
DISS. ETH NO. 27118

Region of Attraction Analysis of Uncertain
Equilibrium Points and Limit Cycles

with Application to Airborne Wind Energy Systems

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Eva Laura Ahbe

MSc, Ruprecht-Karls-Universität Heidelberg, Germany
born on 28. November 1988

citizen of Germany and Hungary

accepted on the recommendation of

Prof. Dr. Roy S. Smith, examiner (ETH Zurich, Switzerland)
Prof. Dr. John Lygeros, co-examiner (ETH Zurich, Switzerland)

Prof. Dr. Lorenzo Fagiano, co-examiner (Politecnico di Milano, Italy)

2020



© September 2020
Eva Laura Ahbe
All Rights Reserved

ISBN 978-3-907234-34-1
DOI 10.3929/ethz-b-000461553



To my parents





Acknowledgements

First and foremost, I would like to express my gratitude to Prof. Roy Smith for giving
me the opportunity to pursue my PhD at the Automatic Control Laboratory (IfA).
I am deeply thankful for his continuous support, invaluable expertise and encouraging
guidance which at the same time allowed me a great deal of freedom to follow my research
interests during my PhD. His passion for periodic systems and stochastic problems have
inspired and motivated me throughout these years.

I would like to thank my first co-examiner, Prof. John Lygeros for agreeing to serve
on my PhD committee. His expertise in the field of control have always deeply impressed
me. I found that Prof. Lygeros, together with Prof. Smith, Prof. Florian Dörfler and
Prof. Maryam Kamgarpour, created an outstanding academic environment at IfA and I
have counted myself lucky every day for the possibility to be part of it. My appreciation
also goes to my second co-examiner, Prof. Lorenzo Fagiano, for his availability to referee
this PhD. Prof. Fagiano’s work in the field of Airborne Wind Energy (AWE) has always
been an inspiration to me and I feel honored to have him on my committee.

Little did I know about what was waiting for me when I applied for a position
within the EU’s Innovative Training Network AWESCO, but I soon came to appreciate
the opportunity far beyond of what I could have imagined. In this regard, I would
like to give my thanks to all the PI’s for investing their time and effort to provide us
with numerous instructive workshops, summer schools and conferences over the years.
They brought us right to the heart of the AWE community and greatly supported us in
our contributions to the field. In this regard, I am especially thankful to Prof. Colin
Jones, for introducing me to the sum-of-squares techniques during my first secondment
at EPFL. My sincerest thanks also go to my colleague ESRs in AWESCO for all the
inspiring, creative and motivating times we spent together during the many meetings.

Many colleagues at IfA have contributed to making these PhD years truly rewarding.
I am deeply grateful to Dr. Andrea Iannelli for his collaboration both in the works on
stochastic systems and projects on system identification. He always had his door open
for a brainstorming and discussion about the newest ideas and results, during which he
provided me with most valuable feedback. I would further like to thank Dr. Tony Wood
for the collaboration on the AWE topics. He always took the time to answer my many
questions about kite systems and discuss control approaches. My diving into the AWE
field in the first year was also greatly facilitated by Dr. Henrik Hesse and his expertise on

i



Acknowledgements

aerodynamics, for which I am very grateful. I would further like to thank Samuel Balula
for the collaboration on the Paramotor student projects and for his catching enthusiasm
for hardware. Special thanks go to Dr. Annika Eichler for making the sharing of an
office truly enjoyable, to Dr. Yvonne Stürz for sharing the ups and downs of a PhD, and
to Irina Subotic for the many fun conversations both in person and virtually during the
Covid lockdown.

Many thanks also go to Dr. Mathias Hudoba de Badyn, Dr. Suli Zou, Dr. Sandro
Merkli, Dr. Tobias Sutter, Dr. Ben Flamm, Dr. Goran Banjac, Dr. Adrian Hauswirth, Dr.
Paul Bechat, Dr. Alex Liniger, Mohammad Khosravi, Angeliki Kamoutsi, Anil Parsi, and
Lukas Ortmann, Miguel Picallo Cruz, Nicoló Pagan, Andrea Martinelli, Pier Giuseppe
Sessa, Yin Mingzhou and Sandeep Menta for the fruitful, enjoyable discussions, their
readiness to help, and their collaboration in the TA assignments. My heartfelt thanks
also go to Sabrina Baumann and Tanja Turner for their continuous support even beyond
the expected and making IfA run so smoothly.

The AWE topic gave various chances for collaborations with other Laboratories at
ETH. I would like to thank Dr. Thomas Stastny and Manuel Dangel for their collabo-
ration on the Easyglider project, and Dr. Urban Fasel together with the Ftero guys for
sharing their kite model and their knowledge in the field.

I would also like to express my heartfelt gratitude to Prof. Ken Caldeira and Prof.
Thomas Leistner for their support in getting me on this PhD journey.

Finally, I would not have gotten here without the unconditional love and support of
my family, Stephan, Zsuzsanna, Dora, and my partner Claudio, for which I find myself
without words that could truly express my gratitude.

Eva Ahbe
Zurich, October 2020

ii



Abstract
Guaranteeing reliability of a system’s operation is a challenge in many engineering ap-
plications. A measure for the reliability is given by the set of all initial conditions from
which a perturbed system converges back to the desired operating point. This set is
referred to as region of attraction (ROA). The task of obtaining information on its size
depends highly on the kind of system under consideration and is posing an ongoing
stream of new challenges to the field. In this thesis, we consider various classes of non-
linear systems for which we propose theoretical conditions and their efficient algorithmic
implementation to obtain an inner estimate of the ROA of their equilibrium. The com-
putational verification of the conditions is based on results from real algebraic geometry
and on sum-of-squares (SOS) programming techniques.

The first class of system consists of stochastic systems with finite second moment, for
which we consider uncertainty dependent equilibrium points. The framework of Polyno-
mial Chaos Expansion (PCE) is used on the stochastic system to represent it by a higher-
dimensional set of deterministic equations. We first show how the equilibrium point of
the deterministic formulation relates to an uncertainty-dependent stochastic equilibrium
point. A connection between the boundedness of the moments of the stochastic system
and the Lyapunov stability of the PCE system is then derived with corresponding no-
tions of the ROA. We show how this connection can be leveraged to recover an inner
estimate of the ROA of the stochastic system from the ROA of the PCE system. From
a first optimization program, which implements the Lyapunov stability arguments, an
inner estimate of the ROA of the PCE system is obtained. Based on this result and
user specifications on the moments for the initial conditions, a second program employs
the shown connection to provide the corresponding ROA of the stochastic system. The
developed method is then applied to the problem of controller synthesis where the aim is
to design a stochastic state feedback controller which maximizes the ROA of the closed-
loop stochastic system. An optimization program is proposed and implemented to obtain
feedback gains and the corresponding maximized ROA estimate.

Stable periodic solutions characterize the second class of systems considered in this
thesis. Deterministic systems as well as systems affected by bounded affine parametric
uncertainty, which have stable limit cycles are considered. The analysis is facilitated
in both cases by a transformation to transverse coordinates defined on a moving or-
thonormal system which is similar to the concept of moving Poincaré maps. For the
transformation we first consider the classical approach and then proceed by proposing a
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Abstract

novel construction of a moving coordinate system with improved well-definedness prop-
erties. For deterministic system we formulate conditions for an inner estimate of the
ROA based on Lyapunov theory. Due to the location of the limit cycle being affected
by the uncertainty, contraction methods are employed to derive conditions on the region
of contraction (ROC) in the uncertain case. We demonstrate by several examples the
various features of the approaches developed in this thesis, and show how improved esti-
mates compared to existing methods are obtained. As a third class of systems with limit
cycles, we consider stochastic systems with finite second moment and periodic behavior.
An approach to analyze the stability of limit cycles of this class of systems is proposed
which connects stochastic orbital stability with the transverse contraction of the system’s
PCE representation.

The optimization problems for the ROA and ROC analysis methods are formulated
in the form of generalized SOS programs. The algorithms are outlined and the collection
of the scripts containing the implementation of the methods is provided.

The application of the analysis methods for limit cycle systems is demonstrated by
the example of Airborne Wind Energy systems, which are an emerging renewable energy
technology. Being on the verge of commercialization, measures for the reliability of their
operation experience a growing demand. We consider the system in the crosswind flight
phase and verify regions, in which the employed flight controller is guaranteed to stabilize
the system model, by applying the methods developed in this thesis.
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Zusammenfassung
Die Gewährleistung der Zuverlässigkeit des Systembetriebs ist in vielen technischen An-
wendungen eine Herausforderung. Ein Maß für die Zuverlässigkeit ist die Menge aller
Anfangsbedingungen, unter denen ein gestörtes System zum gewünschten Betriebspunkt
zurückkonvergiert. Diese Menge wird als region of attraction (ROA) bezeichnet. Die
Aufgabe, Informationen über seine Größe zu erhalten, hängt in hohem Maße von der
Art des betrachteten Systems ab und stellt das Forschungsfeld kontinuierlich vor neue
Herausforderungen. In dieser Arbeit betrachten wir verschiedene Klassen nichtlinearer
Systeme, für die wir theoretische Bedingungen und ihre effiziente algorithmische Imple-
mentierung vorschlagen, um eine innere Schätzung der ROA ihres Gleichgewichtpunktes
zu erhalten. Die rechnerische Überprüfung der Bedingungen basiert auf Ergebnissen der
realen algebraischen Geometrie und auf sum-of-squares (SOS) Programmiertechniken.

Die erste Klasse von Systemen besteht aus stochastischen Systemen mit endlichem
zweiten Moment, für die wir unsicherheitsabhängige Gleichgewichtspunkte betrachten.
Die Methodik zur Unsicherheitsdarstellung namens Polynomial Chaos Expansion (PCE)
wird auf das stochastische System angewendet, um es durch einen höherdimensionalen
Satz deterministischer Differentialgleichungen darzustellen. Wir zeigen zunächst, wie
sich der Gleichgewichtspunkt der deterministischen Formulierung auf einen unsicher-
heitsabhängigen stochastischen Gleichgewichtspunkt bezieht. Ein Zusammenhang zwis-
chen der Begrenztheit der Momente des stochastischen Systems und der Lyapunov-
Stabilität des PCE -Systems wird dann mit entsprechenden Begriffen für die ROA
abgeleitet. Wir zeigen, wie diese Verbindung genutzt werden kann, um eine innere
Schätzung der ROA des stochastischen Systems aus der ROA des PCE-Systems zu gewin-
nen. Aus einem ersten Optimierungsprogramm, das die Lyapunov-Stabilitätsargumente
implementiert, wird eine innere Schätzung der ROA des PCE-Systems erhalten. Basierend
auf diesem Ergebnis und den Benutzerspezifikationen für die Momente der Anfangsbedin-
gungen verwendet ein zweites Programm die gezeigte Verbindung, um das entsprechende
ROA des stochastischen Systems zu berechnen.

Die entwickelte Methode wird dann auf das Problem der Reglersynthese angewendet,
bei dem das Ziel darin besteht, einen stochastischen Zustandsrückkopplungsregler zu
entwerfen, der die ROA des stochastischen Systems mit geschlossenem Regelkreis max-
imiert. Ein Optimierungsprogramm wird vorgeschlagen und implementiert, um Rück-
kopplungsgewinne und die entsprechende maximierte ROA-Schätzung zu erhalten.

Stabile periodische Lösungen charakterisieren die zweite Klasse von Systemen, die in
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Zusammenfassung

dieser Arbeit betrachtet werden. Es werden sowohl deterministische Systeme als auch
Systeme mit begrenzter affiner parametrischer Unsicherheit berücksichtigt, die stabile
Grenzzyklen aufweisen. Die Analyse wird in beiden Fällen durch eine Transformation
in Querkoordinaten erleichtert, die auf einem sich bewegenden orthonormalen System
definiert sind, das dem Konzept der bewegten Poincaré-Abbildungen ähnlich ist. Für
die Transformation betrachten wir zunächst den klassischen Ansatz und schlagen dann
eine neuartige Konstruktion eines sich bewegenden Koordinatensystems mit verbesserten
Wohldefiniertheitseigenschaften vor. Für das deterministische System formulieren wir
Bedingungen für eine innere Schätzung der ROA basierend auf der Lyapunov-Theorie.
Aufgrund des Ortes des Grenzzyklus, der von der Unsicherheit beeinflusst wird, werden
Kontraktionsmethoden verwendet, um im unsicheren Fall Bedingungen für die soge-
nannte region of contraction (ROC) abzuleiten. Wir demonstrieren anhand mehrerer
Beispiele die verschiedenen Merkmale der in dieser Arbeit entwickelten Ansätze und
zeigen, wie verbesserte Schätzungen im Vergleich zu bestehenden Methoden erhalten
werden. Als dritte Klasse von Systemen mit Grenzzyklen betrachten wir stochastische
Systeme mit endlichem zweiten Moment und periodischem Verhalten. Es wird ein Ansatz
zur Analyse der Stabilität von Grenzzyklen dieser Systemklasse vorgeschlagen, der die
stochastische Orbitalstabilität mit der transversalen Kontraktion der PCE-Darstellung
des Systems verbindet.

Die Optimierungsprobleme für die Analysemethoden der ROA und der ROC werden
in Form von verallgemeinerten SOS-Programmen formuliert. Die Algorithmen werden
beschrieben und die Sammlung der Skripte, die die Implementierung der Methoden en-
thalten, wird bereitgestellt.

Die Anwendung der Analysemethoden für Grenzzyklus-Systeme wird am Beispiel von
Airborne Wind Energy-Systemen demonstriert, bei denen es sich um eine aufstrebende
Technologie für erneuerbare Energien handelt. Mit der baldigen Kommerzialisierung
der Technologie werden die Maßnahmen zur Zuverlässigkeit ihres Betriebs zunehmend
nachgefragt. Wir betrachten das System in der Seitenwindflugphase und verifizieren
Regionen, in denen der eingesetzte Flugregler das Systemmodell garantiert stabilisiert,
indem wir die in dieser Arbeit entwickelten Methoden anwenden.
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Notation

Acronyms

AWE Airborne Wind Energy
BMI Bilinear matrix inequality
class-MOC Classical MOC
CPA Center point algorithm
cp-MOC Center point MOC
LC Limit cycle
LMI Linear matrix inequality
LQR Linear Quadratic Regulator
MC Monte-Carlo
MOC Moving orthonormal coordinate system
PCE Polynomial Chaos Expansion
PSD Positive semidefinite
ROA Region of attraction
ROC Region of contraction
SDP Semidefinite program
SOS Sum-of-squares
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Notation

Symbols

Symbols

N, N0 set of natural numbers, including zero
R, Rn, Rn×m set of real numbers, real valued n-dimensional vectors, real valued

n×m-dimensional matrices
R[x], R[x]≤r ring of n-variate polynomials with real coefficients, total degree at

most r ∈ N0
Σ[x] set of all sum-of-squares polynomials in x
Σn×n[x] set of all matrix sum-of-squares in x of dimension n× n
Sn set of symmetric matrices of size Rn×n

Cd(R,Rn) space of continuous functions taking R → Rn, with continuous deriva-
tives up to order d

Ll Lebesgue space, 1 ≤ l ≤ ∞
Θ sample space in the reals
F σ-algebra of Θ
µ non-negative probability measure
〈·, ·〉, 〈·, ·〉L2(µ) inner product in the L2 space with respect to µ
E expectation in the L2 sense
MP (ξ) P -th moment of a random variable ξ, i.e. E[|ξ|P ], 1 ≤ P <∞
λ, λ(MP ) probability distribution, with P given moments
U(a, b) uniform distribution over the range [a, b], −∞ < a < b <∞
A � 0 (� 0) square matrix A is positive (semi-) definite
AT transpose of matrix A
v(x), v(x)r monomial vector in x, up to degree r
V Lyapunov function
∂(g(x)) degree of a polynomial g(x) in x (x is omitted if context unambiguous)
I, In identity matrix, of dimension n× n
dist distance measured in an arbitrary norm
‖·‖ Euclidean norm
:= equal by definition
‖ parallel
∦ not parallel
∼ element from probability distribution
(̄·) indicates a PCE coefficient or a variable dependent on such
(̄·)i indicates a the i-th PCE coefficient (scalar or vector valued) of the

expansion series
ȳ0 vector of mean modes (zeroth PCE coefficients) of the random variable

y ∈ Rm, i.e., [ȳ10 , ..., ȳm0 ]T ∈ Rm
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ȳJ vector of variance modes (PCE coefficients 1 to p+ 1) of the random
variable y ∈ Rm, i.e., ȳ11 , ..., ȳm1 , ..., ȳ1p , ..., ȳmp ]T ∈ Rm·p

ȳ vector of all stochastic modes (PCE coefficients) of the random vari-
able y ∈ Rm, i.e., [ȳ0, ȳJ ]T ∈ Rm·(p+1)

Other notation

The important distinction between the true region of attraction, respectively contrac-
tion, and an inner estimate of it is made by indicating the true regions with a asterisk
superscript, i.e., R∗, R̄∗, Z∗, Z̄∗, and the inner estimates of the respective regions as the
same calligraphic letter without the asterisk, i.e.,R, R̄, Z, Z̄.

The term estimate in this work always refers to an inner estimate, where for the sake
of brevity the reference to inner is frequently dropped.

The term region is used within its mathematical definition of an open, simply-
connected and non-empty subset of Rd, where d is the appropriate dimension.
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CHAPTER 1
Introduction

A fundamental property of a nonlinear system consists in its behavior, such as stability,
instability and convergence, being dependent on the state of the system. This gives
rise to the definition of a region of attraction (ROA) as the set of initial conditions in
the state space from which trajectories converge to an equilibrium of the system con-
tained in this region. The equilibrium can thereby be given by an attracting equilibrium
point or a limit set such as a stable limit cycle. Numerous ways to estimate, compute
or analytically derive the ROA have been investigated [Zub61; GTV85; Kha02; Che11;
CA15]. Obtaining information on the ROA has not only been a fascinating and chal-
lenging topic in nonlinear system analysis but is also of significant importance in many
control applications. An example is readily provided by considering the control system
of an aircraft [CSB11]. How far can the system’s states, such as angle of attack and
pitch, be perturbed before the controller fails to return the aircraft to the trim state?
Since this question equally represents a measure of safety, the answer to it is decisive
for the aircraft’s fielding. Attaining knowledge of the ROA is also of vital importance
to power grids, in particular its transient stability, which denotes its ability to maintain
synchronous operation when subject to disturbances. Knowing the region of operating
conditions from which a post fault system can still return to the equilibrium point is of
immense importance to engineers as the region can be translated into an estimate on
the maximum amount of time they have to clear the contingency before failure of the
system [GTK14]. These examples show how the size of the ROA can act as a measure
of the robustness of the system with respect to perturbations in the initial conditions.
As such, the ROA defines the part of the state space in which a system can be safely
operated.

The challenge of obtaining information on the size the ROA varies greatly with the
particular class of system. While for certain types of systems theoretical achievements
were successful in providing criteria for the exact shape of the ROA [Zub61; CHW88],
those criteria are often difficult to apply to practical problems, either because of com-
putational constraints or due to lack of information. It has thus been of wide interest to
develop practically useful methods which trade in dispensable exact characterization of
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the ROA for approximations with tractable computations.
The most commonly employed methods descend from Lyapunov stability theory. The

underlying idea in these approaches is to find a continuously differentiable function that
is positive in a region of the state space which includes the equilibrium point, and has
negative derivative with respect to the trajectories of the system. If these conditions
hold for all states within a sublevel set of that function, then the sublevel set has been
shown to be inside of the true ROA of the equilibrium point [Lya92]. This Lyapunov
approach often extends to the aim of finding a Lyapunov function verifying a largest
possible sublevel set in order to obtain less conservative estimates of the ROA.

Lyapunov methods are popular for ROA analysis for various reasons, including their
exceedingly well-established theory, the often clear, elegant and concise equations in-
volved and the versatility of the approach. The theory has been extended from the
deterministic continuous case to many other system classes such as time-varying, peri-
odic, controlled, hybrid and discrete time systems [Kha02; BCN91].

For nonlinear systems, the Lyapunov conditions present sufficient conditions for
asymptotic stability. A plethora of analytical and numerical approaches have been de-
veloped with the aim of constructing or computing a Lyapunov function for a given
system. In the past 20 years a numerical method in the field of polynomial optimization
has gained popularity for the computation of Lyapunov functions [PPW04; Che+05;
TP08; TPS08; Che11; AM19a]. This method is based on the formulation of semialge-
braic set conditions as sum-of-squares (SOS) programs which can be efficiently posed as
semidefinite programs (SDPs) and thus solved as convex optimization problems.

A drawback of Lyapunov arguments is given by the fact that their applicability hinges
on the knowledge of the equilibrium’s location. This is of particular concern for uncertain
and stochastic systems whose equilibria are often dependent on the uncertainty. In more
recent years, the use of contraction methods for the stability analysis of these systems has
emerged [LS98; APS08; MS14]. Contraction methods analyze stability by considering the
rate of change of an incremental distance between any two neighboring trajectories of a
system. If for a region, which contains an equilibrium, the rate of change of this distance
is negative then all trajectories are contracting and are shown to eventually converge to
the equilibrium. Other than being contained in the region, no further information on
the location of the considered equilibrium is required. In analogy to the term ‘region of
attraction’, the term ’region of contraction’ has been coined for this method.

In this thesis we employ Lyapunov and contraction arguments to propose analy-
sis methods for the ROA of various classes of systems. These include 1. autonomous
and controlled stochastic systems in the form of second order random processes with
uncertainty-dependent equilibrium points; 2. deterministic systems with limit cycles; 3.
systems affected by parametric uncertainty with limit cycles; and 4. stochastic systems
in the form of second order random processes with limit cycles.
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The stability analysis of stochastic systems is an active field of research which has
gained momentum with the development of computational analysis methods, such as
Monte Carlo simulations. While the ROA of a deterministic system is clearly defined,
the definition of an attractive region of uncertain system can vary. For stochastic sys-
tems a definition of the ROA can be derived from the type of stochastic stability under
consideration. A widely used notion for the ROA of uncertain systems is that of a ‘ro-
bust’ ROA, which is the intersection of the ROAs obtained for each possible realization
of the uncertainty. As it thus relates to the worst case, this notion is suitable for un-
certainties with uniform distributions but less so for other distributions where the worst
case is not of practical interest or exploiting the statistical information available gives
less conservative results. In this work we present an approach for the stability analysis
of a class of stochastic systems and provide a corresponding definition of a ROA, both
of which make use of Polynomial Chaos Expansion (PCE).

PCE is a spectral method for uncertainty quantification and consists in polynomial
approximations applicable to second order random processes, which are stochastic sys-
tems with finite second moments. The expansion results in a higher-dimensional deter-
ministic representation of the stochastic system [Sul15; LK10]. We derive conditions for
such a stochastic system to converge to an uncertain equilibrium point by considering its
PCE representation, and propose computationally efficient algorithms from which inner
estimates of the ROA can be obtained. The approach is further extended for controller
synthesis.

Systems with periodic behavior represent many processes of the real world, and un-
derstanding their stability is often crucial. Due to the time-varying nature of a periodic
system trajectory, the analysis of its attracting region poses a more complex problem
than the analogous problem for equilibrium points, even when the system is determin-
istic. In this work we consider both the case of deterministic systems and uncertain
systems which have a stable limit cycle. In order to obtain an inner estimate of the peri-
odic orbit’s ROA we derive conditions based on Lyapunov and contraction arguments for
the system in transverse coordinates. These coordinates are defined within a moving or-
thonormal system and are conceptually similar to moving Poincaré maps [Poi99; Hal80].
Using the classical approach as well as a novel construction of the moving orthonormal
coordinates, we show in numerical implementations a more efficient analysis compared
to the previously proposed methods can be achieved.

In order to cast the various stability conditions derived for the different classes of sys-
tems into computationally efficient algorithms, we focus on polynomial representations
of the systems. This makes the verification of the conditions amenable to the above
mentioned SOS programming techniques. Along with derivations and explanations of
these algorithms we provide a comprehensive collection of the scripts which contain their
implementation.

The methods proposed in this thesis are illustrated by various examples covering each
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considered class of system. As a case study, the ROA analysis of limit cycles is applied
to the model of a controlled Airborne Wind Energy (AWE) system. AWE systems are
a new renewable energy technology that aims at extracting power from high-altitude
winds by using flying vehicles which are tethered to the ground. Guaranteeing reliable
operation is a crucial problem among the wide range of challenges the technology still
has to overcome before its commercialization. Similarly to the first example mentioned
for the ROA above, the information on the ROA of the controlled kite systems allows to
understand from which initial conditions the flight controller is capable of bringing the
perturbed system back to a desired reference trajectory, and thus provides a measure of
safety.

1.1 Literature review

This section provides an overview of the literature which is most relevant to the work
presented in this thesis. This overview is not exhaustive and is further supported by
additional review of thematically specific literature at the beginning of each chapter.

1.1.1 Verification of polynomial positivity and sum-of-squares
programs

A computationally tractable test for a polynomial function to be globally nonnegative
was proposed in [Par00] by posing conditions on the existence of a SOS decomposition of
the polynomial. These conditions are based on a Positivstellensatz and can be tested by
semidefinite programming. In real algebraic geometry a Positivstellensatz characterizes
positive polynomials on a semialgebraic set defined by polynomial equations and inequal-
ities with real coefficients. Being the real analogue to Hilbert’s Nullstellensatz [Hil93] for
the complex space, several versions of the Positivstellensatz with varying assumptions
have been proposed. The Positivstellensatz of Stengle [Ste74] states that, for a system of
polynomial equations and inequalities, either there exists a solution in the reals, or there
exists a certain polynomial identity which certifies that no solution exists. [Par00] shows
how a hierarchy of sufficient conditions for the existence of this polynomial identity can
be formulated to certify the emptiness of a semialgebraic set. Each condition essentially
represents a test of a polynomial to be decomposable into a SOS. By formulating a set
containment problem as a question of set emptiness, the Positivstellensatz reveals its
applicability in the form of a generalized S-procedure.

Ever since its introduction in 2000, the relaxation of a semialgebraic set emptiness
condition into the, semidefinite programming verifiable, question of the existence of a
SOS decomposition has been widely applied: SOS techniques are employed for nonlinear
system and stability analysis [PP02; PP05a; TP08; TPS08; VA17; JP19; ISM19] and
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control applications [JW+05; PPW04; PL03; CSB11], with a comprehensive overview
of applications of SOS programming in these fields found in [Che11]. An overview of
business applications is presented in [Hal19], with further examples in [AM19b]. SOS pro-
gramming techniques have been extended to account for matrix polynomials in [APS08;
SH06]. The verification of stability regions along trajectories, also referred to as ‘fun-
nels’, of feedback controlled robotic systems, was obtained from SOS programming in
[Ted+10; TMT11; Man+11; MCT14; MT17]. In order to apply the SOS methods to
non-polynomial systems polynomial approximation techniques are explored in [WYL14;
Che09; PP05b]. In [SB10], quasiconvex optimization problems with a bilinear term in
the SOS constraints are considered, and a solution converging to global optimality which
is based on bisection is shown. The authors introduce the term generalized SOS program
for these problems. Since we consider similar types of bilinear constraints in this work,
we adopt this term with a rigorous definition of its meaning in this context provided in
Chapter 2.

Several Matlab toolboxes, e.g., SOSTOOLS [Pap+13], SPOTless [Meg13], or the
SOS toolbox in Yalmip [Lof09], have been developed to facilitate the solving of an SOS
program as an SDP.

Since the efficient computation of a semidefinite program is still limited to low di-
mensions, more tractable alternatives to SOS programming to test polynomial positivity
were recently presented in [AM19b]. These alternatives are called DSOS for the approach
based on linear programs, and SDSOS for the alternative employing second-order cone
programs. The application of DSOS/SDSOS to control problems is demonstrate in
[MAT14]. Current research in these alternatives focuses on quantifying and tractably
reducing their conservativeness [AH17; AHA19].

In this thesis we employ the semidefinite relaxations based on Stengle’s Positivstellen-
satz as outlined above. For completeness, we mention an approach to certify global poly-
nomial nonnegativity based on a different Positivstellensatz, namely Putinar’s [Put93].
The approach, introduced in [Las01], uses the theory of moments from which converging
linear matrix inequality hierarchies are constructed to optimize over semialgebraic sets.
The two optimization approaches can be viewed as dual to each other.

1.1.2 Region of attraction analysis

The methods to analyse the ROA can be divided into two classes, of which the first
contains methods by which the exact (or true) size of the ROA is obtained, and the
second contains all methods aiming at an approximation or inner estimate of the ROA.
The applicability of exact methods is largely dependent on the kind of system under
consideration. For planar deterministic systems, geometric methods can often be used,
e.g., when the system has an unstable limit cycle encircling a stable equilibrium point.
The exact ROA in this case is obtained in the form of the either numerically or analyti-
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cally obtained limit cycle trajectory [Kha02]. In [CHW88], a method for finding the true
ROA for a class of nonlinear autonomous systems is proposed. The method is based
on the topological properties of the ROA and requires a determination of the stable
manifold of an equilibrium point which quickly becomes computationally expensive with
increasing state dimension. Based on Lyapunov theory, Zubov’s method [Zub61] provides
conditions for the exact ROA of a dynamical system based on the solution to a partial
differential equation, which needs to be available. Zubov’s method was generalized to
perturbed [CGW01] and stochastic systems [CL06]. For many classes of system, the ex-
act methods are either computationally prohibitively expensive, or require information
which is not available.

In [GTV85; CA15] an early and more recent overview of various exact and estimating
methods is presented. Among the methods for estimating the ROA, Lyapunov theory
represents the most common approach. In fact, all references on stability analysis men-
tioned in the literature review of SOS techniques in Section 1.1.1 are based on Lyapunov
arguments. In [TVG96] quadratic Lyapunov functions are considered where an estimate
of the ROA is obtained by solving a suitable convex optimization problem. While the
search for quadratic Lyapunov functions is often the computationally least expensive and
theoretically most lean approach, the obtained estimates tend to be very conservative.
A method combining Lyapunov theory, trajectory simulation and topological properties
of the ROA is proposed in [LN00]. While being able to return close-to-exact estimates of
the ROA for a broad class of systems, the method requires a global Lyapunov function
to be available.

Other approaches to estimating the ROA, which are not based on Lyapunov theory,
are, for instance, found in viability theory. In [CMS01] an algorithm based on the
viability kernel and differential inclusion arguments is proposed from which inner and
outer estimates of the ROA are obtained.

Reachability analysis has gained popularity, in particular for the analysis of transient
stability in power systems. In [JKE10; KBF16] the ROA is analyzed in the form of
a backward reachable set which is used for control of power system transients. This
backwards reachable set is computed by numerically solving the Hamilton–Jacobi–Isaas
partial differential equation backwardly in time. In [EGHA17] forward reachable sets are
investigated, promising a computationally less expensive alternative to the backwards
reachable set analysis.

In general, the aptitude of a particular approach to estimate the ROA crucially
depends on the class of system under consideration, with the decision for a method
being often inevitably connected to choosing a point on the trade-off curve between
computational cost and conservativeness of the estimate.
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1.1.3 Generalized Polynomial Chaos Expansion

The expansion of a Gaussian random variable by orthogonal polynomials from the Her-
mite basis functions was introduced by Wiener [Wie38]. Wiener also coined the term
‘Polynomial Chaos’ in which ‘Chaos’ was the commonly used name for ’stochastic pro-
cess’ at the time. This approach was later called the ‘Wiener-Hermite Polynomial Chaos
Expansion’. In [CM47] the authors showed that any second order random process, a class
of systems which includes most processes of the real world [XK02], can be approximated
by a Hermite polynomial basis with the solution being convergent in the L2 sense. The
dependence of the expansion’s convergence rate on the choices of basis functions was
investigated in [XK02] where the authors show the connection of the dependence to the
Askey scheme. The extension of the Wiener Polynomial Chaos to other polynomial ba-
sis and probability measures is called the ‘Generalized PCE’ and has been explored in
[Xiu+02; XK03; LSK04], among others. Since in this thesis we only consider the latter,
we omit the ’generalized’ in the following.

Due to limited computation power, the application of PCE to engineering problems
did not start to gain popularity until decades after its introduction by Wiener with the
seminal work by [GS91]. Having been mostly considered for modeling of fluid dynamics
and the stochastic differential equations, PCE arrived in the control community even
later in time with [NB03]. Ever since then, PCE has been used, among others, for
uncertainty analysis of chemical and biotechnical processes [NB03], for stability analysis
[HT06; FB09; Luc+17], for state and parameter estimation [LX09], and for the design of
various stochastic controllers in the field of optimal control including model predictive
control [FB08; FK12; KB13; BM16]. In [Kim+13] a comprehensive overview of various
applications also in other fields can be found.

Since any practical use of PCE entails the truncation of an infinite series, the ac-
curacy of the truncated expansion has been subject to various studies [FG04; Deb+05;
FKN11; Müh+18]. As the expansion series is L2-convergent for second order random
processes, truncations at low orders are in general sufficient to keep the error introduced
by the truncation small and represent the original system sufficiently well [Sul15; XK02].
Investigations to quantify this statement can be found, e.g., in [FG04], where the authors
consider various Gaussian and non-Gaussian stationary stochastic processes and develop
metrics for assessing the accuracy of the PCE truncation. An analysis of the effect of the
truncation order and investigation of various undesired effects that truncated systems
can exhibit can be found, e.g., in [Luc+17]. The authors consider linear systems and
propose error bounds for the first two moments which can be used to design controllers
that are robust to the truncation error. A worst-case bound on the approximation er-
ror between the PCE and the true stochastic variable is derived via a set membership
approach in [FKN11]. In [Müh+18] exact error descriptions for the approximation are
provided and bounds are formulated, which enable the computation of a truncated PCE
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expansion with user defined error tolerance.
Detailed layouts of PCE and the involved numerical methods can be found in [Sul15;

LK10; Xiu10].

1.2 Outline and contribution

This thesis can be divided into three main parts which are each dedicated to a certain
class of systems. The first part considers stochastic systems with equilibrium points
for both autonomous and feedback controlled systems. Periodic orbits of deterministic,
uncertain and stochastic systems are the focus of the second part. The application of
the developed analysis methods to Airborne Wind Energy systems is presented in the
third part. In more detail, the chapters of this thesis are outlined as follows.

Chapter 2 A brief presentation of essential definitions and mathematical prerequi-
sites which are relevant for all or most of the following chapters is given. The material in
this chapter has been previously published and is included here for reference and com-
pleteness. Further chapter-specific preliminary material is included in the corresponding
chapters with the due references provided.

Chapter 3 The first part of this chapter focuses on the ROA analysis for equilib-
rium points of autonomous stochastic systems which represent second order random
processes. This enables the consideration of uncertain parameters coming from any L2-
bounded probability distribution. In contrast to most existing approaches we further
allow the equilibrium point to be subject to uncertainty. The framework of PCE is used
to represent the stochastic system through deterministic equations in a higher dimen-
sional state space. The analysis of the stochastic equilibrium point as well as its ROA
are then performed by taking advantage of the deterministic nature of the PCE system
and exploiting the connection of its stability to the stability of the true system. The
second part of the chapter applies the results of the first to feedback controlled stochastic
systems. The aim is to design a control law such that the ROA of the equilibrium point
of the closed loop system is maximized. The design procedure enables to adhere to input
constraints.

The contributions of Chapter 3 are summarized in the following.

1. We show how the equilibrium set of the stochastic system corresponds to an equi-
librium point of the PCE system and derive a connection between the moment
boundedness of the stochastic equilibrium point and the local asymptotic stability
of its PCE representation.
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2. Employing Lyapunov arguments, we formulate conditions from which an inner es-
timate of the ROA of the PCE system is obtained. While the Lyapunov conditions
are well-established criteria for the ROA, their application for the ROA of the PCE
systems is novel. Based on this PCE estimate, we present criteria which allow to
recover an inner estimate of the stochastic ROA.

3. Using results from real semialgebraic geometry we propose optimization programs
which implement the conditions for the PCE ROA as well as recover the stochastic
ROA estimate.

4. We propose a stochastic nonlinear state feedback law and and provide an optimiza-
tion program for its design which simultaneously maximizes the ROA of the closed
loop system’s equilibrium point. The design process of the stochastic controller
accounts for input constraints. In order to incorporate the input constraints into
the control design we derive polynomial formulations for the constraints.

Chapter 4 For the analysis of limit cycles we use a framework similar to Poincaré
maps provided by a transformation to a transverse coordinate system. The chapter
starts by presenting the conventional transformation law and proposing an improved
formulation targeting the well-definedness of the transformation. Deterministic orbits are
then considered and their ROA is analyzed using Lyapunov arguments for the system in
transverse coordinates. Moving on to periodic orbits of systems with polytope bounded
affine uncertainties reveals the challenge of uncertain locations of the orbit. Because
Lyapunov methods are in general unavailable to such systems, the system is analyzed
for its transverse contraction in the neighborhood of the uncertain orbit. This results in
estimates of its ROA which is then referred to as region of contraction (ROC). Finally,
considering stochastic systems in the form of second order random processes, the PCE
framework is applied to represent and formulate deterministic contraction criteria.

The contributions of Chapter 4 are summarized in the following.

1. The classical construction of a moving orthonormal coordinate system (MOC) as
presented in [Hal80] is prone to large variations in the size of the region for which
the coordinate transformation is well-defined. These variations pose a limitation
to the maximum size of a verifiable ROA estimate in the framework of transverse
coordinates. Motivated by this shortcoming, we propose a novel MOC and derive
its construction. A classification of the systems to which the transformation can
be applied is provided. By deriving the well-definedness properties of the novel
MOC its benefits over the classical MOC are shown. These consist of analytically
obtainable knowledge of the well-defined regions and flexibility in the choice of the
parameters influencing the region sizes. The examples of its application to ROA
and ROC analysis demonstrate its ability to verify significantly larger estimates.
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2. Existing conditions for an inner estimate of the ROA of a deterministic periodic
orbit for a system in transverse coordinates are employed to formulate a computa-
tionally efficient algorithm. For this method we propose several algorithmic options
consisting of different forms of cost functions, variability in the choice of Lyapunov
function degree, and related constraints. A comprehensive comparison of the algo-
rithmic options and choices of MOC is presented in which a general benefit of the
proposed, more flexible cost functions is revealed.

3. Previously formulated criteria for a deterministic system to be transversely con-
tracting are extended to uncertain systems and completed by invariance criteria.
As such they pose conditions for an inner estimate of the ROC. Two algorithms
are proposed from which an inner estimate of the ROC, respectively the allowed
variation of the uncertainty bounds, is maximized.

4. A connection between the orbital stability of a stochastic orbit and the orbital
stability of the orbit of the system’s PCE representation is proposed. Transverse
contraction criteria are formulated which verify a region to be an inner estimate of
the ROC of the stochastic limit cycle.

Chapter 5 Airborne Wind Energy is an emerging renewable energy technology con-
sisting of crosswind-flying tethered kites. In this chapter we first briefly present this
technology and some of the challenges it is facing related to the autonomous operation.
Since the kite is controlled to follow a periodic motion we use the analysis tools presented
in the previous chapter to obtain an estimate of the ROA for a deterministic closed loop
kite model. We then allow uncertainty to affect selected parameters of the model and
analyze the ROC of the closed loop uncertain system. While the kite model serves as a
more involved example to demonstrate the application of the analysis methods, the fact
that it is controlled requires the development of a transverse controller. The presentation
of the controller as well as the simulation of the closed loop system are included in this
chapter.

The contributions of Chapter 5 are summarized in the following.

1. We propose a transverse state feedback controller which is based on the transfor-
mation of the system to transverse coordinates and the estimated size of the ROA.
Due to the formulation in transverse coordinates the time dependence of a trajec-
tory following control problem is removed, which renders the transverse controller
in the form of a static state feedback law.

2. Inner estimates of the ROA of the nominal and uncertain closed-loop kite system
are provided and validated in simulation. The analysis is not coupled to a particular
controller and can thus be applied to other closed-loop kite system models.
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Chapter 6 The ROA and ROC analysis methods developed in the previous chapters
are implemented in a generalized form in a collection of Matlab scripts. Chapter 6
provides a brief description of the analysis tools in the scripts and highlights some aspects
with the aim of facilitating user experience when applying the tools to a system of
interest. All scripts are written by the author, are open source and available at https:
//github.com/evaahbe/roa-analysis-tools.git.

Chapter 7 This chapter provides conclusions on the work presented in this thesis and
offers an outlook to future research.

1.3 Publications

The articles submitted or published during the author’s time as doctoral candidate in-
volved close collaboration with a number of colleagues. The following list is split in two
parts with the first part showing the articles appearing in this thesis and the second
listing the contributions that are indirectly or unrelated to this work.

Appearing in this thesis
Chapter 3 is based on the following publications.

[AIS20b] E. Ahbe, A. Iannelli, and R. S. Smith. “Region of attraction analysis of
nonlinear stochastic systems using Polynomial Chaos Expansion”. In: Au-
tomatica (2020), to appear.

[Ahb+20] E. Ahbe, P. Listov, A. Iannelli, and R. S. Smith. “Feedback control design
maximizing the region of attraction of stochastic systems using Polynomial
Chaos Expansion”. In: IFAC World Congress. 2020, to appear.

Chapter 4 and Chapter 5 are based on results published in the following papers.

[AIS20a] E. Ahbe, A. Iannelli, and R. S. Smith. “Local contraction analysis of stochas-
tic systems with limit cycles”. In: IEEE Conference on Decision and Control.
2020, to appear.

[AWS18b] E. Ahbe, T. A. Wood, and R. S. Smith. “Transverse contraction-based sta-
bility analysis for periodic trajectories of controlled power kites with model
uncertainty”. In: IEEE Conference on Decision and Control. 2018, pp. 6501–
6506.
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[AWS18a] E. Ahbe, T. A. Wood, and R. S. Smith. “Stability verification for periodic
trajectories of autonomous kite power systems”. In: IEEE European Control
Conference. 2018, pp. 46–51.

[AWS17] E. Ahbe, T. A. Wood, and R. S. Smith. “Stability Certificates for a Model-
Based Controller for Autonomous Power Kites”. In: Book of Abstracts of
the International Airborne Wind Energy Conference (AWEC 2017). 2017,
p. 86.

Chapter 6 is based on all the above mentioned publications as it presents the com-
putational implementation of the algorithms developed therein.

Other works
The following contributions are related to Airborne Wind Energy systems but are not
presented in this thesis.

[Sta+19] T. Stastny, E. Ahbe, M. Dangel, and R. Siegwart. “Locally power-optimal
nonlinear model predictive control for fixed-wing airborne wind energy”. In:
American Control Conference. 2019, pp. 2191–2196.

[Woo+18] T. A. Wood, H. Hesse, M. Polzin, E. Ahbe, and R. S. Smith. “Model-
ing, Identification, Estimation and Adaptation for the Control of Power-
Generating Kites”. In: IFAC PapersOnLine 51.15 (2018), pp. 981–989.

[Woo+17] T. A. Wood, E. Ahbe, H. Hesse, and R. S. Smith. “Predictive Guidance
Control for Autonomous Kites with Input Delay”. In: IFAC World Congress
50.1 (2017), pp. 13276–13281.

The following paper is the result of the author’s Master thesis work.

[AC17] E. Ahbe and K. Caldeira. “Spatial distribution of generation of Lorenz’s
available potential energy in a global climate model”. In: Journal of Climate
30.6 (2017), pp. 2089–2101.

The following open source application was published by the author within the course
of the AWE related research.

[AS17] E. Ahbe and R. S. Smith. Airborne Wind Energy Trajectory Analysis Ap-
plication. 2017. url: https://github.com/evaahbe/AWE_tool.
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CHAPTER 2
Mathematical Preliminaries

In this chapter some of the mathematical concepts are presented which are used through-
out the thesis. While polynomials and sum-of-squares (SOS) programming are relevant
to Chapters 3-6 the framework of Polynomial Chaos Expansion (PCE) is fundamental
to Chapter 3 and parts of Chapter 4. The concepts and results presented here are either
standard in the literature or have been previously published.

2.1 Polynomials and sum-of-squares programming

In this section we introduce polynomials and the semialgebraic set constraints-based
programming technique enabled by SOS polynomials.

2.1.1 Polynomials

Let xα = xα1
1 · · ·xαnn denote the monomial in the variables x = [x1, ..., xn]T with exponent

vector α := [α1, ..., αn]T of nonnegative integer entries. The degree of a monomial is given
by ∂(xα) = ∑n

i=1 αi and the monomial vector v(x) of degree r has entries given by all
monomials of degrees ≤ r. The cardinality of the set of monomials in the vector v(x) is
given by d =

(
n+r
r

)
.

Definition 2.1. (Polynomial) A n-variate polynomial g(x) of degree r with coefficients
in the field k is the finite linear combination of monomials

g(x1, ...xn) =
∑
α

cαx
α, cα ∈ k, (2.1)

where the sum is over the finite number of n-tuples in α such that ∂(xα) ≤ r.

In this work we consider polynomials with real coefficients cα in real fields, e.g., k = Rn,
and denote the ring of all such polynomials by R[x]≤r, where the subscript is omitted if
it is not specified.

When all monomials in (2.1) have the same degree, the polynomial g(x) is called a
homogeneous polynomial.
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2.1.2 Sum-of-squares program

A fundamental question throughout this thesis will be the one of polynomial positivity.
This translates into the aim to certify that a real valued polynomial function is globally
nonnegative, i.e.,

g(x1, ..., xn) ≥ 0, ∀x1, ..., xn ∈ R. (2.2)
A sufficient condition for (2.2) to hold is if g(x) can be written as a sum-of-squares
(SOS).

Definition 2.2 (SOS polynomial). A polynomial g(x) is called a SOS if there exists a
decomposition consisting of the sum of squared terms qi,

g(x) =
∑
i

qi(x)2. (2.3)

The set of SOS polynomials in the variable x with coefficients in R is denoted by Σ[x].

Note that while clearly all SOS polynomials are positive semidefinite (PSD), not all PSD
polynomials are also SOS. The gap, however, seems small [Rez00].

The following result provides a necessary and sufficient condition for g(x) to be SOS,
which can be efficiently exploited in computational implementations discussed further
below.

Theorem 2.1 (Theorem 1, [Par04]). A polynomial g(x) is SOS if and only if it can be
written as a quadratic form,

g(x) = v(x)TQv(x), (2.4)
with Q ∈ Sd and Q � 0.

In this context, Q is often also referred to as Gram matrix. If g(x) has n-variables and
degree r, then v(x) can always be chosen such that ∂(v) ≤ r/2. In general, due to
the algebraic dependence of the variables x1, ..., xn, the matrix Q in Theorem 2.1 is not
unique. Matching the coefficients of (2.3) and (2.4) imposes linear constraints on Q, in
addition to the positive semidefiniteness constraint. A SOS program is thus defined as
follows:

Definition 2.3 (SOS program, [SB10]). A sum-of-squares program is an optimization
problem with a linear cost and affine SOS constraints on the decision variables.

min
u

cTu

subject to ak(x, u) ∈ Σ[x], k = 1, ..., K,
(2.5)

where u ∈ Rl are the decision variables and K is the number of polynomials. The
polynomials {ak} are of the form

ak(x, u) := ak,0(x) + ak,1(x)u1 + ...+ ak,m(x)um. (2.6)
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2.1 Polynomials and sum-of-squares programming

In its structure, the constraints in the SOS program, i.e., the problem of finding a Q � 0,
is equivalent to testing the feasibility of a semidefinite program (SDP) in the standard
primal form.

Definition 2.4 (Semidefinite program). A SDP is a convex optimization problem of the
(primal) form

min
U

tr (CU)

subject to tr (AiU) = bi,

U � 0,

(2.7)

where U ∈ Sd is the decision variable, b ∈ Rm, C, Ai ∈ Sd, i = 1, ...,m, are given
matrices, and tr(·) denotes the trace of a matrix.

In this work we consider problems which consist in SOS program-like optimizations
extended to include constraints with bilinear terms in the decision variables. In reference
to [SB10], we call these problems generalized sum-of-squares programs.

Definition 2.5 (Generalized SOS program). A generalized SOS program is an opti-
mization problem with a convex objective function and affine as well as bilinear SOS
constraints.

min
u,v

h(u)

subject to ak(x, u) ∈ Σ[x], k = 1, ..., K,
dj(x, v) ∈ Σ[x], j = 1, ..., J,
zt(x, u)dj(x, v) ∈ Σ[x], t = 1, ..., T,

(2.8)

where u ∈ Rl, v ∈ Ro are the decision variables and K, J T the number of respective
polynomials. The polynomials {ak}, {dj}, and {zt} are of the form (2.6).

Generalized SOS programs can be solved by directly tackling the bilinearities via a
bilinear matrix inequality (BMI) solver, such as PENLAB [FKS13]. Alternatively, they
can be solved by an iterative procedure in which in each step alternatingly one term in the
bilinearity is fixed and the optimization is performed on the other. This results in a series
of SOS programs and thus in a series of convex optimizations. If there is a single bilinear
term, the problem has been shown to be quasiconvex for which the global optimum can
be obtained via bisection of the bilinearly appearing decision variable [SB10].

2.1.3 Semialgebraic set containment problems

The problem of certifying (2.2) is extended to a more general problem by considering
a system of polynomial inequalities fj ≤ 0, inequations gl 6= 0 and equalities hk = 0.
Additionally, the aim can be to optimize a polynomial or algebraic quantity over the
feasible set of the polynomial constraints system. Solving such an optimization problem
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exactly is in general np-hard. Using the following results from real algebraic geometry,
however, enables computationally tractable relaxations of the problem.

Positivstellensatz

Theorem 2.2 (Positivstellensatz, Theorem 4.4.2, [BCR98]). Let the polynomial inequal-
ities (fj)j=1,...,J , inequations (gl)l=1,...,L, and equalities (hk)k=1,...,K be finite families of
polynomials in R[x]. Then, the following properties are equivalent:

1. The set

 x ∈ Rn

∣∣∣∣∣∣∣∣
fj(x) ≥ 0, j = 1, ..., J
gl(x) 6= 0, l = 1, ..., L
hk(x) = 0, k = 1, ..., K

 , (2.9)

is empty.

2. There exist f ∈ P, g ∈M, h ∈ O such that f + g2 + h = 0.

The algebraic quantities P, M and O are thereby given by

P := cone(f1, ..., fJ) = {f | s0 +
∑
a

safa +
∑
a,b

sabfafb + ..., s0, sa, sab ∈ Σ[x]},

M := monoid(g1, ..., gL) = {gm1
1 · · · gmLL |m1, ...,mL ∈ N0},

O := ideal(h1, ..., hK) = {h |h =
K∑
k=1

qkhk, qk ∈ R[x]}.

Theorem 2.2 provides certificates, i.e., formal refutations, in form of the SOS multipliers
s0, sa, sab, the integer exponent multiplier m1, ...,mL, and the indefinite polynomial mul-
tiplier qk for a semialgebraic set to be empty. The degree, or, respectively, the integer
value of the multiplier certificates is not prescribed by the Positivstellensatz and can be
arbitrarily high.

Theorem 2.3 ([Par00]). Consider a system of polynomial equalities and inequalities of
the form (2.9). Then, the search for bounded degree Positivstellensatz refutations can be
done using semidefinite programming. If the degree bound is chosen to be large enough,
then the SDPs will be feasible, and the certificates obtained from its solution.

This theorem follows directly from Theorem 2.1 and the structure of SDPs as given in
Definition 2.4.
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Set containment conditions from Positivstellensatz

The Positivstellensatz can be applied to formulate semialgebraic set containment con-
ditions. This is particularly useful for applications in which the feasible set can be
formulated by polynomial constraints. The Positivstellensatz results in S-procedure-like
arguments. While the standard S-procedure [BV04] provides necessary and sufficient
conditions for the set containment problem of quadratic forms, the criteria of the Pos-
itivstellensatz provide sufficient conditions for the set containment problem involving
polynomials of arbitrary degree sets. For this reason the criteria for this particular case
are also referred to as generalized S-procedure, and have been proposed as such in, among
others, [Par00; JW03; TP08; TP09; IML19b].

Lemma 2.1 (Set containment condition). Given {fj}Jj=0 ∈ R[x], h ∈ R[x] and g ∈ R[x],
the set containment

{x ∈ Rn | f1 ≥ 0, ...fJ ≥ 0, h = 0, g 6= 0} ⊆ {x ∈ Rn | f0 ≥ 0}, (2.10)

is certified if there exist SOS multipliers s1, ..., sJ ∈ Σ[x], an indefinite multiplier q ∈ R[x]
and an integer multiplier m ∈ N0 such that

f0(x)−
J∑
j=1

sj(x)fj(x)− q(x)h(x)− g2m ∈ Σ[x]. (2.11)

Additional inequations and equality constraints can be added in (2.10) by simple addition
of the corresponding terms.

For any fixed degree of the multipliers sj, q, Lemma 2.1 represents sufficient condi-
tions. Since Theorem 2.2 presents a hierarchy of sufficient conditions with respect to the
multiplier degrees, choosing higher degrees for the multipliers in (2.11) can potentially
certify larger sets contained in f0.

2.1.4 Matrix sum-of-squares

In Chapter 4 optimization problems are considered which involve inequality constraints
on matrices with polynomial entries. These types of constraints can be included in SOS
programs by relaxing the PSD constraints to matrix SOS constraints.

Definition 2.6 (Matrix SOS, [APS08]). A symmetric matrix with polynomial entries,
F (x) ∈ Sn×n, is called a matrix SOS if for a vector of new indeterminants y = [y1, ..., yn]T
the scalar polynomial yTF (x)y is an SOS polynomial in Σ[x, y].

The set of SOS matrices in x is denoted by Σn×n[x].
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2.1.5 Set volume maximization

Consider the set Ω = {x ∈ Rn | g(x) ≤ 1}, where g(x) = v(x)TQv(x), Q ∈ Sn, Q � 0.
In the problems considered in this work the issue will arise to find matrices Q which
maximize the volume of a set such like Ω.

• Case ∂(g) = 2:
The volume of Ω is inversely proportional to the determinant of Q. The geometric
mean of the eigenvalues ofQ is a monotonic function of its determinant and presents
a concave (and, by negation, convex) expression. By using the geometric mean of
the eigenvalues of Q as the objective function to minimize for, the volume of Ω is
maximized.

max vol(Ω) −→ max
Q

−det (Q)1/n . (2.12)

More details and proofs can be found in [JP19].

• Case ∂(g) ≥ 4:
There is no direct convex relationship to the volume of Ω in this case. However,
by using a surrogate set in the form of the sublevel set of a quadratic form (such
as in the first case) which is constrained to lie withing Ω, the volume of Ω can be
maximized indirectly by maximizing the volume of the surrogate set. Let b(x) =
xTBx and B = {x| b(x) ≤ 1}.

max vol(Ω) −→ max
Q,B

−det (B)1/n

subject to B ⊆ Ω.
(2.13)

2.2 Random variables and Polynomial Chaos Ex-
pansion

Polynomial Chaos Expansion (PCE) is a spectral method for uncertainty quantification
in which a stochastic variable or process is expanded with respect to an appropriate or-
thogonal basis in the Lebesgue space. This method can be applied to stochastic processes
with finite second moment, also called second order processes. In contrast to the more
simple to implement but computationally expensive Monte-Carlo (MC) methods, the
PCE of a stochastic quantity, once constructed, directly leads to its distribution. The
following sections first provide some relevant definitions before presenting the spectral
expansion method of PCE.

18



2.2 Random variables and Polynomial Chaos Expansion

2.2.1 Probability spaces and random variables

Let Θ be a sample space and F a σ-algebra of the subsets in Θ. Then the pair (Θ,F)
is a measurable space. A measure µ defined on (Θ,F) is called a probability measure if
it is nonnegative and µ(Θ) = 1. The triple (Θ,F , µ) with µ being a probability measure
denotes a probability space.

Definition 2.7 (Random variable, [Sul15]). Let (Θ,F) and (Y ,G) be measurable spaces.
A function f : Θ→ Y generates a σ-algebra on Θ by σ(f) := σ({[f ∈ E] |E ∈ G}) and
f is called a measurable function if σ(f) ⊆ F . That is, f is measurable if the pre-
image f−1(E) of every G-measurable subset E of Y is an F-measurable subset of Θ. A
measurable function whose domain is a probability space is called a random variable.

Definition 2.8 (Stochastic process, [Sul15]). Let S be any set and let (Θ,F , µ) be a
probability space. A function U : S×Θ→ X such that each U(s, ·) is a random variable
is called an X -valued stochastic process on S.

Definition 2.9 (Lebesgue space, [Sul15]). Let (Θ,F , µ) be a measure space (i.e., µ is any
measure, not necessarily a probability measure). For 1 ≤ l ≤ ∞, the Ll space (Lebesgue
space) is defined by

Ll(Θ, µ;K) := {f : Θ→ K | f is measurable and ||f ||Ll(µ) is finite}. (2.14)

For 1 ≤ l <∞, the norm is defined by the integral expression

||f ||Ll(µ) :=
(∫

Θ
|f(x)|ldµ(x)

)1/l
, (2.15)

and for l =∞ it is defined by the essential supremum.

As PCE considers stochastic variables with finite second moment, the focus in this work
will be on the L2 space which is a complete square-integrable space and thus a Hilbert
space. The inner product in the L2 space is denoted by 〈·, ·〉L2(µ) (where the L2-subscript
will frequently be dropped), and represents integration, i.e., expectation, with respect to
µ. Expectation in the L2 sense is further indicated by E.

The generalized PCE enables the expansion of any random variable, vector or stochas-
tic process U ∈ L2(Θ, µ) in terms of elementary µ-orthogonal functions. These µ-
orthogonal functions ξi : Θi → R, i = 1, ..., d compose independent entries of a Rd-valued
random variable ξ which is called the stochastic germ. The support of ξ is given by
the measurable rectangle Θ = Θ1 × ... × Θd ⊆ Rd, and the distribution of ξ on Θ by
µ = µ1 ⊗ ... ⊗ µd. For clarity of presentation in this work we consider one-dimensional
stochastic germs ξ, i.e., Θ ⊆ R. All methods presented in this thesis can be applied to
higher-dimensional stochastic germs in a straight-forward but notation and computation-
wise increasingly complex manner.
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2.2.2 Orthogonal polynomial bases

For a given probability space, an orthogonal polynomial basis is defined as follows.

Definition 2.10 (Orthogonal polynomial basis). Let µ be a nonnegative measure on Θ.
A set of polynomials Q = {Φi|i ∈ N} ⊆ R[x] is called an orthogonal basis of polynomials
if for each i ∈ N, ∂(Φi) = i, Φi ∈ L2(Θ, µ) and

〈Φi(ξ),Φj(ξ)〉 =
∫

Θ
Φi(ξ)Φj(ξ)dµ(ξ) = γiδij, (2.16)

where
γi := 〈Φi(ξ),Φi(ξ)〉. (2.17)

are (non-negative) normalization constants of the basis.

The orthogonal polynomial basis is constructed using a normalization such that Φ0 = 1.
For certain polynomial bases the weighting function of the orthogonality relationship

of the polynomial basis is identical to the probability function of a classical probabil-
ity distribution. Table 2.1 shows examples of these orthogonal polynomials and their
associated probability distributions.

Table 2.1: Examples of orthogonal polynomial bases of the Askey-scheme and their
associated probability distributions.

Polynomial basis Probability distribution

Hermite Gaussian
Legendre Uniform
Jacobi Beta
Laguerre Gamma
Charlier Poisson
Krawtchouk Binomial
Hahn Hypergeometric

2.2.3 Polynomial Chaos Expansion

Even though the Hermite-polynomial basis expansion will yield an L2-convergent approx-
imation of any random function belonging to the L2 space, particular choices of bases
depending on the kind of random distribution can render higher rates of convergence. If
the polynomial basis is chosen, such that its weighting function is identical to the prob-
ability function of the random variable under consideration, then the expansion in the
corresponding polynomial basis is converging with an exponential rate (in the L2-sense).
Table 2.1 provides examples of these L2-optimal pairings. For any complete orthogonal
basis {Φi}i∈N0 of the Hilbert space L2(Θ, µ) the PCE is then defined as follows.
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2.2 Random variables and Polynomial Chaos Expansion

Definition 2.11 (Polynomial Chaos Expansion series). Let y(ξ) ∈ L2(Θ, µ) be a square-
integrable vector-valued random variable in Rm, m ∈ N. The PCE of y(ξ) with respect
to the stochastic germ ξ is the expansion of y(ξ) in the orthogonal basis {Φi}pi=0

y(ξ) =
p∑
i=0

ȳiΦi(ξ) ∈ Rm, (2.18)

with vector valued PCE coefficients ȳi ∈ Rm, ȳi = [ȳ1i , ..., ȳmi ]T , which are obtained from,
e.g, the Galerkin projection

ȳi = 〈y(ξ),Φi(ξ)〉
γi

. (2.19)

With p→∞ the series in (2.18) becomes an exact expansion of y(ξ).

The coefficients {ȳi}i∈N0 can be obtained by computing the integral in equation (2.19)
for each component of y. In general, there are several numerical approaches to comput-
ing the PCE coefficients consisting of intrusive methods (e.g., Galerkin projection) and
non-intrusive methods (e.g., collocation methods).

PCE of moments

The statistical moments of a random variable y(ξ) ∈ Rm can be retrieved from the PCE
coefficients of the expansion in the L2-optimal basis. With the notation in (2.18), the
P -th moment, where 1 ≤ P <∞, can be obtained from

E[|y(ξ)|P ] =
p∑
i=0

p∑
jj=0
· · ·

p∑
P=0

ȳiȳj · · · ȳP 〈Φi(ξ)Φj(ξ) · · · ,ΦP (ξ)〉

=: M̄P (ȳ).
(2.20)

In particular, for the first moment, i.e., the mean Λ ∈ Rm of y(ξ) ∈ Rm, equation (2.20)
results in

Λ(y(ξ)) := E[y(ξ)] = 〈y(ξ),Φ0〉 = ȳ0. (2.21)

For the variance σ2 ∈ Rn of y(ξ) follows

σ2 := E[|y(ξ)− E[y(ξ)]|2] =
p∑
j=1

ȳ2
jγj, (2.22)

and for the covariance matrix Ξ ∈ Rm×m of y(ξ)

Ξ(y(ξ)) :=
p∑
j=1

ȳj ȳ
T
j γj, (2.23)

21



Chapter 2. Mathematical Preliminaries

where, in particular, for each entry of the matrix it is that

Ξkl =
p∑
j=1

ȳkj ȳljγj. (2.24)

with ȳkj , ȳlj representing the j-th PCE coefficients of the k-th, respectively l-th, compo-
nent of the random variable y ∈ Rm.

Motivated by equations (2.21) and (2.22) for the mean and variance of a random
variable y ∈ Rm, the PCE coefficients in

ȳ0 = [ȳ10 , ..., ȳn0 ]T ∈ Rm, (2.25)

are called the mean modes, and PCE coefficients

ȳJ := [ȳ11 , ..., ȳm1 , ..., ȳ1p , ..., ȳmp ]T ∈ Rm·p, (2.26)

are called the variance modes. Together, they present the stochastic modes, denoted by

ȳ := [ȳ0, ȳJ ]T ∈ Rm(p+1). (2.27)

PCE of stochastic polynomial ODEs

Applying the PCE to a stochastic dynamical system (3.1) results in a deterministic
representation of the system at the expense of an increased state dimension. More
precisely, by expanding the random variables up to the truncation order p and projecting
the resulting expansion onto each of the p basis functions, the n-dimensional stochastic
system is represented by a n · (p + 1)-dimensional deterministic system. The expansion
is demonstrated for an example system where n = 1.

ẋ(t, ξ) = a(ξ)x3(t, ξ). (2.28)

Expanding (2.28) gives
p∑
i=0

˙̄xi(t)Φi(ξ) =
p∑
j=0

p∑
k=0

p∑
l=0

p∑
m=0

ājx̄k(t)x̄l(t)x̄m(t)Φj(ξ)Φk(ξ)Φl(ξ)Φm(ξ). (2.29)

Projecting (2.29) onto the q-th basis polynomial results in q deterministic differential
equations
p∑
i=0

˙̄xi(t)〈Φi(ξ),Φq(ξ)〉 =
p∑
j=0

p∑
k=0

p∑
l=0

p∑
m=0

ājx̄k(t)x̄l(t)x̄m(t)〈Φj(ξ)Φk(ξ)Φl(ξ)Φm(ξ),Φq(ξ)〉.

(2.30)
This expression motivates the introduction of a tensor notation, where

Tij..q = 〈Φi(ξ)Φj(ξ) · · · ,Φq(ξ)〉
γq

, (2.31)
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is called the rank-r Galerkin tensor, where r is the monomial degree of the term in the
summation. It is a sparse tensor where the entries are function of the chosen polynomial
basis functions. As such, the entries are constant. Even though size of the tensor
increases rapidly with increasing polynomial degree and truncation order, computing
the tensor is a one-time cost. It can be computed once offline and then stored for
dynamic computations. Using the tensor notation in (2.31), equation (2.30) results in

˙̄xq(t) =
p∑
j=0

p∑
k=0

p∑
l=0

p∑
m=0

ājx̄k(t)x̄l(t)x̄m(t)Tjklmq. (2.32)

The polynomial basis for the PCE of (2.28) is often chosen according to the L2-
optimal basis for ξ. While the PCE for a second order random process such as (2.28) can
be performed in any basis as given by Definition 2.10, the convergence of the expansion
will be faster or slower depending on the choice. This translates into the truncation
order p which is needed to represent the system sufficiently accurately by the expansion,
with slower convergence implying larger p.

2.3 Function definitions

Various definitions around functions, which are relevant for this thesis are provided in
the following.

Definition 2.12 (Lipschitz continuous function). A function f : D → R with domain
D ⊆ Rn is Lipschitz continuous if there exists a constant L > 0, such that for all
x, y ∈ D, the following holds.

‖f(x)− f(y)‖ ≤ L‖x− y‖. (2.33)

Definition 2.13 (Well-definedness). A relation f : X → Y is well-defined (i.e., a
function), if f ⊆ X×Y , the domain of f is X, and further for every (x1, y1), (x2, y2) ∈ f :

x1 = x2 =⇒ y1 = y2. (2.34)

Definition 2.14 (Kernel). Let F : V → W be a linear transformation between the vector
spaces V,W . The kernel of F , also referred to as the null space of F , is the set of all
vectors such that

ker(F ) = {v ∈ V |Fv = 0}. (2.35)

where 0 denotes the zero vector in W .
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CHAPTER 3
Region of Attraction Analysis of Equilibrium

Points of Stochastic Systems
The numerous ways in which uncertainty can manifest itself and affect a system makes
generalized approaches to region of attraction (ROA) analysis particularly challenging.
This has caused a multitude of system and uncertainty specific analysis methods to be
proposed instead [CGW01; Che04b; TD14; Ber+16; VA17]. A class of uncertain systems
commonly considered has two characteristic properties: firstly, the equilibrium point of
the system is independent of the uncertainty, and secondly, the uncertainty comes from
a uniform distribution over a finite and known range [TP09; Top+10; ISM19; IML19b].
While these characteristics allow for well-established methods, such as Lyapunov argu-
ments to be used for the analysis, most systems of the real world are not captured by
them as they are affected by uncertainty with stochastic nature and the equilibrium
point’s location is dependent on the uncertainty.

In the first part of this chapter we aim for systems which are not equipped with these
two restricting characteristics. We do this by considering the class of stochastic nonlinear
systems represented by second order processes for which we present an approach to ana-
lyze the ROA. This class of systems allows to take into account uncertainty coming from
any L2-bounded distribution, i.e., distributions with finite second moment. Moreover,
the method is derived such that it can explicitly account for systems whos equilibrium
points are dependent on the uncertainty. The stochastic system is represented by a
higher-dimensional set of deterministic equations obtained from a the Polynomial Chaos
Expansion (PCE) of the stochastic dynamics. By deriving a connection firstly between
the equilibria of the two system representations and secondly between the moment sta-
bility of the stochastic system and the asymptotic stability of the PCE system we arrive
at a notion of the ROA of the stochastic equilibrium point on the basis of the ROA the
PCE equilibrium point. More precisely, the ROA is obtained in terms of the region of
initial conditions with specified moment properties for which trajectories almost surely
converge to the equilibrium set of the stochastic system. The moment properties of the
initial condition consist of, for example, a fixed variance in the initial state, and can
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be specified by the user. Using Lyapunov stability conditions on the PCE system we
propose an optimization program to compute an inner estimate of the ROA of the PCE
equilibrium point. Based on the derived notion of the ROA of the stochastic equilibrium
point an optimization program is proposed to efficiently compute an inner estimate of
the stochastic ROA from the results of the PCE ROA.

Based on the results of the first part of the chapter, the second part turns to the
problem of designing of feedback controllers for stochastic systems which are second
order processes. The aim in the control design is to enlarge the ROA of the operating
point which poses two major challenges. Firstly, means to measure the size of the ROA
are required in order to quantify the attractive region. And secondly, conditions on
the controller need to be formulated in a way such that an increase of the attractive
properties of the system is obtained. The first challenge of efficiently measuring the size
of the ROA is tackled by using the results presented in the first part of the chapter.
The second challenge is followed up by developing computationally tractable conditions
for the controller to increase the ROA. As second order processes are considered the
proposed control design explicitly takes into account the statistical information available
on the uncertainty, thus potentially allowing for less conservative results compared to
standard robust approaches. Moreover, the enforcing of input constraints in the design of
the feedback controller is enabled. An optimization program is proposed which efficiently
implements the controller design.

This chapter is structured as follows. In Section 3.1 an overview of related works in
the field is provided. The class of stochastic systems and its PCE representation as well
as the definition of its equilibrium set together with a definition of its ROA are presented
in Section 3.2.1. In Section 3.2.2 the notions of moment stability and Lyapunov stability
for the two systems are presented and the their connection is derived. The algorithms
of the optimization programs for the computation of the ROAs are presented in Section
3.2.4. Section 3.2.5 illustrates the application and various features of these algorithms by
two examples. In Section 3.3.1 the feedback control design problem and the considered
system class is presented. Criteria for the ROA of the controlled PCE equilibrium point
are presented in Section 3.3.2 and details on the feedback control design within the
framework of PCE are provided in Section 3.3.3. The optimization program for the
controller design and the algorithm of its implementation are detailed in Section 3.3.4,
followed by two illustrative examples in Section 3.3.5. The chapter ends with conclusions
presented in Section 3.4.

3.1 Related work

For uncertain systems the analysis of the ROA is a particularly active field of research.
[CGW01; Che04b; TP09; Top+10; TD14; Ber+16; VA17; ISM19; IML19b]. The type
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of uncertainty and its appearance in the dynamical equations is often pivotal for the
choice of the analytical approach. The stability of the class of commonly considered
uncertain systems for which the equilibrium point of the system is independent of the
uncertainty, and for which the uncertainty comes from a uniform distribution is most
often analyzed using Lyapunov methods [Che04b; TP09; Top+10; IML19b]. In these
methods an estimate of the ROA is obtained in the form of the sublevel set of a Lyapunov
function. Optimization programs are often used to extend the approach with the aim of
finding a Lyapunov function verifying a largest possible sublevel set. For systems where
the uncertainty itself is parametric and polytope-bounded, parameter-dependent as well
as common and composite Lyapunov functions have been investigated in, e.g., [Top+10;
Che04b; ISM19].

The ROA analysis in the case of uncertainty-dependent equilibria, however, is not
directly amenable to the use of Lyapunov functions, as standard Lyapunov methods
require knowledge of the equilibrium’s location. To tackle this problem, an equilibrium-
independent version of the ROA was proposed in [ISM18] where the ROA was formulated
as a function of a new coordinate representing the deviation of the state relative to
the equilibrium point. As such, the approach admits the use of Lyapunov methods,
however, it is still limited to uncertainties from uniform distributions. A more general
approach for ROA analysis is provided by contraction methods which carry the benefit
of inherently not requiring knowledge on the equilibrium state. Contraction of uncertain
systems was studied, e.g. in [AWS18b] for polytope-bounded parametric uncertainty
and in [BS19], [PTS09] for Itô stochastic differential equations. Contraction methods
often pose, however, numerically more complex problems compared to Lyapunov analysis
as they consider the differential system. Furthermore, while contraction analysis gives
conclusions about the contractive behaviour of a system it in general does not provide
information on the state of the (stochastic) equilibrium. Their advantage, thus, has to be
carefully weighted against their drawbacks with regard to the system under consideration.
In particular for the analysis of limit cycles, contraction methods can provide a useful
tool, which will be a focus in both Chapter 4 and 5.

When considering stochastic systems, there is no classically unique notion of the
ROA in the way there is for the deterministic case. For stochastic systems a definition
of the ROA can be derived from the type of stochastic stability under consideration. An
overview of the different definitions of stochastic stability is provided, e.g., in [Kha12;
Koz69]. A widely used notion for the ROA of uncertain systems is that of a ‘robust’ ROA,
which is the intersection of the ROAs obtained for each realization of the uncertainty.
As it thus relates to the worst case, this notion is suitable for uncertainties with uniform
distributions but less so for other distributions where the worst case is not of practical
interest or exploiting the statistical information available gives less conservative results.
A probabilistic ROA of an uncertainty-independent equilibrium point was investigated
for Ito-stochastic system via Lyapunov functions in [GH18]. In [ST12] ‘safe sets’ of a
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controlled system with quantified failure probabilities were considered and computed
with a supermartingale approach.

While PCE techniques have become established tools in uncertainty quantification,
their use in stability and control is still sparse [Kim+13] and mostly focused on linear
systems. Stability analysis of linear stochastic systems via PCE using Lyapunov in-
equalities was previously performed in [FB09] and [Luc+17]. In [HT06], the evolution
of the stochastic modes resulting from the PCE was used to obtain information on the
stability of a nonlinear system. A more generalized approach for polynomial systems
using Lyapunov arguments is briefly presented in [FB08], however the method proposed
therein can only be used to certify global stability properties.

Using feedback control to increase the size of the ROA can be particularly desirable
when uncertainties affect the system and exert a detrimental effect on the ROA. The
task, in particular measuring the ROA, becomes significantly more complex in the case of
uncertain systems. While the computation of inner estimates of the ROA was proposed
for systems with uniformly distributed uncertainty [TP09; IML19b; VA17], none of these
methods include a control design aiming at enlarging the ROA. On the other hand, for
the class of deterministic polynomial systems with affinely appearing control inputs, such
feedback controllers which aim at enlarging the ROA have been previously proposed, e.g.,
in [JW+05; Che04a; MAT13]. In these studies, both the feedback gains as well as the
size of an inner estimate of the ROA are obtained by formulating Lyapunov arguments
in an optimization problem which aims to maximize the size of the ROA.

3.2 ROA analysis for uncertain equilibrium points
of stochastic systems

3.2.1 Stochastic systems and equilibrium sets

The system class considered in the following are polynomial continuous time second order
random processes of the form

ẋ(t, ξ) = f(x(t, ξ), a(ξ)), (3.1)

where x(·, ξ) ∈ L2(Θ, µ;Rn) is the random state variable, a(ξ) ∈ L2(Θ, µ;Rm) is an un-
certain parameter given by a random variable, and ξ is the one-dimensional stochastic
germ as defined in Section 2.2.1. To avoid overloading on notation we drop the L2 ref-
erence, as the general stochastic variable considered here is assumed to be L2-bounded,
and only specify if needed. E.g., x(ξ) ∈ L2(Θ, µ;Rn) will simply be written x(ξ) ∈ Rn.
The stochastic dynamics, f : Rn × Rm → Rn, are polynomial in x and a.

Assumption 3.1. The support of the random variable ξ ∈ L2(Θ, µ) is finite.
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3.2 ROA analysis for uncertain equilibrium points of stochastic systems

Assumption 3.1 holds for most practical applications. In the case that uncertainty dis-
tributions with typically infinite support, such as Gaussian distributions, are considered,
[HT06] showed that the support can be limited with in practice negligible approximation
error.

System (3.1) is considered to have an uncertainty-dependent attractive equilibrium
point xEP(ξ). More precisely, for each realization of the uncertainty ξ the system con-
verges to a different equilibrium point xEP(ξ). The set described by all such equilibrium
points will be of central importance in this section and is formally defined as follows.

Definition 3.1 (Equilibrium set). The equilibrium set is the set given by the evaluation
of xEP(ξ) ∈ L2(Θ, µ;Rn) for each realization of the uncertainty, and is denoted by

I = {x ∈ Rn | f(x, a(ξ)) = 0, ξ ∈ L2(Θ, µ)}. (3.2)

Stochastic ROA

Let ψ(t, xini(ξ), ξ) denote the uncertainty-dependent solution of (3.1) at time t with
initial condition xini(ξ), where the initial state is also allowed to be random, i.e. x(t =
0) = xini(ξ). Note that for simplicity of notation we consider the same stochastic germ
for the initial state as for the independent random variable. The ROA of the equilibrium
set I is then defined as follows.

Definition 3.2 (Stochastic ROA of I). The ROA of the equilibrium set I of a system
(3.1) is defined as the set

R∗ = {xini ∈ Rn | P[ lim
t→∞

dist(ψ(t, xini(ξ), ξ), I) = 0] = 1}, (3.3)

where P denotes probability, and dist is the distance measured in a chosen norm (e.g.,
the Euclidean norm).

PCE system representation

Using the PCE framework presented in Section 2.2, the PCE representation of system
(3.1) is denoted by

˙̄x := f̄(x̄), (3.4)

where x̄ ∈ Rn(p+1) is the vector of PCE coefficients of the p-truncated expansion series,
and f̄ : Rn(p+1) → Rn(p+1) refers to the dynamics resulting from the PCE of the stochastic
dynamics in (3.1). We will frequently refer to (3.4) simply as PCE system.

Regarding the truncation order p of the expansion series the commonly made as-
sumption is introduced.

Assumption 3.2. The truncation order p is chosen such that the PCE system (3.4)
accurately represents the stability properties of the stochastic system (3.1).
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3.2.2 Stability of stochastic systems

The aim in the following is to analyze the stability properties of the equilibrium set I (3.2)
of a stochastic system by means of the PCE system (3.4). In order to draw conclusions
from the stability properties of the PCE system on the stability of the stochastic system,
a connection between the stability behavior of both systems needs to be established.
This requires the introduction of suitable notions of stability for both systems.

Relationship of equilibria

Before turning to the notions of stability we first show the relationship between the
equilibria of (3.1) and (3.4).

Lemma 3.1. The stochastic system (3.1) has an equilibrium set I as defined in (3.2) if
and only if the PCE system has an equilibrium point, x̄EP ∈ Rn(p+1).

Proof. Let f(xEP(ξ)) = 0. The PCE of f(xEP(ξ)) is f̄(x̄EP), where xEP(ξ) = ∑p
i=0 x̄EPiΦi(ξ)

from (2.18). Assume x̄EP was not an equilibrium of f̄ , i.e. f̄(x̄EP) 6= 0. Then there exists
a t > 0, ψ̄(t, x̄EP) = x̄(t) 6= x̄EP. However, ψ̄(t, x̄EP) is the PCE of ψ(t, xEP), and, by
equation (3.2), ψ(t, xEP(ξ)) = ψ(0, xEP(ξ)) = xEP(ξ), so ψ̄(t, x̄EP) = x̄EP. This argument
holds both ways, and thus f(xEP(ξ)) = 0⇔ f̄(x̄EP) = 0.

The equilibrium set can be obtained numerically by explicit computation of the expansion
xEP(ξ) = ∑p

i=0 x̄EPiΦi(ξ). Using equation (2.20) for a known L2-optimal basis, the
equilibrium set can further be expressed in terms of its moments,

I = {x ∈ Rn |x ∈ xEP(ξ) ∼ λ(M̄P (x̄EP))}. (3.5)

Due to Lemma 3.1 the task of analyzing the stability of the uncertainty-dependent equi-
librium point of the stochastic system converts to the well-known problem of analyzing
the stability of an equilibrium point of a deterministic system. Moreover, it emphasizes
the important aspect that an equilibrium point of the PCE system not only corresponds
to an equilibrium set of the stochastic system but also contains the statistical informa-
tion of the set. Note that the location of x̄EP can be easily obtained by simulating a
trajectory of (3.4) with initial state in the region of interest.

Remark 3.1. If the variance modes of x̄EP are zero, i.e., x̄EPJ = 0, then the stochastic
system has an uncertainty-independent equilibrium point located at xEP = x̄EP0. The
equilibrium set I thus only contains one element. Moreover, if all stochastic modes are
zero, x̄EP = 0, then also xEP = 0.

Based on this relationship between the equilibria a connection is proposed between cer-
tain stability notions which are specified for each system in the following.
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P -th moment boundedness and stability

Among the various concepts of stability for stochastic system we focus on P -th mo-
ment boundedness and stability of stochastic systems where definitions as found in, e.g.,
[Kha12], [WM04], [Kha02].

Definition 3.3 (Moment stability). The solutions of (3.1) are called ultimately bounded
in the P -th moment if there exists a constant c > 0 such that for any b > 0 there exists
a T = T (b) > 0 such that

|xini| < b → E[|x(t, ξ)|P ] < c, ∀t ≥ T. (3.6)

Further, if there is only one element in I then let this element, without loss of generality,
be the zero point. This zero point is called

• stable in the P -th moment, if for each ε > 0, there exists a δ > 0 such that

|xini| < δ → E[|x(t, ξ)|P ] < ε, ∀t ≥ 0, (3.7)

• asymptotically stable in the P -th moment, if it is P -th moment stable and, further,

|xini| < δ → E[|x(t, ξ)|P ]→ 0 as t→∞. (3.8)

We now define a suitable notion of stability for the PCE system. As we are interested
in equilibrium points of (3.4) and, further, (3.4) is deterministic, we use stability in the
sense of Lyapunov.

Definition 3.4 (Lyapunov stability). The equilibrium point x̄EP of (3.4) is locally stable
if for each ε > 0 there exists a δ > 0 such that

|x̄ini| < δ ⇒ |x̄(t)− x̄EP| < ε, ∀t > 0. (3.9)

Further, x̄EP is locally asymptotically stable if it is locally stable and δ can be chosen
such that

|x̄ini| < δ ⇒ |x̄(t)− x̄EP| → 0 as t→∞. (3.10)

Utilizing both presented notions of stability and the equilibria relationship established
in Lemma 3.1 we find the following result for the stochastic system.

Theorem 3.1. Let the system (3.4) with f̄ : D̄ → D̄ ⊆ Rn·(p+1) be the PCE of the
stochastic system (3.1). If the equilibrium point x̄EP ∈ D̄ is locally asymptotically stable
then the solutions of (3.1) are ultimately bounded in the P -th moment in a neighborhood
of I. If, further, x̄EP represents a I containing a single point, then (3.1) is locally
asymptotically stable in the P -th moment.

31



Chapter 3. Region of Attraction Analysis of Equilibrium Points of Stochastic Systems

Proof. If x̄EP is an equilibrium point of (3.4) then every trajectory x̄(t) in a neighborhood
of x̄EP will eventually converge to x̄EP. As all components x̄i(t) in this case converge to
a finite value, so does every term in the expression in (2.20) and thus E[|x(t, ξ)|P ] will
eventually converge to a finite value, which is given by inserting x̄EP into the right hand
side of equation (2.20). The ultimate boundedness of the P -th moment as defined in
(3.6) follows. If the equilibrium point x̄EP represents an I consisting of a single point
then this implies that x̄EPJ = 0 (cf. Remark 3.1). Thus, every component of x̄J(t)
will converge to zero and every component of x̄0(t) will converge to x̄EP0 as t → ∞.
Assuming, without loss of generality, x̄EP0 = 0, it follows that equation (2.20) converges
to zero and thus equation (3.8) holds.

Theorem 3.1 allows to obtain information about the behavior of the stochastic system
by analyzing the local stability properties of an equilibrium point x̄EP of the PCE sys-
tem. Since the PCE system is deterministic, this connection opens up the possibility of
analyzing stability of stochastic systems using deterministic criteria.

Remark 3.2. Note that the reverse of the statement in Theorem 3.1 is not true: ultimately
bounded solutions of the stochastic system (3.1) do not imply a convergence of the
components x̄(t) to constant values. One example for this is readily provided by systems
with a stable limit cycle. The trajectories in a neighborhood of the limit cycle converge
to the limit cycle and thus are locally ultimately bounded, however the PCE coefficients
x̄i(t) do not converge to an equilibrium point but instead remain ultimately bounded to
a set as well. This will further be explored in Chapter 4.

In the following, criteria for the attractive region of x̄EP are formulated.

3.2.3 PCE-based region of attraction analysis

In this section we first define the ROA of an equilibrium point x̄EP of the PCE system
and state the criteria with which an inner estimate of it can be obtained. We then show
how this ROA estimate translates to an inner estimate of R∗, the ROA of the stochastic
system.

The ROA of the PCE system

Let the exact ROA of x̄EP be defined by the set

R̄∗ = {x̄ini ∈ Rn·(p+1) | lim
t→∞

dist(ψ̄(t, x̄ini), x̄EP) = 0}, (3.11)

where ψ̄(t, x̄ini) denotes the solution of the PCE system at time t with initial state x̄ini.
An inner estimate of R̄∗, denoted by R̄, is then obtained from the following arguments.
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Theorem 3.2. Let D̄ ⊂ Rn·(p+1) be a compact domain containing x̄EP and let V be a
continuously differentiable function V (x̄) : D̄ → R. For a scalar β > 0 let ΩVβ = {x̄ ∈
D̄ |V (x̄) ≤ β} be the β-sublevel set of V . If V satisfies

V (x̄) > 0 ∀x̄ ∈ ΩVβ\{x̄EP}, V (x̄EP) = 0, (3.12)

V̇ (x̄) = ∂V

∂x̄
f̄(x̄) < 0 ∀x̄ ∈ ΩVβ\{x̄EP}, (3.13)

then V is a Lyapunov function and every trajectory x̄ini starting in ΩVβ will converge to
x̄EP as t → ∞. Thus, the set R̄ = {x̄ini ∈ D̄|x̄ini = x̄, ∀x̄ ∈ ΩVβ} is an inner estimate
of R̄∗.

The proof utilizes standard Lyapunov arguments and is shown in Appendix A.1.
In the following, the connection of R̄ to the stability properties of the original stochas-

tic system is drawn.

Stochastic ROA retrieved from PCE coefficients

Theorem 3.2 presents a criterion for a set R̄ to be an inner estimate of the PCE system’s
ROA (3.11), where R̄ is expressed in terms of the PCE coefficients. We now provide the
means to infer information about R∗, the ROA of the equilibrium set I of the stochastic
system, from R̄. More precisely, we show how the inner estimate R̄ translates into an
inner estimate R of the stochastic ROA R∗. Recalling the expression (3.3) for the ROA
of the equilibrium set I of a stochastic system, the following arguments can be made.

Lemma 3.2. Let R̄ be an inner estimate of the ROA of x̄EP, R̄ ⊆ R̄∗. Then the set

R = {xini ∈ Rn |xini(ξ) ∼ λ(M̄P (x̄ini)),∀x̄ini ∈ R̄}, (3.14)

is a subset of the ROA of xEP, R ⊆ R∗.

Proof. We first establish the relationship between xini(ξ) and x̄ini ∈ R̄. The PC coeffi-
cients x̄ini ∈ R̄ represent the stochastic variables xini(ξ) by the relation (2.18), such that
any x]ini(ξ) ∈ R is given by x]ini(ξ) = ∑p

i=0 x̄ini
]
iΦi(ξ). For this x]ini(ξ), from equation

(2.20) the moments are given by MP (x]ini) = M̄P (x̄ini]). This reasoning holds for all
xini ∈ R.
We now turn to prove R ⊆ R∗. Recall, that from Theorem 3.2 we have x̄ini ∈ R̄ =⇒
lim
t→∞

ψ̄(t, x̄ini) = x̄EP. Let further x̄(t) = ψ̄(t, x̄ini) and x(t, ξ) = ψ(t, xini(ξ), ξ). With
equation (2.20) and the results from Theorem 3.1, it follows that if x̄ini ∈ R̄ then

E[|x(t, ξ)|P ] =
p∑
i=0
· · ·

p∑
P=0

x̄i(t) · · · x̄P (t)〈Φi · · · ,ΦP 〉,

t→∞−−−→
p∑
i=0
· · ·

p∑
P=0

x̄EPi · · · x̄EPP 〈Φi · · · ,ΦP 〉 = E[|xEP(ξ)|P ], (3.15)
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where 1 ≤ P <∞ and for a given xEP(ξ) and P the term E[|xEP(ξ)|P ] is a constant.
So far, we have shown the moment convergence of a random variable xini(t, ξ) ∈ R. It
remains to show that from this follows lim

t→∞
P[dist(ψ(t, xini(ξ), ξ), I) = 0] = 1 almost

surely. To this end, recall Assumption 3.1, thus Θ is bounded. Now, assume there is a
subset Θ† ⊂ Θ for which ξ† ∈ Θ† : dist(x(t, ξ†), I) 6→ 0 as t → ∞. Consider first the
case where x(t, ξ†)→∞ as t→∞. Then

E[|x(t, ξ)|P ] =
∫

Θ
|x(t, ξ)|Pdµ(ξ)

=
∫

Θ†
|x(t, ξ†)|Pdµ(ξ†) +

∫
Θ†C
|x(t, ξ†C)|Pdµ(ξ†C), (3.16)

where ξ†C ∈ Θ†C and Θ†C denotes the complement of Θ†, such that Θ†C ∪ Θ† = Θ.
The first term in equation (3.16) and by that the P -th moment of x(t, ξ) will, however,
tend to infinity as t goes to infinity, unless the elements in Θ† have µ-measure zero.
Consider now the case where dist(x(t, ξ†), I) → c as t → ∞, where 0 < c < ∞ is a
constant. In order to not contradict (3.15) with the expression in (3.16) we find that
either x(t, ξ†) = x(t, ξ) for all ξ† = ξ, but this implies dist(x(t, ξ†), I) → 0 as t → ∞,
or µ(ξ†) = 0. Hence, from moment convergence follows the almost sure convergence of
x(t, ξ) to I, such that lim

t→∞
P[dist(ψ(t, x†ini(ξ), ξ), I) = 0] = 1 for all xini ∈ R and thus

R ⊆ R∗.

If Assumption 3.1 does not hold and ξ has infinite support then almost sure convergence
of trajectories from moment convergence cannot be concluded. In that case, based on
the proof above the meaning of the computed region R∗ would change and could now
be characterized as the region for which the moments of all trajectories starting in R∗
converge to the moments of I.

3.2.4 Algorithms to compute a ROA estimate

In the following we present two algorithms based on sum-of-squares (SOS) programs by
which R̄ and R can be computed. The first algorithm returns the set R̄ as an inner
estimate of the ROA of the PCE system’s equilibrium point. The second algorithm uses
R̄ as well as user-specified fixed variance levels and computes the corresponding inner
estimate of the stochastic ROA, R. In order to make the following implementations
generalizable, a coordinate shift is introduced, similar to the one proposed in [ISM18].
The shift is

z̄ = x̄− x̄EP, (3.17)
and it is such that the analyzed system is centered around the zero point. Note that
while in [ISM18] x̄EP is not known because it depends on the uncertainty, in this formu-
lation x̄EP is deterministic and obtained by simulation of the PCE system, as mentioned
in Section 3.2.2.
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Algorithm 1: Computing R̄

A ROA estimate of the PCE equilibrium is obtained by finding a Lyapunov function
which satisfies the conditions stated in Theorem 3.2. Recall that the PCE system is
polynomial in the PCE coefficients. Using polynomial Lyapunov functions, the condi-
tions in Theorem 3.2 then result in polynomial form. This enables the reformulation
of the conditions in Theorem 3.2 as semialgebraic set containment conditions imposed
on the Lyapunov function. Applying Theorem 2.3 and Lemma 2.1 presented in Sec-
tion 2.1.3, the conditions are cast in the form of a generalized SOS program which can
efficiently be checked by a series of semidefinite programs (SDPs).

The aim of the algorithm is to maximize the set R̄ represented by the sublevel set
ΩVβ of the Lyapunov function. Using

V (z̄) = v(z̄)TQV v(z̄), QV � 0, (3.18)

the set ΩVβ is formulated as the sublevel set ΩVβ=1 = {z̄ |V (z̄) ≤ 1} where β is fixed to
1 as optimizing over β is redundant when optimizing over QV . It has been previously
observed [JW+05; TP06; AWS18a] that higher degree functions V have the potential
to verify larger estimates of the ROA. In order to have the required convex measure for
the set R̄ we use a quadratic surrogate set B = {z̄ | b(z̄) ≤ 1} to maximize over, where
b(z̄) := z̄TBz̄ and B � 0. This surrogate set is constrained to lie inside R̄, with further
details as presented in Section 2.1.5.

The set containment conditions for the R̄ maximization problem then result as fol-
lows.

{z̄ ∈ Rn |V (z̄) > 0, z̄ 6= 0} ⊆ {z̄ ∈ Rn | 1− V (z̄) ≥ 0}, (3.19)
{z̄ ∈ Rn | 1− V (z̄) ≥ 0, z̄ 6= 0} ⊆ {z̄ ∈ Rn | V̇ (z̄) < 0}, (3.20)
{z̄ ∈ Rn | 1− b(z̄) ≥ 0} ⊆ {z̄ ∈ Rn | 1− V (z̄) ≥ 0}. (3.21)

Applying the procedure demonstrated by Lemma 2.1 and adding the objective function
according to the outline in Section 2.1.5, results in the following optimization problem
in the form of a generalized SOS program.

min
QV ,s1,s2,B

det(B)1/n(p+1) (3.22a)

subject to
V (z̄)− l(z̄) ∈ Σ[z̄], (3.22b)

− V̇ (z̄)− s1(z̄)(1− V (z̄))− l(z̄) ∈ Σ[z̄], (3.22c)
− s2(z̄)(1− b(z̄))− (1− V (z̄)) ∈ Σ[z̄], (3.22d)

s1(z̄), s2(z̄) ∈ Σ[z̄] (3.22e)
B � 0. (3.22f)
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where the multipliers s1 and s2 are the SOS multipliers resulting from the Positivstel-
lensatz arguments 2.2. Once obtained for a bounded degree, they certify the inequality
constraints in (3.19)-(3.21) to hold. The term l(z̄) is an even polynomial with small
fixed coefficients (e.g., l(z̄) = 10−4z̄T z̄), which is used to enforce the inequation con-
straint z̄ 6= 0 in (3.19) and (3.20). Due to the chosen structure of the Lyapunov function
(3.18), which directly results in global positivity, the set containment condition (3.19)
reduces to the simpler condition given in (3.22b).

The generalized SOS program (3.22) is bilinear in the coefficients of the multipliers
s1, respectively s2 and QV , respectively B, which prevents its direct solution as an
SDP. However, by an iterative approach the problem is turned into a series of SDPs (cf.
Sectino 2.1.2). Algorithm 3.1 provides an outline of the computational implementation.
The procedure is initialized by linearizing the PCE dynamics (3.4) around z̄ = 0,

Ā = ∂f̄(x̄)
∂x̄

∣∣∣∣∣
z̄=0

, (3.23)

and solving the matrix Lyapunov equation,

ĀTQ+QĀ+H = 0, (3.24)

for a given H � 0. If x̄EP is a asymptotically stable equilibrium point, the obtained
Q is positive definite. The function Vini(x̄) = x̄TQx̄ then provides an initial Lyapunov
function. The matrix Q is scaled by a c > 0 using bisection until constraints (3.22c)
and (3.22e) are feasible. The initialization finishes with choosing an initial matrix B

such that (3.22d) and (3.22e) are feasible. Then an iteration over two steps follows. In
Step 1, the Lyapunov function and surrogate set are fixed and a feasibility test is solved
to find the SOS multipliers. Since in this step the constraints (3.22c) and (3.22d) are
independent of each other the multiplier search can be performed separately for each
constrained and potentially parallelized for speed up. In Step 2, the multipliers are fixed
to the obtained values in Step 1 and the optimization problem (3.22) is solved to find
a Lyapunov function for which the surrogate set B can be maximized. The two steps
are iterated until the relative increase in the set B falls below a predefined threshold
(convCritB in Algorithm 3.1). The problem in each of the two steps is an SOS program,
hence it is convex and can be solved as an SDP.

Algorithm 2: Recovering R from R̄

We propose an approach in form of an optimization problem in which the set R, as
given by Lemma 3.2 for initial conditions with specified stochastic properties, can be
recovered from the set R̄. In particular, the program shows how to obtain a maximized
inner estimate R of the true ROA R∗ from a given set R̄. The set R is given by
stochastic variables x, whose statistical properties are given by all possible states of the
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Algorithm 3.1 Maximize ROA estimate of x̄EP
1: Input: p, ∂(s1), ∂(s2), ∂(V ), convCritB
2: Output: V , R̄
3: procedure maxROAestimate
4: f̄(x̄) PCE←− f(x, a)
5: f̄(z̄) shift←− f̄(x̄)

6: Initialization:
7: QV ini ← c ·Q, solution of (3.24), scaled by c > 0 until (3.22c), (3.22e) feasible
8: choose a B � 0 small enough such that (3.22d), (3.22e) is feasible

9: Iteration:
10: k ← 0
11: repeat
12: k ← k + 1
13: Step 1:
14: s1 ← fix QV , B, solve (3.22c),(3.22e)
15: s2 ← fix QV , B, solve (3.22d),(3.22e)
16: Step 2:
17: QV , B ← fix s1, s2, solve (3.22a)-(3.22d), (3.22f)
18: until det(B)k−1 − det(B)k < convCritB
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PCE coefficients contained in R̄. In the set R̄, the mean modes x̄0 and the variance
modes x̄J can be traded off, allowing for a wide range of statistical properties of xini
being represented by R̄.

In order to obtain a set R of the stochastic system in the xini variables, one of the two
statistical properties, either the mean or the covariance, of the initial states can be fixed
and the set R obtained in terms of the other. We here choose to fix the covariance of
the initial states xini to a specified level, which is denoted by Ξ̂, and compute R in terms
of the mean of xini. The R obtained in this way will be denoted by R0 in the following.
Since Λ(xini) = x̄ini0 for xini distributed with stochastic germ ξ (equation (2.21)), the set
R0 is given by

R0 = {x̄ini0 ∈ Rn | x̄ini = x̄, x̄ ∈ R̄,
p∑
j=1

x̄jx̄
T
j γj = Ξ̂}. (3.25)

Note that as defined in (2.27), x̄ = [x̄0, x̄J ]T .
The set R0 can be computed from a given R̄ by the following optimization problem.

Let R0 hereby be represented by the 1-sublevel set of the polynomial function R0 :=
{x̄ini0 | v(x̄0)TQ0 v(x̄0) ≤ 1}. The aim is to maximize R0 inside R̄ while keeping the size
of the polynomials in (2.23), representing the covariance of the initial states xini, fixed.

max
Q0

vol(R0) (3.26a)

subject to (3.26b)
v(x̄ini)TQV v(x̄ini) ≤ 1, (3.26c)

p∑
j=1

x̄inijx̄ini
T
j γj = Ξ̂, (3.26d)

v(x̄ini0)TQ0v(x̄ini0) ≤ 1, (3.26e)
Q0 � 0, (3.26f)
R0 ⊆ R̄, (3.26g)

where QV is the optimizer of (3.22). Note that (3.26d) is a matrix equality constraint
with polynomial entries. Since Ξ̂ is a symmetric matrix, equation (3.26d) results in n(n+1)

2
scalar constraints. As ∂(R0) = ∂(V ), a convex surrogate set and the corresponding
objective function are introduced, as outlined in Section 2.1.5, to tractably maximize R0
for ∂(R0) > 2. In this case the surrogate set consists of a quadratic sublevel set in terms
of the mean modes, B0 = {x̄ini| x̄iniT0B0x̄ini0 ≤ 1}, constrained to remain within R0. As a
result from this procedure the following constraints are added to program (3.26), which
as such give a convex optimization of a lower bound on the volume of R0.

x̄ini
T
0B0x̄ini0 ≤ 1, (3.27a)

B0 � 0, (3.27b)
B0 ⊆ R0. (3.27c)
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3.2 ROA analysis for uncertain equilibrium points of stochastic systems

The constraints in (3.26) and (3.27) are polynomial and can, with the same procedure
as in the previous subsection for constraints (3.19)-(3.21), first be reformulated to set
containment constraints and then to the following generalized SOS program.

max
s1,s2,h11...hnn,Q0,B0

det(B0)1/n (3.28a)

subject to:
− s1(x̄ini)(1− v(x̄ini0)TQ0v(x̄ini0)) + (1− v(x̄ini)TQV v(x̄ini))+

+
n∑

l=1,k≥l
hlk(x̄ini)(Ξ̂lk − x̄ini

T
lJ

Γx̄inikJ ) ∈ Σ[x̄ini], (3.28b)

− (1− x̄iniT0B0x̄ini0)s2(x̄ini0) + (1− v(x̄ini0)TQ0v(x̄ini0)) ∈ Σ[x̄ini0], (3.28c)
s1(x̄ini) ∈ Σ[x̄ini], (3.28d)
s2(x̄ini0) ∈ Σ[x̄ini0], (3.28e)

B0 � 0, Q0 � 0. (3.28f)

The vector x̄inidJ := [x̄inid1 , ..., x̄inidp ]T contains the variance modes of the d-th dimen-
sion with d = 1, ..., n and Γ = diag[γ1, ..., γp]. The sum in the second term of (3.28b)
represents the scalar equality constraints given by the matrix equality in (3.26d). The
polynomials s1, s2 are the SOS multipliers, resulting from the Positivstellensatz argu-
ments 2.2, which certify the inequality constraints. The polynomials hlk are indefinite
multipliers certifying the equality constraints. The highest monomial degree in v(x̄ini0)
is chosen to be equal to the highest monomial degree of v(x̄ini) in V (x̄ini). As the con-
straint (3.28c) involves only the x̄ini0 coordinates, the associated multiplier s2 contains
polynomial terms only in x̄ini0.

Remark 3.3. In the case of Ξ̂ = 0, i.e., the covariance in the initial state is fixed to
zero, R0 can be obtained directly from the computed estimate R̄ by setting all terms
containing variance modes to zero as shown in Algorithm 3.2. This requires no additional
optimization problem to be solved.

The program (3.28) has bilinear terms in the SOS multipliers and B0, respectively Q0.
As for the case of program (3.22), we solve (3.28) iteratively as outlined in Algorithm
3.2. For a nonzero Ξ̂, the algorithm is initialized by scaling a unit matrix taken for Q0 by
using bisection until the constraints (3.28b) and (3.28d) are feasible. A feasible initial B0
is found from a unit matrix scaled by a variable larger than the previous scaling variable
for Q0. Similar to Algorithm 3.1 the algorithm then consists in two steps in which the
first finds multipliers for a fixed B0 and Q0 by solving a feasibility test, and the second
maximizes the size of B0 over Q0 while keeping the multipliers fixed. This algorithm
terminates after a relative increase in B0 has fallen below a specified convergence criteria
(convCritB0 in Algorithm 3.2).

Remark 3.4. If ∂(V ) = 2 then the optimization can be performed to directly minimize
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Algorithm 3.2 Maximize R0 as ROA estimate in terms of the mean modes.
1: Input: ∂(si), Ξ̂, convCritB0 , QV result from Algorithm 3.1
2: Output: Q0, R0
3: procedure maxStochasticROAestimate
4: Initialization:
5: if Ξ̂ = 0 then
6: Q0 ← v(x̄ini0)TQ0v(x̄ini0) = v(x̄ini)TQV v(x̄ini)

∣∣∣
x̄iniJ=0

7: else
8: Q0ini ← c1 · I, bisect on c1 > 0 until (3.28b), (3.28d) feasible
9: B0ini ← c2 · I, for a c2 > c1 such that (3.28c), (3.28e) feasible

10: Iteration:
11: k ← 0
12: repeat
13: k ← k + 1
14: Step 1:
15: s1, h11...hnn ← fix Q0, B0, solve (3.28b), (3.28d)
16: s2 ← fix Q0, B0, solve (3.28c), (3.28e)
17: Step 2:
18: Q0, B0 ← fix s1, s2, h11...hnn, solve (3.28a)- (3.28c),(3.28f)
19: until det(B0)k−1 − det(B0)k < convCritB0
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3.2 ROA analysis for uncertain equilibrium points of stochastic systems

det(Q0)1/n without using the surrogate set (cf. Section 2.1.5). This removes the con-
straints (3.28c) and (3.28e) from the algorithm.
Remark 3.5. The complementary problem of maximizing the allowed covariance in the
initial conditions for a fixed mean can be done by inserting the desired fixed matrix Q0
and moving Ξ̂ into the objective. The objective then consists of the convex expression
det(Ξ̂)1/n and the resulting problem can be solved without the use of a surrogate set and
its associated constraints.

3.2.5 Illustrative examples

The application of the proposed analysis method is illustrated by an uncertain Van-der-
Pol system and by the dynamics investigated in [ISM18]. Both dynamics are affected by
uncertainty in form of a random variable with a uniform distribution. While the first
example locally converges to the zero point for all realizations of the random variable, the
dynamics of the second example have an uncertainty-dependent attractive equilibrium
point.
A uniform distribution between the boundary values u and v is denoted by U(u, v).
The choice of a uniform distribution is motivated here by the possibility to compare the
results to previous studies. However, any other L2-distribution can be considered using
the methods presented. Considering other distributions only requires the computation
of the Galerkin tensor (2.31) for the associated polynomial basis.
The numerical results were computed using the collection of scripts which are presented
in more detail in Chapter 6, where further details on the numerical implementation can
be found.

Uncertain Van-der-Pol dynamics

In the first example, we consider

ẋ1 = −x2,

ẋ2 = −a(ξ)(1− x2
1)x2 + x1,

(3.29)

where a(ξ) ∼ Unif(0.7, 1.3) is a random variable depending on the stochastic germ ξ ∼
Unif(−1, 1). Based on this stochastic germ we use the Legendre polynomial basis for the
PCE of the dynamics which is the basis associated with uniform probability distributions
(see Table 2.1). We expand the dynamics (3.29) in the Legendre basis to obtain the PCE
coefficient dynamics

˙̄x1q = x̄2q ,

˙̄x2q = −
p∑

i,j=0
āix̄2jTijq +

p∑
i,j,k,l=0

āi x̄1j x̄1k x̄2lTijklq + x̄1q .
(3.30)
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The dynamics (3.30) have an equilibrium point x̄EP = 0 and thus the equilibrium set
I consists of the zero point which shows that the system (3.29) has an uncertainty-
independent equilibrium point at xEP = 0. This equilibrium point is locally stable for
a > 0 and for any fixed a > 0 the true region of attraction is given by the unstable limit
cycle encircling the equilibrium point which can be obtained by simulation.
The truncation order for a PCE needs to be decided such that Assumption 3.2 is sat-
isfied. This can be achieved by simulating the dynamics of the PCE system for a high
truncation order and a range of initial conditions in the region of interest. Since the
stochastic modes are convergent with increasing truncation order there will be an order
for which the contribution from the higher stochastic modes can in practice be consid-
ered negligible. The truncation order is thus chosen such that only the significant modes
are captured. In this example, the significance of the first five stochastic modes has
been investigated by simulating the dynamics (3.30) for a range of initial conditions in
the region of interest. Figure 3.1 shows the evolution of the modes starting from the
deterministic initial condition xini = [1, 1.5]. The figure demonstrates how the stochastic
modes for p > 3 are practically negligible. Consequently, the truncation was set to p = 3
which results in a total of p+ 1 = 4 modes per dimension.
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x̄14 x̄24

Figure 3.1: Evolution of the stochastic modes in (3.30) starting from the deterministic
location xini = [1, 1.5]T . All modes eventually converge to zero, which is the equilibrium
point of the system.

The set R̄ is computed from the optimization program (3.22) for ∂(V ) = 4, and the
results are used to compute the ROA estimate R0 as in (3.28) for different values of
fixed variance on the initial condition. To this end a diagonal covariance matrix Ξ̂ with
equal diagonal entries is chosen. The results are presented in Figure 3.2 (right plot).
As expected, the R0 in terms of the initial state of the mean modes decreases with
increasing size of variance in the initial state. Additionally, for comparison of different
Lyapunov function degrees, the R0 estimate with zero initial variance for a quadratic
V was computed. It can be seen in Figure 3.2 (left plot) how the higher degree V
returns larger estimates of the ROA in this case. In each of the cases considered here,
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∂(V ) =4, Ξ̂ii =[0.08,0.08] xEP

Figure 3.2: Left plot: Estimates of R0 obtained from various degrees of Lyapunov func-
tions V . The set R0 is chosen in terms of the initial mean states for the case of zero
variance on the initial state. Right plot: Estimates of R0 in terms of the initial mean
states for various cases of fixed variance on the initial state. In each case an equal vari-
ance in both initial coordinate states is considered. The results are obtained from a
quartic V . The black dashed and dotted lines show the Van-der-Pol limit cycle trajec-
tory for the extreme values of the uniform distribution of a(ξ). In this example their
intersection provides the true ROA of the system, and thus give an indication on the
conservativeness associated with the computed inner estimates.

the multiplier degrees were set to ∂(s1) = 4, ∂(s2) = 2 in Algorithm 3.1, and ∂(s1) = 0,
∂(s2) = 2 and ∂(h) = 2 in Algorithm 3.2. Both plots in Figure 3.2 further indicate
the true ROA of the stochastic system which in this particular example consists of
the intersection set encircled by the two limit cycles resulting from using the extreme
realizations of the uncertainty to simulate the system.

Dynamics with uncertainty dependent equilibria

In the second example we consider the following uncertain dynamics studied in [ISM18]

ẋ1 = −x2 −
3
2x

2
1 −

1
2x

3
1 + a(ξ), (3.31)

ẋ2 = 3x1 − x2 − x2
2,
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where a(ξ) ∼ Unif(0.9, 1.1) is a random variable depending on the stochastic germ ξ ∼
Unif(−1, 1). This system has two equilibrium points whose location is uncertainty-
dependent, and of which one is stable and the other unstable. Using the Legendre
polynomial basis, we expand the system similarly to the first example and simulate
sample trajectories of the PCE system in order to determine the significant modes as
well as the exact location of the stable equilibrium point. In order to decide on the
truncation order the same procedure was conducted as in the previous example of the
Van-der-Pol. Figure 3.3 shows an example simulation of the stochastic modes of the
PCE dynamics. The plot reveals that choosing p = 2 captures the significant modes, as
well as the location of the equilibrium point, which is found at x̄EP = [0.4086, 0.7145,
0.0369, 0.0456, -4.9635e-04, -0.0012]T for the truncated system.
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Figure 3.3: Evolution of the stochastic modes in (3.31) starting from the determinis-
tic location xini = [0.8, 0.8]T . The simulation reveals the coordinates of the attractive
equilibrium point x̄EP which correspond to the limit values of each coefficient.

As the PCE system has a non-zero equilibrium point, we can numerically obtain from
the coefficients the equilibrium set I of the stochastic system from (2.18). The right plot
in Figure 3.4 illustrates this set by showing how trajectories from three different initial
states converge to a different equilibrium point for different values of uncertainty. As in
the first example, the ROA estimate is computed from (3.22) for a quartic V and the
results are used to obtain the ROA R0 in terms of the mean modes for zero variance
on the initial state, as described in Remark 3.3. The multiplier degrees were set to
∂(s1) = 4, ∂(s2) = 2 in Algorithm 3.1.

The R0 result is shown in the left plot of Figure 3.4. The comparison with the
ROA estimates in [ISM18] shows that the approach proposed here provides similar sized
estimates of the ROA. To validate the results, we ran a Monte-Carlo (MC) simulation
of the stochastic system (3.31) for 1000 initial conditions on the boundary of the R0 for
each of 20 realizations of the uncertainty covering the full range of the distribution and
confirmed their convergence to the equilibrium set. For illustration, three examples of a
MC simulation starting at the boundary of the ROA and using each 8 realizations of the
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Figure 3.4: Left plot: R0 estimate obtained for the uncertainty-dependent xEP of (3.31).
For three initial conditions on the boundary ofR0, a MC simulation of trajectories x(t) of
the system for a range of realizations of a(ξ) ∼ Unif(0.9, 1.1) is shown. Note that coming
from a MC simulation, these trajectories are deterministic (obtained by sampling ran-
dom values of the uncertainties in the stochastic dynamics); as for deterministic variables
the mean equals the nominal value, xnom = Λ(xnom), the trajectories are plotted here
in the mean coordinates x̄0. For the three closest detected initial states with diverging
trajectories the worst-case result of the MC simulation is plotted.
Right plot: Close up of the converging trajectories in the left plot. Depending on the
realization of uncertainty the trajectories of the system (3.31) converge to different equi-
librium points, which together present the equilibrium set as given by Lemma 3.1.

random variable over the distribution range are shown. The true ROA for this system
is unknown. In order to obtain an upper bound on the conservativeness of R0 we search
for diverging trajectories by performing MC simulations for a range of initial conditions
located in the neighborhood outside of R0. The closest diverging trajectories found with
the chosen sampling grid are shown in Figure 3.4.
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3.3 ROA analysis for equilibrium points of feedback
controlled stochastic systems

3.3.1 Feedback controlled stochastic systems

In this chapter we turn to the feedback control design for stochastic systems with the
objective of maximizing the ROA of the closed loop system. The systems under consid-
eration are continuous time second order random processes with affine input,

ẋ(t, ξ) = f(x(t, ξ), a(ξ)) + g(x(t, ξ), a(ξ))u(t, ξ), (3.32)

where x ∈ Rn is the random state variable1, u ∈ Rl is a random input variable,
a ∈ L2(Θ, µ;Rm) is a random variable representing the parametric uncertainty, and
f : Rn × Rm → Rn, g : Rn × Rm → Rn×l are polynomial functions in x and a. Similar
as in Section 3.2.1, we impose Assumption 3.1 to hold, and further, the initial state of
(3.32) is random, x(t = 0) = xini(ξ), with dependence on the same stochastic germ.

The control law is based on the state feedback policy,

u(t, ξ) = Kh(x(t, ξ)), (3.33)

where h(x(t, ξ)) : Rn → Rk is a vector with entries consisting of polynomials of the
components of x(t, ξ), and K ∈ Rl×k is the feedback gain matrix. The objective of
the feedback control is to stabilize the system around an equilibrium point xEP, whose
location can be dependent of the uncertainty affecting the system. As in the previous
section, an equilibrium set I as in Definition 3.1 is thus considered.

Let the closed loop system be denoted by

ẋcl = fcl = f(x(t, ξ), a(ξ)) + g(x(t, ξ), a(ξ))Kh(x(t, ξ)), (3.34)

and let ψcl(t, ξ, xini(ξ)) denote the solution of (3.34) at time t with initial condition
xini(ξ).

Stochastic ROA of feedback-controlled equilibrium point

The region of attraction of the equilibrium set I of the closed loop system (3.34) is
defined similarly to the definition of the stochastic ROA for autonomous systems in
Section 3.2.1.

Definition 3.5 (Stochastic ROA of I). The ROA of the equilibrium set I of a feedback
controlled system (3.34) is defined as the set of initial conditions

R∗ = {xini ∈ Rn |P[ lim
t→∞

d(ψcl(t, ξ, xini), I) = 0] = 1}, (3.35)

where P denotes probability, and dist is the distance measured in a norm of choice.
1Again, the simplified notation introduced in Section 3.2.1 is used.
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PCE representation of the controlled stochastic system

Using the PCE framework presented in Section 2.2, the PCE representation of system
(3.32) is denoted by

˙̄x := f̄(x̄) + ḡ(x̄)ū, (3.36)

where x̄ ∈ Rn(p+1), ū ∈ Rl(p+1) are the vector of PCE coefficients of state x and input u,
and f̄ , ḡ : Rn(p+1) × Rl(p+1) → Rn(p+1)×l(p+1) the PCE system dynamics.

Assumption 3.2 is also assumed to hold for the PCE system (3.36).

3.3.2 Stability connection between PCE and feedback-controlled
stochastic system

As shown in Section 3.2, an estimate of the ROA of the equilibrium set I of a stochastic
system can be obtained from an estimate of the ROA of the equilibrium point x̄EP of
the PCE system. The objective of the control design presented in the following, is to
obtain a control law maximizing the ROA of the stochastic system. This is achieved by
aiming at maximizing the ROA of the PCE system. We introduce a version of Theorem
3.2 which now gives an inner estimate of the ROA of the controlled PCE system (3.36).

Theorem 3.3. Let D̄ ⊂ Rn·(p+1) be a compact domain containing x̄EP. If there exists a
continuously differentiable function V (x̄) : D̄ → R such that

V (x̄) > 0 ∀x̄ ∈ D̄\{x̄EP}, V (x̄EP) = 0, (3.37)

V̇cl(x̄) = ∂V (x̄)
∂x̄

f̄cl(x̄) < 0 ∀x̄ ∈ D̄\{x̄EP}, (3.38)

then x̄EP is asymptotically stable and V (x̄) is a Lyapunov function of the system (3.36).
If these conditions are satisfied for all x̄ in a sublevel set

R̄ = {x̄ ∈ D̄ |V (x̄) ≤ β}, (3.39)

where β is a positive scalar and R̄ ⊆ D̄, then R̄ is an inner estimate of the ROA of x̄EP.

With an obtained set R̄ an inner estimate of the ROA of (3.35) can be retrieved from
Lemma 3.2 for a fixed variance on the initial conditions, as outlined in Section 3.2.4.

3.3.3 Feedback control design

The stochastic controller (3.33) is considered with the aim of obtaining a state feed-
back law maximizing the ROA. The approach offers flexibility in choosing the explicit
expression of the state function h(x(t, ξ)) which is a vector of desired polynomials in
x(t, ξ).
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Stochastic state feedback law

We use the stochastic state feedback law (3.33) and focus on the design of the gain
matrix K as well as the state vector h(x(t, ξ)). A linear version of this feedback law has
been used in [FB09] for the design of a Linear Quadratic Regulator (LQR). Since in this
work we are dealing with nonlinear systems, the control law can contain polynomials in
the state vector.

As the control design proposed here considers the PCE of the closed loop system, the
control law (3.33) needs to be expanded. Note that by considering the PCE system in
the control design task, the stochastic information on x is directly exploited in the com-
putation of K. Expanding the control law (3.33) in the PCE framework as in equation
(2.18) results in

ūij = γ−1
j 〈Kih(x),Φj(ξ)〉, (3.40)

where i = 1, ..., l, j = 0, ..., p and Ki is the i-th row vector of K. Note that the dimension
of K depends only on the dimension of the stochastic input and the stochastic vector
h(x), and is independent on the truncation order p of the PCE.
Remark 3.6. There are other possibilities for feedback laws, e.g., where the input is con-
sidered deterministic, or where K is a random variable (see, e.g., [FB09]). The approach
proposed here can be used for other feedback laws as well, however in applications these
laws require knowledge of the current probability density function of the state vector.
While for linear systems there exist well-established state estimation techniques provid-
ing the probability density of the state, estimates of the probability density are harder
to obtain for uncertain nonlinear systems. Thus, we limit our focus to the stochastic
state feedback law.
Remark 3.7. In this work we are assuming that xEP is a locally stable (uncertainty-
dependent) equilibrium point and the control design only aims at maximizing the ROA.
The approach also remains valid in principle if xEP is unstable. This is done by first
stabilizing xEP with standard techniques (e.g., feedback linearization) and then applying
the design scheme proposed here to increase the ROA of the stabilized system.

Input constraints

For the stochastic control law, input limits can be imposed with the aim of obtaining
a controller which maximizes the certified ROA while respecting the system’s physical
constraints. As the analysis deals with PCE systems, the constraints need to be expressed
in terms of PCE coefficients. Let the constraints on the stochastic input be

uL ≤ u(t, ξ) ≤ uU . (3.41)

Due to the stochastic nature of u, the constraints are expressed in terms of the statistical
properties of the input, which are provided by the PCE. More precisely, we consider
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the mean with the addition of one standard deviation of the control input2, given by
equations (2.21) and (2.22) applied to the stochastic signal u, and constrain these to
remain within specified limits. This results in

uL ≤ ū0 − σ,
uU ≥ ū0 + σ,

(3.42)

with

σi :=
 p∑
j=1

ū2
ij
γj

1
2

, (3.43)

for each component i = 1, .., l in of the input u. Note that due to the square root, equation
(3.42) does not result in a polynomial expression. As the design method proposed here
hinges on both the constraints to be in polynomial form and the matrix K to only appear
linearly, we introduce the following relaxation of (3.42). Since γj is positive by definition,
each term in the summation in (3.43) is positive and thus the following holds

 p∑
j=1

ū2
jγj

1
2

≤
p∑
j=1
|ūj|γ

1
2
j . (3.44)

The right-hand side of (3.44) provides an upper bound on the standard deviation of u. By
considering the maximum negative and maximum positive realizations of ūj separately,
the right-hand side of (3.44) can be expressed as two polynomial constraints, which will
be explained in more detail in the following section.

Remark 3.8. Note that if the uncertainty distribution has finite support (as assumed
here and is usually the case in control applications) then the constraints in (3.42) impose
hard constraints on the input. In the more general case of uncertainty distribution with
infinite support the constraint violations cannot be excluded due to the tails of the
distributions. In that case the constraints as formulated here would have primarily the
effect of penalizing the input magnitude.

3.3.4 Algorithm for computing K while maximizing ROA

In this section we show how the stochastic control law (3.33) is computed such that
the ROA of the closed loop system (3.34) is maximized. Outlines of the algorithmic
implementation of the computations are provided for both unconstrained and constrained
input cases.

2The addition of two or three standard deviations could be equally well considered
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Maximizing ROA over K

Leveraging the stability criteria stated in Theorem 3.3, the following nonlinear optimiza-
tion problem can be formulated for the computation of the matrix K and concurrent
maximization of the PCE ROA inner estimate R̄.

max
V (x̄),K

vol(R̄(x̄)) (3.45a)

subject to V (x̄) > 0, V (0) = 0, (3.45b)

V̇cl = ∂V (x̄)
∂x̄

f̄cl(x̄, K) < 0, (3.45c)

uL ≤ ū(x̄, K) ≤ uU , (3.45d)

where we use V = v(x̄)TQV v(x̄) with v(x̄) being the vector of monomials in x̄ up to a
chosen degree, and R̄ as defined in (3.39). Constraint (3.45d) is only present if there are
input constraints.

Algorithmic implementation

All constraints in the optimization program (3.45) are polynomial. Similar to the algo-
rithmic approach chosen in the previous chapter in Section 3.2.4 we use the results of
the Positivstellensatz presented in Section 2.1.3 and formulate the constraints in (3.45)
as semialgebraic set containment conditions. Using Lemma 2.1 the conditions are then
turned into a generalized SOS program. In order to obtain a convex expression for the
cost function, also here a surrogate set as explained in Section 2.1.5 is employed. In this
case, the surrogate set consists in a quadratic form b(x̄) := x̄TBx̄ with the sublevel set
B = {x̄| b(x̄) ≤ 1}. By imposing the constraint B ⊆ R̄, maximizing over the volume of
B leads to a maximization of R̄. The stochastic input constraint (3.42) is represented
through the upper bound in (3.44). For the implementation of the absolute value in a
polynomial constraint, additional steps are required which are presented in the following.
For a computed K, let cj be the maximum absolute value of the j-th term in the right
hand side of (3.44) over all x̄ in the sublevel set β of V . Then the input constraint (3.42)
can be written as

uL ≤ ū0(t)−
p∑
j=1

cj, uU ≥ ū0(t) +
p∑
j=1

cj. (3.46)

For clarity of presentation a single input u is considered. Also, the sublevel set size β
is fixed to 1 as optimization over β is redundant with optimizing over QV . Assuming
without loss of generality x̄EP = 0 (see the shift proposed in (3.17)), we obtain the
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following optimization program.

max
V,K,B,si,cj

−det(B)1/n(p+1) (3.47a)

subject to V (x̄)− l(x̄) ∈ Σ[x̄], (3.47b)
−s1(x̄)(1− b(x̄))− (1− V (x̄)) ∈ Σ[x̄], (3.47c)

−V̇cl(x̄, K)− s2(x̄)(1− V (x̄))− l(x̄) ∈ Σ[x̄], (3.47d)

−s3(x̄)
ū0(x̄, K) +

p∑
j=1

cj − uU
− s4(x̄)(1− V (x̄)) ∈ Σ[x̄], (3.47e)

−s5(x̄)
uL −

ū0(x̄, K)−
p∑
j=1

cj

− s6(x̄)(1− V (x̄)) ∈ Σ[x̄], (3.47f)

for each j : s7(x̄)(cj − ūj(x̄, K)γ
1
2
j )− s8(x̄)(1− V (x̄)) ∈ Σ[x̄], (3.47g)

s9(x̄)(cj + ūj(x̄, K)γ
1
2
j )− s10(x̄)(1− V (x̄)) ∈ Σ[x̄], (3.47h)

si,i=1,...(6+4p)(x̄) ∈ Σ[x̄], (3.47i)

where the multipliers si(x̄), i = 1, .., (6 + 4p) are the SOS polynomials certifying the so-
lution of the program to adhere to the constraints (cf. Lemma 2.1). Similarly, the terms
l(x̄) = εx̄Tx̄, ε << 1, in (3.47b) and (3.47d) which guarantee that x̄ = 0 is not included
in the constrained set. Constraint (3.47c) ensures the containment of the surrogate set
in the sublevel set of the Lyapunov function. The constraints (3.47e)-(3.47h) enforce
the input constraints on the computation of K and R̄. Note that for each PCE coeffi-
cient of u there are two additional constraints (3.47g)-(3.47h), leading to four additional
multipliers and thus making the total amount of multipliers dependent on the trunca-
tion order p. In the implementation, the variables cj are ‘measures’ of the maximum
absolute values of both the positive and negative values of ūjγ

1
2
j over all x̄ in R̄ and

add, respectively subtract, them from the mean value ū0. Constraints (3.47e)-(3.47f)
then ensure (3.46). In the case of no input constraints the optimization program only
includes (3.47a)-(3.47d) and (3.47i).
The optimization (3.47) is a generalized SOS program due to bilinearly appearing deci-
sion variables in the terms containing both V and si, b and si, cj and si, V and K, and
K and si. To circumvent the bilinearities and obtain convex constraints, similar to the
algorithms in Section 3.2.4, an iterative scheme is proposed consisting of an iterative loop
over three steps. A pseudocode of the iteration steps is shown in Algorithm 3.3. The
program returns both the matrix K as well as the corresponding ROA estimate R̄. The
algorithm is initialized by finding a suitable Lyapunov function, e.g., from the lineariza-
tion of the system around x̄EP with K = 0, solving the Lyapunov equation (3.24), and
scaling the result appropriately. An initial surrogate set size is obtained by choosing an
initial diagonal B-matrix with entries sufficiently large. The initial K can be taken as a
matrix with small nonzero or with zero entries. The iteration over the three steps is then
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concerned with maximizing the surrogate set, i.e., the ROA estimate, while searching for
appropriate K values. In particular, Step 1 consists in finding multipliers for the current
QV , B and K. Since for fixed QV , K and B each of the constraints (3.47c)-(3.47h) is
independent of the others, the multipliers si can be found by solving a feasibility test
separately for each constraint. In Step 2, the obtained si are fixed together with QV

and B and K is optimized for while allowing the cj to vary. In Step 3 the surrogate set
volume is maximized over QV while the multipliers, K and cj are fixed. Note, that in
the case of no constraints on the input, constraints (3.47e)-(3.47i) including the variables
cj are omitted from Steps 1-3. The iteration terminates when a predefined convergence
criteria on the size of the surrogate set (convCritB in Algorithm 3.3) is reached.

Algorithm 3.3 Find control to maximize ROA
1: Input: p, ∂(si), ∂(V ), convCritB, h(·), uL/uU
2: Output: K ,V
3: procedure maxROAestimate
4: f̄cl(x̄, K) PCE←− f(x, a, u)

5: Initialization:
6: set K = 0
7: QV ini ← Q, solution of (3.24) with Ā = ∂f̄(x̄)

∂x̄

∣∣∣
x̄EP

8: choose B small enough such that (3.47c) is feasible
9: Kini ← � 1 (or zero)

10: Iteration:
11: k ← 0
12: repeat
13: k ← k + 1
14: Step 1: si ← fix QV , B, K, cj, solve (3.47c)-(3.47i)
15: Step 2: K, cj ← fix QV , si, solve (3.47d)-(3.47h)
16: Step 3: QV , B ← fix si, K, cj, solve (3.47)
17: until det(B)k−1 − det(B)k < convCritB

Recovering R from R̄

Algorithm (3.3) returns R̄ which describes a set in terms of the PCE coefficients x̄. In
order to obtain from R̄ an inner estimate R of the true ROA of the stochastic system,
R∗, the optimization program proposed in Section 3.2.4 is used. This program computes
R from the R̄ estimate by specifying the stochastic properties of the initial conditions.
In the following examples we set the variance of the initial state to zero and thus R is
obtained in terms of the mean of the initial state. As mentioned in Remark 3.3, this
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gives the computation of R directly from the Lyapunov sublevel set representing R̄ by
setting all PCE coefficients of the variance modes in R̄ to zero.

3.3.5 Illustrative examples

We demonstrate the proposed control design on two examples. Both stochastic systems
are open loop stable and a feedback control will be used to enlarge the ROA. In order to
benchmark our approach, we compare it, firstly, with the ROA estimate computed for the
open loop system. The open loop ROA estimate is thereby obtained from applying the
ROA computations outlined in Section 3.2.4. Secondly, we compare our approach with
one of the few available PCE based control algorithms which consists in a LQR control
design proposed in [FB09] for the PCE of a linear stochastic systems. For the LQR
control the example dynamics presented here are linearized around their equilibrium
point and the feedback law “stochastic state feedback with constant deterministic gain”
in [FB09], Sec. 5.2.2, is applied. The control design proposed therein results in a bilinear
matrix inequality (BMI). This is solved here using PENLAB [FKS13] which returns the
LQR values for the gain matrix. In order to obtain the ROA of the LQR controlled
system, the open loop ROA computations are applied to the LQR controlled closed loop
system.
Note that in contrary to the illustrative results shown in the previous Section 3.2.5, the
R results in this section are shown in the original x coordinates. This is because for the
examples shown here a zero variance on the initial condition is assumed. Since in the
case of zero variance the initial states are deterministic, it follows that the mean equals
just the deterministic value, xdet = x̄0.

The numerical results were computed using the collection of scripts which are pre-
sented in Chapter 6, where further details on the numerical implementation can be
found.

2D stochastic dynamics

The first example considers the dynamical system from [Che04a], p. 146, with modifica-
tions to introduce uncertainty,

ẋ1 = −x1 + x2 − a(ξ)(x2
1 + x3

2) + x1u,

ẋ2 = −2x2 − a(ξ)x2
1 + u,

(3.48)

where a(ξ) is a random variable coming from a uniform distribution, a(ξ) ∼ U(0.8, 1.2)
with ξ ∼ U(−1, 1). The Legendre polynomials, associated with uniform distributions,
are used for the PCE. The closed loop system is analyzed and compared for two choices
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of h which differ in the degree of the polynomial entries,

h(1) = [x1, x2]T , −→ K(1) ∈ R2

h(2) = [x1, x2, x
2
1, x1x2, x

2
2]T , −→ K(2) ∈ R5.

(3.49)

In this example the input is unconstrained. In order to decide on a truncation order of
the PCE we simulate the evolution of the stochastic modes of the system for a large p
starting from various initial conditions in the region of interest and then set p such that
it captures the significant modes. Here, p = 2, i.e., there are three significant modes
for each state dimension, which results in a six-dimensional deterministic system. The
equilibrium point is uncertainty independent.

Figure 3.5 (left plot) shows the ROA estimates R for open loop dynamics and the
closed loop systems using h(1). The estimates are computed for both cases for a quadratic
and quartic Lyapunov function to compare the effect of its order. It can be seen that
the feedback control is able to largely increase R compared to the uncontrolled system.
Further, for both open and closed loop system the higher order Lyapunov function results
in a larger ROA estimate.

Figure 3.5 (right plot) provides a comparison of the R estimates obtained for the
control law (3.33) with each h(1) and h(2) as in (3.49), and the LQR. A quadratic Lya-
punov function was considered in each case. The controllers based on (3.33) result in
significantly larger ROA estimates than the LQR. It is stressed that these improvements
on the ROA are mainly due to the fact that a nonlinear control design formulation is
employed, rather than due to the adoption of a polynomial basis for h. This is shown by
the case of h(1) which is a linear state vector and significantly outperforms the LQR. The
R estimate for the LQR controlled system found for this example shows an improvement
over the R estimate for the open loop system. It is, however, small compared to the
nonlinear controllers. Note that since the BMI has, in general, local optima and the
obtained solution depends on the initialization, the LQR-R results shown here are not
unique results. In each of the cases considered here, the multiplier degrees were set to
∂(s1) = 2 and ∂(s2) = 4.

Short period aircraft dynamics

The second example consists of the 2-D aircraft short period dynamics from [CSB11].
While in this reference the dynamics are nominal, two uncertain parameters affecting
the nonlinear part of the system are considered here. With x1 representing the angle of
attack (in radians) and x2 the pitch rate (in radians/seconds), the dynamics are given
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Figure 3.5: Left plot: R estimates obtained for the open loop (OL) and closed loop
system using the state feedback vector h(1) in (3.33). The estimates were computed
using each a quadratic (V∂=2) and a quartic (V∂=4) Lyapunov function. Right plot: R
estimates for the open loop (OL), LQR controlled and the two closed loop systems for
each state feedback vector h(1) and h(2). The results are obtained from a quadratic V .

by
ẋ1 = a1(ξ)(−1.492x3

1 + 4.239x2
1 + 0.003x1x2 + 0.006x2

2)−
− 3.236x1 + 0.923x2 + (−0.317 + 0.240x1)u,

ẋ2 = a2(ξ)(−7.228x3
1 + 18.36x2

1 + 1.103x3
2)−

− 45.34x1 − 4.372x2 + (−59.99 + 41.5x1)u,

(3.50)

where a1(ξ) ∼ U(0, 2) and a2(ξ) ∼ U(0.5, 1.5), with ξ ∼ U(−1, 1), are random variables
from a uniform distribution. The input u represents the elevator deflection (in radians).
A truncation order of p = 2 is found to capture the significant modes. Further, the
vector h = [x1, x2]T is chosen for the control law (3.33). The equilibrium point of this
system is uncertainty independent.
The dynamics (3.50) in their nominal form with a1 = 1, a2 = 1, are open loop stable. To
investigate the effects of uncertainty and feedback control on the stability of the system,
first the ROA for both the nominal open loop dynamics, OLn-R, and the stochastic
open loop dynamics, OLs-R, were computed. Figure 3.6 reveals a significant decrease
of the ROA of the stochastic system compared to the nominal. Algorithm 3.3 was
then used to compute the closed loop system’s ROA (CL-R), and the corresponding
gains where no input constraints were considered. Figure 3.7 shows the ROA estimates
OLn-R, OLs-R, and CL-R. The results for CL-R reveal that the controller is able to
stabilize the stochastic closed loop system such that the feedback not only counteracts
the uncertainty but further enlarges the ROA. For two initial conditions xaini and xbini,

55



Chapter 3. Region of Attraction Analysis of Equilibrium Points of Stochastic Systems

with xaini located outside of OLs-R and inside OLn-R, and xbini located outside OLn-R
and inside CL-R a MC simulation was run for 5 realizations of each a1 and a2 over
the range of their distributions. The MC simulation was thereby performed for both
the open loop stochastic system (xol) and the closed loop system (xcl). The trajectories
exemplify the destabilizing effect of the uncertainty on the system and the ability of the
controller to stabilize the system for all realizations of the uncertainty.

In the left plot of Figure 3.8, the result of a MC simulation of the closed loop system
states and input for an initial condition inside CL-R for 10 realizations of each a1 and a2
over the range of their distributions is shown. The plot reveals input magnitudes exceed-
ing by far the physical limits of ±0.5 rad for the elevator deflection. We thus impose the
constraints −0.5 rad ≤ u(ξ, t) ≤ 0.5 rad and recalculate both the R estimate and result-
ing feedback gains from Algorithm 3.3. Figure 3.9 shows the estimates OLs-R, CLu∈Rl-R
for the input unconstrained CL system, CLuL≤u≤uU -R for the input constrained CL sys-
tem and additionally the CL-R obtained for the LQR controlled system for comparison
as in the previous example.

The comparison of CLu∈Rl-R and CLuL≤u≤uU -R shows how the ROA estimate shrinks
for the constrained case relative to the unconstrained. In this example the ROA estimate
found for the LQR controlled (naturally unconstrained) system is able to increase the
ROA largely beyond OLs-R, it is however still significantly smaller than CLu∈Rl-R. The
right plot in Figure 3.8 illustrates how the constrained input for the same initial condition
and range of uncertainties as for the unconstrained input (left plot) now remains within
the prescribed bounds for all realizations of the uncertainty over the given range.

In all computations of the ROA estimates without input constraints, the degrees of
the multiplier were set to ∂(s1) = 4, ∂(s2) = 2. These multiplier degrees were kept for
the case with input constraints, where additionally ∂(s3,5,7,9) = 2 and ∂(s4,6,8,10) = 0.

−0.4 −0.2 0 0.2 0.4

−2

0

2 OLn

OLs

xEP

x1

x
2

Figure 3.6: R estimates obtained for the nominal open loop (OLn) and stochastic open
loop (OLs) system, revealing the detrimental effect of the uncertainty on the ROA of
the system (3.50), computed from a quadratic V .
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Figure 3.7: R estimates obtained for the nominal open loop (OLn), stochastic open
loop (OLs) and unconstrained closed loop (CLu∈Rl) system, computed from a quadratic
V . Trajectories obtained from a MC simulation of the OLs and CL system for each 5
realizations of a1 ∼ U(0, 2) and a2 ∼ U(0.5, 1.5) are shown for two initial conditions
xaini and xbini. According to the fact that both xaini and xbini being located outside of OLs-
R, for certain realizations of a1 and a2 diverging trajectories are found. As they are,
however, located inside of CLu∈Rl-R, the unconstrained controller is able to stabilize the
trajectories for all realizations of a1 and a2.

3.4 Conclusions

In the first part of this chapter we present a method to compute inner estimates of
the ROA of stochastic nonlinear systems. The proposed method is applicable to a
broad class of system consisting of second order random processes which are affected
by uncertainties coming from any L2-distribution and which are further allowed to have
uncertainty-dependent equilibria. The analysis is enabled by using PCE through which
a stochastic ordinary differential equation is converted into a deterministic one. Using
suitable stability notions in the form of moment boundedness and Lyapunov stability,
it is shown how the ROA analysis of the PCE system offers direct information on the
attractive behavior of the stochastic system for which a notion of a ROA is derived.
A numerical implementation for obtaining inner estimates of the ROA when the PCE
system has a polynomial expression are provided via SOS optimization. The application
to two examples taken from the literature shows that the proposed approach provides es-
timates of the ROA which are comparable to literature results obtained with less general
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Figure 3.8: Left plot: Closed loop system trajectories of the states and input starting
from the deterministic initial condition x = [0.4;−0.45] and for 10 different uncertainty
realizations of each uncertain parameter a1, a2 covering the whole range of both distri-
butions (resulting in 100 trajectories per plotted quantity). The feedback gains resulted
from unconstrained input computations. The time axis zero point has a slight offset to
better visualize the evolution at the starting point.
Right plot: Same simulation configuration as in the left plot, but here using the feedback
gains resulting from input constraints at uL = −0.5 rad, uU = 0.5 rad.

methods.
An extension of the developed method in the first part is presented in the second

where a method to obtain feedback gains which maximize an inner estimate of the ROA
of a stochastic closed loop system is proposed. To this end, the PCE framework is em-
ployed to represent the stochastic equations by higher dimensional deterministic ones.
The control design is based on Lyapunov stability for deterministic systems where the
resulting stability conditions are verified via SOS programs. We demonstrate by two ex-
amples the various features of the control design and the corresponding ROA estimates
which result from the proposed method. For the second example, which consists in the
short period aircraft dynamics, the comparison with the (non-stochastic) literature con-
firms the prowess of the approach developed in this thesis to address the nonlinear design
objective of maximizing the ROA. Moreover, the proposed approach offers flexibility in
choosing the stochastic feedback law and imposing input constraints.
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Figure 3.9: R estimates for the stochastic open loop (OLs), unconstrained (CLu∈Rl) and
constrained (CLuL≤u≤uU ) closed loop, and the LQR controlled system, computed from a
quadratic V .
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CHAPTER 4
Region of Attraction Analysis of Periodic

Orbits
Systems which exhibit periodic solutions represent a wide range of processes of the
real world and are subject to research in, e.g., robotics, power systems, biology, and
aerospace. Periodic solutions which are stable and attracting nearby solutions are of
particular interest for, e.g., legged locomotion [Man+11; TBM17], oscillatory behavior of
power systems [RH05], population evolution models [CF06], flutter in aeroelastic plants
[BPM06], power generating kites [ADS13; Sch18], to name a few.

This chapter is concerned with the analysis of the region in which trajectories con-
verge to a periodic orbit, also referred to as limit cycle1. The approach of the analysis
depends on the class of system, of which three different ones are considered here. These
are deterministic systems, systems affected by affine parametric uncertainty, and stochas-
tic systems in the form of second order processes. For the first two system classes, the
approaches are based on a transformation to a moving orthonormal coordinate system
(MOC). The MOC provides a moving Poincaré maps-like tool allowing to formulate
criteria of orbital stability in the form of asymptotic stability conditions based on Lya-
punov arguments. The coordinates obtained by the transformation are referred to as
transverse coordinates and essentially consist in the splitting of the dynamics into a
(n − 1)-dimensional part transversal to the evolution of the systems and a scalar part
normal to the first. While the construction of this MOC has been introduced since the
1960’s [Ura67], most implementation of it are limited to the classical approach of maps
consisting of hyperplanes which are orthogonal to the flow of the system [Hal80; HC94;
Leo06; Man11; FS12].

In this work we derive a novel construction of a MOC which surpasses the well-
definedness constraints of the classical transformation. In particular, our MOC allows
to analytically obtain and flexibly modify the regions in which the transformation is

1In the strict sense a periodic orbit refers to any closed trajectory in the state space of a system,
while the term ’limit cycle’ implies a ω-limit set or α-limit set property of an orbit. Since we here
analyze exclusively attracting orbits we will use the two names interchangeably.
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well-defined. Based on the transformation to transverse coordinates we propose analysis
methods for the attractive region. For deterministic systems the location of the orbit
is usually known, which allows for Lyapunov stability arguments to be applied. The
Lyapunov conditions represent sufficient conditions and their verification can be hard in
general. Limiting the scope to polynomial systems we propose computationally efficient
algorithms to test these sufficient conditions and obtain Lyapunov functions verifying
inner estimates of the region of attraction (ROA) of the limit cycle. Different algo-
rithmic options are proposed to increase the estimates of the ROA obtained from the
optimization.

For uncertain systems, the location of the orbit depends usually on the realization of
the uncertainty. In order to obtain an inner estimate of the region in which trajectories of
the system converge to the uncertain orbit, contraction criteria are employed to analyze
a transverse contracting behavior. In contrast to the Lyapunov condition, contraction
methods do not require knowledge of the limit set. We propose algorithms for obtaining
a maximized estimate of the region of contraction (ROC) as well as maximizing the
allowed size of the uncertainty polytope for a fixed sized region inside the ROC.

The analysis of contracting regions for periodic orbits of stochatic system is ap-
proached by using Polynomial Chaos Expansion (PCE). By applying PCE to stochastic
systems with limit cycles we allow to consider uncertainties coming from a wide range of
probability distributions as opposed to most existing approaches which employ robust
control-based deterministic approaches. We explore on the limitations of the expansion
and leverage the accuracy of PCE in representing the combined temporal and spatial
statistics of limit cycles. Based on these findings a connection between the periodic be-
havior of both the stochastic and the PCE system representations is drawn. This allows
the analysis of the attractive regions of the stochastic system’s limit cycle by considering
the PCE representation. By exploiting the deterministic nature of the PCE system,
we show how transverse contraction of the PCE representation translates to transverse
contraction of the original stochastic system.

The chapter is outlined as follows. An overview of related work is provided in Sec-
tion 4.1. A general class of systems with periodic solutions together with the relevant
definitions of orbital stability and ROA of periodic orbits is presented in Section 4.2. In
Section 4.3 the classical MOC (class-MOC) is explained first, which is then followed by
the derivation of the center point MOC (cp-MOC). Section 4.4 presents the conditions
on the ROA of deterministic orbits and provides the algorithms for the computational
verification of the conditions. The contraction criteria and their algorithmic implemen-
tion which result in a ROC estimate for uncertain systems are presented in Section 4.5.
The analysis of stochastic orbits is presented in Section 4.6. The chapter is finalized by
conclusions presented in Section 4.7.
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4.1 Related work

The stability analysis of periodic solutions has a long history, with Poincaré maps [Poi99]
presenting the most well-known and established analysis tool. Using Poincaré maps
the problem of orbital stability of a periodic solution is reduced to the stability of a
fixed point of the map [Wig03]. In [Hal80], the concept of such maps was extended to
consider moving orthonormal systems along the periodic trajectory, similar to moving
Poincare maps. Based on earlier results presented in [Ura67], the moving orthonomal
system is used in [Hal80] to divide the dynamics into a transversal part confined to a
(n − 1)-dimensional subspace representing a hyperplane transversal to the flow of the
system at any given time, and a scalar part which is normal to the hyperplane. The
straight-forward and most common choice of hyperplanes are those perpendicular to
the system flow. Thus here referred to as classical MOC (class-MOC), this MOC has
been used, e.g., in [HC94] for constructing periodic quadratic Lyapunov functions for
exponentially stable orbits, in [Gie09] for the analysis of the ROA of periodic orbits in
n ≥ 3 dimensions based on Borg’s criterion, and in [Leo06] for formulating generalized
criteria for orbital stability in the sense of Zhukovski. For the control of various classes of
nonlinear systems including hybrid and underactuated systems the class-MOC has been
applied, e.g., in [Man+11; FS12; CH95]. An MOC not based on the classical choice of
orthogonal hyperplanes has been proposed in [Man11], where a nonlinear optimization
program aiming at maximizing the well-defined region of the transformation is proposed
for the construction of the MOC. Similarly, in [TBM17] an application-specific choice
of MOC was proposed which reduces the computational load of the transformation and
resulting transverse equations.

Apart from the above mentioned works employing transverse coordinates, methods
to analyze the ROA of deterministic orbits are proposed in [Gie04] where sufficient
conditions based on Floquet theory and Lyapunov functions for a set to belong to the
ROA of a limit cycle are presented. In [Gon05] linear matrix inequality conditions that
guarantee asymptotic stability in a region around a limit cycle for the class of piecewise
linear systems are provided.

Attractive regions of uncertain orbits have been significantly less considered in com-
parison. In [HS19] robust sets in a state-action space are obtained from viability theory
for limit cycles of systems representing legged locomotion. In [IML19a] two methods
based on describing functions and integral quadratic constraints are proposed to analyze
the stability of limit cycles of an aeroelastic plant. One of the reasons contributing to the
relatively sparse coverage of this research is that, in general, the location of the periodic
orbit of an uncertain system depends on the realization of the uncertainty. This excludes
the use of well-established Lyapunov arguments for the analysis of the attractive region
as these methods would require the knowledge of the location of the limit cycle.
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An approach for stability analysis which does not require the information on the
limit cycle location is given by contraction methods [LS98; APS08; FS14]. For limit
cycle systems, a weaker form of contraction which is required to hold only in a (n− 1)-
dimensional subspace transversal to the system is proposed in [MS14]. This is called
transverse contraction and has been studied for deterministic continuous as well as hybrid
systems in [GH13; MS14; TM14].

With respect to limit cycles, PCE has been used to investigate the statistical prop-
erties of stochastic periodic orbits [PB04; BPM06]. While in [PB04] the authors have
found PCE to accurately represent the spatial statistics of stochastic systems with limit
cycles for short time horizons, the limitations of PCE for analyzing the purely spatial
statistics of limit cycles such as peak amplitude variations are revealed.

4.2 General systems with periodic orbits

In this section relevant notions for deterministic as well as uncertain systems with limit
cycle are introduced in a general form.

Consider a continuous time system of the form

ẋ = f(x, ϑ) = f 0(x) + fd(x, ϑ), (4.1)

where x ∈ Rn is the state variable and ϑ ∈ Θ is an uncertain variable belonging to a
known compact set Θ ⊂ Rm. The function f : Rn × Rm → Rn is Lipschitz continuous
in x, ϑ. The nominal dynamics are represented by f 0 : Rn → Rn and the dynamics
affected by the uncertainty are given by fd : Rn × Rm → Rn, where fd(x, 0) = 0, ∀x.
Both f 0(x) and fd(x, ϑ) are assumed to have continuous partial derivatives with respect
to x. For simplicity of demonstration we will assume (4.1) to be a polynomial in x and
ϑ. For non-polynomial systems the results of this section can be applied to a polynomial
approximation of the systems, e.g., coming from a Taylor expansion.

The system (4.1) is considered to have a periodic solution, referred to as periodic orbit
or limit cycle (LC), which is in general dependent on the realization of the uncertainty
ϑ ∈ Θ.

We will frequently consider time intervals, where we use the notation IT := [0, T ] for
closed intervals, and I◦T := [0, T ) for half-open intervals.

Definition 4.1 (Periodic orbit). Let ψ(xini, ϑ
†, t) denote the flow of the system (4.1)

with initial condition xini and for a particular realization ϑ† ∈ Θ. A periodic orbit Γϑ†
is defined by a solution ω(t, ϑ†) = ψ(xini, ϑ

†, t) which satisfies ω(0, ϑ†) = ω(Tϑ† , ϑ†) with
the period given by the minimum nontrivial Tϑ† > 0,

Γϑ† = {x ∈ Rn|x = ω(t, ϑ†), t ∈ IT
ϑ†
}. (4.2)
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Due to the stated properties of (4.1) the periodic solution ω(t, ϑ) depends continuously
on the uncertain variable ϑ2. The nominal orbit Γ0, i.e., the set given by the periodic
solution ω0(t) obtained for ϑ = 0, is assumed to be known throughout this chapter.
When an analytic solution of the nominal periodic trajectory ω0(t) does not exist a
solution can be obtained numerically by simulation of the nominal dynamics3.

The union of the periodic orbits for all realizations of ϑ ∈ Θ is denoted by

Γ :=
⋃
ϑ∈Θ

Γϑ, (4.3)

and is in the following referred to as the periodic orbit set of (4.1).

4.2.1 Local stability of periodic orbits

The focus in this chapter is on systems for which the trajectories locally converge to
the periodic orbits Γϑ ∈ Γ for all realizations of ϑ ∈ Θ. Unlike equilibrium points for
which asymptotic stability is defined by the convergence of all trajectories to one single
point, trajectories of a system which converge to a periodic orbit will not converge to a
single point but instead to a set, within which they will remain apart. Thus, the notion
of asymptotic orbital stability can be defined instead and is found, related to nominal
systems, e.g., in [Hal80]. We extend this definition for a general uncertain system (4.1)
with periodic orbit set (4.3).

Definition 4.2 (Orbital stability). Let K ⊆ Rn be a region with Γ ⊂ K. The periodic
orbit set Γ is called asymptotically orbitally stable if it is stable and attractive. It is
stable if ∀ε > 0, there is a δ > 0 such that ∀xini ∈ K with dist(xini,Γ) < δ we have that
dist(ψ(xini, ϑ, t),Γ) < ε, ∀t > 0 and ∀ϑ ∈ Θ, and it is further attractive if there is a
δ > 0 such that ∀xini ∈ K with dist(xini,Γ) < δ we have limt→∞ dist(ψ(xini, ϑ, t),Γ) =
0, ∀ϑ ∈ Θ.

If there is only one periodic orbit in the set Γ, e.g., Γ0 in the nominal case when ϑ = 0,
then the periodic orbit itself is called asymptotically orbitally stable.

4.2.2 Region of attraction of periodic orbits

With Definition 4.2, the region of attraction (ROA) of a periodic orbit set Γ is defined
as

R∗ := {xini ∈ Rn | lim
t→∞

dist(ψ(xini, ϑ, t),Γ) = 0, ∀ϑ ∈ Θ}, (4.4)

which is the set of initial conditions for which a system is converging to Γ.
2cf. Theorem VI.4.1, [Hal80]
3This is possible since we consider attractive limit cycles, and if the simulation is started in a

neighborhood of the periodic solution.
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4.3 Moving transverse coordinate system

In this section the analysis tool consisting of a moving orthonormal coordinate system
(MOC) along a deterministic periodic orbit is presented. To this end, the nominal orbit
Γ0 is considered. First, the classical implementation of a MOC as introduced by [Hal80]
is shown. Based on Hale’s results for the existence of a MOC we then derive an improved
MOC which overcomes well-definedness limitations of the former.

The basic idea behind using an MOC in the stability and ROA analysis of a periodic
orbit (4.2) is to decompose the dynamics of the system in the neighborhood of Γ into
two parts: The first part contains the dynamics on a hyperplane transversal to the
trajectory of the limit cycle, and the second part represents the dynamics in the direction
of the normal to the hyperplane. The hyperplanes and the transformation operator are
constructed for Γ0 and are a function of the scalar variable used to parameterize the
orbit, which here is chosen as τ . The two parts of the decomposed dynamics are then
described by two separate sets of coordinates, given by τ ∈ IT 0 and ρ ∈ Rn-1, which
will be referred to as transverse coordinates.

4.3.1 Transformation to a moving orthonormal coordinate sys-
tem

Let τ ∈ IT 0 be the variable used to parametrize the orbit Γ0,

Γ0 = {x ∈ Rn |x = ω0(τ), τ ∈ IT 0}, (4.5)

such that any solution of f 0(t) on Γ0 (i.e., x(0) ∈ Γ0) defines a function τ(t), −∞ < t <

∞ for which
dτ

dt

∣∣∣∣∣
ω0(t)

= 1. (4.6)

Then, the following results from [Hal80] establish the existence and the construction
of a MOC.

Lemma 4.1 (Lemma IV.1.1,[Hal80]). If n ≥ 3 and v(τ) is a unit vector in Rn which
has period T 0 and satisfies a Lipschitz condition, then there exists a unit vector ζ∗ (in-
dependent of τ) such that

v(τ) 6= ±ζ∗, ∀τ. (4.7)

The proof uses the fact that the curve described by any such v(τ) is rectifiable on a
sphere in Rn and thus covers a set of measure zero. Therefore there always exists a
vector ζ∗ which is not on this curve or its reverse. A detailed proof can be found in
[Hal80].
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Remark 4.1. The reason for excluding the case n = 2 in Lemma 4.1 lies in the fact that
a vector ζ∗ is not needed for the construction of a MOC for a 2-dimensional system.
This can be seen in the constructive proof of the following theorem which is shown in
Appendix A.2.

In [Hal80] the function v(τ) is taken to be the normalized tangential vector along the
flow of system on Γ0,

v(τ) = f 0(ω0(τ))
‖f 0(ω0(τ))‖2

. (4.8)

An MOC with construction based on v(τ) as in (4.8) has been considered in [HC94;
Leo06; Man11] and we will further refer to this MOC as the classical MOC (class-MOC).

Using the vector ζ∗ from Lemma 4.1 and the function v(τ) as given in (4.8), the
existence of the class-MOC is shown in [Hal80] as follows.

Theorem 4.1 (Theorem VI.1.1., [Hal80]). If ω0 ∈ Cp(R,Rn), p ≥ 2, ω0(τ+T 0) = ω0(τ),
T 0 > 0, dω0(τ)

dτ
6= 0, 0 ≤ τ < T 0, and Γ0 is defined in (4.5), then there is a moving

orthonormal system along Γ0 which is Cp−1(R,Rn).

The proof of this theorem as provided in [Hal80] demonstrates the construction of the
MOC and is therefore included in Appendix A.2.

Let the basis of the class-MOC be denote by

On = {v(τ), ζ2(τ), ..., ζn(τ)}. (4.9)

The class-MOC is then used to construct a hyperplane “tube” S(·) around Γ0 which
satisfies the transversality condition

f 0(ω0(τ)) /∈ S(τ), ∀τ ∈ IT 0 , (4.10)

where S : IT 0 → Rn-1. This is done by taking the (n -1) basis vectors in On orthogonal
to v(τ) to define a transverse projection operator,

Z(τ) := [ζ2(τ), ..., ζn(τ)] ∈ Rn×(n-1). (4.11)

Since v(τ) is given by (4.8), Z(τ) represents the operator projecting onto a moving
transverse hyperplane which is orthogonal to the flow of the system at each ω0(τ). This
transverse hyperplane is given by

S(τ) = {x ∈ Rn|v(τ)T (x− ω0(τ)) = 0}. (4.12)

Thus, given any x in a sufficiently close neighborhood of ω0(t), τ specifies the cor-
responding transversal hyperplane and ρ is the projected position on that hyperplane
where ρ = 0⇔ x = ω0(τ). Figure 4.1 illustrates these hyperplanes.
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v(τ)
ρ

ω0(τ)

S(τ)

ζ2(τ)

ζ3(τ)

x(t)

Figure 4.1: Illustration of the transverse coordinates. Example hyperplanes S(τ) are
indicated by the blue planes. The vectors ζ2 and ζ3 complete an orthonormal coordinate
system with v(τ), as described in the constructive proof of Theorem 4.1.

The construction of O and the resulting projection Z(τ) provide the transformation
law between x and the transverse coordinates (τ, ρ),

x = Z(τ)ρ+ ω0(τ). (4.13)

This transformation is only locally well-defined (see Definition 2.13). By applying the
Implicit Function Theorem, the condition for the transformation to be well-defined re-
sults as follows.

Lemma 4.2 (Well-definedness condition). The transformation (4.13) is well-defined for
all x ∈ Rn in the neighborhood of Γ0, for which the condition

ν(τ, ρ) := v(τ)Tf 0(ω0(τ)) + v(τ)T ∂Z(τ)
∂τ

ρ > 0, (4.14)

is satisfied.

Proof. Consider the algebraic equation F (x, τ, ρ) = Z(τ)ρ+ω0(τ)−x. Then the Jacobian
with respect to the new coordinates τ, ρ is

J =
[
∂F

∂τ
,
∂F

∂ρ

]
, (4.15)

where
∂F

∂τ
= dω0(τ)

dτ
+ dZ(τ)

dτ
ρ, (4.16)

∂F

∂ρ
= Z(τ). (4.17)
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The inverse of J exists if det[J ] 6= 0. Since (4.17) has rank n − 1 and Z(τ) builds
an orthonormal system with v(τ), the following condition results from projecting (4.16)
onto v(τ)

v(τ)T
(
f 0(ω0(τ)) + ∂Z(τ)

∂τ

T

ρ

)
6= 0, (4.18)

for the inverse of J to exist. From the Implicit Function Theorem well-definedness under
condition (4.18) is concluded. The constraint to positive definiteness of (4.18) follows
from v(τ) being defined by (4.8), which gives v(τ)Tf 0(ω0(τ)) > 0, ∀τ ∈ IT 0 , and the
fact that at the origin of On, ρ = 0 =⇒ ∂Z(τ)

∂τ

T
ρ = 0, such that finally (4.14) follows.

Note that (4.14) is affine in ρ for a given τ .

Remark 4.2. At ν(τ, ρ) = 0 there exists a set of points x for which the transformation
(4.13) is no longer well-defined. An intuition about this set of points can be obtained
by the following consideration. For any given x, the corresponding coordinate τ of the
transformation is decided from the ω0(τ) and related v(τ) which satisfy equation (4.12).
If there is more than one ω0(τ) for which (4.12) is satisfied then the transformation
x → (τ, ρ) as in (4.13) is not unique, i.e., not well-defined. At these points x, equation
(4.12) represents the orthogonal relation of the radius of a sphere to a tangent to its
surface. For n = 2 this set of points x is singular and can be visualized by the intersection
point of two neighboring hyperplanes.

4.3.2 An improved MOC for ROA analysis

The well-definedness condition stated in Lemma 4.2 poses a strict upper bound on the
region which can be considered with the class-MOC. As we will see later this transfers to
a strict upper bound on any inner estimate of the ROA which can be obtained from an
analysis using the class-MOC, since the estimate cannot go beyond the region for which
the transformation is well-defined.

Definition 4.3 (Well-defined “tube”). The connected set in which the transformation
to a MOC at a given location in Γ0 indicated by τ is well-defined, is denoted by the Vτ ,
where

Vτ := {ρ ∈ Rn-1 | ρ = Z(τ)T (x− ω0(τ)) , (4.14) holds, τ ∈ I◦T 0}. (4.19)

The union V = ⋃
τ∈I◦T0

Vτ has a tube-like structure and is referred to as well-defined tube

with each Vτ being called the well-defined region at τ .

As defined above, Vτ represents through (4.13) the set of all x located on a given hyper-
plane S(τ) for which (4.14) holds.
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Chapter 4. Region of Attraction Analysis of Periodic Orbits

Definition 4.4 (Well-defined MOC). If Vτ 6= ∅ for all τ ∈ I◦T 0 then the MOC is referred
to as well-defined MOC.

Equation (4.14) and the transformation law (4.13) reveal the dependence of the size of
Vτ on v(τ). While in [Hal80] the existence of an MOC (the class-MOC) was shown for
the particular choice of v(τ) as in (4.8), the results can in fact be generalized to a broader
class of function v(τ), as is shown in the following.

Corollary 4.1. A function v : IT 0 → Rn for which the properties stated in Lemma 4.1
hold, i.e., v(τ + T 0) = v(τ), ‖v(τ)‖2 = 1, ∀τ ∈ IT 0 and v(τ) is Lipschitz continuous,
and which additionally satisfies

v(τ)Tf 0(ω0(τ)) > 0, ∀τ ∈ IT 0 , (4.20)

allows for the construction of a well-defined MOC.

Proof. Lemma 4.1 guarantees the existence of a vector ζ∗ 6= ±v(τ), ∀τ . By the imposed
properties on v(·), Theorem 4.1 proves the existence of an MOC. Thus, the construc-
tion of On as in (A.7) can directly be applied for any such v(τ). From (4.20) follows
that the transversality condition (4.10) holds and thus the operator Z(τ) as given by
(4.11) projects onto a transversal hyperplane representing the desired “tube” around Γ0.
Further, due to satisfying (4.20), the set Vτ is non-empty for all τ and thus there exist
a neighborhood in which the transformation (4.13) is well-defined for each τ ∈ I◦T 0 as
stated in Lemma 4.2.

The regional constraints which condition (4.14) poses on the size of a ROA estimate, as
well as the flexibility in choosing v(τ) motivate the aim of constructing a more suitable
MOC than the class-MOC. The attribute “suitable” for a MOC is hereby subject to
definition which can contain the following:

• provides a lower bound on the size of Vτ for all τ which is open for modifications,

• minimizes the variation in size of Vτ over τ ,

• enables more direct knowledge of the size of Vτ for each τ .

The first item can be accompanied with a maximization of the lower bound on the size
of Vτ .

In [Man+11] the authors propose an optimization program to obtain a v(τ) for which
ρ is maximized on each hyperplane while adhering to (4.14). This optimization program
is, however, non-convex and requires a suitable initial guess. Also, there can be choices
of v(τ) for which Vτ for some τ become practically unbounded (namely when ∂Z(τ)

∂τ
goes

to zero). As this severely limits the size of Vτ for other values of τ this can cause large
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variations in the sizes of Vτ which in general pose numerical issues in particular in the
ROA analysis.

In the following we propose a novel construction of a MOC based on the choice of
a tunable point xc, which is the so called center point. We will therefore refer to this
MOC as the center point MOC (cp-MOC). The cp-MOC allows explicit knowledge of
the regions Vτ for each τ and furthermore renders them adjustable to a certain, well-
defined extend through different choices of xc. As such, its applicability is constrained
to a particular class of systems.

We first present the construction of the cp-MOC and the resulting regions Vτ , and
then provide the description of the class of systems for which a cp-MOC can be con-
structed.

Construction of a well-defined cp-MOC

The vector function v(τ) from which the cp-MOC is constructed is obtained from the
following algorithmic outline.

Center point algorithm (CPA):

Step 1: Compute the normalized tangent vectors vt(τ) to ω0(τ),

vt(τ) = f 0(ω0(τ))
‖f 0(ω0(τ))‖ . (4.21)

Step 2:

– n = 2: Choose a point xc in the state space inside the area encircled by Γ0.

– n ≥ 3: Choose a point xc in the state space which lies inside the encircled
area obtained from an orthogonal projection of Γ0 onto a 2-dimensional plane.

Step 3: Construct the normalized vectors vc(τ) connecting each point in Γ0 to the
center point xc

vcu(τ) = −ω0(τ) + xc, (4.22)

vc(τ) = vcu(τ)
‖vcu(τ)‖ . (4.23)

Step 4:

– n = 2: Take v(τ) = [−vc2(τ), vc1(τ)]T , where vc1(τ), vc2(τ) are the components
of vc(τ).
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– n ≥ 3: Construct a (n−2)-dimensional (τ -independent) subspace Nf ⊆ Rn−2

for which holds:

vc(τ) /∈ Nf , vt(τ) /∈ Nf , ∀τ ∈ IT 0 . (4.24)

Compute v(τ) ∈ Rn as the unit vector normal to the subspace generated by
span {Nf , vc(τ)}, for each τ ∈ IT 0 .

v(τ) :
[
ef1 , ... efn−2 , vc(τ)

]T
v(τ) = 0, τ ∈ IT 0 . (4.25)

As long as a subspace Nf can be found which satisfies the conditions (4.24) in Step
4, a vector function v(τ) can be computed from the CPA. However, not all v(τ) obtained
from the CPA result in a well-defined MOC when used as a basis to construct a MOC
as stated in Lemma 4.1 and Theorem 4.1. In particular, we find both the class of orbits
Γ0 and the choice of xc in Step 2 to be constraining factors. In the following, these
constraints are formalized.

Let
ΠH : Rn → R2, (4.26)

be an orthoganal projection onto a 2-dimensional plane H ⊆ R2. Then, the set

ΓH0 = {ωH0 ∈ R2 |ωH0 (τ) = ΠH (ω0(τ)) , ∀τ ∈ IT 0}, (4.27)

denotes the projected orbit on H.

Theorem 4.2. If there exists a projection (4.26) and a point xHc ∈ H such that there is
a bijective map h,

h : ωH0 (τ)− xHc
‖ωH0 (τ)− xHc ‖

−→ (1, ϕ), τ ∈ I◦T 0 , ϕ ∈ [−π, π), (4.28)

where (1, ϕ) are the polar coordinates of a unit circle, and

dϕ

dτ
6= 0 ∀τ ∈ I◦T 0 , (4.29)

then the v(τ) obtained from the CPA with xc ∈ Π−1
H (xHc ), xc < ∞, results in a well-

defined cp-MOC, i.e., Vτ 6= ∅, ∀τ ∈ I◦T 0.

Proof. Let vHcu = −ωH0 (τ) + xHc be the vectors connecting each element in ΓH0 to xHc .
From the existence of the bijective map h onto the polar coordinates of a unit circle, i.e.,
h
( −vHcu(τi)
‖vHcu(τi)‖

)
= ϕi with a unique ϕi for each τi, it follows that

vHcu(τi) ∦ vHcu(τj) ∀τi, τj ∈ I◦T 0 , i 6= j. (4.30)
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xc

xHc

Π−1
H (xHc )

vcu(τi)

H
vHcu(τi)

ω0(τ)

ωH0 (τ)

x1 x2

x
3

Figure 4.2: Illustration of the orthogonal projection of a 3-dimensional periodic orbit.

Let fH0 denote the dynamics projected onto H. From (4.30) and (4.29) follows that

fH0 (ωH0 (τ)) ∦ ±vHcu(τ), ∀τ ∈ I◦T 0 , (4.31)

as fH0 (ωH0 (τi)) ‖ ±vcuH(τi) for a τi ∈ I◦T 0 otherwise either implies a symmetry in ωH0 (τ)
with respect to vHcu(τ) and thus there exist τi and τj for which −vHcu(τi)

‖vHcu(τi)‖ = −vHcu(τj)
‖vHcu(τj)‖ which

contradicts (4.30); or it implies that there exists a saddle-point in the mapping at which
however dϕ

dτ
= 0 which contradicts (4.29).

From (4.31) follows that f 0(ω0(τ)) ∦ ±vc(τ), ∀τ ∈ I◦T 0 , where vc(τ) as in (4.23)
with xc being any finite element in the set given by the inverse projection Π−1

H (xHc ). The
function vc(τ) then allows for the computation of a constant (n -2)-dimensional subspace
Nf satisfying the conditions stated in Step 4 of the CPA, and the computation of v(τ)
as in (4.25) for which results v(τ)Tf 0(ω0(τ)) > 0, ∀τ ∈ I◦T 0 , and thus Vτ 6= ∅, ∀τ ∈
I◦T 0 .

Remark 4.3. Even though Theorem 4.2 shows that the cp-MOC can be constructed
from any finite xc ∈ Π−1

H (xHc ) for numerical reasons it is often beneficial to choose a
xc ∈ Π−1

H (xHc ) which lies in the neighborhood of Γ0.

Note that Theorem 4.2 provides a sufficient condition for the cp-MOC to be well-defined.
In practice, the well-definedness of a cp-MOC obtained from the CPA can be ascertained
by checking the conditions of Corollary 4.1. Since v(τ) is continuous by construction,
the remaining condition to check is (4.20). This is done in implementation by computing
the zeros of the polynomial v(τ)Tf 0(ω0(τ)), τ ∈ I◦T 0 , after all steps up to Step 4 in the
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CPA have been completed. If the polynomial has no zeros then the cp-MOC constructed
from the obtained v(τ) is well-defined. If the polynomial has one or more zeros then the
CPA can be recomputed for a different choice of xc. Often, existing information on the
shape of the orbit can be helpful in finding a suitable xc from geometrical considerations.
The cp-MOC allows to obtain an analytical expression for the sets Vτ , stated as follows.

Corollary 4.2. For a cp-MOC, the set Vτ for each τ ∈ I◦T 0 is given by the open half space
containing ρ = 0, which results from the subtraction of the (n -2)-dimensional hyperplane
SVτ (τ) generated by span

{
Z(τ)T

(
vcu(τ) + ker

(
∂v(τ)
∂τ

))}
from the (n -1)-dimensional sub-

space S(τ).

Proof. As stated in Definition 4.3, for a τ ∈ I◦T 0 the set Vτ is given by all ρ ∈ Rn-1 for
which the well-definedness condition (4.14) is satisfied. Since (4.14) is an affine equation
in ρ for a given τ , the hyperplane SVτ (τ) is located where ν(ρ, τ) = 0. From this follows

v(τ)Tf 0(ω0(τ)) + v(τ)T ∂Z(τ)
∂τ

ρ = 0,

=⇒ v(τ)Tf 0(ω0(τ)) + ∂

∂τ

(
v(τ)TZ(τ)

)
ρ− ∂v(τ)T

∂τ
Z(τ)ρ = 0,

=⇒ v(τ)Tf 0(ω0(τ))− ∂v(τ)T
∂τ

Z(τ)ρ = 0, since v(τ)TZ(τ) = 0,

=⇒ v(τ)Tf 0(ω0(τ))− ∂v(τ)T
∂τ

(x− ω0(τ)) = 0, from (4.13),

=⇒ ∂v(τ)T
∂τ

x = v(τ)Tf 0(ω0(τ)) + ∂v(τ)T
∂τ

ω0(τ),

=⇒ ∂v(τ)T
∂τ

x = ∂

∂τ

(
v(τ)Tω0(τ)

)
,

=⇒ ∂v(τ)T
∂τ

x = ∂

∂τ

(
v(τ)T (−vcu(τ) + xc)

)
, from (4.22),

=⇒ ∂v(τ)T
∂τ

x = ∂

∂τ

(
v(τ)Txc

)
, since v(τ)Tvcu(τ) = 0 by construction,

=⇒ ∂v(τ)T
∂τ

x = ∂v(τ)T
∂τ

xc, since xc = const.

The equality
∂v(τ)T
∂τ

x = ∂v(τ)T
∂τ

xc, (4.32)

is satisfied by all

x = xc + ker
(
∂v(τ)T
∂τ

)
. (4.33)
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4.3 Moving transverse coordinate system

Inserting (4.33) into (4.13) and solving for ρ results in

ρ|ν(τ,ρ)=0 = Z(τ)T
(
xc − ker

(
∂v(τ)T
∂τ

)
− ω0(τ)

)

= Z(τ)T
(
vcu(τ)− ker

(
∂v(τ)T
∂τ

))
, from (4.22). (4.34)

Due to the linearity of ν(τ, ρ) in ρ and ρ = 0 ⇒ ν(τ, 0) > 0, the condition (4.14) holds
for all ρ in the half space which contains ρ = 0 and is given by the subtraction of the
hyperplane SVτ (τ) := ρ|ν(τ,ρ)=0 from S(τ).

Remark 4.4. For n = 2, Corollary 4.2 results in the sets Vτ being the 1-dimensional open
half space containing ρ = 0, which is given by the intersection of S(τ) with the center
point xc.

Figure 4.3 illustrates the hyperplanes obtained in a class-MOC and in a cp-MOC for a
planar example. As stated in Remark 4.2, the regions Vτ are limited by the point of
intersection of two neighboring hyperplanes. The indicated hyperplanes for the class-
MOC (left plot) show, that on the inward-pointing side of Γ0, this results in significantly
smaller regions at locations of large curvature of Γ0 compared to locations of small
curvature. In contrast, the hyperplanes for the cp-MOC reveal a unique intersection
point at xc which defines the limit of the regions Vτ as described by Corollary 4.2. This
illustration showcases the benefits of the cp-MOC consisting in more equally sized Vτ for
which the information about their size can be directly obtained. Moreover, the figure
reveals how by changing the location of xc the size of the sets Vτ can be changed.
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x1
ω0(τ) S(τ) xc

Figure 4.3: Left plot: Illustration of the hyperplanes S(τ) given by the class-MOC for the
limit cycle of the Van-der-Pol oscillator. Right plot: Illustration of the hyperplanes S(τ)
given by the cp-MOC with xc = [0, 0]T for the limit cycle of the Van-der-Pol oscillator.

75



Chapter 4. Region of Attraction Analysis of Periodic Orbits

4.3.3 Transverse coordinate dynamics

Consider the general dynamics (4.1) and let x satisfy the transformation equation (4.13)
obtained from any well-defined MOC. The dynamics in the transverse coordinate (τ, ρ)
are then obtained by considering

dZ(τ)
dτ

τ̇ρ+ Z(τ)ρ̇+ f 0(ω0(τ))τ̇ = f(Z(τ)ρ+ ω0(τ), ϑ). (4.35)

Projecting both sides of (4.35) onto v(τ) gives the 1-dimensional dynamics:

τ̇ = v(τ)Tf(ω0(τ) + Z(τ)ρ, ϑ)
v(τ)Tf 0(ω0(τ)) + v(τ)T ∂Z(τ)

∂τ
ρ
, (4.36)

where (4.20) was used. Inspection of (4.35) reveals the denominator to be equal to the
left hand side in (4.14). Let us thus define τ̇(τ, ρ) = µ(τ,ρ)

ν(τ,ρ) , with

µ(τ, ρ) := v(τ)Tf(ω(τ) + Z(τ)ρ). (4.37)

Further, projecting both sides of (4.35) onto Z(τ) gives the n − 1-dimensional dy-
namics:

ρ̇ = dZ(τ)
dτ

τ̇Z(τ)ρ+ Z(τ)Tf(ω0(τ) + Z(τ)ρ, ϑ)− Z(τ)Tf 0(ω0(τ))τ̇ . (4.38)

Note that in the case of class-MOC, Z(τ)Tf 0(ω0(τ)) = 0, which removes the third
term in the right hand side of (4.38).

4.4 Region of attraction analysis of deterministic limit
cycles

In this section an analysis method is presented with which an inner estimate for the ROA
of the limit cycle of a deterministic system can be obtained. The approach is based on
Lyapunov arguments which are formulated based on the transformation to transverse
coordinates.

Consider the continuous time deterministic system

ẋ = f(x), (4.39)

with x ∈ Rn and f : Rn → Rn. As such, let the system (4.39) represent a nominal
system f 0(x) as defined in Section 4.2. Dropping the 0-subscript for the remainder of
this section, the periodic orbit Γ of (4.39) follows from Definition 4.1 with ϑ = 0,

Γ = {x ∈ Rn|x = ω(t), t ∈ IT}. (4.40)

with periodic solution ω(t). Similarly, the notion of orbital stability and the definition
of the ROA apply as in Definition 4.2 and equation (4.4) for the case of ϑ = 0.
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4.4 Region of attraction analysis of deterministic limit cycles

4.4.1 Lyapunov criteria for the ROA of a deterministic limit
cycle

The Lyapunov arguments for the ROA of a periodic orbit (4.40) provided in the following
theorem have been formulated in a similar form in [Man11]. In order to state the
Lyapunov conditions the problem is considered for the system transformed to transverse
coordinates using a MOC as presented in Section 4.3.

Theorem 4.3 ([Man11]). Let V : IT × Rn-1 → R be a function piecewise continuously
differentiable in τ and continuously differentiable in ρ, and let γ > 0 be a constant. If
for the compact set R := {(τ, ρ) ∈ I◦T × Rn-1 | V (τ, ρ) ≤ γ} the following holds,

V (τ, ρ) > 0, ∀(τ, ρ) ∈ R, ρ 6= 0, (4.41)

V (τ, 0) = 0, ∀τ ∈ R, (4.42)

V̇ (τ, ρ) = ∂V (τ, ρ)
∂ρ

ρ̇+ ∂V (τ, ρ)
∂τ

τ̇ < 0, ∀(τ, ρ) ∈ R, ρ 6= 0, (4.43)

ν(τ, ρ) > 0, ∀(τ, ρ) ∈ R, (4.44)

where ν(τ, ρ) is as defined in (4.14), then R ⊆ R∗, i.e., R is an inner estimate for the
ROA of Γ.

A proof of this theorem can be found in [Man11]. In the following we restrict V to be
polynomial in both τ and ρ. Using the transverse dynamics (4.38) and (4.36), condition
(4.43) results in

∂V (τ, ρ)
∂ρ

[
dZ(τ)
dτ

T

τ̇Z(τ)ρ+Z(τ)Tf(ω(τ) + Z(τ)ρ)τ̇

− Z(τ)Tf(ω(τ))τ̇
]

+ ∂V (τ, ρ)
∂τ

τ̇ < 0.
(4.45)

Equation (4.36) reveals that the left hand side in the condition (4.45) contains rational
terms. Since the denominator term, ν(τ, ρ), is, however, constrained to be positive in
order for the transverse coordinate transformation to be well defined, multiplying both
sides of condition (4.45) by ν(τ, ρ) does not change its constraint on ρ and τ . This results
in the polynomial inequality condition

∂V (τ, ρ)
∂ρ

[
dZ(τ)
dτ

T

µ(τ, ρ)Z(τ)ρ+ Z(τ)Tf(ω(τ)+

+Z(τ)ρ)ν(τ, ρ)− Z(τ)Tf(ω(τ))µ(τ, ρ)
]

+ ∂V (τ, ρ)
∂τ

µ(τ, ρ) < 0.
(4.46)

With the modified condition (4.46) replacing (4.43), the constraints in Theorem 4.3 of are
polynomial form in which they are accessible for computationally tractable algorithms
presented in the following section.
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Chapter 4. Region of Attraction Analysis of Periodic Orbits

4.4.2 Algorithms for a ROA estimate of the deterministic orbit

Considering a polynomial Lyapunov function V , the conditions (4.41), (4.42), (4.44) and
(4.46) on the set R can be reformulated as semialgebraic set containment conditions.
In the following we present an algorithmic outline which aims to maximize R. It uses
the results laid out in Section 2.1.3, in particular Lemma 2.1, to obtain computationally
tractable relaxations of the set containment conditions in the form of sum-of-squares
(SOS) constraints. This results in the following optimization problem in the shape of a
generalized SOS program.

max
V,s1,s2

volume (R) (4.47a)

subject to
V (τ, ρ)− l(ρ) ∈ Σ[τ, ρ], (4.47b)

− V̇ (ρ, τ)− (γ − V (τ, ρ))s1(τ, ρ)− l(ρ) ∈ Σ[τ, ρ], (4.47c)
ν(ρ, τ)− (γ − V (τ, ρ))s2(τ, ρ) ∈ Σ[τ, ρ], (4.47d)

s1(τ, ρ), s2(τ, ρ) ∈ Σ[τ, ρ], (4.47e)

where l(ρ) = ερTρ with ε � 1 enforces the inequation constraint of ρ = 0 in (4.41) and
(4.46). The SOS multiplier s1 and s2 certify the inequality constraints to hold as stated
in Theorem 2.2.

There are various possibilities for the choice of Lyapunov function V and the explicit
form of the cost function in (4.47a), in particular regarding the implementation of the
time-varying nature of V . These choices can vary significantly in their computational
complexity. However, depending on the choice, the set R which is returned by the
optimization program, will differ. As the aim is to maximize R, a few selected options
for Lyapunov functions and cost functions are presented in the following, ordered with
increasing complexity. These options will further be referred to as algorithmic options.

Scaling the sublevel set of a fixed V (VSS-∂lin):

This option was presented in [Man+11]. A Lyapunov function for an asymptotically
orbitally stable periodic orbit Γ can be directly obtained from solving the periodic Lya-
punov equation presented in [HC94] (and, in more general form, in [BCN91]). The
periodic Lyapunov equation is a generalization of Lyapunov’s Indirect Method to peri-
odic solutions. It requires the linearization of the transverse dynamics (4.38) and (4.36)
of system (4.1) around ω(τ) (i.e., ρ = 0). The transverse linearization for a deterministic
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4.4 Region of attraction analysis of deterministic limit cycles

system (4.39) results as

AS(τ) =
[
d

dt
Z(τ)T

]
Z(τ) + Z(τ)T ∂f(ω(τ))

∂x
Z(τ)

− Z(τ)Tf(ω(τ))
v(τ)T ∂f(ω(τ))

∂x
Z(τ)− v(τ)T ∂Z(τ)

∂t

v(τ)Tf(ω(τ)) .

(4.48)

The periodic Lyapunov equation is stated as

Ṗ (τ) + AS(τ)TP (τ) + P (τ)AS(τ) +H(τ) = 0, (4.49)

whereH(τ) � 0 is a continuous T -periodic matrix. By solving (4.49), the unique periodic
solution P (τ) � 0 is obtained. The Lyapunov function

V (τ, ρ) = ρTP (τ)ρ, (4.50)

can then be used in (4.47) with the objective function being the sublevel set size γ which
is to be maximized,

max
γ,s1,s2

γ. (4.51)

Note that in this option the Lyapunov function is fixed to the result of (4.49) and is thus
always a quadratic function.

Scaling the sublevel set of a quadratic V (VSS-∂(2)):

This option is similar to an approach presented in [MAT13]. In this, the Lyapunov
function is taken as a quadratic form with τ -varying Gram matrix

V (τ, ρ) = ρTQ(τ)ρ, (4.52)

where Q(τ) is linear in τ . The objective function and maximization arguments are as
follows, where in order to prevent the optimization from increasing γ by a direct rescaling
of Q(τ), the trace of Q(τ) is fixed to a remain at a constant value c(τ) > 0 for each
τ ∈ I◦T .

max
s1,s2,γ,Q

γ (4.53)

subject to tr(Q(τ)) = c(τ), ∀τ ∈ I◦T . (4.54)

The constraint (4.54) results in an additional linear constraint being added to (4.47).

Scaling the ellipse inside a variable-degree-V sublevel set (SE-∂(r)):

As was the case for the optimization algorithm (3.22), higher degree Lyapunov func-
tions have the potential to verify larger ROA estimates. In this algorithmic option, the
Lyapunov function is thus taken as

V (τ, ρ) = v(ρ)TQ(τ)v(ρ), (4.55)

79



Chapter 4. Region of Attraction Analysis of Periodic Orbits

where v(ρ) is the monomial vector in ρ up to degree r/2 and with minimum monomial
degrees of ≥ 1 (to satisfy (4.42)). In order to efficiently maximize the volume of R a
fixed shape surrogate set is maximized which is constrained to lie inside of R. This
approach is similar to a method proposed in [JW03] for the maximization of estimates of
equilibrium point ROAs. Here we propose a generalization of this approach to Lyapunov
functions for periodic orbits. The surrogate set is given by the sublevel set of a quadratic
function b = ρTBFρ,

BF = {ρ ∈ Rn-1 | b(ρ) ≤ α}, (4.56)

where BF ∈ R(n-1)×(n-1) is a fixed positive definite matrix prescribing the shape of the
elliptical surrogate set. With the constraint

BF ⊆ R, (4.57)

added to the optimization program (4.47), and fixing the sublevel set of V to γ = 1, the
objective function and maximization arguments result as

max
s1,s2,α,Q

α. (4.58)

Note that in this option the scaling factor of a single fixed shape ellipse is maximized
while the ellipse is being constrained to lie inside of the τ -varying sublevel set of V .
This simultaneously maximizes the sublevel set of V since Q enters the optimization as
decision variable. The size of the verified set R can depend significantly on the choice
of the ellipse shape. In general, the better the shape of the ellipse fits into the sublevel
set the more efficient the optimization can potentially become.

Expanding the ellipse(s) inside a variable-degree-V sublevel set (EE-∂(r)):

In order to circumvent the dependency of the verified setR on the choice of ellipse shape,
the SE-∂(r) approach is extended in this option. This is done by using a surrogate set of
a variable shape which is geometrically expanded inside of R. Similarly to the procedure
described in Section 2.1.5, the surrogate set is taken as the sublevel set of a quadratic
function b(τ, ρ) = ρTB(τ)ρ,

B = {(τ, ρ) ∈ I◦T × Rn-1 | b(τ, ρ) ≤ 1}, (4.59)

with a fixed sublevel set scaling factor. The matrix B(τ) ∈ R(n-1)×(n-1) is constrained
to be positive definite and its entries enter as decision variables into (4.47). A convex
objective function is then found by maximizing the geometric mean of the eigenvalues
of B (cf. Section 2.1.5) and results, together with the maximization arguments, as

max
s1,s2,Q,B

−det
(
B(τ)

)1/(n−1)
. (4.60)
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4.4 Region of attraction analysis of deterministic limit cycles

As in SE-∂(r), the scaling factor of R is fixed to γ = 1, and the constraints

B ⊂ R, B(τ) � 0, (4.61)

are added to the optimization program (4.47). A variation of this option will be included
in the analysis, in which B is considered independent of τ . This allows to study the
effect of a variably expanding ellipse compared to a fixed shape surrogate set. In terms
of notation, the variant for the option with the τ -varying B is indicated by the subscript
m, i.e., EE-∂(r)m and the τ -independent B variant by s, i.e., EE-∂(r)s.
Remark 4.5. We emphasize on the fact that the list of algorithmic options considered
here is not exhaustive. However, in terms of complexity and range of resulting estimate
sizes we believe this list to reflect the range of possible objective function choices.

In the following, we focus on the implementation of the optimization program (4.47)
under the EE-∂(r)m option. By including (4.61) in the set containment conditions, the
following SOS constraint is obtained.

− (1− b(τ, ρ)) s3(τ, ρ) + (1− V (τ, ρ)) ∈ Σ[τ, ρ], (4.62)

where s3(τ, ρ) is an additional SOS multiplier.
With any of the above algorithmic options for V and the objective function, the gen-

eralized SOS program (4.47) has a convex objective function, however, the constraints
contain bilinear terms in the decision variables. By alternating between fixing V while
performing the optimization over s1, s2 and s3, and then fixing s1, s2 and s3 while opti-
mizing over V the optimization problem can be efficiently solved in an iterative fashion
where each of the iterative steps is an SOS program, and thus solvable as an semidefinite
program (SDP) as described in Section 2.1.2.

Due to the dependency on the time-like variable τ the generalized SOS program
(4.47) has a time-varying nature. Since this poses a significant computational complexity,
accuracy of the solution can be traded in for computational efficiency by solving (4.47) for
a N discrete τ values over the range of the full interval [0, T ] [TMT11]. This effectively
chooses a set of fixed transversal hyperplanes on which the conditions of Theorem (4.3)
are tested. Note that the finer the sampling of τ the lesser is the loss of accuracy but
the higher are the computational cost due to the added constraints for each hyperplane.
It then follows that the optimization problem (4.47) consists of a set of problems each
evaluated for a discrete value of τ and with only ρ being left as the indeterminant. The
τ -sampled polynomials are denoted with a superscript i in the following.

The sampling of τ results in the piecewise linear Lyapunov function

V (i)(ρ) := v(ρ)TQ(i)v(ρ), (4.63)

with explicit τ -derivative
∂V (i)(ρ)
∂τ

= v(ρ)T
(
Q(i+1) −Q(i)

τ (i+1) − τ (i)

)
v(ρ), i = 1, ..., N -1. (4.64)
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Chapter 4. Region of Attraction Analysis of Periodic Orbits

By constraining Q(i) � 0 the constraint (4.47b) is replaced. The τ -sampled optimization
program for the algorithmic option EE-∂(r)m then results as the following generalized
SOS program.

max
s
(i)
1 (ρ),s(i)2 (ρ),s(i)3 (ρ),i=1...N -1

−
N -1∑
i=1

det
(
B(i)

)1/(n-1)
(4.65a)

subject to − V̇ (i)(ρ)−
(
1− V (i)(ρ)

)
s

(i)
1 (ρ)− l(ρ) ∈ Σ[ρ], (4.65b)

ν(i)(ρ)−
(
1− V (i)(ρ)

)
s

(i)
2 (ρ) ∈ Σ[ρ], (4.65c)

−
(
1− b(i)(ρ)

)
s

(i)
3 (ρ) +

(
1− V (i)(ρ)

)
∈ Σ[ρ], (4.65d)

s
(i)
1 (ρ), s(i)

2 (ρ), s(i)
3 (ρ) ∈ Σ[ρ], (4.65e)

Q(i) � 0. (4.65f)

The implementation of the iterative steps to solve (4.65) is shown in Algorithm 4.1. The
iteration is initialized by solving the periodic Lyapunov equation (4.49) for the transverse
linearization of the dynamics and scaling the result via bisection until SOS multipliers
certifying (4.65b)-(4.65e) are found. Since this initial Lyapunov function is quadratic
a feasible surrogate set size can be obtained by taking an even smaller scaled P . In
Step 1, the Lyapunov function is kept fixed and for each τ (i), a feasibility test consisting
of (4.65b)-(4.65e) is computed to obtain the SOS multiplier for that τ (i). Hereby, the
problem for each τ (i) sample is independent on the others such that N−1 feasibility tests
are being performed in this step, which can be parallelized. In Step 2, the problem on
each hyperplane depends on the neighboring ones due to the Lyapunov derivative. Thus,
for each τ (i) the multipliers are fixed and the constraints on V are added to a single large
optimization program. In this second step the degree of the Lyapunov function can be
increased to the desired order. Steps 1 and 2 are repeated until the maximum marginal
increase of the expanding ellipses on the hyperplanes falls below a specified threshold
(convCritB in Algorithm 4.1).
Remark 4.6. By substituting the appropriate cost function and adjusting the constraints
as specified, Algorithm 4.1 can be used for any of the algorithmic options presented
above.

4.4.3 Illustrative examples

In this section, the application of the ROA analysis is illustrated by two planar systems
with the aim of comparing and highlighting the various features of the different MOCs
presented in Section 4.3 and algorithmic options laid out in Section 4.4.2. An example
of the application of the ROA analysis to a 3-dimensional controlled Airborne Wind
Energy system will be provided in Chapter 5. The results presented here were computed
from the scripts which are further presented in Chapter 6. In particular, the numerical
criteria used for the comparisons are explained in Section 6.6.

82



4.4 Region of attraction analysis of deterministic limit cycles

Algorithm 4.1 Find Lyapunov function for deterministic orbit to maximize R
1: Input: N , ∂(s(i)

1 ), ∂(s(i)
2 ), ∂(s(i)

3 ), ∂(V (i)), convCritB
2: Output: V , R
3: procedure maxROAestimate
4: ρ̇, τ̇

(4.38),(4.36)←−−−−−−− f(x), ω(t)
5: Initialization:
6: Qini(τ) ← c · P (τ) solution of (4.49), bisect c such that (4.65b)-(4.65e) feasible
7: Qini

(i) ← Qini(τi)
8: choose B(i) small enough such that (4.65d) is feasible
9: Iteration:
10: k ← 0
11: repeat
12: k ← k + 1
13: for i = 1 : N -1 do
14: Step 1: s(i)

1 , s
(i)
2 , s

(i)
3 ← fix Q(i), B(i) solve (4.65b)-(4.65e)

15: Step 2: Q(i), B(i), i=1...N -1 ← fix s(i)
1 , s

(i)
2 , s

(i)
3 , i=1...N -1 solve (4.65a)-(4.65d)

16: until max{det(B(i))k−1 − det(B(i))k}N -1
i=1 < convCritB

Van-der-Pol oscillator

The Van-der-Pol oscillator dynamics,

ẋ1 = x2,

ẋ2 = (1− x2
1)x2 − x1,

(4.66)

have a unique stable limit cycle which encircles an unstable equilibrium point at xEP =
[0, 0]T [LS42]. Let ΓVDP denote this limit cycle. The ROA of ΓVDP thus includes all of
R2\{xEP}.

We use this example to investigate the effect of the choice of the MOC and the
effect of different degrees of Lyapunov functions on the obtained ROA estimates R. For
this purpose we use the option EE-∂(r)m in the Algorithm 4.1 and fix the multiplier to
∂(s1) = 6, ∂(s2) = 2 and ∂(s3) = 2. Figure 4.4 shows the volume of the computed R as
a function of τ for the four cases of a quadratic and a quartic Lyapunov function used
under the class-MOC and the cp-MOC. The set R set were computed from 50 discrete
values of τ ∈ [0, T ] with τ1 = τ50, giving 49 distinct hyperplanes. As can be seen in
the figure, the obtained ROA estimates are significantly larger for the cp-MOC than for
the class-MOC. Further, consistently with the expectation, for both MOCs the quartic
Lyapunov function returns on average a larger R than the quadratic.

Figure 4.5 provides a qualitative illustration of the computed R for each case, where
the left plot shows the results obtained on a range of hyperplanes in the class-MOC
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Figure 4.4: Comparison ofR sizes obtained from Algorithm 4.1 for the algorithmic choice
EE-∂(r)m where both quadratic and quartic Lyapunov functions were used for both the
class-MOC and the cp-MOC.

and the right plot shows the results on the same range of hyperplanes in the cp-MOC
with xc = [0, 0]T . The results for a quadratic Lyapunov function are plotted on top
of the results for a quartic Lyapunov function. This figure reveals the reason for the
significantly smaller ROA estimates obtained with class-MOC, which is a consequence
of Corollary 4.2: The intersection of neighboring hyperplanes which represents the limit
point of the well-definedness of the transverse coordinate transformation (4.13), prevents
the finding of larger sets R. In the case of cp-MOC the hyperplanes all intersect in the
single point xc which allows much larger regions R to be found by Algorithm 4.1 in this
example.

Dual-orbit system

This example consists in a modified version of the Liénard system given in [GG02].

ẋ1 = −x2 + 3x1(x2
1 − 1/4)(x2

1 − 1),
ẋ2 = x1.

(4.67)

The modifications contain a reduction of the system’s order from 7 to 5 which entails the
removal of a the third outermost stable LC, and the change of a parameter value. In the
form considered here the system has two LCs of which one is encircling the other. The
inner one is an attractive LC around the unstable equilibrium point xEP = [0, 0]T , which
is further denoted by ΓAdual. The outer one is an unstable LC and is further indicated by
ΓUdual. Figure 4.6 shows a phase portrait of the system in the neighborhood of the LCs.
The true ROA of ΓAdual is given by the region encircled by ΓUdual (with exception of xEP).
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Figure 4.5: Illustration of the computed ROA estimates shown in Figure 4.4 for the Van-
der-Pol oscillator (4.66). The results for the quadratic Lyapunov function are plotted
on top of the results for the quartic. Left plot: ROA estimates for the class-MOC. Right
plot: ROA estimates for the cp-MOC.

For this system all algorithmic options presented in Section 4.4.2 were used to com-
pute a ROA estimate for both the class-MOC and cp-MOC. For the two options SE-∂(r)
and EE-∂(r) which allow for higher order Lyapunov functions both the case of a quadratic
and a quartic function was considered. The multiplier degrees were fixed for all options
to ∂(s1) = 6, ∂(s2) = 2 and, where applicable, ∂(s3) = 2. The aim of the comparison
was to investigate the differences in the outcome among the algorithmic choices as well
as to analyze the conservativeness of the results with respect to the true ROA.

The volumes for the computed R for each algorithmic option are shown as a function
of τ in Figures 4.7 for the class-MOC and in Figure 4.8 for the cp-MOC. Each estimate
was obtained for the same range of 50 discrete values of τ ∈ [0, T ] with τ1 = τ50. Both
figures reveal the tendency to obtain of larger sets R from higher degree Lyapunov
functions and from cost functions which are more flexible in the adaption of the shape
of the sublevel sets of both V and, where applicable, the surrogate set. Accordingly,
R obtained from VSS-∂lin is significantly smaller than all other estimates as its only
flexibility consists in the uniform scaling of the Lyapunov sublevel set obtained for the
linearized system. Allowing the shape of this sublevel set to vary results in significantly
larger results, as the sets R obtained for VSS-∂(2) show. This option still only considers
quadratic Lyapunov functions and the cost function is equal to the one in VSS-∂lin while
the computational complexity is significantly increased due to the constraints on Q and
added decision variables.

For both cases of MOC the results from the algorithmic options involving quadratic
Lyapunov functions (except for VSS-∂lin) give very similar results. While for the class-
MOC the use of a surrogate set in the options SE-∂(2), EE-∂(2)s and EE-∂(2)m results
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in small increases compared to VSS-∂(2) these are negligibly small in the results for
cp-MOC. The more significant benefit of using surrogate sets is clearly shown in the
comparison of the results obtained for the quadratic Lyapunov function compared to
the results of the quartic one. Except for SE-∂(4) for the class-MOC these results are
significantly larger for the latter. Thereby it can be seen for both MOCs how a surrogate
set which is allowed to shape more flexibly results on average in larger R. The largest
R obtained for the class-MOC is included in Figure 4.8 to facilitate a comparison of
the results among both choices of MOC. As found in the previous example of the Van-
der-Pol oscillator, also here the cp-MOC allows for larger regions to be obtained for all
algorithmic options (except for VSS-∂lin).

Figure 4.9 illustrates the obtained sets R for EE-∂(4)m and VSS-∂(2) on the 49
chosen hyperplanes for the class-MOC (left plot) and the cp-MOC (right plot). The
results for VSS-∂(2) were plotted on top of the results of EE-∂(4)m. The figure shows
how both MOC enable the EE-∂(4)m to obtain ROA estimates which are very close to
the size of the true ROA towards its outer boundary. While due to the intersection of
hyperplanes in the class-MOC case the estimates are not covering the neighborhood of
xEP, this limitation is not given for the cp-MOC for which the estimates are able to
reach closer towards xEP, which is also the chosen center point in this case. The plots
further underline the finding that more flexible cost functions and higher order Lyapunov
functions can result in significantly less conservative results.

Table 4.1 lists the number of iterations performed for each algorithmic option, choice
of MOC and Lyapunov function degree. The comparison shows that there were sig-
nificant differences in between the algorithmic options, inconsistent variations among
different Lyapunov function degrees and comparably little variation between the two
choices of MOC. Combining the volume plot results with the iteration numbers it can
be seen that the larger sized ROA estimate obtained for the option EE-∂(r)m comes at
the cost of a significantly higher number of iterations than its less flexible counterpart
EE-∂(r)s needed for a slightly smaller sized ROA estimate.
Remark 4.7. Note that even though the estimates are only close to the hyperplane inter-
section point for a few values of τ for the class-MOC, the algorithm can not efficiently
increase the estimates on the hyperplanes on which the estimates are still far from the in-
tersection point. This is in despite of the flexibility of individually shaping the surrogate
sets on each hyperplane which is given in the option EE-∂(4)m. Since in the cp-MOC
it is often possible to design the hyperplanes in a way that the well-defined sets Vτ are
more similar in size this restriction can be diminished by choosing this MOC.
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Figure 4.6: Phase portrait of the dual-orbit system (4.67) in the neighborhood of the
attractive and unstable LCs. The green lines show examples of converging trajectories
while the red lines represent diverging ones.
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Figure 4.7: ROA estimates as a function of τ , obtained from the different algorithmic
choices presented in 4.4.2 for the class-MOC.

87



Chapter 4. Region of Attraction Analysis of Periodic Orbits

5 10 15 20 25 30 35 40 45

0.4

0.6

0.8

1

1.2

VSS-∂lin

VSS-∂(2)

SE-∂(4)

EE-∂(2)m

SE-∂(2)
EE-∂(2)s

EE-∂(4)s

EE-∂(4)m

class-EE-∂(4)m

i

vo
lu

m
e(

R
(τ

i))

Figure 4.8: ROA estimates as a function of τ , obtained from the different algorithmic
choices presented in 4.4.2 for the cp-MOC. For comparison, the EE-∂(4)m result obtained
for the class-MOC is included.
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for the dual-orbit system (4.67). The results for the quadratic Lyapunov function are
plotted on top of the results for the quartic. Left plot: ROA estimates for the class-MOC.
Right plot: ROA estimates for the cp-MOC.
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Table 4.1: Comparison of iteration numbers obtained for the dual orbit example for each
algorithmic option and MOC.

Algorithmic class-MOC cp-MOC
option ∂(V ) = 2 ∂(V ) = 4 ∂(V ) = 2 ∂(V ) = 4
EE-∂(r)m 23 51 20 49
EE-∂(r)s 10 9 8 8
SE-∂(r) 39 32 39 33
VSS-∂(2) 12 - 12 -
VSS-∂lin 10 - 6 -

4.5 Region of contraction analysis of uncertain pe-
riodic orbits

We now consider the case of a parametric uncertainty affecting the system (4.1), i.e.,
ϑ 6= 0. Since in this case the location of the periodic orbit depends on the realization
of the uncertainty, Lyapunov methods can no longer be applied directly. In order to
analyze the ROA of the uncertain orbit, contraction methods are employed instead. For
this reason the ROA is also referred to as ROC, which we will adapt in the following.

Consider systems (4.1) where the uncertainty is parametric and affinely appearing in
the dynamics

ẋ = f(x, ϑ) = f 0(x) + φ(x, ϑ), (4.68)
where x and f 0(x) are as defined before and ϑ ∈ Θ ⊂ Rm is the uncertain parameter,
φ : Rn × Rm → Rn is Lipschitz continuous in x and ϑ, and further φ ∈ D with

D := {φ |φ(x, ϑ) = Φ̃(x)ϑ ∀x ∈ Rn, ϑL ≤ ϑ ≤ ϑU}.

The constant vectors ϑL, ϑU ∈ Rm denote the lower and upper bound of ϑ. Both f 0(x)
and the matrix Φ̃ : Rn → Rn×m are known dynamics.

Before the contraction analysis of (4.68) is presented, a brief introduction to contrac-
tion methods for periodic orbits is provided.

4.5.1 Transverse Contraction Criteria

For the sake of this introduction to transverse contraction methods let us consider the
deterministic system (4.39) and its periodic orbit Γ as presented in Section 4.4.

Consider a Riemannian metric function of the form

VM(x, δx) = δTxM(x)δx, (4.69)
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where δx denotes a virtual displacement, i.e. a linear tangent differential form repre-
senting an incremental displacement of x(t) at a fixed time. As presented, VM has the
meaning of a squared distance. Further, M(x) is a Riemannian metric which implies
M(x) � 0 for all x. Contraction analysis is concerned with the rate of change of this
metric function.

With
δ̇x = ∂f(x)

∂x
δx, (4.70)

we obtain from (4.69)

d

dt

(
δTxM(x)δx

)
= δTx

(
∂f(x)
∂x

T

M(x) +M(x)∂f(x)
∂x

+ Ṁ(x)
)
δx, (4.71)

where Ṁij(x) = ∂Mij(x)
∂x

f(x) is the entry at the i-th row and j-th column of Ṁ(x). The
following definition can be found in similar form in, e.g., [LS98].

Definition 4.5. (Full contraction) A system (4.39) is called contracting in a region
K ⊆ Rn with respect to a positive definite metric M(x) if

∂f(x)
∂x

T

M(x) +M(x)∂f(x)
∂x

+ Ṁ(x) ≤ −ηcM(x), (4.72)

for all x ∈ K and a positive constant ηc.

If a system with a stable equilibrium point xEP is contracting in a region K ⊆ Rn, where
xEP ∈ K then the distance between any two trajectories starting in the region K will
eventually converge to zero. The negative rate of change of the distance happens in this
case in the full state dimension.

In the case of the system having a stable periodic orbit, two neighboring trajectories
will not converge to a single point but instead converge to the set Γ given by the periodic
orbit. Since two points on a periodic orbit never converge to one point, such a system
is not satisfying the full contraction criteria of Definition 4.5. Any two trajectories of
this system are, however, contracting under a reparametrization of time. Also referred
to as Zhukovsky stability, this reparametrization suggests a slowing down, respectively
speeding up of one of the two trajectories such that the distance between them converges
to zero. The existence of this reparametrization is sufficient to formulate a contraction
condition for the convergence of trajectories to a limit cycle which requires the contrac-
tion condition (4.72) to only hold in a n -1-dimensional subspace transverse to the flow
of the system. This is referred to as transverse contraction.

Theorem 4.4 (Transverse contraction, [MS14]). Consider the system (4.39) on a subset
Z ⊂ Rn. Let Z be compact, smoothly path-connected, and strictly forward invariant. If
there exists a metric function VM(x, δx) satisfying

∂VM
∂x

f(x) + ∂VM
∂δx

∂f(x)
∂x

δx ≤ −ηtVM(x, δx), (4.73)
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4.5 Region of contraction analysis of uncertain periodic orbits

for all δx 6= 0 and a constant ηt > 0, such that the orthogonality condition ∂VM
∂δx

f(x) = 0
is satisfied, then the system (4.39) is called transverse contracting in Z. For every two
solutions x1 and x2 with initial conditions in Z there then exists a time reparametriza-
tions θ(t) such that x1(t)→ x2(θ(t)) as t→∞. Furthermore, if there are no attracting
equilibrium points in Z any solution starting in x(0) ∈ Z converges to ω(t), the unique
periodic orbit of the system, as t→∞.

A proof of this theorem is included in the Appendix A.3.

Remark 4.8. Note that transverse contraction is a weaker form of full contraction. Thus,
in order to eliminate the possibility of trajectories converging to an attracting equilibrium
point inside Z its existence has to be excluded. In practice, this can be done by adding
the constraint f(x) 6= 0, ∀x ∈ Z, in case no prior information on the equilibrium point
is available.

We call the largest region Z∗ ⊆ Rn, for which the transverse contraction criteria stated
in Theorem 4.4 are satisfied, the true region of contraction. Any subset Z ⊂ Z∗ on
which the criteria are satisfied is referred to as (inner) estimate of the ROC, with the
corresponding M being called the contraction metric.

For VM(x, δx) = δTxM(x)δx, the orthogonality condition becomes

∂VM
∂δx

f(x) = δTxM(x)f(x) = 0. (4.74)

A computationally tractable criteria for transverse contraction to hold is provided by
the following theorem.

Theorem 4.5 ([MS14]). The system (4.39) is transverse contracting with rate ηt and a
metric VM(x, δx) = δTxM(x, δx)δx, if and only if there exists a function λ(x) ≥ 0, such
that

C(x)∂f(x)
∂x

T

+ ∂f(x)
∂x

C(x)− Ċ(x) + 2ηtC(x)− λ(x)S(x) ≤ 0, (4.75)

where S(x) := f(x)f(x)T and C(x) := M(x)−1.

The proof is found in [MS14].
Equation (4.75) represents sufficient conditions for a region to be contracting, which

can be tested in a computationally tractable way. In order to obtain a ROC estimate,
Theorem 4.4 further requires positive invariance of the contracting region to hold. Con-
sequently, (4.75) has to either be proven for all x ∈ Rn (which would show global con-
traction), or an additional invariance condition needs to be verified alongside condition
(4.75). For full contraction, an invariance criteria is provided in [LS98], where (4.72)
has to hold in a region which is a ball of constant radius with respect to the metric M
(Theorem 2 in [LS98]). While in [TM14] (Theorem 2) it was shown how the same criteria
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applies to a ball of constant radius with respect to the metric in the transverse subspace,
this criteria can not directly be applied to (4.72) in a computationally tractable, i.e.,
convex, way. The reason for this is that the contraction condition is posed on the in-
verse of the metric while the invariance has to hold for a ball with respect to the metric,
resulting in the search for a matrix with conditions on its entries and the entries of its
inverse both of which are functions in x. Formulating convex criteria is thus not directly
possible4.

One solution is offered by imposing an additional invariance condition on the region
for which contraction is analyzed. Since this increases the overall size of the problem, it
is desirable to reduce the state dimension by formulating the contraction conditions only
for the transverse subspace. This formulation can be obtained by using the transverse
coordinate transformation presented in Section 4.3 and has been proposed in [MS14]
and [TM14]. We use this contraction condition for the transverse subspace, extend it for
uncertain systems and complete the analysis of a ROC by imposing suitable invariance
conditions.

A ROC from consideration of the transverse subspace

Considering contraction conditions specifically for the transverse subspace reduces the
state dimension by one and is thus leading to a significant reduction in computational
complexity.

The (n -1)-dimensional subspace is given by all δx satisfying the orthogonality con-
dition. In terms of the transverse coordinates defined in Section 4.3 this subspace is
represented by the hyperplanes transverse to the system flow and will further be referred
to as the transverse subspace. The system dynamics in this subspace are obtained by the
transformation of the system into transverse coordinates as presented in Section 4.3.1.

In order to formulate the transverse contraction criteria the differential forms of
the transverse coordinates need to be introduced. Referred to as transverse differential
coordinates (δτ , δρ), they represent virtual displacements in τ and ρ. Let

[
δτ
δρ

]
= Θ(x, t)δx, (4.76)

where Θ is the transformation to transverse differential coordinates obtained from the
Jacobian of an MOC [v(τ), Z(τ)]T . By construction, δρ lies in the subspace defined by
all δx for which a Riemannian metric M(x) can be found such that δTxM(x)f(x) = 0.

In [MS14] it is shown how to find a M(x) which is also a contraction metric for the

4Unless the entries of the metric M are independent of x, in which case computationally tractable
criteria could be obtained from the Schur complement.
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transversal system. To this end, the time derivative of the differential forms is considered,

d

dt

[
δτ
δρ

]
=
[

0 ∗
0 AS(τ, ρ)

] [
δτ
δρ

]
, (4.77)

where AS(τ, ρ) is the Jacobian of the transverse dynamics in (4.38), defined as

AS(τ, ρ) = ∂fS(τ, ρ)
∂ρ

, (4.78)

where fS(τ, ρ) = ρ̇ for (4.39). The differential system (4.77) is linear in [δτ , δρ]T . Using
Lyapunov arguments, (4.77) is asymptotically stable and hence contracting if and only
if there exists a positive symmetric matrix MS ∈ R(n-1)×(n-1) satisfying

AS(τ, ρ)TMS(τ, ρ) +MS(τ, ρ)AS(τ, ρ) + ṀS(τ, ρ) < −ηSI, (4.79)

for some ηS > 0. Here,
ṀS ij(τ, ρ) = ∂MS ij

∂ρ
ρ̇+ ∂MS ij

∂τ
τ̇ , (4.80)

where i, j denote the row and column of the matrix MS .
With the metric found in (4.79), the distance function

VM(τ, ρ, δτ , δρ) = δTpM(τ, ρ)δp, δp := [δτ , δρ]T , (4.81)

can be defined. Imposing δτM(τ, ρ)δρ = 0 we can write

VM(τ, ρ, δτ , δρ) =
[
δτ
δρ

]T [
Mv 0
0 MS(τ, ρ)

] [
δτ
δρ

]
(4.82)

= δ2
τ + δTρMS(τ, ρ)δρ, (4.83)

where we assume w.l.o.gMv = 1. This metric satisfies the transverse contraction criteria
of Theorem 4.4 and represents the desired contraction metric M .

If the contraction condition (4.79) hold for all x ∈ Y where Y ⊆ Rn is a compact
connected set and where additionally Y ⊆ Vτ with Vτ is as in Definition 4.3 is enforced,
then Y is called a transverse contracting region.

Contraction in the Transverse Subspace - Uncertain System

From the results for deterministic system we now derive transverse contraction conditions
for the uncertain system (4.68).

Defining

fφ(τ, ρ) :=
[
(f 0(τ, ρ) + φ(τ, ρ, ϑ))v
(f 0(τ, ρ) + φ(τ, ρ, ϑ))S

]
=
[
τ̇

ρ̇

]
, (4.84)
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and
AφS(τ, ρ, ϑ) := ∂(f 0(τ, ρ) + φ(τ, ρ, ϑ)S

∂ρ
, (4.85)

the contraction condition of (4.79) results in

AφS(τ, ρ, ϑ)TMS(τ, ρ) +MS(τ, ρ)AφS(τ, ρ, ϑ) + Ṁφ
S (τ, ρ, ϑ) < −ηSI, (4.86)

for some ηS > 0 and for all φ ∈ D. If (4.86) holds for all (τ, ρ) ∈ Y with Y ⊆ Vτ then Y
is a transverse contracting region for the uncertain system (4.68)

Note that in general the metric MS(τ, ρ) in condition (4.86) can also be dependent
on ϑ. In numerical implementations this leads to potentially less conservative results at
the exchange of (significantly) increased computational costs.

Since D has infinitely many elements, for each x ∈ Y condition (4.86) represents
infinitely many constraints. We define

D̂ := {φ̂ | φ̂(τ, ρ) = Φ̃(τ, ρ)ϑd, with ϑd ∈ {ϑLd , ϑUd }, ∀d}, (4.87)

where D̂ is a finite subset of D. Thus containing only a finite number of elements, D̂
can now be used to express (4.86) as a finite number of constraints in ϑ. This is similar
to an approach proposed by [TP09] for uncertain equilibrium points.

Proposition 4.1. If

Aφ̂S(τ, ρ)TMS(τ, ρ) +MS(τ, ρ)Aφ̂S(τ, ρ) + Ṁ φ̂
S < −ηSI, (4.88)

ηS > 0, ∀(τ, ρ) ∈ Y ⊆ Vτ ,

holds for all φ̂ ∈ D̂, then (4.86) holds for all φ ∈ D.

Proof. Let y ∈ Y and φ ∈ D, then there exist w1(y), ..., wn(y) with 0 ≤ wi(y) ≤ 1
such that φ(y) can be expressed as a convex combination of (ϑL, ϑU), i.e. φ(y) =
Φ̃(y)(WϑL + (I − W )ϑU), where W is diagonal with Wii = wi. Determined by W

there exist nonnegative scalars µφ̂ for φ̂ ∈ D̂ with ∑φ̂∈D̂ µφ̂ = 1 such that

φ(y) =
∑
φ̂∈D̂

µφ̂φ̂(y), ∀φ ∈ D. (4.89)

Consequently, using

(f 0(y) + φ(y, ϑ))S =
f 0(y) +

∑
φ̂∈D̂

µφ̂φ̂(y)

S

=
∑
φ̂∈D̂

µφ̂

(
f 0(y) + φ̂(y)

)
S
, (4.90)
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and

∂ (f 0(y) + φ(y, ϑ))S
∂ρ

=
∂
(
f 0(y) +∑

φ̂∈D̂ µφ̂φ̂(y)
)
S

∂ρ

=
∑
φ̂∈D̂

µφ̂
∂
(
f 0(y) + φ̂(y)

)
S

∂ρ
,

we find

AφS(τ, ρ, ϑ)TMS(τ, ρ) +MS(τ, ρ)AφS(τ, ρ, ϑ) + Ṁφ
S (τ, ρ, ϑ)

=
∑
φ̂∈D̂

µφ̂

(
Aφ̂S(τ, ρ)TMS(τ, ρ) +MS(τ, ρ)Aφ̂S(τ, ρ) + Ṁ φ̂

S (τ, ρ)
)

≤ −
∑
φ̂∈D̂

µφ̂ηSI = −ηSI,

and (4.88) follows.

This result also applies if the uncertainty parameter is time-varying as long as ϑL ≤
ϑ(t) ≤ ϑU .

Equation (4.88) provides finitely many constraints for an uncertain system to be
transverse contracting for all (τ, ρ) ∈ Y . In order to verify a transverse contracting
region Y to be a ROC estimate Z, it remains to provide a criteria for Y to be invariant.

Lemma 4.3. Let
Z := {(τ, ρ) ∈ IT 0 × Rn-1 | z(τ, ρ) ≤ γ}, (4.91)

be a compact region with Γ ⊂ Z, where z : IT 0 × Rn-1 → R is a continuous function
and γ > 0 a positive constant. If

Z ⊆ Vτ , (4.92)

∇z(τ, ρ)f φ̂(τ, ρ) < 0, ∀(τ, ρ) ∈ Ẑ, ∀φ̂ ∈ D̂, (4.93)

where Ẑ := {(τ, ρ) | z(τ, ρ) = γ}, then Z is a strictly positively invariant region of the
uncertain system (4.68) for all φ ∈ D.

Proof. Let ψφ̂(x0, ·) denote the solution to (4.84) for φ = φ̂ starting at x0. The existence
and uniqueness of solutions for all x0 ∈ Z for a given φ̂ ∈ D̂ is given by the Lipschitz
continuity of (4.68), the compactness of Z and the well-definedness of the transformation
(4.13) holding for all (τ, ρ) ∈ Vτ by definition, if every solution is contained in Z. Assume
there exists an initial condition x0 ∈ Z for which there exists a φ̂ ∈ D̂ such that ψφ̂(x0, t)
leaves the set. Then there must exists a t† such that x(t†) = ψφ̂(x0, t

†), which satisfies
z(x(t†)) > γ. Due to the continuity of the solutions and the function z(x) there must
then exist a t̃, where 0 < t̃ < t† such that z(t̃) = γ at which ż(t̃) ≥ 0. This contradicts
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(4.93) and thus every solution starting inside Z remains inside the region for all φ̂ ∈ D̂
and Z is strictly forward invariant. Since this holds for all ∀φ̂ ∈ D̂, by using the same
reparametrization as in (4.89) and following the steps as in the proof of Proposition 4.1,
it is shown to hold for all φ ∈ D.

Using Lemma 4.3 together with Theorem 4.4, the following theorem summarizes the
conditions on a ROC estimate.

Theorem 4.6. Let the region Z ⊂ Rn be given as in (4.91) and satisfy (4.92) and (4.93).
If there exists a metric MS(x) for which (4.88) holds for all x ∈ Y and φ̂ ∈ D̂, and it
further holds that Z ⊆ Y, then Z ⊆ Z∗, i.e., Z is an inner estimate of the true region
of contraction.

Theorem 4.6 can be used to formulate computationally tractable conditions for a region
Z to be an ROC estimate. This is demonstrated in the following.

4.5.2 Algorithms for maximizing an inner estimate of the ROC
and the uncertainty bounds

In this section an algorithm is presented to compute an ROC estimate for an uncertain
polynomial system with an attracting periodic orbit. The algorithm implements the
conditions on a region Z and a contraction metric MS as stated in Theorem 4.6 in
order to maximize an ROC estimate. Further, a modification is presented which, for a
prescribed fixed size of Z, maximizes the allowed bounds on the uncertainty variation.

Maximizing inner estimates of the ROC

By taking z(τ, ρ) = v(ρ)TZ(τ)v(ρ) with Z(τ) � 0, Z as in (4.91) describes a γ-sized
sublevel set in ρ for each τ ∈ IT 0 . This set is centered around the nominal periodic orbit
Γ0 as this orbit is the τ -parametrized origin of the transverse coordinate system. Let a
contraction metric MS of degree r be of the form

MS(τ, ρ) =


∑
k ak(τ)ρk ∑

k bk(τ)ρk ...∑
k bk(τ)ρk ∑

k ck(τ)ρk
... . . .

 , (4.94)

where MS : IT 0 × Rn-1 → R(n-1)×(n-1) and each entry is a polynomial of degree r as
defined in (2.1).

With (4.94), condition (4.88) represents for each φ̂ ∈ D̂ a matrix inequality with both
polynomial and rational entries. The rational terms are caused by the τ̇ -dynamics which
contain ν(τ, ρ) in the denominator. Similarly, (4.93) contains rational terms caused by
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the appearance of τ̇ . Due to the problem being formulated in transverse coordinates
the well-definedness condition ν(τ, ρ) > 0 has to hold for all (τ, ρ) ∈ Z, in order for
Z ⊆ Vτ (4.92). Note that the condition (4.14) is independent of the uncertainty as it
is concerned with the coordinate system transformation only. For this reason and since
a polynomial inequality such as (4.88) and (4.93) does not change its feasible set when
multiplied by a positive term, both sides of (4.88) and (4.93) are multiplied by ν(τ, ρ)
to obtain equivalent constraints now given in polynomial form only.

The aim of the algorithm is to maximize the size of Z by finding more suitable
metrics. To this end, a computationally tractable measure for the volume of Z is needed.
In general, the algorithmic options presented in Section 4.4.2 for efficiently maximizing
the ROA volume can be extended to the ROC. Trading off potentially more conservative
results for improved computational tractability we choose the objective function as the
sublevel set size of a fixed shaped set B, where we additionally allow the sublevel set size
to vary among the hyperplanes. The surrogate set is then given by

B = {ρ ∈ Rn-1 | ρTBFρ ≤ α(τ), τ ∈ IT 0}, (4.95)

where the matrix BF ∈ R(n-1)×(n-1), BF � 0, has constant entries. Serving as a surro-
gate set, the constraint

B ⊆ Z, (4.96)

is imposed. The polynomial inequality constraints (4.14), (4.93), (4.96), and the matrix
polynomial constraint (4.88) need to be satisfied for all φ̂ ∈ D̂ and (τ, ρ) ∈ Z. Formulat-
ing these constraints as set containment conditions and applying the Positivstellensatz
2.2, SOS and matrix SOS constraints are obtained. The matrix SOS constraints can
be cast as SOS constraints by introducing a new set of indeterminants with no physical
meaning, as described in 2.1.4. Since the coefficients in Z(τ) are decision variable we
fix γ = 1 in (4.91). Let J = cardinality(D̂) with each element indexed by j = 1, ..., J .
Further, let

Gφ̂j(τ, ρ) :=
(
A
φ̂j
S (τ, ρ)TMS(τ, ρ) +MS(τ, ρ)Aφ̂jS (τ, ρ) + Ṁ

φ̂j
S + ηSI

)
ν(τ, ρ), (4.97)

be the inequality constraint (4.88) in polynomial form by multiplication with ν(τ, ρ) as
explained above, and evaluated for the uncertainty element φ̂j ∈ D̂. Then the following
optimization program with both SOS and matrix SOS constraints results.
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max
α,MS ,Z,qj ,mj ,s1,s2,j=1..J

α(τ) (4.98a)

subject to MS(τ, ρ) ∈ Σ(n-1)×(n-1)[τ, ρ], (4.98b)
ν(τ, ρ)−

(
1− v(ρ)TZ(τ)v(ρ)

)
s1(τ, ρ) ∈ Σ[τ, ρ], (4.98c)

−
(
α(τ)− ρTBFρ

)
s2(τ, ρ) +

(
1− v(ρ)TZ(τ)v(ρ)

)
∈ Σ[τ, ρ], (4.98d)

s1(τ, ρ), s2(τ, ρ) ∈ Σ[τ, ρ], (4.98e)
Z(τ) � 0, (4.98f)

for each j ∈ J : −Gφ̂j(τ, ρ)−
(
1− v(ρ)TZ(τ)v(ρ)

)
mj(τ, ρ) ∈ Σ(n-1)×(n-1)[τ, ρ], (4.98g)

mj(τ, ρ) ∈ Σ(n-1)×(n-1)[τ, ρ], (4.98h)

−
(
∂z(τ, ρ)
∂ρ

f
φ̂j
S (τ, ρ) + ∂z(τ, ρ)

∂τ
f φ̂jv (τ, ρ)

)
ν(τ, ρ)−

−qj(τ, ρ)
(
1− v(ρ)TZ(τ)v(ρ)

)
∈ Σ[τ, ρ]. (4.98i)

Constraint (4.98b) prescribes MS � 0 for all (τ, ρ) ∈ IT 0 × Rn-1 which, due to its
structure, is not a stricter constraint than MS � 0 for all (τ, ρ) ∈ Z. Constraints (4.98c)
and (4.98d) enforce the well-definedness condition, respectively the set containment of the
surrogate set in Z, with the help of SOS multipliers constrained as such in (4.98e). For
each j ∈ J an additional set of constraints (4.98g)-(4.98h) are added to the optimization
program which enforce contraction for all (τ, ρ) ∈ Z and each element in D̂, as well as
invariance of Z. The multipliers mj in (4.98h) are matrix SOS multiplier which certify
the matrix SOS constraint in (4.98g) to hold. Their structure is similar to the structure
of the metric MS displayed in (4.94). The multipliers qj(τ, ρ) are indefinite polynomials
which certify the equality constraint z(τ, ρ) = 1 to hold in (4.98i).

In order to circumvent the increased complexity given by the τ -dependency, the
constraints in problem (4.98) can be sampled for a N discrete values of τ over the full
interval [0, T ], similarly to as it was done for the optimization problem (4.65). With a
τ -sampling, the metric MS has the structure

M
(i)
S (ρ) =


∑
k a

i
kρ

k ∑
k b

i
kρ

k ...∑
k b

i
kρ

k ∑
k c

i
kρ

k

... . . .

 , (4.99)

and the following derivative with respect to τ

∂M
(i)
S (ρ)
∂τ

= M
(i+1)
S (ρ)−M (i)

S (ρ)
τ (i+1) − τ (i) . (4.100)

The function z(τ, ρ) can be taken, e.g., as piecewise linear in τ , similar to (4.63).
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4.5 Region of contraction analysis of uncertain periodic orbits

This results in the following optimization problem which is now a generalized SOS
program in the indeterminant ρ, with matrix SOS constraints.

max
α(i),M(i)

S ,Z(i),q(i)
j ,m

(i)
j ,s

(i)
1 ,s

(i)
2 ,i=1..N -1,j=1..J

N−1∑
i

α(i) (4.101a)

subject to M
(i)
S (ρ) ∈ Σ(n-1)×(n-1)[ρ], (4.101b)

ν(i)(ρ)−
(
1− v(ρ)TZ(i)v(ρ)

)
s

(i)
1 (ρ) ∈ Σ[ρ], (4.101c)

−
(
α(i) − ρTBFρ

)
s

(i)
2 (ρ) +

(
1− v(ρ)TZ(i)v(ρ)

)
∈ Σ[ρ], (4.101d)

s
(i)
1 (ρ), s(i)

2 (ρ) ∈ Σ[ρ], (4.101e)
Z(i) � 0, (4.101f)

for each j ∈ J : −Gφ̂j ,(i)(ρ)−
(
1− v(ρ)TZ(i)v(ρ)

)
m

(i)
j (ρ) ∈ Σ(n-1)×(n-1)[ρ], (4.101g)

m
(i)
j (ρ) ∈ Σ(n-1)×(n-1)[ρ], (4.101h)

−
(
∂z(i)(ρ)
∂ρ

f
φ̂j ,(i)
S (ρ) + ∂z(i)(ρ)

∂τ
f φ̂j ,(i)v (ρ)

)
ν(i)(ρ)−

−q(i)
j (ρ)

(
1− v(ρ)TZ(i)v(ρ)

)
∈ Σ[ρ]. (4.101i)

After introducing the auxiliary indeterminants for the matrix SOS conditions, the opti-
mization problem has (3J + 6)(N -1) SOS constraints in 2(n− 1) indeterminants. The
solution of the resulting generalized SOS program is then obtained iteratively by fixing
one term while optimizing over the other and vice versa. More details on the algorithmic
implementation are provided after presenting the alternative optimization of maximizing
the allowed uncertainty.
Remark 4.9. By taking z(τ, ρ) = ρTMS(τ, ρ)ρ the number of decision variables can be
reduced at the exchange of constraining the invariant region to a ball with respect to the
metric.
Remark 4.10. The sublevel set size α(τ) can be kept constant among the hyperplanes
which is advisable if numerical issues occur in the computations.

Maximizing allowed parameter variation for a given Z

In this section we present a modified problem in which the size of Z is fixed to a desired
value and the question on the allowed magnitude variation of the parameteric uncertainty
for the fixed set is answered.
In general the size of the ROC and the size of the uncertainty polytope D̂ trade off; the
larger the uncertainty the smaller the ROC. An optimization over both the volume D̂
and the ROC estimate is thus not considered. In order to prevent the algorithm from
maximizing D̂ by diminishing the volume of the ROC estimate, the size of Z is kept fixed
for this case. Note that this makes the use of a surrogate set obsolete. Also, condition
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(4.101c) needs to be tested for the fixed set Z only and can then be omitted. To allow
for an increased flexibility of the generalized SOS program to certify the prescribed
ROC estimate for larger uncertainties, the coefficients of the metric MS can, however,
optionally enter as decision variables. We consider the uncertainty to be symmetric
around zero such that ϑL = −ϑU . The optimization program then results as follows.

max
ϑU ,M

(i)
S ,q

(i)
j ,m

(i)
j ,i=1..N -1,j=1..J

ϑU (4.102a)

subject to (4.101b), (4.101g)-(4.101i),
Z(i) = Z

(i)
fix . (4.102b)

Algorithms to maximize Z and ϑU

Algorithm 4.2 outlines the implementation of the generalized SOS program (4.101). The
program is initialized by computing an initially feasible metric. This is obtained from
solving the Lyapunov inequality (4.79) for the deterministic Jacobian AS evaluated at
ρ = 0, which gives a metric with constant entries. The region Z is initialized by using
the sampled Lyapunov inequality result which is scaled until feasible SOS multiplier
in (4.101) are found. The surrogate set is scaled to a sufficiently small size to satisfy
(4.101d). Through a two step iteration the bilinear terms are efficiently circumvented
and convex problems are obtained instead. In Step 1, the MS , Z and α are fixed and
the corresponding constraints are solved to obtain the multipliers. Note that in this
step the problem for each hyperplane and φ̂ ∈ D̂ is independent of the others and can
be solved as separate optimization problems which allows parallelization. In Step 2,
the constraints on M (i)

S and Z(i) for each hyperplane and each φ̂ are added to a single
optimization problem maximizing for α. The algorithm terminates after the maximum
relative increase in the α(i) falls below a specified threshold.

Algorithm 4.3 describes the implementation of the generalized SOS program (4.102).
Since this problem requires a desired size for the ROC estimate Z, a feasible Z as well as
an initial MS need to be provided. These can be obtained by first computing Algorithm
4.2 for the case of very small uncertainty bounds and terminating it at the desired size
of Z. Since the decision variables in the program (4.102) appear bilinearly in not only
MS and the multiplier but additionally in MS and the uncertainty bounds, the problem
is here convexified by an iterative three-step algorithm. In the first step, multipliers are
obtained from parallelizable feasibility problems while MS and ϑU are kept fixed, similar
to Step 1 in Algorithm 4.2. In the second step, a single large optimization problem is
solved in which ϑU is maximized while keeping both the multipliers and MS fixed. In
Step 3, a single large feasibility test is performed in which a more suitable metric is
obtained. These steps are repeated until the relative increase in each uncertainty bound
has fallen below a specified threshold.
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4.5 Region of contraction analysis of uncertain periodic orbits

Algorithm 4.2 Find contraction metric to maximize Z for given uncertainty bounds

1: Input: N , ∂(s(i)
1 ), ∂(s(i)

2 ), ∂(q(i)
j ), ∂(m(i)

j ), ∂(M (i)
S ), convCritα, ϑL, ϑU , BF

2: Output: MS , maximized Z
3: procedure maximizeROCestimate
4: A

φ̂j
S (τ, ρ), (4.85),(4.38),(4.36)←−−−−−−−−−− f(x, ϑ), ω(t), ϑL, ϑU

5: Initialization:
6: AS(τ, ρ), (4.85),(4.38),(4.36)←−−−−−−−−−− f 0(x), ω(t)
7: MS ini(i) ← MS0(τ), zero-degree solution of (4.79) with AS |ρ=0, sampled at τ (i)

8: Z ini
(i) ← c ·MS ini(i) bisect on c such that (4.101c),(4.101e)-(4.101i) feasible

9: αini ← value of α by bisection such that (4.101d)-(4.101e) is feasible
10: Iteration:
11: k ← 0
12: repeat
13: k ← k + 1
14: Step 1:
15: for i = 1 : N -1 do
16: s

(i)
1 ← fix Z(i) solve (4.101c),(4.101e)

17: s
(i)
2 ← fix α(i), Z(i), solve (4.101d),(4.101e)

18: for j = 1 : J do
19: m

(i)
j ← fix M (i)

S , Z(i), solve (4.101g),(4.101h)
20: q

(i)
j ← fix Z(i), solve (4.101i)

21: Step 2:
22: M

(i)
S , α(i), Z(i), i=1...N -1 ← fix m

(i)
j , q

(i)
j , s

(i)
1 , s

(i)
2 , i=1...N -1, j=1...J solve

(4.101a)-(4.101d), (4.101f)-(4.101g),(4.101i)
23: until max(α(i)

k+1 − α(i)
k )< convCritα
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Algorithm 4.3 Find contraction metric to maximize uncertainty bounds for a fixed Z
1: Input: N , ∂(q(i)

j ) ∂(m(i)
j ), ∂(M (i)

S ), convCritϑU
2: Output: MS , Z, ϑL, ϑU
3: procedure maximizeUncertaintyBounds
4: A

φ̂j
S (τ, ρ, φ̂j),

(4.85),(4.38),(4.36)←−−−−−−−−−− f(x, ϑ), ω(t)
5: Initialization:
6: MS ini(i), Z(i)

ini ← M
(i)
S , Z(i), desired size Z from Algorithm 4.2 for ϑL, ϑU � 1

7: Iteration:
8: k ← 0
9: repeat

10: k ← k + 1
11: Step 1:
12: for i = 1 : N -1 do
13: for j = 1 : J do
14: m

(i)
j ← fix M (i)

S , ϑLj , ϑUj , solve (4.101g),(4.101h)
15: q

(i)
j ← fix ϑLj , ϑUj , solve (4.101i)

16: Step 2:
17: ϑL, ϑU ← fix M (i)

S , m(i)
j , q

(i)
j , j=1...J, i=1...N -1 solve (4.102a), (4.101g),(4.101i)

18: Step 3:
19: M i

S , i=1...N -1 ← fix ϑL, ϑU , m(i)
j , j=1...J, i=1...N -1 solve (4.101b), (4.101g)

20: until max(ϑUk+1 − ϑUk )< convCritϑU

4.5.3 Illustrative example

The results presented here were computed from the collection of scripts which are further
presented in Chapter 6. In particular, the numerical criteria used for the comparisons
are explained in Section 6.6.

The following planar example of a third order polynomial system is considered which
is a modified version of the system presented in [GG05].

ẋ1 = x2(x1 + x2 + 8) + (x2
1 + x2

2 − 1)(1− x1) + ϑx2,

ẋ2 = −x1(x1 + x2 + 3).
(4.103)

The system has a stable LC encircling an unstable equilibrium point and it further has
a stable equilibrium point in the outside neighborhood of the LC. The location of both
equilibrium points as well as the LC depend on the realization of the uncertainty. The
change in location can be observed in Figure 4.10 which shows the phase portrait of the
system for ϑ = 1 (left plot) and the phase plot for ϑ = −1 (right plot) for illustration.

Algorithm 4.2 was applied to the system for the nominal case with ϑ = 0 and for
the case of ϑ ∈ {−0.3, 0.3}. Both cases were computed in the class-MOC and cp-MOC
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Figure 4.10: Phase portraits of the dynamics (4.103). Left plot: For the case of ϑ = 1.
Right plot: For the case of ϑ = −1.

with xc = [0, 0]T for comparison, where 50 discrete values of τ resulting in 49 distinct
hyperplanes were chosen.

Figure 4.11 illustrates the results for the uncertain case in a planar plot. Addi-
tionally, Algorithm 4.3 was used to compute the maximum bounds {ϑL, ϑU} for a pre-
scribed region in the cp-MOC. In Figure 4.12 the results are shown in form of the
volume obtained on each hyperplane. The maximized uncertainty was obtained as
{ϑL = −0.71, ϑU = 0.71}. It can be seen in Figure 4.12 that the prescribed region
Z for the uncertainty maximization is distinctly smaller than the ROC estimate ob-
tained for the fixed uncertainty case, which however enabled the algorithm to obtain
larger uncertainty bounds. This is consistent with the results of Z obtained for the nom-
inal case which are larger than the regions with uncertainty. Finally, both Figure 4.12
and Figure 4.12 show how the results for the cp-MOC significantly exceed the results for
the class-MOC.

The multiplier degrees in the Algorithm 4.2 were set to ∂(s1) = 2, ∂(s2) = 2, ∂(m) =
4, ∂(q) = 4, and the metric degree was chosen as ∂(M) = 2. The invariant region was
chosen as ball with respect to the metric, as mentioned in Remark 4.9. For Algorithm
4.2, the multiplier degrees were kept at ∂(m) = 4 and ∂(q) = 4.
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Figure 4.11: Illustration of the sets Z obtained from Algorithm 4.2 for the uncertain
system with ϑ ∈ {−0.3, 0.3}. Left plot: Results for the class-MOC. Right plot: Results
for the cp-MOC.
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Figure 4.12: Comparison of the sizes of Z as a function of τ resulting from Algorithm
4.2 for the nominal case and for ϑ ∈ {−0.3, 0.3} each computed for the class-MOC and
the cp-MOC. Additionally, results from Algorithm 4.3 are shown in which, for the fixed
sized Z, a maximum uncertainty of ϑ ∈ {−0.71, 0.71} was obtained. In each case the
metric degree was 2.
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4.6 On the contraction analysis of stochastic periodic orbits

4.6 On the contraction analysis of stochastic peri-
odic orbits

As the last class of systems with limit cycle behavior, we now consider continuous time
second order processes,

ẋ(t, ξ) = f(x(t, ξ), κ(ξ)), (4.104)

where x ∈ Rn is the random state variable, κ(ξ) ∈ L2(Θ, µ;Rm) is a vector of L2-
bounded uncertain parameters, ξ is the one-dimensional stochastic germ as defined in
Section 2.2.1, and f : Rn × Rm → Rn is a polynomial function in x and κ. The initial
state is random as well, x(0) = xini(ξ). We further assume the support Θ of the stochastic
germ ξ ∈ L2(Θ, µ) to be finite, as stated in Assumption 3.1. The system (4.104) has
an uncertainty-dependent periodic orbit set Γ as as given in equation (4.3) which is
asymptotically orbitally stable as defined in Definition 4.2. Thus, for each realization of
ξ† ∈ Θ trajectories starting in a neighborhood of Γ converge to a limit cycle Γξ† ⊂ Γ
as t → ∞, where Γξ† is defined as in (4.2). Based on these properties, the true region
of attraction of the periodic orbit set is then defined as in 4.4 where the uncertainty is
now generated by the random variable ξ ∈ Θ. Since we apply contraction criteria for
the analysis of the set (4.4), we refer to it as ROC with the true ROC set indicated by
Z∗, similar to the notation in Section 4.5.

As in Chapter 3, let the PCE of the stochastic system (4.104) be denoted by

˙̄x = f̄(x̄), (4.105)

where x̄ ∈ Rn(p+1) is the vector of PCE coefficients of the state x ∈ Rn, and f̄ : Rn(p+1) →
Rn(p+1) specifies the PCE coefficient dynamics.

4.6.1 PCE for limit cycle systems

It has been previously shown [PB06] that the PCE of a stochastic system with limit cycle
is able to accurately represent the short-time statistical variations of the system’s trajec-
tories. However, the PCE fails to accurately reproduce the spatial statistical properties
(such as the location of the mean limit cycle, or the variance of particular solutions of
interests such as peak amplitude values [MKB03]) of the periodic solution for long time
spans, even for high truncation orders. Several modified PCE approaches have been
proposed to obtain more accurate long-term representations of the purely spatial vari-
ations of a limit cycle. For example, an equation-free approach essentially resulting in
studying the dynamics on Poincaré maps-like hyperplanes was proposed in [XKG05]. In
[LLC10] the authors present a multi-element approach which results in a grid of local
expansions. Alternatively, a better suited basis for oscillatory responses can be used,
such as Wiener-Haar wavelets proposed in [PB06], or Fourier polynomials which were
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introduced in [MKB03].
For the purpose of the analysis presented here, the exact spatial statistics of the periodic
orbit are not required to be known. This allows us to leverage short-time accuracy of
the PCE in order to represent the statistical behavior of the trajectories in the vicinity
of a periodic solution. As for the periodic solution itself we take advantage of the fact
that the qualitative behavior is still accurately captured by the PCE. That is, the PCE
dynamics are able to discriminate between the existence or not of a periodic attractor,
while we do not attempt to use it to characterize other properties, e.g., the mean or
variance of amplitude and/or frequency.

x

x

x

x

x

x(t0, ξ1) x(t0, ξ2)

x(t1, ξ1)

x(t1, ξ2)
x(t2, ξ1)

x(t2, ξ2)

Γξ1

Γξ2

Figure 4.13: Illustration of two trajectories starting from the same initial point for two
different realizations of the uncertainty, ξ1 and ξ2. Both follow a limit cycle corresponding
to their uncertainty. The state of both trajectories at the same time t1 and t2 is indicated.
The mean and variance of those states for each fixed time clearly differ from a purely
spatial mean and variance at a fixed location, here indicated by the hyperplane in blue.

More precisely, we find the following.

Lemma 4.4. If the system (4.104) has a stochastic periodic solution ω(t, ξ), then the
PCE coefficient system (4.105) also has a periodic solution ω̄(t).

Proof. The PCE coefficients of a random process are obtained from the projection (2.19),
in particular

f̄(x̄(t)) = γ−1〈f(x(t, ξ), κ(ξ)),Φj(ξ)〉
= γ−1

∫
Θ
f(x(t, ξ), κ(ξ))Φi(ξ)dµ(ξ).

Since the polynomial basis {Φi(ξ)}∞i=0 is time invariant, the projection of a variable or
process which is periodic for all ξ in the domain of integration onto a member Φi(ξ) of
the basis is a linear combination of periodic quantities and thus is also periodic.
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Similarly to the notation for the stochastic system, we define for the PCE system the
set containing the periodic solution as

Γ̄ = {x̄ ∈ Rn(p+1) | x̄ = ω̄(t), t ∈ ITω̄}, (4.106)

with period ITω̄ of the PCE orbit. For small t, the solution of (4.105) represents the
spatial statistics of the periodic solutions ω(t, ξ) but for t � 0 the PCE solutions con-
verge to a periodic behavior which differs from the spatial statistics of ω(t, ξ). This can
be intuitively understood by considering that PCE represents the ‘full’ statistics, which
includes spatial and temporal statistics. Trajectories starting from the same initial con-
dition in the set Γ but with a different realization of the uncertainty will, in general, not
only vary in the exact location of the periodic solution but also in the speed with which
they travel the orbit, i.e., their frequency. Considering, for example, the mean of the
spatial variability over all trajectories after a certain time t has passed, one clearly sees
that, in general, they differ significantly from the spatial variability one would expect to
find from, e.g., Poincaré maps-like or hyperplane considerations. An illustration of the
temporal and spatial variation is provided in Figure 4.13.

Note, that the reverse of Lemma 4.4 does not necessarily hold when the expansion
(2.18) is truncated. For the truncated system we thus impose Assumption 3.2, which
in this context implies the assumption that the truncated PCE system represents the
properties under consideration, i.e. short-time accuracy of statistics and periodicity of
solutions, accurately.

4.6.2 Regions of transverse contraction

The aim in the following is to obtain inner estimates of the true ROC, Z∗, by means
of PCE representations. The first step towards this goal is to establish a connection
between the stochastic orbital stability of the stochastic orbit and the deterministic
orbital stability of the PCE orbit.

Proposition 4.2. Let K ⊂ Rn be a region such that Γ ⊂ K, and further Γ̄ ⊂ K̄ ⊂
Rn(p+1), where

K̄ = {x̄ ∈ Rn(p+1) | x̄i = γ−1
i 〈x,Φi〉, x ∈ K}. (4.107)

Then the orbit Γ defined in (4.3) is stochastically asymptotically orbitally stable in K if
the PCE orbit Γ̄ is asymptotically orbitally stable in the region K̄.

Proof. Asymptotic orbital stability of Γ̄ in K̄ implies that any solution starting at x̄ini
in the neighborhood of Γ̄ eventually converges to it, i.e., ψ̄(x̄ini) → Γ̄ as t → ∞,
where ψ̄(x̄ini, ·) denotes the flow (4.105). Further, xini(ξ) = ∑p

i=0 x̄iniiΦi(ξ) from the
PCE representation (2.18). Let ψ̄(·, ·) be the flow of the PCE system (4.105). As-
sume, that ∃xini(ξ) for which ψ(xini(ξ), t) 6→ Γ as t → ∞. Then limt→∞ ψ(xini(ξ), t) =
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limt→∞
∑p
i=0 ψ̄(x̄ini, t)iΦi(ξ) = ∑p

i=0 ω̄i(t)Φi(ξ) = ω(ξ, t), which is in contradiction with
the assumption. The statement of the proposition thus follows.

Leveraging Proposition 4.2, the stochastic orbital stability of the periodic orbit Γ can
be investigated by analyzing the orbital stability of the PCE orbit. The problem is
addressed by first finding regions in which a PCE system is converging to Γ̄ and then
retrieving from them the region in which the stochastic system converges to Γ. That is,
an inner estimate of Z∗ (4.4) is computed.

Transverse contraction criteria

Since, just as in Section 4.5, the location of both stochastic and PCE orbit are in general
unknown, Lyapunov arguments cannot be applied for the stability analysis. Instead, we
again employ contraction methods. In this case, however, we do not consider a trans-
formation to transverse coordinates but keep the full state dimension and focus on the
contraction condition given in Theorem 4.5. Since the aim is to investigate contraction
of the stochastic system by contraction of its PCE, we first consider a Riemannian metric
function in the x̄ coordinates:

VM(x̄, δx̄) = δTx̄M(x̄, δx̄)δx̄, (4.108)

where δx̄ is a virtual displacement, i.e., an infinitesimal displacement of x̄ at fixed time,
and VM(x̄, δx̄) measures the squared distance with respect to the metric M � 0.

Since the PCE system f̄(x̄) is deterministic, transverse contraction criteria for the
system in a positively invariant region Z̄ with Γ̄ ⊂ Z̄ are given by Theorem 4.4. Thus, if
the PCE system is transverse contracting in an invariant region Z̄, then every trajectory
starting in Z̄ eventually converges the unique limit cycle Γ̄ ⊂ Z̄. The largest such region
Z̄ is then defined as:

Z̄∗ = {x̄ini ∈ Rn(p+1) | lim
t→∞

dist(ψ̄(x̄ini, t), Γ̄) = 0}, (4.109)

where ψ̄(·, ·) is the flow of the PCE system (4.105).
The PCE system’s transverse contracting behavior can be tested by condition (4.75),

and conditions on the positive invariance of a region are stated in Lemma 4.3. By
invoking both previous results, conditions on a region Z̄ to be an inner estimate of the
true ROC Z̄∗ are obtained as follows.

Theorem 4.7. Let B : Rn(p+1) → R be a continuously differentiable function and let
Z̄ = {x̄ ∈ Rn(p+1)|B(x̄) ≤ β} where β is a positive scalar such that Γ̄ ⊂ Z̄. If

• there exists a metric function VM(x̄, δx̄) = δTx̄M(x̄, δx̄)δx̄, a convergence rate ηt and
a function λ(x̄) ≥ 0, such that

C(x̄)∂f̄(x̄)
∂x̄

T

+ ∂f̄(x̄)
∂x̄

C(x̄)− Ċ(x̄) + 2ηtC(x̄)− λ(x̄)S(x̄) ≤ 0, ∀x̄ ∈ Z̄, (4.110)
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where S(x̄) := f̄(x̄)f̄(x̄)T , C(x̄) := M(x̄)−1 and Ċ(x̄) = −M−1(x̄)Ṁ(x̄)M−1(x̄),
and

• the derivative of B with respect to time on the boundary of Z̄ is negative, i.e.

∇B(x̄)f̄(x̄) < 0, ∀x̄ ∈ ˆ̄Z, (4.111)

where ˆ̄Z := {x̄ |B(x̄) = β},

then the region Z̄ is transversely contracting and positively invariant. Thus, Z̄ ⊆ Z̄∗,
i.e. Z̄ is an inner estimate of th ROC of the system (4.105), and all trajectories starting
inside Z̄ converge to Γ̄.

Applied to PCE systems, a proof of the first property is given by the proof of Theorem
4.5, and the proof for the second property is presented by the proof of Lemma 4.3.

Retrieving Z from Z̄

In order to retrieve an inner estimate Z of the true ROC of the stochastic system we
use an approach similar to the one proposed in Section 3.2.3 for a ROA estimate of
stochastic equilibrium points. More precisely, with a set Z̄ obtained for the PCE system
from Theorem (4.7), a set Z ⊆ Z∗ of the stochastic orbit is obtained from the following
condition.
Lemma 4.5. Let Z̄ be an inner estimate of the ROC of the PCE system. Then the set

Z = {xini ∈ Rn |xini(ξ) =
p∑
i=0

x̄ini,iΦi(ξ), ∀x̄ini ∈ Z̄}, (4.112)

is an inner estimate of the ROC of the stochastic system.

This Lemma results directly from the PCE representation (2.18) and from Proposition
4.2 applied to the sets given by the regions Z̄ and Z.

The region Z as given by equation (4.112) is a stochastic region. An explicit expres-
sion for this region can be obtained by fixing the variance of the initial states to a desired
value, and representing the region Z as the set of the mean values which are contained
in Z̄ with that fixed variance, as described in Section 3.2.3.

4.6.3 Algorithm for computing PCE ROC

In this section we propose an optimization program to compute an ROC estimate Z̄ for
(4.105) by verifying the conditions of Theorem 4.7. The optimization program consists of
two parts. In the first part, the region in which the system is contracting is maximized by
testing condition (4.110). This contracting region will be denoted by Z̄C . In the second
part, the largest invariant set inside of the contracting region is extracted in order to
obtain a transversely contracting and invariant region Z̄.
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Part 1: Maximizing the contracting region

In order to obtain a region Z̄C in which the system is transversely contracting, a metric
has to be found which satisfies condition (4.110). Let the region Z̄C be given by the
sublevel set β of a polynomial function z(x̄) = v(x̄)TZv(x̄), i.e., Z̄C := {x̄ | z(x̄) ≤ β},
where v(x̄) is the vector of monomials. The optimization program both aims at finding a
contraction metric M which satisfies the transverse contraction condition (4.110) for all
x̄ ∈ Z̄C , as well as maximize the region Z̄C itself. Since the condition (4.110) is in matrix
polynomial form, we can employ a similar approach as in Section 4.5.2 and formulate set
containment constraints in order to test the condition in a generalized SOS program.

In order to maximize the contracting region estimate the program optimizes over the
sublevel set size β, while at the same time optimizing over the shape of the region given
by Z. To prevent an increase of β by simple rescaling of Z the trace of Z is bounded by
a constant value a > 0.

max
C(x̄),λ(x̄),s1(x̄),s2(x̄),Z

β (4.113a)

subject to C(x̄)− l ∈ Σn×n[x̄], (4.113b)
−J(x̄)− ηC(x̄) + λ(x̄)S(x̄)− s1(x̄)(β − z(x̄))− s2(x̄)(b(x̄)− ε) ∈ Σn×n[x̄], (4.113c)

s1(x̄), s2(x̄) ∈ Σn×n[x̄], (4.113d)
λ(x̄) ∈ Σ[x̄], (4.113e)

Z � 0, tr(Z) ≤ a, (4.113f)

where J(x̄) := C(x̄)∂f̄(x̄)
∂x̄

T
+ ∂f̄(x̄)

∂x̄
C(x̄) − Ċ(x̄), b(x̄) = f̄T f̄ and ε � 1 is a small fixed

constant. The last term in constraint (4.113c) serves to exclude equilibrium points at
which the dynamics are zero and at which thus (4.110) does not hold. The matrix SOS
multipliers s1(x̄) and s2(x̄) certify the matrix SOS constraints, and l = εx̄T x̄ enforces
strict positivity of C(x̄).

Using the variable y ∈ Rn(p+1) as auxiliary indeterminants for the matrix SOS con-
straints as described in Section 2.1.4, we obtain a generalized SOS program with bilinear
terms in the coefficients of the multiplier s1 and β/Z. As in the algorithms presented in
the previous sections, we solve the generalized SOS program (4.113) as a series of con-
vex problems by the iterative procedure of fixing one bilinearly appearing variable while
optimizing over the other and vice versa. This is done until the result for β converges.
This iterative procedure can be initialized with a unit matrix Z and a bisection on β.
More details are shown in the algorithmic outline in Algorithm 4.4.

Part 2: Finding an invariant region

In the second part, the set Z̄ is obtained as the largest invariant region inside of
the contracting region estimate Z̄C obtained in Part 1. In order to obtain Z̄, con-
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dition (4.111) can be directly tested on the boundary of the region Z̄C . More gen-
erally, using a polynomial function r(x̄) = v(x̄)TRv(x̄), a maximized invariant region
Z̄ = {x̄ | r(x̄) ≤ βinv} ⊆ Z̄C can be obtained by applying Positivstellensatz arguments
to the set containment condition on the invariant set. Setting ∂(r) = ∂(z) and βinv = β,
where β is obtained in Part 1, the following feasibility problem in the form of a gener-
alized SOS program is formulated. The aim of the program is to start from the largest
possible set inside Z̄C , e.g., the set Z̄C itself, and decreasing its size in the direction of
decreasing derivatives at the boundary of the set until condition (4.111) is satisfied.

find R, q(x̄), s(x̄), ε (4.114a)

subject to −
(
∇r(x̄)f̄(x̄)− εx̄T x̄

)
− q(x̄)(β−r(x̄)) ∈ Σ[x̄], (4.114b)

−(β − r(x̄))s(x̄)− (z(x̄)− β)) ∈ Σ[x̄], (4.114c)
s(x̄) ∈ Σ[x̄], (4.114d)

ε < 0. (4.114e)

The SOS polynomial s(x̄) certifies the set containment Z̄ ⊆ Z̄C in (4.114c), and
the indefinite polynomial multiplier q(x̄) results from the equality constraint in (4.93)
imposed in (4.114b). The variable ε is used to enforce the program to find an invariant
region Z̄. Since this invariant region is characterized by inwards pointing dynamics at
the boundary (i.e. negative time derivative of the boundary), an invariant region is found
as soon as a negative value for ε has been reached. In practice, the constraint (4.114e)
is removed and the program (4.114) is solved as a minimization problem for ε. It is
initialized with a feasible positive ε and proceeds with an iteration over the bilinearities
in s and R until a ε < 0 is found by the minimization. Algorithm 4.5 outlines the
procedure.
Remark 4.11. If program (4.114) cannot find a region for which ε is negative the reasons
can be the following: Either, the contracting region Z̄C obtained in Part 1 is too small to
contain an invariant region, or the invariant region inside Z̄C has a shape which cannot
be fitted with a sublevel set of the polynomial function r. In the first case, a larger
region can be searched for by increasing the polynomial degree of the metric and/or SOS
multipliers in Part 1. In the second case, the polynomial degree of both z and r can be
increased.

4.6.4 Comments on the implementation and examples

We use Algorithms 4.4 and 4.5 on the following stochastic system previously considered
in a deterministic version in [GH13],

ẋ1 = −x1 + x2,

ẋ2 = x1 − (2 + κ(ξ))x2. (4.115)
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Algorithm 4.4 Part 1: Maximize the contracting region Z̄C
1: Input: p, ∂(s1), ∂(s2), ∂(λ), ∂(C), ∂(z), η, convCritβ
2: Output: β, Z̄C
3: procedure maxContractingRegion
4: f̄(x̄) PCE←− f(x, a)

5: Initialization:
6: Zini ← I
7: a ← trace of Zini
8: β ← bisection on β with Zini until (4.113b)-(4.113e) feasible

9: Iteration:
10: k ← 0
11: repeat
12: k ← k + 1
13: Step 1:
14: s1, s2, λ, C ← fix Z, β, solve (4.113b)-(4.113e)
15: Step 2:
16: Z, β ← fix s1, s2, λ, C, solve (4.113a), (4.113c), (4.113f)
17: until βk − βk−1 < convCritβ

Algorithm 4.5 Part 2: Find an invariant region Z̄ ⊆ Z̄C
1: Input: ∂(s), ∂(h), ∂(r)
2: Output: ε, Z̄C
3: procedure findInvariantRegion

4: Initialization:
5: Rini, βinv ← Z, β results from Algorithm Part 1 (4.4)
6: ε ← bisection on ε until (4.114b)-(4.114d) feasible

7: Iteration:
8: k ← 0
9: repeat

10: k ← k + 1
11: Step 1:
12: s, q ← fix R, ε, solve (4.114b)-(4.114d)
13: Step 2:
14: R, ε, ← fix s, q, solve (4.114b)-(4.114d) while minimizing ε
15: until ε < 0
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4.7 Conclusion

The stochastic parameter κ is normally distribution with mean Λ = 0 and variance
σ2 = 0.2 , i.e., the random variable ξ has standard normal distribution. As a basis
for the PCE the Hermite polynomials are chosen as these give optimal convergence in
the L2-sense for normal distributions. A truncation order p = 2 was used to capture
the significant PCE modes. For a metric inverse with ∂(C) = 2, SOS multiplier degrees
∂(s1) = 2, ∂(s2) = 0, ∂(λ) = 0, ∂(s) = 2, ∂(q) = 2, a quadratic invariant and contracting
region with R being the identity matrix I6×6 was found with a radius β = 5.

Due to the increased state dimension coming from the PCE and the matrix SOS
constraints (which lead to a doubling of the number of indeterminants), a tractable
implementation of Algorithm 4.4 for a more meaningful example has not yet been pos-
sible. In particular, we found that the degrees of the metric inverses, which would be
necessary to find contracting regions sufficiently large to fit an invariant region, become
prohibitively high for polynomial systems with degrees larger than one. A possible rem-
edy under the current solver capabilities could be found by considering more flexible
metrics and regions. For example, Algorithms 4.4 and 4.5 could be used to test for
composite metrics, similar to an approach taken for composite Lyapunov functions in
[TP08], or locally piecewise constructed metrics, similar to an approach for piecewise
affine metrics in [GH13].

4.7 Conclusion

In this chapter we consider systems with limit cycles and propose methods to analyze the
ROA, respectively ROC, of the orbits. For deterministic systems and systems affected
by affine parametric uncertainty we use MOCs for the analyses. Based on the classical
MOC of [Hal80] we propose an improved MOC, the cp-MOC, for which we present the
construction algorithm, derive the class of systems for which it provides a well-defined
transformation, and derive formal results on the well-defined range of the transformation.
Lyapunov conditions for an inner estimate of the ROA of a deterministic LC and con-
traction conditions for an inner estimate of the ROC of the uncertain LC are formulated
based on the MOCs. The implementation of the conditions under various algorithmic
options into computationally efficient optimization programs is presented and illustrated
by examples. For stochastic orbits we use the PCE framework to pose contraction con-
ditions. Orbital stability of the stochastic limit cycle is connected to the orbital stability
of the PCE limit cycle in order to employ deterministic contraction criteria to obtain an
inner estimate of the stochastic ROA. An implementation of the conditions is presented
in the form of generalized SOS programs.
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CHAPTER 5
Region of Attraction Analysis for Airborne

Wind Energy Systems

Airborne Wind Energy (AWE) denotes an emerging technology aiming at extracting
power from high-altitude winds with tethered aircrafts, also referred to as kites.

One of the challenges the AWE technology is currently facing lies in guaranteeing
reliability of the system. This guarantee implies the system being able to behave as
desired at all times and within a specified range of operating conditions. Among other
concerns, such as material durability, air space traffic regulations, etc., this challenge
particularly addresses the development of the controllers dedicated to the autonomous
operation of the kites. While there have been successful demonstrations of control designs
for kite systems in the past [Fag+14; ES15; Ron+15; WHS17], the question of their
reliability remains open.

In this chapter we consider the application of the methods presented in Chapter 4 to
Airborne Wind Energy systems. A brief introduction to the field with emphasis on the
pumping cycle operation is given in Section 5.1. In our analysis we focus on the power
generating phase of flexible wing kites in which the kite is flying in crosswind conditions.
In Section 5.2 a simplified and feedback controlled model previously employed for the
control of the kite in the power generating phase is presented. The kite is stabilized
with a state feedback control designed for the system in transverse coordinates to follow
an optimized periodic reference trajectory. We demonstrate the control design for the
example of a Linear Quadratic Regulator (LQR). Considering first the nominal closed
loop system, the Lyapunov criteria for an inner estimate of the ROA of a periodic orbit
presented in Section 4.4 are applied to obtain an inner estimate of the regions in which
the controller is able to stabilize the kite. Allowing for two parameters to be affected by
additive uncertainty we then apply the contraction criteria presented in Section 4.5 to
obtain regions in which the uncertain system is contracting. The results of both analyses
are presented in Section 5.3. The verified regions are validated by simulation for which
we present an implementation of the transverse controller design in Section 5.4.
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5.1 Introduction to AWE

The physical concept of generating power by exploiting the high forces acting on kites
flying in crosswind conditions was first formalized in [Loy80]. Since the beginning of
this century the concept has motivated many startups and research institutes to en-
ter the race of developing and commercializing the technology. Promising larger wind
power harvesting capabilities while requiring significantly less material compared to con-
ventional wind turbines, the technology has started off on various different paths, with
substantially varying protoypes and target application areas.

Soft wings are developed by Skysails Power1 for ship propulsion and off-grid power
production, by Kitepower2 with focus on wind farms, and by Inuit WindSled3 to propel
sledges in Antarctica. Enerkite4 uses ultralight semi-rigid wings for a mobile energy
production station. Propelled and fully actuated tethered aircrafts are developed by
Kitemill5, Twingtec6, Windlift7, Ampyx8 and Makani/Shell9 for electricity generation at
remote locations, where the latter two also target off-shore large scale power production.
A rigid box-wing kite is being desigend by Skypull10. Multi-kite systems for wind farms
are researched by Kiteswarms11.

While almost all of the prototypes are based on the principle of generating power
mechanically on the ground, a few, most prominently Makani, are focused on aircrafts
with power generating mechanisms on board, e.g., in the form of suitably sized turbines.
Moreover, a further crucial difference between the various AWE systems consists in their
start and landing concepts, which are posing major challenges for the fully autonomous
operation [FS17; RS18].

AWE technologies can be defined more broadly to consists of approaches which aim to
exploit the power of high-altitude winds using other physical mechanisms than crosswind
generated forces. For example, the company Altaeros Energies12 develops wind turbines
which are made buoyant by being embedded in a Helium-filled inflatable shell. Winds
at altitudes as high as 600 meters above ground are targeted.

To this point in time the benefits of each prototype seem to be in a trade off with
their disadvantages. While kite systems connected to the ground by multiple tethers

1https://www.skysails-power.com
2http://www.kitepower.eu
3https://www.greenland.net/windsled/
4https://www.enerkite.de
5https://www.kitemill.com
6http://www.twingtec.ch
7https://www.windlift.com
8https://www.ampyxpower.com
9https://www.makanipower.com

10https://www.skypull.technology
11https://www.kiteswarms.com
12http://www.altaeros.com
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5.1 Introduction to AWE

offer higher safety and more actuation degrees (for flexible wings) than a single line,
each additional line contributes with a significant increase in drag force which decreases
the efficiency of the system [Zan+13; Dun18]. Flexible wings compared to rigid wings
have the advantage of being light weight, low-cost, less invasive to the environment under
system failure and more easy to transport [ADS13]. On the down side, fully autonomous
take-off is often still a challenge for flexible wings. Current approaches include passive
launching through a high tower [Bau+18] and a combination of a tower and an assisting
multicopter [RS18]. This challenge is more easily tackled by rigid kites which allow for
actuation and propulsion by small scale onboard propellers. Vertical drone-like take-
offs [Van13], linear launching techniques [FS17; Fag+18], as well as rotational launches
[Gee+12] have been investigated in this regard. In general, rigid wings can achieve higher
aerodynamic efficiencies and offer more rigorous control possibilities due to the larger
number of actuators compared to their flexible counterparts [Cos+15]. The onboard
propulsion system also enables a more steady energy generation by regulating velocity
variations over the flight pattern. A comprehensive overview of the different prototypes,
their characteristics and their development can be found in [ADS13; Che+15; Sch18],
with further references to each of the here mentioned aspects, and others more.

In this work we consider two-line flexible wing kites in crosswind flight with me-
chanical ground based power generation. Note that the ROA analysis presented here
can also directly be applied to periodic motions of other kites systems in case an appro-
priate model is available. The power generation mechanism is presented in the following.

5.1.1 Power generation through pumping cycles

Most kite systems are based on a mechanical mechanism to generate power in which the
kite is performing so called pumping cycles. A pumping cycle consists of two phases,
which are illustrated in Figure 5.1. In Phase 1 the kite is controlled in crosswind condi-
tions with the aim of maximizing the forces acting on the aerodynamic surfaces. These
forces are used to pull on the tethers which are connected to the kite on one end and
wound around drums on the ground at the other end. Pulling on the tethers leads to a
turning motion of the drums which consequently drives a generator and produces power.
In this phase the kite is flying either figures of eight or circular shaped trajectories, which
are spiraling away from the ground station. After the tethers are fully reeled out the
kite enters Phase 2 of the pumping cycle. In this phase the aim is to minimize the forces
acting on the kite in order to rewind the tethers around the drums with the least power
necessary. Depending on the type of kite this is achieved in different ways.

Kites with limited actuation, such as flexible wing kites, are often flown out of the
crosswind conditions and are pulled back in a long side-way leading arc (see, e.g., [ES15;
Woo+18]). Control pods, such as used by Kitepower, enable an active change in the angle
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Phas
e 1

Phase 2

Figure 5.1: Illustration of the two phase pumping cycle. During Phase 1 the kite flies
in crosswind conditions (wind direction is indicated by the blue arrow) and generates
power by slowly unreeling the lines from a winch on the ground. In Phase 2 the tethers
are reeled back while maneuvering the kite away from crosswind conditions to reduce
the forces acting on it and thus minimize the power loss in this phase.

θ

φ

γ

x1

x2

x3

Figure 5.2: Illustration of the coordinate system. The kite system is modeled in the
dynamics of the elevation angle θ, the azimuth angle φ and the heading angle γ. Note
that γ is defined on the tangential plane at the kite’s location and γ = 0 when the kite
points local north on this plane.
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of attack of their kites which allows for a so called depowering. In depowering mode the
lift forces on the kite are reduced to a minimum such that the kite can be effectively
reeled in by following the shortest and fastest path [JS14]. Rigid kites usually have
more actuation possibilities which allows for active manipulation of their aerodynamic
surfaces. They can thus be pulled back via the shortest path while the loads from
aerodynamic forces significantly reduced (see, e.g., [Lic+19]).

The objective of flying pumping cycles is to maximize the net energy generated by the
system over time, where the net energy generation is the difference between the energy
generated in Phase 1 and the energy needed in Phase 2. The goal of maximizing the net
power has given rise to a variety of optimization problems proposed in the literature, most
of which focus on optimizing the flight path flown by the kite in the power generation
phase [ZFM15; CFB17]. The overall power generated can also be maximized by aiming
for the total energy produced over one hour or one day.

The power generation phase of the pumping cycle, Phase 1, is a widely studied as-
pects in the AWE literature [ADS13; Fag+14; ES15; WHS17; Sch18; Fag+18]. Many
different control strategies have been proposed to both autonomously operate the kite
as well as to optimize its flight path [CFB17; Lic+19; Sta+19]. The automatic control
of kites is a particularly challenging task due to the dynamics being highly nonlinear
and time-varying, and due to the exposure to substantial disturbances caused by the
volatility of winds. Among the first successfully implemented control strategies is the so
called switching-point strategy. This consists in a switching-based heading angle control
approach in which the kite alternatingly targets two fixed points in the downwind win-
dow and by doing so arrives at a figure of eight flight path [ES13; Fag+14]. Model-based
controllers were proposed in, e.g., [IHD07; CFM10; Woo+15], and experimentally tested
in, e.g., [WHS17; Sta+19] using Nonlinear Model Predictive Control. While these control
approaches have shown their prowess during many flight hours, a formal guarantee for
these methods to control the kite reliably in a prescribed range of operating conditions
is still an open question. For the commercialization of the technology, guarantees for the
reliable operation in all flight phases including starting and landing are necessary. This
provides the motivation for this work, where we aim at obtaining these guarantees for a
controlled kite model in the crosswind flight phase.

5.2 Flight control for the power generating phase

The flight pattern in the power generation phase can be decomposed into a radial and
a tangential motion. The radial motion is prescribed by the reel out velocity. It is in
general a significantly slower motion compared to the tangential motion. The latter is
perpendicular to the radial direction and tangential to the sphere to which the motion
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is constrained for a given fixed line length. The tangential motion describes a periodic
figure which is usually of a circular or a figure of eight shape. Due to the radial motion
being significantly slower than the tangential, the overall motion of the kite in the power
generation phase can be approximated as a periodic motion.
Circular as well as figure eight paths have been proposed for the flight path shape in
the power generation phase. Both figures have shown to result in similar power outputs
when optimized under the same conditions [Lic+19]. While the circular figure represents
a geometrically simpler figure to track and optimize it requires a swivel mechanism to
prevent the line from twisting. For a multi-line system, such as the two line flexible kite
system considered here, a figure of eight path is the common choice for this reason.

A figure eight path can be obtained from the zero sets of polynomials in algebraic
geometry which are called lemniscates (e.g., [Law72]). These lemniscates provide an
analytic expression of the path. Since often the aim is to optimize the flight path with
respect to a maximum of the aerodynamic forces, a figure eight trajectory can also be
obtained as the numerical solution of an optimization problem. Using an optimization
framework offers the benefit of simultaneously solving an optimal control problem and
obtaining a feasible feedforward input for the optimized trajectory. In this work a figure
eight trajectory is obtained from solving an optimization problem. This requires a model
of the system, which is therefore introduced first.

5.2.1 Unicycle-type system model

Due to the system varying on a fast time scale, a controller is required to work at a high
sampling rate. Real-time feasibility thus poses a challenge to model based control which
results in the need for low complexity models that still capture the key characteristics
of the dynamics. For flexible kites, simplified dynamics given by a first order kinematic
model in three states were previously employed successfully in kite control applications
[Woo+15; ES15; CFB17]. This model is similar to unicycle dynamics and thus referred
to as unicycle, or unicycle-like model. The states are x = (θ, φ, γ), where θ denotes the
elevation angle, φ the azimuth angle, and γ the orientation angle of the kite. Figure 5.2
illustrates this configuration. The model is the following,

θ̇ = vk
L

cos(γ),

φ̇ = vk
L

cos(θ)−1 sin(γ),

γ̇ = vkGu,

(5.1)

where L is the line length, and

vk = vwE cos(θ) cos(φ), (5.2)

is the wind velocity, and E = CL/CD is the glide ratio with CL denoting the lift coefficient
and CD the drag coefficient. Further, G is the steering gain and u is the control input.
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5.2 Flight control for the power generating phase

Flexible kite system are usually steered by changing the difference in length of the two
lines connected to the right and left tip of the wing. This line length difference is then
taken as the input. In this model the tether is implicitly assumed to be a rigid rod of
zero mass.

In the stability analysis the parameters of the system are assumed to be affected by
uncertainty. In particular, we consider the following additive uncertainties:

1. uncertainty in wind speed: vw = vw0 + ϑvw ,

2. uncertainty in steering gain: G = G0 + ϑG.

Here, vw0 , G0 denote the nominal values and ϑvw , ϑG the respective disturbances. Both
parameters are usually difficult to identify and vary with flight conditions.

5.2.2 Reference trajectory optimization

Optimizations of the reference trajectory for kites have been proposed in several studies
[HD07; WLO08; HD10; Lic+19]. In most of these an optimal control problem is solved to
obtain a control policy for steering the kite on a power optimal reference flight trajectory
while adhering to various constraints.

We consider the following optimization problem in order to obtain an example of
a desirable periodic trajectory for the kite to follow. The optimization problem is im-
plemented in ACADO [HFD11]. The objective function consists in the tether force
F (x(t), u(t)) resulting from an aerodynamic equilibrium with the lift and drag forces,
which is maximized over the time needed to fly one cycle of the periodic pattern, T .

max
x(t),u(t),x0,T,t∈[0,T ]

1
T

∫ T

0
F (x(t), u(t))dt (5.3)

subject to
ẋ = f(x(t), u(t)), (5.4)
cLx ≤ x(t) ≤ cUx , (5.5)
cLu ≤ u(t) ≤ cUu , (5.6)
cLu̇ ≤ u̇(t) ≤ cUu̇ , (5.7)
x(0) = x(T ) = x0, (5.8)

where (5.4) encodes the open-loop unicylce-like dynamics given in (5.1). The constraints
in (5.5) restrict the pose of the kite to remain within favorable crosswind flight conditions.
They include a minimum height constraint for safety and further prevent looping such
that the flight path is forced to be a figure of eight shaped trajectory. This shape is further
enforced to be flown in an upward direction by not allowing the orientation angle to take
values |γ| ≥ 180◦. The input constraints in (5.6) restrict the turning rate of the kite
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Chapter 5. Region of Attraction Analysis for Airborne Wind Energy Systems

such that it complies with the limits of the physical system. In order to obtain a smooth
feedforward signal the derivative of the input is constrained as well with (5.7). Finally,
the constraint in (5.8) imposes the periodicity of the trajectory. The trajectory x̃(t) and
open-loop inputs ũ(t) obtained from the optimization problem (5.3) thus represent a
controlled periodic orbit, which is denoted by Γ̃ = {(x̃(t), ũ(t)) | t ∈ [0, T ]}.

5.2.3 Transverse state feedback controllers for the kite system

In order to stabilize the kite around the reference orbit Γ̃ various control strategies can
be used. Since the main objective is to apply the above presented ROA analysis tools,
the controller presented here serves to formulate the closed-loop system. We thus choose
the LQR controller, which was previously used to stabilize the kite in [Woo+15]. The
ROA analysis considers the system under the transformation to transverse coordinates.
This requires the controller to be implemented for the transverse dynamics which results
in state feedback gains for the transverse states. LQR controller for transverse dynamics
have previously been used in, e.g., [Man+11]. The controller requires a linearization of
the transverse dynamics around Γ̃,

ρ̇ = AS(τ)ρ+BS(τ)uS ,

where uS = KLQR(τ)ρ is the transverse component of the input provided by the feedback
control, and AS(τ), BS(τ) are obtained from linearizing the transverse dynamics around
x̃(τ), ũ(τ) (i.e., ρ = 0),

AS(τ) =
[
d

dt
Z(τ)

]T
Z(τ) + Z(τ)T ∂f(x̃(τ), ũ(τ))

∂x
Z(τ)

− Z(τ)f(ω(τ))
v(τ)T ∂f(ω(τ))

∂x
Z(τ)− v(τ)T ∂Z(τ)

∂t

T

v(τ)Tf(ω(τ)) , (5.9)

BS(τ) =Z(τ)T ∂f(x̃(τ), ũ(τ))
∂u

. (5.10)

The feedback gains KLQR(τ) are computed by solving the periodic LQR problem

min
ρ

J(τ, ρ) = ρT (T )QTρ(T ) +
∫ T

0

(
ρT (τ)Qρ(τ) + uTS (τ)RuS(τ)

)
dτ, (5.11)

where QT � 0, Q � 0, R � 0 are the weighting matrices. The optimal solution to
problem (5.11) is

Jopt(ρ, τ) = ρTP (τ)ρ, (5.12)

where P (τ) is the positive definite solution of the periodic Riccati equation [BCN91] for
a H � 0,

− Ṗ (τ) = AST (τ)P (τ) + P (τ)AS(τ)− P (τ)BS(τ)R−1BST (τ)P (τ) +H. (5.13)
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5.3 Stability analysis of the feedback controlled kite system

The LQR transverse state feedback gain then result in

KLQR(τ) = −R−1BS(τ)TP (τ), (5.14)

which leads to the stabilizing input of the system being given by

u(x) = ũ(τ) + uS(Z(τ)T (x− x̃(τ)), τ). (5.15)

The feedback stabilized system (5.1) with (5.15) can then be regarded as an autonomous
system and as such is amenable to the analysis methods described in Chapter 4.

5.3 Stability analysis of the feedback controlled kite
system

In this Section an analysis of the region in the state space, in which the transverse
feedback controller presented in Section 5.2.3 is able to stabilize the system, is presented.
Due to the periodic nature of the problem the analysis methods presented in Chapter
4 are employed. The unicycle-like model of the kite (5.1) is considered where (5.3) was
used to compute an optimized reference trajectory x̃(τ). The system parameters were
set to L = 60 m, E = 5.7, vw0 = 6 m/s, and G0 = 1.25. The parameter G0 was obtained
from a rough approximation of the steering gain derived from first principles as proposed
in [Fag+14]. For τ -discretization, 50 evenly spaced discrete values of τ were chosen over
the period [0, T ], where T = 5s. This results in 49 distinct hyperplanes.

Since the verification methods in Chapter 4 require the system to be in polynomial
form, the closed-loop system is approximated by a third-order Taylor series around x̃(τ).
For the results shown here it is important to keep in mind that the analysis is performed
on an approximation of the system. It thus remains to validate that the obtained ROA
and ROC estimates are also ROA and ROC estimates for the real system. This will be
presented, together with the implementation of the controller, in Section 5.4.

5.3.1 Center point MOC for the kite trajectory

The kite system provides an example for the cp-MOC for a three dimensional system.
Figure 5.3 illustrates 8 randomly selected hyperplanes S(τi) in the cp-MOC for the refer-
ence trajectory. The plots show how all hyperplanes intersect in a 1-dimensional subspace
consisting in a line through the center point which was chosen at xc = [0.3, 0, 0]T . The
rotation in the left plot was chosen such that the line points out of the plane, which
reveals the φ− γ coordinates of xc.
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Figure 5.3: Illustration of the hyperplanes in the cp-MOC from two different angles. In
the right plot, the red dashed line indicates the 1-dimensional subspace given by the
intersection of the hyperplanes.

5.3.2 ROA analysis of the deterministic system

In the first analysis, the deterministic system is considered where the model parameters
take their nominal values. The ROA analysis methods presented in Section 4.4 are
then applied to obtain an inner estimate of the ROA of the periodic feedback-stabilized
reference trajectory.

As a second objective, the deterministic kite dynamics are used to compare the
different algorithmic options presented in 4.4.2 on a 3-dimensional system. The results
presented here were computed from the scripts which are described in Chapter 6. In
particular, the numerical criteria used for the comparisons are explained in Section 6.6.

Figure 5.4 presents the results for each algorithmic option and for each choice of MOC
presented in Section 4.3.1. For the options amenable to higher order Lyapunov functions
both the results for a quadratic and a quartic function are shown. The volume of the
set R was numerically obtained by fitting a 80-sided polygon into the verified sublevel
set of V (τ, ρ), which for 3-dimensional system is a planar region on each hyperplane.

The comparison of the least complex algorithmic option, VSS-∂lin shows a signifi-
cantly larger result for the cp-MOC than for the class-MOC. Furthermore, while for the
class-MOC the remaining results for a quadratic V are of relatively small size and very
similar to each other, they are found to be much larger sized and differ more widely for
the cp-MOC. Interestingly, for the cp-MOC and both degrees of V , the computation-
ally most complex option, EE-∂(r)m, perform worst overall (in the terms of the size of
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5.3 Stability analysis of the feedback controlled kite system

estimated ROA), while the second most complex, EE-∂(r)s performs the best overall.
For EE-∂(r)m, the numerical results reveal issues which prevented continued iterations
in Algorithm 4.1 to obtain larger estimates. There are several reasons which can cause
these numerical issues some of which are discussed in Section 6.5.

In contrast, the results for the class-MOC show the overall largest sized R for the
option EE-∂(r)m, albeit the difference to the second largest is marginal in the case of
∂(V ) = 2. In particular, for both degrees of V , a spike is observed around i = 14. For
these hyperplanes, the curvature of the reference trajectory is very small, which leads
to the well-defined regions, Vτ , to be very large. Due to the flexibility of EE-∂(r)m to
adjust the objective function individually to each hyperplane, the algorithm was able to
take advantage of these particularly large sets Vτ in this case.

The small sizes of the results for SE-∂(r) for all MOCs and V s show the potentially
detrimental effect of a surrogate set which is fixed in shape and could not be pre-adjusted
to the shape of the sublevel set of V (τi, ρ) due to lack of information.

The iteration numbers for each case are listed in Table 5.1. In particular the compar-
ison with the iteration number for the 2-dimensional dual orbit example in Section 4.4.3
shows that the option EE-∂(r)s was again among the options requiring a comparably
low number of iterations. While the option EE-∂(r)m for the class-MOC and quartic
Lyapunov function gave the largest ROA estimates the number of iterations required is
also significantly higher than for most other options. For the class-MOC the iteration
numbers for the option SE-∂(r) were again very high, like in the dual orbit example
They were acceptable for the cp-MOC, however, the obtained estimates are comparably
small. This highlights the disadvantage of this algorithmic option that originates from
fixing the shape of the surrogate set.

Figures 5.5 and 5.6 illustrate the region R obtained from EE-∂(4)s on each of the
selected 49 hyperplanes in a 3-dimensional plot for both the choice of the class-MOC
and the cp-MOC. The plots highlight the significantly larger regions obtained with the
cp-MOC choice of moving coordinate system. Figure 5.6 reveals that the algorithm was
able to verify the stability of the system on regions extending close to the boundaries of
the well-defined regions Vτ . The plots show how the intersecting sets for the class-MOC
are at a much closer distance to the trajectory x̃(τ) around the extreme values of φ while
for the cp-MOC all hyperplanes intersect in a single line which goes through the center
point, as shown in Section 5.3.1.

5.3.3 ROC analysis of the system with parametric uncertainty

In the second analysis the model is considered with parametric uncertainty as described in
Section 5.2.1. The ROC analysis methods presented in Section 4.5 are applied to obtain
robustly contracting regions of the periodic feedback-stabilized reference trajectory, Z,
for two cases of uncertainty. The class-MOC was used for the transverse coordinate

125



Chapter 5. Region of Attraction Analysis for Airborne Wind Energy Systems

10 20 30 400

0.2

0.4

0.6

0.8

1

1.2
class-MOC, ∂(V ) = 2

i

vo
lu

m
e(

R
(τ

i))

10 20 30 400

0.2

0.4

0.6

0.8

1

1.2
cp-MOC, ∂(V ) = 2

i

10 20 30 400

0.2

0.4

0.6

0.8

1

1.2
class-MOC, ∂(V ) = 4

i

vo
lu

m
e(

R
(τ

i))

10 20 30 400

0.2

0.4

0.6

0.8

1

1.2
cp-MOC, ∂(V ) = 4

i

VSS-∂lin VSS-∂(2) SE-∂(r)
EE-∂(r)s EE-∂(r)m

Figure 5.4: Results for the volume of R on each of the 49 selected distinct hyperplanes
S(τi), i = 1, ..., 49, obtained from the different algorithmic options in Section 4.4.2 and
from both presented options of MOC in Section 4.3.1. A quadratic and a quartic (where
applicable) Lyapunov function were used.
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Figure 5.5: Results for R obtained from EE-∂(4)s, plotted on each corresponding hy-
perplane. The φ-θ plane of the 3-dimensional plot is shown. Left plot: Results for the
class-MOC. Right plot: Results for the cp-MOC.
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Table 5.1: Comparison of iteration numbers obtained for the deterministic kite example
for each algorithmic option and MOC.

Algorithmic class-MOC cp-MOC
option ∂(V ) = 2 ∂(V ) = 4 ∂(V ) = 2 ∂(V ) = 4
EE-∂(r)m 19 44 11 10
EE-∂(r)s 10 18 15 19
SE-∂(r) 54 27 18 15
VSS-∂(2) 8 - 12 -
VSS-∂lin 7 - 14 -

transformation in this analysis.
In order to obtain less conservative results for the stabilizing regions of the controller

we modify the algorithms to compute an ROC estimate presented in Section 4.5.2. The
modification consists in using z(τ, ρ) = ρTMS(τ, ρ)ρ (Remark 4.9), and removing the
invariance constraint on the region Z in (4.93). This reduces the number of decision
variables and multiplier entering Algorithm (4.2) significantly, allowing for larger re-
gions to be tested. The modifications are motivated by the fact that, due to using a
Taylor approximation of the dynamics, an a-posteriori validation needs to be performed
in which the convergence of simulated trajectories starting at the boundary of Z is
tested. Validating convergence of controlled trajectories thus offers a replacement for
the invariance condition.

Robustly contracting regions Z for both cases of uncertainty where computed. For the
case of uncertainty in the steering gain G the region Z was maximized for two different
fixed magnitudes of the uncertainty given by ±20% and ±40% of the nominal value.
Additionally, the contracting region for the nominal system was computed. Figure 5.7
displays the results obtained for each uncertainty bound which showcase the tendency
of a diminishing contracting region size with an increase in uncertainty.

The allowed variation in the wind speed was then maximized by using Algorithm
4.3 for a contracting region size fixed to 75% of the nominal Z. We observe that the
results for the maximized lower and upper uncertainty bounds to arrived at the limits
of typical operating conditions of 4-10 m/s which were set as stopping criteria for the
iteration. Simulations of the dynamics show, that uncertainty in the wind speed in this
range does not affect the location of the trajectories of the system and only affects how
fast the trajectories evolve.
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5.4 Simulation results

5.4.1 Transverse controller implementation

The feedback-law obtained from the transverse LQR approach removes the time de-
pendence of the reference from the problem of stabilizing the kite. The feedback gains
only depend on the location of the kite with respect to the hyperplanes S(τ). This
turns the time-sensitive problem of trajectory tracking into the often simpler problem
of path-following. However, due to the dependence of the problem on the hyperplanes,
the question of how to find the appropriate hyperplane from a given location x of the
system arises. More precisely, the inverse of the transformation to transverse coordinates
is required for the implementation of the controller.

For any given value of τ , the corresponding hyperplane and coordinates of every state
x on that hyperplane are given by the transformation laws (4.12) and (4.13) which are
analytic equations. The inverse of the transformation implies the problem of finding,
for a given state x of the system, the unique hyperplane it is corresponding to. In the
following a numerically implementable solution is proposed. Let

Tτ := {τ ∈ [0, T ) | v(τ)T (x− x̃(τ)) = 0}, (5.16)

be the set containing all τ for which the given x lies on the S(τ) as defined by the
condition (4.12). The set Tτ is obtained from computing the zeros of v(τ)T (x − x̃(τ)).
For each τ ∈ Tτ the state can then be transformed into transverse coordinates ρ via the
corresponding projection operator Z(τ).

By precomputing the ROA estimate offline with Algorithm 4.1 for the deterministic
case, or Algorithm 4.2 for the uncertain case, information on the size of the stabilizing re-
gion of the feedback gains for a given hyperplane is available from the set R, respectively
Z. For each pair (τ, ρ) obtained from Tτ , the condition

ρTQ(τ)ρ ≤ 1 (in the case of R), ρTMS(τ, ρ)ρ ≤ 1 (in the case of Z), (5.17)

is checked. If the given state x is inside R/Z, condition (5.17) is satisfied by a unique
pair (τ, ρ). The uniqueness is hereby guaranteed by the well-definedness condition (4.14)
which is imposed as a constraint in the ROA/ROC estimate optimization algorithms.
Keeping the non-intersecting hyperplanes interpretation of well-definedness condition in
mind, the importance of this constraint on the application is evident. If the state is
outside of R/Z, then the corresponding hyperplane might still be found, however, there
is no guarantee that the controller is still stabilizing the system.
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5.4 Simulation results

5.4.2 Simulation of the controlled system - validation of the
ROA and ROC estimates

The results for the attracting regions of the deterministic system and the contracting
regions of the uncertain system presented in Section 5.3 are validated by simulating the
closed loop system from a range of initial conditions on the boundary of the respective
sets. The feedback controller was thereby implemented as described in Section 5.4.1.
For the simulation of the uncertain system the simulation was performed for each of
the dynamics obtained from using an extreme value of the uncertainty. Regarding the
ROA estimate, the largest sized estimate, i.e. the R obtained from EE-∂(4)s, was val-
idated. Note that a validation consisting of taking a fine range of initial conditions on
the boundary between neighboring hyperplanes simultaneously allows to validate the
attractive region in between the selected hyperplanes.

Figure 5.8 shows a sample simulation of the closed loop kite dynamics starting inside
the contracting regions. The left plot shows the trajectory of the system with a +40%
perturbation of the nominal steering gain, and the right plot shows the result for −40%.
We observe that the system converges to different periodic orbits depending on the value
of the uncertainty.

Both the sets R and Z were validated as converging regions. Since invariance was
not imposed on Z the simulation revealed that some trajectories exit the region before
reentering and converging to their respective periodic trajectory.

Figure 5.8: Simulation of the the kite dynamics given in (5.1) with different realizations
of the uncertain steering gain. Left plot: G = 1.4 ·G0. Right plot: G = 0.6 ·G0.
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5.5 Conclusion

In this chapter we present the application of the analysis methods of Chapter 4 to
feedback-stabilized autonomous kite power systems. The kite is considered to be in
the power generating phase of the flight cycle for which a model and a power optimized
trajectory is presented. We use a feedback controller based on a periodic transverse LQR
and present details on the implementation of the resulting transverse controller. A ROA
estimate of the trajectory of the stabilized deterministic kite model, and a ROC estimate
of the trajectory of the stabilized kite model with two different parametric uncertainties
is computed. The obtained regions are verified by simulation of the controlled system
from a range of initial conditions on the boundary of the regions. A transverse controller
implementation is proposed which is based on the MOC and the ROA, respectively ROC
estimates.
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CHAPTER 6
ROA Analysis Tools

In this chapter we provide an overview of the collection of scripts in which the anal-
ysis methods presented in this thesis have been implemented in a generalized form.
The scripts are available open source and can be downloaded at https://github.com/
evaahbe/roa-analysis-tools.git.

The aim of these scripts is to offer transparency on the details of the implementation
and a comprehensive tool to start off from when engaging in the ROA analysis for a
system of interest. Since any of the presented methods test sufficient conditions, it is
difficult if not impossible to generalize an implementation to the extent of a ’plug-and-
play’-like utility for arbitrary systems, even with the restriction to polynomial systems.
A successful analysis therefore often hinges on an informed tuning of the involved pa-
rameters and problem specific adjustments. The scripts facilitate this step by providing
easy access to the tunable parameters, and by implementing all involved analysis steps
in a generalized way with the aim of minimizing the need for user interaction.

Remark 6.1. The scripts were not written with the aim of computational efficiency nor
with any warranty of merchantability. Please also note the licence provided in the direc-
tory.

The file directory is self sufficient and offers access to all functions and auxiliary files
involved in the computations. Note, however, that since the scripts use the SOS toolbox
of Yalmip [Lof09], the installation of Yalmip [Loe04] and the specification of an SDP
solver software (e.g., Mosek [MOS17], SeDuMi [Stu99]) are required.

Remark 6.2. All numerical examples presented in this thesis have been computed in
Matlab version 2018b/2019b, using Yalmip version R20180612 and Mosek version 8.0.

The list of tools included in the scripts is as follows.

• ROA analysis of an equilibrium point of a PCE system (Algorithm 3.1).

• Optimization program to retrieve stochastic ROA from PCE ROA with user spec-
ified variance (Algorithm 3.2).
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• Control design aiming at ROA maximization for stochastic systems with equilib-
rium points (Algorithm 3.3).

• ROA analysis of a deterministic limit cycle (Algorithm 4.1).

• ROC and maximum uncertainty analysis of an uncertain limit cycle (Algorithm
4.3).

All relevant fields in the scripts which require user input, are commented with explana-
tions. In the following we provide details on the general structure of the scripts and offer
some guidance on the parameter tuning. This chapter aims to complement the explana-
tions provided both in the previous chapters and the comments provided directly in the
scripts, and is not a complete documentation.

6.1 General structure

The scripts are divided into two subdirectories of which one contains the files on the
analysis of equilibrium points and the other the files on limit cycle analysis. The scripts
are coordinated through the following main files

• Equilibrium point:

– main_ROA_EP.m − ROA analysis of PCE equilibrium point, stochastic ROA
retrieval

– main_ROA_CDEP.m − Controller design and ROA analysis for a PCE equilib-
rium point, stochastic ROA and controller retrieval

• Limit Cycle:

– main_ROA_LC.m − ROA analysis of a deterministic LC, periodic Riccati gains

– main_ROC_LC.m − ROC analysis and maximized uncertainty bounds of an
uncertain LC, periodic Riccati gains

The main files enable to choose from the different features presented for each analysis
method in this work, as well as plotting the results. Further details on the implemented
features will be provided in the following Sections.

The systemFiles.. directories contains the files implementing the systems treated
in this thesis, as well as template files which enable the user to implement a system of
interest.

Upon successful termination of an analysis the results are saved to a .mat file in the
corresponding directory resultsFiles....
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In between the iterations of an analysis the intermediate results are saved to a .mat file
named intermediateResults..., which is automatically deleted once the final results
file has been created. This intermediate results file enables the tuning of parameters and
inspection of results in between iterations.

Remark 6.3. The only files requiring user action and input are the main file together
with the system file folder. Each field which requires input is commented as to what
input it represents.

During the run of an analysis, the iteration number, successful accomplishment of a step
and, depending on the kind of analysis, intermediate results to inform on the progress
are shown in the command window.

6.2 Equilibrium point analysis

The subdirectory EquilibriumPointAnalysis contains the following folders.

• systemFilesEP - contains the system files of the equilibrium point examples in
this thesis, as well as the template files folder

• PCEprojection - functions for obtaining the PCE of a stochastic system, files are
provided for normal and uniform distributions

• verificationROAPCE - contains function for the PCE ROA verification steps and
function for the stochastic ROA recovery

• verificationROAPCE_CD - contains function for the control design with PCE ROA
maximization

• resultsFilesPCEstoch, resultsFilesPCEstoch_CD - folders in which final results
are saved as .mat file

• plottingFilesEP - plotting files to illustrate obtained ROA in x̄0 coordinates
(max. dimension for plotting is 2)

The files which necessarily require user input are presented in the next two subsec-
tions.

6.2.1 System files

Details on the system of interest need to be provided by filling out the indicated fields
in all files in the template_EP (for autonomous systems), respectively template_CD (for
controlled systems) folder. These files contain:

135



Chapter 6. ROA Analysis Tools

• initializeTemplate.m - system parameters and details on uncertainty, feedback
vector, input constraints, etc.

• dynamics_TEMPLATE.m - differential equations representing true system dynamics

• poly_dynamics_TEMPLATE.m - polynomial differential equations approximating true
system dynamics (in case true system is not polynomial)

• dynamics_TEMPLATE_INT.m - true (closed loop) system dynamics (includes consid-
ered feedback vector h(x) if applicable), needed for integration purposes only

The number of states, inputs (where applicable), or random parameters is not limited
and needs to be specified together with the details on the distribution in the initialization
file. Note that in the current implementation the random variables can be either normally
distributed or uniformly but not both.

For the control design a feedback vector h(x) has to be specified, and the type of de-
sired analysis (nominal open-loop, stochastic open-loop, stochastic closed-loop, stochas-
tic closed-loop with input constraints) needs to be indicated.

Further, an initial guess for the equilibrium point of the system is needed in terms
of its nominal location. Since the equilibrium point is then obtained by simulation of
the system the initial guess is only required to be close to the desired equilibrium point
in case the system has multiple equililibria. The PCE coefficients of the equilibrium set
are then retrieved automatically.

6.2.2 Main file

Once the system files are set up the main file enables the interaction of the user with
the tunable parameters and analysis options.

The main file can be used to execute either of the three analysis parts separately:

1. Computation of the PCE ROA.

2. Retrieval of stochastic ROA for a specified variance.

3. Plotting of the results.

Note, however, that parts 2 and 3 naturally require the results files of the the previous
step to exist. In particular for part 2 it might be desirable to run the ROA retrieval
for several different fixed variances for which the PCE ROA needs to be computed only
once.

At the beginning of a new PCE ROA analysis, the parameter numsets.initVscale
needs to be tuned which scales the initial Lyapunov function. This is done by manually
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bisecting on the value (usually towards smaller values) and running the script, until the
first multiplier test turns out successful. Similarly, at the beginning of a new stochastic
ROA retrieval analysis the parameter numsetsRE.initQ0scale, which scales the Q0
matrix (see Section 3.2.4), needs to be tuned.

In addition to these parameters, in the main file for the control design, the parameter
numsets.initKvals can be tuned, which represents a small initial value for the gain
matrix K. It can be either left as zero, initialized with a small scalar or initialized as
matrix of appropriate shape with small entries. Tuning this initial value can be a bit
tricky as simply taking a zero might eliminate terms in the first multiplier steps, rendering
the obtained multipliers ill-equipped to account for these terms in later steps. Any non-
zero value, however, has to be feasible. The parameter numsets.initt initializes the
value of the auxiliary variable c needed to enforce input constraints (see Section 3.3.4)
and is best set to a small, positive value.

The tuning of the multipliers is discussed below in Section 6.4.

6.3 Limit cycle analysis

The subdirectory contains the following folders.

• systemFilesLC - contains the system files of the LC examples in this thesis, as
well as the template files folder

• initialLyapunov - functions to compute periodic Riccati / Lyapunov equation
solution

• MOCfiles - contains all files needed for transformation to the MOCs

• verificationROA - functions containing the verification of the ROA estimate for
each algorithmic option

• verificationROC - functions for the verification of the ROC estimate and maxi-
mization of the uncertainty

• resultsFilesROA, resultsFilesROC - folders in which final results are saved as
.mat file

• plottingFiles - plotting files for the ROA/ROC results for 2 or 3 dimensional
systems.

The files which necessarily require user input are presented in the next two subsec-
tions.
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6.3.1 System files

As for the equilibrium point, details on the system of interest need to be provided by
filling out the indicated fields in all files in the template_LC folder.

The list of files contains the following.

• initializeTemplate.m - system parameters and details on uncertainty, feedback
vector, input constraints, etc.

• dynamics_TEMPLATE.m - differential equations representing true system dynamics

• poly_dynamics_TEMPLATE.m - polynomial approximation of true system equations
(in case true system is not polynomial)

• deriv_dynamics_TEMPLATE.m - dynamic derivative equations of the true system

• linear_dynamics_TEMPLATE.m - Jacobian matrix of the true system

• uncertain_dynamics_TEMPLATE.m - differential equations including the uncertain
parameters (only needed for ROC analysis)

• uncertain_poly_dynamics_TEMPLATE.m - polynomial approximation of true un-
certain system equations (only needed for ROC analysis and non-polynomial sys-
tems)

In the initialization file, the .mat data file containing the finely spaced numerical
values of the trajectory of the periodic orbit needs to be indicated. Note that in the
limit cycle analyses systems with inputs can be considered. For these, the trajectory
data file needs to also contain the corresponding feedforward input values, if applicable.
For the choice of analysis using the cp-MOC, the center point xc has to be indicated in
the field sys.xc.

The derivative dynamics are used for a more precise spline interpolation and the file
containing the Jacobian is used for computing the initial Lyapunov function, respectively
Riccati gains.

6.3.2 Main file

As for the equilibrium point analysis, the main files enable the interaction of the user
with the tunable parameters and algorithmic options.

In the field verimethod the desired algorithmic option among the ones presented in
Section 4.4.2 can be indicated, where

1. SSSfixV - VSS-∂lin
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2. SSSdeg2V - VSS-∂(2)

3. SESSdegdV - SE-∂(r)

4. EEdegdV - EE-∂(r)

and the parameter numsets.tvball lets the user choose between EE-∂(r)s (=0) and
EE-∂(r)m (=1). In the ROC analysis roc.numsets.tvalpha lets the user keep α either
fixed (= 0) or make it varying (= 1).

With sys.trafo, the MOC can be selected, where 1 = class-MOC and 2 = cp-MOC.
The number of hyperplanes is indicated in sys.Nhp.

The parameter pinit.initVscale which scales the initial Lyapunov function needs
to be tuned as described in Section 6.2.2.

Where applicable, the parameter ellipsemat represents the surrogate set matrix BF

and lets the user define the fixed shape of the surrogate set.
The tuning of the multipliers is discussed in the following.

6.4 Multiplier tuning

There are no general theoretical limitations on the maximum nor on the minimum degree
of any of the multiplier resulting from the Positivstellensatz 2.2. However, as the com-
putational tractability of the analysis decreases with increasing maximum polynomial
degree, it is desirable to keep the multiplier degrees as low as possible, while still being
feasible.

In [JW+05] a recommendation for the choice of the multiplier degrees was provided.
Therein, each term in a constraint should have the same maximum even degree, or
smaller uneven degree (clearly, in order for a SOS decomposition to exist the highest
degree of a constraint has to be is even). We have found that this recommendation
provides an often suitable starting point for the tuning.

As an example, consider equation (3.22c). With ∂(V ) = 4, ∂(f) = 3 and ∂(l) = 2
fixed, the degree for the Lyapunov derivative results as ∂(V̇ ) = 6. The multiplier degree
could thus be chosen as ∂(s1) = 2. Choosing a higher degree can often lead to the veri-
fication of larger estimates, however, it trades off with an increased computational cost.
It is still highly recommended to test for larger degrees and reduce back to lower ones
when computational time becomes unacceptable or estimates start decreasing (usually
due to numerical issues).

Further, numerical issues in the solvers can arise if coefficients of the multiplier have
to be set to zero in order for the problem to be feasible. For these cases it is best to
‘assist’ the solver by manually setting these coefficients to zero or by directly removing
the terms from the multiplier polynomial.
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As example, consider the Lyapunov function constraints which include V (0) = 0 and
positivity of V (x) for all x inside the ROA. To satisfy these constraints, there can be
no homogeneous or linear terms in the Lyapunov function polynomial. Consequently, in
equation (3.22c) the coefficients of the homogeneous and linear terms in the s1 multiplier
polynomial need to be zero. Initializing the s1 directly without these terms does not only
prevent this source of numerical issues but also decreases computational cost due to a
reduced amount of constraints.

6.5 Issues in practice

The causes for infeasibility can be plenty and in the following is a (non-exhaustive) list
of comments to keep in mind. In particular the initialization of the iteration is the part
of the analysis which often requires the most user interaction and can become tedious.

• The numerical solution of the limit cycle trajectory should be smooth and finely
gridded. In particular in the case it has an input solution, the derivative of the
input should be smooth to prevent numerical issues.

• For the maximization of an ROC estimate for fixed uncertainty (Algorithm 4.2),
depending on the size of the uncertainty, there might not be an initial Z of any
size. This is because the ROC conditions require invariance of the region, which
means that for any uncertainty realization the periodic orbit needs to lie within Z.
The initial Lyapunov function which is computed for the nominal system might
not result in any region large enough to include all limit cycle realizations. A
workaround here is simply to start the iteration with a small uncertainty for which
the first step is feasible and then increase the uncertainty in small steps at each next
iteration, thus allowing the algorithm to find better suited Lyapunov functions.

• The inital Lyapunov function in the LC analysis is the periodic solution of a pe-
riodic equation which is initialized with a positive definite matrix H. In order
to obtain a periodic solution the time-varying equation should be propagated for
some periods until it is converged to the periodic behavior (default is 8).

• The contraction analysis computations can become very long, depending on the
amount of the iterations and multiplier degrees needed. Due to the way how Yalmip
allocates memory some speed up can be gained by stopping and restarting the script
after every couple of iterations (the scripts have been designed for this purpose,
such that stopping and restarting by continuing from where the computations can
be done without requiring further interaction).

• The iteration might terminate after many steps due to an encountered infeasibility
(usually in the multiplier step). While for feasibility tests the SDP solvers usually
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return values well within the feasible set, in the case of an optimization problem it is
known that they might not return strictly feasible certificates due to termination
criteria and floating-point implementations [Lof09]. In this case the Lyapunov
function step can be rerun as a feasibility test for a fixed, slightly decreased value
of the result from the previous optimization.

6.6 General comparison criteria for ROA estimates

In the following we present some remarks on conducting comparisons with SOS programs
which are in particular relevant for the illustrative examples shown in this thesis.

The conditions treated in the analysis methods are sufficient conditions, which implies
that even if a solution (i.e. a Lyapunov function) has been found there might still exist
one which can certify larger results. There are still various comparisons which can
be performed in a meaningful way among different approaches, for example among the
various algorithmic options in Section 4.4.2. This is done by keeping as many parameters
fixed in between the various options as possible. Due to the various algorithmic options
differing as much as including a varying set of multipliers, a ‘ceteris paribus’ study is not
fully possible. However, to come as close as possible, the following actions can be taken
for the comparison, and have been implemented for the examples presented in this work.

• Keep all multiplier degrees constant in between algorithmic options and options of
the MOCs, in particular also in between changes of the Lyapunov function degree.

• Set the convergence criteria to be of comparable relative size for the different
parameters among the algorithmic options.

• Keep the accuracy of the SDP solver fixed among options.

• To allow for a meaningful comparison of iterations to convergence, take the same
size for the initial ROA estimate and surrogate set size (where applicable), or sizes
as similar to each other as possible.

In particular the last item of the list requires a pre-run of the analysis to find the
largest common or comparable ROA estimate and surrogate set size. For a selected
MOC the size can be kept constant among algorithmic options by keeping the parameter
pinit.initVscale fixed and the initial surrogate set a function of it. However, since
the initial Lyapunov candidate depends on the choice of MOC, finding a same initial size
is more difficult for inter-MOC comparisons.

In most applications the highest priority is the maximization of the size of the ROA
estimate, while computational time (as long as it is acceptable) can be considered as
secondary priority. This gives rise to another possibility of comparison which consists
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in exploring the parameter space for each algorithmic option and choice of MOC for
the largest possible result. Due to the large parameter space this comparison is not
recommended unless criteria can be found to significantly reduce the parameter options
by apriori discarding unproductive choices.
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CHAPTER 7
Conclusions and Outlook

In this thesis we considered attractive equilibrium points and limit cycles of various
classes of continuous systems. Among these are, firstly, stochastic autonomous and
controlled systems with finite second moment and uncertainty dependent equilibrium
points, and secondly, systems with limit cycles which are either deterministic, affected
by affine parametric uncertainty or stochastic systems with finite second moment.

For the finite second moment stochastic systems, also referred to as second order
random processes, we use the framework of Polynomial Chaos Expansion (PCE) to obtain
a deterministic representation of the system. We derive connections between the moment
boundedness of the stochastic system and the asymptotic stability of the PCE system and
provide corresponding notions of the region of attraction (ROA). These are then used to
formulate optimization problems in the form of sum-of-squares (SOS) programs which
result in inner estimates of the ROA. The comparison with ROA estimates obtained
for the examples from existing literature shows that the proposed approach provides
estimates, which are comparable to literature results obtained with less general methods.
Further, the approach allows the user to obtain information on the ROA of the system
with defined statistical properties, such that if a particular uncertainty on the initial
condition is known, the corresponding ROA estimate can be obtained.

The proposed method is then extended to serve in the design of a stochastic state
feedback control law for second order random processes, which aims at maximizing the
ROA. The control design is able to optionally account for input constraint. The examples
show how the design procedure is successful in not only counteracting the detrimental ef-
fects of the uncertainty on the ROA but significantly increasing the ROA beyond the size
of the nominal estimates. The comparison of different nonlinear state feedback vectors
h with linear controllers (Linear Quadratic Regulator) proposed in existing literature re-
veals that improvements on the ROA are mainly due to the fact that a nonlinear control
design formulation is employed, rather than due to the adoption of a polynomial basis
for h.

For the stability analysis of deterministic and uncertain limit cycles we used a moving
orthonormal coordinate system (MOC) to formulate Lyapunov and contraction condi-
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tions which provide criteria for inner estimates of the ROA, respectively region of con-
traction (ROC). We first derived a novel construction for an MOC, to which we refer to
as center point MOC (cp-MOC). We demonstrate its advantages over the existing ‘classi-
cal’ approach [Hal80] both by deriving a formal characterization of the well-definedness
properties, and by showing how the obtained ROA estimates can result significantly
larger for the cp-MOC than the classical. By comparing various algorithmic options for
the computational implementation of the Lyapunov conditions we show how modifica-
tions to the existing approaches can lead to larger estimates. The contraction criteria are
completed with an invariance condition and an extension to account for bounded para-
metric uncertainty to result in an inner estimate of the ROC. The stability as well as
the contraction conditions are implemented and tested in generalized SOS optimization
programs. Finally, the stability analysis of stochastic orbits is approached by connecting
the periodic and contracting properties of the stochastic system to the corresponding be-
haviors of its PCE system. Transverse contraction criteria are formulated which certify
an inner estimate of the ROC for the ROC system.

The application of the ROA and ROC methods for limit cycles to feedback-stabilized
autonomous kite power systems is demonstrated by a commonly employed flight control
model. Along with the analysis we present the implementation of a transverse controller
both formally and in simulation.

The scripts containing a generalized implementation of the analysis methods pre-
sented in this work have been made available to the public, and essential details on their
functionality have been provided in this thesis.

7.1 Future research directions

7.1.1 Computational efficiency of SOS programs

The computational tractability of solving an SOS program depends crucially on the
size of the problem. The problem size scales exponentially in the number of states and
polynomial degrees (polynomial, if scaled in either state or in polynomial degree alone).

In particular for the analysis of PCE systems, computational cost can often become
an issue. While the PCE does not alter the polynomial degrees it still leads to a (p+ 1)-
fold increase of the number of states. Depending on the number of modes needed to
represent the system with a sufficient accuracy, the number of states can quickly become
prohibitively large for low-dimensional stochastic systems. In a similar way, the analysis
of the contraction region can arrive at an unacceptable slow-down for computations
of a low number states due to the doubling of the indeterminants in the matrix SOS
constraints.

Since the analysis of contraction regions for stochastic limit cycles combines both
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the (p+ 1)-fold increase and the doubling from the matrix constraints, the dimensional
increase is still too large in order for this method to be applied in a appropriate way
(sufficiently high expansion order and tractability).

Research on more efficient semidefinite program (SDP)-solvers is ongoing and this
limitation is likely to be alleviated in the future. One immediate remedy is offered by
the DSOS/SDSOS framework introduced in [AM19a], which can solve SOS programs
tractably for up to 50 states. While potentially resulting in more conservative estimates
these relaxations promise a significant speed up of SOS programs.

Recently, there has been a focus of studies in the SDP community on exploiting struc-
ture of an SDP in order to facilitate its solving. In particular, reformulations leading to
sparsity in the constraint matrix have been shown promising speed ups and enhanced
capabilities in terms of state dimension [WKK06; MHA19]. The SOS programs in this
thesis are solved using the SOS toolbox of YALMIP [Lof09]. The toolbox includes a
pre- and post-processing of the SOS constraints which aims at increasing computational
efficiency by removing superfluous constraints, redundancies and introducing reformu-
lations of some problem parts. While the processing steps might decrease solver time,
due to the way Yalmip is allocating memory for the symbolic variables, using Yalmip
can over all slow down the analysis significantly. Extending the computational imple-
mentations proposed here by both a more efficient SOS toolbox and by using more
sophisticated SDP reformulations which are able to recognize and exploit problem de-
pendent structure, could allow the methods to be efficiently applied to system (most of
all PCE systems) with dimensions currently still out of reach. In particular the latter
would not only require the progress in solver capabilities but an increased insight into
the numerical structure of the SOS constraints dealt with in this thesis. The effects of
the precise formulation of the cost function, multiplier degrees and the system dynamics
on the size of the obtained ROA estimate could be investigated rigorously from a better
understanding of the influence of structure. In particular, investigating the possibility
of a dependency of cost function on system dynamics with the aim of finding optimal
pairings could be interesting.

Usually, the improvement of the objective value is found to be strongly increasing
in the beginning and then flattening out upon converging. One observation, which
was made during the many runs of the analyses was that sometimes, instead, these
improvements would start ‘creeping’, i.e., increasing by about the same absolute value
for many iterations. Clearly, the efficiency of the programs presented here highly depends
on the number of iterations needed for convergence. Understanding and, consequently,
being able to influence the convergence rate would represent worthwhile future research
direction for these methods.

Finally, a potentially interesting new implementation in terms of computational effi-
ciency and capabilities could be presented by recent results on SDP free approaches to
solving SOS programs [PY19].
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7.1.2 PCE for stability analysis and control

While the prowess of the ROA analysis methods for PCE has been demonstrated here
for various systems, increased state dimensionality and expansion order are clearly a
challenge and are ultimately limiting the application at this point. Besides the previously
discussed need of increasing SDP solver capabilities, another possibility could be offered
by reducing the dimensionality of the problem by decreasing the truncation order. For
this to be possible, rigorous results of the truncation error on the stability representation
of the PCE system would be needed. Alternatively, ways to include terms representing
a strict upper bound on the truncation error could be explored. This would also allow
to eliminate Assumption 3.2. Approaches presented in this regard for linear systems in
[Wan+18] could be interesting to start off from.

It seems to be an undisputed fact in the PCE community that second order random
processes include most processes of the real world. This was postulated in [XK03] and
has been widely referred to ever since. However, the question arises: In general, how can
one actually verify that a given (nonlinear) process is a second order random process?
Research on this topic revealed that there does not seem to exist a general answer to
that question yet. Finding rigorous criteria could thus be of potentially high interest.

The control design proposed in this work offers a range of possibilities for extensions
and future investigations. Firstly, the input constraints are still quite conservative in
terms of the resulting size of the ROA estimate. One way to potentially decrease their
conservatism is to extend the control law to allow for saturation and alter the conditions
on the ROA and input in the SOS program accordingly. A similar approach has been
proposed in [Ted+10; MAT13]. This might, however, increase the computational cost
due to the larger number of constraints and associated multipliers. Further, performance
criteria could be considered, such as convergence time to the equilibrium point.

During the course of this PhD, research was conducted with the aim of applying
PCE to analyze the stability of stochastic orbits. While some results are presented in
Chapter 4, another direction, namely using PCE on the system in transverse coordinates
has shown some promise but eventually stalled due to numerical issues. Using PCE
for stochastic orbits has received quite some interest in particular from the aerospace
community [PB04; BPM06] and current developments in numerical toolboxes for PCE
such as proposed in [Mue+20] could offer new chances for the analysis in transverse
coordinates.

7.1.3 Optimizing the transverse controller and the MOC

Algorithms 4.1 and 4.2 can be directly extended to systems with affine input for a control
design which aims at maximizing the ROA/ROC of the limit cycle. The transverse
coordinate transformation does not alter the affine appearance of the control gain and
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a third step optimizing for K similar to as in Algorithm 3.3 can be introduced. For
the initialization of the problem the feedback gain resulting from the periodic Riccati
equation (5.13) can be used as presented in Section 5.2.3.

As shown in Section 4.3, the location of the center point can be chosen from a problem
dependent set. There could be a potential for more efficient algorithms in terms of the
verified ROA estimate, by including an optimization for the center point location and
the particular choice of the (n -2) dimensional subspace Nf . An optimization could, for
example, take the system dynamics and the shape of the limit cycle into consideration
and maximize the smallest well-defined region.

While the testing of the stability conditions on a finite number of hyperplanes provides
for many applications a sufficient certification of stability (in particular when combined
with simulations), for some problems it might still be desirable to obtain a formal certifi-
cate of stability also in between the chosen hyperplanes. Since the continuous problem
poses a significant increase in computational complexity of the SOS programs, a com-
putationally less demanding criteria would be desirable. An interesting approach in this
direction could be to find an upper bound on the change in the dynamics from one
hyperplane to the other, possibly similar to an approach in [FP19] used for collocation
methods. Due to the hyperplanes representing (n -1)-dimensional subspaces, obtaining
these bounds could, however, require significant extension. Coming from a different di-
rection, an other approach could be to find criteria on the minimum finite amount of
hyperplanes necessary to guarantee for the systems behavior in between. Ideas in this
regard have also been mentioned in [TMT11].

On the practical side, the transverse controller implementation described in Section
5.4.1 calls for an extension of the control approach. Reliability of the feedback controller
for any state of the system inside the ROA/ROC was provided, however the ROA/ROC
estimate might not be large enough to cover the whole state space in which the system can
potentially be. In order to reliably stabilize the system also in these regions, the control
design could be extended to include a set of feedback-stabilized auxiliary trajectories
which lead the system back to the periodic orbit. These trajectories would be chosen
such that all their respective ROA/ROC combined cover the full state space of interest.
This approach would be similar to a control design based on stability funnels proposed
in [Ted+10] for trajectory tracking of robotic systems.
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APPENDIX A
Appendix

A.1 Proof of Theorem 3.2

This proof is mostly following the proofs for Lyapunov’s direct method which are stan-
dard in the literature and can be found in, e.g., [Kha02].

System (3.1) is by definition continuous in x and t. The projection (2.18) con-
sists in the projection of a continuous function onto a constant basis and is thus con-
tinuous. It follows that the PCE representation (3.4) of the system (3.1) continu-
ous. Assume without loss of generality x̄EP = 0. Consider any r > 0 for which
Br = {x̄ ∈ Rn(p+1) | ‖x̄‖ ≤ r} ⊂ D̄. Let α = min‖x̄‖=r V (x̄). Then α > 0 by (3.12).
Take β ∈ (0, α) and let

Ωβ = {x̄ ∈ Br |V (x̄) ≤ β}. (A.1)

From this follows that Ωβ ⊂ Br. Since

V̇ (x̄(t)) < 0 =⇒ V (x̄(t)) < V (x̄(0)) ≤ β, ∀t > 0, (A.2)

any trajectory starting in Ωβ at t = 0 remains strictly inside Ωβ for all t > 0. From
local existence and uniqueness theorems for Lipschitz bounded continuous functions1
it follows that since Ωβ is compact, (3.4) has a unique solution defined for all t ≥ 0
whenever x̄(0) ∈ Ωβ. As V (x̄) is continuous and V (0) = 0, there is a δ > 0 such that

‖x̄‖ ≤ δ =⇒ V (x̄) < β. (A.3)

Thus, Bδ ⊂ Ωβ ⊂ Br. Since V (x̄(t)) is monotonically decreasing and bounded from
below by zero,

V (x̄(t))→ c ≥ 0, as t→∞. (A.4)

The bound c = 0 is shown by contradiction. Suppose c > 0. By continuity of V (x̄) there
is a d > 0 such that Bd ⊂ Ωc. The limit V (x̄(t)) → 0 implies that the trajectory x̄(t)
remains outside of Bd for all t ≥ 0.Let −γ = maxd≤‖x̄‖≤r V̇ (x̄), which exists because the

1See, e.g., Theorem 3.1, Theorem 3.3. in [Kha02]

149



Chapter A. Appendix

continuous function V̇ (x̄) has a maximum over the compact set d ≤ ‖x̄‖ ≤ r. By (3.13),
−γ < 0. It follows that

V (x̄(t)) = V (x̄(0) +
∫ t

0
V̇ (x̄(τ))dτ ≤ V (x̄(0))− γt. (A.5)

Since the right hand side will eventually become negative, the inequality contradicts the
assumption that c > 0.

Choosing β = β results in the properties of Ωβ to hold for ΩVβ . Since thus any
trajectory starting in ΩVβ remains in ΩVβ for all t ≥ 0 and converges to 0 as t → ∞,
from (3.11) it directly follows that ΩVβ ⊆ R̄.

A.2 Proof of Theorem 4.1

The proof is shown here as found in [Hal80].
Suppose n ≥ 3. If v(τ) = f 0(ω0(τ))‖f 0(ω0(τ))‖−1

2 , then the hypotheses on ω0 imply
that v is periodic of period T 0 and Lipschitz. Let e1 = ζ∗ be a constant unit vector (the
existence of which is assured by Lemma 4.1) such that e1 6= ±v(τ), 0 ≤ τ ≤ T 0. Adjoin
to e1 any constant vectors e2, ...en such that {e1, e2, ...en} is an orthonormal basis for Rn.
The moving orthonormal system along Γ0 is then obtained in the following manner: let
S be the (n− 2)-dimensional subspace of Rn orthogonal to the plane formed by e1 and
v(τ). Rotate the coordinate system about S in the positive sense until e1 coincides with
v(τ). If ζ1, ζ2, ..., ζn are the rotated positions of e1, e2, ...en, then the moving orthonormal
system is given by

{v(τ), ζ2(τ), ..., ζn(τ)}, 0 ≤ τ ≤ T 0, (A.6)

where ζ1(τ) = v(τ).
If γj(τ), j = 1, 2, ..., n are the direction angles of v(τ), ej · v(τ) = cos(γj(τ), j =

1, 2, ..., n, then one can show that the vectors ζj are given by

ζj(τ) = ηj −
η′jv(τ)

1 + η1v(τ)(η1 + v(τ)), j = 2, 3, ..., n. (A.7)

The derivation of (A.7) is omitted for brevity and can be found in [Hal80].
The proof then continues by treating the case n = 2. For this case the moving

orthonormal system is directly constructed as

{v(τ), ζ2(τ)}, ζ(τ) = ±[−v2(τ), v1(τ)]T , (A.8)

where v1(τ), v2(τ) are the components of v(τ). The proof completes with the conclusion
that equations (A.6)-(A.8) for the classical MOC (class-MOC) along Γ0 clearly imply
that the system is Cp−1(R,Rn) if ω0 is Cp(R,Rn).
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A.3 Proof of Theorem 4.5

The proof shown here is taken after the proof presented in [MS14].
With the given metric, Theorem 4.4 gives the following condition for transverse con-

traction to hold.

δx

(
∂f(x)
∂x

T

M(x) +M(x)∂f(x)
∂x

+ Ṁ(x) + 2ηtM(x)
)
δx ≤ 0, (A.9)

for all δx satisfying the transversality condition δTxM(x)f(x) = 0. Reformulating this
constraint in terms of χ := M(x)δx, i.e., δx = M−1(x)χ and defining C(x) = M−1(x),
an equivalent condition for all δx satisfying the transversality condition is given as

χT
(
C(x)∂f(x)

∂x

T

+ ∂f(x)
∂x

C(x)− Ċ(x) + 2ηtC(x)
)
χ ≤ 0, (A.10)

since Ċ(x) = −M−1(x)Ṁ(x)M−1(x). Further, the transversality condition results as
χTf(x) = 0. Define a matrix function P (x) := f(x)f(x)T which is rank-one and
positive-semidefinite.This implies, that the set {χ |χTf(x) = 0, {χ |χTP (x)χ = 0}, and
{χ |χTP (x)χ ≤ 0} are the same. Transverse contraction with rate ηt is then defined
by the existence of a positive-definite matrix function C(x) > 0 such that the following
implication holds.

χTP (x)χ ≤ 0⇒ χT
(
C(x)∂f(x)

∂x

T

+ ∂f(x)
∂x

C(x)− Ċ(x) + 2ηtC(x)
)
χ ≤ 0. (A.11)

By the S-procedure losslessness theorem [Yak97], (A.11) is true if and only if there exists
a λ(x) ≥ 0 such that the condition in the theorem, (4.75), holds.
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