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ABSTRACT
Code density is a significant concern for low-cost IoT MCUs, as it
directly impacts the on-chip memory area (and cost) and indirectly
influences power and performance. Even though RISC-V features
a compressed ISA, the size of RISC-V binaries is often larger, on
several benchmarks, than that of the incumbent MCU ISA. In this
paper, we provide a deeper insight into how the ISA design, to-
gether with the SW environment, influences RISC-V code density,
and we explore several approaches to improve it. First, we explain
how to tune the toolchain at compile- and link-time with optimal
settings, including those needed for including libraries and using
the linker script. Second, we demonstrate that RISC-V non-standard
extensions, such as the Xpulp extension, can boost performance
without any code size penalty. Finally, we propose a new RISC-V
ISA extension that explicitly targets improved code density, with a
special focus on the push/pop instructions, needed to handle mul-
tiple stack memory operations. The extension effectively reduces
the code density gap, both on the Embench open benchmark (from
11.8% to 7.7%) and also on 3GPP industry-strength code aimed at
enabling low power, low data rate machine-to-machine communi-
cation (from 11.5% to 5.8%). Finally, we provide an implementation
of the ISA extension on the open CV32E40P core to evaluate the
impact on the core area and operating frequency. Results show a
minimal increase of 2.5% of the core area and no impact on the
maximum frequency.
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1 INTRODUCTION
The market for embedded systems is thriving today thanks to the
pervasive adoption of Internet of Things (IoT) devices. Compared
to other domains, the design and deployment of solutions based on
embedded systems must take into account tight resource, power,
and energy constraints. The memory becomes a fundamental unit
to use with care as it is usually one of the most expensive parts of
chips [15], and it biases the performance, power, and area (PPA)
results [3, 10].
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In software-programmable edge-computing devices, memories
are designed to be just big enough to host data and code with
some margin size. Thus, the code density of a program becomes
an important knob to tune PPA results. While providing shorter
access time, a smaller memory also consumes less dynamic and
static power [8] and subsumes the reduction of the code size of the
stored applications. In addition, a denser code increases the energy
efficiency thanks to fewer memory accesses [12].

One strategy to achieve a higher code density is to exploit variable-
length Instruction Set Architectures (ISAs), which assign smaller en-
codings to the most common instructions. Complex Instruction Set
Computers (CISCs) like Intel x86 are intrinsically variable-length.
On the other hand, Reduced Instruction Set Computers (RISCs) pro-
vide this feature as an option. For example, the ARM and RISC-V
ISAs offer Thumb2 and RVC extensions respectively to encode some
common 32-bit or 64-bit instructions in only 16 bits, thus reducing
size [1] [14]. In [8], an 8-bit compressed instruction extension has
been proposed showing 30% of code size reduction, without lower-
ing performance at the cost of <5% of core area increase. Another
strategy is to leverage the optimizations provided by the compila-
tion toolchain, which can provide specific knobs for different ISA
targets.

In this paper, we provide: a) an analysis of the main compiler
and linker options to reduce code size; b) a code size comparison of
the two ARM and RISC-V ISAs; c) we evaluate the impact on code
size of the custom RISC-V Xpulp extension that has been presented
in [6] and originally designed for pushing energy efficiency; d) we
propose a new RISC-V extension that targets an increased code size
density as a possible solution to decrease the density gap between
the two ISAs; e) and finally we evaluate the impact on core logic
area of the HW implementation of compressed push/pop/popret
on an open-source core.

2 RELATEDWORK
The interest in reducing the code size has remained high over time
to reduce flash-related operations, memory accesses, and memory
occupation. In 2003, Árpád Beszédes et al. wrote a survey on 12 rep-
resentative methods to compress the code size [2] using Huffman,
arithmetic and dictionary-based coding, pointing out the difficulty
of a fair comparison among them. Compression methods are not
only characterized by their ability to compress the code size, but
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also by their implementation complexity, application domain, etc.
For this reason, they should be carefully evaluated depending on
the custom needs.

Optimization techniques in the compiler domain also play an
important role to minimize the final binary size as shown in [5].

Another way to achieve lower code sizes is to modify the ISA
itself. For example, to lower the memory footprint, ARM introduced
16-bit Thumb ISA, and then Thumb2, a variable-length ISA with
both 16- and 32-bit instructions with improvements on both code
size and performance [11]. As noted in [13], Thumb and Thumb2
need a complex decoder aware of three different ISAs. The RISC-V
ISA instead uses the same opcode space as the base ISA to incor-
porate the official RVC extension for low code sizes. In designing
the RVC RISC-V extension, the exclusion of load-/store- multiple
instructions was the hardest decision the designers took [12]. They
excluded them mainly to not complicate the compiler/processor
design and because there were no RISC-V 32-bit corresponding
instructions [14].

In 2019, Peijie Li analyzed the RVC extension and proposed
some modifications to further reduce code footprint, improving
the compression ratio of non floating-point intensive programs
of 5% without hurting execution time. The idea is to drop some
floating-point compressed instructions, recycling their encodings
to compress other more common uncompressed instructions. In the
same year, David Patterson introduced the Embench Benchmark
suite and reported results showing that ARMThumb2 still generates
smaller code than RV32IMC on average [4]. To the best of our
knowledge, there are no other proposals to further reduce RISC-V
program code size extending the ISA.

In this work, we propose a new RISC-V ISA extension to reduce
the code size, we evaluate it on a set of benchmarks, and finally,
we implement the instructions that impact the most the code size
(compressed push/pop/popret) on an open-source RISC-V 32-bit
core to evaluate the impact in terms of core area and frequency.

3 BACKGROUND
In this work, we refer to the code size of a program as the size (in
bytes) of the code part of a binary. Where we refer to code density,
we refer to the average fraction of the program completed in a size
unit, i.e. the reciprocal of the code size. In the next subsections, we
review the baseline ISA and the compilation and linking process
with a focus on code density.

3.1 ISA
ARM and RISC-V ISAs are two popular choices in the Embedded do-
main. Throughout this paper, we use the RISC-V ISA with HWmul-
tiplier support and Compressed instructions for RISC-V (RV32IMC),
and ARM Thumb2 ISA for a Cortex-M3 target. These are realis-
tic configurations for simple embedded processors. In addition to
the RVC ISA extension, we evaluate the RISC-V Xpulp extension
presented in [6]. The goal of such an extension is to boost the en-
ergy efficiency of data processing applications in the context of
edge-computing. Such extension includes: load and store instruc-
tions with an automatic increment of the memory pointer, which
allows saving further explicit addition instructions; zero-overhead
hardware-loops, which remove the branch penalties and the extra

instructions to control the loops; bit manipulation instructions, that
fuse in single instructions clear, set and extract operations on sets
of bits; fixed-point arithmetic support to round and normalize in a
single instruction fixed-point operations like additions and multi-
plications; and packed-SIMD extensions, which enables to process
multiple data with single instructions, as for example vectorial ad-
ditions, comparisons, or dot products. These instructions have been
designed mainly to increase performance at the price of a small
increase in the core area and power consumption for a major gain
in energy efficiency (up to 10x [6]).

3.2 Tuning Compiler and Linker
We summarize below the main compiler and linker options, the
needed libraries, and the linker script settings to obtain a binary
with low code size.

3.2.1 Toolchain options.

• Compile for size (-Os): to enable optimizations to reduce the
code size of the program.

• SW stack-manipulation routines (-msave-restore): to intro-
duce special prologue and epilogue SW routines to handle
stack operations and avoid the repetition of stack-memory
instructions at the beginning and at the end of the functions.
This option is RISC-V specific.

• Garbage collection (-gc-sections): to eliminate the unrefer-
enced functions and data from the final code to further re-
duce its size. To achieve this, pass -ffunction-sections and
-fdata-sections to the compiler and -gc-sections to the linker.

• Link Time Optimization (-flto): to allow optimizations among
different translation units. Without this option, the compiler
acts on each source file without assuming anything about
the external referenced code. Thus, compiler optimizations
are performed only within the single translation unit. -flto
is passed to the compiler to save additional information in
the intermediate binary files to allow a more comprehensive
optimization at link time and then is also passed to the linker
to enable the optimization itself. When compiling for code
size with LTO, enable -Os also at link-time.

3.2.2 Software libraries. Embedded applications make use of spe-
cific software libraries targeted at embedded use-cases. These in-
clude Newlib and the even simpler and smaller Newlib-nano which
further reduces the memory footprint.

3.2.3 Linker Script. The linker creates the memory image of a
program under the directives of a configuration file called linker
script. Each input file to the linker is a binary code composed of
different sections. The code is usually kept together in the .text
section, the read-only data in the .rodata section, the initialized
data in .data, etc.

Some ISAs, like RISC-V and MIPS, instantiate a special Global
Pointer (GP) register containing a fixed memory address used as
a base address for memory operations. This allows accessing ad-
dresses within ±2 KiB from the GP with a single instruction, as
RISC-V load/store immediates are 12-bit long. The relative position
of the GP with respect to the data sections influences both code
size and performances, thus designers should place the most fre-
quently referenced data sections (like .sbss and .sdata) within a ±2
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KiB range from the GP to maximize the code size density when
writing a custom linker script.

4 THE IMPACT OF ISA EXTENSIONS
To assess the impact of ISA extensions, we first built an industry-
standard program and a set of benchmarks using the RISC-V and
ARM toolchains for a fair comparison. Then, we evaluated both the
Xpulp RISC-V extension, developed for boosting the performance
of DSP processing code and our new RISC-V extension designed to
decrease the code size. For this purpose, we built the same program
and benchmarks for both the extensions, enabling one set of HW
instructions at a time and comparing it with the reference code with
no added instructions, to evaluate their impact on the code size. We
provided also a code density comparison with ARM Thumb2.

4.1 Experiment Setup
4.1.1 Toolchains. For the analysis, we used the ARM, PULP and
HCC toolchain to build the source code, then we measured the
byte size of the code-related sections (.text and related, if present).
Since both PULP and HCC toolchains are based on GCC 7 [9], we
installed the ARM compiler based on the same GCC version.

• ARM Toolchain (GCC 7.2): used to build ARM-Thumb2 bina-
ries, targeting Cortex-M3 and armv7-m.

• PULP Toolchain (GCC 7.1.1): modified GCC compiler sup-
porting the Xpulp extension. used to build pure RISC-V and
Xpulp extended binaries.

• HCC Toolchain (GCC 7.3): modified GCC compiler with our
new RISC-V extension. Used to build HCC binaries.

To collect data relative to the base RISC-V compiler, we used
the PULP compiler without enabling the support for the Xpulp
extension; with this configuration, it is equivalent to a standard
RISC-V compiler.

HCC extension. The compiler provides a different command-
line option for every single set of new assembly instructions, e.g.
-mpush-pop enables the support for push/pop/popret instructions.
Passing all the options related to the new instructions enables the
whole HCC RISC-V extension.

Xpulp extension. The PULP toolchain provides command-line op-
tions to disable part of the Xpulp instructions, e.g. -mnohwloop dis-
ables the support for HW-loops instructions. To assess the code size
impact of each PULP instruction, we use as reference the RV32IMC
code with only the Xpulp generic instructions like branch against
immediate or average enabled (PULP reference).

Libraries. To avoid recompiling the libraries for each set of in-
structions, we used RV32IMC libraries when evaluating the impact
of both PULP and HCC single instructions. However, we linked
fully coherent libraries to analyze the whole Xpulp and HCC exten-
sions, i.e. when we compiled the code using the full Xpulp or HCC
extensions, the libraries included all the Xpulp or HCC instructions.
Since Embench programs were linked with dummy libraries, this
choice impacted only on the IoT code results related to the effect of
the single instructions. Further details about the used Benchmarks
are discussed in Section 4.1.2.

Table 1: Size of RISC-V and ARM compiled programs.

ISA condition IoT [B] Embench [B]

ARM-Thumb2 209696 1766
RV32IMC 233628 (+11.41%) 1966 (+11.33%)

Toolchain options. To compile ARM code, we passed to the com-
piler -mcpu=cortex-m3 -march=armv7-m -mthumb -Os -ffunction-
sections -fdata-sections. For RISC-V, we used -march=rv32imc -Os
-msave-restore. For both the ISAs, we provided the linker with -gc-
section.

LTO. The compiler returned unexpected errors during the link-
phase of IoT code when using ARM GCC 7.2 and LTO. More gen-
erally, all GCC versions returned errors during the link-phase of
Embench linked with dummy libraries (see 4.1.2). Therefore, in
our first analyses, we used all the optimization flags to reduce the
code size, except for -flto. Then, we provided data related to LTO in
Section 4.5 only for IoT code compiled using ARM GCC 8.2, which
did not throw any unexpected error.

4.1.2 Programs and Benchmarks. To evaluate the code size reduc-
tion by the different applied techniques, we use:

• IoT : an industrial use case software developed by Huawei to
implement a 3GPP standard aimed at enabling low power
and low data rate machine-to-machine communication. Its
ARM Binary compiled with Thumb2 instructions and static
libraries is more than 200 KiB.

• Embench 0.5: a recent 1 open-source set of 19 programs de-
veloped to give real feedback on the world of Embedded
applications, providing a valid representative set and a re-
producible metric to express code size and performance re-
sults. In our analysis, we compiled Embench programs with
the Embench dummy libraries as suggested in the related
documentation, to remove the bias of heavy external code
that can be differently optimized for different ISA. The code
size of Embench programs is very different with respect to
the IoT code size, spacing from 212 B (crc32) to 15.42 KiB
(nsichneu), compiled with ARM Thumb2. To favour coher-
ence of measurement with IoT, instead of the official score
format we used the geometric mean of the absolute sizes of
the Embench programs and calculated relative results on our
references.

4.2 RISC-V vs. ARM
We compiled both IoT and Embench code targeting RV32IMC and
ARM Thumb2 ISAs. Table 1 shows that the baseline RISC-V code is
more than 11% bigger than the ARM counterpart in both IoT code
and Embench.

4.3 RISC-V Xpulp extension
We analyze here the code size impact of the Xpulp RISC-V extension.
Table 2 shows that even though some instructions slightly increase
the code size, the overall effect is positive even on this metric, with

1announced in June 2019 during the RISC-V Workshop
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Table 2: Size effect of PULP instructions on PULP reference,
i.e. RV32IMCXpulp with all the adjustable PULP instruc-
tions disabled (see Section 4.1.1). The relative results are cal-
culated over PULP reference. The relative results of Xpulp
in the last row are calculated over the RV32IMC reference.

ISA condition IoT [B] Embench [B]

PULP reference 231900 1956
HW-loops 231896 (0.00%) 1956 (0,00%)
MAC 231820 (-0.03%) 1948 (-0,41%)
Bit Manip. 231980 (0.03%) 1923 (-1,69%)
ALU 231240 (-0.28%) 1950 (-0,31%)
SIMD 231900 (0.00%) 1956 (0,00%)
Mem post incr. 232076 (0.08%) 1931 (-1,28%)
Mem reg. offset 231620 (-0.12%) 1945 (-0,56%)
Xpulp 230264 (-1.44%*) 1896 (-3,56%*)

a final size improvement of -1.44% for IoT code and -3.56% for
Embench, with respect to their RV32IMC binaries.

Some extensions like HW-loops have a negligible impact on
the total code size, even if single functions change size. Some-
times the code size increases as adding newly defined instruc-
tions can change the register allocation during the compilation
phase. In RISC-V, many instructions can be compressed only if their
source/destination registers are part of a small subset, and so any
change to the register allocation may change whether compressed
versions of instructions are available. Therefore, adding new in-
structions may indirectly cause some code size to increase if the
compiler assigns strategic registers to the new instructions without
successfully targeting the optimization of the whole code size.

Bit manipulation instructions slightly increase the IoT code size.
Throughout the code, some 16-bit compressed andi instructions are
replaced by 32-bit p.bclr Xpulp instructions that increase the code
size. The important size reduction of Embench is almost completely
caused by one of its 19 programs. Some of them slightly increase
or decrease their size, but the code of Nettle-sha256 reduces from
5490 Bytes to 4124 Bytes. This reduction is due to the intensive use
of the PULP rotate instruction p.ror.

The IoT code size increasing related to the post-increment mem-
ory operations is also related to a compiler issue. Some sequences
of 16-bit compressed memory operations are replaced by the respec-
tive 32-bit post-increment load/store instructions. This behaviour
is sub-optimal when compiling for code size. Embench presents
more loops with memory operations that use a base address itera-
tively modified by add instructions. These sequences are effectively
compressed into post-increment loads/stores, reducing the overall
code size.

SIMD instructions are not used in the code and therefore have
no measurable effect on it.

Overall, the Xpulp extension reduces the code size of RISC-V pro-
grams and boosts their performance, and with some optimization to
the PULP toolchain for better placement of the custom instructions
the code density can even be improved.

4.4 RISC-V HCC extension
We propose a new RISC-V extension that explicitly targets the
reduction of the code size of a program, with results summarized
in Table 3. The new instructions introduced are:

• 16-bit push/pop/popret (-mpush-pop): the new push can save
onto the stack pre-defined sequences of the callee-saved
registers (s0-s11) and the most frequently spilled ones (ra,
a0-a1). Moreover, it automatically adjusts the stack pointer
taking into account additional stack space for automatic
variables. pop loads the same sequence into the registers and,
if it is a popret, returns to the caller.

• 48-bit long load immediate (-femit-lli): when RISC-V code
loads into a register an immediate outside the range ±128𝐾𝑖 ,
it needs 8 Bytes. This instruction allows using 6 Bytes only.
The HW implementation cost is not negligible if the proces-
sor does not already support 48-bit instructions.

• Compressed load-byte-unsigned/store-byte and load-halfword-
unsigned/store-halfword (-Wa,-enable-c-lbu-sb and -Wa,-enable-
c-lhu-sh): these memory operations are common in RISC-V
programs, as witnessed also by other works [7]. HCC exten-
sion allows compressing them, with limitations on the choice
of the registers and the immediate. If the processor already
supports 16-bit instructions, the HW implementation cost
is not high: there’s only the need for modifying the actual
decoder to recognize these compressed instructions because
they are already supported by the back-end.

• Branch Immediate (-fimm-compare): RISC-V does not give
the possibility to conditionally branch on the comparison
between a register value and an immediate in a single in-
struction. Therefore, the compiler puts a 2-Byte LI and a
4-Byte branch instruction. ARM does the same using 4 Bytes
only, and this instruction provides the same feature also for
RISC-V. Xpulp already implements a reduced form of this
instruction.

• Muliadd (-femit-muliadd): instruction to multiply a register
value by a constant, and then add the value from another
register. This appears when the code indexes the value from
an array. Muliadd can save at least 2 Bytes each sequence.

• Enjal16 (-Wl,-enjal16): particular instruction to support jumps
to ±16MiB of code from the actual program counter, break-
ing the limitation of the standard ±1MiB. This is both useful
when the code is very sparse and large, and when sections
of memory (e.g. internal RAM / external RAM) are far apart
in the memory map. This sometimes happens in some em-
bedded applications, and this instruction is used to jump
between these distant sections.

• Immediate shift (-fmerge-immshf ): 32-bit instruction that
shifts one of the operands and then performs an arithmeti-
cal/logical operation. For example, RISC-V uses at least 6
Bytes to shift a register operand and then add it to another
register operand. With this instruction, it uses 4 Bytes only
like ARM.

• Unsigned-extend byte/halfword (-femit-uxtb-uxth): instruc-
tion to unsigned-extend byte/halfword stored in a register.
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Table 3: Size effect of HCC instructions on RV32IMC HCC
reference. The relative results are calculated over HCC ref-
erence.

ISA condition IoT [B] Embench [B]

HCC reference 233804 1975
-mpush-pop 221860 (-5.11%) 1902 (-3.70%)
-Wa,-enable-c-lbu-sb 230328 (-1.49%) 1960 (-0.76%)
-Wa,-enable-c-lhu-sh 232084 (-0.74%) 1971 (-0.20%)
-femit-lli 232556 (-0.53%) 1988 (0.66%)
-fimm-compare 230636 (-1.35%) 1967 (-0.41%)
-Wl,–enjal16 233804 ( 0.00%) 1975 (0.00%)
-femit-muliadd 233396 (-0.17%) 1975 (0.00%)
-fmerge-immshf 232992 (-0.35%) 1915 (-3.04%)
-femit-uxtb-uxth 232864 (-0.40%) 1970 (-0.25%)
-fldm-stm-optimize 233796 ( 0.00%) 1964 (-0.56%)
HCC extension 206020 (-11.88%) 1805 (-8.61%)

• Load/Store-multiple (-fldm-stm-optimize): merge multiple
load and store instructions into load multiple (ldm) and store
multiple (stm) instructions.

Note that when using push/pop/popret instructions, it is impor-
tant to disable the -msave-restore flag. Data suggests that the set of
instructions that gives the best result on different types of codes
is the push/pop/popret with a code size decrease of 5.11% and
3.7%. This is because almost all the functions manipulate the stack.
Embench code shows a more limited benefit because some of the in-
ternal functions push to the stack (and then pop from it) sequences
of registers that are unsupported by the new instructions. These
uncompressed load/store sequences are merged into ldm/stm when
the corresponding support is enabled, leading to 0.56% of size im-
provement, but cannot be converted into push/pop instructions.
The support for ldm/stm does not bring to appreciable benefits
into the IoT code if used in combination with either -msave-restore
or -mpush-pop. In this case, these instructions are only used by a
single function. Even without both the options, the IoT binary pro-
duced with only -fldm-stm-optimize enabled is worse than the HCC
reference (compiled with -msave-restore) by 2.6%. Therefore, data
suggests implementing compressed push/pop/popret to achieve a
better code density.

Enjal16 instructions do not show any measurable effect in these
codes, maybe because they are designed to satisfy special programs
that are either large or implement a custom memory map with
areas mapped to widely spaced addresses.

The impact of other instructions also depends on the source
code. The advantage of compressing memory operations on bytes
and halfwords is dependant on how many of these operations are
originally present in the code, but our data confirms the trend
highlighted also in [7]: load/store on bytes are more frequent than
on halfwords. The same dependence is shown by the arithmeti-
cal/logical operations: muliadd is not used in Embench programs
and the immshf instructions show different reductions on IoT (-
0.35%) and Embench (-3.04%).

The Embench code size increment related to l.li instructions
is due to issues in implementing the instruction support in the

Table 4: Size effect of push/pop/popret instructions on
RISC-V PULP ISA. The relative results are calculated over
RV32IMC Xpulp.

ISA condition IoT [B] Embench [B]

RV32IMC Xpulp 230264 1896
RV32IMC Xpulp push/pop 220956 (-4.04%) 1860 (-1.89%)

compiler, which modifies also sequences of memory operations
not directly linked to the replacement of longer 8-Byte lui+addi
sequences with l.li.

Enabling all the new HCC instructions brings to a considerable
code size reduction on both IoT and Embench. RISC-V IoT code
with HCC extension becomes smaller than the ARM counterpart
by 1.75% (Table 5). Moreover, these results are worsened by the sub-
optimal compiler support for the l.li instruction, which in principle
should not be able to increase the code size of a program.

Figure 1: Push/pop/popret instructions encoding.

4.4.1 16-bit push/pop/popret. Data suggests that push/pop/popret
instructions are the ones having the most significant effect on code
size reduction.

Push/pop/popret HW instructions are better than save/restore
routines because save/restore routines have their memory footprint
and every time a function jumps to them, it uses either a 32-bit jump
(when t0 is used as link register or when the functions are out of ±2
KiB range) or a 16-bit jump (more frequent for unconditional jumps
to restore because t0 cannot be used). If the function is very far, it
can use also more than 32 bits. In the worst-case scenario, when the
jump to the restore routine is not the last instruction of the func-
tion, save/restore routines add 4 jumps per function: to/from save,
to/from restore. Moreover, save/restore routines can re-adjust the
stack pointer after the call and perform redundant operations. On
the contrary, 16-bit push and pop/popret provide a small and con-
trolled prologue and epilogue to the functions, without unnecessary
jumps. This instruction does not completely adhere to the RISC-V
philosophy of simplicity: it is a multi-cycle instruction that injects
sequences of memory operations, an addition, and, possibly, a jump.
In Figure 1, we report the encoding of the instructions. The field
opc stores the instruction type (push, pop or popret), rcount specifies
one of the fixed sequences of registers to be pushed/popped, and
the unsigned 5-bit value encoded in sp16imm tells the processor to
adjust the stack pointer by additional 16-Byte blocks, space that
can be used for automatic variables by the function. We added the
push/pop/popret support to the PULP toolchain with the results
shown in Table 4. The summary of the code sizes of RISC-V with
respect to ARM Thumb2 is presented in Table 5.

4.4.2 Implementation on CV32E40P. To evaluate the impact in area
of the proposed push, pop, and popret instructions, we implemented
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Table 5: Code size inflation of different ISA and instructions
w.r.t. ARM-Thumb2.

ISA condition IoT [B] Embench [B]

ARM-Thumb2 209696 1766
RV32IMC HCC 206020 (-1.75%) 1805 (2.21%)
RV32IMC 233628 (11.41%) 1966 (11.33%)
RV32IMC push/pop 221860 (5.80%) 1902 (7.70%)
RV32IMC Xpulp 230264 (9.81%) 1896 (7.36%)
RV32IMC Xpulp push/pop 220956 (5.37%) 1860 (5.32%)

them on the open-source CV32E40P core2. The CV32E40P core (Fig-
ure 2) implements the RISC-V RV32IMCXpulp ISA [6] and it has
been designed for energy-efficient execution of data processing
algorithms on edge-devices. These instructions have been imple-
mented leveraging the existing datapath to perform load and store
operations, updates to the stack pointer, and jump operations to re-
turn from functions. A finite-state-machine has been implemented
in the core to first emit the memory operations in sequence, then it
schedules an addition operation to update the stack pointer, and
eventually jumps to the return address. To simplify the HW imple-
mentation, the execution of push and pop instructions cannot be
interrupted by interrupts. Also, as the core does not support mem-
ory bus errors, no exception can be triggered. Under the same tim-
ing constraints, the original CV32E40P core and the one extended
with the proposed instructions have been synthesized targeting the
22nm GLOBALFOUNDRIES FDX technology node. Results show
that the new instructions do not impact the maximum frequency,
and add only 2.5% of core area (~335 nand2-equivalent gates), pro-
viding improvements in stack handling operations in performance,
power, and code-size.

Figure 2: CV32E40P block diagram.

4.5 LTO
At the end of the analysis, we applied Link Time Optimization to
the IoT code, both for ARM and HCC. The results are reported in
Table 6.

Link Time Optimization seems to be a powerful tool, but also
highly code-dependant: other non-reported analyses showed lower
code size benefit (a different Huawei program code is reduced only
by 2% in size). This optimization greatly reduces IoT code size,
with a shrinking of almost 11.18% for the Xpulp-push/pop code.
2The OpenHW Group CV32E40P core is freely downloadable at
https://github.com/openhwgroup/cv32e40p/ under the SolderPad licence

Table 6: LTO results (-flto -Os) for ARM and HCC, PULP
RISC-V extensions.

ISA condition (with LTO) IoT size [B] Inflation over ARM

ARM-Thumb2 184184 0.00%
RV32IMC push/pop 197156 7.04%
RV32IMC HCC 190136 3.23%
RV32IMC Xpulp push/pop 196236 6.54%

However, the code size gap with ARM is slightly increased, because
LTO works better on ARM. LTO can also increase performance,
therefore if the binary is not supposed to be debugged later, it is
a good choice to enable this option. As we already said, for this
comparison we used ARM GCC 8.2, because the previous version
raised errors during the compilation.

5 CONCLUSION
Despite the RISC-V RVC extension and compiler optimizations,
RISC-V code can be more than 11% larger than the ARM counter-
part on embedded-domain benchmarks. In this paper, we analyzed
how the Xpulp ISA extensions affect the code size, showing their
benefit on code footprint while increasing performance at the same
time. Then we proposed a RISC-V extension, specifically designed
to decrease the code size. This extension targets a different range of
applications, and our experimental results highlight that it closes
the code density gap with ARM to almost zero. Specifically, RISC-V
HCC IoT code is smaller than ARM IoT code by 1.75%. We im-
plemented compressed push/pop/popret, the extension giving the
largest single-handed code density improvement, on the CV32E40P
core to provide an evaluation of its impact on core area and fre-
quency. The enhanced CV32E40P core hits a sweet spot for code
density as well as boosted performance, with a code size just 5.37%
larger than the ARM Thumb2 code, a core area increasing of only
2.5%, and no impact on the operating frequency, therefore main-
taining the 10x boost for DSP applications.
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