, . . . , N}, be Borel measurable functions which satisfy
∀x0, x1, . . . , xN ∈ Rd :

∑N
n=0 Un,τ (x0, x1, . . . , xn) = 1 and

τ =
N∑
n=0

nUn,τ (X0,X1, . . . ,Xn) (4.28)

(cf. (ii) in Lemma 4.2), let ν ∈ N be a sufficiently large natural number, and for every
n ∈ {0, 1, . . . , N}, θ ∈ Rν let un,θ : Rd → (0, 1) and Un,θ : (Rd)n+1 → (0, 1) be Borel
measurable functions which satisfy for all x0, x1, . . . , xn ∈ Rd that

Un,θ(x0, x1, . . . , xn) = max{un,θ(xn), n+ 1−N}

[
1−

n−1∑
k=0

Uk,θ(x0, x1, . . . , xk)

]
(4.29)
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(cf. (4.17) above). Observe that for all θ ∈ Rν , x0, x1, . . . , xN ∈ Rd it holds that

N∑
n=0

Un,θ(x0, x1, . . . , xn) = 1. (4.30)

We think of ν ∈ N as the number of parameters in the employed artificial neural networks
and for every appropriate F-stopping time τ : Ω→ {0, 1, . . . , N} we think of the functions
Un,θ : (Rd)n+1 → (0, 1) for n ∈ {0, 1, . . . , N} and suitable θ ∈ Rν as appropriate approxi-
mations for the stopping time factors Un,τ : (Rd)n+1 → {0, 1}, n ∈ {0, 1, . . . , N}. Due to
(4.30) for every θ ∈ Rν the stochastic process

{0, 1, . . . , N} × Ω 3 (n, ω) 7→ Un,θ
(
X0(ω),X1(ω), . . . ,Xn(ω)

)
∈ (0, 1) (4.31)

can also be viewed as an in an appropriate sense ‘randomised’ stopping time (cf., e.g.,
[291, Definition 1 in Subsection 3.1] and, e.g., [125, Section 1.1]). Furthermore, since
X : {0, 1, . . . , N} × Ω → Rd is a Markov process, for every n ∈ {0, 1, . . . , N} we only
consider functions un,θ : Rd → (0, 1), θ ∈ Rν , which are defined on Rd instead of (Rd)n+1

and which in (4.29) only depend on xn ∈ Rd instead of (x0, x1, . . . , xn) ∈ (Rd)n+1 (cf. (4.29)
and (4.17) above and [28, Theorem 1 and Remark 2 in Subsection 2.1]). We suggest to
choose the functions un,θ : Rd → (0, 1), θ ∈ Rν , n ∈ {0, 1, . . . , N − 1}, as multilayer
feedforward neural networks (cf. [28, Corollary 5 in Subsection 2.2] and, e.g., [16, 92,
175]). For example, for every k ∈ N let Lk : Rk → Rk be the function which satisfies for
all x = (x1, . . . , xk) ∈ Rk that

Lk(x) =

(
exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xk)

exp(xk) + 1

)
, (4.32)

for every θ = (θ1, . . . , θν) ∈ Rν , v ∈ N0 = {0, 1, 2, . . .}, k, l ∈ N with v + k(l + 1) ≤ ν let
Aθ,vk,l : Rl → Rk be the affine linear function which satisfies for all x = (x1, . . . , xl) ∈ Rl

that

Aθ,vk,l (x) =


θv+1 θv+2 . . . θv+l

θv+l+1 θv+l+2 . . . θv+2l

θv+2l+1 θv+2l+2 . . . θv+3l
...

...
...

...
θv+(k−1)l+1 θv+(k−1)l+2 . . . θv+kl




x1

x2

x3
...
xl

+


θv+kl+1

θv+kl+2

θv+kl+3
...

θv+kl+k

 , (4.33)

and assume for all n ∈ {0, 1, . . . , N − 1}, θ ∈ Rν that ν ≥ N(2d+ 1)(d+ 1) and

un,θ = L1 ◦ Aθ,(2nd+n)(d+1)
1,d ◦ Ld ◦ Aθ,(2nd+n+1)(d+1)

d,d ◦ Ld ◦ Aθ,((2n+1)d+n+1)(d+1)
d,d . (4.34)

The functions in (4.34) provide artificial neural networks with 4 layers (1 input layer with
d neurons, 2 hidden layers each with d neurons, and 1 output layer with 1 neuron) and the
multidimensional version of the standard logistic function R 3 x 7→ exp(x)/(exp(x)+1) ∈ (0, 1)
(cf. (4.32) above) as activation functions. In our numerical simulations in Section 4.3 we
use this type of activation function only just in front of the output layer and we employ
instead the multidimensional version of the rectifier function R 3 x 7→ max{x, 0} ∈
[0,∞) as activation functions just in front of the hidden layers. But in order to keep the
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illustration here as short as possible we only employ the multidimensional version of the
standard logistic function as activation functions in (4.32)–(4.34) above. Furthermore,
note that in contrast to the choice of the functions un,θ : Rd → (0, 1), θ ∈ Rν , n ∈
{0, 1, . . . , N−1}, the choice of the functions uN,θ : Rd → (0, 1), θ ∈ Rν , has no influence on
the approximate stopping time factors Un,θ : (Rd)n+1 → (0, 1), θ ∈ Rν , n ∈ {0, 1, . . . , N}
(cf. (4.29) above).

4.1.5 Formulation of the objective function

Recall that we intend to compute the real number

sup
{
E
[
g(tτ ,Xτ )

]
: τ : Ω→{0,1,...,N} is an

F-stopping time

}
(4.35)

as an approximation of the American option price (4.2) (cf. (4.7) in Subsection 4.1.2). By
employing neural network architectures for stopping times (cf. Subsection 4.1.4 above),
we next propose to replace the search over all F-stopping times for finding the supremum
in (4.35) by a search over the artificial neural network parameters θ ∈ Rν (cf. (4.38) below).
For this, observe that (4.28) implies for all F-stopping times τ : Ω→ {0, 1, . . . , N} and all
n ∈ {0, 1, . . . , N} that

1{τ=n} = Un,τ (X0,X1, . . . ,Xn). (4.36)

Therefore, for all F-stopping times τ : Ω→ {0, 1, . . . , N} it holds that

g(tτ ,Xτ ) =

[
N∑
n=0

1{τ=n}

]
g(tτ ,Xτ ) =

N∑
n=0

1{τ=n} g(tn,Xn)

=
N∑
n=0

Un,τ (X0,X1, . . . ,Xn) g(tn,Xn).

(4.37)

Combining this with (i) in Lemma 4.2 and (4.30) inspires the approximation

sup
{
E
[
g(tτ ,Xτ )

]
: τ : Ω→{0,1,...,N} is an

F-stopping time

}
= sup

{
E

[
N∑
n=0

Un,τ (X0,X1, . . . ,Xn) g(tn,Xn)

]
: τ : Ω→{0,1,...,N} is an

F-stopping time

}

= sup

{
E

[
N∑
n=0

Vn(X0,X1, . . . ,Xn) g(tn,Xn)

]
:

Vn : (Rd)n+1→{0,1}, n∈{0,1,...,N},
are Borel measurable functions with

∀x0,x1,...,xN∈Rd :
∑N
n=0 Vn(x0,x1,...,xn)=1

}

= sup

{
E

[
N∑
n=0

Vn(X0,X1, . . . ,Xn) g(tn,Xn)

]
:

Vn : (Rd)n+1→[0,1], n∈{0,1,...,N},
are Borel measurable functions with

∀x0,x1,...,xN∈Rd :
∑N
n=0 Vn(x0,x1,...,xn)=1

}

= sup

{
E

[
N∑
n=0

Un(X0,X1, . . . ,Xn) g(tn,Xn)

]
:

Un : (Rd)n+1→(0,1), n∈{0,1,...,N},
are Borel measurable functions with

∀x0,x1,...,xN∈Rd :
∑N
n=0 Un(x0,x1,...,xn)=1

}

≈ sup

{
E

[
N∑
n=0

Un,θ(X0,X1, . . . ,Xn) g(tn,Xn)

]
: θ ∈ Rν

}
.

(4.38)
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In view of this, our numerical solution for approximatively computing (4.35) consists of
trying to find an approximate maximiser of the objective function

Rν 3 θ 7→ E

[
N∑
n=0

Un,θ(X0,X1, . . . ,Xn) g(tn,Xn)

]
∈ R. (4.39)

4.1.6 Stochastic gradient ascent optimisation algorithms

Local/global maxima of the objective function (4.39) can be approximately reached by
maximising the expectation of the random objective function

Rν × Ω 3 (θ, ω) 7→
N∑
n=0

Un,θ(X0(ω),X1(ω), . . . ,Xn(ω)) g(tn,Xn(ω)) ∈ R (4.40)

by means of a stochastic gradient ascent-type optimisation algorithm. This yields a se-
quence of random parameter vectors along which we expect the objective function (4.39)
to increase. More formally, applying under suitable hyptheses stochastic gradient ascent-
type optimisation algorithms to (4.39) results in random approximations

Θm = (Θ(1)
m , . . . ,Θ(ν)

m ) : Ω→ Rν (4.41)

for m ∈ {0, 1, 2, . . . } of the local/global maximum points of the objective function (4.39),
where m ∈ {0, 1, 2, . . . } is the number of steps of the employed stochastic gradient ascent-
type optimisation algorithm.

4.1.7 Price and optimal exercise time for American-style options

The approximation algorithm sketched in Subsection 4.1.6 above allows us to approxima-
tively compute both the price and an optimal exercise strategy for the American option
(cf. Subsection 4.1.1). Let M ∈ N and consider a realisation Θ̂M ∈ Rν of the random
variable ΘM : Ω→ Rν . Then for sufficiently large N, ν,M ∈ N a candidate for a suitable
approximation of the American option price is the real number

E

[
N∑
n=0

Un,Θ̂M (X0,X1, . . . ,Xn) g(tn,Xn)

]
(4.42)

and a candidate for a suitable approximation of an optimal exercise strategy for the
American option is the function

Ω 3 ω 7→
N∑
n=0

nUn,Θ̂M (X0(ω),X1(ω), . . . ,Xn(ω)) ∈ [0, N ]. (4.43)

Note, however, that in general the function (4.43) does not take values in {0, 1, . . . , N}
and hence is not a proper stopping time. Similarly, note that in general it is not clear
whether there exists an exercise strategy such that the number (4.42) is equal to the
expected discounted pay-off under this exercise strategy. For these reasons we suggest
other candidates for suitable approximations of the price and an optimal exercise strategy
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for the American option. More specifically, for every θ ∈ Rν let τθ : Ω→ {0, 1, . . . , N} be
the F-stopping time given by

τθ = min

{
n ∈ {0, 1, . . . , N} :

n∑
k=0

Uk,θ(X0, . . . ,Xk) ≥ 1− Un,θ(X0, . . . ,Xn)

}
. (4.44)

Then for sufficiently large N, ν,M ∈ N we use a suitable Monte Carlo approximation of
the real number

E
[
g
(
tτ

Θ̂M
,Xτ

Θ̂M

)]
(4.45)

as a suitable implementable approximation of the price of the American option (cf. (4.2)
in Subsection 4.1.1 above and (4.58) in Subsection 4.2.1 below) and we use the random
variable

τΘ̂M
: Ω→ {0, 1, . . . , N} (4.46)

as a suitable implementable approximation of an optimal exercise strategy for the Amer-
ican option. Note that one has

τΘ̂M
= min

{
n ∈ {0, 1, . . . , N} : Un,Θ̂M (X0, . . . ,Xn) ≥ 1−

n∑
k=0

Uk,Θ̂M (X0, . . . ,Xk)

}

= min

{
n ∈ {0, 1, . . . , N} : Un,Θ̂M (X0, . . . ,Xn) ≥

N∑
k=n+1

Uk,Θ̂M (X0, . . . ,Xk)

}
.

(4.47)

This shows that the exercise strategy τΘ̂M
: Ω → {0, 1, . . . , N} exercises at the first time

index n ∈ {0, 1, . . . , N} for which the approximate stopping time factor associated to
the mesh point tn is at least as large as the combined approximate stopping time factors
associated to all later mesh points. Furthermore, observe that it holds that

E
[
g
(
tτ

Θ̂M
,Xτ

Θ̂M

)]
≤ sup

{
E
[
g(tτ ,Xτ )

]
: τ : Ω→{0,1,...,N} is an

F-stopping time

}
. (4.48)

Roughly speaking, this illustrates that Monte Carlo approximations of the number (4.45)
are typically low-biased approximations for the American option price (4.2). Finally, we
point out that, in comparison with the deep learning based approximation method for
solving optimal stopping problems in Becker, Cheridito, & Jentzen [28], the parameters
Θ̂M ∈ Rν determining an approximate optimal exercise strategy (cf. (4.46) above) are
obtained using a single training procedure to approximately maximise a single objective
function (cf. (4.39) above) and not found recursively through a sequence of training pro-
cedures along with different random objective functions (cf. [28, Subsections 2.2 and 2.3]).

4.2 Details of the proposed algorithm

4.2.1 Formulation of the proposed algorithm in a special case

In this subsection we describe the proposed algorithm in the specific situation where the
objective is to solve the American option pricing problem described in Subsection 4.1.1,
where batch normalisation (cf. Ioffe & Szegedy [184]) is not employed in the proposed algo-
rithm, and where the plain vanilla stochastic gradient ascent approximation method with
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a constant learning rate γ ∈ (0,∞) and without mini-batches is the employed stochas-
tic approximation algorithm. The general framework, which includes the setting in this
subsection as a special case, can be found in Subsection 4.2.2 below.

Framework 4.1 (Specific case). Let T, γ ∈ (0,∞), d,N ∈ N, ν = N(2d + 1)(d + 1),
let µ : Rd → Rd, σ : Rd → Rd×d, and g : [0, T ] × Rd → R be Borel measurable func-
tions, let (Ω,F ,P) be a probability space, let ξm : Ω → Rd, m ∈ N, be independent ran-
dom variables, let Wm : [0, T ] × Ω → Rd, m ∈ N, be independent P-standard Brownian
motions with continuous sample paths, assume that (ξm)m∈N and (Wm)m∈N are indepen-
dent, let t0, t1, . . . , tN ∈ [0, T ] be real numbers with 0 = t0 < t1 < . . . < tN = T , let
Xm : {t0, t1, . . . , tN} × Ω → Rd, m ∈ N, be the stochastic processes which satisfy for all
m ∈ N, n ∈ {0, 1, . . . , N − 1} that Xm

t0
= ξm and

Xm
tn+1

= Xm
tn + µ

(
Xm
tn

)
(tn+1 − tn) + σ

(
Xm
tn

)(
Wm
tn+1
−Wm

tn

)
, (4.49)

for every k ∈ N let Lk : Rk → Rk be the function which satisfies for all x = (x1, . . . , xk) ∈
Rk that

Lk(x) =

(
exp(x1)

exp(x1) + 1
,

exp(x2)

exp(x2) + 1
, . . . ,

exp(xk)

exp(xk) + 1

)
, (4.50)

for every θ = (θ1, . . . , θν) ∈ Rν, v ∈ N0, k, l ∈ N with v + k(l + 1) ≤ ν let Aθ,vk,l : Rl → Rk

be the function which satisfies for all x = (x1, . . . , xl) ∈ Rl that

Aθ,vk,l (x) =

(
θv+kl+1 +

[
l∑

i=1

xi θv+i

]
, . . . , θv+kl+k +

[
l∑

i=1

xi θv+(k−1)l+i

])
, (4.51)

for every θ ∈ Rν let un,θ : Rd → (0, 1), n ∈ {0, 1, . . . , N}, be functions which satisfy for
all n ∈ {0, 1, . . . , N − 1} that

un,θ = L1 ◦ Aθ,(2nd+n)(d+1)
1,d ◦ Ld ◦ Aθ,(2nd+n+1)(d+1)

d,d ◦ Ld ◦ Aθ,((2n+1)d+n+1)(d+1)
d,d , (4.52)

for every n ∈ {0, 1, . . . , N}, θ ∈ Rν let Un,θ : (Rd)n+1 → (0, 1) be the function which
satisfies for all x0, x1, . . . , xn ∈ Rd that

Un,θ(x0, x1, . . . , xn) = max{un,θ(xn), n+ 1−N}

[
1−

n−1∑
k=0

Uk,θ(x0, x1, . . . , xk)

]
, (4.53)

for every m ∈ N let φm : Rν ×Ω→ R be the function which satisfies for all θ ∈ Rν, ω ∈ Ω
that

φm(θ, ω) =
N∑
n=0

[
Un,θ

(
Xm
t0

(ω),Xm
t1

(ω), . . . ,Xm
tn (ω)

)
g
(
tn,Xm

tn (ω)
)]
, (4.54)

for every m ∈ N let Φm : Rν × Ω → Rν be the function which satisfies for all θ ∈ Rν,
ω ∈ Ω that

Φm(θ, ω) = (∇θφ
m)(θ, ω), (4.55)

let Θ: N0 × Ω→ Rν be a stochastic process which satisfies for all m ∈ N that

Θm = Θm−1 + γ · Φm(Θm−1), (4.56)

105



Chapter 4. Optimal stopping problems

and for every j ∈ N, θ ∈ Rν let τj,θ : Ω→ {t0, t1, . . . , tN} be the random variable given by

τj,θ = min

{
s ∈ [0, T ] :

(
∃n ∈ {0, 1, . . . , N} :

[
s = tn and

∑n
k=0 Uk,θ

(
X j
t0 , . . . ,X

j
tk

)
≥ 1− Un,θ

(
X j
t0 , . . . ,X

j
tn

)])}
.

(4.57)

Consider the setting in Framework 4.1, assume that µ and σ are globally Lipschitz
continuous, and assume that g is continuous and at most polynomially growing. In the
case of sufficiently large N,M, J ∈ N and sufficiently small γ ∈ (0,∞) we then think of
the random real number

1

J

[
J∑
j=1

g
(
τM+j,ΘM ,XM+j

τM+j,ΘM

)]
(4.58)

as an approximation of the price of the American option with the discounted pay-off
function g and for every j ∈ N we think of the random variable

τM+j,ΘM : Ω→ {t0, t1, . . . , tN} (4.59)

as an approximation of an optimal exercise strategy associated to the underlying time-
discrete path (XM+j

t )t∈{t0,t1,...,tN} (cf. Subsection 4.1.1 above and Section 4.3 below).

4.2.2 Formulation of the proposed algorithm in the general case

In this subsection we extend the framework in Subsection 4.2.1 above and describe the
proposed algorithm in the general case.

Framework 4.2. Let T ∈ (0,∞), d,N,M, ν, ς, % ∈ N, let g : [0, T ] × Rd → R be a Borel
measurable function, let (Ω,F ,P) be a probability space, let t0, t1, . . . , tN ∈ [0, T ] be real
numbers with 0 = t0 < t1 < . . . < tN = T , let Xm,j = (Xm,j,(1), . . . ,Xm,j,(d)) : {t0, t1, . . . ,
tN} × Ω→ Rd, j ∈ N, m ∈ N0, be i.i.d. stochastic processes, for every n ∈ {0, 1, . . . , N},
θ ∈ Rν, s ∈ Rς let uθ,sn : Rd → (0, 1) be a function, for every n ∈ {0, 1, . . . , N}, θ ∈ Rν,
s ∈ Rς let U θ,s

n : (Rd)n+1 → (0, 1) be the function which satisfies for all x0, x1, . . . , xn ∈ Rd

that

U θ,s
n (x0, x1, . . . , xn) = max

{
uθ,sn (xn), n+ 1−N

}[
1−

n−1∑
k=0

U θ,s
k (x0, x1, . . . , xk)

]
, (4.60)

let (Jm)m∈N0 ⊆ N be a sequence, for every m ∈ N, s ∈ Rς let φm,s : Rν × Ω → R be the
function which satisfies for all θ ∈ Rν, ω ∈ Ω that

φm,s(θ, ω) =
1

Jm

Jm∑
j=1

N∑
n=0

[
U θ,s
n

(
Xm,j
t0 (ω),Xm,j

t1 (ω), . . . ,Xm,j
tn (ω)

)
g
(
tn,Xm,j

tn (ω)
)]
, (4.61)

for every m ∈ N, s ∈ Rς let Φm,s : Rν × Ω → Rν be a function which satisfies for all
ω ∈ Ω, θ ∈ {η ∈ Rν : φm,s(·, ω) : Rν → R is differentiable at η} that

Φm,s(θ, ω) = (∇θφ
m,s)(θ, ω), (4.62)
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let S : Rς × Rν × (Rd){0,1,...,N−1}×N → Rς be a function, for every m ∈ N let Ψm : R% ×
Rν → R% and ψm : R% → Rν be functions, let S : N0 × Ω → Rς , Ξ: N0 × Ω → R%, and
Θ: N0 × Ω→ Rν be stochastic processes which satisfy for all m ∈ N that

Sm = S
(
Sm−1,Θm−1, (Xm,j

tn )(n,j)∈{0,1,...,N−1}×N
)
, (4.63)

Ξm = Ψm(Ξm−1,Φ
m,Sm(Θm−1)), and Θm = Θm−1 + ψm(Ξm), (4.64)

for every j ∈ N, θ ∈ Rν, s ∈ Rς let τ j,θ,s : Ω → {t0, t1, . . . , tN} be the random variable
given by

τ j,θ,s = min

{
s ∈ [0, T ] :

(
∃n ∈ {0, 1, . . . , N} : (4.65)[

s = tn and
∑n

k=0 U
θ,s
k

(
X 0,j
t0 , . . . ,X

0,j
tk

)
≥ 1− U θ,s

n

(
X 0,j
t0 , . . . ,X

0,j
tn

)])}
,

and let P : Ω→ R be the random variable which satisfies for all ω ∈ Ω that

P(ω) =
1

J0

[
J0∑
j=1

g
(
τ j,ΘM (ω),SM (ω)(ω),X 0,j

τ j,ΘM (ω),SM (ω)(ω)
(ω)
)]
. (4.66)

Consider the setting in Framework 4.2. Under suitable further assumptions, in the
case of sufficiently large N,M, ν, J0 ∈ N we think of the random real number

P =
1

J0

[
J0∑
j=1

g
(
τ j,ΘM ,SM ,X 0,j

τ j,ΘM,SM

)]
(4.67)

as an approximation of the price of the American option with the discounted pay-off
function g and for every j ∈ N we think of the random variable

τ j,ΘM ,SM : Ω→ {t0, t1, . . . , tN} (4.68)

as an approximation of an optimal exercise strategy associated to the underlying time-
discrete path (X 0,j

t )t∈{t0,t1,...,tN} (cf. Subsection 4.1.1 above and Section 4.3 below).

4.2.3 Comments on the proposed algorithm

Note that the lack in Framework 4.2 of any assumptions on the dynamics of the stochas-
tic process (X 0,1

t )t∈{t0,t1,...,tN} allows us to approximatively compute the optimal pay-
off as well as an optimal exercise strategy for very general optimal stopping problems
where, in particular, the stochastic process under consideration is not necessarily a solu-
tion of any stochastic differential equation. We only require that the stochastic process
(X 0,1

t )t∈{t0,t1,...,tN} can be simulated efficiently and formally we still rely on the Markov
assumption (cf. Subsection 4.1.4 above). In addition, observe that any particular choice
of the functions uθ,sN : Rd → (0, 1), s ∈ Rς , θ ∈ Rν , has no influence on the proposed
algorithm (cf. (4.60)). Furthermore, the dynamics in (4.64) associated with the stochastic
processes (Ξm)m∈N0 and (Θm)m∈N0 allow us to incorporate different stochastic approxima-
tion algorithms such as
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• plain vanilla stochastic gradient ascent with or without mini-batches (cf. (4.56)
above) as well as

• adaptive moment estimation (Adam) with mini-batches (cf. Kingma & Ba [201] and
(4.92)–(4.93) in Subsection 4.3.2 below)

into the algorithm in Subsection 4.2.2 (cf. E, Han, & Jentzen [110, Subsection 3.3]). The
dynamics in (4.63) associated with the stochastic process (Sm)m∈N0 in turn, allow us
to incorporate batch normalisation (cf. Ioffe & Szegedy [184] and the beginning of Sec-
tion 4.3 below) into the algorithm in Subsection 4.2.2. In that case we think of (Sm)m∈N0

as a bookkeeping process keeping track of approximatively calculated means and stan-
dard deviations as well as of the number of steps m ∈ N0 of the employed stochastic
approximation algorithm.

4.3 Numerical examples of pricing American-style de-
rivatives

In this section we test the algorithm in Framework 4.2 on several different examples of
pricing American-style financial derivatives.

In each of the examples below we employ the general approximation algorithm in
Framework 4.2 above in conjunction with the Adam optimiser (cf. Kingma & Ba [201])
with varying learning rates and with mini-batches (cf. Subsection 4.3.2 below for a precise
description).

Furthermore, in the context of Framework 4.2 we employ N − 1 fully connected feed-
forward neural networks in each of our implementations for the examples below where
the initial value X 0,1

t0 is deterministic. In that case the data entering the functions
uθ,s0 : Rd → (0, 1), s ∈ Rς , θ ∈ Rν , is deterministic (cf. (4.60)–(4.61)). Therefore, a train-
ing procedure is not necessary for the approximative calculations of these functions but is
only carried out for the functions uθ,s1 , . . . , uθ,sN−1 : Rd → (0, 1), s ∈ Rς , θ ∈ Rν . If, however,
the initial value X 0,1

t0 is not deterministic (cf. the example in Subsection 4.3.4.4 below),
a training procedure is carried out for all the functions uθ,s0 , uθ,s1 , . . . , uθ,sN−1 : Rd → (0, 1),
s ∈ Rς , θ ∈ Rν , and in that case we hence employ N fully connected feedforward neural
networks (cf. Becker, Cheridito, & Jentzen [28, Remark 6 in Subsection 2.3]).

All neural networks employed have one input layer, two hidden layers, and one output
layer. As non-linear activation functions just in front of the two hidden layers we employ
the multidimensional version of the rectifier function R 3 x 7→ max{x, 0} ∈ [0,∞),
whereas just in front of the output layer we employ the standard logistic function R 3 x 7→
exp(x)/(exp(x)+1) ∈ (0, 1) as non-linear activation function. In addition, batch normalisation
(cf. Ioffe & Szegedy [184]) is applied just before the first linear transformation, just before
each of the two non-linear activation functions in front of the hidden layers as well as
just before the non-linear activation function in front of the output layer. We use Xavier
initialisation (cf. Glorot & Bengio [136]) to initialise all weights in the neural networks.

All the examples presented below were implemented in Python. The corresponding
Python codes were run, unless stated otherwise (cf. Subsection 4.3.4.1.2 as well as the last
sentence in Subsection 4.3.4.1.3 below), in single precision (float32) on a NVIDIA GeForce
GTX 1080 GPU with 1974 MHz core clock and 8 GB GDDR5X memory with 1809.5 MHz
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clock rate, where the underlying system consisted of an Intel Core i7-6800K 3.4 GHz CPU
with 64 GB DDR4-2133 memory running Tensorflow 1.5 on Ubuntu 16.04. We would like
to point out that no special emphasis has been put on optimising computation speed.
In many cases some of the algorithm parameters could be adjusted in order to obtain
similarly accurate results in shorter runtime.

4.3.1 Theoretical considerations

Before we present the optimal stopping problem examples on which we have tested the
algorithm in Framework 4.2 (cf. Subsections 4.3.3 and 4.3.4 below), we recall a few theo-
retical results, which are used to design some of these examples and to provide reference
values. The elementary and well-known result in Lemma 4.3 below specifies the distribu-
tions of linear combinations of independent and identically distributed centred Gaussian
random variables which take values in a separable normed R-vector space.

Lemma 4.3. Let n ∈ N, γ = (γ1, . . . , γn) ∈ Rn, let (V, ‖·‖V ) be a separable normed
R-vector space, let (Ω,F ,P) be a probability space, and let Xi : Ω→ V , i ∈ {1, . . . , n}, be
i.i.d. centred Gaussian random variables. Then it holds that(

n∑
i=1

γiXi

)
(P)B(V ) = (‖γ‖Rn X1)(P)B(V ). (4.69)

Proof of Lemma 4.3. Throughout this proof let Y1, Y2 : Ω → V be the random variables
given by Y1 =

∑n
i=1 γiXi and Y2 = ‖γ‖Rn X1. Note that for every ϕ ∈ V ′ it holds

that ϕ ◦Xi : Ω → R, i ∈ {1, . . . , n}, are independent and identically distributed centred
Gaussian random variables. This implies that for all ϕ ∈ V ′ it holds that

E
[
eiϕ(Y1)

]
= E

[
ei

∑n
i=1 γi ϕ(Xi)

]
= E

[
n∏
i=1

ei γi ϕ(Xi)

]
=

n∏
i=1

E
[
ei (γi ϕ)(Xi)

]
=

n∏
i=1

exp
(
−1

2
E
[
|(γi ϕ)(Xi)|2

])
=

n∏
i=1

exp
(
−1

2
E
[
|(γi ϕ)(X1)|2

])
= exp

(
−1

2
E

[
n∑
i=1

|γi ϕ(X1)|2
])

= exp
(
−1

2
E
[
|(‖γ‖Rn ϕ)(X1)|2

])
= E

[
ei ‖γ‖Rn ϕ(X1)

]
= E

[
eiϕ(Y2)

]
.

(4.70)

This and, e.g., Jentzen, Salimova, & Welti [193, Lemma 4.10] establish that

Y1(P)B(V ) = Y2(P)B(V ). (4.71)

The proof of Lemma 4.3 is thus complete.

The next elementary and well-known corollary follows directly from Lemma 4.3.

Corollary 4.4. Let d ∈ N, γ = (γ1, . . . , γd) ∈ Rd, let (Ω,F ,P) be a probability space,
and let W = (W (1), . . . ,W (d)) : [0, T ] × Ω → Rd be a P-standard Brownian motion with
continuous sample paths. Then it holds that(

d∑
i=1

γiW
(i)

)
(P)B(C([0,T ],R)) =

(
‖γ‖RdW (1)

)
(P)B(C([0,T ],R)). (4.72)
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The next elementary and well-known result, Proposition 4.5, states that the distri-
bution of a product of multiple correlated geometric Brownian motions is equal to the
distribution of a single particular geometric Brownian motion.

Proposition 4.5. Let T, ε ∈ (0,∞), d ∈ N, S = (ς1, . . . , ςd) ∈ Rd×d, ξ = (ξ1, . . . , ξd), α =
(α1, . . . , αd), β = (β1, . . . , βd) ∈ Rd, let (Ω,F ,P) be a probability space, let F (i) =

(F (i)
t )t∈[0,T ], i ∈ {1, 2}, be filtrations on (Ω,F ,P) that satisfy the usual conditions, letW =

(W (1), . . . ,W (d)) : [0, T ] × Ω → Rd be a standard (Ω,F ,P,F (1))-Brownian motion with
continuous sample paths, let w : [0, T ] × Ω → R be a standard (Ω,F ,P,F (2))-Brownian
motion with continuous sample paths, let µ : Rd → Rd, σ : Rd → Rd×d, P : C([0, T ],Rd)→
C([0, T ],R), and G : C([0, T ],R)→ C([0, T ],R) be the functions which satisfy for all x =

(x1, . . . , xd) ∈ Rd, u(1) = (u
(1)
s )s∈[0,T ], . . . , u

(d) = (u
(d)
s )s∈[0,T ] ∈ C([0, T ],R), t ∈ [0, T ] that

µ(x) = (α1x1, . . . , αdxd), σ(x) = diag(β1x1, . . . , βdxd)S
∗, (G[u(1)])t = exp

(
ε
[∑d

i=1 αi −
‖βiςi‖2Rd/2

]
t+ ε ‖S β‖Rd u

(1)
t

)∏d
i=1 |ξi|ε, and (P[(u(1), . . . , u(d))])t =

∏d
i=1

∣∣u(i)
t

∣∣ε, let X =

(X(1), . . . , X(d)) : [0, T ] × Ω → Rd be an F (1)-adapted stochastic process with continuous
sample paths, let Y : [0, T ]×Ω→ R be an F (2)-adapted stochastic process with continuous
sample paths, and assume that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dWs, (4.73)

Yt =
d∏
i=1

|ξi|ε +

(
ε

[
d∑
i=1

αi −
‖βiςi‖2Rd

2

]
+
‖εSβ‖2

Rd
2

)∫ t

0

Ys ds+ ε ‖S β‖Rd
∫ t

0

Ys dws. (4.74)

Then

(i) for all i ∈ {1, . . . , d}, t ∈ [0, T ] it holds P-a.s. that

X
(i)
t = exp

([
αi −

‖βiςi‖2
Rd

2

]
t+ βi〈ςi,Wt〉Rd

)
ξi, (4.75)

(ii) it holds that P and G are continuous functions, and

(iii) it holds that

(P ◦X)(P)B(C([0,T ],R)) = (G ◦w)(P)B(C([0,T ],R)) = Y (P)B(C([0,T ],R)). (4.76)

Proof of Proposition 4.5. Throughout this proof let γ = (γ1, . . . , γd) ∈ Rd be the vector
given by γ = S β, let Z(i) : [0, T ] × Ω → R, i ∈ {1, . . . , d}, be the stochastic processes
which satisfy for all i ∈ {1, . . . , d}, t ∈ [0, T ] that

Z
(i)
t =

[
αi −

‖βiςi‖2
Rd

2

]
t+ βi〈ςi,Wt〉Rd , (4.77)

and let G̃ : C([0, T ],R)→ C([0, T ],R) be the function which satisfies for all u = (us)s∈[0,T ]

∈ C([0, T ],R), t ∈ [0, T ] that

(G̃[u])t = exp

(
ε

[
d∑
i=1

αi −
‖βiςi‖2

Rd

2

]
t+ ε ut

)
d∏
i=1

|ξi|ε. (4.78)
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Observe that for all i ∈ {1, . . . , d}, t ∈ [0, T ] it holds P-a.s. that

X
(i)
t = ξi + αi

∫ t

0

X(i)
s ds+ βi

∫ t

0

X(i)
s 〈ςi, dWs〉Rd . (4.79)

In addition, note that (4.77) implies that for all i ∈ {1, . . . , d}, t ∈ [0, T ] it holds P-a.s.
that

Z
(i)
t =

∫ t

0

αi −
‖βiςi‖2

Rd

2
ds+

∫ t

0

βi〈ςi, dWs〉Rd . (4.80)

Itô’s formula hence shows that for all i ∈ {1, . . . , d}, t ∈ [0, T ] it holds P-a.s. that

eZ
(i)
t ξi = ξi +

[
αi −

‖βiςi‖2
Rd

2

] ∫ t

0

eZ
(i)
s ξi ds+ βi

∫ t

0

eZ
(i)
s ξi〈ςi, dWs〉Rd

+
‖βiςi‖2

Rd

2

∫ t

0

eZ
(i)
s ξi ds

= ξi + αi

∫ t

0

eZ
(i)
s ξi ds+ βi

∫ t

0

eZ
(i)
s ξi〈ςi, dWs〉Rd .

(4.81)

Combining this and (4.79) with, e.g., Da Prato & Zabczyk [94, (i) in Theorem 7.4] proves
that for all i ∈ {1, . . . , d}, t ∈ [0, T ] it holds P-a.s. that

X
(i)
t = eZ

(i)
t ξi = exp

([
αi −

‖βiςi‖2
Rd

2

]
t+ βi〈ςi,Wt〉Rd

)
ξi. (4.82)

This establishes (i). In the next step note that (ii) is clear. It thus remains to prove (iii).
For this observe that (i) establishes that for all t ∈ [0, T ] it holds P-a.s. that

(P[X])t =
d∏
i=1

∣∣X(i)
t

∣∣ε =
d∏
i=1

[
exp

(
ε

[
αi −

‖βiςi‖2
Rd

2

]
t+ ε βi〈ςi,Wt〉Rd

)
|ξi|ε

]

= exp

(
ε

[
d∑
i=1

αi −
‖βiςi‖2

Rd

2

]
t+ ε

〈
d∑
i=1

ςiβi,Wt

〉
Rd

)
d∏
i=1

|ξi|ε

= exp

(
ε

[
d∑
i=1

αi −
‖βiςi‖2

Rd

2

]
t+ ε 〈γ,Wt〉Rd

)
d∏
i=1

|ξi|ε (4.83)

=

(
G̃

[
d∑
i=1

γiW
(i)

])
t

.

Continuity hence implies that it holds P-a.s. that

P[X] = G̃

[
d∑
i=1

γiW
(i)

]
. (4.84)

Moreover, note that (i) shows that for all t ∈ [0, T ] it holds P-a.s. that

Yt = exp

({
ε

[
d∑
i=1

αi −
‖βiςi‖2

Rd

2

]
+
‖εS β‖2

Rd

2
−
‖εS β‖2

Rd

2

}
t+ ε ‖S β‖Rd wt

)
d∏
i=1

|ξi|ε

= exp

(
ε

[
d∑
i=1

αi −
‖βiςi‖2

Rd

2

]
t+ ε ‖S β‖Rd wt

)
d∏
i=1

|ξi|ε (4.85)

= (G[w])t.
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This and continuity establish that it holds P-a.s. that

Y = G[w]. (4.86)

Furthermore, observe that Corollary 4.4 ensures that(
d∑
i=1

γiW
(i)

)
(P)B(C([0,T ],R)) =

(
‖γ‖RdW (1)

)
(P)B(C([0,T ],R)). (4.87)

The fact that G̃ : C([0, T ],R)→ C([0, T ],R) is a Borel measurable function, (ii), the fact
that ∀u ∈ C([0, T ],R) : G̃[‖γ‖Rd u] = G[u], (4.84), and (4.86) hence demonstrate that

(P ◦X)(P)B(C([0,T ],R)) =

(
G̃ ◦

(
d∑
i=1

γiW
(i)

))
(P)B(C([0,T ],R))

=
(
G̃ ◦

(
‖γ‖RdW (1)

))
(P)B(C([0,T ],R)) =

(
G ◦W (1)

)
(P)B(C([0,T ],R))

= (G ◦w)(P)B(C([0,T ],R)) = Y (P)B(C([0,T ],R)).

(4.88)

The proof of Proposition 4.5 is thus complete.

In the next result, Lemma 4.6, we recall the well-known formula for the price of a
European call option on a single stock in the Black–Scholes model.

Lemma 4.6. Let T, ξ, σ ∈ (0,∞), r, c ∈ R, let Φ: R→ R be the function which satisfies
for all x ∈ R that Φ(x) =

∫ x
−∞

1√
2π
e−

1
2
y2

dy, let (Ω,F ,P) be a probability space with a
filtration F = (Ft)t∈[0,T ] that satisfies the usual conditions, let W : [0, T ] × Ω → R be a
standard (Ω,F ,P,F )-Brownian motion with continuous sample paths, and let X : [0, T ]×
Ω → R be an F -adapted stochastic process with continuous sample paths which satisfies
that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ + (r − c)
∫ t

0

Xs ds+ σ

∫ t

0

Xs dWs. (4.89)

Then it holds for all K ∈ R that

E
[
e−rT max{XT −K, 0}

]
=

e−c T ξ Φ
(

(r−c+σ2

2
)T+ln(ξ/K)

σ
√
T

)
−Ke−r T Φ

(
(r−c−σ2

2
)T+ln(ξ/K)

σ
√
T

)
: K > 0

e−c T ξ −Ke−r T : K ≤ 0
.

(4.90)

4.3.2 Setting

Framework 4.3. Assume Framework 4.2, let ζ1 = 0.9, ζ2 = 0.999, ε ∈ (0,∞), (γm)m∈N ⊆
(0,∞), ξ = (ξ1, . . . , ξd) ∈ Rd, let F = (Ft)t∈[0,T ] be a filtration on (Ω,F ,P) that satis-
fies the usual conditions, let Wm,j = (Wm,j,(1), . . . ,Wm,j,(d)) : [0, T ] × Ω → Rd, j ∈ N,
m ∈ N0, be independent standard (Ω,F ,P,F )-Brownian motions with continuous sam-
ple paths, let µ : Rd → Rd and σ : Rd → Rd×d be Lipschitz continuous functions, let

112



4.3. Numerical examples of pricing American-style derivatives

X = (X(1), . . . , X(d)) : [0, T ] × Ω → Rd be an F -adapted stochastic process with continu-
ous sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dW 0,1
s , (4.91)

assume for all n ∈ {0, 1, . . . , N} that % = 2ν, Ξ0 = 0, and tn = nT
N
, and assume for all

m ∈ N, x = (x1, . . . , xν), y = (y1, . . . , yν), η = (η1, . . . , ην) ∈ Rν that

Ψm(x, y, η) =
(
ζ1x+ (1− ζ1)η, ζ2y + (1− ζ2)((η1)2, . . . , (ην)

2)
)

(4.92)

and

ψm(x, y) =

([√
|y1|

1−(ζ2)m
+ ε

]−1
γmx1

1− (ζ1)m
, . . . ,

[√
|yν |

1−(ζ2)m
+ ε

]−1
γmxν

1− (ζ1)m

)
. (4.93)

Equations (4.92)–(4.93) in Framework 4.3 describe the Adam optimiser with possibly
varying learning rates (cf. Kingma & Ba [201] and, e.g., E, Han, & Jentzen [110, (4.3)–
(4.4) in Subsection 4.1 and (5.4)–(5.5) in Subsection 5.2]). Furthermore, in the context
of pricing American-style financial derivatives, we think

• of T as the maturity,

• of d as the dimension of the associated optimal stopping problem,

• of N as the time discretisation parameter employed,

• of M as the total number of training steps employed in the Adam optimiser,

• of g as the discounted pay-off function,

• of {t0, t1, . . . , tN} as the discrete time grid employed,

• of J0 as the number of Monte Carlo samples employed in the final integration for
the price approximation,

• of (Jm)m∈N as the sequence of batch sizes employed in the Adam optimiser,

• of ζ1 as the momentum decay factor, of ζ2 as the second momentum decay factor,
and of ε as the regularising factor employed in the Adam optimiser,

• of (γm)m∈N as the sequence of learning rates employed in the Adam optimiser,

• and, where applicable, of X as a continuous-time model for d underlying stock prices
with initial prices ξ, drift coefficient function µ, and diffusion coefficient function σ.

Moreover, note that for every m ∈ N0, j ∈ N the stochastic processes Wm,j,(1) =
(W

m,j,(1)
t )t∈[0,T ], . . . , Wm,j,(d) = (W

m,j,(d)
t )t∈[0,T ] are the components of the d-dimensional

standard Brownian motion Wm,j = (Wm,j
t )t∈[0,T ] and hence each a one-dimensional stan-

dard Brownian motion.
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4.3.3 Examples with known one-dimensional representation

In this subsection we test the algorithm in Framework 4.2 in the case of several very
simple optimal stopping problem examples in which the d-dimensional optimal stopping
problem under consideration has been designed in such a way that it can be represented
as a one-dimensional optimal stopping problem. This representation allows us to em-
ploy a numerical method for the one-dimensional optimal stopping problem to compute
reference values for the original d-dimensional optimal stopping problem. We refer to Sub-
section 4.3.4 below for more challenging examples where a one-dimensional representation
is not known.

4.3.3.1 Optimal stopping of a Brownian motion

4.3.3.1.1 A Bermudan two-exercise put-type example

In this subsection we test the algorithm in Framework 4.2 on the example of optimally
stopping a correlated Brownian motion under a put option inspired pay-off function with
two possible exercise dates.

Assume Framework 4.3, let r = 0.02 = 2%, β = 0.3 = 30%, χ = 95, K = 90, Q =
(Qi,j)(i,j)∈{1,...,d}2 ,S ∈ Rd×d satisfy for all i ∈ {1, . . . , d} that Qi,i = 1, ∀ j ∈ {1, . . . , d} \
{i} : Qi,j = 0.1, and SS∗ = Q, let F = (Ft)t∈[0,T ] be the filtration generated by W 0,1,
and assume for all m, j ∈ N, n ∈ {0, 1, 2}, s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that
T = 1, N = 2, M = 500, Xm−1,j

tn = SWm−1,j
tn , J0 = 4 096 000, Jm = 8192, ε = 10−8,

γm = 5 [10−2
1[1,100](m) + 10−3

1(100,300](m) + 10−4
1(300,∞)(m)], and

g(s, x) = e−rs max

{
K − exp

([
r − 1

2
β2
]
s+ β

√
10√

d(d+9)
[x1 + . . .+ xd]

)
χ, 0

}
. (4.94)

Note that the distribution of the random variable Ω 3 ω 7→ ([0, T ] 3 t 7→ g(t,SW 0,1
t (ω)) ∈

R) ∈ C([0, T ],R) does not depend on the dimension d (cf. Corollary 4.4). The random
variable P provides approximations for the real number

sup
{
E
[
g(τ,SW 0,1

τ )
]
:

τ : Ω→{t0,t1,t2} is an
(Ft)t∈{t0,t1,t2}-stopping time

}
. (4.95)

In Table 4.1 we show approximations for the mean and for the standard deviation of
P and the average runtime in seconds needed for calculating one realisation of P for
d ∈ {1, 5, 10, 50, 100, 500, 1000}. For each case the calculations of the results in Table 4.1
are based on 10 independent realisations of P , which have been obtained from an imple-
mentation in Python.

4.3.3.1.2 An American put-type example

In this subsection we test the algorithm in Framework 4.2 on the example of optimally
stopping a standard Brownian motion under a put option inspired pay-off function.

Assume Framework 4.3, let r = 0.06 = 6%, β = 0.4 = 40%, χ = K = 40, let F =
(Ft)t∈[0,T ] be the filtration generated byW 0,1, let F = (Ft)t∈[0,T ] be the filtration generated
by W 0,1,(1), and assume for all m, j ∈ N, n ∈ {0, 1, . . . , N}, s ∈ [0, T ], x = (x1, . . . , xd) ∈
Rd that T = 1, N = 50, M = 15001[1,50](d)+18001(50,100](d)+30001(100,∞)(d), Xm−1,j

tn =
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Dimen- Mean Standard Runtime in sec.
sion d of P deviation for one realisa-

of P tion of P
1 7.890 0.004 4.2
5 7.892 0.007 4.2
10 7.892 0.005 4.4
50 7.890 0.005 5.5
100 7.891 0.004 7.3
500 7.891 0.005 24.3
1000 7.892 0.007 54.4

Table 4.1: Numerical simulations of the algorithm in Framework 4.2 for optimally stopping
a correlated Brownian motion in the case of the Bermudan two-exercise put-type example
in Subsection 4.3.3.1.1.

Wm−1,j
tn , J0 = 4 096 000, Jm = 81921[1,50](d)+40961(50,100](d)+20481(100,∞)(d), ε = 0.001,

γm = 5 [10−2
1[1,M/3](m) + 10−3

1(M/3,2M/3](m) + 10−4
1(2M/3,∞)(m)], and

g(s, x) = e−rs max
{
K − exp

([
r − 1

2
β2
]
s+ β√

d
[x1 + . . .+ xd]

)
χ, 0
}
. (4.96)

The random variable P provides approximations for the real number

sup
{
E
[
g(τ,W 0,1

τ )
]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.97)

We show approximations for the mean of P , for the standard deviation of P , and for
the relative L1-approximation error associated to P , the uncorrected sample standard
deviation of the relative approximation error associated to P , and the average runtime
in seconds needed for calculating one realisation of P for d ∈ {1, 5, 10, 50, 100, 500, 1000}
in Table 4.2. For each case the calculations of the results in Table 4.2 are based on
10 independent realisations of P , which have been obtained from an implementation in
Python. Furthermore, in the approximative calculations of the relative approximation
error associated to P the exact number (4.97) has been replaced, independently of the
dimension d, by the real number

sup

{
E
[
e−rτ max

{
K − exp

([
r − 1

2
β2
]
τ + β W 0,1,(1)

τ

)
χ, 0
}]

: τ : Ω→[0,T ] is an
F-stopping time

}
(4.98)

(cf. Corollary 4.4), which, in turn, has been replaced by the value 5.318 (cf. Longstaff &
Schwartz [232, Table 1 in Section 3]). This value has been calculated using the binomial
tree method on M. Smirnov’s website [290] with 20 000 nodes. Note that (4.98) corre-
sponds to the price of an American put option on a single stock in the Black–Scholes
model with initial stock price χ, interest rate r, volatility β, strike price K, and maturity
T .

4.3.3.2 Geometric average-type options

4.3.3.2.1 An American geometric average put-type example

In this subsection we test the algorithm in Framework 4.2 on the example of pricing an
American geometric average put-type option on up to 200 distinguishable stocks in the
Black–Scholes model.
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Dimen- Mean Standard Rel. L1- Standard Runtime
sion d of P deviation approx. deviation in sec. for

of P err. of the rel. one realisa-
approx. err. tion of P

1 5.311 0.002 0.0013 0.0004 78.6
5 5.310 0.003 0.0015 0.0005 91.3
10 5.309 0.003 0.0017 0.0005 104.6
50 5.306 0.003 0.0022 0.0006 215.7
100 5.305 0.004 0.0025 0.0006 245.1
500 5.298 0.003 0.0037 0.0005 1006.3
1000 5.294 0.003 0.0046 0.0006 2266.0

Table 4.2: Numerical simulations of the algorithm in Framework 4.2 for optimally stopping
a standard Brownian motion in the case of the American put-type example in Subsec-
tion 4.3.3.1.2. In the approximative calculations of the relative approximation errors the
exact number (4.97) has been replaced by the value 5.318, which has been obtained using
the binomial tree method on M. Smirnov’s website [290].

Assume Framework 4.3, assume that d ∈ {40, 80, 120, . . .}, let β = (β1, . . . , βd) ∈ Rd,
ρ, δ̃, β̃, δ1, δ2, . . . , δd ∈ R, r = 0.6, K = 95, ξ̃ = 100 satisfy for all i ∈ {1, . . . , d} that
βi = min{0.04 [(i− 1) mod 40], 1.6− 0.04 [(i− 1) mod 40]}, ρ = 1

d
‖β‖2

Rd = 1
40

∑40
i=1(βi)

2 =

0.2136, δi = r− ρ
d

(
i− 1

2

)
− 1

5
√
d
, δ̃ = r− 1√

d

∑d
i=1(r−δi)+

√
d−1
2d
‖β‖2

Rd = r− ρ
2
− 1

5
= 0.2932,

and β̃ = 1√
d
‖β‖Rd =

√
ρ, let Y : [0, T ]×Ω→ R be an F -adapted stochastic process with

continuous sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Yt = ξ̃ + (r − δ̃)
∫ t

0

Ys ds+ β̃

∫ t

0

Ys dW 0,1,(1)
s , (4.99)

let F = (Ft)t∈[0,T ] be the filtration generated by X, let F = (Ft)t∈[0,T ] be the filtration
generated by Y , and assume for all m, j ∈ N, n ∈ {0, 1, . . . , N}, i ∈ {1, . . . , d}, s ∈ [0, T ],
x = (x1, . . . , xd) ∈ Rd that T = 1, N = 100, M = 18001[1,120](d) + 30001(120,∞)(d),
J0 = 4 096 000, Jm = 81921[1,120](d)+40961(120,∞)(d), ε = 10−8, γm = 5 [10−2

1[1,M/3](m)+
10−3

1(M/3,2M/3](m)+10−4
1(2M/3,∞)(m)], ξi = (100)1/

√
d, µ(x) = ((r− δ1)x1, . . . , (r− δd)xd),

σ(x) = diag(β1x1, . . . , βdxd), that

Xm−1,j,(i)
tn = exp

([
r − δi − 1

2
(βi)

2
]
tn + βiW

m−1,j,(i)
tn

)
ξi, (4.100)

and that

g(s, x) = e−rs max

{
K −

[
d∏

k=1

|xk|1/
√
d

]
, 0

}
. (4.101)

The random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.102)

In Table 4.3 we show approximations for the mean of P , for the standard deviation of P ,
and for the relative L1-approximation error associated to P , the uncorrected sample stan-
dard deviation of the relative approximation error associated to P , and the average run-
time in seconds needed for calculating one realisation of P for d ∈ {40, 80, 120, 160, 200}.
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Dimen- Mean Standard Rel. L1- Standard Runtime
sion d of P deviation approx. deviation in sec. for

of P err. of the rel. one realisa-
approx. err. tion of P

40 6.510 0.004 0.0053 0.0006 477.7
80 6.508 0.003 0.0056 0.0005 793.5
120 6.505 0.003 0.0061 0.0005 934.7
160 6.504 0.003 0.0062 0.0005 1203.9
200 6.504 0.004 0.0063 0.0005 1475.0

Table 4.3: Numerical simulations of the algorithm in Framework 4.2 for pricing the Amer-
ican geometric average put-type option from the example in Subsection 4.3.3.2.1. In the
approximative calculations of the relative approximation errors the exact value of the
price (4.102) has been replaced by the value 6.545, which has been obtained using the
binomial tree method on M. Smirnov’s website [290].

For each case the calculations of the results in Table 4.3 are based on 10 independent
realisations of P , which have been obtained from an implementation in Python. Fur-
thermore, in the approximative calculations of the relative approximation error associated
to P the exact value of the price (4.102) has been replaced, independently of the dimension
d, by the real number

sup
{
E
[
e−rτ max{K − Yτ , 0}

]
: τ : Ω→[0,T ] is an

F-stopping time

}
, (4.103)

(cf. Proposition 4.5), which, in turn, has been replaced by the value 6.545. The latter
has been calculated using the binomial tree method on M. Smirnov’s website [290] with
20 000 nodes. Note that (4.103) corresponds to the price of an American put option on a
single stock in the Black–Scholes model with initial stock price ξ̃, interest rate r, dividend
rate δ̃, volatility β̃, strike price K, and maturity T .

4.3.3.2.2 An American geometric average call-type example

In this subsection we test the algorithm in Framework 4.2 on the example of pricing an
American geometric average call-type option on up to 100 correlated stocks in the Black–
Scholes model. This example is taken from Sirignano & Spiliopoulos [288, Subsection 4.3],
from where we consider the cases with 3, 20, and 100 dimensions.

Assume Framework 4.3, let r = 0%, δ = 0.02 = 2%, β = 0.25 = 25%, K = ξ̃ = 1,
Q = (Qi,j)(i,j)∈{1,...,d}2 ,S = (ς1, . . . , ςd) ∈ Rd×d, δ̃, β̃ ∈ R satisfy for all i ∈ {1, . . . , d}
that Qi,i = 1, ∀ j ∈ {1, . . . , d} \ {i} : Qi,j = 0.75, S∗S = Q, δ̃ = δ + 1

2
(β2 − (β̃)2),

and β̃ = β
2d

√
d (3d+ 1), let Y : [0, T ]× Ω→ R be an F -adapted stochastic process with

continuous sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Yt = ξ̃ + (r − δ̃)
∫ t

0

Ys ds+ β̃

∫ t

0

Ys dW 0,1,(1)
s , (4.104)

let F = (Ft)t∈[0,T ] be the filtration generated by X, let F = (Ft)t∈[0,T ] be the filtration
generated by Y , and assume for all m, j ∈ N, n ∈ {0, 1, . . . , N}, i ∈ {1, . . . , d}, s ∈ [0, T ],
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x = (x1, . . . , xd) ∈ Rd that T = 2, N = 50, M = 1600, J0 = 4 096 000, Jm = 8192,
ε = 10−8, γm = 5 [10−2

1[1,400](m) + 10−3
1(400,800](m) + 10−4

1(800,∞)(m)], ξi = 1, µ(x) =
(r − δ)x, σ(x) = β diag(x1, . . . , xd)S

∗, that

Xm−1,j,(i)
tn = exp

([
r − δ − 1

2
β2
]
tn + β

〈
ςi,W

m−1,j
tn

〉
Rd

)
ξi, (4.105)

and that

g(s, x) = e−rs max

{[
d∏

k=1

|xk|1/d
]
−K, 0

}
. (4.106)

The random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.107)

Table 4.4 shows approximations for the mean of P , for the standard deviation of P , for
the real number

sup
{
E
[
e−rτ max{Yτ −K, 0}

]
: τ : Ω→[0,T ] is an

F-stopping time

}
, (4.108)

and for the relative L1-approximation error associated to P , the uncorrected sample stan-
dard deviation of the relative approximation error associated to P , and the average run-
time in seconds needed for calculating one realisation of P for d ∈ {3, 20, 100}. The
approximative calculations of the mean of P , of the standard deviation of P , and of the
relative L1-approximation error associated to P , the computations of the uncorrected
sample standard deviation of the relative approximation error associated to P as well as
the computations of the average runtime for calculating one realisation of P in Table 4.4
each are based on 10 independent realisations of P , which have been obtained from an im-
plementation in Python. Furthermore, in the approximative calculations of the relative
approximation error associated to P the exact value of the price (4.107) has been replaced
by the number (4.108) (cf. Proposition 4.5), which has been approximatively calculated
using the binomial tree method on M. Smirnov’s website [290] with 20 000 nodes. Note
that (4.108) corresponds to the price of an American call option on a single stock in the
Black–Scholes model with initial stock price ξ̃, interest rate r, dividend rate δ̃, volatility
β̃, strike price K, and maturity T .

Dimen- Mean Standard Price Rel. L1- Standard Runtime
sion d of P deviation (4.108) approx. deviation in sec. for

of P err. of the rel. one realisa-
approx. err. tion of P

3 0.10699 0.00007 0.10719 0.0019 0.0006 92.1
20 0.10007 0.00006 0.10033 0.0026 0.0006 146.9
100 0.09903 0.00006 0.09935 0.0032 0.0006 409.0

Table 4.4: Numerical simulations of the algorithm in Framework 4.2 for pricing the Amer-
ican geometric average call-type option from the example in Subsection 4.3.3.2.2. In the
approximative calculations of the relative approximation errors the exact value of the
price (4.107) has been replaced by the number (4.108), which has been approximatively
calculated using the binomial tree method on M. Smirnov’s website [290].
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4.3.3.2.3 Another American geometric average call-type example

In this subsection we test the algorithm in Framework 4.2 on the example of pricing an
American geometric average call-type option on up to 400 distinguishable stocks in the
Black–Scholes model.

Assume Framework 4.3, assume that d ∈ {40, 80, 120, . . .}, let β = (β1, . . . , βd) ∈ Rd,
α1, . . . , αd ∈ R, r, β̃ ∈ (0,∞), K = 95, ξ̃ = 100 satisfy for all i ∈ {1, . . . , d} that βi = 0.4 i

d
,

αi = min{0.01 [(i− 1) mod 40], 0.4− 0.01 [(i− 1) mod 40]}, r = 1
d

∑d
i=1 αi −

d−1
2d2 ‖β‖2

Rd =

0.1− 0.08
d2 (d− 1)

(
d
3

+ 1
2

+ 1
6d

)
, and β̃ = 1

d
‖β‖Rd = 0.4

d

(
d
3

+ 1
2

+ 1
6d

)1/2, let Y : [0, T ]×Ω→ R
be an F -adapted stochastic process with continuous sample paths which satisfies that for
all t ∈ [0, T ] it holds P-a.s. that

Yt = ξ̃ + r

∫ t

0

Ys ds+ β̃

∫ t

0

Ys dW 0,1,(1)
s , (4.109)

let F = (Ft)t∈[0,T ] be the filtration generated by X, let F = (Ft)t∈[0,T ] be the filtration
generated by Y , and assume for all m, j ∈ N, n ∈ {0, 1, . . . , N}, i ∈ {1, . . . , d}, s ∈ [0, T ],
x = (x1, . . . , xd) ∈ Rd that T = 3, N = 50, M = 1500, J0 = 4 096 000, Jm = 8192,
ε = 10−8, γm = 5 [10−2

1[1,M/3](m) + 10−3
1(M/3,2M/3](m) + 10−4

1(2M/3,∞)(m)], ξi = 100,
µ(x) = (α1x1, . . . , αdxd), σ(x) = diag(β1x1, . . . , βdxd), that

Xm−1,j,(i)
tn = exp

([
αi − 1

2
(βi)

2
]
tn + βiW

m−1,j,(i)
tn

)
ξi, (4.110)

and that

g(s, x) = e−rs max

{[
d∏

k=1

|xk|1/d
]
−K, 0

}
. (4.111)

The random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.112)

In Table 4.5 we show approximations for the mean of P , for the standard deviation of P ,
for the real number

E
[
e−rT max{YT −K, 0}

]
, (4.113)

and for the relative L1-approximation error associated to P , the uncorrected sample stan-
dard deviation of the relative approximation error associated to P , and the average run-
time in seconds needed for calculating one realisation of P for d ∈ {40, 80, 120, 160, 200,
400}. The approximative calculations of the mean of P , of the standard deviation of
P , and of the relative L1-approximation error associated to P , the computations of the
uncorrected sample standard deviation of the relative approximation error associated to
P as well as the computations of the average runtime for calculating one realisation of P
in Table 4.5 each are based on 10 independent realisations of P , which have been obtained
from an implementation in Python. Moreover, in the approximative calculations of the
relative approximation error associated to P the exact value of the price (4.112) has been
replaced by the real number

sup
{
E
[
e−rτ max{Yτ −K, 0}

]
: τ : Ω→[0,T ] is an

F-stopping time

}
(4.114)
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Dimen- Mean Standard Price Rel. L1- Standard Runtime
sion d of P deviation (4.113) approx. deviation in sec. for

of P err. of the rel. one realisa-
approx. err. tion of P

40 23.6877 0.0030 23.6883 0.00012 0.00004 196.3
80 23.7235 0.0020 23.7235 0.00006 0.00005 323.3
120 23.7360 0.0019 23.7357 0.00006 0.00005 442.7
160 23.7415 0.0007 23.7419 0.00003 0.00002 569.9
200 23.7451 0.0014 23.7456 0.00005 0.00004 692.9
400 23.7528 0.0009 23.7531 0.00004 0.00002 1434.7

Table 4.5: Numerical simulations of the algorithm in Framework 4.2 for pricing the Amer-
ican geometric average call-type option from the example in Subsection 4.3.3.2.3. In the
approximative calculations of the relative approximation errors the exact value of the
price (4.112) has been replaced by the number (4.113), which has been approximatively
computed in Matlab.

(cf. Proposition 4.5). It is well-known (cf., e.g., Shreve [286, Corollary 8.5.3]) that the
number (4.114) is equal to the number (4.113), which has been approximatively computed
in Matlab R2017b using Lemma 4.6 above. Note that (4.114) corresponds to the price
of an American call option on a single stock in the Black–Scholes model with initial
stock price ξ̃, interest rate r, volatility β̃, strike price K, and maturity T , while (4.113)
corresponds to the price of a European call option on a single stock in the Black–Scholes
model with initial stock price ξ̃, interest rate r, volatility β̃, strike price K, and maturity
T .

4.3.4 Examples without known one-dimensional representation

In Subsection 4.3.3 above numerical results for examples with a one-dimensional rep-
resentation can be found. We test in this subsection several examples where such a
representation is not known.

4.3.4.1 Max-call options

4.3.4.1.1 A Bermudan max-call standard benchmark example

In this subsection we test the algorithm in Framework 4.2 on the example of pricing a
Bermudan max-call option on up to 500 stocks in the Black–Scholes model (cf. Becker,
Cheridito, & Jentzen [28, Subsection 4.1]). In the case of up to five underlying stocks
this example is a standard benchmark example in the literature (cf., e.g., [60, Subsec-
tion 5.4], [232, Subsection 8.1], [6, Section 4], [164, Subsection 5.1], [270, Subsection 4.3],
[126, Subsection 3.9], [41, Subsection 4.2], [58, Subsection 5.3], [36, Subsection 6.1], [188,
Subsection 4.1], [276, Subsection 7.2], [38, Subsection 6.1], [223, Subsection 5.2.1]).

Assume Framework 4.3, let r = 0.05 = 5%, δ = 0.1 = 10%, β = 0.2 = 20%,
K = 100, let F = (Ft)t∈[0,T ] be the filtration generated by X, and assume for all m, j ∈ N,
n ∈ {0, 1, . . . , N}, i ∈ {1, . . . , d}, s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that T = 3, N = 9,
M = 3000 + d, J0 = 4 096 000, Jm = 8192, ε = 0.1, γm = 5 [10−2

1[1,500+d/5](m) +
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10−3
1(500+d/5,1500+3d/5](m) + 10−4

1(1500+3d/5,∞)(m)], ξi = ξ1, µ(x) = (r − δ)x, σ(x) =
β diag(x1, . . . , xd), that

Xm−1,j,(i)
tn = exp

([
r − δ − 1

2
β2
]
tn + β W

m−1,j,(i)
tn

)
ξ1, (4.115)

and that
g(s, x) = e−rs max

{
max{x1, . . . , xd} −K, 0

}
. (4.116)

The random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
:

τ : Ω→{t0,t1,...,tN} is an
(Ft)t∈{t0,t1,...,tN}-stopping time

}
. (4.117)

In Table 4.6 we show approximations for the mean and for the standard deviation of P ,
binomial approximations as well as 95% confidence intervals for the price (4.117) according
to Andersen & Broadie [6, Table 2 in Section 4] (where available), 95% confidence intervals
for the price (4.117) according to Broadie & Cao [58, Table 3 in Subsection 5.3] (where
available), and the average runtime in seconds needed for calculating one realisation of P
for (d, ξ1) ∈ {2, 3, 5}×{90, 100, 110}. In addition, we list approximations for the mean and
for the standard deviation of P and the average runtime in seconds needed for calculating
one realisation of P for (d, ξ1) ∈ {10, 20, 30, 50, 100, 200, 500}×{90, 100, 110} in Table 4.7.
The approximative calculations of the mean and of the standard deviation of P as well as
the computations of the average runtime for calculating one realisation of P in Tables 4.6
and 4.7 each are based on 10 independent realisations of P , which have been obtained
from an implementation in Python.

4.3.4.1.2 A high-dimensional Bermudan max-call benchmark example

In this subsection we test the algorithm in Framework 4.2 on the example of pricing the
Bermudan max-call option from the example in Subsection 4.3.4.1.1 in a case with 5000
underlying stocks. All Python codes corresponding to this example were run in single
precision (float32) on a NVIDIA Tesla P100 GPU with 1328 MHz core clock and 16 GB
HBM2 memory with 1408 MHz clock rate.

Assume Framework 4.3, let r = 0.05 = 5%, δ = 0.1 = 10%, β = 0.2 = 20%,
K = 100, let F = (Ft)t∈[0,T ] be the filtration generated by X, and assume for all m, j ∈ N,
n ∈ {0, 1, . . . , N}, i ∈ {1, . . . , d}, s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that T = 3, d = 5000,
N = 9, J0 = 220, Jm = 1024, ε = 10−8, γm = 10−2

1[1,2000](m) + 10−3
1(2000,4000](m) +

10−4
1(4000,∞)(m), ξi = 100, µ(x) = (r − δ)x, σ(x) = β diag(x1, . . . , xd), that

Xm−1,j,(i)
tn = exp

([
r − δ − 1

2
β2
]
tn + β W

m−1,j,(i)
tn

)
ξi, (4.118)

and that
g(s, x) = e−rs max

{
max{x1, . . . , xd} −K, 0

}
. (4.119)

For sufficiently large M ∈ N the random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
:

τ : Ω→{t0,t1,...,tN} is an
(Ft)t∈{t0,t1,...,tN}-stopping time

}
. (4.120)

In Table 4.8 we show a realisation of P , a 95% confidence interval for the corresponding
realisation of the random variable

Ω 3 w 7→ E
[
g
(
τ 1,ΘM (w),SM (w),X 0,1

τ1,ΘM (w),SM (w)

)]
∈ R, (4.121)
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Di- Ini- Mean Standard Bino- 95% confidence 95% confidence Runtime
men- tial of P deviation mial interval in [6] interval in [58] in sec. for
sion value of P value one realisa-
d ξ1 in [6] tion of P
2 90 8.072 0.005 8.075 [8.053, 8.082] – 31.3
2 100 13.899 0.008 13.902 [13.892, 13.934] – 31.7
2 110 21.344 0.006 21.345 [21.316, 21.359] – 31.7
3 90 11.275 0.005 11.29 [11.265, 11.308] – 32.5
3 100 18.687 0.006 18.69 [18.661, 18.728] – 32.6
3 110 27.560 0.009 27.58 [27.512, 27.663] – 32.5
5 90 16.628 0.010 – [16.602, 16.655] [16.620, 16.653] 33.3
5 100 26.144 0.008 – [26.109, 26.292] [26.115, 26.164] 32.9
5 110 36.763 0.011 – [36.704, 36.832] [36.710, 36.798] 33.3

Table 4.6: Numerical simulations of the algorithm in Framework 4.2 for pricing the Bermu-
dan max-call option from the example in Subsection 4.3.4.1.1 for d ∈ {2, 3, 5}.

Dimen- Initial Mean Standard Runtime in sec.
sion d value ξ1 of P deviation for one realisa-

of P tion of P
10 90 26.200 0.010 35.5
10 100 38.278 0.010 35.5
10 110 50.817 0.011 35.5
20 90 37.697 0.011 42.6
20 100 51.569 0.008 42.6
20 110 65.514 0.010 42.6
30 90 44.822 0.008 49.2
30 100 59.521 0.010 49.2
30 110 74.231 0.010 49.2
50 90 53.897 0.008 63.4
50 100 69.574 0.012 63.3
50 110 85.256 0.013 63.3
100 90 66.361 0.016 101.1
100 100 83.386 0.009 101.2
100 110 100.429 0.014 101.2
200 90 78.996 0.009 179.1
200 100 97.411 0.011 179.1
200 110 115.827 0.009 179.0
500 90 95.976 0.007 507.7
500 100 116.249 0.013 507.4
500 110 136.541 0.005 507.8

Table 4.7: Numerical simulations of the algorithm in Framework 4.2 for pricing the Bermu-
dan max-call option from the example in Subsection 4.3.4.1.1 for d ∈ {10, 20, 30, 50, 100,
200, 500}.
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the corresponding realisation of the relative approximation error associated to P , and the
runtime in seconds need or calculating the realisation of P forM ∈ {0, 250, 500, . . . , 2000}
∪{6000}. In addition, Figure 4.1 depicts a realisation of the relative approximation error
associated to P against M ∈ {0, 10, 20, . . . , 2000}. For each case the 95% confidence in-
terval for the realisation of the random variable (4.121) in Table 4.8 has been computed
based on the corresponding realisation of P , the corresponding sample standard deviation,
and the 0.975 quantile of the standard normal distribution (cf., e.g., [28, Subsection 3.3]).
Moreover, in the approximative calculations of the realisation of the relative approxima-
tion error associated to P in Table 4.8 and Figure 4.1 the exact value of the price (4.120)
has been replaced by the value 165.430, which corresponds to a realisation of P with
M = 6000 (cf. Table 4.8).

Number of Realisation 95% confidence Rel. approx. Runtime
steps M of P interval error in sec.

0 106.711 [106.681, 106.741] 0.35495 157.3
250 132.261 [132.170, 132.353] 0.20050 271.7
500 156.038 [155.975, 156.101] 0.05677 386.0
750 103.764 [103.648, 103.879] 0.37276 500.4
1000 161.128 [161.065, 161.191] 0.02601 614.3
1250 162.756 [162.696, 162.816] 0.01616 728.8
1500 164.498 [164.444, 164.552] 0.00563 842.8
1750 163.858 [163.803, 163.913] 0.00950 957.3
2000 165.452 [165.400, 165.505] 0.00014 1071.9
6000 165.430 [165.378, 165.483] 0.00000 2899.5

Table 4.8: Numerical simulations of the algorithm in Framework 4.2 for pricing the Bermu-
dan max-call option on 5000 stocks from the example in Subsection 4.3.4.1.2. In the
approximative calculations of the relative approximation error the exact value of the
price (4.120) has been replaced by the value 165.430, which corresponds to a realisation
of P with M = 6000.

4.3.4.1.3 Another Bermudan max-call example

In this subsection we test the algorithm in Framework 4.2 on the example of pricing a
Bermudan max-call option for different maturities and strike prices on up to 400 correlated
stocks, that do not pay dividends, in the Black–Scholes model. This example is taken
from Barraquand & Martineau [15, Section VII].

Assume Framework 4.3, let τ = 30/365, r = 0.05 τ = 5% ·τ , β = 0.4
√
τ = 40% ·

√
τ , K ∈

{35, 40, 45}, Q = (Qi,j)(i,j)∈{1,...,d}2 ,S = (ς1, . . . , ςd) ∈ Rd×d satisfy for all i ∈ {1, . . . , d}
that Qi,i = 1, ∀ j ∈ {1, . . . , d} \ {i} : Qi,j = 0.5, and S∗S = Q, let F = (Ft)t∈[0,T ] be the
filtration generated by X, and assume for all m, j ∈ N, n ∈ {0, 1, . . . , N}, i ∈ {1, . . . , d},
s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that N = 10, M = 1600, J0 = 4 096 000, Jm = 8192, ε =
0.001, γm = 5 [10−2

1[1,400](m) + 10−3
1(400,800](m) + 10−4

1(800,∞)(m)], ξi = 40, µ(x) = r x,
σ(x) = β diag(x1, . . . , xd)S

∗, that

Xm−1,j,(i)
tn = exp

([
r − 1

2
β2
]
tn + β

〈
ςi,W

m−1,j
tn

〉
Rd

)
ξi, (4.122)
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Figure 4.1: Plot of a realisation of the relative approximation error |P−165.430|
165.430

against
M ∈ {0, 10, 20, . . . , 2000} in the case of the Bermudan max-call option on 5000 stocks
from the example in Subsection 4.3.4.1.2.

and that
g(s, x) = e−rs max

{
max{x1, . . . , xd} −K, 0

}
. (4.123)

The random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
:

τ : Ω→{t0,t1,...,tN} is an
(Ft)t∈{t0,t1,...,tN}-stopping time

}
. (4.124)

In Table 4.9 we show approximations for the mean and for the standard deviation of P ,
Monte Carlo approximations for the European max-call option price

E
[
g(T,XT )

]
(4.125)

corresponding to (4.124), approximations for the price (4.124) according to [15, Table 4 in
Section VII] (where available), and the average runtime in seconds needed for calculating
one realisation of P for

(d, T,K) ∈


(10, 1, 35), (10, 1, 40), (10, 1, 45),
(10, 4, 35), (10, 4, 40), (10, 4, 45),
(10, 7, 35), (10, 7, 40), (10, 7, 45),

(400, 12, 35), (400, 12, 40), (400, 12, 45)

 . (4.126)

The approximative calculations of the mean and of the standard deviation of P as
well as the computations of the average runtime for calculating one realisation of P
in Table 4.9 each are based on 10 independent realisations of P , which have been ob-
tained from an implementation in Python. Furthermore, the Monte Carlo approxima-
tions for the European price (4.125) in Table 4.9 each are calculated in double preci-
sion (float64) and are based on 2 · 1010 independent realisations of the random variable
Ω 3 ω 7→ g(T,XT (ω)) ∈ R.
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4.3. Numerical examples of pricing American-style derivatives

Dimen- Matu- Strike Mean Standard European Price Runtime in sec.
sion d rity T price K of P deviation price in [15] for one realisa-

of P (4.125) tion of P
10 1 35 10.365 0.002 10.365 10.36 24.4
10 1 40 5.540 0.002 5.540 5.54 24.3
10 1 45 1.897 0.001 1.896 1.90 24.3
10 4 35 16.519 0.003 16.520 16.53 24.3
10 4 40 11.869 0.007 11.870 11.87 24.3
10 4 45 7.801 0.003 7.804 7.81 24.3
10 7 35 20.913 0.007 20.916 20.92 24.3
10 7 40 16.374 0.008 16.374 16.38 24.3
10 7 45 12.271 0.006 12.277 12.28 24.3
400 12 35 55.712 0.009 55.714 – 247.7
400 12 40 50.969 0.020 50.964 – 247.8
400 12 45 46.233 0.010 46.234 – 247.6

Table 4.9: Numerical simulations of the algorithm in Framework 4.2 for pricing the Bermu-
dan max-call option from the example in Subsection 4.3.4.1.3.

4.3.4.2 A strangle spread basket option

In this subsection we test the algorithm in Framework 4.2 on the example of pricing an
American strangle spread basket option on five correlated stocks in the Black–Scholes
model. This example is taken from Kohler, Krzyżak, & Todorovic [207, Section 4] (cf.
also Kohler [204, Section 3] and Kohler, Krzyżak, & Walk [208, Section 4]).

Assume Framework 4.3, let r = 0.05 = 5%, K1 = 75, K2 = 90, K3 = 110, K4 = 125,
let S = (ς1, . . . , ς5) ∈ R5×5 be given by

S =


0.3024 0.1354 0.0722 0.1367 0.1641
0.1354 0.2270 0.0613 0.1264 0.1610
0.0722 0.0613 0.0717 0.0884 0.0699
0.1367 0.1264 0.0884 0.2937 0.1394
0.1641 0.1610 0.0699 0.1394 0.2535

 , (4.127)

let F = (Ft)t∈[0,T ] be the filtration generated by X, and assume for all m, j ∈ N, n ∈
{0, 1, . . . , N}, i ∈ {1, . . . , d}, s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that T = 1, d = 5,
N = 48, M = 750, J0 = 4 096 000, Jm = 8192, ε = 10−8, γm = 5 [10−2

1[1,250](m) +
10−3

1(250,500](m) + 10−4
1(500,∞)(m)], ξi = 100, µ(x) = r x, σ(x) = diag(x1, . . . , xd)S

∗,
that

Xm−1,j,(i)
tn = exp

([
r − 1

2
‖ςi‖2

Rd
]
tn +

〈
ςi,W

m−1,j
tn

〉
Rd

)
ξi, (4.128)

and that

g(s, x) = −e−rs max

{
K1 −

1

d

[
d∑

k=1

xk

]
, 0

}
+ e−rs max

{
K2 −

1

d

[
d∑

k=1

xk

]
, 0

}

+ e−rs max

{
1

d

[
d∑

k=1

xk

]
−K3, 0

}
− e−rs max

{
1

d

[
d∑

k=1

xk

]
−K4, 0

}
.

(4.129)
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The random variable P provides approximations for the price

sup
{
E
[
g(τ,Xτ )

]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.130)

Table 4.10 shows approximations for the mean and for the standard deviation of P , a lower
bound for the price (4.130) according to Kohler, Krzyżak, & Todorovic [207, Figure 4.5
in Section 4] (cf. also Kohler [204, Figure 2 in Section 3] and, for an upper bound for the
price (4.130), Kohler, Krzyżak, & Walk [208, Figure 4.2 in Section 4]), and the average
runtime in seconds needed for calculating one realisation of P . Since the mean of P is also
a lower bound for the price (4.130), a higher value indicates a better approximation for
the price (4.130) (cf. Table 4.10). The approximative calculations of the mean and of the
standard deviation of P as well as the computation of the average runtime for calculating
one realisation of P in Table 4.10 each are based on 10 independent realisations of P ,
which have been obtained from an implementation in Python.

Mean Standard Lower Runtime in sec.
of P deviation bound for one realisa-

of P in [207] tion of P
11.794 0.004 11.75 46.4

Table 4.10: Numerical simulations of the algorithm in Framework 4.2 for pricing the
American strangle spread basket option from the example in Subsection 4.3.4.2.

4.3.4.3 A put basket option in Dupire’s local volatility model

In this subsection we test the algorithm in Framework 4.2 on the example of pricing an
American put basket option on five stocks in Dupire’s local volatility model. This example
is taken from Labart & Lelong [219, Subsection 6.3] with the modification that we also
consider the case where the underlying stocks do not pay any dividends.

Assume Framework 4.3, let L = 10, r = 0.05 = 5%, δ ∈ {0%, 10%}, K = 100, assume
for all i ∈ {1, . . . , d}, x ∈ Rd that ξi = 100 and µ(x) = (r−δ)x, let β : [0, T ]×R→ R and
σ : [0, T ]×Rd → Rd×d be the functions which satisfy for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd

that
β(t, x1) = 0.6 e−0.05

√
t
(
1.2− e−0.1 t−0.001(ertx1−ξ1)2)

x1 (4.131)

and σ(t, x) = diag(β(t, x1), β(t, x2), . . . , β(t, xd)), let S = (S(1), . . . , S(d)) : [0, T ]×Ω→ Rd

be an F -adapted stochastic process with continuous sample paths which satisfies that for
all t ∈ [0, T ] it holds P-a.s. that

St = ξ +

∫ t

0

µ(Ss) ds+

∫ t

0

σ(s, Ss) dW 0,1
s , (4.132)

let Ym,j = (Ym,j,(1), . . . ,Ym,j,(d)) : [0, T ] × Ω → Rd, j ∈ N, m ∈ N0, be the stochastic
processes which satisfy for all m ∈ N0, j ∈ N, ` ∈ {0, 1, . . . , L − 1}, t ∈

[
`T
L
, (`+1)T

L

]
,

i ∈ {1, . . . , d} that Ym,j,(i)0 = log(ξi) and

Ym,j,(i)t = Ym,j(i)`T/L +
(
t− `T

L

)(
r − δ − 1

2

[
β
(
`T
L
, exp

(
Ym,j,(i)`T/L

))]2)
+
(
tL
T
− `
)
β
(
`T
L
, exp

(
Ym,j,(i)`T/L

))(
W

m,j,(i)
(`+1)T/L −W

m,j,(i)
`T/L

)
,

(4.133)
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let F = (Ft)t∈[0,T ] be the filtration generated by S, let F = (Ft)t∈[0,T ] be the filtration
generated by Y0,1, and assume for all m, j ∈ N, n ∈ {0, 1, . . . , N}, s ∈ [0, T ], x =
(x1, . . . , xd) ∈ Rd that T = 1, d = 5, M = 1200, Xm−1,j

tn = Ym−1,j
tn , J0 = 4 096 000,

Jm = 8192, ε = 10−8, γm = 5 [10−2
1[1,400](m) + 10−3

1(400,800](m) + 10−4
1(800,∞)(m)], and

g(s, x) = e−rs max

{
K − 1

d

[
d∑
i=1

exp(xi)

]
, 0

}
. (4.134)

The random variable P provides approximations for the price

sup
{
E
[
g(τ,Y0,1

τ )
]
: τ : Ω→[0,T ] is an

F-stopping time

}
, (4.135)

which, in turn, is an approximation for the price

sup

{
E

[
e−rτ max

{
K − 1

d

[
d∑
i=1

S(i)
τ

]
, 0

}]
: τ : Ω→[0,T ] is an

F-stopping time

}
. (4.136)

In Table 4.11 we show approximations for the mean and for the standard deviation of
P and the average runtime in seconds needed for calculating one realisation of P for
(δ,N) ∈ {0%, 10%} × {5, 10, 50, 100}. For each case the calculations of the results in
Table 4.11 are based on 10 independent realisations of P , which have been obtained from
an implementation in Python. According to [219, Subsection 6.3], the value 6.30 is an
approximation for a to (4.135) corresponding price in the case δ = 10%. Furthermore,
the to (4.135) corresponding European put basket option price E

[
g(T,Y0,1

T )
]
has been

approximatively calculated using a Monte Carlo approximation based on 1010 realisations
of the random variable Ω 3 ω 7→ g(T,Y0,1

T (ω)) ∈ R, which resulted in the value 1.741 in
the case δ = 0% and in the value 6.304 in the case δ = 10%.

Divi- Time discreti- Mean Standard Runtime in sec.
dend sation para- of P deviation for one realisa-
rate δ meter N of P tion of P
0% 5 1.935 0.001 12.7
0% 10 1.978 0.001 21.3
0% 50 1.975 0.002 69.2
0% 100 1.971 0.002 137.5
10% 5 6.301 0.004 12.8
10% 10 6.303 0.003 21.4
10% 50 6.304 0.003 69.2
10% 100 6.303 0.004 137.5

Table 4.11: Numerical simulations of the algorithm in Framework 4.2 for pricing the
American put basket option in Dupire’s local volatility model from the example in Sub-
section 4.3.4.3. The corresponding European put basket option price is approximately
equal to the value 1.741 in the case δ = 0% and to the value 6.304 in the case δ = 10%.
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4.3.4.4 A path-dependent financial derivative

In this subsection we test the algorithm in Framework 4.2 on the example of pricing a
specific path-dependent financial derivative contingent on prices of a single underlying
stock in the Black–Scholes model, which is formulated as a 100-dimensional optimal stop-
ping problem. This example is taken from Tsitsiklis & Van Roy [294, Section IV] with
the modification that we consider a finite instead of an infinite time horizon.

Assume Framework 4.3, let r = 0.0004 = 0.04%, β = 0.02 = 2%, let Wm,j : [0,∞) ×
Ω → R, j ∈ N, m ∈ N0, be independent P-standard Brownian motions with continuous
sample paths, let Sm,j : [−100,∞) × Ω → R, j ∈ N, m ∈ N0, and Ym,j : N0 × Ω → R100,
j ∈ N, m ∈ N0, be the stochastic processes which satisfy for all m,n ∈ N0, j ∈ N,
t ∈ [−100,∞) that Sm,jt = exp

([
r − 1

2
β2
]
(t+ 100) + βWm,j

t+100

)
ξ1 and

Ym,jn =
(
Sm,jn−99

Sm,jn−100

,
Sm,jn−98

Sm,jn−100

, . . . , Sm,jn

Sm,jn−100

)
=
(
exp
([
r − 1

2
β2
]

+ β [Wm,j
n+1 −Wm,j

n ]
)
, exp

(
2
[
r − 1

2
β2
]

+ β [Wm,j
n+2 −Wm,j

n ]
)
,

. . . , exp
(
100

[
r − 1

2
β2
]

+ β [Wm,j
n+100 −Wm,j

n ]
))
,

(4.137)

let F = (Fn)n∈N0 be the filtration generated by Y0,1, and assume for all m, j ∈ N,
n ∈ {0, 1, . . . , N}, s ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd that T ∈ N, d = 100, N =
T , M = 12001[1,150](T ) + 15001(150,250](T ) + 30001(250,∞)(T ), Xm−1,j

n = Ym−1,j
n , J0 =

4 096 000, Jm = 81921[1,150](T ) + 40961(150,250](T ) + 5121(250,∞)(T ), ε = 10−8, γm =
5 [10−2

1[1,M/3](m) + 10−3
1(M/3,2M/3](m) + 10−4

1(2M/3,∞)(m)], and g(s, x) = e−rs x100. The
random variable P provides approximations for the real number

sup
{
E
[
e−rτ S0,1

τ

S0,1
τ−100

]
:

τ : Ω→{0,1,...,T} is an
(Fn)n∈{0,1,...,T}-stopping time

}
. (4.138)

In Table 4.12 we show approximations for the mean and for the standard deviation of
P and the average runtime in seconds needed for calculating one realisation of P for
T ∈ {100, 150, 200, 250, 1000}. For each case the calculations of the results in Table 4.12
are based on 10 independent realisations of P , which have been obtained from an imple-
mentation in Python. Note that in this example time is measured in days and that,
roughly speaking, (4.138) corresponds to the price of a financial derivative which, if the

Time Mean Standard Runtime in sec.
horizon T of P deviation for one realisa-

of P tion of P
100 1.2721 0.0001 475.5
150 1.2821 0.0001 724.8
200 1.2894 0.0002 653.1
250 1.2959 0.0001 838.7
1000 1.3002 0.0006 1680.1

Table 4.12: Numerical simulations of the algorithm in Framework 4.2 for pricing the path-
dependent financial derivative from the example in Subsection 4.3.4.4. According to [294,
Subsection IV.D], the value 1.282 is a lower bound for the price (4.139).
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holder decides to exercise, pays off the amount given by the ratio between the current
underlying stock price and the underlying stock price 100 days before (cf. [294, Section IV]
for more details). According to [294, Subsection IV.D], the value 1.282 is a lower bound
for the price

sup
{
E
[
e−rτ S0,1

τ

S0,1
τ−100

]
: τ : Ω→N0 is an
F-stopping time

}
, (4.139)

which corresponds to the price (4.138) in the case of an infinite time horizon. Since the
mean of P is a lower bound for the price (4.138), which, in turn, is a lower bound for the
price (4.139), a higher value indicates a better approximation for the price (4.139). In
addition, observe that the price (4.138) is non-decreasing in T . While in our numerical
simulations the approximate value of the mean of P is less or equal than 1.282 for com-
paratively small time horizons, i.e., for T ≤ 150, it is already higher for slightly larger
time horizons, i.e., for T ≥ 200 (cf. Table 4.12).

129



Chapter 4. Optimal stopping problems

130



Chapter 5
Overall error analysis for the training of
deep neural networks via stochastic gradient
descent with random initialisation

The content of this chapter is a slightly modified extract of the preprint Jentzen
& Welti [196].

In this chapter we establish an overall error analysis of deep learning based empirical risk
minimisation with quadratic loss function in the probabilistically strong sense (cf. Sec-
tion 1.4 in Chapter 1). The main result of this chapter, Theorem 5.41 in Subsection 5.5.2,
provides a strong convergence estimate for the overall error arising when the underlying
deep neural networks (DNNs) are trained using, for example, a general stochastic approxi-
mation algorithm with random initialisation. Theorem 1.4 in Section 1.4 is a consequence
of Theorem 5.41 and specialises it, in particular, to the case where stochastic gradient
descent (SGD) with random initialisation is the employed optimisation method. Parts of
our derivation of Theorems 5.41 and 1.4, respectively, are inspired by Beck, Jentzen, &
Kuckuck [27], Berner, Grohs, & Jentzen [47], and Cucker & Smale [91].

This chapter is structured as follows. Section 5.1 recalls some basic definitions re-
lated to DNNs and thereby introduces the corresponding notation we use throughout this
chapter. In Section 5.2 we examine the approximation error and, in particular, establish
a convergence result for the approximation of Lipschitz continuous functions by DNNs.
The following section, Section 5.3, contains our strong convergence analysis of the gener-
alisation error. In Section 5.4, in turn, we address the optimisation error and derive in
connection with this strong convergence rates for the Minimum Monte Carlo method. Fi-
nally, we combine in Section 5.5 a decomposition of the overall error (cf. Subsection 5.5.1)
with our results for the different error sources from Sections 5.2, 5.3, and 5.4 to prove
strong convergence results for the overall error. The employed optimisation method is
initially allowed to be a general stochastic approximation algorithm with random initial-
isation (cf. Subsection 5.5.2) and is afterwards specialised to the setting of SGD with
random initialisation (cf. Subsection 5.5.3).
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5.1 Basics on DNNs

In this section we present the mathematical description of DNNs which we use throughout
this chapter. It is a vectorised description in the sense that all the weights and biases
associated to the DNN under consideration are collected in a single parameter vector
θ ∈ Rd with d ∈ N = {1, 2, 3, . . .} sufficiently large (cf. Definitions 5.2 and 5.8). The
content of this section is taken from Beck, Jentzen, & Kuckuck [27, Section 2.1] and is
based on well-known material from the scientific literature; see, e.g., Beck et al. [22], Beck,
E, & Jentzen [23], Berner, Grohs, & Jentzen [47], E, Han, & Jentzen [110], Goodfellow,
Bengio, & Courville [145], and Grohs et al. [149]. In particular, Definition 5.1 is [27,
Definition 2.1] (cf., e.g., (25) in [23]), Definition 5.2 is [27, Definition 2.2] (cf., e.g., (26)
in [23]), Definition 5.3 is [27, Definition 2.3] (cf., e.g., [149, Definition 2.2]), and Defini-
tions 5.4, 5.5, 5.6, 5.7, and 5.8 are [27, Definitions 2.4, 2.5, 2.6, 2.7, and 2.8] (cf., e.g., [47,
Setting 2.5] and [145, Section 6.3]).

5.1.1 Vectorised description of DNNs

Definition 5.1 (Affine function). Let d,m, n ∈ N, s ∈ N0 = {0, 1, 2, . . .}, θ = (θ1, θ2, . . . ,
θd) ∈ Rd satisfy d ≥ s+mn+m. Then we denote by Aθ,sm,n : Rn → Rm the function which
satisfies for all x = (x1, x2, . . . , xn) ∈ Rn that

Aθ,sm,n(x) =


θs+1 θs+2 · · · θs+n
θs+n+1 θs+n+2 · · · θs+2n

θs+2n+1 θs+2n+2 · · · θs+3n
...

... . . . ...
θs+(m−1)n+1 θs+(m−1)n+2 · · · θs+mn




x1

x2

x3
...
xn

+


θs+mn+1

θs+mn+2

θs+mn+3
...

θs+mn+m

 (5.1)

=

([
n∑
i=1

θs+ixi

]
+ θs+mn+1,

[
n∑
i=1

θs+n+ixi

]
+ θs+mn+2, . . . ,

[
n∑
i=1

θs+(m−1)n+ixi

]
+ θs+mn+m

)
.

Definition 5.2 (Fully connected feedforward artificial neural network). Let d,L, l0, l1,
. . . , lL ∈ N, s ∈ N0, θ ∈ Rd satisfy d ≥ s +

∑L
i=1 li(li−1 + 1) and let ai : Rli → Rli ,

i ∈ {1, 2, . . . ,L}, be functions. Then we denote by N θ,s,l0
a1,a2,...,aL

: Rl0 → RlL the function
which satisfies for all x ∈ Rl0 that(
N θ,s,l0

a1,a2,...,aL

)
(x) =

(
aL ◦ A

θ,s+
∑L−1
i=1 li(li−1+1)

lL,lL−1
◦ aL−1 ◦ A

θ,s+
∑L−2
i=1 li(li−1+1)

lL−1,lL−2
◦ . . .

. . . ◦ a2 ◦ Aθ,s+l1(l0+1)
l2,l1

◦ a1 ◦ Aθ,sl1,l0

)
(x)

(5.2)

(cf. Definition 5.1).

5.1.2 Activation functions

Definition 5.3 (Multidimensional version). Let d ∈ N and let a : R → R be a func-
tion. Then we denote by Ma,d : Rd → Rd the function which satisfies for all x =
(x1, x2, . . . , xd) ∈ Rd that

Ma,d(x) = (a(x1), a(x2), . . . , a(xd)). (5.3)
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Definition 5.4 (Rectifier function). We denote by r : R→ R the function which satisfies
for all x ∈ R that

r(x) = max{x, 0}. (5.4)

Definition 5.5 (Multidimensional rectifier function). Let d ∈ N. Then we denote by
Rd : Rd → Rd the function given by

Rd = Mr,d (5.5)

(cf. Definitions 5.3 and 5.4).

Definition 5.6 (Clipping function). Let u ∈ [−∞,∞), v ∈ (u,∞]. Then we denote by
cu,v : R→ R the function which satisfies for all x ∈ R that

cu,v(x) = max{u,min{x, v}}. (5.6)

Definition 5.7 (Multidimensional clipping function). Let d ∈ N, u ∈ [−∞,∞), v ∈
(u,∞]. Then we denote by Cu,v,d : Rd → Rd the function given by

Cu,v,d = Mcu,v ,d (5.7)

(cf. Definitions 5.3 and 5.6).

5.1.3 Rectified DNNs

Definition 5.8 (Rectified clipped DNN). Let d,L ∈ N, u ∈ [−∞,∞), v ∈ (u,∞],
l = (l0, l1, . . . , lL) ∈ NL+1, θ ∈ Rd satisfy d ≥

∑L
i=1 li(li−1 + 1). Then we denote by

N θ,l
u,v : Rl0 → RlL the function which satisfies for all x ∈ Rl0 that

N θ,l
u,v (x) =

{(
N θ,0,l0

Cu,v,lL

)
(x) : L = 1(

N θ,0,l0
Rl1

,Rl2
,...,RlL−1

,Cu,v,lL

)
(x) : L > 1

(5.8)

(cf. Definitions 5.2, 5.5, and 5.7).

5.2 Analysis of the approximation error
This section is devoted to establishing a convergence result for the approximation of
Lipschitz continuous functions by DNNs (cf. Proposition 5.13). More precisely, Proposi-
tion 5.13 establishes that a Lipschitz continuous function defined on a d-dimensional hy-
percube for d ∈ N can be approximated by DNNs with convergence rate 1/d with respect
to a parameter A ∈ (0,∞) that bounds the architecture size (that is, depth and width)
of the approximating DNN from below. Key ingredients of the proof of Proposition 5.13
are Beck, Jentzen, & Kuckuck [27, Corollary 3.8] as well as the elementary covering num-
ber estimate in Lemma 5.11. In order to improve the accessibility of Lemma 5.11, we
recall the definition of covering numbers associated to a metric space in Definition 5.10,
which is [27, Definition 3.11]. Lemma 5.11 provides upper bounds for the covering num-
bers of hypercubes equipped with the metric induced by the p-norm (cf. Definition 5.9)
for p ∈ [1,∞] and is a generalisation of Berner, Grohs, & Jentzen [47, Lemma 2.7] (cf.
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Cucker & Smale [91, Proposition 5] and [27, Proposition 3.12]). Furthermore, we present
in Lemma 5.12 an elementary upper bound for the error arising when Lipschitz continuous
functions defined on a hypercube are approximated by certain DNNs. Additional DNN
approximation results can be found, e.g., in [11, 16, 17, 49, 50, 63, 64, 74, 76, 78, 92, 105,
116, 120–122, 128, 147–154, 159, 160, 163, 173–176, 180, 194, 218, 226, 243–245, 249, 252,
255, 256, 258–260, 263, 268, 275, 277, 280, 284, 285, 288, 298, 309, 310] and the references
therein.

5.2.1 A covering number estimate

Definition 5.9 (p-norm). We denote by ‖·‖p :
(⋃∞

d=1 Rd
)
→ [0,∞), p ∈ [1,∞], the

functions which satisfy for all p ∈ [1,∞), d ∈ N, θ = (θ1, θ2, . . . , θd) ∈ Rd that

‖θ‖p =

(
d∑
i=1

|θi|p
)1/p

and ‖θ‖∞ = max
i∈{1,2,...,d}

|θi|. (5.9)

Definition 5.10 (Covering number). Let (E, δ) be a metric space and let r ∈ [0,∞].
Then we denote by C(E,δ),r ∈ N0∪{∞} (we denote by CE,r ∈ N0∪{∞}) the extended real
number given by

C(E,δ),r = inf

({
n ∈ N0 :

[
∃A ⊆ E :

(
(|A| ≤ n) ∧ (∀x ∈ E :
∃ a ∈ A : δ(a, x) ≤ r)

)]}
∪ {∞}

)
. (5.10)

Lemma 5.11. Let d ∈ N, a ∈ R, b ∈ (a,∞), r ∈ (0,∞), for every p ∈ [1,∞] let
δp : ([a, b]d)× ([a, b]d)→ [0,∞) satisfy for all x, y ∈ [a, b]d that δp(x, y) = ‖x− y‖p, and let
d·e : [0,∞)→ N0 satisfy for all x ∈ [0,∞) that dxe = min([x,∞)∩N0) (cf. Definition 5.9).
Then

(i) it holds for all p ∈ [1,∞) that

C([a,b]d,δp),r ≤
(⌈

d
1/p(b−a)

2r

⌉)d
≤

{
1 : r ≥ d(b−a)/2(d(b−a)

r

)d
: r < d(b−a)/2

(5.11)

and

(ii) it holds that

C([a,b]d,δ∞),r ≤
(⌈

b−a
2r

⌉)d ≤ {1 : r ≥ (b−a)/2(
b−a
r

)d
: r < (b−a)/2

(5.12)

(cf. Definition 5.10).

Proof of Lemma 5.11. Throughout this proof let (Np)p∈[1,∞] ⊆ N satisfy for all p ∈ [1,∞)
that

Np =
⌈
d

1/p(b−a)
2r

⌉
and N∞ =

⌈
b−a
2r

⌉
, (5.13)

for every N ∈ N, i ∈ {1, 2, . . . , N} let gN,i ∈ [a, b] be given by gN,i = a+ (i−1/2)(b−a)/N, and
for every p ∈ [1,∞] let Ap ⊆ [a, b]d be given by Ap = {gNp,1, gNp,2, . . . , gNp,Np}d. Observe
that it holds for all N ∈ N, i ∈ {1, 2, . . . , N}, x ∈ [a+ (i−1)(b−a)/N, gN,i] that

|x− gN,i| = a+ (i−1/2)(b−a)
N

− x ≤ a+ (i−1/2)(b−a)
N

−
(
a+ (i−1)(b−a)

N

)
= b−a

2N
. (5.14)
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In addition, note that it holds for all N ∈ N, i ∈ {1, 2, . . . , N}, x ∈ [gN,i, a+ i(b−a)/N] that

|x− gN,i| = x−
(
a+ (i−1/2)(b−a)

N

)
≤ a+ i(b−a)

N
−
(
a+ (i−1/2)(b−a)

N

)
= b−a

2N
. (5.15)

Combining (5.14) and (5.15) implies for all N ∈ N, i ∈ {1, 2, . . . , N}, x ∈ [a+ (i−1)(b−a)/N,
a+ i(b−a)/N] that |x− gN,i| ≤ (b−a)/(2N). This proves that for every N ∈ N, x ∈ [a, b] there
exists y ∈ {gN,1, gN,2, . . . , gN,N} such that

|x− y| ≤ b−a
2N
. (5.16)

This, in turn, establishes that for every p ∈ [1,∞), x = (x1, x2, . . . , xd) ∈ [a, b]d there
exists y = (y1, y2, . . . , yd) ∈ Ap such that

δp(x, y) = ‖x−y‖p =

(
d∑
i=1

|xi−yi|p
)1/p

≤
(

d∑
i=1

(b−a)p

(2Np)p

)1/p

= d
1/p(b−a)

2Np
≤ d

1/p(b−a)2r

2d1/p(b−a)
= r. (5.17)

Furthermore, again (5.16) shows that for every x = (x1, x2, . . . , xd) ∈ [a, b]d there exists
y = (y1, y2, . . . , yd) ∈ A∞ such that

δ∞(x, y) = ‖x− y‖∞ = max
i∈{1,2,...,d}

|xi − yi| ≤ b−a
2N∞
≤ (b−a)2r

2(b−a)
= r. (5.18)

Note that (5.17), (5.13), and the fact that ∀x ∈ [0,∞) : dxe ≤ 1(0,1](x) + 2x1(1,∞)(x) =
1(0,r](rx) + 2x1(r,∞)(rx) yield for all p ∈ [1,∞) that

C([a,b]d,δp),r ≤ |Ap| = (Np)
d =

(⌈
d

1/p(b−a)
2r

⌉)d
≤
(⌈

d(b−a)
2r

⌉)d
≤
(
1(0,r]

(d(b−a)
2

)
+ 2d(b−a)

2r
1(r,∞)

(d(b−a)
2

))d
= 1(0,r]

(d(b−a)
2

)
+
(d(b−a)

r

)d
1(r,∞)

(d(b−a)
2

)
.

(5.19)

This proves (i). In addition, (5.18), (5.13), and again the fact that ∀x ∈ [0,∞) : dxe ≤
1(0,r](rx) + 2x1(r,∞)(rx) demonstrate that

C([a,b]d,δ∞),r ≤ |A∞| = (N∞)d =
(⌈

b−a
2r

⌉)d ≤ 1(0,r]

(
b−a

2

)
+
(
b−a
r

)d
1(r,∞)

(
b−a

2

)
. (5.20)

This implies (ii) and thus completes the proof of Lemma 5.11.

5.2.2 Convergence rates for the approximation error

Lemma 5.12. Let d,d,L ∈ N, L, a ∈ R, b ∈ (a,∞), u ∈ [−∞,∞), v ∈ (u,∞],
l = (l0, l1, . . . , lL) ∈ NL+1, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), and

let f : [a, b]d → ([u, v] ∩ R) satisfy for all x, y ∈ [a, b]d that |f(x) − f(y)| ≤ L‖x − y‖1

(cf. Definition 5.9). Then there exists ϑ ∈ Rd such that ‖ϑ‖∞ ≤ supx∈[a,b]d |f(x)| and

supx∈[a,b]d |N ϑ,l
u,v (x)− f(x)| ≤ dL(b− a)

2
(5.21)

(cf. Definition 5.8).

135



Chapter 5. Empirical risk minimisation

Proof of Lemma 5.12. Throughout this proof let d ∈ N be given by d =
∑L

i=1 li(li−1 + 1),
let m = (m1,m2, . . . ,md) ∈ [a, b]d satisfy for all i ∈ {1, 2, . . . , d} that mi = (a+b)/2, and let
ϑ = (ϑ1, ϑ2, . . . , ϑd) ∈ Rd satisfy for all i ∈ {1, 2, . . . ,d}\{d} that ϑi = 0 and ϑd = f(m).
Observe that the assumption that lL = 1 and the fact that ∀ i ∈ {1, 2, . . . , d− 1} : ϑi = 0
show for all x = (x1, x2, . . . , xlL−1

) ∈ RlL−1 that

Aϑ,
∑L−1
i=1 li(li−1+1)

1,lL−1
(x) =

[
lL−1∑
i=1

ϑ[
∑L−1
i=1 li(li−1+1)]+ixi

]
+ ϑ[

∑L−1
i=1 li(li−1+1)]+lL−1+1

=

[
lL−1∑
i=1

ϑ[
∑L
i=1 li(li−1+1)]−(lL−1−i+1)xi

]
+ ϑ∑L

i=1 li(li−1+1)

=

[
lL−1∑
i=1

ϑd−(lL−1−i+1)xi

]
+ ϑd = ϑd = f(m)

(5.22)

(cf. Definition 5.1). Combining this with the fact that f(m) ∈ [u, v] ensures for all
x ∈ RlL−1 that(

Cu,v,lL ◦ A
ϑ,
∑L−1
i=1 li(li−1+1)

lL,lL−1

)
(x) =

(
Cu,v,1 ◦ A

ϑ,
∑L−1
i=1 li(li−1+1)

1,lL−1

)
(x) = cu,v(f(m))

= max{u,min{f(m), v}} = max{u, f(m)} = f(m)
(5.23)

(cf. Definitions 5.6 and 5.7). This proves for all x ∈ Rd that

N ϑ,l
u,v (x) = f(m). (5.24)

In addition, note that it holds for all x ∈ [a,m1], x ∈ [m1, b] that |m1 − x| = m1 − x =
(a+b)/2−x ≤ (a+b)/2−a = (b−a)/2 and |m1−x| = x−m1 = x−(a+b)/2 ≤ b−(a+b)/2 = (b−a)/2. The
assumption that ∀x, y ∈ [a, b]d : |f(x)− f(y)| ≤ L‖x− y‖1 and (5.24) hence demonstrate
for all x = (x1, x2, . . . , xd) ∈ [a, b]d that

|N ϑ,l
u,v (x)− f(x)| = |f(m)− f(x)| ≤ L‖m− x‖1 = L

d∑
i=1

|mi − xi|

= L
d∑
i=1

|m1 − xi| ≤
d∑
i=1

L(b− a)

2
=
dL(b− a)

2
.

(5.25)

This and the fact that ‖ϑ‖∞ = maxi∈{1,2,...,d}|ϑi| = |f(m)| ≤ supx∈[a,b]d |f(x)| complete
the proof of Lemma 5.12.

Proposition 5.13. Let d,d,L ∈ N, A ∈ (0,∞), L, a ∈ R, b ∈ (a,∞), u ∈ [−∞,∞),
v ∈ (u,∞], l = (l0, l1, . . . , lL) ∈ NL+1, assume L ≥ A1(6d,∞)(A)/(2d) + 1, l0 = d, l1 ≥
A1(6d,∞)(A), lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), assume for all i ∈ {2, 3, . . .} ∩ [0,L)

that li ≥ 1(6d,∞)(A) max{A/d − 2i + 3, 2}, and let f : [a, b]d → ([u, v] ∩ R) satisfy for all
x, y ∈ [a, b]d that |f(x)− f(y)| ≤ L‖x− y‖1 (cf. Definition 5.9). Then there exists ϑ ∈ Rd

such that ‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d|f(x)|]} and

supx∈[a,b]d |N ϑ,l
u,v (x)− f(x)| ≤ 3dL(b− a)

A1/d
(5.26)

(cf. Definition 5.8).
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Proof of Proposition 5.13. Throughout this proof assume w.l.o.g. that A > 6d (cf. Lem-
ma 5.12), let N ∈ N be given by

N = max
{
n ∈ N : n ≤

(
A
2d

)1/d
}
, (5.27)

let r ∈ (0,∞) be given by r = d(b−a)/(2N), let δ : ([a, b]d)× ([a, b]d)→ [0,∞) satisfy for all
x, y ∈ [a, b]d that δ(x, y) = ‖x− y‖1, let D ⊆ [a, b]d satisfy |D | = max{2, C([a,b]d,δ),r} and

supx∈[a,b]d infy∈D δ(x, y) ≤ r (5.28)

(cf. Definition 5.10), and let d·e : [0,∞) → N0 satisfy for all x ∈ [0,∞) that dxe =
min([x,∞) ∩ N0). Note that it holds for all d ∈ N that

2d ≤ 2 · 2d−1 = 2d. (5.29)

This implies that 3d = 6d/2d ≤ A/(2d). Equation (5.27) hence demonstrates that

2 ≤ 2
3

(
A
2d

)1/d
=
(
A
2d

)1/d − 1
3

(
A
2d

)1/d ≤
(
A
2d

)1/d − 1 < N. (5.30)

This and (i) in Lemma 5.11 (with δ1 ← δ, p ← 1 in the notation of (i) in Lemma 5.11)
establish that

|D | = max{2, C([a,b]d,δ),r} ≤ max
{

2,
(⌈

d(b−a)
2r

⌉)d}
= max{2, (dNe)d} = Nd. (5.31)

Combining this with (5.27) proves that

4 ≤ 2d|D | ≤ 2dNd ≤ 2dA
2d

= A. (5.32)

The fact that L ≥ A1(6d,∞)(A)/(2d) + 1 = A/(2d) + 1 hence yields that |D | ≤ A/(2d) ≤ L − 1.
This, (5.32), and the facts that l1 ≥ A1(6d,∞)(A) = A and ∀ i ∈ {2, 3, . . .} ∩ [0,L) =
{2, 3, . . . ,L− 1} : li ≥ 1(6d,∞)(A) max{A/d− 2i+ 3, 2} = max{A/d− 2i+ 3, 2} imply for all
i ∈ {2, 3, . . . , |D |} that

L ≥ |D |+ 1, l1 ≥ A ≥ 2d|D |, and li ≥ A/d− 2i+ 3 ≥ 2|D | − 2i+ 3. (5.33)

In addition, the fact that ∀ i ∈ {2, 3, . . .} ∩ [0,L) : li ≥ max{A/d− 2i+ 3, 2} ensures for all
i ∈ N ∩ (|D |,L) that

li ≥ 2. (5.34)

Furthermore, observe that it holds for all x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ [a, b]d

that

|f(x)− f(y)| ≤ L‖x− y‖1 = L

[
d∑
i=1

|xi − yi|
]
. (5.35)

This, the assumptions that l0 = d, lL = 1, and d ≥
∑L

i=1 li(li−1 + 1), (5.33)–(5.34), and
Beck, Jentzen, & Kuckuck [27, Corollary 3.8] (with d← d, d← d, L← L, L← L, u← u,
v ← v, D ← [a, b]d, f ← f , M ← D , l ← l in the notation of [27, Corollary 3.8]) show
that there exists ϑ ∈ Rd such that ‖ϑ‖∞ ≤ max{1, L, supx∈D‖x‖∞, 2[supx∈D |f(x)|]} and

sup
x∈[a,b]d

|N ϑ,l
u,v (x)− f(x)| ≤ 2L

[
sup

x=(x1,x2,...,xd)∈[a,b]d

(
inf

y=(y1,y2,...,yd)∈D

d∑
i=1

|xi − yi|
)]

= 2L

[
sup

x∈[a,b]d
inf
y∈D
‖x− y‖1

]
= 2L

[
sup

x∈[a,b]d
inf
y∈D

δ(x, y)

]
.

(5.36)
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Note that this demonstrates that

‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2[supx∈[a,b]d |f(x)|]}. (5.37)

Moreover, (5.36) and (5.28)–(5.30) prove that

supx∈[a,b]d|N ϑ,l
u,v (x)− f(x)| ≤ 2L

[
supx∈[a,b]d infy∈D δ(x, y)

]
≤ 2Lr

=
dL(b− a)

N
≤ dL(b− a)

2
3

(
A
2d

)1/d
=

(2d)1/d3dL(b− a)

2A1/d
≤ 3dL(b− a)

A1/d
.

(5.38)

Combining this with (5.37) completes the proof of Proposition 5.13.

5.3 Analysis of the generalisation error
In this section we consider the worst-case generalisation error arising in deep learning
based empirical risk minimisation with quadratic loss function for DNNs with a fixed
architecture and weights and biases bounded in size by a fixed constant (cf. Corollary 5.28
in Subsection 5.3.3). We prove that this worst-case generalisation error converges in the
probabilistically strong sense with rate 1/2 (up to a logarithmic factor) with respect to
the number of samples used for calculating the empirical risk and that the constant in
the corresponding upper bound for the worst-case generalisation error scales favourably
(i.e., only very moderately) in terms of depth and width of the DNNs employed; cf. (ii)
in Corollary 5.28. Corollary 5.28 is a consequence of the main result of this section,
Proposition 5.27 in Subsection 5.3.3, which provides a similar conclusion in a more general
setting. The proofs of Proposition 5.27 and Corollary 5.28, respectively, rely on the tools
developed in the two preceding subsections, Subsections 5.3.1 and 5.3.2.

On the one hand, Subsection 5.3.1 provides an essentially well-known estimate for
the Lp-error of Monte Carlo-type approximations; cf. Corollary 5.18. Corollary 5.18
is a consequence of the well-known result stated here as Proposition 5.17, which, in
turn, follows directly from, e.g., Cox et al. [85, Corollary 5.11] (with M ← M , q ← 2,
(E, ‖·‖E) ← (Rd, ‖·‖2|Rd), (Ω,F ,P) ← (Ω,F ,P), (ξj)j∈{1,2,...,M} ← (Xj)j∈{1,2,...,M}, p ← p
in the notation of [85, Corollary 5.11] and Proposition 5.17, respectively). In the proof
of Corollary 5.18 we also apply Lemma 5.16, which is Grohs et al. [148, Lemma 2.2].
In order to make the statements of Lemma 5.16 and Proposition 5.17 more accessible
for the reader, we recall in Definition 5.14 (cf., e.g., [85, Definition 5.1]) the notion of
a Rademacher family and in Definition 5.15 (cf., e.g., [85, Definition 5.4] or Gonon et
al. [144, Definition 2.1]) the notion of the p-Kahane–Khintchine constant.

On the other hand, we derive in Subsection 5.3.2 uniform Lp-estimates for Lipschitz
continuous random fields with a separable metric space as index set (cf. Lemmas 5.23
and 5.24 and Corollary 5.25). These estimates are uniform in the sense that the supre-
mum over the index set is inside the expectation belonging to the Lp-norm, which is
necessary since we intend to prove error bounds for the worst-case generalisation error,
as illustrated above. One of the elementary but crucial arguments in our derivation of
such uniform Lp-estimates is given in Lemma 5.22 (cf. Lemma 5.21). Roughly speaking,
Lemma 5.22 illustrates how the Lp-norm of a supremum can be bounded from above
by the supremum of certain Lp-norms, where the Lp-norms are integrating over a general
measure space and where the suprema are taken over a general (bounded) separable metric
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space. Furthermore, the elementary and well-known Lemmas 5.19 and 5.20, respectively,
follow immediately from Beck, Jentzen, & Kuckuck [27, (ii) in Lemma 3.13 and (ii) in
Lemma 3.14] and ensure that the mathematical statements of Lemmas 5.21, 5.22, and
5.23 do indeed make sense.

The results in Subsections 5.3.2 and 5.3.3 are in parts inspired by [27, Subsection 3.2]
and we refer, e.g., to [18, 47, 91, 113–115, 156, 240, 281, 297] and the references therein
for further results on the generalisation error.

5.3.1 Monte Carlo estimates

Definition 5.14 (Rademacher family). Let (Ω,F ,P) be a probability space and let J
be a set. Then we say that (rj)j∈J is a P-Rademacher family if and only if it holds that
rj : Ω → {−1, 1}, j ∈ J , are independent random variables with ∀ j ∈ J : P(rj = 1) =
P(rj = −1).

Definition 5.15 (p-Kahane–Khintchine constant). Let p ∈ (0,∞). Then we denote by
Kp ∈ (0,∞] the extended real number given by

Kp = sup


c ∈ [0,∞) :


∃R-Banach space (E, ‖·‖E) :
∃ probability space (Ω,F ,P) :
∃P-Rademacher family (rj)j∈N :
∃ k ∈ N : ∃x1, x2, . . . , xk ∈ E \ {0} :(

E
[∥∥∑k

j=1 rjxj
∥∥p
E

])1/p

= c
(
E
[∥∥∑k

j=1 rjxj
∥∥2

E

])1/2




(5.39)

(cf. Definition 5.14).

Lemma 5.16. It holds for all p ∈ [2,∞) that Kp ≤
√
p− 1 <∞ (cf. Definition 5.15).

Proposition 5.17. Let d,M ∈ N, p ∈ [2,∞), let (Ω,F ,P) be a probability space,
let Xj : Ω → Rd, j ∈ {1, 2, . . . ,M}, be independent random variables, and assume
maxj∈{1,2,...,M} E[‖Xj‖2] <∞ (cf. Definition 5.9). Then

(
E
[∥∥∥∥[ M∑

j=1

Xj

]
− E

[
M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

≤ 2Kp

[
M∑
j=1

(
E
[
‖Xj − E[Xj]‖p2

])2/p
]1/2

(5.40)

(cf. Definition 5.15 and Lemma 5.16).

Corollary 5.18. Let d,M ∈ N, p ∈ [2,∞), let (Ω,F ,P) be a probability space,
let Xj : Ω → Rd, j ∈ {1, 2, . . . ,M}, be independent random variables, and assume
maxj∈{1,2,...,M} E[‖Xj‖2] <∞ (cf. Definition 5.9). Then

(
E
[∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
− E

[
1

M

M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

≤ 2
√
p− 1√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])1/p
]
.

(5.41)
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Proof of Corollary 5.18. Observe that Proposition 5.17 and Lemma 5.16 imply that(
E
[∥∥∥∥ 1

M

[
M∑
j=1

Xj

]
− E

[
1

M

M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

=
1

M

(
E
[∥∥∥∥[ M∑

j=1

Xj

]
− E

[
M∑
j=1

Xj

]∥∥∥∥p
2

])1/p

≤ 2Kp
M

[
M∑
j=1

(
E
[
‖Xj − E[Xj]‖p2

])2/p
]1/2

≤ 2Kp
M

[
M

(
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])2/p
)]1/2

=
2Kp√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])1/p
]

≤ 2
√
p− 1√
M

[
max

j∈{1,2,...,M}

(
E
[
‖Xj − E[Xj]‖p2

])1/p
]

(5.42)

(cf. Definition 5.15). The proof of Corollary 5.18 is thus complete.

5.3.2 Uniform strong error estimates for random fields

Lemma 5.19. Let (E,E ) be a separable topological space, assume E 6= ∅, let (Ω,F) be a
measurable space, let fx : Ω → R, x ∈ E, be F/B(R)-measurable functions, and assume
for all ω ∈ Ω that E 3 x 7→ fx(ω) ∈ R is a continuous function. Then it holds that the
function

Ω 3 ω 7→ supx∈E fx(ω) ∈ R ∪ {∞} (5.43)

is F/B(R ∪ {∞})-measurable.

Lemma 5.20. Let (E, δ) be a separable metric space, assume E 6= ∅, let L ∈ R, let
(Ω,F ,P) be a probability space, let Zx : Ω→ R, x ∈ E, be random variables, and assume
for all x, y ∈ E that E[|Zx|] <∞ and |Zx−Zy| ≤ Lδ(x, y). Then it holds that the function

Ω 3 ω 7→ supx∈E|Zx(ω)− E[Zx]| ∈ [0,∞] (5.44)

is F/B([0,∞])-measurable.

Lemma 5.21. Let (E, δ) be a separable metric space, let N ∈ N, p, L, r1, r2, . . . , rN ∈
[0,∞), z1, z2, . . . , zN ∈ E satisfy E ⊆

⋃N
i=1{x ∈ E : δ(x, zi) ≤ ri}, let (Ω,F , µ) be a

measure space, let Zx : Ω→ R, x ∈ E, be F/B(R)-measurable functions, and assume for
all ω ∈ Ω, x, y ∈ E that |Zx(ω)− Zy(ω)| ≤ Lδ(x, y). Then∫

Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤

N∑
i=1

∫
Ω

(Lri + |Zzi(ω)|)p µ(dω) (5.45)

(cf. Lemma 5.19).

Proof of Lemma 5.21. Throughout this proof let B1, B2, . . . , BN ⊆ E satisfy for all i ∈
{1, 2, . . . , N} that Bi = {x ∈ E : δ(x, zi) ≤ ri}. Note that the fact that E =

⋃N
i=1Bi

shows for all ω ∈ Ω that

supx∈E|Zx(ω)| = supx∈(
⋃N
i=1Bi)

|Zx(ω)| = maxi∈{1,2,...,N} supx∈Bi |Zx(ω)|. (5.46)
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This establishes that∫
Ω

sup
x∈E
|Zx(ω)|p µ(dω) =

∫
Ω

max
i∈{1,2,...,N}

sup
x∈Bi
|Zx(ω)|p µ(dω)

≤
∫

Ω

N∑
i=1

sup
x∈Bi
|Zx(ω)|p µ(dω) =

N∑
i=1

∫
Ω

sup
x∈Bi
|Zx(ω)|p µ(dω).

(5.47)

Furthermore, the assumption that ∀ω ∈ Ω, x, y ∈ E : |Zx(ω)− Zy(ω)| ≤ Lδ(x, y) implies
for all ω ∈ Ω, i ∈ {1, 2, . . . , N}, x ∈ Bi that

|Zx(ω)| = |Zx(ω)− Zzi(ω) + Zzi(ω)| ≤ |Zx(ω)− Zzi(ω)|+ |Zzi(ω)|
≤ Lδ(x, zi) + |Zzi(ω)| ≤ Lri + |Zzi(ω)|.

(5.48)

Combining this with (5.47) proves that∫
Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤

N∑
i=1

∫
Ω

(Lri + |Zzi(ω)|)p µ(dω). (5.49)

The proof of Lemma 5.21 is thus complete.

Lemma 5.22. Let p, L, r ∈ (0,∞), let (E, δ) be a separable metric space, let (Ω,F , µ)
be a measure space, assume E 6= ∅ and µ(Ω) 6= 0, let Zx : Ω → R, x ∈ E, be F/B(R)-
measurable functions, and assume for all ω ∈ Ω, x, y ∈ E that |Zx(ω)−Zy(ω)| ≤ Lδ(x, y).
Then ∫

Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤ C(E,δ),r

[
sup
x∈E

∫
Ω

(Lr + |Zx(ω)|)p µ(dω)

]
(5.50)

(cf. Definition 5.10 and Lemma 5.19).

Proof of Lemma 5.22. Throughout this proof assume w.l.o.g. that C(E,δ),r <∞, let N ∈ N
be given by N = C(E,δ),r, and let z1, z2, . . . , zN ∈ E satisfy E ⊆

⋃N
i=1{x ∈ E : δ(x, zi) ≤ r}.

Note that Lemma 5.21 (with r1 ← r, r2 ← r, . . . , rN ← r in the notation of Lemma 5.21)
establishes that∫

Ω

sup
x∈E
|Zx(ω)|p µ(dω) ≤

N∑
i=1

∫
Ω

(Lr + |Zzi(ω)|)p µ(dω)

≤
N∑
i=1

[
sup
x∈E

∫
Ω

(Lr + |Zx(ω)|)p µ(dω)

]
= N

[
sup
x∈E

∫
Ω

(Lr + |Zx(ω)|)p µ(dω)

]
.

(5.51)

The proof of Lemma 5.22 is thus complete.

Lemma 5.23. Let p ∈ [1,∞), L, r ∈ (0,∞), let (E, δ) be a separable metric space, assume
E 6= ∅, let (Ω,F ,P) be a probability space, let Zx : Ω → R, x ∈ E, be random variables,
and assume for all x, y ∈ E that E[|Zx|] <∞ and |Zx − Zy| ≤ Lδ(x, y). Then(

E
[
supx∈E|Zx − E[Zx]|p

])1/p ≤ (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Zx − E[Zx]|p

])1/p
]

(5.52)

(cf. Definition 5.10 and Lemma 5.20).
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Proof of Lemma 5.23. Throughout this proof let Yx : Ω→ R, x ∈ E, satisfy for all x ∈ E,
ω ∈ Ω that Yx(ω) = Zx(ω)− E[Zx]. Note that it holds for all ω ∈ Ω, x, y ∈ E that

|Yx(ω)− Yy(ω)| = |(Zx(ω)− E[Zx])− (Zy(ω)− E[Zy])|
≤ |Zx(ω)− Zy(ω)|+ |E[Zx]− E[Zy]| ≤ Lδ(x, y) + E[|Zx − Zy|]
≤ 2Lδ(x, y).

(5.53)

Combining this with Lemma 5.22 (with L ← 2L, (Ω,F , µ) ← (Ω,F ,P), (Zx)x∈E ←
(Yx)x∈E in the notation of Lemma 5.22) implies that(

E
[
supx∈E|Zx − E[Zx]|p

])1/p
=
(
E
[
supx∈E|Yx|p

])1/p

≤ (C(E,δ),r)
1/p
[
supx∈E

(
E
[
(2Lr + |Yx|)p

])1/p
]

≤ (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Yx|p

])1/p
]

= (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Zx − E[Zx]|p

])1/p
]
.

(5.54)

The proof of Lemma 5.23 is thus complete.

Lemma 5.24. Let M ∈ N, p ∈ [2,∞), L, r ∈ (0,∞), let (E, δ) be a separable metric
space, assume E 6= ∅, let (Ω,F ,P) be a probability space, for every x ∈ E let Yx,j : Ω →
R, j ∈ {1, 2, . . . ,M}, be independent random variables, assume for all x, y ∈ E, j ∈
{1, 2, . . . ,M} that E[|Yx,j|] <∞ and |Yx,j − Yy,j| ≤ Lδ(x, y), and let Zx : Ω→ R, x ∈ E,
satisfy for all x ∈ E that

Zx =
1

M

[
M∑
j=1

Yx,j

]
. (5.55)

Then

(i) it holds for all x ∈ E that E[|Zx|] <∞,

(ii) it holds that the function Ω 3 ω 7→ supx∈E|Zx(ω)− E[Zx]| ∈ [0,∞] is F/B([0,∞])-
measurable, and

(iii) it holds that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ 2(C(E,δ),r)
1/p
[
Lr +

√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)] (5.56)

(cf. Definition 5.10).

Proof of Lemma 5.24. Note that the assumption that ∀x ∈ E, j ∈ {1, 2, . . . ,M} :
E[|Yx,j|] <∞ implies for all x ∈ E that

E[|Zx|] = E
[

1

M

∣∣∣∣ M∑
j=1

Yx,j

∣∣∣∣] ≤ 1

M

[
M∑
j=1

E[|Yx,j|]
]
≤ max

j∈{1,2,...,M}
E[|Yx,j|] <∞. (5.57)

This proves (i). Next observe that the assumption that ∀x, y ∈ E, j ∈ {1, 2, . . . ,M} :
|Yx,j − Yy,j| ≤ Lδ(x, y) demonstrates for all x, y ∈ E that

|Zx − Zy| =
1

M

∣∣∣∣[ M∑
j=1

Yx,j

]
−
[
M∑
j=1

Yy,j

]∣∣∣∣ ≤ 1

M

[
M∑
j=1

|Yx,j − Yy,j|
]
≤ Lδ(x, y). (5.58)
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Combining this with (i) and Lemma 5.20 establishes (ii). It thus remains to show (iii).
For this note that (i), (5.58), and Lemma 5.23 yield that(

E
[
supx∈E|Zx − E[Zx]|p

])1/p ≤ (C(E,δ),r)
1/p
[
2Lr + supx∈E

(
E
[
|Zx − E[Zx]|p

])1/p
]
. (5.59)

Moreover, (5.57) and Corollary 5.18 (with d ← 1, (Xj)j∈{1,2,...,M} ← (Yx,j)j∈{1,2,...,M} for
x ∈ E in the notation of Corollary 5.18) prove for all x ∈ E that(

E
[
|Zx − E[Zx]|p

])1/p
=

(
E
[∣∣∣∣ 1

M

[
M∑
j=1

Yx,j

]
− E

[
1

M

M∑
j=1

Yx,j

]∣∣∣∣p])1/p

≤ 2
√
p− 1√
M

[
max

j∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]
.

(5.60)

This and (5.59) imply that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ (C(E,δ),r)
1/p
[
2Lr + 2

√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)]

= 2(C(E,δ),r)
1/p
[
Lr +

√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)]
.

(5.61)

The proof of Lemma 5.24 is thus complete.
Corollary 5.25. Let M ∈ N, p ∈ [2,∞), L,C ∈ (0,∞), let (E, δ) be a separable metric
space, assume E 6= ∅, let (Ω,F ,P) be a probability space, for every x ∈ E let Yx,j : Ω →
R, j ∈ {1, 2, . . . ,M}, be independent random variables, assume for all x, y ∈ E, j ∈
{1, 2, . . . ,M} that E[|Yx,j|] <∞ and |Yx,j − Yy,j| ≤ Lδ(x, y), and let Zx : Ω→ R, x ∈ E,
satisfy for all x ∈ E that

Zx =
1

M

[
M∑
j=1

Yx,j

]
. (5.62)

Then
(i) it holds for all x ∈ E that E[|Zx|] <∞,

(ii) it holds that the function Ω 3 ω 7→ supx∈E|Zx(ω)− E[Zx]| ∈ [0,∞] is F/B([0,∞])-
measurable, and

(iii) it holds that(
E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ 2
√
p−1√
M

(
C

(E,δ),C
√
p−1

L
√
M

)1/p[
C + supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
] (5.63)

(cf. Definition 5.10).
Proof of Corollary 5.25. Note that Lemma 5.24 shows (i) and (ii). In addition, Lem-
ma 5.24 (with r ← C

√
p−1/(L

√
M) in the notation of Lemma 5.24) ensures that(

E
[
supx∈E|Zx − E[Zx]|p

])1/p

≤ 2
(
C

(E,δ),C
√
p−1

L
√
M

)1/p[
LC
√
p−1

L
√
M

+
√
p−1√
M

(
supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
)]

= 2
√
p−1√
M

(
C

(E,δ),C
√
p−1

L
√
M

)1/p[
C + supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]
. (5.64)

This establishes (iii) and thus completes the proof of Corollary 5.25.
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5.3.3 Strong convergence rates for the generalisation error

Lemma 5.26. Let M ∈ N, p ∈ [2,∞), L,C, b ∈ (0,∞), let (E, δ) be a separable
metric space, assume E 6= ∅, let (Ω,F ,P) be a probability space, let Xx,j : Ω → R,
j ∈ {1, 2, . . . ,M}, x ∈ E, and Yj : Ω → R, j ∈ {1, 2, . . . ,M}, be functions, assume
for every x ∈ E that (Xx,j, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables, assume
for all x, y ∈ E, j ∈ {1, 2, . . . ,M} that |Xx,j − Yj| ≤ b and |Xx,j − Xy,j| ≤ Lδ(x, y), let
R : E → [0,∞) satisfy for all x ∈ E that R(x) = E[|Xx,1 − Y1|2], and let R : E × Ω →
[0,∞) satisfy for all x ∈ E, ω ∈ Ω that

R(x, ω) =
1

M

[
M∑
j=1

|Xx,j(ω)− Yj(ω)|2
]
. (5.65)

Then

(i) it holds that the function Ω 3 ω 7→ supx∈E|R(x, ω)−R(x)| ∈ [0,∞] is F/B([0,∞])-
measurable and

(ii) it holds that(
E
[
supx∈E|R(x)−R(x)|p

])1/p ≤
(
C

(E,δ),Cb
√
p−1

2L
√
M

)1/p
[

2(C + 1)b2
√
p− 1√

M

]
(5.66)

(cf. Definition 5.10).

Proof of Lemma 5.26. Throughout this proof let Yx,j : Ω→ R, j ∈ {1, 2, . . . ,M}, x ∈ E,
satisfy for all x ∈ E, j ∈ {1, 2, . . . ,M} that Yx,j = |Xx,j−Yj|2. Note that the assumption
that for every x ∈ E it holds that (Xx,j, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables
ensures for all x ∈ E that

E[R(x)] =
1

M

[
M∑
j=1

E
[
|Xx,j − Yj|2

]]
=
M E

[
|Xx,1 − Y1|2

]
M

= R(x). (5.67)

Furthermore, the assumption that ∀x ∈ E, j ∈ {1, 2, . . . ,M} : |Xx,j − Yj| ≤ b shows for
all x ∈ E, j ∈ {1, 2, . . . ,M} that

E[|Yx,j|] = E[|Xx,j − Yj|2] ≤ b2 <∞, (5.68)
Yx,j − E[Yx,j] = |Xx,j − Yj|2 − E

[
|Xx,j − Yj|2

]
≤ |Xx,j − Yj|2 ≤ b2, (5.69)

and
E[Yx,j]− Yx,j = E

[
|Xx,j − Yj|2

]
− |Xx,j − Yj|2 ≤ E

[
|Xx,j − Yj|2

]
≤ b2. (5.70)

Combining (5.68)–(5.70) implies for all x ∈ E, j ∈ {1, 2, . . . ,M} that(
E
[
|Yx,j − E[Yx,j]|p

])1/p ≤
(
E
[
b2p
])1/p

= b2. (5.71)

Moreover, note that the assumptions that ∀x, y ∈ E, j ∈ {1, 2, . . . ,M} : [|Xx,j − Yj| ≤
b and |Xx,j −Xy,j| ≤ Lδ(x, y)] and the fact that ∀x1, x2, y ∈ R : (x1 − y)2 − (x2 − y)2 =
(x1 − x2)((x1 − y) + (x2 − y)) establish for all x, y ∈ E, j ∈ {1, 2, . . . ,M} that

|Yx,j − Yy,j| = |(Xx,j − Yj)2 − (Xy,j − Yj)2|
≤ |Xx,j −Xy,j|(|Xx,j − Yj|+ |Xy,j − Yj|)
≤ 2b|Xx,j −Xy,j| ≤ 2bLδ(x, y).

(5.72)
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Combining this, (5.67), (5.68), and the fact that for every x ∈ E it holds that Yx,j,
j ∈ {1, 2, . . . ,M}, are independent random variables with Corollary 5.25 (with L← 2bL,
C ← Cb2, (Yx,j)x∈E, j∈{1,2,...,M} ← (Yx,j)x∈E, j∈{1,2,...,M}, (Zx)x∈E ← (Ω 3 ω 7→ R(x, ω) ∈
R)x∈E in the notation of Corollary 5.25) and (5.71) proves (i) and(

E
[
supx∈E|R(x)−R(x)|p

])1/p
=
(
E
[
supx∈E|R(x)− E[R(x)]|p

])1/p

≤ 2
√
p−1√
M

(
C

(E,δ),Cb
2√p−1

2bL
√
M

)1/p[
Cb2 + supx∈E maxj∈{1,2,...,M}

(
E
[
|Yx,j − E[Yx,j]|p

])1/p
]

≤ 2
√
p−1√
M

(
C

(E,δ),Cb
√
p−1

2L
√
M

)1/p

[Cb2 + b2] =
(
C

(E,δ),Cb
√
p−1

2L
√
M

)1/p
[

2(C + 1)b2
√
p− 1√

M

]
.

(5.73)

This shows (ii) and thus completes the proof of Lemma 5.26.

Proposition 5.27. Let d,d,M ∈ N, L, b ∈ (0,∞), α ∈ R, β ∈ (α,∞), D ⊆ Rd,
let (Ω,F ,P) be a probability space, let Xj : Ω → D, j ∈ {1, 2, . . . ,M}, and Yj : Ω → R,
j ∈ {1, 2, . . . ,M}, be functions, assume that (Xj, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random
variables, let f = (fθ)θ∈[α,β]d : [α, β]d → C(D,R) be a function, assume for all θ, ϑ ∈
[α, β]d, j ∈ {1, 2, . . . ,M}, x ∈ D that |fθ(Xj)−Yj| ≤ b and |fθ(x)− fϑ(x)| ≤ L‖θ−ϑ‖∞,
let R : [α, β]d → [0,∞) satisfy for all θ ∈ [α, β]d that R(θ) = E[|fθ(X1) − Y1|2], and let
R : [α, β]d × Ω→ [0,∞) satisfy for all θ ∈ [α, β]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|fθ(Xj(ω))− Yj(ω)|2
]

(5.74)

(cf. Definition 5.9). Then

(i) it holds that the function Ω 3 ω 7→ supθ∈[α,β]d|R(θ, ω) − R(θ)| ∈ [0,∞] is F/
B([0,∞])-measurable and

(ii) it holds for all p ∈ (0,∞) that(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|p

])1/p

≤ inf
C,ε∈(0,∞)

[
2(C + 1)b2 max{1, [2

√
ML(β − α)(Cb)−1]ε}

√
max{1, p, d/ε}√

M

]

≤ inf
C∈(0,∞)

[
2(C + 1)b2

√
emax{1, p,d ln(4ML2(β − α)2(Cb)−2)}√

M

]
.

(5.75)

Proof of Proposition 5.27. Throughout this proof let p ∈ (0,∞), let (κC)C∈(0,∞) ⊆ (0,∞)
satisfy for all C ∈ (0,∞) that κC = 2

√
ML(β−α)/(Cb), let Xθ,j : Ω → R, j ∈ {1, 2, . . . ,M},

θ ∈ [α, β]d, satisfy for all θ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} that Xθ,j = fθ(Xj), and let
δ : ([α, β]d)× ([α, β]d)→ [0,∞) satisfy for all θ, ϑ ∈ [α, β]d that δ(θ, ϑ) = ‖θ−ϑ‖∞. First
of all, note that the assumption that ∀ θ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} : |fθ(Xj) − Yj| ≤ b
implies for all θ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} that

|Xθ,j − Yj| = |fθ(Xj)− Yj| ≤ b. (5.76)
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In addition, the assumption that ∀ θ, ϑ ∈ [α, β]d, x ∈ D : |fθ(x) − fϑ(x)| ≤ L‖θ − ϑ‖∞
ensures for all θ, ϑ ∈ [α, β]d, j ∈ {1, 2, . . . ,M} that

|Xθ,j−Xϑ,j| = |fθ(Xj)−fϑ(Xj)| ≤ supx∈D|fθ(x)−fϑ(x)| ≤ L‖θ−ϑ‖∞ = Lδ(θ, ϑ). (5.77)

Combining this, (5.76), and the fact that for every θ ∈ [α, β]d it holds that (Xθ,j, Yj),
j ∈ {1, 2, . . . ,M}, are i.i.d. random variables with Lemma 5.26 (with p ← q, C ← C,
(E, δ) ← ([α, β]d, δ), (Xx,j)x∈E, j∈{1,2,...,M} ← (Xθ,j)θ∈[α,β]d, j∈{1,2,...,M} for q ∈ [2,∞), C ∈
(0,∞) in the notation of Lemma 5.26) demonstrates for all C ∈ (0,∞), q ∈ [2,∞) that
the function Ω 3 ω 7→ supθ∈[α,β]d |R(θ, ω)−R(θ)| ∈ [0,∞] is F/B([0,∞])-measurable and

(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|q

])1/q ≤
(
C

([α,β]d,δ),Cb
√
q−1

2L
√
M

)1/q
[

2(C + 1)b2
√
q − 1√

M

]
(5.78)

(cf. Definition 5.10). This finishes the proof of (i). Next observe that (ii) in Lemma 5.11
(with d← d, a← α, b← β, r ← r for r ∈ (0,∞) in the notation of Lemma 5.11) shows
for all r ∈ (0,∞) that

C([α,β]d,δ),r ≤ 1[0,r]

(
β−α

2

)
+
(
β−α
r

)d
1(r,∞)

(
β−α

2

)
≤ max

{
1,
(
β−α
r

)d}(
1[0,r]

(
β−α

2

)
+ 1(r,∞)

(
β−α

2

))
= max

{
1,
(
β−α
r

)d}
.

(5.79)

This yields for all C ∈ (0,∞), q ∈ [2,∞) that

(
C

([α,β]d,δ),Cb
√
q−1

2L
√
M

)1/q

≤ max

{
1,
(

2(β−α)L
√
M

Cb
√
q−1

)d
q

}
≤ max

{
1,
(

2(β−α)L
√
M

Cb

)d
q

}
= max

{
1, (κC)

d
q

}
.

(5.80)

Jensen’s inequality and (5.78) hence prove for all C, ε ∈ (0,∞) that

(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|p

])1/p

≤
(
E
[
supθ∈[α,β]d|R(θ)−R(θ)|max{2,p,d/ε}]) 1

max{2,p,d/ε}

≤ max
{

1, (κC)
d

max{2,p,d/ε}

}2(C + 1)b2
√

max{2, p, d/ε} − 1√
M

= max
{

1, (κC)min{d/2,d/p,ε}}2(C + 1)b2
√

max{1, p− 1, d/ε− 1}√
M

≤
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M
.

(5.81)

Next note that the fact that ∀ a ∈ (1,∞) : a1/(2 ln(a)) = eln(a)/(2 ln(a)) = e1/2 =
√
e ≥ 1 ensures
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for all C ∈ (0,∞) with κC > 1 that

inf
ε∈(0,∞)

[
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M

]

≤
2(C + 1)b2 max{1, (κC)1/(2 ln(κC ))}

√
max{1, p, 2d ln(κC)}√

M

=
2(C + 1)b2

√
emax{1, p,d ln([κC ]2)}√

M
.

(5.82)

In addition, observe that it holds for all C ∈ (0,∞) with κC ≤ 1 that

inf
ε∈(0,∞)

[
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M

]

= inf
ε∈(0,∞)

[
2(C + 1)b2

√
max{1, p, d/ε}√
M

]
≤

2(C + 1)b2
√

max{1, p}√
M

≤
2(C + 1)b2

√
emax{1, p,d ln([κC ]2)}√

M
.

(5.83)

Combining (5.81) with (5.82) and (5.83) demonstrates that(
E
[
supθ∈[α,β]d |R(θ)−R(θ)|p

])1/p

≤ inf
C,ε∈(0,∞)

[
2(C + 1)b2 max{1, (κC)ε}

√
max{1, p, d/ε}√

M

]

= inf
C,ε∈(0,∞)

[
2(C + 1)b2 max{1, [2

√
ML(β − α)(Cb)−1]ε}

√
max{1, p, d/ε}√

M

]

≤ inf
C∈(0,∞)

[
2(C + 1)b2

√
emax{1, p,d ln([κC ]2)}√

M

]

= inf
C∈(0,∞)

[
2(C + 1)b2

√
emax{1, p,d ln(4ML2(β − α)2(Cb)−2)}√

M

]
.

(5.84)

This establishes (ii) and thus completes the proof of Proposition 5.27.

Corollary 5.28. Let d,d,L,M ∈ N, B, b ∈ [1,∞), u ∈ R, v ∈ [u + 1,∞), l =
(l0, l1, . . . , lL) ∈ NL+1, D ⊆ [−b, b]d, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let

(Ω,F ,P) be a probability space, let Xj : Ω → D, j ∈ {1, 2, . . . ,M}, and Yj : Ω → [u, v],
j ∈ {1, 2, . . . ,M}, be functions, assume that (Xj, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. ran-
dom variables, let R : [−B,B]d → [0,∞) satisfy for all θ ∈ [−B,B]d that R(θ) =
E[|N θ,l

u,v (X1) − Y1|2], and let R : [−B,B]d × Ω → [0,∞) satisfy for all θ ∈ [−B,B]d,
ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
(5.85)

(cf. Definition 5.8). Then
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(i) it holds that the function Ω 3 ω 7→ supθ∈[−B,B]d|R(θ, ω) − R(θ)| ∈ [0,∞] is F/
B([0,∞])-measurable and

(ii) it holds for all p ∈ (0,∞) that(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p

≤ 9(v − u)2L(‖l‖∞ + 1)
√

max{p, ln(4(Mb)1/L(‖l‖∞ + 1)B)}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√
M

(5.86)

(cf. Definition 5.9).
Proof of Corollary 5.28. Throughout this proof let d ∈ N be given by d =

∑L
i=1 li(li−1+1),

let L ∈ (0,∞) be given by L = bL(‖l‖∞ + 1)LBL−1, let f = (fθ)θ∈[−B,B]d : [−B,B]d →
C(D,R) satisfy for all θ ∈ [−B,B]d, x ∈ D that fθ(x) = N θ,l

u,v (x), let R : [−B,B]d →
[0,∞) satisfy for all θ ∈ [−B,B]d that R(θ) = E[|fθ(X1) − Y1|2] = E[|N θ,l

u,v (X1) − Y1|2],
and let R : [−B,B]d × Ω→ [0,∞) satisfy for all θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|fθ(Xj(ω))− Yj(ω)|2
]

=
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
. (5.87)

Note that the fact that ∀ θ ∈ Rd, x ∈ Rd : N θ,l
u,v (x) ∈ [u, v] and the assumption that

∀ j ∈ {1, 2, . . . ,M} : Yj(Ω) ⊆ [u, v] imply for all θ ∈ [−B,B]d, j ∈ {1, 2, . . . ,M} that
|fθ(Xj)− Yj| = |N θ,l

u,v (Xj)− Yj| ≤ supy1,y2∈[u,v]|y1 − y2| = v − u. (5.88)

Moreover, the assumptions that D ⊆ [−b, b]d, l0 = d, and lL = 1, Beck, Jentzen, &
Kuckuck [27, Corollary 2.37] (with a ← −b, b ← b, u ← u, v ← v, d ← d, L ← L, l ← l
in the notation of [27, Corollary 2.37]), and the assumptions that b ≥ 1 and B ≥ 1 ensure
for all θ, ϑ ∈ [−B,B]d, x ∈ D that

|fθ(x)− fϑ(x)| ≤ supy∈[−b,b]d |N θ,l
u,v (y)−N ϑ,l

u,v (y)|
≤ L max{1, b}(‖l‖∞ + 1)L(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞
≤ bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞ = L‖θ − ϑ‖∞.

(5.89)

Furthermore, the facts that d ≥ d and ∀ θ = (θ1, θ2, . . . , θd) ∈ Rd : N θ,l
u,v = N (θ1,θ2,...,θd),l

u,v

prove for all ω ∈ Ω that

supθ∈[−B,B]d |R(θ, ω)−R(θ)| = supθ∈[−B,B]d |R(θ, ω)−R(θ)|. (5.90)

Next observe that (5.88), (5.89), Proposition 5.27 (with d ← d, b ← v − u, α ← −B,
β ← B, R ← R, R ← R in the notation of Proposition 5.27), and the facts that
v − u ≥ (u + 1) − u = 1 and d ≤ L‖l‖∞(‖l‖∞ + 1) ≤ L(‖l‖∞ + 1)2 demonstrate for all
p ∈ (0,∞) that the function Ω 3 ω 7→ supθ∈[−B,B]d |R(θ, ω)−R(θ)| ∈ [0,∞] is F/B([0,∞])-
measurable and(

E
[
supθ∈[−B,B]d |R(θ)−R(θ)|p

])1/p

≤ inf
C∈(0,∞)

[
2(C + 1)(v − u)2

√
emax{1, p, d ln(4ML2(2B)2(C[v − u])−2)}√

M

]

≤ inf
C∈(0,∞)

[
2(C + 1)(v − u)2

√
emax{1, p,L(‖l‖∞ + 1)2 ln(24ML2B2C−2)}√

M

]
.

(5.91)
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This and (5.90) establish (i). In addition, combining (5.90)–(5.91) with the fact that
26L2 ≤ 26 · 22(L−1) = 24+2L ≤ 24L+2L = 26L and the facts that 3 ≥ e, B ≥ 1, L ≥ 1,
M ≥ 1, and b ≥ 1 shows for all p ∈ (0,∞) that(

E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p
=
(
E
[
supθ∈[−B,B]d |R(θ)−R(θ)|p

])1/p

≤
2(1/2 + 1)(v − u)2

√
emax{1, p,L(‖l‖∞ + 1)2 ln(24ML2B222)}√

M

=
3(v − u)2

√
emax{p,L(‖l‖∞ + 1)2 ln(26Mb2L2(‖l‖∞ + 1)2LB2L)}√

M

≤ 3(v − u)2
√
emax{p, 3L2(‖l‖∞ + 1)2 ln([26LMb2(‖l‖∞ + 1)2LB2L]1/(3L))}√

M

≤ 3(v − u)2
√

3 max{p, 3L2(‖l‖∞ + 1)2 ln(22(Mb2)1/(3L)(‖l‖∞ + 1)B)}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)
√

max{p, ln(4(Mb)1/L(‖l‖∞ + 1)B)}√
M

.

(5.92)

Furthermore, note that the fact that ∀n ∈ N : n ≤ 2n−1 and the fact that ‖l‖∞ ≥ 1 imply
that

4(‖l‖∞ + 1) ≤ 22 · 2(‖l‖∞+1)−1 = 23 · 2(‖l‖∞+1)−2 ≤ 32 · 3(‖l‖∞+1)−2 = 3(‖l‖∞+1). (5.93)

This demonstrates for all p ∈ (0,∞) that

9(v − u)2L(‖l‖∞ + 1)
√

max{p, ln(4(Mb)1/L(‖l‖∞ + 1)B)}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)
√

max{p, (‖l‖∞ + 1) ln([3(‖l‖∞+1)(Mb)1/LB]1/(‖l‖∞+1))}√
M

≤ 9(v − u)2L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√
M

.

(5.94)

Combining this with (5.92) shows (ii). The proof of Corollary 5.28 is thus complete.

5.4 Analysis of the optimisation error
The main result of this section, Proposition 5.34, establishes that the optimisation error
of the Minimum Monte Carlo method applied to a Lipschitz continuous random field with
a d-dimensional hypercube as index set, where d ∈ N, converges in the probabilistically
strong sense with rate 1/d with respect to the number of samples used, provided that
the sample indices are continuous uniformly drawn from the index hypercube (cf. (ii) in
Proposition 5.34). We refer to Beck, Jentzen, & Kuckuck [27, Lemmas 3.22 and 3.23] for
analogous results for convergence in probability instead of strong convergence and to Beck
et al. [22, Lemma 3.5] for a related result. Corollary 5.36 below specialises Proposition 5.34
to the case where the empirical risk from deep learning based empirical risk minimisation
with quadratic loss function indexed by a hypercube of DNN parameter vectors plays the
role of the random field under consideration. In the proof of Corollary 5.36 we make use of
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the elementary and well-known fact that this choice for the random field is indeed Lipschitz
continuous, which is the assertion of Lemma 5.35. Further results on the optimisation
error in the context of stochastic approximation can be found, e.g., in [10, 12, 44, 72, 102,
103, 108, 109, 124, 161, 190, 195, 200, 222, 282, 311, 313] and the references therein.

The proof of the main result of this section, Proposition 5.34, crucially relies (cf.
Lemma 5.33) on the complementary distribution function formula (cf., e.g., Elbrächter et
al. [120, Lemma 2.2]) and the elementary estimate for the beta function given in Corol-
lary 5.32. In order to prove Corollary 5.32, we first collect a few basic facts about the
gamma and the beta function in the elementary and well-known Lemma 5.29 and derive
from these in Proposition 5.31 further elementary and essentially well-known properties
of the gamma function. In particular, the inequalities in (5.96) in Proposition 5.31 are
slightly reformulated versions of the well-known inequalities called Wendel’s double in-
equality (cf. Wendel [308]) or Gautschi’s double inequality (cf. Gautschi [130]); cf., e.g.,
Qi [264, Subsections 2.1 and 2.4].

5.4.1 Properties of the gamma and the beta function

Lemma 5.29. Let Γ: (0,∞)→ (0,∞) satisfy for all x ∈ (0,∞) that Γ(x) =
∫∞

0
tx−1e−t dt

and let B : (0,∞)2 → (0,∞) satisfy for all x, y ∈ (0,∞) that B(x, y) =
∫ 1

0
tx−1(1−t)y−1 dt.

Then

(i) it holds for all x ∈ (0,∞) that Γ(x+ 1) = xΓ(x),

(ii) it holds that Γ(1) = Γ(2) = 1, and

(iii) it holds for all x, y ∈ (0,∞) that B(x, y) = Γ(x)Γ(y)
Γ(x+y)

.

Lemma 5.30. It holds for all α, x ∈ [0, 1] that (1− x)α ≤ 1− αx.

Proof of Lemma 5.30. Note that the fact that for every y ∈ [0,∞) it holds that the
function [0,∞) 3 z 7→ yz ∈ [0,∞) is a convex function implies for all α, x ∈ [0, 1] that

(1− x)α = (1− x)α·1+(1−α)·0

≤ α(1− x)1 + (1− α)(1− x)0

= α− αx+ 1− α = 1− αx.
(5.95)

The proof of Lemma 5.30 is thus complete.

Proposition 5.31. Let Γ: (0,∞) → (0,∞) satisfy for all x ∈ (0,∞) that Γ(x) =∫∞
0
tx−1e−t dt and let z·{ : (0,∞) → N0 satisfy for all x ∈ (0,∞) that zx{ = max([0, x) ∩

N0). Then

(i) it holds that Γ: (0,∞)→ (0,∞) is a convex function,

(ii) it holds for all x ∈ (0,∞) that Γ(x+ 1) = xΓ(x) ≤ xzx{ ≤ max{1, xx},

(iii) it holds for all x ∈ (0,∞), α ∈ [0, 1] that

(max{x+ α− 1, 0})α ≤ x

(x+ α)1−α ≤
Γ(x+ α)

Γ(x)
≤ xα, (5.96)

and
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(iv) it holds for all x ∈ (0,∞), α ∈ [0,∞) that

(max{x+ min{α− 1, 0}, 0})α ≤ Γ(x+ α)

Γ(x)
≤ (x+ max{α− 1, 0})α. (5.97)

Proof of Proposition 5.31. First, observe that the fact that for every t ∈ (0,∞) it holds
that the function R 3 x 7→ tx ∈ (0,∞) is a convex function implies for all x, y ∈ (0,∞),
α ∈ [0, 1] that

Γ(αx+ (1− α)y) =

∫ ∞
0

tαx+(1−α)y−1e−t dt =

∫ ∞
0

tαx+(1−α)yt−1e−t dt

≤
∫ ∞

0

(αtx + (1− α)ty)t−1e−t dt

= α

∫ ∞
0

tx−1e−t dt+ (1− α)

∫ ∞
0

ty−1e−t dt

= αΓ(x) + (1− α)Γ(y).

(5.98)

This shows (i).
Second, note that (ii) in Lemma 5.29 and (i) establish for all α ∈ [0, 1] that

Γ(α + 1) = Γ(α · 2 + (1− α) · 1) ≤ αΓ(2) + (1− α)Γ(1) = α + (1− α) = 1. (5.99)

This yields for all x ∈ (0, 1] that

Γ(x+ 1) ≤ 1 = xzx{ = max{1, xx}. (5.100)

Induction, (i) in Lemma 5.29, and the fact that ∀x ∈ (0,∞) : x− zx{ ∈ (0, 1] hence ensure
for all x ∈ [1,∞) that

Γ(x+ 1) =

[
zx{∏
i=1

(x− i+ 1)

]
Γ(x− zx{ + 1) ≤ xzx{Γ(x− zx{ + 1) ≤ xzx{ ≤ xx = max{1, xx}.

(5.101)
Combining this with again (i) in Lemma 5.29 and (5.100) establishes (ii).

Third, note that Hölder’s inequality and (i) in Lemma 5.29 prove for all x ∈ (0,∞),
α ∈ [0, 1] that

Γ(x+ α) =

∫ ∞
0

tx+α−1e−t dt =

∫ ∞
0

tαxe−αtt(1−α)x−(1−α)e−(1−α)t dt

=

∫ ∞
0

[txe−t]α[tx−1e−t]1−α dt

≤
(∫ ∞

0

txe−t dt

)α(∫ ∞
0

tx−1e−t dt

)1−α

= [Γ(x+ 1)]α[Γ(x)]1−α = xα[Γ(x)]α[Γ(x)]1−α = xαΓ(x).

(5.102)

This and again (i) in Lemma 5.29 demonstrate for all x ∈ (0,∞), α ∈ [0, 1] that

xΓ(x) = Γ(x+ 1) = Γ(x+ α + (1− α)) ≤ (x+ α)1−αΓ(x+ α). (5.103)
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Combining (5.102) and (5.103) yields for all x ∈ (0,∞), α ∈ [0, 1] that

x

(x+ α)1−α ≤
Γ(x+ α)

Γ(x)
≤ xα. (5.104)

Furthermore, observe that (i) in Lemma 5.29 and (5.104) imply for all x ∈ (0,∞), α ∈
[0, 1] that

Γ(x+ α)

Γ(x+ 1)
=

Γ(x+ α)

xΓ(x)
≤ xα−1. (5.105)

This shows for all α ∈ [0, 1], x ∈ (α,∞) that

Γ(x)

Γ(x+ (1− α))
=

Γ((x− α) + α)

Γ((x− α) + 1)
≤ (x− α)α−1 =

1

(x− α)1−α . (5.106)

This, in turn, ensures for all α ∈ [0, 1], x ∈ (1− α,∞) that

(x+ α− 1)α = (x− (1− α))α ≤ Γ(x+ α)

Γ(x)
. (5.107)

Next note that Lemma 5.30 proves for all x ∈ (0,∞), α ∈ [0, 1] that

(max{x+ α− 1, 0})α = (x+ α)α
(

max{x+ α− 1, 0}
x+ α

)α
= (x+ α)α

(
max

{
1− 1

x+ α
, 0

})α
≤ (x+ α)α

(
1− α

x+ α

)
= (x+ α)α

(
x

x+ α

)
=

x

(x+ α)1−α .

(5.108)

This and (5.104) establish (iii).
Fourth, we show (iv). For this let b·c : [0,∞) → N0 satisfy for all x ∈ [0,∞) that

bxc = max([0, x] ∩ N0). Observe that induction, (i) in Lemma 5.29, the fact that ∀α ∈
[0,∞) : α− bαc ∈ [0, 1), and (iii) demonstrate for all x ∈ (0,∞), α ∈ [0,∞) that

Γ(x+ α)

Γ(x)
=

[bαc∏
i=1

(x+ α− i)
]

Γ(x+ α− bαc)
Γ(x)

≤
[bαc∏
i=1

(x+ α− i)
]
xα−bαc

≤ (x+ α− 1)bαcxα−bαc

≤ (x+ max{α− 1, 0})bαc(x+ max{α− 1, 0})α−bαc

= (x+ max{α− 1, 0})α.

(5.109)

Furthermore, again the fact that ∀α ∈ [0,∞) : α−bαc ∈ [0, 1), (iii), induction, and (i) in
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Lemma 5.29 imply for all x ∈ (0,∞), α ∈ [0,∞) that

Γ(x+ α)

Γ(x)
=

Γ(x+ bαc+ α− bαc)
Γ(x)

≥ (max{x+ bαc+ α− bαc − 1, 0})α−bαc
[

Γ(x+ bαc)
Γ(x)

]
= (max{x+ α− 1, 0})α−bαc

[bαc∏
i=1

(x+ bαc − i)
]

Γ(x)

Γ(x)

≥ (max{x+ α− 1, 0})α−bαcxbαc

= (max{x+ α− 1, 0})α−bαc(max{x, 0})bαc

≥ (max{x+ min{α− 1, 0}, 0})α−bαc(max{x+ min{α− 1, 0}, 0})bαc

= (max{x+ min{α− 1, 0}, 0})α.

(5.110)

Combining this with (5.109) shows (iv). The proof of Proposition 5.31 is thus complete.

Corollary 5.32. Let B : (0,∞)2 → (0,∞) satisfy for all x, y ∈ (0,∞) that B(x, y) =∫ 1

0
tx−1(1 − t)y−1 dt and let Γ: (0,∞) → (0,∞) satisfy for all x ∈ (0,∞) that Γ(x) =∫∞

0
tx−1e−t dt. Then it holds for all x, y ∈ (0,∞) with x+ y > 1 that

Γ(x)

(y + max{x− 1, 0})x
≤ B(x, y) ≤ Γ(x)

(y + min{x− 1, 0})x
≤ max{1, xx}
x(y + min{x− 1, 0})x

.

(5.111)

Proof of Corollary 5.32. Note that (iii) in Lemma 5.29 ensures for all x, y ∈ (0,∞) that

B(x, y) =
Γ(x)Γ(y)

Γ(y + x)
. (5.112)

In addition, observe that it holds for all x, y ∈ (0,∞) with x+y > 1 that y+min{x−1, 0} >
0. This and (iv) in Proposition 5.31 demonstrate for all x, y ∈ (0,∞) with x+ y > 1 that

0 < (y + min{x− 1, 0})x ≤ Γ(y + x)

Γ(y)
≤ (y + max{x− 1, 0})x. (5.113)

Combining this with (5.112) and (ii) in Proposition 5.31 shows for all x, y ∈ (0,∞) with
x+ y > 1 that

Γ(x)

(y + max{x− 1, 0})x
≤ B(x, y) ≤ Γ(x)

(y + min{x− 1, 0})x
≤ max{1, xx}
x(y + min{x− 1, 0})x

.

(5.114)
The proof of Corollary 5.32 is thus complete.

5.4.2 Strong convergence rates for the optimisation error

Lemma 5.33. Let K ∈ N, p, L ∈ (0,∞), let (E, δ) be a metric space, let (Ω,F ,P)
be a probability space, let R : E × Ω → R be a (B(E) ⊗ F)/B(R)-measurable function,
assume for all x, y ∈ E, ω ∈ Ω that |R(x, ω)−R(y, ω)| ≤ Lδ(x, y), and let Xk : Ω→ E,
k ∈ {1, 2, . . . , K}, be i.i.d. random variables. Then it holds for all x ∈ E that

E
[
mink∈{1,2,...,K}|R(Xk)−R(x)|p

]
≤ Lp

∫ ∞
0

[P(δ(X1, x) > ε
1/p)]K dε. (5.115)
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Proof of Lemma 5.33. Throughout this proof let x ∈ E and let Y : Ω → [0,∞) be the
function which satisfies for all ω ∈ Ω that Y (ω) = mink∈{1,2,...,K}[δ(Xk(ω), x)]p. Ob-
serve that the fact that Y is a random variable, the assumption that ∀ v, w ∈ E, ω ∈
Ω: |R(v, ω)−R(w, ω)| ≤ Lδ(v, w), and the complementary distribution function formula
(see, e.g., Elbrächter et al. [120, Lemma 2.2]) demonstrate that

E
[
mink∈{1,2,...,K}|R(Xk)−R(x)|p

]
≤ Lp E

[
mink∈{1,2,...,K}[δ(Xk, x)]p

]
= Lp E[Y ] = Lp

∫ ∞
0

y PY (dy) = Lp
∫ ∞

0

PY ((ε,∞)) dε

= Lp
∫ ∞

0

P(Y > ε) dε = Lp
∫ ∞

0

P
(
mink∈{1,2,...,K}[δ(Xk, x)]p > ε

)
dε.

(5.116)

Moreover, the assumption that Θk, k ∈ {1, 2, . . . , K}, are i.i.d. random variables shows
for all ε ∈ (0,∞) that

P
(
mink∈{1,2,...,K}[δ(Xk, x)]p > ε

)
= P

(
∀ k ∈ {1, 2, . . . , K} : [δ(Xk, x)]p > ε

)
=

K∏
k=1

P([δ(Xk, x)]p > ε) = [P([δ(X1, x)]p > ε)]K = [P(δ(X1, x) > ε
1/p)]K .

(5.117)

Combining (5.116) with (5.117) proves (5.115). The proof of Lemma 5.33 is thus complete.

Proposition 5.34. Let d, K ∈ N, L, α ∈ R, β ∈ (α,∞), let (Ω,F ,P) be a probability
space, let R : [α, β]d × Ω → R be a random field, assume for all θ, ϑ ∈ [α, β]d, ω ∈
Ω that |R(θ, ω) − R(ϑ, ω)| ≤ L‖θ − ϑ‖∞, let Θk : Ω → [α, β]d, k ∈ {1, 2, . . . , K}, be
i.i.d. random variables, and assume that Θ1 is continuous uniformly distributed on [α, β]d

(cf. Definition 5.9). Then

(i) it holds that R is a (B([α, β]d)⊗F)/B(R)-measurable function and

(ii) it holds for all θ ∈ [α, β]d, p ∈ (0,∞) that

(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p

≤ L(β − α) max{1, (p/d)1/d}
K1/d

≤ L(β − α) max{1, p}
K1/d

.
(5.118)

Proof of Proposition 5.34. Throughout this proof assume w.l.o.g. that L > 0, let δ :
([α, β]d) × ([α, β]d) → [0,∞) satisfy for all θ, ϑ ∈ [α, β]d that δ(θ, ϑ) = ‖θ − ϑ‖∞, let
B : (0,∞)2 → (0,∞) satisfy for all x, y ∈ (0,∞) that B(x, y) =

∫ 1

0
tx−1(1−t)y−1 dt, and let

Θ1,1,Θ1,2, . . . ,Θ1,d : Ω → [α, β] satisfy Θ1 = (Θ1,1,Θ1,2, . . . ,Θ1,d). First of all, note that
the assumption that ∀ θ, ϑ ∈ [α, β]d, ω ∈ Ω: |R(θ, ω)−R(ϑ, ω)| ≤ L‖θ− ϑ‖∞ ensures for
all ω ∈ Ω that the function [α, β]d 3 θ 7→ R(θ, ω) ∈ R is continuous. Combining this with
the fact that ([α, β]d, δ) is a separable metric space, the fact that for every θ ∈ [α, β]d it
holds that the function Ω 3 ω 7→ R(θ, ω) ∈ R is F/B(R)-measurable, and, e.g., Aliprantis
& Border [4, Lemma 4.51] (see also, e.g., Beck et al. [22, Lemma 2.4]) proves (i). Next
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observe that it holds for all θ ∈ [α, β], ε ∈ [0,∞) that

min{θ + ε, β} −max{θ − ε, α} = min{θ + ε, β}+ min{ε− θ,−α}
= min

{
θ + ε+ min{ε− θ,−α}, β + min{ε− θ,−α}

}
= min

{
min{2ε, θ − α + ε},min{β − θ + ε, β − α}

}
≥ min

{
min{2ε, α− α + ε},min{β − β + ε, β − α}

}
= min{2ε, ε, ε, β − α} = min{ε, β − α}.

(5.119)

The assumption that Θ1 is continuous uniformly distributed on [α, β]d hence shows for
all θ = (θ1, θ2, . . . , θd) ∈ [α, β]d, ε ∈ [0,∞) that

P(‖Θ1 − θ‖∞ ≤ ε) = P
(
maxi∈{1,2,...,d}|Θ1,i − θi| ≤ ε

)
= P

(
∀ i ∈ {1, 2, . . . ,d} : − ε ≤ Θ1,i − θi ≤ ε

)
= P

(
∀ i ∈ {1, 2, . . . ,d} : θi − ε ≤ Θ1,i ≤ θi + ε

)
= P

(
∀ i ∈ {1, 2, . . . ,d} : max{θi − ε, α} ≤ Θ1,i ≤ min{θi + ε, β}

)
= P

(
Θ1 ∈

[
×d
i=1[max{θi − ε, α},min{θi + ε, β}]

])
= 1

(β−α)d

d∏
i=1

(min{θi + ε, β} −max{θi − ε, α})

≥ 1
(β−α)d

[min{ε, β − α}]d = min
{

1, εd

(β−α)d

}
.

(5.120)

Therefore, we obtain for all θ ∈ [α, β]d, p ∈ (0,∞), ε ∈ [0,∞) that

P(‖Θ1 − θ‖∞ > ε
1/p) = 1− P(‖Θ1 − θ‖∞ ≤ ε

1/p)

≤ 1−min
{

1, ε
d/p

(β−α)d

}
= max

{
0, 1− ε

d/p

(β−α)d

}
.

(5.121)

This, (i), the assumption that ∀ θ, ϑ ∈ [α, β]d, ω ∈ Ω: |R(θ, ω)−R(ϑ, ω)| ≤ L‖θ−ϑ‖∞, the
assumption that Θk, k ∈ {1, 2, . . . , K}, are i.i.d. random variables, and Lemma 5.33 (with
(E, δ) ← ([α, β]d, δ), (Xk)k∈{1,2,...,K} ← (Θk)k∈{1,2,...,K} in the notation of Lemma 5.33)
establish for all θ ∈ [α, β]d, p ∈ (0,∞) that

E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

]
≤ Lp

∫ ∞
0

[P(‖Θ1 − θ‖∞ > ε
1/p)]K dε

≤ Lp
∫ ∞

0

[
max

{
0, 1− ε

d/p

(β−α)d

}]K
dε = Lp

∫ (β−α)p

0

(
1− ε

d/p

(β−α)d

)K
dε

= p
d
Lp(β − α)p

∫ 1

0

t
p/d−1(1− t)K dt = p

d
Lp(β − α)p

∫ 1

0

t
p/d−1(1− t)K+1−1 dt

= p
d
Lp(β − α)p B(p/d, K + 1).

(5.122)

Corollary 5.32 (with x ← p/d, y ← K + 1 for p ∈ (0,∞) in the notation of (5.111) in
Corollary 5.32) hence demonstrates for all θ ∈ [α, β]d, p ∈ (0,∞) that

E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

]
≤

p
d
Lp(β − α)p max{1, (p/d)p/d}

p
d

(K + 1 + min{p/d− 1, 0})p/d
≤ Lp(β − α)p max{1, (p/d)p/d}

Kp/d
.

(5.123)
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This implies for all θ ∈ [α, β]d, p ∈ (0,∞) that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p

≤ L(β − α) max{1, (p/d)1/d}
K1/d

≤ L(β − α) max{1, p}
K1/d

.
(5.124)

This shows (ii) and thus completes the proof of Proposition 5.34.

Lemma 5.35. Let d,d,L,M ∈ N, B, b ∈ [1,∞), u ∈ R, v ∈ (u,∞), l = (l0, l1, . . . , lL) ∈
NL+1, D ⊆ [−b, b]d, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let Ω be a set, let

Xj : Ω → D, j ∈ {1, 2, . . . ,M}, and Yj : Ω → [u, v], j ∈ {1, 2, . . . ,M}, be functions, and
let R : [−B,B]d × Ω→ [0,∞) satisfy for all θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
(5.125)

(cf. Definition 5.8). Then it holds for all θ, ϑ ∈ [−B,B]d, ω ∈ Ω that

|R(θ, ω)−R(ϑ, ω)| ≤ 2(v − u)bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞ (5.126)

(cf. Definition 5.9).

Proof of Lemma 5.35. Observe that the fact that ∀x1, x2, y ∈ R : (x1 − y)2 − (x2 − y)2 =
(x1 − x2)((x1 − y) + (x2 − y)), the fact that ∀ θ ∈ Rd, x ∈ Rd : N θ,l

u,v (x) ∈ [u, v], and the
assumption that ∀ j ∈ {1, 2, . . . ,M}, ω ∈ Ω: Yj(ω) ∈ [u, v] prove for all θ, ϑ ∈ [−B,B]d,
ω ∈ Ω that

|R(θ, ω)−R(ϑ, ω)|

=
1

M

∣∣∣∣[ M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
−
[
M∑
j=1

|N ϑ,l
u,v (Xj(ω))− Yj(ω)|2

]∣∣∣∣
≤ 1

M

[
M∑
j=1

∣∣[N θ,l
u,v (Xj(ω))− Yj(ω)]2 − [N ϑ,l

u,v (Xj(ω))− Yj(ω)]2
∣∣]

=
1

M

[
M∑
j=1

(∣∣N θ,l
u,v (Xj(ω))−N ϑ,l

u,v (Xj(ω))
∣∣

·
∣∣[N θ,l

u,v (Xj(ω))− Yj(ω)] + [N ϑ,l
u,v (Xj(ω))− Yj(ω)]

∣∣)]
≤ 2

M

[
M∑
j=1

([
supx∈D|N θ,l

u,v (x)−N ϑ,l
u,v (x)|

][
supy1,y2∈[u,v]|y1 − y2|

])]
= 2(v − u)

[
supx∈D|N θ,l

u,v (x)−N ϑ,l
u,v (x)|

]
.

(5.127)

In addition, combining the assumptions that D ⊆ [−b, b]d, d ≥
∑L

i=1 li(li−1 + 1), l0 = d,
lL = 1, b ≥ 1, and B ≥ 1 with Beck, Jentzen, & Kuckuck [27, Corollary 2.37] (with
a← −b, b← b, u← u, v ← v, d← d, L← L, l← l in the notation of [27, Corollary 2.37])
shows for all θ, ϑ ∈ [−B,B]d that

supx∈D|N θ,l
u,v (x)−N ϑ,l

u,v (x)| ≤ supx∈[−b,b]d |N θ,l
u,v (x)−N ϑ,l

u,v (x)|
≤ L max{1, b}(‖l‖∞ + 1)L(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞
≤ bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞.

(5.128)
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This and (5.127) imply for all θ, ϑ ∈ [−B,B]d, ω ∈ Ω that

|R(θ, ω)−R(ϑ, ω)| ≤ 2(v − u)bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞. (5.129)

The proof of Lemma 5.35 is thus complete.

Corollary 5.36. Let d,d, d,L,M,K ∈ N, B, b ∈ [1,∞), u ∈ R, v ∈ (u,∞), l =
(l0, l1, . . . , lL) ∈ NL+1, D ⊆ [−b, b]d, assume l0 = d, lL = 1, and d ≥ d =

∑L
i=1 li(li−1 +1),

let (Ω,F ,P) be a probability space, let Θk : Ω → [−B,B]d, k ∈ {1, 2, . . . , K}, be i.i.d.
random variables, assume that Θ1 is continuous uniformly distributed on [−B,B]d, let
Xj : Ω → D, j ∈ {1, 2, . . . ,M}, and Yj : Ω → [u, v], j ∈ {1, 2, . . . ,M}, be random vari-
ables, and let R : [−B,B]d × Ω→ [0,∞) satisfy for all θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
(5.130)

(cf. Definition 5.8). Then

(i) it holds that R is a (B([−B,B]d)⊗F)/B([0,∞))-measurable function and

(ii) it holds for all θ ∈ [−B,B]d, p ∈ (0,∞) that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p (5.131)

≤
4(v − u)bL(‖l‖∞ + 1)LBL

√
max{1, p/d}

K1/d
≤ 4(v − u)bL(‖l‖∞ + 1)LBL max{1, p}

K [L−1(‖l‖∞+1)−2]

(cf. Definition 5.9).

Proof of Corollary 5.36. Throughout this proof let L ∈ R be given by L = 2(v − u)[bL
(‖l‖∞ + 1)LBL−1], let P : [−B,B]d → [−B,B]d satisfy for all θ = (θ1, θ2, . . . , θd) ∈
[−B,B]d that P (θ) = (θ1, θ2, . . . , θd), and let R : [−B,B]d × Ω → R satisfy for all
θ ∈ [−B,B]d, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
. (5.132)

Note that the fact that ∀ θ ∈ [−B,B]d : N θ,l
u,v = N P (θ),l

u,v implies for all θ ∈ [−B,B]d,
ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
=

1

M

[
M∑
j=1

|N P (θ),l
u,v (Xj(ω))− Yj(ω)|2

]
= R(P (θ), ω).

(5.133)

Furthermore, Lemma 5.35 (with d← d, R ← ([−B,B]d×Ω 3 (θ, ω) 7→ R(θ, ω) ∈ [0,∞))
in the notation of Lemma 5.35) demonstrates for all θ, ϑ ∈ [−B,B]d, ω ∈ Ω that

|R(θ, ω)−R(ϑ, ω)| ≤ 2(v − u)bL(‖l‖∞ + 1)LBL−1‖θ − ϑ‖∞ = L‖θ − ϑ‖∞. (5.134)

Moreover, observe that the assumption that Xj, j ∈ {1, 2, . . . ,M}, and Yj, j ∈ {1, 2, . . . ,
M}, are random variables ensures that R : [−B,B]d × Ω → R is a random field. This,
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(5.134), the fact that P ◦Θk : Ω→ [−B,B]d, k ∈ {1, 2, . . . , K}, are i.i.d. random variables,
the fact that P ◦Θ1 is continuous uniformly distributed on [−B,B]d, and Proposition 5.34
(with d ← d, α ← −B, β ← B, R ← R, (Θk)k∈{1,2,...,K} ← (P ◦ Θk)k∈{1,2,...,K} in
the notation of Proposition 5.34) prove for all θ ∈ [−B,B]d, p ∈ (0,∞) that R is a
(B([−B,B]d)⊗F)/B(R)-measurable function and(

E
[
mink∈{1,2,...,K}|R(P (Θk))−R(P (θ))|p

])1/p

≤ L(2B) max{1, (p/d)1/d}
K1/d

=
4(v − u)bL(‖l‖∞ + 1)LBL max{1, (p/d)1/d}

K1/d
.

(5.135)

The fact that P is a B([−B,B]d)/B([−B,B]d)-measurable function and (5.133) hence
show (i). In addition, (5.133), (5.135), and the fact that 2 ≤ d =

∑L
i=1 li(li−1 + 1) ≤

L(‖l‖∞ + 1)2 yield for all θ ∈ [−B,B]d, p ∈ (0,∞) that(
E
[
mink∈{1,2,...,K}|R(Θk)−R(θ)|p

])1/p

=
(
E
[
mink∈{1,2,...,K}|R(P (Θk))−R(P (θ))|p

])1/p (5.136)

≤
4(v − u)bL(‖l‖∞ + 1)LBL

√
max{1, p/d}

K1/d
≤ 4(v − u)bL(‖l‖∞ + 1)LBL max{1, p}

K [L−1(‖l‖∞+1)−2]
.

This establishes (ii). The proof of Corollary 5.36 is thus complete.

5.5 Analysis of the overall error
In Subsection 5.5.2 below we present the main result of this chapter, Theorem 5.41, that
provides an estimate for the overall L2-error arising in deep learning based empirical
risk minimisation with quadratic loss function in the probabilistically strong sense and
that covers the case where the underlying DNNs are trained using a general stochastic
optimisation algorithm with random initialisation.

In order to prove Theorem 5.41, we require a link to combine the results from Sec-
tions 5.2, 5.3, and 5.4, which is given in Subsection 5.5.1 below. More specifically, Propo-
sition 5.37 in Subsection 5.5.1 shows that the overall error can be decomposed into three
different error sources: the approximation error (cf. Section 5.2), the worst-case generali-
sation error (cf. Section 5.3), and the optimisation error (cf. Section 5.4). Proposition 5.37
is a consequence of the well-known bias–variance decomposition (cf., e.g., Beck, Jentzen,
& Kuckuck [27, Lemma 4.1] or Berner, Grohs, & Jentzen [47, Lemma 2.2]) and is very
similar to [27, Lemma 4.3].

Thereafter, Subsection 5.5.2 is devoted to strong convergence results for deep learning
based empirical risk minimisation with quadratic loss function where a general stochastic
approximation algorithm with random initialisation is allowed to be the employed opti-
misation method. Apart from the main result (cf. Theorem 5.41), Subsection 5.5.2 also
includes, on the one hand, Proposition 5.39, which combines the overall error decompo-
sition (cf. Proposition 5.37) with our convergence result for the generalisation error (cf.
Corollary 5.28 in Section 5.3) and our convergence result for the optimisation error (cf.
Corollary 5.36 in Section 5.4), and, on the other hand, Corollary 5.42, which replaces the
architecture parameter A ∈ (0,∞) in Theorem 5.41 (cf. Proposition 5.13) by the mini-
mum of the depth parameter L ∈ N and the hidden layer sizes l1, l2, . . . , lL−1 ∈ N of the
trained DNN (cf. (5.174) in the proof of Corollary 5.42).
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Finally, in Subsection 5.5.3 we present three more strong convergence results for the
special case where SGD with random initialisation is the employed optimisation method.
In particular, Corollary 5.43 specifies Corollary 5.42 to this special case, Corollary 5.44
provides a convergence estimate for the expectation of the L1-distance between the trained
DNN and the target function, and Corollary 5.45 reaches an analogous conclusion in a
simplified setting.

5.5.1 Overall error decomposition

Proposition 5.37. Let d,d,L,M,K,N ∈ N, B ∈ [0,∞), u ∈ R, v ∈ (u,∞), l =
(l0, l1, . . . , lL) ∈ NL+1, N ⊆ {0, 1, . . . , N}, D ⊆ Rd, assume 0 ∈ N, l0 = d, lL = 1,
and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a probability space, let Xj : Ω → D, j ∈

{1, 2, . . . ,M}, and Yj : Ω → [u, v], j ∈ {1, 2, . . . ,M}, be random variables, let E : D →
[u, v] be a B(D)/B([u, v])-measurable function, assume that it holds P-a.s. that E(X1) =
E[Y1|X1], let Θk,n : Ω → Rd, k, n ∈ N0, satisfy

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, let R : Rd →

[0,∞) satisfy for all θ ∈ Rd that R(θ) = E[|N θ,l
u,v (X1)−Y1|2], and let R : Rd×Ω→ [0,∞)

and k : Ω→ (N0)2 satisfy for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (5.137)

k(ω) ∈ arg min(k,n)∈{1,2,...,K}×N, ‖Θk,n(ω)‖∞≤BR(Θk,n(ω), ω) (5.138)

(cf. Definitions 5.8 and 5.9). Then it holds for all ϑ ∈ [−B,B]d that∫
D

|N Θk,l
u,v (x)− E(x)|2 PX1(dx)

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×N, ‖Θk,n‖∞≤B|R(Θk,n)−R(ϑ)|.

(5.139)

Proof of Proposition 5.37. Throughout this proof let R : L2(PX1 ;R) → [0,∞) satisfy for
all f ∈ L2(PX1 ;R) that R(f) = E[|f(X1) − Y1|2]. Observe that the assumption that
∀ω ∈ Ω: Y1(ω) ∈ [u, v] and the fact that ∀ θ ∈ Rd, x ∈ Rd : N θ,l

u,v (x) ∈ [u, v] ensure for all
θ ∈ Rd that E[|Y1|2] ≤ max{u2, v2} <∞ and∫

D

|N θ,l
u,v (x)|2 PX1(dx) = E

[
|N θ,l

u,v (X1)|2
]
≤ max{u2, v2} <∞. (5.140)

The bias–variance decomposition (cf., e.g., Beck, Jentzen, & Kuckuck [27, (iii) in Lem-
ma 4.1] with (Ω,F ,P) ← (Ω,F ,P), (S,S) ← (D,B(D)), X ← X1, Y ← (Ω 3 ω 7→
Y1(ω) ∈ R), E ← R, f ← N θ,l

u,v |D, g ← N ϑ,l
u,v |D for θ, ϑ ∈ Rd in the notation of [27, (iii)

in Lemma 4.1]) hence proves for all θ, ϑ ∈ Rd that∫
D

|N θ,l
u,v (x)− E(x)|2 PX1(dx)

= E
[
|N θ,l

u,v (X1)− E(X1)|2
]

= E
[
|N θ,l

u,v (X1)− E[Y1|X1]|2
]

= E
[
|N ϑ,l

u,v (X1)− E[Y1|X1]|2
]

+ R(N θ,l
u,v |D)−R(N ϑ,l

u,v |D)

= E
[
|N ϑ,l

u,v (X1)− E(X1)|2
]

+ E
[
|N θ,l

u,v (X1)− Y1|2
]
− E

[
|N ϑ,l

u,v (X1)− Y1|2
]

=

∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + R(θ)−R(ϑ).

(5.141)
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This implies for all θ, ϑ ∈ Rd that∫
D

|N θ,l
u,v (x)− E(x)|2 PX1(dx)

=

∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx)− [R(θ)−R(θ)] +R(ϑ)−R(ϑ) +R(θ)−R(ϑ)

≤
∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + |R(θ)−R(θ)|+ |R(ϑ)−R(ϑ)|+R(θ)−R(ϑ)

≤
∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + 2

[
maxη∈{θ,ϑ}|R(η)−R(η)|

]
+R(θ)−R(ϑ). (5.142)

Next note that the fact that ∀ω ∈ Ω: ‖Θk(ω)(ω)‖∞ ≤ B ensures for all ω ∈ Ω that
Θk(ω)(ω) ∈ [−B,B]d. Combining (5.142) with (5.138) hence establishes for all ϑ ∈
[−B,B]d that∫

D

|N Θk,l
u,v (x)− E(x)|2 PX1(dx)

≤
∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + 2

[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+R(Θk)−R(ϑ)

=

∫
D

|N ϑ,l
u,v (x)− E(x)|2 PX1(dx) + 2

[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×N, ‖Θk,n‖∞≤B[R(Θk,n)−R(ϑ)]

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×N, ‖Θk,n‖∞≤B|R(Θk,n)−R(ϑ)|.

(5.143)

The proof of Proposition 5.37 is thus complete.

5.5.2 Overall strong error analysis for the training of DNNs

Lemma 5.38. Let d,d,L ∈ N, p ∈ [0,∞), u ∈ [−∞,∞), v ∈ (u,∞], l = (l0, l1, . . . , lL) ∈
NL+1, D ⊆ Rd, assume l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let E : D → R be a

B(D)/B(R)-measurable function, let (Ω,F ,P) be a probability space, and let X : Ω→ D,
k : Ω→ (N0)2, and Θk,n : Ω→ Rd, k, n ∈ N0, be random variables. Then

(i) it holds that the function Rd×Rd 3 (θ, x) 7→ N θ,l
u,v (x) ∈ R is (B(Rd)⊗B(Rd))/B(R)-

measurable,

(ii) it holds that the function Ω 3 ω 7→ Θk(ω)(ω) ∈ Rd is F/B(Rd)-measurable, and

(iii) it holds that the function

Ω 3 ω 7→
∫
D

|N Θk(ω)(ω),l
u,v (x)− E(x)|p PX(dx) ∈ [0,∞] (5.144)

is F/B([0,∞])-measurable

(cf. Definition 5.8).
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Proof of Lemma 5.38. First, observe that Beck, Jentzen, & Kuckuck [27, Corollary 2.37]
(with a ← −‖x‖∞, b ← ‖x‖∞, u ← u, v ← v, d ← d, L ← L, l ← l for x ∈ Rd in the
notation of [27, Corollary 2.37]) demonstrates for all x ∈ Rd, θ, ϑ ∈ Rd that

|N θ,l
u,v (x)−N ϑ,l

u,v (x)| ≤ supy∈[−‖x‖∞,‖x‖∞]l0 |N θ,l
u,v (y)−N ϑ,l

u,v (y)|
≤ L max{1, ‖x‖∞}(‖l‖∞ + 1)L(max{1, ‖θ‖∞, ‖ϑ‖∞})L−1‖θ − ϑ‖∞

(5.145)

(cf. Definition 5.9). This implies for all x ∈ Rd that the function

Rd 3 θ 7→ N θ,l
u,v (x) ∈ R (5.146)

is continuous. In addition, the fact that ∀ θ ∈ Rd : N θ,l
u,v ∈ C(Rd,R) ensures for all θ ∈ Rd

that the function Rd 3 x 7→ N θ,l
u,v (x) ∈ R is B(Rd)/B(R)-measurable. This, (5.146),

the fact that (Rd, ‖·‖∞|Rd) is a separable normed R-vector space, and, e.g., Aliprantis &
Border [4, Lemma 4.51] (see also, e.g., Beck et al. [22, Lemma 2.4]) show (i).

Second, we prove (ii). For this let Ξ: Ω → Rd satisfy for all ω ∈ Ω that Ξ(ω) =
Θk(ω)(ω). Observe that the assumption that Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→ (N0)2

are random variables establishes for all U ∈ B(Rd) that

Ξ−1(U) = {ω ∈ Ω: Ξ(ω) ∈ U} = {ω ∈ Ω: Θk(ω)(ω) ∈ U}
=
{
ω ∈ Ω:

[
∃ k, n ∈ N0 : ([Θk,n(ω) ∈ U ] ∧ [k(ω) = (k, n)])

]}
=
∞⋃
k=0

∞⋃
n=0

(
{ω ∈ Ω: Θk,n(ω) ∈ U} ∩ {ω ∈ Ω: k(ω) = (k, n)}

)
=
∞⋃
k=0

∞⋃
n=0

(
[(Θk,n)−1(U)] ∩ [k−1({(k, n)})]

)
∈ F .

(5.147)

This implies (ii).
Third, note that (i)–(ii) yield that the function Ω×Rd 3 (ω, x) 7→ N Θk(ω)(ω),l

u,v (x) ∈ R is
(F ⊗B(Rd))/B(R)-measurable. This and the assumption that E : D → R is B(D)/B(R)-
measurable demonstrate that the function Ω × D 3 (ω, x) 7→ |N Θk(ω)(ω),l

u,v (x) − E(x)|p ∈
[0,∞) is (F⊗B(D))/B([0,∞))-measurable. Tonelli’s theorem hence establishes (iii). The
proof of Lemma 5.38 is thus complete.

Proposition 5.39. Let d,d,L,M,K,N ∈ N, b, c ∈ [1,∞), B ∈ [c,∞), u ∈ R, v ∈
(u,∞), l = (l0, l1, . . . , lL) ∈ NL+1, N ⊆ {0, 1, . . . , N}, D ⊆ [−b, b]d, assume 0 ∈ N, l0 = d,
lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a probability space, let Xj : Ω → D,

j ∈ N, and Yj : Ω → [u, v], j ∈ N, be functions, assume that (Xj, Yj), j ∈ {1, 2, . . . ,M},
are i.i.d. random variables, let E : D → [u, v] be a B(D)/B([u, v])-measurable function,
assume that it holds P-a.s. that E(X1) = E[Y1|X1], let Θk,n : Ω → Rd, k, n ∈ N0, and
k : Ω → (N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that

Θk,0, k ∈ {1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on
[−c, c]d, and let R : Rd × Ω→ [0,∞) satisfy for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (5.148)

k(ω) ∈ arg min(k,n)∈{1,2,...,K}×N, ‖Θk,n(ω)‖∞≤BR(Θk,n(ω), ω) (5.149)
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(cf. Definitions 5.8 and 5.9). Then it holds for all p ∈ (0,∞) that(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+
4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+
20 max{1, (v − u)2}bL(‖l‖∞ + 1)L+1BL max{p, ln(3M)}

min{
√
M,K [L−1(‖l‖∞+1)−2]}

(5.150)

(cf. (iii) in Lemma 5.38).

Proof of Proposition 5.39. Throughout this proof let R : Rd → [0,∞) satisfy for all θ ∈
Rd that R(θ) = E[|N θ,l

u,v (X1) − Y1|2]. First of all, observe that the assumption that(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, the assumption that 0 ∈ N, and Proposition 5.37 show for

all ϑ ∈ [−B,B]d that∫
D

|N Θk,l
u,v (x)− E(x)|2 PX1(dx)

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ min(k,n)∈{1,2,...,K}×N, ‖Θk,n‖∞≤B|R(Θk,n)−R(ϑ)|
≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ mink∈{1,2,...,K}, ‖Θk,0‖∞≤B|R(Θk,0)−R(ϑ)|

=
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
[
supθ∈[−B,B]d|R(θ)−R(θ)|

]
+ mink∈{1,2,...,K}|R(Θk,0)−R(ϑ)|.

(5.151)

Minkowski’s inequality hence establishes for all p ∈ [1,∞), ϑ ∈ [−c, c]d ⊆ [−B,B]d that(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
(
E
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2p
])1/p

+ 2
(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p

+
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(ϑ)|p

])1/p

≤
[
supx∈D|N ϑ,l

u,v (x)− E(x)|2
]

+ 2
(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|p

])1/p

+ supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(θ)|p

])1/p

(5.152)

(cf. (i) in Corollary 5.28 and (i) in Corollary 5.36). Next note that Corollary 5.28 (with
v ← max{u + 1, v}, R ← R|[−B,B]d , R ← R|[−B,B]d×Ω in the notation of Corollary 5.28)
proves for all p ∈ (0,∞) that(

E
[
supθ∈[−B,B]d |R(θ)−R(θ)|p

])1/p

≤ 9(max{u+ 1, v} − u)2L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√
M

=
9 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M
.

(5.153)
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In addition, observe that Corollary 5.36 (with d←
∑L

i=1 li(li−1+1), B ← c, (Θk)k∈{1,2,...,K}
← (Ω 3 ω 7→ 1{Θk,0∈[−c,c]d}(ω)Θk,0(ω) ∈ [−c, c]d)k∈{1,2,...,K}, R ← R|[−c,c]d×Ω in the nota-
tion of Corollary 5.36) implies for all p ∈ (0,∞) that

supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(θ)|p

])1/p

= supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(1{Θk,0∈[−c,c]d}Θk,0)−R(θ)|p

])1/p

≤ 4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}
K [L−1(‖l‖∞+1)−2]

.

(5.154)

Combining this, (5.152), (5.153), and the fact that ln(3MBb) ≥ 1 with Jensen’s inequality
demonstrates for all p ∈ (0,∞) that(

E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
(
E
[(∫

D
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)max{1,p}

]) 1
max{1,p}

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+ supθ∈[−c,c]d
(
E
[
mink∈{1,2,...,K}|R(Θk,0)−R(θ)|max{1,p}]) 1

max{1,p}

+ 2
(
E
[
supθ∈[−B,B]d|R(θ)−R(θ)|max{1,p}]) 1

max{1,p}

≤
[
infθ∈[−c,c]d supx∈D|N θ,l

u,v (x)− E(x)|2
]

+
4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M
.

(5.155)

Moreover, note that the fact that ∀x ∈ [0,∞) : x+ 1 ≤ ex ≤ 3x and the facts that Bb ≥ 1
and M ≥ 1 ensure that

ln(3MBb) ≤ ln(3M3Bb−1) = ln(3BbM) = Bb ln([3BbM ]
1/(Bb)) ≤ Bb ln(3M). (5.156)

The facts that ‖l‖∞ + 1 ≥ 2, B ≥ c ≥ 1, ln(3M) ≥ 1, b ≥ 1, and L ≥ 1 hence show for
all p ∈ (0,∞) that

4(v − u)bL(‖l‖∞ + 1)LcL max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBb)}√

M

≤ 2(‖l‖∞ + 1) max{1, (v − u)2}bL(‖l‖∞ + 1)LBL max{p, ln(3M)}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}bL(‖l‖∞ + 1)2Bmax{p, ln(3M)}√

M

≤ 20 max{1, (v − u)2}bL(‖l‖∞ + 1)L+1BL max{p, ln(3M)}
min{

√
M,K [L−1(‖l‖∞+1)−2]}

.

(5.157)

This and (5.155) complete the proof of Proposition 5.39.

Lemma 5.40. Let a, x, p ∈ (0,∞), M, c ∈ [1,∞), B ∈ [c,∞). Then
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(i) it holds that axp ≤ exp
(
a1/p px

e

)
and

(ii) it holds that ln(3MBc) ≤ 23B
18

ln(eM).

Proof of Lemma 5.40. First, note that the fact that ∀ y ∈ R : y + 1 ≤ ey demonstrates
that

axp = (a
1/px)p =

[
e
(
a

1/p x
e
− 1 + 1

)]p ≤ [e exp
(
a

1/p x
e
− 1
)]p

= exp
(
a

1/p px
e

)
. (5.158)

This proves (i).
Second, observe that (i) and the fact that 2

√
3/e ≤ 23/18 ensure that

3B2 ≤ exp
(√

32B
e

)
= exp

(
2
√

3B
e

)
≤ exp

(
23B
18

)
. (5.159)

The facts that B ≥ c ≥ 1 and M ≥ 1 hence imply that

ln(3MBc) ≤ ln(3B2M) ≤ ln([eM ]
23B/18) = 23B

18
ln(eM). (5.160)

This establishes (ii). The proof of Lemma 5.40 is thus complete.

Theorem 5.41. Let d,d,L,M,K,N ∈ N, A ∈ (0,∞), L, a, u ∈ R, b ∈ (a,∞), v ∈
(u,∞), c ∈ [max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, N ⊆
{0, 1, . . . , N}, assume 0 ∈ N, L ≥ A1(6d,∞)(A)/(2d)+1, l0 = d, l1 ≥ A1(6d,∞)(A), lL = 1, and
d ≥

∑L
i=1 li(li−1 + 1), assume for all i ∈ {2, 3, . . .} ∩ [0,L) that li ≥ 1(6d,∞)(A) max{A/d−

2i + 3, 2}, let (Ω,F ,P) be a probability space, let Xj : Ω → [a, b]d, j ∈ N, and Yj : Ω →
[u, v], j ∈ N, be functions, assume that (Xj, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random
variables, let E : [a, b]d → [u, v] satisfy P-a.s. that E(X1) = E[Y1|X1], assume for all
x, y ∈ [a, b]d that |E(x) − E(y)| ≤ L‖x − y‖1, let Θk,n : Ω → Rd, k, n ∈ N0, and k : Ω →
(N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈

{1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on [−c, c]d,
and let R : Rd × Ω→ [0,∞) satisfy for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (5.161)

k(ω) ∈ arg min(k,n)∈{1,2,...,K}×N, ‖Θk,n(ω)‖∞≤BR(Θk,n(ω), ω) (5.162)

(cf. Definitions 5.8 and 5.9). Then it holds for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤ 9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M

≤ 36d2c4

A2/d
+

4L(‖l‖∞ + 1)LcL+2 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
23B3L(‖l‖∞ + 1)2 max{p, ln(eM)}√

M

(5.163)

(cf. (iii) in Lemma 5.38).
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Proof of Theorem 5.41. First of all, note that the assumption that ∀x, y ∈ [a, b]d : |E(x)−
E(y)| ≤ L‖x−y‖1 ensures that E : [a, b]d → [u, v] is a B([a, b]d)/B([u, v])-measurable func-
tion. The fact that max{1, |a|, |b|} ≤ c and Proposition 5.39 (with b ← max{1, |a|, |b|},
D ← [a, b]d in the notation of Proposition 5.39) hence show for all p ∈ (0,∞) that(

E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤
[
infθ∈[−c,c]d supx∈[a,b]d |N θ,l

u,v (x)− E(x)|2
]

+
4(v − u) max{1, |a|, |b|}L(‖l‖∞ + 1)LcL max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBmax{1, |a|, |b|})}√

M
(5.164)

≤
[
infθ∈[−c,c]d supx∈[a,b]d |N θ,l

u,v (x)− E(x)|2
]

+
4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}

K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M
.

Furthermore, observe that Proposition 5.13 (with f ← E in the notation of Proposi-
tion 5.13) proves that there exists ϑ ∈ Rd such that ‖ϑ‖∞ ≤ max{1, L, |a|, |b|,
2[supx∈[a,b]d|E(x)|]} and

supx∈[a,b]d|N ϑ,l
u,v (x)− E(x)| ≤ 3dL(b− a)

A1/d
. (5.165)

The fact that ∀x ∈ [a, b]d : E(x) ∈ [u, v] hence implies that

‖ϑ‖∞ ≤ max{1, L, |a|, |b|, 2|u|, 2|v|} ≤ c. (5.166)

This and (5.165) demonstrate that

infθ∈[−c,c]d supx∈[a,b]d |N θ,l
u,v (x)− E(x)|2

≤ supx∈[a,b]d|N ϑ,l
u,v (x)− E(x)|2

≤
[

3dL(b− a)

A1/d

]2

=
9d2L2(b− a)2

A2/d
.

(5.167)

Combining this with (5.164) establishes for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p ])1/p

≤ 9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M
.

(5.168)

Moreover, note that the facts that max{1, L, |a|, |b|} ≤ c and (b − a)2 ≤ (|a| + |b|)2 ≤
2(a2 + b2) yield that

9L2(b− a)2 ≤ 18c2(a2 + b2) ≤ 18c2(c2 + c2) = 36c4. (5.169)
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In addition, the fact that B ≥ c ≥ 1, the fact that M ≥ 1, and (ii) in Lemma 5.40 ensure
that ln(3MBc) ≤ 23B

18
ln(eM). This, (5.169), the fact that (v − u) ≤ 2 max{|u|, |v|} =

max{2|u|, 2|v|} ≤ c ≤ B, and the fact that B ≥ 1 prove for all p ∈ (0,∞) that

9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p, ln(3MBc)}√

M

≤ 36d2c4

A2/d
+

4L(‖l‖∞ + 1)LcL+2 max{1, p}
K [L−1(‖l‖∞+1)−2]

+
23B3L(‖l‖∞ + 1)2 max{p, ln(eM)}√

M
.

(5.170)

Combining this with (5.168) shows (5.163). The proof of Theorem 5.41 is thus complete.

Corollary 5.42. Let d,d,L,M,K,N ∈ N, L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), c ∈
[max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, N ⊆ {0, 1, . . . ,
N}, assume 0 ∈ N, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a

probability space, let Xj : Ω → [a, b]d, j ∈ N, and Yj : Ω → [u, v], j ∈ N, be functions,
assume that (Xj, Yj), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables, let E : [a, b]d → [u, v]
satisfy P-a.s. that E(X1) = E[Y1|X1], assume for all x, y ∈ [a, b]d that |E(x) − E(y)| ≤
L‖x− y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→ (N0)2 be random variables, assume(⋃∞

k=1 Θk,0(Ω)
)
⊆ [−B,B]d, assume that Θk,0, k ∈ {1, 2, . . . , K}, are i.i.d., assume that

Θ1,0 is continuous uniformly distributed on [−c, c]d, and let R : Rd × Ω → [0,∞) satisfy
for all θ ∈ Rd, ω ∈ Ω that

R(θ, ω) =
1

M

[
M∑
j=1

|N θ,l
u,v (Xj(ω))− Yj(ω)|2

]
and (5.171)

k(ω) ∈ arg min(k,n)∈{1,2,...,K}×N, ‖Θk,n(ω)‖∞≤BR(Θk,n(ω), ω) (5.172)

(cf. Definitions 5.8 and 5.9). Then it holds for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p/2 ])1/p

≤ 3dL(b− a)

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3 max{1, v − u}(‖l‖∞ + 1)[L max{p, 2 ln(3MBc)}]1/2

M 1/4
(5.173)

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2L(‖l‖∞ + 1)LcL+1 max{1, p}
K [(2L)−1(‖l‖∞+1)−2]

+
5B2L(‖l‖∞ + 1) max{p, ln(eM)}

M 1/4

(cf. (iii) in Lemma 5.38).

Proof of Corollary 5.42. Throughout this proof let A ∈ (0,∞) be given by

A = min({L} ∪ {li : i ∈ N ∩ [0,L)}). (5.174)
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Note that (5.174) ensures that

L ≥ A = A− 1 + 1 ≥ (A− 1)1[2,∞)(A) + 1

≥
(
A− A

2

)
1[2,∞)(A) + 1 =

A1[2,∞)(A)

2
+ 1 ≥ A1(6d,∞)(A)

2d
+ 1.

(5.175)

Moreover, the assumption that lL = 1 and (5.174) imply that

l1 = l11{1}(L) + l11[2,∞)(L) ≥ 1{1}(L) + A1[2,∞)(L) = A ≥ A1(6d,∞)(A). (5.176)

Moreover, again (5.174) shows for all i ∈ {2, 3, . . .} ∩ [0,L) that

li ≥ A ≥ A1[2,∞)(A) ≥ 1[2,∞)(A) max{A− 1, 2} = 1[2,∞)(A) max{A− 4 + 3, 2}
≥ 1[2,∞)(A) max{A− 2i+ 3, 2} ≥ 1(6d,∞)(A) max{A/d− 2i+ 3, 2}.

(5.177)

Combining (5.175)–(5.177) and Theorem 5.41 (with p← p/2 for p ∈ (0,∞) in the notation
of Theorem 5.41) establishes for all p ∈ (0,∞) that(

E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p/2 ])2/p

≤ 9d2L2(b− a)2

A2/d
+

4(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}
K [L−1(‖l‖∞+1)−2]

+
18 max{1, (v − u)2}L(‖l‖∞ + 1)2 max{p/2, ln(3MBc)}√

M
(5.178)

≤ 36d2c4

A2/d
+

4L(‖l‖∞ + 1)LcL+2 max{1, p/2}
K [L−1(‖l‖∞+1)−2]

+
23B3L(‖l‖∞ + 1)2 max{p/2, ln(eM)}√

M
.

This, (5.174), and the facts that L ≥ 1, c ≥ 1, B ≥ 1, and ln(eM) ≥ 1 demonstrate for
all p ∈ (0,∞) that(

E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX1(dx)
)p/2 ])1/p

≤ 3dL(b− a)

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3 max{1, v − u}(‖l‖∞ + 1)[L max{p, 2 ln(3MBc)}]1/2

M 1/4

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[L(‖l‖∞ + 1)LcL+2 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]
(5.179)

+
5B3[L(‖l‖∞ + 1)2 max{p/2, ln(eM)}]1/2

M 1/4

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2L(‖l‖∞ + 1)LcL+1 max{1, p}
K [(2L)−1(‖l‖∞+1)−2]

+
5B2L(‖l‖∞ + 1) max{p, ln(eM)}

M 1/4
.

The proof of Corollary 5.42 is thus complete.
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5.5.3 Overall strong error analysis for the training of DNNs with
optimisation via SGD with random initialisation

Corollary 5.43. Let d,d,L,M,K,N ∈ N, L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), c ∈
[max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, N ⊆ {0, 1, . . . ,
N}, (Jn)n∈N ⊆ N, (γn)n∈N ⊆ R, assume 0 ∈ N, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1),

let (Ω,F ,P) be a probability space, let Xk,n
j : Ω → [a, b]d, k, n, j ∈ N0, and Y k,n

j : Ω →
[u, v], k, n, j ∈ N0, be functions, assume that (X0,0

j , Y 0,0
j ), j ∈ {1, 2, . . . ,M}, are i.i.d. ran-

dom variables, let E : [a, b]d → [u, v] satisfy P-a.s. that E(X0,0
1 ) = E[Y 0,0

1 |X0,0
1 ], assume for

all x, y ∈ [a, b]d that |E(x)−E(y)| ≤ L‖x−y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→
(N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈

{1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on [−c, c]d,
let Rk,n

J : Rd × Ω → [0,∞), k, n, J ∈ N0, and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for
all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈ Rd : (Rk,n

Jn (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that
Gk,n(θ, ω) = (∇θRk,n

Jn )(θ, ω), assume for all k, n ∈ N that Θk,n = Θk,n−1 − γnGk,n(Θk,n−1),
and assume for all k, n ∈ N0, J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|N θ,l
u,v (Xk,n

j (ω))− Y k,n
j (ω)|2

]
and (5.180)

k(ω) ∈ arg min(l,m)∈{1,2,...,K}×N, ‖Θl,m(ω)‖∞≤BR
0,0
M (Θl,m(ω), ω) (5.181)

(cf. Definitions 5.8 and 5.9). Then it holds for all p ∈ (0,∞) that(
E
[(∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|2 PX0,0
1

(dx)
)p/2 ])1/p

≤ 3dL(b− a)

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2[(v − u)L(‖l‖∞ + 1)LcL+1 max{1, p/2}]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3 max{1, v − u}(‖l‖∞ + 1)[L max{p, 2 ln(3MBc)}]1/2

M 1/4
(5.182)

≤ 6dc2

[min({L} ∪ {li : i ∈ N ∩ [0,L)})]1/d
+

2L(‖l‖∞ + 1)LcL+1 max{1, p}
K [(2L)−1(‖l‖∞+1)−2]

+
5B2L(‖l‖∞ + 1) max{p, ln(eM)}

M 1/4

(cf. (iii) in Lemma 5.38).

Proof of Corollary 5.43. Observe that Corollary 5.42 (with (Xj)j∈N ← (X0,0
j )j∈N, (Yj)j∈N

← (Y 0,0
j )j∈N, R ← R0,0

M in the notation of Corollary 5.42) shows (5.182). The proof of
Corollary 5.43 is thus complete.

Corollary 5.44. Let d,d,L,M,K,N ∈ N, L, a, u ∈ R, b ∈ (a,∞), v ∈ (u,∞), c ∈
[max{1, L, |a|, |b|, 2|u|, 2|v|},∞), B ∈ [c,∞), l = (l0, l1, . . . , lL) ∈ NL+1, N ⊆ {0, 1, . . . ,
N}, (Jn)n∈N ⊆ N, (γn)n∈N ⊆ R, assume 0 ∈ N, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1),

let (Ω,F ,P) be a probability space, let Xk,n
j : Ω → [a, b]d, k, n, j ∈ N0, and Y k,n

j : Ω →
[u, v], k, n, j ∈ N0, be functions, assume that (X0,0

j , Y 0,0
j ), j ∈ {1, 2, . . . ,M}, are i.i.d. ran-

dom variables, let E : [a, b]d → [u, v] satisfy P-a.s. that E(X0,0
1 ) = E[Y 0,0

1 |X0,0
1 ], assume for

all x, y ∈ [a, b]d that |E(x)−E(y)| ≤ L‖x−y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→
(N0)2 be random variables, assume

(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈
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{1, 2, . . . , K}, are i.i.d., assume that Θ1,0 is continuous uniformly distributed on [−c, c]d,
let Rk,n

J : Rd × Ω → [0,∞), k, n, J ∈ N0, and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for
all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈ Rd : (Rk,n

Jn (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that
Gk,n(θ, ω) = (∇θRk,n

Jn )(θ, ω), assume for all k, n ∈ N that Θk,n = Θk,n−1 − γnGk,n(Θk,n−1),
and assume for all k, n ∈ N0, J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|N θ,l
u,v (Xk,n

j (ω))− Y k,n
j (ω)|2

]
and (5.183)

k(ω) ∈ arg min(l,m)∈{1,2,...,K}×N, ‖Θl,m(ω)‖∞≤BR
0,0
M (Θl,m(ω), ω) (5.184)

(cf. Definitions 5.8 and 5.9). Then

E
[∫

[a,b]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]
≤ 2[(v − u)L(‖l‖∞ + 1)LcL+1]1/2

K [(2L)−1(‖l‖∞+1)−2]

+
3dL(b− a)

[min{L, l1, l2, . . . , lL−1}]1/d
+

3 max{1, v − u}(‖l‖∞ + 1)[2L ln(3MBc)]1/2

M 1/4

≤ 6dc2

[min{L, l1, l2, . . . , lL−1}]1/d
+

5B2L(‖l‖∞ + 1) ln(eM)

M 1/4
+

2L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]

(5.185)

(cf. (iii) in Lemma 5.38).

Proof of Corollary 5.44. Note that Jensen’s inequality implies that

E
[∫

[a,b]d
|N Θk,l

u,v (x)−E(x)|PX0,0
1

(dx)
]
≤ E

[(∫
[a,b]d
|N Θk,l

u,v (x)−E(x)|2 PX0,0
1

(dx)
)1/2 ]

. (5.186)

This and Corollary 5.43 (with p← 1 in the notation of Corollary 5.43) complete the proof
of Corollary 5.44.

Corollary 5.45. Let d,d,L,M,K,N ∈ N, L ∈ R, c ∈ [max{2, L},∞), B ∈ [c,∞),
l = (l0, l1, . . . , lL) ∈ NL+1, N ⊆ {0, 1, . . . , N}, (Jn)n∈N ⊆ N, (γn)n∈N ⊆ R, assume
0 ∈ N, l0 = d, lL = 1, and d ≥

∑L
i=1 li(li−1 + 1), let (Ω,F ,P) be a probability space, let

Xk,n
j : Ω → [0, 1]d, k, n, j ∈ N0, and Y k,n

j : Ω → [0, 1], k, n, j ∈ N0, be functions, assume
that (X0,0

j , Y 0,0
j ), j ∈ {1, 2, . . . ,M}, are i.i.d. random variables, let E : [0, 1]d → [0, 1]

satisfy P-a.s. that E(X0,0
1 ) = E[Y 0,0

1 |X0,0
1 ], assume for all x, y ∈ [0, 1]d that |E(x)−E(y)| ≤

L‖x− y‖1, let Θk,n : Ω→ Rd, k, n ∈ N0, and k : Ω→ (N0)2 be random variables, assume(⋃∞
k=1 Θk,0(Ω)

)
⊆ [−B,B]d, assume that Θk,0, k ∈ {1, 2, . . . , K}, are i.i.d., assume that

Θ1,0 is continuous uniformly distributed on [−c, c]d, let Rk,n
J : Rd × Ω→ [0,∞), k, n, J ∈

N0, and Gk,n : Rd × Ω → Rd, k, n ∈ N, satisfy for all k, n ∈ N, ω ∈ Ω, θ ∈ {ϑ ∈
Rd : (Rk,n

Jn (·, ω) : Rd → [0,∞) is differentiable at ϑ)} that Gk,n(θ, ω) = (∇θRk,n
Jn )(θ, ω),

assume for all k, n ∈ N that Θk,n = Θk,n−1−γnGk,n(Θk,n−1), and assume for all k, n ∈ N0,
J ∈ N, θ ∈ Rd, ω ∈ Ω that

Rk,n
J (θ, ω) =

1

J

[
J∑
j=1

|N θ,l
u,v (Xk,n

j (ω))− Y k,n
j (ω)|2

]
and (5.187)

k(ω) ∈ arg min(l,m)∈{1,2,...,K}×N, ‖Θl,m(ω)‖∞≤BR
0,0
M (Θl,m(ω), ω) (5.188)

169



Chapter 5. Empirical risk minimisation

(cf. Definitions 5.8 and 5.9). Then

E
[∫

[0,1]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]

≤ 3dL

[min{L, l1, l2, . . . , lL−1}]1/d
+

3(‖l‖∞ + 1)[2L ln(3MBc)]1/2

M 1/4
+

2[L(‖l‖∞ + 1)LcL+1]1/2

K [(2L)−1(‖l‖∞+1)−2]

≤ dc3

[min{L, l1, l2, . . . , lL−1}]1/d
+
B3L(‖l‖∞ + 1) ln(eM)

M 1/4
+

L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]
(5.189)

(cf. (iii) in Lemma 5.38).

Proof of Corollary 5.45. Observe that Corollary 5.44 (with a ← 0, u ← 0, b ← 1, v ← 1
in the notation of Corollary 5.44), the facts that B ≥ c ≥ max{2, L} and M ≥ 1, and (ii)
in Lemma 5.40 show that

E
[∫

[0,1]d
|N Θk,l

u,v (x)− E(x)|PX0,0
1

(dx)
]

≤ 3dL

[min{L, l1, l2, . . . , lL−1}]1/d
+

3(‖l‖∞ + 1)[2L ln(3MBc)]1/2

M 1/4
+

2[L(‖l‖∞ + 1)LcL+1]1/2

K [(2L)−1(‖l‖∞+1)−2]

≤ dc3

[min{L, l1, l2, . . . , lL−1}]1/d
+

(‖l‖∞ + 1)[23BL ln(eM)]1/2

M 1/4
+

[L(‖l‖∞ + 1)Lc2L+2]1/2

K [(2L)−1(‖l‖∞+1)−2]

≤ dc3

[min{L, l1, l2, . . . , lL−1}]1/d
+
B3L(‖l‖∞ + 1) ln(eM)

M 1/4
+

L(‖l‖∞ + 1)LcL+1

K [(2L)−1(‖l‖∞+1)−2]
. (5.190)

The proof of Corollary 5.45 is thus complete.
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Chapter 6
Conclusion and Outlook

In this thesis and in the preprints Jacobe de Naurois, Jentzen, & Welti [185], Giles,
Jentzen, & Welti [134], Becker et al. [30], and Jentzen & Welti [196], which make up this
thesis, we have studied stochastic numerical approximation algorithms for tackling four
possibly high-dimensional approximation problems. On the one hand, for three of these
problems we have carried out a mathematically rigorous analysis of existing stochastic nu-
merical approximation algorithms from the scientific literature and derived corresponding
convergence rates (cf. Chapters 2, 3, and 5). Thereby we have been able to gain a better
understanding of the way the approximation error arising from employing these algorithms
behaves with respect to the computational effort invested into running the algorithm. On
the other hand, for one of the considered problems we have designed a stochastic numeri-
cal approximation algorithm and presented the results of suitable numerical experiments
(cf. Chapter 4). These computational results suggest that the algorithm lives up to the
expectations which have led to its design and that the approximation error decays quickly
with increasing computational effort. The findings of this thesis and the preprints incor-
porated into this thesis give rise to a multitude of new research questions which may be
the subjects of future research endeavours. In the following we reflect on these findings
and mention a number of such emerging questions.

6.1 Stochastic wave equations

In Chapter 2 we have proved essentially sharp rates of convergence in the probabilistically
weak sense for spatial spectral Galerkin approximations of semi-linear stochastic wave
equations with multiplicative noise. In particular, we have established that spatial spectral
Galerkin approximations for the continuous version of the hyperbolic Anderson model
converge with weak rate 1- to the true solution (cf. Corollary 2.18 in Subsection 2.2.3).
Note that the considered approximations cannot be implemented directly on a computer
since they are discretised only in space but remain continuous in time and driven by
infinite-dimensional noise.

In the more recent work Cox, Jentzen, & Lindner [86] weak convergence rates for
temporal numerical approximations of semi-linear stochastic wave equations with multi-
plicative noise are derived. More specifically, [86, Theorem 1.1] shows that exponential
Euler approximations for the continuous version of the hyperbolic Anderson model con-
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verge with weak rate 1- to the true solution. These approximations are discretised only in
time, while space and noise remain infinite-dimensional, and are thus not directly imple-
mentable either. In view of the results of Chapter 2 and [86] it is a natural next step to
consider weak convergence rates of a fully discrete approximation scheme for semi-linear
stochastic wave equations with multiplicative noise that combines a noise discretisation
(cf., e.g., Harms & Müller [162, Subsection 3.1]) with spectral Galerkin discretisation of
space and exponential Euler discretisation of time. In the case of the continuous version
of the hyperbolic Anderson model the resulting approximations would be implementable
on a computer and, as a consequence, a theoretically proved weak convergence rate could
be complemented by numerical experiments.

Moreover, so far we have only studied stochastic wave equations with one spatial
dimension. Another possible subject of future research efforts is to examine weak conver-
gence properties of numerical approximations for two- and three-dimensional stochastic
wave equations with suitably coloured multiplicative noise. In this context, we also note
that spatial spectral Galerkin discretisations of space are in practice only feasible to com-
pute in the one-dimensional case or for simple two- and three-dimensional domains, such
as rectangles and rectangular cuboids. In order to approximate stochastic wave equations
on more complicated domains, we need to discretise space using more sophisticated algo-
rithms, such as, for example, finite element methods. Deriving weak convergence rates for
this case does not seem to be possible to achieve using the methodology from Chapter 2.
It is thus a topic for further research to establish essentially sharp weak convergence rates
for such more sophisticated numerical approximations of stochastic wave equations with
multiplicative noise. Furthermore, a variety of relevant research questions about weak
convergence rates for numerical approximations of other important SPDEs remain open.
An example is the question of how to prove essentially sharp weak convergence rates for
spatial spectral Galerkin approximations of the stochastic Burgers equation with additive
space-time white noise.

6.2 Generalised multilevel Picard approximations

The main contribution of Chapter 3 has been the development of a mathematical frame-
work in which in essence slight generalisations of the MLP approximations introduced
in Hutzenthaler et al. [181] are viewed as random variables taking values in a Banach
space. On this level of abstraction we have derived a complete error analysis, cost anal-
ysis, and complexity analysis of generalised MLP approximations (cf. Corollary 3.15 in
Subsection 3.1.6). Thereafter, we have shown that the framework, when applied to semi-
linear heat equations with gradient-independent and globally Lipschitz continuous non-
linearities, allows us to recover a complexity result similar to [181, Theorem 1.1], stating
that MLP approximations overcome the curse of dimensionality (cf. Theorem 3.33 in
Subsection 3.2.3).

In [181] MLP methods were introduced based on approximating time integrals for the
fist time using the Monte Carlo method instead of fixed-grid quadrature rules (cf. [111, 112,
183]). In the meantime, beside the preprint [134], containing the content of Chapter 3,
other works have proposed several variants of MLP approximations. More specifically,
in Hutzenthaler, Jentzen, & von Wurstemberger [182] the MLP algorithm from [181]
for semi-linear heat equations is generalised to approximate a larger class of semi-linear
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Kolmogorov PDEs without the curse of dimensionality (cf. [182, Theorem 3.20]). The
MLP approximations from Beck et al. [26] are truncated variants of the ones in [181]
and are shown to beat the curse of dimensionality in the numerical approximation of
reaction–diffusion-type PDEs with a locally Lipschitz continuous coercive non-linearity
(cf. [26, Theorem 4.5]). Moreover, Hutzenthaler, Jentzen, & Kruse [179] proposes a new
MLP algorithm that solves, provably without suffering from the curse of dimensionality,
non-linear heat equations with gradient-dependent non-linearities (cf. [179, Theorem 5.2]).
Finally, in Beck, Gonon, & Jentzen [25] a new MLP algorithm is introduced that is
proven to approximate certain semi-linear elliptic PDEs and to overcome the curse of
dimensionality in doing so (cf. [25, Theorem 3.16]).

A mathematical framework through which all or most of the different MLP approxima-
tions from [25, 26, 179, 181, 182] could be interpreted in a unified way would significantly
improve the general understanding of MLP algorithms and their ability to beat the curse
of dimensionality in several PDE approximation problems. The framework from Chap-
ter 3 appears to be a first step into the right direction. Presumably, it essentially covers,
apart from the MLP approximations in [181], also the MLP approximations from [182]
and can, presumably, be applied to prove a variant of [182, Theorem 3.20]. However, it
does not seem to be possible to employ the framework from Chapter 3 to recover suit-
able complexity results for the MLP approximations from [25, 26, 179]. Furthermore,
such a unifying framework for MLP algorithms would be particularly insightful if it also
comprised classical multilevel Monte Carlo methods (cf. Heinrich [167], Giles [133], and,
e.g., Cox et al. [85, Subsection 5.3]). In this case it would allow contrasting the latter
with MLP algorithms in a concise way and working out key similarities and differences
in their respective modes of action, of which the further development of multilevel Monte
Carlo-type algorithms could benefit.

The subject of a possible future research article is also to improve the framework
from Chapter 3 by reformulating it in such a way that some of the measurability and
integrability assumptions can be weakened. Doing this could simplify the verification of
said assumptions significantly when the framework is specialised to the context of concrete
PDEs. Moreover, we recall that one of the innovations of Chapter 3 and the preprint [134],
respectively, has been employing the sequence of Monte Carlo numbers (Mj)j∈N ⊆ N in
the definition of generalised MLP approximations (cf. (1.6), (1.13), and the last paragraph
in Section 1.2). It would be interesting to conduct a number of numerical experiments
to see the possible impact of the freedom in choosing this sequence in practice. Last but
not least, it would be fascinating to come up with MLP algorithms exhibiting even faster
convergence speeds for high-dimensional PDEs with suitably regular non-linearities as well
as MLP algorithms capable of solving high-dimensional PDEs with boundary conditions
instead of just PDEs defined on the whole Euclidean space.

6.3 Optimal stopping problems

Chapter 4 has been devoted to a deep learning based algorithm for solving high-dimen-
sional optimal stopping problems, which computes, in the context of early exercise option
pricing, both approximations for an optimal exercise strategy and the price (cf. Sub-
section 4.1.7). While we have presented many numerical experiments which strongly
suggest that the algorithm yields accurate and reliable approximations of the price (cf.
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Section 4.3), of course there is now a natural desire for more mathematical theory that is
capable of rigorously justifying under which precise assumptions this is indeed the case.

In Becker, Cheridito, & Jentzen [28] a few steps into this direction have already been
taken. More specifically, [28, Theorem 1 and Remark 2] essentially demonstrate that, in
the Markovian case, the stopping time factors from Lemma 4.2 in Subsection 4.1.3 do
not need to take past but only current values of the process to be stopped into account
(cf. Subsection 4.1.4). In addition, [28, Corollary 5] in essence shows that approximate
stopping decisions based on appropriate artificial neural networks with fixed depth and
at least one hidden layer have the flexibility to yield stopping times with expected pay-
offs that are arbitrarily close to the optimal expected pay-off. Since the approximations
for optimal stopping times in Subsection 4.1.7 are based on a single learning procedure
for all approximate stopping time factors simultaneously and not on recursively learned
approximate stopping decisions (cf. the last paragraph in Section 1.3), [28, Corollary 5]
does, however, not apply directly to the algorithm from the preprint [30] and Chapter 4,
respectively. It is a possible subject of future work to prove a similar result that also
covers approximate optimal stopping times such as the ones delivered by this algorithm.

Nevertheless, [28, Corollary 5] is a mathematical existence result that leaves many
for applications highly important questions unanswered. For example, significantly more
research efforts need to be invested into understanding DNN architectures best suited for
approximatively solving optimal stopping problems, in particular, in view of the fact that
all computational results in [28, 30] have been obtained using artificial neural networks
with precisely two hidden layers. In addition, an explanation is required of the reasons
why stochastic gradient ascent and more sophisticated optimisation algorithms such as
the Adam optimiser are able to find parameter vectors which yield sufficiently accurate
results for objective functions as complicated as (4.39) in Subsection 4.1.5. Moreover, it is
a central aim to derive convergence rates for the approximations of the optimal expected
pay-off in terms of various algorithm and model parameters. This may eventually allow
to prove that the algorithms from [28, 30] overcome the curse of dimensionality for a large
class of optimal stopping problems.

Another direction for a future research article is to use deep learning based algorithms
to tackle further relevant optimal stopping problems. One non-Markovian example could
be Robbins’ problem, an optimal stopping problem which is also referred to as the ex-
pected rank problem under full information (cf., e.g., Bruss & Ferguson [62] and Meier &
Sögner [242]).

6.4 Empirical risk minimisation

In Chapter 5 we have established a strong convergence analysis of the overall error which
emerges in deep learning based empirical risk minimisation in the case that the loss
function is quadratic. In particular, we have decomposed the overall error into the ap-
proximation error, the generalisation error, and the optimisation error and derived strong
convergence rates for each of these three error sources separately. The achieved results
are instructive in many ways, especially because the dependence of the obtained error
bounds on all algorithm and model parameters, such as depth and width of the employed
DNNs and the dimension of the training sample space, is explicit (cf. Theorem 1.4 in
Section 1.4). However, the convergence speeds in our results for both the approximation
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error and the optimisation error suffer under the curse of dimensionality (cf. (1.18) in
Theorem 1.4).

A natural question to study as a next step is by how much the obtained convergence
rates for the individual error sources can be improved in the generality considered. While
we expect that the error term corresponding to the generalisation error in (1.18) in The-
orem 1.4 can hardly be improved, it would be interesting to prove lower bounds for the
error term corresponding to the approximation error in (1.18). This would clarify to which
extent a different set of assumptions on the target function would be required in order to
achieve a faster rate of convergence.

Furthermore, although our framework includes the case of training via SGD with
random initialisation, our analysis of the optimisation error in Section 5.4 yields a very
slow convergence speed since it relies on the convergence of the Minimum Monte Carlo
method. It is clear that future research efforts need to exploit the dynamics of SGD
and more advanced optimisers in order to prove strong convergence rates which possess
more explanatory power for the successful performance of DNN based supervised learning
algorithms in applications.

To summarise, it remains an open problem how to develop a convergence analysis
capable of rigorously explaining the success of deep learning based empirical risk minimi-
sation witnessed in practice. The same also applies to the algorithm for solving optimal
stopping problems from Chapter 4 (cf. Section 6.3) and to deep learning based algorithms
in general. We thus live in exciting times for developing more mathematical theory for
deep learning.
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