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ABSTRACT
Integrated optics has weak ultraviolet and near-ultraviolet (NUV) light conversion due to its strong material dispersion and large propagation
losses. To reach this spectral range, we use non-centrosymmetric waveguides that convert near-infrared (NIR) supercontinuum light into
broadband NUV light. We measure a 280 THz span that reaches the upper frequency of 851 THz (352 nm) in a 14-mm long rib waveguide
of lithium niobate-on-insulator, with an engineered dispersion for supercontinuum generation in the NIR range. The results on broadband
NUV signals promote integrated optics for spectroscopy and fluorescence applications such as atomic clocks and chemical sensors.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0028776., s

I. INTRODUCTION

The field of supercontinuum generation (SCG) evolved from
first observations in bulk silica1 to applications in standard silica and
photonic fibers.2,3 In later years, integrated photonics has demon-
strated octave-spanning SCG in CMOS-compatible, dispersion-
engineered sub-micron silicon nitride (SiN) waveguides operating
in the visible (VIS), short-wave infrared (SWIR) and mid-infrared
(MIR) regimes4–6 as well as in silicon (Si) waveguides in the SWIR
and MIR regimes.7,8

While SiN and Si can generate octave-spanning SCG, the result-
ing spectra are typically centered around the pump wavelength.
Using non-centrosymmetric materials with a non-vanishing χ(2)-
tensor allows extending the continuum into the blue by use of cas-
caded second-harmonic generation while pumping at near-infrared
(NIR) or SWIR wavelengths. Recent results expand this to the near-
ultraviolet (NUV) range in waveguides of aluminum nitride either
by pumping at 1560 nm9 or at 780 nm10 with a non-linearity of |d33|
∼ 8.4 pm/V,11 showing a frequency comb spanning of more than
100 THz. Such devices are interesting for a range of frequency comb
applications such as atomic clocks12–14 or quantum memories.15,16

Another non-centrosymmetric material is lithium niobate,
which possesses a non-linearity of |d33| ∼ 33 pm/V17 and exhibits
a transparency window in the range of ∼330 nm–4500 nm.18–20 Bulk
optical lithium niobate waveguides are mostly fabricated by titanium
in-diffusion21–23 or proton exchange methods.24–27 In such waveg-
uide systems, octave-spanning SCG has been shown in periodically
poled devices operating in the SWIR and MIR regimes.28–30 How-
ever, these systems have a low index contrast that diminishes the
optical confinement and use pulse energies larger than 1 nJ.

For smaller pulse energies, stronger optical confinement is
required. The lithium niobate-on-insulator (LNOI) platform typi-
cally consists of a <600 nm lithium niobate thin-film bonded onto
an oxide layer that results in a refractive index contrast of Δn ∼ 0.7.
LNOI combines the non-linearities of lithium niobate with high
modal confinement in sub-micron waveguides,31–33 which enables
dispersion engineering.34–36 Octave-spanning SCG has already been
shown on the LNOI platform,37–39 but so far, broadening the optical
spectrum in the NUV region has not been the focus.

Here, we optimize the group velocity dispersion (GVD) in
the NIR range for an LNOI waveguide with a cross section of 700
× 400 nm2. After dispersion optimization, we pump a 14 mm-long
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waveguide at 950 nm with 220 fs pulses and a low pulse energy of
67 pJ in the waveguide (peak power of 266 W). We report a broad-
ening of the NIR pump signal of ΔλNIR = 518 nm (ΔωNIR = 179 THz),
and by second-harmonic generation, this NIR SCG signal results in
cascaded SCG with a NUV bandwidth of ΔλNUV = 173 nm (ΔωNUV
= 280 THz). In addition, by selecting the pump wavelength within
the range of 940 nm–1000 nm, we tailor the cascaded SCG from the
NUV toward the VIS range.

II. SAMPLE AND SETUP DESCRIPTION
Figures 1(a) and 1(b) show an x-cut LNOI rib waveguide with

a top width of 700 nm, ridge-height of 250 nm, and remaining thin-
film thickness of 150 nm. The waveguide is fabricated using stan-
dard e-beam lithography and optimized ICP/RIE dry-etching. Sub-
sequent wet-etching in a buffered oxide etch (BOE) and potassium
hydroxide (KOH) removes the remaining mask and dry-etching
residuals. Figure 1(c) shows the input side of a set of 14 mm-long
waveguides.

FIG. 1. [(a) and (b)] Scanning electron microscopy (SEM) image of the device
showing the 700 nm × 400 nm trapezoidal waveguide with a sidewall angle of
60○ and remaining thin-film thickness of 150 nm, which results in a ridge-height of
250 nm, (c) the optical microscope image of the LNOI chip, (d) the experimental
setup, where a femtosecond-laser and free-space objective are used for light cou-
pling and a lensed fiber and an optical spectrum analyzer are used for broadband
detection (350 nm–1700 nm), and (e) the picture showing a single LNOI waveguide
pumped at 950 nm. The blue and white light result from the SCG process.

Figure 1(d) depicts the experimental setup, which consists of
a femtosecond (fs) pulsed oscillator with an 80 MHz pulse-train at
950 nm and a pulse width of 220 fs together with a power control
unit consisting of a polarization beam splitter plus a half-wave plate.
We use a half-wave plate to control the polarization of the fs pulses,
which are then focused onto the LNOI sample by a 50× focusing
objective with 11.2 dB/facet coupling losses. After collection of the
optical signal with a lensed fiber (Oz Optics TPMJ-3A-1550-8), the
optical signal is sent to an optical spectrum analyzer (OSA, Advan-
test Q8381A) with a detection range from 350 nm to 1750 nm and
the same resolution of 5 nm over the full wavelength span. One
measurement covers the spectral broadening in the NIR and the
cascaded spectral broadening in the NUV, close to the bandgap of
lithium niobate.18–20 The 20× imaging objective is used for sample
positioning and alignment in combination with a VIS lens and cam-
era. Figure 1(e) shows the chip mounted on a vacuum chuck within
the experimental setup, with blue and white light resulting from the
SCG process.

III. WAVEGUIDE DISPERSION ENGINEERING
In waveguides with high modal confinement, the material dis-

persion∝dn/dλ can be compensated with the waveguide dispersion
∝dnneff /dλ that arises from engineering the waveguide cross sec-
tion. Here, n (neff ) is the (effective) refractive index of the guiding
medium, and λ is the wavelength of the light. Using the waveg-
uide dispersion, one can achieve a net anomalous dispersion in the
system. In photonic integrated circuits, this method was originally
implemented in Si and SiN waveguides40,41 and is also applicable for
the LNOI platform.34–36

The waveguide dispersion is more commonly given in fre-
quency space as the group velocity dispersion (GVD),

GVD(ωP) ≡ β2 =
∂2β
∂ω2 ∣ω=ωP

,

with β = k0 ⋅ neff and ωP being the pump frequency, related by ωP

= 2πc
λP

to the pump wavelength λP. As shown in Fig. 2(a), we use finite
element method (FEM) simulations to calculate and maximize the
anomalous dispersion range (GVD < 0) of the fundamental mode
at 950 nm in a 700 × 400 nm2 trapezoidal waveguide with sidewall
angles of 60○ and a remaining thin-film thickness of 150 nm.

Figure 2(a) shows the calculated anomalous and normal GVD
of the TM00 and TE00 modes. Here, we select the TM00 optical mode
with two zero-crossings at 730 nm and 1040 nm that ensure the pres-
ence of dispersive waves at both ends of the spectrum, provided the
pump wavelength is in the anomalous dispersion regime. The goal is
to have a broad spectrum in the NIR that in turn generates a broad
signal in the NUV through cascaded second-harmonic generation,
which we refer to as cascaded SCG.

To select the broadest dispersion regime, we now maximize the
bandwidth of the dispersion operator,42,43

D̂(ω) =∑
n≥2

βn(ωP)
n!

(ω − ωP)n,
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FIG. 2. (a) GVD for the quasi TM00 and TE00 modes in a waveguide with a top-
width of 700 nm, ridge height of 250 nm, and sidewall angle of 60○. Only the TM00
mode experiences anomalous dispersion (GVD <0, blue-shaded region), (b) the
dispersion operator D̂ for different pump wavelengths λP and the same waveguide
geometry, and (c) simulated output spectra at different peak powers.

where βn = ∂nβ
∂ωn , with respect to the pump frequency ωP. The zero-

crossings of D̂ allow us to visualize the dispersive waves and there-
fore the NIR broadening of the SCG. Figure 2(b) shows the calcu-
lated dispersion operator D̂ of the TM00 mode for different pump
wavelengths. We select the pump wavelength of 950 nm since it
maximizes the spectral separation of the dispersive waves, which
are located at 760 nm and 1100 nm. To support the dispersive
wave calculations, we use the split-step Fourier method to simulate
the generalized nonlinear Schrödinger equation.5,42,43 Figure 2(c)
shows the computed output optical spectra depending on the input
peak power, where the dispersive waves appear at a peak power of
∼200 W at wavelengths of 790 nm and 1120 nm, a deviation of 3.9%
and 1.8% from the results shown in Fig. 2(b).

IV. NIR AND NUV SPECTRAL BROADENINGS
Figure 3 shows the generation of the SCG pumped at λP

= 950 nm and the cascaded SCG at λP/2 = 475 nm for pulse energies

ranging from 13 pJ to 67 pJ in the waveguide, which corresponds
to peak powers inside the waveguide from 53 W to 266 W. The
broadening of the NIR pump increases for increasing pulse energy
largely due to self-phase modulation until the appearance of disper-
sive waves with a pulse energy of 53 pJ and a 30 dB-NIR bandwidth
of ΔλNIR = 278 nm (ΔωNIR = 94 THz), while for a pulse energy
of 67 pJ, we measure a 30 dB-NIR bandwidth of ΔλNIR = 518 nm
(ΔωNIR = 179 THz). We observe the dispersive waves at 725 nm and
1175 nm, which deviate by 4.6% and 6.4% from the results shown
in Fig. 2(b), respectively. We attribute this difference to the trench-
ing of the LNOI waveguides and the ±20 nm thickness variation of
the thin-film over the full chip. The trenches can be observed in
Fig. 1(b) between the waveguide sidewall and the remaining thin-
film. Trenching is a by-product of the dry-etching that we employ
to fabricate the LNOI waveguides. The dry-etching causes redepo-
sition, which leads to the appearance of trenches. The redeposi-
tion rate differs from the edge of the sample to the center of it,
which translates into inhomogeneous trenches. The inhomogeneous
trenching slightly modifies the cross section, which in turn affects
the dispersion operator and the spectral location of the dispersive
waves.

The onset of the self-phase modulation at 27 pJ for both pump
and SHG signals shows the cascaded nature of the process, and the
broadening of the SHG signal is consistent with the SCG broad-
ening in the NIR range. For 67 pJ, the NUV signal extends to
the short-wavelength side down to 352 nm, which is close to the
bandgap of lithium niobate, and shows a 30 dB-NUV bandwidth
of ΔλNIR = 173 nm (ΔωNIR = 280 THz), which is more than two
times broader than previous results.10 The dispersive waves limit the
maximal spectral bandwidth; therefore, pulse energies higher than
53 pJ do not broaden the pump spectrum any further. The two kinks
at wavelengths 580 nm and 1040 nm (clearly visible in the 27 pJ
measurement of Fig. 3) are artifacts of the OSA.

The detected average power is ∼3 μW (−25 dBm) around the
NIR pump wavelength of 950 nm. For NUV signals, we detect
power levels of ∼10 nW (−50 dBm) at a wavelength of 475 nm and
3.2 nW (−55 dBm) at 360 nm. The drop in detected powers between
NIR and NUV ranges is ∼25 dB, which suggests a more efficient
broadband generation than power ratios of ∼50 dB in LNOI waveg-
uides that are pumped further in the SWIR range (∼1500 nm).38 In
terms of narrowband SHG conversion efficiency, before self-phase
modulation occurs, we estimate a conversion efficiency of only ∼1%
W−1 cm−2, which is lower than the conversion efficiency of 4600%
W−1 cm−2 in periodically poled LNOI waveguides.44 We expected
this result since we engineered the dispersion to broaden the SCG
pump spectrum, not to enhance the SHG modal phase matching of
particular modes. Further work could optimize SHG phase match-
ing by employing chirp-tapered waveguides,10 periodic modulations
on the waveguide width,45 or periodically poled lithium niobate
thin-films.46

We report an optical damage threshold to the LNOI waveguide
input of ∼8 kW peak power in the coupling process after >10 min
of exposure, which agrees with previous results suggesting a >7 kW
damage threshold in LNOI waveguides.38 However, an exhaustive
study on this topic as performed for bulk lithium niobate47–49 is still
required. In addition, undoped LNOI waveguides exhibit a photore-
fractive effect in a fast response of ∼21 ms in the NIR range, which is
more than three orders of magnitude faster than that in bulk lithium
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FIG. 3. Supercontinuum power spectra for different pulse energies in an LNOI waveguide with a top width of 700 nm and ridge height of 250 nm pumped at 950 nm. The
dotted orange lines indicate the 30 dB-bandwidth for each generated signal, measured from each signal peak. The dotted black line denotes the noise floor of the optical
spectrum analyzer. The blue arrows indicate the spectral location of the dispersive waves.

niobate devices.50 Doping the lithium niobate thin-film with, for
instance, magnesium would diminish the optical damage threshold
in the VIS and NIR range, but the same might not apply to the NUV
range.51,52

All the optical spectra shown in Fig. 3 have a discontinuity
between 550 nm and 580 nm. To overlap the NIR SCG with its

second-harmonic signal in the NUV range, the dispersion opera-
tor should become broader than that shown in Fig. 2(b), which can
be achieved by increasing the index contrast between the waveguide
and its surroundings. For that purpose, the LNOI waveguides can
undergo a partial37 or full39 etching of the silicon dioxide buffer layer
underneath the LNOI waveguide.

FIG. 4. (a) Cascaded supercontinuum generation (SCG) spectra through second-harmonic generation for an LNOI waveguide with a top width of 700 nm and ridge height of
250 nm for pump wavelengths of 940 nm, 950 nm, and 960 nm and (b) cascaded SCG of an LNOI waveguide with a top width of 800 nm and ridge height of 250 nm for pump
wavelengths of 980 nm, 990 nm, and 1000 nm. The red detuning of the pump wavelengths of (b) compared to (a) is given by the red-shift in the dispersion operator of the
800 nm top-width waveguide. In both (a) and (b), the black-dotted line refers to the OSA noise floor while the colored-dotted line displays each respective 30 dB-bandwidth.
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To better understand the behavior of NUV broadening, we
conduct a wavelength sweep of the NIR pump from 940 nm to
960 nm. As shown in Fig. 2(b), the pump wavelength modifies the
bandwidth of the dispersion operator, and hence, the SCG and its
cascaded signal are also modified. Figure 4(a) shows the generated
NUV supercontinuum spectra at different pump wavelengths for
the same device as presented before. The corresponding 30 dB-
bandwidths are highlighted, demonstrating the dependence on the
pump wavelength, shown as expected in Fig. 2(b).

For a waveguide with a slightly larger cross section (800 nm
top width and 250 nm ridge height), the dispersion operator is red-
shifted with respect to the one shown in Fig. 2(b). Then, the optimal
pump wavelength is also red-shifted, which Fig. 4(b) shows to be
990 nm (303 THz), with a broadening of ΔλNUV = 181 nm (ΔωNUV
= 235 THz) in the NUV regime. By selecting the waveguide cross sec-
tion and pump wavelength, the broadening of the second-harmonic
signal can be tailored to specific needs in the NUV or more toward
the VIS range.

V. CONCLUSION
In a non-centrosymmetric LNOI waveguide, we demonstrated

broad NUV generation through direct second-harmonic generation
from SCG in the NIR range. The NUV signal has a 30 dB-bandwidth
of 280 THz (173 nm) when pumped at 950 nm with a pulse energy of
67 pJ inside the waveguide. The results present sub-100 pJ, nonlinear
systems as broadband NUV sources for NUV fluorescence and comb
applications. However, since the generated NUV light is close to the
bandgap of lithium niobate, doped lithium niobate thin-films (i.e.,
with magnesium) should be considered for mitigating the photore-
fractive effect in the VIS–NIR ranges even at pulse energies lower
than 67 pJ.
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Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a
lithium niobate microring resonator,” Nature 568, 373–377 (2019).
37J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning super-
continuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44,
1492–1495 (2019).
38M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, and M. Lončar, “Coherent two-
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