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Abstract The colored Tverberg theorem asserts that for every d and r there exists
t = t (d, r) such that for every set C ⊂ R

d of cardinality (d + 1)t , partitioned into t-
point subsets C1,C2, . . . ,Cd+1 (which we think of as color classes; e.g., the points of
C1 are red, the points of C2 blue, etc.), there exist r disjoint sets R1,R2, . . . ,Rr ⊆ C

that are rainbow, meaning that |Ri ∩ Cj | ≤ 1 for every i, j , and whose convex hulls
all have a common point.

All known proofs of this theorem are topological. We present a geometric version
of a recent beautiful proof by Blagojević, Matschke, and Ziegler, avoiding a direct use
of topological methods. The purpose of this de-topologization is to make the proof
more concrete and intuitive, and accessible to a wider audience.

Keywords Convexity · Tverberg’s theorem · Colored Tverberg theorem ·
Continuous motion

1 Introduction

We first recall three fundamental results of discrete geometry, all of them dealing
with partitioning finite sets in R

d so that the convex hulls of the parts intersect. In the
order of increasing sophistication, they are Radon’s lemma, Tverberg’s theorem, and
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Fig. 1 Radon’s lemma, Tverberg’s theorem, the colored Tverberg theorem, and the Blagojević—
Matschke–Ziegler theorem: planar illustrations

the colored Tverberg theorem. We refer to [11] for more background, applications,
and historical references not mentioned here.

Radon’s Theorem asserts that every set C ⊂ R
d of d + 2 points has two disjoint

subsets A1,A2 with conv(A1) ∩ conv(A2) �= ∅; see the illustration of the planar case
in Fig. 1. The proof is simple linear algebra.

Tverberg’s Theorem states that every set C ⊂ R
d of (d + 1)(r − 1) + 1 points has

r pairwise disjoint subsets A1, . . . ,Ar with
⋂r

i=1 conv(Ai) �= ∅ (so Radon’s lemma
is the r = 2 case). Several geometric proofs are known, e.g., [14–16]. The number
(d + 1)(r − 1) + 1 is easily shown to be the smallest possible for such a claim to
hold, e.g., by considering the configuration C of (d + 1)(r − 1) points forming d + 1
small clusters by r − 1 points each, as in Fig. 2.

It is easy to show (e.g., by iterating Radon’s lemma) that there exists some number
T = T (d, r) such that the conclusion of the theorem holds for every set C with at
least T points. The hard part of Tverberg’s theorem is obtaining the optimal value
of T (d, r).

The Colored Tverberg Theorem has a setting similar to that of Tverberg’s theorem.
Again we have a set C ⊂ R

d and seek r pairwise disjoint subsets whose convex hulls
all share a point, but this time these subsets have to satisfy an additional restriction.
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Fig. 2 A configuration with no
Tverberg r-partition

We introduce the following terminology. Let C ⊂ R
d be a finite set partitioned

into k color classes C1,C2, . . . ,Ck (in other words, each point of C is colored by
one of k colors). A subset R ⊆ C is rainbow if it contains at most one point of each
color, i.e., |R ∩ Cj | ≤ 1 for all j .

A rainbow r-partition for C is an ordered r-tuple R = (R1, . . . ,Rr) of pairwise
disjoint rainbow subsets of C. We stress that, for technical convenience, and with a
mild abuse of the terminology “partition”, we generally do not require that the Ri

cover all of C (if they do, we speak of a maximal rainbow r-partition).
A rainbow r-partition is Tverberg if it has a Tverberg point, i.e., a point x ∈⋂r

i=1 conv(Ri) (which usually does not belong to C). The colored Tverberg theo-
rem can then be stated as follows.

Theorem 1 (Colored Tverberg theorem) For every d ≥ 1 and r ≥ 2 there exists t

such that whenever C ⊂ R
d is a set of (d + 1)t points partitioned into t-point subsets

C1, . . . ,Cd+1, then there is a Tverberg rainbow r-partition R = (R1, . . . ,Rr) for C.

The theorem is usually stated with R maximal, in which case each Ri has to be a
(d + 1)-element set containing one point of each color. However, we chose to omit
maximality, since on the one hand, the proof typically does not yield a maximal R,
and on the other hand, some thought reveals that, in the situation of Theorem 1, an
arbitrary R can easily be extended into a maximal one.

For the colored Tverberg theorem, proving the existence of any t , no matter how
large, seems difficult, and the simplest proof currently known is also the one that
yields the smallest t , as we will briefly discuss below.

Let t (d, r) denote the smallest t for which the conclusion of the theorem holds.
The configuration with d + 1 clusters by r − 1 points each, as in Fig. 2, where the ith
cluster is all colored with color i, shows that t (d, r) ≥ r .

Historical Notes The validity of the colored Tverberg theorem was first conjec-
tured by Bárány, Füredi and Lovász [4], who proved the case d = 2, r = 3, obtaining
t (2,3) ≤ 7. Bárány and Larman [2] settled the planar case, showing t (2, r) = r for
all r (their paper also contains Lovász’ topological proof showing that t (d,2) = 2 for
all d). They conjectured that t (d, r) = r for all r, d .

The first proof of the general case of the colored Tverberg theorem was obtained
by Živaljević and Vrećica [21] (simpler versions were provided in [5, 10]). Their
proof is topological, and it builds on the pioneering works by Bajmóczy and Bárány
[1] (who gave a new, topological proof of Radon’s lemma) and by Bárány, Shlosman,
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and Szűcs [3] (who provided a topological proof of Tverberg’s theorem assuming
that r is a prime number).

The Živaljević–Vrećica method yields t (d, r) ≤ 2r − 1 for all prime r . Later, the
same bound was extended to all r that are prime powers [20], using more advanced
topological tools introduced to combinatorial geometry by Özaydin, by Volovikov,
and by Sarkaria.

The most important progress by far since the 1992 Živaljević–Vrećica proof was
achieved by Blagojević, Matschke, and Ziegler [6] in 2009. They discovered a new
proof, also topological, which yields the optimal bound t (d, r) = r whenever r + 1
is a prime number.

Their main trick is both simple and surprising; at first sight, it seems strange that
it might help in such a radical way. Namely, to the point set C = C1 ∪ · · · ∪ Cd+1
as in the colored Tverberg theorem, with |C1| = · · · = |Cd+1| = t , they first add an
(arbitrary) extra point z, and color it with a new color d + 2, thus forming a singleton
color class Cd+2 = {z}. Then they prove the existence of a Tverberg rainbow (r + 1)-
partition (R1, . . . ,Rr+1) for the set C′ = C1 ∪ C2 ∪ · · · ∪ Cd+1 ∪ Cd+2. Given such
an (r + 1)-partition, one can simply delete the set Ri containing the artificial point
z, and be left with a Tverberg r-partition for the original C; see the bottom part of
Fig. 1.

We now formulate the main claim of the Blagojević et al. proof. With r and d

fixed, let us call a (d + 2)-tuple C = (C1, . . . ,Cd+2) of pairwise disjoint sets in R
d a

BMZ-collection (BMZ standing for Blagojević–Matschke–Ziegler) if |C1| = |C2| =
· · · = |Cd+1| = r − 1 and |Cd+2| = 1.

Theorem 2 (Blagojević–Matschke–Ziegler theorem) For every d ≥ 1 and every
prime number r , every BMZ-collection C admits a Tverberg rainbow r-partition
(R1, . . . ,Rr).

We note that for proving the colored Tverberg theorem with r = r0, one uses the
Blagojević–Matschke–Ziegler theorem with r = r0 + 1.

Theorem 2 was first proved, in a preliminary version of [6], using relatively
heavy topological machinery, by computing a certain obstruction in cohomology (this
method also yields additional results; see [7]). Then Vrećica and Živaljević [17] found
a simpler, degree-theoretic proof, and independently, the authors of [6] obtained a
similar simplification.

We should remark that the Blagojević–Matschke–Ziegler theorem has a more gen-
eral version, which is perhaps even nicer and more natural. Namely, for r prime,
whenever N + 1 points in R

d , N = (d + 1)(r − 1), are partitioned into classes
C1, . . . ,Cm, m ≥ d + 1, with each Ci of size at most r − 1, then there is a Tverberg
rainbow r-partition. This, for instance, also contains the original Tverberg theorem
as a special case. For simplicity, though, we will consider only Theorem 2 in the rest
of this paper.

This Paper Our main purpose is to present an elementary and self-contained geo-
metric proof of Theorem 2 (and thus of the colored Tverberg theorem as well). We
follow the basic strategy of the degree-theoretic proof in [6, 17]. However, we replace
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the abstract deleted product construction by a concrete geometric construction due to
Sarkaria [14] (with a simplification by Onn).

In this way, the basic scheme of the proof is clear and intuitive. A rigorous elemen-
tary presentation avoiding topological tools is not entirely simple, however, mainly
because we have to deal with various issues of general position. These issues do not
arise in the topological proof, since they are dealt with on a general level when build-
ing the topological apparatus.

One can say that our proof is a “de-topologized” version of the proofs in [6, 17].
In a similar sense, Sarkaria’s proof [14] of Tverberg’s theorem can be regarded as a
de-topologized version of his earlier topological proof of Tverberg’s theorem [13].
It has become one of the most cited proofs, and often it is regarded as the standard
proof, see, e.g., [9, Sect. 1.2], [8, p. 30b].1

Another example of de-topologization is a combinatorial proof of Kneser’s conjec-
ture [12]; developing this approach further, Ziegler [18] was able to prove all known
generalizations of Kneser’s conjecture, plus some new ones, in a combinatorial way.

We hope that an elementary, de-topologized proof of the colored Tverberg theorem
will stimulate further research by making the proof more intuitive and concrete and
accessible to a wider audience. For example, this might help in attacking the open
cases of the Bárány–Larman conjecture (the validity of the claim of Theorem 2 for
non-prime r).

While all known topological proofs of Tverberg’s theorem work only for r that is
a prime power, Sarkaria’s de-topologized proof [14] overcomes this restriction and
works for all r . Unfortunately, our de-topologization does not help in removing the
restriction of prime r in Theorem 2. If anything, it helps in seeing more clearly why
the proof method of Blagojević et al. fails whenever r is not a prime; see Sect. 8 for
a discussion.

2 Outline of the Proof

Here we sketch the main steps of the proof, proceeding informally and glossing over
many details.

We begin with a fixed BMZ-collection C = (C1, . . . ,Cd+1,Cd+2 = {z}). We as-
sume that the points of C are in a sufficiently general position; if they are not, we use
a standard perturbation argument.

We consider the system R = R(C) of all the maximal rainbow r-partitions R =
(R1, . . . ,Rr) for C , Tverberg or not, for which z ∈ Rr .

Using a construction as in Sarkaria [14], with each R ∈ R we associate an N -
dimensional simplex SR in R

N . (More precisely, some of the SR may be degen-
erate, i.e., only (N − 1)-dimensional, even for C in general position, but this will
not matter—so for the purposes of this outline, we pretend that they are all N -
dimensional.) The key property of this construction is that R is Tverberg iff SR
contains the origin 0.

1We remark that another possible strategy for de-topologizing Tverberg-type statements was suggested
in [19]. The so-called guiding principle on p. 94 of that paper suggests a certain way of relaxing the sym-
metry (equivariance) condition to obtain a more general geometric statement that might be more amenable
to a purely geometric proof in the spirit of Sarkaria’s proof of the geometric Tverberg theorem.
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Fig. 3 A schematic illustration
of the situation in R

N

Fig. 4 Defining the degree of
Σ ; the positive side of Σ is
marked gray

Moreover, all of the SR have one vertex z∗ in common. Let FR be the facet of SR
opposite to z∗; this is an (N − 1)-dimensional simplex avoiding 0. Then we find that
R is Tverberg iff the ray ρ emanating from 0 in the direction opposite to 0z∗ meets
FR; see Fig. 3 for a schematic planar illustration.

Next, it turns out that the union Σ of all the FR forms something like a (possibly
self-intersecting) hypersurface in R

N , and one can define the degree of Σ , a standard
notion in topology. (Since Σ is determined by C , we also speak of the degree of C
and write deg(C).)

Intuitively, the degree counts how many times Σ “winds” around 0. Its absolute
value is a lower bound for the number of times a ray like ρ intersects Σ . Thus, if we
can show that the degree of Σ is always nonzero, then ρ has to intersect at least one
FR, and the existence of a Tverberg rainbow r-partition follows.

First we need to equip Σ with an orientation, which means designating one of
the “sides” of Σ as positive and the other as negative; see Fig. 4. The orientation is
defined locally: we determine positive and negative side for every FR, in a globally
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consistent way. The definitions must match at the “seams” where two of the FR’s
meet in an (N − 2)-dimensional face.2

Then we define the degree of Σ as the number of times the ray ρ passes from the
negative side of Σ to the positive side minus the number of times it passes from the
positive side to the negative one (in the picture, the degree is +2). As expected, the
degree does not depend on the choice of the ray ρ—any other ray emanating from 0
yields the same number.

It remains to verify that deg(C) �= 0, and this is done by a “continuous motion”
argument. Namely, we fix a special BMZ-collection C0 for which the degree can be
explicitly computed. Then we consider a continuous motion of the points of C0 that
transforms it to the given BMZ-collection C . We follow the corresponding motion of
Σ in R

N and look what happens to its degree. It can change only when some of the
FR pass through 0.

We divide our collection R of rainbow r-partitions into classes of an equiva-
lence ∼, where R ∼ R′ if R′ can be obtained from R by permuting the Ri and,
if needed, moving z back to the r th class. For example,

R = (R1,R2,R3) ∼ R′ = (
R2,R3 \ {z},R1 ∪ {z}).

Each class has r! members, and it turns out that, during the continuous motion, the
simplices FR for all R in the same class always pass through 0 simultaneously, and
their contributions to the degree change by the same amount.

It follows that deg(C) may change only by multiples of r! during the motion. Since
the degree for the special BMZ-collection C0 comes out as D0 = ±((r − 1)!)d , the
degree for every C is congruent to D0 modulo r!.

Here, finally, the primality of r comes into play. When r is a prime, and only then,
we have D0 �≡ 0 (mod r!), and hence the degree is always nonzero as needed.

On the other hand, there are non-prime r for which BMZ-collections C exist with
degree 0, so indeed the proof method breaks down (we suspect that this is the case
for all non-prime r , but we have no proof at present). Of course, if the claim of
the Blagojević–Matschke–Ziegler theorem failed for some (non-prime) r , one would
have to look for a counterexample among the C with degree 0.

3 The Sarkaria–Onn Transform

We start filling out the details in the above outline. First we introduce the construc-
tion that assigns a point set in R

N to every rainbow r-partitions of a given BMZ-
collection. We present it in a slightly more general setting, ignoring the “rainbow”
aspect.

We will use the notation [k] = {1,2, . . . , k} for a positive integer k.
For a point x ∈ R

d we write x+ for the vector (x,1) ∈ R
d+1 obtained by append-

ing the component 1 to x.

2From the topological point of view, in this part we verify the well-known fact (cf. [5]) that the abstract
simplicial complex underlying Σ is an orientable pseudomanifold; this is a crucial part of the proof, as
well as of the proofs in [6, 17].
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Fig. 5 The vectors w1, . . . ,wr

for r = 3

Let w1, . . . ,wr be vectors in R
r−1 forming the vertex set of a regular (r − 1)-

dimensional simplex with center at the origin; Fig. 5 illustrates the case r = 3. We
have w1 +w2 +· · ·+wr = 0.3 Moreover, if α1, . . . , αr are real numbers with α1w1 +
· · · + αrwr = 0, we have α1 = α2 = · · · = αr , since every r − 1 of the wi are linearly
independent.

For x ∈ R
d and an index i ∈ [r], we define a point

ϕi(x) := x+ ⊗ wi ∈ R
N,

called the ith clone of x. Here N = (d + 1)(r − 1), and ⊗ stands for the (standard)
tensor product: for arbitrary vectors u ∈ R

m and v ∈ R
n, u ⊗ v is the vector

(u1v1, u1v2, . . . , u1vn,u2v1, u2v2, . . . , umvn) ∈ R
mn.

Now let P = (P1,P2, . . . ,Pr) be an r-partition in R
d , i.e., an r-tuple of pair-

wise disjoint finite sets in R
d (but the disjointness will be used only for a conve-

nient notation; the claims below remain valid even if the Pi may share points). Let
P = P1 ∪ · · · ∪ Pr be the ground set.

We define the Sarkaria–Onn transform of P as the point set

Φ(P ) :=
r⋃

i=1

{
ϕi(p) : p ∈ Pi

}
,

and we let

SP := conv
(
Φ(P )

)
.

In words, for every point p ∈ Pi we put the ith clone of p in Φ(P ).
The following lemma is essentially from [14].

Lemma 3 (Sarkaria–Onn) Let P be an r-partition in R
d . Then P has a Tverberg

point, i.e., satisfies
⋂r

i=1 conv(Pi) �= ∅, if and only if 0 ∈ SP .

Proof For the reader’s convenience, we sketch a proof; the omitted details are easy
to fill in.

3The easiest way to see this to represent the regular (r − 1)-simplex as the convex hull of the r standard

basis vectors in R
r . Then we can identify R

r−1 with the hyperplane {x ∈ R
r : ∑r

i=1 xi = 1}, and choose a
coordinate system such that the origin lies at the barycenter of the simplex, i.e., vector with all coordinates
equal to 1/r .
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First, let us suppose that x ∈ ⋂r
i=1 conv(Pi) is a Tverberg point. Thus, for every

i we can write x = ∑
p∈Pi

ξpp for some nonnegative reals ξp with
∑

p∈Pi
ξp = 1.

Then it is easy to check that

0 = 1

r

r∑

i=1

∑

p∈Pi

ξpϕi(p)

holds, and that this expresses 0 as a convex combination of the points of Φ(P ).
Conversely, let us suppose that 0 ∈ SP . Thus, we can write

0 =
r∑

i=1

∑

p∈Pi

αp

(
p+ ⊗ wi

) =
r∑

i=1

(
∑

p∈Pi

αpp+
)

⊗ wi (1)

for some nonnegative αp’s summing to 1. Let Ai := ∑
p∈Pi

αp and si := ∑
p∈Pi

αpp.
By (1) we have

∑r
i=1 Aiwi = 0, and so, by the properties of the wi , all the Ai are

equal to some A. Similarly, all the si equal some s ∈ R
d . Finally, one easily checks

that A > 0 (since not all of the αp are 0) and that the point 1
A

s is a Tverberg point. �

In our considerations, we will need to interpret some other properties of Φ(P ) in
terms of P . We recall that the affine hull aff(X) of a (finite) set X ⊆ R

d is the smallest
affine subspace of R

d containing X. We also define the linear affine hull linaff(X) as
the translation of aff(X) to 0, or in other words, as the set of all linear combinations∑n

i=1 βixi with x1, . . . , xn ∈ X and
∑n

i=1 βi = 0.
Let us say that the partition P has an affine Tverberg point if

⋂r
i=1 aff(Pi) �= ∅.

Let us say that P has a Tverberg direction if
⋂r

i=1 linaff(Pi) �= {0}; in other words, if
there is a line parallel to each of the aff(Pi).

Lemma 4 For an r-partition P in R
d , we have the following equivalences:

(i) 0 ∈ aff(Φ(P )) iff P has an affine Tverberg point.
(ii) The set Φ(P ) is affinely dependent iff at least one of the Pi ’s is affinely dependent

or P has a Tverberg direction.

Proof The proof is very similar to that of Lemma 3 and we only sketch it, leaving the
details to the interested reader.

In (i), the assumption 0 ∈ aff(Φ(P )) can be written as
∑

p∈P αpp = 0 for some
αp’s with

∑
p∈P αp = 1. As in the proof of Lemma 3,

∑
p∈P αpp = 0 implies that the

sums
∑

p∈Pi
αp , i ∈ [r], are all equal to the same number A and the sums

∑
p∈Pi

αpp

are all equal to the same s. From
∑

p∈P αp �= 0 we get A �= 0, and thus 1
A

s ∈ aff(Pi)

for all i. The reverse implication in (i) is proved by going through a very similar
argument backwards.

As for (ii), we assume that the points of Φ(P ) are affinely dependent, i.e., there
exist reals αp , p ∈ P , summing to 0 and not all zero such that

∑
p∈P αpp = 0. We

again have
∑

p∈Pi
αp = A and

∑
p∈Pi

αpp = s for all i ∈ [r]. Since
∑

p∈P αp = 0,
we get A = 0. If s = 0, then at least one of the Pi is affinely dependent, and otherwise,
s is a nonzero vector in

⋂r
i=1 linaff(Pi). Again we omit the reverse implication. �
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4 Sufficiently General Position

Some Conventions for BMZ-Collections Now we specialize to BMZ-collections.
Let C = (C1, . . . ,Cd+2) be a BMZ-collection, and let us write C := C1 ∪ C2 ∪ · · · ∪
Cd+2 for its ground set.

We also assume that the points of C are numbered as c1, c2, . . . , cN+1 = z, in such
a way that C1 consists of the first r − 1 points c1, . . . , cr−1, C2 consists of the next
r − 1 points, etc.

Let R be a rainbow r-partition for C . We define the combinatorial type of R as
the set {(i, j) : cj ∈ Ri} ⊆ [r] × [N + 1].

As in the proof outline, let R be the collection of all the maximal rainbow r-
partitions for C having the point z in the last class.

For R = (R1, . . . ,Rr) ∈ R and a point a ∈ C, we write R − a for the rainbow
r-partition (R1 \ {a}, . . . ,Rr \ {a}) (we remove a from the class it belongs to).

For every R ∈ R, we have z ∈ Rr , and so each Φ(R) contains the point z∗ = ϕr(z).
We set FR := conv(Φ(R − z)); if SR is an N -dimensional simplex, which is usually
the case, then FR is the facet opposite to z∗ as in the outline.

Sufficiently General Position For defining the degree as sketched in the outline, we
need that the simplices FR are in a suitably general position. We adopt a “functional”
approach, postulating the required properties in a definition.

We say that C is in a sufficiently general position if

• each FR is an (N − 1)-dimensional simplex, i.e., its vertices are affinely indepen-
dent, and

• for every R ∈ R and every a ∈ C we have 0 �∈ aff(Φ(R − a)); geometrically, the
affine span of each facet of SR avoids 0.

It is easily seen that for C in sufficiently general position, the ray ρ as in the outline
(emanating from 0 in the direction opposite to 0z∗) is well defined and intersects each
FR in at most one point, which lies in the relative interior of FR.

Let C, C′ be two BMZ-collections. We define their distance in the natural way, as
max{‖ci − c′

i‖ : i = 1,2, . . . ,N + 1} where ‖.‖ is the Euclidean norm and c′
i is, of

course, the ith point of C′.
We want to show that for every BMZ-collection C , there are BMZ-collections

C′ in sufficiently general position arbitrarily close to it. We proceed by a standard
perturbation argument (an alternative route would be using points with algebraically
independent coordinates in C′). This is a technical and somewhat tedious part (in the
topological proof, it is taken care of by the general machinery, so one need not worry
about it). Still, we prefer to include it, in order to make the proof complete.

Lemma 5 Let C be a BMZ-collection, and let ε > 0 be given. Then there is a BMZ-
collection C′ in sufficiently general position at distance at most ε from C .

Proof First we observe that for R ∈ R, since the classes R1, . . . ,Rr are rainbow, each
of the classes Ri has at most d + 1 points, except possibly for Rr , which may contain
up to d + 2 points.
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According to Lemma 4, the conditions in the definition of sufficiently general
position of C are implied by the following:

(i) Every at most d + 1 points of C are affinely independent.
(ii) For every R ∈ R, the partition R − z has no Tverberg direction.

(iii) For every R ∈ R and every a ∈ C, the partition R − a has no affine Tverberg
point.

To seasoned geometers, (i)–(iii) are probably obvious by codimension count. Still,
we include a more detailed argument.

We first recall a perturbation argument for achieving (i), where it is entirely simple
and standard. Condition (i) is a conjunction of

( |C|
d+1

)
requirements of the form “the

points in CI := {ci : i ∈ I } are affinely independent”, where I runs through all (d +
1)-element subsets of C. We enumerate all such I as I1, I2, . . . and we deal with them
one by one.

First we consider I1; say that I1 = {1,2, . . . , d + 1}. The one-point set {c1} is
affinely independent, of course, and so is {c1, c2}, assuming that the points of C are all
distinct. Next, it is clear that we can move c3 by at most ε

2 so that C3 := {c1, c2, c3} is
affinely independent, too. Then we successively move c4, . . . , cd+1, each by at most
ε
2 , and we make CI1 affinely independent. Moreover, crucially, there exists some
ε1 > 0 such that if we move the points of CI1 arbitrarily by at most ε1, then CI1

remains affinely independent. Using this ε1, we make CI2 affinely independent, ob-
taining some even much smaller ε2 > 0, etc., until all the index sets Ij have been
exhausted.

A similar procedure can be applied to achieve (ii) and (iii). For example, in (iii),
we fix R and a and see how can we make sure that R − a has no affine Tverberg
point.

Let us write R−
i := Ri \ {a}. Each of the subspaces Li := aff(Ri) has dimension

at most |R−
i | − 1.

In general, if two affine subspaces K,L ⊂ R
d of dimensions k, 
, respectively,

are in general position, we have dim(K ∩ L) = max(−1, k + 
 − d), where di-
mension −1 means empty intersection. Thus, we can move L2,L3, . . . ,Lr one by
one (by moving the points of the R−

i ), inductively achieving dim(L1 ∩ · · · ∩ Li) =
max(−1, (

∑i
j=1 |R−

j |) − i − (i − 1)d). Since
∑r

j=1 |R−
j | = N = (r − 1)(d + 1), we

get dim(L1 ∩ · · · ∩ Lr) = −1, which means no affine Tverberg point.
Condition (ii) is achieved with a very similar dimension-counting, which we

omit. �

A Remark on Degenerate SR’s The “exceptional” SR’s that are only (N − 1)-
dimensional, even for C in sufficiently general position, are obtained for the R with
the last class Rr of size d + 2. Then Rr cannot be affinely independent, and thus (by
Lemma 4) the vertex set of SR is not affinely independent—the point z∗ is contained
in the affine span of FR. But this does not matter since, for C in sufficiently general
position, the affine span of FR avoids 0 and thus such an FR cannot influence the
degree. (Or in other words, such a partition R is never Tverberg for C in sufficiently
general position.)
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Continuous Motion of C Later on, in the continuous motion argument, we will need
to consider two BMZ-collections C, C′ and analyze what happens with the degree
when we continuously move the points, starting from C and ending at C′.

As we will see, the moving collection can be kept in sufficiently general position
all the time except for finitely many critical times.

We will also need some control over what happens at the critical times. Let R ∈ R
and let a ∈ C, a �= z. We call the set G := conv(Φ(R − z − a)) a ridge (if SR is an
N -simplex, which is typically the case, then G is a facet of FR and thus a ridge of
SR). We say that C is in almost general position if all ridges avoid 0.

Lemma 6 Let C, C′ be BMZ-collections in sufficiently general position. Then there is
a continuous family C(t) of BMZ-collections, t ∈ [0,1], such that C(0) = C , C(1) = C′,
each C(t) is in almost general position, and there is a finite set T ⊂ [0,1] of critical
times such that C(t) is in sufficiently general position for all t �∈ T .

Proof For simplicity, we move one point at a time. It suffices to establish the lemma
for C, C′ such that ci = c′

i for all i �= 1. Moreover, since all BMZ-collections suffi-
ciently close to C′ are also in a sufficiently general position, it is enough that we can
move c1 to any position c′′

1 sufficiently close to c′
1, in a way satisfying the conclusion

of the lemma, since then the motion from c′′
1 to c′

1 is for free.
Thus, from now on we assume that c1 moves to c′′

1 along a segment at uniform

speed, while all the other points are stationary. Let c
(t)
1 be the position of the moving

point at time t .
First we check that there are only finitely many times where C(t) is not in suffi-

ciently general position. We need to consider conditions (i)–(iii) from the proof of
Lemma 5. For the sake of illustration, we check (iii), leaving the rest to the reader.

Still referring to that proof, we consider the affine subspaces L1, . . . ,Lr (for a par-
ticular R and a). We renumber them so that the moving point is among those defining
Lr , so L1, . . . ,Lr−1 are stationary and L

(t)
r is moving. Let Lr := ⋃

t∈[0,1] L
(t)
r ; since

c
(t)
1 traces a segment, Lr is contained in the affine span of Lr ∪ {c′′

1}, which is an
affine subspace of dimension dim(Lr) + 1. By sufficiently general position of C we
know that dim(L1 ∩ · · · ∩ Lr−1) + dim(Lr) < d , and thus, by altering the position of
c′′

1 by an arbitrarily small amount, we can achieve that L1 ∩ · · · ∩ Lr−1 meets Lr in
at most one point. This adds at most one critical time.

It remains to check that C(t) is always in almost general position, for which the
argument is very similar to the previous one. We want that all ridges avoid 0 all the
time. We strengthen the condition to the affine span of all ridges avoiding 0, which
translates into R − z − a never having an affine Tverberg point. Thus, we again deal
with affine subspaces L1, . . . ,Lr ; we again assume that L1, . . . ,Lr−1 are stationary
and L

(t)
r is moving, and let Lr be the set traced by L

(t)
r during the motion, contained

in an affine subspace of dimension dim(Lr) + 1. However, compared to the previous
argument, now the sum of the dimensions of the Li is one smaller, and this allows
us to achieve L1 ∩ · · · ∩ Lr−1 ∩ Lr = ∅, again by changing the position of c′′

1 by an
arbitrarily small amount. �
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Fig. 6 The combinatorial type of a rainbow r-partition represented by a non-attacking placement of rooks
on chessboards

Sufficiently General Position May be Assumed We will prove Theorem 2 with the
additional assumption that C is in sufficiently general position. By Lemma 5, each
BMZ-collection can be approximated by such BMZ-collections arbitrarily closely,
and thus the validity of Theorem 2 for an arbitrary C follows by a routine limiting
argument, which we omit (see, for example, [15, Lemma 2] for a very similar one).

5 The Degree

For every (N − 1)-dimensional simplex FR, we now define a sign sgn(FR) (often
we also write just sgn(R), since FR is fully determined by R). In the language in-
troduced in the proof outline, the sign +1 means that the side of FR visible from 0 is
negative, and −1 means that it is positive.

The sign is the product of two factors, which we call the geometric sign gsgn(R)

and the combinatorial sign csgn(R).

The geometric sign is easy to define. We set up the N × N matrix M with the co-
ordinates of the ith vertex of FR (we recall that the points in the ground set C

are numbered as c1, . . . , cN+1, which induces a linear ordering of the vertices of
FR), and we put

gsgn(R) := sgn det(M).

The combinatorial sign is slightly more complicated. We recall that the combina-
torial type of R is the set {(i, j) : cj ∈ Ri} ⊆ [r] × [N + 1]. It can be depicted
using an r × (N + 1) array of squares, whose ith row corresponds to the sets Ri

of R and whose j th column corresponds to the j th point of C; see Fig. 6. Then
we place a rook (chess figure) to each square (i, j) with cj ∈ Ri .
Let us think of the array as d+1 chessboards, each with r rows and r −1 columns,
placed side by side, plus one “degenerate” r × 1 chessboard on the right. Then
the maximal rainbow r-partitions exactly correspond to maximal placements of
mutually non-attacking rooks on each of the chessboards (in particular, each of
the r × (r − 1) chessboards has r − 1 rooks on it). The condition that z ∈ Rr then
says that the last narrow chessboard should have the rook in the last row.
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The vertices of FR correspond to the rooks in the first d + 1 chessboards. The
placement of the r − 1 rooks on the kth chessboard defines a permutation πk of
[r]; namely, for j ≤ r − 1, πk(j) is the index of the row containing the rook of
the ith column, and πk(r) is the index of the unique row with no rook.
The combinatorial sign of R is defined as

csgn(R) :=
d+1∏

k=1

sgnπk.

The Degree As in the outline, we define

Σ = Σ(C) :=
⋃

R∈R

FR,

and the degree of Σ is

deg(Σ) :=
∑

R∈R:ρ∩FR �=∅
sgn(FR),

where sgn(FR) = sgn(R) = gsgn(R) csgn(R). In other words, the degree is the sum
of sgn(FR) over all R ∈ R that are Tverberg. Since Σ is determined by C , we will
also write deg(C) instead of deg(Σ).

6 The Continuous Motion Argument

Here we prove the promised invariance of the degree modulo r!.

Proposition 7 If C and C′ are two BMZ-collections (for the same d and r), both in
sufficiently general position, then

deg(C) ≡ deg
(

C′) (mod r!).

First we want to verify that the simplices FR are “glued together” properly. Let us
call the (N − 2)-dimensional faces of FR the ridges.

Lemma 8 Let G be a ridge of some FR. Then there is exactly one R′ ∈ R distinct
from R having G as a ridge, and we have csgn(R′) = − csgn(R). (In topological
terminology, this is the “orientable pseudomanifold” property.)

Proof This is easy to see using the rook interpretation. The simplex FR corresponds
to a maximal placement of rooks on the first d + 1 chessboards, and G is obtained by
removing one of the rooks, say from the kth chessboard. Now the kth chessboard has
one empty column and two empty rows, so there are two possibilities of putting the
rook back—one corresponding to FR, and the other to FR′ .

The permutation πk for R and the one for R′ differ by a single transposition, and
so csgn(R) = − csgn(R′) as claimed. �
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Fig. 7 The moving ray crossing
a ridge

Next, we want to see that the degree of Σ can be computed with respect to an
arbitrary (generic) ray. Let C be a BMZ-collection, exceptionally assumed to be only
in almost general position (which, as we recall, means that all the ridges of the FR’s
avoid the origin).

Let ψ be a ray in RN emanating from 0. We call ψ generic for C if it does not
intersect any ridge. It follows that if such a generic ψ intersects some FR, then FR
must be an (N − 1)-dimensional simplex and ψ intersects it in a single point lying in
the relative interior of FR.

Clearly, almost all rays (in the sense of measure) are generic. Moreover, if ψ is
generic for some C , then it is also generic for all C′ sufficiently close to C ; this will
be useful later on.

Given a generic ray ψ , we define degψ(C) in the same way as we defined deg(C)

using ρ; that is, as
∑

R∈R:ψ∩FR �=∅ sgn(R).

Lemma 9 Let C be a BMZ-collection in sufficiently general position. If ψ and ν are
generic rays for C , then degψ(C) = degν(C).

Proof We can continuously move ψ to ν so that it remains generic all the time, except
for finitely many moments where it intersects some ridge (or perhaps several ridges)
at an interior point. So it suffices to check that the degree cannot change by crossing
a ridge G.

As we know from Lemma 8, the ridge G is shared by exactly two facets FR and
FR′ , with csgn(R) = − csgn(R′). Let v be the vertex of FR not in G, and similarly
for v′ and FR′ . As we saw in the proof of Lemma 8, v and v′ are two different clones
of the same point cj ∈ C.

Let h be the hyperplane spanned by G and 0. First let us suppose that both v and
v′ are on the same side of h (Fig. 7 left). Then the moving ray intersects both of
FR,FR′ before crossing G and none of them after the crossing, or the other way
around.

Let M and M ′ be the matrices used in the definition of the geometric signs of FR
and FR′ , respectively. They differ in a single row, which is v in M and v′ in M ′ (the
row is in the same position since v and v′ are both clones of cj ). Since v and v′ are
on the same side of h, we have sgn(detM) = sgn(detM ′), and thus FR and FR′ have
the same geometric signs.

Altogether we get sgn(R) = − sgn(R′), and thus when the ray intersects both of
FR,FR′ , their contributions to the degree cancel out. By a similar argument, which
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we omit, one gets that in the other case, as in Fig. 7 right, sgn(R) = sgn(R′), and so
in both cases the degree remains constant. �

Let R ∈ R be a rainbow r-partition of a BMZ-collection C (in sufficiently general
position). For a permutation π of [r], let Rπ be the rainbow r-partition obtained by
permuting the classes of R according to π and moving z back to the last class:

Rπ := (
Rπ(1) \ {z},Rπ(2) \ {z}, . . . ,Rπ(r−1) \ {z},Rπ(r) ∪ {z}).

We need to understand how the combinatorial and geometric signs of R
π are related

to those of R.

Lemma 10 For R and Rπ as above, we have

csgn(Rπ ) = sgn(π)d+1 csgn(R), gsgn(Rπ ) = sgn(π)d+1 gsgn(R).

Proof In the representation of R with rooks, passing to Rπ means that we permute
the rows of the first d +1 chessboards. From this we immediately get the first relation,
csgn(Rπ ) = sgn(π)d+1 csgn(R).

For the geometric sign, it suffices to consider the case where π is a transposition
exchanging two indices i, j and show that the geometric sign changes by the factor of
(−1)d+1 (an arbitrary π can be expressed as a composition of such transpositions).

The effect of such a transposition on the vertex set of FR is that the ith clones
of the points of Ri are replaced with the j th clones, and the reverse happens for the
points of Rj (ignoring z).

Let M be the matrix as in the definition of gsgn(R), and let Mπ be the one for
gsgn(Rπ ). Thus, a row of the form x+ ⊗ wi in M is replaced by x+ ⊗ wj in Mπ .
Similarly, x+ ⊗ wj is replaced by x+ ⊗ wi , and all other rows remain unchanged.

Now we use the choice of the vectors w1, . . . ,wr . They form the vertex set of a
regular simplex, and so there is a linear map f : R

r−1 → R
r−1 that interchanges wi

with wj and leaves all the other wk fixed (namely, f is a suitable mirror reflection).
Let A be the matrix of f with respect to the standard basis of R

r−1. Then we can
write Mπ = BM , where B is the block-diagonal matrix with d + 1 blocks A on the
diagonal. Thus, det(Mπ) = det(A)d+1 det(M), and since f is a mirror reflection, and
thus orientation-reversing, we have sgn(detA) = −1. So the geometric sign changes
by (−1)d+1 as claimed. �

Proof of Proposition 7 The main trick in the proof is to alternate moving the ray and
the points, thereby avoiding “too degenerate” situations.

Using Lemma 6, we may assume that C and C′ are connected by a continuous
family C(t). Each C(t) is in almost general position, and it is in sufficiently general
position except for finitely many critical times.

For every t ∈ [0,1], including critical ones, we can choose a generic ray for C(t),
which also remains generic for all C(t ′) with t ′ in some open interval around t . By
compactness, the interval [0,1] can be covered by finitely many of these open inter-
vals I1, . . . , Im, each of them corresponding to some generic ray ψi .
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By Lemma 9, on the overlapping part Ii ∩ Ij we can “measure” the degree using
either ψi or ψj with the same result. Therefore, it suffices to show that if I ⊆ [0,1]
is an interval such that ψ is a generic ray for all C(t) with t ∈ I , then degψ(C(t)) may
change only by multiples of r!.

The degree may change only at critical values of t ; let t0 ∈ I be one of the critical
values. Let us see how the contribution of some FR to degψ(C(t)) may change at t0.
(More formally, we should write FR(t) instead of FR, where R(t) is a rainbow r-
partition of C(t) whose combinatorial type does not depend on t . But we drop the
superscript, keeping the dependence on t implicit.)

A necessary condition for the change is that FR intersects ψ just before or just
after t0. If it intersects ψ both just before and just after t0, then, using the genericity of
ψ , one can see that the geometric sign of FR does not change, and so its contribution
to the degree does not change either. Thus, the only possibility is that FR intersects
ψ just before t0 and does not intersect it just after, or the other way round.

By symmetry, it suffices to consider only the first case. Let us also assume that
sgn(R) = +1 for t < t0 (in some small open interval ending in t0, that is). Then, since
FR stopped intersecting ψ at t0, it must have passed 0, and therefore, its geometric
sign changed. Thus, sgn(R) = −1 for t > t0, and the contribution of FR to deg(C(t))

has decreased by 1 at t0.
Now we consider a permutation π of [r] and the rainbow r-partition Rπ , again

depending on t . By Lemma 10, we have sgn(Rπ ) = sgn(R) all the time, so sgn(Rπ )

also changes from +1 to −1 at t0. Since the geometric sign of FRπ changes at t0
(again by Lemma 10), it means that FRπ passed through 0 at t0. So either it inter-
sected ψ just before t0 and it does not intersect it just after, or vice versa. In both
cases, the contribution of FRπ to deg(C(t)) has also decreased by 1 at t0.

Since there are r! choices for π , it follows that the degree may change only by
multiples of r! as claimed. The proposition is proved. �

7 Computing the Degree of a Special BMZ-Collection

Here is the last step in the proof of Theorem 2.

Lemma 11 There is a BMZ-collection C0 in sufficiently general position such that

|deg C0| =
(
(r − 1)!)d+1

.

Proof The first d + 1 color classes of C0 are small clusters around the vertices of a
regular d-dimensional simplex, as in Fig. 2, and the single point z of the last class is
placed at the center of gravity of that simplex.

It is easy to see (and well known) that the Tverberg rainbow r-partitions R of C0
with R ∈ R have Rr = {z}, and the other Ri each use exactly one point of each Cj ,
j = 1,2, . . . , d + 1. In the rook interpretation, they correspond to rook placements
where the r th row contains only the single rook in the last column, and from this one
immediately gets that their number is ((r − 1)!)d+1.

It remains to see that all of these Tverberg R’s have the same sign. It suffices to
consider the effect of a local change, where we swap two adjacent rows in one of
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the first d + 1 chessboards (which corresponds to moving some cj ∈ Ck from Ri to
Ri+1 and some cj ′ ∈ Ck from Ri+1 to Ri , i + 1 ≤ r − 1). This obviously changes the
combinatorial sign.

It remains to show that the geometric sign is also changed by the swap. Let R be
the Tverberg r-partition before the swap and R↔ the one after the swap, and let M

and M↔ be the corresponding matrices for FR and FR↔ , as in the definition of the
geometric sign. Thus, the j th row is ϕi(cj ) in M and ϕi+1(cj ) in M↔, and the j ′th
row is ϕi+1(cj ′) in M and ϕi(cj ′) in M↔.

Let M ′ denote the matrix obtained from M↔ by interchanging the j th row with the
j ′th row. We have det(M ′) = −det(M↔), and we want to check that sgn det(M ′) =
sgn det(M).

We can regard M ′ as the matrix of vertex coordinates for the (N − 1)-dimensional
simplex FR for a different BMZ-collection C′

0, namely, the one obtained from C0
by interchanging cj with cj ′ . We prove a more general statement: whenever C′

0 is a
BMZ-collection obtained from C0 by moving each of the points cj within its cluster
arbitrarily (and keeping z fixed), then sgn det(M ′) = sgn det(M).

It suffices to check that during a continuous motion of some cj within its clus-
ter, sgn det(M) remains constant. This sign may change only when the simplex FR
becomes degenerate, or when the hyperplane spanned by FR passes through 0.

These two conditions translate, according to Lemma 4, to the following: during the
continuous motion, the points of each class Ri , i < r , remain affinely independent,
and the r-partition R − z never has either an affine Tverberg point or a Tverberg
direction. The former holds because each Ri has one point in each cluster. The latter
holds trivially since the r th class of R − z is empty. This concludes the proof of
Lemma 11. �

Now we have completed all steps from the proof outline, and thus Theorem 2 is
proved.

8 Conclusion

Configurations with Degree 0 Suppose that there is an integer r for which there
exists a BMZ-collection without a Tverberg point. Then the degree of this collection
has to be 0, and thus r cannot be a prime number.

We performed computational experiments in the case r = 4, with d = 2,3. We
generated BMZ-collections at random inside the unit square (or cube). We frequently
obtained collections with degree 0; however, all of them had a Tverberg point. See
Fig. 8 for a configuration with degree zero and few Tverberg partitions. We also
obtained a collection of degree 0 for r = 6 and d = 2. In this case the computation
was already quite time consuming (with our algorithm), and thus we performed only
a small number of experiments.

We believe that BMZ-collections of degree 0 exist for all non-prime r and in all
dimensions, but unfortunately, we do not have a proof for this.

A natural idea for such a proof is to start with two BMZ-collections C1 and C2,
one of a positive degree and one of a negative degree, and then transform C1 to C2



Discrete Comput Geom (2012) 47:245–265 263

Fig. 8 A BMZ-collection with r = 4 and d = 2 of degree zero with only two different Tverberg partitions
(more precisely with only two equivalence classes of ∼)

by a (generic) continuous motion. If we knew that the degree may jump only by ±r!
during the motion, we would reach degree 0 at some moment (since the degree is
always congruent to ((r − 1)!)d modulo r!, as we know, and ((r − 1)!)d is divisible
by r! for d ≥ 2 and non-prime r). However, it turns out that even during a generic
motion, there may be jumps by larger multiples of r!, and so a subtler argument is
needed.

A Direct Definition of Sign? A natural question is, whether one can define the sign
of a rainbow partition directly, without going through the Sarkaria–Onn transform.
However, it seems that if there is such a direct definition (only referring to the mutual
position of the points of the rainbow partition) at all, it has to be rather complicated.
We will illustrate this with an example concerning the simplest nontrivial case, with
d = 2 and r = 3.

Thus, we consider points c1, c2, . . . , c6, z in the plane, and the following BMZ-
collection: C1 = {c1, c2}, C2 = {c3, c4}, C3 = {c5, c6}, C4 = {z}. We consider several
rainbow partitions R ∈ R and the dependence of sgn(R) on the positions of the ci .
From the definition of the sign we get sgn(R) = 0 iff at least on of the conditions
of Lemma 4 holds. Hence it is plausible to assume that the sign changes when the
BMZ-collection moves over a position where R − z has an affine Tverberg point, or
if one of the partition sets of R − z is affinely dependent, or, finally, if R − z has a
Tverberg direction. However, the movement must be sufficiently generic, otherwise
the collection could only “reflect” and the sign would not change. We did not attempt
to describe such a generic movement precisely since we are not aware of convincing
consequences4 (except for the discussion in this section).

First we set R1 := {c1, c3, c5}, R2 := {c2, c4, c6}, and R3 := {z}. In this case
sgn R = 0 iff at least one of the triangles c1c3c5 or c2c4c6 is degenerate. Thus a rea-
sonable guess is that the sign depends only on the cyclic orientations of the triangles
c1c3c5 and c2c4c6.5

4If there were a direct definition of sign using this property then it would be surely of our interest.
5As we pointed out above, we do not have a precise proof. However, our observation is also supported by
a computer program for computing the sign on many examples. A similar remark also applies for other
choices of R.
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Fig. 9 The degree of this partition changes when the three lines pass through a common point

For R1 := {c1, c3, c6}, R2 := {c2, c4}, R3 := {c5, z}, the situation is similar. The
sign depends only on the cyclic orientation of the triangles c1c3c6 and c2c4c5.

Finally, let R1 := {c2, c5}, R2 := {c4, c6}, R3 := {c1, c3, z}. Then the sign depends
on the orientation of the lines c2c5, c4c6 and c1c3. However, it also depends on the
mutual position of these lines, and it changes when all three of them pass through a
common point. See Fig. 9.

Unfortunately, we are not aware of a simple uniform description of the three cases
above.
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