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A B S T R A C T

Mobility and transport are responsible for approx. 30% of the total
Greenhouse Gas (GHG) emissions caused by humanity, primarily due to
the fact that 95% of the required energy is provided by non-renewable
fossil fuels. Reducing this dependence on crude oil and optimizing
mobility will not only increase its sustainability, but will also positively
impact the climate, our health and environment, and, if implemented
correctly, ease the use of mobility and ensure equal access for every-
one. This dissertation focuses on soft incentives enabled by ongoing
advances in Information and Communication Technologies (ICT). Next
to technological advances and policy changes, such incentives have the
potential to foster changes in mobility consumption and behavior. This
is especially important in the short term, as other measures often take
decades to implement. The persuasive applications treated within this
work are based on automatically and passively recorded mobility data
that not only give insights about the use of a transport system, but also
allow giving feedback and interacting with individual people directly.

To extract information useful within a persuasive application, we
first propose several methods to process mobility data to uncover
individual mobility descriptors, preferences and progress along various
stages of behavior change. Based on this information, we present
route computation algorithms that can supply people with feasible
and meaningful proposals of alternative behaviors (i.e., route options).
The presented formalism and the related methods allow integrating
a wide range of transport modes into high-level route planners. The
proactive computation of transport options (including less commonly
used transport modes such as carpooling) reduces the burden of finding
means of travel and thus facilitates trying out and adopting more
environmentally sustainable mobility behaviors. Finally, we propose a
set of (gamified) elements to be used within persuasive (smartphone)
applications to effectively support people in making sustainable choices.
The resulting framework is evaluated using the large-scale study GoEco!,
and we find significant changes in mobility along systematic routes and
for groups of people that rely on the car as their predominant means of
transport.
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Z U S A M M E N FA S S U N G

Mobilität und Transport sind für ca. 30% der durch die Menschheit
verursachten Treibhausgasemissionen verantwortlich, primär weil 95%
der benötigten Energie durch nichterneuerbare fossile Energieträger zur
Verfügung gestellt werden. Eine Reduktion der Abhängigkeit von Rohöl
und eine Optimierung des Mobilitätsgebrauchs erhöhen nicht nur die
Nachhaltigkeit, sondern haben auch positive Auswirkungen auf das
Klima, unsere Gesundheit und Umwelt, und können die Nutzung von
Mobilität vereinfachen. Diese Dissertation fokussiert auf Anreizsysteme,
die durch Fortschritte im Bereich der Informations- und Kommunika-
tionstechnologie ermöglicht werden. Neben technischen Fortschritten
sowie gesetzlichen Vorgaben (welche oft Jahrzehnte zur Umsetzung
brauchen) haben diese Anreizsysteme vor allem in naher Zukunft ein
grosses Potential, das Verhalten und den Mobilitätsgebrauch positiv
zu beeinflussen. Die Anreizsysteme basieren auf automatisch und pas-
siv aufgezeichneten Mobilitätsdaten, welche nicht nur aufzeigen, wie
ein Transportsystem benutzt wird, sondern auch erlauben, einzelnen
Nutzern Feedback zu geben und mit ihnen zu interagieren.

Um die notwendigen Informationen aus Mobilitätsdaten zu extrahie-
ren, stellen wir zuerst verschiedene Methoden zur Erfassung von Indika-
toren, individuellen Präferenzen, sowie Stufen von Verhaltensänderun-
gen vor. Basierend darauf präsentieren wir eine Formalisierung von
Transportangeboten, welche mittels geeigneter Algorithmen zur Er-
stellung von Routenplänen benutzt werden kann. Das pro-aktive Vor-
schlagen von Routenalternativen und die Integration von weniger weit
verbreiteten Transportmitteln (wie z.B. Carpooling) unterstützt Verhal-
tensänderungen, da dadurch der Planungsaufwand sinkt. Um die In-
formationen und Routenalternativen effektiv einzusetzen, präsentieren
wir ein Set an “Gamification”-Elementen, welche zur Unterstützung
von nachhaltigem Verhalten benutzt werden können. Die Evaluation
anhand des Forschungsprojekts GoEco! hat gezeigt, dass insbesondere
auf regelmässig zurückgelegten Strecken und bei Personen, die sich
grösstenteils auf das private Auto verlassen, signifikante Unterschiede
im Mobilitätsverhalten nach der Benutzung eines solchen Anreizsys-
tems festgestellt werden können.
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José Simão, Omar Elabed, Fabian Frei, Vanessa de Luca, Massimo
Botta and Nikolett Kovacs. Especially throughout the first years of my
doctoral studies, you gave me a lot of insights into how interesting and
fulfilling working within a larger research project can be! A particularly
pleasant collaboration was with the Institute for Transport Planning and
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1
I N T R O D U C T I O N

Mobility Importance
and
challenges of
mobility

and transport are tightly linked to economic wealth and to the
future local and global development (Blumenstock, Cadamuro, and On
2015; Church, Frost, and Sullivan 2000). With better access to mobility,
faster and more convenient modes of transport, and dropping costs
for transport, people and goods travel ever farther, be it for business
or leisure (Pooley et al. 2017; Litman 2006). However, the enormous
increases in mobility usage challenge existing transport infrastructures
and are responsible for major shares of the environmental impacts
of humanity. Studies show that transport and mobility are at the
root of around 30% of the total energy demand, thus putting them
on par with industrial processing (approx. 35%) and slightly ahead
of household energy demands (20%) (Taptich, Horvath, and Chester
2016; Wolfram, Shelef, and Gertler 2012; Keshavarzian et al. 2012). In
developed and wealthy countries like Switzerland, this rises up to
approx. 38% (Bundesamt für Energie BFE 2019; Froemelt, Dürrenmatt,
and Hellweg 2018), which is an indication that the relative share of
mobility energy demand will rise globally in the future (cf. Wolfram,
Shelef, and Gertler 2012). In large parts of the world, mobility is
mostly provided by personal vehicles (Kenworthy 2003; Wright and
Fulton 2005). Even in regions that offer many alternatives to Private
Motorized Transport (PMT), fossil fuels are primarily responsible for
energy production. For example, in Switzerland, 94.0% of all the energy
consumed by transport and mobility is produced using fossil fuels such
as gasoline, diesel or natural gas (Bundesamt für Energie BFE 2019).

In parallel, there is a positive trend for urbanization, as can be seen by
the increasing numbers of mega-cities around the world (Taubenböck et
al. 2012) or the movement of young people towards cities (Bretzke 2013;
Cohen 2006; Garschagen and Romero-Lankao 2015). While the ultimate
effects of this urbanization on mobility are not yet clear, it definitely
poses additional burdens on the transport infrastructure in the short
term, as more people need to travel within and between cities (Madlener
and Sunak 2011). Even though private companies and governmental
institutions continuously propose and construct new transport infras-
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tructure, much of the traffic is passed on to existing infrastructure for
PMT, especially in cities with large urban catchments (Bretzke 2013;
Ichimura 2003). Ultimately, this increase and condensing of mobility
and transport not only affects our environment, but also the health
and well-being of each individual (Künzli et al. 2000; Levy, Buonocore,
and Stackelberg 2010; Miller, Tribby, et al. 2015). In many large cities,
people spend hours blocked in traffic jams, are surrounded by constant
noise and have to wear protective masks against dust and exhaust
particles (Zhang and Batterman 2013).

InSustainability particular as a response to the adverse effects of humanity on
our environment, many countries agreed upon energy strategies that
dictate reductions in Greenhouse Gas (GHG) emissions and energy
demands. For example, the Swiss Energy Strategy 2050 envisions a net
reduction of GHG emissions from mobility and transport by 50-80% by
the year 2050 (Griggs et al. 2013; EnergieSchweiz and Bundesamt für
Energie BFE 2015; Kesselring and Winter 1995). After their rather recent
introduction, these strategies provoked and stimulated a number of
new mobility technologies and business models.

TwoAutonomous
mobility

of the most widely known and discussed technologies are au-
tonomous resp. electric mobility. While true autonomous mobility
still seems to be several years or even decades away (Hussain and
Zeadally 2018), low-degree autonomy technologies such as lane- or
distance-keeping are becoming available to more and more people.
When considering the effects of autonomous vehicles on mobility and
transport, full autonomy will have the largest impact, as it may optimize
existing transport systems and open new avenues for businesses, such
as renting out individual vehicles, improved taxi services or bus-on-
demand schemes (Maurer et al. 2016; Rosenzweig and Bartl 2015; Hars
2010). Yet even lower levels of autonomy may influence the mobility
behavior of people, as they potentially reduce stress caused by PMT and
allow people to travel for longer distances (Cunningham and Regan
2015).Electric

mobility
On the other hand, electric mobility is in full swing; prices of elec-

tric vehicles are dropping quickly and their adoption increases steadily,
in particular in countries that actively subsidize them (Zhou, Wang,
et al. 2015; Du and Ouyang 2017; Propfe et al. 2013; Yang 2010). Electric
vehicles allow decoupling the energy production from its consumption,
which makes them suitable for reducing GHG emissions when fueled
with renewable energies. Additionally, they help reduce direct exhaust
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from mobility, which especially plays a central role in bigger cities and
along frequently traveled roads (such as highways).

Among Shared
mobility

the novel yet already somewhat established mobility con-
cepts we find shared mobility with all its facets. For example, while
carsharing (or simply car rentals) has been available for decades, the
field recently gained attention due to an increased number of privately
owned cars participating in carsharing schemes and due to progress
in Location Based Services (LBS) that enables flexible and free-floating
models (Shaheen and Cohen 2007; Kortum et al. 2016). Similarly, while
carpooling (i.e., the sharing of a ride with a common origin and des-
tination using a personal vehicle) is as old as cars themselves, recent
technological advances made it more accessible and convenient to use,
thus increasing its reach and allowing even people unknown to each
other to share their rides and costs (Kissling 2017; Bresciani et al. 2018).

All ICT supportthese new forms of mobility are heavily supported by Information
and Communication Technologies (ICT), which is commonly referred
to as an increasing digitization (transforming analog information into
a digital format) and digitalization (using digitized information to
simplify operations) of the mobility sector (Kessler and Buck 2017;
Kagermann 2015). While ICT acts as an enabler for autonomous mo-
bility (providing the necessary technology for object recognition, path
planning, vehicle communication, etc.), it is more supportive (yet still
as disruptive) in other fields. For example, the miniaturization of com-
munication and the standardization of interfacing technology allow
retrofitting cars with remotely controllable locks, thus opening avenues
for sharing of private cars (Rahier, Ritz, and Wallenborn 2015). The
increased ease of use of web platforms and smartphone applications
makes finding carpooling partners easy and convenient (Buliung et al.
2010). Arguably the largest immediate effect of ICT on our daily life has
come from improved mapping and routing technologies. While these
initially focused on automotive route planning and navigation, they
have been supporting other modes of transport for a while, such as
Public Transport (PT) or Slow Mobility (SM) (e.g., walking or bicycling),
and recently started integrating more immediate forms of transport,
such as taxis, carpooling or bikesharing (Balan, Nguyen, and Jiang 2011;
Huang, Bucher, et al. 2018; Caggiani, Camporeale, and Ottomanelli
2017). Their ongoing developments prominently support another mo-
bility concept that changed heavily with the introduction of ICT and
continues to evolve: integrated mobility. Integrated mobility denotes
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multi-modal traveling, i.e., the use of multiple transport modes to reach
a certain destination, that is actively supported by mobility and trans-
port providers (i.e., they, or associated third-party service providers,
implement access to transport modalities in an integrative manner;
cf. Willing, Brandt, and Neumann 2017; Shaheen and Christensen 2014;
Müller et al. 2004). To provide an integrative service, a train operator
could, for example, work together with a local bikesharing provider
that solves the first/last mile problem from the train station to the final
destination. Users of such a service would automatically receive offers
and schedules from the integrated providers that conveniently get them
from their origin to a chosen destination.

ItMobility
behavior

is often claimed that to change mobility in the short term (and
thus to reduce GHG emissions, traffic jams, etc.), people have to actively
change their behavior (Banister 2008; Prillwitz and Barr 2011; Jonietz
and Bucher 2018). One possible behavioral change (among a general
reduction in travels or a switch to SM) is a transition to a more integrated
use of mobility, as it potentially increases the utilization of various
transport modes. This higher utilization, and the fact that almost all
transport modes are more “eco-friendly” than PMT, will likely cause
a reduction of the environmental impacts of mobility and the related
stress on transport systems.

BuildingMobility as a
service

heavily on technology supporting integrated mobility, the
new business model of Mobility as a Service (MAAS) aims at reducing
the burden on mobility consumers even further (Goodall and Dovey
2017): It essentially offers automatic cost computation and billing for
several (in a perfect scenario, all) modes of transport for travel, or even
reduces their cost to an upfront fixed one, reducing the variable costs
of mobility to zero, and thus paving the way for an increased commodi-
tization of mobility. This means that while previously people had to
ensure they had a properly maintained personal motorized vehicle or
all the necessary PT passes, they now simply purchase mobility itself,
irrespective of the actually used means of transport. This recent devel-
opment resp. the term “as a service” originated from the ICT sector,
where it became more and more cumbersome to keep soft- and hard-
ware up to date, and maintainers started looking for ways to externalize
this infrastructure. In similar ways, MAAS also offers benefits to the
maintainers, as they can highly standardize and optimize processes like
maintenance, purchase of new vehicles or ensuring their availability (cf.
Nemtanu et al. 2016; Li and Voege 2017).
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In Trackingparallel to these new or renewed forms of mobility, ICT were
recently developed that support automated and passive location track-
ing (cf. Yuan, Raubal, and Liu 2012; Schüssler and Axhausen 2009;
Cellina, Förster, et al. 2013; Stenneth et al. 2011). These technologies
are currently primarily used for LBS such as local search or routing
and navigation, but increasingly serve other mobility purposes as well,
in particular in combination with spatio-temporal analyses (Huang,
Gartner, et al. 2018). One basic example is data collection for statistical
purposes, e.g., to replace survey-based mobility censuses. Other use
cases of location tracking include improved transport infrastructure
and city planning (Liu, Biderman, and Ratti 2009; Shoval 2008), person-
alization of route planners (Cui, Luo, and Wang 2018), or the creation
of (eco-)feedback that can be used to guide a person in his or her mo-
bility choices, in particular with respect to ecological sustainability of
individual mobility (Gabrielli et al. 2014; Froehlich, Dillahunt, et al.
2009b; Jylhä et al. 2013; Bie et al. 2012), thus playing an essential role
in the short-term reduction of GHG emissions. While theoretically not
required for MAAS, tracking can be employed for billing and statistical
purposes (e.g., to know how much individual mobility providers have
to be paid, or which routes are frequently used).

1.1 motivation

Giving Current
research

mobility (eco-)feedback to people to promote sustainable per-
sonal mobility behaviors as well as the combination of MAAS offers
with location tracking are currently in the focus of research, and mostly
exist as part of pilot studies, proof-of-concept applications and recently
founded startups. Under the premise that more optimized mobility
choices lead to reduced GHG emissions (and well aware of the Jevons
paradox that describes potential rebound effects; Jevons 1865), we must
determine how to best support people in these mobility choices. In par-
ticular integrated mobility largely builds upon support by ICT, be that
through spatio-temporal analyses of automatically tracked data (with
the aim of improving the support, e.g., by providing better or more per-
sonalized route planning) or through the integration of more transport
modes, eco-feedback, or personalization and context in applications
and systems. While the ongoing research on route planners provides us
with quicker routes, for example by respecting the momentary traffic
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situation, holistic support that takes into account the ecological impacts
of travel, personal context or new forms of mobility is lacking.

WeResearch gap need to integrate sustainability goals next to personal goals and
preferences such as comfort, speed or price, to include novel forms of
mobility into route planning, and to provide feedback to the individual
user in order to properly support people in making sustainable mobility
choices. Spatial and temporal information about movement and mobil-
ity usage allows us to increasingly focus on individual people and their
mobility needs. Knowing about the impact of mobility usage allows
them to reflect on their behavior, and to assess mobility options accord-
ingly. Providing such (eco-)feedback within persuasive (smartphone)
applications requires us to automatically process passively tracked mo-
bility data, extract relevant information (in privacy-preserving ways)
and use motivational elements to support people in meaningful ways.
For the integration of novel forms of mobility (which do not all simply
provide a means to get from an origin to a destination, but include
different peculiarities or constraints, such as spatial or temporal flexi-
bility) and to enable collective outcomes, we need to adapt our current
route planning systems to take into account a whole population, where
each individual has its own goals and preferences. Especially concepts
such as shared mobility rely on the communication between users, and
not just between users and transport agencies (or to put it in another
way, “each user becomes a transport agency”). As shared mobility,
and in particular MAAS, are important concepts for future mobility, its
supporting ICT must be built with these points in mind.

1.2 problem statement and research questions

Given the issues mobility and transport are currently facing, it is widely
argued that ICT must support sustainable and integrated mobility. To
this end, sustainability criteria have to be combined with personal con-
texts and preferences, as people are seldom willing to consider mobility
options if they are misaligned with their personal requirements. As
this support should be as unobtrusive as possible, only giving people
choices and recommendations when asked for, the inclusion of personal
context and preferences has to be automatic and passive. We can thus
summarize the problem treated within this dissertation as follows:

In light of recent goals to reduce the ecological impacts of mobility and to
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optimize its use, a wealth of novel mobility options and concepts were devel-
oped. To reach these goals, ICT must support these mobility options in an
integrated manner, taking sustainability criteria into account. It is yet unclear
which processes are involved in this support, how they act together, and how
their combination ultimately supports a transition towards a more ecological
and convenient use of mobility.

This problem statement can be broken up into several research ques-
tions, which will be refined and treated in later chapters:

1. What are the principal information processes and structures in-
volved in supporting sustainable personal mobility and Mobility
as a Service (MAAS)?

2. What are the components and traits of automatically recorded
movement data that can be used to support mobility needs in an
ecologically sustainable way (e.g., by providing eco-feedback that
people can base their future decisions upon)?

3. How can we facilitate multi-modal route planning involving less
commonly used modes of transport (such as carpooling or free-
floating bicycles)? How can we assess the quality of the (potential)
fulfillment of a transport need, taking into account personal pref-
erences, contexts and potential sustainability goals?

4. How should transport options and choices be communicated to
users to support sustainable mobility behavior? Do people adjust
their mobility behavior upon receiving (eco-)feedback based on
their previous choices?

While the first question takes a very high-level view on the topic of
sustainable personal mobility and MAAS, building upon several research
projects carried out during the work on this dissertation, questions two
to four consider individual processes in greater detail. Question two
considers location tracking and how it can be used to support personal
mobility, especially in combination with question four, the commu-
nication of the tracked mobility choices and the associated extracted
behavioral information. Question three considers the personalization
and collaborative nature of various mobility concepts, and how to find
meaningful mobility options, in particular when considering (currently)
less frequently used modes of transport such as carpooling or free-
floating bicycles, as well as potential future transport options such as
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buses-on-demand. Finally, to effectively support sustainable personal
mobility, these generated mobility choices must be communicated to
users alongside the individual feedback on mobility (question four).

1.3 contribution and scope

In essence, this dissertation aims at the development and assessment
of technology supporting sustainable personal mobility and MAAS.
The core problem studied here is how to integrate automatically and
passively tracked movement and mobility data, and route planning
with the aim of providing people with sustainable and convenient
mobility options.

The contributions of this dissertation can be summarized as follows:

1. Based on previous research and experience from several studies con-
cerning the support of sustainable mobility through ICT, we propose a
model encompassing the information processes and structures involved
in this support. While this model is targeted at sustainable personal
mobility, its individual components can be employed for a wide
range of future mobility problems, such as giving meaningful
feedback on mobility or creating personalized routing services for
integrated mobility.

2. We demonstrate how to process movement trajectories with the aim of
generating meaningful eco-feedback and personalized information for
further use within route planning applications. Basing feedback and
personalization on passively tracked location data (though not
exclusively) provides an unobtrusive way of interaction with the
user, which is central when striving for a high adoption of a
technology.

3. We present novel high-level route planning methods that take into
account a variety of transport modes, personal context, and are able
to account for sustainability goals. In contrast to a large body of
research on route planning, which aims at finding novel resp.
faster algorithms that work on large transport graphs, our focus
is on integrated mobility and personalization.

4. Based on the research in the previous chapters, we provide a set of
communication strategies to nudge people towards more sustainable
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mobility behaviors. On the one hand, eco-feedback has the potential
to influence the mobility behavior of people; on the other hand,
mobility options have to be communicated correctly for people
to choose sustainable ones. Using the large-scale mobility study
GoEco!, we evaluate the proposed methods and strategies.

The presented technology, its evaluation, and the resulting societal
impacts provide a step towards a more energy-efficient use of mobility,
thus reducing GHG emissions and helping to reach the sustainability
goals we set ourselves.

1.4 structure

The dissertation is organized as follows: Chapter 2 introduces key
concepts and provides definitions for the rest of the dissertation. It
ends with a discussion of information processes involved in the support
of sustainable personal mobility and MAAS. Chapter 3 provides back-
ground for all the processes and different emerging forms of mobility
introduced in chapter 2. Chapters 4 to 6 each cover one part of the
required processes in supporting sustainable personal mobility. As
shown in Figure 1.1, this starts by dissecting tracked mobility, and
building models that capture individual mobility preferences and be-
havior. Based on this information, we can generate a set of alternative
transport options and evaluate them with regards to their suitability for
a single person. The last step involves communicating the unraveled
aspects of a user’s mobility behavior with the intent of nudging the
person towards a more sustainable use of mobility. Finally, chapter 7

discusses all the parts in aggregation, and chapter 8 summarizes the
findings and contributions of this dissertation.
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Mobility Histories
and Sustainability

(4.1/4.2)

Matching Transport
Demands and Offers

(5.1/5.2)

Design Principles for
Persuasive Comm.

(6.1)

Generating and
Comm. Eco-Feedback

(6.2/6.3)

Evaluating Alternative
Transport Options

(5.3/5.4)

Mobility Behavior
and Preferences

(4.3/4.4)

Mobility Data
Analysis
(Chapter 4)

Planning Sust.
Mobility
(Chapter 5)

Communicating
Mobility
(Chapter 6)

Figure 1.1.: An overview of the topics covered in this dissertation and
how they relate to each other. The figures were taken from
one of the scientific publications on which the respective
section builds.



2
I N F O R M AT I O N A N D C O M M U N I C AT I O N
T E C H N O L O G I E S S U P P O RT I N G S U S TA I N A B L E
P E R S O N A L M O B I L I T Y

Within this chapter, we first develop and elaborate on the core concepts
used throughout this thesis, namely sustainable mobility, integrated mobil-
ity, and Mobility as a Service. In the second part, we identify how ICT

supports mobility, and in particular which processes and structures are
involved in supporting sustainable personal mobility and sustainable Mobil-
ity as a Service. To facilitate the explanations, to give concrete examples
and to evaluate our methods, we use data from four sources: the GoEco!
project, the SBB Green Class study, the Swiss Mobility Census (SMC), as
well as the US National Household Travel Survey (NHTS).

The Data Sourcesidea behind the GoEco! project (cf. Bucher, Cellina, et al. 2016;
Bucher, Mangili, Cellina, et al. 2019; Cellina, Bucher, Veiga Simão,
et al. 2019; Cellina, Bucher, Mangili, et al. 2019) was to assess if and
how smartphone applications can influence the mobility behavior of
people. Inspired by applications to monitor and improve one’s own
fitness and health, GoEco! tracked peoples’ movement using the built-in
GPS sensor of smartphones, and used motivational affordances such as
gamification and eco-feedback to influence their mobility choices. As
part of the experiment, around 200 people were interacting with the
GoEco! app for three project phases: in the first and last (each lasting six
weeks), “baseline” mobility behavior was recorded, while during the
treatment phase in between (lasting three months), gamification was
employed to nudge people towards more sustainable mobility behavior.

The SBB Green Class study (cf. Martin, Becker, et al. 2019) involved
approx. 140 people who were given a general Public Transport (PT)
pass (valid for unlimited travels throughout Switzerland), a private
Electric Vehicle (EV), as well as access to several mobility offers (car-
and bikesharing, park and ride parking spaces, etc.) as part of a MAAS

offer. The idea of the Swiss Federal Railways (SBB) was to identify how

This chapter is based on Weiser, Scheider, et al. 2016; Bucher, Cellina, et al. 2016;
Bucher, Weiser, et al. 2015; Bucher, Scheider, and Raubal 2017; Bucher, Mangili, Cellina,
et al. 2019.

11
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people would use mobility if they were given commoditized access
for an upfront fixed cost: Would they stop using trains and shift their
mobility consumption towards PMT resp. their newly available EV?
Ultimately, the study aimed at answering the question if it would still
be possible for SBB to position itself as a railway operator in the future,
or if, due to the increasing digitalization and appearance of MAAS offers,
it would have to shift its focus on becoming a mobility provider.

The SMC1 (cf. Biedermann et al. 2017) and NHTS2 (cf. McGuckin and
Fucci 2018) are censuses conducted by the governments of Switzerland
and the United States of America, respectively. They both involve a
representative and statistically significant number of citizens that were
asked for their travel patterns during a single day. We primarily use the
census data to put the developed methods into a bigger perspective.

2.1 the role of individual circumstances

To exemplify and facilitate the understanding of the impact of individ-
ual circumstances on mobility choices, we introduce three personas.
These personas correspond to real people from the GoEco! project, but
are used in an exemplary way here, standing for respective groups of
the population. This means that while their movement and mobility
was recorded (using a tracking app on their smartphone) as shown in
the next sections, they represent hypothetical users in similar geograph-
ical contexts, and their individual journeys and demographic attributes
are not uncovered here. Where applicable and appropriate, we will
refer to the corresponding groups of the population by using data from
the SMC and NHTS instead of the individual personas.

AliceMobility
Personas

is a typical city dweller, living in a city with good public trans-
port, comparably short distances, but restricted freedom for private
motorized vehicles (i.e., many limited speed areas, one-way streets,
traffic lights, etc.). Alice does not own a car nor does she participate in
any particular (car-, bike-)sharing programs. She owns a public trans-
port pass for the city, offering her fixed-cost access to trams and buses.
Bob lives in a suburban area of the same city. In addition to owning
a private car, he has a public transport pass allowing him fixed-cost
access to the city. Charlie lives in a rural area far from any major city,

1 The mobility census can be requested from www.bfs.admin.ch.
2 The US National Household Travel Survey can be downloaded from nhts.ornl.gov.

https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/erhebungen/mzmv.html
https://nhts.ornl.gov
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and thus mostly relies on a car for travel. He does not have access to
any other mobility tools except an irregularly running bus, for which
he owns no pass, thus inducing a variable cost for him.

Figure 2.1 shows the daily distances each of these personas covers
on top. On the bottom, the transport mode resp. modal split of the
three personas (in terms of distance covered) is displayed. As can be
expected, Alice mostly relies on public transport, Bob uses a mixture
between public and private motorized transport, while Charlie almost
solely travels by car (note that he did not participate in the first project
phase). While we make no statements about the correlation of the
modal split and weekly distances here, this figure is intended to show
that all of them cover significant distances each week, which is in line
with findings from studies analyzing the travel behavior in developed
countries (Metz 2012) as well as the SMC (Biedermann et al. 2017).

As General
Mobility
Context

is already implied from these personas, individual context and
circumstances play a large role when planning and choosing mobility
next to personal attitudes, values and goals (e.g., Ferdous et al. 2011;
Atasoy, Glerum, and Bierlaire 2013; Kim and Ulfarsson 2008). In
particular the general mobility patterns of a person (depicted in Figure 2.1
on the bottom) are primarily defined by a few often-traveled routes
that usually involve the home and work locations (Do and Gatica-Perez
2014; Schneider, Belik, et al. 2013). Their distances and connections
to public transport, and the availability of transport passes or MAAS

offers drive the overall mobility consumption (Lachapelle and Frank
2009; Yang et al. 2015). We thus introduce a measure of individual
circumstances by looking at a person’s mobility options in a holistic
manner to generalize from the three introduced personas. Based on
the locations of home and work, we use a location classification that
assigns each location on the map a value of either city, suburb or rural
to define a user’s general mobility context:

CGM = (u(fH), u(fW)) (2.1)

where fH and fW are features resp. properties of the home and work
location, and u(·) is the function that maps any given location (specified
by longitude and latitude) to an “urbanization class”. This classification
into a set of locations L = {city, suburb, rural} is commonly found in
the literature (cf. Zhou, Xu, et al. 2004; Short Gianotti et al. 2016; Renski
2008) and is also used in a similar form by various travel censuses.
Using this formalism, we can build nine different user groups that are
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Figure 2.1.: The mobility patterns of the three personas introduced.

related to our archetypes of city dweller (Alice), suburban citizen (Bob),
and rural citizen (Charlie), working either in the city, the suburbs, or in a
rural area.

WithinUrbanization
Classification

this chapter, u(·) is computed by relying on the population
density of the municipalities in Switzerland, as well as the public
transport availability classes introduced by the Swiss federal office for
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statistics ARE (Bundesamt für Raumentwicklung ARE 2011) which
classify each location within Switzerland into one of the five classes
A-E3. However, as it is not in the focus of this chapter to derive an
urbanization classification, we refer to section A.1 and the respective
literature for an in-depth explanation of how to compute if someone
lives or works in any of the denoted classes. Figure 2.2 shows the
number of people being part of the respective class (based on u(fH))
for the four datasets used throughout this thesis: Data from the GoEco!
project, from the SBB Green Class project, from the Swiss Mobility
Census (SMC) 2015, as well as from the NHTS. It is clearly visible
that the shares of the population in different areas are comparable,
indicating that at least three different population groups have largely
different mobility needs and thus different needs of support through
ICT.

GoEco! SBB GC SMC NHTS
0%

20%

40%

60%

80%

City Suburb Rural

Figure 2.2.: Share of people living in different urbanization classes.

To get into more detail, Figure 2.3 shows the share of the population
living in each of the urbanization classes, as well as their average
mobility mix for the four datasets. A similar pattern to the above
introduced three personas emerges: in rural areas, people mostly rely
on PMT, which changes with increased access to PT resp. in more urban
areas. It is important to highlight the differences between the Swiss
transport system and the US American one, as this largely influences
the transport mode choice distributions as depicted in Figure 2.3. As
Switzerland is a densely populated country, it was historically always
important to have mass transit alternatives to PMT. As such, the general
access to PT is much higher, leading to a more prevalent use of PT.

3 As the NHTS does not provide PT accessibility classifications, but directly classifies each
location into one of five classes, we use those directly; cf. section A.1.
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GoEco! City
Suburb

Rural
SBB GC City

Suburb
Rural

SMC City
Suburb

Rural
NHTS City

Suburb
Rural
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City  City
Suburb  City

Rural  City
City  Suburb

Suburb  Suburb
Rural  Suburb

City  Rural
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Rural  Rural

Public Transport Motorized Mobility Slow Mobility

Figure 2.3.: Top: Transport mode choices for different groups of peo-
ple in the four datasets (based on the u(fH) classification).
Bottom: Commuter transport mode choices for different
general mobility contexts CGM = (u(fH), u(fW)) in the
SMC.

Looking at the groups represented by the three personas, they all
have different support needs to reach a sustainable mobility behavior.
People like Alice who already use PT for a large number of their trips
could be supported in a transition to Slow Mobility (SM) (i.e., walking
and bicycling), when appropriate. Bob is typically supported by off-
setting more of his mobility to PT, in addition to similar support as
Alice. Finally, people like Charlie usually do not have many choices for
their regular trips. They can, however, be supported by giving them
facilitated access to Carpooling (CP), carsharing, PT (within the bounds
of its availability, e.g., by promoting park and rail offers), integrated
forms of mobility, as well as SM for shorter trips (e.g., within a village).
To get a more in-depth understanding of the impact of their mobility
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lifestyles, we have to define ecological sustainability within the context
of mobility.

2.2 sustainable mobility

While the term sustainability has been used for a long time (originally
within the context of forestry, cf. Wiersum 1995), its modern use was
coined by a report from the World Commission on Environment and
Development (Keeble 1988) where it is described as “development
that meets the needs of the present without compromising the ability
of future generations to meet their own needs” (Keeble 1988, p.41).
Since then, however, its meaning has evolved and the term is primarily
interpreted along three dimensions: social, economic and environmen-
tal (Kuhlman and Farrington 2010; Kates, Parris, and Leiserowitz 2005).

2.2.1 Types of Sustainability

Being socially sustainable can refer to the maintenance of law and order,
meaning that societies do not deteriorate, but also to various societal
characteristics such as income distribution, employment or access to
medical services (Kuhlman and Farrington 2010). Economic sustainability
is a term commonly used within the context of companies and gov-
ernments and describes the concept of healthy investments, i.e., the
long-term management and securing of a business’ value and monetary
resources. In a wider context, it also describes the relationships between
economies and (sustainable) societal and environmental developments
(Spangenberg 2005; Goerner, Lietaer, and Ulanowicz 2009). Within the
context of this dissertation, we are mainly concerned with ecological
sustainability, i.e., the continuous use of natural resources without im-
pacting future generations’ possibilities to use them (Perrings 1991). In
a broader and currently more used context this also refers to bounding
the emission of GHG, with the aim of keeping the effects of humanity on
the global environment within certain bounds. Occasionally, cultural,
technological and political dimensions are added to this list, which
refer to the maintenance of cultural heritage, technological progress
resp. a political climate that allows future generations to have the same
choices as we do today (Gibson 2001).
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The differentiation between social and economic sustainability is
disputed, as it can be argued that ultimately they measure the same
and “weighting” social and economic aspects twice as much as en-
vironmental factors results in a bias towards “the well-being of the
present generation, [while weighting] environmental [factors stronger
would] mean caring about the future” (Kuhlman and Farrington 2010,
p.3439). Kuhlman and Farrington 2010 go even further, and equate
sustainability defined based on these three pillars with the concept of
being “good”, arguing that this definition obscures its definition and
meaning. Instead, it is proposed to define sustainability in terms of
maintaining well-being, which is easier to measure (e.g., by considering
access to food, shelter, education, etc.), over an indefinite amount of
time. While the discussion of what constitutes sustainability is im-
portant and will continue to be led, we primarily focus on ecological
sustainability within this thesis.

AStrong and
Weak

Sustainability

second dimension contrasts strong and weak sustainability. While
weak sustainability equates human (infrastructure, labor, knowledge,
etc.) and natural capital (fossil fuels, biodiversity, etc.), the concept
of strong sustainability sees them as complementary and argues that
certain parts of nature can never be made up for by human capital (e.g.,
the ozone layer should never be compromised, as no gain in human
capital can compensate for the lack of its crucial service). A large share
of trips are made to increase human capital (e.g., for business meetings,
to transport goods, or as part of a high quality of life), which makes a
detailed contrasting juxtaposition between effects on human and natural
capital necessary. In line with current trends (that favor the concept of
strong sustainability, cf. Pelenc, Ballet, and Dedeurwaerdere 2015; Barua
and Khataniar 2016) and to keep this thesis focused on the support
of mobility choices using ICT, we primarily view the problem from
the point of strong sustainability, arguing that the exhaustion of fossil
fuels and the emission of GHG should be avoided in any case. However,
to provide a more in-depth understanding of the trade-offs from the
standpoint of weak sustainability, we highlight the juxtaposition of
human and natural capital within this chapter and present ways to
assess the sustainability of trips in chapter 4.

Before this background, it is necessary to consider the GHG emis-
sions of various transport modes. Table 2.1 shows emission values
for various transport modes taken from the Switzerland-specific mo-
bitool (Tuchschmid et al. 2010). The direct CO2 emissions result solely
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Transport Mode
Direct CO2 Emissions

[gCO2-equiv./pkm]
Total CO2 Emissions
[gCO2-equiv./pkm]

Walking 0.00 0.00
Train 0.91 7.32
Cycling 0.00 7.64
Electric Bicycle 0.15 15.26
Bus 134.35 145.41
Airplane 178.70 184.58
Car 149.59 197.23

Table 2.1.: CO2 emissions of a variety of transport modes, as reported by
mobitool4(Tuchschmid et al. 2010). The actual values heavily
depend on the transport mode used, the number of people
traveling in the vehicle, as well as the distance covered.

from using the respective vehicle, while the total includes a Life Cycle
Assessment (LCA) that incorporates the emissions from production and
disposal of the vehicle as well as the infrastructure necessary to operate
it (e.g., streets or a rail network).

As expected, SM transport modes are particularly “eco-friendly”,
though especially for bicycles the indirect emissions (stemming from
production, maintenance and disposal of products) put them on par
with transport modes such as trains. While these values are averages
for the Swiss transport sector, the actual emissions per person always
depend on the individual trip: How many people are riding the tram
at the same time? How many people are carpooling with me? If I use
a bus at midnight and am the only one riding, it is clearly worse than
if I would drive by car. Nonetheless, it can clearly be seen that shifts
towards PT and SM are beneficial in terms of ecological sustainability.
Thus, we either have to support people in a transition towards increased
use of PT and SM, raise the number of people traveling in the same
vehicle, or try to make physical trips obsolete, e.g., by replacing business
trips with teleconferencing.

Considering the three personas introduced before, we can compute
their current GHG emissions using the emission values from Table 2.1.

4 The mobitool values can be retrieved under www.mobitool.ch. Mobitool reports
emission values for direct operation, energy supply, vehicle maintenance, vehicle production
and disposal, infrastructure maintenance and total.

https://www.mobitool.ch
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Persona

Current GHG

emissions
[kg/week]

Potential GHG

emissions
[kg/week]

Average GHG

emissions (SMC)
[kg/week]

Alice (City) 12.90 5.70 57.22

Bob (Suburban) 14.15 11.57 71.84

Charlie (Rural) 84.66 42.60 71.42

Table 2.2.: GHG emissions of the personas introduced, and their poten-
tial for change.

Table 2.2 shows their energy requirements and GHG emissions during
the time their mobility was recorded, a potential lower bound of their
emissions according to the methods presented in this dissertation (cf.
Bucher, Mangili, Cellina, et al. 2019) and an average generated from the
respective class in the SMC. While the potential emissions shown in the
middle column are based on the availability of PT and SM alternatives
of similar duration, thinking about the potential circumstances that
influence a person in his or her mobility choices makes it apparent that
it is non-trivial to decide when someone could use a more sustainable
means of transport, and when not. In our support of (transitions to)
sustainable personal mobility, we thus have to consider the momentary
situation a person is in. One of the related aspects is the current stage
in a behavior change process that someone is in.

2.2.2 Reaching Sustainable Behavior

ChangesStages of
Behavior
Change

in behavior do not happen immediately, but are processes that
take place over a certain amount of time. Many studies (mostly) from
the field of psychology are concerned with the various stages that peo-
ple go through during this process. For example, the Transtheoretical
Model of Behavior Change (TTM) (Prochaska and DiClemente 2005)
uses the following five (resp. six in the newer version; cf. Figure 2.4)
stages: precontemplation, contemplation, preparation, action, maintenance
(and termination). People undergoing a change in behavior will start
out not knowing about the problems nor the new behavior that could
alleviate them. After being educated, they start contemplating change,
preparing it, and finally performing the new actions, until they are
internalized and solely have to be maintained.
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Precontemplation

Relapse User starts
"doing"

Contemplation Preparation

Maintenance

Termination

Action

Figure 2.4.: The different stages making up the Transtheoretical Model
of Behavior Change (TTM) (Prochaska and DiClemente
2005).

These stages map to similar other models, such as Li, Dey, and
Forlizzi 2011’s phases of reflection (where people switch back and forth
between a discovery and a maintenance phase) or Dreyfus and Dreyfus
1980’s model of mental activities involved in directed skill acquisition.
Chapters 3 and 6 will refer to these in more detail.

While it might not be clear in which stage a particular person is
without extensive interaction, we can in general assume that people’s
mobility behavior is relatively stable, i.e., whenever they start interact-
ing with a new ICT service or tool, they are in one of the beginning
stages (precontemplation, contemplation or preparation). In these
stages, it is important to educate people about the available options and
about the impact of their original behavior and possible improvements.
Later on, suggestions have to become more concrete and the whole
process should be supported by extrinsic motivators such as gamifica-
tion elements or monetary incentives. To provide effective support, an
application should thus be able to identify how a person progresses
through different stages (for example by interpreting the passively
tracked mobility data, or by asking the user explicit questions) and
adapt support to the momentary situation. Looking at Figure 2.1, we
can, for example, see that Charlie uses PMT primarily in the beginning
when he uses the app for the first time. After a couple weeks of usage,
we see an increased use of PT. While this might well stem from a change
of circumstances, it is also possible that Charlie was contemplating a
switch to more sustainable means of transport for a while, and started
to change his behavior once he received constant feedback about his
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mobility. To make a distinction between voluntary behavior changes
and effects that arise due to a change in circumstances, it is important
that the context can be captured by an application in one way or another.
These circumstances are often also the primary precondition to support
people in a meaningful way.

2.2.3 The Role of Immediate Context

Context has been defined in a number of domain-specific ways (Bazire
and Brézillon 2005; Keßler, Raubal, and Janowicz 2007), and as already
highlighted before, plays a central role when choosing mobility options,
in a similar way as goals, expectations, attitudes, beliefs and values
do (e.g., Ferdous et al. 2011; Atasoy, Glerum, and Bierlaire 2013; Kim
and Ulfarsson 2008). While the latter are related to the behavior in a
very general way, and can usually be changed at varying speeds by
taking into account the models of behavior change introduced in the
previous section, context is more immediate and requires or enables
sparks and facilitators (Fogg 2009) to help a person choose the most
optimal transport option in a given situation. In the model by Fogg
2009, a spark is a motivational trigger that increases the motivation of a
user at the decision point, while a facilitator increases a person’s ability
(this can also include the provision of new or different mobility options
that the user is unaware of). In the context of mobility, a spark could
be given by a mobile app by offering an immediate reward for using a
sustainable transport mode once a person starts moving somewhere. A
facilitator could be the provision of a carpooling opportunity or if an
app points to a bikesharing station close by.

AsImmediate
Mobility
Context

already introduced above, there are various scopes of context we
have to consider. The general mobility context can be used to determine
the potential support for a user on a holistic level. The momentary
or immediate context, on the other hand, is primarily important for
immediate (i.e., real-time) support of a person. Considering these
personal and spatio-temporal circumstances, we adopt a formalization
of a user u’s immediate context when searching for transport options to
perform a trip θ (from an origin O to a destination D) as:

Cu,θ = (fO,fD, Φ) (2.2)

where fO and fD describe properties (or features) of origin (the per-
son’s momentary position) and destination, and Φ denotes the personal
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context (such as luggage currently being carried, other people traveling
alongside the user, or the overall goal of the trip). Of course, many
computed properties can be derived from this context, such as the dis-
tance dO,D between origin and destination, or the availability of certain
(shared) transport modes at the origin (both by using the geographical
location of origin resp. destination). In addition, an individual’s atti-
tudes, beliefs and values have to be included in any kind of support,
but it is important to see that the support ultimately aims at aligning
behavior and attitudes, beliefs and values, and not to change them.
This is primarily of concern in order to prevent technology parenting
and thus risk that people do not feel supported but patronized instead
(cf. Weiser, Bucher, et al. 2015; Huber and Hilty 2015).

To get an impression of the influence of the immediate context on
mobility choices, let us look at the behavior of Alice, Bob and Charlie
(resp. the corresponding groups from the SMC) when doing trips for
different purposes. In Figure 2.5, the influence of different purposes on
the transport mode choice is depicted (e.g., “Errand City” describes the
transport mode choices of people like Alice when running an errand).
Of course, the purpose is only a small subset of all contextual factors;
in reality, further trip constraints and requirements (such as weather,
access to different transport modes, or the requirement to travel with
luggage) can influence the transport mode choice as well.

0% 20% 40% 60% 80% 100%

Home City
Suburb

Rural
Work City

Suburb
Rural

Errand City
Suburb

Rural
Leisure City

Suburb
Rural

Study City
Suburb

Rural

Public Transport Motorized Mobility Slow Mobility

Figure 2.5.: The influence of trip purposes on transport mode choices.
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Source Cost

OECD report (OECD 2018) low end estimate 2020 30 e/t
OECD report (OECD 2018) mid-point estimate 2020 60 e/t
High-Level Commission on Carbon Price 2017 2020-2030

estimates
40-100 $/t

Voluntary Carbon Markets 2016 Report (Hamrick and
Goldstein 2016)

3.3 $/t

Voluntary Carbon Markets 2019 Report (Donofrio et al.
2019)

3.01 $/t

Table 2.3.: Different CO2 offsetting / compensation costs. Note the large
carbon pricing gap (between the carbon cost estimates and
the actual market values), indicating that current markets
and regulations are not able to mitigate the truly caused
negative effects by GHG emissions.

2.2.4 Definition of Sustainable Mobility

In summary, when defining sustainable mobility (on the level of an
individual trip), we have to balance the relative gain in human capital
with the decrease in natural capital. If we measure natural capital in
terms of CO2 emissions, we can assign a value to the decrease in natural
capital by looking at current CO2 offset costs. For reference, a number
of currently available costs are given in Table 2.3.

Assigning a concrete value to human capital is difficult and a detailed
derivation is out of the scope of this dissertation, as it is a multi-faceted
problem that involves a lot of information usually unavailable when
simply looking at travel patterns and basic demographics of people.
However, as introduced in the previous sections, to assign a value to
the human capital gained by a certain trip, we should consider the
following points:

1. A user’s goal that is fulfilled by performing a certain trip (resp.
the value created for him- or herself).

2. A society’s general mobility patterns, travel demands, and ulti-
mate goals (as reaching sustainability is a collective effort that
requires balancing between activities of different people).
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3. A user’s momentary context, including travel requirements as
well as access to various transport modes, both physical as well
as from an economic point-of-view.

Formalizing this, we can capture the dependency of the human
capital gain Gh(θ) of a single trip θ on the various introduced factors as
follows:

Gh(θ) = f (Cu,θ , Gu, GS) (2.3)

where Gu and GS represent the goals of an individual resp. the society
the person is part of, and Cu,θ is defined as above. Adopting a weak
interpretation of sustainability, a trip θ can be considered “sustainable”,
if the gain in human capital Gh(θ) is larger than the loss in natural
capital Ln(θ):

Gh(θ) ≥ Ln(θ) (2.4)

It follows trivially that we either must reduce Ln, increase Gh, or do
not engage in “unimportant” journeys. Even though it is not strictly nec-
essary to achieve Ln(θ) = 0 under the definition of weak sustainability,
there are two aspects that are worthy of pointing out:

• It is generally argued that humanity needs to drastically decrease
its reliance on fossil energy sources and reduce the thus caused
GHG emissions. This argumentation implicitly corresponds to the
fact that Ln(θ)� Gh(θ) for many trips.

• Ecological sustainability must be achieved by a society as a whole.
While not directly visible in the above formula, GS incorporates
the fact that some trips are of high importance to a society, yet
it cannot be avoided that their Ln(θ) is very large (e.g., flights of
important decision makers or stakeholders).

In chapter 4, we will further elaborate on the topic by analyzing how
(and how well) we can infer the sustainability of a given trip based on
recorded mobility data.

2.3 integrated mobility and mobility as a service

While people always had the freedom to shape their use of mobility
as they wanted (e.g., inter-modal, namely using different modes of
transport), integrated mobility denotes the concept of actively supported
inter-modal use of mobility. This active support is primarily coming from
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transport providers and third-party companies that facilitate the use of
different modal combinations. Of course, this is closely related to MAAS,
where a provider aims to bundle all possible mobility options, and
provide a seamless and integrated access to the individual transport
modes.

2.3.1 Multi-Modal Transport and Integrated Mobility

Multi-modality has always been important especially for public trans-
port, where people usually combine multiple transport modes (at least
walking plus a form of public transport, but often also multiple forms
of PT, such as bus and train). More densely populated urban areas and
newly created mobility offers (which have their origin in the increased
digitalization of the mobility sector and in the sustainability goals set by
many governments) further increased the use of multi-modal mobility.
Many ICT companies additionally started offering mobility planning
in an integrative manner: while for some third-party providers this
mostly consists of combining multiple transport options within a sin-
gle application, the transport providers themselves try to increase the
usage of their transport modalities by offering people easy access to
various first-/last-mile providers (e.g., the SBB integrate their train route
planners with bikesharing offers in order to get people to/from the
train stations).

Considering the three personas introduced above and the groups
they stand for, multi-modal travel traditionally primarily concerns
Alice (city-dweller) and Bob (living in a suburb), as Charlie (in a rural
area) mostly drives by car (door-to-door). Looking at their use of
multi-modal transport, we can see that Charlie does not often combine
multiple transport modes (except for car and walking), while Alice uses
various forms of transport in combination to satisfy her travel needs.
Figure 2.6 shows their use of various transport mode combinations.

The integration of various transport modes was supported early on
by multi-modal route planners, either developed and supported by
the public transport providers themselves or by third-party travel and
transport companies. Recently, transport agencies have been focusing
even stronger on the integration of mobility: SBB, for example, launched
several offers in cooperation with other (complementary) providers
with the idea that people who have facilitated access to first-/last-mile
transport modes would also be more likely to use their train network for
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Figure 2.6.: (Multi-modal) transport mode choices of Alice and Charlie.

longer-distance travel. However, while there are plans to support these
transport modes within a personalized smartphone app (that takes into
account the available transport modes for an individual person), this
has not been put into place yet.

2.3.2 Commoditization of Mobility

Commoditization describes the process during which previously distin-
guishable products become a commodity for the consumer (a Marxist
view also denotes the process of assigning a value to a previously non-
valued object as commodification; here, we adopt a non-Marxist view,
cf. Kopytoff 1986; Larson 2016). A good example for a commoditized
good is electricity: as a regular customer I usually do not know nor
care which power plant produces the energy I use to power devices at
home (it has to be noted that consumers can often choose an energy
mix nowadays; however, the energy could still come from any power
plant connected to the grid). In the mobility domain, while people
currently often still decide for one primary transport mode or another,
commodiziation will blur the borders between transport providers and
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transport modes, letting people choose whichever option satisfies their
transport needs best, irrespective of brand or price. Looking at how
most people have access to mobility nowadays, one could argue that
mobility already is a commoditized good, at least as far as it will ever
get (as there will always be significant differences, e.g., between a car
and a train). However, we can see a novel view on mobility especially
with younger people living in cities. Many of them do not own a car
nor a driver’s license, and increasingly use a diverse mix of mobility
options to satisfy their travel needs (Metz 2012).

WhileMobility as a
Service

public transport providers have cooperated for a long time to
offer transport passes including various means of transport at a fixed
cost, recently, alongside a new wave of novel mobility concepts, they
have gone further, including not only public but also private means of
transport (Martin, Becker, et al. 2019). These are commonly referred to
as MAAS offers, and encompass several competing models, e.g., paying
an upfront fixed price, or involving automatic billing systems. MAAS

is a term coined by the “XX-as-a-Service” construct from software
businesses (Xin and Levina 2008), where the main selling point is that
it is easier and more cost-effective to “outsource” certain functionality
to an external supplier (who is specialized in this service). In a similar
way the idea of MAAS is that the consumer does not have to think about
mobility (and in particular which mobility supplier to choose) anymore,
but just consumes it like any other commodity.

Looking at the example of SBB, their primary MAAS offer is called
SBB Green Class, and includes a general public transport pass, an EV

(out of a selection of four different models), a parking space at the train
station, as well as access to several car- and bikesharing platforms for a
fixed monthly cost (in the range of CHF 1070 to 2290, depending on
the electric vehicle and the general public transport pass). If we look
at Figure 2.7, we can see that the use of mobility changes after people
start using MAAS, mostly due to the newly available EV. The data in
this figure stems from the pilot study that was used to evaluate the SBB
Green Class offer before making it available to the general public5.

5 Note that the participants of the pilot received their EV at the start of the study
(approximately in week 3 of 2017) which explains the sudden increase in EV usage.
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Figure 2.7.: Impacts on mobility usage after starting to use MAAS (based
on pilot study participants of SBB Green Class). Figure from
Martin, Becker, et al. 2019.

2.3.3 Definition of Mobility as a Service

As we have seen previously, MAAS heavily builds on the concepts of
multi-modal transport and integrated mobility, and fosters the com-
moditization of mobility. In their review paper, Jittrapirom et al. 2017

assess various definitions and implementations of MAAS, provide their
own set of attributes to define Mobility as a Service (MAAS), and pro-
pose an outline of future innovations that are necessary to (truly) de-
liver MAAS. In essence, MAAS “presents a shift away from the existing
ownership-based transport system toward an access-based one” (Jit-
trapirom et al. 2017, p.13) and “is a mobility distribution model in
which a customer’s major transportation needs are met over one in-
terface and are offered by a service provider” (Hietanen 2014, p.3). In
other words, it is the packaging and offering of a range of mobility options,
with the goal of making mobility use more accessible and more comfortable to
use, enabled by the new interaction and aggregation possibilities that
ICT and in particular the internet offer (cf. Finger et al. 2015).
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BuildingCharacteris-
tics of MAAS

on work by Hietanen 2014, Kamargianni, Li, et al. 2016,
Kamargianni and Matyas 2017, Jittrapirom et al. 2017 further elabo-
rate on the need of personalization, integration of subscription-based
consumption, collection and processing of data to identify the best
transport solutions, mediation between providers and consumers, the
impact of Internet of Things (IOT), as well as the relation of MAAS to the
concept of a smart city. Their identified core characteristics of MAAS are
given in Table 2.4. Note that we did not show the registration requirement
(common for most internet-based services), the inclusion of other services
(part of multiple actors) and the mobility currency (independent of MAAS),
as we argue they are not central to a definition of MAAS. It is interesting
to see that they additionally identified decision influence as a separate
characteristic by reviewing various case studies, similar in spirit to the
support of certain mobility behaviors as treated within this thesis. Such
influence systems have been part of several MAAS (pilot) offers, but an
extensive treatment of supporting technology is not given. Similar to
Pangbourne et al. 2018, Jittrapirom et al. 2017 point out several aspects
of MAAS that have to be considered carefully, such as its relation to
sustainable mobility (which, according to Holmberg et al. 2016, must be
ensured by proper tariffs, and according to other authors forms a core
element of MAAS), its sociological implications (in particular with re-
spect to low-density areas and low-income households), or operational
impacts. Additionally, Pangbourne et al. 2018 provide a more in-depth
treatment of the issue of resilience (what happens if a large mobility
provider goes out of business and there are no alternatives) and the
“false promise of freedom” (it will be difficult to offer a trip from any
place to another at an arbitrary time, given the physical limitations of
the transport networks and infrastructure).

Breaking down the actors, we can classify them into three types of
stakeholders: a large number of transport providers (which can also
be individuals participating in the gig economy, cf. Prassl 2018), ICT

providers (that offer the integrative parts of the system as well as ticket-
ing and pricing), as well as users consuming the MAAS offers. While the
transport providers are responsible for providing the physical means of
transportation (including infrastructure, vehicles, potentially required
human operators, maintenance, etc.), the ICT providers integrate trans-
port options from multiple providers and handle access to their services,
reservations, billing, etc. In the case of SBB in Switzerland, they (as one
of many transport providers) also try to position themselves as the ICT



2.3 integrated mobility and mobility as a service 31

Characteristic Description

Integration of Trans-
port Modes

The integration of various transport modes
(both public and private) should facilitate
multi-modal trips.

Tariff Option Offering mobility at fixed price or through a
“pay-as-you-go” model makes pricing trans-
parent, tailored to the actual need, and in
the end commoditizes mobility.

One Platform Having only one platform to plan, book,
pay, and interact with the service facilitates
the consumption of mobility.

Multiple Actors MAAS is characterized by a large number of
involved actors: people with mobility needs,
transport providers, and platform and third-
party service providers.

Use of Technologies MAAS is primarily enabled by techno-
logical advancements: mobile comput-
ers/smartphones, fast mobile networks,
tracking and IOT technologies, interoperabil-
ity standards and technology integration.

Demand Orientation MAAS offers are highly targeted towards the
individual resp. his or her demand. There
is no strict preference for certain transport
modes and demand-responsive transport
modes (e.g., taxis) are part of it.

Personalization Due to the wealth of options, personaliza-
tion in the form of recommendations (based
on preferences and context) for certain trans-
port mode chains is necessary.

Customization Users can freely combine mobility offers to
get their preferred travel experiences.

Decision Influence People can actively choose how the system
computes the personalization for them, e.g.,
by favoring ecologically sustainable trans-
port modes.

Table 2.4.: The core characteristics of Mobility as a Service (MAAS) ac-
cording to Jittrapirom et al. 2017.
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provider; an example of a traditional ICT provider positioning itself
as a transport provider could be Google resp. its holding company
Alphabet, who started developing their own cars (with the potential
aim of having autonomous taxis one day).

2.4 information and communication technologies in sup-
port of mobility

As we have shown, the recent developments in the areas of transport,
ICT, but also the need to become more (ecologically) sustainable en-
able and entail changes in the way ICT supports our future mobility
consumption. In the following we will provide an overview of the
current developments in the ICT sector that help in supporting MAAS

and sustainable mobility behavior.

2.4.1 ICT and GIS in the Mobility Sector

Information and Communication Technologies (ICT) support mobility
in a wide range of tasks: From direct interaction with mechanical
parts (e.g., motor or traction control in cars or electric battery charge
management), over systems orthogonal to but supportive of mobility
itself (e.g., entertainment systems in cars and airplanes), to advanced
routing and high-resolution mapping, autonomous driving, vehicle
area networks, logistics planning, booking and accounting, timetable
optimization and real-time adjustment systems, and many more, there
is barely a component within the general mobility domain that has
not been touched by ICT. Yet, one can argue that the mobility and
transport sector is still far from being completely digitalized: most
vehicles are still operated by humans, choosing a route (resp. a means
of transport) and buying a ticket are still manually performed steps, the
integration of personal context data with publicly available transport
data is in its infancy, etc. Among various impacts of digitalization on
urban transport and smart cities, Creutzig et al. 2019 point out several
key innovation areas of ICT in relation to transport in the next decades:
For one, the increasing amount of data and processing capabilities can
help city planners to plan more efficient transport systems. Innovative
business models (enabled through ICT) such as bike- and carsharing
have the potential to greatly reduce the number of cars, thus also
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freeing up space previously needed for parking vehicles, and reducing
congestion, air pollution, and GHG emissions. Automated driving has
the potential to substantially lower energy demands, and relies heavily
on ICT both for routing and navigation purposes as well as to interpret
and utilize sensor readings (Goodchild 2018). Miller 2020 summarizes
the recent progress in analytics of individual and collective movement,
and points at scientific and societal challenges related to achieving
sustainable mobility: We are currently undergoing a “grand, real-world
experiment with profound impacts on cities that will be difficult to
unwind” (Miller 2020, p. 118). How ICT assist this experiment, from
planning over monitoring to provision of support to the individual, will
largely impact its outcome. It is thus crucial to improve the collection,
integration and analysis of mobility-related data and use tactial urbanism
to quickly iterate on potential improvements to the mobility sector
(Miller 2020; Silva 2016).

In Risks of
Using ICT to
Optimize
Mobility

line with this, Creutzig et al. 2019 also mention that “several
social and environmental risks emerge from the massive and mostly
unregulated use of big data and artificial intelligence” (Creutzig et al.
2019, p.2), and, arguably more important with respect to ecological
sustainability, that “efficiency gains in mobility could be rendered
meaningless by induced demand for additional mobility [and shifts to]
automotive travel” (Creutzig et al. 2019, p.2). Several studies highlight
that the impacts of a wide deployment of the mentioned technologies
and business models does not necessarily impact GHG emissions in
a positive way (Pakusch et al. 2018; Walnum, Aall, and Løkke 2014).
Examples of other emerging problems are the control of a population
using a social scoring system, or the requirement for taxi drivers to work
longer shifts for costs that barely finance the ongoing costs of their cars
(Creutzig et al. 2019). In essence, Creutzig et al. 2019 state that there are
high risks of an unsustainable outcome of a digitalization of the mobility
sector, and that it thus is of paramount importance that decision-makers
need to properly leverage the new ICT technologies to reach urban
sustainability goals. Among their recommendations we find a push for
integrative platforms that foster multi-modal and sustainable transport,
and might result in a cooperative transport system as envisioned by
Miller 2013.

Within GIS and
Mobility

this dissertation, we primarily look at how geospatial tech-
nologies and Geographic Information Systems (GIS) (under the umbrella
term of ICT) are able to support sustainable personal mobility and MAAS,
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with a particular focus on human mobility behavior. Miller and Shaw
2015 describe a vision of GIS for transportation in the 21st century that
is in parts driven by a shift to data-abundant environments in recent
years (fostered by advancements in ICT and Location-Aware Technolo-
gies (LAT)), but also simply by continuing developments over the last
twenty years. Next to technical developments such as moving objects
databases, this includes a shift to individual-level data (in essence look-
ing at individual activities instead of aggregate flows), more refined
heuristics or problem-adapted algorithms to solve prevalent problems
in transportation (such as vehicle routing or route planning), more
elaborate analysis and optimization methods, a focus on real-time or
dynamic data, heterogeneous data (e.g., from social media, videos, in-
dividual tracking devices, or IOT devices), and the adaption of open GIS

and data standards. We argue that in particular the focus on individu-
als, combined with an ever-more accurate tracking of their activities,
can help us in supporting them in their mobility choices.

2.4.2 Automatic Tracking

With the increased accuracy of location estimation technologies based
on Global Navigation Satellite Systems (GNSSs), Wi-Fi (based on Wireless
Local Area Network (WLAN) routers), cellphone towers, Bluetooth, etc.,
and the wide availability and miniaturization of sensor technology
found in smartphones, vehicles and tracking equipment, a wealth
of spatio-temporal data on the location of vehicles and people has
become available. Often, these data are used within a user-centric
commercial setting, e.g., to offer LBS, to improve a product such as
roadside assistance or route planning, but just as often the data is
used for planning (e.g., location allocation or transport infrastructure
planning), for statistical purposes or for real-time updates on schedules
(e.g., airplane arrivals/departures or public transport delays). Recent
(prototypical) uses concerned automatic billing of transport usage,
feedback on mobility behavior (as in the focus of this dissertation) or
facilitating the access to different mobility options. For example, Binu
and Viswaraj 2016 describe and evaluate an Android-based system for
improved safety in carpooling, or Luo et al. 2019 discuss the dangers of
tracking and routing technologies in relation to autonomous driving.

TheSmartphone
Tracking

data used throughout this dissertation primarily stems from app-
based smartphone tracking. The apps performing this tracking use the



2.4 ict in support of mobility 35

functionality exposed by the Application Programming Interface (API)
of the operating system, which usually automatically tries to infer
the best possible location source (most commonly either cellphone
towers, Wi-Fi access points or GNSS (Global Positioning System (GPS))
sources). Figure 2.8 shows the reported tracking accuracies of a range
of smartphones that participated in a study in 2017. For more details
on tracking accuracy, the reader is referred to subsection 4.1.1.

Figure 2.8.: The location accuracy reported by a range of smartphones
as part of the SBB Green Class study in 2017.

2.4.3 Route Planning

Looking at the digitalization of the mobility sector from a user per-
spective, route planning is likely the technology that people are most
in touch with. Through applications such as Google Maps, in-car
navigation assistants, public transport booking systems, or carpooling
platforms we are nowadays constantly supported in finding ways from
one place to another. Most of these applications focus on particular
criteria, e.g., the duration to reach the destination, the involved trans-
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Feature Share of Answers [%]

Available mobility alternatives (real-time) 51.5 %
Health-related impacts 36.4 %
Costs and economic impacts 36.4 %
Information about energy impacts 30.3 %
Climate and environmental impacts 30.3 %
Games and fun activities 24.2 %
Collaboration with other participants 24.2 %
More possibilities to interact with people
from my real life circles (family and friends)

18.2 %

Competition with other participants 12.1 %
More tangible prizes 9.1 %
An increased sense of community 3.0 %

Table 2.5.: Responses of GoEco! participants to the question how future
apps like GoEco! could support them in a transition towards
a more sustainable usage of mobility (n = 33).

port modes, communication with transport providers, etc. While there
are some route planners that focus on ecological aspects (e.g. Ferreira
2014; Guo et al. 2015), they are most often only implicitly regarded
by integrating low-emission transport modes into the route planning
system. Taking the recent focus on sustainable living and transport
into account, it becomes important that route planners also explain the
impacts on ecological sustainability of a route choice, and present users
with alternatives. In the GoEco! study, we asked participants about their
attitudes towards sustainability, and how ICT would potentially support
them in becoming more sustainable. Table 2.5 shows their responses
to various questions regarding these topics. While there is certainly a
bias in the sample of the GoEco! participants, it still highlights some
important future directions.

2.4.4 Mobility Feedback

Recently, there has been a range of new ideas and projects concerning
the idea of giving people feedback on their mobility behavior (based on
automatically tracked movement data; e.g., Froehlich, Dillahunt, et al.
2009b; Jylhä et al. 2013). Many of these ideas come from the health and
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fitness domain, where a wealth of apps is available to support people in
their sports activities or eating behavior. They frequently use elements
from gamification (Weiser, Bucher, et al. 2015) to give people a playful
way of interacting with the respective topic.

Concerning the mobility domain, transferring these strategies to
“gamify” the exposure to mobility is difficult, though, as mobility is
highly individual and driven not only by attitudes and beliefs, but also
by the immediate context, the availability of certain transport modes
and the financial circumstances. As such, it is, for example, problematic
to have a contest on “who travels least” (which would be the equivalent
of, e.g., a fitness cycling app that has a contest on “who cycles the
furthest”), as it would imply that noone was forced to use mobility for
work or personal reasons (e.g., to visit family members).

But even within this context, it was shown that (eco-)feedback on
mobility has an influence on the transport and mobility behavior of
people (Cellina, Bucher, Mangili, et al. 2019). The respective appli-
cations usually do not employ any competitive components nor any
numerical quantification of behavior (except the raw GHG emissions,
which are often still displayed in a qualitative way to the users), but
instead use personal goals, challenges, or visualization strategies to
provide feedback and steer people towards a more sustainable behav-
ior. Similarly, augmentations of existing transport apps (especially for
public transport) show the CO2 emissions of different travel options or
try to quantify the ecological impact by offering monetary offsets from
within the app. Other forms of feedback are not necessarily related to
ecological reasons, but can be given to decrease costs, avoid congested
areas, or shift trips in time in order to avoid overcrowded means of
transport.

While feedback is not paramount for MAAS, it plays an important role
for the sustainability of the mobility sector. It is argued that in the short
term, GHG emission reductions in the mobility sector will have to come
from modal and behavioral shifts, as new technologies take decades to
become widely available—time that is not necessarily available if the
transport sector should be increasingly and urgently decarbonized. To
achieve these sustainability goals, more sustainable transport options
(where available) should be shown to people, and they need to become
aware of the scales of impact of one mode choice versus another.
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2.4.5 Purchasing Mobility

Last but not least, as MAAS is about the commoditization of mobility,
billing should be transparent yet mostly hidden from a user. Future ICT

systems that support sustainable personal mobility and MAAS should
thus integrate the negotiation and purchase of mobility, e.g., by auto-
matic billing via the use of tracking data. The integrative aspect of MAAS

requires a wide range of mobility and transport providers to interact,
not only in terms of multi-modal route planning, but also in terms of
context integration (e.g., when a traveler has certain requirements, these
need to be fulfilled by the transport providers in an integrative way, for
example, by transporting luggage with other means of transport) and
financial aspects. As such, an essential part of future ICT support in the
mobility domain will concern the standardized publishing of transport
offers and demands, and their automatic processing with respect to
finding the best possible transport options for any given person.

2.5 information processes supporting sustainable mobil-
ity as a service

Figure 2.9 shows the ICT processes involved in supporting sustainable
personal mobility and MAAS, as identified and outlined in this chapter.
Starting from the user, we can analyze his or her mobility behavior, in
order to generate (and communicate) eco-feedback based on mobility
patterns and usage, but also to infer the personal attitudes, goals, and
circumstances. In combination with additional spatio-temporal context
data (such as POIs in the vicinity, or weather data), we can further refine
the analysis, and identify purposes for certain trips, assign transport
modes to raw GPS trajectories, or classify the users into different mobility
usage types.

On the other hand, it is important that users and transport providers
specify their mobility offers and demands/needs. Currently, this is
mostly a one-way process, where various public transport and special-
ized mobility providers publish their schedules and availabilities either
using a standardized format such as General Transit Feed Specifica-
tion (GTFS)6, or within a confined web platform. Even if people are

6 The General Transit Feed Specification (GTFS) is a data exchange format that allows
PT providers to publish their transport schedules. More details can be found under
gtfs.org.

https://gtfs.org/
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User Transport
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Communication
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Publication

Planning

Figure 2.9.: The main information processes involved in systems sup-
porting sustainable personal mobility and MAAS. The pri-
mary actors are the users requesting transport, and the
providers offering them ways to reach the indicated desti-
nations.

not willing to specify each of their transport demands manually, by
analysis of their tracking data we can infer common ones, and use them
to suggest sustainable transport options. Closely related is the process
of negotiation, which is essential for the rising sharing economy. For
example, when booking a shared car trip (carpooling), a price has to
be negotiated, and it is important that both parties get insight about
the other person (e.g., through reviews and ratings). But even for more
traditional transport modes, if they should be offered as part of a MAAS

package in an integrative way, it is important to easily see the total cost,
and potential benefits from the combination of certain modes.

Solely from a user perspective, this leads to the component of plan-
ning, which is essential for any trip, but even more so for irregular
ones, where transport modes are usually not known in depth. Based
on the transport offers and demands publications and the profiles ex-
tracted from mobility analysis, we are able to personalize plans much
more than ever before. The communication, finally, includes the gen-
erated eco-feedback as well as potential transport plans or options for
upcoming trips.

The following chapters will mainly cover the analysis, planning and
communication parts and present methods to process (tracking) data
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to support people in increasing the sustainability of their mobility
behavior.



3
B A C K G R O U N D

3.1 human mobility behavior

In this section, we provide background on human mobility behavior
and choices, and how they evolve over time. A particular focus is on
the choice of transport modes and routes, as understanding those is
an essential part for using ICT to support sustainable personal mobility
and MAAS.

3.1.1 Human Behavior and Its Change

Behavior is essentially grounded in the psychology of motivation. The
base needs driving motivations can change over time and can be sup-
ported by ICT at different stages and on various scales.

3.1.1.1 Theory of Motivation

Motivation Motivational
needs

“concerns those processes that give behavior its energy and
direction” (Reeve 2014, p.22). Most theories argue that motivation is
emerging from a variety of base needs. Figure 3.1 shows the needs
discussed in detail below.

Psychological Needs

Autonomy
Free choice among options
› Provide transport options

Competence
Being able to complete tasks
› Assist in trip planning

Relatedness
Feel recognized, accepted, valued
› Provide (positive) feedback

Achievement
Show competence
› Public display of status

Affiliation & Intimacy
Make others happy
› “Liking” others’ achievements

Leader-/Followership
Give or receive directions
› Tutoring/influencer roles

1.
2.
3.
4.

Social Needs

Figure 3.1.: Various motivational needs and examples how ICT can sat-
isfy them (with regards to supporting sustainable mobility).

41
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Psychological needs emerge without any exterior influence (Reeve 2014;
Deci and Ryan 2004), and include the desire for autonomy, competence
and relatedness (Weiser, Bucher, et al. 2015).

• The desire for autonomy describes the need resp. desire to have
choices available, and the power to choose freely and indepen-
dently of others (e.g., by providing a person with multiple trans-
port options).

• Competence expresses our need to feel able to complete given tasks,
and to improve the skills necessary for our actions (Reeve 2014;
Csikszentmihalyi, Abuhamdeh, and Nakamura 2014; Werbach
and Hunter 2012). This means that our tasks should neither be
too easy nor too difficult, in order not to bore or frustrate us.
Keeping the difficulty of a task at a level corresponding to a
person’s skills can keep her in a state of “flow”, in which one
is completely absorbed in a task and does not feel how time
passes (Csikszentmihalyi, Abuhamdeh, and Nakamura 2014). ICT

often employ a so-called “on-boarding” phase, during which the
difficulty of a system is greatly reduced to match the (non-existent)
skill of a user, e.g., by providing a tutorial phase. Gradually
increasing the complexity of a system is an effective way to keep
someone interested, and is, for example, heavily used in computer
games.

• Relatedness describes the “need of engaging in relationships with
others” (Weiser, Bucher, et al. 2015, p.272). Relatedness can be
invoked simply by interacting with other persons, but to satisfy
this need, one has to feel recognized, accepted and valued. It is
interesting that people not only personally relate to ICT, but also
interact with them in a way that resembles their interaction with
other humans (Fogg 2002). ICT thus can fulfill the role of providing
the needed recognition and acceptance, and can make humans feel
valued. In addition, it can greatly facilitate the interaction between
humans (also across large distances, cf. Miller 2013; Weiser,
Scheider, et al. 2016; Jennings et al. 2014), thus making people
feel related who otherwise might have difficulties connecting
with other human beings. An example of ICT facilitating these
interactions are the various social network platforms where people
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can group and exchange themselves based on their interests, and
not solely on their physical location.

Social needs emerge from interactions with other people and are
learned over the course of our life. They encompass achievement,
affiliation, intimacy and leadership and followership (Reeve 2014).

• Achievement denotes the desire to show competence, in particular
in relation to a societal norm or direct competitors. Typical ele-
ments from ICT that cater for our need for achievement are public
displays of status, e.g., in the form of a leaderboard in a computer
game.

• Affiliation and intimacy relate to everything that lets us make other
people happy, resp. that other people do to make us happy and
satisfied. These desires are heavily used by online social networks,
where one can “like” other people’s content, or “tag” friends in
one’s own postings. While the first one shows an affiliation, the
second signals a special friendship and thus can be interpreted as
a form of intimacy between two persons.

• Leadership and followership are complementary concepts that ei-
ther relate to “the desire to impact, control, and influence oth-
ers” (Weiser, Bucher, et al. 2015, p.272) (cf. Winter 1973) or to the
need of direction given by someone in a leading position (Goffee
and Jones 2001). Interestingly, ICT can take an authoritarian role
over humans, for example when taking the role of an online tutor
that encourages people to study more (Fogg 2002). Leader- and
followership are also closely related to power, which is often ex-
ercised utilizing ICT, e.g., using leaderboards or score systems to
depict particularly powerful individuals.

An Motivational
sources

often made additional distinction is between external and internal
(resp. extrinsic and intrinsic) motivation (Sansone and Harackiewicz
2000). While internal or intrinsic motivation is generated by one’s own
goals, expectations, beliefs and the self, external motivation stems from
environmental, social or cultural circumstances and influences (Reeve
2014). The arguably best-known example of an extrinsic motivator
is money, but there exists a wealth of others. When ICT are used to
generate motivation (e.g., using gamification elements), they usually
take the form of an external motivational source (Weiser, Bucher, et al.
2015).
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• Goals and expectations represent desired outcome states, events, or
processes (Austin and Vancouver 1996). While goals direct and
influence our behavior, expectations help us manage the choice
of actions (i.e., to evaluate efficacy and outcome). In order to
execute an action, both efficacy (the “ability to do something”)
and outcome (the “likelihood that something succeeds”) have to
be high (Fogg 2009).

• A second form of internal motivators are attitudes, beliefs and
values. They are all closely related, and build upon each other.
Values are core ideals and preferences that lie at the base of our
personality and thus are difficult and slow to change. Beliefs
are personal views on “what is true and what is false” (Weiser,
Bucher, et al. 2015, p.273), mostly based on experiences. They
can change once we experience new situations related to a belief.
Attitudes, finally, are quickest to change and describe our likes
and dislikes. They are usually formed on the basis of beliefs and
values.

• The self describes the mental representation we have of ourselves.
It is usually built through interaction with other people resp.
the inspection of their reactions on our behavior (Markus 1983).
Ultimately, people strive to an idealized perception of one’s self,
behaving according to the conceptualization of one’s self along
the way (“confirmation bias”, cf. Kahneman 2011).

HumansCognitive
dissonance

usually try to keep their actions in line with their values,
beliefs, and attitudes. This can either mean to adjust behavior so it
fits with one’s values, or to adjust beliefs and attitudes to better reflect
the actions performed. If it is not possible to reach this alignment,
people fall into a state of “cognitive dissonance” (Festinger 1962). Using
education, values, beliefs and attitudes can be influenced (Rokeach
1973), in turn leading to such a “cognitive dissonance” which can result
in inducing behavior change.

3.1.1.2 Behavior and Its Change

WhetherRequirements
for behavior

change

we decide to exhibit a certain behavior in a given situation
primarily depends on our motivation and ability, as well as the concrete
prompt for us to execute an action (commonly refered to as trigger, cf.
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Fogg 2009). While our motivation and ability (i.e., skill to successfully
execute the action) are given by previous experiences, motivational
needs, as well as contextual factors, the trigger itself has the potential
to increase motivation (becoming a spark; e.g., by offering a financial
reward) or ability (becoming a facilitator; e.g., by providing informa-
tion about how to successfully perform a task). Figure 3.2 shows the
interplay between motivation and ability, and highlights the concep-
tual border between a trigger succeeding or failing as a blue line. By
increasing either motivation or ability, a trigger is more likely to induce
a desired behavior.

Regarding context in particular, researchers have classified it into
many different areas (cf. Abowd et al. 1999). We here adopt a classifica-
tion by Brimicombe and Li 2009, pp. 214, that provides the classes of
environmental, technological, and individual context (the latter consisting
of user characteristics, knowledge, preferences and situation). The situation
context here includes the actions to be performed, but also individual
characteristics like the emotional state or the well-being (Brimicombe
and Li 2009; Consolvo, McDonald, and Landay 2009). Within ICT sup-
porting sustainable mobility behavior, especially the environmental and
individual contexts are of importance.

On Stages of
behavior
change

a general level, behavior change is classified into two stages:
discovery and maintenance (Li, Dey, and Forlizzi 2011). During the dis-
covery phase, people educate themselves about factors that influence
a certain behavior and try to evaluate which potential new goals they
could adopt. Once new goals are defined and first actions are under-
taken, a person moves to the maintenance stage, where she strives
towards the newly set goal, and performs and internalizes behavior.
At any point during the maintenance phase, one could fall back to dis-
covery, to learn more about the behavior and the factors that influence
it.

The Transtheoretical Model (Prochaska and Velicer 1997) splits these
two phases up into finer categories. People in the discovery phase
start by precontemplating. During this time, they are not aware of a
potential new behavior, and will require external stimuli to transition
into a contemplation stage (He, Greenberg, and Huang 2010). As such,
people in the precontemplation phase are best served by continuous
education, which might lead them to contemplate a new behavior.
Through continuing self-evaluation, they can transition into a preparation
phase, during which concrete plans for behavior change are formed.
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Figure 3.2.: Behavior change models according to Prochaska and Velicer
1997 and Li, Dey, and Forlizzi 2011. During the action
(and maintenance) stages, behavior has to be triggered.
Fogg 2009 states that the execution of a certain behavior B
depends on the motivation m, ability a and trigger t itself
(B = mat).

Once a person starts performing actions with a certain target behavior,
she transitions into the maintenance phase according to Li, Dey, and
Forlizzi 2011. During the action phase, repeatedly carrying out the new
behavior leads someone from being a novice to an expert (cf. Dreyfus
and Dreyfus 1980). Experienced users will transition to a maintenance
phase, in which they still have to be kept motivated to exhibit the new
behavior, in order not to relapse back into the contemplation phase.
Only when a behavior is truly “internalized” we can consider a new
habit to be formed, a process that can take a long time (Stawarz, Cox,
and Blandford 2015). Figure 3.2 visualizes the explained concepts.

3.1.1.3 ICT Supporting Behavior Change

Information and Communication Technologies (ICT) are used to great
effect in supporting certain behaviors and the change of them. Well-
known examples range from electronically assisted customer loyalty
programs (where all spendings are tracked and rewarded with bonus
points, miles, discounts, etc.), over websites and applications rewarding
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people for their participation in discussion forums and for generating
content, to the infamous “likes” of many social media platforms that
have been shown to exhibit addictive characteristics and have recently
been under a lot of scrutiny due to their potentially disheartening
nature (Scissors, Burke, and Wengrovitz 2016; Blease 2015).

ICT Motivational
affordances

usually support behavior change by offering motivational affor-
dances. Originally invented by Gibson 1977, and based on the verb
to afford, an affordance describes what a thing offers to an entity, i.e.,
the “perceived and actual properties of a thing, primarily those func-
tional properties that determine just how the thing could possibly be
used” (Salomon 1997, p. 51). Norman 2013 discusses good design of
affordances (but also signifiers, constraints, mappings and feedback) by
taking into account the psychopathology of everyday things and the
psychological traits influencing human actions. In his book, human
centered design as a philosophy is promoted: Instead of designing
from a completely technical point of view, we should start “with a good
understanding of people and the needs that the design is intended to
meet” (Norman 2013, p. 9). To adopt this philosophy, understanding
the seven stages of action are central: defining goals, planning, spec-
ifying, performing, perceiving, interpreting, and comparing. As can
be seen, these stages mostly fit into the preparation and action phases
introduced in the previous section. Taking the example of a planning
a mobility behavior change and thus defining a corresponding goal,
we might plan to use a persuasive application to reach it. For this,
the application does not only have to afford motivation (cf. Zhang
2007), but it needs to be designed in a way that is understandable and
easily discoverable (Norman 2013). This example also highlights that ICT

supporting sustainable mobility has to go beyond offering motivational
affordances, e.g., by offering educative measures or giving feedback.

Within the context of ICT, affordances are primarily studied in the
subfield of Human-Computer Interaction (HCI). Norman 1999 provides
an interesting discussion of how the term affordance was originally
adopted within this field: an affordance was understood as a way to
signify that the interaction with a (virtual) object leads to some planned
outcome. However, this is not adhering to the original definition, where
neither the signaling nor the planned outcome are of significance. To
distinguish between these different definitions, he introduces the terms
real affordances and perceived affordances (which loosely correspond
to the later introduced term signifiers, namely indicators of possible



48 background

affordances, cf. Norman 2013). Raubal and Moratz 2008, based on
Raubal 2001, extend the concept of affordances by dividing it into
physical, social-institutional, and mental affordances. Whereas the first
require physical requirements to be met (e.g., an object size must match
a person’s hand to grab it), social-institutional affordances revolve
around interactions between people and are thus often not bound to a
location (e.g., one can talk to another person via telephone), and mental
affordances spring into existence when a person is in a situation and
needs to decide upon an action plan to reach his or her goals. Janowicz
and Raubal 2007 use affordances to determine the similarity of objects
and use it within a case study involving an agent that has to reach a
certain goal (e.g., changing a light bulb). To proceed towards the goal,
the agent chooses entities that have similar affordance descriptors to a
one that is chosen based on internal knowledge. A similar case can be
made when an agent has several transport modes available to reach a
physical location.

He, Greenberg, and Huang 2010 mention five different models that
can be used to describe how we decide between different behaviors and
that thus should be respected when designing motivational affordances:
the attitude model (favorable attitudes will lead to pro-environmental
behavior), the rational-economic model (monetary costs determine ev-
erything), the information model (if you know enough about a problem,
you will act in the best possible way), the positive reinforcement model
(actions have to be rewarded), and the elaboration likelihood model (we
act according to logic and rationale, but are influenced by emotional
responses to problems). Froehlich, Findlater, and Landay 2010 extend
this list with a model of responsible environmental behavior (which
includes economic constraints and social pressure in addition to the in-
tention to act), and norm-activation models (that are similar to attitude
models, but root behavioral choices deeper in personal norms). Within
this dissertation, we primarily rely on the information and positive
reinforcement models, arguing that in the mobility sector, economically
driven choices require policy changes (and are thus not tightly linked
to ICT; note that they can be actively promoted and motivated using
ICT, however) and attitudes are difficult to change in short time frames
(but will over time adjust themselves in accordance with the received
information and rewards).

Analyzing current and past behavior and presenting it in an inter-
pretable form can help users become aware of their own behavior, thus
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forming a motivational affordance for introspection and the induction
of change. This effect can be strengthened by providing alternatives for
past and future behavior, as well as by offering comparisons to defined
norms, goals, or other people (cf. Weiser, Scheider, et al. 2016). This
form of support is rooted in the fact that people are often not aware
of the impacts of their routine behavior, which is carried out subcon-
sciously. By presenting viable alternatives, the difficult step of aligning
multiple goals of people can be alleviated—otherwise, a large effort is
needed to evaluate all the potential impacts on reaching different goals
and balancing them against each other. In similar ways, ICT is used to
simply educate people about different behaviors, and thus highlight
potentially “bad” behaviors, and/or how other people behave.

Other motivational affordances include social elements, such as col-
laborative or competitive elements of an application. Cooperation
describes all processes in which multiple individuals try to achieve
something by working together. They primarily target our need for
relatedness, but can also satisfy the needs for affiliation or leader- and
followership; the latter when there are exclusive groups people can
belong to, and/or if there are special roles within a community that
manage and lead it. For example, Gustafsson, Katzeff, and Bang 2010

evaluate a game targeting a reduction in domestic energy use that
builds upon cooperation within families and report that such persua-
sive games show a lot of promise for demand management. Jung,
Schneider, and Valacich 2010 look at how to enhance HCI interfaces
for collaborative applications and find that by building applications
specifically including motivational affordances, significant performance
gains can be achieved. Competition, on the other hand, appeals to our
needs of achievement and leadership (Weiser, Bucher, et al. 2015), and
mainly works for people in comparable situations. Sepehr and Head
2013 performed a study with college students and found that while
competition is highly motivating, it can also have a detrimental effect
on the enjoyment of a task.

Finally, elements fostering challenge or rewarding certain behaviors
can both also be used as motivational affordances. Challenges primarily
satisfy our need for competence, as we get the chance to evaluate our
performance. They work well for people who do not have a concrete
goal or do not know how to reach one (Gustafsson, Katzeff, and Bang
2010). Rewards relate to the needs of achievement and competence and
are the prototypical example of extrinsic motivators (Reeve 2014; Weiser,
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Bucher, et al. 2015). However, as Deci, Betley, et al. 1981 point out,
while rewards can provide a strong motivational source, they are less
effective for changing behavior in the long term. This is similar to most
extrinsic motivators, as they are not able to generate intrinsic motivation,
and thus the behavior is only changed as long as the motivator exists.
Munson and Consolvo 2012 find that rewards should have a surprising
aspect in order to be effective, and Frederick and Loewenstein 1999

point out that the rewards must be increasing over time to give people
the same amount of satisfaction.

FocusingLocation-
Aware ICT

on geospatial and location-aware technologies, we primar-
ily find applications that assist people in living a healthy lifestyle,
employing game-like elements (Yoganathan and Kajanan 2013). Of-
ten, these applications come in the form of fitness trackers that record
the movement of people and let them evaluate their behavior over a
longer period of time or in comparison with other people. Along the
same line, so-called exergames similarly stimulate (young) people to
perform moderate to vigorous physical activity (Boulos and Yang 2013).
The focus here is more on the game itself, and the healthy lifestyle
is a (desired) by-product. An in-depth review of research combining
location-aware ICT and mobility behavior will be given in section 3.4.

3.1.2 Transport Mode Choice

To know how to best support people in making sustainable mobility
choices, it is important to understand why people choose a certain
mobility behavior, especially since these choices are usually not only
determined by transport mode availability (resp. the built environ-
ment), but also by a variety of socio-demographic, -economic and
-psychological factors (Acker, Wee, and Witlox 2010). Figure 3.3 high-
lights the different choices and influencing factors, as explained in this
section.

ABuilt
environment

wealth of studies analyze the dependencies between the built en-
vironment and travel behavior. Ewing and Cervero 2010 published a
meta-analysis of over 200 studies in 2010, building upon qualitative
work from numerous authors (Ewing and Cervero 2001; McMillan 2007;
Pont et al. 2009; Stead and Marshall 2001). In essence, these studies in-
tend to quantify the “potential to moderate travel demand by changing
the built environment” (Ewing and Cervero 2010, p. 267), including
density, diversity (of land uses), design (of street network), destination
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Figure 3.3.: Different choices available to people when planning mobil-
ity and factors that influence their decisions.

accessibility, distance to transit, demand management (mostly parking
supply and cost) and demographics (Ewing and Cervero 2001; Ewing,
Greenwald, et al. 2009; Ewing and Cervero 2010). To evaluate, they
measure the travel outcome elasticity (e.g., the number of walking trips)
with respect to one of the listed variables. They find that the distance
to the center of town correlates positively with the PMT vehicle miles
traveled, the street density correlates with the use of Slow Mobility (SM)
(whereby they only refer to walking), and the distance to transit as well
as the number of 4-way intersections positively influence the likelihood
of taking PT. Several recent studies examined the effects of city planning
and the built environment on the ecological sustainability of cities, and
argue that shifts towards more dense, mixed-use urban designs will
cause people to rely less on PMT (Sallis et al. 2016; Stevens 2017).

Similar Socio-
economic
factors

to research on the impact of the built environment, researchers
studied the correlations between socio-demographic and -economic fac-
tors and travel behavior. Metz 2010 states that in recent years, even
though private car ownership and average income have increased, peo-
ple still spend roughly the same share of time and money for their travel
needs, numbers that show “relatively stable patterns of variation as a
function of life stage, socio-economic status, and geographical location”
(Metz 2010, p. 670). Gatersleben, Steg, and Vlek 2002 contrast psycho-
logical and socio-economic variables regarding their impact on house-
hold energy consumption, and find that while attitudes correlate with
pro-environmental behavior, the household energy demand is mainly
driven by socio-economic factors such as the income or household size.
Within the mobility domain, Hunecke et al. 2007 find a contradictory
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trend: psychological variables seem to influence both intent- as well
as impact-oriented behavior (however, the socio-economic variables
have to be controlled for). They explain these differences by their more
accurate recording of mobility-related attitudes. Regarding the geo-
graphical differences, Buehler 2011 analyzed the differences in PMT use
between the USA and Germany. Even when controlling for factors of
the built environment and the socio-economic background, people in
the USA travel at least 70% using PMT, whereas in Germany “only the
most car-oriented groups of society display such high levels of car use”
(Buehler 2011, p. 654), a difference that can potentially be explained by
varying transport policies and factors of the built environment such as
the availability of walkways or PT. Meng, Koh, and Wong 2016 build
a multimodal logit model that highlights the dependencies between
socio-demographic features and the choice for the first/last mile trans-
port mode in Singapore. By interviewing 851 participants, they find a
range of significant predictors, such as age, gender, household income,
and a range of factors of the built environment.

WithinCircumstance
and

personality

the context of this dissertation, it is also important to consider
the effects of circumstantial factors and personal traits on transport
choices. Krygsman, Arentze, and Timmermans 2007 investigate cor-
relations between performed activities and mode choices. They find
that people are more likely to include intermediate activities for simple
transport mode chains (such as solely taking PMT), and that complex
mode chains in turn lead to simple activity chains. Similarly, they note
that the spatial and temporal constraints before heading to work are
much tighter, leading to the result that discretionary activities are usu-
ally scheduled after work, and only mandatory activities appear before.
In a study involving Swedish commuters, Vredin Johansson, Heldt, and
Johansson 2006 found that while time and cost play a significant role,
personality traits such as the preference for flexibility or comfort are
able to explain some of the transport mode choices. Similarly, they state
that personality traits determine our attitudes towards the environment,
safety, comfort, convenience and flexibility (Vredin Johansson, Heldt,
and Johansson 2006). Contrasting the results by Hunecke et al. 2007,
Vredin Johansson, Heldt, and Johansson 2006 find no correlation be-
tween the environmental stance of a person and the choice between car
or bus; however, they note that in general a pro-environmental attitude
lets a person prefer PT and SM. Collins and Chambers 2005 performed
a similar study with students in Australia and conclude that due to the
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relatively strong influence of personal beliefs on mode choice, policy
should “address situational and psychological factors in attempting to
encourage a commuter transport mode shift toward more use of PT”
(Collins and Chambers 2005, p. 658). Donald, Cooper, and Conchie
2014 regard the problem utilizing theory of planned behavior (Ajzen
et al. 1991), under which they find that the perceived behavioral control
(the perception that the individual can perform the intended behavior)
is the most impactful variable to predict a travel choice, in contrast to
subjective, moral and descriptive norms. Habits, on the other hand,
may, if existent, “override” all mentioned factors. An important take-
away is that “it may be necessary to break habits prior to implementing
attitude-based campaigns” (Donald, Cooper, and Conchie 2014, p. 46),
something that could be done by changing the built infrastructure, or
forcing people to (re-)make a conscious decision for a transport mode
choice in a previously habit-driven setting.

In the following, we will assess research results regarding choices of
various transport modes.

3.1.2.1 Cycling

With Conventional
Bicycles

the recent focus on environmentally friendly transport modes,
both electric as well as conventional bicycles came under investigation.
Commutes are often subject of study, as they are regular and usually of
comparatively short distances. Heinen, Maat, and Wee 2013 unveil cor-
relations between work-related factors and the choice of an individual
to commute by bicycle. They find that next to the personal attitude, the
expectations of coworkers, infrastructure (availability of storage and
changing facilities) and the availability of a bicycle drive the choice.
Heinen, Maat, and Wee 2011 perform a similar study, finding that for
shorter commutes, the opinion of others is an influencing factor, yet
for longer trips one’s attitudes have to be pro-cycling. Mostly, though,
the direct benefits of cycling (time, comfort, flexibility) determine if
someone commutes by bicycle or not. As weather and seasons might
determine the choice to travel by bicycle, Bergström and Magnusson
2003 preformed a study that evaluated the attitudes towards cycling
at low temperatures. While people who only cycle in summer were
primarily influenced by environmental factors such as temperature,
precipitation or road conditions, people who cycle the whole year
round are mostly driven by the desire to exercise and lead a healthy
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lifestyle. The implications of their research include that health could
be a proxy to achieve environmentally friendly behavior, but also that
by increasing roadElectric

Bicycles
maintenance during winter the number of bicycle

trips could be increased. In similar spirit, Bucher, Buffat, et al. 2019

looked at which energy savings would be possible, given that people
are willing to travel (by electric bicycle) at certain temperature and
precipitation levels. They find that roughly 10% of all emissions from
fossil fuel based commutes could be saved in Switzerland under the
assumption that people would be willing to replace commutes of up to
approx. 15 minutes by bicycle. However, one has to be careful when
promoting e-bicycle choices, as often the involved people are more
likely to transition from PT than from PMT, thus not necessarily largely
changing the environmental impacts (Cherry and Cervero 2007).

3.1.2.2 Public Transport

When it comes to Public Transport (PT), people’s choices are mostly
driven by its frequency, the access and egress times, as well as the
number, location, and context of transfers (whereas waiting and walking
during a transfer is particularly burdensome) (Anderson, Nielsen, and
Prato 2017). In their work, Anderson, Nielsen, and Prato 2017 generated
public transport alternatives and found that while people are willing
to wait a substantial amount of time during long trips, the transfer
penalty similarly increases, indicating that travelers prefer to stay on
a single mode of transport (e.g., to work during a train trip without
transfer). Hensher and Rose 2007 built a nested logit model for both
work-related as well as non-work trips and similarly found that the
number of transfers, the fares (for PT) and costs (for PMT), followed by
in-vehicle and waiting times correlate with the choice for a certain mode
of (public) transport. Vrtic and Axhausen 2002 find that travel time and
the number of transfers are highly decisive, and that one (train) transfer
is equated with 19 minutes in-vehicle time. Another interesting finding
consists of the fact that car owners value the in-vehicle time higher than
people who do not own a car. Ye, Pendyala, and Gottardi 2007 observe
that people tend to choose trip chains before they choose a mode, and
that users of PT prefer simpler trip chains. This in turn implies that
PT providers should not only improve service amenities along their
routes, but also have to “cater to a multi-stop oriented complex activity
agenda” (Ye, Pendyala, and Gottardi 2007, p. 111), which might call
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for more flexible and individual access to PT (e.g., by using bus-on-
demand systems or autonomous taxis). Looking at the choice process,
Bovy and Hoogendoorn-Lanser 2005 additionally find that usually
people first choose a particular station to access PT (based, among
previously identified factors, on personal preferences), after which they
select an access mode. Eluru, Chakour, and El-Geneidy 2012 examine
home-to-work/-school travel patterns, and conform the findings of the
previously mentioned studies: They highlight that in comparison with
trips by train and metro, travel by bus is least favorable; that women
are less sensitive to travel time and that a reduction in bus travel times
would greatly increase the likelihood that people travel by bus.

3.1.2.3 Private Motorized Transport

The use of Single Occupant Vehicles (SOVs) is examined from various
points of view. Klöckner and Friedrichsmeier 2011 represent car choice
using a two-level structural equation model: On the first level, trip
attributes are considered; on the second, person-specific information
about the individual, such as attitudes or personal norms. They find
that the person-specific attributes explain a large share of the variance
in the data, stating that it is thus important to not only consider trip
features, but also individual characteristics. Their findings are sup-
ported by Klöckner and Blöbaum 2010 who mention that situational
constraints explain most of the variance in transport mode choice mod-
els, but that habits and intentions can not be neglected. Regarding
situational constraints, Klöckner and Friedrichsmeier 2011 observe that
car access (which might itself be a “bad” predictor, as car ownership
usually requires a previously undergone decision process of similar
form), trip duration, and the trip purpose are strong predictors for
car choice. The immediate context affects car usage in different ways:
Weather and small disruptions of PT only marginally influence the trans-
port mode choice, while major disruptions have significant impacts.
Finally, they note that habits and perceived behavioral control show
correlations with easily available trip information (such as the purpose
or length of a trip) (Klöckner and Friedrichsmeier 2011). Opposite
interactions between intentions, norms and attitudes, and information
that is difficult to obtain, were established. This means that for habitual
behavior, people tend to rely on simple rules, and that people with
high levels of intention are willing to evaluate more complex decision
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scenarios. For persuasive ICT, it might thus make sense to break down
complexity in new situations, and/or increase the levels of intention,
e.g., to travel in sustainable ways. Taking an intra-household point
of view, Scheiner and Holz-Rau 2012 analyze the gender differences
in households containing more drivers than cars. They find that the
“economic power” within a household (i.e., who earns money) does not
affect car usage, however, there are indicators that the use of a car is
driven by the (gendered) social role someone takes in a household (e.g.,
the person looking after children and being responsible for running
errands might always use the car or vice versa).

3.1.2.4 Electric Mobility

ABuying
Decisions

large field of research is concerned with the question who buys an
electric car. Using a large-scale online survey in Norway, Klöckner,
Nayum, and Mehmetoglu 2013 find that EVs are commonly bought as
a second car, a finding that contrasts the one by Haan, Mueller, and
Peters 2006, which was, however, specifically targeted at the Plugin
Hybrid Electric Vehicle (PHEV) Toyota Prius. In contrast to Battery
Electric Vehicles (BEVs), PHEVs can also be refueled during a journey at a
regular gas station. In their study, Nayum, Klöckner, and Mehmetoglu
2016 clustered ICE car owners into five groups and contrasted them with
EV owners, finding that there are large socio-psychological differences
between ICE car buyers and EV buyers. EV owners are generally more
environmentally friendly and show an increased perceived behavioral
control alongside attitudes and intentions to buy fuel-efficient cars.
However, in summary across all groups, social and personal norms had
little influence (probably due to the comparably high costs involved in
buying a car that made the activation of personal norms inappropriate),
and the buying decision mostly relied on a car’s performance and
convenience attributes. In a 2011 study involving residents of San
Diego county, USA, Axsen and Kurani 2013 found that a large share
of the population would consider a PHEV as their next car, as they
are worried about the limited range and recharging facilities as well
as the high price of EVs. Haan, Mueller, and Peters 2006 point out
the potential rebound effects from buying an electric car: these can
manifest as direct and indirect effects, and macro-level effects (taking a
whole society into account; cf. Berkhout, Muskens, and W. Velthuijsen
2000), both in terms of money as well as sustainability. Interestingly,
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they do not find any rebound effects regarding vehicle size nor vehicle
ownership. It is pointed out that this might also be due to Prius buyers
being “early adopters”, and thus one might not generalize across the
entire population (Haan, Mueller, and Peters 2006). Similarly, there
might be a bias towards environmentally or financially overly aware
people and/or people who do not consider cars as status symbols.

As Range
Anxiety

EVs exhibit some different properties than ICE cars (such as longer
recharging/refueling durations, shorter ranges, possibility to recuper-
ate energy, etc.), researchers studied the differences between people
using ICE cars and people using EVs for travel. Klöckner, Nayum, and
Mehmetoglu 2013 note that especially in households that own an EV

as their only car, the expected annual mileage is substantially lower
than for households with multiple cars. This might be due to the fact
that BEVs show limited ranges, or that people replacing an ICE car with
a EV are actively trying to reduce their mileage. Range anxiety is a
psychological phenomenon that occurs either during a drive when one
realizes that not enough energy is remaining to complete the trip, or
during the planning phase when one has to drive further than maxi-
mally possible with a BEV (Noel et al. 2019). Several researchers argued
that range anxiety “may be an over-stated concern” (Saxena et al. 2015,
p. 275) as most of the regular trips can easily be covered by BEVs, even
after battery degradation or for low-cost models with little range. Rauh,
Franke, and Krems 2015 analyzed the differences in range anxiety be-
tween experienced BEV users and people who never drove a BEV before,
showing that experienced drivers exhibit much lower range anxiety,
confirming the findings of Franke and Krems 2013. They conclude by
stating that “teaching users relevant knowledge and skills [...] could be
one fruitful approach to reduce the experience of range anxiety.” (Rauh,
Franke, and Krems 2015, p.14). Similarly, when traveling by BEV, it was
found that the initial State of Charge (SOC) has a large effect on range
anxiety, and that unambiguous displays (e.g., showing the remaining
range at an accuracy of meters) are perceived as untrustworthy (Jung,
Sirkin, et al. 2015).

3.1.2.5 Shared Mobility

Various Private
carsharing

factors contribute to the likelihood for someone to carshare:
Efthymiou, Antoniou, and Waddell 2013 find that younger and low-
income people are more likely to share their car with others, alongside
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people who are more environmentally aware. It is also noted that
carsharing often replaces PT, similar to bikesharing replacing journeys
previously performed on foot. Their findings coincide with research
by Kortum et al. 2016, who not only point out the generally increasing
usage of carsharing, but also how residential density and the number
of people per household influence both the daily bookings (negatively)
as well as their growth rate (positively). Becker, Ciari, and Axhausen
2017 analyze the use of free-floating carsharing offers and find that
they are primarily used for discretionary trips where no suitable PT

exists; a finding that contrasts with the use of station-based carsharing,
which is frequently used in areas that have good accessibility to PT

and relatively high car ownership levels. In their case, free-floating
carsharing was found to scale with the population density as well
as the number of carsharing members living in a region. Shaheen,
Schwartz, and Wipyewski 2004 note that joining a carsharing program
also affects mobility use: In Europe, Vehicle Miles Traveled (VMT) drop
between 30% and 70%, and from 10% to 60% of all people sell a vehicle
after joining a program. Other benefits of carsharing include the fact
that it reduces the frequency of impulsive trips and makes people
more aware of the actual costs of a trip, which are often concealed
for PMT (Zheng, Scott, et al. 2009). Next to the psychological and
socio-economic resp. -demographic factors, features of the trip itself
also determine the use of carsharing: Most important is usually the
distance as well as the availability of parking at the destination (Fleury
et al. 2017). In their study, Fleury et al. 2017 particularly focus on
corporate carsharing, which describes the concept of having a fleet
of vehicles that members of a company can use at their discretion,
without having individual vehicles assigned. They found that within
this context, ease of use is crucial in determining the intentions of
employees for using the service. Environmental views only marginally
influenced these intentions, related to job performance expectancy.
Finally, communication plays a large role in the adoption of carsharing.
Shaheen and Novick 2005 contrast the use of a brochure resp. a video
and test drive, and find that the intention to use carsharing was 33%
for the first group, and 78% for the second one.
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3.1.2.6 Carpooling and Ridesharing

Ridesharing Definition
and
development

or carpooling is commonly defined as two or more people
sharing a common itinerary and means of transport (Furuhata et al.
2013) resp. “when two or more trips are executed simultaneously, in a
single vehicle” (Morency 2007, p. 240). While there is no consensus on
the differences between the different forms of ridesharing and carpool-
ing, we here adopt the terminology introduced in the work by Agatz
et al. 2012: Carpoolers unite to regularly travel to a certain location
together and often take turns driving (in these cases, there is also no
need for payment). Ridesharing, on the other hand, is more ad-hoc and
between people who usually do not know each other beforehand (and
thus often enabled of facilitated by ICT). Additionally, Agatz et al. 2012

make the distinction between dynamic and static ridesharing, where
dynamic refers to short-term/en-route planning of rideshares, and
static to those problems that can be planned in advance (e.g., a holiday
trip). Technically, this definition includes both intra- as well as inter-
household ridesharing (Buliung et al. 2010; Morency 2007; Vanoutrive
et al. 2012; Teal 1987). We here put a slight focus on inter-household
ridesharing, as it relies more on support from ICT than intra-household
carpooling, which can be formed and planned based on verbal and
informal interaction (but nonetheless should be supported, e.g., by
motivational elements). Ridesharing is part of so-called Collaborative
Consumption (CC) which was recently enabled through ICT and is seen
as a component of the sharing economy (Hamari, Sjöklint, and Ukkonen
2015). Even though it is generally agreed upon that ridesharing has
numerous potential benefits, such as reduced travel costs and emissions,
or better utilization of vehicles and infrastructure (Furuhata et al. 2013;
Amirkiaee and Evangelopoulos 2018), it still only makes up for a small
share of mobility.

Several Characteris-
tics

decades ago, Teal 1987 found that around 18 to 20% of the
American people used carpooling. Out of these, over 40% were mem-
bers of household carpools, which consisted of 2 people in 95% of all
cases. Among the inter-household carpools, 40% were sharing driving
responsibilities (i.e., they take turns as drivers and contributors of a
vehicle), while 39% were only riding, and the rest was only driving.
Typically, these carpools showed a high regularity, being active around
four out of five days per week (which means they are fixed commuting
arrangements). This stands in contrast to intra-house carpools, which



60 background

are used much more infrequently (as they are less formal, and much
more driven by convenience factors than economic ones). While the
share of carpoolers has stagnated or even reclined after the oil crisis
in 1973 (Ferguson 1997; Pisarski 1997; Benklert 2004) and a shift to-
wards intra-house carpooling took place (Morency 2007), it recently
started increasing again across several regions and contexts due to
rising concerns about the environment, increased urbanization and
more convenient access to carpooling through ICT.

ToPersonal
factors

find out what drives people’s choice regarding carpooling, Amirki-
aee and Evangelopoulos 2018 conducted a survey with 481 undergrad-
uate students from a large public university. They found that the
“ridesharing participation intention” is largely driven by one’s attitude
towards ridesharing, which in turn mainly depends on trust, transporta-
tion anxiety and potential time benefits. While trust mostly relates to
the “marketplace aspects” of ridesharing (i.e., one often has to carpool
with a stranger), anxiety refers to the fact that ridesharing has a stress-
migitating effect (Novaco and Collier 1994) and reduces unease due
to a variety of factors such as being on time, parking spaces or traffic
congestion. Time benefits mostly occur if the alternative would be to
take public transport or a form of slow mobility (Amirkiaee and Evan-
gelopoulos 2018). Economic benefits play a minor but significant role,
while sustainability concerns and social aspects do not seem to influence
choices for or against ridesharing at all (Amirkiaee and Evangelopoulos
2018). In contrast to their findings, Hamari, Sjöklint, and Ukkonen 2015

state that the attitude towards a certain CC behavior is significantly
motivated by the sustainability of the activity, as well as its enjoyment.
Politis, Papaioannou, and Basbas 2012 examine the influence of various
behavioral stages on transport mode choice and find that people in
more advanced stages are much more likely to carpool.

TheCorporate and
geographic

factors

accessibility to carpooling resp. ridesharing plays a major role
in its use. A context in which carpooling is often offered is within cor-
porations (due to easy-to-use communication channels with potential
carpoolers, a high regularity of behavior, as well as a guaranteed shared
origin/destination) (DeHart-Davis and Guensler 2005; Vanoutrive et al.
2012). Canning et al. 2010 find that economic aspects are the main
drivers for participating in corporate carpooling, followed by the un-
availability of a personal car, and environmental and social aspects.
Extending this work, Vanoutrive et al. 2012 study the effects of loca-
tion, organization (sector) and promotion (i.e., marketing and man-
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agement measures) on the choice behavior of commuters at several
workplaces throughout Belgium. They find that psychological barriers,
attitudes and perceptions correlate more with the choices to carpool
than socio-demographics. Additionally, the location resp. accessibility
to a workplace influences the use of carpooling, as well as organiza-
tional factors (work schedules or the sector the corporation is active in)
and the amount of promotion carpooling receives from the corporate
management. This is in alignment with research by Teal 1987, who
found a correlation between the trip distance as well as the availability
of public transport and the likelihood of participating in carpooling.
Soft promotion measures (such as marketing or the creation of “pools”)
were found to be less effective than discouraging measures (such as
parking charges) (Vanoutrive et al. 2012; Canning et al. 2010). Compar-
ing their work to previous research conducted by others (Buliung et al.
2010; Canning et al. 2010; Ferguson 1997; Teal 1987), they also note that
general patterns can be recognized. For example, households in lower
income classes seem to carpool more (which might be linked to the
fact that a lower income inversely correlates with vehicle ownership)
and women with small children less often (due to their circumstances,
where they often have to drop off/pick up the child at some place). In
alignment with previous research (Wang 2011), Vanoutrive et al. 2012

thus conclude that access to carpooling should be facilitated, but not
actively promoted in areas with good public transport or bicycling
infrastructure (as it is less efficient).

3.1.2.7 Taxis and Autonomous Mobility

Schmöcker et al. 2008 Taxisperform a transport mode choice study involving
elderly people in London. They find that older people travel approx.
5% of all their trips by taxi, a number that is significantly higher than
the average of around 1.5% in London, and that it involves mostly
homebound trips (e.g., when returning from a shopping center carrying
bags). Among the available transport modes, taxis are as popular as
driving one’s own car or taking bus or tram, before taking the subway
or railway, or being a passenger in another person’s car (the latter is
an indication that people do not like to be dependent on friends or
family). This lack of generalizability in the study of Schmöcker et al.
2008 is partially confirmed by research by Stern 1993, who found that
taxis are an inferior alternative to paratransit services (smaller buses
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that stop on demand). Roorda, Passmore, and Miller 2009 look at
minor transport modes in the Toronto area. With regards to taxis, they
primarily find that these usually originate from within the city center
or are frequently used to travel from/to the airport, and that people
below 19 years are more likely to take public transit, most likely due
to a lack of drivers license and funds for more expensive transport
modes such as taxis. Another interesting takeaway is that people are
approximately six times as sensitive to parking than to travel costs. Jou,
Hensher, and Hsu 2011 similarly look at the use of taxis to get from
Taipei (Taiwan) to the airport and find that both out-of-vehicle (to walk
to the station, search for a vehicle, etc.) and in-vehicle travel time as
well as the overall time savings and the ease of use primarily drive
the transport mode choice. Participants of their survey indicated that
intra-variation of transport mode choices is uncommon, i.e., people
always take the transport mode they are used to. For all participants,
financial aspects, such as parking fees, fuel cost or highway tolls played
an important role and students often asked friends or family to drive
them to the airport. An important takeway is also that the computed
elasticity values for Mass Rapid Transit (MRT) systems indicate that
keeping the out-of-vehicle time low is especially important for the
adoption of public transport. Overall, and as Roorda, Passmore, and
Miller 2009 note, transport mode choice models involving taxis suffer
from a lack of data as this mode is infrequently used in comparison to
others.

EvenAutonomous
mobility

though there are only few autonomous cars on the streets yet
(and those are primarily being used within pilot experiments), several
researchers looked at the intentions and attitudes of people towards
autonomous mobility. Becker and Axhausen 2017 performed a literature
review on the acceptance and pricing of automated vehicles, and make
the distinction between private Autonomous Vehicles (AVs) and shared
AVs (which correspond to on-demand services on flexible routes). The
outcomes of various studies indicate that a substantial share of the
population (18-50%) would either use the technology or at least think
its development is important. Similarly, people would be willing to
pay an additional USD 3’000 to 7’253 for the addition of autonomous
capabilities to their cars. However, the complete dismissal of one’s own
car in favor of a shared autonomous taxi service is only accepted by a
few—most people would rather replace their second car and keep their
primary car for themselves. Autonomous vehicles were also found to
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be more accepted with increasing age (which can be explained by the
physical limitations of older people) and among young people (who are
generally open to new technology). Finally, Becker and Axhausen 2017

summarized that people who travel inter-modally are more inclined
to accept AVs, as are people from urban areas and those who often
travel on highways and in congested traffic. Their findings are partially
overlapping with those by Jing et al. 2019, who do a similar literature
survey, and also perform a study with 906 persons in China. They
particularly highlight that a lack of knowledge about AV technology
and the difficulty of risk assessments are what keeps people from being
highly in favor of AVs. Winter, Cats, et al. 2017 performed a stated-
choice experiment to compare free-floating carsharing and AVs with
PMT and PT. Their takeaway is that while early adopters would favor
autonomous vehicles, there is an aversion among other groups of the
population. Malokin, Circella, and Mokhtarian 2015 examined the
aspects of being able to do other activities while traveling by AV. They
find that this ability significantly increases the perceived utility and
thus helps AVs gaining wide acceptance. However, they also point out
that this might happen as a replacement of PT and carpooling—which
goes against many environmental goals.

3.1.3 Route Choice

Prato 2009 gives an extensive overview of route choice modeling that
includes numerous transport modes within a transportation network.
The author particularly highlights that route choice is fundamentally
different from destination or mode choice, as the number of potential
routes is usually vast, and they are not “readily available” as they have
to be extracted from the transport network. Usually, the problem is di-
vided into two parts: route set generation and choice (whereas a person
chooses a particular route given some utility function on incomplete
information). Starting with deterministic shortest-path algorithms (that
create the K best paths according to some utility function), Prato 2009

reviews labeling approaches (that have multiple optimization criteria,
each assigned to a different label; e.g., shortest path, least congested
roads, etc.), link elimination approaches (that iteratively search for the
shortest path after removing central links from a previously found one),
and link penalty approaches (similar, but instead of removing links they
are heavily penalized). Among the reviewed stochastic approaches, we
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find simulations (that draw link travel times or costs from a chosen
distribution and use it to compute different paths) and doubly stochas-
tic generation functions (that in addition have a stochastic component
that models a traveler’s perception). Other approaches use behavioral
rules or probabilities assigned to each possible route choice, potentially
combined with a perception model that restricts the number of potential
choices. Once a set of choices is available, a route choice model is used
to quantify the likelihood of choosing one route over another Prato 2009.
For example, (multi-nominal) logit models express a probability for
each route within the choice set, based on a given utility function (that
depends on the route and potentially on a person). Various correction
methods exist that reduce the probability for very similar paths. Finally,
Prato 2009 discusses a range of methods that cannot be expressed in
closed-form, and which thus have to be estimated using simulations.

ARoute
preferences

large share of the research on the actual routes people take to
get to a certain destination involve cyclists—probably because safety,
health and route properties matter more when cycling than when taking
other transport modes. Menghini et al. 2010 look at route choices of
cyclists in Zurich based on GPS observations, allowing for much more
fine-grained analyses compared to the traditional stated preference
approaches. In their study, they consider (generated) alternatives to the
chosen route path, and evaluate them with respect to length, elevation,
and road network peculiarities (traffic lights, roundabouts, bicycle lanes,
traffic status, etc.). They find that the most characteristic path property
is its length (for 36%, people chose the shortest route), followed by
properties such as the share of bicycle paths, the gradient of the route,
or the number of traffic lights on the way. As most of their samples
stem from Zurich, which is a comparably hilly city, they mention that it
would be interesting to perform the same study in another city where
people could do detours around hills to see the actual relation between
length and route gradient. The study by Allemann and Raubal 2015

also features cyclists in Zurich; here, the authors search for route choice
factors distinguishing “regular” cyclists from people using an electric
bicycle. The find that e-bikers tend to travel on roads shared with
cars, that the distance is the most distinguishing factor, and that people
traveling by e-bike feel they travel more safely and conveniently. Other
studies include the one by Broach, Dill, and Gliebe 2012, who analyze
a sample of 164 cyclists from Portland, Oregon. They also find that
cyclists are most sensitive to route length, gradient, and number of
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traffic lights, but also to the number of turns along the route as well as
the traffic volume. Additionally, and going towards the analysis of the
effects of the built environment on cycling behavior, they mention that
off-street bicycle paths as well as roads with traffic calming features
are preferred by cyclists. For commuting trips, cyclists were mostly
sensitive to route length and disregarded other route properties.

The The built
environment

last study already highlighted the importance of the built envi-
ronment on route choices. Vedel, Jacobsen, and Skov-Petersen 2017 use
a choice experiment among 3’891 cyclists in Copenhagen to put exact
numbers to the influences of different environmental features: cycle
tracks increase the willingness to cycle by 1.84 km, greenery by 0.8 km,
the avoidance of crowded streets by 1 km, and the absence of stops by
1.3 km. Among the most attractive streets for cyclists are designated
and segregated paths as well as shopping streets. Another important
takeaway is that people who own a car yet still use the bicycle for
commutes primarily do so to get exercise, followed by simply liking to
bicycle, being flexible, and being fast. Caulfield, Brick, and McCarthy
2012 use a stated preference survey and get to similar results: cyclists
prefer segregated routes, independent of their cycling ability, followed
by routes through residential streets and parks. Regarding the latter
“bicycling experience”, Stinson and Bhat 2005 examined the effects of
different experience levels on route preferences. Their classification into
experienced, inexperienced, interested and uninterested cyclists (the latter
being inexperienced as well) aligns well with the different motivational
stages. The most important takeaways are that experienced cyclists are
primarily interested in travel time and less in a possible separation from
automobiles, which is vice versa for inexperienced cyclists. However, in
general all cyclists are interested in minimizing contact with motorized
traffic. Pritchard, Bucher, and Frøyen 2019 performed a study involving
a structural intervention (a new contraflow bicycle lane) in Oslo, and
measured the effects on cycling behavior. They observed behavioral
changes in terms of route choice: the streets running parallel to the
intervention street witnessed a decrease in cyclists, who instead chose
the newly built road, even though it resulted in a slightly larger mean
length of all routes analyzed.
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3.1.4 Relevance to this Dissertation

The given background on psychological needs, motivation, and the
various transport mode and route choices models set the frame for the
research presented in this dissertation. While we will primarily rely on
the presented background regarding motivation to guide the creation
of motivational affordances and gamification elements in chapter 6, the
transport mode and route choice models (resp. the findings on related
predictor variables) are essential to generate appropriate feedback from
recorded mobility data. The choices encoded in their parameters can,
for example, be used to provide personalized route alternatives or to
adapt supporting measures to the individual user (cf. chapter 4 and
chapter 5). As such, an understanding of how they are built and how
people generally choose different transport modes is relevant for the
topics discussed within this dissertation.

3.2 movement and mobility analysis

This section provides background on how individual mobility is an-
alyzed, following the topics of chapter 4: mobility preferences and
goals, systematic mobility, and behavior. As the introductory part of
a special issue on Analysis of Movement Data, and based on Dodge
2016, Dodge et al. 2016 provide a high-level summary of the state of
art in movement data analysis within the broader field of Geographic
Information Science. Essentially, there are two broad areas of research,
namely the understanding of movement and the modeling of it. The
field of understanding movement is further divided into quantifica-
tion, context, and computational analysis, while modeling movement is
linked to its simulation and prediction. Between these two larger fields,
we can find validation (of analytics and models) and visualization
(which helps in exploration, hypothesis formulation and communica-
tion). The following literature review will loosely follow this structure,
but be more adapted to the problems treated within this dissertation.
Figure 3.4 shows the analyses used within the context of this disserta-
tion to build applications that support people in sustainable mobility.
The displayed analysis pipeline was found to be commonly required
for persuasive applications utilizing recorded location data and has
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been partially implemented (and is continuously expanded) within the
Python framework trackintel1.

Trajectory Analysis

Clustering

Similarity Measures

Movement Descriptors

Segmentation

?

Map Matching

Imputation

Outlier Removal

Context

Circumstances

Personal

Geographic

Behavior Analysis

Behavior Change

Systematic Mobility

Individual Preferences

Figure 3.4.: Methods and concepts of movement and mobility analysis
that are relevant for persuasive applications that support
people in sustainable mobility behaviors.

3.2.1 Trajectory Analysis

Movement trajectories are commonly represented as sequences of time-
stamped coordinates, emerging from a positioning system such as GPS,
Wifi networks or cell phone towers. Smoreda, Olteanu-Raimond, and
Couronné 2013 give an overview of different collection methods, and
highlight that even nowadays, with accurate positioning technologies
such as GPS, cellular network data can still be useful, in particular to
perform studies across large geographic regions or involving many
people (Yuan and Raubal 2012; Yuan and Raubal 2016). Within this
dissertation, however, we mostly focus on the use of (individually
collected) GPS data, as it allows assessing mobility on a much more
fine-grained level (Montini et al. 2015). In the following, we summarize
important work from the various stages of trajectory data processing

1 The trackintel framework can be found under github.com/mie-lab/trackintel.

https://github.com/mie-lab/trackintel
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and analysis as presented in the extensive overview paper of Zheng
2015.

AfterUncertainty
and outliers

collecting movement data, it is usually required to remove
outliers, as the underlying data generation methods often exhibit quite
large uncertainty margins. For example, GPS measurements in urban
canyons suffer from low accuracy, an effect that can be countered by
using more satellites, e.g., by combining position measurements from
multiple GNSS (Angrisano, Gaglione, and Gioia 2013). As smartphones
are able to use a wide range of positioning technologies and interpo-
lations (cf. Brimicombe and Li 2009), their accuracies can also greatly
vary (Watzdorf and Michahelles 2010). Wang, Bah, and Hammad 2019

present an overview of the current state of the art in outlier detection.
They classify the available options into distance-, clustering-, density-,
ensemble-, and learning-based approaches. Within the mobility domain,
many outlier detection algorithms focus on identifying anomalous tra-
jectories or (traffic) flows. In order to detect anomalous individual
GPS recordings, Chen, Cui, et al. 2016 propose a method based on
cubic splines (adaptively modeling the trends of trajectories) to remove
individual position fixes and compare it to the more commonly applied
approaches involving thresholds and Kalman filters (Gomez-Gil et al.
2013; Chen, Zou, et al. 2015; Zheng 2015). They note that the advan-
tages of their approach lie in the adaptability (to the trajectory), the
possibility to detect even small outliers, the robustness with regards
to sampling rate, the increased performance, and the fact that their
approach is (almost) parameter free.

AlongMap
matching and

imputation

the same line as outlier detection are both imputation (of
missing values or unknown properties, such as the transport mode
taken) and map matching (the use of geographic context to improve
location measurements). Barnett and Onnela 2020 argue that recording
GPS traces using people’s smartphones leads to a “tremendous missing
data problem” (Barnett and Onnela 2020, p.1). Their approach involves
resampling from previously recorded events whenever a certain interval
does not contain any data. As such, these approaches are mostly
suitable if the gaps in the data are short (but might be frequent). Zafar
et al. 2017 present a solution to the imputation problem that works on
a higher level than the actual position fixes. They essentially cluster
locations (and assign semantic labels to them), which allows imputing
missing locations at a later stage. Similarly, Martin, Bucher, Suel, et
al. 2018 highlight another area of mobility data imputation: for some
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trajectories and locations a person visits, the transport mode or purpose
of the visit are known. Using this information, they propose a method
based on graph convolutional neural networks to infer distributions
over all possible purposes for locations whose purpose is unknown.

A Segmentationrange of approaches exist to segment sequences of GPS position
fixes into parts of movement (covered by a certain mode of transport)
and pauses in between. For example, Li, Zheng, et al. 2008 propose an
algorithm that detects staypoints within a person’s movement. Their
method is based on spatial and temporal thresholds that define how
long a person has to stay within a certain radius before the location
is considered a staypoint. Hwang, Evans, and Hanke 2017 present a
similar approach, based on Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN), that additionally is able to handle temporal
gaps in GPS data. They choose a temporal threshold of 3 min, referring
to other work that proposes a range of 2-30 min for important places
in a person’s life (Ashbrook and Starner 2002; Ye, Zheng, et al. 2009).
Similarly, the spatial threshold (i.e., the ε in DBSCAN) is chosen as 50

m, indicating the distance within which a person has to stay in order
for the location to be considered a staypoint. Biljecki, Ledoux, and
Oosterom 2013 combine segmentation with identification of transport
mode by using OpenStreetMap (OSM) data to extract potential transition
points, and iteratively merging segments that are likely covered by the
same mode of transport.

To Movement
descriptors

make movement data more readily interpretable and to answer
concrete questions, movement and mobility descriptors are commonly
computed. For example, Laube and Purves 2011 compute speed, turn-
ing angle and sinuosity of movement, and explore how different sam-
pling frequencies influence the individual descriptors. They show that
computing these descriptors is indeed highly sensitive to the chosen
sampling frequency and that GPS measurement errors tend to mask the
actual measurements at high frequencies. Hasan et al. 2013 go into more
detail, and propose descriptors such as rankings of different places, trip
length distributions, staytime distributions, or visitation frequencies.
Schneider, Belik, et al. 2013 analyze the sequential patterns appearing
in a person’s mobility and find that we spend most of our trips to reach
up to (the same) four locations. González, Hidalgo, and Barabási 2008

compute measures such as the radius of gyration, individual travel
distances, return probabilities, and visitation frequencies and find that
they commonly follow some characteristic functions (often power laws).
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DetectingTrajectory
similarity

systematic patterns in mobility is usually done using var-
ious forms of trajectory similarity measures. Toohey and Duckham
2015 compare the most common trajectory similarity measures: longest
common subsequence, Fréchet distance, Dynamic Time Warping (DTW)
and edit distance. They all essentially take two trajectories (ordered
sequences of individual position fixes) and return a value in [0, ∞] that
describes their distance in terms of the chosen metric (whereas the
inverse, in [0, 1], describes their similarity). Several researchers have
adapted these general similarity measures to specific problems. For
example, Cruz, Macedo, and Guimarães 2015 consider that in carpool-
ing, pickup and dropoff points play an important role, and that only
one of the participants has a car available. Additionally, intermediate
trajectory points are usually of lesser relevance, as long as the temporal
constraints can be fulfilled and the pickup and dropoff locations are
along the route. He, Hwang, and Li 2014 similarly consider carpooling,
and additionally take into account that in order for two trajectories
to be similar they have to co-occur at roughly the same time. These
problem-specific similarity measures often rely on general trajectory
similarity measures, and combine them with other measures using
weighted models.

BasedTrajectory
clustering

on the similarity values between different trajectories, it is
possible to compute clusters, e.g., to determine frequently traveled
trips or groups of people who could rideshare together. Nanni and
Pedreschi 2006 adapt density-based clustering to explicitly consider the
temporal dimension given within movement trajectories. They argue
that for trajectory clustering, density-based approaches are particularly
useful as clusters do not have to be of spherical nature (in parameter
space), they are very robust to noise, and they do not require an upfront
decision about the number of clusters. Fu, Hu, and Tan 2005, on the
other hand, use pairwise similarity between trajectories and spectral
and hierarchical clustering to group vehicle trajectories from traffic
videos. The application of spectral clustering allows identifying an
unspecified number of dominant paths, while the employed low-level
hierarchical clustering first allows to detect dominant paths, which later
can be refined into individual lanes of the road.
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3.2.2 Context and Circumstances

Contextual Geographic
context

data is frequently used to add additional information to
georeferenced data. Purves et al. 2014 identify three types of contextual
data: data that is collected alongside the movement (e.g., accelerometer
data or the temperature as measured by a smartphone that also collects
the movement data), data that describes the space in which a movement
occurred (e.g., the precipitation or land use), and supplementary data
that describes the movement or data collection process itself (e.g., a
motion function that describes the physical movement of a car). Within
this dissertation, and in line with the work by Siła-Nowicka et al. 2016,
we primarily focus on the second type, namely data that is readily
available in a wide range of geodata repositories and can be spatially
and temporally linked to the movement. The reason for this choice is
that such data can easily be retrieved in a post-processing stage, there is
a wealth of different context data available, and it only requires limited
expert knowledge to integrate (in contrast to, for example, physical
models of vehicles).

In the context of Volunteered Geographic Information (VGI), Spin-
santi and Ostermann 2013 use distances to other geographic entities,
the population density and the predominant vegetation type within a
region as context, but mention the possible use of socio-demographic
parameters, historical measurements or infrastructure conditions. Get-
ting closer to the topic at hand, Buchin, Dodge, and Speckmann 2014

argue that since context drives mobility choices and patterns, it is of
paramount importance to include it within its analysis. Inspired by a
case study involving hurricanes, they postulate that geographic context
comes in the form of networks (e.g., trains are restricted to drive on
the railway network), land cover, obstacles (that hinder the passage
through a certain geographic space), terrain (i.e., changes in elevation),
ambient attributes (e.g., weather), time, and presence of other agents.
Further, they note that context can be discrete or continuous, as well as
dynamic or static. The presence of dynamic phenomena is noteworthy
as an agent moving along a trajectory will “sample” the phenomena at
different points in time. Taking similarity analysis as an example, they
propose to combine contextual and spatial distance. In particular, they
compute a separate contextual distance based on the different context
areas the original trajectory passes through and combine it with the
spatial distance by introducing a context weight. As an introductory
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article to the special issue Geographies of Mobilities, Kwan and Schwanen
2016 note similarly that we have to move beyond the “traditional notion
of a static, area-based geographic context” (Kwan and Schwanen 2016,
p. 251) as movement takes place in space and time, and is tightly linked
to continuously changing context. Kwan 2012 introduces the uncertain
geographic context problem, which similarly highlights the difficulties
in assigning context to movement. In this case, the uncertainty arises
from a lack of knowledge about the “influence area of” resp. “duration
of exposition to” a certain contextual phenomenon, a problem that is
closely related to the Modifiable Areal Unit Problem (MAUP) (which
describes that aggregating measurements of geographic phenomena
into districts has far-reaching impacts on the resulting summary statis-
tics). Siła-Nowicka et al. 2016 regard the analysis of human mobility,
and focus on the relation between context and chosen transport modes
as well as visited locations. In their work, context includes public
transport data (station locations) and POI data (augmented via manual
inspection through Google Maps and OSM). Especially the geographic
information about PT stations as well as the timetables for buses, trains,
etc. can be used well for transport mode inference. Common to all these
integrations of context and movement data is that they are manually
defined by experts and restricted to the problem at hand. In chapter 4,
we will treat this problem by introducing a formalism for specifying
how context and mobility data should be combined.

NextPersonal
context and

circum-
stances

to geographic context, a variety of other, mostly temporal and
personal information should be considered as circumstantial. Lovett
et al. 2010 show that personal calendars in combination with social
network data provide a valuable source of contextual information. They
argue, however, that the calendar alone is unreliable (as meetings are
often shorter than planned, get canceled, etc.), and propose a data fusion
method that is able to create missing calendar entries. Their data fusion
pipeline uses spatio-temporal co-occurrence of office workers, searches
their communication history for potential events, and schedules or
updates “missing events” accordingly. Do and Gatica-Perez 2012 use
an ensemble model that is able to exploit multi-dimensional context in
order to solve next-place and stay duration prediction. In their case,
context consists of the hour of day, day of week, an indicator separating
weekdays from weekends, visit frequencies, average stay duration, the
number of Bluetooth devices in the vicinity as well as an indicator if
someone was using his or her phone. Adding these variables allowed
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the researchers to improve both the next place as well as the duration
prediction accuracy.

3.2.3 Mobility and Transport Behavior Analysis

The survey by Lin and Hsu 2014 groups numerous mobility analysis
methods into four areas: location inference, transport mode identifica-
tion, trajectory mining and activity recognition. While many of them
are closely related to the above introduced trajectory analysis methods,
we here consider their use to detect individual mobility preferences,
systemic aspects of mobility, and how the use of mobility changes over
time.

Next Individual
preferences

to extracting general properties of (collective) mobility, move-
ment trajectories are also being used to extract individual mobility
preferences. Often, the aim is to improve smartphone route recom-
mendation applications. Nack et al. 2015 propose a method to extract
mobility habits that involves movement segmentation, transport mode
identification and trajectory clustering. Based on the resulting clus-
ters (and the associated travel distributions), a heuristic for destination
prediction (based on visitation frequency, the weekday indicator and
the distribution of departure times) is presented. The authors also
introduce an approach to identify habits based on counting how often
a certain trip was made within a certain time frame, which they argue
could be used to help people plan their daily schedules. With a sim-
ilar intent, Logesh, Subramaniyaswamy, and Vijayakumar 2018 build
a travel recommender system utilizing location data and a person’s
social network profile. Based on individually generated POIs for each
user, a recommender system proposes a route (taking into account
the actions of similar users in similar situations), and a feedback loop
lets the system store a user’s decision for future use. Wu et al. 2018

propose a method that considers both individual preferences as well as
social interactions within groups to improve location prediction. The
presented two-stage approach first identifies groups of trajectories (after
clustering locations into places and extracting transition edges from
them) and individual moving preferences (time-dependent transition
probabilities between locations), after which they are integrated using
a linear regression model to yield transition probabilities that can be
used for location prediction. Their results show that the prediction
accuracy improves, and that the social interaction influence makes up
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for roughly 30% of the predicted probability. A similar split into in-
dividual and collective preferences is given by Calabrese, Di Lorenzo,
and Ratti 2010, who also rely on geographical context such as land use
or POIs in vicinity. While they use a similar linear regression model
for combination, they do not group people according to their mobility
behavior, but instead formulate general properties of mobility based on
traveled distance, visited POIs and involved land use types.

Generally,Systematic
mobility

many location data mining techniques aim at finding
regularities (and correspondingly, irregularities) in mobility behavior
of people. Within this dissertation, we are primarily interested in
mining trajectories from single persons, in order to find characteristics
and patterns within their individual behavior. This is in contrast to
a large amount of work on general laws of mobility, such as the ones
by González, Hidalgo, and Barabási 2008 describing travel distance
distributions or return probabilities or the ones by Alessandretti et al.
2018 elaborating on the conserved quantity of visited places (which
is approx. 25). Pappalardo et al. 2015 process a large dataset from
central Italy and find that people either follow an explorer or a returner
pattern in their mobility. While returners exhibit a great amount of
regularity by only visiting a few preferred locations, explorers like
to visit previously unseen locations. To group people into the two
classes, the k-radius of gyration is introduced, namely the radius of
gyration (the average weighted deviations of all visited locations by
an individual from the center of mass for said individual) over the k
most frequented locations. However, while this computation of radius
of gyration gives valuable insights about an individual’s movement,
it does not say anything about the regularity of individual trips. He,
Li, et al. 2012 analyze individual users’ trajectory histories in order to
find routes that a user frequently covers at roughly the same time of
day. Their approach involves building a series of temporal grids, which
are used to group trips that were taken at roughly the same time. The
resulting shared trajectories are called support routes, and are matched
to each other via the use of a grid-based route table (that essentially
stores all the support routes’ trackpoints from different users in a grid).
A query for a potential ridesharing trip then simply has to search for
multiple routes appearing in both the origin and destination cell of
the route table. While the ultimate goal in the work of Wang, Yuan,
et al. 2015 is location prediction, they split a person’s mobility into
regularity and conformity: regularity is essentially computed based
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on the visitation frequencies of various locations, and conformity is a
time-dependent property that denotes if a location is frequently visited
by similar people. Their results again highlight that people’s mobility
behavior is highly systematic, yet in those cases where they deviate
from their usual patterns, considering the behavior of similar users
allows inferring what they do instead.

As Behavior
change
detection

supporting eco-friendly behaviors play a central role within this
dissertation, we argue that the detection of different stages of behavior
and the transitions between them are of importance. To the best of our
knowledge, only a few studies have covered the topic of intra-person
mobility variations. Schlich and Axhausen 2003 examined habitual
travel behavior based on a six-week travel diary and several different
measures to capture the similarity of travel behavior: the frequency of
similar activities within a certain period (based on Hanson and Huff
1986), the frequency of matching trips on two different days (based on
Huff and Hanson 2010), a two-level daily comparison of trips (where
first the order of trips is compared, and if there is a match, secondary
attributes such as the mode or trip purpose are considered; cf. Pas 1983),
a time budget-based measure that compares activities performed within
certain intervals (based on Jones and Clarke 1988), and several others.
Their results show a high variability among the different measures,
especially when using the trip-based methods. Additionally, they show
that for the whole 6-week survey period there are no two days that
are completely dissimilar and they state that behavior is thus neither
“totally repetitious nor totally variable” (Schlich and Axhausen 2003,
p. 34). They conclude by saying that adapted measures that account
for different groups of persons (with comparable temporal demands)
could improve the measure of variability and facilitate recommend-
ing travel options that have a lower environmental impact. Pendyala,
Parashar, and Muthyalagari 2001 compute some of the same measures
on a dataset from 81 individuals, collected over at least three weekdays.
They find that weekdays play a large role when computing the variabil-
ity (on weekdays, mobility behavior varies much less); similarly, longer
observation periods lead to a larger variability. Additionally, they state
that using GPS data leads to higher variabilities than using travel diaries
(which are a more coarse representation of mobility behavior). Stopher,
Moutou, and Liu 2013 analyze the effects of a travel behavior change
initiative in Australia. They measure the variability between different
analysis “waves” and find that people taking part in the initiative lower
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their daily traveled kilometers by 5-6. Waerden, Timmermans, and
Borgers 2003 use a survey to look at transport mode choice behavior
after key events, such as home relocation, changing jobs, or buying a
car. Among the recorded parameters within their study they looked at
how a key event influenced the number of available alternatives as well
as their characteristics (e.g., travel costs, comfort or reliability), how it
affected the attitudes of people towards a transport mode, and how it
affected the choice behavior. They found that key events significantly
impact the number of alternative options as well as the key character-
istics of them. While the attitudes of people were not greatly affected,
their behavior changed after moving to a new place, starting to work,
and experiencing a change in the work situation. Lanzendorf 2003

theoretically introduces “mobility biographies” that aim at capturing
an individual’s mobility behavior over his or her life time, modeled as
a sequence of impactful events within the three domains life (including
social and cultural environments), accessibility (of relevant locations)
and mobility (availability of various transport modes). Explicitly mod-
eling effects of age, household composition, income, professional career,
leisure activities, or transport system changes allows us to put these
events into relation with the corresponding mobility choices.

3.2.4 Relevance to this Dissertation

The given background on movement and mobility analysis is used as
a foundation for the research presented in chapter 4. In particular, we
build upon the research presented in this section when presenting the
methods for the systematic combination of context and mobility data,
the extraction of descriptors specifically tailored for eco-feedback, as
well as the automatic detection of behavior changes. As was highlighted
in this section, while there is a wealth of research available on these
topics, the focus is seldom on supporting individuals in sustainable
mobility choices. Next to considering individual circumstances, con-
text, preferences and attitudes this also entails a stronger focus on the
question of what is sustainable, which information is supportive for
reaching sustainable behaviors, and how behavior (and changes thereof)
can be quantified and automatically analyzed.
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3.3 planning transport and mobility

To generate alternative route options and assess a person’s behavior, a
wide range of route computation methods are available. Bast, Delling,
et al. 2015 give an extensive overview of the current state of the art
in route planning on street networks, public transit graphs, as well
as for inter-modal routes combining the previous two, but also more
niche transport modes. In the following, we first review research in
single-mode route planning for the most important transport modes,
followed by a summary of the current research in multi-modal route
planning as well as personalization of routes. Figure 3.5 shows the
different problem settings and visualizes their characteristics.

Single-Mode
(Static Networks)

Single-Mode (Dynamic/
Scheduled Networks)

Single-Mode
(Flexible Networks)

Multi-ModalPublic Transport Personalization

Figure 3.5.: The different characteristics of the available transport modes
lead to a range of approaches to plan routes for the respec-
tive infrastructure (usually formalized as a graph).

3.3.1 Planning Single-Mode Transport on Static Transport Networks

Arguably the most well-researched route planning happens on static
transport graphs such as street or walkway networks. What roughly
started with Djikstra’s (Dijkstra 1959) and Bellman-Ford’s algorithms
(Bellman 1958) to find the shortest path between two nodes in a graph
in the 1950s was soon challenged by applying bidirectional search
(Dantzig 1962) or the Floyd-Warshall algorithm to compute the all-
pairs distance (Floyd 1962). In a similar fashion, heuristic approaches
like A∗ (Hart, Nilsson, and Raphael 1968), which in its simplest form
uses the Euclidean distance to the target node for greedy search, were
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developed to handle large graphs. More modern approaches usually
involve a lengthy preprocessing phase during which nodes are sorted
according to their importance. For example, approaches involving
landmarks choose a set of vertices to and from which the distances
to all vertices in the graph are computed (Goldberg and Harrelson
2005). Using the triangle equality, it is then possible to compute lower
bounds for the distance from any vertex to the target, and iteratively
choose the vertex with the lowest bound for further continuation of the
algorithm. Similar, but not using individual vertices, is the approach
of Arc Flags (Köhler, Möhring, and Schilling 2006). The idea here
is to separate a graph into multiple (roughly equal-sized) subgraphs
and note for each subgraph if it lies on a shortest path to any vertex
in each of the other subgraphs. A shortest path algorithm can then
quickly prune subgraphs that do not lie on the shortest path to the
target subgraph. The algorithm has successfully been extended with a
hierarchical component whereas the subgraphs themselves are grouped
and pruned either as an aggregate or (if the subgraph lies on the
shortest path to the target) individually one layer below (Möhring et al.
2007). Using separators (essentially a set of vertices whose removal
splits the graph into multiple smaller subgraphs; for street networks,
these could, for example, lie on roads between towns) and shortcut
graphs (that preserve the distance property between any two vertices in
the graph) (cf. Van Vliet 1978; Eppstein and Goodrich 2008), speedups
in route computation can be achieved as it can largely be performed on
the overlay graph, connecting individual separated subgraphs.

AmongHierarchical
methods

the best-performing algorithms are those that make use of
hierarchic structures in transport networks given by arterial roads such
as highways (essentially adopting a “divide and conquer” strategy),
similar to the way humans commonly plan routes (Car and Frank 1994).
Highway hierarchies (Sanders and Schultes 2012) and highway node
routing (Schultes and Sanders 2007) are two approaches that use the
fact that long-distance queries primarily result in routes passing a few
important nodes. Contraction hierarchies are a similar and widely-used
approach (Geisberger et al. 2012) that inserts shortcut edges between
nodes and ranks them according to their importance. The bidirec-
tional routing algorithm then always follows edges to “more important”
nodes, which will result in the shortest path while only visiting a small
subset of all nodes. Bounded-hop techniques such as labeling algo-
rithms (Peleg 2000) or transit node routing (Bast, Funke, et al. 2007)
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precompute distances and store them as labels or special nodes within
the graph for each node in order to have very low query times which
essentially consist of only a few table lookups. As most of the rout-
ing methods exploit one or another transport network property, their
combination can yield further speedups. For example, the combina-
tion of landmark- and hierarchy-based methods (Goldberg, Kaplan,
and Werneck 2009) allows precomputing distances only for landmarks
higher up in the hierarchy, resulting in space savings. In practice, the
choice between one or another algorithm is usually driven by several
properties: preprocessing time, disk storage space, and query time,
which have to be traded off against each other. For a wide range of
realistic scenarios, other properties come into focus, such as dynamism,
time-dependence, or multiple objectives.

3.3.2 Dynamic Networks

Considering routing on street networks, dynamism plays an important
role: traffic jams lead to lower average speeds, accidents can block
routes, etc. A straightforward approach to using the above methods is
simply to rerun the preprocessing on the updated graph. As this can be
exhaustively costly, approaches were developed to selectively update
the routing graph (Delling and Wagner 2007; Schultes and Sanders
2007). It is also possible to have a resilient algorithm that still yields
correct routing results after updating weights, albeit with longer query
times (Delling and Wagner 2007; Geisberger et al. 2012). Probably
the most successful approaches nowadays split preprocessing into a
metric-independent phase, followed by a metric-dependent phase that
can be run much quicker (Efentakis and Pfoser 2013; Dibbelt, Strasser,
and Wagner 2014). Similarly, for many networks the dynamism is
(approximately) known in advance (e.g., traffic jams tend to happen
regularly at the same locations). Instead of using scalar edge weights
in the transport graph, they can be modeled as functions of time. With
slight adaptations, most of the presented approaches still work, albeit
with longer query times (Cooke and Halsey 1966; Delling and Nannicini
2011; Batz et al. 2013), and often under the condition that the First In
First Out (FIFO) property holds (departing later cannot lead to an earlier
arrival). Closely related are range queries, whose purpose is to find the
best shortest path through a time-dependent network both in space as
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well as in time (i.e., the departure and arrival times are not given, cf.
Dehne, Omran, and Sack 2012).

3.3.3 Public Transport

A large difference between road and public transport networks is the
schedule-based nature of the latter. Most PT systems around the world
follow the same structure: a number of vehicles drive along given routes,
stopping at predefined stations at specific points in time. To enable
integration into PT route planners, they usually publish their timetables
in the GTFS format, which follows the same structure (Google Inc. 2020;
Barbeau 2013). The two main approaches to model PT networks are
time-expanded and time-dependent (Bast, Delling, et al. 2015). The former
models all the possible departures from stops (at different times) as
individual vertices and uses directed edges to connect them, taking
into account time (e.g., departures at a certain stop can only be taken
when coming from edges that arrive earlier) (Pallottino and Scutellà
1998; Schulz, Wagner, and Weihe 2001). Various approaches exist that
refine this model, e.g., by introducing minimal transfer times at stops,
or by using the periodicity of a timetable to save space by encoding
multiple departures into the same nodes. The time-dependent model is
similar in nature to the dynamic transport graphs for road networks
described previously. To save space, transfers are not unrolled, but
instead time-dependent functions encoding the possibility to transfer
from one vehicle to another at a given time are used (Stølting Brodal
and Jacob 2004). Closely related are frequency-based models that store
the time-dependent transfers simply as the initial departure time plus
the frequency along the given trip (Bast and Storandt 2014).

A variety of algorithms try to solve either the earliest arrival problem
(how to get to the destination as quickly as possible), the range problem
(given a departure time range, what are the quickest options to get to
the destination), the latest departure problem (when does a trip have
to leave at the latest to still be at the destination before a given time),
or a range of multicriteria problems (e.g., to minimize the number of
transfers) (cf. Bast, Delling, et al. 2015). While many algorithms are
comparable to their counterparts on road networks, some different ap-
proaches like the Connection Scan Algorithm (Dibbelt, Pajor, Strasser,
et al. 2013) or Round-based Public Transit Optimized Router (RAPTOR)
(Delling, Pajor, and Werneck 2014) exist. They use the fact that by in-
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volving a temporal component the graphs become directed and acyclic,
and can be stored in different structures such as departure-time-sorted
arrays that can be scanned to get a PT route (Dibbelt, Pajor, Strasser,
et al. 2013). The approach by (Delling, Pajor, and Werneck 2014) is
essentially a dynamic program operating on arrays of trips and routes.
Each of these arrays is scanned to retrieve reachable stops, which in
turn lead to subsequent scans at the next iteration of the algorithm.

3.3.4 Carpooling and Ridesharing

Rideshare Fuzziness,
flexibility,
dynamism

and carpooling trips are generally longer than regular trips
(Ferguson 1997), partially due to the required detours to pick up and
drop off passengers which make up around 17% of the trip distance
(Rietveld et al. 1999). These detours make rideshare planning a non-
trivial problem, especially considering the flexibility of the drivers and
riders, the fuzziness of the itinerary descriptions, and the potential
to pick up and drop off multiple people (Huang, Bucher, et al. 2018).
Of further importance for a rideshare planning system are the facts
that the involved entities are independent (thus both have to access the
same system to find each other), they usually have a financial incentive
(i.e., a matching system should account for potential costs), there is
a base “fear” of traveling with a stranger (which can be alleviated
by introducing a rating system), and that there are several ways how
people can be matched (single driver, single rider, multiple drivers,
multiple riders, and combinations thereof).

The focus of this dissertation on dynamic and inter-household rideshar-
ing also means that the origins and destinations do normally not exactly
correspond to each other, and suggests solutions globally optimizing
driver and rider assignments. However, this global perspective on the
ridesharing problem (which can be optimized for minimal system-wide
vehicle-miles, minimal system-wide travel times, or maximal number
of riders; cf. Agatz et al. 2012) is of little interest to the individual
traveler, for which reason we focus here more on the planning steps
for an individual route request. Raubal, Winter, et al. 2007, based on
the theoretical model presented in previous work (Winter and Raubal
2006), provide a solution based on short-range communication between
individual agents that uses concepts from time geography to bound the
number of possibly shareable trips. Depending on the intended travel
distance, drivers usually only denote pickup and drop-off regions, as
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they are able to move much quicker than the rider, and thus are flexible
in their pickup and dropoff locations. These fuzzy descriptions and the
flexibility of drivers and riders lead to the fact that even though there
are many specialized web platforms that facilitate access to carpooling,
there is usually much manual planning and negotiation involved. To
extend the use of carpooling into persuasive mobility support systems,
it is important to develop planning systems that combine various trans-
port modes (esp. public transport) with carpooling (Aissat and Varone
2015; Bit-Monnot et al. 2013; Huang, Bucher, et al. 2018).

InLinking general, multi-modal routing is achieved by linking several trans-
port networks using, for example, a nearest-neighbor approach (Bast,
Delling, et al. 2015; Pajor 2009). In this case, every node of one transport
network is linked to the closest node of another (e.g., a train station
would be linked to a footpath close by). Aissat and Varone 2015 propose
a method (based on previous work by the same authors, cf. Varone and
Aissat 2015) that tries to replace sub-paths of a multi-modal planner
with carpooling offers. Their method involves a way to determine the
suitability of a certain rideshare offer for the completion of a user’s
itinerary, a substitution process to select the best driver, and a pruning
of offers based on their arrival time. Bit-Monnot et al. 2013 present the 2
synchronization points shortest paths problem and propose an efficient com-
putation of itineraries, using a heuristical landmarks-based approach.
Huang, Bucher, et al. 2018 extend the idea of nearest-neighbor-based
linking with the concept of Drive Time Areas (DTAs). A DTA denotes
the area that someone can realistically reach within a certain amount
of time. By linking transport networks based on drive time area, the
flexibility and fuzziness of carpooling can be incorporated into the
planning problem. Referring again to the work by Agatz et al. 2012, the
authors state that there are still many open points regarding rideshare
planning: In particular, optimization (to handle a large number of po-
tential rideshare participants), incentives to attract people to ridesharing
systems, and the inclusion of people’s preferences in order to give them
meaningful choices, are open problems.

3.3.5 Electric Mobility

Related to the different characteristics of EVs (e.g., shorter ranges
inducing range anxiety, longer recharging times), many researchers
started adapting route planning methods to account for the State of
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Charge (SOC). Within this context, the elevation profiles, road types, as
well as the braking behavior resp. energy recuperation functionality
gain in importance. Yao et al. 2013 use floating car data collected by
cars in Beijing to determine the impact of road type on the energy
consumption of vehicles. Their findings correlate vehicle speed with
road type and energy consumption, and can be used as input for a route
planning on a dynamic graph. However, as they do not include eleva-
tion, their model is mostly applicable to flat areas. Graser, Asamer, and
Ponweiser 2015 explicitly study the impact of different Digital Elevation
Models (DEMs) and interpolation methods on the energy consumption
estimation and find that high-resolution DEM can explain up to 30% of
the used energy by changes in elevation. Baum et al. 2014 similarly
consider elevation, but focus on finding routes that trade off speed
in favor of energy conservation (i.e., they evaluate multiple different
speeds on the same road segment). They propose heuristics to speed
up computation times by several orders of magnitude. Another inter-
esting problem is the consideration of recharging stations for extremely
long trips or for vehicles that are operated for many consecutive hours
(e.g., taxis or delivery vehicles). Schneider, Stenger, and Goeke 2014

consider a special case of the Vehicle Routing Problem with Time Win-
dows (VRPT), whereas delivery vehicles have a number of recharging
stations available to deliver goods to a number of clients (within given
time windows). They essentially solve a mixed-integer program that
optimizes the traveled distance but respects the fact that the SOC never
can get below zero, next to the usual boundary conditions (essentially
to serve all customers within their time window).

3.3.6 Autonomous Mobility and On-Demand Offers

On-demand mobility is often regarded from a holistic optimization
point of view, commonly termed as Dial-A-Ride Problem (DARP) (Cordeau
and Laporte 2007; Berbeglia, Cordeau, and Laporte 2010). The problem
consists of multiple vehicles that should serve a set of clients, expressing
route requests from a given origin to a destination, and will likely gain
in importance with an increasing autonomy of vehicles. The problem
itself is a generalization of a number of other problems such as the
pickup and delivery vehicle routing problem, the traveling salesman
problem or the VRPT introduced above (however, these are mostly con-
cerned with non-human cargo). In general, these problems are solved
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using dynamic, linear or mixed-integer programming with a number
of constraints (Cordeau 2006). Usually the optimization is only solved
on the subgraph of direct links between pickup and dropoff locations.
Garaix et al. 2010 propose a more flexible approach involving a number
of alternatives that can be used within a multi-criteria optimization.
This is especially important if not only travel time, but also cost should
be globally minimized. Closely related is the Demand Adaptive System
or Mobility Allowance Shuttle Transport (MAST) problem (Malucelli,
Nonato, and Pallottino 1999; Quadrifoglio, Hall, and Dessouky 2006),
which arises from having fixed-route transport that is allowed to deviate
slightly in order to pickup and dropoff people along the route (often,
this is employed during phases of low demand to reduce the number
of vehicles and routes in operation). Quadrifoglio, Hall, and Dessouky
2006 look at the problem by (theoretically) evaluating the impact of
deviation corridor size on the throughput and transportation speed and
providing a formalism to compute upper and lower bounds. Zhao and
Dessouky 2008 perform a similar analysis and find that the optimal
length of a MAST service corridor is roughly half of the distance that
the shuttle could travel within one service cycle.

3.3.7 Planning Multi-Modal Mobility Options

Looking at the problem of getting from one location to another from an
individual traveler’s point of view, it becomes clear that the integration
within a larger transport network (and especially other transport modes)
has to be considered. Generally, the combination of multiple transport
mode graphs can be done by inserting transfer edges (Bast, Delling, et
al. 2015), whereas the same model as introduced above can be used for
the different transport modes. In particular, the restricted networks (PT,
bikesharing, ridesharing, etc.) are connected by unrestricted transport
modes (walking, driving by car, taxis, etc.). Often, the computed routes
are selected due to some combined criterion: monetary cost, travel
time, number of transfers, walking duration, etc. (Bast, Delling, et
al. 2015; Delling, Dibbelt, et al. 2013). Because simply applying one
of the above introduced algorithms can lead to high query times in
multi-criteria optimization settings, some of them have been explicitly
adapted to the problem. Delling, Dibbelt, et al. 2013 present multimodal
multicriteria RAPTOR that operates in rounds during which either a
separate algorithm for PT or an unconstrained transport mode is run,
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after which the criteria are recomputed for all reached vertices. Bast,
Brodesser, and Storandt 2013 formulate a set of axioms that determine
trips that a user would unlikely take, which can be used at query time
to filter out unlikely routes.

Another approach to yield feasible routes was introduced by using
label constraints, whereas the labels denote different transport modes
and enforce a certain order in the mode sequences (Barrett, Jacob, and
Marathe 2000). Having their roots in regular language concepts, the
label constraints can be combined with a range of routing algorithms
to retrieve shortest paths along combined networks. Many of the
previously presented algorithms have been adopted to work with label
constraints, e.g., contraction hierarchies (Dibbelt, Pajor, and Wagner
2015) by only contracting vertices which belong to the subgraph of the
same transport mode. Querying then consists of both a query in the
contracted subgraphs, as well as running Djikstra’s algorithm on the
uncontracted core graph.

Horn 2004 considers the combination of fixed-schedule and demand-
responsive modes. He classifies transport modes into four classes: fixed
route modes (conventional PT), smart shuttles (on-demand buses that
are either zone- or point-based), roving buses (free-range service with
pickup and dropoff restricted to PT stops), and taxis (door-to-door, may
carry multiple passengers). The journey planner, which is orchestrated
by a request broker (that can book on-demand services), essentially
searches the route solution space in a breadth-first way, whereas one-
legged journeys are considered first, followed by two-legged journeys,
and so on. The reasoning behind this is that in reality preferred routes
often involve the least number of legs, as waiting times or walking
during mode transitions is badly perceived by travelers. As the resulting
solution space can potentially be huge, various speedup techniques
are proposed, such as not considering nodes with later arrival times,
introducing time limits for waiting at intermediate nodes, etc. Horn
2004 also mentions the importance to include user preferences and even
more flexible on-demand services in the future.

Brands et al. 2014 build a multimodal router that additionally uses
route, stop and line choice models (logit) to consider how many and
which people would choose a certain route over another. Using a
similar approach, Ambrosino and Sciomachen 2014 use a multi-criteria
objective function and focus on “commuting points” that aggregate
many of the routes within the network through them. Their heuristic



86 background

approach yields a sequence of commuting points, but does not consider
more niche transport modes (on-demand, sharing, etc.) and different
user perceptions or preferences.

3.3.8 Personalization

WithSingle-mode
transport

the increase of available data about individual’s mobility choices
and preferences, personalization gains in importance and new methods
and approaches become feasible. Personalization is possible within
individual routes traveled by a single mode of transport, as for example
shown in the work of Letchner 2006. The authors use historical GPS

traces to predict possible travel times (based on a speed extraction) and
user preferences (by introducing an inefficiency ratio that denotes how
far the chosen route deviates from the shortest one). The latter are
incorporated into the routing algorithm by defining a utility function
that prefers previously traversed road segments, arguing that people
are likely to choose the same paths that they did before. Priedhorsky
et al. 2012 rely on the concept of “bikeability”, which denotes for each
street segment and user how well it is suited for traversal by bicycle.
They introduce various algorithms (clustering-based, collaborative fil-
tering, machine learning) that predict the bikeability along a certain
road segment for a given user and find that even simple approaches
like taking the average of a user within a cluster leads to promising
results. Funke and Storandt 2015 similarly provide single-mode route
personalization, but pay more attention to the fact that commonly used
routing algorithms on large graphs assume that the graphs are mostly
static, thus they cannot easily account for personalization. Their ap-
proach is based on the notion of k-path covers of graphs (essentially
sets of nodes where each path of length k in the graph will pass at least
one node in the set), on which various properties are computed that
can be weighted during routing. The result is that the routing graph
becomes much smaller, which in combination with pruning methods
(that remove parts of the graph that would always be dominated by
others) lead to speed-ups of around 20 to 100 over regular Djikstra. Dai
et al. 2015 introduce (evolving over time) travel preference distributions
that balance various features of trajectories against each other and are
computed on historical data (e.g., distance vs. travel time, distance
vs. fuel consumption, etc.). The routing algorithm then uses these
preferences by looking for similar users that traveled from the chosen
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origin to the destination and weighting their routes with the preferences
of the user under consideration.

Another Multi-modal
transport

form of personalization happens in multi-modal routing.
Bouhana et al. 2013 use historical interactions of a user with a routing
system (whereas each of these interactions consists of some problem
data like demographics of the user or the trip’s origin and destination
as well as some solution data, i.e., the actually proposed and/or chosen
trip). In their case, the personalization consists of selecting a solution
based on the similarity of the problem data. Campigotto et al. 2017

present an approach that initially uses a similar classification into user
groups based on socio-demographic attributes, after which a stated
preferences survey further refines their profile. During interaction with
a routing system, their continuous route choices can be used to further
update their profiles. The actual routes are then computed with any
graph-based routing algorithm that allows dynamic updating of edge
weights (according to the users’ profiles).

3.3.9 Relevance to this Dissertation

The given background on route planning will primarily be used within
chapter 5, where we try to overcome some of the limitations given by
the current state of the art: Bast, Delling, et al. 2015 note that even
though the progress in route planning in the last decade has been
substantial, we are still not at the point where we have a worldwide
multimodal journey planner that takes into account “real-time traffic
and transit information, historic patterns, schedule constraints, and
monetary costs [and combines them] in a personalized manner” (Bast,
Delling, et al. 2015, p. 64). We especially argue that personalization
and context-dependence is important within the setting of persuasive
applications supporting sustainable mobility behaviors, as it allows pro-
actively interacting with users (e.g., by providing gamification elements
or providing route alternatives) which is more difficult when only
considering universally applicable choices (as they will often not fit
individual perferences or contexts).
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3.4 mobility feedback and its influence on choices

Based on the previous sections, we provide a background on how
tracking data was previously used to influence the mobility choices and
behaviors of people, and which data processing methods were applied
therein. With regards to the topics covered within this dissertation, an
emphasis will be put on persuasive and in particular gamified systems.
Figure 3.6 highlights the central elements for which this section gives
background information.

Eco-Feedback

GamificationPersuasive
Applications

Applications to Support
People in Sustainable
Mobility Choices (as
introduced in this
Dissertation)

Figure 3.6.: Central elements for supporting people in sustainable mo-
bility choices using applications that build upon automati-
cally and passively collected tracking data.

3.4.1 Eco-Feedback

Roughly starting with Fogg’s work on “computers as persuasive tech-
nologies” (Fogg 1998), computers and more recently smartphones have
been increasingly popular for habit formation, especially in the health
and wellness domain (West et al. 2012) and within the context of
household energy saving (Fischer 2008). Froehlich, Findlater, and
Landay 2010 focus on the questions of how HCI, and in particular
computer-assisted eco-feedback should build on research from envi-
ronmental psychology and which role it can take in making people
become more ecologically sustainable. They provide a classification
of different (technology-assisted or -enabled) means to promote pro-
environmental behavior: information, goal-setting, comparison (with
other individuals or within groups), commitments, incentives/rewards
and “plain” feedback (which can be on a very fine-grained level or of
a summarizing nature). Froehlich, Findlater, and Landay 2010 further
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provide an extensive review of the literature involving eco-feedback,
and mention a lack of focus on HCI issues within the environmental
psychology field, and vice versa a lack of psychological understanding
of researchers in the HCI field. The resulting conclusion is that HCI and
UbiComp (ubiquitous computing) researchers should study research
from environmental psychology for proven methods and inspiration.
DiSalvo, Sengers, and Brynjarsdóttir 2010 provide a similar review,
focusing on identifying different research fields (within sustainable HCI)
and emerging issues. Next to “plain” persuasive technology, they find
researchers mostly explore ambient awareness (non-intrusive forms of
feedback), sustainable interaction design, formative user studies, and
pervasive sensing. Further, they highlight interesting questions such
as whether we see the users as the problem or whether we intend to
solve their problems, or whether we want incremental improvement
or fundamental changes in lifestyle, leading to their conclusion that
to advance the field of sustainable HCI it is important to foster debate,
and tie it more strongly to other fields such as professional design or
computer science.

Stawarz, Cox, and Blandford 2015 review 115 apps that give feed-
back in the form of self-monitoring and reminders, but find that their
efficiency would improve if they relied on event-based cues more often
(e.g., coupling a new habit to fixed events such as taking medication
right after breakfast), as self-tracking “plays an important role in the
behavior change process, [but] does not support habit formation [and
turning] the new behavior into a daily routine” (Stawarz, Cox, and
Blandford 2015, p. 2659). The authors argue that the list of included
features indicates that these apps actually support motivation, and not
the change of behavior, which would be best supported by letting users
create routines, send back-up notifications if these routines change, and
provide post-completion checks. Focusing more on ecological points
of view, He, Greenberg, and Huang 2010 argue that most technologies
motivating sustainable practices feature the same simple feedback on
energy use. Based on work from psychology, they propose concepts
and give recommendations that follow the stages of the transtheoretical
model to optimally use technology for people in different phases of be-
havior change. Examples are to include both benefits and consequences
of a certain behavior in the feedback, referring to social norms, provide
examples for small actions, inform about discrepancies between atti-
tudes and behavior, provide links to other people’s behavior, support
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people in setting goals and plans to achieve them, provide positive re-
inforcement immediately after performing an action, provide prompts
for habit-forming, foster self-reflection, and more.

Brynjarsdottir et al. 2012 take a more critical stance and argue that the
definition of sustainability is often too narrow, for example, focusing
only on measures of behavior that can be sensed (and not the underlying
issues that cause said behavior). Often the focus is solely on individuals
and their behaviors, and formulated from the point of view of an expert.
A consequence is also the treatment of single points in time, and the
related inability to account for changes (in behavior and circumstances).
Their conclusion is that it might be worthwhile to think about how we
can re-frame the issues and opportunities of sustainability, instead of
focusing on how to provide “technical solutions to social problems”
(Brynjarsdottir et al. 2012, p. 954). Li, Dey, and Forlizzi 2011 argue
along the same lines, but emphasize the needs of the individual (with
regards to information retrieved from sensed data). Their already
previously introduced two phases of discovery and maintenance split the
questions about status, history, goals, discrepancies, context and factors
that users have in relation to their behavior.

3.4.2 Inducing Mobility Behavior Change

Several researchers looked at the impacts of persuasive technologies and
in particular eco-feedback on mobility behavior. Early on, Froehlich, Dil-
lahunt, et al. 2009b performed a study involving dedicated GPS sensors
in combination with smartphones to measure and analyze movement
and mobility behavior, and to study the effects of eco-feedback related
to mobility. As the number of people involved in the study was com-
paratively low (13), the results presented in the paper mostly include
qualitative statements given by users of the app during interviews. In
general, the feedback was very positive, and especially the focus on a vi-
sual representation that is not tightly linked to the exact CO2 emissions
or kilometers driven gave the users a way to playfully interact with
the problem at hand. Froehlich, Dillahunt, et al. 2009a report that even
though the small study cannot make any statement about the behavioral
changes achieved, 7 out of the 13 participants continued to use the app
after the experiment was finished, indicating that people at least valued
the feedback on mobility behavior and tried to use it to monitor and im-
prove their mobility behavior. Gabrielli et al. 2014 summarize three user
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studies and highlight future areas of research: due to the lack of holistic
research that also considers the impact of persuasive interventions on
citizens’ lives over a long term and due to the focus on individual
behavior instead of collective mobility choices, it still remains largely
unclear if the proposed measures lead to long-term changes and if they
are better or worse, or simply complementary to, collective, societal, or
policy measures. The presented three studies confirm that persuasive
technologies can help users reach the maintenance stage in the TTM.
The second presented study, MatkaHupi (Jylhä et al. 2013), featured an
app including a journey planner, movement tracking, and various ways
of eco-feedback. In particular the challenge functionality was liked by
users, followed by knowing the impacts on CO2 emissions of driving a
car. Superhub (Carreras et al. 2012) was more focused on goal-setting
and started out with 695 participants. As filling in the travel diaries
every day was a cumbersome task, eventually only data from 65 partici-
pants could be used, however. Similarly, the rigor with which surveys
were answered dropped throughout the study, which makes drawing
conclusions difficult. However, in general people liked the goal-setting
features and CO2 reporting. Bie et al. 2012 present tripzoom, a living
lab performed in several cities. They similarly use mobile sensors to
detect mobility patterns, provide incentives, and additionally employ
social networks where people can share their individual performances
within the tripzoom community. The outcome of the project is unclear,
however, several supplementary documents provide valuable insights
into the creation and evaluation process. For example, Diana et al.
2013 state the evaluation metrics, and mention that behavior can be
measured by indicators such as the number of trips, the distance trav-
eled, the travel time, travel cost, and CO2 emissions. Anagnostopoulou,
Magoutas, et al. 2017 argue that personalization is an important trait of
persuasive applications. They present the results of applying different
persuasive strategies on people with different personality (based on
the Big Five: openness, conscientiousness, extraversion, agreeableness and
neuroticism) and mobility traits (devoted drivers, image improvers, malcon-
tented motorists, active aspirers, practical travelers, car contemplators, public
transport dependents, car-free choosers; cf. Anable and Wright 2013). Based
on the eight persuasive strategies2 and evaluated with 120 people by

2 Comparison, self-monitoring, suggestion, simulation (of potential impacts of a certain
behavior), cooperation, praise, personalization and competition.
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means of survey, they find that all persuasion strategies work well for
all mobility types with only minor differences.

Recently, Anagnostopoulou, Bothos, et al. 2016 and Klecha and Gi-
anni 2018 reviewed the current state of the art in behavior change
for sustainable urban mobility. Anagnostopoulou, Bothos, et al. 2016

provide a summary of ten persuasive apps (some described above)
and recommend to explore or incorporate the following mechanics in
future system design: personalization (increases the impact and accept-
ability), localization (providing support at the appropriate location),
timing (similar, but for time), and wearable devices (for unobtrusive
interaction methods). Klecha and Gianni 2018 review 13 applications
(some described above) and additionally analyze if the end-users were
involved in application development. This “citizen participation” can
be valuable as the resulting application is tailored to the needs of its
users. In the reviewed applications, it was mostly performed via ques-
tionnaires, interviews, focus groups and diaries. As it is in the best
interest of citizens to travel sustainably, “an ideal solution would create
conditions that empower and inform citizens, enabling them to create
their own change through social innovation” (Klecha and Gianni 2018,
p. 147).

3.4.3 Gamification

A popular strategy for persuasive applications is “the use of game
design elements in non-game contexts” (Deterding, Dixon, et al. 2011, p.
10), commonly referred to as gamification of an application. According
to Deterding, Dixon, et al. 2011, gamification is closely related but
distinct from concepts such as serious games (where entertainment is
not the primary goal, but rather education or passing on information),
pervasive games (where the real world plays a central role), alternate
reality games (that mix events from the real and a fictitious world), and
also playful design (the adaptation of user interfaces based on learnings
from games). Their definition makes strict assumptions about the nature
of gamified systems: In contrast to playful approaches, gamification
follows structured rules and contains competitive elements (which can
also include competing with “one’s self”); in contrast to serious games,
gamification only uses certain elements to increase the motivation of
interacting with a system in a desired way; gamification does not
involve the use of gaming technology (e.g., engines or controllers),
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but rather its design elements; gamification necessarily takes place in
a non-game context. In Deterding 2011, the author makes a link to
motivational affordances: This essentially means that a system affords
interactions that satisfy some psychological needs of the user—in the
game context this could be the need for achievement as given by a
leaderboard.

Lister et al. 2014 reviewed gamification usage in 132 health and fit-
ness apps found on the Apple App Store in 2014, and found that while
gamification principles were widespread, they mostly did not adhere
to professional guidelines or industry standards (i.e., gamification was
only sporadically applied and did not follow health behavior theory).
Around 45% of the apps used some form of passive tracking of data,
and most apps either used gamification to have the user interact with
the app more (57.6%), or perform completions of the desired behav-
ior (75.8%). Going more towards sustainability, Shih and Jheng 2017

perform a literature review of persuasive strategies for energy-saving
behavior and a questionnaire that relates demographic features to per-
suasiveness of different strategies. They find that over their whole
sample, the reduction of complex behavior into simple tasks, rewards
and simulation (of potential behaviors) exhibit the largest persuasive-
ness, while social comparison and normative influence (education or
peer pressure) are less useful in persuading people. However, this
differs across different ages and demographics. As a result of their
work they present a list of game design elements that can be used to
implement each persuasive strategy. Kazhamiakin et al. 2015 link gami-
fication and sustainable urban mobility, and present a framework that
allows implementing gamification on top of existing services. Their case
study involved 40 participants in northern Italy and featured elements
involving sustainability, health, as well as rewards for using Park&Ride
facilities and resulted in a reduction of PMT after the gamified inter-
vention. Similarly, Buningh, Martijnse-Hartikka, and Christiaens 2014

aimed at shifting people from using their PMT towards slow mobility,
and found that their gamification mechanics (digital coach, team co-
herence, peer pressure, competition and awards) lead to a reduction
of approx. 20% during rush hour. Wells et al. 2014 use goal-settings,
behavior tracking and challenges (involving points and levels) to foster
sustainable mobility behavior within the SUPERHUB project.
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3.4.4 Relevance to this Dissertation

The presented research on persuasive applications influencing mobil-
ity behavior is mostly focused on qualitative and explorative research.
Structured approaches how to build such applications and which mo-
tivational elements are available are missing, as are larger-scale and
long-term studies. Additionally, there is little focus on comprehensive
analyses of mobility behavior and the generation and presentation of
potential (more sustainable) alternative behavior. Within chapter 6,
we build upon the background presented in this chapter to overcome
some of these limitations and evaluate a persuasive application within
a large-scale real-world study.



4
A N A LY Z I N G M O B I L I T Y F R O M T R A J E C T O RY D ATA

Information about individual mobility behavior increases the range
and effect of potential supporting measures that we can provide in
an automated fashion, as they can be tailored to individual cases and
adapted to the current behavior. Recent advances in ICT enable us
to record the movements of vehicles and people using a variety of
devices. Of particular importance are smartphones, as their ubiquity
and increasingly powerful sensors allow tracking mobility of and in-
teracting with almost any interested person. The data gathered can be
used for a wide range of applications, from planning more efficient
transport infrastructure, over automated ticketing for public transport
to support of individuals in their mobility choices. While previous
work thoroughly studied many aspects of processing mobility, we focus
on the analysis with regards to providing better support for reaching
sustainable mobility. Next to sustainability criteria, this includes the
identification of transport modes from GPS data of varying quality,
combining context and mobility data, distinguishing systematic from
non-systematic behavior, identifying mobility goals and preferences, as
well as grouping different behaviors and detecting changes thereof. But
how do we best record, process and analyze movement data of people
in order to support them in sustainable mobility choices?

We propose a framework for mobility data processing revolving
around four primary goals: the use of these data to directly communicate
the effects of past mobility, to identify potential future mobility needs,
to use past choices for improved planning of future mobility options, as
well as to provide motivational support for making sustainable mobility
choices. Figure 4.1 shows the primary data structures and information
processes involved in our framework.

Starting from the user who carries a smartphone having a tracking
app installed, we first have to convert the sensor information to a move-
ment trajectory. The following preprocessing steps convert the raw

This chapter and its contents, algorithms and figures are based on Bucher, Cellina,
et al. 2016; Jonietz and Bucher 2017; Jonietz and Bucher 2018; Jonietz, Bucher, et al.
2018; Bucher, Mangili, Cellina, et al. 2019; Bucher, Martin, Hamper, et al. 2020.
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Sensor
Data

Context
Data

Data Augmentation

Segmentation

Mobility Histories

Trajectory Data

Systematic Mobility Non-systematic Mobility

Mobility Metrics Preferences Mobility Behavior

Communication & Planning

Figure 4.1.: The main information processes involved in the analysis of
individual mobility with the goal of supporting sustainable
mobility behaviors.

trajectories into higher-level structures, such as parts of a trajectory
covered with a single mode of transport or frequently visited places.
Further, the raw data is augmented with context data, such as points of
interest along a route or in the vicinity of a location, weather informa-
tion, or matching PT schedules. The resulting mobility histories form
the basis to extract mobility metrics, preferences, as well as behaviors
(and changes thereof) from a person’s movement data, which in turn
are required for communicating the impacts of past mobility, plan-
ning meaningful and sustainable mobility alternatives, and supporting
people in choosing sustainable mobility options. These analyses (and
also the exhibited behaviors) often differ between systematic and non-
systematic mobility, whose detection forms another important process
within the framework.
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4.1 mobility histories

Historical measurements of mobility (automatically and passively col-
lected movement data) form the basis of the support framework pre-
sented within this dissertation. Based on previous research and tech-
nologies developed within several projects that are part of this disserta-
tion, we here present the most important preprocessing steps to arrive
at a consistent and useful representation of mobility.

4.1.1 Movement and Mobility Tracking

Tracking applications become increasingly powerful as the power con-
sumption of passively running location estimation technologies drops.
At the same time, more data can be sampled using a wide range of
sensors, e.g., the number of Bluetooth devices close by (to inform the
likelihood of being in a PT vehicle) or the momentary acceleration
(whose patterns greatly vary depending on the mode of transport). We
distinguish between movement data (the “raw” location recordings)
and mobility data (where additional information, such as the mode of
transport or intermediate stops are identified). While more fine-grained
data gives us the possibility of having a more accurate picture of the
mobility behavior of a person, it is not necessarily required to know
someone’s location at all times, as much can be inferred by interpolation
and augmentation with context data.

Table 4.1 Characteris-
tics of
Mobility
Tracking

summarizes the most important characteristics of automat-
ically tracked mobility data with respect to supporting sustainable
personal mobility. Even though the exact route resp. movement tra-
jectory is not necessarily of great interest (in contrast to the distance
covered or the start and end locations, which are needed to determine
goals of mobility and its systematic nature), it is usually easier to re-
trieve than, for example, the transport requirements (which have to
be stated explicitly, or derived from similar situations). This is due
to the fact that passive location tracking is becoming more and more
standardized, and for the majority of smartphones it is relatively easy
to release an app that collects movement trajectories. Usually, these
trajectories consist of a sequence of individual, time-stamped trackpoints
(also commonly denoted as location or position fixes, cf. Laube, Dennis,
et al. 2007).
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Functionality Description

Location
(Coordinate)
Recording

Recording a person’s location every few sec-
onds and with an accuracy in the order of
meters allows estimating mobility usage at a
very detailed level. By using additional spatio-
temporal information, less frequent and ac-
curate data can still be used as input for the
methods described here.

Start/Stop Detection An accurate identification of the start and end
of trips allows us to better estimate durations
and distances, as well as have more reliable
features to automatically infer transport char-
acteristics and activity purposes.

Transport Mode In-
ference/Validation

Reliably knowing the transport mode is a ne-
cessity for estimating the sustainability im-
pact of a person as well as to detect changes
in behavior. Letting users validate a detected
transport mode helps retraining and thus im-
proving classifiers.

Travel Purpose
Recording

Knowing why someone traveled somewhere
is helpful to infer circumstantial requirements
and/or preferences. Similar to transport
modes, letting users validate proposed pur-
poses increases the usefulness of data.

Transport
Requirements and
Additional Sensory
Information

Letting users specify requirements during a
certain trip improves sustainability assess-
ments. Similarly, additional sensory infor-
mation (e.g., the number of Bluetooth devices
in the vicinity) can increase the accuracy of
transport mode or purpose prediction.

Table 4.1.: Requirements for a tracking application to be used within the
presented framework for the support of sustainable personal
mobility and MAAS. The requirements are ordered by impor-
tance; in essence, only location recording is required. However,
additional data (e.g., from the accelerometer of a smartphone)
can improve the quality of several of the functionalities when
performed on the recording device.
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Definition 4.1 (Trackpoint). A trackpoint p is a time-stamped coordinate
pair (x, y) that denotes the location of an entity at a certain point in
time t with an accuracy η: p = (t, x, y, η).

In our definition we omit the direct relation to the entity e (usually
a person whose movement is being recorded), but instead say that
p ∈ Pe if a trackpoint belongs to the set of points that correspond to
the movement of e. As the location tracking usually is not perfectly
accurate, most tracking technologies specify an η as the radius (in
meters) of a circle around (x, y) in which the actual position of e falls
with a likelihood of pη = Pr(

√
(x̂− x)2 + (ŷ− y)2 ≤ η|x, y) = 95%

(where (x̂, ŷ) is the true location of entity e at time t). We omit the
altitude z as it is not commonly required for the following methods;
it needs to be noted that it can easily be added using a DEM, e.g., for
energy consumption models or to compute more meaningful bicycle
routes. Based on trackpoints, we can now define trajectories.

Definition 4.2 (Trajectory). A trajectory τ is a sequence of trackpoints
that are logically grouped due to some underlying characteristic and
sorted by their timestamp: τ = (p1, . . . , pn).

Of course, ordering Pe (all trackpoints of an entity e) as a sequence
yields the complete movement trajectory of e (which we refer to as
track within this dissertation). However, it is often more interesting to
consider smaller segments of this complete movement as trajectories,
such as the path taken from one POI to another. Note that we take a
purely Lagrangian perspective on movement within this dissertation
(i.e., movement is measured within an absolute reference system). In
contrast, a substantial share of previous research considered the Eulerian
perspective, where movement is recorded using “check-ins”, e.g., at cell
phone towers or Bluetooth beacons (cf. Laube, Dennis, et al. 2007).

4.1.2 Data Segmentation

As a first step of processing the raw trackpoints, they are segmented
into various higher-level structures. When looking at mobility in a
simplistic way, we can state that we consume mobility to get from one
point of (personal) interest to another. At these points, we usually
spend much more time than at any intermediate stops, such as when
waiting to change the mode of transport or until a traffic light turns
green. We formalize this idea as staypoints, activities, triplegs and trips.
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Definition 4.3 (Staypoint). A staypoint s is a coordinate pair (x, y) and
an according arrival time ts and departure time te at which an entity e
arrives at resp. departs from the location: s = (ts, te, x, y).

Staypoints denote any location where a person spends a minimal
amount of time, e.g., while waiting for a PT vehicle or taxi to arrive.
Several researchers proposed methods to extract staypoints from raw
trackpoints. A frequently used method is given by Li, Zheng, et al.
2008, who define a distance threshold θd and a duration threshold
θt, which are used by sequentially iterating through all trackpoints
to find sequences of trackpoints during which neither θd nor θt were
crossed. Such a sequence of trackpoints pi ∈ Ps is then assigned to
a staypoint s = (mini(pi.t), maxi(pi.t), ∑i pi.x/|Ps|, ∑i pi.y/|Ps|) (where
we use the notation pi.x to denote the x coordinate of trackpoint pi),
in essence assigning the mean coordinate of all associated trackpoints
to staypoint s. Due to this averaging we also drop the reference to the
accuracy of a single trackpoint. From a higher-level perspective on
mobility, and especially considering support for sustainable mobility,
knowing when someone waited for a bus or train is not necessarily of
interest, as it is not the ultimate goal of a trip. Instead, we introduce
activities—essentially staypoints with a purpose.

Definition 4.4 (Activity). An activity a, similar to a staypoint s, is a
coordinate pair (x, y) and an according arrival time ts and departure
time te at which an entity e arrives at resp. departs from the location.
In contrast to staypoints, activities denote the goals of trips, i.e., they
are associated with a certain purpose ω: a = (ts, te, x, y, ω).

As activities are a (in most cases strict) subset of staypoints (i.e., every
activity is a staypoint, but not vice versa), they are commonly extracted
by introducing additional, more restrictive duration thresholds and/or
contextual requirements such as being close to the home/work location.
If not noted otherwise, we consider staypoints that were not clearly
generated due to being forced to wait for something (e.g., a connecting
train) and staypoints whose duration is longer than 35 minutes as activ-
ities (where the 35 minute threshold was chosen based on experience
with GPS recordings from various projects and following the argumen-
tation that someone has to spend more than half an hour at a certain
location for it to be considered a purposeful visit). The adopted defini-
tion is in line with the common interpretation of activities as “events
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that comprise a person’s existence [...] having a temporal duration and
spatial extent” (Miller 2004, p. 648). As both staypoints and activities
take place at different points in space and time, they must be connected
by some form of mobility consumption, namely triplegs and trips.

Definition 4.5 (Tripleg). A tripleg l is a segment (of a longer trip) be-
tween two staypoints ss and se, covered with a single mode of transport
m: l = (ss, se, m, Pl). Each tripleg has an associated geometry, denoted
by the trajectory Pl .

Triplegs are extracted from the total sequence of trackpoints Pe \
(∪sPs) (where all the trackpoints belonging to a staypoint are removed),
by splitting the sequence into subsequences delimited by the staypoint
start and end times. While we do not restrict the possible means of
transport here, a selection of interesting ones from the perspective of
a tracking app intending to support sustainable mobility is given in
Table 4.2. Finally, similar to how we created triplegs from staypoints,
we can create trips from activities.

Definition 4.6 (Trip). A trip θ is the connection between two consecutive
activities as and ae, made up of a sequence of triplegs Lθ : θ = (as, ae, Lθ).

Based on triplegs, staypoints, and activities, the trips can be extracted
as any consecutive sequence of triplegs that does not contain any inter-
mediate activity. The resulting hierarchical segmentation is displayed
in Figure 4.2. Note that the presented segmentation is in line with
previous definitions, e.g., by Axhausen 2007 (albeit triplegs are referred
to as stages and staypoints are not considered in the cited work).

4.1.3 Augmenting Movement Data with Spatio-Temporal Context

A Map
Matching

big advantage of geographical spatio-temporal data is that they
are embedded in the real world, for which an enormous wealth of
additional data are available. Given tracking data in the previously
defined format, we thus should add additional contextual data in
order to increase their usefulness. A commonly used data source for
improving the accuracy of the trajectories are the various transport
networks, e.g., streets or railroad tracks. The so-called process of map
matching “snaps” individual trackpoints to the transport network, and
performs a routing between all consecutive snapped trackpoints in
order to have a more accurate view of the route that an entity took
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Transport Mode Characteristics

Walk A form of SM that is available to (almost) ev-
eryone and can be used in any situation (not
or only marginally bound to a street network).

Car/Bicycle Forms of private mobility that are available
within a street network and only at the lo-
cation where the car/bicycle was previously
parked.

Train/Bus/Tram PT that runs along given routes and stops
at scheduled times (except when there are
delays).

Taxi A form of shared transport that is available
within regions and restricted to the street net-
work.

Carsharing/
Bikesharing

(Usually) station-based shared transport that
is available whenever there are enough (non-
reserved) vehicles at the station.

Ridesharing/Bus-
on-demand

A spatio-temporally semi-restricted form of
mobility that has to be booked in advance.

Airplane Long-distance travel at high speeds.

Table 4.2.: Characteristics of transport modes from the point of view
of a tracking application. The highlighted spatio-temporal
restrictions not only determine when and where transport
modes are available as potential mobility choices, but also
help in identifying the transport mode solely from recorded
trackpoints.
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Figure 4.2.: The different layers of segmentation of human mobility.

(cf. Quddus, Ochieng, and Noland 2007). The reasoning behind this
is that people usually require appropriate infrastructure, in particular
when using any transport mode of a higher level than just walking, and
thus necessarily have to follow valid paths in the transport network. A
commonly applied technique is to build a probabilistic Hidden Markov
Model (HMM), as, for example, outlined in Newson and Krumm 2009

and exemplified in Figure 4.3. The idea is to use the trackpoint accuracy
η to retrieve nodes from the transport network that were likely visited
along the trip (i.e., they fall within the 95% probability radius indicated
by η), and assign a probability of visitation to each of them. Doing
this for all p ∈ Pe and connecting nodes of consecutive trackpoints
leads to a large directed graph, where each edge in this new graph is
given a transition probability, e.g., based on the distance along the road
network, or the difference in travel time and tracked time. The resulting
probability transition graph can then simply be used to compute the
most likely transitions along the road network from the start of a tripleg
to its end. More elaborate methods are also able to exclude outliers by
adding skip connections or using Kalman filters, working with data
that are sampled at low frequencies or simplifying resp. segmenting the
trajectory before map matching (e.g., Obradovic, Lenz, and Schupfner
2006; Lou et al. 2009; Brakatsoulas et al. 2005).

Next Trajectory
Algebra

to increasing the data quality, context data can be used to
improve transport mode identification, modal choice models, or per-



104 analyzing mobility from trajectory data

Trackpoints
and 95%-Radius

Candidate
Segments

Actually used
Road Segments

Actually Traveled
Route

Figure 4.3.: Exemplary map matching process: For each trackpoint, a
set of candidate road segments is identified. The candidate
segments of consecutive trackpoints are connected in a di-
rected acyclic graph. Finally, the actually traveled route is
computed as the path through the graph that best corre-
sponds to the recorded timestamps p.t.

sonalized recommender systems. To add arbitrary context data (such
as the temperature, precipitation or also the number of POIs at a certain
location), we introduce a trajectory algebra (based on and inspired by
the more commonly known map algebra, cf. Tomlin 1990, and closely
related to the lifeline context operators introduced by Laube, Dennis, et al.
2007). Context addition is usually done by retrieving discrete geograph-
ical elements within a radius around trackpoints, or by overlaying the
trackpoint layer with a raster-based one (and extracting the raster value
for each trackpoint). We argue, however, that this is not sufficient, as
depending on the feature under investigation, it might make more
sense to consider measurements along the whole trajectory (which can,
for example, be averaged, or taken the maximum/minimum of), to
consider measurements within a region around each trackpoint, or
to combine measurements taken at the same location but at different
points in time. Classical map algebra comprises a set of arithmetic
operations that operate on raster data, and commonly is used as a
function:

O = f (I1, ..., In) (4.1)

where O denotes a grid-based output layer that is computed by applying
a function f to a set of input layers Ii. Among the operators used within
f , we find local (only considering values in Ii from the same raster cell),
focal (considering values in Ii that correspond to some neighborhood of
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Context Op-
erator

Movement Data Context (Spatial
Dimension)

Context (Tempo-
ral Dimension)

Local Position Location Instant
Focal Interval Neighborhood Time Interval
Zonal Trajectory Zone Era
Global Track Layer Total Time

Table 4.3.: The proposed trajectory algebra operators along the three
dimensions movement data, spatial context and temporal context.

the cell currently being computed, e.g., a 3× 3 neighborhood) and zonal
(considering values from cells that logically correspond to the cell under
investigation, e.g., by belonging to the same land use class) ones. Note
that originally, Tomlin 1990 defined an incremental operator that would
consider values along geoinformation objects like a chain of pixels; in
recent publications, this operator is less commonly discussed (cf. Tomlin
2017). Different to solely combining raster-based data, movement data
has its own mobility-based aggregates (cf. Laube, Dennis, et al. 2007,
who define these mobility-based aggregates as instantaneous, interval,
episodal and total), next to the spatial and temporal dimensions of the
context data we would like to join with it. In our terminology, we
distinguish along the three dimensions presented in Table 4.3 and
combine them, inspired by classical map algebra, using four levels of
operators: local, focal, zonal and global.

In the movement data dimension, this corresponds to either aggregate
context data for a single point, along a certain interval (i.e., a sliding
window), along a complete trajectory (a semantically defined segmen-
tation), or along a track (the complete data pi ∈ Pe available for a given
entity). In the spatial dimension of the context data, this corresponds to
classical map algebra, whereas we renamed global to layer to emphasize
that there are multiple layers of data (denoting different time stamps),
yet that we only consider a single (complete) one of them. Finally, in
the temporal dimension, the operators correspond to aggregating data
from a single instant (a single temporal layer), a time interval (similar to
the movement operator, this is essentially a sliding window), an era (a
semantically defined region of layers adhering to some condition, e.g.,
all weekends), and the total time (all available time layers). Figure 4.4
shows the different context operators along the three dimensions.



106 analyzing mobility from trajectory data

Time Interval
or Era

t0

t1

tn

Movement Data

Temporal Context

Spatial Context
Position

Track

Location Neighborhood Zone

Layer

Instant

To
ta

lT
im

e

Interval

Trajectory

Figure 4.4.: Different combinations of trajectory algebra dimensions:
movement data, spatial dimension of context data, and
temporal dimension of context data.

In addition to specifying the context operators, we also have to
define the aggregation functions, such as the average, sum, maximum
or minimum. We propose a notation following classical map algebra
statements, here given as an example that uses the focal operator in the
movement dimension (with an averaging function), the zonal one in the
spatial dimension of context (with a minimum function), and the global
one in the temporal dimension (with a maximum function), and where
the movement and context data and the specification of parameters for
the context operators are given using typical map algebra statements
such as and, at or within:

C = Focal Avg Zonal Min Global Max (4.2)

OF Movement Data AT Sliding Window

AND Context Data WITHIN Zone

Using the trajectory algebra presented, we can now easily assign a
variety of features to each tripleg and staypoint (which is sufficient
for all following steps). In line with our focus on personalization
to meaningfully support sustainable mobility, we assign the features
described in Table 4.4 to triplegs and staypoints.
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Feature Symbol Description

Temperature f{l,θ}, temp The temperature at the start of each
tripleg/trip.

Precipitation f{l,θ}, precip The precipitation at the start of each
tripleg/trip.

PT Stops f{l,θ}, {s,e,τ}, PT The number of PT ∈ {train, tram, bus,
...} stops within vicinity rPT of the start
and end locations, as well as along the
trajectory.

POI

Category
Distr.

f{l,θ}, {s,e}, POI The distribution of POIs within vicinity
rPOI of the start and end locations of a
tripleg/trip (POI ∈ { office, restaurant,
sports, ...}).

Table 4.4.: Context variables assigned to triplegs and staypoints for
further use within this dissertation.

4.1.4 Extracting Basic Mobility Descriptors

An important step in the support of sustainable personal mobility
and MAAS is the provision of feedback on individual mobility behav-
ior. Much of this feedback can be given by aggregating the mobility
histories in various ways, thus making people aware of their current
behavior and potentially inducing a transition towards a (motivational)
contemplation or preparation stage. In the following, the most im-
portant basic mobility descriptors for providing feedback, but also to
evaluate behavior change are given. While for fine-grained purposes,
descriptors such as speed, acceleration, changes in azimuth, sinuosity,
or the approaching rate towards a destination (cf. Laube, Dennis, et al.
2007), and for holistic analyses of mobility, measures like the radius
of gyration, the jump length, or the distribution of visited places (cf.
González, Hidalgo, and Barabási 2008) are commonly employed, we
focus on easily interpretable descriptors that have a strong relation to
sustainability and intermodality (resp. more environmentally friendly
transport modes).

distance Summaries of the distances traveled within certain time
periods and with different transport modes give a person a measure of
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how personal mobility is in relation to familiar geographical extents,
the mobility behavior of other people, and its change over time (e.g., in
Google Maps, the totally traveled distance is compared to the distance
to the moon, or in an app by SBB, distances are given in comparison to
extents of various administrative boundaries within Switzerland). The
distance is computed as the sum of all distances between consecutive
trackpoints (which are optimally map matched):

d(Pe, ts, te, m) = ∑ di,i+1 (4.3)

di,i+1 = dist(pi, pi+1), ts ≤ pi.t ∧ pi.t < te∧
l.m = m ∧ pi ∈ Pl

In Equation 4.3, the distances are broken down per mode. Considering
behavior change towards more sustainable uses of mobility, knowing
the shares traveled with each mode (and the changes thereof) gives
people a sense of impact of different choices and lets them compare
different behaviors over time and among each other, and quantify
potential impacts of certain behaviors.

duration Potentially more influential than distance when regarding
individual mobility choices, feedback on the duration a person spends
traveling has a large impact on the mobility behavior, as it is a measure
that is used by many people to optimize their mobility choices (next to
financial aspects; cf. Mokhtarian and Chen 2004).

∆(Pe, ts, te, m) = ∑ ∆i,i+1 (4.4)

∆i,i+1 = pi+i.t− pi.t, ts ≤ pi.t ∧ pi.t < te∧
l.m = m ∧ pi ∈ Pl

Similar to the distance computations, the duration (given in Equa-
tion 4.4) is usually computed per mode, in order to give people insights
about the differences in temporal requirements of different modes.

modal split In its most simple form, the modal split helps classify-
ing people in different mobility usage groups (cf. chapter 2) and giving
them an overview of their general mobility use tendencies. The modal
split is usually either given in terms of distance, duration or number
of trips, which all emphasize different aspects of mobility: A distance-
based split places faster transport modes more prominently, while a
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duration-based split is rooted in the fact that people have given mobility
time budgets that they use irrespectively of the actual transport mode
(e.g., a person’s distance-based modal split often exhibits negligible
shares of SM, while a duration-based split displays more equal shares).
A split based on the number of trips with a given transport mode looks
at mobility from the perspective of a person’s choices, whereas each
individual trip was preceded by a choice for a certain transport mode.

MS(Pe, ts, te, m) =
{d, ∆, | · |}(Pe, ts, te, m)

∑m̂{d, ∆, | · |}(Pe, ts, te, m̂)
(4.5)

Here, {d, ∆, | · |}(Pe, ts, te, m) denote the distance, duration or number
of trips with a given transport mode (as defined in Equation 4.3 and
Equation 4.4).

trip aggregates The trip aggregates used within our work include
the total number of trips within a certain time period ntrips(ts, te) =

|θ|, ts ≤ θ.ts ∧ θ.te < te, the distribution of sequences of triplegs SM̂ =

|θ̂|/|θ|, θ̂.Lθ .m = M̂ (where M̂ describes a sequence of mode choices
and θ.Lθ .m = M̂ denotes that the tripleg sequence Lθ corresponds
to the sequence M̂), and the number of staypoints per trip ns/θ =

|s|/|θ|, θ.ts ≤ s.ts ∧ s.te < θ.te. They allow a user to grasp his or her
mobility behavior on a holistic level, give insights on the complexity
of trips, and on potential room for optimization due to long waiting
times.

activity aggregates To highlight which goals of mobility are
responsible for unsustainable behavior, we break down the modal
split based on the purposes of the activities, as this gives a person
an indication of where larger potentials for change are. First, it is
interesting for a person to know the number of times an activity of a
certain purpose was performed na(ts, ts, ω) = |ai|, ts ≤ ai.ts ∧ ai.te <

te ∧ ai.ω = ω and the time spent performing the respective activities
∆(ω) = ∑i(ai.te − ai.ts), ai.ω = ω. Targeting feedback enabling more
sustainable mobility, people need to know the tripleg combinations
(resp. the transport modes) used to reach activities of a certain purpose:
Sω̂,M̂ = |θ̂|/|θ|, θ̂.Lθ .m = M̂ ∧ θ̂.ae.ω = θ.ae.ω = ω̂. To give more
fine-grained feedback, the distances, durations and modal shares (as
defined previously) are similarly broken down by activity purposes.
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4.1.5 Transport Mode and Activity Purpose Inference

Many tracking applications use the additional sensors available on a
smartphone to estimate the transport mode someone is traveling with.
While these additional data can greatly improve the transport mode
recognition (e.g., Widhalm, Nitsche, and Brändie 2012; Shafique and
Hato 2015), for many datasets and -sources it is not available. Instead,
we can use the spatial and temporal characteristics of the recorded
trackpoints, as well as the previously introduced contextual data to infer
the transport mode (e.g., by considering the speed of the traveling entity,
patterns that correspond to public transport timetables, etc.). Further,
many mobility recording applications allow their users to specify (resp.
validate) the used transport modes and/or the purpose of a certain
activity. These validations of transport mode and purpose continuously
supply a system with data that can be used to improve the models that
predict which transport modes will likely be used to reach a certain
location. We here propose a method that does not rely on very accurate
GPS data nor additional sensor information (e.g., Bluetooth devices or
accelerometer values), but instead uses the continuously validated data
in addition to contextual data to improve its transport mode prediction.
The reason for this is that many commercial smartphone-based GPS

trackers prevent access to such fine-grained data, either because it is
only internally used or to save battery and mobile data.

AtFeatures used
for

Classification

its core, our method consists of a naı̈ve Bayes classifier that oper-
ates on the features given in Table 4.5. These features are computed
for each tripleg that was identified using the segmentation techniques
introduced in subsection 4.1.2. The first four features ( f s̄, f∑ d, fmax d
and f ¯̂ ) do not require any additional context data and can simply
be computed from the trajectories themselves. The last three ( f∆,PT,
fd,{s,e},PT and fns,PT) require computing PT alternatives resp. context
data on the PT stops along the tripleg. In the experiments introduced
later, the PT modes considered consist of MPT = {train, tram, bus}, i.e.,
it is required to compute PT alternatives for these three transport modes
and count the number of stops of these three transport modes along
the route.

Using these features, we can formalize the transport mode identi-
fication problem as a prediction problem, taking the feature vector
~f = [ f1, ..., fN ]

T = [ f s̄, ..., fns,PT]
T (where N = 4+ 3 · |MPT|) as input and

the possible transport modes mj ∈ M = {walk, bicycle, car, bus, train, ...
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Symbol Description

f s̄ The average speed along the tripleg.
f∑ d The total distance covered during traveling this tripleg.
fmax d The maximum distance between trackpoints.
f ¯̂ The average heading change between trackpoints.
f∆,PT The difference between the actual duration and the dura-

tion of the PT alternative.
fd,{s,e},PT The distance between the actual start/end point and the

start/end point of the PT alternative.
fns,PT The number of stops in the PT solution that are closer than

50 meters to the actual trajectory.

Table 4.5.: Features used in the proposed transport mode inference
method. For all features, the public transport modes consid-
ered are PT ∈ { train, tram, bus }.

} as output of the method. The prediction of the transport mode then
essentially assigns probabilities to each class according to the Bayes’
rule:

P(mj|~f ) =
P( f1|mj)P( f2|mj) . . . P( fN |mj)P(mj)

p(~f )
(4.6)

Here, P( fi|mj) are the conditional probabilities to observe the feature
values fi given the transport mode mj, P(mj) is the probability of
choosing transport mode mj, and p(~f ) is the overall probability to
observe ~f . To account for the correlation of individual itineraries and
transport mode choices (i.e., if a certain transport mode was taken on a
given itinerary before, it is more likely to be taken again), we introduce
a factor that captures the probability of taking a transport mode mj on
a certain itinerary. To assign probability mass to previously unseen
transport modes on a given itinerary, we apply additive smoothing to
this factor (also called Laplace or add-one smoothing, cf. Manning,
Raghavan, and Schütze 2009). To identify if two triplegs follow the
same itinerary, we first compute the distances between their start and
end points. If both of them are smaller than 150 meters, the triplegs are
considered to follow the same itinerary.

P(mj|itinerary) =
nj + α

n + |M|α (4.7)
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Here, n denotes the number of triplegs corresponding to the itinerary
under consideration, nj the number of triplegs traveled with mode mj
(following the same itinerary), α > 0 is a smoothing parameter, and |M|
corresponds to the number of transport mode choices that our model
can predict. The total probability is then computed as

P̂(mj|~f ) =
1
K

P(mj|~f )P(mj|itinerary), (4.8)

where K is a normalizing constant. Finally, it might not always be
possible to find a corresponding PT alternative (for the features ~fPT =

[ f∆,PT, ..., fns,PT]
T). Thus, we model the conditional probability for these

features as:

P( ~fPT, PT = 0|mj) = P(PT = 0|mj) (4.9)

P( ~fPT, PT = 1|mj) = P(PT = 1|mj) · P( ~fPT|mj, PT = 1) (4.10)

= P(PT = 1|mj) · ∏
fi∈ ~fPT

P( fi|mj, PT = 1)

Where PT = 0 means that the respective PT was not found, and PT = 1
means it was found. This means that if there is no PT alternative found,
we simply take the probability of not finding a PT alternative for a
transport mode mj, and only otherwise consider the values of ~fPT.

Formulating the transport mode prediction as a naı̈ve Bayes problem,
incorporating new data is straightforward if we can model the distribu-
tion of individual features as conjugate priors (i.e., adding a new sample
does not change the shape of the distribution and its effects on the
distribution parameters are well known). Here, we assume Gaussian
probability distributions for all features, and choose a Gamma prior for
the parameters of all distributions, except P(PT = 1|mj), which uses a
Beta prior. The resulting model is able to start (by computing the priors)
from a small set of users/triplegs that formulate a base assumption
about the dependence between features and outcome variables, which
is then continuously updated for each user individually. As the trans-
port mode choices depend a lot on the individual, we train a model for
each user individually (that might start by using the priors computed
from other users though).
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4.2 sustainability metrics

Given the basic mobility descriptors, contextual features, as well as
a transport mode, we can compute more advanced metrics such as
the involved costs, environmental impacts, relations to geographical
features, or personal circumstances.

4.2.1 Environmental Impact

A commonly applied method to measure the environmental or eco-
logical impact is the projection of all influences on the environment
onto GHG emissions, in particular CO2. Table 2.1 shows the emission
of CO2 caused by actively using a mode of transport. In addition to
these values, LCA gives an estimate of the totally emitted CO2 during
the whole life cycle of a vehicle (including production and disposal of
the vehicle, the processes involved in the energy supply chain, as well
as the emissions caused by infrastructure provision). In line with the
method given in subsection 2.2.4, we both present the ecological im-
pact in terms of GHG emissions, and also the corresponding monetary
equivalent. The produced GHG equivalent can be expressed in terms of
average LCA values:

cGHG(θ) = ∑
m∈Lθ .m

dm · (cproduction,m + cdisposal,m+ (4.11)

cenergy,m + cinfrastructure,m + cdirect,m)

Here, dm stands for the distance traveled by transport mode m (i.e., the
mobility descriptor d(Pe, ts, te, m), cf. Equation 4.3). The resulting value
cGHG(θ) describes the CO2 emissions stemming from a single trip θ. To
facilitate comparisons with potential gains from performing the trip,
we compute a monetary equivalent under the (arguably not perfectly
accurate) assumption that money is a fair representation of value. We
use CO2 offsetting costs ce/tCO2 as shown in Table 2.3 (note that we do
not take the actual market values but the estimated true costs of GHG

emissions, i.e., the values in the range of $30-100/tCO2) to compute this
monetary equivalent. Assuming these costs include all the (potentially)
occurring costs in the future, the conversion is simple:

cEco. Impact(θ) = cGHG(θ) · ce/tCO2 (4.12)
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When considering an individual trip or an individual person on its
own, the resulting monetary costs (due to GHG emissions) are often
comparatively low (especially when putting them into relation with
the monetary costs and gains due to salaries, personal and/or social
gains, etc.). This might be an indication that a) purely self-regulated
and market-driven approach at reaching sustainable mobility will have
difficulties reaching net-zero emissions and b) that to induce behavior
change we should lean towards adopting the concept of strong sus-
tainability, where human capital gains cannot make up for the loss of
natural capital.

4.2.2 Monetary Cost

The monetary cost of individual trips mostly depends on contextual
and personal factors, such as prices for gas, PT passes, or the value of
one’s own car. However, these values are often available for different
regions as averages over the whole population or certain demographic
sub-populations. The monetary cost can thus be approximated similarly
by using a distance-based average cost per mode:

cMonetary(θ) = ∑
m∈Lθ .m

dm · caverage,m (4.13)

caverage,m = cfixed,m/dtot,m + cvariable,m (4.14)

As these averages are computed over a large population, they include
both fixed (cfixed,m) as well as variable costs (cvariable,m), which in reality
can influence mobility choices (e.g., Thøgersen 2009). For example, a
person having paid the (upfront) fixed cost of a personal car is more
likely to use it than someone who would first have to buy one, even
though the averaged cost for them would essentially be the same. Con-
sidering the example of Switzerland, Table 4.6 highlights some of the
costs associated with various transport modes. Note that these are
approximate average values; most transport providers do not calculate
their prices based on the actual kilometers driven, but rather based on
zones, occupancy, time of day, etc. As such, to get the most accurate
cost estimation, the prices would have to be computed for each trip in-
dividually. However, for many persuasive strategies an approximation
using the given values is sufficient.
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Transport Mode Average Cost [CHF/km]

Private Motorized Transport (PMT)†
0.71

Public Transport (PT) 0.25

Carpooling 0.025

Carsharing (2.50 CHF/h) + 0.65

Airplane 0.23

Table 4.6.: Costs of various transport modes in Switzerland. †Assuming
an average car price of CHF 35’000 and 15’000 km driven per
year. Sources: TCS 2020, Kissling 2017.

4.2.3 Financial and Social/Personal Capital Gains

Most journeys are done with some purpose in mind that either has a
business value or brings about personal and/or social (capital) gains.
Capturing these gains solely from trajectory data is essentially impossi-
ble, as it heavily depends upon circumstances and purposes, and the
related gains in financial or personal/social capital. We here propose a
purpose-based method employing concepts from human capital theory
(Becker 1993) to compute the various gains under the assumptions that
salaries are a fair measure of a person’s (financial) contribution to a
business (which allows us to provide a lower bound on the business
value gains) and that there is a fixed admissible budget for personal
and social (capital) gains (which are the same for any demographic
class). This is in line with “generalized cost” measures (resp. utility
functions) that combine time and cost into a single value and achieve
comparability between regions by scaling the costs according to the
real incomes (Gunn 2001). These measures are rooted in random util-
ity theory (Thurstone 1927), where the utility is given as U = V + ε,
i.e., a deterministic component V = f (a, S, β) (depending on choice
attributes a as seen by the individual, its socio-economic attributes S
as well as parameters β) and a random component ε. Note that there
are several downsides to the assumptions mentioned above: For ex-
ample, financial representations often do not include costs induced in
the future, and are thus an inaccurate representation of reality; income
differences should actually scale the importance of cost, and not the
value of time (Gunn 2001); basing business gains solely on salary does
not capture the complete contribution of a person’s activities to society
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(the Covid-19 situation highlighted well that many low-wage workers
are in reality essential for society); the split into (salary-based, thus not
equally distributed) business gains and (equally distributed) rights for
personal/social gains creates a bias towards the rich that is debatable.
However, the presented approach is comparably easy to implement
in practice, as in addition to tracking data only an approximate value
of a person’s salary is required (which is often readily available in
mobility studies), and it yields reasonable approximations to rank trips
(in particular intra-personally) according to their sustainability.

The financial gains of a work-related activity are given by the time
spent performing the activity (incl. the trips required to get to/from
the location) and the salary of the traveling person.

gFinancial(a) = ∆work(a) · gsalary (4.15)

Similarly, the personal gains can be computed for leisure-related activi-
ties, and by considering the fixed admissible budget for personal gains
(e.g., per week).

gPersonal(a) = ∆leisure(a) · gaverage (4.16)

gaverage = gfixed/∆tot, leisure (4.17)

Here, ∆tot, leisure denotes the total duration spent on leisure activities
within a certain time frame, and gfixed the fixed gains associated with
the same time frame (e.g., a weekly “budget” for leisure activities of
gfixed = CHF 500).

These quantifications of financial and social/personal gains allow
us to reason if the use of a certain transport mode (or the travel itself)
is justified for a given activity. The formulas might also give indi-
cations about the tradeoffs made between travel speed and activity
purpose. For example, when having to travel somewhere for work,
many people choose faster yet more expensive means of transport as
the corresponding financial gains are higher (or at least we are led to
believe so).

4.2.4 Combined Sustainability Indicators

There are several ways in which we can determine whether a certain
journey should be considered “sustainable”. We here propose two
methods: 1) A more accurate one that takes into account both the
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ecological as well as the monetary cost/gains as previously introduced.
2) A heuristic approximation that relies on the fact that most people
have a certain time budget for overall travel (which remains relatively
constant across different demographic groups as well as countries, cf.
Metz 2008; Jang 2017) as well as for individual trips.

The first method is essentially captured in the following equation:

S(θ) = ωs · (gFinancial(aθ) + gPersonal(aθ)) (4.18)

− (cMonetary(θ) + cEco. Impact(θ))

Here, the sustainability value S(θ) (of a trip θ) is measured in financial
terms resp. as overall (financial) gain (aθ denotes the activity enabled by
performing trip θ). If S(θ) is negative, the trip should have been avoided
(resp. if choosing another transport mode reduces the ecological impact
in such a way that the net S(θ) is positive again, the respective transport
mode should be preferred). On the other hand, if S(θ) is positive and if
we operate under the interpretation of weak sustainability (which can
be adopted for eco-feedback in order to adhere to the meaningfulness
criterion), a trip can be regarded as sustainable. Using ωs we can make
a trade-off between weak (ωs = 1) and strong sustainability (ωs = 0):
In the case of strong sustainability, independently of potential gains,
any trip that is not performed by SM (and thus not exhibiting any
negative environmental impacts) should be avoided. On the other
hand, under an interpretation of weak sustainability, many of the trips
can still be regarded as being sustainable, as their overall (positive)
impacts outweigh the negative environmental influences. Note that we
refrain from individually weighting the different costs (as is commonly
done based on stated preference data in order to have a more accurate
representation of the generalized cost from a person’s point of view;
cf. Kumar, Basu, and Maitra 2004; Nour, Casello, and Hellinga 2010;
Chintakayala and Maitra 2010), as we are not interested in a subjective
assessment of cost, but look at the problem from the point of view of
sustainability.

The Rule-Based
“Sustainabil-
ity”
Assessment

second approach was used in the GoEco! project (Bucher, Mangili,
Cellina, et al. 2019) and involved three rules: A trip is regarded as
non-sustainable iff. 1) the user has access to an alternative transport
mode, 2) whose usage for the given trip reduces its CO2 emissions
by at least 5%, and 3) which does not lead to an excessively long
trip duration. The last criterion is defined using the threshold dth =

(do + tmax)− tmax/(1+ dotmax), where tmax denotes the maximal increase
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in duration (set as 1.2 hours under the assumption that this is an
acceptable prolongation for longer trips; for shorter trips, the maximal
prolongation is of course less) and do the duration of the original route.
If the alternative mode of transport leads to a trip duration of more
than dth, it is rejected as a potential alternative.

As highlighted before, we here introduced concepts that are pri-
marily of value within the weak sustainability interpretation. Taking
the position of strong sustainability, one must always argue that any
trip that leads to (non-negligible; e.g., a trip by bicycle can usually be
considered negligible, even though CO2 was emitted as part of the
bicycle production) CO2 output should be avoided. This also means
that any person performing such trips should be nudged towards CO2

neutral travels, irrespective of the potential gains. We thus propose
to use the introduced sustainability indicators primarily to determine
when a (more sustainable) alternative should have been chosen (which
in turn can of course be used to compute “optimal” mobility behavior
or potentials for change), and not to exclude any trips from within a
persuasive application.

4.3 systematic mobility and mobility preferences

Systematic mobility plays a central role for behavior change, as it is
commonly responsible of for a substantial share of the overall impacts
of mobility, its regularity prevents people from actively thinking about
change, but once a change is implemented it can more easily lead to
long-lasting effects (Jager 2003). In this section, we first elaborate on
how to extract systematic patterns from mobility and how they can
be used for mobility feedback, after which we look at more concrete
examples of predictability of transport mode choices as well as groups
of people who travel in similar ways.

4.3.1 Geometrical, Topological and Platial Aspects of Systematic Mobility

Usually, people perform the same activities multiple times over a longer
time period (e.g., going to work usually happens on a daily basis). This
recurrence is commonly used to cluster activities by specifying, for
example, that an activity has to be performed at a given location more
than three times in a month in order to be considered systematic. We
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capture this concept by the notion of a place. Note that the definition
adopted here technically differs from common geographic interpreta-
tions of “place” (cf. Miller 2007), which do not include clear (spatial
or temporal) boundaries nor scales, but instead define a place as an
arbitrary “space that is filled with meanings and objectives by human
experiences” (Tuan 1977, p. 4). From a movement data perspective,
however, those spaces often coincide with locations that are regularly
visited, for which reason we adopt this definition.

Definition 4.7 (Place). A place Π is a geographical region (e.g., defined
by a polygon) in which a given person regularly spends time. For
methods which rely on a single point for computations, the center of
mass of the area Π is used.

The identification of places is commonly performed using a cluster-
ing approach like DBSCAN (Ester, Kriegel, and Xu 1996), hierarchical
clustering or disk-based clustering (cf. Xu and Wunsch 2005). In gen-
eral, it is easier to identify places using a method that does not require
the specification of the number of clusters beforehand, as this can vary
between persons. Commonly, home and work are regarded as “special”
places, as they are changing infrequently and the transitions between
them make up for a large share of mobility needs. Based on places
(which, in the most extreme cases have to be visited at least twice), we
can start identifying regular patterns of mobility.

Definition 4.8 (Tour). A tour Θ is a sequence of trips that start and end
at the same place Π: Θ = (Π, LΘ). If Π = home, the tour is called a
journey.

Most tours are actually journeys, as most people start their daily
routines in the morning by going to work or do errands, and return
home later in the day. However, tours can be arbitrarily nested and
overlapping. For example, going to a restaurant during lunch break
creates a sub-tour work→ restaurant→ work, embedded in the longer
journey starting and ending at home (cf. Figure 4.5). Tours are crucial
for meaningful suggestions of route alternatives, as they help keeping
transport mode use consistent (e.g., if someone leaves by car in the
morning, the car should be returned in the evening; on the other hand,
if someone does not leave by car, the car is not available later during
the tour).
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Home

Work

Restaurant

Shop

Tour/Journey 1
(Starting/Ending
at Home)

Tour 2 (Starting/
Ending at Work)

Figure 4.5.: Exemplary tour, which is also a journey (starting/ending at
home), and embedded subtour.

While trips and tours themselves do not necessarily appear mul-
tiple times in a person’s mobility history, we define their systematic
equivalents to get insights about the regularity of a person’s mobility
behavior.

Definition 4.9 (Systematic Trip/Tour). A systematic trip θ̂ is a transition
from one activity to another that regularly appears in a person’s mobil-
ity history. Similarly, a systematic tour Θ̂ is a collection of trips starting
and ending at the same place that regularly appears in a person’s
mobility history.

Note that in practice we usually compute the regularity of a trip or
tour by imposing a minimal number of trip/tour occurrences over a
certain time period (e.g., a minimal frequency of three times in two
weeks). Many of these descriptors of systematic mobility naturally
capture behavior induced by work, regular errands, and social desires
and demands. Due to their regularity, people often build habits that
are simply being followed without too much thought. While this
is an indication that irregular behavior is easier to change (as it is
always preceded by an active decision for a certain transport mode),
the regularity of systematic mobility ensures that a behavior change
has a long-term and substantial impact. In addition, these regular
trips are often less restricted by circumstances, as the requirements
of transporting goods or other people are often not given. As such,
we will put an emphasis to supporting people in transitions of their
regular/systematic mobility behavior towards more sustainability.
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4.3.2 Transport Mode Choices

Next to a spatio-temporal regularity, many people show high regulari-
ties in their transport mode choices. Here, we will particularly highlight
two areas of interest to persuasive technologies: 1) How people indi-
vidually choose between different transport modes, exemplified by the
choice between car and e-car, an increasingly important question as
EVs become more prevalent and show potential to greatly reduce the
ecological impact of mobility. 2) How people’s similarity in behavior
change can be identified and used to group them according to their
behavior, which in turn can be used to provide them different support,
but also for political incentives or targeted marketing.

4.3.2.1 Factors Influencing the Choice between Internal Combustion Engine
Cars and Electric Vehicles

Transport mode choices can either be analyzed from a individual tripleg
perspective, or from the point of view of tours. The former provides
more insights regarding all individual transport mode choices, while
the latter offers an arguably more realistic view from the perspective
of the individual, who usually plans travel “as a whole”, also taking
into account how to return from a certain activity. We here present a
choice model regarding the problem from both the tripleg as well as the
tour perspective, and taking socio-demographic variables, tripleg/tour
descriptors, as well as spatio-temporal context into account. Table 4.7
shows the features used within our choice model. As noted in the
table, the features for the tripleg and tour models slightly differ due to
their different underlying characteristics. For the purpose features, the
purposes of the next activity (for triplegs) resp. a majority vote of all
involved activities’ purposes (for tours) are used. The spatio-temporal
context is always computed using the starting point (in space and time)
of the respective tripleg or tour.

Using these features as a base, we can apply a range of models to
predict transport mode choices. As a straightforward (but more difficult
to explain) model, we use a Random Forest (RF). RFs are non-linear
classifiers that consist of an ensemble of decision trees, and are fast to
train, robust to outliers, and in general yield high prediction accuracies
even without extensive hyperparameter tuning (Ho 1995). For better
explainability (of the influence of different features), we also train a
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Feature Type Coding

Tripleg/Tour descriptors

Tripleg length∗ Ratio [0, ∞)

Tripleg duration∗ Ratio [0, ∞)

Length of all triplegs
in tour covered either
with car or e-car

Ratio [0, ∞)

Tour length Ratio [0, ∞)

Tour duration Ratio [0, ∞)

Previous staypoint
duration∗

Ratio [0, ∞)

Next staypoint
duration∗

Ratio [0, ∞)

Purpose of trip∗ Nominal {home, work, errand,
leisure, wait, unknown}

Purpose of tour Nominal {home, work, errand,
leisure, wait, unknown}

Socio-demographic data

Sex Nominal {male, female}
Age Ratio [0, ∞)

Cars in household∗∗ Ratio [0, ∞)

Employment status Nominal {working, not working}
Household income Ratio [0, ∞)

Household size Ratio [0, ∞)

Spatio-temporal context

Hour of day∗∗∗ Ordinal {0, 1, ..., 23}
Weekday/weekend Nominal {weekday, weekend}
Month of year∗∗∗ Ordinal {1, ..., 12}
Temperature at start Interval [−273.15, ∞)

Precipitation at start Ratio [0, ∞)

Table 4.7.: Features (and variable types) used for the ICE car/EV choice
model. Nominal variables are encoded as dummy variables,
each denoting the presence of one of the labels. ∗For tour-
level analyses these features are not used. ∗∗Prior to the start
of the study. ∗∗∗Normalized to lie in [0, 1].
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logit model. Logit models are commonly used for transport mode
choice models (as their output is a multinomial variable and they can
incorporate both mixed integer as well as continuous input variables).
In essence, the multinomial logit model is defined by the probability of
a target variable being 1:

plr(xi) =
1

1 + exp(−xT
i β)

(4.19)

Here, xi is a vector of predictors, β a vector of (learned) parameters,
and plr is the probability (e.g., of choosing the EV). The corresponding
model can be trained using a regularized total loss function as follows:

Lsample = −yi log(plr(xi))− (1− yi) log(1− plr(xi)) (4.20)

Lridge =
n

∑
i

Lsample(xi, yi) + λ
m

∑
j

β2
j (4.21)

In these formulas, Lsample stands for the sample loss that is minimized
as part of the machine learning procedure (using, for example, ordinary
least squares), and could already be used without employing ridge
regression. Minimizing the term Lridge, however, ensures that the
parameters β j are constrained, which in turn helps against over-fitting,
with problems involving many (possibly correlated) predictors, and
thus improves predictions on new datasets. The probability plr(xi) is
finally used to either choose the ICE car or EV for each prediction (i.e., a
value plr(xi) ≥ 0.5 corresponds to choosing the EV).

As the logit model is essentially a linear model, we transform some
of the features that exhibit a non-Gaussian distribution, e.g., the tem-
perature (that shows a periodicity over the day as well as the year) or
the distance traveled (that follows a power law). A further important
distinction is between models that are trained and tested on different
groups of users, or taking all users into account for both training and
testing. We hypothesize that an individual’s behavior is more pre-
dictable if some previous behavior of the same individual is known,
as most people’s mobility behavior is regular up to some stochastic
component. We test this by training models both on the same users they
are later predicting choices for, as well as on distinct sets of users (i.e.,
the users the models are trained for do not appear in the test dataset).
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4.3.2.2 Grouping Individuals According to their Transport Mode Choice
Behavior

Knowing about groups of people exhibiting similar mobility behavior
patterns allows persuasive applications to target them differently and
to incorporate ongoing behavior change processes. To identify such
groups, we propose a clustering framework that relies on the autocorre-
lation of a range of features that represent individual transport mode
choice behavior. In essence, we compute the autocorrelation of the daily
traveled distances and durations (with different transport modes) at
various time lags, and use the resulting values to cluster people. This
lets us identify, for example, a group of person that uses mobility in a
very regular way (exhibiting a strong autocorrelation at a time lag of 7
days) and distinguish them from people who use mobility in a more
flexible way, changing the places they visit or the transport modes they
use (as the resulting autocorrelations will be low). We denote the daily
traveled distances and durations as:

Di = [d1
i , d2

i , ..., dN
i ] (4.22)

∆i = [δ1
i , δ2

i , ..., δN
i ] (4.23)

Here, i ∈ M = {bicycle, boat, bus, car, coach, e-bicycle, e-car, train, tram, walk}
denotes the transport mode and N corresponds to the number of days
for which we have data available.

On each of these time series, we then compute the autocorrelation,
defined as follows:

ρi,r =
∑N

t=r+1(xt
i − x̄i)(xt−r

i − x̄i)

∑N
t=1(xt

i − x̄i)2
(4.24)

Here, xt
i is a placeholder for either dt

i or δt
i , r denotes the time lag (in

days), i identifies the feature for which we compute the autocorrelation,
N is the length of the time series (i.e., the number of days), and x̄i is
the mean of the time series. To make up for the fact that some people
will not use some of the transport modes very often (or not at all), we
introduce a scaling factor ωi = xi/ ∑j∈M xj for each autocorrelation
value. Finally, the similarity (resp. distance in feature space) between
two users a and b for a number of autocorrelation values and weights
is computed as:

d2
a,b = ∑

i∈M

R

∑
r=1

(ρa,i,r ·ωa,i − ρb,i,r ·ωb,i)
2 (4.25)
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where we distinguish between the two users using the subscripts a resp.
b. This is essentially the squared difference of all autocorrelation values
over all transport modes and time lags up to R.

Based on this distance, which is used to compute a distance matrix
incorporating the distances between all pairs of users, we apply a hier-
archical clustering method (e.g., Rokach and Maimon 2005) that results
in a dendrogram representing how similar different users behave, and
how they are hierarchically arranged. We compute a suitable number
of clusters from this dendrogram by using the Calinski-Harabasz Index
(CH-index; Caliński and Harabasz 1974), which in turn is based on the
sum of squares (of distances) within and between clusters (SSW and
SSB):

SSW =
K

∑
k=1

∑
i∈Ik

||xi − Ck||2 (4.26)

SSB =
K

∑
k=1

nk||Ck − C̄X||2 (4.27)

CH =
SSB/(K− 1)

SSW/(N − K)
(4.28)

Here, K stands for the number of clusters, Ik identifies all samples
within cluster k, xi is a single sample (i.e., all scaled autocorrelation
values of a user), N = ∑K

k=1 nk the total number of samples resp. users,
Ck denotes the center of cluster k, nk the number of samples in the
cluster and C̄X = ∑N

i=1 xi/N the center of all samples.
Considering both within and between cluster values, the Calinski-

Harabasz Index strives to find an optimal tradeoff, minimizing the
variance within a cluster, and maximizing it between clusters. It takes
its maximum value at the best possible number of clusters for a given
dataset (i.e., to find the optimal number of clusters, we maximize the
CH-index).

4.4 inferring user behavior

Automatically detecting behavior changes is desirable for persuasive
approaches and technologies as it allows adapting or reevaluating the
persuasive strategy upon larger changes, sending out notifications that
encourage or discourage a certain behavior or informing an expert
about the changes.
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4.4.1 Mobility Choices over Time

To analyze and utilize evolving mobility choices over time, we propose
a processing pipeline that extracts features and applies pattern mining
to detect anomalies in behavior (which in turn are an indication of
an occurring change). The pipeline is built upon the assumption that
tracking data is continuously fed into a system that processes it at
certain checkpoints, e.g., once every week. Based on the mobility
features introduced earlier, (anomalous) changes from one week to the
next can be identified. As commonly used algorithms for anomaly
detection do not indicate which feature led to the classification as
anomaly (which is crucial if the response should be tailored to the
behavior that changed), we propose a detection algorithm based on
weighted standard deviations:

| fi − µi| > λ · σi (4.29)

For each feature fi shown in Table 4.8 except the frequently visited
places, we compute the mean µi and standard deviation σi (essentially
fitting a Gaussian distribution to the feature vector). If a newly recorded
feature deviates more than λ · σi from the previously recorded features,
it is considered as an anomaly. Note that the average distance and
duration are based on daily aggregates while the other features are
either totals for a week, or averages over all recorded triplegs within a
week.

ForPlace
Anomalies

the visited places (i.e., locations that were visited multiple times
within a week), we apply a comparable approach, whereas each visit
at a given place within a certain week is encoded by vw,p ∈ {0, 1},
where 1 denotes a visit. The resulting sequences are then analyzed in a
two-step approach: First, anomalies in the visit sequences are identified
using Equation 4.29. The resulting anomalies are then summed over
all the places (as taking each place as its own feature would lead to a
large number of additional features, and thus heavily bias the method
towards place anomalies), which in turn yields another sequence of
the number of place-related anomalies per week. In the second step,
another anomaly detection (as described in Equation 4.29) is applied
to this sequence of place-related anomalies, which allows extracting
sudden changes in place-visiting behavior (e.g., if someone frequently
visits new places, the person will have many first-level anomalies; if
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Feature Day Week

Total number of trips 3

Average number of triplegs per trip 3

Total distance traveled 3

Total distance travelled (per trip purpose) 3

Total distance travelled (per traffic mode) 3

Average distance travelled 3 3

Total duration spent travelling 3

Total duration spent travelling (per trip purpose) 3

Total duration spent travelling (per traffic mode) 3

Average duration spent travelling 3 3

Total CO2 emissions 3

Average travel speed 3

Average travel speed (per traffic mode) 3

Frequently visited places 3

Table 4.8.: Features used to detect anomalies in weekly exhibited behav-
iors.

that person suddenly stops visiting new places, the two-level detection
method will flag this as behavior change).

The resulting summary of anomalies stemming from different fea-
tures let a persuasive application detect when behavior might have
changed, and by looking at the anomalies in detail how to best re-
spond to the detected changes. For example, an increase of the number
of anomalies related to frequently visited places in combination with
anomalies of features such as the total distance or duration might be
an indication that the mobility behavior changed due to differing cir-
cumstances (such as a relocation to another home). On the other hand,
if only anomalies involving a small set of transport modes are detected,
it can be assumed that the user tried out a new behavior, which can be
supported appropriately (if the behavior is desirable).

4.4.2 Behavior Change

In a similar manner as before, finding individual behavioral changes
and grouping people according to those changes can be beneficial
both for individual support (to adapt the persuasive strategy, send
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notifications, etc.), as well as to get a holistic view on the mobility
behavior of a group. To detect such change, we propose a two-level
data mining method that in the first level (L1) computes similar features
as previously introduced (the actually used features are shown in
Table 4.9). On the second level (L2), descriptors that are based on the
temporal variation of the first-level features are computed. These L2

features essentially capture the changes in behavior:

• We fit a first-order approximation to each of the L1 features:
vt = a · t + b. The trend line intercept b and the trend line slope
a capture the initial behavior of a person and a general change
trend, and are used as L2 features.

• The minimum and maximum deviation between consecutive sam-
ples (here, we propose to take the 5th and 95th percentile).

• The number of anomalies as computed in subsection 4.4.1. Here,
we take the total number of anomalies within the period of interest
as the L2 feature.

• The variance σ2 captures the volatility resp. steadiness of a given
feature over the period of interest.

• Similar to the first L2 feature, we also fit a first-order approxima-
tion to σ2 that captures general trends in the change of mobility
usage.

The resulting n× NL2 matrix (where n is the number of users in the
study sample and NL2 = 8 · NL1 describes the number of L2 features) is
then used as input for a clustering algorithm that determines groups of
people that exhibit similar behaviors.

As the high dimensionality induced by the large number of L2 fea-
tures makes clustering difficult, we first select a subset of features based
on the interquartile ratio, which measures relative dispersion in a robust
way:

vq =
X0.75 − X0.25

X0.25 + X0.75
(4.30)

Here, X0.25 and X0.75 are the first resp. third quartile. We select all fea-
tures whose interquartile ratio is above the average of all ratios. Based
on the pair-wise Pearson correlation coefficient r (Benesty et al. 2009),
we then remove all the features which appear in pairs where |r| > 0.8
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Feature Description No. Resulting Features

Duration-based modal split by purpose nm · np

Distance-based modal split by purpose nm · np

Duration per stay point by purpose np

Total number of trips 1
Total distance travelled 1
Total number of trip legs 1
Duration of trip legs, sum over all purposes 1
Duration of stay points, sum over all pur-
poses

1

Total duration of triplegs and stay points 1
Total CO2 emissions 1

Table 4.9.: Features used to detect behavior changes from recorded
mobility data.

and that exhibit the smaller vq of the respective pair. The latter is done
to reduce the number of strongly correlated features, which would not
add additional information for the clustering. As a clustering method,
we apply DBSCAN with a carefully tuned neighborhood distance ε and
minimal number of points within this distance nminPts (based on the
resulting number of detected clusters and their silhouette score).

Finally, we train a (class-weighted) decision tree classifier to get
interpretable results (i.e., each decision node in the tree will help under-
standing which feature mainly was responsible for the split, all the way
down to the individual classes). The resulting (explainable) clustering
can help a persuasive application in similar ways as described before.
For example, a group of people showing an increasing trend of using
the bicycle to go to work can be targeted by reinforcing measures, while
a group showing the opposite behavior can be targeted using educative
measures that highlight the benefits of cycling.

4.5 data and experiments

In the following, we provide concrete examples for the introduced
concepts and methods, and use them to argue about the applicability
of the proposed approaches to enable persuasive technologies that
induce more sustainable mobility behaviors. The examples are based
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on data collected during the GoEco! and SBB Green Class projects, as
introduced in chapter 2, and implemented in Python using various
supporting libraries. For many of the methods and metrics discussed,
we will provide aggregate examples resp. examples highlighting the
differences between individual users. Of course, when using them in a
persuasive setting, the metrics are used to give a single user feedback
(i.e., no information about other individual users is revealed). This and
the corresponding use of metrics and methods will be discussed in
detail in chapter 6.

4.5.1 Mobility Histories

4.5.1.1 Augmenting Movement Data with Spatio-Temporal Context

In section 4.1, we introduced a trajectory algebra, which is useful
to assign context data to movement trajectories. For the purpose of
supporting people in sustainable mobility choices, we are particularly
interested in knowing about the surroundings whenever someone is in
the situation where he or she has to choose a certain mode of transport,
and weather-related factors, as they are among the most prevalent
influencing factors. Note that, as explained in chapter 3, it is important
to keep in mind that the strongest influencing factors are still the ones
grounded in psychology, e.g., attitudes or habits. Figure 4.6 shows
the temperature ( fl,temp) and precipitation contexts ( fl,precip) retrieved by
applying the following trajectory algebra statement to the trajectories τ

resp. triplegs l of the SBB Green Class study:

fl,{temp,precip} = Zonal First Local · Local · (4.31)

OF Pe AT p ∈ l.Pl

To retrieve the values, both temperature and precipitation were available
as raster data with a cell size of roughly 5×5 km (cf. Bucher, Buffat, et al.
2019 for a more detailed description of the meteorological data). It can
clearly be seen how the temperature recorded at the start of each tripleg
rises during summer, while the precipitation remains roughly constant
throughout the year (in Switzerland, there are no particularly rainy
seasons). These precipitation and temperature values are, for example,
used in the ICE car / EV choice model introduced in subsection 4.3.2
(and examined using real tracking data in subsection 4.5.3).
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Figure 4.6.: Temperature and precipitation context added to each tripleg
using trajectory algebra.

Similarly, Figure 4.7 shows the distribution of POIs (of types restaurant,
education, transport, errand and leisure) at both the origin and destination
of triplegs, as well as the number of PT stops (of types train, tram and
bus) along the route. In this case, the POI and PT distributions were
retrieved using:

fl,POI = Zonal First/Last Focal Count Local · (4.32)

OF Pe AT p ∈ l.Pl WITHIN 100m

fl,PT = Zonal Avg Focal Count Local · (4.33)

OF Pe AT p ∈ l.Pl WITHIN 50m

Note that in contrast to the temperature and precipitation values, POI

and PT stops are available as point resp. vector data (and do not
contain a temporal dimension). The proposed trajectory algebra can
incorporate such data as well, as long as the spatial selection methods
are unambiguously defined. As is visible from Figure 4.7, the number
of PT stops along the route is an indicative feature of triplegs involving
a PT mode (train, tram and bus). Similarly, the POI distribution can be
an indication of the activity purpose.
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Figure 4.7.: Distribution of PT stops along the route and POIs in the
vicinity of an activity location.

4.5.1.2 Extracting Basic Mobility Descriptors

The computed distance and duration per tripleg (according to Equa-
tion 4.3 and 4.4) are shown in Figure 4.8. Plotting the distance and
duration on one axis each allows fitting a trend line that describes
a characteristic speed of the given transport mode, which in turn is
(implicitly) used to infer the transport mode of a given tripleg within a
prediction model such as the one introduced in subsection 4.1.5. Fur-
ther, knowing about the duration resp. distance of a tripleg allows
arguing about the total mobility budget of a person, and how the trans-
port modes of individual triplegs could be replaced. Last but not least,
persuasive applications commonly communicate these values to users
as part of given eco-feedback (either directly or embedded within some
gamified elements).

Figure 4.9 shows the modal split of all participants of SBB Green
Class, computed according to Equation 4.5. While this is a general
impression of the modal split of a larger sample, it is clearly visible
that by computing the modal split in different ways, the emphasis
can be put on different transport modes: If we want to highlight the
negative aspects of flying, a distance-based modal split easily gives
the impression that flying is responsible for the largest shares of the
ecological impact (a similar effect can be achieved with a CO2-equiv.-
based modal split, as discussed later in this section), which is much
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Figure 4.8.: Distances and durations of each tripleg of the SBB Green
Class study.

less prominent in a duration-based split (that gives all transport modes
approximately the same weight, which is in accordance with the fact
that most people have a fixed mobility budget). The occurrence-based
modal split captures the number of transport mode choice decisions a
person needs to take, and is thus more important for the creator of a
persuasive system, as it highlights the share of “unfavorable” choices.

Similar to the introduced transport mode splits, the activity purpose
splits (introduced in subsection 4.1.4) highlight characteristics of indi-
vidual people and the resulting mobility needs. Figure 4.10 shows the
activity purpose splits of the participants of SBB Green Class. From a
duration-based split, it is clearly visible that most people spend their
time at home, followed by work and leisure activities. Presenting ac-
tivities based on the number of occurrences again focuses more on the
number of mobility decisions a person needs to make (namely to reach
the given activity), and thus not only helps the developer of a persua-
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Figure 4.9.: Different ways to compute the modal split change the per-
ception of mobility use.

sive system, but can also foster a re-evaluation of mobility choices by
the user of the system (especially when the occurrence-based modal
split is backed up by information about how sustainable the mobility
choices to reach each of the activity purposes are).

4.5.1.3 Transport Mode and Activity Purpose Inference

Using features like the ones introduced in the previous sections, we
can identify the transport mode of a given tripleg. Figure 4.11 shows
the prediction accuracy of the naı̈ve Bayes inference model introduced
in subsection 4.1.5. As the model is continuously “re-trained” (resp.
the Bayesian priors are updated), the prediction accuracy increases.
The prediction accuracies shown in Figure 4.11 are averaged over all
participants of the GoEco! project (as we train a separate model for each
user to account for the individual differences in mobility use) using a
sliding window of size 20 to smoothen the curves.
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Figure 4.10.: Activity splits of users participating in the SBB Green Class
study. The activity purposes unknown could not be univo-
cally identified by the tracking app and were not separately
validated by the users.

On the left side of Figure 4.11, only the features directly computed
from the triplegs are used, while on the right side additional spatio-
temporal context is introduced by considering available public transport
alternatives for bus, tram and train (cf. Table 4.5). It can be seen that
there are large differences in the predictability of different transport
modes. Walking is the most easy one, likely due to its very characteristic
(slow) speed. Driving by car is recognized fairly well, but is more easily
confused with traveling by bus, tram or train (depending on the speed).
Here, the usefulness of the added spatio-temporal context becomes
visible, as the accuracies substantially increase on the right side. Note
that the sudden “drops” in accuracy stem from the fact that there are
only a few users remaining that recorded the respective number of
triplegs, and as such misclassifications of their transport modes lead to
large changes in the aggregate accuracy.

4.5.2 Sustainability Metrics

Once the mobility data are preprocessed and available as histories,
applying the methods introduced in section 4.2 lets us determine which
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Figure 4.11.: Prediction accuracy of the transport mode prediction
model introduced in this chapter. On the left side, no
(geographic) context given by the PT alternatives is used;
on the right side, all features introduced in subsection 4.1.5
are used.

trips resp. triplegs should be considered non-sustainable and should
possibly be replaced by more eco-friendly alternatives.

4.5.2.1 Environmental Impact

Foremost, we are interested in knowing if a trip should or can be
considered sustainable, which in turn requires determining its eco-
logical impact, and balancing this against any potential monetary or
personal/social gains acquired by performing the trip. Figure 4.12

shows the average daily ecological impact as recorded during the SBB
Green Class study and computed according to Equation 4.12, using a
price of CHF 80/tCO2 for the offsetting costs. It can be seen that for
most people, the daily ecological impact measures in monetary terms
is low. The largest (individual) contributions stem from airplane trips,
whose ecological impact is in the order of several dozen CHF per trip.
There are two important takeaways here: First, offsetting the negative
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environmental impacts would be feasible for most people, as it is in
the order of several hundred Swiss Francs resp. USD yearly. Second,
the still relatively small ecological impacts require us to shift our think-
ing towards the concept of strong sustainability, as in most cases the
generated capital gains will outweigh the environmental “costs” by far.

Figure 4.12.: Environmental impacts (measured in terms of monetary
equivalents) of the mobility behavior of the participants of
SBB Green Class.

4.5.2.2 Monetary Cost and Capital Gains

Similarly, we can compute the monetary costs resp. capital gains
according to Equation 4.13, 4.15 and 4.16. Figure 4.13 shows the average
daily costs for mobility for the SBB Green Class sample, as well as the
corresponding gains from performing the respective activity (which
can be either financial as measured using a person’s salary, or personal
by considering a fixed hourly gain across all users). Naturally, the gains
are substantially larger than the corresponding costs. It can be seen,
though, that they are of approx. two orders of magnitude larger than
the environmental impacts.

4.5.2.3 Combined Sustainability Indicators

In order to combine the environmental impacts and monetary costs
resp. gains as explained in the previous sections, we thus have to
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Figure 4.13.: Gains and costs of mobility as computed using the tracking
data of the participants of SBB Green Class. We assumed
an average salary of CHF 8916/month and a fixed “leisure
budget” of CHF 2000/week.

carefully consider if we adopt a position of strong or weak sustainability,
or some tradeoff between the two. Given by differences in the orders of
magnitudes between environmental impacts and associated costs and
gains, considering mobility from a point of view of weak sustainability,
practically all trips can be considered sustainable, as they result in net
gains (either financially or personally). Taking the point of view of
strong sustainability, the opposite happens, and only those trips com-
pletely covered by SM can be considered sustainable. Figure 4.14 shows
the trade-offs between different interpretations of sustainability as mea-
sured using the environmental impacts and costs/gains introduced
before. We used a fixed “leisure budget” of CHF 2000/week to roughly
balance the monthly salary with the budget for leisure activities. An-
alyzing the sensitivity of this parameter yielded that changing it in
the range of CHF 500/week to CHF 5000/week does not substantially
change the sustainability assessment as shown in Figure 4.14. Reducing
it to 0 CHF/week, however, reduces the maximal number of sustainable
trips (at ωs = 1) to approx. 25%, corresponding to the 24% of all travels
in Switzerland that are performed for work reasons (Biedermann et al.
2017).
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Figure 4.14.: The share of sustainable trips as a function of the sus-
tainability weight ωs (where ωs = 0 corresponds to the
concept of strong sustainability and ωs = 1 to weak sustain-
ability).

4.5.3 Systematic Mobility and Mobility Preferences

Knowing about systematic behavior and preferences of individual
people lets persuasive applications specifically target these regularities
(which is helpful as changes in regular behavior lead to long-term
effects and are difficult to achieve without external stimuli) and further
personalize the provided support.

4.5.3.1 Geometrical, Topological and Platial Aspects of Systematic Mobility

While estimating personal circumstances from trajectory data alone is
difficult, contextual factors such as the time can lead to valuable insights.
Figure 4.15 shows the transport mode choices at different times during
the day (where the upper part of the figure shows the choices during
the week and the lower part shows them on the weekends). It is clearly
visible that in the morning and evening rush hour, trains are more
frequently chosen, indicating that they are often used to travel to/from
work (note that due to the comparably high price the SBB Green Class
sample primarily consists of working middle-aged, middle-class men,
cf. chapter 2). Trains are also used less on the weekend in favor of cars,
indicating that trips undertaken on the weekend either require more
space (e.g., to accommodate a family or transport goods) or flexibility
(in terms of reachability of destinations and/or time).

Systematic mobility behavior is important for persuasive applications
targeting sustainable mobility behavior, as people usually do not think
much about their choices on these trips, which in turn means that their
habitual behavior is potentially responsible for large ecological impacts,
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Figure 4.15.: Transport mode choices at different times, as recorded
throughout the SBB Green Class study.

even though there would be suitable alternatives available. In addition,
a change of mobility behavior on a systematic trip can easily be turned
into a new habit which will have a long lasting effect. Figure 4.16

shows the shares of systematically visited locations (denoted as places
within this dissertation), computed using the methods presented in
subsection 4.3.1. It can be seen that on average roughly half of all trips
and activities are performed on a regular basis. However, representing
these systematically visited places based on their duration indicates
that a large share is made up by one’s home and workplace, making
up for substantially more than 50% of a user’s visited locations.

4.5.3.2 Transport Mode Choices

Knowing about all the previously introduced properties and factors
gives us the possibility to build transport mode choice models. Here,
we present the results of the transport mode choice model (predicting
the choice between an ICE car and an EV) introduced in subsection 4.3.2.
Knowing how people would choose between these two transport modes
(if they had both available) is becoming more and more important with
the increasing prevalence of EVs. For example, it is commonly argued
that buying an EV might be a bad idea, as their limited range impacts
the usefulness of the vehicle, in particular when going on holiday or
doing longer leisure trips. Studying the transport mode choice model,



4.5 data and experiments 141

Occurrence-based Shares of Places0

25

50

75

100
Pe

rc
en

tag
e [

%
] Irregularly Visited Location

Place (Regularly Visited Location)

Duration-based Shares of Places0

50

100

Pe
rc

en
tag

e [
%

]

Figure 4.16.: The share of places (cf. Definition 4.7) within the set of all
staypoints.

we can argue if this would indeed be problematic for most people, or
if in reality, people choose the transport mode irrespective of the trip
length (and instead either choose randomly or based on features that
are more difficult to observe using a location tracking app, such as the
number of people traveling, or the amount of luggage transported).

To evaluate these questions, we trained a logit model as well as a
Random Forest (RF) on the data from the SBB Green Class study (where
all participants had access to both an ICE car as well as an EV). Both
models were trained on triplegs and tours, and considering a completely
random split of data (i.e., the predictions happen on the same users as
the training) as well as a user-based split (where the models were fitted
on one set of users, and evaluated on another). The latter was done
to study how well we can predict transport mode choices if we do not
know about the previous behavior of a user (which naturally occurs,
for example, when a person uses a persuasive application for the first
time), and how much prediction improvement we can achieve once we
know more about the mobility behavior of that person.

Figure 4.17 shows the feature importances of the RF model. While
these importances confirm that the length of a trip has the largest
impact on the transport mode choice, its relative increase in importance
is marginal, indicating that when faced with the choice in a real setting,
the tripleg length does not become a crucial factor. Table 4.10 and
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Figure 4.17.: The feature importances as used within a RF model fitted
to the triplegs and tours recorded within the SBB Green
Class study.

4.11 show the logit models both fitted on triplegs as well as tours. The
long-distance factor indicates if a tripleg or tour was longer than 100 km
in a binary fashion. Looking at the choice between ICE car and EV on
a tour level is a more natural representation of a planning process a
person might undergo.

Studying the weights of the logit models similarly shows that while
the impact of the tripleg/tour length (resp. the logarithm thereof)
is significant, its effect size is small (e.g., the difference between a 1

km and a 100 km tripleg/tour has approximately the same effect as a
change in work status or the change from weekdays to weekends). It
is also interesting to see that temperature and precipitation have very
small effect sizes and are not even significant in the case of the tours
logit model. This stands in contrast to statements of study participants
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Feature Coefficient Std. Error z-Value p-Value

Intercept 3.7693 0.310 12.175 0.000
∗

Weekday/weekend -0.4806 0.017 -27.879 0.000
∗

Temperature 0.0078 0.001 7.719 0.000
∗

Precipitation 0.0394 0.012 3.244 0.001
∗

Sex -0.1872 0.025 -7.638 0.000
∗

Age 0.0086 0.001 8.037 0.000
∗

Number of cars in
household

-0.0636 0.012 -5.425 0.000
∗

Work status 0.3381 0.023 14.635 0.000
∗

Household size 0.0689 0.006 11.811 0.000
∗

Long-distance tripleg -1.7695 0.064 -27.848 0.000
∗

log(duration of next
activity)

0.0776 0.005 14.868 0.000
∗

log(duration of prev.
activity)

0.0852 0.005 15.984 0.000
∗

log(duration of trip-
leg)

-0.3136 0.018 -17.038 0.000
∗

log(length of tripleg) 0.2011 0.014 14.614 0.000
∗

log(household in-
come)

-0.4286 0.031 -14.023 0.000
∗

sin(hour of day) 0.0928 0.011 8.359 0.000
∗

sin(month of year) 0.2385 0.011 21.001 0.000
∗

Table 4.10.: Model parameters and predictor significances for the tripleg
logit model. ∗Significant at the p < 0.05 level.
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who indicated that during cold weather the range of EVs is reduced,
either due to battery limitations or to increased energy demands from
heating.

Feature Coefficient Std. Error z-Value p-Value

Intercept -1.7069 0.611 -2.792 0.005
∗

Weekday/weekend -0.4440 0.035 -12.632 0.000
∗

Temperature -0.0018 0.002 -0.850 0.395

Precipitation -0.0357 0.029 -1.238 0.216

Sex -0.1451 0.049 -2.975 0.003
∗

Age 0.0078 0.002 3.503 0.000
∗

Number of cars in
household

-0.0250 0.024 -1.030 0.303

Work status 0.6985 0.260 2.689 0.007
∗

Household size 0.0900 0.012 7.509 0.000
∗

Long-distance tour -0.5116 0.053 -9.670 0.000
∗

log(length of all
triplegs by car or
ecar)

0.0464 0.009 5.206 0.000
∗

log(length of tour) 0.1006 0.020 5.066 0.000
∗

log(duration of tour) 0.0620 0.017 3.704 0.000
∗

log(household in-
come)

-0.0584 0.062 -0.940 0.347

sin(hour of day) 0.1443 0.024 6.043 0.000
∗

sin(month of year) 0.1223 0.023 5.282 0.000
∗

Table 4.11.: Model parameters and predictor significances for the tour
logit model. ∗Significant at the p < 0.05 level.

Finally, to answer the question if we can predict the choice between
the ICE car and the EV without knowing anything about the previous
user behavior, we computed the prediction accuracy and the Madden
(pseudo) R2 (McFadden 1973) for all the different models. This alterna-
tive R2 score is defined as R2 = 1− ln L1

ln L0
, where L0 is the likelihood of a

model only containing the intercept and L1 the likelihood of the com-
plete model, and offers a meaningful substitute for binary classification
tasks.

Table 4.12 shows that the RF trained on data of all users is able to
predict the choices well and the model explains much of the variance
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Triplegs Tours
Model Acc. Ps. R2 Acc. Ps. R2

Random Forest 78.86% 0.3060 74.04% 0.2198

Logit Model 59.00% 0.0195 58.46% 0.0328

Random Forest (User Split) 65.40% 0.1032 59.96% 0.0273

Logit Model (User Split) 52.43% 0.0055 52.43% -0.0072

Table 4.12.: The accuracy and explanatory power of the ICE car/EV

choice models presented in this chapter.

(0.3060 for triplegs resp. 0.2198 for tours). If we train on one set of
users and test on another, the accuracy drops substantially and becomes
only marginally better than a random prediction (which would yield
50%). Similar characteristics can be observed for the logit model, which
generally exhibits lower accuracies and R2 values. These findings
support the hypothesis that the choice between an ICE car and an EV

heavily depends on the person under consideration (i.e., people show a
high regularity in these choices), but cannot easily be transferred from
one person to the next. This in turn is an indication that in general,
choices between ICE cars and EVs are rather random, and thus the
negative associations with EVs are not problematic in reality.

4.5.4 User Behavior

The following experiments use the recorded mobility data to extract
information about the exhibited mobility behavior. This information
can be used by application developers to specifically target different
groups of people.

4.5.4.1 Mobility Choices over Time

As introduced in subsection 4.3.2, we can use the introduced mobility
metrics to group people into different classes of similar mobility choice
behavior, which is useful for targeting people with measures adapted to
their behavior. Based on the introduced autocorrelations (of daily dis-
tances traveled and duration spent traveling), displayed in Figure 4.18,
we compute a similarity value for all users according to Equation 4.25.
Figure 4.18 very well shows the weekly peaks in autocorrelation of the
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participants of the SBB Green Class study (i.e., they show a very regular
weekly behavior). It is also visible that there is a (small) exponential
dropoff with increasing lag. This highlights that our mobility behavior
is constantly changing and thus everything within roughly three weeks
shows a higher autocorrelation than choices further away.
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Figure 4.18.: Variations of the autocorrelation coefficients at different
time lags for all users.

Clustering people according to the autocorrelations (of different
transport modes) using a hierarchical clustering method, we can identify
people that exhibit similar transport mode usage and regularity. To
determine an optimal number of clusters, we use the CH-index given
in Equation 4.28. The resulting index values are shown for up to
30 clusters in Figure 4.19. As the maximum value of the CH-index
indicates the optimal tradeoff between intra-cluster and inter-cluster
variance, we would be inclined to choose a low cluster number of
three clusters. However, looking at the figure, we observe that there
is a prominent peak at 14 clusters (duration), as well as at 7 clusters
(distance). The latter become acceptable choices when considering that
we might want to have a more fine-grained assessment of people and
their mobility usage, thus being able to tailor a persuasive application
to a larger number of groups with differing mobility usage.

In Figure 4.20, the top-2 clusters of applying hierarchical clustering
to the autocorrelations computed for the participants of the SBB Green
Class study are shown. It can be seen that people in cluster two use
trains for substantially longer distances and durations, at the expense
of car usage. This different use of mobility is also reflected in the CO2

emissions which are lower for the people in cluster two.
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Figure 4.19.: Relation graph of the number of clusters and CH-index.
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Figure 4.20.: Boxplots of five mobility indicators in different clusters.

Looking from the point of view of a persuasive application, cluster
group two should be predominantly targeted with measures supporting
SM, while group one should be assisted in transitioning from the use of
ICE cars to more ecologically friendly modes of transport such as trains
or (up to some degree) EVs.

4.5.4.2 Behavior Change

While the previously introduced methods allow both extracting metrics
that are useful to be presented directly to the user as well as to make de-
cisions about how to support different individuals, we here present the
outcomes of applying the methods introduced in section 4.4, targeted
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at a longitudinal analysis of behavior and detecting the related changes.
This in turn is important to identify when an applied measure shows
effect as well as to know when the measures (e.g., within a persuasive
application) should be adapted due to changing behavior.

Figure 4.21 and Figure 4.22 show the behavioral anomalies of two
users of the SBB Green Class study as identified using the approach
presented in subsection 4.4.1 and in particular Equation 4.29. In both
figures, the yellow points indicate place-related anomalies (i.e., the
number of previously unseen places visited in that week) and the blue
points indicate the total number of anomalies in the respective week
(i.e., considering all features). The user corresponding to Figure 4.21

exhibits a constant behavior (i.e., there are no anomalies detected)
up until around week 2017-06, after which we see an increase in the
total number of anomalies. These anomalies stem from an increase
in distance and duration of walking and bicycling trips (however, this
is not shown in Figure 4.21). In combination with the fact that the
place-related anomalies (indicated in yellow) remain roughly constant,
it can be concluded that this user indeed changed his or her behavior.
A persuasive system should make use of this information, e.g., by
reinforcing the new behavior and providing incentives to continuously
exhibit it.
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Figure 4.21.: All (blue) and only place-related (yellow) anomalies for
user A of our test sample. In weeks 2016-50, 2016-52, and
2017-02, the data completeness was found insufficient to
reliably assess mobility behaviour patterns.
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In contrast, the user corresponding to Figure 4.22 shows an increase
in the totally traveled distance (starting from week 2017-05), made up
of increases in car, bike and walking distances (again, this is not shown
in the figure, but analyzing the anomalies reveals this information). In
combination with the increase of place-related anomalies around the
same time, one has to conclude that the behavior change in this case
is more likely caused by varying circumstances (e.g., a holiday trip),
and thus a persuasive system should not introduce any shifts in the
supporting measures.
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Figure 4.22.: All (blue) and only place-related (yellow) anomalies for
user B of our test sample. In week 2017-07, the data com-
pleteness was found insufficient to reliably assess mobility
behaviour patterns.

To identify groups of people who change their behavior similarly,
we introduced a two-level behavior change method in subsection 4.4.2.
Figure 4.23 shows a selection of the features extracted from the metrics
introduced previously in this chapter. In blue, the “raw” level 1 (L1)
features are displayed, while in orange and red the level 2 (L2) trend
lines, anomalies, and quantiles are represented, which are used to
cluster the people according to their behavior. For example, the total
number of trips as well as the total wait duration at staypoints both
contain trend lines that highlight the increases over the whole study
period. They also contain anomalies, where a large increase from one
day to the next was found. The variances (shown in the middle) are
solely represented by a trend line, while the differences from one day to
another are used to generate the 0.25- and 0.75-quantiles as L2 features.
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Figure 4.23.: Exemplary L1 and L2 features used to cluster people ac-
cording to similarities in their behavior (resp. the change
thereof).

Figure 4.24 shows the clustering results along the five primary fea-
tures that led to the clustering result. It can be seen that for example
cluster group 1 exhibits increases in the variance of several transport
mode usage patterns, indicating that this group in the beginning of the
study period showed a more regular behavior than towards the end.
Group 2, on the other hand, exhibits a relative increase in regularity. A
persuasive application should be aware of these trends, as for example
the first group can be targeted with measures that persuade someone
to try out more sustainable alternatives (e.g., by proactively showing
these alternatives), while the second group seems to be more in a habit-
forming process and thus (in case it is a non-sustainable habit) can
be supported by educative measures that highlight the impacts of the
behavior.

Clustering the people according to their mobility change behavior
using a decision tree also lets us inspect the different features that led to
a given clustering result. Figure 4.25 shows the decision tree responsible
for clustering people as displayed in Figure 4.24, and highlights cluster
3 in red and cluster 4 in pink. It can be seen that people in cluster
group 4 show a higher increase in variance of the duration spent on
taking the train to get home, and further exhibit a lower increase in
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Figure 4.24.: Visualization of clusters along five features of interest. It
can be seen that all members of clusters exhibit similar
feature values.

variance of leisure-related walking activities. In addition to being used
within a persuasive application, these results can guide mobility and
movement analyses, in this case highlighting that changes in mobility
pattern within the SBB Green Class project mainly revolve around how
people use mobility for home- and leisure-related activities.

4.6 chapter summary

In this chapter, we highlighted the processes and methods involved
to transform automatically and passively tracked movement data into
information that can be used to build persuasive applications that sup-
port people in reaching sustainable mobility. In particular, we presented
a method to automatically infer transport modes using spatio-temporal
context data, a collection of sustainability indicators that provide a
way to determine if a given trip should be avoided or replaced by a
more sustainable transport mode, a model that describes the factors
influencing the choice between an ICE car and an EV, as well as a set
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of methods to automatically identify behavioral patterns and changes
thereof. The information can be used mainly in three ways: 1) to guide
an expert or an automated system in choosing which groups or individ-
ual people to support with which measures, 2) to be directly presented
to users of persuasive applications or to form the basis for persuasive
techniques and personalization as outlined in chapter 5 and chapter 6,
as well as 3) to facilitate and guide the analysis of tracking data with
respect to knowing if and how a certain persuasive intervention affects
the mobility behavior and choices of people. The following chapters
will build upon the here retrieved information to compute and propose
meaningful alternatives as well as to communicate the information
to people in a way that supports them in a transition towards more
sustainable mobility behavior.





5
P L A N N I N G I N T E G R AT E D A N D S U S TA I N A B L E
M O B I L I T Y

In the previous chapter, we have looked at how tracking data can
be used to identify individual mobility behavior, mobility needs and
demands, as well as changes thereof. The focus of this chapter lies on
the development of methods and approaches to use this information
to support people by giving them personalized and meaningful route
alternative suggestions and by extending previous research on route
planning. This will be done by incorporating personalization and
providing a generalized model of high-level route computations that
unify more niche and/or novel transport options (such as free-floating
sharing services, carpooling or buses-on-demand). Figure 5.1 gives
a high-level overview of the processes involved in the planning of
integrated and sustainable mobility options, as presented within this
chapter. Starting from a specification of mobility offers (e.g., for Public
Transport (PT), Carpooling (CP) or free-floating micromobility services),
we will present approaches to refine the specifications and extract
transfer graphs which describe when and where people can transfer
from one mode of transport to another. Following this, there are several
ways we can use the graphs to compute high-level and/or completely
specified route options that in turn can be utilized to improve persuasive
applications that support people in achieving sustainable mobility.

We differentiate between two main approaches to compute route
alternatives. On the one hand, we can create high-level transfer graphs
that are useful for personalized routing as the number of nodes in
the graphs is substantially lower than in a time-expanded (or time-
dependent) graph covering a complete transport network (in particular
containing all the individual streets, footpaths, and so on). This sec-
ond approach, however, is useful to more quickly compute non- (or
marginally) personalized routes, as it allows relying on a wealth of
research speeding up graph computations on static graphs and does

This chapter and its contents, algorithms and figures are based on Bucher, Weiser, et al.
2015; Bucher, Jonietz, and Raubal 2017; Bucher, Scheider, and Raubal 2017; Huang,
Bucher, et al. 2018; Bucher, Mangili, Cellina, et al. 2019.
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Figure 5.1.: The information processes involved in matching transport
demands with offers, resp. aligning mobility and transport
needs.

not require route refinement in a follow-up step. Within our framework
of persuasive applications supporting sustainable personal mobility, all
the resulting route options then undergo a similar sustainability assess-
ment as presented in chapter 4 and are used to give users feedback
resp. to assess potential alternative behaviors and tailor the application
content appropriately.

5.1 formalizing mobility offers

If we want to travel somewhere, there are often numerous transport
modes (and combinations thereof) available. In addition, considering
that a “simple mode” such as a car can not only be used for Private
Motorized Transport (PMT), but also for CP, ridesharing, carsharing, car



5.1 formalizing mobility offers 157

rentals, taxi services, on-demand services, etc., it becomes obvious that
route planning cannot only take into account the fastest way from one
location to another on a static road network, but must be flexible in
terms of pickup and dropoff locations, routes, networks, schedules, etc.
In this section, we provide a generalized formalization encompassing
a wide range of transport modes (as used nowadays) that is flexible
enough to incorporate potentially appearing future means of transport,
as long as they adhere to some basic assumptions and spatio-temporal
constraints. Specifying transport offers within this formalism enables
applying a range of routing techniques as introduced later in the chapter
without further modification or adaptation of the routing methods.

The most basic premise of our formalization is that people can change
transport modes at certain points or regions in space. For many trans-
port modes, this is easy to grasp conceptually: we can only access a
train at a train station it stops at, our car can only be used at the point
where it is currently parked, a taxi operator only operates in a certain
(though potentially large) region, micro-mobility vehicles can only be
dropped off in a certain area, and so on. This is particularly important
for planning routes, where this spatial flexibility has to be taken into
account: We cannot assume to always know the exact point in space
where someone changes a transport mode, as it is often possible within
a larger region. We denote such points or regions as transfer locations.

Definition 5.1 (Transfer Location). A transfer location π ∈ Πm is the
geographic area within which one can change to resp. from a certain
transport mode m ∈ M.

Note that the set of transfer locations Πm in this definition is not
related to the places Π from Definition 4.7. As already indicated,
transfer locations can often be approximated as single points in space
(consider, for example, a large train station: even though it comprises
a substantial area within which people can transfer to/from trains,
it usually suffices to reduce it to one or a few access points for the
purpose of mobility planning). We denote the function telling us for
each transfer location π if it is a single Point or an Area as type(π):

type(π) : Π→ {A, P} (5.1)

Building on the formalization introduced in chapter 4, a tripleg l
defines a transition from one transfer location (where the person started
using transport mode m) to the transfer location where the person
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started using the transport mode of the following tripleg. As such,
when generating mobility plans, we will refer to the same formalism
of trajectories, triplegs, trips and tours, and features resp. context
associated with them. Within the context of this chapter, we will focus
on the following set of transport mode classes, which will be further
explained in later sections: M = {mwk, mpmt, mat, mfr, msr, mcp, mpt},
corresponding to walking, private motorized transport, (autonomous) taxis,
free floating rental systems, station-based rental and sharing, carpooling,
and public transport. Note that walking is also explicitly considered a
transport mode (that is available everywhere and at any time, and thus
can be used to connect arbitrary transport modes), in contrast to other
work that uses walking solely for the purpose of introducing possible
transfers between other transport modes.

WhilePickup and
Dropoff Types

the specification of transport offers using pickup and dropoff
transfer locations as given by Definition 5.1 would be sufficient for all
further purposes, we here additionally introduce a schema to classify
transport modes according to their pickup and dropoff types with the aim
of facilitating understanding of different transport characteristics with
respect to route planning. These pickup and dropoff types (specified
in Table 5.1) usually do not vary within the transport mode (e.g., a
free-floating scooter will always be picked up at a transfer location
with type(π) = P and can be dropped off at one with type(π) = A),
determine how different transport modes are connected with each other,
and also how the offers available for the individual transport mode
have to be specified. Naturally, anywhere corresponds to a transfer
location with type(π) = A that spans the whole region (in which the
route planner operates), within area corresponds to pickup resp. dropoff
areas of type(π) = A and at discrete locations corresponds to transfer
locations with type(π) = P. For example, walking would have both a
pickup as well as a dropoff type of A (anywhere), as it can be freely
used irrespective of the location, and PT is often of type PT → PT, as it
only can be accessed from transfer locations π where type(π) = P.

Given the set of pickup and dropoff locations for a certain transport
mode m, we can now specify individual transport offers (i.e., actually
available means of transport to get from a pickup to a dropoff transfer
location).

Definition 5.2 (Transport Offer). A transport offer for a transport mode m
is described as a bipartite graph (P, D, ES), where the pickup locations
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Spatial Description

A Anywhere (all transfer locations within planning region)
AT Within area (all transfer locations within area)
PT At discrete (and specified) transfer locations within re-

gion (e.g., vehicle location or (rental) station)

Table 5.1.: Pickup and dropoff types, describing for various transport
modes where people can use the respective mode, and how
they connect to other transfer locations in the network.

pi ∈ P ⊂ P(Πm) \∅ and the dropoff locations di ∈ D ⊂ P(Πm) \∅ are
sets of transfer locations that are connected according to the elements
ei = (pi, di) ∈ ES, i.e., all the dropoff locations in any set di are reachable
from all the pickup locations in the set pi if (pi, di) ∈ ES.

In essence, this specification tells us that we have sets of pickup
(transfer) locations that can be used to reach sets of dropoff (transfer) lo-
cations. For example, we can model public transport offers by specifying
that any transfer location (of mode mpt) can be reached from any other
(i.e., P = D = {Πmpt} or equivalently p1 = d1 = Πmpt , |P| = |D| = 1
and e1 = (p1, d1), |E| = 1). This means that without changing the
mode of transport (i.e., by keep using mpt) we can reach any other
part of the public transport network. Other examples are given in
Figure 5.2: On the left, a PT line consisting of four transfer locations
is given. As can be seen, each subsequent location can be reached
by all previous ones, but the opposite is not possible (in reality, most
PT lines run both ways of course, making it possible to reach each
stop from any other). In the middle, the example of a private car or
bicycle is given. While it is only possible to pick this up where it is cur-
rently parked, it can then be used to reach any location within a larger
area. Finally, the CP example on the right is similar to the PT example,
however, here each pickup and dropoff transfer location is a whole
area in which transfers to other transport modes are possible. In this
example, P = {{πCP,1}, {πCP,2}}, D = {{πCP,2, πCP,3}, {πCP,3}}, E =

{(p1, d1), (p2, d2)}.
Note that a drawback of this specification is that in its current form

it does not include temporal components such as individual departure
times. However, for many transport modes this is not strictly required
for the generation of high-level mobility plans (as their schedules are
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highly regular) and can still be refined in a second stage where the high-
level plan is refined to take into account individual vehicles and their
departure times. To increase computational efficiency, the specification
could be extended by only considering transport offers that are valid
within a certain timeframe; the corresponding route computations can
then operate on a smaller graph that represents the state of a transport
network in this timeframe.

Public
Transport

Personal Car/
Bicycle Carpooling�PT,1

�PT,2

�PT,3

�PT,4

�PMT,1

�PMT,2

�CP,1
�CP,2

�CP,3

Figure 5.2.: Exemplary transport offer specifications.

5.1.1 (Public) Transport Companies’ Offers

TransportPublic
Transport

companies primarily offer mobility to generate revenue
and/or as part of a governmental subsidy that aims at bridging gaps
between the rich and the poor, and allow every citizen to travel freely.
Traditionally, PT offers mobility in the form of trains, trams, buses,
subways, airplanes, ferries, etc. These modes of transport commonly
operate on a predefined schedule, visiting stops at well-defined ge-
ographic locations in a predetermined order. Another form of how
mobility is offered by companies is by providing station-based rental
services, e.g., simple car rentals, but also offers that are geared more
towards short-term and -duration mobility usage, which are commonly
referred to as station-based commercial carsharing. While this type of
offer is similarly station-based, it is more flexible as it does not have to
follow any strict schedule. However, different companies handle the
vehicle return differently: While it is sometimes possible to drop off a
vehicle at any station, often it has to be the one where it originally was
rented from.

TaxiTaxis services are a form of mobility that has been around for a very
long time, but has recently gained attraction due to several circum-
stances: The increasing digitalization makes (unified) access to them
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very easy and convenient, and manages to greatly reduce the price.
In the same direction, it became much easier for people to offer taxi
services with their personal vehicles and/or as side jobs (cf. the gig
economy; Prassl 2018). Finally, the promise of level 5 autonomous cars
(Driving 2014) lets us imagine scenarios where taxi services are ubiqui-
tous and can be offered at very low prices, as no human operators need
to be involved anymore. In all these forms, taxis have in common that
they operate in rather large geographical regions, and can pick up and
drop off people anywhere. In some cases, taxis are also not restricted
to single passengers, but can pick up and drop off multiple passengers
at different locations and in the process optimize their occupancy rate
and driving schedules. The largest restriction is that a taxi needs to be
available in the vicinity of a passenger, which can be difficult during
hours of large demand.

Recently Free-Floating
Vehicles

(and similarly enabled by the increasing digitalization),
many companies have started to introduce free floating transport modes
where transport vehicles can be picked up wherever they are currently
parked, and must be returned within a larger geographic area (at any
free parking spot). This is especially common for (short-term and -
duration) carsharing, but even more recently also for a range of slow
mobility transport modes such as (electric) bicycles, motor scooters and
battery-powered scooters (footboards with steering handles). Table 5.2
summarizes the transport modes introduced as part of (public) trans-
port companies’ offers, and shows the formalized pickup and dropoff
types.

5.1.2 Private Persons’ Offers and/or Available Transport Modes

Private Motorized Transport (PMT) Private
Transport

and individual Slow Mobility (SM)
offer flexible and convenient travel options for most people. While the
SM transport mode walking is available for anyone at anytime (theo-
retically to get anywhere, though practically limited by a maximum
walking distance), taking the bicycle, car, etc. requires these modes to
be present at the current location. As such, the transfer location where
these modes can be taken are limited to single points in space, whereas
they can be dropped off (almost) anywhere.

It Ridesharing
and
Carpooling

is common for people to share their individually traveled journeys
with other people, e.g., to share costs on longer trips or to decrease
traffic jams and/or be more sustainable (essentially by requiring less
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Transport Mode Pickup → Dropoff Description

Public Transport
(mpt)

PT → PT Classical public trans-
port follows strict lines
and a predefined sched-
ule.

Station-based
Rental and
Sharing (msr)

PT → PT Station-based rentals,
e.g., for bikesharing
offer vehicles that have
to be returned to any of
the stations.

(Autonomous)
Taxis (mat)

AT → AT Taxis usually operate
within certain regions
(often the pickup area is
the same as the dropoff
area).

Free Floating
Rental Systems
(mfr)

PT → AT Vehicles of free floating
systems can be picked
up wherever they are
parked, and have to be
returned to any point
within the operation
area.

Table 5.2.: (Public) transport companies’ mobility offers considered
within this work.

individual cars). These transport offers usually come in the form of
ridesharing (single-time sharing of a car) and carpooling (setting up
a sharing agreement, e.g., between coworkers). We will here focus
more on ridesharing as carpooling commonly requires agreements that
are not necessarily possible to create in an automated fashion and
thus cannot easily be incorporated into a route planner. However, the
methods presented for ridesharing can be used to identify potential
carpooling partners, which then can set up a “regularly running” car-
pool. Finally, we add buses-on-demand to this list, as they conceptually
correspond well to ridesharing: both modes are semi-strict, i.e., they
follow a rough schedule and route, but are flexible and allow to drive



5.1 formalizing mobility offers 163

Transport Mode Pickup → Dropoff Description

Walk (mwk) A → A Walking is always con-
sidered possible, and
can thus be used to con-
nect arbitrary transport
modes.

Motorized
Private Transport
(mmp)

PT → A A private vehicle has to
be available at a certain
location to be used.

Carpooling,
Bus-on-demand
(mcp)

AT → AT These transport modes
are semi-flexible, in the
sense that they follow a
certain route, but are al-
lowed to deviate from it.

Table 5.3.: Private person’s mobility offers considered within this work.

detours to pick up and drop off passengers. Table 5.3 shows the private
persons’ transport offers used and discussed within this thesis.

The introduced transport modes correspond to currently widely used
transport modes, but should be seen as categories of offers that can
also be used for potentially appearing future transport modes (e.g.,
autonomous vehicles will roughly correspond to taxis). If a future
transport mode cannot be assigned to any of the presented categories,
its specification using a pickup and dropoff transfer location according
to Table 5.1, defined in terms of Definition 5.1 and Definition 5.2 will
still allow using the further presented methods and algorithms (e.g., a
private autonomous vehicle that can pick up its owner anywhere can
be modeled with a pickup type AT).

5.1.3 Transfer Graphs

As the transport offers defined above are primarily used to specify
actually available means of transport, we have to convert them into a
structure suitable for computation of trips involving multiple means
of transport. We thus model the whole transport network as a transfer
graph that connects the individual transfer locations based on their
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geographical extent as well as the specification given as transport offers
(as defined before).

Definition 5.3 (Transfer Graph). A transfer graph G = (V , E), ∀e =

(π1, π2, Le) ∈ E : πi ∈ V describes how transfer locations πi are con-
nected with various modes of transport. Le denotes the labels resp.
properties of an edge e.

To build the transfer graph from the individual transfer locations and
transport offers, we start by adding all transfer locations as nodes of the
graph. For each of these vertices πi ∈ V , we then create an additional
vertex πi,m and add one edge e = (πi, πi,m, m(πi)) (where m(·) retrieves
the transport mode label from the underlying transfer location πi) to
this new vertex, acting as a placeholder for transferring to mode m at
location πi. The vertices πi,m are then connected based on the transport
specification given in section 5.1 by inserting an edge e = (πi,m, πj, ·)
for all pairs (πi, πj) that appear in pickup and dropoff combinations
in ES (i.e., πi ∈ pk, πj ∈ dk, ∀ek = (pk, dk) ∈ ES). After this step, we
have a graph consisting of a number of disconnected subgraphs (one
for each mode of transport resp. for each non-connected route within
this transport mode).

In a second step, we connect these point locations to transfer areas
to connect all subgraphs. In particular, for each (dropoff) transfer
point πi ∈ Π, type(πi) = P that is (geometrically) contained within a
(pickup) area πj ∈ Π, type(πj) = A, we add a vertex πj,m and an edge
e = (πi, πj,m, m(πj)), denoting the transfer to the respective transport
mode. Based on the specifications of the reachability of transfer areas
(given in Definition 5.2), the vertices πj,m are then connected to all
other reachable transfer points, namely those that are contained within
reachable dropoff areas.

Finally, we add transfer points for any two transfer areas πi and πj
that intersect geometrically (where πi appears as a dropoff area and
πj as a pickup area within the bipartite transport specification graph).
In this case, for intersection areas having a diameter smaller than a
constant l, we add the geographic center (corresponding to the gravita-
tional center) of the intersection polygon as a new vertex πi,j, a transport
mode choice vertex πi,j,m, as well as an edge e = (πi,j, πi,j,m, m(πj)) that
denotes the transfer to the transport mode available within area πj. We
choose the geographic center as it corresponds to the mean position
of all points, i.e., the expected value of a transfer point (assuming an



5.1 formalizing mobility offers 165

uniform distribution of potential transfer points over the whole inter-
section area). However, since in practice l is chosen in the order of
dozens of meters, other approximations would be viable as well. If
the intersection area diameter is larger than l, we build an equidistant
grid with a distance of l between points, and connect these points in
a similar way as the gravitational center before. All vertices πi,j and
πi,j,m are then connected to any other transfer points in V based on the
transport specifications from section 5.1.

Figure 5.3 shows an exemplary transport offer specification contain-
ing a single public transport line, a carpooling offer, and an (area-based)
taxi service. To build the transport graph, first, all transport modes are
individually added to the graph (πPT,i, πCP,i and πTAXI,i). The public
transport and carpooling offers are then connected in a second step:
As πPT,2 and πPT,3 are contained within πCP,1, a transfer from/to the
respective modes is possible at these locations. As the carpooling and
taxi transfer locations πCP,3 and πTAXI,1 are both areas (whose intersec-
tion exhibits a diameter larger than l), we create transfer points in a
grid-based manner (the creation of these points is primarily done as for
large intersecting transfer areas it is difficult to argue if someone would
change the mode of transport without specifying an exact location).
The resulting transfer points are used to connect CP and taxi in a similar
manner as we linked PT and CP before.

Public
Transport Carpooling

Taxi
�TAXI,1

�CP,1
�CP,2

�CP,3

�PT,1

�PT,2

�PT,3

�PT,4

O

D

Figure 5.3.: An exemplary specification of transport offers that also
highlights the spatial relations and how they determine
at which locations transfers to other transport modes are
available.

The transfer graph resulting from the transport specifications given
in Figure 5.3 is shown in Figure 5.4. It can be seen that the individual
transfer locations are added to the graph as-is, whereas (based on the
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spatial relationship between different transfer locations) new nodes
are inserted that denote (together with the labeled edges) how one
can change modes at various locations, and which other locations can
be reached after performing the mode switch. The latter edges are
shown as dashed grey lines—they are inserted based on the reachability
specifications using Definition 5.2. Note that since there is no CP stop
after πCP,3, there are no dashed grey lines from the connection nodes
between CP and taxi.

Public Transport

Carpooling

Connections PT/CP
Connections CP/taxi Taxi

�PT,1

�TAXI,1

�CP-PT,1-2
�PT,3

�PT,4

�CP,1
�CP,2

�PT-CP,3-1

�CP,3

�PT,2

�PT-CP,2-1 �CP-PT,1-3

�CP-TAXI,3-1,1
�TAXI-CP,1-3,2

�TAXI-CP,1-3,4

Figure 5.4.: The transfer graph extracted from the transport offer speci-
fication shown in Figure 5.3.

Within these transfer graphs we can already compute all possible
mode chains (trips θ consisting of legs Lθ). However, there are some
peculiarities that we will further elaborate on and develop methods for
in the next sections. For one, the introduced formalism does not neces-
sarily consider actually available transport vehicles, but only potential
transfer locations. By expanding the transfer graph and adding addi-
tional nodes for each vehicle departing from a transfer location (where
vehicles run on some sort of schedule), we can explicitly consider this.
Second, for transport offers such as carpooling it can quickly become
cumbersome to manually define all areas at which transfers are possible.
The method introduced in the next section uses Drive Time Areas (DTAs)
and Point of Actions (POAs) to automatically compute potential transfer
areas and thus greatly reduce the complexity involved in specifying
carpooling offers. Further, the graph as-is does not consider person-
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alization at all, and can quickly lead to computationally exhaustive
searches (e.g., when considering that by walking any transfer location
could be reached at from point in the transfer graph), for which reason
we add heuristic constraints and probabilistic models to compute when
someone (likely) could transfer from one mode to another at a given
location in the following sections.

5.2 matching carpooling transport demands with offers

Carpooling or ridesharing may help towards a short-term solution of
many problems caused by PMT such as GHG emissions or traffic jams, as
the cars are “already on the road”, and for many popular routes there
are enough drivers having roughly the same origin and destination to
considerably reduce the number of individual rides along the route (cf.
Correia and Viegas 2010; Deakin, Frick, and Shively 2010). However,
it is difficult to bring these people together for a variety of reasons:
people do not use the same matching platforms (websites), they want
to be flexible about possible detours and departure times, they might
be afraid to share their car with someone else or to be matched with a
risky driver, or they might have neither a financial incentive nor need
(as mobility is cheap). Here, we do not concern ourselves with most
of these rather societal issues, and focus on the technical aspects of
finding possible candidates to share a ride. The flexibility and fuzziness
inherent in carpooling makes it an interesting and non-trivial problem:
Drivers can make small detours or delay their departure slightly, and
usually this also means that when they specify an upcoming trip (to be
matched with potential riders) it is only specified very crudely, usually
by publishing a list of a few stops in major towns along the route
together with a departure time and rough price indication.

5.2.1 Modeling Carpooling as Time-Expanded Graphs

For easy integration into popular route planners (such as Google Maps),
many PT providers specify their planned schedules using a standard
such as the GTFS. These standards follow the structure of public trans-
port which is (historically and due to the involved infrastructural com-
ponents) centered around routes that describe a set of trips following
the same PT line, i.e., visiting the same stops. Even though there are
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some differences (on which we will comment in the following sections),
we here propose to model carpooling offers in a similar way, in order
to easily integrate them into existing route planning systems. This
integration will in particular allow us to link them to PT offers and
analyze the resulting benefits. Similar to the formalization presented
in chapter 4, we start with elementary connections (corresponding to
triplegs):

Definition 5.4 (Elementary Connection). An elementary connection l is
a connection between two PT stops ss and se that is served by a public
transport vehicle v, starting and arriving at ts and te: l = (v, ss, ts, se, te).

Connecting multiple elementary connections leads to trips (θ =

(l1, ..., ln)), which in turn are collected into routes as described above
(e.g., “Bus Line 80”). Considering that multiple routes reuse the same
stops, it is now possible to connect them in a way that lets us find route
options through a network involving multiple vehicles/transport modes
and the respective transfers at certain stops. While the specification
using GTFS differs in several ways from the generalized formalism pre-
sented in section 5.1, its basic components of stops and trips can roughly
be considered the specialization of transfer locations and transport offers
that does not include area-based transfer locations.

Similar to the transformation of transport offers into a transfer graph
introduced in subsection 5.1.3, when transforming a specification of
transport offers using GTFS into a graph suitable for route computations,
we have to model all the different possible mode choices and departure
times in some way. With regards to modeling departure times, we
can use a time-dependent graph (where the edge weights are time-
dependent, thus making it necessary to update the graph during the
route computations) or a time-expanded graph (where each possible
departure from any stop is modeled as its own vertex, connected to the
next reachable stop). Within this section, we model the transport offers
as a time-expanded graph, as it lets us use any “simple” routing algo-
rithm (and the related speed-up techniques) such as Djikstra’s, and we
do not require the additional flexibility with regards to personalization
given by time-dependent or high-level graphs.

AModeling of
Transfers

similar choice has to be made when modeling transfers from
one mode to another. In subsection 5.1.3, we have chosen to add an
additional node describing the transfer between two different modes (as
this allows more easily assigning probabilities and enforcing constraints
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on these choices). While this is a commonly chosen approach (cf. Bast,
Delling, et al. 2015), the same effect can be achieved by adding a
labeled edge that directly connects the trips of two different transport
vehicles or modes. We embrace this approach here, and create a labeled
transition edge (carrying the label “transfer”) between two elementary
connections where l1.te + tw < l2.ts, l1.se = l2.ss, stating that at every
stop it is possible to transfer to connections departing later (l2.ts) than
the arrival time of the incoming connection (l1.t2). We add additional
restrictions on the creation of a transition edge: As it is often necessary
to plan a minimal amount of time for the transfer itself (e.g., 3 minutes
for a smaller train station), we enforce this minimum by introducing
a waiting time tw that restricts the departures to be after l1.t2 + tw;
Similarly, we add an upper bound for the waiting time (l1.te + tu ≥
l2.ts, where tu is usually in the order of 60 minutes), which reduces
the number of created edges and thus the overall graph size. This
is also in line with how transfers commonly happen: We wait for
the first connection that gets us towards our destination, and do not
arbitrarily wait for later ones. The resulting graph contains edges
for all elementary connections, and thus is called a time-expanded
graph (in contrast to a time-dependent graph) as all departures are
explicitly modeled and the graph does not have to be updated during
route computations. Algorithm 5.1 shows the algorithm used to create
transfer edges between stops of elementary connections.

Summarizing, similar to regular PT schedules, we model carpooling
offers utilizing a time-expanded graph, essentially using elementary
connections to connect the individual stops specified by the driver.
While for PT, the exact departure and arrival times are known, we have
to derive them for carpooling using a routing on the network. Note that
in the case of carpooling, a route nowadays commonly only consists of
a single trip, as the respective web platforms are primarily used to plan
one-time (and long-distance) drives.

5.2.2 Merging Carpooling and Public Transport

Starting from the CP model introduced in the previous section, which is
in line with previous work and specifications such as GTFS, and shares
the basic structure with the transfer graph specification introduced in
section 5.1, we will now treat some of the peculiarities of CP (partially
given by the way CP offers are commonly specified nowadays) and argue
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Algorithm 5.1 Creating Transfer Edges Between Time Nodes

Input. A time-expanded graph G = (V , E) representing all single-ride
journeys; a set of transfer conditions tc = (s1, s2, tw, tu) ∈ TC between
stops, indicating that the transfer time from stop s1 to s2 should be
greater than tw and no longer than tu.
Output. A new time-expanded graph G ′ = (V , E ′) that is the original
graph G enriched with possible transfer edges.

1: G ′ ← G
2: for all tc in TC do
3: V1 ← time nodes linked to tc.s1

4: V2 ← time nodes linked to tc.s2

5: for all v1 in V1 do
6: for all v2 in V2 do
7: . Difference between departure of v2 and arrival of v1.
8: dur ← v2.ts - v1.te

9: . If a transfer is feasible, add a directed transfer edge
10: with weight dur and label “transfer” from time
11: node v1 to v2 to G′.
12: if dur > tc.tw and dur < tc.tu then
13: E ′ ← E ′ ∪ {(v1, v2, w = dur, l =“transfer”)}
14: return G ′
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how to best resolve the resulting issues. As the flexibility and fuzziness
of current approaches to match carpooling partners makes it a largely
manual process (of finding each other), we here propose an approach
to automatically process the route specifications resulting in a transport
offer essentially corresponding to the one given in Definition 5.2. The
resulting specification of pickup and dropoff areas can be used to create
a transfer graph as defined in section 5.1 or a time-expanded graph (by
linking the offers appropriately) as described here.

As we are particularly interested in the benefits of supplementing
PT with CP offers (e.g., to reach badly connected regions), we will
focus on the integration resp. linking of CP and PT graphs. Given a
number of specified stops along a (potential) carpooling journey, two
commonly applied linking strategies are to simply allow transfers at
the closest PT stop to the given stop coordinate, or to allow transfers
to any PT stop within the administrative boundary of the town or
municipality. Both are not ideal, as they either do not respect the
flexibility of the driver, or potentially require detours larger than the
driver is willing to make. We here use the concept of Drive Time
Areas (DTAs) to compute transfer areas for various points along the route
(this concept is also commonly referred to as potential path space within
the research field of time geography, cf. Hägerstrand 1970; Miller 1991).
A DTA is a geographical space (around a point feature) that denotes
the area reachable by car within a certain amount of time. As many
carpooling offers only appear a single time, we compute DTAs around all
PT stops (which is equivalent for our purposes) in order to reuse them
when processing carpooling offers. Next to DTAs to handle the fuzziness
of origin, destination and stopover specification, we introduce Point of
Actions (POAs) to handle the flexibility of a driver along the route. A POA

(also known under the term decision point, cf. Raubal and Winter 2002;
Giannopoulos, Kiefer, and Raubal 2015) is any point along a route at
which a driver has to take an action, such as leaving a highway, turning
left or right, or even continuing straight after a crossing. The POAs can
be retrieved by superimposing the route with the underlying transport
network, and are usually also given by many route planners for turn-
by-turn instructions. Once all POA along a carpooling driver’s route are
identified, the (PT and carpooling) networks can be linked. This would
be possible with the method introduced in subsection 5.1.3 (which
will create a general transfer graph). However, as we specifically treat
the connection of PT and CP, we introduce a more accurate approach



172 planning integrated and sustainable mobility

here (yet less personalized resp. less context-respecting) that takes
into account the actual departure and arrival times at different stops
along the route. Figure 5.5 shows an exemplary PT line as well as a
single CP offer. As can be seen, the person offering the carpooling
ride solely specified the journey in terms of πCP,1 and πCP,2 (origin
and destination). Our method identified four POAs along the way and
computed the DTAs around the PT stops which are then used to connect
the individual stops to each other.

Carpooling

Public
Transport

�CP,1 �POA,1

�POA,2

�POA,3
�POA,4

�CP,1

�PT,1

�PT,2

�PT,3

Figure 5.5.: Schematic visualization of the linking of CP and PT net-
works.

For each specified stop along the carpooling offer, and for each
POA along the implicitly given route (e.g., computed using a route
planner), we retrieve all DTAs that contain any of the stops or POAs.
For each DTA thus identified, we add a transfer edge to the merged
graph of the “raw” PT and carpooling specifications if the computed
arrival resp. departure times of the involved PT and carpooling offers
do not exceed the travel time between them (e.g., 10 min < lPT.ts −
lCP′ .te − traveltime(sCP′ , sPT) < 30 min). To provide an upper bound
and reduce the number of involved travel time computations, we take
traveltime(·, ·) as half of the maximum detour time (note that this
approximation might not hold in all cases, e.g., when one-way streets
are involved; however, these cases are comparably rare and do not
entail large time differences). The weight (i.e., travel time) of the
thus added transfer edge is then lPT.ts − lCP′ .te. Similar to before,
all these added edges are labeled as “transfer” to distinguish them
from simply continuing to use the same mode of transport. Note
that also the edges between the originally specified stops along the
carpooling offer are kept to indicate that stops at POA are not required
but optional. Furthermore, it should be noted that the concept of POAs

allows linking different carpooling offers together at each POA, thus
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enabling combinations of different carpooling offers, and that picking
up someone at a POA introduces delays for each of the following nodes.
While the latter could be incorporated by recomputing the parts of
the graph that might change due to such a detour, we here restrict the
allowed detours (beyond the originally specified origin, destination
and stopovers) to a single one. This is in line with how carpooling is
generally used, whereas not restricting detours would quickly add up
to many smaller ones which in turn introduces a large inconvenience
for the driver. Algorithm 5.2 shows the complete algorithm used for
merging and linking PT and carpooling graphs.

5.2.3 Extracting Potential Matches

The resulting time-expanded multi-modal graph can directly be used
with any Dijkstra-like algorithm. Commonly, two types of queries
are required to find matches between carpooling drivers and riders
(potentially involving PT). Routing with a given departure time range
describes the process of finding a multi-modal route from an origin to a
destination where a person has a time window during which to depart.
To answer such a query, we first identify all time nodes belonging to
the origin stop that fall within the given range. A routing algorithm
then finds the shortest path (in terms of total time) to any of the time
nodes belonging to the destination stop. The resulting set of routes
(i.e., for each of the departure time nodes, but it is also possible to
“artificially” generate more routes by pruning nodes from a found path
and recomputing the route again) can then be ordered according to
various criteria such as the total travel time, the involved costs, the
number of transfers, etc. The other predominantly used form of route
queries is routing with a given arrival time range. In this case, the time
nodes at the destination have to fall within the given range, and the
search can either be performed backwards or forwards starting from all
time nodes of the origin stop.

5.3 evaluating integrated mobility options

Commonly, route options are computed based on the total travel time
or number of involved transfers (as transferring is often regarded as
being more inconvenient than traveling a little bit longer). While this is
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Algorithm 5.2 Merging Public Transport and Carpooling Graphs

Input. Time-expanded graphs GPT = (VPT, EPT) (representing PT trips
and transfers) and GCP = (VCP, ECP) (representing a CP offer); a
maximum CP detour time tdetour; CP stops SCP (i.e., origin sCP

o ,
destination sCP

d and stopovers SCP
so ); a set of transfer conditions

tc′ = (sPT, mindur, maxdur) ∈ TC′ at each PT stop (defining the min.
and max. time required for transferring between PT and CP).
Output. A new time-expanded graph G ′ = (V ′, E ′) combining the PT
and CP graphs.

1: G ′ ← (VPT ∪ VCP, EPT ∪ ECP) . Merge the PT and CP graphs.
2: . Use an external/existing routing application to resolve CP route.
3: r ← shortest route from sCP

o to sCP
d via SCP

so
4: SCP

so .te, sCP
d .te ← Arrival times taken from r

5:

6: for all CP stop sCP ∈ SCP do
7: . Filter all PT stops to only use those in approx. vicinity.
8: SPT ← vPT : dist(vPT, sCP) < (tdetour · 100 km/h)
9: for all PT stop sPT ∈ SPT do

10: a← DTA of sPT, using tdetour as parameter
11: if sCP is within a then
12: E ′ ← E ′ ∪ {(sCP, sPT, l =“transfer”)}
13: VPT ← time nodes of PT stops sPT

14: for all vPT ∈ VPT do
15: . Check for potential transfers from CP to PT.
16: if sCP.te < vPT.ts then
17: . Diff. betw. departure of vPT and arrival of sCP.
18: dur ← vPT.ts − sCP.te

19: if dur > mindur and dur < maxdur (at sPT) then
20: . Add edge (tCP′ is the time node of sCP).
21: E ′ ← E ′ ∪ {(tCP′ , vPT, w = dur, l =“transfer”)}
22: . Check for potential transfers from PT to CP.
23: if vPT.te < sCP.ts then
24: . Diff. betw. departure of sCP and arrival of vPT.
25: dur ← sCP.te − vPT.ts

26: if dur > mindur and dur < maxdur (at sPT) then
27: . Add edge (tCP′ is the time node of sCP).
28: E ′ ← E ′ ∪ {(vPT, tCP′ , w = dur, l =“transfer”)}
29: . Algorithm continued on next page.
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30: . Exploit POAs along CP route.
31: SCP

POA ← POAs along r (overlap r with road network)
32: for all sCP

POA ∈ SCP
POA do

33: . Filter all PT stops to only use those in approx. vicinity.
34: SPT ← vPT : dist(vPT, sCP

POA) < (tdetour/2 · 100 km/h)
35: for all sPT ∈ SPT do
36: . tdetour/2, because the driver needs to go to PT and back.
37: a← DTA of sPT, using tdetour/2 as parameter
38: if sCP

POA is within a then
39: V ′ ← V ′ ∪ {sCP

POA}
40: E ′ ← E ′ ∪ {(sCP

POA, sPT, l =“transfer”)}
41: . Add time node (transfer time t estimated using r).
42: V ′ ← V ′ ∪ {tCP′

POA}
43: . Link time node tCP′

POA to trip node lCP.
44: E ′ ← E ′ ∪ {(tCP′

POA, sCP
POA), (t

CP′
POA, lCP)}

45: Add edges betw. tCP′
POA and adj. time nodes to G′

46: Edge weights← travel time between corresp. stop nodes
47: VPT ← time nodes of PT stops sPT

48: for all vPT ∈ VPT do
49: . Check for potential transfers from CP to PT.
50: if sCP

POA.te < vPT.ts then
51: . Diff. betw. departure of vPT and arrival of sCP

POA.
52: dur ← vPT.ts − sCP

POA.te

53: dur ← dur− tdetour/2
54: if dur > mindur and dur < maxdur (at sPT) then
55: . Add edge (tCP′

POA is the time node of sCP
POA).

56: E ′ ← E ′ ∪ {(tCP′
POA, vPT,

57: w = dur, l =“transfer”)}
58: . Check for potential transfers from PT to CP.
59: if vPT.te < sCP

POA.ts then
60: . Diff. betw. departure of sCP

POA and arrival of vPT.
61: dur ← sCP

POA.ts − vPT.te

62: dur ← dur− tdetour/2
63: if dur > mindur and dur < maxdur (at sPT) then
64: . Add edge (tCP′

POA is the time node of sCP
POA).

65: E ′ ← E ′ ∪ {(vPT, tCP′
POA,

66: w = dur, l =“transfer”)}
67: return G′
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often desirable, many people show regular patterns in their mobility
choices and strong preferences for one mode of transport or another
that are not only dependent on the travel time or distance to be covered,
but depend on features as introduced in chapter 4, properties of the
transport network (e.g., someone who lives close to a well-connected PT

stop is likely to use PT to travel), or the availability of different modes
for certain triplegs (e.g., someone might show a strong preference to
take the bicycle for the “first mile” to the train station, but only if it is
not raining). Using these influencing factors and thus personalizing
route computations can decrease the required manual interactions with
ICT before finding an appropriate route that conforms to one’s own
preferences. Based on the same formalization as introduced in chapter 4

and further adapted to the problem of computing route options in
section 5.1, we here introduce an approach to use the passively tracked
mobility data to derive mobility choice preferences that can be used to
compute and/or evaluate route plans.

5.3.1 Context and Circumstances

To perform personalized routing on the graphs constructed in the pre-
vious sections (in particular the transfer graph from subsection 5.1.3),
two functions assigning probabilities to user choices are required. First,
for any location πi that has multiple modes available (i.e., multiple
connected nodes πi,m), we need to determine the likelihood of a par-
ticular mode of transport m being chosen. Second, each πi,m is usually
connected to several transfer locations πj (which can be reached by
using m), out of which we have to choose the most likely ones. The
first function primarily depends on contextual factors (such as the time
or destination of the planned trip), as well as features of the transfer
location πi. The second one additionally takes into account charac-
teristics of the (potentially chosen) tripleg itself, such as its distance.
Table 5.4 describes the features used within the prediction models in
this chapter: There are basic contextual features such as the hour of
day or the distances between various important locations for the trip
and features related to the transfer graph itself, such as the Pagerank
(Brin and Page 1998) (following the reasoning that someone might more
likely choose the train for a longer trip if a well-connected PT stop is
close by). While we can easily imagine other features to be added (e.g.,
the position of the currently being evaluated tripleg within a larger trip;
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Feature Description

m Transport mode under consideration
t Hour of day (at start of trip)
d(πi, πj) Euclidean distance between start and end of tripleg
d(πj, dθ) Euclidean distance between end of tripleg and ultimate

destination
rp(πj) Maximal Pagerank of any public transport stop within

150 m of πj

Table 5.4.: Features used to compute the probability of traveling from
one transfer location to another.

this might emphasize walking at the start and end of a trip), having a
large feature space also often entails not having enough training data to
cover all cases (this is also referred to as the “curse of dimensionality”).

5.3.2 Previous Behavior and Preferences

Given the features introduced in the previous section, we can use
them to describe the probability that a person would take a certain
mode at a given location or travel to a certain (intermediate) staypoint
using said mode. As we do not know the statistical distributions of
all involved features, we describe the probability distribution for a
single user using a mixed joint density model based on multivariate
kernel density estimation. To exemplify, consider that some people will
likely choose PMT over PT during late evening hours as it increases their
flexibility during times when PT runs infrequently. Others do not have
PMT available and thus will not exhibit such a dependency. Many of
the individual distributions cannot be easily modeled with commonly
used statistical distributions (e.g., a Gaussian model), as they exhibit
multiple peaks in the distribution (e.g., when describing a dependency
on the hour of day or the total distance to the destination, in which
case a transport mode such as walk is used both at the beginning and
at the end, i.e., both when the destination is close as well as when it
is far). Kernel density estimators circumvent this problem by using
a kernel function to fit a probability density function to any given
data. These types of models also allow combining discrete features
(e.g., m, t) with continuous ones (e.g., d(πi, πj), d(πj, dθ), cπj ) and
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result in a probability density function that can be used to compute
probabilities of all combinations of features. Thus, we model both
choice functions (choosing a transport mode resp. choosing a certain
intermediate staypoint) using a (parameterless) multivariate kernel
density estimation (cf. Simonoff 2012):

f̂H(x) =
1
n

n

∑
i=1

KH(x− xi) (5.2)

Here, KH(x) = |H |−1/2K(H−1/2x), K(·) is the kernel function, and
H the bandwidth matrix (that has to be chosen, usually by minimizing
the mean integrated squared error). In Equation 5.2, xi are the feature
vectors computed from all previously tracked triplegs of a single user.
The kernel density estimator f̂H(x) then describes the probability
density for any combination of features of any (potentially chosen)
tripleg or mode within the transfer graph. Sampling these values gives
us an indication about the likelihood of a certain combination appearing
in the previously recorded mobility data of a user.

Regarding the first function pm(x−m) (determining the probability of
choosing mode m at a given transfer location), we use the probability
densities given by Equation 5.2 to compute probabilities as follows
(note that f̂H(x−m) describes a multivariate kernel density estimator
not including m as a feature):

pm(x−m) = Pr(m|x−m) =
f̂H(x−m|m) f̂H(m)

f̂H(x−m)
(5.3)

=
f̂H(x−m|m) f̂H(m)

∑πi,m̂
f̂H(x−m|m̂) f̂H(m̂)

x−m = (t, d(πj, dθ), rp(πj))

In essence, we use the Bayes’ rule to compute the probability of choosing
mode m (given features x−m) at location πi by sampling the density
estimates at different points.

As the reachable locations after choosing a mode m for travel are
potentially unlimited (e.g., in the case of walking), we cannot compute
a true probability for traveling to a fixed location. To exemplify, con-
sider taking the bus to get somewhere: If there is a single stop at the
destination, it is very likely that a traveler will get off at this stop (i.e.,
pl(x) ≈ 1). However, if there were two bus stops right next to each
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other, the probability of leaving at one of them would be pl(x) ≈ 0.5
each. Using this in a routing context (as introduced in more detail
in subsection 5.4.2) would lead to lower probabilities for modes with
which a large number of (intermediate) staypoints can be reached, for
which reason we approximate the probability of choosing tripleg l
directly using the probability density:

pl(x) ≈ f̂H(x) (5.4)

x = (m, t, d(πi, πj), d(πj, dθ), rp(πj))

This essentially corresponds to computing the probability of an in-
finitesimally small region around the given combination of features
x. As such, there are some caveats to this approach, foremost that
sufficient (and sufficiently distributed) data must be available in order
to prevent peaks in the distribution function (that in turn lead to large
feature spaces with pl(x) ≈ 0). In addition to normalizing the features
this ensures that they all exhibit comparable characteristics and thus
the sampled densities are in similar ranges. Further, choosing this
approach prevents us from computing true probabilities (i.e., all the
different travel options do not necessarily sum up to one); instead we
compute a (proportional to the true probability) likelihood of traveling
along a given tripleg. Within a routing context, this approximation is
sufficient as it is proportional to the true probability and is applied for
all transport modes equally.

Evaluating Probability
Surfaces

the probability functions will give us (discrete) probability
surfaces, where each transfer location is assigned a likelihood with
which the user under consideration will pass by this location. We can
now sample these probability surfaces at potential transfer locations
in order to determine likely paths that someone could take through a
routing graph. Embedding these probabilities within a transfer graph
as introduced in section 5.1 and evaluating them on the fly allows us
to compute personalized “most probable” route options for individual
people.

5.4 determining alternative transport options

A route planning request is essentially a function that returns an or-
dered sequence of triplegs Lθ , based on an origin o, a destination d, at
a time t:

Lθ = r(o, d, t) (5.5)
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In this section, we will introduce two methods to compute personalized
and context-dependent high-level mobility plans based on the transfer
graphs and choice probabilities introduced before.

5.4.1 Heuristic-based Planning Method

First, we present a preprocessing heuristic that can be used to generate
high-level mobility plans by specifying rules and constraints that have
to be followed in order for routes to be considered valid alternatives.
While the thus generated routes could in theory also be computed by
combining various platforms or data sources and applying selected
routing algorithms (cf. chapter 3), the resulting routing graphs quickly
become very large and adapting them to incorporate various user
constraints and preferences leads to downstream graph changes that
are difficult to integrate on the fly during a routing request. Instead, we
rely upon the introduced transfer graph to build possible multi-modal
routes that respect various preconditions and only require updating a
smaller graph during the request.

For the here presented heuristic, we add the set of user preferences P,
a set of user constraints A and a description of context C to the above
introduced Equation 5.5 representing a route request. In addition,
the generated routes each contain summary values Vi (e.g., denoting
the distance covered with each mode of transport, the overall energy
consumption or the financial cost of the trip), resulting in an updated
Equation 5.5:

{(Lθ,0, V0) , (Lθ,1, V1) , ...} = rheuristic(o, d, t, P, A, C) (5.6)

The core of the preprocessing heuristic revolves around a set of indi-
vidual rules denoting preferences and constraints that adhere to the
general rule form of:

o[condition]→ m[condition]→ d[condition] : [outcomes] (5.7)

The rule denotes that the origin o and destination d have to fulfill some
preconditions for the mode m to be available, which in turn has to
adhere to some conditions for the whole tripleg to be available and
chosen for a given user. Exemplary conditions include the marking
of a certain location with a given transport mode, the availability of
one’s own car at a location, or (in the case of a mode condition) the
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restriction of maximum length for walking triplegs. The outcomes
either involve the user, or the context (which gets updated to the next
potential location if a certain tripleg is chosen for a user). An exemplary
rule could thus look like:

A[∅]→ (5.8)

WALK[(user[distWalked] + dist(A, B) < user[maxDist])

∧ (¬ context[rainyWeather])

∧ (context[currentTime] ∈ user[acceptableTimeIntvlWalk])]

→ B[∅] :

user[distWalked+ = dist(A, B)], context[time+ = time(A, B)]

This rule states that walking is possible at any location (i.e., the set of
location requirements for both A and B is empty), but that the action
of walking itself is only possible if the total distance remains below
some threshold, it is currently not raining, and the time at which the
walking action is performed is within some acceptable time intervals
(e.g., someone might not want to walk during the night for safety
reasons). The outcome statement of the rule requires an update context,
by adding the traveled distance to the distWalked counter as well as by
updating the time (i.e., in the next iteration of the route computation,
the time has advanced by time(A, B) for all the subsequent paths).
Note that in order to not rely on an underlying transport graph and to
speed up the computations, all distance computations use an Euclidean
measure.

We use two functions to apply the heuristic to a transfer graph and
thus compute high-level mobility plans: checkReachability considers all
possible origin and destination locations within a graph, in combination
with all potentially available modes M, and checks whether the location
and mode conditions hold, i.e., if the transport mode could be used
at the given location to reach a potential destination. It returns tuples
(Li, D, M) for each combination (starting at Li) that satisfies all precon-
ditions. expand, on the other hand, does not respect any preconditions
but instead is used to generate a new set of locations that can be reached
from a given location without any transfers (e.g., applying it on a PT

stop would yield all other PT stops that are connected by the same line).
The function returns a tuple (O, Li, M, S) for every reachable location Li
that allows backtracking through the graph at the end of the algorithm
to find the actual routes. The “running state” S contains additional
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information about the route to reach Li which is necessary as a location
Li can usually be reached via multiple ways.

UsingRoute Plan
Computation

the two introduced functions, we can compute the route plans
as shown in Algorithm 5.3 (note that the algorithm is closely related
to the way network time prisms are commonly computed, cf. Kui-
jpers and Othman 2009; Jaegal and Miller 2016). Starting from the ori-
gin/destination pair, we first see if there are direct ways to reach the des-
tination from the origin, adding the resulting triples (o, d, m), m ∈ M
to the set of reachable locations S (that form the reachability graph as
they consist of connections between two transfer locations). The follow-
ing steps are iteratively performed (e.g., until a maximum number of
transfers is reached or a minimal number of solutions has been found)
from the direction of the origin (forward) as well as from the direction
of the destination (backwards). This optimization is often performed
in routing algorithms, as it reduces the solution space and in this case
favors solutions that pass through “hubs” of mobility, which includes
most trips longer than some very small distance. The iterative process-
ing first expands the space of possible solutions. For each of the thus
generated potentially reachable nodes, checkReachability determines if a
transition using a given mode m is possible. In that case, the quadruple
(Li, Lj, m) is added to the reachability graph. After a predefined number
of iterations (e.g., the specification of a maximum number of transfers),
the function unfold retrieves all possible routes from the reachability
graph. In essence, unfold looks at all chains (O, Li, ..., D) by starting
from the origin or destination and following edges in the reachability
graph.

The resulting solutions respect context as well as user preferences
and constraints. In contrast to performing a routing on a complete
transportation network graph, the used transfer graph is much smaller
and thus it becomes feasible to continuously update node and edge
characteristics during the computation (essentially adopting a time-
dependent graph, here applied to different mode choices).

Table A.1 shows a number of exemplary rules that can be used to com-
pute meaningful and personalized route options by adapting various
parameters to preferences of users (and that are used in the experiments
later in this chapter). In this dissertation, we refrain from learning the
rules based on previously recorded data, and instead assume that an
expert defines a set of rules appropriate for different classes of people.
After computing the route options, different ranking schemes can be
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Algorithm 5.3 Generating trip plans, consisting of a number of triplegs
covered with different transport modes.

Input. Origin o; destination d; departure time t; a set of user
preferences P and constraints A (both in terms of rules according to
Equation 5.7); a description of context C; a list of transport modes M; a
minimum number of solutions smin; a maximum number of transfers
tmax.
Output. A set of route alternatives S = {(Lθ,0, V0) , (Lθ,1, V1) , ...}.

1: L f ← {o} . Reachable transfer locations (forwards).
2: Lb ← {d} . Reachable transfer locations (backwards).
3: . Check if d can be directly reached from o using any of M.
4: S← S ∪ checkReachability(o, d, M, t, P, A, C)
5: i← 0
6: while |unfold(S)| < smin and i < tmax do
7: L f ← expand(L f , M)

8: for Li ∈ L f , Lj ∈ Lb do
9: S← S ∪ checkReachability(Li, Lj, M, t, P, A, C)

10: L f ← L f ∪ L f
11: Lb ← expand(Lb, M)

12: for Li ∈ L f , Lj ∈ Lb do
13: S← S ∪ checkReachability(Li, Lj, M, t, P, A, C)

14: Lb ← Lb ∪ Lb
15: i← i + 1
16: return unfold(S)
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applied. In our implementation, we use a distance-based GHG emission
model (cf. chapter 4) in order to highlight the routes that produce the
least GHG emissions. Other ranking methods compute the total travel
duration, the number of transfers, or combinations thereof.

5.4.2 Preference-based Planning Method

The here presented second approach to compute high-level route plans
from transfer graphs focuses more heavily on personalization, and in
particular on using previously recorded movement and mobility data to
generate meaningful route plans. To generate them, we move through
the transport graph in a similar way as presented in the previous section
and compute probabilities of various transitions and transfers. At each
mode choice vertex, we use the policy function given in Equation 5.3,
while at travel vertices, we use the tripleg choice function given in
Equation 5.4. To be able to use a shortest path algorithm similar to
the well-known Dijkstra algorithm (Dijkstra 1959), we transform the
probabilities given by the policy functions using the logarithm function

wi,j = − ln(p(·)) ∈ [0, ∞] , (5.9)

after which the sum of edge weights wi,j to reach the destination d from
the origin o is minimized. Computing route options roughly follows
the computation of a shortest path using an algorithm comparable
to Djikstra’s. While a method such as the one used in the heuristic
approach from the previous section would be possible too, we here
are solely interested in the most probable paths and thus can discard
any path that leads to a certain node with a lower probability than
another. Algorithm 5.4 shows the complete algorithm. Initially, we
assign each node a probability of zero resp. a weight of ∞, except for
the origin. Starting from this origin, we then compute probabilities
along all edges and update the probabilities of appearing at any of the
connected nodes. This continues iteratively whereas the probabilities
are summed up at each node, and the parent identifier is updated in
case passing through another node leads to a higher overall probability
at a given node (e.g., it is likely that by walking a person could reach
some train station further away; the probability of passing through this
train station is higher, however, if the person first walks to a closer train
station and then takes the train).
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Algorithm 5.4 Generating trip plans, consisting of a number of triplegs
covered with different transport modes.

Input. Origin πo; destination πd; transfer graph G = (V , E); a
minimum number of solutions smin.
Output. A set of route alternatives S = {(Lθ,0, V0) , (Lθ,1, V1) , ...}.

1: for πi ∈ V do
2: dist[πi]← ∞
3: parent[πi]← NIL

4: dist[πo]← 0
5:

6: Q← V
7: while Q 6= ∅ and |unfold(S)| < smin do
8: πi ← minq(dist[q])
9: if label(πi) = “transfer” then

10: for em ← M(πi) do
11: pm ← f̂H (x−m|m) f̂H (m)

∑πi,m̂
f̂H (x−m|m̂) f̂H (m̂)

(Equation 5.3)

12: if dist[πj] > dist[πi] + pm then
13: dist[πj]← dist[πi] + pm

14: parent[πj]← πi

15: else
16: for e← (πi, πj) ∈ Eπi ,· do
17: pl ← f̂H(x) (Equation 5.4)
18: if dist[πj] > dist[πi] + pl then
19: dist[πj]← dist[πi] + pl
20: parent[πj]← πi

21: return unfold(S)
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Similar to Algorithm 5.3, in the end we backtrack through the reacha-
bility graph (starting from the destination) to find the most probable
route (using the unfold(S) function). In order to generate multiple route
options, it is also possible to store all parents during the computation
and backtrack along several routes. In a multi-modal setting this is
particularly easy as we can simply introduce a constraint that no two
(mode) label sequences may be the same in the resulting route options
set (e.g., we cannot have two routes consisting of mode sequences walk
→ train→ walk). This results in a useful set of route options for some-
one planning a journey (as they are all different), yet still allows us to
sort according to the probability that someone chooses one route over
another.

5.5 data and experiments

In the following, we use various data sources to highlight the func-
tionality and characteristics of the presented methods. The learned
preferences rely on the tracked mobility data from the GoEco! and SBB
Green Class projects, the PT specifications in Switzerland (published by
SBB on a yearly basis1), transport option availability data as published by
several transport providers in Switzerland (and Zurich for local ones),
carpooling data crawled from a large European carpooling platform,
and the general street network given by OSM2. The transport availability
data from local providers includes carsharing3, free-floating bicycles
(from the free-floating service by Smide), as well as station-based bike-
sharing (offered by PubliBike). The carpooling method introduced in
section 5.2 was implemented in Java, using the Neo4j graph database4.
The heuristic and probabilistic methods from section 5.4 were imple-
mented in Python as this allowed integrating a range of libraries to
process the recorded mobility resp. the collected transport data more
easily. The programs were run on commodity office computers and
yielded results in the order of seconds.

1 The timetable can be downloaded from www.fahrplanfelder.ch.
2 The OSM data used within this work is downloaded from download.geofabrik.de.
3 The respective company Mobility publishes its available cars under www.mobility.ch.
4 The database can be downloaded from neo4j.com.

https://www.fahrplanfelder.ch
http://download.geofabrik.de/
https://www.mobility.ch
https://neo4j.com/


5.5 data and experiments 187

5.5.1 Matching Carpooling Demands with Offers

The evaluation of our proposed method to match carpoolers among
themselves and with PT uses data from a large European carpooling
platform as well as the railroad network data from the SBB (which could
be expanded to include bus or tram networks as well). The data were
retrieved in the GTFS format5 and consist of 1’912 railway stations and
28’455 routes. As explained before, the latter are stored as individual
trips, stopping at roughly 790’000 stops (at different times) throughout
the year. The carpooling data consist of approx. 18’000 individual offers
which were crawled from the platform within 8 months; 2’000 were
randomly selected in order to reduce the computational load during
the experiments. The carpooling trips often cover longer distances
(a mean of 480 km), and frequently the specified origin, destination
and stops along the route do not pass any railroad stop (878/2’000).
The underlying street network (used to compute DTAs) was given by
Esri StreetMap Premium6. For the implementation we used the graph
database Neo4j, which offers the possibility to model directed, acyclic
and labeled graphs and includes functionalities to compute shortest
paths, restrict these computations to label chains, retrieve various met-
rics of the so generated routes, and more.

Using the data introduced, we applied the steps described in sec-
tion 5.2. The time-expanded graph from the railway network was
connected at stops for which 3 min < tb.te − ta.ts < 10 min, i.e., the
transfer should take between three and ten minutes (while the first is
to introduce a realistic time that is minimally required for the transfer,
the second simply reduces the number of edges in the graph that need
to be considered when computing a shortest path). The POAs for the
carpooling trips were retrieved using the Google Directions API, and
the respective DTAs were computed using the street network from Esri
introduced before.

Commonly Nearest
Neighborhood-
based
Approaches

, routing algorithms incorporating carpooling simply use a
nearest neighbor-based approach to compute the closest PT stop that can
be used for the transfer. Comparing our method (and its outcome when
applied to the dataset introduced) to a nearest neighbor-based approach
(with maximum distances of 1, 2 and 5 km from origin, destination and

5 The data can be downloaded from geOps via gtfs.geops.ch.
6 The ArcGIS StreetMap Premium dataset can be accessed via www.esri.com/en-

us/arcgis/products/arcgis-streetmap-premium/overview.

https://gtfs.geops.ch
https://www.esri.com/en-us/arcgis/products/arcgis-streetmap-premium/overview
https://www.esri.com/en-us/arcgis/products/arcgis-streetmap-premium/overview
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Our Method NN 1 km NN 2 km NN 5 km

Links between driver-
defined CP stops and
railway stations

969 199 254 306

Links between CP POAs

and railway stations
5’683 - - -

Total 6’652 199 254 306

Table 5.5.: A comparison of the number of connections when linking
a PT and a CP graph using the state of the art NN and the
approach introduced in this chapter.

en-route stops), we can significantly increase the number of potential
stops along the route. Table 5.5 shows the difference in created links
between a PT and a CP graphs when applying Nearest Neighbor (NN)-
based methods with various radii in comparison to the graph merging
and linking method introduced here. As can be seen, especially the
POAs enable us to add a large number of links, but also simply using
DTAs for origin, destination, and en-route stops increases the number of
potential connections.

To investigate the effects of the approx. 5 million railway transfers,
650’000 intermodal transfers, and 125’000 carpooling transfers (that
were created using the merging and linking method introduced in
this chapter) on the connectedness of the resulting transport graph,
we use the PageRank centrality measure (Brin and Page 1998). The
PageRank algorithm was originally developed to rank websites on web
search platforms. It essentially considers those nodes as important that
have a high number of incoming links from other important nodes (as
such, it is a measure that requires an iterative update of values until
they stabilize or another stopping criterion is met). Figure 5.6 shows
the density of stops with a high PageRank measure: On the left, only
railroad stations are considered (and linked to each other), and on the
right in addition CP stops are added. It can be seen that adding CP to
a transport graph “smoothens” the resulting graph, which means that
there are more well-connected stops and thus people do not necessarily
have to travel to the larger hubs to get to their destination. In addition,



5.5 data and experiments 189

the resulting network is more tolerant to outages, as the trips are more
spread out and do not focus on a few very important stops.

Dense
Sparse
> 1.5 Std. Dev.

Figure 5.6.: Density map of transfer locations that exhibit a high Page-
Rank. The right figure shows the smoother distribution of
high-PageRank stops after merging and linking carpooling
stops to the PT graph.

Figure 5.7 and Figure 5.8 show two exemplary routes generated by
the method described within this chapter. The first figure is based upon
a traveler heading back home from Bern (the capital of Switzerland) to
Olten, a smaller town in the North of Switzerland. The computed route
uses a carpooling offer from Sierre (Switzerland) to Liège (Belgium)
which was identified to have stops in Bern as well as Egerkingen (via the
use of POAs). In combination with a small train ride from Egerkingen to
Olten, the resulting trip costs CHF 7.60 and takes 46 minutes. Traveling
the same route solely using PT, as identified by the official route planner
of the SBB, costs CHF 30 and takes 47 minutes. As can be seen, the
resulting trip shows roughly the same duration yet comes at a much
lower price.

The second example is based on a traveler who wants to visit the city
of Milano (Italy) from Olten. As can be seen, the resulting trip combines
a train journey with two different carpooling offers to get to Milano in
roughly 220 minutes for the cost of CHF 27.20. The corresponding trip
by SBB would cost more than CHF 103 and take around 294 minutes. In
this case, not only is the price of the route involving CP roughly 25% of
the corresponding PT route, but there is an additional time saving of
about one hour.

Of course, it is not always possible to have carpooling offers align that
well. However, by decreasing the (manual) effort that is currently re-
quired for people to specify their carpooling offers and by automatically
computing feasible detours along the route, hopefully more people will
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16:38:27 Bern
Wankdorf

17:08:20
17:11:00 Egerkingen

17:24:00 Olten

Carpooling

Train

Figure 5.7.: Exemplary route from Bern to Olten.

15:51:00 Olten

16:18:08
16:28:00 Lucerne

17:23:00
17:50:37 Chiasso

18:09:37 Rho Fiera
Milano

Train

Carpooling

Carpooling

Figure 5.8.: Exemplary route from Olten to Milano.

publish their journeys by car, and thus enable a larger number of routes
to be found using the method introduced here.

5.5.2 Heuristically Generated Route Plans

To show the applicability of the heuristic to compute personalized and
context-dependent route options, we again use the GTFS data from the
SBB, together with the carsharing stations of the Mobility carsharing
company, all the bikesharing stations within the city of Zurich, as
well as the Open Source Routing Machine (OSRM) and OSM for the
underlying street networks and display on maps. We introduce a set
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of general rules for these transport modes, as explained in section A.2.
Two exemplary case studies involving two persons each are used to
highlight the presonalization and context-dependence achievable using
the heuristic planning method:

1. Persons A und B intend to travel from the Northeast of Zurich
to the city center. While the current weather is fine, the forecasts
indicate a downpour roughly 15 minutes after the intended de-
parture time. A likes to travel by car (and has one available), but
does not like to travel more than 1 km on foot. B is willing to
walk up to 3 km, and has neither a car nor a bicycle available.
The general unwillingness to walk during rain is modeled by a
distance decrease by a factor 5 during rain. Finally, as both are
aware of their ecological impact, they would like to use the route
option that causes the least amount of GHG emissions, even at the
expense of longer walking distances.

2. Persons C and D intend to travel from the suburbs of Zurich to
the city center late at night. Even though C has a bicycle, he or
she is afraid of walking or cycling at night and thus tries to keep
the distances covered with these modes small. D, on the other
hand, does not mind cycling even at night, he or she even prefers
cycling longer distances to exercise.

These case studies intend to represent realistic scenarios in which a flex-
ible (and potentially adaptable, either manually by the user of a system
or by automatically learning from previous behavior) system brings
benefits over the current state of the art, which primarily optimizes the
route choices minimizing the travel duration.

The first case study highlights the differences based on individual
preferences, context such as the weather and also the availability of
certain transport modes. Figure 5.9 shows the generated route plans
for persons A and B. It can be seen that A only receives the suggestion
to travel by car, for one because the person does not like to walk large
distances on foot (even though there is a PT stop roughly 450 m from
the person’s home, the maximum walking distance gets reduced to
200 m due to the forecast of rain, and there is an additional segment
at the end of the trip that would have to be covered by walking), and
for the other because this person has a car available roughly 400 m
down the road. We show two sets of route options for person B: The
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left side does not consider the forecast of rain, while the right side does.
As can be seen, the upcoming rain prevents the user from taking any
mode of transport that requires a longer walk in the end (during rain,
the maximum walking distance is reduced from 3 km to 600 m), and
only several bus rides remain as an option on the right side. It also
needs to be noted that while there would be route choices with smaller
walking distances (and thus likely smaller total travel times), these are
not generated by the heuristic due to the fact that both A and B prefer
more ecologically sustainable routes, which in turn precludes the use of
e.g., PMT or carsharing if PT or cycling are available (this is not directly
visible from the presented ruleset, but instead is achieved by ranking
the generated routes before presenting them to the users). Finally, it
needs to be noted that not all the route choice options in the left figure
might actually be available to the user (due to the actual PT schedules
resp. connections in trips with multiple PT triplegs). However, the
generated output is very natural for a user in that it tells him or her
about possible mode combinations and transfer locations to get to the
destination, and lets the user (with the assistance of a “route refinement
system”) further plan the route to be chosen.

N

A B B

Walk
Car

Bus
Tram

Train

Figure 5.9.: Results from the persons A and B from the second case
study to evaluate and discuss the high-level route plan
heuristic presented in this chapter.

Figure 5.10 shows the results of case study two. Person C can use
carsharing only, as he or she does not want to walk too far during
the night, and all options involving PT also require significant walking
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distances of more than 200 m. Person D, on the other hand, can use
the same carsharing option, as well as options involving the personal
bicycle, and various trams that run to the city center. While not visible
in Figure 5.10 (similar to Figure 5.9), the order of the returned options
is [bike, public transport, ..., carsharing] as D would also like to use an
eco-friendly mode of transport before resorting to transport modes
that cause more GHG emissions. This is again achieved by computing
the GHG emissions after generating all route choices and ordering the
returned results accordingly.

C D
Walk
Carsharing

Bike
Tram

N

Figure 5.10.: Results from the persons C and D from the first case study
to evaluate and discuss the high-level route plan heuristic
presented in this chapter.

5.5.3 Preference-based Route Plans

To evaluate the applicability to generate personalized route plans, we
use the data recorded as part of the SBB Green Class study. Figure 5.11

shows the empirical distributions of transport mode choices depending
on various features of a single exemplary user (the actually used joint
probability distributions are combinations of all these features, whereas
we assume that they are all independent). It can be seen that the tripleg
length is a good predictor for the chosen transport mode, as is the hour
of day or the connectedness of the PT stop at which a person transfers.
The distance to the destination is particularly useful for this user as it
determines that the bicycle is often used if the distance is below 10 km.
The increased probability to walk if the distance to the destination
is between 50 and 70 km stems from the fact that for such distances
we usually start a trip by walking, before switching to a transport
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mode such as car or train. The figure also highlights the importance of
normalizing the features before using them in a routing context (i.e.,
to lie in the range [0, 1]) as the sampled densities otherwise primarily
depend on the values the feature takes.
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Figure 5.11.: Kernel density estimates of the probability distributions
of various features.

Figure 5.12 shows the “probability surfaces” as computed during the
routing procedure. In this case, we simply look at the probabilities of
traveling to all transfer locations in the study region that are reachable
by the chosen transport mode. As can be seen, when the person starts
walking from the location denoted with Start, the probability is highest
that she or he will only travel to one of the transfer locations in vicinity.
For all the other transport modes (that allow traveling further distances
more easily), the probability of ending up close to the End location
(resp. destination) is high. While the train can only stop at a few
selected stations and the evaluated carpooling offer only stops in the
two transfer areas indicated by the grouped green dots, the free-floating
bicycle enables the user to travel anywhere. In contrast to walking,
however, this user previously recorded data that shows that he or she is
willing to travel similar triplegs by bicycle, and as such the probability
of ending up close to the destination (or directly at the destination) is
higher. It can also be seen that the probability of stopping before the
destination is higher than driving past it and walking back (i.e., there is
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a slight skew in the free-floating bicycle probabilities towards the Start
position of the user).
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Figure 5.12.: Probability surfaces of four different transport modes.

In Figure 5.13, we show the generated route plans for three differ-
ent users of the SBB Green Class study (exhibiting different feature
distributions). In these plots, only the top two recommended routes
are displayed, and routes exhibiting equal mode combinations are not
shown (e.g., if a user is recommended to take a free-floating bicycle
there are usually several available, each of which would generate a
separate route plan; as those are very similar, they are not shown
here). As can be seen, the first user commonly uses the bus for trips
resembling the one from Start to End, and thus gets this as the first
recommendation (followed by taking the free-floating bicycle). Simi-
larly, the second and third users either use the bicycle or car for routes
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exhibiting similar features as the one that is being planned. As such,
the recommendations for them either involve primarily the bicycle or
carsharing (note that the private car was not available in this experiment,
but that we use the same feature distributions for the individual car
and carsharing; the latter was required because SBB Green Class did not
explicitly require participants to indicate when they used carsharing
and as such no training data was available).

8.48 8.50 8.52 8.54 8.56
47.36

47.37

47.38

47.39

47.40

47.41

8.48 8.50 8.52 8.54 8.56
47.36

47.37

47.38

47.39

47.40

47.41

8.48 8.50 8.52 8.54 8.56
47.36

47.37

47.38

47.39

47.40

47.41

Train
Tram
Bus
Carsharing
Bikesharing
Free-FloatingBicycle
Carpooling
Walk

Bus User Bicycle User

Car User

Figure 5.13.: Personalized route recommendations generated by our
method for three participants of the SBB Green Class study.

5.6 chapter summary

In this chapter, we proposed several methods to improve the personal-
ization and inclusion of less commonly used but ecologically friendlier
transport modes (such as carpooling or free-floating bicycles) within
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route planners. We argue that improving route planners is important
for changing people’s mobility behavior towards a more sustainable
one, as a) the assistance by technology increases the effectiveness of
facilitators (i.e., the work required for a person to find an eco-friendly
route alternative is smaller, and thus the people are more likely to try
out different alternatives), b) the resulting routes are often not only
more ecologically friendly, but also lead to financial and/or temporal
savings (and thus form an additional motivator) and c) the resulting
routes can be used to gauge the potential for change for individual per-
sons and thus facilitate proposing changes and improvements to people
and embedding them within motivational affordances as discussed in
the next chapter. The three introduced methods focus on carpooling,
heuristics that can be tuned to a wide range of personal preferences
and influencing context factors, and personalized route planning that
relies on features as introduced in chapter 4 and the specification of
mobility offers in a generalized manner involving transfer points and
areas, and the respective mode availabilities between them. The follow-
ing chapter will build upon the here introduced planning methods to
support people in their mobility choices using a range of persuasive
methods.





6
C O M M U N I C AT I N G M O B I L I T Y

In the previous two chapters, we introduced ways to process passively
recorded tracking data with the aim of extracting information and gen-
erating alternative route plans that could guide persuasive applications
in the choice of strategy to help a user achieving more sustainable
mobility. Here, we will present different approaches to utilize this infor-
mation within the context of persuasive smartphone applications, and
highlight the results of their application within a large-scale user study
performed in two geographically different contexts in Switzerland. Such
Behaviour Change Support Systems (BCSSs) are “information systems
with psychological and behavioral outcomes designed to form, alter or
reinforce attitudes, behaviours or an act of complying without using
coercion or deception” (Oinas-Kukkonen 2013, p. 1225). Figure 6.1
shows a high-level overview of the processes involved in processing
and communicating the data in a way that is meaningful for the indi-
vidual user. Starting from the mobility information extracted directly
from the tracking data, and in combination with the alternative route
options generated as described in chapter 5, we can score a user’s past
behavior, evaluate the available options, predict likely future mobility
needs, and compute a set of persuasive elements based on these data.
In this chapter and in line with the presented user study, many of these
elements revolve around gamification, which has been used previously
to foster desirable behaviors successfully (cf. chapter 3).

6.1 effective communication of mobility behavior

A wealth of research treats the question of how to communicate behav-
ior and incentives in ways that make them as effective as possible to
support people in behavioral transitions (cf. chapter 3). Complementing
this research, we here present a taxonomy of motivational affordances

This chapter and its contents, algorithms and figures are based on Cellina, Bucher,
Rudel, et al. 2016; Weiser, Scheider, et al. 2016; Weiser, Bucher, et al. 2015; Cellina,
Bucher, Raubal, et al. 2016; Bucher, Cellina, et al. 2016; Bucher, Mangili, Cellina, et al.
2019; Cellina, Bucher, Mangili, et al. 2019; Cellina, Bucher, Veiga Simão, et al. 2019.
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User Mobility
Features

Route Alternatives

User

Gamification
Assessment

Element Suggestions

Potential for ChangeEco-Feedback

App-based
Persuasive Elements

Paper-based Reports

Figure 6.1.: The main information processes required for efficient mo-
bility communication and (eco-)feedback generation.

for meaningful gamified and persuasive systems that assists application
designers in choosing from a range of strategies and elements targeting
behavior change. Figure 6.2 shows the three-tier taxonomy. On the
uppermost level, there are five design principles that should always be
followed in order to comply with the psychological roots of motivation,
as explained in chapter 3. On the next level, several mechanics are
available that each concentrate on a particular psychological need that
generates motivation, and that should follow the overarching design
principles. Finally, we specifically consider gamification elements, which
are the building blocks that can actually be implemented within an
application. While the design principles and mechanics provide gener-
ally applicable guidelines, we will use the mobility features and route
options introduced in the previous chapters to evaluate and build the
individual elements. The chosen gamification elements are introduced
using the example of GoEco!, which is also used to evaluate and discuss
the strengths and weaknesses of the chosen implementation.

6.1.1 General Design Principles

The following five general principles emerge from the theory of motiva-
tion presented in chapter 3. They should in particular be kept in mind
when implementing any mechanic or element presented below.
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General Design Principles - Abstract Guidelines for the Design Process

Offer Meaningful Suggestions
Personalize Experiences
Support User Choice

Respect Stages of Behavior Change
Provide User Guidance

Should follow

Implement

Mechanics - Possible Means of Interaction Between User and System

Feedback
Rewards
Education Cooperation

Competition
Challenges

Elements - Building Blocks to Implement Mechanics

Assignments, Quests, Goals
Achievements and Badges
Leaderboards, Collections
Reminders

Friends, Teams, Groups

Points, Credits, Levels
Virtual Goods

Figure 6.2.: Principles of motivational affordances that researchers and
practitioners can follow to create persuasive, gamified, and
meaningful applications. The gamification elements se-
lected within GoEco! will be discussed in section 6.3.

offer meaningful suggestions The principle of offering mean-
ingful suggestions is mainly rooted in a) the fact that every decision
requires an active engagement with the topic at hand (i.e., it requires
cognitive effort and thus receiving proactive suggestions can increase
the efficacy of the process) and that b) suggestions should not conflict
with other goals a person might have (hence the requirement to be
meaningful). In addition, providing suggestions helps to learn about
one’s own behavior by setting it in relation with the suggested behavior
and thus highlighting potentially impedimental behaviors. For example,
suggesting to “take the bus instead of the car” (for a certain trip) is
only meaningful if there is a bus running at the time, and if the user
is not required to transport heavy luggage by car. Thus, in order to
create meaningful suggestions, respecting a user’s context (as described
in the previous chapters) is paramount. It is, however, highly difficult
to capture context in its entirety, for which reason usually approxi-
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mate tradeoffs are used (e.g., that an alternative would be viable for a
systematically traveled route, if its duration does not exceed a certain
threshold).

support user choice Rooting in the psychological need for au-
tonomy, the design principle of supporting user choices aims at letting
users specify their own goals and the pace at which they work to-
wards them. This stands in close relation to the previous principle of
meaningful suggestions, essentially stating that people should be given
more than “either-or” choices. Completely supporting user choice even
means considering the scenario that a user does not approve of any of
the options proposed by the persuasive app, and let a user adapt the
system to her liking. Giving users choices also prevents “technology
parenting”, whereas users are discouraged because they feel that an
application has too much control over them, and thus stop using it.
The gained autonomy gives room for empowerment strategies, where
a user can (virtually) practice a behavior or explore cause-and-effect
relationships and thus become more versed at various behaviors. For
example, suggesting similar transport options in different situations
lets a user experience their viability in various contexts and thus gain a
better understanding about the different options.

provide user guidance Providing user guidance usually takes the
form of task reduction or tunneling, whereas the difficulty of a task is
either reduced or the experiences of a user are controlled. Providing
guidance is important during the acquisition of new skills. Structuring
information in an appropriate way can help people more easily grasp
desired behaviors and the actions needed to achieve them. For exam-
ple, presenting mobility data in an aggregated from and highlighting
particular traits that run contrary to the desired behavior helps a user
understand quickly where improvement is needed. Giving concrete
examples of how to improve these traits, and guiding people by provid-
ing achievable steps towards the target behavior reduces the complexity
of a behavior change and nudges users in the “right direction”. Com-
ponents that provide user guidance must be able to handle failures in
exhibiting certain behaviors to prevent people from getting frustrated
and relapsing to previous behavior. The latter gives a user of a system
the freedom of choice, and thus again connects the process of achieving
competence to the personal desire to do so (i.e., the need for autonomy).
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provide personalized experience Personalizing experiences with-
in a persuasive app usually takes two forms: On the one hand, letting
users customize their experience within the app (e.g., by letting them
modify the user interface) gives them a sense of ownership and possibil-
ity to express their self-identity. On the other hand, and more important
within the context of the here studied applications, tailoring the content
to the behavior of the user (or user group) satisfies our needs for relat-
edness, affiliation and followership. In addition to being more useful if
the elements within an app are personalized, the application designer
can thus foster a stronger bond between the user and the motivational
artifact. It needs to be noted that personalization is often domain-
dependent, though, and as such requires iterative design processes.
As mobility is highly individual, personalization quickly becomes a
central aspect of any non-trivial application: By analyzing someone’s
recorded trajectories, and giving feedback on how to improve behavior,
the persuasive application already requires a deep understanding of a
person’s mobility (in contrast, consider a trivial app that only provides
educational elements, such as (randomly timed) notifications to go to
work by bicycle).

design for every stage of behavior change As already dis-
cussed previously, the path to acquiring a new behavior undergoes
several stages. Optimally, applications automatically identify these
stages and implement elements that respect the current stage a person
is in. For example, a person who is not aware of a certain behavior
that is not in line with his or her overall goals (and thus is in a pre-
contemplation stage), should be given information about the behavior,
comparisons with alternatives, and information that allows reflecting
on it. Later, alternative behaviors and the provision of small tasks
(instead of suggesting the ultimate target behavior directly) increase the
ability of the user to get incrementally closer to the desired behavior.
Highlighting the differences to other people and the desired outcome
provides a strong motivational source, and thus can be selectively em-
ployed to “overcome” difficult situations. And as noted before, during
stages where people take action in implementing certain behaviors,
concrete suggestions, rearrangements of tasks, or even only informative
feedback can help the user to adjust his or her actions towards the
desired behavior.
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In the following, we will describe the individual mechanics, which
should follow the introduced design principles to ensure a high persua-
siveness.

6.1.2 Mechanics

Mechanics describe the ways in which a user and a (persuasive) system
can interact. As such, it is not required that all of them are implemented
within a single system, however, those which are, should be in line with
the general design principles introduced previously.

education Education intends to provide a user with knowledge
about a potentially desirable behavior, but also about how to per-
form tasks to reach it. It primarily targets the psychological needs for
competence, but can also contain elements that satisfy the need for
followership in case it is given via the role of instructors. Especially
in early stages of behavior change, education plays a central role, as it
can highlight differences between an idealized self and the exhibited
behavior and thus induce cognitive dissonances that form a strong
motivator. Similarly, it can point to normative behaviors (thus target-
ing the needs for affiliation and relatedness), it can create awareness,
and increase a user’s ability to perform certain tasks (essentially by
giving instructions). In later stages educative measures can keep a
topic interesting by providing additional information. Education is best
used while respecting context: normative statements that lack context
(such as “you must do x”, without any additional reasoning) have little
effect on exhibited behaviors. Examples from the sustainable mobility
domain include education about the environmental effects of different
transport modes, statistics on mobility use within a certain region, or
the availability of different transport modes (that might previously be
unknown to the user).

feedback Feedback is any information given back to a user that
lets her assess the currently (or recently) performed behavior. It is
either given instantly or after a short period of time (during which a
larger amount of data can be accumulated into fewer representative
indicators), and is mostly visual, but can also be auditory, haptic, or in
a variety of other forms (e.g., commonly, a notification on a smartphone
combines all three). Feedback is used in one form or another in most
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computer applications, in particular in pervasive systems. Next to
providing motivation by showing discrepancies in exhibited and desired
behavior, it can decrease the difficulty of tasks (e.g., when it contains
suggestions about potential alternatives to the exhibited behavior) and
thus “increase the ability” of a user. However, when feedback contains
alternative behaviors, they must be meaningful and the user must be
given a choice, in order to prevent technology parenting. If feedback is
given instantly after a behavior was exhibited, it forms a stronger link
than when given in an “offline manner” (i.e., at a later point in time).
Of particular importance within the context of mobility, the system
designer has to be careful that the feedback does not interfere with the
activity a user is currently performing. For example, notifying a user
using a visual cue while she is driving is distracting and leads to an
increased risk of accidents. Giving feedback in an accumulated form
at a later point has the advantage that it can be summarized well and
thus more easily used to compare the current behavior to the past, and
to other people in similar situations.

More Indirect
Feedback

indirect forms of feedback do not necessarily require knowing
anything about the user, but instead simply rephrase a situation or task
in such a way that a user is inclined to exhibit the desired behavior.
For example, it was found that painting perpendicular and unevenly
spaced lines on the road lets people decrease their speed when passing
the respective road segment (Leonard 2008). Feedback can also be given
for small and (potentially) unintentional behavior changes, which leads
to an adjustment of a person’s belief system and thus motivates larger
and intentional future behavior. However, giving feedback that is not
necessarily in line with a person’s belief system can also have demo-
tivating effects, as it results in inconsistencies in one’s representation
of the world, and thus leads to a rejection of the imposed desirable be-
havior. Such “boomerang feedback” has to be considered in most cases;
for example, indicating the average behavior of a user group within
feedback usually leads to a regression towards said average, even if
the exhibited behavior was more sustainable. Finally, it is important to
note that the users of a persuasive application will not always utilize
feedback given to them to change or improve their behavior, as they
will often not have a complete and perfectly accurate representation
of reality and will not strictly maximize sustainability. Giving correct
feedback at appropriate times will increase the perceived credibility
and persuasion capabilities, however.
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rewards Rewards are mechanics that solely generate motivation,
and do not change the ability of a user to perform a certain task. In
addition, the generated motivation is primarily external, and as such
has a range of negative associations that require a system designer to
carefully evaluate if the benefits of employing rewards outweigh their
negative connotations. While rewards fulfill the needs for achievement
and competence in the best case, they might lead to a user performing
a certain action solely for the reward in the long run, thus decreasing
the overall motivation (external and internal) to perform a desired
behavior. Related to this, extrinsic motivators are unsuitable to induce
long-term behavior changes, as people will commonly only exhibit
the behavior as long as the reward is present, and stop as soon as the
extrinsic motivator disappears. In addition, for a user to continuously
perform a desired behavior, the reward size has to be increased over
time, and its frequency and predictability has to be changed in order to
contain a moment of surprise. Failing to do both will lead to decreasing
motivation and (as it is primarily an external motivator) falling back to
the original (potentially undesirable) behavior.

challenges Challenges are rooted in our need for competence.
Their essence is to give a (somewhat difficult) goal that allows bench-
marking one’s own behavior, skills, or performance. They are particu-
larly useful when competition and cooperation is impossible, i.e., when
the set of involved users and/or contexts is diverse. Additionally, they
can help people without goals or people who do not know how to
achieve a (potentially too difficult) goal, by providing guidance and/or
reframing the desired outcome in terms of the involved steps. For exam-
ple, adding upfront or intermediate goals that are easy to reach (within
a larger process to achieve some desired behavior) can increase the
likelihood that someone completes a task, as people feel like they are
competent and making progress. Splitting up larger goals into smaller
(more reachable) ones similarly relates to our need for competence, as
these smaller goals seem more reachable and thus satisfy our need to
feel competent more quickly. This strategy of “divide and conquer”
can be found in many fields, and essentially describes how one large
goal can be overwhelming, preventing a person from starting to work
on it at all. When choosing challenges and/or goals, it is important to
choose reasonable defaults, as people will usually not make the effort of
manually adjusting them even when presented with multiple options.
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competition Rooted in the needs for achievement and leadership,
competition is a mechanic that works well for people who are ap-
proximately in the same situations and exhibit the same skills. These
comparisons with a rival party become demotivating, however, when
the differences in skills are large or when one party faces highly dif-
ferent circumstances. For example, giving a group of people awards
based on how often they take the bicycle to work will demotivate peo-
ple who need to transport baggage and thus cannot participate in the
competition. Similarly, there are circumstances in which competition
may be unwanted, e.g., within a family where one might follow a
non-competitive ethic and want to foster cooperation and collaboration
instead. Finally, it needs to be noted that the framing of a comparison is
crucial, as it influences the outcomes greatly (as a very simple example
consider two rankings of participants where the one who uses the
bicycle the most is on top in one, and the one who uses it the least is
on top in the other; the resulting motivations will greatly differ).

cooperation Cooperation is the opposite of competition, building
upon our needs for relatedness, affiliation and leader-/followership
(when roles in a cooperative setting are distributed in a way that makes
individual people leaders for certain tasks). As cooperation always
involves a group of people that works together in an attempt to reach
a goal, it naturally works in settings where people are social and the
mix of skills and knowledge within the group complements itself. This
means that everyone gets to “play a part” (and thus is able to show com-
petence), and will feel related (due to the common goal) and affiliated
(due to the inalienability in the team) to others. Having anonymous
teams where people do not know each other is less motivational. Often
cooperation and competition are combined, whereas essentially groups
of cooperative teams are formed that compete against each other. In the
context of persuasive applications supporting sustainable mobility co-
operation could, for example, include functionality that rewards people
for carpooling together.

6.2 generating and communicating eco-feedback

Based on the general design principles and individual mechanics intro-
duced above, there are several ways how to generate and communicate
eco-feedback. Here (and in accordance with the chosen approaches
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within the GoEco! project), we will introduce “paper-based” mobility
reports that are in particular suitable for targeted mobility studies, as
well as persuasive smartphone applications. The latter enable both
collecting mobility data and communicating feedback regarding the
recorded behavior directly from within one device (that is available to
a substantial share of people and thus theoretically allows scaling an
app-based mobility behavior change intervention to the whole world).

6.2.1 Mobility Reports

A straightforward approach to giving eco-feedback on mobility is by
providing a report that summarizes the exhibited (and recorded) behav-
iors. The benefit of this approach is that it is independent of the mobility
recording system employed, as a typical “paper-based” mobility report
only requires knowing to which user a certain report must be sent. For
example, simply tracking the car of a person (i.e., not recording any
movement that is performed without the car) already allows gaining
insights into the GHG emissions, or duration spent traveling. In addi-
tion, such reports can highlight which trips could potentially have been
undertaken with a more sustainable mode of transport, thus adhering
to the design principles of providing personalized experiences and user
guidance (naturally, the highlighted alternatives must be meaningful
in the given situation). Being paper-based and thus offering limited
forms of interactivity, reports mostly generate motivation through the
mechanics of education and feedback.

Figure 6.3 shows an exemplary (and slightly abstracted and simpli-
fied) report as given during the GoEco! experiment. After several weeks
of mobility tracking, people were given a booklet that summarized their
behavior in the last weeks in terms of travel distances, durations, modal
shares, as well as energy requirements and GHG emissions. Next to a
range of tables (not shown here) that provide a more detailed weekly
overview, the report focused on highlighting the differences between
the status quo, and a hypothetical, more sustainable behavior that was
computed using the heuristic method introduced in chapter 5 (in com-
bination with a PT router to evaluate the results given by our method).
The second part of Figure 6.3 (denoted “Potential for Change”) shows
the same indicators considering the more sustainable behavior. As
can be seen, in the case of this user, most trips by car could actually
have been performed by PT as well, leading to a reduction of the CO2
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emissions by approx. 50%, and a decrease of the energy demand by
35%. However, this would also entail an increase in travel duration
from 7 hours and 24 minutes to 8 hours and 51 minutes (an increase
of roughly 20%). The “Main Energy Demand / GHG Emission Con-
tributors” section is additionally included to put an emphasis on those
transport modes whose use is particularly concerning when trying to
reduce GHG emissions.

Mobility Behavior
Travel Distance
Travel Duration

Car
Public Transport
Slow Mobility
Walking
Other

Energy Requirements
CO2 Emissions

228.66
7h 24min

84.94
9.55
2.37
3.14
0.00

187.02
39.05

km/week
t/week

% km/week

kWh/week
kgCO2/week

Travel Distance
Travel Duration

Car
Public Transport
Slow Mobility
Walking
Other

Energy Requirements
CO2 Emissions

271.74
8h 51min

33.10
59.35
2.64
4.92
0.00

121.57
19.80

km/week
t/week

% km/week

kWh/week
kgCO2/week

Potential for Change

Main Energy Demand / GHG Emission Contributors

kWh kgCO2

Car Train

Bus
Car Train

Bus

Car Public T.
Walk

Bicycle

Car Public T.

Walk

Bicycle

Figure 6.3.: Exemplary “paper-based” report as used within the GoEco!
project. Next to a summary of the status quo behavior,
an assessment of potential (and meaningful) changes in
mobility behavior is given.

Including visual representations (as shown in Figure 6.3) allows users
not only to easily compare their behavior with a potentially more sus-
tainable one, but also with their own previous behavior (upon receiving
multiple reports) and among each other. However, as those compar-
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isons require manual efforts by users, paper-based mobility reports
should be replaced by more interactive means whenever possible.

Systematic Route X
Your Route

Length
Energy Requirements
CO2 Emissions
Average Travel Duration
Mode of Transport

11.22
10.33
2.20

0h 26min
Car, Walking

km
kWh
kgCO2

Length
Energy Requirements
CO2 Emissions
Average Travel Duration
Mode of Transport

3.97
0.71
0.07

0h 16min
Bicycle

km
kWh
kgCO2

Potential Alternative

Figure 6.4.: Suggestions for alternative routes as given within the
“paper-based” mobility reports.

Finally, Figure 6.4 shows a second important component of the mo-
bility reports used within GoEco!. For each trip that was identified as
systematic (cf. chapter 4), a (more) sustainable alternative was identi-
fied and presented as a meaningful suggestion on how to change the
mobility behavior.

6.2.2 Persuasive Apps

As paper-based mobility reports suffer from several drawbacks (most
notably the restriction to non-interactive mechanics and elements), we
will in the following concentrate on persuasive techniques employing
interactive technologies. Nowadays, persuasive (smartphone) apps
arguably offer the most convenient alternative, as they can combine
tracking with (interactive and gamified) feedback elements. Figure 6.5
shows three feedback-oriented application screens, as used within the
GoEco! app. Similar to the paper-based reports the feedback component
of the GoEco! app revolves around the provision of summary statistics
that provide a quick overview of one’s own mobility behavior. In the left
figure, a summary of the travel distance, time, energy consumption as
well as CO2 emissions is given. In addition, several of the gamification
components (which will be introduced in section 6.3) are summarized.
This summary view is supplemented by functionality that breaks down
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travel into individual routes, as shown in the middle of Figure 6.5. For
each of the recorded triplegs, the total distance, duration and transport
mode is shown, and the users are given the possibility to change or
validate the detected transport mode.

Tom Example

Weekly GoEco! Goal Achievement [%]

Profile Challenges

2 18

Badges

1 2 3 4 5 6 7 8 9 10 11 12

26. September 2016 - 3. October 2016

km Travel Distance417.3

h Travel Time12:45

kWh Energy Consumption305

kg CO2 Emissions64.46

Routes

28. Sept. 2016, 7:07 - 7:34

5.7 km

26. Sept. - 3. Oct. 2016

Success!
You used the car for 11% this week.
Your goal was 13% of the total km.

Overall results

km Travel Distance3.6

h Travel Time01:40

kWh Energy Consumption38.2

kg CO2 Emissions15.8

Modal Split

%53

%11

%

+10%

-15%

-23%13

Figure 6.5.: Feedback screens used within GoEco!. On the left, equiva-
lent information as given within the “paper-based” mobility
reports is shown. In the middle, spatio-temporal informa-
tion regarding each tripleg is available, and users are given
the possibility to validate or adjust the detected transport
mode. On the right, the summary for an exemplary week
is given, also highlighting the changes compared to the
previous week.

Finally, to enable comparisons across several weeks, the screen on the
right side provides the same summary statistics as the main “profile”
screen (on the left), but for each week individually. In addition, there
are visual representations of the used transport modes and compar-
isons to their use in the previous week, as well as a summary of the
achievements of that particular week (in terms of progress towards a
chosen goal, cf. section 6.3).
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6.3 gamification

Gamification describes the concept of using game-like elements in non-
gaming contexts. Taking mobility as an example, we can frame the
process of increasing its sustainability as a game, thus “gamifying” it.
Figure 6.2 shows the gamification elements available to system design-
ers (that each implement one or more mechanics). In the following, we
extend the above introduced taxonomy of motivational affordances by
concrete gamification elements. Examples for the elements (as poten-
tially used within the mobility domain) will be given by referring to
the GoEco! app. Note that the usefulness within the mobility domain
varies between elements, and not all of them are implemented within
GoEco!. The assessment of the chosen gamification strategy will be
disseminated and discussed in section 6.4.

6.3.1 Elements

A wealth of research exists on the motivational characteristics of various
game elements (i.e., what makes games fun and what makes us keep
playing them, cf. Malone 1980; Prensky 2001; Deterding, Sicart, et al.
2011; Blythe and Monk 2018). Most of them can be transferred to non-
game contexts, albeit they are usually adapted to the target domain and
in particular the visual aspects are often greatly reduced. Just as the
mechanics should follow the general design principles, these elements
implement the mechanics in different ways.

assignments, quests, goals Building upon the challenges me-
chanic, assignments, quests and goals all present users with a desired
behavior that should be reached. While a user is required to com-
plete an assignment in order to progress, quests are optional and goals
describe a long-term desirable state. As such, assignments have to
be employed carefully, as they are in conflict with a user’s need for
autonomy, risk that a user feels patronized by technology, and should
often be replaced by quests altogether. Both assignments and quests
are commonly used in combination with goals, whereas they break up
a goal into smaller and more easily reachable parts. While assignments
and quests can be completely specified by the persuasive app (resp. the
system designer), goals should leave some room for fine-tuning to the
user, in order to support the need for autonomy. However, proposing
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(and implementing) specific and challenging yet not overly difficult
goals is required to yield the best motivational results. Of course, this
is largely dependent on the domain and context a user is in: Within
the context of sustainable mobility, proposing the goal of reducing GHG

emissions by a certain amount requires knowing exactly how much
was produced previously, and whether the user would have realistic
alternatives to the current behavior available.

As an example, consider the two functionalities of the GoEco! smart-
phone app shown in Figure 6.6: The goal-setting screen on the left side
is based on an assessment of a user’s previous behavior, and his or
her potential for change (as computed using the methods introduced
in chapter 4 and chapter 5). However, to support user autonomy, and
because it is unclear from tracking data alone, the “slider” lets a user
fine-tune his or her goal (which in this case consists of reaching a lower
energy consumption within the next week). On the right, a number of
selectable challenges are shown. As users are not forced to compete in
any of them, they fall under the quest category in the presented tax-
onomy. Similarly, because a user knows the possibilities of increasing
sustainability best herself, the app simply offers suggestions that are
in line with the previously recorded mobility data. To provide some
extrinsic incentive, the challenges are coupled to receiving trophies for
repeated completion (this can also be used to compete publicly against
other people). In the example, the user had already completed several
challenges, for which she was rewarded with a bronze resp. silver
trophy.

achievements and badges Achievements and badges are awarded
for certain predefined behaviors. As such, they can serve several pur-
poses: If known beforehand, they give users direction within the system
(i.e., they can teach a user how to use a system), and they implicitly
work in tandem with assignments, quests and goals, as they all specify
a goal after reaching of which the achievement or badge is awarded. In
this function, they mainly target our needs of competence. To satisfy
the needs for achievement, and leader-/followership, badges are often
publicly displayed. Not only can this boost a user’s own motivation, but
it can also signal to other people how a person interacts with the system
and which desired behavior she expresses. This in turn results in the
satisfaction of our need for affiliation, as it allows identifying ourselves
with other people who similarly behave or interact with the system.
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Set this GoEco! Goal

Based on your reference data and your GoEco!
potential, choose your goal for change.
Set the value and... GoEco!

Energy Consumptions
Kilowatthours (kWh) consumed per week

kWh537

kWh/week
Your GoEco! potential Your reference data

526 548

Set your GoEco! Goal

Nights Out

Challenges

No Car
Travel short routes during
the day without car

Short Routes

No Car
Travel all short routes
without car

Slow Mobility
Travel short routes during
the day by slow mobility

Slow Mobility
Travel all short routes
by slow mobility

No Car, no Planes
Travel long routes without
using cars nor planes

Long Routes

Figure 6.6.: The goal-setting and challenge selection screens in GoEco!.
The possibility for users to choose their own goal is based on
an assessment of potential behavior change, and supports
the need for autonomy.

Offering badges (esp. if they are awarded at surprise moments) leads
to higher exploratory and targeted usage of an application. However,
to be perceived useful, badges must not be awarded for simplistic or
repetitive tasks, and should require the use of contextual information
(again to be specific and thus interesting).

On the left side, Figure 6.7 shows several badges as implemented
within the GoEco! application. In this case, the available badges were
known beforehand and usually existed at multiple levels (e.g., travel
with a certain mode at increasing distances), to direct users into a given
direction (i.e., using more sustainable modes of transport). In contrast to
the challenges introduced in the previous section, however, users do not
have to explicitly choose a badge to work towards, but they are simply
awarded any time the related behavior has been exhibited. Similar to
the trophies awarded for completing challenges, the badges are used
for social comparison, primarily by considering the number of awarded
badges. To summarize the difference in the implementation chosen
within GoEco!: While challenges and goals were explicitly chosen (and
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thus adhere to the needs of autonomy and competence), badges were
invariably available and primarily adhered to social needs (via the
competitive elements explained in detail below).

Tom Example

Profile Challenges

18

Badges

Climber Specialist
Travel 40 km by bicycle

Baby Climber
Travel 20 km by bicycle

Pioneer
Perform alternatives 15 times

Insider
Only use public transport for 7 days

Go Greener
Reduce CO2 output by 40%

Zero Impact
Only use slow mobility for 5 days

Hall of Fame

5635Mario1

5030Valeria2

4932Elisa3

85Luigi21

84Tom22

73Vittorio23

Rank by Achievements

Top Players

My Position (756 Active Players)

Figure 6.7.: The available badges in GoEco! and the leaderboard that
both shows the trophies awarded for completing challenges
as well as the badges received throughout the study period.

points, credits, levels Points, credits and levels are numeric
representations of behavior and the progress towards a certain behavior.
As such, they contain a strong comparative (and competitive) aspect,
next to giving feedback by rating different behaviors (and thus allowing
comparisons with one’s own previous behavior). Similar to achieve-
ments and badges, they can be used as a display of progress and status,
and thus cater to our needs for achievement and leader-/followership.
In contrast to points, credits can usually be traded for other components
within the system, and levels are used to group point ranges and thus
allow comparing users more easily and give a better sense of achieve-
ment and competence. All the mentioned numeric representations have
several drawbacks: They can easily lead to behavior that opposes the
desired one (e.g., awarding points or credits for traveling by PT could in
extreme cases make people travel more to collect them), they should be
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awarded for similar behavior yet be adapted to the task at hand (which
is very difficult in a highly individual setting, such as mobility—what
is easy for one person might be unfeasible for another; it is neither
fair giving them the same amount of points nor is it fair giving them
different amounts), and their positive effects on motivation are not
univocally proven (e.g., Mekler et al. 2013). Due to their controversial
nature, especially within highly individual settings such as mobility,
we did not include them within the GoEco! persuasive application.

leaderboards, collections Leaderboards primarily target so-
cial needs such as the need for achievement or leader- and followership.
In essence, they show our achievements publicly and thus allow compar-
ison, but also self-evaluation. Their effects on motivation are manifold,
though: Especially for people in the lower parts of the leaderboard
it can be motivating, as it is nearly impossible to “chatch up” and
achieve the behavior of those leading the board. To circumvent this, it
is possible to only show a competition with people exhibiting similar
behavior. This can either be with people occupying similar positions (as
is especially common for many online games, where different leagues
separate players according to their rank), or people in similar situations
(e.g., in the mobility domain this could be people living in similar
regions, such as a city or a more rural area). It is also possible to only
selectively show a leaderboard to users who already interact with the
system frequently and are ranked towards the top, or to award people
at the lower end more to make it easier for them to catch up and prevent
them from stopping to use the persuasive application.

As an example, Figure 6.7 shows the leaderboard as implemented
in GoEco! on the right side. Because mobility is highly individual, the
competition is based on the rewarded badges and completed challenges.
Especially the ranking in terms of challenges fosters a fairer competition,
as every user is free to compete in as many as possible and as they
are usually formulated in a relative way (i.e., they can be achieved by
everyone similarly; for example, travel all short routes by slow mobility
does not set a minimum or maximum number of required “short
routes”). In addition, while GoEco! highlights the top positions, only
a smaller section around the user’s own position is shown which
alleviates some of the negative effects associated with showing all the
people who perform better or worse.
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reminders Reminders are used to prevent relapses into earlier
stages of behavior change, can serve as feedback to a user, and en-
courage habit formation (though their effectiveness to this purpose is
disputed). Their frequency and timeliness is important, but depends
on the user and their content: For some people, reminders can quickly
become a nuisance, while in other situations more frequent reminders
are acceptable. For all reminders, it is better when they are generated by
other human beings instead of in an automated fashion. Within GoEco!,
reminders were provided for the weekly challenges (to choose one, but
also if the progress towards the challenge goal did not proceed as fast
as necessary). These reminders were chosen before the background
of supporting users in their autonomy (i.e., they were reminded to
choose something themselves or about a choice they had previously
made). Framing reminders in this way reduces the chance that they are
perceived as a nuisance.

friends , teams , groups Offering social elements such as connect-
ing with friends, or forming teams and groups adheres to our needs
for affiliation, relatedness and intimacy (and up to some degree to
leader-/followership). Next to fostering cooperation, such functionali-
ties offer possibilities to split up a user base into smaller groups (e.g.,
a large mobility user study like GoEco! can be split up according to
the geographic region, or the personal situation of individual people),
intra-group discussions on how to achieve certain goals, inter-group
competition, the possibility for more advanced users to help newcomers
and/or weaker players, and also to equalize large differences in users
(by teaming up stronger and weaker players). Similar to competition
between users, letting teams compare each other can act demotivating
for weaker teams, though. Within GoEco!, friends, teams and groups
were not explored except for real-life meetings among participants (this
did not have any effect on the information displayed within the app
though).

virtual goods Virtual goods are a special form of reward that
have a real economic value (i.e., can be bought and sold from within
the gamified system). As such, they share most of the characteristics
with rewards such as achievements or points; in particular they adhere
to our needs for achievement, competence, and leader-/followership.
Similarly, they can also be used for social comparison, e.g., within a
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leaderboard—however, because of their economic value outside of the
gamified system they go further and can be used as extrinsic motivator.
Due to this and the fact that they can be bought as well, they are
usually not required for intrinsically motivated people (who work
towards their goals of their own accord), and can even lead to adverse
effects (e.g., when people simply “buy their way up a leaderboard”).
Finally, and very well visible in games that let you publicly display
your purchased goods, the perceived effect you have on other players is
largely influencing the decisions to buy virtual goods. Within GoEco!,
there were no virtual goods due to their problems with the different
motivation sources of people (i.e., the fact that they have detrimental
effects on internally motivated people).

6.3.2 Computation and Assessment

For the introduced gamification elements to be unobtrusive and pro-
active (i.e., they must be available to a user without any specific in-
teraction), all computations must be made on the automatically and
passively tracked mobility data. As such, within GoEco!, we primarily
relied on daily or weekly aggregates of mobility descriptors as intro-
duced in chapter 4 and evaluated their change over time resp. their
relation to descriptors exhibited under the assumption that a person
would always choose a sustainable alternative (when available and if the
trip was classified as unsustainable; cf. chapter 4 and 5). This periodical
re-evaluation of mobility behavior and gamification elements based on
aggregates suffers from the drawback that users potentially have to
wait several hours after performing a trip before they get any feedback
or rewards from doing so. Developers of a persuasive resp. gamified
application thus have to find a balance between immediate feedback
(and thus a more “game-like” experience) and ease of computation and
interpretation of feedback (i.e., a daily aggregate is easily understood
and computed and can take a person’s complete exhibited behavior
into account, while immediate feedback has to assess whether trips are
completed already or if the app should withhold updating the gamified
components until a later time).
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6.4 data and experiments

As introduced previously, the presented principles, gamification ele-
ments, communication strategies and computations were implemented
within the GoEco! project, with the aim of analyzing the long-term ef-
fects of persuasive apps on mobility behavior. In the following sections,
we will give a detailed account on the research questions, project setup,
evaluation methods and results of the project.

6.4.1 Project Setup

GoEco! studied the effects of persuasive apps on mobility behavior.
While both qualitative and quantitative research on these effects existed
previously (cf. chapter 3), GoEco! envisioned a large-scale (i.e., involving
several hundred participants) study performed over roughly a year in
diverse geographic regions, to be able to quantify the impact of different
interventions on mobility behavior at various scales and within various
contexts. To this purpose, GoEco! followed the project setup shown in
Figure 6.8. In a first phase running from March to May 2016 (8 weeks),
the whole study sample installed the GoEco! tracker application on their
mobile phones that simply recorded their movement and mobility and
allowed them to validate or change the detected modes of transport.

Intervention Group
Control Group

GoEco! AppGoEco! Tracker App
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Questionnaire Interviews
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Figure 6.8.: The timeline of the GoEco! project, involving three phases
spanning one year, a control and treatment group, as well
as post-experiment questionnaires and interviews.

In the second phase, running from October 2016 to February 2017 (16

weeks), the sample of study participants was split up into two groups:
While one third of the participants continued using the tracker app
(solely recording mobility), the other two thirds installed the complete
GoEco! app, including the feedback and gamification elements intro-
duced in the previous sections. Finally, during a third phase, running
from March 2017 to May 2017 (8 weeks), all participants again installed
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the tracker app to study whether the changes in mobility behavior
remained, or if the effect of a persuasive app in the mobility domain di-
minishes after the intervention has ended. The three phases took place
over one year and were followed by different questionnaires as well as
in-person interviews during November/December 2017. Starting in Fall
2015, participants were recruited using a media campaign and adver-
tisements on social media and in various locations around the campus
of the University of Applied Sciences and Arts of Southern Switzerland
(SUPSI) and the Swiss Federal Institute of Technology Zurich (ETH
Zürich), the two partners who conducted the GoEco! experiment.

DueTracking Im-
plementation

to limitations imposed by the project budget and the related
development resources, GoEco! was developed as a combination of two
applications: On the one hand, we relied on the Moves application1

that was a popular fitness tracking app at the time (discontinued as of
August 2018). As shown in Figure 6.9, Moves tracked all movements
and automatically assigned a sports-related “transport mode” to each
identified tripleg (as Moves’ intended use is to track activities such as
jogging, cycling or rollerskating, the “transport modes” primarily corre-
spond to these activities; driving by car was identified, but other means
of transport were generally classified as transport). Moves published
the tracked data using an API that could either be polled at regular
intervals or set up as a publisher-subscriber system, enabling Moves to
send notifications whenever new data was recorded and processed.

In addition to the GoEco! (tracker) app, the GoEco! application con-
sisted of a server backend (written in Python and Scala, and running
on server hardware) that regularly retrieved new data from the Moves
API and processed it using several of the methods described in chap-
ter 4 and chapter 5. In particular, we reclassified the transport mode
according to the requirements of GoEco! (namely to be able to dif-
ferentiate between transport modes that differ largely in their energy
requirements and GHG emissions), computed the eco-feedback shown
in the app, and updated the gamification elements used throughout
the app. The results were stored in a central database, from which the
app continuously read the most up-to-date data and fed back transport
mode validations as well as interactions with the app (such as choosing
a new challenge).

1 Information about Moves can be retrieved using the Wayback Machine (e.g.,
web.archive.org/web/20160110111352/https://www.moves-app.com) or in (Bucher,
Cellina, et al. 2016).

https://web.archive.org/web/20160110111352/https://www.moves-app.com/
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Tom Example

Weekly GoEco! Goal Achievement [%]

Profile Challenges

2 18

Badges

1 2 3 4 5 6 7 8 9 10 11 12

26. September 2016 - 3. October 2016

km Travel Distance417.3

h Travel Time12:45

kWh Energy Consumption305

kg CO2 Emissions64.46

Moves
Connector

Transport
Mode Identification

GoEco!
Datastore

Trajectories/
Transport Modes

Triplegs/Trips
Gamification Elements

Interactions/
Validations

Validations/
Gamification
Interactions

Figure 6.9.: An overview of the GoEco! architecture. While the
Moves app tracked the movement of participants, and “pre-
classified” the transport modes into sports-related modes,
GoEco! featured its own classifier (described in chapter 4).
The resulting mobility data were stored in the GoEco! data-
store, which was accessed by the app for the computation
of the gamification elements.

In Additional
Eco-Feedback

addition to the reports introduced in subsection 6.2.1, which
were sent to participants at the end of the first phase, a second report
was sent at the end of the second phase that additionally contained
information about the behavior change exhibited during the second
phase. Figure 6.10 shows the additional information: The section
on mobility behavior changes was used to give people feedback about
how they changed their usage of mobility and the resulting in- resp.
decreases in sustainability (as measured via the proxies CO2 emissions
and energy requirements). To further promote collaboration within
the GoEco! project, additional in-person events were held during the
second phase (this included several bicycle tours as well as visits to
energy-related exhibitions). The attendance of these events was very
low, though (up to approx. 10 people), for which reason they were
discontinued after several weeks and are not considered further in the
analyses below.



222 communicating mobility

Mobility Behavior in Phase 2

Mobility Behavior Changes

Car Public T.

Walk

Travel Distance
Travel Duration

Car
Public Transport
Slow Mobility
Walking
Other

Energy Requirements
CO2 Emissions

270.82
7h 53min

29.66
66.78
0.00
3.56
0.00

115.94
17.79

km/week
t/week

% km/week

kWh/week
kgCO2/week

km
hh:mm
Car
Public T.
Bicycle
Walking
Other
kWh
kgCO2

Travel Distance
Travel Duration

Car
Public Transport
Slow Mobility
Walking
Other

Energy Requirements
CO2 Emissions

-28.08
-21.45

-13.12
+12.86
+0.00
+0.26
+0.00

-40.46
-46.88

km/week
t/week

% km/week

kWh/week
kgCO2/week

Figure 6.10.: Extract of the reports sent after the second phase. These
reports intended to give the participants feedback about
their changes in mobility between phase one and two.

It needs to be noted that even though it was the goal of GoEco! to
perform a large-scale study, it turned out to be notoriously difficult
to keep the users’ interests high over the duration of one year. At the
start of the study, 599 participants signed up for participation (out of
which 277 were from Ticino, a predominantly rural region in Southern
Switzerland, and 322 from Zurich, the largest city in Switzerland). 26

people could not start with the study due to incompatible smartphones.
Out of the other 573, 212 fulfilled the minimal requirements of active
tracking and validation for several weeks within phase A and could
enter phase B. These requirements stated that a participant has to have
at least three weeks of activity, where an active week was defined
as having (validated) data on at least four out of seven days, and 50

recorded trips (out of which 80% needed to be validated). Ultimately,
at the end of period C, we could use data from approx. 50 people (the
exact number of participants varies with the analyzed property reps.
hypotheses, e.g., some participants were sufficiently active for general
analysis but did not exhibit a sufficient number of systematic trips for
an analysis of the behavior changes within regular mobility), roughly
8.3% of the people who originally signed up. This number corresponds
to app retention values found by other (commercial) projects (Guerrouj,
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Azad, and Rigby 2015; Sigg et al. 2019), and thus indicates that many
people may not have perceived GoEco! primarily as a research project
(in which case they would more likely have kept actively participating
within the study until the end), but rather as a regular app on the
market (that one removes once the novelty fades). While this reduces
the explanatory power of the analyses determining the effects of a
persuasive app on mobility behavior, it gives additional insights about
the “real-life applicability” of a persuasive strategy centered around
smartphone apps.

6.4.2 Research Questions, Hypotheses and Evaluation Methods

The main research question of GoEco! follows the fourth question
given in chapter 1: Do people adjust their mobility behavior upon receiving
(eco-)feedback based on their previous choices? To answer this question and
as the main outcome of GoEco!, the three hypotheses stated below were
analyzed:

Hypothesis 6.1. The average GHG emissions per kilometer are lower
after the GoEco! intervention.

The main aim of a persuasive app such as GoEco! is to reduce the
overall ecological impact caused by its users’ mobility demands. Our
primary proxy of the environmental impact are the GHG resp. CO2-
equiv. emissions of individuals, for which reason Hypothesis 6.1 (and
the following ones) is formulated in terms of GHG emissions. Using
CO2-equiv. as a measure allows using emission factors computed
within other research, and captures the entirety of GHGs that affect the
environment. Of course, simply using a factor based on the distance
is only an approximation, however, computing the exact emissions
is usually not possible, as context such as the vehicle type, its exact
velocity, or the number of passengers is generally unknown. The second
hypothesis concerns the effects of the GoEco! app itself on the mobility
behavior.

Hypothesis 6.2. The before/after difference in GHG emissions is larger
for people treated with the GoEco! app than for those who did not use
the app.

To ensure that the observed effects in Hypothesis 6.1 are not due
to external effects (such as seasonality, a general shift towards more
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sustainable behavior in a population, or due to sample selection), the
second hypothesis makes use of the control group and quantifies the
differences in observed behavior between the treatment and the control
group. The third hypothesis examines the effects of regularity on the
potential for behavior change.

Hypothesis 6.3. Hypothesis 6.1 and Hypothesis 6.2 hold true when
only regarding the subset of systematic loops in every person’s mobility
usage.

Based on our previously stated intuition that there is a difference
between regular behavior (such as going to work or visiting relatives)
and irregular behavior (going on weekend trips, on holidays, or for
spontaneous trips), Hypothesis 6.3 states that we can observe the same
behavior of a reduction in GHG emissions on regular trips. This also
means that in case we have to reject Hypothesis 6.1 and Hypothesis 6.2
but cannot find any grounds upon which to reject Hypothesis 6.3, that
regular behavior is indeed easier to change, and the GoEco! intervention
had a positive effect, albeit only on the subset of more easily changeable
trips.

All hypotheses were evaluated on the tracked mobility data of all
the GoEco! participants that showed a sufficient data quality. These
participants were identified based on their ground truth data, collected
in phase A, and had to:

• at least have three active weeks within the first period, where an
active week had to

• at least have four active days, where an active day is defined as

• any day that has at least one validated route (i.e., the user had to
show some interaction with the tracking data on the given day).

6.4.3 Effects of GoEco! on Mobility Behavior

To test Hypothesis 6.1, we compare the total CO2 emissions in periods
A and C. As there might be some additional people stopping to use
the app after phase A, we adapt the criteria from the previous section
to only include people who have at least three active weeks in any of
the periods, collected at least 50 routes in each phase, and validated
80% or more. Out of the remaining 52 participants, we only consider
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CO2 Emissions per km

p-values (one-side Wilcoxon
signed-rank test)

Ticino 0.21

Zurich 0.19

Average difference between
periods C and A (XC − XA)

Ticino -12.03 gCO2/km
Zurich 5.96 gCO2/km

Table 6.1.: The differences in GHG emissions (measured in terms of
CO2-equiv.) between tracking phases A and C.

the validated routes for testing the hypothesis. Out of these 52 people,
21 resp. 13 were in the treatment group in Ticino resp. Zurich, and 10

resp. 8 in the control group. As the distribution of the CO2 emissions is
not Gaussian, we used the Wilcoxon signed-rank test to compare indi-
viduals’ changes from A to C, and Wilcoxon rank-sum to compare the
treatment and the control group (Hypothesis 6.2 and Hypothesis 6.3).

Table 6.1 shows the resulting differences between periods A and C.
It can be seen that in the more rural region Ticino the CO2 emissions
decrease after the GoEco! intervention, contrary to the urban region of
Zurich. While this could be explained by the different context and in
particular by the different perception and availability of mobility (e.g.,
in Zurich, driving by car is actively discouraged by the authorities and
PT alternatives are much more readily available), the p-values show
that neither of the results is significant. Thus, on the overall mobility
behavior, GoEco! did not seem to have any significant impact, and
Hypothesis 6.1 has to be rejected.

In line with the intuition that systematic routes are easier to change
(as they often only have a few requirements such as having to carry lug-
gage or providing space for a family, and as people often show habitual
behavior and thus do not evaluate alternative options without external
stimuli), we applied the same test to the CO2 emissions generated by
systematically traveled routes only. Here, systematic routes are defined
according to Definition 4.9. As this restriction to regularly traveled
routes changes the available data for each user, we re-evaluated the
number of users fulfilling a minimal data quality criterion, resulting in
45 participants fulfilling the preconditions for testing Hypothesis 6.3.

Table 6.2 shows the differences in CO2 emissions when only consid-
ering systematic routes. As can be seen, the differences are larger, the
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CO2 Emissions per km

p-values (one-side Wilcoxon
signed-rank test)

Ticino 0.023
∗

Zurich 0.342

Average difference between
periods C and A (XC − XA)

Ticino -23.931 gCO2/km
Zurich -7.776 gCO2/km

Table 6.2.: The differences in GHG emissions (measured in terms of CO2-
equiv.) between tracking phases A and C (stemming from
systematic routes).

participants in Zurich also show a decreasing trend, and the change
in CO2 emissions in the rural area Ticino is significant. Taking up on
the possible explanation presented previously, it seems likely that the
reason for this difference are the varying circumstances in which the
two participant groups are. While most people from the city of Zurich
already travel by PT and SM (as the use of cars is discouraged, usually
taking any other mode of transport is equally fast, and many people
try to exhibit sustainable behavior), people in Ticino often have to rely
on their cars even for daily commutes. This different use of mobility is
rooted in the fact that many people have to rely on their cars for their
daily activities, and thus also use them without much thought even if
more sustainable alternatives are available.

To ensure that the observed decrease in CO2 emissions is not due to
some uncontrolled causes, we compare the treatment with the control
group. Table 6.3 shows the results of this comparison. It can be seen
that in Ticino the CO2 emissions of the control group increased after
the GoEco! intervention, leading to a total difference between phases A
and C and the control and treatment group of 33.137 gCO2/km. This
difference was found to be significant, but not in Zurich, where it is
much smaller as well.

6.4.4 Evaluation of the Presented Mobility Alternatives

To evaluate the usefulness of the presented alternatives (as part of the
eco-feedback reports sent after the first and second phases), we addi-
tionally surveyed the participants of GoEco! regarding their systematic
mobility and the applicability of the presented alternatives. Out of
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CO2 Emissions per km

p-values (one-side Wilcoxon
signed-rank test)

Ticino 0.049
∗

Zurich 0.157

Difference between periods
treatment and control group
(XC − XA)TR - (XC − XA)CTRL

Ticino -33.137 gCO2/km
Zurich -1.439 gCO2/km

Table 6.3.: The differences in GHG emissions (measured in terms of CO2-
equiv.) between tracking phases A and C and the control and
treatment groups. Similar to Table 6.2, only the systematic
routes were considered.

261 participants who were invited to participate in the online ques-
tionnaire, between 102 and 104 people answered (depending on the
question). They were presented with the identified systematic move-
ment patterns and generated alternatives (using a combination of the
OpenTripPlanner (OTP)2 for PT routes and the heuristic presented in
subsection 5.4.1 for less frequently used combinations such as bicycle
and PT) and asked several questions regarding the quality of identifica-
tion and suitability of proposed alternatives. Table 6.4 shows the results
of the three most important questions asked as part of the survey.

The resulting values show a positive assessment of the functional-
ities provided by GoEco!, in particular regarding the identification of
reference mobility patterns and systematic mobility. In addition to the
above answers, 85 users responded for 651 systematic tours of whether
they would “classify this [tour] as systematic (namely, a [tour] that
[they] frequently travel)” and if they think that the proposed alternative
is plausible. The results (also shown in Table 6.4) indicate that most
tours were identified correctly, and that the plausibility of alternatives
is mostly given. Interpreting the comments given alongside the survey
questions, most wrongly classified tours were simply not perceived by
people as they involved shopping or leisure activities that were not
considered regular behavior by the users themselves. Out of the 235

alternatives identified for tours, the survey respondents answered for
42 if the proposed alternative was plausible. 50% of the automatically
found alternatives were either scored with 4 or 5 (on the 5-point Likert

2 The OTP can be retrieved from www.opentripplanner.org.

https://www.opentripplanner.org/
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M SD

The reports correctly identified my reference mobility
patterns, in terms of percentage of use of the means of
transport (n=104).

5.81 0.98

The reports correctly identified my reference mobility
patterns, in terms of systematic journeys (n=102).

5.73 1.26

The reports suggested realistic and feasible alternatives
for my systematic journeys (n=102).

4.31 1.47

Individual Tour Assessments

Would you classify this tour as “systematic” (n=550)? 3.98 1.40

Do you think the alternative is plausible (n=42)? 3.38 1.62

Table 6.4.: Assessment of systematic mobility and potential alternatives
as identified by the GoEco! application (first three rows
n = 102− 104, 7-point Likert score, where 1=totally disagree
and 7=totally agree; rows 4 and 5 n = 550/42, 5-point Likert
score, where 1=definitely no and 5=definitely yes).

scale), indicating that for many people the proposed change in behav-
ior would indeed be possible. Given that for many alternatives the
circumstances are crucial (yet unknown solely from tracking data), it is
a positive indication that roughly half of all tours could be improved
by implementing the proposed alternative.

6.4.5 Survey and Interview Analyses

To answer the remaining research question given in the introduction
(How should transport options and choices be communicated to users to sup-
port sustainable mobility behavior?), we took a closer look at the survey
results and in-person interviews. The surveys were performed in an
online manner between June and July 2017 (starting roughly one month
after period C), and consisted of Google Forms that were sent to the
participants by email. The participants were incentivized to partici-
pate by the chance to win CHF 50 vouchers for a range of services
(public transport, local shopping malls, donations, etc.). Out of the 45

respondents to the questionnaire, 21 answered all questions (includ-
ing non-mandatory ones). 19 respondents additionally participated
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M SD

Climate change is a problem for society 6.47 0.84

Saving energy helps to limit climate change 6.31 0.90

The quality of our environment will improve if we use
less energy

6.16 1.35

I feel responsible for pollution and climate change: it is
not just a matter of governments and industries

5.67 1.22

I try to use the car as little as possible 5.56 1.39

Table 6.5.: Attitude towards environmental questions (n = 45; 7-point
Likert score, where 1=totally disagree and 7=totally agree).

in a semi-structured interview to discuss the peculiarities of GoEco!
and the topic of sustainable mobility in detail. The interviews were
analyzed according to the grounded theory approach; a set of response
categories was identified for each question (according to Glaser and
Strauss 2017), and the interviewees’ responses were classified according
to this categorization.

Table 6.5 shows a basic self-assessment of the 45 questionnaire re-
spondents regarding their environmental attitudes. It is already clearly
visible that the GoEco! participants who remained active throughout
the whole study exhibit a strong pro-environmental attitude. While we
cannot compare this to the overall population of Switzerland (due to the
unavailability of a representative group), and thus make no assessment
about the representativeness of their statements, they can still be used
as a valid feedback on the elements and mechanics used within the
GoEco! application and project.

On General
Assessment of
GoEco!

a general level, the persuasive approach chosen by GoEco! was
evaluated above average. Table 6.6 shows the corresponding survey
results from the 45 respondents. The app was easy to install and use,
and the overall perception is that it delivered useful results. The least
positively valued aspect was the time consumption: As highlighted
throughout several of the interviews conducted post-survey, this pri-
marily referred to the amount of time required for validating routes. As
one respondent put it, “validation was boring, if you did it every day.
But if you forgot validating your trips for a week, and then you tried
to validate them all at once... it became annoying!” (T11). While the
validation of the automatically tracked data was understood as being
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Total (n = 45)
1 2 3 4 5 6 7 M SD

Diff. setup 0 0 1 3 4 15 22 Easy 6.20 1.01

Diff. usage 1 0 4 5 6 18 11 Easy 5.51 1.41

Unattr. 1 3 5 8 12 13 3 Attractive 4.73 1.45

Time-consu. 4 6 6 4 8 15 2 Efficient 4.31 1.83

Uninform. 1 2 1 9 14 12 6 Informative 5.07 1.37

Useless 1 1 0 2 12 18 11 Useful 5.69 1.24

Boring 1 2 5 1 14 14 8 Interesting 5.20 1.50

Fail. expect. 1 1 3 6 14 15 5 Fulfilling 5.13 1.33

Table 6.6.: Evaluation of the GoEco! application (n = 45; 7-point Likert
score, where 1=totally disagree and 7=totally agree).

necessary, the interviewees repeatedly pointed out that to be deployed
universally, a persuasive app like GoEco! must not force people to
validate their trips (at least for the more easily identifiable transport
modes such as driving by car or walking), and that the identification
of individual triplegs must be improved (as otherwise validating a
tripleg becomes impossible as it is unclear which transport modes are
involved).

Table 6.7Assessment of
Gamification

shows the assessment of the different (gamification) ele-
ments employed within GoEco!. Especially the “plain” feedback ele-
ments (i.e., statistics on energy consumptions and CO2 emissions, as
well as the traveled distances and the travel durations) were consid-
ered useful for stimulating sustainable mobility behaviors. The more
complex elements, such as badges or the comparison with others were
perceived as less useful. While this mostly aligns with the expectations
(i.e., social comparisons are difficult in the mobility domain, which is
naturally very diverse; receiving badges unexpectedly does not neces-
sarily increase motivation, as the desired behavior is not known and
thus no competence can be shown), it was mentioned during the in-
terviews that GoEco! introduced a wealth of features directly at its
inception and for all users. This was perceived as challenging, and the
recommendation was given to present new users only with a few ele-
ments, and continuously expand the number of gamification elements.
In addition, on-boarding phases for new elements were mentioned,
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Total (n = 25)
1 2 3 4 5 6 7 M SD

Mobility footprint statistics∗ 0 0 2 4 6 8 5 5.40 1.23

Mobility patterns statistics∗∗ 1 0 0 5 8 8 3 5.20 1.29

Potential for change 0 1 2 9 5 5 2 4.71 1.27

Setting personal goals 3 0 1 7 7 4 3 4.56 1.71

Challenges against myself 3 2 3 3 5 4 5 4.48 2.02

Being part of a community 2 2 3 5 6 5 2 4.36 1.57

Receiving unexpected badges 2 3 2 5 7 3 3 4.32 1.77

Comparisons with others 2 4 4 5 3 5 2 4.04 1.81

Table 6.7.: Perception of various elements of GoEco! (n = 25; 7-point
Likert score, where 1=totally disagree and 7=totally agree).
∗Weekly energy consumption and CO2 emissions. ∗∗Weekly
kilometers, transport modes, travelling time.

where a small tutorial or an experimental phase gives users time to
familiarize themselves with a new feature.

Table 6.8 gives more detailed insights on the individual elements
used within GoEco! and their perceived usefulness to change mobility
behavior. While Alternativespeople were generally interested in their own behavior
in order to have a base for reflection, the alternatives proposed by the
paper-based reports were not commonly tried out. The interviewees
primarily mentioned two causes for this: First, the suggested alternative
route options did not respect the circumstances in which people are
well enough. One person mentioned “how could I satisfy all my family
requirements, accompanying the kids and also carrying weights?” (T2).
However, as other people stated, often such statements are excuses
and would not hinder a certain route alternative in reality. For them,
the second cause was more prominent, namely that they were not
further encouraged to take the alternatives later on during the study
(while the alternatives were used to compute potential goals and other
gamification elements, they were not explicitly shown in the app, for
example, after a trip was undertaken for which a suitable alternative
would have been available). Notifications, but also a more immediate
route planning functionality (within the app) would have helped them
to assess their choices either immediately before or after they made
them. This primarily addresses people in the action and maintenance
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stages of the TTM, indicating that many of them either were motivated
to make their behavior more sustainable already before participating in
GoEco!, or that GoEco! managed to successfully guide them through the
precontemplation and contemplation stages.
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1 2 3 4 5 6 7 M SD

Baseline and potential mobility patterns
I was interested in knowing about my potential for change 0 0 1 5 8 13 8 5.93 1.12

The report stimulated me to critically reflect on my mobility patterns 1 3 5 8 13 6 8 4.80 1.58

I tried out the alternatives suggested by the reports 11 4 5 8 7 6 2 3.51 1.94

I’m now regularly using some alternatives suggested by the reports 17 2 6 8 4 3 4 3.11 2.07

Goals
The meaning of the goal for change was clear to me 1 1 3 2 5 4 8 5.21 1.79

I was stimulated to change my mobility patterns to achieve my goal 1 2 3 7 3 7 1 4.42 1.56

I was eager to know if, at the end of the week, I had achieved my goal 3 3 2 2 5 6 3 4.38 2.02

Challenges
Challenges helped me to achieve my goal for change 4 1 3 4 6 4 2 4.13 1.90

Challenges made me critically reflect on my mobility patxterns 4 2 2 1 6 6 3 4.38 2.08

Challenges were boring: they did not stimulate me at all 4 6 7 5 1 1 0 2.83 1.31

Challenges were incompatible with constraints affecting my mobility 4 5 2 5 5 1 2 3.54 1.87

I kept replicating the mobility patterns suggested by a challenge 4 1 4 5 6 3 1 3.88 1.75

Hall of Fame
The way the ranking in the Hall of fame was computed was clear to me 3 3 4 6 2 3 1 3.64 1.73

I checked my ranking in the Hall of fame every week 7 4 2 2 3 3 2 3.30 2.16

I stopped checking the Hall of fame due to lack of significant changes 2 3 1 8 3 4 0 3.90 1.58

I was encouraged to change my mobility behavior for a top ranking 8 3 4 3 1 2 2 3.00 2.05

Table 6.8.: Perception of various elements of GoEco! (varying n; 7-point Likert score, where 1=totally disagree and
7=totally agree).
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WhileGoals goals were generally understood by the participants, their help-
fulness in reaching a certain desirable behavior was disputed. Around
one third of the survey respondents stated that goals stimulated them
to change their mobility patterns, while for the others the effects were
less prominent. During the interviews, it became clear that goals were
“quickly getting boring” (Z2) as they were not personalized enough (the
suggested goals were always chosen from a pool of relatively generic
templates, and primarily personalized in terms of the suggested desir-
able behavior). Challenges were similarly assessed, and their usefulness
was mainly seen in helping critically reflect previous behavior. A large
issue posed itself with the incompatibility of challenges with various
constraints (a similar criticism as was mentioned with respect to the
suggested alternatives). As such, even though challenges were not
perceived as boring, in the majority of cases they did not lead to a
lasting behavior change. The interview responses similarly indicated
that the challenges were not personalized enough, i.e., sampling them
from a pool of relatively generic challenges did not lead to enough
diversity and thus reduced the interest in challenges in the long run.
For example, one interviewee mentioned that she “could not increase
[her] bicycle use anymore; [she] should [thus] not have been shown
bicycle-related challenges”. Next to an increased personalization, it was
also mentioned that an improved notification system (that for example
sends messages when a challenge is almost completed) could increase
the motivation generated by challenges. Along the same line, reframing
challenges in terms of the benefits (“do that, you save ten minutes”
instead of “do that, it is a challenge”) would have made it clearer that
the challenges actually lead to the desired behavior.

DuringNumerical
Representa-

tions

the interviews, it was also highlighted that while the eco-
feedback was generally perceived useful, its presentation as a collection
of numbers expressing CO2 emissions and energy usage in kWh was
difficult to understand. A range of suggestions was given, such as to
“back kWh up with gasoline liters” (T10), “relate tonnes of CO2 with
other activities we are used to perform at home—for example, what
about providing us with the amount of corresponding washing machine
cycles?” (T1), “thanks to your use of the bicycle today, x liters of oil have
not been consumed” (T5), or “the CO2 emissions you saved are equal to
y trees being planted” (T10). Additionally, feedback in terms of health
benefits or monetary impact was mentioned as a useful addition—
often, sustainable behavior correlates well with positive changes of
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these measures, which can provide additional strong incentives to use
mobility in a sustainable way. Summarizing the insights from the
interviews, it is difficult to grasp one’s environmental impact solely
from CO2 emission and energy usage numbers. While we explicitly
chose this approach to give people autonomy in their interpretation of
the tracked values, they mentioned that they optimally “would have
liked to receive some ’red/green light’ indications” (Z1), simply to
more quickly understand their behavior and not have to spend too
much time manually assessing it.

When Badgesasked about badges, the interviewees generally responded
with low interest. It was mentioned that they could be made more
tangible by associating rewards such as planting trees somewhere in
the world with them: “I would like to get a badge notifying me I have
contributed to saving a certain amount of CO2 emissions and that as
a reward a number of trees will be planted somewhere in the world”
(T10). This would not only increase their perceived value, but also
frame them in a collective (instead of individual) setting. Similarly, the
interviewees expressed a low interest in individual rewards (such as
the prizes awarded for the successful validation of routes), which might
be explained by the fact that many GoEco! participants were already
intrinsically motivated, progressed beyond the precontemplation and
contemplation stages, and thus did not feel the need to be incentivized
by external motivators. As such, we cannot univocally state that re-
wards do not work within persuasive applications: as previous research
reports, it is likely that especially for people in earlier stages of the
behavior change process and in less economically strong contexts eco-
nomic rewards might help on-boarding them and providing incentives
until internal motivation is built.

As Social
Comparisons

the final element assessed in the surveys, the social comparisons
given by the hall of fame were not perceived as particularly useful.
The primary reason was the lack of dynamism, i.e., the leaderboard
remained mostly constant throughout the study, and thus did not cap-
ture interest by the participants. The suggested improvements vary:
One interviewee responded that users should be ranked by “who saved
more petrol in absolute values over the week” (T5), which was contra-
dicted by others as “if I am used to travel 4000 km by car every month,
and I win a car-reducing challenge, are my efforts lower, higher or the
same as people travelling 400 km by car every month, and winning the
same trophy? If other people start from more favourable conditions



236 communicating mobility

than mine, but we are rewarded with the same trophy, we are ranked
equally in the leaderboard. I perceive this as unfair and soon lose
interest in it” (T6). Summarizing, it can be stated that while the social
comparison approach chosen by GoEco! tried to respect the different
contexts by letting users choose from a set of challenges that were tried
to be universally achievable, this was not well-enough communicated
and the participants were mostly confused by the hall of fame function-
ality (which commonly operates on easily understandable numerical
quantifications, such as points). Instead, and indicated by the intervie-
wees, the social elements within a mobility behavior change application
should rather focus on community-building, e.g., by providing features
that allow interacting with other app users, sharing achievements on so-
cial networks or with friends, collaborative (or competitive) challenges,
more game-like challenges (“who travels furthest with an e-bike?” (Z7)),
competitions among teams, or within corporate settings (similar to the
“bike to work” challenge in Switzerland3).

6.5 chapter summary

In this chapter, we looked at the question of how to best communicate
eco-feedback to people and how to best use persuasive smartphone
apps within the context of sustainable mobility. Based upon a taxonomy
of motivational affordances for persuasive and gamified systems, we
built the GoEco! app, which was employed within a large-scale study
spanning one year. Using the app led to a significant reduction in
GHG emissions stemming from regularly traveled trips for people living
in more rural areas. However, likely due to the many (uncontrolled)
influencing factors and potentially due to a lack of easily comprehen-
sible goals when making mobility choices, no significant reductions
were found for people living in cities and/or for a persons’ mobility
considered as a whole. Several surveys and interviews pointed out
strengths and weaknesses of the GoEco! app, such as the well-working
tracking and transport mode identification or the sometimes discour-
aging representation of all sustainability indicators as numbers, which
made them difficult to understand and interpret.

3 Teams participating in www.biketowork.ch have to record the number of kilometers
traveled by bicycle to work. Prizes are drawn at the end of the competition for all
teams who cycled to work on at least 50% of all days.

https://www.biketowork.ch/
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D I S C U S S I O N

In this chapter, we will discuss the introduced methods and algorithms
in light of the research questions posed in chapter 1. Following the
structure of the previous chapters, we will first restate the overarching
research question and compare our methods and results to previous
work, followed by a discussion of their relevance and the potential
impacts on the mobility behavior of people. The chapter concludes
with a systemic view (relating back to the first research question), a
comparison to similar persuasive applications, and a discussion of the
limitations uncovered during this research.

7.1 analyzing mobility

RQ2: What are the components and traits of automatically recorded movement
data that can be used to support mobility needs in an ecologically sustainable
way (e.g., by providing eco-feedback that people can base their future decisions
upon)?

In Comparison
to Previous
Work

chapter 4, we presented methods to process trajectory data with
the aim of creating applications that support people in sustainable
personal mobility. In contrast to a substantial share of research on
mobility analysis, we assume that detailed trajectories are collected
using a GNSS, and do not consider call record data (utilizing cell phone
towers to locate people) or (paper-based) mobility surveys (cf. Smoreda,
Olteanu-Raimond, and Couronné 2013). While it would be possible to
use these less accurate resp. different data sources (e.g., using mobility
surveys, researchers have the possibility to ask more detailed questions
about each performed trip), we argue that the prevalence and ubiquity
of smartphones (with built-in GNSS tracking and large batteries enabling
continuous location recording) will foster a continuous shift towards
high-accuracy data collection. Recording mobility at high levels of
detail allows assessing individual differences and preferences better
and thus increasingly tailoring persuasive applications to individuals
(whereas call record data and mobility surveys are commonly used to
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study mobility behavior of a whole population or a larger study sample,
e.g., González, Hidalgo, and Barabási 2008; Alessandretti et al. 2018;
Pappalardo et al. 2015). Indeed, we know of several countries and cities
that have been evaluating the suitability of smartphone tracking to
either replace or at least support the traditional phone- or paper-based
mobility census data collection. In addition, a range of small companies
started to sell products that enable automatic data collection at low cost
and effort (these applications can usually be used without any custom
integration, whereas they simply record mobility, or within a larger
application context using a Software Development Kit (SDK))1.

The presented data abstractions and methods to analyze mobility
data contain two preprocessing steps that are of special interest for high-
accuracy mobility data and of particular importance for the subsequent
steps. First, the segmentation procedures are usually not required for
paper-based surveys (and to a different extent for call record data), as
the collected data come in a segmented form already. Second, map
matching is important for GPS traces that are already available at a
high level of accuracy, as it allows to further increase the reliability
of measurements (for lower-accuracy trajectories, one usually resorts
to routing instead). For less accurate data sources, a reconstruction
using data from other people or the underlying transport graph can
be performed (e.g., Li, Gao, et al. 2019), but just as often the Euclidean
distance (resp. jump length) is used, in particular if the research
aims at comparing relative differences between different trips (e.g.,
González, Hidalgo, and Barabási 2008). Considering that we mostly
rely on higher-level abstractions (staypoints and triplegs) for the further
processing of mobility data, one has to ask whether GNSS data come
at an unnecessarily high level of detail. This discussion tightly links
to privacy considerations, where we might only want to store the bare
minimum of information required to provide meaningful feedback to a
person (cf. Giannotti and Pedreschi 2008). However, as we have seen,
not only does accurate location data provide us with very fine-grained
mobility descriptors, it also lets us make better use of geographical
context, e.g., to infer the transport modes by considering PT stops along
a trajectory. In combination with the increased ease of use of location
tracking SDKs, the recent focus of large smartphone Operating System
(OS) manufacturers on clearly highlighting the potential privacy risks

1 As examples, consider the MotionTag application (motion-tag.com) or the POSMO
application (datamap.io).

https://motion-tag.com
https://datamap.io
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of various tracking applications, and novel (exploratory) data sharing
concepts (e.g., data cooperatives, where people self-host their data and
give selective access to third-party applications or service providers),
we are convinced that for many purposes high-detail location tracking
will be the standard in the future. To alleviate privacy issues, system
developers should adhere to the fair information practices (Wachowicz
et al. 2008): limiting the data collection to necessary information, keep
data only as long as required, specify the purpose of data collection,
limit its use to a predefined purpose, safeguard it appropriately, inform
people about the stored data (upon request), and be accountable for
adhering to these principles.

The Trajectory
Algebra

introduced trajectory algebra to add contextual information to
tracking data can be seen as a combination resp. advancement of the
concepts of map algebra (Tomlin 1990; Tomlin 2017) and lifeline context
operators (Laube, Dennis, et al. 2007). In contrast to classical map
algebra that works on (temporally invariant) raster data, and the lifeline
context operators that work by summarizing properties of the mobility
data themselves, the combination of the two allows specifying the ways
context data interact with mobility data in a standardized way (and thus
ensures transferability, quick exploratory iterations when designing
new context features, and potentially user-friendly implementations
directly within a GIS). As with every abstraction, there are certain cases
that cannot well be handled by it. For example, the trajectory algebra
primarily targets contextual data in a raster format (which is available
at every point in space, in contrast to vector data that is only available
at discrete locations), and while its usefulness for vector datasets is not
disputed (as also highlighted by the exampe given in Figure 4.7), the
corresponding specification would have to be expanded substantially,
in particular when considering non-point vector data (such as other
trajectories, or areas resp. polygons) or operations such as retrieving the
k nearest neighbors. One can imagine scenarios where context should
be retrieved from other mobility data, e.g., similarity measures could
be used to automatically assign contextual data based on semantically
or geometrically similar trajectories (cf. Janowicz, Raubal, and Kuhn
2011), or context values could be integrated along the area a trajectory
passes through.

Extracting Transport
Mode
Identification

mobility features and augmenting trajectories with con-
textual data enables the application of transport mode identification
(and similarly, activity purpose imputation, cf. Martin, Bucher, Suel,



240 discussion

et al. 2018) models to further enhance the data. In the case of the
transport mode identification model presented in subsection 4.1.5 and
evaluated in subsection 4.5.1, we can clearly see that the inclusion of
mobility-related context features leads to performance gains in the
model outputs (in particular regarding the PT modes). Comparing this
to similar models, the accuracy of roughly 85% is in line with other re-
search that solely relies on mobility descriptors and contextual features
(and not more fine-grained data as provided by accelerometers, Blue-
tooth sensors, etc.). For example, Zheng, Liu, et al. 2008 compare four
inference models (Decision Tree, Bayesian Net, Support Vector Machine
and Conditional Random Field) based on the GeoLife trajectories and
find that walking, driving by car, bus or bicycle can be distinguished
with an accuracy of 74%. More recent work by Stenneth et al. 2011

reaches 93.5% based on features such as the average accuracy, speed,
heading change, acceleration and geospatial context (distances to bus
and rail lines). Currently, researchers evaluate the suitability of neural
networks for transport mode inference, e.g., Dabiri and Heaslip 2018

use an approach based on convolutional neural networks (reaching an
accuracy of 84.4%) that has the benefit that features do not need to be
engineered explicitly. Our method differs in that we use a PT router to
assess whether a given PT alternative would have been available at the
time of travel, thus giving us the chance of integrating potential delays
and deviations from the regular schedule in PT. However, the increased
complexity of having to employ a PT router specifically for transport
mode inference could also be seen as a drawback of our approach,
as it not only necessitates a larger and more complex overall system,
but also leads to longer inference times. In addition, our method was
developed with a specific use case in mind (and evaluated within the
GoEco! project, cf. Bucher, Cellina, et al. 2016): To infer transport modes
from tracking data of unreliable quality (in our case, recorded using
the third-party app Moves), to be able to differentiate between a large
number of transport modes, and as input to a further validation step by
the users themselves (that in turn can be used to continuously retrain
the model). All the transport mode inference models (only relying
on location and context data) usually also benefit from a combination
with models that additionally process the raw sensor data recorded
by a smartphone. For example, Jahangiri and Rakha 2015 and Fang
et al. 2017 both use machine learning approaches on sets of features
including accelerometer and gyrocsope data, and reach accuracies of
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approx. 95% in differentiating between standing still, walking, running,
cycling and traveling in a vehicle. However, and as was the case for
GoEco!, such data might not readily be available, as the complexity of
collecting, storing and processing of this data is more complex and
often not provided by location tracking SDKs.

Summarizing Mobility
Histories

mobility in terms of distances covered, durations spent
traveling, modal splits and activity aggregates is performed with the
aim of supporting sustainable mobility behaviors resp. highlighting
which choices and trips are responsible for the largest shares of negative
environmental impacts. In contrast to other mobility descriptors, as for
example introduced by Laube, Dennis, et al. 2007 (who mention speed,
acceleration, azimuth, sinuosity, navigational displacement, approach-
ing rate, and derivatives and standard deviations thereof) these values
are all tightly linked to sustainability as defined in chapter 2 and 4 and
are easily understandable also when given as feedback to non-experts.
Other metrics such as the radius of gyration, jump length, or frequently
visited places (cf. González, Hidalgo, and Barabási 2008; Alessandretti
et al. 2018) are primarily valuable to study mobility patterns of a popu-
lation, and are similarly valuable for experts who understand their exact
meaning and the laws they follow. However, as shown in section 4.5,
there are still valuable insights for researchers and experts studying
a certain sample to be gained from the introduced mobility descrip-
tors. Within the SBB Green Class project, the temporal development of
modal splits was one of the main points of study, as it enabled gaining
insights on the usage of a MAAS offer over the duration of a year, and
in particular highlighted that people behave more sustainable because
of it. As such and in line with the survey responses given as part of
the GoEco! dissemination activities (cf. chapter 6), we argue that to
enable self-reflection on mobility behavior and to provide a basis for
gamification elements, the extracted mobility histories are useful.

After Sustainabilitythe mobility descriptors have been extracted, and the respective
transport modes are known, it is important to assess the sustainability
of different trips (with regards to personal contexts and the related
financial and personal gains) in order to give people meaningful feed-
back. For example, many people do not have the possibility to work
from home (though the recent Covid-19 crisis has shown that in many
cases this is also an artificial restriction), and as such suggesting to
avoid work-related trips is not meaningful for them as they could
not realistically implement this behavior. The presented sustainability
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metrics are based on GHG emission data from mobility and transport
(Prillwitz and Barr 2011; Lane 2019; Boulouchos et al. 2017), as well
as on human capital theory (cf. Becker 1993), and try to balance the
necessity of performing a trip with its ecological impacts (given the
limited information available from tracking data). Due to the fact that
the offsetting costs (of GHG emissions from mobility) only correspond
to a small share of the overall mobility costs, and (usually) the overall
costs are only a small share of the financial and personal gains acquired
by performing the trip, we have to carefully consider if we want to
support people from a point of view of weak or strong sustainability
(where strong sustainability argues that no gain in human capital can
make up for a loss in natural capital, thus all GHG emissions should be
avoided). In most previous work revolving around using persuasive
applications to support sustainable mobility, this topic is not explicitly
treated, and instead a concept of strong sustainability is implicitly as-
sumed, under which people are always recommended to avoid trips
resp. reduce GHG emissions. The work presented in this disserta-
tion allows us to fine-tune support of sustainable behaviors better by
choosing from various strategies to compute route alternatives and to
determine when a given trip should be considered sustainable and
when not. Holden 2012 provides an interesting discussion regarding
the topic, and formulates the requirements for sustainable mobility as
follows: Sustainable mobility 1) must not threaten long-term ecological
sustainability, 2) it must ensure that basic mobility needs are satisfied
(e.g., everyone must be able to get to work and to access vital services),
and 3) inter- and intra-generational mobility equity must be promoted
(i.e., everyone must have access to the same minimum level of mobility).
Our dissemination of sustainability under various interpretations fits
well with the first and second points: While we have to ensure that
long-term ecological sustainability is given, we still have to consider
that satisfying basic mobility needs is a requirement for everyone, and
thus we should adopt our support of sustainable behaviors to primarily
target those trips that are non-essential or for which meaningful and
easily accessible alternatives are available.

While adopting strong sustainability is a practicable approach (that is
easy to adopt and works under the assumption that people will balance
ecological impacts with potential gains on their own), having more
information about which trip should potentially be avoided and which
is necessary allows an application to provide more selective feedback
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and thus be more meaningful to its users. As the concluding surveys
of the GoEco! study have shown, the participants thought it useful to
know about potential alternatives and were willing to implement them
as well (cf. chapter 6).

It needs to be noted that the computations of the financial and
social/personal capital gains as presented within this dissertation repre-
sent a limited model. While basing the financial gains on the salary of a
person is a valid approximation under the assumption that a salary is an
unbiased estimator of a person’s contribution towards an economy (i.e.,
towards the generation of value), it is easily understandable that the
thus generated value is not uniformly distributed across all times (and
thus across all trips) and that the salary does not manage to capture
all aspects of a person’s contribution to society (the current Covid-19

crisis highlights the importance of “essential workers” which often have
low salaries yet are indispensable within a society). As such, a much
more fine-grained evaluation would be necessary—this, however, is
difficult to estimate from tracking data alone as the exact reasons for
travel are usually unknown (e.g., we do not know if someone has to
go to work for an important meeting that generates substantial busi-
ness or societal value or simply to do administrative work). Similarly,
while the proposed measure for social/personal gains tries to incor-
porate social equity (i.e., balance differences between rich and poor),
it assumes that leisure-bound activities are necessarily “out-of-home”,
which is clearly violated by many people being happy to spend their
leisure time in close vicinity of their homes and thus not consuming
mobility as part of it (especially given the current Covid-19 situation
where many people were even forced to stay at home). However, and
with the same reasoning, the proposed measure essentially gives every
individual a “mobility budget” for leisure, and thus can be seen as a
first step into a fair assessment of the amount of GHG emissions that
should be considered acceptable for leisure activities. Finally, both
measures are difficult to interpret in the case of multi-purpose or even
multi-day activities (e.g., traveling somewhere by plane for a holiday).
In the first case, we always associate the trip leading up to the activity
with the activity itself, which might distort the actual GHG emissions
apportioned to different activity purposes (e.g., if someone visits a gym
close to work before heading there, the potentially longer trip to the
gym is associated with a leisure purpose, and the shorter trip from the
gym to work is associated with the work purpose). In the second case,
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a separate assessment for sub-trips should be made for a more accurate
estimation, and in particular the airplane trips should not only consider
the first activity after reaching the destination, but all activities until
the person flies back again.

SystematicEV Choice mobility forms a substantial part of our total mobility, and
support of sustainable behaviors (resp. the provision of eco-friendly
alternative routes) for these parts of our mobility is generally regarded
as positive and important as changes in those behaviors lead to long-
term and impactful results (as the behavior is repeatedly and habitually
performed). Inducing behavior change for these behaviors is difficult
without external support, however (as we mostly rely on habits and
usually do not re-evaluate systematically performed trips on a regular
basis; cf. Froehlich, Dillahunt, et al. 2009b; Cellina, Bucher, Veiga Simão,
et al. 2019), for which reason it makes sense for a persuasive application
to specifically treat systematic mobility. The presented identification
of commonly visited places and the associated tours was found to be
working well, as shown in Table 6.4. Of large interest for discussion is
the mode choice model presented in subsection 4.3.2 (that uses a unique
sample of persons who have access to both an ICE car as well as an
EV). As presented in chapter 3, several studies highlighted the various
reasons people are still reluctant to completely adopt EVs. Among
these are high prices, reduced ecological friendliness (due to the high
efficiency of ICEs, the high energy costs of producing batteries, and the
charging of vehicles using coal and gas power) or the requirement for
a (personal) charging station, but we also find that many people are
worried that an EV might only cover a certain share of their mobility
needs, and that they would require an ICE car to cover the rest (in
particular, long journeys). Assessing this question, we found that the
choices can indeed be better explained if we know how a person has
chosen before (i.e., people tend to use the EV for a “typical” set of trips).
However, if we do not know anything about a person before, predicting
the choices almost attributes to a random guess. This also implies that
we cannot make a general statement about whether an EV would lead
to the dreaded situations in which its range is not sufficient without
knowing more about the mobility choices of a person beforehand. This
finding is in line with previous research as presented in chapter 3:
While range anxiety is often brought up as a crucial argument when
buying an EV (cf. Noel et al. 2019), in practice most of the trips are so
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short that this does not play a role in the actual decision (Saxena et al.
2015; Franke and Krems 2013; Rauh, Franke, and Krems 2015).

Finally Behavior
Change

, we showed several approaches to extract behavior changes
resp. classify different behaviors based on tracking data. Several stud-
ies looked at behavior (changes) from the perspective of visited places
resp. using proxies such as the radius of gyration or the jump length
(González, Hidalgo, and Barabási 2008; Alessandretti et al. 2018). While
these measures allow us to assess the mobility behavior of a population
as a whole, they are less interesting from the perspective of a persuasive
application, as they can vary greatly from one week to another and are
not necessarily suitable to make statements about the sustainability of
a behavior (esp. in the case of looking at changes in visited places).
However, searching for anomalies in these descriptors is a step towards
extracting information useful for persuasive applications, and is essen-
tially the basis for the introduced methods. The method introduced
in subsection 4.4.1 looks for such deviations from the norm in a num-
ber of features and then provides the sum of found anomalies to the
developer of a persuasive application (note that these deviations can
also be detected in regular behavior as introduced in subsection 4.3.1,
where they primarily stem from changes in transport modes). The
approaches that group people either based on the autocorrelations of
their traveled distances and the related durations, or on the trends of
various features, on the other hand, provide the application creator
with a number of groups of people that should be supported differently
by the application. As is often the case when detecting anomalies, the
process of responding to the respective anomaly is thus not handled
by the approaches presented in this dissertation. However, we can
imagine cases in which this support could be automated as well: If a
behavioral anomaly is detected in one week, and a user thus switches
from a group of ICE car users to a group of bicycle users, an application
could focus on bicycle-related challenges in the coming week, in order
to support resp. solidify this choice. On the other hand, a switch in
the opposite direction could be supplemented by educational measures
such as highlighting the adverse effects of car trips on the environment.

Putting Relevance of
Results

the presented methods and results of chapter 4 into a bigger
perspective, the interviews and surveys performed within the GoEco!
project and various feedbacks received during the SBB Green Class
project demonstrated that the presented information is useful for people
(both app users as well as system creators resp. the decision-makers
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who were in charge of the SBB Green Class project), and generally
the raw position data were processed in meaningful and correct ways
(cf. chapter 6). While the extracted information was used for the
planning algorithms and communication strategies in chapter 5 and 6,
in particular the integration of the extracted behavior (changes) into
persuasive applications is yet an unsolved problem. The directions
given in this dissertation should be used as a basis for further research
on automatically adapting persuasive elements to the momentary status
of behavior change.

7.2 planning mobility

RQ3: How can we facilitate multi-modal route planning involving less com-
monly used modes of transport (such as carpooling or free-floating bicycles)?
How can we assess the quality of the (potential) fulfillment of a transport need,
taking into account personal preferences, contexts and potential sustainability
goals?

InComparison
to Previous

Work

chapter 5, we provided a set of route planning methods that can be
used to generate alternatives for previously exhibited behavior, and use
them as direct feedback to application users as well as to assess poten-
tials for change. Our methods particularly focus on personalization
and context-dependence using heuristics (e.g., defined by an expert, the
user herself, or extracted from previously tracked mobility) and proba-
bilities computed based on previous behavior, and less commonly used
modes such as carpooling. We argue that personalization will become
substantially more important in the future, as it can further decrease the
cognitive efforts required to plan routes (cf. Raubal and Panov 2009). In
addition, personalization integrates well with persuasive applications
that intend to support people in sustainable choices whenever they are
within the constraints exhibited by previous behavior.

The presented formalization of mobility offers (section 5.1) is an alter-
native to commonly used specifications such as GTFS or the Open API
for distributed journey planning (Comite Europeen de Normalisation
2017). Naturally, these standards also include a wealth of information
not necessary for our abstracted use cases (e.g., the names of stations
or railway operators), which would be required within a real-world
deployment and to reach the vision of a Digital Earth (Guo et al. 1998).
Such a complete digital representation of our planet would not only
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simplify the accessibility and increase the usefulness of transport offers
for route planning, but could also be used to automatically extract
knowledge, e.g., to determine the similarity between different trans-
port modes or route plans (cf. Janowicz and Hitzler 2012). Currently,
however, these standards usually solely encode a time-expanded graph
in textual form. While we have shown in section 5.2 that it is possible
to transform carpooling offers into the same format in order to reuse
existing planning applications, the proposed high-level transport offer
specification provides a stronger abstraction that allows integrating a
wider range of transport modes more easily, and retains the flexibility
(e.g., a bus-on-demand can drive small detours if requested by a passen-
ger) and fuzzyness (e.g., for free-floating bicycles there are no specific
return locations and they can be dropped off anywhere within an area)
inherent in many of them. Specifying transport offers according to this
specification presented in section 5.1 primarily enables us to create high-
level route plans that require later refinement (taking into consideration
actual departure times, potential delays, etc.). However, we argue that
this follows a natural way of how people plan their trips as well (Car
and Frank 1994)—first, we look at potential high-level tripleg chains
that get us to our destination, evaluate if they conform with our per-
sonal mobility preferences, and only then consider the actual transport
schedules and involved partners. In addition, the introduced transport
offer specification is able to handle area-based transport modes such as
carpooling, taxis, free floating bicycles and cars or buses-on-demand by
generating flexible transport graphs (meaning that people can transfer
between the same two transport modes at different locations).

The Integrating
PT and CP

method to combine carpooling offers with PT offers presented in
section 5.2 advances the state of the art by merging the two transport
graphs while retaining their inherent flexibility (i.e., the fact that carpool
drivers can make detours and slightly advance or delay their departures)
and fuzziness (i.e., the fact that carpooling route plans are usually only
specified in very coarse terms), resulting in a better connectivity of
both the CP as well as the PT graphs. In contrast to previous work
which focused mostly on replacing a single PT tripleg with a viable
CP alternative (Varone and Aissat 2015; Aissat and Varone 2015; Bit-
Monnot et al. 2013), the introduced approach automatically finds the
best possible CP alternative for any part of the journey. While the
restriction on a maximum of one CP tripleg (from the perspective of
the driver, i.e., the driver can only pick up a single passenger along the
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whole trip; this is introduced to avoid re-computations of the departure
times in the graph) is in line with how CP is commonly used, further
research is still required to incorporate multiple (smaller) CP segments,
especially with regards to more ad-hoc planning of shorter CP trips.
Similarly, while the chosen graph-expansion (as opposed to having
a time-dependent graph) allows utilizing existing graph algorithms
and optimizations, it commonly leads to very large graphs. This could
become problematic when integrating numerous different transport
modes, and it should be further explored how to keep the graph size
within bounds, e.g., by continuously removing obsolete CP and PT offers
and adding upcoming ones. Finally, it needs to be noted that most
benefits from short-distance carpooling only start to appear when a lot
of offers are available (as otherwise it simply will not be possible to
find anyone to carpool with). This will require integration of different
platforms and substantially lower barriers to publish carpooling offers
(e.g., applications could pro-actively suggest upcoming drives that
could be shared with someone else).

InHeuristic and
Probabilistic

Methods

line with existing research on time geography, it would be interest-
ing to see how concepts from this research field could be used to bound
the number of nodes that need to be processed as part of a routing al-
gorithm. For example, while accessibility is commonly used to quantify
the usefulness of a transportation system, a similar approach could be
used to limit the reachable locations and thus reduce the required com-
putations during a routing process (Miller and Wu 2000). This is not
only important when considering the DTAs (that correspond to potential
path spaces), but also for the high-level routing methods presented
in subsection 5.4.1 and 5.4.2. While the focus of these methods is set
on personalization (and to some degree, sustainability), the involved
computational constructs have many parallels to concepts from time
geography and navigation research (Miller 1991; Raubal, Winter, et al.
2007). For example, future research should consider using the upper
bounds given by network and space-time prisms to limit the number
of transfer locations that a person could realistically visit, and thus
potentially substantially decrease computation time.

Notwithstanding such a line of research, the proposed routing meth-
ods are largely orthogonal to previous research. Exceptions are algo-
rithms like RAPTOR (Delling, Pajor, and Werneck 2014) which similarly
follow PT lines to retrieve all stops at which transfers are potentially
available (in the case of RAPTOR, the primary reason is to use arrays
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and their specific memory layout on a hard disk to speed up computa-
tions). However, in contrast to these algorithms, the presented methods
allow incorporating a wide range of different transport modes and
enable personalization by integrating mobility metrics retrieved from
tracking data. The resulting routes are of a high-level nature, and thus
need to be refined in a second step. It is an unsolved question how to
find a good balance in the tradeoff between yielding such high-level
route plans and subsequent refinement steps (e.g., one could specify
the transfer graphs on an hourly basis, and thus lower the computa-
tional complexity and false positives returned by the high-level routing
algorithm). In addition, the preferences and constraints introduced as
part of the heuristic method in subsection 5.4.1 are manually defined in
chapter 5 (cf. appendix A). Retrieving them automatically (in a similar
manner to the preferences in subsection 5.4.2) would greatly enhance
the usefulness of the heuristic routing algorithm, as it could similarly
“learn” from tracking data and mobility histories.

The preference-based planning method of subsection 5.4.2 uses fea-
ture distributions modeled using parameter-free functions as described
in subsection 5.3.2. This allows integrating new features without know-
ing about the exact distributions, and automatically using them as
preference values for the routing algorithm. In contrast to previous
research, we thus have a very flexible way of generating personalized
routes that is also not bound to a specific transport mode (a large share
of previous work concerns the personalization of car or bicycle trips,
for example; cf. Stinson and Bhat 2005; Menghini et al. 2010; Vedel,
Jacobsen, and Skov-Petersen 2017). However, the flexibility given by
the approach (e.g., when a person is walking somewhere, essentially all
other transfer locations are reachable, albeit with a very low probability)
can quickly lead to an exhaustive number of nodes to be visited. While
choosing bounds on the probabilities can mitigate these problems, it
should be further explored how to sort the nodes according to the
likelihood of being visited. For example, a spatial index may be used
to only process nodes that exceed a minimum visit likelihood (in the
case of a quad tree (Finkel and Bentley 1974), only the immediate resp.
neighboring cells could be visited for walking transfers).

While Real-world
Deployment

all the introduced methods have been shown to work for the
presented case studies, some points deserve further attention before
a real-world deployment would be possible. First of all, we did not
consider in detail how we can ensure that the data used for route
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planning is kept up to date. In more classical route planning appli-
cations, this data only changes infrequently (e.g., the road network
only expands slowly and train schedules are known many months in
advance). Many of the introduced transport modalities exhibit a high
unpredictability: Ridesharing offers constantly change, free-floating
vehicles continuously need to update their pickup locations, etc. Due to
the focus on high-level plans (which in turn usually lead to routes with
only a few hops) we can greatly alleviate the efforts required to update
the routing graphs, and only locally recompute potential transfers from
one mode to another. Nonetheless, the resulting graphs can quickly
become highly connected, thus inducing a high computational load
that leads to the second point that needs to be considered before a
real-world deployment becomes possible: low system response times.
The case study implementations exhibited response times in the order
of seconds and were not optimized in particular, however, the extents
they spanned were comparably small. A real-world (and world-wide)
deployment would likely lead to much larger query times, as most
of the vertices are more highly connected, leading to many more (po-
tential) paths to a destination that need to be evaluated. A possible
optimization (similar to how optimized street network routing works)
is the utilization of hierarchies in the routing graph, where trips by cer-
tain modes are restricted to smaller areas (e.g., for walking, where it is
unlikely that someone walks for dozens of kilometers), in combination
with summary nodes that essentially group a large number of nodes
(e.g., in a certain geographic region) into a single one and thus can be
evaluated a lot more quickly. Conceptually, these optimizations are
compatible with the introduced methods, but further evaluations are
required to determine their potential efficiency gains and impacts on
the routing schemes.

TheRelevance of
Results

presented methods are particularly useful within the context
of supporting sustainable personal mobility, as they target intermodal
use of mobility (which is often a preferrable alternative to ICE cars
and lets people reach locations that are otherwise only reachable by
a personal vehicle). Additionally, the focus on less commonly used
modes of transport (such as CP or free-floating bicycles) will enable
routing providers to include them into their planners, and thus make it
easier to find the corresponding route options. Regarding persuasive
applications supporting sustainable mobility behaviors, especially the
personalization and context-dependence is beneficial, as it allows us
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to provide custom-tailored feedback to each individual (e.g., route
alternatives that match personal preferences) and allows assessing the
potential for change more realistically.

7.3 communicating mobility

RQ4: How should transport options and choices be communicated to users
to support sustainable mobility behavior? Do people adjust their mobility
behavior upon receiving (eco-)feedback based on their previous choices?

In Comparison
to Previous
Work

chapter 6, we presented ways to communicate the previously identi-
fied mobility histories and descriptors as well as the generated route
alternatives to users of persuasive and gamified (smartphone) apps.
Several other research studies presented prototypes for the mobility
domain (inspired by other gamified systems, e.g., online community
platforms or fitness applications) with different foci such as generally
fostering sustainable mobility, or promoting cycling or the use of PT (Bie
et al. 2012; Froehlich, Dillahunt, et al. 2009b; Carreras et al. 2012). Our
work is grounded in psychological research and thus revolves around
six core design principles, each adhering to several specific traits of
human motivation. Based on this, we make a distinction between three
main pillars: eco-feedback, which is of a more educational nature,
gamification, which uses game elements to foster playful interactions
with the app, and an assessment of the potential for change, based on
routing alternatives retrieved by algorithms as presented in chapter 5.
While (paper-based) eco-feedback is probably the easiest and most com-
monly used method to foster mobility behavior changes, the systematic
treatment of gamification elements (within the context of mobility), as
well as the foundation of them in a mobility assessment (as given by the
potential for change) are setting the work presented in this dissertation
apart from previous studies.

The Motivational
Affordances

presented taxonomy of motivational affordances for persuasive
and gamified (smartphone) applications is based on the mentioned
general design principles and adds mechanics and concrete elements
(how to implement mechanics within an application context) on top.
While other research has studied the usefulness of gamified systems in
a wide range of contexts, our taxonomy lets system designers choose
appropriate elements easily. For example, in the mobility domain,
point-based competitive systems are mostly unsuitable as mobility is
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highly individual and comparisons between different users are difficult.
Remedy can be given by grouping people into classes with similar
circumstances, but this is usually difficult to unambiguously identify
from tracking data alone. In addition, point-based systems tend to
foster behavior that maximizes the number of points, and thus could
potentially lead to people traveling actually more in order to receive
more points. However, and as the GoEco! experiment has shown,
people like competitive settings within the context of apps that support
behavior change. As such, studying how competitions can be made
fair within a mobility setting, and how people can be grouped with
others exhibiting similar potentials and circumstances should be a
focus of future research. Alternatively, gamification elements that
combine competitive and cooperative mechanics should be examined in
greater detail (and in particular within the context of persuasive apps
supporting them).

Further, among the feedback of GoEco! users it was often found that
the timeliness of feedback is crucial. If route alternatives are given
too far in advance or feedback with a too large delay, they lose their
effectiveness. Similar findings were reported by Fogg 2002, and point
into a direction of future research that studies the impact of timely noti-
fications on mobility choices (e.g., by detecting when someone leaves
the house, predicting where the person will likely go, and pro-actively
suggesting route options). Along the same line, deeper integration
with LBS would be beneficial—among the mentioned functionalities by
GoEco! participants were tools to analyze and plan mobility alternatives
or to compute economic and health impacts, but we could also imagine
a deeper integration with personal planners respecting spatio-temporal
constraints (Raubal, Miller, and Bridwell 2004). Finally, while the possi-
bility for app users to set their own goals and choose challenges was
generally appreciated (as it adheres to the need for autonomy), the
monotony of goals and challenges was criticized. Generating such
gamified elements based on previous behavior a user exhibited would
increase their attractiveness and thus ensure a long-term involvement of
people. For example, if the system often finds bicycle alternatives for a
certain person, suggesting challenges that focus on using the bicycle or
setting a goal of a minimum number of kilometers traveled by bicycle
would make them more meaningful.

RegardingGamification
in GoEco!

the implementation of elements, the approaches chosen
in GoEco! were generally liked by its users. In contrast to related
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research, we set a focus on supporting user choice resp. autonomy, and
thus presenting most information as-is. While the idea was to foster
an understanding of what different values for energy usage or CO2

emissions mean (to enable people thinking about the respective units
as they do about distance or weight measures), this proved to be not
sufficiently tangible for many people to foster change. Instead, the
approaches chosen by other persuasive apps (cf. Jylhä et al. 2013; Bie
et al. 2012; Froehlich, Dillahunt, et al. 2009b) where GHG emissions and
ecological impacts are represented using visual elements (e.g., a tree
that loses leaves or an iceberg that melts) were mentioned as preferable.
This points at the fact that for many people, energy usage and GHG

emissions are intangible units, and we argue that future research should
consider how to make people get a better understanding of these units.
For example, comparisons to household activities such as running
a washing machine, comparisons to commonly performed activities
(such as taking a domestic flight), or comparisons to known measures
(e.g., the average CO2 emissions per kilometer of an ICE car) should be
included and tested for their effectiveness in educating people about
the impacts of different choices.

The presented one-year study GoEco!, involving initially approx. 600

people, was used to evaluate the proposed gamification concepts (and
the extraction of mobility metrics and generation of route alternatives
that they are based upon). It proved to be notoriously difficult to keep
such a large sample motivated to interact with the app over the duration
of one year (note that there were three tracking periods within this
one year). In line with general numbers on app usage (cf. Guerrouj,
Azad, and Rigby 2015; Sigg et al. 2019), this is to be expected though (in
particular if the participants are not contractually bound to participate
in the study until the end and do not receive any financial incentives for
doing so). The chosen “living lab” approach led to a wealth of insights,
not only about the impacts of a persuasive app like GoEco!, but also
about the interest of various groups in the population to participate in
such a research experiment, how well the developed algorithms work
in practice, and on the differences between research and setting up such
a project as a startup company.

Regarding Sample Biasthe interest in the population, we found that those people
who participated until the end were primarily people who already
travel in ecological ways and/or are interested in the topics of sustain-
ability, energy use, and research in general. This highlights a potential
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bias towards eco-friendly people that was partially confirmed for the
partition of the sample living in the more urban region of Zurich by
comparison to the SMC. In the rural area Ticino (where also significant
changes in mobility behavior after the GoEco! intervention were found),
the average daily kilometers traveled and the average share of kilome-
ters traveled by car correspond well to the SMC, indicating that this
share of the study sample is more representative. As such, we conclude
that in more rural areas a persuasive app like GoEco! shows larger
effects than in a city like Zurich, where the self-selection bias is larger
and people already travel in more sustainable ways. The responses of
people given to the questions about their pro-environmental attitudes
(Table 6.5) further confirm potential biases in the study sample, and
point out research directions resp. strategies to involve people who are
not already strongly intrinsically motivated. For example, providing
more extrinsic rewards and directly recruiting participants who are
known to travel often by car (e.g., via car ownership lists) could be
strategies to attract a more diverse user base. External incentives like
financial payments can then still be reduced after an initial onboarding
period to examine the longer-term effects resp. potentially generated
intrinsic motivation (that makes people keep using the app). Regarding
solely the analysis of potential outcomes, it is also possible to alleviate
the impacts of a biased sample by rebalancing it according to a known
distribution, e.g., the demographics of a country (which are usually
known from the census) (Stephan 1942). This approach was, for exam-
ple, used to compare the SBB Green Class data with data from the Swiss
Mobility Census (SMC) (Martin, Becker, et al. 2019).

LookingMethod
Assessment

at the evaluation of the various algorithms used within
GoEco!, the tables in subsection 6.4.5 highlight that the provided el-
ements were generally seen as valid and useful. However, and as
discussed before, even though this was the case, the timeliness of feed-
back was often not given, and thus at the time of making a travel
choice, support or incentives were missing. This primarily points to the
direction of providing more real-time support, and thus also processing
data in real-time, in particular with respect to recognizing situations
in which a person will likely need to make a mobility choice and
pro-actively nudging him or her into a sustainable direction. Such a
provision of real-time support would require predicting movements
and mobility choices of people, finding potential transport options,
and communicating them in an unobtrusive (and potentially gamified)
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way to the user immediately. For example, in the case of determining
when CP would be a viable option to travel somewhere, this would
involve matching a driver with a rider without any specific interactions
with them. For both the driver as well as the potential passenger, a
prediction of the traveled path would have to be made, they would have
to be analyzed with regards to their similarity (i.e., the potential for the
driver to pick up the passenger and drop him or her off at the predicted
destination), and a negotiation process would have to be started (where
they both see the CP option and potentially financial and ecological
costs and gains). As such a system would benefit from many people
participating, Big Data (and mainly streaming) technologies should be
considered to handle the real-time processing of large amounts of data
(cf. Hitzler and Janowicz 2013; Tschümperlin, Bucher, and Schito 2018;
Galić, Mešković, and Osmanović 2017).

GoEco! has also highlighted the differences between creating a persua-
sive app as a research project or within a company. The original goal of
keeping 800 participants over the duration of a year was not achieved,
which was partially due to the aforementioned “usual” drop outs when
launching a new app (Sigg et al. 2019), but also due to technical issues,
the requirements given by a research project (e.g., different study pe-
riods, required validations to keep data quality high, or the control
group that did not get the full app but only a tracking version), and a
strong focus on assessing if a persuasive app can have an impact on the
mobility behavior of people. The last point also prevented continuous
adaption of the app or starting with a smaller set of functions and
gradually adding more (which is commonly done when developing
a commercial application). As such, in order to keep an experiment
with 800 people running over a whole year (where people are expected
to interact with a system on a daily basis) would likely require large
financial incentives or the flexibility to deviate from the original plan
and exclude research activities.

Comparing GoEco! to other studies evaluating persuasive apps still
points out its uniqueness, though. Most studies in the domain ei-
ther consider only a small sample or let the experiments run only for
a few weeks (cf. Cellina, Bucher, Mangili, et al. 2019). In addition,
many of these projects either evaluate the outcomes solely qualitatively
(Froehlich, Dillahunt, et al. 2009b) or not in relation to sustainability
(Jylhä et al. 2013), or use other means to collect data and give feedback
to people (such as web-based surveys and feedbacks). In that respect,
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the results of GoEco! are unique and show that persuasive applications
that make use of automatically and passively tracked mobility data can
work in settings where people naturally have room for improvement
(with regards to sustainable mobility).

AsRelevance of
Results

the evaluation of the GoEco! project has shown, the deployment of
a persuasive application to influence mobility behavior can lead to GHG

emission savings in the order of 10-30% (cf. Table 6.1, 6.2, 6.3, as well as
Cellina, Bucher, Mangili, et al. 2019). While this cannot make mobility
completely sustainable in itself, the result is in agreement with the often
used argument that reaching sustainability requires a large number
of smaller changes. This is because it is not possible to immediately
switch to completely sustainable technology, yet changes should happen
fast in order to keep up with the sustainable development goals set
by the United Nations (cf. UN Department of Economic and Social
Affairs 2020). Many of these changes involve gradual switches to
different technologies, e.g., by subsidizing photovoltaic installations
which could contribute to mobility provided by EVs if they are charged
at the workplace during the day (Buffat, Bucher, and Raubal 2018).
Other changes are strongly related to behavior, such as switching to
electric bicycles for commuter mobility (Bucher, Buffat, et al. 2019). This
would likely also entail the provision of the respective infrastructure,
i.e., “bicycle highways” leading from suburbs to the city center. Such
changes could not only be supported by the respective subsidies, but
also by laws, and last but not least by persuasive apps as presented
within this dissertation.

7.4 a systemic view

RQ1: What are the principal information processes and structures involved
in supporting sustainable personal mobility and Mobility as a Service (MAAS)?

LookingComparison
to Previous

Work

at the proposed framework in its entirety, we can see par-
allels to the systems used in other persuasive studies such as Ubi-
Green (Froehlich, Dillahunt, et al. 2009b), tripzoom (Bie et al. 2012),
or SUPERHUB (Carreras et al. 2012). Next to providing a framework
encompassing the steps required to process tracking data to generate
information useful for persuasive applications, in contrast to these, we
put a stronger emphasis on the importance of founding the applied
measures in psychological theories, and (related to that) strive for per-
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sonalized and meaningful elements within the applications. While the
results were generally approved by the study participants of GoEco!, the
mentioned aspects of supporting closer to “real-time” (i.e., at the actual
point of time at which a mobility decision is made) and even in more
personalized ways deserve further discussion. The first could benefit
from a mobility prediction component that was not included in the pre-
sented framework. Such a component could allow estimating when and
with which transport mode an upcoming trip will be performed, and
thus notifying the person about potential alternatives shortly before. A
wide range of research is concerned with such next place resp. trajectory
prediction (Bucher 2017), and the corresponding methods often rely on
similar assessments of personal preferences and previous choices to
determine likely future choices. The second point of more closely align-
ing motivational elements with previously exhibited behavior could be
achieved by mapping the detected behaviors to the individual stages
of behavior change, and generating challenges and goals more closely
in alignment with the identified potentials for change. For example, if
we detect that someone could often take the bicycle to reach his or her
activity locations, the corresponding challenges should be created, and
in particular for those routes for which the bicycle was found to be a
viable alternative.

Persuasive (Non-
technological)
Ways of
Reaching
Sustainable
Mobility

applications are not the only way to make mobility more
environmentally sustainable. We can differentiate between four ways
to change the mobility demands of people:

• Soft Incentives (as exemplified by the persuasive applications
discussed within this dissertation). Targeting the choices that are
made before a certain trip is performed, soft measures aim at
convincing or nudging people into adopting certain behaviors.
They are grounded in the theories of motivation presented in this
dissertation and mainly use knowledge about attitudes, previous
behaviors, context and circumstances to persuade people to adopt
sustainable behaviors. Taking the example of GoEco!, we can see
that for systematic trips (e.g., commutes) reductions of approx.
30% (cf. Table 6.3 and Cellina, Bucher, Mangili, et al. 2019) are
possible using such measures (corresponding to roughly 10% of
the total environmental impact of mobility).

• Emerging Business Models. Ultimately caused by the increas-
ing pressure to make mobility more sustainable, novel business
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models such as micro-mobility, Mobility as a Service (MAAS) or
various sharing schemes change the ways in which we use mobil-
ity, and thus the demands for different transport modes. Taking
the example of the MAAS offer SBB Green Class, we can see that
such business models can lead to a reduction in GHG emissions.
In this case, the offer including unlimited access to PT, various
sharing schemes and the provision of a compact-class EV led to
an overall reduction of GHG emissions by approx. 30% (Martin,
Becker, et al. 2019).

• Policy Measures. Laws and subsidies are steering mechanisms
that work well in practice but require agreement by citizens and
thus a long time to be implemented. Often these “hard” incentives
are supported by educational measures and other soft incentives
to create acceptance within a population. In this context, mobility
is often embedded in a larger system of energy producers and
consumers, and thus laws and subsidies may be put in place that
support mobility in indirect ways. For example, a recent study by
Buffat, Bucher, and Raubal 2018 found that a wide deployment of
photovoltaic cells on people’s homes (e.g., fostered by subsidies)
can lead to a reduction of GHG emissions in the order of 26% of
the total commuter mobility GHG emissions (corresponding to
approx. 5% of the total mobility GHG emissions).

• The (Built) Environment. Finally, changes to the built environ-
ment can shift mobility demands, for example, due to adjustments
in availability of alternative transport modes, but also due to the
perceived effects of a route on health, safety or comfort (Pritchard,
Bucher, and Frøyen 2019). A promising example is the construc-
tion of “bicycle highways” which facilitate access from suburbs
to city centers. A study by Bucher, Buffat, et al. 2019 found that
roughly 44% of the commuter GHG emissions could be saved if
people would switch to electric bicycles for their commutes (corre-
sponding to approx. 8% of the total GHG emissions by mobility).

The four discussed measures are of increasing difficulty (and thus time
requirements) for implementation. For example, while deploying an
application like GoEco! can be done comparably quickly, changing the
built environment (and building new transport infrastructure) usually
takes time in the order of decades. Naturally, all these measures run in
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parallel to technical advances that continuously improve the efficiency
of our transport systems. However, it is often argued that especially in
the short term, soft incentives, new business models, and policies are
required to keep the impact of mobility on our environment bounded.





8
C O N C L U S I O N

In this chapter, we summarize our work, state our contributions and
give an outlook on potential future research avenues as identified as
part of the presented dissertation.

8.1 summary

This dissertation presents a framework for ICT supporting sustainable
personal mobility via persuasive applications. Starting from automat-
ically and passively recorded location data, we develop methods to
extract mobility histories, related preferences and behaviors (resp. the
changes thereof). Building upon these structures, an assessment of
potentially improved behaviors can be made, and suggestions on how
to use a wide range of transport modes (intermodally) to decrease one’s
personal environmental impacts can be evaluated. Finally, we elaborate
on the different forms of interaction between a (gamified) persuasive
application and its user with the aim of nudging the person into the
direction of more sustainable mobility choices. The effects and the ap-
plicability of the methods presented are examined using two large-scale
mobility studies: GoEco!, which in essence incorporates the methods
developed within this dissertation, and SBB Green Class that studies the
impact of a MAAS offer on people’s mobility, with a particular focus on
the changed environmental impacts.

In ICT

Supporting
Sustainable
Personal
Mobility

chapter 2, we provide a general introduction to the topics of
sustainable mobility and how persuasive applications have to respect
individual contexts and circumstances in order to create meaningful
support of different mobility behaviors. We exemplify this by showing
that different groups of people commonly use mobility in different
ways, depending on their access to both mobility itself but also to other
infrastructure (e.g., for leisure activities or work). Even though it is im-
possible to exactly determine the circumstances and influencing factors
for all trips based on tracking data alone, using such spatio-temporal
context can help an application (or its developer) to favor one persua-
sive strategy over another. Looking at sustainability in particular, it
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additionally becomes crucial to define what should be considered as an
acceptable environmental impact for a given activity. We distinguish
between the two extremes of strong and weak sustainability, where ei-
ther all trips producing GHG should be avoided, or only those whose
(economic or social/personal) gains fall behind the “environmental
cost”. Along the same lines, we should differentiate between trips for
which a reasonable alternative would be available, and those for which
the chosen route was the only option. Considering this, integrated
mobility and MAAS gain in importance, as they can let people use
mobility in ways more closely tailored to their actual needs (e.g., con-
stantly having commoditized access to both a car and the PT network
lets people choose for each trip individually which option suits them
best). We conclude the chapter by giving a high-level perspective on
the information processes involved in supporting sustainable mobility
using persuasive applications that sets the frame for answering the
first research question. The later chapters fill in the presented building
blocks in order to present a comprehensive framework for persuasive
applications supporting sustainable mobility.

InBackground chapter 3, we start by providing an extensive review on the underly-
ing psychological theories that drive human behavior. For a persuasive
application to meaningfully support a person in his or her choices, it
is important to know in which state of behavior change the person is,
and how we commonly progress in order to achieve a new behavior.
For example, people who are unaware of the consequences of a certain
behavior are best supported by educative measures and comparing their
behavior to other people in similar circumstances. During later stages,
e.g., when trying out a new behavior, persuasive applications should
decrease the efforts required to continuously exhibit the behavior. This
can be done by pro-actively suggesting route alternatives or offering
simple mechanisms to plan and evaluate various route options. Even
later stages require motivational elements that keep a user engaged
with a certain behavior (such as gamification elements) until a (new)
habit is formed. In this chapter, we also provide background on the
three main information processes involved in supporting sustainable
behaviors via persuasive applications: the processing and analysis of
movement and mobility data, planning personalized (and thus mean-
ingful) alternatives, and creating feedback out of the previous two
processes that helps people choosing sustainable mobility options. The
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subsequent chapters build upon this background and contribute to
filling the identified research gaps.

In Mobility
Analysis

chapter 4, we elaborate on the most crucial information when
trying to assess the sustainability of trips and create information that
is useful in supporting people in environmentally friendly behaviors.
Next to basic mobility descriptors, this includes the inference of used
transport modes, assessments of the environmental impacts in compari-
son to the financial or social/personal gains, as well as the extraction
of regularly exhibited patterns and mobility choice preferences. The
latter are exemplified by a choice model quantifying the predictability
of choices between ICE cars and EVs. This choice is becoming more
prevalent with the increasing availability of EVs and their dropping
prices, but the continuing reluctance for their adoption due to range
anxiety resp. fears that they cannot face one’s personal mobility needs.
Our findings include that even though the choices of each individual
exhibit predictability, this cannot be generalized to a population (given
demographic properties of the persons and descriptive features of each
trip), and the choices appear random instead. This suggests that in
the overall perspective, practically all trips can be covered by an EV,
and issues like the range anxiety do not play a role once an EV is avail-
able. Finally, we propose several methods to extract groups of people
exhibiting similar behaviors as well as changes in behavior, both of
which can be used by persuasive applications to tailor the employed
supportive mechanisms. These identified components and traits of
automatically recorded movement data are of high importance when
supporting behavioral transitions towards sustainable mobility.

In Mobility
Planning

chapter 5, we provide a generalized abstraction to define point-
and area-based transport offers, thus covering a large number of cur-
rently available transport modes for their integration into high-level
route planners. The benefits of such high-level planners is facilitated
personalization by simple adjustments of the planning graphs or restric-
tions on the rules evaluated during computation. This is exemplified by
two route computation methods: One uses heuristic rules (that can be
chosen based on an expert’s assessment or by analyzing the past choices
of a person) to limit the available options and generated route plans,
while the other computes routes based on probabilities computed from
previous choices as recorded by a tracking application. Both can be
used to directly compute meaningful route options for a given person
(by corresponding to previously exhibited behavior), but also to com-
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pute sustainable alternatives (e.g., by providing more stringent rules
on the allowed GHG emissions or by using the preferences of people in
similar situations who exhibit generally lower GHG emissions due to
their mobility choices). To elaborate on the benefits of inter-modality
resp. integrated mobility, we introduce a method that allows combining
carpooling offers with PT, thus improving both networks in terms of
connectivity. The presented methods focus on personalization and the
integration of less commonly used transport modes in an inter-modal
way, thus paving the way for more comprehensive and meaningful
estimations of potential route alternatives.

InCommunicat-
ing Mobility

chapter 6 we present a taxonomy of motivational affordances for
persuasive and gamified technologies that was used to choose the ele-
ments implemented within the GoEco! app. Due to the differences given
by the individual contexts and circumstances, persuasive applications
for supporting sustainable mobility cannot rely on motivational resp.
gamified elements in the same way as applications in other fields do.
For example, point-based systems usually assume “equal chances” for
everyone, and are thus difficult to employ in the mobility field without
discouraging certain groups of people. The employed gamified motiva-
tional elements as well as the more plain “eco-feedback” are evaluated
within the GoEco! project and are found to be helpful in supporting
behavior change. GoEco! highlighted that behavior change using such
an application is possible, albeit we only found significant changes in
more rural areas (where people naturally have to rely more on cars
and show less “pro-environmental” attitudes). Among the important
features were the provision of timely assistance, personalized and non-
generic motivational elements, as well as eco-feedback giving users the
chance to learn something about their own behavior. This chapter thus
answers how transport options and choices should be communicated to
users to support sustainable mobility behaviors, and that people indeed
exhibit changes in their behavior after interacting with a persuasive
application.

8.2 contributions

Foremost, we presented a framework for supporting sustainable mobil-
ity through persuasive ICT that encompasses all processes required to
generate meaningful eco-feedback (and related behavioral support in
the form of mobility alternatives and gamified elements) from passively
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recorded mobility data. Within this framework, we highlighted three
areas and presented novel processing methods, approaches to generate
route plans, as well as ways to communicate the generated information
persuasively to users:

• In the area of mobility analysis and processing, we presented a tra-
jectory algebra to standardize the addition of context to mobility
data and a related range of mobility descriptors useful for eco-
feedback. Based on this context and descriptions of mobility, we
presented a Bayesian model to infer transport modes that utilizes
spatio-temporal data and is able to continuously improve indi-
vidual predictions for all users. To exemplify the importance of
mobility choices and to provide insights on the important choice
between ICE cars and EVs, we presented a mode choice model
and discussed the impacts of applying the model to the data
recorded by the SBB Green Class study. Finally, we presented
several methods to detect mobility behavior change and discussed
their integration in and importance for persuasive applications.

• In the area of planning integrated and sustainable mobility, we intro-
duced a generalized description of mobility offers (that can be
used for point- and area-based modes of transport), and three
methods to compute route alternatives. The first one emphasized
on carpooling as a potential way to increase the occupancy rate
of cars and provided an integration with PT networks. The re-
sults showed both an increased connectivity for the CP and the PT

networks, highlighting the potential benefits of a combination of
the two. The other approaches focused on the utilization of per-
sonal preferences and constraints to generate high-level mobility
plans. Such plans can be used to assess potential alternatives (and
their sustainability), as feedback for people and (in combination
with lower-level routes) to generate route plans involving a large
number of (previously unavailable) transport modes.

• In the area of communicating mobility (eco-)feedback, we presented a
taxonomy of motivational affordances for persuasive applications
and the synopsis of recorded mobility data within eco-feedback
reports. The dissemination of the large-scale study GoEco! showed
the applicability of the persuasive approaches (and related meth-
ods and algorithms) presented in this dissertation. We found
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that in particular in (rural) areas where people naturally rely
more on their personal cars, applications like GoEco! can show
significant effects in the mobility behavior of people. Among the
primary features of interest are real-time notifications (to support
sustainable behaviors immediately when the choice needs to be
made), the provision of alternative routes, as well as the inclusion
of non-generic gamification elements to support motivation.

Embedded within the larger framework, the presented methods and
approaches provide a way to process mobility data with the aim of
supporting sustainable mobility using persuasive applications and ICT.

8.3 towards optimal support of sustainable personal mo-
bility

As can be seen from Figure 2.9, from a holistic perspective two large
parts on optimal support of sustainable personal mobility are missing.
First, the provision of alternatives requires knowing about potential
transport offers that could satisfy the needs of a person. While we
gave concrete examples for cases in which these offers are known
(e.g., carpooling where we crawled the offers from a large European
carpooling provider, or shared bicycle/car systems which were similarly
crawled), to make such alternative-finding globally available requires
methods to specify and process transport offers in a well-defined and
flexible way (that allows incorporating a wide range of transport modes).
The generalized transport offer specification presented in chapter 5 is
a first step into this direction, which could be combined by using
Linked Data technology (in contrast to a rigid format like GTFS), as
this would allow embedding transport modes within a larger context
and the automatic determination of similarities in offers (e.g., a person
interested in carpooling could indicate that she needs space for luggage,
and we could use information about the individual cars on offer to
determine how well they would fit her need; cf. Hitzler and Janowicz
2013; Janowicz and Raubal 2007). An example of such a specification
can be found in Bucher, Scheider, and Raubal 2017; in this case, it is
used not only to specify the offers themselves, but also to automatically
align peoples’ transport needs in terms of luggage requirements and
available space in cars.
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Related to the automatic publication of transport offers is the inte-
gration into routing systems (and potentially systems to determine
similarities between offers) which optimally would be supported by a
publisher-subscriber system that continuously ingests updates of exist-
ing offers and newly available ones and passes them along to routing
applications. For example, a carpooling platform that would like to see
its offers integrated into a general purpose routing system like Google
Maps could publish new offers using said system, upon which Google
Maps would continuously integrate resp. update the transport offers.
This in turn either requires the computation of high-level route plans
as discussed in chapter 5 or continuous updates to the routing graphs
(which must be sufficiently flexible to integrate personalization resp.
mode selection). Additionally, and in particular with respect to person-
alizing route options, such a holistic routing system should integrate
context data, e.g., from weather or as given by the traffic status.

The second larger part that was not discussed within this dissertation
is the topic of negotiation. This is primarily related to shared transport
modes such as CP, taxis, or (private) rental cars and describes all the
processes involved in determining the sufficiency of the vehicle’s prop-
erties to fulfill the transport needs, the trustworthiness of the service
(resp. driver and vehicle), and the related prices. In an optimal scenario,
a person with a mobility need would get transparent access to these
properties and could book transport from within one application and
without the need to exchange clarifying messages or financial details.
Current pilot MAAS offers aim into this direction, but focus mostly on
pricing and payments and thus primarily on modes of transport where
this is highly standardized (e.g., carpooling is usually not available as a
transport option).

8.4 future work

Next to the major components explained in the previous section, this
dissertation highlighted several other directions for future research.
First, in particular the automatic integration of extracted behavior
(changes) into persuasive applications is a largely untreated field of
research. While we presented potential approaches to extract behavior,
and while there exists work on mobility packages (that quantify the use
of transport modes in characteristic ways, e.g., taking the car for longer
trips and the bicycle for shorter ones), both the automated extraction as
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well as the utilization of this information within persuasive applications
should be further investigated. For example, it is an open question
if and how transitions from one stage of the TTM to the next can be
extracted from tracking data, and how an application could make use
of this. We have given some examples (such as focusing on educative
measures if no behavior changes are detected and the exhibited behavior
is not in line with the desired one), and gradually increase feedback
and motivational elements with increasing detection of behavioral
anomalies.

Second, in this dissertation we introduced and discussed a potential
way to generate personalized high-level mobility options. As presented
here, these options are decoupled from temporal considerations and
thus require a low-level routing system to validate the proposed options.
To further increase the real-world applicability of such a system, it
should incorporate more detailed information about transport offers
and make use of the given restrictions to reduce the set of available
options and thus the required processing power. With regards to
carpooling, many societal and psychological factors stand in the way of
a ubiquitous adoption. While we do not argue how to best overcome
those, we think that by lowering the cognitive efforts required in finding
a partner could greatly increase its usefulness. Especially short-distance
and ad-hoc ridesharing requires the prediction of mobility, the finding
of people traveling similar routes, and the proactive suggestion of these
potential carpooling trips to users.

Finally, GoEco! has shown the positive effects of a persuasive applica-
tion built from components as introduced in this dissertation. However,
and as the dissemination surveys and interviews have shown, a bigger
focus on real-time support, personalized motivational elements and the
exploration of social elements for motivation remain largely unexplored.
Follow-up studies to GoEco! could try to answer the questions if it is
possible to determine the exact point in time at which a route choice is
made, and if persuasive applications could support people in certain
decisions by providing timely information and sustainable mobility
options. Exploring persuasive applications within smaller communities
such as families, companies or housing blocks could open up new
avenues as it would allow not only to let people compete in familiar
(and often similar) settings, but also to share modes of transport and
optimize the performed trips and activities.
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a.1 computation of urbanization class

In the following, we describe the procedure to classify locations into
one of three classes city, suburb and rural (as used within chapter 2). We
use two datasets for this purpose:

• The division of a country into municipalities. For each of these,
the number of citizens living in the municipality, the population
density as well as its extent must be known.

• A classification of public transport accessibility. For the experi-
ments in this dissertation, we relied on the classification by the
Swiss federal office for statistics ARE (Bundesamt für Raumen-
twicklung ARE 2011), which assigns every location a class A-E,
depending on its distance to PT stops and the frequency of avail-
able PT offers at the respective stops (within this classification, A
denotes best connected, and E worst).

To determine locations that should be considered as city, we only
consider the municipalities that either have a minimum number of
citizens living within its boundaries, or that exceed a certain population
density threshold. In the case of Switzerland, we used a minimum
of 40’000 citizens or a minimum density of 20 people per hectare to
consider a municipality “city-like”. The combination of these two
criteria is required due to the fact that municipalities in Switzerland
have irregular extents (as such there are small municipalities bordering
city municipalities that still have very large population densities yet a
small number of citizens). The resulting municipality boundaries are
then intersected with all the locations classified into classes A or B (by
the ARE classification), resulting in a set of locations that lie within a
highly populated area and are well-accessible by PT. We classify these
locations as city.

Similarly, we determine suburban regions as having a minimum of
15’000 citizens or a minimum density of 5 people per hectare, and

269



270 appendix

being classified by the ARE classification as either A, B or C. From
the resulting polygon describing people in suburban areas, all regions
classified as city are subtracted. Finally, all remaining regions (that
lie neither within city nor within rural boundaries) are classified as
rural. The approach was evaluated using data from Switzerland and
was necessary as the PT transport classifications alone are not sufficient,
as they still classify many locations in rural areas as the highest PT

accessibility class A). Figure A.1 shows an example of the resulting
classification from the city of Zurich.

City

Suburb

Rural (everything else)

Location Classifications

Figure A.1.: Exemplary location classifications around the city of Zurich.
Map data © OpenStreetMap.

The NHTS already classifies all locations into one of five classes:
urban, city, suburb, town and rural. As the exact locations are not given
by the NHTS (thus an approach like the one presented before is not
possible), these classes were directly used, whereas urban and city were
interpreted as city, suburb as suburb, and town and rural as rural (in
chapter 2).

a.2 ruleset for route computation heuristic

Table A.1 and Table A.2 show an exemplary ruleset of the high-level
route planning heuristic (cf. chapter 5) as used within the GoEco! project
and the case studies presented in chapter 5. Note that the tables do
not show context variables that are automatically updated, such as the
distances traveled with the respective mode or the number of transfers
taken.
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The ruleset also contains some factors that are in line with how
people usually use different modes of transport and allow reducing
the solution space greatly. For example, it can be assumed that people
would not take the car to drive close to their destination, only to switch
to a shared bicycle for the last few kilometers. To prevent these cases,
we constrain the expand function in such a way that it only creates
transfer locations for car journeys that are maximally half the total
distance between origin and destination long. This does not prevent
the heuristic from finding journeys such as walk→ car→ walk (where
the car tripleg basically covers the whole distance), as these routes can
still be found in the checkReachability function.
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Mode Rule Description

WALK dw = user[distWalked] + dist(A, B)
A[∅]→WALK[(dw <

user[maxDist]) ∧ (¬context[rainyWeather] ∨ (dw <

user[maxDistRain])) ∧ (context[currentTime] ∈
user[acceptableTimeIntvlWalk])]→ B[∅] :
user[distWalked+ = dist(A, B)], context[time+ =

time(A, B)]

Every node provides walking, however, a
user can only walk up to a maximal distance
(which gets decreased if it is raining), and if
the current time is within an accepted time
interval for walking. As a result of walking,
the total walked distance is updated as well
as the context.

BIKE A[user[bikeLocation] = A]→
BIKE[(¬context[rainyWeather]) ∧
(context[currentTime] ∈
user[acceptableTimeIntvlWalk])]→ B[bikeParking =

true] :
user[bikeLocation] = B, user[distBiked]+ =

dist(A, B), context[time+ = time(A, B)]

A user can only take the bike, if her bike
currently is at the location. Further, the des-
tination needs to have a bike parking spot
available. Concerning contextual variables
similar to walking.

CAR A[user[carLocation] = A]→ CAR[ø]→
B[#parkingSpots > 0] :
user[carLocation] = B, context[time+ = time(A, B)]

Taking the car is only possible from the loca-
tion where the user currently has parked her
car to locations with a parking spot avail-
able. As a result, the car is at location B.

BUS A[connectsLineX = true]→ BUS[∅]→
B[connectsLineX = true] :
[ø], context[time+ = time(A, B)]

Taking a bus is only possible between loca-
tions that are served by the same line.

Table A.1.: A selection of rules implemented in the presented prototype system. Table from (Bucher, Jonietz, and
Raubal 2017).
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Mode Rule Description

TRAIN A[connectsLineX = true]→ TRAIN[∅]→
B[connectsLineX = true] :
[∅], context[time+ = time(A, B)]

Similar to BUS.

TRAM A[connectsLineX = true]→ TRAM[∅]→
B[connectsLineX = true] :
[∅], context[time+ = time(A, B)]

Similar to BUS.

CARSHARE A[carSharing = true, #cars > 0]→ CARSHARE[∅]→
B[#parkingSpots > 0] :
A[#cars− = 1], context[time+ = time(A, B)]

Carsharing is possible from carshar-
ing locations, where enough cars are
available. The destination needs to
have free parking spots.

CARPOOL A[intersects(A, C) = true]→ CARPOOL[∅]→
A[intersects(B, D) = true] :
[ø]

Carpooling is possible from locations
that intersect with a spatio-temporal
corridor of a carpooler.

BIKESHARE A[bikeSharing = true, #bikes > 0]→
BIKESHARE[context[weather]! = “rain′′]→
B[bikeParking = true] :
A[#bikes− = 1], user[distBiked]+ =

dist(A, B), context[time+ = time(A, B)]

Bikesharing is possible from bikeshar-
ing locations, where enough bikes are
available.

Table A.2.: A selection of rules implemented in the presented prototype system (cont.). Table from (Bucher, Jonietz,
and Raubal 2017).





B I B L I O G R A P H Y

Abowd, Gregory D., Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles (1999). ”Towards a Better Understanding
of Context and Context-Awareness.“ In: Handheld and Ubiquitous
Computing. Ed. by Hans-W. Gellersen. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, pp. 304–307 (cit. on p. 45).

Acker, Veronique Van, Bert Van Wee, and Frank Witlox (Mar. 2010).

”When Transport Geography Meets Social Psychology: Toward a
Conceptual Model of Travel Behaviour.“ In: Transport Reviews 30.2,
pp. 219–240 (cit. on p. 50).

Agatz, Niels, Alan Erera, Martin Savelsbergh, and Xing Wang (Dec.
2012). ”Optimization for dynamic ride-sharing: A review.“ In: Euro-
pean Journal of Operational Research 223.2, pp. 295–303 (cit. on pp. 59,
81, 82).

Aissat, Kamel and Sacha Varone (2015). ”Carpooling as Complement to
Multi-modal Transportation.“ In: Enterprise Information Systems. Ed.
by Slimane Hammoudi, Leszek Maciaszek, Ernest Teniente, Olivier
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Bucher, Dominik, René Buffat, Andreas Froemelt, and Martin Raubal
(2019). ”Energy and greenhouse gas emission reduction potentials
resulting from different commuter electric bicycle adoption scenarios
in Switzerland.“ In: Renewable and Sustainable Energy Reviews 114,
p. 109298 (cit. on pp. 54, 130, 256, 258, 339).

Bucher, Dominik, Francesca Cellina, Francesca Mangili, Martin Raubal,
Roman Rudel, Andrea E Rizzoli, and Omar Elabed (2016). ”Exploit-
ing Fitness Apps for Sustainable Mobility-Challenges Deploying the
GoEco! App.“ In: Proceedings of the 4th International Conference on ICT



282 bibliography

for Sustainability (ICT4S). Atlantis Press, pp. 89–98 (cit. on pp. v, 11,
95, 199, 220, 240).

Bucher, Dominik, David Jonietz, and Martin Raubal (2017). ”A Heuris-
tic for Multi-modal Route Planning.“ In: Progress in Location-Based
Services 2016, pp. 211–229 (cit. on pp. vi, 155, 272, 273).

Bucher, Dominik, Francesca Mangili, Claudio Bonesana, David Jonietz,
Francesca Cellina, and Martin Raubal (2018). ”Demo Abstract: Ex-
tracting eco-feedback information from automatic activity tracking to
promote energy-efficient individual mobility behavior.“ In: Computer
Science-Research and Development 33.1-2, pp. 267–268 (cit. on p. vii).

Bucher, Dominik, Francesca Mangili, Francesca Cellina, Claudio Bone-
sana, David Jonietz, and Martin Raubal (2019). ”From location track-
ing to personalized eco-feedback: A framework for geographic infor-
mation collection, processing and visualization to promote sustain-
able mobility behaviors.“ In: Travel behaviour and society 14, pp. 43–56

(cit. on pp. viii, 11, 20, 95, 117, 155, 199).
Bucher, Dominik, Henry Martin, David Jonietz, Martin Raubal, and
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C. González (Apr. 2013). ”Spatiotemporal Patterns of Urban Human
Mobility.“ In: Journal of Statistical Physics 151.1, pp. 304–318 (cit. on
p. 69).

Haumann, Simon Tobias, Dominik Bucher, and David Jonietz (2017).

”Energy-based Routing and Cruising Range Estimation for Electric
Bicycles.“ In: Societal Geo-Innovation: Short Papers, Posters and Poster
Abstracts of the 20th AGILE Conference on Geographic Information Science.
Wageningen University & Research 9-12 May 2017, Wageningen, the
Netherlands. Association of Geographic Information Laboratories for
Europe (AGILE), p. 145 (cit. on pp. 338, 341).

He, Helen Ai, Saul Greenberg, and Elaine M. Huang (Apr. 2010). ”One
size does not fit all: applying the transtheoretical model to energy
feedback technology design.“ In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’10. Atlanta, Georgia,
USA: Association for Computing Machinery, pp. 927–936 (cit. on
pp. 45, 48, 89).

He, Wen, Kai Hwang, and Deyi Li (Oct. 2014). ”Intelligent Carpool
Routing for Urban Ridesharing by Mining GPS Trajectories.“ In: IEEE
Transactions on Intelligent Transportation Systems 15.5, pp. 2286–2296

(cit. on p. 70).
He, Wen, Deyi Li, Tianlei Zhang, Lifeng An, Mu Guo, and Guisheng

Chen (2012). ”Mining regular routes from GPS data for ridesharing
recommendations.“ In: Proceedings of the ACM SIGKDD International
Workshop on Urban Computing - UrbComp ’12. Beijing, China: ACM
Press, p. 79 (cit. on p. 74).

Heinen, Eva, Kees Maat, and Bert van Wee (Jan. 2013). ”The effect
of work-related factors on the bicycle commute mode choice in the
Netherlands.“ In: Transportation 40.1, pp. 23–43 (cit. on p. 53).

Heinen, Eva, Kees Maat, and Bert van Wee (Mar. 2011). ”The role of
attitudes toward characteristics of bicycle commuting on the choice
to cycle to work over various distances.“ In: Transportation Research
Part D: Transport and Environment 16.2, pp. 102–109 (cit. on p. 53).

Hensher, David A. and John M. Rose (June 2007). ”Development of com-
muter and non-commuter mode choice models for the assessment of



bibliography 297

new public transport infrastructure projects: A case study.“ In: Trans-
portation Research Part A: Policy and Practice. Bridging Research and
Practice: A Synthesis of Best Practices in Travel Demand Modeling
41.5, pp. 428–443 (cit. on p. 54).

Hietanen, Sampo (2014). ”’Mobility as a Service’ - the new transport
model?“ In: Eurotransport 12.2, p. 3 (cit. on pp. 29, 30).

High-Level Commission on Carbon Price (May 2017). Report of the
High-Level Commission on Carbon Prices. Tech. rep. International Bank
for Reconstruction, Development, and International Development
Association / The World Bank (cit. on p. 24).

Hitzler, Pascal and Krzysztof Janowicz (2013). ”Linked Data, Big Data,
and the 4th Paradigm.“ In: Semantic Web 4.3, pp. 233–235 (cit. on
pp. 255, 266).

Ho, Tin Kam (Aug. 1995). ”Random decision forests.“ In: Proceedings
of 3rd International Conference on Document Analysis and Recognition.
Vol. 1, 278–282 vol.1 (cit. on p. 121).

Holden, Mr Erling (Nov. 2012). Achieving Sustainable Mobility: Everyday
and Leisure-time Travel in the EU. Ashgate Publishing, Ltd. (cit. on
p. 242).

Holmberg, Per-Erik, Magda Collado, Steven Sarasini, and Mats Willian-
der (2016). Mobility as a Service - MaaS : Describing the framework.
Technical Report. Viktoria Swedish ICT AB, p. 54 (cit. on p. 30).

Horn, Mark E. T. (Feb. 2004). ”Procedures for planning multi-leg jour-
neys with fixed-route and demand-responsive passenger transport
services.“ In: Transportation Research Part C: Emerging Technologies 12.1,
pp. 33–55 (cit. on p. 85).

Huang, Haosheng, Dominik Bucher, Julian Kissling, Robert Weibel,
and Martin Raubal (2018). ”Multimodal Route Planning With Pub-
lic Transport and Carpooling.“ In: IEEE Transactions on Intelligent
Transportation Systems, pp. 1–13 (cit. on pp. vii, 3, 81, 82, 155).

Huang, Haosheng, Georg Gartner, Jukka M. Krisp, Martin Raubal, and
Nico Van de Weghe (Aug. 2018). ”Location based services: ongoing
evolution and research agenda.“ In: Journal of Location Based Services,
pp. 1–31 (cit. on p. 5).

Huber, Martina Z. and Lorenz M. Hilty (2015). ”Gamification and
Sustainable Consumption: Overcoming the Limitations of Persuasive
Technologies.“ In: ICT Innovations for Sustainability. Ed. by Lorenz M.
Hilty and Bernard Aebischer. Vol. 310. Cham: Springer International
Publishing, pp. 367–385 (cit. on p. 23).



298 bibliography

Huff, James O. and Susan Hanson (Sept. 2010). ”Repetition and Vari-
ability in Urban Travel.“ In: Geographical Analysis 18.2, pp. 97–114

(cit. on p. 75).
Hunecke, Marcel, Sonja Haustein, Sylvie Grischkat, and Susanne Böhler
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Nayum, Alim, Christian A. Klöckner, and Mehmet Mehmetoglu (Jan.
2016). ”Comparison of socio-psychological characteristics of conven-
tional and battery electric car buyers.“ In: Travel Behaviour and Society
3, pp. 8–20 (cit. on p. 56).

Nemtanu, Florin, Joern Schlingensiepen, Dorin Buretea, and Valentin
Iordache (June 2016). ”Mobility as a service in smart cities.“ In: Pro-
ceedings of the 9th International Conference for Entrepreneurship, Inno-
vation and Regional Development. Bucharest, Romania, p. 11 (cit. on
p. 4).

Newson, Paul and John Krumm (2009). ”Hidden Markov map match-
ing through noise and sparseness.“ In: Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems - GIS ’09. Seattle, Washington: ACM Press, p. 336 (cit. on
p. 103).

Noel, Lance, Gerardo Zarazua de Rubens, Benjamin K. Sovacool, and
Johannes Kester (Feb. 2019). ”Fear and loathing of electric vehicles:
The reactionary rhetoric of range anxiety.“ In: Energy Research & Social
Science 48, pp. 96–107 (cit. on pp. 57, 244).

Norman, Donald A (1999). ”Affordance, Conventions, and Design.“ In:
Interactions 6.3, p. 5 (cit. on p. 47).

Norman, Donald A. (2013). The design of everyday things. Revised and
expanded edition. New York, New York: Basic Books (cit. on pp. 47,
48).

Nour, Akram, Jeffrey M. Casello, and Bruce Hellinga (Jan. 2010). ”Anxiety-
Based Formulation to Estimate Generalized Cost of Transit Travel
Time.“ In: Transportation Research Record 2143.1, pp. 108–116 (cit. on
p. 117).

Novaco, Raymond W. and Cheryl Collier (1994). Commuting Stress,
Ridesharing, and Gender: Analyses from the 1993 State of the Commute



310 bibliography

Study in Southern California. Working Paper UCTC No. 208. Berkeley:
University of California Transportation Center (cit. on p. 60).

Obradovic, Dragan, Henning Lenz, and Markus Schupfner (Nov. 2006).

”Fusion of Map and Sensor Data in a Modern Car Navigation Sys-
tem.“ In: Journal of VLSI signal processing systems for signal, image and
video technology 45.1, pp. 111–122 (cit. on p. 103).

OECD (Sept. 2018). Effective Carbon Rates 2018: Pricing Carbon Emissions
Through Taxes and Emissions Trading. OECD (cit. on p. 24).

Oinas-Kukkonen, Harri (Aug. 2013). ”A foundation for the study of
behavior change support systems.“ In: Personal and Ubiquitous Com-
puting 17.6, pp. 1223–1235 (cit. on p. 199).

Pajor, Thomas (Mar. 2009). ”Multi-Modal Route Planning.“ Diploma
Thesis. Karlsruhe: Universität Karlsruhe (cit. on p. 82).

Pakusch, Christina, Gunnar Stevens, Alexander Boden, and Paul Bossauer
(July 2018). ”Unintended Effects of Autonomous Driving: A Study
on Mobility Preferences in the Future.“ In: Sustainability 10.7, p. 2404

(cit. on p. 33).
Pallottino, Stefano and Maria Grazia Scutellà (1998). ”Shortest Path

Algorithms In Transportation Models: Classical and Innovative As-
pects.“ In: Equilibrium and Advanced Transportation Modelling. Ed. by
Patrice Marcotte and Sang Nguyen. Centre for Research on Trans-
portation. Boston, MA: Springer US, pp. 245–281 (cit. on p. 80).

Pangbourne, Kate, Dominic Stead, Miloš Mladenović, and Dimitris
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N O TAT I O N

general notation

syntax meaning

x.y Selection of (named) attribute of tuple x = (y, ...)

mobility histories

symbol meaning

e Entity (e.g., a person or a car)
p = (t, x, y, η) Trackpoint with timestamp t, coordinate pair

(x, y) and accuracy η

Pe = (pe,1, . . . , pe,n) Trackpoints of entity e (track)
τ = (p1, . . . , pn) Trajectory, consisting of a list of trackpoints
s = (ts, te, x, y) Staypoint with arrival/departure times ts/te

and location (x, y)
a = (ts, te, x, y, ω) Activity with arrival/departure times ts/te, lo-

cation (x, y) and purpose ω

l = (ts, te, m, Pl) Tripleg with starting/ending time ts/te, trans-
port mode m and trajectory Pl

θ = (as, ts, ae, te, Lθ) Trip with starting/ending time ts/te and activ-
ity as/ae, and list of triplegs Lθ

Π Place (geographical region defined by polygon)
at which person regularly spends time

Θ = (Π, LΘ) Tour, i.e. a sequence of trips starting and end-
ing at the same place Π

θ̂ = (Lθ) Systematic trip
Θ̂ = (Π, LΘ) Systematic tour
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mobility descriptors

symbol meaning

d(Pe, ts, te, m) distance along trackpoints p ∈ Pe that fall between ts

and te and are covered with transport mode m
∆(Pe, ts, te, m) duration of all travels by transport mode m between

ts and te

MSm̂ modal split of transport mode m̂
ntrips(ts, te) number of trips in time period ts to te

SM̂ distribution of sequences of triplegs M̂
ns/θ number of staypoints per trip
na(ts, ts, ω) number of times activity of purpose ω was per-

formed
∆(ω) time spent on activities of purpose ω

Sω̂,M̂ distribution of tripleg combinations M̂ used to reach
activities with purpose ω

spatio-temporal context and features

symbol meaning

CGM = (u(fH), u(fW)) General mobility context
Cu,τ = (fO,fD, Φ) Immediate context (when planning a trip)
fl Features of location l
Φ Personal context
C Trajectory algebra statement
m Mode of tripleg
t Hour of day
f{l,θ}, temp Temperature at start/end of tripleg/trip
f{l,θ}, precip Precipitation at start/end of tripleg/trip
f{l,θ}, {s,e,τ}, PT Number of PT stops in vicinity of start/end

of tripleg/trip
f{l,θ}, {s,e}, POI Distribution of Point of Interest (POI) in

vicinity of start/end of tripleg/trip
f s̄ Avg. speed along tripleg
f∑ d Total distance of tripleg
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spatio-temporal context and features (cont.)

symbol meaning

fmax d Maximum distance between trackpoints
f ¯̂ Avg. heading change between trackpoints
f∆,PT Duration difference between trip and PT alternative
fd,{s,e},PT Distance between start/end point of trip and PT alternative
fns,PT Number of stops in PT alternative close to actual trajectory
rp(·) Maximum Pagerank of PT stop close to location ·

sustainability

symbol meaning

Gh(θ) = f (Cu,θ , Au, Gu, GS) Human capital gain
Ln(θ) Loss in natural capital
cGHG(θ) Produced GHG emissions
cEco. Impact(θ) Financial costs of GHG emissions
cMonetary(θ) Monetary costs of travel
gFinancial(a) Financial (business) gains from activity
gPersonal(a) Personal/social gains from activity
S(θ) Sustainability indicator for trip

route planning

symbol meaning

πi ∈ Πm Transfer location
type(π) : Π→ {A, P} Mapping transfer locations to points or areas
(P, D, ES) Transport offer
P, D Pickup and dropoff transfer locations
ES Reachability of locations in D from P
A, AT, PT Pickup and dropoff types
G = (V , E) Transfer graph describing connections of πi
l = (v, ss, ts, se, te) Elementary connection (corresponding to

tripleg, cf. Mobility Histories)
Lθ = r(o, d, t) Route request from o to d at time t





A C R O N Y M S

API Application Programming Interface

AV Autonomous Vehicle

BCSS Behaviour Change Support System

BEV Battery Electric Vehicle

CC Collaborative Consumption

CP Carpooling

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DARP Dial-A-Ride Problem

DEM Digital Elevation Model

DTA Drive Time Area

DTW Dynamic Time Warping

EV Electric Vehicle

FIFO First In First Out

GHG Greenhouse Gas

GIS Geographic Information Systems

GNSS Global Navigation Satellite System

GPS Global Positioning System

GTFS General Transit Feed Specification

HCI Human-Computer Interaction

HMM Hidden Markov Model

ICE Internal Combustion Engine
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330 Acronyms

ICT Information and Communication Technologies

IOT Internet of Things

LAT Location-Aware Technologies

LBS Location Based Service

LCA Life Cycle Assessment

MAAS Mobility as a Service

MAST Mobility Allowance Shuttle Transport

MAUP Modifiable Areal Unit Problem

MRT Mass Rapid Transit

NHTS US National Household Travel Survey

NN Nearest Neighbor

OS Operating System

OSM OpenStreetMap

OSRM Open Source Routing Machine

OTP OpenTripPlanner

PHEV Plugin Hybrid Electric Vehicle

PMT Private Motorized Transport

PT Public Transport

POA Point of Action

POI Point of Interest

RF Random Forest

SBB Swiss Federal Railways

SDK Software Development Kit

SM Slow Mobility
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SMC Swiss Mobility Census

SOC State of Charge

SOV Single Occupant Vehicle

TTM Transtheoretical Model of Behavior Change

VGI Volunteered Geographic Information

VMT Vehicle Miles Traveled

VRPT Vehicle Routing Problem with Time Windows

WLAN Wireless Local Area Network
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• Dominik Bucher, René Buffat, et al. (2019). ”Energy and green-
house gas emission reduction potentials resulting from different
commuter electric bicycle adoption scenarios in Switzerland.“ In:
Renewable and Sustainable Energy Reviews 114, p. 109298.

• Henry Martin, Dominik Bucher, Esra Suel, et al. (Dec. 2018).

”Graph Convolutional Neural Networks for Human Activity Pur-
pose Imputation.“ en. In: NIPS Spatiotemporal Workshop at the 32nd



340 Curriculum Vitae

Annual Conference on Neural Information Processing Systems (NIPS
2018). Accepted: 2019-08-13T09:18:58Z.
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