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Abstract

As mobile networks, specifically LTE networks, are a key infrastructure
nowadays, the security of them becomes a priority. A passive attacker
is undetectable and uses flaws in the protocol against victims. In this
work, we build a sniffer, essential passive attacker tool recording all
the communication happening between the parties. Our sniffer is both
affordable and white-box. Compared to other sniffers it can be used
for both downlink and uplink communication.

We show the capabilities of Sniffer by introducing two new attacks. UE
Fingerprinting attack detects the victim’s phone model helping identifi-
cation and Timing Advance Attack localizes a victim.

In our experiment, the passive attacker estimates a distance of the
phone from the sniffer. We measure the distance at six different loca-
tions up to 60m away. The attacker can 90% of the time estimate the dis-
tance with less than 6m error. For the fingerprinting, we build both su-
pervised and unsupervised machine learning models which perfectly
classify manufacturers of mobile phones.



Acknowledgements

Firstly, I would like to thank Patrick and Marc for their support and guid-
ance throughout the whole Master thesis. Secondly, I would like to thank
Prof Capkun for the opportunity to work on such a cool project with the
best hardware. Finally, I want to thank my co-worker Simon for interesting
discussions and fun breaks while working on the thesis.

I would not be able to finish my Master’s without my best flatmates, with
whom we had such a good time in Zurich. The biggest thanks go to my
Mom, Dad and Sister for always being there for me.

ii



Contents

Contents

1 Introduction
1.1 Contributions . . . . . . . . . . .
12 Organization . . . . ... ......................

2 Background

2.1 LTE Network Architecture . . . . . . . . ... ... ... ....
22 ProtocolStack . .. .. ... .. ... ..
23 PHYLayer ... .. ... ... ... ... . ... . ... ...
231 PHYChannels .. .......... ... .. ......
232 PHYsignals . . ... ....... ... ... .. .. ...
233 CellSearch . ... .. .. ... ... .. ... .. ...
2.4 Random Access Procedure. . . .. ... ... ... .......
2.5 Registration procedure . . . . ... ... .. L oL
26 Timing Advance. .. ........................
2.6.1 Timing Advance Estimation. . . .. ... ... ... ..
2.6.2 Timing Advance Command . . . . ... ... ......
3 Attack
3.1 AttackerModel . ... ... ... .. .. .. .
3.2 Timing Advance Attack . .. ... ... .............
3.3 User Equipment Fingerprinting . . . . ... ... ........
3.4 Combined Attack . . . ... ... .. ... ... . ...
4 Design and Implementation
41 UL/DLSniffer. . ... ... . . . . i
411 DLSniffer . .. ... ... .. .. .
412 RNTI Interception . . .. .................
41.3 USRP Synchronization . . . . .. ... ..........

iii

NN

03O = WW

1ii



Contents

414 ULSniffer . .. ... ... . . .. ..o 23

42 Timing Advance Attack . . ... .. ... ............ 24
421 TimingErrors . . . ... .................. 25

422 Improved Attack . ... ... ... ... .. ... ... 27

4.3 User Equipment Fingerprinting . . . . .. ... ... ...... 27
43.1 Preprocessing . . . ... ... .. ... ... ... 27

43.2 Unsupervised Learning . . . ... ... ......... 28

43.3 Supervised Learning . . . . ... ... ... ... .... 28

5 Results 30
51 Setup . ... ... ... ... 30
52 Timing Advance Attack . ... ... ............ ... 31
52.1 Synchronization Error Estimation . .. ... ... ... 31

5.2.2 Timing Errors Estimation with UL/DL Sniffer . . . . . 33

5.2.3 Distance Estimation . . ... ... .. ... ....... 35

5.3 User Equipment Fingerprinting . . . . .. ... ... ...... 39
53.1 Unsupervised Learning . . ... ............. 42

53.2 Supervised Learning . . . .. ... ... . ... ..., 44

5.4 Combined Attack UseCase . . ... ... .. .......... 46
5.5 Weak Network Configuration . . . . ... ... ......... 47

6 Related Work 49
6.1 UL/DLSniffer . . . ... ... ... .. . .. ... ... ..... 49
6.2 Localization Attacks . . . . . . . . . . .. .. ... ... ... 49
6.3 User Equipment Fingerprinting . . . . .. ... ......... 51

7 Discussion 52
7.1 Mitigation Technique . . . . . ... ... ... .. ..... ... 52
711 Timing Advance Attack . . .. ... ... ... ..... 52

7.1.2  User Equipment Fingerprinting . ... ... ...... 53

7.2 RelevanceinbG . . . . . . . . ... ..o 53
73 Future Work . . . . .. . . . .. .. 53

8 Conclusion 55
Bibliography 56
Appendix 61

iv



Chapter 1

Introduction

Mobile networks are now core infrastructure for our day-to-day life. We use
mobile networks constantly, always being connected to them by at least one
device if not more. Even though infrastructure for 5G networks is being
built right now, it is still LTE protocol which plays the main role.

With new data breaches publicized in the media, people care about privacy
more than ever before. Mobile networks are a perfect way how to access
private information. Cellular providers need to know user identity and lo-
cation to enable them the service. Security of mobile network protocols is
an utmost priority. It was not always the case, as there are multiple attacks
against 2G and 3G protocols. We investigate if the LTE protocol, as the most
used protocol, is vulnerable to privacy leaks.

Papers [1, 2, 3, 4] showed how LTE is vulnerable by an active attacker. It
was shown at the same time (i.e. [5]) that active attackers are possible to
detect. Passive attackers, on the other hand, cannot be observed, making
them more powerful in real-world scenarios.

A passive attacker cannot use already existing devices such as rogue base
stations or relays to perform the attacks. New tools must be developed for
future work. The most important is a sniffing device which records the
traffic between the users and base stations. Open-source libraries for LTE
protocols, such as srsLTE [6], make it possible to build such tools. In the
past, wireless networks were often inaccessible by attackers due to a simple
reason: cost. Nowadays, software defined radios are cheap, and anyone
can afford them. In this work, we build new sniffer for both uplink and
downlink communication with only open-source tools and software defined
radios. This is the first affordable and white-box solution for passive attacks
against LTE networks. To showcase its functionality we propose two attacks
which leak location and mobile phone model of the users.

Each phone model has different capabilities which can be used by the LTE
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1.1. Contributions

protocol. Since there are many possible combinations of capabilities, an
attacker can figure out model just by receiving them and comparing them
to her database. We show the details in UE Fingerprinting attack.

The phone needs to be tightly synchronized to the base station, otherwise, it
would not be able to receive or transmit the messages. Base station estimates
the round trip time and informs the UE about the propagation delay. A
passive attacker can use the same procedure to learn the distance to the
phone, locating the user in the world. We call this attack a Timing Advance
Attack.

These two attacks show how the LTE protocol is flawed by design. We
propose solutions to lower the risk of these attacks in the future.

1.1 Contributions

We identify following points as our key contributions:

e First affordable and white-box uplink and downlink sniffer built on
top of open-source libraries. We tested our sniffer against real LTE
networks.

e Introduction and evaluation of passive attack which leaks location of
the users based on Timing Advance commands. The simplest ver-
sion can be performed with just one device, by exploiting unencrypted
communication from base stations.

e Introduction and evaluation of passive User Equipment (UE) finger-
printing based on uplink NAS messages.

e Analysis of weakly configured real-world network which leaks users’
information.

1.2 Organization

We organize the document into eight chapters. We follow Introduction chap-
ter with background in chapter 2, where we introduce the most relevant
functions of LTE protocols. In chapter 3, we propose two attacks and how
the attacker can combine them to track the user. Chapter 4 gives implemen-
tation details for both the sniffer and the attacks. We show our results in
chapter 5. Finally, we finish with related work in chapter 6, discussion in
chapter 7, and conclusion in chapter 8.



Chapter 2

Background

The 3GPP is an umbrella organisation for seven standardisation organisa-
tions designing telecommunication protocols. Standards are structured as
releases. First releases specified GSM and later 3G networks. Release 8 was
a first LTE specification and current Release 16 details 5G protocol. Each
release spans multiple documents covering every detail of the complex pro-
cedures. We only cover the main components of the LTE protocol relevant

to our work.

2.1 LTE Network Architecture
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Figure 2.1: LTE Network Architecture.




2.2. Protocol Stack

The network architecture of LTE is split into Evolved Packet Core (EPC) and
Evolved UMTS Radio Access Network (E-UTRAN) as seen in Figure 2.1. E-
UTRAN contains cells (eNodeB), the hardware used for direct wireless con-
nection of the mobile devices, also called User Equipment, to the network.
ENodeB connects to the EPC, which handles most of the mobile network
functionality. The overall description of LTE is specified in [7]

As explained in [8], users are identified in the mobile network by a persistent
IMSI number. To conceal this number from attackers, temporary identifiers
such as TMSI or GUTI are used. They are assigned to the users by Mobility
Management Entity, a part of EPC. First 5 digits of IMSI number identify
issuing mobile operator. This number is called PLNM and it is used when
searching for cells by UE. UE does not connect to competitors cells.

The mobile network architecture is split into Tracking Areas consisting of
multiple eNodeBs [9]. All the eNodeBs in one Tracking Area communicate
with the same Mobility Management Entity. If a user switches Tracking
Areas, new temporary numbers must be generated.

Since a user might use multiple devices, each device is uniquely identified
by IMEI number [8]. IMEISV number specifies the software version of the
phone as well. First 8 digits of IMEI number identify a device model.

In this document, we primarily focus on communication between eNodeB
and UE. There is a two-way communication stream between the two entities.
Downlink, going from eNodeB to UE, and uplink going in the opposite
direction.

2.2 Protocol Stack

LTE protocol differentiates into control and data plane [7]. Former handling
the inner working of the system, and latter the data transmission of the
users. Figure 2.2 shows the two planes next to each other. First four layers
of LTE radio protocol stack are the same between the two planes. Control
stack then has extra RRC layer on top of PDCP.

PHY handles the transmission of MAC transport channels over the air in-
terface. It manages power control, radio channel measurements, cell
search.

MAC controls mapping between logical and transport channels. The layer
also handles error correction, scheduling, MAC Control Elements.

RLC transfers upper-layer data, handles error correction, performs reorder-
ing, discarding, re-segmentation, and duplicate detection of datagrams.



2.2. Protocol Stack
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(a) LTE data plane protocol stack.
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Figure 2.2: LTE protocol stack.

PDCP handles header compression and decompression of IP data, the trans-
mission of higher-layer data, ciphering, and integrity protection. Data
on lower layers are sent in clear-text.

RRC broadcasts system information, handles paging or key management.
It manages establishment, maintenance and release of an RRC connec-
tion between the UE and E-UTRAN.

IP, TCP and APP layer in Figure 2.2a are an example for internet connection
on top of LTE protocol. NAS layer in the control plane (Figure 2.2b) is used
for communication between EPC and UE.

In the next section, we describe the PHY layer in more detail, as this is the
most complex layer and also it is the layer we utilize the most for our project.



2.3. PHY Layer

In our project, rest of the layers is mostly handled by the srsLTE library [6],
and we did not need to make big alterations to them. We, therefore, omit
their detailed description and only highlight important procedures. [7] gives
overall descriptions of these layers.

2.3 PHY Layer

Frame = 10ms

|
Subframe = 1ms |
|

!
|
|
K A

Slot 1 Slot 2 Slot 3 | =eesesenenens Slot 20

! 7 OFDM symbols with CP !

Figure 2.3: LTE Frame Structure.

Specified in [10], PHY layer data transmission is scheduled in 10ms long
frames for both downlink and uplink. Frames are indexed from 0 to 1023.
Each frame is split into 10 subframes each lasting 1ms. Subframes consist of
two slots. By default, a slot consists of 7 OFDM symbols with cyclic prefixes
(CP). Figure 2.3 visualizes the frame structure.

As mentioned in section 2.1, the transmission is two way, uplink and down-
link. Currently, the providers in Switzerland use frequency division duplex.
In FDD, uplink and downlink use two separate RF carriers according to
[11, 12]. There are two different multiplexing methods used. OFDMA for
downlink and SC-FDMA for uplink.

In both OFDMA and SC-FDMA, data is modulated onto orthogonal sub-
carriers. Modulated samples are called frequency samples. Using inverse
fast Fourier transformation, frequency samples are transformed into time
samples and transmitted over the radio. Smallest allocation element is a re-
source block (RB) [10] which spans over 12 subcarriers lasting one slot. RB
consists of 7 x 12 = 84 frequency samples. Some of the frequency samples
in RBs are used as PHY signals, therefore actual capacity is smaller. The
number of resource blocks used on downlink and uplink is specific to each
cell.



2.3. PHY Layer

2.3.1 PHY Channels

Data on the PHY layer is sent over channels [10], which specify the type of
the information. Physical shared channels are used for data transmission
and control channels manage them. The Physical Random Access Channel
is used for new UE connections.

On the PHY layer, UEs are identified by a temporary identifier called RNTI.
Each message on the downlink is addressed by 16-bit RNTI number. This
number specifies the recipient of the message. Depending on the function,
the RNTI number specifies one UE or multiple UEs. The following table [13]
shows the main types of RNTIs, their functionality, and the recipients.

RNTI Values Function Recipient

RA-RNTI 0x1 - Oxa initial message connecting UEs

C-RNTI ~ 0x46 - 0xfff3 UE communication single UE

P-RNTI Oxfffe paging messages idle UEs

SI-RNTI Oxffff system information all UEs
Downlink

A base station sends Downlink Control Information (DCI) to the UE over
Physical Downlink Control Channel (PDCCH). Format of the DCI specifies
its function.

e Format 0 allocates resource blocks on the uplink to UEs. UE can trans-
mit on PUSCH channel only if it received Format 0 DCI.

e Format 1 and 2 define which RBs UE should decode, and what param-
eters it should use to get the message on PDSCH.

Physical Downlink Shared Channel (PDSCH) carries data intended to the
UE, System Information Blocks (SIB) or paging messages. SIB contains the
configuration of the cell. Paging messages signal idle UEs to connect back
when there is a message addressed to them. We further discuss states of the
UE in section 2.5.

There is a special broadcast channel carrying the Master Information Block.
This block contains information needed for UE to further decode SIB and
connect to the eNodeB.

Uplink

UE can transmit on the Physical Uplink Shared Channel (PUSCH) only if it
received DCI Format 0 on PDCCH. DCI Format 0 also specifies parameters
for the encoding of the messages such as modulation scheme.



2.4. Random Access Procedure

The Physical Uplink Control Channel is used for transmission of Uplink
Control Information (UCI). UCI carries channel state information, acknowl-
edgements and/or scheduling request. ENodeB specifies when UE can send
UCI in the RRC configuration messages.

2.3.2 PHY signals

Physical layer signals [10] are only used for the internal working of the PHY
layer.

On the downlink, there is Primary and Secondary Synchronization Signal
(PSS/SSS), and Reference Signal (RS). Primary and Secondary Synchroniza-
tion Signals are used for synchronization of UE to the eNodeB. Moreover,
they carry an identity of the eNodeB. Reference Signal is known to both
parties, by deriving it from the cell identity. UE uses it to estimate the radio
channel on the downlink to decrease the number of decoding errors.

On the uplink, for the eNodeB to decode the PUSCH and PUCCH messages,
Demodulation Reference Signal is sent. This is a known sequence which
help eNodeB to estimate the radio channel on the uplink.

2.3.3 Caell Search

Procedure for finding neighbouring cells is not defined in 3GPP specifica-
tion. According to [14], most of the UE implementations perform following,
when they search for a cell:

1. UE searches for a frequency used by a neighbour cell. UE measures
RSSI for frequencies and checks if the measurement is above a thresh-
old.

2. UE uses PSS for the slot synchronization and SSS for the frame syn-
chronization. From the values of PSS and SSS, UE computes Physical
Cell Identity.

3. UE acquires quality of the service from the Reference Signal. If the
quality is above a threshold, UE decodes MIB, and later SIB to learn
PLNM.

4. If UE can use found PLNM, UE camps on the cell.

Once the UE is camping on the cell, it runs the synchronization process every
5ms such that it is synced to the base station even if its clock is drifting.

2.4 Random Access Procedure

Once UE selects cell it tries to connect to it. The procedure for initiating
data transfer is called Random Access Procedure and it is defined in [15, 13].
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2.4. Random Access Procedure

UE eNodeB

SIB

Random Signature of Preamble
RA-RNTI based on time of TX

PRACH Preamble

Temporary C-RNTI for UE
RACH Response - RAR

TMSI included
RRC Connection Request

Contention Resolution

CR + RRC Connection Setup C—RNTI for UE

RRC Connection Setup Complete

Figure 2.4: Random Access Procedure. All of the messages are sent in clear-
text.

Figure 2.4 shows the protocol message flow.

It uses PRACH to transmit a preamble. The preamble is chosen randomly
by UE from 64 sequences. The choice of the preamble is called the signature
of the preamble. UE computes RA-RNTI it should listen for from the TX
time of preamble.

Once eNodeB receives the UE transmission, it replies with Random Ac-
cess Response (RAR). The message contains temporary C-RNTI which UE
should use for the following messages. Moreover, RAR contains Timing Ad-
vance command (see section 2.6), and an uplink resource allocation for the
next uplink message.

There are two states of UE on the RRC layer. RRC Connected and RRC
Idle. For actual data transmission between UE and eNodeB, the RRC state
is Connected. UE initiates RRC connection with RRC Connection Request
message. ENodeB replies with Contention Resolution and RRC Connection
Setup. The goal of Contention Resolution is to choose only one of UEs who
transmit the same signature at the same frame over PRACH. RRC Connec-
tion Setup contains common and dedicated configurations for various layers
and channels. This message confirms to UE that the temporary C-RNTI is
assigned to it, and C-RNTI won’t change.

Finally, UE replies with RRC Connection Setup Complete to confirm the
connection.



2.5. Registration procedure

2.5 Registration procedure

UE eNodeB EPC

Core Capabilities
Attach Request

Authentication Request

|

Authentication Response

‘ IMEISV Request included
Security Mode Command

- ‘ IMEISV included
Security Mode Complete

UE Capability Enquiry

Radio Capabilities

UE Capability Information

Security Mode Command

Security Mode Complete

Attach Accept

Attach Complete

Figure 2.5: Attach Procedure. Messages in light gray area are encrypted
and integrity protected with UE-EPC security context. Dark gray area cor-
responds to UE-eNodeB security context. The rest of the messages is sent in
clear-text.

Under the Registration Procedure, we mean a series of procedures which
register UE in the network and allow normal communication both between
UE and eNodeB, and UE and EPC. You can follow the procedure in Fig-
ure 2.5. Some of the messages might be sent in a different order, Figure 2.5
corresponds to an actual communication intercepted between UE and eN-
odeB. Messages between UE and EPC are on the NAS layer, and messages
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2.6. Timing Advance

between UE and eNodeB are on the RRC layer.

The procedure is initiated by Attach Request message [16]. Attach Request
contains core capability information of the UE, specifying implemented func-
tionality EPC can utilize. Individual UEs differ and these capabilities are
widely different between devices. The network first authenticates UE using
keys stored in the USIM. The authentication happens in the Authentication
Request and the Authentication Response.

Afterwards, Security Mode Command is sent from EPC which creates a
security context [16]. From then on, all the messages between UE and EPC
are ciphered and integrity protected. Security Mode Command includes a
request for IMEI number which is sent back in Security Mode Complete.

Concurrently, the security context is created between UE and eNodeB with
Security Mode Command on RRC level [17]. Following messages between
them are ciphered and integrity protected.

Radio capabilities are exchanged between UE and eNodeB in UE Capability
Information [17]. Radio capabilities differ between devices as well. UE Ca-
pability Information is sent either before or after RRC Security Mode Com-
mand. Figure 2.5 shows it before as it was recorded on an actual network.
In this instance, both core and radio capabilities were sent in clear-text.

2.6 Timing Advance

Start of Subframe #n

Downlink Subframe #n TX from eNodeB
At .
AE— Downlink Subframe #n RX at UE
At :
—
! |
TA for UE = 2At Uplink Subframe #n TX from UE
|
Uplink Subframe #n RX at eNodeB

Figure 2.6: Timing Advance is used to align uplink transmissions.

Multiple UEs are connecting to eNodeB at the same time. Each UE is at
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2.6. Timing Advance

a different distance. Due to propagation delay, without any mechanism,
uplink messages would come with a different delay. ENodeB needs to help
correct each UE’s timing to ensure alignment of all uplink messages within
the resource grid as observed by the eNodeB.

Figure 2.6 shows a situation where propagation delay between the UE and
eNodeB is At. Due to the propagation delay of the downlink message,
frame synchronization of the UE is being shifted by At from the eNodeB
time. Propagation delay of uplink message is again At. Therefore, uplink
message arrives at eNodeB with delay of 2At. ENodeB estimates the value
of the delay and signals it to UE with Timing Advance (TA) command.

The delay is constantly measured by eNodeB with each uplink message. If
the delay changes, i.e. due to change of the location, eNodeB sends to UE a
new TA command.

Apart from using timing advance for synchronization, it is also used in LTE
positioning protocol [18]. The feature is called Enhanced Cell ID and works
by reporting channel characteristics to EPC which computes the location of
UE. One of the characteristics is the Timing Advance.

2.6.1 Timing Advance Estimation

Since UE synchronizes to the eNodeB it has no notion of the propagation
delay. ENodeB computes the timing advance from the uplink transmission
of reference signals. The 3GPP standard does not specify how estimation of
TA should be computed. It is implementation-specific.

A user sends DM-RS, demodulation reference signal, which is a sequence
known to both parties. Course grained timing advance computation is com-
puted by eNodeB computing cross-correlation between the known and re-
ceived signal. The offset of the correlation peak is the timing offset. This
approach gives us timing advance with a granularity of one sample.

To increase the precision, eNodeB has to compare phase offset between re-
ceived and known reference signal. This approach gives us finer granularity
than one sample. [19] explains the estimation in more detail.

2.6.2 Timing Advance Command

[20] defines that Timing Advance is expressed as Nt x Ts, where Ts =
1/30720ms. Nrta is value signalled by eNodeB. Initial 11-bit unsigned value
T4 is transmitted as a part of Random Access Response. Nt = T4 x 16.

The following alterations T4 to the TA are sent as part of the MAC Control
Element (MAC CE). Alterations are expressed as a relative change to the

12



2.6. Timing Advance

R Timing Advance Command Oct 1
TA Command UL Grant Oct 2
UL Grant Oct 3

(a) Timing Advance Command in MAC RAR.

R | R | Timing Advance Command | Oct 1

(b) Timing Advance Command in MAC CE.

Figure 2.7: Timing Advance command signalisation.

previous timing advance.
Ntanew = Nraold + (TA - 31) x 16

Ty is a positive 6-bit value. A constant value of 31 is subtracted to account
for both increase and decrease in timing advance. Figure 2.7 shows two
types of TA commands and their location in the downlink as specified in
[13].

The granularity of the TA is Ts x 16 = 0.5208us. UE does not receive a
more precise value for propagation delay. Given the propagation speed is
the speed of light, UE can estimate its distance from eNodeB in a range of
length 78.07m.

13



Chapter 3

Attack

To show capabilities of the uplink and downlink sniffer we analyse two
attacks which passive attacker can perform against LTE networks. In this
chapter, we first outline the attacker and assumptions about the environ-
ment. We then introduce the two passive attacks: Timing Advance Attack
and User Equipment Fingerprinting. These two attacks can be merged into
a method for tracking people.

3.1 Attacker Model

A Passive attacker can receive RF samples on both uplink and downlink
but cannot transmit anything. For our attacks, we use UL/DL Sniffer as
the source of packets. The sniffer records all communication between UEs
and eNodeBs. It does not break encryption. We detail UL/DL Sniffer in
section 4.1. The attacker’s goal is to find the location of a particular person
in the real world. In this work, we show how our two attacks, Timing
Advance Attack and User Equipment Fingerprinting, help her accomplish
the goal.

Our assumption is that for each possible eNodeB where a victim might be,
the attacker has at least one, preferably more, USRP devices which have a
stable clock. The clock can be stabilized by synchronizing to the GPS as is
the case for all eNodeBs’ clocks. The attacker’s radio must be synchronized
with an error of at most ~ 5us from victim UEs otherwise the messages
won’t be aligned to the correct resource blocks. Length of cyclic prefix is
~ 5us. Analysis of the delay and its impact on decoding of uplink messages
can be found in the Appendix in Figure 1.

14



3.2. Timing Advance Attack

1 Start of Subframe #n
|

Uplink Subframe #n TX from UE
) Uplink Subframe #n RX at eNodeB
|
|
! t2
———— Uplink Subframe #n RX at Sniffer
S
—
TA = t; Uplink Subframe #n TX from UE
|
Uplink Subframe #n RX at eNodeB
|
K
| Uplink Subframe #n RX at Sniffer

Figure 3.1: Delay of UL message at the sniffer with and without TA Com-
mand for UE.

3.2 Timing Advance Attack

The most basic localization attack works by sniffing TA commands. Since
they are transmitted in clear-text on the MAC layer of LTE protocol, they
are visible to our DL Sniffer. TA command localization constricts possible
location to a ring around the DL sniffer with width of 78m. In Figure 3.1,
TA command has a value t.

Adding a UL sniffer, allows us to run the same Timing Advance algorithm
as eNodeB is running (subsection 2.6.1). Timing Advance measured on the
sniffer is propagation delay between eNodeB and UE plus propagation delay
between the UE and Sniffer. Measured TA gives us a more precise location
of a victim. The location is now constricted to intersections of a wide circular
ring and thinner ellipsoid ring as shown in Figure 3.2.

We can describe ellipse by its two focal points F; and F,, and its semi-mayor
axis a. For any point P on the ellipse, following holds:

2a = |FP| + |PF|

15



3.3. User Equipment Fingerprinting

eNodeB Sniffer

Ty

Figure 3.2: Location leak using eNodeB TA command and a sniffer.

In case of Figure 3.1, ellipse ring where UE is located has two focal points
eNodeB and Sniffer. If no TA command was sent, t; = 2a. However, given
TA command was set on UE, the new measured time is t,’. Since TA com-
mand just delays transmission of UE messages it is clear that t; = t2’ + t.

As Sniffer gives more fine-grained location than eNodeB’s TA command,
we can employ multiple sniffers to increase the accuracy of the localization.
Figure 3.3 shows the precise location of UE using two UL sniffers.

3.3 User Equipment Fingerprinting

The Attacker’s goal is to identify a user from UL or DL messages. If the
attacker learns one of the persistent identifiers (IMSI or IMEI) she can map
them to the victim. In a correctly configured network, IMEI is never sent in
the clear-text, and IMSI is only sent the first time UE connects to the network.
In section 5.5 we show a real example of weakly configured mobile network
which leaks IMEISV, therefore, the UE fingerprinting attack is not needed
at all. Fortunately, only TMSI or GUTTI is sent in clear-text for most of the
networks.

In our fingerprinting attack, we consider two scenarios.

16



3.3. User Equipment Fingerprinting

Y

Sniffer

(e N4

eNodeB Sniffer

Figure 3.3: TA attack using multiple sniffers.

1. Passive attacker intercepted victim’s communication with eNodeB (sec-
tion 2.5) and saved the fingerprint. The attacker can now use the fin-
gerprint of the communication to match the future unknown connec-
tions to the fingerprint.

2. The attacker learns the UE model (iPhone X, Samsung Galaxy s10,
etc.) of the victim. She uses a machine learning model to predict the
UE model from a new recorded connection and try to match it to the
known model of the victim’s UE.

Both of these attacks significantly narrow down the search space of possible
victims’ UEs in the network.

As a feature vector used in fingerprinting, we use capabilities sent during
the Attach Request and UE Capability Information. Each phone has differ-
ent capabilities implemented therefore these messages differ significantly.
Core capabilities are always sent in clear-text during attach procedure. UE
capabilities (radio capabilities) are sent during the Registration Procedure
either before or after the security context is created.

After identifying the victim, the attacker can use TMSI or GUTI, she recorded
during the Registration Procedure, for further tracking. [21] shows that a lot
of Mobile Networks do not update the temporary identifiers often enough.
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Even though during the next RRC connection UE only sends the Service
Request instead of the Attach Request, the attacker already knows the TMSI
UE is going to use. The attacker loses track of TMSI when the victim goes
to a different tracking area and new TMSI is assigned to UE.

3.4 Combined Attack

TA Attack tells us the location for an RNTI. The attacker does not know
anything about the UE apart from the temporary identifier. Combining the
attack with fingerprinting, the attacker learns both the location information
with identity information. This combination allows her to precisely track
people in the local area without the need of following them.

Moreover, as shown in subsection 5.2.3, we observed that a UE’s LTE modem
adds a constant time offset to the Timing Advance measurements. It is,
probably, due to hardware and software design of the chips. LTE modems
are black-box devices and we do not see their hardware or software. We
observed that the constant offset depends on the chip model. We use UE
fingerprinting to obtain the chip model and apply the constant time offset
to the TA Attack measurement increasing its precision.
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Chapter 4

Design and Implementation

In this chapter, we detail how individual parts are designed and imple-
mented. First, we introduce the main and most complex part of the thesis:
UL/DL Sniffer. The whole software is programmed in C/C++. Its code can
be found in: https://gitlab.ethz.ch/komartin/lte-monitoring. Next,
we introduce the design of our two attacks. Data collection is done by the
UL/DL Sniffer. Postprocessing is implemented in Python. You can find the
code and saved data in: https://gitlab.ethz.ch/komartin/lte_other.

4.1 UL/DL Sniffer

For the implementation we use srsLTE [6], an open-source library for LTE
protocol. Three programs are included with the library: srsUE, srsENB,
and srsEPC, corresponding to the three entities of LTE protocol shown in
Figure 2.1.

4.1.1 DL Sniffer

DL Sniffer has similar functionality to UE. UE synchronizes to a base station,
connects to the base station, and then listens for the messages addressed to
it. DL sniffer also synchronizes to the base station. Instead of connecting
to the base station, it needs to sniff RNTI of victim UEs. Finally, it receives
messages intended for the victim UE.

In algorithm 1 we show how DL sniffer works during each subframe. The
procedure takes as input:

e array rntis specifying global RNTIs (RA-RNTI, SI-RNTI) and victim
UEs’ RNTIs. In the next section, we show how victims’ RNTIs are
found.

e timeSamples received on the USRP.
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4.1. UL/DL Sniffer

Algorithm 1: DL sniffer

Procedure DL Sniffer (One subframe)
Input: rntis, timeSamples /* Time samples for current Subframe
*/, ULDci, subframelndex
ULDci[subframelndex + 4] «— [];
resourceBlocks «— OFDMAReceiver (timeSamples);
allLocations <— allPDCCHLocations();
for location € allLocations do
for rnti € rntis do
/* Decode PDCCH. If CRC check fails, skip. */
dci +— decodePDCCH (resourceBlocks, location, rnti);
if dci.format =1 or dci. format = 2 then
data «— decodePDSCH (resourceBlocks, dci);

/* Do something with the PDSCH data here. x/
else if dci.format = 0 then

| ULDci[subframelndex + 4].append(dci);
end

if rnti = RA-RNTI then
/* New UE connecting to eNodeB. */
rntis.append(getRNTIFromRAR (data) );
end
end
existingRNT], probability <+—
getExistingRNTI (resourceBlocks, location);
if probability > 0.9 then
| rntis.append (existingRNTI);
end
end

e subframeIndex.

e ULDci, the data structure to save received DCI for UL transmission
(format 0). ULDci array, and procedures on lines 1, 2, and 3 are the
preparation for the UL sniffer.

First, DL Sniffer performs inverse OFDMA transformation to receive fre-
quency samples. It performs other functions such as channel correction or
frequency offset correction. It then goes over all possible locations of DCI
and tries to decode them. If DCI is included DL Sniffer parses it. If DCI spec-
ifies downlink message, DL Sniffer uses DCI to decode the PDSCH message.
If DCI specifies resource allocation for the future uplink message, DL Sniffer
saves the DCI and later passes it to UL Sniffer.
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4.1. UL/DL Sniffer

Since a lot of the functionality is similar to UE, we base our implementation
on srsUE code-base. Challenging part of DL sniffer is the complexity and
time efficiency. Our implementation works with real-world base stations
and performs higher layer decoding of data as well.

4.1.2 RNTI Interception
There are two ways how to get currently connected UEs” RNTIs.

Random Access Response is sent with RNTI derived from the time of TX
of the PRACH preamble. Inside the RAR, eNodeB specifies new C-
RNTI to use for the UE. RAR message is sent in cleartext and is visible
to the DL sniffer. In algorithm 1 we call the function getRNTIFromRAR.
This method can be used only for the new connections. For existing
connections assigned C-RNTI is not exchanged in plain text.

CRC of the DCI is scrambled with C-RNTI of the UE and then transmitted
with the DCI. UE checks if DCI is addressed to it by descrambling the
received value and checking if the descrambled CRC is valid for the
DCI. Scrambled CRC is computed as bit-wise XOR of C-RNTI with
the original CRC. We can use the scrambled CRC to get C-RNTI of the
user. We show the function in algorithm 2. This approach was first
introduced in [22].

Algorithm 2: Get Existing RNTI from DCI CRC

Function getExistingRNTI (resourceBlocks, location):

dci, scrambledCRC <— getDCIWithCRC (resourceBlocks, location);

CRC <— computeCRC(dci);

RNTICandidate +— CRC & scrambledCRC;

codedDci +— encodeDci (dci);

/* Compare two convolutional coded messages. If the
difference is too large, chances are the DCI was just a
noise. */

probability «— compareCoded (codedDci, resourceBlocks, location);

return RNTICandidate, probability;

4.1.3 USRP Synchronization

Timings of the subframes on both downlink and uplink are the same, as
are the subframe numbers. UE gets the timings from the synchronization to
the eNodeB. UE can then transmit at the right time at the beginning of UL
subframe.

21



4.1. UL/DL Sniffer

Algorithm 3: Synchronize two USRPs

Procedure Synchronize USRPs
Input: syncWindowDL[windowSize ], syncWindowUL [windowSize ],

lastDLsubframelndex, lastULsubframelndex /* Thread safe
data structures */
Thread DLthread
if not DLUSRP.isSynced() then
‘ lastDLsubframelndex <— synchronizeDLUSRPtoENodeB();
end
timeSamplesDL, subframeTimeDL +— receiveDLSubframe();
inc (lastDLsubframelndex);
syncWindowDL[lastDLsubframelndex % windowSize] <—
subframeTimeDL;
/* Call DL Sniffer here. */

Thread ULThread
timeSamplesUL, subframeTimeUL <— receiveULSubframe();
inc (lastULsubframelndex);
syncWindowUL [lastULsubframelndex % windowSize| <+—
subframeTimeUL;
lastCommonlIndex +—
min (lastDLsubframelndex,lastULsubframelndex);
timeDifference <— syncWindowUL [lastCommonindex] —
syncWindowDL[lastCommonIndex];
if |timeDifference| > threshold then
if timeDifference < 0 then
‘ receiveULSamples (timeDifference / samplingRate);

else
extraSamples <—

subframelength — timeDifference / samplingRate;
receiveULSamples (extraSamples);
inc (lastULsubframelndex);

end

end
/* Call UL Sniffer here. */

ULThread.start();
DLthread.start();
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4.1. UL/DL Sniffer

For our implementation, we use two USRPs. One for RX on the frequency of
the downlink. Another one for RX on the frequency of the uplink. Downlink
USRP is synchronized to the eNodeB, but the uplink USRP is not. They need
to exchange their timings and subframe number for UL Sniffer to RX from
the beginning of the subframe. The two USRPs need to have the same global
clock to achieve this. This can be solved by either using GPSDO on both of
the USRPs to have the same GPS clock or by using an Octoclock a device
intended for this problem. In algorithm 3 we show how the synchronization
is done for each subframe. In the final UL/DL Sniffer, synchronization of
two USPRs would be called in an infinite loop. We specify in comments,
where DL and UL Sniffers would be called. The procedure takes as input:

e array syncWindowDL where timestamps of last windowSize DL sub-
frames are saved.

e array syncWindowUL where timestamps of last windowSize UL sub-
frames are saved.

e lastDLsubframeIndex specifying last DL subframe index.

e lastULsubframeIndex specifying last UL subframe index. At the launch
of the sniffer, lastULsubframeIndex is initialized to the value of
lastDLsubframeIndex.

In essence, the algorithm 3 is simple. For each subframe, both UL and DL
Sniffer record subframe index and the exact time they received it. If the
timestamps for the same subframe index do not match, UL Sniffer has to
adjust its RX time by receiving extra time samples.

4.1.4 UL Sniffer

Contrary to DL sniffer, UL sniffer is similar to eNodeB. It receives the sam-
ples and then decodes scheduled information. ENodeB controls the schedul-
ing in the LTE protocol. In our case, we have to get the scheduling infor-
mation from the downlink sniffer. This is where DL Sniffer comes into play.
DClIs with format 0 carry the scheduling for uplink transmission. During
the registration procedure, configuration for PUCCH is sent on NAS level
which DL Sniffer obtains as well.

In algorithm 4 we show the procedure of UL Sniffer for each subrame. It
takes the same inputs as DL Sniffer. It takes saved Format 0 DCIs and uses
them to receive and decode correct resource blocks to get uplink messages.
Similarly, from intercepted PUCCH configuration on downlink, UL Sniffer
knows when to intercept Uplink Channel Information. To make the whole
UL/DL Sniffer work we merge two large code-bases of srsUE and srsENB
together.
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4.2. Timing Advance Attack

Algorithm 4: UL sniffer

Procedure UL Sniffer (One subframe)
Input: rntis, timeSamples /* Time samples for current Subframe
*/, ULDci, subframelndex

resourceBlocks <— SC-FDMAReceiver (timeSamples);

for dci € ULDci[subframelndex| do

data ¢+— decodePUSCH (resourceBlocks, dci);

/* Do something with the PUSCH data here. */

end

for rnti € rntis do

uci «— decodePUCCH(rnti, resourceBlocks, subframelndex);

/* Do something with the PUCCH control information
here. */

end

4.2 Timing Advance Attack

The goal of the attack is to learn the location of the user in the area. For
TA attack we employ UL /DL Sniffer from previous section 4.1. The attacker
knows the distance of the sniffer from eNodeB and victim’s RNTIL

For example, the attacker can send a message to the victim, which prompts
the victim to re-connect to the network. The attacker learns the user’s RNTI
as it corresponds to the next UE connecting to the network after the paging
message is sent. Therefore, this is a valid assumption.

Algorithm 5: TA Attack

Procedure TA Attack

Input: rnti /* Victim’s RNTI */
currentTACommand <+— 0;

while frue do

dataUL,dataDL <— sniffer(rnti);

if containsTACommand (dataDL) then
currentTACommand <—

currentTACommand + getTACommand (dataDL);
end
Measured TimingAdvance <—
computeTAFromReferenceSignal (dataUL);
timingAdvance <— Measured TimingAdvance +
getTimeFromTACommand (current TACommand);

end
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4.2. Timing Advance Attack

The attack algorithm is shown in algorithm 5. Attacker measures Timing
Advance with the same computation as eNodeB. It looks at the phase shift
of the reference signal to get a precise Timing Advance. At the same time,
the attacker sniffs TA commands to add the extra time to measured Tim-
ing Advance. Once Sniffer knows real timing advance to the UE, she can
compute the distance constraint as:

distanceenodes — UE + distanceyg — gnitfer = ¢ X timingAdvance

where c is the speed of light in the air. If UL/DL Sniffer is at the same
location as eNodeB:

distanceyg — gpiffer = € X timingAdvance /2

Section 3.2 specifies how the ellipsoid rings are defined from the measured
distance constraints and positions of eNodeB and UL/DL Sniffer.

4.2.1 Timing Errors

\ sample #n L sample #n + 1 J
fffff i***ff*f*f‘f7777777177777f*f*.f*f*f*f*fifffff eNodeB
fffff Y .. PO P
fffff i, Error 2 f*f*f777717‘7777777777777777177777 DL Sniffer
| | |
————— i——IMIQ———————i——————————0———————%—————UL Sniffer
| Ti‘me |

@® Sampling Point

Figure 4.1: Visualisation of three timing errors in our system. ENodeB sam-
ples at the ideal time when there is no subcarrier interference.

The main challenge in this attack comes from having four different clocks,
resulting in four different sampling points for each time sample. We identi-
fied three timing errors which occur in this system. The errors develop over
time, however, their change is slow. Figure 4.1 visualizes the errors for one
time sample. If we can correct the timing errors, we get a more precise time
of flight measurement.
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4.2. Timing Advance Attack

First radio is eNodeB. We assume the clock is precise by using a GPS to
synchronize itself.

Two radios are used by the sniffer. Both of these also use precise clock, the
time drift with respect to eNodeB'’s clock should be minimal. We get the
most precise measurement of UE’s Timing Advance, if the sampling point
of UL sniffer is the same as eNode’s sampling point. The offset between
these two points cannot be measured directly. We can estimate Error 2 and
Error 1 in Figure 4.1, and get the offset as their difference.

In algorithm 3 we show how the sniffer’s two radios synchronize themselves
to receive samples at the same time. However, the algorithm shows that the
synchronization is only performed to the granularity of the length of one
sample. The error can be a half a time sample in either direction. The
difference in sampling time on the DL Sniffer and UL Sniffer is our first
timing error. This error is at maximum the length of half of one time sample.

Second time error comes from how srsLTE performs synchronization to the
eNodeB. If it registers drift from primary and secondary reference signal
it corrects itself by receiving extra samples, similarly to the algorithm 3.
Therefore, this synchronization is again with the granularity of length of
one sample, half a time sample in both direction. We call the error synchro-
nization error of DL Sniffer to the eNodeB. First two errors account for error
of length of one time sample when measuring the time of flight.

The fourth radio is UE. The attacker does not know anything about its clock.
Its clock might be less precise than the GPS clock. Moreover, the code for
its synchronization procedure is unknown to the attacker. She cannot in-
fer how precisely is the UE synchronized to the eNodeB. We identify this
synchronization error as our third timing error.

We estimate the three time errors in the following way:

1. The low-level library for our USRP devices is called UHD. UHD library
provides a timestamp for the reception of a sample. In our code, we
receive timestamp both from DL Sniffer and UL Sniffer. The first time
error is a time difference between the two timestamps.

2. Similarly to how Timing Advance is computed from phase shift intro-
duced in subsection 2.6.1, we can compute the symbol time offset on
the downlink reference signal. The measured offset is the synchroniza-
tion error between DL sniffer and eNodeB.

3. Last time error cannot be measured by the attacker. The attacker can,
however, look at the time of flight of UL messages continuously, and
statistically infer the third time error. Different implementations of
LTE protocol can have a different range for this error, some UEs might
try to correct the synchronization error by themselves.
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4.2.2 Improved Attack

The attacker can significantly improve the precision of TA Attack by em-
ploying multiple UL/DL Sniffers in different locations. Procedure for the
improved TA Attack follows the original procedure in algorithm 5 running
concurrently on multiple devices at the same time. The final UE location
lays on the intersection of multiple ellipsoid rings as shown in Figure 3.3.

4.3 User Equipment Fingerprinting

To create a machine learning model we need to extract features from con-
nections of UEs. We use our sniffer to sniff on real connections of UEs to
the network. Afterwards, we save the uplink MAC layer packet capture and
parse it in Wireshark [23] to get higher layer messages. Wireshark has built-
in functionality to parse MAC layer to RRC or NAS layer. As explained in
section 3.3 we are interested in core capabilities sent in Attach Procedure
message on the NAS layer. We export the NAS message as JSON from the
Wireshark and import it into a Python object.

We build a database of known UEs with their corresponding Attach Proce-
dure messages.

4.3.1 Preprocessing

First, we need to extract the features. Core capability object is structured as a
nested object with multiple optional information elements [24]. We filter in-
formation elements which carry temporary information, such as temporary
identifiers or tracking area codes.

We use json-flatten [25] library for flattening of the object. It outputs a one
level deep object with key-value pairs. We will refer to keys as capabilities
even though some of them specify other information.

In order to run a machine learning model, each data-point needs to have the
same features. Because of optional elements we define two types of features
which are used for further feature extraction:

1. List of capabilities specified in all UEs
2. List of optional capabilities not specified in all UEs

For the first list, features are the values for all capabilities. For each capabil-
ity in the second list, we have two features: boolean value if the capability
is in the Attach Request for a given connection, and value of the capability.
If the capability is not sent, the boolean value is false and we consider its
value to be 0. Otherwise, the boolean value is True, and value is what the
sniffer received. We put all the features explained in this paragraph into the
first set of features.
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Given we have a database of known UEs of size k, other features are differ-
ences of core capabilities to this known set. For each UE in the database,
we have two features. For the first feature, we compare values of capabili-
ties occurring in the new Attach Request and the saved Attach Request for
the UE in database. The feature value is the number of capabilities with
different values between the two Attach Requests. For the second feature,
we look at capabilities occurring only in one of the Attach Requests. The
second feature value is the number of such capabilities. We will call features
comparing the Attach Requests to the database the second set of features.

Both sets of features create a fingerprint of a connection. If the attacker
already knows the fingerprint of the victim’s UE, she just needs to find the
exact match to it from the recorded connections.

If the target fingerprint is unknown, the attacker needs to find more infor-
mation about the UE model using Machine Learning approaches. She can
use the following approaches.

4.3.2 Unsupervised Learning

Using unsupervised learning we want to find the inherent structure of the
data and visualize the data-points. Given new UE, the attacker can find the
most similar data-points in the dataset to infer more information about the
device. To find similar phones we use Gaussian mixture model, a clustering
algorithm. Using unsupervised learning, we do not add our biases to the
training and clustering finds the most distinct groups of UEs. For exam-
ple, the clustering model might cluster phones by year of production. New
datapoint would end up in a cluster with phones from the same year.

We use principal component analysis to lower the number of features and
plot UEs onto a 2D plane. PCA transforms data into lower dimensions
by creating new features corresponding to as much variance in the dataset
as possible. We plot four components into two scatter plots: the first plot
with the first two most significant components, and the second plot with
the second most significant components. We train the clustering algorithm
on computed PCA components. Using PCA components makes the cluster-
ing algorithm more robust, as we de-noise the features and work with less
dimensions.

4.3.3 Supervised Learning

We can label the known database of UEs according to a rule. For example,
by manufacturer or year of the production. We use the database as a training
set to the classifier. Afterwards, we can classify new UE fingerprints with it.

We use decision tree classifier since these are easy to interpret and they will
help us find features which contribute the most to classification. Given the
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4.3. User Equipment Fingerprinting

attacker chooses sensible classes, they will have common features in core
capabilities object. The decision tree model is fast and robust. We only use
the first set of features, as they will directly point to differences in Attach
Requests.

We decided to have only small trees with limited depth. Multiple different
decision trees might create a good classifier. We build multiple possible
trees to find all possible features differentiating the classes. We do this by
running decision tree classifier. If the algorithm finds good enough tree, we
save the decision making features chosen by the tree. We repeat the process
without the saved features. We end up with a list of features defining the
class chosen at the beginning.

Since we build multiple decision trees, we can use all the trees for classifica-
tion as an ensemble. For the new data-point we predict the class indepen-
dently by all the trees. The final class prediction is the most occurring class
from the trees.

29



Chapter 5

Results

In this chapter, we evaluate our two attacks. First, we introduce hardware
used in the experiments. Following, we show the design of the experiments
and their results.

5.1 Setup

For the experiments in this chapter we used setup pictured in Figure 5.1. It
consists of:

eNodeB running on software defined radio USRP N310, highlighted with
blue colour in Figure 5.1.

UL/DL Sniffer running on two software defined radios USRP X310, high-
lighted with red colour in Figure 5.1. One X310 is used as a sniffer
on DL frequency and the other on UL frequency. There is no antenna

Figure 5.1: Our setup.
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connected to the TX port of the radios confirming it is a passive device.
Both devices are connected to the Octoclock to share the same clock.

UE running on software defined radio USRP B210, highlighted with yellow
colour in Figure 5.1. In the experiment, we use multiple other mobile
phones as UEs which are not pictured. The full list of UEs is in Table 1
in the Appendix.

Octoclock model CDA-2990, highlighted in green colour. The device is able
to distribute the same clocking signal to all connected devices. It takes
the GPS signal as the input. All connected devices have the same sense
of time. All USRP devices are pictured connected to the Octoclock,
however, in the experiments for Timing Advance this is not always the
case and we always specify the details. The two sniffing USRPs are
always connected to Octoclock.

Without using a precise clock on the eNodeB and the sniffer we saw a big
noise in measured values. So in all our experiments, all three USRPs are
connected to a precise clock. Either directly to GPS or to Octoclock.

5.2 Timing Advance Attack

5.2.1 Synchronization Error Estimation
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Figure 5.2: Timing Advance measured at the eNodeB.
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As explained in subsection 4.2.1, we have three timing errors: the difference
between RX time of UL/DL Sniffer’s radios, synchronization error of DL
Sniffer to the eNodeB, and synchronization error of a UE to the eNodeB. All
three errors are visualized in Figure 4.1.

The first timing error is straightforwards to compute since it is just a differ-
ence of two timestamps. Since the two radios of the sniffer share the same
clock input through Octoclock, this value is precise.
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Figure 5.3: Timing Advance measured at the eNodeB with corrected syn-
chronization error.

The main challenge is the synchronization error estimation. It is computed
from phase shift as explained in [19]. To evaluate our estimation of the syn-
chronization error, we ran a simple experiment. We had eNodeB running
on USRP N310 and UE running on USRP X310, both using a clock syn-
chronized with the GPS. We measured the Timing Advance of UE on the
eNodeB. We measured the advance for each uplink message over multiple
connections from the same distance in the same environment. We plot the
measurements in Figure 5.2. Different lines correspond to different connec-
tions. Each point on the line is one measurement of TA from an PUSCH
message. We can see that even though the clocks are synchronized with the
GPS, they are not perfectly aligned. From multiple connections we can see
a clock drifting slowly (i.e. the pink connection). The big jumps correspond
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to the srsLTE synchronization algorithm aligning the RX time by receiving
an extra sample. The median Timing Advance for a connection ranges from
0.33 to 0.4us. This is an error of 70ns between the connections.

We at the same time estimated the synchronization error on the UE and
corrected the error in raw Timing Advance in Figure 5.2. The corrected
Timing Advances are in Figure 5.3. The median value for a connection now
ranges from 0.3615 to 0.3655us. We were able to improve the error between
the connections to 4ns.

All of the following experiments in this section use a slightly idealized setup
with both eNodeB and UL/DL Sniffer being connected to Octoclock. We
showed in the previous experiment that we can fix the synchronization er-
ror even with the misaligned clocks. Introduced error from the misaligned
clocks is negligible. For ease of use indoors, we opted for having both eN-
odeB and UL/DL Sniffer connected to Octoclock.

5.2.2 Timing Errors Estimation with UL/DL Sniffer
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Figure 5.4: Raw estimation from the sniffer.

In Figure 5.4 we can see the Timing Advance estimations by our UL/DL
Sniffer. We see three connections (blue, orange, and green) from the same
UE (B210) to eNodeB. Each point on the three lines corresponds to one mea-
surement of Timing Advance from the PUSCH message. For this experi-
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5.2. Timing Advance Attack

ment, eNodeB, the sniffer and UE were at the same location. The error of
the median Timing Advance between the connections is 60ns

Firstly, observations show a constant drift which gets corrected once it reaches
a threshold as you can see on the blue connection. The band it creates (light-
coloured band defining max and minimum for each connection), are of the
same height, around 90#ns. This is also a length of one time sample. Jumps
show the synchronization algorithm aligning RX time, similar to the pre-
vious experiment. The drift comes from the imprecision of the B210 clock.
This is the third timing error we defined in subsection 4.2.1, the synchroniza-
tion error between UE and eNodeB. We cannot measure this error directly
since neither UE nor eNodeB is under the control of the attacker.
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Figure 5.5: Fixed timing errors in the raw estimation from the sniffer.

Secondly, there is a constant shift between the three UE connections. As
explained in subsection 4.2.1, we measure both the sampling time error be-
tween the two radios of the sniffer and the synchronization error between
the DL Sniffer and eNodeB. We applied these measurements and got cor-
rected results in Figure 5.5. Comparing the two figures, we can see that we
were able to correct the constant offset, and the error between the connec-
tions decreased from 60ns to 10ns.

For the case in Figures 5.4 and 5.5, we can estimate the Timing Advance as
the centre of the band of size 0.9us bounding each connection. However, we
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Figure 5.6: Estimation of Timing Advance for a mobile phone with unknown
synchronization algorithm.

did not see this constant pattern of synchronization error for other UEs as we
can see in Figure 5.6. Other UEs use different synchronization algorithms.
We found the best choice, in general, is to use the median value from all
the observations for one connection. The median value does not take into
account outliers, being more robust than the mean value.

5.2.3 Distance Estimation

For the main experiment of our attack, we had an eNodeB and the sniffer at
one location and we varied the distance of the UE. We ran the experiment
with 5 different UEs: USRP B210, Huawei P20 Pro, Huawei P30, iPhone X,
and iPhone 8. We positioned the UE at 6 different distances: Om, 7.5m, 15m,
30m, 45m, and 60m. For each distance and UE, we reconnected multiple
times to measure the Timing Advance over multiple connections. On top
of that, for each measurement of distance and UE, we restarted the sniffer
at least once, to reset the timing errors. We performed the experiment in a
long indoor hall. Since eNodeB and UL/DL Sniffer are at the same location,
the distance of the UE from the sniffer is:

distanceyg _ gniffer = € X timingAdvance /2
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5.2. Timing Advance Attack

UE model Correlation p-value Constant 90th Percentile

Value Offset [m] Error [m]
USRP B210 0980 1.2e-24 99.536 10.474
Huawei P20 Pro 0.988 4.1e-31 -8.526 5.659
Huawei P30 0.993 1.6e-33 -23.191 5.214
iPhone X 0.985 1.3e-27 -22.732 7.238
iPhone 8 0.995 3.9e-37 -20.930 4.672

Table 5.1: Summary statistics for distance estimation.

One data point corresponds to the median distance measurements during
one connection. We do not consider connections for which we have less
than 10 measurements. For each UE there is a constant time offset which
comes from properties of UE chip, UL/DL Sniffer radios, and eNodeB radio.
We estimate constant offset as a mean difference of estimated distances and
real distances. Table 5.1 shows constant offset for each UE. If the attacker
changes the radio of her sniffer, she would have to update the constant
offsets for individual UEs.

In appendix in Table 1, we quantify the constant offset for other phones as
well. We only had a measurement at Om distance which we use to estimate
the offset. It is, therefore, less precise than in Table 5.1. We can identify that
the constant offset is the same for all UEs with the same LTE modem.

We observed a large distance estimation error rising from UE not receiving
TA command. If UE does not receive TA command, eNodeB resends the
command. However, the sniffer receives it twice and applies the command
again resulting in a mismatch. Since the N310 is not professionally graded
eNodeB device, its TX power is lower. We can expect better performance
in the real world. Possible fix in the future would be to monitor ACKs
transmitted by the UE. UL/DL Sniffer would only apply TA commands
which it received ACK for. Before further analysis, we removed connection
outliers which were more than 10 times the interquartile range away from
the median point. Out of 186 connections, we removed 4 data points.

We visualize data points with boxplots for each UE in Figure 5.7. Before
plotting, we remove computed constant offset from these distance estima-
tions.

For each UE we ran a separate Pearson correlation test. It tests whether
there is a linear correlation between the estimated distances and the real
distances of the UE from the sniffer. The null hypothesis is that there is no
linear relationship between the two variables. We reject the null hypothesis
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Figure 5.7: Distance measurements.

when p-value < 0.05. If we reject the null-hypothesis we conclude that
there is sufficient evidence that there is a linear correlation between the two
variables. Therefore, we can estimate the distance using UL/DL Sniffer.
From Table 5.1, we see that for all UEs we reject the null hypothesis with
high significance.

Finally, to quantify distance estimation error, we compute errors between
estimated variables (with corrected constant offset) and real distances. We
are interested in a threshold where 90% of all errors fall under. We observe
that for all mobile phones the 90th percentile error is ~ 6m. For USRP B210
it is ~ 10m. Obviously, for lower percentile, the values get significantly
better. Median error is ~ 2m for phones and ~ 7m for B210.

5.3 User Equipment Fingerprinting

As explained in the subsection 4.3.1, we use two sets of features for finger-
printing. Capabilities and their occurrences in Attach Request message as
the first set of features. This set is very large with a lot of binary data (i.e.
support for a capability is either true or false). And relative change to the
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Figure 5.8: Heatmap of number of changed values between each two UEs in
the database.

Attach Requests of UEs in the database as the second set of features. This
second set of features is visualized in Figure 5.8 and Figure 5.9. From Fig-
ure 5.8 and Figure 5.9 we can directly see there is a relationship between the
phones with the same wireless modem manufacturer.

In the Appendix in Table 1, you can see different modem manufacturers. In

40



5.3. User Equipment Fingerprinting

Number of Different Capabilities
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Figure 5.9: Heatmap of number of different capabilities between each two
UEs in the database.

Figure 5.8, we can distinguish Qualcomm phones (first 11 phones), Huawei
(next 4 phones) and Samsung phones (next 2 phones), and finally Intel chip
manufacturer (last 6 iPhones). You could see similar things in Figure 5.9.
Some of the Qualcomm phones do not send optional Mobile Station Class-
mark 3 information element. That is why the first five data points in Fig-
ure 5.8 are vastly different from other phones. Apart from OnePlus 7T, these
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are very old phones, not being used frequently anymore. We can see in Fig-
ure 5.8 that Xiaomi phones are similar, as well as Huawei phones, Samsungs
phones and iPhones. Xiaomi phones use Qualcomm modems but it is ap-
parent that a manufacturer of the phone specifies some of the capabilities as
well.

We observed that some of the capabilities also depend on the SIM card
which you can also see in Figure 5.8 and Figure 5.9 between the iPhone X
and the iPhone X Salt. Former contains programmable SIM, whereas the
latter contains SIM from mobile network provider Salt. We do not research
this phenomenon, as our main use case is a mobile network where most of
the phones have a SIM from the same operator.

The main advantage of the second set of features over the first set is the
number of the features. On the other hand, the first set of features give
more interpretable features. We can directly see which capability impact the
fingerprinting.

5.3.1 Unsupervised Learning

The first type of UE fingerprinting can be performed just by looking at the
projection of the features onto a 2D plane. If these projections put similar
types of phones close to each other, then the attacker can learn information
about the UE from neighbouring phones in the projection. We use principal
component analysis to extract the first four components from the first set
of features and plot them as scatter plots in Figure 5.10. PCA is sensitive
to outliers. Moreover, PCA gives a different result if the real and observed
distributions of data points do not match. Therefore, we decided to not
include iPhones in this visualisation. From heatmap in 5.8 we can see that
they differ substantially from other phones and in the next section we show
that it is easy to distinguish them from other UE models.

We ran a Gaussian mixture model with the top four components from PCA
to confirm that similar phones are clustered together. Four different colours
in Figure 5.10 distinguish the resulting clusters. We can see that two clus-
ters, purple and green, specify phones with Qualcomm modem. Purple are
newer models and green cluster is for older phones (apart from OnePlus
7T). Huawei phones are in yellow cluster. Finally, blue cluster is for Sam-
sung modems. We see that HTC U12+ and Pixel3a ended up in the wrong
cluster. From the first two components in Figure 5.10 we can see that these
two phones are distant from other Huawei phones. We believe that with a
larger data set, they would end up clustered with other Qualcomm phones
instead.

Similarly to the first set of features, we can also visualize and cluster the
second set of features describing relative differences between the models.
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Figure 5.10: PCA decomposition of the first set of features into four compo-
nents.
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Figure 5.11: PCA decomposition of the second set of features into two com-
ponents.

We can see the visualization and clustering in Figure 5.11. With just two
principal components, Gaussian Mixture models perfectly differentiate the
four groups of phones we saw previously. Blue cluster is for old Qualcomm
phones, green is for the new Qualcomm phones, yellow is for the Samsung
phones, and purple is for the Huawei phones. The only phone which is
in the wrong cluster is OnePlus 7T, which weirdly does not send Mobile
Station Classmark 3 information element. We conclude that second set of
features performs better for the unsupervised learning.

Looking at the performance of the clustering method, we conclude that any
machine learning model would perform well to distinguish the LTE modem
manufacturer using PCA components.

5.3.2 Supervised Learning

With supervised learning, the goal is to identify features which separate
classes of UEs. For this method, we use decision trees and only work with
the first set of features, since the second set of features does not have as
interpretable features. The ideal case is if the depth of the decision tree is
one. That means a capability perfectly separates the two classes. One of
the limitations of our work is a small data-set. We, therefore, try to find
trees which separate the classes perfectly with as little depth as possible. If
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5.3. User Equipment Fingerprinting

we can find such trees we can be reasonably confident, we can build robust
classifiers. Following are some categories we were able to differentiate with
just one capability. This gives us the highest confidence it is the same for
other unseen phones.

Intel Modems

Using the decision tree, we were able to identify features which perfectly
differentiate Intel modems from other modems. In our case, it corresponds
to differentiating iOS from Androids. Following are the differences for Intel
modems:

e PS inter-RAT HO to E-UTRAN S1 mode supported in MS Network
Capability information element.

e Support additional positioning capabilities in Mobile Station class-
mark 3 information element.

e SPLIT PG CYCLE CODE is equal to 8 in DRX Parameter Information
Parameter.

e In Supported Codec List information element, codecs are sent first for
GSM and then UMTS. For other manufacturers, it is the other way
around.

Qualcomm Modems
Qualcomm modems are differentiated by two capabilities perfectly:
e Null integrity algorithm is not supported.
e Support location service value added location request notification ca-
pability in Mobile station classmark 2 information element.
Samsung Modems
Samsung modems are perfectly differentiated from other manufacturers by:

e High Multislot Capability value is present in Mobile station classmark
3 information element.

e ESM message container information element contains Device proper-
ties information element.

e Modems use maximum 8 seconds non-DRX mode after transfer state.

Huawei Modems

Finally, Huawei modems are perfectly differentiated from other modems by
a single value:
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e SPLIT PG CYCLE CODE is equal to 32 in DRX Parameter Information
Parameter.

5.4 Combined Attack Use Case
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Figure 5.12: Decision Tree for Qualcomm X24 LTE Modem.

We create a fictional use case, how the attacker can use both of the attacks
to find victims in the real world. Suppose, the attacker recorded victim’s
Attach Request but does not know what UE model the victim is using. The
actual victim’s UE model is LG V50 ThinQ with X24 LTE modem. The
attacker wants to localize the victim when UE attaches to the network again.

The attacker has the fingerprint of the UE which she can use for the iden-
tification of the victim. However, for the localization, she is missing the
constant offset to increase the precision.

The attacker computes a PCA of the recorded fingerprint and uses the pre-
trained unsupervised model to cluster the new data-point in the existing
clusters. The attacker learns that it clustered the phone with recent Qual-
comm phones.

From Table 1 in the Appendix, we see that LTE modems in that cluster add
different constant offsets. We can now build a classifier for each LTE modem.
Figure 5.12 shows a classifier for X24 Qualcomm modem in the cluster. The
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attacker uses the decision trees and classifies the UE as a phone with X24
LTE modem. She now knows, that she should apply ~ 12m constant offset
when measuring the distance.

Without the fingerprinting attack, the attacker would not know the constant
error and its distance estimation would be inaccurate.

5.5 Weak Network Configuration

Protocol | Length | Info

MAC-LTE UL-SCH: (SFN=406 , SF=9) UEId=0 (Power Headroom Report) (Long BSR) (Pad(
RLC-LTE [uL] [AM] SRB:1 [DATA] sn=0 [96-bytes..

LTE RRC.. RRCConnectionSetupComplete, Attach request, PDN connectivity request
MAC-LTE UL-SCH: (SFN=407 , SF=9) UEId=0 (Long BSR) (Padding:remainder)
MAC-LTE UL-SCH: (SFN=408 , SF=7) UEId=@0 (Long BSR) (Padding:remainder)
MAC-LTE UL-SCH: (SFN=4@9 , SF=3) UEId=0 (Long BSR) (Padding:remainder)
RLC-LTE [uL] [AM] SRB:1 [CONTROL] ACK_SN=1

LTE RRC.. ULInformationTransfer, Security mode complete

MAC-LTE UL-SCH: (SFN=411 , SF=1) UEId=0 (Long BSR) (Padding:remainder)
RLC-LTE [uL] [AM] SRB:1 [CONTROL] ACK_SN=2

LTE RRC.. ULInformationTransfer, ESM information response
MAC-LTE UL-SCH: (SFN=412 , SF=9) UEId=0 (Long BSR) (Padding:remainder)

NAD CFD rMUDLLLLY IMdAIAUENENL res5dye 1ype: decuriLy moue complele |\
v Mobile identity — IMEISV — IMEISV (35 )
Element ID: 0x23
Length: 9
0011 .. = Identity Digit 1: 3
«ass 0... = 0dd/even indication: Even number of identity digits
+es. 2011 = Mobile Identity Type: IMEISV (3)
BCD Digits: 35 G
oxf

Figure 5.13: IMEISV number visible in clear-text for real network connection.

During the testing of our UL/DL Sniffer, we detected a weak configura-
tion of an actual real-world network. This configuration allows user to learn
IMEISV number, and track the user. The IMEISV number is sent in clear-text
during each RRC connection, therefore we do not need the UE Fingerprint-
ing to track the user. As mentioned before, first 8 digits of IMEI number
identify a device model. We can use the weak configuration to get the con-
stant offset of UE as well.

As seen in Figure 2.5, two security contexts are created. First one securing
communication between UE and EPC, and second one securing communi-
cation between UE and eNodeB. In the first Security Mode Command, EPC
requests an IMEISV. This message is integrity protected by the new con-
text, but it isn’t encrypted. Security Mode Complete is then both integrity
protected and ciphered. It contains IMEISV as requested.

This network is configured such that ciphering is only applied for secu-
rity context between UE and eNodeB. EPC security context performs only
integrity protections which is a requirement by LTE protocol. The weak
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configuration allows the sniffer to see IMEISV and following messages in
clear-text before the second security context is created. Figure 5.13 shows a
packet capture file in Wireshark. We can see the redacted IMEISV number.
It matches with the phone’s IMEI number.
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Chapter 6

Related Work

In this chapter, we review literature related to three main contributions of
our work: UL/DL Sniffer, TA Attack and UE Fingerprinting.

6.1 UL/DL Sniffer

Downlink sniffers for LTE are shown to work both in papers and commer-
cial products. The first paper to implement downlink PDCCH sniffer was
[22]. We thought we can use implementation of [26] since they also based
it on srsLTE [6]. However, [26] based their work on one of the example
projects of srsLTE with very limited functionality. We found that its perfor-
mance in the real world was very limited. Compared to these two papers
our implementation is robust and does not only PDCCH decoding but both
data and control channel decoding up to higher layers. Airscope [27] is a
commercial product by the company behind srsLTE. They also implement
downlink sniffer. Due to its high price we were not able to compare our
downlink sniffer with Airscope.

For uplink sniffer, we are the first paper to implement this functionality.
Wavejudge [28] and thinkRF [29] provide uplink sniffer functionality for
a very high price. We were not able to compare our programs to these
commercial versions. We are the first implementation of both uplink and
downlink sniffer based on open-source library srsLTE. We plan to release
the code for it, creating an open-source alternative to otherwise expensive
products.

6.2 Localization Attacks

Shaik et al. [2] show how an adversary may sniff on paging messages at
different eNodeBs. An operator will first broadcast paging message for a
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particular user from the last used eNodeB. Sniffer than learns the approxi-
mate location of the UE around eNodeB.

Moreover, they explain more advanced attack using a rogue base station to
trigger Measurement Report. The report contains power measurement to
neighbour cells. Using triangulation attacker can learn the precise location
of the user.

Multiple papers (i.e. [30, 31, 32]) show how channel state information (CSI)
can help user fingerprint her location in the environment. Similar way, an
attacker can use CSI from uplink to fingerprint the location of users in the
pre-mapped environment.

In LTEye [22], authors extend a synthetic aperture radar to capture the short-
est and the most direct path of the radio signal going from User Equipment.
Using multiple radars, the location of the users is at the intersection of the
direct paths measured by the devices.

We believe our method for localization is more straightforward and gives
better results than previously mentioned papers.

We got inspired for our TA Attack from theoretical work in [33]. Similar
to us, they use both TA command from eNodeB and Timing Advance from
the attacker to approximate geolocation of UE. We have to highlight, how-
ever, the differences between our and their work. First and most prominent
contribution of our work is a working TA Attacker tested in real scenarios.
In [33], they only do numerical analysis with simulated data. They had to
make assumptions which might not be true in the real world. We miss in
their work crucial details, such as an algorithm for measuring Timing Ad-
vance from uplink messages, mention constant offsets of the phones, or real
distribution for TA command. They highlight how they work is successful
in a setting with multiple eNodeBs. In our case, one eNodeB is sufficient,
and instead we concentrate on a multi-attacker scenario. We further explore
a setting with multiple attackers which they do not. Finally, we have to
highlight the precision of our attack. In [33], they opted for approximating
transmission time of UE from TA Command which introduces a large er-
ror. In our work, we estimate an ellipse with two focal points without an
inherent error from TA Command.

[34] shows real-world TA attack against WiMax networks, which have dif-
ferent physical layer from LTE networks. They used a commercial device
WaveJudge 4900A [28] to perform the attack. We, on the other hand, imple-
mented both the downlink and the uplink sniffer to measure the distance
and show the attack in the real-world scenario. Our distance estimation is
vastly better than theirs. In [34], they miss the theoretical implication of
attacker specifying ellipse of potential locations of the user.
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6.3 User Equipment Fingerprinting

[1] shows how to use capabilities to fingerprint UE models. Their paper
is base for our UE Fingerprinting attack. The main difference between the
two approaches is that they use active attacker to receive the capabilities
which in the real world is illegal and easy to detect. Moreover, they do not
explain how their model works to identify the phone manufacturers or how
they identified capabilities which distinguish them. We on the other hand
gave a clear view of this information, and how an attacker can use machine
learning to enhance future attacks. Finally, in our work we extend the list of
capabilities distinguishing different modem manufacturers.
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Chapter 7

Discussion

In this chapter, we first introduce mitigation techniques to decrease the risk
of proposed attacks. Then we talk about the impact of our work in 5G
networks. Finally, we highlight possible future projects related to our work.

7.1 Mitigation Technique

7.1.1 Timing Advance Attack

Reference signals are needed to estimate the channel and propagation delay.
They cannot be omitted from uplink messages. There is, however, a fix to
the current protocol which would solve most of the issues. If an attacker
does not learn the initial TA Command in RAR message, he is not able to
find the location, since all of the successive TA commands are relative to the
current timing advancement. There are two ways how to achieve this:

1. Encrypt all MAC CE messages. All the MAC CE message would have
to be sent after the security context. This is not ideal since the initial
messages would not arrive at the correct time, resulting in degrada-
tion of performance. It would require a lot of changes to the current
protocol as well.

2. Send the initial RA Preamble with a random offset. Since UE knows
the offset, it can take received TA command in RAR, and modify it
with the known random offset. Initial location of the user would be
hidden to both eNodeB and the sniffer since only UE knows about its
random offset. If necessary, it can disclose the random offset in an
encrypted message to the eNodeB.

Both of these protection techniques only work against a small number of
sniffers. If multiple sniffers are used, the attacker can infer the timing off-
set UE applies. The random offset is just another unknown which can be
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estimated with more devices. Similar to random offset, if we use enough
sniffers the attack does not have to record TA Commands, she can just com-
pute TA from multiple observations.

7.1.2 User Equipment Fingerprinting

The only capabilities needed to create the security context are the ones de-
scribing crypto-suites implemented by UE. Only this information must be
sent beforehand. We propose to send the rest of the capabilities after the
security context is created. The same solution was already proposed by [1].

Response from 3GPP was that the radio capabilities are only sent after the
security context is created. However, core capabilities are still planned to be
sent in clear text even in 5G protocol.

7.2 Relevance in 5G

5G protocol is built on top of LTE, however, the PHY layer has some differ-
ences. Our UL/DL Sniffer would not work in 5G networks out of the box.
We do not see a reason why it would not be possible to build such sniffer.
Beamforming for downlink messages might decrease the signal strength if
the sniffer is far away from other UEs.

There is no planned counter-measure for TA Attack in 5G specification. The
reference signal is still used. 5G base stations cover smaller areas due to
higher frequencies. Just by knowing to which base stations UE is connected
to leak information about its position. If larger subcarrier spacing is used,
TA command is more precise, increasing the strength of the attack.

UE core capabilities are still being sent in cleartext for 5G networks as well.
Therefore, UE Fingerprinting is still possible.

Tracking of the user through temporary identifiers gets impractical in 5G. As
explained in [35], a mobile network has to refresh a temporary identifier on
each connection to the network. After each Service Request attacker loses
the temporary identifier of the victim. She can only fingerprint user the
first time it attaches to the network. The attacker needs to implement active
attacks for the identification of the users.

7.3 Future Work

There are multiple possibilities for an extension of our work. We propose
the following:

e High-level parsing of the uplink messages. We would be able to skip
Wireshark as our parser. We could then customize our code such that
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it can identify phones in the real-time and perform operations with
them, such as filtering to receive uplink messages only for some mod-
els.

Extension for our UE fingerprinting model, such that we can finger-
print models outside of Attack Procedure. Possible new features are
the timings of the PHY messages, ordering, or flags in control mes-
sages.

Use Signal Overshadowing [36] attacker with uplink Sniffer to create
a more powerful active attacker. We would be able to build an IMSI
catcher, which is harder to detect than conventional rogue base stations
approach. This or other approaches for identification are needed to
further increase the tracking threat from attackers.

Various localization tools, which would give us locations of users in
the building. For example, lights would be turned on in the rooms
where the user is located. Or localization of cheaters during the exam
in a big hall.

54



Chapter 8

Conclusion

In this work, we built a robust uplink and downlink sniffer using open-
source LTE library srsLTE. Our software is both affordable and white-box
and is a good competition against commercial products. We showed its ca-
pabilities in two new attacks: UE Fingerprinting and localization TA Attack.
The first attack helps the attacker reveal mobile phone model, which helps
in identifying the user. In the second attack, we showed that an attacker
can estimate the distance of UE from her device with better than 6m accu-
racy 90% of the time. Finally, we discovered a weak configuration of a real
mobile network in Zurich, leaking IMEISV number. All the attacks together
show, how the attacker can track users in the world. UL/DL Sniffer is an
important tool for security analysis of LTE networks.
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Appendix

UE model Modem Constant Error [m] std [m]
Samsung Galaxy s10 Exynos 9820 11.29 7.22
Samsung Galaxy a8 Exynos 7885 -26.62 4.77
Samsung Galaxy s5  Qualcomm Gobi 4G - -
Huawei P20 Lite Kirin 659 -24.47 2.13
Huawei P20 Pro Kirin 970 -9.34 2.90
Huawei P30 Lite Kirin 710 -10.27 0.98
Huawei P30 Kirin 980 -24.51 1.49
Xiaomi Mi9 Qualcomm X24 LTE 10.44 2.20
Xiaomi MiX 3 Qualcomm X24 LTE 11.57 1.60
Nokia 1.3 Qualcomm X5 LTE - -
Sony Xperia X Qualcomm X8 LTE -11.20 4.78
Google Nexus 5X Qualcomm X10 LTE 5.08 2.51
Google Pixel 2 Qualcomm X16 LTE -13.52 2.32
Google Pixel 3a Qualcomm X12 LTE 4.46 2.14
Google Pixel 4 Qualcomm X24 LTE 12.88 1.67
HTC U12+ Qualcomm X20 LTE -13.66 1.55
OnePlus 7T Qualcomm X24 LTE 12.66 1.42
iPhone 7 Intel XMM7360 -23.86 0.88
iPhone 8 Intel XMM 7480 -23.65 2.28
iPhone X Intel XMM7480 -25.64 3.75
iPhone 11 Intel XMM 7660 -23.19 2.49
iPhone 11 Pro Intel XMM 7660 -25.35 2.46

Table 1: Mobile phones used in the experiments.
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Figure 1: Percentage of correctly decoded uplink messages by our sniffer as
a function of time delay of arrived messages from the start of a frame.
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