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Abstract. In eastern Africa droughts can cause crop failure and lead to food insecurity. With increasing tem-
peratures, there is an a priori assumption that droughts are becoming more severe. However, the link between
droughts and climate change is not sufficiently understood. Here we investigate trends in long-term agricultural
drought and the influence of increasing temperatures and precipitation deficits.

Using a combination of models and observational datasets, we studied trends, spanning the period from 1900
(to approximate pre-industrial conditions) to 2018, for six regions in eastern Africa in four drought-related annu-
ally averaged variables: soil moisture, precipitation, temperature, and evaporative demand (E0). In standardized
soil moisture data, we found no discernible trends. The strongest influence on soil moisture variability was from
precipitation, especially in the drier or water-limited study regions; temperature and E0 did not demonstrate
strong relations to soil moisture. However, the error margins on precipitation trend estimates are large and no
clear trend is evident, whereas significant positive trends were observed in local temperatures. The trends in
E0 are predominantly positive, but we do not find strong relations between E0 and soil moisture trends. Never-
theless, the E0 trend results can still be of interest for irrigation purposes because it is E0 that determines the
maximum evaporation rate.

We conclude that until now the impact of increasing local temperatures on agricultural drought in eastern
Africa is limited and we recommend that any soil moisture analysis be supplemented by an analysis of precipi-
tation deficit.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

In eastern Africa, drought has occurred throughout known
history with significant impacts on the agricultural sector and
the economy, particularly through threats to food security. It
is therefore important to examine the role of anthropogenic
climate change in drought, particularly in the face of the
large-scale droughts of 2010/11, 2014, and 2015 in Ethiopia
and the 2016/17 drought in Somalia, Kenya, and parts of
Ethiopia and surrounding countries, which have raised the
spectre of climate change as a risk multiplier in the region.

Droughts are triggered and maintained by a number of
factors and their interactions, including meteorological forc-
ings and variability, soil and vegetation feedbacks, and hu-
man factors such as agricultural practices and management
choices, including irrigation and grazing density (van Loon
et al., 2016). Accordingly, there are several definitions of
drought in common use (Wilhite and Glantz, 1985): meteoro-
logical drought (precipitation deficit), hydrological drought
(low streamflow), agricultural drought (low soil moisture)
and socioeconomic drought (including water supply and de-
mand). This complexity of droughts poses challenges for
their attribution. It is not straightforward to disentangle these
interacting factors, but over long periods it may be possible
to detect a climate change signal.

Previous attribution studies for eastern Africa have mainly
focussed on meteorological drought drivers (precipitation
deficit), with recent studies finding little or no change in the
risk of low-precipitation periods due to anthropogenic cli-
mate change (e.g., Philip et al., 2018a; Uhe et al., 2018).
Some weather stations in eastern Africa have recorded a de-
crease in precipitation in recent years; however, climate mod-
els generally project an increase in mean precipitation but
give conflicting results for the probability of very dry rainy
seasons (e.g., Shongwe et al., 2011). The reasons for the re-
cent observed decrease in precipitation thus remain unclear,
but the trend is within the large observed natural variability
in the region, at least for the historical and current climate.

However, precipitation only covers one aspect of drought –
that of the supply side of the water balance. The demand side
is represented by actual evapotranspiration (ET), which is
a function of moisture availability and evaporative demand.
With increasing temperatures, there is an a priori assumption
that rising evaporative demand will increase the demand side
of the water balance and, all else equal, droughts will become
more severe. However, this assumption is not based on analy-
ses, which motivates an objective study. In this study, we aim
to understand if, despite no evident trend in precipitation, in-
creasing temperatures could be exacerbating drought.

In the current study we wish to align our drought defini-
tion as closely as possible with the major human impact of
drought – the threat to food security. Across eastern Africa,
the quality and quantity of food production for domestic con-
sumption is intimately linked to agricultural conditions. We
therefore use the agricultural definition of drought – low soil

moisture – because soil moisture is a better indicator of crop
health than precipitation alone and it embodies the net effect
of the supply and demand side of the water balance in regions
without irrigation. Whilst short term single-season drought
episodes can be severe, we choose to analyse changes in
drought on annual rather than sub-annual timescales because
the worst crises in food security in this region have occurred
with multiple-season droughts (Funk et al., 2015). We will
also investigate the influence of the main meteorological
drivers of soil moisture trends, i.e., precipitation and temper-
ature. Ideally, we would study the influence of temperature
on soil moisture via ET, however observational records are
very limited in time and space and, as the spatial decorrela-
tion lengths of ET are short, their informational value is lim-
ited. We therefore analyse evaporative demand (E0; some-
times also referred to as “potential evapotranspiration”, or
PET, although this is strictly only one metric of E0). E0 is
the amount of evaporation that would occur under prevail-
ing meteorological conditions if an unlimited supply of water
were available; in that sense, E0 measures the thirst of the at-
mosphere. E0 is calculable as a function of temperature, hu-
midity, solar radiation, and wind speed. We use a variety of
common parameterizations ofE0 that includes both potential
evapotranspiration and reference evapotranspiration and that
ranges in physical representation and complexity from sim-
ple estimates based solely on temperature (the Hamon equa-
tion), through estimates that also include solar radiation as a
driver (the Priestley–Taylor equation), and ultimately to fully
physical estimates that further include humidity and wind
speed as drivers (the Penman–Monteith equation). All nec-
essary drivers are available for both observations and model
simulations. In this manner, we bracket the complexity in E0
parameterizations in a convergence-of-evidence approach fa-
miliar to the drought-monitoring community.

We investigate E0 as a means to study the influence of
temperature on soil moisture; however, for regions that are
irrigated or where irrigation is being considered,E0 itself can
be regarded as more relevant than soil moisture as a measure
of drought tendency.

Whilst attribution studies specific to the eastern African
region have not previously used soil moisture or E0 to ex-
plore drought, E0 has been used in various attribution or
trend studies outside this region to explore, for example, the
influence of climate change on the hydrologic cycle in China
(e.g., Yin et al., 2010; Li et al., 2014; Fan and Thomas, 2018),
trends and variability at sites in western Africa (Obada et al.,
2017), and compound events of low precipitation and high
E0 in Europe (Manning et al., 2018).

Summarizing, the objectives of this study are first to con-
sider the attribution question “do increasing global tempera-
tures contribute to drier soils and thus exacerbate the risk of
agricultural drought (low soil moisture) in eastern Africa?”
and second to investigate if global-warming driven trends in
precipitation or local temperature via E0 explain any emerg-
ing trend in agricultural drought. Our approach to attribu-
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tion is comprised of the following steps: (1) definition of the
study variables and explanation of the study regions; (2) de-
scription of observational data and detection of trends in ob-
servations; (3) model evaluation including description of the
models; (4) attribution of trends in models; and (5) synthesis
of the results. Assessments will be based on both observa-
tions and climate and hydrological model output on an an-
nual timescale, between the years 1900 (to represent the pre-
industrial era) and 2018. We will illustrate the method using
examples of recent droughts in eastern Africa.

Section 2 of this paper presents the chosen study regions,
followed by a description of the datasets used in the study.
Section 3 describes the stepwise approach to attribution used,
including assumptions and decisions made and illustrative
examples. Section 4 synthesizes the results by region. Fi-
nally, Sects. 5 and 6 present the discussion and conclusions.

2 Study variables, region, and datasets

In this section, we present the chosen study variables and
study regions in eastern Africa and the datasets used to pro-
vide the variables to be analysed. Brief descriptions of the
projects from which the datasets originate are provided in
the Supplement.

2.1 Study variables and region

We analyse four different variables: soil moisture, precipita-
tion, temperature, and E0. We average these variables over
six non-overlapping regions, as trend analyses of time series
of regionally averaged quantities are more robust than the
same analyses for point locations. This is especially true for
precipitation, which shows small-scale spatial variability if
the time period is not long enough to sufficiently sample the
distribution from multiple precipitation events. It is however
necessary to select homogeneous regions, so that the signals
present are not averaged out.

The focus of the study is on eastern Africa – Ethiopia,
Kenya, and Somalia (including the Somaliland region). We
selected six regions based on precipitation zones in which
the annual mean precipitation and seasonal cycle are homo-
geneous (Fig. 1a); livelihood zones (see Fig. 1b); and dis-
cussions with local experts from the Kenya Meteorological
Department, the National Meteorological Agency (NMA) of
Ethiopia, and the Famine Early Warning Systems Network
(FEWS NET). The regions are shown in Fig. 1 and listed in
Table 1. Data are annually and spatially averaged over the
study regions.

2.2 Datasets

For the four study variables, we use all readily available
datasets over the study area, provided that (i) the data are
sufficiently complete over a period long enough to be used

for trend calculations and (ii) the model data pass the vali-
dation tests (see Sect. 3). For this purpose, we use time se-
ries of at least 35 years. As the focus of this paper is on an-
nual timescales, using monthly data is sufficient. The obser-
vational and model datasets used in this study are shown in
Fig. 2 and listed in Tables 2 and 3 below (for brief descrip-
tions of the projects from which these data originate, see the
Supplement.) Note that we use the data as they are available
without applying any additional bias correction, resampling
or downscaling. Some of the data has undergone bias correc-
tion within their projects of origin, as described in the Sup-
plement.

The following subsections address the observational
datasets and modelling datasets in turn.

Observational datasets. For observations of precipitation
and daily mean near-surface temperature, we use gridded ob-
servational datasets and reanalyses.

For soil moisture and E0, no direct observations meet-
ing the above criteria exist. Instead, we use observational
estimates of soil moisture and E0 resulting from various
combinations of observational forcing data and models (see
Fig. 2a).

Observational series of soil moisture are few, generally too
short to use for trend analysis, and do not correlate well with
reanalysis or model data over eastern Africa (McNally et al.,
2016). It is therefore important to use multiple observation-
ally forced model estimates to span the large uncertainties
from inter-dataset differences. There being no a priori rea-
son to favour one soil moisture dataset over another, we treat
all resulting soil moisture datasets equally. For both observed
and modelled soil moisture datasets, we use the topmost layer
(see Fig. 2 for the depth of the topmost layer) provided by
each dataset, except for the model weather@home where the
available soil moisture variable is an integrated measure of
all four layers of soil moisture, including the deep soil. Each
time series is scaled to have a standard deviation of 1 in order
to make comparisons in trends possible.
E0 is a function of temperature, humidity, solar radiation,

and wind speed. Observational estimates of E0 used here
originate from reanalysis datasets or reanalysis-driven im-
pact models. For both observed and modelled E0, there are
various parameterizations, ranging from simple temperature-
or radiation-based schemes to sophisticated schemes based
on all the aforementioned components. Whilst the Penman–
Monteith scheme is often considered superior (e.g., Hobbins
et al., 2016), one is often constrained from using a Penman–
Monteith parameterization due either to the lack of accurate
or reliable input data or because the choice of E0 parameter-
ization within a given hydrological model setting is already
prescribed, as in the ISIMIP ensemble. We thus chose to use
a variety of E0 parameterizations (mostly the PET metric)
and input datasets in order to cover the range of possible E0
values and trends in E0. The E0 scheme used by each dataset
is noted in Fig. 2.
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Table 1. The six study regions. See also Fig. 1.

Region Long name Latitude Longitude Months of seasonal Primary livelihood zone
precipitation peak(s)

WE Western Ethiopia 7–14◦ N 34–38◦ E Aug agropastoral/mixed land

EE Eastern Ethiopia 8–13◦ N 38–43◦ E Apr, Jul/Aug pastoral

NS Northern Somalia/Somaliland region 5–12◦ N 43–52◦ E Apr/May, Oct pastoral
and eastern Ethiopia

NK Northern Kenya 2–4.5◦ N 34–41◦ E Apr, Oct/Nov pastoral

CK Central Kenya 1.5◦ S–1.5◦ N 35–38.5◦ E Apr, Nov agropastoral/mixed land

SS Southern Somalia 2◦ S–5◦ N 41–48◦ E Apr/May, Oct/Nov pastoral/agropastoral

Figure 1. (a) Annual mean precipitation [mm/d] and the six study regions. Note that only land values are used. (b) Livelihood zones, which
were also used to define the study regions. Reprinted from Pricope et al. (2013) with permission from Elsevier.

Modelled datasets. Most simulations stem from the
ISIMIP project, which provides output of the variables un-
der investigation for four different impact models driven by
four different GCMs. These simulations are complemented
by other readily available model runs (EC-Earth-PCRGLOB-
WB and weather@home) with different (but compatible)
framings.

Using these various observations and modelled datasets,
we cover a wide range of different factors that influence
E0 and soil moisture. The different factors include meteo-
rological forcing, model choice, RCP scenario for the green-
house gas concentration trajectory, E0 scheme, number of
soil layers and depth of topsoil layer, dynamic vegetation
modelling (LPJmL only), and transient versus time-slice runs
(see Sect. 3).

3 Methods

In this section, we first describe the method for detection and
attribution of trends in the four variables, including model
validation and the synthesis of observational and model re-
sults. Section 3.2 describes the assumptions and decisions
that are made concerning the data and model setup, and
Sect. 3.3 provides an example of how the method is applied
to real data.

3.1 Detection and attribution of trends

In this section we detect trends in observations and analyse
whether these trends, if present, can be attributed to human-
induced climate change. In doing so, the approach taken to
communicating uncertainty is as follows.

– Perform a multi-model and multi-observation analysis
that summarizes what we currently know using readily
available data and methods.

Earth Syst. Dynam., 12, 17–35, 2021 https://doi.org/10.5194/esd-12-17-2021
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Table 2. Observational data used in this study.

Observational
dataset

Full name Time period
used

Spatial resolu-
tion (◦ lat×
◦ long)

Citations(s)

Observational/reanalysis dataset

CenTrends (prcp) Centennial Trends dataset 1900–2014 0.1× 0.1 Funk et al. (2015)

CRU TS4 (temp) CRU TS4.01 1901–2018 0.5× 0.5 Harris et al. (2014)

Berkeley (temp) Berkeley Earth 1900–2018 1.0× 1.0 Rohde et al. (2013a, b)

ERA-I ERA-Interim 1979–2018 0.5× 0.5 Dee et al. (2011)

Observation-driven hydro/impact model

LPJmL-WFDEI
(soil moisture)

Lund-Potsdam-Jena managed
Land – WATCH-Forcing-Data-
ERA-Interim

1971–2010 0.5× 0.5 Bondeau et al. (2007); Rost
et al. (2008); Schaphoff et al.
(2013); Weedon et al. (2014)

PCRGLOB-
WFDEI (soil
moisture)

PCRaster GLOBal Water Bal-
ance model – WATCH-Forcing-
Data-ERA-Interim

1971–2010 0.5× 0.5 Sutanudjaja et al. (2018); Wee-
don et al. (2014)

CLM-ERA-I (soil
moisture, E0)

Community Land Model ver-
sion 4 – ERA-Interim

1979–2016 0.5× 0.5 Oleson et al. (2010)

CLM-WFDEI (soil
moisture, E0)

Community Land Model
version 4 – WATCH-Forcing-
Data-ERA-Interim

1979–2013 0.5× 0.5 Lawrence et al. (2011); Weedon
et al. (2014)

FLDAS (soil mois-
ture)

Famine Early Warning Systems
Network (FEWS NET) Land
Data Assimilation System

1981–2018 0.1× 0.1 McNally et al. (2017)

MERRA Ref-ET
(E0)

Modern-Era Retrospective
analysis for Research and
Applications Reference Evapo-
transpiration

1980–2018 0.125× 0.125 Hobbins et al. (2018)

– Apply simple evaluation techniques to readily avail-
able data, treating datasets that satisfy evaluation cri-
teria equally and rejecting the others.

– Communicate uncertainties from synthesis. A simple
“yes” or “no” is not appropriate if there is no signifi-
cant trend. Instead, the uncertainties (confidence inter-
vals) and their origin (e.g., natural variability or model
spread) are given.

We use a multi-method, multi-model approach to address
attribution. We use global mean surface temperature (GMST)
as a measure for anthropogenic climate change for calcu-
lating trends. We calculate trends for all variables, regions
and datasets and synthesize results into one overarching at-
tribution statement for each of the four variables (soil mois-
ture, precipitation, temperature, and E0) in each of the six
regions. We use this method, following the approach applied
in earlier studies on drought in eastern Africa (e.g., Philip
et al., 2018a; Uhe et al., 2018) and other drought- and heat-
attribution studies (e.g., Philip et al., 2018b; van Oldenborgh

et al., 2018; Kew et al., 2019; Sippel et al., 2016), as it repre-
sents the current state of the art in extreme event attribution.
The method is extensively explained in van Oldenborgh et al.
(2021), Philip et al. (2020), van Oldenborgh et al. (2018), and
van der Wiel et al. (2017).

In this study, for transient model runs and observational
time series, we statistically model (i.e., fit) the dependency
of annual means of the different variables on GMST (the
model GMST for models and GISTEMP surface temperature
GMST (Hansen et al., 2010) for observations and reanalyses)
as follows.

After inspection of whether a Gaussian or a General Pareto
Distribution fits the observational and reanalysis data best,
we use the following distributions.

– For soil moisture, a Gaussian distribution that scales
with GMST, focussing on low values.

– For precipitation, a General Pareto Distribution (GPD)
that scales with GMST, analysing low extremes.

https://doi.org/10.5194/esd-12-17-2021 Earth Syst. Dynam., 12, 17–35, 2021
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Figure 2. Datasets used in this paper. (a) Observational precipitation (prcp) and near-surface temperature (temp) datasets and (b) models.
Listed under E0 is the E0 scheme (T: Priestley–Taylor; M: Penman–Monteith; H: Hamon; B: bulk formula) and under SM is the depth of the
top soil moisture layer available (RD: depends on rooting depth, 0.1–1.5 m for WaterGAP2; IL: integrated over all layers). Shading indicates
an experiment with either multiple input datasets or multiple hydrological models. The number of resulting hydrological model simulations
are indicated by horizontal lines on the right side of the figure.

– For temperature, a Gaussian distribution that shifts with
GMST, focussing on high values.

– For E0, a Gaussian distribution that scales with GMST,
focussing on high values.

When the distribution is shifted, a linear trend α is fitted by
making the location parameter µ dependent on GMST as

µ= µ0+αT , (1)

with α in [units of the study variable]/K. When the distribu-
tion is scaled,

µ= µ0 exp(αT/µ0), (2)
σ = σ0 exp(αT/µ0), (3)

which keeps the ratio of the location and scale parameter
σ/µ invariant. In each case, the fitted distribution is eval-
uated twice: once for the year 1900 and once for the year
2018. Confidence intervals (CI) are estimated using a non-
parametric bootstrapping procedure. This allows us to cal-
culate the return period of an event as if it had happened in
the year 1900 or in the year 2018. To obtain a first-order ap-
proximation of the percentage change in the magnitude of the
study variable between the 2 reference years, α is multiplied

Earth Syst. Dynam., 12, 17–35, 2021 https://doi.org/10.5194/esd-12-17-2021
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Table 3. Model data used in this study.

Model dataset Full name Time period
used

Spatial resolu-
tion (◦ lat× ◦

long)

Citations(s)

GCM/RCM

GFDL GFDL-ESM2M, Geophysical
Fluid Dynamics Laboratory –
Earth System Model 2M

1861–2018 2.02× 2.5 Dunne et al. (2012, 2013)

HadGEM HadGEM2-ES, Hadley Centre
Global Environmental Model
version 2-ES

1859–2018 1.25× 1.88 Collins et al. (2011); Jones et al.
(2011)

IPSL IPSL-CM5A-LR, Institut Pierre
Simon Laplace – CM5A-LR

1850–2018 1.89× 3.75 Dufresne et al. (2013)

MIROC MIROC5, Model for Interdisci-
plinary Research on Climate –
version 5

1850–2018 1.4× 1.4 Watanabe et al. (2010)

EC-Earth EC-Earth 2.3 1850–2018 1.12× 1.125 Hazeleger et al. (2012)
w@h (temp, prcp, soil
moisture)

Weather@home 2005–2016 and
counterfactual
climate

0.11× 0.11 Massey et al. (2015); Guillod
et al. (2017)

Hydro/impact models

H08 (soil moisture, E0) H08 1861–2018 0.5× 0.5 Hanasaki et al. (2008a, b)

LPJmL (soil moisture,
E0)

Lund-Potsdam-Jena managed
Land model

1861–2018 0.5× 0.5 Bondeau et al. (2007); Rost
et al. (2008); Schaphoff et al.
(2013)

PCRGLOB (soil mois-
ture, E0)

PCRGLOB-WB, PCRaster
GLOBal Water Balance model

1861–2018 0.5× 0.5 Sutanudjaja et al. (2018)

WaterGAP2 (soil mois-
ture, E0)

Water Global Analysis and
Progress Model version 2

1861–2018 0.5× 0.5 Müller Schmied et al. (2016)

by 100 % times the change in GMST and divided by µ0 (for
the shift fit this is exact). Note that for some variables – e.g.,
precipitation – it is appropriate to scale rather than shift the
distribution with GMST (van Oldenborgh et al., 2021; Philip
et al., 2020). For the very large weather@home ensemble
simulations of actual and counterfactual climates, it is not
necessary to use a fitting routine as the large amount of data
permits a direct estimation of the trend. This also provides
an opportunity to check the assumptions made in the fitting,
notably that the values follow an extreme-value distribution
and that the distribution shifts or scales with the smoothed
GMST. We calculate trends for the time series of spatially
and annually averaged data of all four variables and all six
regions for all datasets by dividing the difference in the vari-
able between the two ensembles by the difference in GMST.

Figures 3 and 4 present the methods applied to transient
series and time slices, respectively. For reference and to aid
interpretation of the return-period diagrams, the magnitude
of a hypothetical event with a 20-year return period in the

year 2018, i.e., in the current climate, is shown as a hori-
zontal line or square. Reading the return period at which this
line crosses the fit for the reference year 1900 shows how fre-
quent an event with a 20-year return period in today’s climate
would have been at that time.

We only use results from model runs if they pass two dif-
ferent validation tests: a qualitative test on the seasonal cycle
and a stronger test on variability. For soil moisture, due to
the difficulties in obtaining reliable soil moisture measure-
ments (e.g., Liu and Mishra, 2017) and the differences be-
tween the observational (reanalysis) datasets, we cannot as-
sume that observational or reanalysis data are more accurate
than model data. Therefore we simply use the soil moisture
model data if the model input – precipitation and E0 – pass
the validation tests.

We perform only a qualitative validation of the seasonal
cycle. For each region, each variable, and each model we
check that the seasonal cycle resembles that of at least one of
the observational datasets, in terms of both the number and

https://doi.org/10.5194/esd-12-17-2021 Earth Syst. Dynam., 12, 17–35, 2021
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Figure 3. Illustrative examples of the fitting method for each variable for selected study regions: (a) FLDAS soil moisture (Gaussian fit, low
extremes, region WE); (b) CenTrends precipitation (GPD fit, low extremes, region CK); (c) Berkeley temperature anomaly (Gaussian fit, high
extremes, region NK); (d) MERRA E0 (Gaussian fit, high extremes, region NS). At the top of each panel the following information is given:
annually averaged data (stars) against GMST and fit lines – the location parameter µ (thick), µ±σ and µ±2σ (thin lines, Gaussian fits) and
the 6- and 40-year return values (thin lines, GPD fit). Vertical bars indicate the 95 % confidence interval on the location parameter µ at the 2
reference years 2018 and 1900. The magenta square illustrates the magnitude of an event constructed to have a 20-year return period in 2018
(not included in the fit). At the bottom of each panel the following information is given: return period diagrams for the fitted distribution and
95 % confidence intervals, for the reference years 2018 (red lines) and 1900 (blue lines). The annually averaged data is plotted twice, being
shifted or scaled with smoothed global mean temperature up to 2018 (red stars) and down to 1900 (blue stars). The magenta line illustrates
the magnitude of a hypothetical event with a 20-year return period in 2018.

the timing of peaks. If the seasonal cycle is very different, we
do not use the time series for that specific combination. This
is the case for the original GCM precipitation in region NK
for weather@home and in regions NK and CK for MIROC
(the seasonal cycle is improved in the adjusted dataset, so we

still use the time series in soil moisture) and for temperature
in region SS for EC-Earth (we do not have adjusted data to
check, so we do not use this model–region combination for
soil moisture or E0).

Earth Syst. Dynam., 12, 17–35, 2021 https://doi.org/10.5194/esd-12-17-2021
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Figure 4. Illustrative examples of the weather@home time slice model runs. (a) Annual mean precipitation [mm/d] in region WE. (b) Annual
mean temperature [◦C] in region CK. The red markers are for the present-day climate and the blue markers are for the climate in pre-industrial
times. The magenta line illustrates the magnitude of a hypothetical event with a 20-year return period in the present-day climate.

The second validation test is on the model variability in
precipitation and E0 (variability relative to the mean for vari-
ables that scale with GMST). If the model variability of a
specific variable in a specific region is outside the range of
variability calculated from observations or reanalyses, we do
not use that specific dataset for that specific region and vari-
able. For temperature, we relax the validation criteria on vari-
ability as it became clear during the analysis that the trend in
soil moisture does not depend strongly on temperature and
the trend in temperature agrees between models and obser-
vations. In two of the regions a strict validation resulted in
only two driving GCMs. Trends from the resulting time se-
ries that passed the validation tests are shown in Sect. 4 and
in the figures in the Supplement.

Using the large weather@home ensemble (which requires
no fitting), we check the assumption that annual soil moisture
and precipitation scale with GMST and temperature shifts
with GMST. For E0, we assume that the distribution scales
with GMST. In the weather@home ensemble, dry extremes
show less change than intermediate dry extremes, which sup-
ports our assumption that scaling with GMST is appropri-
ate (except for the higher return values, where the uncertain-
ties are large). For soil moisture it is very difficult to distin-
guish between scaling and shifting from the weather@home
ensemble because the trend is small. For temperature the
weather@home ensembles indicate that the highest temper-
atures are increasing slower than the lower temperatures.
This implies that the variability decreases with GMST; how-
ever, no consistent signal in the observations or other models
is evident (we see a small increase in variability with time
for Berkeley, a small decrease for CRU, and no consistency
between the models). This does not significantly affect the
trend, which is evaluated for the centre of the distribution.

Trends are presented as change in a variable per degree
of GMST warming. We show trends rather than probability

ratios, because we can derive finite ranges in confidence in-
tervals for all variables. This is not the case for the proba-
bility ratio, where, for example, strong trends in temperature
imply that mild extremes of the 2018 climate (e.g., a 1-in-20-
year event) would have had a chance of almost zero around
1900, resulting in very large probability ratios and extensive
extrapolation of the fit beyond the length of the dataset.

We synthesize the trends of all data that pass the valida-
tion tests in the following manner (see also Fig. 5). The ob-
servational (reanalysis) estimates are based on the same nat-
ural variability: the historical weather. They also cover sim-
ilar time periods. The uncertainties due to natural variability
(denoted as solid blue in the synthesis figures) are therefore
highly correlated. We approximate these correlations by as-
suming the natural variability to be completely correlated and
compute the mean and uncertainties as the average of the dif-
ferent observational estimates. The spread of the estimates is
a measure of the representation uncertainty in the observa-
tional estimate and is added as an independent uncertainty to
the natural variability (outlined black boxes). This results in
a consolidated value for the observations (reanalyses) drawn
in dark blue.

In contrast, model estimates have more uncorrelated nat-
ural variability: totally uncorrelated for coupled models and
largely uncorrelated for SST-forced models (the predictabil-
ity of annual mean precipitation given perfect SSTs is low
in eastern Africa). We approximate these correlations by tak-
ing the natural variability to be uncorrelated. The spread of
model results can be compared by the spread expected by the
natural variability by computing the χ2/dof statistic. If this is
greater than one, there is a noticeable model spread, which is
added in quadrature to the natural variability. This is denoted
by the white boxes in Fig. 5. The bright red bar indicates
the total uncertainty of the models, consisting of a weighted
mean using the (uncorrelated) uncertainties due to natural
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Figure 5. Illustrative examples of the synthesized values of trends per 1 K GMST rise for soil moisture [/K] (a), precipitation [mm/d/K] (b),
temperature [K/K] (c), and E0 [mm/d/K] (d) for region SS. Black bars are the average trends, coloured boxes denote the 95 % CI. Blue
represents observations and reanalyses, red represents models, and magenta represents the weighted synthesis. Coloured bars denote natural
variability, and white boxes also take representativity and model errors into account, if applicable (see Sect. 3). In the synthesis, the magenta
bar denotes the weighted average of observations and models and the white box denotes the unweighted average. Soil moisture trends are
based on standardized data; the other trends are absolute trends.

variability plus an independent common model spread added
to the uncertainty in the weighted mean.

Finally, observations and models are combined into a sin-
gle result in two ways. Firstly, we compute the weighted av-
erage of the synthesized values for models and observations,
neglecting model uncertainties beyond the model spread: this
is indicated by the magenta bar. However, we know that mod-
els in general struggle to represent the climate of eastern
Africa, so the model uncertainty is larger than the model
spread. Therefore, we also use the more conservative esti-
mate of an unweighted average of the synthesized values for
observations and models, which gives more weight to the ob-

servations. This is indicated by the white box around the ma-
genta bar. Whichever type of weighting is chosen, both the
best estimate and uncertainty ranges are communicated.

3.2 Assumptions and decisions

We made the following assumptions and decisions about the
data and model setup in addition to completing the model
evaluation to attain data of sufficient quality.

1. The CenTrends precipitation dataset includes many dif-
ferent sources of precipitation data and more stations
than most other datasets (Funk et al., 2015). We there-

Earth Syst. Dynam., 12, 17–35, 2021 https://doi.org/10.5194/esd-12-17-2021



S. F. Kew et al.: Impact of precipitation and increasing temperatures on drought trends in eastern Africa 27

fore assume it to be superior relative to other datasets
over our study region; it is therefore our only source of
observations of precipitation.

2. In general, we use the longest time series of data avail-
able. We make exceptions in the starting year based on
visual inspection of abrupt changes due to data limita-
tions toward the beginning of the time series.

a. We use Berkeley starting from 1900, except in re-
gion SS, where we start in 1920.

b. We use CRU starting from 1901, except in regions
NK, CK, and SS, where we start in 1940.

3. Across our study region, no realistic soil moisture
dataset exists covering a long-enough time period to cal-
culate trends. Therefore we do not select simulations
based on evaluation criteria other than selecting runs
based on precipitation and E0 evaluation in the input
variables.

4. As models do not share a consistent set of soil moisture
levels, we take the top level of each model, assuming
that this is the most comparable level across models. We
checked for LPJmL – the only selected ISIMIP hydro-
logical model that has more than one level available for
soil moisture – that the variability does not change sig-
nificantly when integrating over multiple levels instead
of using level 1.

5. Within the ISIMIP project, variables required by the hy-
drological models, including precipitation and tempera-
ture, were bias-corrected and the adjusted data was used
to calculate E0 and to drive the hydrological models
to output soil moisture. In the synthesis, however, we
present results for precipitation and temperature based
on the unadjusted data, on the principle that this better
spans the range of model uncertainty in these variables.
The bias correction applied in ISIMIP aims to conserve
the original trend (Hempel et al., 2013). Therefore, we
find little change in trend for most time series.

6. In using our variety ofE0 metrics, we do not convert ref-
erence evapotranspiration (such as that drawn from the
MERRA-2 dataset (Hobbins et al., 2018) to PET, nor
do we use crop coefficients to convert reference evap-
otranspiration to crop evapotranspiration because do-
ing so would not be relevant to the research purposes.
Our study is only interested in evaporative demand in
its purest sense – i.e., as the atmospheric control driving
upward moisture flux in the land–atmosphere system. In
any case, crop coefficients we used would be (i) so in-
accurate as to be meaningless at the large spatial scales
of our analysis and (ii) different for each of the different
metrics of E0 that we use. The ensemble of E0 values
generated by our variety of E0 metrics will ensure that
significant trends generated are robust.

7. We focus on the historical time frame. Therefore the
trends in different RCP and socio-economic scenarios
will be relatively similar to each other. The forcing data
is the same for the years 1860–2005 and only differs for
the most recent years from 2006 onwards. In general,
however, using different scenarios can be seen as an ad-
vantage, as a greater range of scenario uncertainty will
be spanned.

a. We use RCP6.0 in ISIMIP as this choice resulted
in the largest number of simulations and RCP8.5 in
EC-Earth as this was the only scenario available.

b. We selected the “historical” socio-economic sce-
nario in ISIMIP model runs for 1860–2005 and
“2005soc” for 2006–present; for H08, historical
was unavailable for years 1860–2005, so we instead
used 2005soc for those years and for years 2006–
present. For the WFDEI experiments, 2005soc was
unavailable, so we used historical before 2006 and
“varsoc” for the years 2006–2018.

8. Trends are calculated or extrapolated using all data up to
2018 and between the pre-industrial era (1900) and the
present (2018). Weather@home is an exception, where
trends are calculated between two stationary climates
of the present and the pre-industrial era. Differences in
trends can arise due to different time periods and lengths
of datasets, which are generally shorter for observa-
tional series and reanalyses than for model simulations.
However, we consider the use of all available observa-
tional and reanalysis data and different model framings
to lead to a more complete and robust attribution state-
ment.

9. We analyse January–December annual means. Based on
the seasonal cycles of precipitation and temperature, for
all regions except for the region WE (which has a sin-
gle rainy season) we could also have chosen to analyse
July–June annual means instead. The influence of this
choice on the trends is low (see also Sect. 3.3).

10. For consistency in the method, we fit the variability as
a constant over time for all data. In both observed time
series and simulations we see very little or no trend in
variability up to 2018.

11. If for observational data a Gaussian fit is the best fit, we
also fit model data to a Gaussian, even if a GPD is a bet-
ter fit for that data. In doing this we avoid erroneous
comparisons between the variable mean and variable
extreme. We checked for model runs in which this dis-
parity occurs but found that in most cases the trend cal-
culated from fitting model data to a GPD was not very
different from the trend calculated from fitting model
data to a Gaussian.
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3.3 Illustrative examples

In this section we show an example to illustrate the method
of detection of trends in precipitation data, as drought is of-
ten experienced as reduced or failed rainy seasons. For this
purpose, we calculated return periods and risk ratios of re-
cent droughts defined as low-precipitation events on an an-
nual timescale (see Table 4). Note that the risk ratios are
calculated from CenTrends alone and are not synthesized
values based on a multi-model analysis. The synthesis of
observations with models follows in the next section. We
chose events based on the Emergency Events Database (EM-
DAT) – an extensive global database of the occurrence of,
and effects incurred from, extreme weather events – and
the time series calculated from CenTrends (up to Decem-
ber 2014 only, which excludes the recent droughts of 2015
and 2016/2017). For the three northern study regions (WE,
EE, and NS) we chose the year 2009, in which the first rainy
season failed (in region WE, where there is only one peak
in precipitation, the whole season had slightly lower precip-
itation amounts). For the southern three study regions (CK,
NK, and NS) we choose the year 2005, in which the sec-
ond rainy season failed. Additionally, we also investigated
the well-known 2010/2011 drought for the regions NK and
SS. As this drought occurred from late 2010 to early 2011
(the second part of 2011 was in fact very wet), we define the
annual period of this specific 2010/2011 analysis to be July–
June.

Taking region WE as an example, the results show that in
CenTrends the trend in precipitation between 1900 and 2018
is −0.09 mm/d/K (95 % CI −0.51 to 0.14 mm/d/K). With a
change in GMST of 1.07 K and a mean precipitation in 1900
of 3.2 mm/d, this is similar to a change of 3 %. Thus, if an
event with the same precipitation amount as in the year 2009
had happened again in 2018 it would have been a 1-in-30-
year event (95 % CI 2 to 400) in 2018, whereas in 1900 it
would have been a 1-in-80-year event (95 % CI 30 to 1400),
corresponding to a probability ratio of 2.5 (95 % CI 0.2 to
380). A return period that decreases in time indicates that
such extreme droughts are becoming slightly more common;
however, in this example we see large uncertainties consis-
tent with no change. Note that the trend and probability ratio
are not significantly different from zero at p < 0.05. The re-
sults for all regions are summarized in Table 4. (We note that
the trends calculated for the January–December events and
for the July–June events in regions NK and SS respectively
are not significantly different. This supports the decision to
analyse January–December annual extremes only.)

4 Synthesis results

In this section, we illustrate the synthesis method. Interme-
diate synthesis figures, which show not only the overall syn-
thesis but also the results for individual models, are presented
for the region SS for each of the four variables; the interme-

Figure 6. Summary of the synthesized values for (a) soil moisture
in [/K], (b) precipitation in [mm/d/K], (c) temperature in [K/K], and
(d) E0 in [mm/d/K] in the six regions. The magenta bars denote the
weighted averages of observations and models, and the white boxes
denote the unweighted averages.

diate synthesis figures of all six regions can be found in the
Supplement. Table 5 and Fig. 6 summarize final synthesized
findings for all regions. Using both the intermediate and final
synthesis results, we first draw conclusions based on different
GCMs and hydrological models and then turn to conclusions
for each variable.

First, we look for consistent behaviour in the trends from
individual GCMs across the four variables. We note that the
results from low-resolution GCMs do not consistently stand
out compared to higher-resolution models and also over-
lap with observational uncertainty. Some general conclusions
about the different GCMs are as follows: (i) for GCM-driven
model runs with stronger positive trends in temperature, there
is a tendency for the positive trends in E0 also to be stronger
and vice versa for weaker trends; (ii) the uncertainty in pre-
cipitation trends is high compared to the trend magnitudes,
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Table 4. Trends, return periods, and probability ratios of equivalent events in the year 2018 and 1900 for three recent drought events registered
in the EM-dat database (2005, 2009, and 2010/2011), based on annual average precipitation (mm/d) from the CenTrends dataset. The 95 %
confidence intervals are given between brackets. For each study region impacted by the events, the annual precipitation for the event year
(Prcp, used to define the event magnitude) and the 1900–2014 climatological precipitation average (ClimPrcp) is given. The asterisk ∗ denotes
that July–June is taken instead of January–December to define a year.

Region Event year Prcp ClimPrcp Trend [mm/d/K] Return period in Return period in Probability ratio
1900–2014 2018 1900

WE 2009 2.94 3.38 −0.09 (−0.51 to 0.14) 30 (2 to 400) 80 (30 to 1400) 2.5 (0.2 to 380)
EE 2009 1.49 1.84 −0.03 (−0.35 to 0.07) 40 (3 to 340) 50 (25 to 560) 1.4 (0.4 to 70)
NS 2009 0.42 0.63 0.07 (−0.08 to 0.12) 80 (4 to 300) 10 (5 to 46) 0.13 (0.03 to 6.7)
NK 2005 0.77 1.10 −0.07 (−0.26 to 0.12) 5 (2 to 30) 10 (5 to 22) 1.9 (0.3 to 6.5)
CK 2005 1.75 2.39 0.04 (−0.55 to 0.43) 29 (3 to 200) 22 (12 to 63) 0.77 (0.11 to 14)
SS 2005 0.74 1.09 0.03 (−0.12 to 0.22) 29 (4 to 470) 17 (6 to 47) 0.61 (0.02 to 7.80)
CK 2010/2011∗ 0.51 1.10 0.16 (−0.30 to 0.27) 650 (10 to 20 000) 130 (53 to 2200) 0.21 (0.03 to 64)
SS 2010/2011∗ 0.53 1.09 0.02 (−0.31 to 0.21) 300 (12 to 40 000) 230 (90 to 8100) 0.77 (0.03 to 80)

Table 5. Summary of synthesis results for each region and study
variable. Note that “0” means no significant change, a “+” sign in-
dicates a positive trend, and a “−” sign indicates a negative trend.
The uncertainties associated with each result are depicted in Fig. 6.

Region Soil Precipitation Temperature E0
moisture

WE 0/+ 0/+ + +

EE 0 0 + +

NS 0/+ + + +

NK 0/+ 0/+ + 0/+
CK 0/+ 0 + 0/+
SS 0/+ 0/− + +

which partially explains why a clear relation with soil mois-
ture trends is not evident; and (iii) no clear relation between
local temperature trends and soil moisture trends is evident.

Looking at the different hydrological models, we conclude
that the trend in PCR-GLOBWB E0, which uses the Hamon
E0 scheme that depends only on temperature, is generally
higher than the trend in EC-Earth E0, which uses the more
complex Penman–Monteith E0 scheme that additionally de-
pends on humidity, wind speed, and solar radiation. Using
this more complex scheme can influence the trend in soil
moisture, especially in wetter regions.

The analyses of the individual model runs, stratifying by
GCM or hydrological model, do not lead to a clear conclu-
sion on the relation between the trends in soil moisture, pre-
cipitation, temperature, andE0. We therefore turn to the anal-
ysis of the synthesized values (see Table 5 and Fig. 6 for a
summary of the outcome and Figs. 5 and S1 to S6 in the
Supplement for synthesis diagrams). Table 5 summarizes the
interpretation of the synthesized results shown in Fig. 6. The
more the magenta bar is centred in the white box, the better
the models agree with observations and the more we trust our
attribution statement.

For soil moisture we find no significant synthesized trends:
there is practically no change in region EE and no trend to a
small, positive but non-significant trend in regions WE, NS,
NK, CK and SS.

For precipitation, regions WE and NK show a positive
but non-significant trend, although in region WE models and
observations only partially overlap. In region NS there is a
small positive trend, regions EE and CK show no trend (for
EE only with partial overlap of models and observations),
and region SS shows a negative, non-significant trend.

As expected from global climate change, the local an-
nually averaged temperatures all have a significant positive
trend, with best estimates between 1.0 and 1.3◦ per degree of
GMST increase. Related to this, trends in E0 are also posi-
tive in four of the six regions but lower than for temperature
and generally have larger confidence intervals. The regions
NK and CK are the exceptions. Although weighted averages
show positive trends, models show tendencies opposite to the
observations. This incompatibility renders the results uncer-
tain.

We can identify the following relationships between differ-
ent variables: (i) precipitation trends have a (small) influence
on soil moisture trends in regions WE, NS, and NK; (ii) in
regions WE, EE, NS, NK, and CK, temperature and E0 have
no discernible influence on soil moisture trends; (iii) in re-
gion SS, the non-significant negative trend in precipitation
does not lead to lower soil moisture and neither do the trends
in temperature or E0. While it would be desirable to link the
overall findings to differences in regional climate, the dif-
ferences in the synthesized results between regions are too
small relative to confidence intervals to be able to say any-
thing meaningful. It was nevertheless necessary to divide the
study area into homogeneous regions, so that extremes expe-
rienced within each region are representative for that region
and inhomogeneity is not influencing the location of the oc-
currence of extremes.
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5 Discussion

In this section, we interpret our results in the light of how our
choices and assumptions may have influenced the outcomes
and we compare them to previous studies.

Whilst it may be preferable to use soil moisture as a
drought indicator, observations and simulations of precipi-
tation are more reliable in this region (Coughlan de Perez
et al., 2019). Precipitation has a large influence on agricul-
tural droughts and is therefore appropriate to use in attri-
bution studies in eastern Africa, supplementing the analy-
sis of soil moisture. The outcome of previous studies that
have focussed on precipitation deficits only (e.g., Philip et al.,
2018a; Uhe et al., 2018) are thus still relevant and compare
well with our results, i.e., that no consistent significant trends
in droughts are found. A comparison between seasonal cy-
cles of the different variables (averaging the monthly means
over recent decades) shows that the seasonal cycle of soil
moisture is similar to that of precipitation in all six study re-
gions. In contrast, the inverse seasonal cycle of temperature
is not similar to that of soil moisture. Whether the E0 sea-
sonal cycle reflects elements of the soil moisture cycle or not
depends on the E0 scheme used: temperature- or radiation-
based schemes show a seasonal cycle that is similar to that of
temperature, whereas more advanced schemes reflect a mix-
ture between the seasonal cycles of precipitation and temper-
ature, as they also synthesize the seasonal cycle in humidity,
which is strongly correlated to that of precipitation. We thus
conclude that the influence of precipitation on soil moisture
is higher than that of temperature or most E0 schemes. This
is supported by the synthesized results that show negligible
or no trends in soil moisture and precipitation, whereas the
trends in temperature and E0 are strongly positive.

If temperature has an influence on trends in soil moisture
(through E0), we expect to see that the positive trend in tem-
perature is coupled to a drying soil moisture trend. As we
average over the annual scale, we may miss parts of the sea-
son when this effect is strongest. Therefore, we selected a
region and period outside the rainy season in which the sea-
sonal peak in temperature corresponds to a dip in soil mois-
ture (region CK, months February–March) to inspect sub-
annual trends (not shown). Even then, we find that there is
no negative trend in soil moisture accompanying the positive
temperature trends.

We study drought trends on annual as opposed to sub-
annual timescales, as long-term drought presents a greater
risk for food security. On the annual timescale, we do not
see strong explanatory relationships between the trends in the
four studied variables (soil moisture, precipitation, tempera-
ture, and E0). To gain insight into the relationships between
the variables, we additionally looked at correlations on a
sub-annual timescale. Simple correlations between monthly
soil moisture, precipitation, temperature, and E0 (not shown)
support the conclusions of Manning et al. (2018) on the influ-
ence of precipitation andE0 on soil moisture at water limited

sites in Europe. They found that at water-limited sites the in-
fluence of precipitation on soil moisture is much larger than
that of temperature via E0. In our study, we find the same
for the driest regions and the driest months in the wetter re-
gions, and for the more temperature-based E0 schemes. This
is presumably because temperature-based schemes (such as
the Hamon approach) do not reflect land surface–atmosphere
interactions as well as those that are also driven by humidity
and wind speed (such as the Penman–Monteith approach) or,
to a lesser degree, by radiation (such as the Priestley–Taylor
approach).

Previous studies have shown that both the E0 scheme
and their input data can have a large influence on E0 val-
ues (Trambauer et al., 2014; Wartenburger et al., 2018).
We confirm this using the CLM-ERA-PT (Priestley–Taylor),
CLM-WFDEI-PT, and CLM-ERA-PM (Penman-Monteith)
datasets (not shown). In our study regions,E0 values are con-
sistently higher when using PM than when using PT. The dif-
ferences in trends in E0 using ERA or WFDEI input or using
PT or PM input are sometimes significant. However, compar-
ing study regions, there is no consistency in the difference; in
four out of the six regions the PM data shows a higher trend
than the PT data, and in four out of the six regions WFDEI
data shows a higher trend than the ERA data.

A study by Rowell et al. (2015) discussed the possibility
that climate model precipitation trends in East Africa are in-
fluenced by the inability of the models to reliably represent
key physical processes. Rainy seasons in this region are gov-
erned by large-scale processes, such as El Niño-Southern Os-
cillation (ENSO) dynamics and the shifting of the Intertrop-
ical Convergence Zone (ITCZ). We view the tests we per-
form on seasonal cycle and frequency distributions, which
provide some assurance that large-scale physical processes
are reasonably well described, to be a minimum requirement
for model validation. To improve the performance of mod-
els and to understand the discrepancies between models and
observations, a much more thorough investigation into the
models’ representation of physical processes and feedbacks
is required, such as demonstrated by James et al. (2018) and
encouraged by the IMPALA (Improving Model Processes
for African Climate) project (https://futureclimateafrica.org/
project/impala/, last access: last access: 9 November 2018).

In the long term, a trend in E0 only has meaning for
crop growth if there is water available for evapotranspira-
tion. Much of eastern Africa is in a water-limited hydrocli-
mate, requiring irrigation for crop growth. In irrigated ar-
eas within larger water-limited regions, the increased wa-
ter availability shifts the local hydroclimate away from the
surrounding water-limited regime towards a locally energy-
limited regime. Positive trends inE0 seen in our analyses (es-
pecially if the variety of different schemes produces a robust
E0 trend) could then signify a trend in actual ET and would
therefore be accompanied by an increase in both irrigation
water demand and, if that demand can be met, in crop growth.
However, it should be noted that irrigation is not accounted
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for by the models or reanalysis datasets used here. Trends
in E0 away from irrigated regions (i.e., in water-limited re-
gions) will generally denote lower ET rates (through the
complementary dynamics between E0 and ET that dominate
in such regions), higher sensible heating of the atmosphere
from a drier surface, and consequent greater drought expo-
sure.

There are some factors influencing droughts and attribu-
tion results that are beyond the scope of this paper. For exam-
ple, there is some evidence that warm spells are increasing in
length, particularly in Ethiopia and the northern Somalia and
Somaliland region (Gebrechorkos et al., 2019), as is the num-
ber of consecutive dry days in some parts of eastern Africa,
which may have an impact on drought length and increase
the rapidity of onset and the intensity of drought (Trenberth
et al., 2014).

Furthermore, it is likely that increasing temperatures have
a negative impact on food security during droughts through,
e.g., decreased immunity of livestock, or increased water
demand for cooling and water supply (Gebrechorkos et al.,
2019, and references therein). In addition, in regions suffer-
ing from recent meteorological drought, non-meteorological
factors such as increasing population and land-use changes
also play a role in worsening the declining vegetation con-
ditions, even after precipitation returns to normal (Pricope
et al., 2013).

It is also still unknown how vegetation will respond to
substantial increases in CO2 concentration. Two counteract-
ing effects – physiological (restriction of stomatal openings
leading to decreased evapotranspiration) and structural (in-
creased leaf area leading to more stomata and increased evap-
otranspiration) responses – are expected, but their net effect
is unknown (e.g., Wada et al., 2013). There are indications
that “dynamic vegetation models” that include these CO2 ef-
fects show a weaker response of drought to climate change
(Wada et al., 2013; Prudhomme et al., 2014). One of the hy-
drological models used in this study (LPJmL) uses dynamic
vegetation modelling but there were no notable effects.

6 Conclusions

In this first multi-model, multi-method attribution study us-
ing several drought estimates in eastern Africa, we address
the recurring question on whether increasing global temper-
atures exacerbate drought. Previous attribution studies for the
eastern Africa region have examined drought from a meteo-
rological perspective (precipitation deficit) and have found
no clear trends above the noise of natural variability. In this
study, we examined trends in eastern African drought from
an agricultural perspective (soil moisture) as well as the me-
teorological perspective (precipitation, temperature, and E0
for six regions in eastern Africa. We also investigate whether
global-warming-driven trends in these meteorological vari-
ables can be seen to contribute to trends towards drier soils.

In this section, we draw conclusions for each variable in turn
and make recommendations.

Of the four studied variables, soil moisture is most closely
related to food security via crop health. In standardized soil
moisture data, we found no discernible trends. The uncer-
tainties in trends from model runs were found to be large,
and there are no long observational runs available. This em-
phasizes that the use of an ensemble of models is imperative.
Due to the large uncertainties in both soil moisture observa-
tions and simulations, we find no trend emerging from natu-
ral variability.

Precipitation was found to have a stronger influence than
temperature or E0 on soil moisture variability, especially in
the drier study regions (the significant positive trend in tem-
perature is not reflected by a decrease in soil moisture). How-
ever, the confidence intervals on precipitation trend estima-
tions are large and no clear trend is evident.

As expected from the increase in global temperatures, we
find significant positive trends in local temperatures in all six
regions. The synthesized trend is between 1.0 and 1.3 times
the trend in GMST, which corresponds to a local temperature
rise of 1.1 to 1.4◦ from pre-industrial times to 2018. How-
ever, the influence of this warming on annual soil moisture
trends appears limited.

Soil moisture is more directly linked to E0 (via ET) than
it is to temperature. Trends in E0 are predominantly pos-
itive, although in the regions NK and CK the uncertainty
in this trend is large. This generally agrees with the posi-
tive trends in temperature. Similar to the results for temper-
ature, we do not find strong relations between trends in E0
and soil moisture. Nevertheless, the results can still be of in-
terest, both for irrigated regions where crop growth is lim-
ited only by meteorological conditions and for water-limited
regions where the availability of water to evaporate greatly
constrains forage growth. Due to large differences in results
from different hydrological model runs, we recommend that
E0 attribution analyses be carried out using an ensemble
of hydrological models. These should use various (observa-
tional) input datasets and driving GCMs, although the de-
cision to cover various E0 schemes is a trade-off between
the desire to be representative of the uncertainty surrounding
all approaches currently in use to not bias results towards a
particular method (which is what we leant towards here by
including, for example, the temperature-based Hamon ap-
proach) and the need to adhere to physical rigour in using
the complete suite of drivers and an E0 parameterization that
reflects all relevant dynamics (e.g., in the Penman–Monteith
approach).

We conclude that although soil moisture is the preferred
indicator of agricultural drought, we recommend that any soil
moisture analysis be supplemented with precipitation analy-
sis due to the superior reliability of precipitation measure-
ments and the large influence of precipitation on drought in
this region. Besides, soil moisture also has a physical lower
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limit: once the soil is dry it will remain dry. In water-limited
regions an analysis of precipitation is thus a helpful addition.

Finally, communication of the uncertainties in the analy-
ses of soil moisture, precipitation, temperature, and E0 (and
any drought indicators) to policy makers, the media, and
other stakeholders is crucial. Decision-makers need to prop-
erly weight and synthesize streams of potentially competing
information from the variety of models, but without insight
into the uncertainties in trends in the different drought indi-
cators, they are missing this crucial information. They need
to know how much the scientists trust their own conclusions,
lest results be misinterpreted and conclusions become mean-
ingless.
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