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Abstract

The capability of a robot to create a map of its workspace on the fly, while constantly updating
it and continuously estimating its motion in it, constitutes one of the central research problems
in mobile robotics and is referred to as Simultaneous Localization And Mapping (SLAM) in the
literature. Relying solely on the sensor-suite onboard the robot, SLAM is a core building block
in enabling the navigational autonomy necessary to facilitate the general use of mobile robots
and has been the subject of booming research interest spanning over three decades. With the
largest body of related literature addressing the challenge of single-agent SLAM, it is only very
recently, with the relative maturity of this field that approaches tackling collaborative SLAM
with multiple agents have started appearing. The potential of collaborative multi-agent SLAM
is great; not only promising to boost the efficiency of robotic missions by splitting the task at
hand to more agents but also to improve the overall robustness and accuracy by boosting the
amount of data that each agent’s estimation process has access to.
While SLAM can be performed using a variety of different sensors, this thesis is focused on
the fusion of visual and inertial cues, as one of the most common combinations of sensing
modalities in robotics today. The information richness captured by cameras, along with the
high-frequency and metric information provided by Inertial Measurement Units (IMUs) in com-
bination with the low weight and power consumption offered by a visual-inertial sensor suite
render this setup ideal for a wide variety of applications and robotic platforms, in particular to
resource-constrained platforms such as Unmanned Aerial Vehicles (UAVs). The majority of the
state-of-the-art visual-inertial estimators are designed as odometry algorithms, providing only
estimates consistent within a limited time-horizon. This lack in global consistency of estimates,
however, poses a major hurdle in an effective fusion of data from multiple agents and the practi-
cal definition of a common reference frame, which is imperative before collaborative effort can
be coordinated. In this spirit, this thesis investigates the potential of global optimization, based
on a central access point (server) as a first approach, demonstrating global consistency using
only monocular-inertial data. Fusing data from multiple agents, not only consistency can be
maintained, but also the accuracy is shown to improve at times, revealing the great potential of
collaborative SLAM. Aiming at improving the computational efficiency, in a second approach
a more efficient system architecture is employed, allowing a more suitable distribution of the
computational load amongst the agents and the server. Furthermore, the architecture imple-
ments a two-way communication enabling a tighter collaboration between the agents as they
become capable of re-using information captured by other agents through communication with
the server, enabling improvements of their onboard pose tracking online, during the mission.
In addition to general collaborative SLAM without specific assumptions on the agents’ relative
pose configuration, we investigate the potential of a configuration with two agents, carrying
one camera each with overlapping fields of view, essentially forming a virtual stereo camera.
With the ability of each robotic agent to move independently, the potential to control the stereo
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Abstract

baseline according to the scene depth is very promising, for example at high altitudes where
all scene points are far away and, therefore, only provide weak constraints on the metric scale
in a standard single-agent system. To this end, an approach to estimate the time-varying stereo
transformation formed between two agents is proposed, by fusing the egomotion estimates of
the individual agents along with the image measurements extracted from the view-overlap in a
tightly coupled fashion. Taking this virtual stereo camera idea a step further, a novel collabo-
ration framework is presented, utilizing the view-overlap along with relative distance measure-
ments across the two agents (e.g. obtained via Ultra-Wide Band (UWB) modules), in order to
successfully perform state estimation at high altitudes where state-of-the-art single-agent meth-
ods fail. In the interest of low-latency pose estimation, each agent holds its own estimate of the
map, while consistency between the agents is achieved using a novel consensus-based sliding
window bundle adjustment. Despite that in this work, experiments are shown in a two-agent
setup, the proposed distributed bundle adjustment scheme holds great potential for scaling up
to larger problems with multiple agents, due to the asynchronicity of the proposed estimation
process and the high level of parallelism it permits.
The majority of the developed approaches in this thesis rely on sparse feature maps in order to
allow for efficient and timely pose estimation, however, this translates to reduced awareness of
the spatial structure of a robot’s workspace, which can be insufficient for tasks requiring careful
scene interaction and manipulation of objects. Equipping a typical visual-inertial sensor suite
with an RGB-D camera, an add-on framework is presented that enables the efficient fusion of
naturally noisy depth information into an accurate, local, dense map of the scene, providing
sufficient information for an agent to plan contact with a surface.
With the focus on collaborative SLAM using visual-inertial data, the approaches and sys-
tems presented in this thesis contribute towards achieving collaborative Visual-Inertial SLAM
(VI-SLAM) deployable in challenging real-world scenarios, where the participating agents’ ex-
periences get fused and processed at a central access point. On the other side, it is shown that
taking advantage of specific configurations can push the collaboration amongst the agents to-
wards achieving greater general robustness and accuracy of scene and egomotion estimates in
scenarios, where state-of-the-art single-agent systems are otherwise unsuccessful, paving the
way towards intelligent robot collaboration.
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Zusammenfassung

Die Fähigkeit eines Roboters eine Umgebungskarte zu erstellen, diese kontinuierlich zu aktual-
isieren und seine Eigenbewegung innerhalb dieser Karte abzuschätzen bildet eine der zentralen
Forschungsfragen in der mobilen Robotik und wird als Simultaneous Localization And Map-
ping (SLAM) bezeichnet. Da hierzu lediglich die im Roboter intergrierten Sensoren benötigt
werden, stellt SLAM ein Kernbaustein zur Ermöglichung autonomer Navigation, und somit dem
praktischen Einsatz von mobilen Robotern, dar und ist eines der florierenden Forschungsinter-
essen der letzten drei Dekaden. Während sich der Grossteil der Literatur mit SLAM für einzelne
Agenten befasst, wurde erst vor kurzem damit begonnen die Zusammenarbeit mehrerer Agen-
ten für SLAM zu untersuchen. Das Potential für kollaborativen Multi-Agenten SLAM ist gross,
einerseits ermöglicht das Aufteilen einer Aufgabe auf mehrere Agenten eine Mission effizien-
ter zu erledigen, andererseits kann aufgrund der umfassenderen Datenmenge auf welche jeder
Agent Zugang hat die Robustheit und Genauigkeit gefördert werden.
Während SLAM prinizipiell mit einer Vielzahl von Sensoren möglich ist, lag der Fokus dieser
Dissertation auf der Kombination von visuellen und inertialen Sensoren. Die Information-
sreichhaltigkeit von Kameras zusammen mit der hochfrequenten, metrischen Information von
Beschleunigungssensoren in Kombination mit dem tiefen Gewicht und dem geringen Energie-
verbrauch des Set-ups sind ideale Vorraussetzungen um dieses auf einer vielzahl von Robotern
einzusetzen, im Speziellen auf Plattformen mit eingeschränkten Ressourcen wie zum Beispiel
Drohnen. Ein Grossteil der visuell-inertialen Algorithmen kann lediglich lokal konsistente
Ergebnisse erzielen. Die fehlende globale Kohärenz der Schätzung, erweist sich jedoch als
problematisch bei der Definition eines globalen Bezugsystems, welches allerdings unerlässlich
für die Koordination von mehreren Agenten ist. Aus diesem Grund untersucht diese Disser-
tation als einen ersten Ansatz das Potential von globaler Optimierung, basierend auf einem
zentralen Zugangspunkt (Server) und zeigt mögliche Ansätze zur global konsistenten Trajek-
torienschätzung mittels visuell-inertialen Daten auf. Das Potential von kollaborativem-SLAM
wurde mittels Zusammenführung der Daten mehrerer Agenten aufgezeigt. Die Robustheit der
Schätzung wurde hierbei erhalten, während die Genauigkeit verbessert werden konnte. In einem
zweiten Ansatz wurde eine effizientere Server Architektur gewählt, welche eine verbesserte Bal-
ance der erforderlichen Rechenarbeit zwischen Server und Agenten ermöglicht. Nebst einer Ef-
fizienzsteigerung können aufgrund der implementierten wechselseitigen Kommunikation eben-
falls Daten anderer Agenten zur verbesserten Schätzung verwendet werden, was zur erhöhten
Genauigkeit der Positionsschätzungen der einzelnen Agenten im Verlauf einer Mission beiträgt.
Zusätzlich zur generischen Betrachtung des kollaborativen-SLAM Problems, welches keine
Annahmen bezüglich der relativen Positionierung der Agenten macht, wurde spezifisch die
Konfiguration zweier Agenten, jeweils ausgestattet mit einer monokularen Kamera, betrachtet,
bei welchen eine Ansichtsüberlappung existiert. Durch die Fähigkeit der Agenten sich unab-
hängig voneinander zu positionieren, kann die Stereo-Basisweite zwischen den beiden Agen-
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Zusammenfassung

ten dynamisch an die Szenentiefe angepasst werden. Dieser Ansatz erweist sich von grossem
Nutzen in Flughöhen, in welchen Systeme, bestehend aus einzelnen Agenten, die metrische
Skalierung der Trajektorie nur schlecht abschätzen können. Als erster Ansatz zur Schätzung
der zeitlich variierenden Stereo-Transformation zwischen den zwei Agenten, wurden die indi-
viduellen Schätzungen der Eigenbewegungen unter Einbezug der Ansichstüberlappung zusam-
mengeführt. Um diese Idee einer virtuellen Stereokamera noch einen Schritt weiter zu führen
wurde ein neuartiges System vorgestellt, welches zusätzlich zu den Bildbeobachtungen aus den
Ansichtsüberlappungen ebenfalls relative Entfernungsmessungen zwischen den Agenten in die
Zustandsschätzung miteinbezieht. Hierdurch werden erfolgreiche Schätzungen in Flughöhen
möglich, in welchen, nach dem aktuellen Stand der Technik, konventionelle Systeme mit einzel-
nen Agenten scheitern. Um eine geringe Latenz für die Positionsschätzung zu erzielen, errech-
nen beide Agenten ihre eigene Schätzungen der Umgebungskarte, während die Kohärenz der
Schätzungen zwischen den beiden Agenten durch ein neuartiges konsensus-basiertes Bundle
Adjustment erreicht wird. Aufgrund des hohen Grades an möglicher Parallelisierung und der
asynchronen Natur des Algorithmus, ist das vorgeschlagene konsensus-basierte Bundle Adjust-
ment in Bezug auf die Skalierbarkeit hinzu grösseren System äusserst vielversprechend.
Die Mehrheit der vorgestellten Algorithmen befasst sich mit der zentralen Frage einer effizien-
ten Positionsschätzung anhand von spärlichen 3D Merkmalen. Für manche Tätigkeiten, wie
beispielsweise das Interagieren mit der Umgebung, oder das Manipulieren von Objekten, er-
weist sich die Abwesenheit an Information zwischen den spärlichen 3D Merkmalen als prob-
lematisch. Um dies anzugehen, wurde ein Erweiterungsframework präsentiert, welches durch
die Augmentierung eines typischen visuell-inertialen Systems durch eine RGB-D Kamera eine
akkurate, lokale, dicht besetzte Umgebungskarte erstellen kann. Mit Hilfe dieser Erweiterung
wird das Planen von Interaktionen mit der Umgebung ermöglicht.
In dieser Dissertation wurden verschiedene mögliche Ansätze zur zentralen Informationsver-
arbeitung von mehreren Agenten aufgezeigt. Der Fokus lag hierbei auf der Betrachtung von
visuell-inertialen Systemen und hatte zum Ziel kollaborativen SLAM einen Schritt näher an
realistische Anwendungsfälle heranzubringen. Andererseits wurde auch demonstriert wie die
Nutzung spezifischer Konfiguration zur verbesserten Zusammenarbeit zwischen einzelnen Agen-
ten beitragen kann. Dies führt unmittelbar dazu, dass robuste und akkurate Positionsschätzun-
gen in Situation erzielt werden können, wo dies bis anhin mit vergleichbaren Algorithmen für
einzelne Agenten nicht möglich war.
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Preface

Chapter 1 of this thesis introduces the central problems tackled in this work. As a cumulative
doctoral thesis, Chapter 2 summarizes the context and the contributions of each paper comprised
in this thesis. The interrelations between the papers are also detailed. Chapter 3 presents the
overall achievements and suggestions of new ways to improve this work. All relevant papers
forming the contributions of this thesis are attached at the end of the thesis.
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Chapter1
Introduction

The great potential of mobile robots to assist humans in a variety of tasks from healthcare
to infrastructure inspection and maintenance, and post-disaster damage assessment has been a
key driving force for research into the automation of robot missions over the past couple of
decades. While tele-operated robots, for example remotely controlled small Unmanned Aerial
Vehicles (UAVs), are already being deployed in applications such as the visual inspection of
bridges or power lines, the use of tele-operation severely limits the applicability and the scala-
bility of such approaches as the constant attention of expert operators is imperative.
In order to achieve the level of navigation autonomy that will enable the wider deployments of
robots without expert surpervision, a robot needs to be able to constantly keep estimating its mo-
tion and its workspace in order to plan the actions required to complete the task at hand while
avoiding any collisions. The use of Global Positioning System (GPS) measurements, which
provide position estimates in a global reference frame offers tremendous help to robot position
estimation and today, is widely employed, for example in commercial drones for photography.
However, the quality of the GPS measurements drastically decays close to large structures such
as tall buildings, and reception is completely unavailable indoors, which is the intended use-case
for many robotic applications. Therefore, in order to enable reliable autonomous navigation of
robots across different environments, it is key to equip them with the capability of estimating the
map of their surroundings while estimating their ego-motion within this map in real time. This
is commonly referred to as Simultaneous Localization And Mapping (SLAM) and it constitutes
a core research problem in mobile robotics.
While early approaches to SLAM mainly utilized Sonar sensors [78, 79, 113], contemporary
SLAM algorithms are dominated to a large extent by LIght Detection And Ranging (LIDAR)
and vision-based techniques. As LIDAR sensors are capable to directly measure the scene depth
of the sample points to distances of up to 300m, they are able to provide rich and accurate 3D
information of the environment almost instantaneously. While LIDAR sensors available in the
market have been getting less bulky than they used to be, their weight, size, cost and power
consumption are still prohibiting their deployment on resource-constrained platforms such as
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1 Introduction

small UAVs, smartphones or Virtual Reality (VR) headsets. On the other hand, cameras are
lightweight and low-power while providing rich information about the scene and due to their
inexpensive nature, they are ubiquitous. The popularity of cameras has triggered big research
interest in camera-based SLAM giving rise to a wealth of methods capable of accurately estimat-
ing the motion of a single camera in real-time [38, 44, 96]. However, due to the high information
content of images and the resulting data volume as well as the physical limitations of cameras
(e.g. its exposure depending on the illumination of the scene), the frame-rate at which vision
data can be processed in real-time is limited, rendering vision-only SLAM effectively blind in
between two camera frames. Incorporating Inertial Measurement Unit (IMU) measurements
in addition to the visual data enables inference of the motion of the sensor-suite (and thus, the
moving body carrying it) during these blind intervals between camera images. As a result, the
fusion of visual and inertial cues improves the robustness of the estimation process against sud-
den motions and crucially, enables the estimation of the metric scale [10] of the trajectory, which
is otherwise impossible with purely monocular SLAM, albeit imperative for autonomous nav-
igation. Due to the low weight and power consumption, a sensor-suite combining inertial and
visual data has quickly become one of the most popular choices for the motion estimation and
control of UAVs. However, in contrast to vision-only approaches, where it is well-established to
detect loops in the robot’s trajectory enabling corrections for accumulated drift and map re-use
([96]), state of the art visual-inertial methods mostly perform Visual Inertial Odometry (VIO).
So instead of running full SLAM, detecting and correcting for such loop closures, VIO perform
mostly exploratory estimation essentially forgetting faster past experiences, so they inevitably
result in unbounded drift. Even though in [98] the concept of map re-use and the associated ben-
efits such as bounding of the estimation drift could be demonstrated, the introduced dependency
on time caused by the IMU measurement results in the system’s complexity to scale with time
rather than with the spatial extent as it is the case in the visual-only case. With VI-ORB-SLAM
[98] being the first and so far, the only real-time, complete Visual-Inertial SLAM (VI-SLAM)
system in the literature (while it is also closed-source to date, restricting any possibility for test-
ing on other data and benchmarking), effective visual-inertial fusion in a global map remains an
open problem subject to research.

With increasing robustness and maturity of single-robot perception, extensions to multi-robot
(multi-agent) systems have been increasingly attracting research attention as they promise a va-
riety of different advantages over single-agent systems, such as the tolerance to robot failures
and potential reduction of the execution time for a given mission. However, despite the grow-
ing interest in multi-agent applications, the level maturity of multi-agent vision-based SLAM
systems is significantly lower than for the single-agent case. In multi-agent SLAM, often un-
realistic assumptions are made, such as the instant availability of data from different agents,
unrestricted communication bandwidth or known initial configurations. These severely limit
the practical deployment of such systems. The potential, however, of performing SLAM with
multiple agents and fusing their experiences live promises a multitude of potential advantages
over single-agent SLAM. The most obvious advantage is the capability to cover larger areas
of interest within a given time-frame as the space can be divided amongst the agents, which is
especially valuable in time-critical applications such as in Search and Rescue (SaR), where a
faster response can make the difference between life and death. Besides this promise for faster
exploration and coverage, collaborative SLAM also holds the potential to improve the consis-
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tency and accuracy of the scene and egomotion estimates not only by combining the estimates
at the end of the mission but even more so during the mission itself. For example, consider-
ing loop-closures detected across the trajectories of different agents operating in the same area
clearly reduces the overall drift in the estimation processes in comparison to considering the
single agents’ estimates alone. While this advantage is present also in multi-session or methods
performing post-processing, a tight collaboration between the agents, where map-information
from different agents is shared and re-used live, offers the possibility to improve the estimation
quality and robustness of the individual agents online during a mission. Furthermore, when
the agents are operating simultaneously additional measurements across the agents, such as vi-
sual observations of other agents during rendezvous or distance measurements, can be included
adding further constraints on the SLAM graph and therefore boosting the accuracy and reliabil-
ity of the estimation.

1.1 Motivation

The work conducted over the course of this thesis is motivated by a variety of different fields,
but in particular by three main applications, namely aerial manipulation, robotic collaboration
and Augmented Reality (AR)/VR. While these applications require a wide range of different
capabilities in order to realize them, the core capability of scene perception and accurate local-
ization within this scene is a common, key requirement across all of them. Additionally, these
tasks require a timely and low-latency estimation on platforms with potentially limited compu-
tational resources, hence the algorithms should reflect this. In the remaining part of this section,
the three applications will be introduced with their corresponding challenges and the potential
impact.

Aerial Manipulation

Figure 1.1: Robotic arm with a
gripper [54]

Figure 1.2: Delta manipulator with a grinding
tool [61]

In industrial production factories robotic arms and manipulators are widely used to relief factory
workers of tedious and dangerous tasks and in order to boost productivity. On the other hand,
in other fields, such as inspection and maintenance of power or transportation infrastructure,

7



1 Introduction

most tasks today are performed manually. However, with such environments most often posing
limited and dangerous accessibility for humans, prohibitive amounts of security measures need
to be undertaken in order to protect the workers from the potential safety hazards. Inspired
by the need to eliminate such costly and cumbersome procedures, recent research has been
aiming to equip UAVs with manipulators in order to allow the aerial robots to interact with the
environment, as for example shown in Fig. 1.1, to perform tasks at places which are hard to
reach otherwise. While for some tasks such as the cleaning of a surface as in Fig. 1.2 it is
possible to perform the interaction blindly, for example by modeling the contact forces to get
an idea of the contact [30] instead of employing vision-based perception, for other tasks such as
certain non-destructive measurements with sensitive tools this could lead to the damage of the
measurement equipment. In such cases having an accurate 3D model of the environment, where
the contact should be performed can provide the necessary information to plan and execute the
contact at the desired location and orientation. Furthermore, having a reconstruction of the
environment available enables tasks where no direct contact is required but a defined distance
and angle to the surface needs to be maintained, for example, optical testing methods [60].

Robotic Collaboration
Tasks requiring large areas to be covered as in applications, such as agriculture and SaR, us-
ing multiple robots can bring a significant speedup for doing so. Especially in SaR tasks, the
time it takes to explore an unknown area and identify potential threats, such as fires, is crucial
and needs to be held as low as possible, rendering multi-robot systems particularly impactful in
such scenarios (e.g. [89]). Moreover, collaboration can enable robots to perform tasks, which
a single robot is physically unable to achieve, for instance, the transportation of heavy or bulky
objects, which cannot be lifted by a single robot [133, 140] as illustrated in Fig. 1.3. Other
applications, as illustrated in Fig. 1.4 envision the use of multiple UAVs to quickly build up a
mobile communication network that can be used for SaR teams to communicate between dif-
ferent units without the need to set up an infrastructure beforehand. However, at the core of
every coordination effort between multiple robots is the requirement to know the relative posi-
tions of the other robots or their positions in a common reference frame, respectively. While
external measurements, such as GPS sensing, trivially allow the establishment of such a com-
mon reference frame, as introduced before, the availability and accuracy of such measurements
is not always given and therefore, can compromise the reliability and deployability of such an
approach. Aside to overcoming such physical limitations, collaboration among multiple robots
also has the potential to enable successful joint estimation in situations, where single-agent
estimation fails or is severely degraded.
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1.2 Background

Figure 1.3: Collaborative transportation
of an object [133]

Figure 1.4: Employing UAVs as
wireless relays [40]

Augmented and Virtual Reality
Besides applications in mobile robotics VI-SLAM is a driving factor behind the development of
VR and AR applications and products. As humans have shown to be extremely sensitive to any
inaccuracies in the state-estimation, e.g. resulting in motion sickness, large extents of research
work and engineering have been dedicated to the development of smooth and artifact-free state-
estimation, specifically to be employed on AR/VR devices. As the maturity of the devices and
applications grew with time and first products are already commercially available, the industry’s
interest in multi-user applications has also been growing. The use-cases for multi-user AR/VR,
ranging all the way from multi-player games to VR-aided inspection and virtual lectures on
human anatomy, are extremely diverse and promising. However, in order for the user to have
a truly immersive experience and to be able to recognize other users or to see the actions they
perform on the virtual objects, the AR/VR goggles (and hand controls often coming with the
set [2]) must be able to accurately localize themselves within a common map and transmit the
information to other participants in a timely manner. One of the first commercially available
systems enabling multi-user experiences ([1]), is based on creating spatial anchors, which are
user-selected points of interest that other devices are capable to recognize and localize against
in order to display content. Although such an approach is sufficient to share 3D content, it does
not leverage the full potential of collaborative SLAM in the map-building and co-localization
process in real-time. However, with modern AR/VR goggles being typically equipped with
onboard cameras, computation units and network communication capabilities, they have all
necessary hardware to perform collaborative SLAM, potentially boosting the effectiveness of
multi-user applications.

1.2 Background

Global Visual-Inertial Mapping
As introduced before, the combination of visual information from a camera along with the in-
formation obtained from an IMU build a very effective and compact sensor setup to perform
SLAM. While early approaches were dominated by Extended Kalman Filter (EKF) [110, 130]
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and it’s variant the Multi-State Constraint Kalman Filter (MSCKF) [85, 95] based approaches,
with the development of efficient and real-time capable non-linear solvers [6, 76] along with
the on-manifold IMU-preintegration technique [42], keyframe-based sliding window batch ap-
proaches to the VI-SLAM problem using non-linear least squares [82, 83, 139] started to be-
come standard. Even though further progress led to improved performance and robustness
for these approaches, their inherent design choice of limiting the keyframes entering the opti-
mization at any time using a sliding window to achieve a constant computational complexity,
inevitably results in a lack of global consistency of the map and the robot’s trajectory. While
there exist offline Structure from Motion (SfM)-like frameworks achieving globally consistent
maps from visual-inertial data (e.g. [122]), however, due to their exhaustive run-time, these
approaches are mainly limited to re-localization tasks [12, 87]. However, the capability of ob-
taining globally consistent maps within a reasonable time-frame is a crucial building block for
collaborative SLAM in order to ensure consistency when fusing different agents’ experiences.
Due to the incremental nature of SLAM algorithms and the absence of corrections from global
measurements, accumulated errors in the SLAM graph can only be corrected by detecting loops
in the graph. For vision-based systems, such loops can be detected using the technique of
place recognition. With the development of efficient and fast methods for place recognition
[25, 26, 51], the incorporation of loop-closure detection in real-time systems has become tangi-
ble. Carefully designing a system using state-of-the-art components, the work in [96] was the
first to present a complete monocular SLAM system with online global corrections and map-
reuse. Using a survival of the fittest approach and removal of redundant keyframes, this work
([96]) was able to achieve a bounded complexity for a given area. With only a handful of works
on online global visual-inertial SLAM/mapping available, one approach to this problem is the
combination of a VIO with a pose graph back-end for the global optimization as proposed in
[67] and later on in [111]. However, while this allows for relatively fast optimization of the
poses even for larger problems, the resulting accuracy of the estimate is limited, depending
highly on the quality of the VIO, while systematic errors remain largely unaddressed, such as
persistent errors in the scale of the estimates. Inspired by these shortcomings and similarly to
[98], in Paper II (i.e. [64], one of the contributions of this thesis) we explored the potential of
global optimization using full bundle adjustment along with on-manifold IMU-preintegration
[42]. Additionally, Paper II investigated the fusion of visual-inertial data from two agents into
a global map in order to evaluate the potential of this method in improving the accuracy and
the consistency of the estimates. The obtained results demonstrated that the chosen optimiza-
tion approach achieves both a high level of accuracy while retaining consistent estimates also
in the multi-agent case, where metric constraints are absent across the agents. However, due
to the absence of parallelization in the implementation, in the multi-agent case real-time esti-
mation could not be achieved. While some works are aiming at reducing the complexity of the
SLAM graph by summarizing nodes [15, 74] or removing redundant nodes [121], these methods
are tailored to a pose graph optimization structure and result in a significant amount of book-
keeping when applied to VI-SLAM ([15, 74]), or the resulting runtime prohibits the application
for real-time SLAM ([121]). On the other hand, the recent work in [136] achieves a significant
reduction of the optimization complexity by introducing a non-linear factor to summarize the
IMU measurements in gravity direction and relative pose constraints.
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Collaborative SLAM
When it comes to collaborative SLAM, two main architectural paradigms are present in the
literature: centralized and distributed. While centralized approaches employ a central entity
(i.e. a server) connected to all participants coordinating the data management across all partic-
ipating agents, in distributed approaches, the agents exchange information directly with their
peers (usually their neighbors) and perform all the handling of the information (i.e. exchange
and fusion) individually and onboard, eliminating the need for any central entity to orchestrate
data sharing and management. As a result, conceptually, distributed systems offer the advantage
that data does not need to pass through a single point in the system and that the computational
load is distributed across all participants, therefore distributed collaborative architecture is ex-
pected to scale better with the number of participants. However, due to the absence of a central
coordinator to maintain data consistency, for example by avoiding double-counting of informa-
tion, is extremely challenging leading to complex strategies for data sharing and fusion [28].
Many works focus on optimizing a specific aspect of the multi-agent system for a distributed
setup, such as place recognition [22], robustness [146], or efficient data exchange [21]. Other
approaches propose to use distributed optimization to perform pose graph optimization [18] in
a collaborative fashion and for example to use semantic information to establish connections
between the agents [20].
On the other hand, due to the simpler architecture and data handling, centralized systems are
more mature in the literature. Utilizing the central server unit as an additional computation
resource, the approaches proposed in [93, 114], reduce the computational load for the agents
to a minimum by performing all the computationally expensive tasks, such as mapping, map-
merging and global optimization on the server. However, such a strong reliance on the server
reduces the applicability of the systems and the autonomy of the agents significantly, as any
loss of connections to the server leads to a failure on the agent. The system architecture pre-
sented in [119], overcomes this limitation by still performing the most crucial operations on the
agents, outsourcing only the heavy computations, such as map-merging and global optimization
to the server. Building on top of this architecture, the work in [120] demonstrated collaborative
SLAM with multiple agents on live data. However, this approach was designed for collabo-
ration amongst agents running monocular odometry, rendering it prone to limitations, such as
the scale ambiguity and the sensitivity to abrupt motions. As with single-agent systems, the
inclusion of IMU measurements can be used to overcome these issues. In Paper III (i.e. [66]),
the global optimization techniques used in Paper II were transferred into the server system of
[120], while the odometry system on the agents’ side was completely re-designed to include
IMU-measurements, enabling the successful demonstration of it in real-time performance with
up to four agents, using a standard laptop as a server.

Peer to peer collaboration
Observing the same scene from multiple view-points is a very powerful concept as, provided
that the transformation between these viewpoints is known, the perception of the depth of the
scene becomes possible, in the same way as in multi-view stereo reconstruction [49]. The most
basic multi-view configuration is given by two views with overlap, the stereo setup. While the
concept of stereo cameras has been used extensively in the literature both for SLAM [39, 97]
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Figure 1.5: Illustration taken from [5], showing the idea of using two UAVs, equipped both
with monocular cameras to form a variable baseline stereo camera.

as well as reconstruction [106, 132] and obstacle avoidance [52, 103] , it is also clear that the
choice of the baseline of the stereo setup is a crucial parameter and to a large extent, determines
the properties of the setup. As analyzed in [50], different baselines and/or image resolutions
lead to different uncertainties and possible occlusion of objects. The work in [5], first proposed
the idea of using two UAVs with monocular cameras onboard as a virtual stereo camera with a
variable baseline as illustrated in Fig. 1.5, estimating the stereo transformation using the IMU
measurements and the view-overlap across the monocular images captured by the two UAVs.
While the observability of the estimation processes was successfully demonstrated, real appli-
cability was left an open question as all visual measurements had been entirely simulated using
ground-truth. Inspired by the potential of such a setup, instead of using the IMU measurements
of the agents directly, in Paper IV ([63]), we proposed to use each agent’s own VIO estimates
and fuse them with the image observations obtained through the view overlap across the agents
in a tightly coupled approach, which was successfully demonstrated on the EuRoC dataset [11].
More recently, a similar approach in [137] showed the benefits of fusing the data from such a
virtual stereo setup in order to increase the accuracy achieved by the individual agents. How-
ever, for scenes which mainly contain objects far away from the camera, such as in high altitude
UAV flights, these approaches start to become unreliable, due to the fact the single-agent esti-
mation becomes unreliable, thus indirectly, having a big effect on the collaborative estimate as
well. One possible fix for this is to use stereo SLAM for each agent’s motion estimation while
maximizing the stereo baseline. In [57, 58] this was achieved for a fixed-wing airplane by plac-
ing the cameras at the tips of the wings estimating the stereo baseline actively to correct for the
wing deformations during flight. While this approach is suitable for fixed-wing airplanes, which
generally have a large wingspan and therefore, allow large stereo baselines, in other cases, such
as small multicopters, this approach is not suited as the maximum stereo baseline is rather lim-
ited. In Paper V (submitted), this limitation was addressed by building on the variable baseline
stereo idea using two UAVs. However, in addition to fusing the agents’ visual and IMU data,
relative distance measurements, for example as obtained using Ultra-Wide Band (UWB) mod-
ules onboard each agent, are fused as well in order to keep the scale well constrained even at
high altitudes. Utilizing a distributed optimization scheme, this system was shown to be capable
of reliable collaborative SLAM estimation with network delays, without introducing additional
latency in the pose estimation.
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Scene Estimation

Figure 1.6: Illustration of the same scene using a sparse representation (left) and a dense repre-
sentation of the environment (right)

Knowing the 3D structure of the environment is crucial before a robot can autonomously
navigate through it without collisions or perform any type of autonomous manipulation (e.g.
grasping of an object or touching a surface at a certain angle). Accurate localization and pose
estimation within a sparse map is well established, however, the lack of information in between
the sparse points hinders safe motion or contact planning significantly. In Fig. 1.6, a comparison
between a sparse and a dense map of the same scene is illustrated. Furthermore, accurate 3D
knowledge of the environment is a crucial element for AR in order to enable realistic blending
of the rendered objects with the environment. While dense reconstruction from image data has
been subject to research for quite some time and some impressive results [123] already appear
in the literature, one of the first real-time capable dense visual SLAM methods was proposed in
[100]. However, with the emergence of Time of Flight (ToF) and structured light sensors, of-
fering noisy, but dense scene measurements, a new type of algorithms, labeled RGB-D SLAM
started to emerge, essentially starting with the seminal work of KinectFusion [99] demonstrat-
ing real-time dense reconstruction of small workspaces for the first time. As KinectFusion was
designed for small workspaces, several extensions addressing the spatial scalability were pro-
posed [142, 145] later on, as well as methods for loop-closure detection and corrections for
dense frameworks [144]. While the results of these systems are impressive, in order to achieve
this performance, heavy Graphics Processing Unit (GPU) computation is required prohibiting
the deployment of such approaches on resource-constrained platforms, such as small UAVs.
Leaving out the pose tracking, [127] proposed a multi-scale dense mapping approach based
on the octrees [91] capable of fusing an RGB-D datastream in real-time on a Central Process
Unit (CPU). While [127] used ground-truth poses, in Paper I ([65]) the mapping approach was
transformed into a local method and evaluated using VIO. Even though, both visual-inertial
[11] as well as RGB-D [131] datasets are largely available and common, a combination of both
was lacking from the literature at the time, triggering the need for a new dataset, which was
presented in Paper I, containing both information along with scene- and pose ground-truth for
benchmarking, but also allowing the evaluation of the proposed algorithm using real sensor in-
put. Later on, with the development of Voxblox ([104]), a new framework for dense mapping
specifically tailored for path-planning was proposed, which was extended to a submap-based
approach allowing to include pose corrections after loop-closures [92]. Recently, the submap-
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ping approach in [92] was extended using the submaps to create loop-closure constraints in a
global pose graph to enable CPU only, global consistent dense mapping [112].
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Chapter2
Contribution

This chapter summarizes the core contributions of the research conducted during this doctoral
thesis. In Section 2.1 for every publication, the overall context relating the work to the state
of the art in Section 1.2 is provided. For the individual works, a summary of the research
contributions as well as the interrelations between the publications are provided. Section 2.2
provides a list of all student projects supervised in the course of the doctoral studies.

2.1 Research Contribution

Paper I: Real-time Dense Surface Reconstruction for Aerial
Manipulation
M. Karrer, M. Kamel, R. Siegwart, and M. Chli. Real-time Dense Surface Reconstruction for
Aerial Manipulation. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and
Systems (IROS), pages 1601–1608, 2016

Context

As motivated in Section 1.1, performing manipulation tasks using lightweight manipulators
borne by small UAVs offers appealing advantages, both from an economical as well as from
a work-safety perspective. Driven by this, research has been conducted to investigate how
to control UAVs equipped with manipulators [69, 73], but also how to design manipulators
to maximize the accessible space while minimizing the moving mass [61]. While interaction
with the environment is possible without structural knowledge of the environment using Model
Predictive Control (MPC) and force feedback [30], the availability of accurate 3D information
of the environment opens up the possibility to plan and optimize the physical interaction with a
structure. Using RGB-D cameras or 2D ToFs sensors, detailed but noisy 3D scene information
can be obtained, leading to a variety of dense SLAM and reconstruction methods. Starting from
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Figure 2.1: Dense reconstruction using an UAV computed onboard in real-time.

the seminal KinectFusion [99] designed for small workspaces, several variations [37, 143, 145]
exist, even systems capable of closing loops in a dense scene representation [144]. However, all
of these methods heavily rely on GPU computation to process a large amount of information in
real-time, rendering the methods unsuitable to run onboard a UAV with limited computational
resources. Using the efficient Octree data structure proposed by [126], the framework in [127]
demonstrated that it is possible to fuse the RGB-D data captured from known camera poses in
real-time using only CPU computation. Using the framework of [127] as a basis, the work in
Paper I aims at investigating the reconstruction accuracy that can be achieved using VIO for
estimating the camera poses on-the-fly, as opposed to acquiring them from an external tracking
system, for example. Closing the gap between RGB-D [131] and high-quality visual-inertial
datasets [11] existing at the time, Paper I proposed a new dataset containing not only ground-
truth camera poses but also accurate scene ground truth enabling quantitative evaluation of the
reconstruction accuracy on real-data for the first time.

Contribution

Building on the assumption that VIO typically runs onboard a small UAV for frame-to-frame
egomotion estimation and that any interaction of a robotic manipulator with the environment
is to be performed within the Field of View (FoV) of the onboard sensors, this paper proposes
to utilize a CPU-capable dense reconstruction framework. To this end, besides running the
VIO, the UAV is assumed to be equipped with a depth camera (i.e. experiments are presented
with both an RGB-D and a ToF camera). As VIO is generally prone to drift, an adjustable
time-horizon ∆t was introduced, which controls the removal of possibly outdated parts of the
reconstruction. This permits the viewpoint of the sensor to fluctuate slightly, e.g. due to wind
gusts, without loosing the gathered information about the scene structure, while resetting any
volumetric blocks of the dense scene representation when they do not receive an update within
∆t in the past. This helps to avoid artifacts arising from drift in the pose estimation when
revisiting parts of the scene following longer exploratory motions. In order to allow the incor-
poration of uncertainty information in the depth measurements, a computationally lightweight
weighting scheme was introduced, which resulted in an average decrease of the reconstruction
error of 10% on real data using a ToF camera. Due to the lack of real-world datasets containing
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high-quality visual-inertial data, depth data as well as pose and scene ground-truth, a dedicated
dataset was created and made publicly available to the community 1. The dataset consists of
two different scenes and contains hand-held sequences with a sensor-rig equipped with a Visual-
Inertial sensor [101] for high-quality visual-inertial data and either the Intel RealSense R200 or
the CamBoard pico flexx from PMD for depth perception (only one depth sensor was mounted
at a time to avoid inferences between them). The scene ground truth was captured using a high
precision laser measuring system along with the pose ground truth from a motion capturing
system, thus enabling quantitative evaluation of the algorithm on real data.

Interrelations

Although the method presented in Paper I is developed on a single-agent basis, as the required
inputs are the sensor poses in six Degrees of Freedom (DoF) along with a noisy point cloud
to represent the scene, the approach can be employed as an add-on to the approaches in Paper
III and Paper V, which produce six-DoF poses at frame-rate. Furthermore, the approaches in
Paper IV and Paper V both estimate a variable-stereo configuration, which could be utilized to
compute a disparity image to serve as input for this work.

Paper II: Towards Globally Consistent Visual-Inertial
Collaborative SLAM
M. Karrer and M. Chli. Towards Globally Consistent Visual-Inertial Collaborative SLAM. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages
3685–3692, 2018

Context

While visual-inertial methods performing odometry have reached a considerable maturity, full
SLAM systems closing loops, performing global corrections and re-using previously mapped
information are mainly limited to vision-only systems (either monocular or stereo) [96, 97].
The first approach demonstrating the re-use of mapped information in a monocular-inertial
setup was introduced by Mur-Artal et al., dubbed as VI-ORBSLAM [98]. Their work shed
light into some of the biggest issues in the full VI-SLAM, namely the proper estimation of
accelerometer biases, their initialization and the scalability of the approach. Moreover, while
collaborative frameworks performing purely visual SLAM exist [43, 119, 149], at the time there
was a complete lack of collaborative approaches fusing visual and inertial measurements in the
estimation. Inspired by the potential of such systems, Paper II employed a nominal VIO system
with minimal modifications to investigate visual-inertial global mapping for one and two agents
achieving close to real-time performance.

1https://v4rl.ethz.ch/research/datasets-code/V4RL-Dense-Reconstruction-Dataset.
html
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Contribution

This paper proposes a framework to combine information from potentially multiple agents into
a single SLAM map; assuming that each agent runs nominal keyframe-based VIO, keyframe
information gets communicated to a central server, where correspondences across keyframes
are established and optimization is performed to fuse this data into a global map, contributing
towards creating globally consistent SLAM maps from multiple agents. In contrast to [98], the
current state of the IMU bias is consulted both for determining a successful initialization as well
as for the decision whether a keyframe can be removed in order to increase the computational
scalability of the system. While only considering the back-end part of the system, results on
the EuRoC benchmarking dataset [11] demonstrates improvements on the trajectory error of at
times over 50% over the state of the art, indicating the potential of the approach. Conducting
experiments with two agents, in this work, we could demonstrate that even in the absence of
inertial constraints between the agents, a consistent estimate of their trajectories and the scale
in the estimates can be maintained and at times, even improving the accuracy compared to the
single-agent trajectories.

Interrelations

This paper aims at investigating how to obtain a globally consistent trajectory and scene map
using data from VIO running onboard one or multiple agents. In the evaluation, considerable
improvements over the state of the art could be demonstrated on the simpler datasets, however,
the returns were diminishing with more difficult sequences. Furthermore, the sequential nature
of the implementation along with the exhaustive local optimization of the incoming keyframes
rendered the approach far from real-time capable for more than two agents. In Paper III, these
shortcomings are addressed, first, by introducing a tailored front-end odometry on each agent
eliminating the need for the local optimization to be carried out by the server and second, by
implementing parallelized data handling on the server.

Paper III: CVI-SLAM – Collaborative Visual-Inertial SLAM
M. Karrer*, P. Schmuck*, and M. Chli. CVI-SLAM - Collaborative Visual-Inertial SLAM,
IEEE Robotics and Automation Letters, 3(4):2762-2769, 2018

∗ indicates equal contribution

Context

While in Paper II the centralized, consistent fusion of visual-inertial data obtained from two
agents could be demonstrated, the serialized implementation and the exhaustive local optimiza-
tion prohibits the real-time operation of the approach for more than one agent. Even though
this limitation could be relaxed by increasing the level of parallelism in the implementation, as
suggested in [43], the lack of information flowing from the server back to the agents limits the
level of collaboration of the approach to collaborative mapping. There are a few works effec-
tively addressing the use of two-way communication schemes to allow the agents the re-use of
information. For example the RGB-D based system in [114] proposes to completely outsource
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all operations except for the tracking to a server, limiting the autonomy of the agents, as any loss
of connection inevitably leads to a failure of the system. To the contrary, the work of [33] pro-
poses to run the complete SLAM pipeline on each agent, including loop-closure detection and
global optimization, while additionally exchanging data with a central server. While such an
approach ensures the autonomy of the agents even with an unreliable connection to the server, it
misses out on computational savings of outsourcing heavy, but non-time-critical computations
(such as global optimization) to the server. As a result, this system’s applicability is limited to
agents permitting such heavy computation onboard. An architectural middle-way was proposed
in [119, 120], where the agents keep a map of limited horizon providing them with estimation
autonomy even in the absence of contact to the server. The server accumulates the data from all
agents and fuses them, where possible, via loop closure detection and global optimization. By
communicating back to the agents, the server allows the sharing and re-use of information from
all participating agents whose maps can be fused together if their trajectories meet. However,
the system [120] is designed to work only as a monocular system, therefore suffering from the
typical shortcomings such as sensitivity to abrupt motions and the absence of an estimate of the
metric scale. As it is well known, the metric scale can be obtained by fusing IMU measurements
[10], therefore, transitioning the system from a monocular to a visual-inertial would bring the
system closer to real-world robotic applicability. However, such a transition is not trivial and
requires significant modifications in both the back-end optimization on the server-side as well
as a complete re-design of the odometry front-end.

Contribution

Building on top of the system architecture of [120], both the employed front-end odometry as
well as the optimization algorithms were re-designed in order to incorporate the IMU informa-
tion. In both the agent’s front-end odometry as well as for the global collaborative estimate,
the well established on-manifold IMU pre-integration scheme [42] is implemented, building a
complete collaborative monocular-inertial SLAM system. To the best of the authors’ knowl-
edge, CVI-SLAM2 is the first collaborative SLAM system using visual-inertial data along with
two-way communication between the participating agents and the server, bringing collaborative
SLAM a step closer to real-world applicability. The experimental evaluation presented in Paper
III demonstrates that CVI-SLAM performs comparably to state-of-the-art visual-inertial SLAM
systems, while outperforming them in a collaborative setup. Additionally, in Paper III the ef-
fect of the two-way communication is demonstrated as the resulting accuracy of the frame-wise
pose tracking could be improved online by using the collaborative scheme to share information.
Even though as compared to [120], also IMU data needs to be communicated to the server,
the improved robustness of the visual-inertial front-end allows the use of fewer visual features,
leading to decreased overall network traffic.
Implementing the whole system from scratch, the contributions claimed in this thesis are mainly
focused on the design and the implementation of the optimization related algorithms running
on the agents as well as the server, leading to a re-usable and extendable library for SLAM
related optimization. Furthermore, besides the incorporation of the IMU information into the
optimization, the tight integration into the front-end were implemented as result of this thesis.

2Collaborative Visual-Inertial SLAM
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Interrelations

Paper III combines the findings from Paper II with the architecture of the monocular collabora-
tive SLAM system [120]. Using the efficient communication architecture and the server-sided
map reconstruction approach of [120] along with the global optimization presented in Paper II,
real-time performance with multiple agents is possible. On the agent side, a local map opti-
mization inspired by the local optimization used in Paper II is implemented, however, as it is
run on each agent, compared to Paper II the computational load of this action is distributed,
sparing the server from additional computational load. While simple heuristics were employed
to remove redundant keyframes from the system in order to improve the system’s scalability,
the computational bottleneck of the system is the global bundle adjustment. Depending on the
available computational architecture, e.g. on a cloud-computer, the scalability of the global bun-
dle adjustment could be boosted by employing the distributed optimization method presented
in Paper V in order to parallelize the optimization.

Paper IV: Collaborative 6DoF Relative Pose Estimation for Two
UAVs with Overlapping Fields of View
M. Karrer, M. Agarwal, M. Kamel, R. Siegwart, and M. Chli. Collaborative 6DoF Relative
Pose Estimation for Two UAVs with Overlapping Fields of View. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 6687–6693, 2018

Context

By the means of triangulation on pairs of images captured with a stereo camera, the scene
depth can be estimated at a particular time step rendering this as a powerful tool for SLAM
and scene reconstruction. However, the choice of the stereo baseline is crucial for the effective
range of a stereo camera, as too big baselines lead to problems with occlusions or lack of
sufficient overlap for triangulation, while too small baselines produce a high uncertainty in the
depth estimation. Having the possibility to adjust to a suitable baseline on the fly, based on
the depth and accuracy requirements of the task at hand holds a big potential [50]. In a loose
sense, such a variable stereo setup can be achieved by using two robots equipped each with a
monocular camera, which by arranging themselves in a certain way are able to adjust the stereo
baseline. This idea was proposed in [5], where the authors showed that using two UAVs both
equipped with cameras and IMUs it is possible to compute the relative transformation between
the cameras in metric scale. Furthermore, knowing the relative transformation between two
robots allows them to be controlled to perform certain configurations for example in order to
transport an object as shown in Fig. 1.3. In Paper IV, a lightweight approach to estimate the
relative transformation between two cameras by fusing odometry information along with vision
measurements is presented.

Contribution

Picking up on the idea in [5], a lightweight estimation framework was developed in Paper IV,
capable to estimate the relative transformation between two robots based on their odometry
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Figure 2.2: The proposed parameterization of the stereo baseline formed by the two UAVs
carrying one monocular camera each, defining a state vector containing a bearing vector with
inverse distance scaling. This parameterization captures the underlying uncertainty (indicated
with the light blue ellipses) of the estimation problem from pairwise image measurements of
scene landmarks (here, denoted with a star).

information and view-overlap. In Paper IV, an EKF was chosen to fuse the robots’ odometry
estimates along with their monocular vision measurements. The inclusion of a small number of
3D landmarks in the filter state allowed to employ a guided correspondence search resulting in
an average processing frame-rate of 74Hz, while the overall generated network traffic is below
0.5MB/s. In order to capture the underlying uncertainty of the relative transformation between
the robots, in Paper IV it is proposed to parameterize the transformation as a standard rotation
along with a bearing vector with an inverse-depth parameter for the baseline as shown in Fig.
2.2.

Interrelations

Paper IV presents the basic idea that was later on extended in Paper V to a fully distributed
system. Although the main contribution of Paper IV, namely the proposed parameterization of
the relative stereo transformation, was not further employed, the realization that a system based
on using individual agents’ odometries can only be as robust as these odometries considered
in isolation, lead to the development of the system in Paper V. For example, considering the
parametrization illustrated in Fig. 2.2, it becomes clear that the use of a distance measurement
between the agents significantly reduces the uncertainty of the system, which is specifically
addressed in Paper V.

Paper V: Distributed Variable-Baseline Stereo SLAM from two
UAVs
M. Karrer and M. Chli. Distributed Variable-Baseline Stereo SLAM from two UAVs, Submitted
to IEEE Transactions on Robotics, 2020
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Context

Nowadays VIO and VI-SLAM approaches show remarkable performance and robustness in
various scenarios from hand-held devices, indoors to UAVs employed in large-scale disastrous
areas. Furthermore, as shown in Paper II and Paper III, fusing data captured and processed
from multiple robotic agents can improve the overall quality of the estimates when fused in a
comprehensive, collaborative manner. However, any failures of the agents’ local odometries
have a devastating effect and rendering the affected agents unaware of both the other agents and
their ego-motion. On the other hand, as demonstrated impressively in [149], for highly dynamic
scenes, a tight collaboration between agents can enable to overcome situations in collaboration
where a single agent would fail to obtain a reasonable estimate. One of the known failure cases
for VI-SLAM, for example, is when all scene points are far away from the agent as it is the
case for UAVs flying at high altitudes [57, 58]. Using the idea of a variable baseline stereo
setup employing two UAVs, each equipped with a monocular camera to form a stereo camera
as in Paper IV. However, in contrast to the approach in Paper IV, which relies on a functioning
odometry for both agents individually, in Paper V a joint estimator is proposed, which fed with
relative distance measurements between the agents as they can be obtained via UWB modules,
is capable of producing a reliable, metrically scaled pose estimate for both agents.

Contribution

In Paper V, a novel sensor fusion framework fusing relative distance information (e.g. as ob-
tained using UWB modules) between two UAVs together with the visual-inertial information
from the two UAVs. The framework enables to reliably estimate the ego-motion of both agents
at absolute scale even at high altitudes in real-time. The frame-wise tracking performed on
each agent utilizes an EKF fusing the inertial data together with the visual observations of the
estimated map points, allowing to have a low latency pose-estimation latency. In order to fuse
the relative distance measurements, in Paper V a sliding-window bundle adjustment with a
continuous-time Z-spline based trajectory representation is proposed. To allow each agent to
hold its own estimate of the map such that their autonomy of estimates is not compromised
by potential network delays while maintaining consistency across the agents, it is proposed to
employ an asynchronous, consensus-based optimization scheme on the basis of [107] for the
first time to the best of the author’s knowledge. Even though in Paper V, the proposed opti-
mization scheme is mainly employed to obtain a consistent estimate between the two agents,
the approach has significant potential in allowing scaling up global bundle adjustment for a
large number of agents as the problem can be approached in a decentralized fashion enabling
a high degree of parallelism. Using the estimated poses, a high-level formation controller was
developed, allowing to automatically adjust the virtual stereo-baseline between the two agents
based on the estimated scene requirements. In the thorough evaluation using photo-realistic
simulations, the advantage of the proposed approach over state-of-the-art fixed stereo-inertial
estimators at higher altitudes could be demonstrated.
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Interrelations

The approach presented in Paper V complements the approaches in Papers II-IV, as it specif-
ically addresses some shortcomings of the single-agent VIO employed in these papers. The
proposed distributed optimization approach in Paper V, holds large potential to scale up the
bundle adjustment problem to a larger amount of data, as the overall problem can be split into
smaller subproblems allowing to increase the parallelization of the computations. Such a paral-
lelization could be used to address the computational bottlenecks in Paper II and Paper III. The
proposed in lightweight localization EKF approach in Paper V, can potentially be employed for
the frame-wise tracking in Paper III for the employment on computationally weaker hardware,
such as smartphones.

2.2 List of Supervised Students

Master Theses
Master students, 6-month projects, full-time

• Agarwal, Mohit (Fall 2016): “Collaborative Visual-Inertial based Sensing using Multiple
UAVs”

• Lampart, Andrea (Fall 2016): “Monochromatic SLAM augmented with an Event-Based
Camera”

• Li, Kailai (Fall 2016): “Towards globally consistent,dense 3D reconstruction onboard a
UAV”

• Müller, Fabian (Spring 2017): “Event-based pose tracking using patterns learnt during
runtime”

• Bartolomei, Luca (Fall 2017): “3D Radiation Mapping using a small UAV”

• Thurnhofer, Franz (Fall 2017): “Large-scale Dense Scene Reconstruction from Multiple
UAV”

• Böröndy, Aron (Spring 2018): “Visual-Inertial SLAM for consumer level sensors”

• Herbst, Constantin (Spring 2018): “Event-Based Visual Odometry Using Line Features”

• Hug, David (Spring 2018): “Event-based SLAM in Continuous Time”

• Russi, Mario (Spring 2018): “Collaborative State Estimation for High Altitudes using
two UAVs”

• Schmidig, David (Spring 2018): “Visual SLAM for Dynamic Environments”

• Greter Rafael (Fall 2018): “Visual Tracking for UAVs”
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• Strässle, Timo (Fall 2018): “Towards Collaborative SLAM using Smartphones”

• Perraudin, Jonathan (Fall 2019): “Towards Collaborative SLAM using Smartphones”

• Zuidema, Christoph (Fall 2019): “Autonomous Radiation Mapping using multiple UAVs”

• Pensotti, Sara (Spring 2020): “Autonomous Multi-Robot Exploration of Partially Un-
known Environments”

• Ziegler, Thomas (Spring 2020): “Distributed UAV Formation Estimation via Pairwise
Distance Measurements”

Semester Theses
Master students, 3-4-month projects, part-time

• Ziegler, Andreas (Fall 2016): “Map Fusion for Collaborative UAV SLAM”

• Schönbächler, Lukas (Spring 2017): “ROS Toolbox for visual sensor calibration”

• Ziegler, Thomas (Spring 2018): “High Accuracy Visual Inertial SLAM for Autonomous
Navigation of small UAVs”

• Schaller, Sebastian (Fall 2018): “Feature Tracking for Event-based Cameras”

• Ginting, Fadhil (Spring 2019): “UAVs Formation Estimation using UWB Measurements”

• Ritz, Kamil (Spring 2019): “Rolling Shutter and Time Offset Compensation for Visual-
Inertial-Odometry”

• Roth, Timo (Spring 2019): “Active Vision for Relative Pose Estimation”

• Sempertegui, Emilk (Spring 2019): “Optimization-based Path Planning for Autonomous
Robot Navigation”

• Tearle, Ben (Spring 2019): “Collaborative UAV SLAM”

• Oberson, Lucien (Fall 2019): “Spline-Based Direct IMU Integration for SLAM”

• Schönbächler, Sacha (Fall 2019): “Efficient Map Re-Use for Collaborative SLAM”

• Li, Cliff (Fall 2019): “Towards Collaborative SLAM – Robustifying Visual-Inertial Odom-
etry”

• Davide, Mambelli (Spring 2020): “Multi-agent path planning for active sensings”

• Yunfan, Gao (Spring 2020): “Multi-Sensor Fusion in Continuous Time”

• Bayerle, Michael (Spring 2020): “IMU-Handling for Smartphone-based Visual-Inertial
Odometry”
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2.2 List of Supervised Students

Bachelor Theses and Studies on Mechatronics
Bachelor students, 3-month projects, full-time

• Scherrer, Beat (Spring 2018): “Monocular Simultaneous Localization and Mapping (SLAM)
for a drone without IMU”

• Briner, Caspar (Fall 2018): “Autonomous Object Grasping”

• Brunner, Maurice (Spring 2020): “Vision and LIDAR based SLAM for mobile robots”
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Chapter3
Conclusion and Outlook

Driven by the potential impact of collaboration for state estimation and scene perception, in this
doctoral thesis a set of contributions addressing various aspects of collaborative perception are
presented. The focus was set on visual-inertial approaches, as this setup is ubiquitous and can
be deployed on almost any platform. The work in this thesis investigated dense scene recon-
struction (Paper I), global visual-inertial mapping and collaborative VI-SLAM (Paper II, Paper
III) as well as peer-to-peer visual-inertial collaboration (Paper IV, Paper V). Even though the
conducted research introduced novel concepts and pushed the state of the art in various ways,
there are several open questions remaining that need to be addressed before the developed con-
cepts can be widely employed in practice. In this chapter, a brief summary of the conducted
research, recapitulating the main insights and contributions resulting from this thesis as well as
a discussion of the challenges and potential future work in this field are provided.

With the goal of achieving global consistent maps and trajectories from monocular-inertial
data, a central data fusion backend was developed in Paper II. In order to do so, the off-the-shelf
keyframe based VIO method [83] was slightly adapted in order to enable the communication
of keyframe data to re-use it in the backend. Our first attempts using vision-based bundle ad-
justment in combination with relative pose constraints across subsequent keyframes, aiming to
maintain the metric scale, lead to poor scale estimates, which were traced back to the large local
scale fluctuation of the VIO. Instead, with the combination of optimization of a local window
of keyframes along with global full bundle adjustment, both incorporating the IMU information
utilizing on-manifold pre-integration [42], we demonstrated that high accuracy can be achieved
both on the trajectory as well as on the metric scale. Considering also the use of keyframe data
from a second agent operating in the same area in this framework, despite the absence of IMU-
constraints across the agents, the consistency of the joint estimate was shown to be maintained
while the accuracy of the joint trajectory at times improved compared to the single-agent esti-
mates when considered in isolation from each other. However, the sequential implementation of
the approach as well as the exhaustive local optimization implies that the algorithm presented
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in Paper II could not achieve real-time performance with more than one agent by design.
While the local optimization in Paper II is necessary for creating a global map using the nom-
inal VIO employed in that work, an alternative frontend that is better tailored to potentially
collaborating agents promises to reduce the required operations. Addressing this, the server-
agent architecture proposed in [119, 120] was utilized in CVI-SLAM (Paper III) targeting to
improve the scalability over the system in Paper II. In the CVI-SLAM paradigm, the global
graph is constructed on the server using the communicated keyframe and map point data from
each participating agent, avoiding local optimization. This is made possible as the VIO frontend
is performing the local optimization onboard the agent, therefore, distributing the computational
load. While the overall system architecture of CVI-SLAM, in comparison to the approach in
Paper II, scales better with the number of agents, even though a heuristic-based redundancy
detection was incorporated, ultimately the complexity of both methods grows unbounded over
time. In contrast to purely vision-based approaches, the detection and removal of redundant
keyframes in the global map is limited by time constraints, related to the IMU-measurements
in order to retain a well-defined scale estimate, thus the SLAM graph is bound to grow contin-
uously. A promising approach, significantly reducing the number of states in the global opti-
mization, thus improving the scalability, was recently presented in [136], proposing to recover
a non-linear factor from the VIO frontend, essentially building up constraints on the keyframes’
roll- and pitch angles as well as relative constraints across the temporal neighbors, allowing
to drop the IMU-related states (linear velocity, IMU-biases) in the global optimization. With
the IMU information summarized in a relative constraint only acting across poses, dropping
keyframes as done for example in [97] or [15] could be a valid option to bound the complexity
of the problem.
The agent-server architecture in CVI-SLAM permits a two-way communication enabling re-
using data from the server on each agent and vice-versa. In the experimental evaluation, this
was demonstrated to improve the accuracy of the VIO on the agent during runtime. To the best
of the author’s knowledge, this is the first visual-inertial system in the literature exhibiting such
a high degree of collaboration among the participating agents at runtime. While the data re-use
from other agents reduces the overall error, the occurrence of small fluctuations of the estimate
may increase, which is especially problematic when deploying the system in a closed control-
loop, e.g. to control a UAV. Hence, further investigation of the method employed for data
re-use in the agent’s estimator holds a great potential to boost the applicability of CVI-SLAM.
A possible direction could be the maintenance of an estimate of the state uncertainty on the
agent, allowing to perform a model-based update with the information from the server, which
was demonstrated in [87] to improve the smoothness of the pose tracking significantly.

Stereo cameras have become a widespread and common tool for both scene reconstruction
as well as for SLAM, for example for aiding autonomous navigation for autonomous car and
in mobile robotics in general. While being handy for lots of tasks, the useful range for stereo
cameras is essentially determined by their baseline. Building upon the idea of using two UAVs
equipped with a monocular camera each to form a variable-baseline stereo camera [5], in Paper
IV, a new take on the problem setup was proposed. In contrast to [5], where IMU measurements
along with a simulated vision pipeline were used to perform the experiments, in Paper IV, the
onboard VIOs were fused with the vision measurements from the view-overlap in a tightly cou-
pled fashion, allowing the system to be evaluated on the EuRoC dataset. Using the standard

28



6DoF transformation parameterization of the baseline consisting of a rotation and a Euclidean
3D vector, a tendency towards underestimating the baseline’s covariance could be observed.
The proposed parameterization of the baseline as a bearing vector with an inverse-depth param-
eter allowed to capture the underlying uncertainty of the problem more naturally as illustrated
in Fig. 2.2, improving the consistency of the estimate. However, in order for the metrically
scaled baseline to be estimated correctly, the VIO system used onboard each agent must be able
to properly estimate the metric scale itself, which is not necessarily true, as the case for example
at scenes with large depth (e.g. high-altitude flights with a downward-looking camera).
Filling this gap, in Paper V a novel, tightly collaborating estimation scheme was proposed,
which besides fusing visual and inertial data captured by two different agents (e.g. UAVs) also
fuses relative distance measurements across the agents (e.g. obtained via UWB modules). By
employing a distributed approach, the system is designed such that both agents hold their own
local estimate of the system’s state, thus network delay does not result in additional latency in
the pose estimation. Consistency across the two agents’ estimates of the trajectories is achieved
using an asynchronous consensus-based distributed optimization scheme, which, to the best of
the author’s knowledge is employed for the first time to solve sliding-window bundle adjust-
ment. While in Paper V, the main purpose of the distributed optimization scheme is to achieve
consistency across the agents, the potential of the approach lies especially in larger problems as
these can be split into overlapping subproblems. Introducing constraints across these subprob-
lems allows them to be solved in parallel while utilizing the consensus protocol still arriving at a
global solution, similar to [147], however, without the need for a central coordination unit. The
carefully designed system could be demonstrated to outperform state-of-the-art stereo-inertial
algorithms with a stereo baseline of 0.22m at high altitudes of 20m upwards and maintain a
high-quality metric scale even at 150m height in simulation. While real-world experiments
achieving the desired parameters are extremely challenging, some first experiments inside a fly-
ing room have been performed successfully and the resulting estimate was utilized to stabilize
the UAVs. These tests revealed that the biggest difference between the simulation and the real
world is the quality and quantity of the data association across the employed BRISK [81] fea-
tures. Nevertheless, a thorough analysis of the performance in real settings is subject to future
work and in particular, the data association needs to be put to the test, for example investigating
different suitable feature types or consider some form of image normalization to improve the
matching across the two agents. In a next big step, a generalization of the approach towards a
larger fleet and loosening the stereo requirement to be used only if available, for example during
rendezvous, but not as a requirement for the system to be operative would significantly boost
the applicability of the approach. In combination with a corresponding path planning algorithm,
this could be employed to actively improve the quality of the estimation through collaboration.

In this thesis, dense scene reconstruction was investigated as an add-on task to the actual
visual-inertial robot localization and its egomotion estimation. The developed approach in Pa-
per I is based on the CPU-only method presented in [127], which was extended with a decay
window in order to perform only a local reconstruction avoiding inconsistencies in the model
due to drift in the VIO’s estimate. Furthermore, a weighting scheme was introduced in order to
reduce the trust in uncertain depth measurements and vice versa. As at the time of publication,
there was a lack of suitable RGB-D datasets in the literature containing also high-quality visual-
inertial along with a high-quality pose and scene ground truth data to evaluate the accuracy of
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the developed approach, a corresponding dataset was created and made publicly available. De-
spite the achievable accuracy of the approach with measured errors on the reconstruction of
below 10mm, the approach itself is rather limited, as it either requires ground-truth poses or the
extent of the local reconstruction to be approximately restricted to lie within to the FoV of the
depth sensor. While other methods such as for example [104], suffer from the same problem,
an extension of [104] is able to correct a map globally by creating submaps anchored to poses
in a pose graph [92]. The recent work [112], building upon [92] even utilizes the submaps to
establish loop-closure constraints. In combination with, for example, CVI-SLAM and a suitable
way of communicating submaps, the approach presented in [112] could build a powerful basis
enabling collaborative, global dense mapping. With such a perception framework, the level of
autonomy achievable with multi-robot systems could reach a whole new level.

Throughout all the work conducted in this thesis, the sensor setup used or simulated has al-
ways been based on a high-quality global-shutter camera along with a time-synchronized IMU,
such as the setup presented in [101]. While in robotics research these assumptions are met to
a large extent, for consumer-level devices as, for example, smartphones this is usually not the
case. Most such devices contain rolling-shutter cameras and IMUs, which are unsynchronized
with the camera and, thus usually are subject to a time offset between the two devices. In recent
investigations into the use of CVI-SLAM with smartphones, first results indicate that in general,
the estimation process can run smoothly, however, the quality of the estimates is significantly
lower compared to the high-quality setup and, therefore, these issues need to be addressed for
example by online time-offset estimation and correction as well rolling-shutter compensation.
Furthermore, as the camera chips and the lenses on smartphones are generally smaller, the im-
ages are more susceptible to motion blur, leading to a devastating drop in the robustness of the
system for faster motions. Hence, the robustness of the frontend data association with respect to
motion blur needs to be improved, for example by employing a direct image alignment method,
as these approaches are known to improve the robustness with respect to motion blur [8].

Overall, with both practical and theoretical research work in this thesis, useful insights emerge
on visual-inertial SLAM and state estimation for single- and multiple agents. Focusing on
visual-inertial data to perform collaborative SLAM, the presented results push the perception
capabilities of multi-robot teams closer towards their deployment in real missions. The advan-
tage of collaboration for performing SLAM could be demonstrated, opening up not only the
benefit of using shared experiences with other participating agents at runtime, but also boosting
the robot’s perception capabilities in collaboration beyond the individual agents’ capabilities.
While the optimization process in the SLAM backend is key to the performance of collaborative
SLAM, it also constitutes the main bottleneck for the scalability of the approaches. Applying
the principle of collaboration to the SLAM backend as proposed in this thesis demonstrated that
the potential benefits of robotic collaboration are vast. While several open questions remain, this
work paves the way towards the deployment of larger and more collaborative robotic teams.
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PaperI
Real-time Dense Surface Reconstruction for

Aerial Manipulation

Marco Karrer, Mina Kamel, Roland Siegwart and Margarita Chli

Abstract
With robotic systems reaching considerable maturity in basic self-localization and en-
vironment mapping, new research avenues open up pushing for interaction of a robot
with its surroundings for added autonomy. However, the transition from traditionally
sparse feature-based maps to dense and accurate scene-estimation imperative for re-
alistic manipulation is not straightforward. Moreover, achieving this level of scene
perception in real-time from a computationally constrained and highly shaky and ag-
ile platform, such as a small an Unmanned Aerial Vehicle (UAV) is perhaps the most
challenging scenario for perception for manipulation. Drawing inspiration from other-
wise computationally constraining Computer Vision techniques, we present a system
combining visual, inertial and depth information to achieve dense, local scene re-
construction of high precision in real-time. Our evaluation testbed is formed using
ground-truth not only in the pose of the sensor-suite, but also the scene reconstruction
using a highly accurate laser scanner, offering unprecedented comparisons of scene
estimation to ground-truth using real sensor data. Given the lack of any real, ground-
truth datasets for environment reconstruction, our V4RL Dense Surface Reconstruc-
tion dataset is publicly available.
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(a) Sensor-Suite (b) AscTec Neo1

(c) Local scene reconstruction with SLAM in the loop

Figure 4.1: (a) The Sensor-Suite used for capturing visual, intertial and depth cues as well
as ground truth poses. (b) UAV able to carry these sensors as well as processing all data in
real-time. (c) An example local scene reconstruction obtained by the proposed method using
a time-of-flight camera and color-coded according to the reconstruction error (mean error of
8mm in this frame, processed at 5.2ms per frame).

1 Introduction

For a robot to be able to interact with its environment, awareness of both its ego-motion as
well as its workspace are necessary. With Simultaneous Localization And Mapping (SLAM)
techniques opening up new horizons in robotic autonomy, we have witnessed a series of im-
pressive breakthroughs to motion and environment estimation all the way from systems using
range sensors on ground robots [80], [17] to real-time SLAM from a single camera [31]. It is
due to this progress that vision-based flights with all processing and sensing onboard a small
Unmanned Aerial Vehicle (UAV) were made possible [141]. Combining visual and inertial cues
is now accepted as a powerful setup suitable for UAV navigation offering complementary sensor
information at relatively low weight, power and computation resources, which are particularly
limited onboard UAVs. Aiming for more robust and scalable solutions, Visual-Inertial (VI)
SLAM has come a long way with systems such as [9] and [82] able to perform with unprece-
dented robustness, albeit still prone to drift and erroneous estimates due to common challenges,
such as lighting changes and fast camera motion. With the increasing availability and afford-
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ability of UAVs as well as the acquired knowledge on the controls, active interaction of a UAV
with its environment is increasingly attracting the interest of the community. With robot’s in-
teraction with its environment spanning a great spectrum from guiding physical contact across
a set of pre-defined waypoints on a surface [30], [88] to grasping objects during flight [109],
[69], the focus in such works is on the control aspect to ensure the integrity and stability of the
vehicle during such tasks. However, such works typically rely on knowing the robot’s pose and
its workspace, for example using an external tracking system to provide the UAV’s pose and
attempt to interact only with objects of simple, predefined shapes, sometimes compensating for
small errors using tactile feedback [30]. In this way, the big challenge of effective and timely
robotic perception of its environment are circumvented, albeit limiting the applicability of these
works to real scenarios outside the controlled laboratory environment, such as the industrial
manipulation tasks envisioned in [4].

Following the demand for more realistic frameworks enabling robot autonomy, recent Robotics
research has been turning towards denser scene representations than traditional feature-based
SLAM, borrowing ideas from Computer Vision and Photogrammetry. A significant milestone
in this direction was the emergence of the Microsoft Kinect camera, which paved the way to a
variety affordable depth sensors able to provide dense depth images at high frame rates. Of par-
ticular interest are also the new generations of more compact and cheaper Time of Flight (ToF)
cameras.

KinectFusion [99] pioneered real-time dense scene reconstruction using a Kinect camera
proposing to maintain a discretized Signed Distance Function (SDF) to fit a surface to the scene.
Aiming to address the lack of scalability of [99], [115] proposed a movable reconstruction vol-
ume, while [145] proposed the use of a discretized Octree scene representation. Putting SLAM
in the loop of dense scene estimation, [126] proposed an RGB-D SLAM system built on dense
image alignment and an Octree-based mapping of the underlying SDF. However, despite the
visually appealing scene reconstructions that they produce, all aforementioned works make use
of power-hungry GPUs to compensate for the otherwise unaffordable cost of computation. As
the use of such computational power is prohibitive onboard low power and low payload plat-
forms such as UAVs, most recent research focuses on bringing such techniques on the basis of
affordable CPU processing. In this direction, [127] demonstrated real-time CPU-only capability
based their earlier work [126], while single-camera CPU-only reconstructions have also made
their debut [38], albeit with significantly less accurate and less robust frameworks.

In realistic manipulation tasks, for example to clean a surface from oxidation, it is imperative
to have a timely, dense and accurate estimation of the robot’s workspace. This is especially the
case in aerial manipulation, where the base of the manipulator, instead of firmly mounted on a
rigid structure, is attached on a highly agile and shaky UAV, highlighting the need for real-time
and precise dense scene estimation before any manipulation task can be carried out successfully.
With this challenge in mind, in this paper we propose a novel system, which estimates the pose
of the sensor-suite in real-time using monocular-inertial SLAM and produces a dense, local
scene reconstruction based on [127] using sensing cues from a depth sensor (Fig. 4.1). We
evaluate our system on a variety of challenging surfaces and camera motions with respect to
scene ground truth obtained by millimetre-accurate laser scans from a Leica MS502 station.

1http://www.asctec.de
2http://leica-geosystems.com
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VI sensor RS sensor ToF sensor

TECHNOLOGY
Monochrome
global-shutter
CMOS, IMU

RGB imaging, IR depth
imaging

Laser (VCSEL)
depth imaging

WEIGHT 130g 35g 18g

RANGE - 0.5− 5m indoors, varies
outdoors 0.1− 4m

POWER 5W 1− 1.6W 300mW

IMAGING
RESOLUTION

480× 752
RGB: 1920 × 1080, IR:
640× 480

172× 224

Table 4.1: Specifications of the sensors used to produce the local scene reconstruction. While
the VI is sufficient for pose estimation, we discuss the use of either the RS or the ToF for dense
scene estimation. Note that the resolutions correspond to the maximal supported values.

While several datasets exist in the literature, recording depth values from RGB-D sensors (e.g.
[131]), to the best of our knowledge, there are no datasets offering ground truth for evaluating
the scene reconstruction at this level of accuracy. The dataset used in this paper, consisting of
data from our hand-held multi-sensor setup (Fig. 4.1a), as well as millimetre-precise ground
truth for both the pose of the sensor-suite using a Vicon3 Tracking system and the scene using
the Leica laser scanner is available online4. Accompanying this paper, a video is available
summarizing our approach.

2 Method

2.1 Sensor Setup
Since our framework is intended for the use with an aerial robot, besides accuracy, the weight
and power consumption of the sensors are also important specifications. In this paper the Intel
RealSense R2005 (RS), and the novel ToF camera CamBoard pico flexx6 from PMD are used
for the depth perception. For the onboard pose estimation, the VI sensor [101] which consist
of a stereo camera pair and a time-synchronized Inertial Measurement Unit (IMU) is used.
In Table 4.1 specifications for the sensors used are shown. We use Vicon, an external visual
6 degree of freedom measurement system consisting of a constellation of multiple infrared
cameras, tracking markers such as the ones in Fig. 4.1a at 100 Hz at millimeter-precision. This
is used to provide ground truth for the poses of the sensor-suite. The setup with the ToF mounted
and the markers for the external tracker is shown in Fig. 4.1a.
For clarity, we refer to the visual image captured by the RS as the “RS image", and equivalently
for the ToF we refer to the amplitude image as the “ToF image". Note that both of these sensors
also provide a corresponding “depth image".

3http://www.vicon.com
4http://www.v4rl.ethz.ch/research/datasets-code.html
5https://software.intel.com/en-us/realsense/r200camera
6http://pmdtec.com/picoflexx/
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Figure 4.2: In the calibration procedure, we aim to estimate the following rigid body transfor-
mations: TCP between the VI-camera (C) and the calibration pattern (P ), TDC between the
depth sensor (D) and camera, and TBC between the tracker body and camera. The pose of the
tracker body in the world frame W (TBW ) is measured given by the Vicon system. Note that
during the calibration the transformation between the world frame and the calibration pattern
does not need to be estimated.

2.2 Calibration
In a first step, the camera intrinsics as well as the rigid body transformation between the IMU
and the camera are calibrated using the framework of [90], [46] and [45]. The intrinsic param-
eters of the depth sensors are used as provided by the manufacturer, which were verified using
the camera calibration application from MATLAB’s Computer Vision Toolbox.
The remaining calibration parameters, namely the rigid body transformations from the left VI-

camera (C) to depth sensor (D), which can be either the ToF or the RS, and from the external
tracker-body (B) to the camera are depicted in Fig. 4.2. To compute these transformations, a set
of images j = 1, . . . , J of a checkerboard calibration pattern (P ) are taken, while simultane-
ously capturing the pose of the tracker-body (TBW ) from the Vicon, along with the amplitude
image for the ToF or the RGB image of the RS. Instead of just using the visual images of the cal-
ibration pattern, for every frame of the depth sensor (i.e. the amplitude image of the ToF or the
RGB image of the RS) we also take into account its corresponding depth image. This enables
the calibration procedure to account for systematic depth errors, for example coming from devi-
ations of the actual emitted signal and the correlation function used to capture the depth image
with the ToF [77]. For the depth correction of the ToF-camera, the parametric depth correction
model presented in [118] was used. The model consists of a third order polynomial in the depth
as well as two first order terms to correct for possible tilt of the sensing chip, expressed:

λ∗ = a0 + (1 + a1) · λ+ a2 · x+ a3 · y + a4 · λ2 + a5 · λ3, (4.1)
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where λ corresponds to the measured ray-length, λ∗ to the corrected ray length and a0, a1, . . . , a5

are the correction parameters, which have to be calibrated. The variables x and y correspond
to the image coordinates. For the RS, we use a simplified model which only takes the constant
offset and the linear term of Equation (4.1) into account, since it does not suffer from the effects
caused by the oscillating signal typical in ToF depth imaging.
To estimate the calibration parameters of our system, a joint optimization problem is formu-
lated by parameterizing the rigid body transform with respect to the variables v. In order to
have a minimal representation of the transformations, these are represented as elements of the
Lie-algebra [35], for which

T =

(
R t
0 1

)
= expse(3) (ξ) , ξ ∈ <6 (4.2)

holds. Therefore, the optimization vector variables v is composed of

v =
(
T 1
CP , . . . ,T

j
CP , . . . ,T

J
CP ,TCD,TCB , a0, . . . , a5

)
. (4.3)

For clarity we denote the Lie-parametrization as the actual transformation matrices. The nota-
tion T jCP corresponds to the transformation TCP for the jth frame. We pose the optimization
problem to include four different error terms, namely the reprojection errors in both the VI-
images and the ToF or the RS images, the depth errors, and the pose errors of the tracker-body
and the camera. For the first error term we detect the corner points of the calibration patter in
each VI-image, as well as the ToF or RS images. The corresponding error term is composed as
the error between the detected corner point yD for the ToF or the RS image, yC for the VI-
image and the projection of the corresponding 3D point yp expressed in the coordinate frame
of P .

ejyC := yjC − hC
(
T jPCyp

)
(4.4)

ejyD := yjD − hD
(
TCDT

j
PCyp

)
(4.5)

The camera projection models hC(·) and hD(·) correspond to the VI-image and the ToF or the
RS image respectively. The second error term included is built by the difference of the predicted
and the corrected ray-length measured, coming from the depth image, as

e
(u,v),j
λ

:= λ(u,v),j − λ∗(u,v),j (4.6)

where λ(u,v),j is the predicted ray-length computed by intersecting the ray formed by the pixel
coordinates (u, v) and the plane of the calibration pattern. Furthermore, λ∗(u,v),j corresponds
to the corrected measurement by applying Equation (4.1). For a more detailed view of the
prediction, we refer the reader to [118]. The last error term included accounts for the error
between the predicted camera pose (TCP ) and the measured pose of the tracker-body (TBW ).
In order to eliminate the transformation between the calibration pattern and the Vicon origin
(TPW ), motion is necessary corresponding to recording two poses per error term [29]. Then
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the error term is expressed as an element of the Lie-group, as

ejξ := logSE(3)

(
ATBC (TBCB)−1

)
(4.7)

whereA andB are defined as

A :=
(
T jCP

)−1
T j−1
CP , B := T jBW

(
T j−1
BW

)−1
(4.8)

The components of the objective function are defined as

GyC :=

J∑
j=1

ej
T

yC
W−1
yC
ejyC (4.9)

GyD :=

J∑
j=1

ej
T

yD
W−1
yD
ejyD (4.10)

Gλ :=
J∑
j=1

∑
(u,v)∈A

1

wλ
e2λ (4.11)

Gξ :=

J∑
j=2

ej
T

ξ W−1
ξ ejξ (4.12)

where A denotes the pixels of the depth image corresponding to the area covered by the cali-
bration pattern. The weight-matrices WyC ,WyD and Wξ were chosen to be diagonal with
the corresponding variance expected considering the calibration of the individual sensors or the
manufacturer’s specification on the uncertainty. The scalar weight wλ corresponds to the noise
variance of the depth sensor. The objective function is composed as:

G = GyC +GyD +Gλ +Gξ (4.13)

For the initialization of the camera poses the linear solution to the extrinsics problem is used.
The transformation between the depth sensor and the camera is initialized using a least squares
solution to the reprojection error on a subset of the calibration images. The initial guess for the
transformation between the tracker-body and the camera is obtained using the algorithm of [29].
For the optimization of the objective function we use the Levenberg-Marquardt algorithm.

2.3 Surface Reconstruction
We employ the framework of [127] to estimate the surface and extend this to account for any
priors on the uncertainty of the depth measurements as well as with an efficient method for
performing a local reconstruction as elaborated in Section 2.4. At the core of the approach of
[127] lies the Octree structure, which at its leafs, called “bricks" (b), stores the value of the SDF
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in a 83 voxel volume. With the arrival of a new depth image, the corresponding brick for every
pixel is looked up and put into a queue. The queue is then iterated over and for every voxel
contained inside of the brick, its position p in the world frame transformed into the frame of the
depth sensor pD . The measured point is computed using the linear inverse projection model
h̃−1
D (·) on the undistorted depth image and the depth measurement Z(u, v) at pixel coordinates

(u, v), as
pobs = h̃−1

D (u, v, Z(u, v)) (4.14)

Due to the use of a truncated version of the SDF, defined as

∆D = max {min {Φ, |pD − pobs|} ,−Φ} (4.15)

where Φ is the truncation threshold and the multiscale approach, the number of bricks queued
per frame are limited. The update of the stored distance values D(p, t) at the voxel position p
at time t is performed as a weighted running average

D(p, t) =
D(p, t− 1)W (p, t− 1) + ∆Dw(∆D)

w(∆D) +W (p, t− 1)
(4.16)

WhereW (p, t) corresponds to the accumulated weight at position p and time t. For the weight
increment w(∆D) different weighting schemes can be used as presented in [13]. In [127]
w(∆D) is constant for areas in front of the surface and decreases linearly until zero behind the
surface, i.e.

w(∆D) =


1 , if ∆D < δ
Φ−∆D

Φ−δ , if ∆D ≥ δ and ∆D ≤ Φ

0 , if ∆D > Φ

(4.17)

where δ can be seen as an allowed penetration depth of the measurement. This weighting
scheme solely relies on the geometric distance to the measurement, but does not take any ad-
ditional information into account. A simple noise estimate for example for a ToF camera can
be obtained as described by [84]. Since the ToF camera used provides information about the
noise level of each pixels, we propose a weighting scheme to incorporate these in the weighting
function using it as a scaling factor. Assuming a noise value σ(u, v) at pixel coordinates (u, v),
we compute a scaling factor according to

fσ =

{
1 , if σ(u, v) ≤ σmin
σmin
σ(u,v)

, if σmin < σ(u, v),
(4.18)

where σmin is a parameter that can be chosen according to the expected noise of the sensor.
In this way, we aim to take the sensor’s estimated uncertainty into account when weighting the
different incoming votes of the voxels. This results to more informed estimation of the surface,
providing robustness to common bottlenecks, for example too oblique angles of incidence. The
adapted weighting scheme is defined as:

w̃(∆D) = fσ · w(∆D) (4.19)
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This simple scheme allows to incorporate sensor-specific uncertainty measurement, which in
case of our ToF camera is available anyway, without degrading the computational efficiency of
the estimation. For the RS, we use the uniform weighting scheme according to Equation (4.17).
The SDF representation has a large memory footprint, which e.g. limits cooperative interac-
tions between multiple agents due to limited bandwidth. Therefore, and also for visualization
purposes, the algorithm of [127] keeps track of the updated bricks and performs a re-meshing
on those areas using an adapted version of a marching cubes algorithm in order to account for
the multiscale approach. For a detailed explanation of the meshing algorithm, we refer to [127].

2.4 Surface Reconstruction using SLAM Poses
In order to use the reconstruction algorithm with SLAM poses, typically subject to drift, we
implemented a scheme which is able to maintain a locally accurate scene estimate. We imple-
ment this by introducing a visibility constraint in the sense that we only keep the portion of the
reconstruction, which received measurements within the time horizon th and discard the rest.
This is done by keeping track of the time-stamp of updated bricks and maintaining the local
scene reconstruction within th with respect to the current camera pose. We denote Bs as the set
of bricks used for the surface estimation at the current time and Bo as the bricks to be updated.
The notation t(bi) corresponds to the latest time-stamp that brick bi was updated. The actual
voxels grouped inside the brick bi are indicated by pj , which corresponds to the voxel center
coordinates. The update procedure is shown in Algorithm 1. The time horizon th influences the
behavior of the algorithm. For larger th during exploratory motion, drift of the SLAM system
result in larger reconstruction errors and higher computational cost as more bricks need to be
tracked, i.e. the size of Bs increases. On the other hand, if the chosen th is too small, even
quick deviations from the current viewpoint, e.g. by wind disturbances, can result in loss of the
previous reconstruction.

The reconstruction algorithm itself is agnostic to the SLAM technique used. For the pose es-
timation in our system, we use the framework proposed by [83], which uses the sensor readings
of both the IMU as well as the camera input streaming from the VI-sensor. The system is based
on sparse features on a set of keyframes as well as the incorporation of IMU measurements into
a local graph. The window of keyframes is kept bounded by marginalizing out old keyframes.
This allows the algorithm to run in real time on a CPU, while maintaining an accurate pose
estimate. However, due to the local keyframe approach the system is still prone to global drift.
The framework can be run using multiple cameras or as a monocular system. Motivated by the
lower computational complexity, while maintaining a comparable performance, here we use the
monocular version of the algorithm for state estimation.

3 Experimental Results

3.1 V4RL Dense Surface Reconstruction Dataset
In order to evaluate the performance of the system in terms of accuracy, a dataset consisting of
the VI data, as well as the data of the depth sensor (RS or ToF) and the pose of the tracker-body
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Algorithm 1 Time Window for Local Reconstruction
Bo := all bricks observed from the current pose
t← current time-stamp
for all bi ∈ Bo do

if bi /∈ Bs then
add bi to Bs

end if
end for
for all bi ∈ Bs do

if bi ∈ Bo then
t(bi)← t
for all pj ∈ bi do

update W (pj , t)
update D(pj , t)

end for
else if (t− t(bi)) > th then

remove bi from Bs
end if

end for
Bo ← ∅

from the Vicon system were recorded. Complementary, the observed scene was scanned using a
Leica MS50 laser scanner from multiple viewpoints in order to obtain ground truth for the scene,
against which we can compare the estimated reconstruction. This dataset, which includes scene
and poses’ ground truth for the first time, is publicly available4.

We choose two different scenes to evaluate the system; one generic desk sequence containing
objects of different texture and material (e.g. affecting their reflectance properties) as shown in
Fig. 4.3, as well as a more industrial object consisting of a Pipe structure typical in an industrial
inspection scenario (ground truth reconstruction in Fig. 4.4). The recordings were made using a
hand-held setup in order to ease testing different types of motions (i.e. of different speed, shaky,
different viewpoints) as well as to avoid changes of the scene setup due to the airstream of a
UAV.

The scene ground truth was captured by 8 separate scans for the Desk scene with a total
number of approximately 10M points and 6 scans for the Pipe structure with 2.5M points in
total. The scans were pre-aligned by localizing the Leica station with respect to a set of known
markers in the room. The final alignment was performed using the Iterative Closest Point (ICP)
algorithm on adjacent scans, incrementally building the ground truth point cloud. Outlier fil-
tering using radius search was applied on the obtained point clouds, while points with low
neighborhood support were also removed. The final ground truth point clouds for both scenes
are shown in Fig. 4.4.

The properties of the sequences used are listed in Table 4.2. Note that the trajectories using
the ToF and the RS are similar in each case but cannot be identical due to the hand-held setup.
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Figure 4.3: A view of the Desk scene used for the evaluation together with the Leica MS50
station used to obtain the ground truth scene reconstruction.

Figure 4.4: The registered laser scans of mm-precision used as scene ground truth, left: Pipe
structure, right: Desk scene
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Scene
Type Name Average linear

velocity [m/s]
Average rotation
velocity [◦/s]

Trajectory
length [m]

Desk

d1

ToF

0.2 13.6 25
d2 0.3 29.6 40
d3 0.2 12.9 17
d4 0.3 25.1 24
d1

RS

0.2 13.2 25
d2 0.3 29.5 43
d3 0.2 12.7 14
d4 0.3 27.5 22

Pipes

p1

ToF

0.3 17.1 22
p2 0.3 24.2 20
p3 0.1 6.4 6
p4 0.2 25.8 11
p1

RS

0.3 16.2 24
p2 0.3 26.3 20
p3 0.1 7.7 5
p4 0.3 23.9 10

Table 4.2: Properties and naming convention of the V4RL Dense Surface Reconstruction
dataset.

3.2 Reconstruction Accuracy (Global)
To quantitatively evaluate the reconstruction accuracy isolating it from any pose errors, the
scenes are reconstructed using the ground truth poses from the Vicon system. The reconstruc-
tion is performed by fusing the full data sequence in the system for every trajectory. The voxel
resolution at the finest level is chosen to have a side length of 6mm. The transformation be-
tween the world frame (of the Vicon system) and the origin of the scene ground truth is only
known approximately, since the world frame origin of the Vicon system can only be selected
manually. Therefore, for every comparison we perform an ICP alignment of the estimated re-
construction to the ground truth. Although the obtained reconstruction is represented as a mesh,
we consider its vertex points for the alignment. For the evaluation process, we compute the
distance of every vertex of the reconstruction to its Nearest Neigbhor (NN) in the ground truth
point cloud. In order to correct for regions, where no ground truth data is available (due to
occlusions, shiny surfaces, etc.), we do not consider vertices whose NN is further away than
a certain maximal distance dmax. The distance dmax was chosen to be 50mm for the Desk
scene and 30mm for the Pipe structure, respectively. In Fig. 4.5, an example of a reconstruction
color-coded with respect to the NN-distance is shown. The NN-based errors are recorded for
every sequence of the two scenes, using both the RS and the ToF. For the ToF camera, both
the standard weighting scheme of [127] as well as our proposed weighting system (according to
Section 2.3) are evaluated. The reconstruction accuracies achieved in each case are summarized
in Fig. 4.6.

On both the Desk scene as well as the Pipe structure, the RS achieves higher accuracy com-
pared to the ToF. This is caused by the higher resolution (2×) of and the higher frame rate (3×)
of the RS, which results in a higher information density. For the ToF our proposed weighting
scheme improves the accuracy on all sequences on average by 10% up to a maximal improve-
ment of 17%. The error level on the Desk scene is higher which is caused not only by the larger
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Figure 4.5: Resulting reconstruction error using ground truth poses along with the ToF depth
measurements on the Desk scene, while applying the proposed weighting scheme.

size of the scene, but also due to the different materials and larger variety in the angles of inci-
dence. Furthermore, in the sequences of the Pipe structure all areas of the object are observed
from a similar number of views and viewpoints, whereas for the Desk scene some regions are
only viewed quickly, while others are observed more thoroughly.

3.3 Local Reconstruction with SLAM in the loop
To evaluate the estimated reconstruction when using SLAM for the pose estimation, we applied
the time window discussed in Section 2.4 resulting to a local estimation of the scene. The time
window th for this procedure was set the constant value of 3s, which gives some tolerance
to shaky motions of the camera when observing an area, while still keeping the region of the
estimated reconstruction small enough to avoid significant motion drift. Instead of the global
model, the most recently estimated local reconstructions were stored at a frequency of about
1 Hz. We aligned each of these local reconstructions to the corresponding scene ground truth
using ICP and used the same error metric as for the global reconstruction. The corresponding
mean error values are shown in Fig. 4.7.

Surprisingly, the average error for the ToF on the Desk scene is lower than when using the
ground truth poses (Section 3.2). This is due to the fact that the impact on the overall error
coming from poorly reconstructed areas (e.g. due to oblique angles of incidence, few views) is
diminished when considering the average error of local reconstructions. Using the time horizon
scheme, there is significant overlap in the regions considered at consecutive reconstructions,
therefore these areas are bound to have better accuracy and can overall reduce the average
reconstruction error.

When reconstructing the scene locally using RS cues, the average reconstruction error is in-
creased and the accuracy disadvantage of ToF-based global reconstruction is diminished. The
explanation for this is multi-fold; firstly, because the variability of viewpoints during local re-
construction is limited, any internal calibration errors of the RS become more evident (i.e. re-
sulting to erroneous depth values at contour edges). Moreover, although the maximum range of

43



Paper I: Real-time Dense Surface Reconstruction for Aerial Manipulation

(a) Desk Scene

(b) Pipe Structure

Figure 4.6: Average reconstruction error using ground truth poses. Note: the labels d1 − d4
and p1− p4 correspond to the sequences in the dataset defined in Table 4.2
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Figure 4.7: Average errors of the local reconstructions using poses from VI-SLAM [83]. Note
that for the Pipe structure only sequences p3 and p4 are used, since for the sequences p1, p2
there was a significant yaw drift in the SLAM poses when turning around the structure.

the ToF and the RS (Table 4.1) appear similar in their specification, in practice we observed that
the RS usually perceives more distant measurements increasing the sensitivity of the acquired
data (and thus, the reconstruction) to angular pose errors.

3.4 Evaluation of Computational Performance
A thorough investigation of the computational performance of the reconstruction and meshing
algorithm was performed by [127]. Hence, we focused our investigation on the comparison
between the ToF and the RS as well as on the difference between our weighting scheme and
the standard implementation. Furthermore, we evaluate the computational overhead induced
by applying the time window based Local reconstruction with SLAM in the loop, versus the
full Global reconstruction with Vicon poses. We conducted the experiments on the sequences
used in Section 3.3, while setting the voxel size at the finest level to 8mm. The timings were
measured on a Intel Core i7-4710MQ CPU running at 2.5 GHz and are presented in Table
4.3. The computational overhead of our proposed weighting scheme is minimal, on average
about 0.4ms, while reducing the reconstruction error on average by 10%. The difference in the
update times between the RS and the ToF stems from the higher resolution of the RS compared
to the ToF. Using the local reconstruction over the time horizon th increases the computational
complexity by O(n), with n being the number of bricks tracked within the time horizon th.
Table 4.4 records the average number of bricks per frame tracked during the reconstruction
as well as the percentage of these which get updated (per frame). Generally, faster motion
or finer the voxel resolution (i.e. more detailed reconstruction) results the higher number of
tracked bricks, which influences directly the execution time per update step. The RS requires
on average 3 times more bricks tracked compared to the ToF due to its higher resolution as well
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Sequence

Fusion Time per Frame [ms]
ToF ToF RSUniform Weighting Our Weighting

Global Local Global Local Global Local
d1 4.2 4.6 4.5 4.9 11.0 12.4
d2 4.6 5.1 5.0 5.5 10.8 12.3
d3 4.3 4.7 4.6 5.0 10.0 11.2
d4 4.4 4.9 4.7 5.2 10.0 11.4
p3 2.2 2.3 2.3 2.4 6.0 6.4
p4 2.1 2.2 2.2 2.3 6.6 7.2
Average 3.6 4.0 3.9 4.2 9.1 10.1

Table 4.3: Average time per frame for fusing a new depth image in the model. The columns
labeled “Global" correspond to the timings recorded when using ground truth poses with full
scene reconstruction, “Local" corresponds to the timings when using SLAM for the pose esti-
mation along with a 3s time window for the reconstruction. Despite the slightly increased time
necessary for the “Local" reconstruction, our method is always real-time.

Sequence Number of Bricks Tracked Updated Bricks [%]
ToF RS ToF RS

d1 1544 5182 37.4 17.8
d2 2468 6636 28.2 13.1
d3 1658 4867 37.2 15.9
d4 2106 5920 29.3 13.8
p3 543 1843 45.3 16.0
p4 733 2875 30.6 13.8
Average 1509 4554 34.7 15.1

Table 4.4: Average number of bricks tracked using the time window based Local reconstruction,
and the percentage of bricks updated related to the number of tracked bricks.

as its larger measurement range. More execution time is consumed on average to achieve the
Local reconstruction, but this is still real-time for the ToF (< 6ms) and the RS (< 13ms).

In manipulation tasks, we cannot afford to compromise the reconstruction accuracy as this
can be catastrophic, especially in the case of UAV manipulation. As a result, in order to ensure
sufficient quality of the reconstruction even in the presence of inevitable global drift accumulat-
ing in the SLAM pose estimation, a small overhead in execution time is acceptable. In the case
of the RS Local reconstruction, this overhead becomes more evident due to a larger number of
bricks to track. Overall, the RS outperforms the ToF in terms of accuracy on the global scale
(Section 3.2), but in terms of local accuracy (Section 3.3) both the RS and the ToF perform
similarly. As a result, considering that ToF offers a significant advantage in execution time, it
poses a better choice for a setup with limited computational resources, such as onboard a UAV.
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4 Conclusions and Future Work

In this paper we present a system capable of accurately reconstructing a local scene in real-time,
suitable for manipulation tasks even from a highly agile platform, such as a UAV. Fusing depth
cues at frame rate, while estimating the pose of the sensor-suite using visual-inertial SLAM,
our experimental evaluation on a variety of challenging scenarios reveals the high fidelity of the
system achieving reconstruction accuracy of the order of 10mm on average.

A thorough evaluation of the proposed approach was presented assessing the accuracy of the
obtained 3D reconstruction both on a global scale using ground truth poses and ground truth
scene reconstruction, as well as for local reconstructions using poses obtained by a nominal
visual-inertial SLAM system. As no such testbed (with real sensing data and scene ground
truth) exists in the literature, we release our dataset consisting of visual, inertial and depth data
from a time-of-flight and an RGBD camera, as well as pose and scene ground truth of millimeter
precision. Future work includes employing this reconstruction framework to perform simple
manipulation tasks from a UAV, as well as research into UAV path planning for viewpoints
promising more accurate reconstructions.
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Abstract
Motivated by the need for globally consistent tracking and mapping before au-
tonomous robot navigation becomes realistically feasible, this paper presents a novel
back-end to monocular-inertial odometry. As some of the most challenging plat-
forms for vision-based perception, we evaluate the performance of our system using
Unmanned Aerial Vehicles (UAVs). Our experimental validation demonstrates that
the proposed approach achieves drift correction and metric scale estimation from a
single UAV on benchmarking datasets. Furthermore, the generality of our approach is
demonstrated to achieve globally consistent maps built in a collaborative manner from
two UAVs, each equipped with a monocular-inertial sensor suite, showing the possible
gains opened by collaboration amongst robots to perform SLAM.
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1 Introduction

One of the key pre-requisites in the quest of employing mobile robots with navigational auton-
omy is the development of their ability to perceive their workspace and estimate their ego-
motion within it, which is commonly referred to as Simultaneous Localization And Map-
ping (SLAM). While initial attempts to address SLAM have been utilizing range sensors, it was
the emergence of monocular and real-time capable SLAM systems, such as [31] and [70] that
paved the way towards the use of SLAM onboard small Unmanned Aerial Vehicles (UAVs). The
employment of Visual-Inertial (VI) sensing cues and the successful demonstration of vision-
controlled flights using onboard sensing only [141], rendered this sensor suite as the standard
choice for the control and navigation of small aircrafts.

With increasing maturity and robustness in this field, two state of the art methods for Visual
Inertial Odometry (VIO) open-sourced their implementations, namely OKVIS [82] and ROVIO
[9]. Such systems permit reliable state estimation even during complicated UAV maneuvers.
However, as these algorithms are only local, the current UAV pose that is being estimated is
prone to drift over longer trajectories. Aiming to address drift during real-time monocular state
estimation, ORB-SLAM [96] pushed the state of the art, tackling large-scale loop correction
at an unprecedented robustness and accuracy in monocular systems. Incorporating additional
inertial data to the monocular setup, the most recent VI-ORB-SLAM [98] was the first VI-
SLAM system capable of correcting drift via loop-closure detection and optimization, while
maintaining an estimate of metric scale with high accuracy. Despite constituting a milestone,
VI-ORB-SLAM remains closed source and based on the authors’ evaluation [98] as the only
source of information, its accuracy is reportedly fluctuating across different datasets, highlight-
ing the need for deeper analysis in VI-SLAM.

Moving on from single-robot SLAM systems, the community started making the first steps
towards investigating collaborative SLAM in multi-robot scenarios. While [149] for example,
leverages the multi-camera setup with view overlap to perform SLAM in challenging dynamic
scenes, [43] and [119] explore the advantages of employing multiple UAV equipped with cam-
eras for efficient mapping and collaborative SLAM, respectively. Due to the lack of metric
measurements (e.g. inertial data), these systems can only provide estimates up to scale. Instead,
the approach in [5] for collaborative stereo from two UAV is capable of estimating the relative
pose of two VI systems in simulation, albeit avoiding to address the global consistency of the
estimation processes.

While the aforementioned open-sourced VIO systems have been very influential in robot nav-
igation, their inevitable tendency to drift, limits their applicability in real scenarios, where global
state estimation is required. In this spirit, we present a carefully designed back-end, which in
combination with a nominal VIO system enables the generation of a globally consistent map
at comparable accuracy with the state of the art VI-SLAM systems – at times even achieving
error reduction of over 50%, solely considering the back-end optimization. Moreover, here
we go a step further to illustrate the use of the proposed back-end with two UAVs to achieve
collaborative mapping, while correcting for drift upon loop-closures, both within each trajec-
tory as well as across trajectories of different UAV as shown in Fig. 5.1. This paper outlines
a new, complete back-end system in enough detail to enable reproducability of the proposed
system, employable in combination with an off-the-shelf VIO system requiring only minimal
modification. Furthermore, our evaluation on benchmarking datasets reveals that the proposed
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Figure 5.1: A snapshot of the proposed system in a collaborative setup with two UAVs. On
the left the viewpoints from each UAV are shown, while on the right is the joint 3D map built
collaboratively.Trajectories and landmarks are colored in white and green for UAV A and UAV
B, respectively. Landmarks that are shared across both UAVs are indicated in magenta, while
covisibility edges, connecting keyframes accross the two UAVs are also in magenta, magnified
in the inset for clarity.

framework can achieve significant improvement in accuracy over the state of the art.

2 Preliminaries

2.1 Notation
In this paper, we use bold capital letters for matrices (e.g. A), bold small letters for vectors
(e.g a), and capital letters for coordinate frames (e.g. A), while sets of variables are denoted
by calligraphic letters (e.g. A). A rigid body transformation from coordinate frame B to A is
denoted by TAB , while the rotational part of any transformation T is denoted by R and the
translational part by t. A vector x expressed in coordinate frameA is written as Ax. The origin
(i.e. the inertial frame) of the system is denoted by W (also referred to as the world frame), the
camera coordinate system by C, and the Inertial Measurement Unit (IMU) body frame by S.

2.2 IMU Model and State Representaion
It is well known that readings from MEMS-IMUs do not capture the true acceleration and
rotational velocity, but rather a biased version of them. While some errors, such as cross-
couplings and scaling errors are constant and can be compensated for via factory calibration,
other influences are time-variant and need to be estimated online. In order to model the IMU
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measurements, we use the standard measurement model, assuming that the accelerometer Sa(t)
and the gyroscope measurements SωWS(t) are both corrupted by additive white noise η and
have a sensor biases b, which are assumed to be varying slowly over time (t), such that:

Sa(t) = Rᵀ
WS(t) (W â(t)−W g) + ba(t) + ηa(t) , (5.1)

SωWS(t) = Sω̂WS(t) + bg(t) + ηg(t) . (5.2)

The notation .̂ signifies the true values of the respective variables, whileW g is the gravity vector
in the inertial frame. We differentiate the accelerometer-specific variables from the gyroscopic
ones via the subscripts a and g, respectively.

Due to the characteristics of the IMU measurements, the state of the system Θ includes the
poses {RWS , tWS} of all the Keyframes (KFs) in the trajectory, the positions W l of all of the
landmarks ever experienced, as well as the linear velocities W v and bias terms b:

Θ := {RkWS , t
k
WS ,W v

k, bk︸ ︷︷ ︸
KFk

, Sr l
i} ∀k ∈ V, ∀i ∈ L , (5.3)

where V is the set of all keyframes and L is the set of all landmarks. Instead of expressing
the landmarks in the global reference frame (W ), we express them in local coordinates of a
reference KF Sr as proposed in [7]. In combination with an inverse-depth parametrization
[23], this aims at improving the conditioning of the problem during the optimization. However,
for the sake of readability, we will treat the landmarks as if they were expressed in Euclidean
coordinates. In this paper, we refer to individual state variables as θj .

3 Method

We consider the setup of two UAVs equipped with a monocular camera and an inertial sensor
each, experiencing the world at the same time, while exhibiting an overlap in their fields of
view. Following this paradigm, this section gives an overview of the proposed system to arrive
to a joint, globally consistent map of the UAVs’ surroundings and their relative poses within it.

3.1 System Overview
The proposed system, illustrated in Fig. 5.2, employs a front-end VIO module onboard each
UAV and then processes all information gathered from the UAVs to perform Landmark Match-
ing and Mapping, Loop-Closure Detection, and Local and Global Bundle Adjustment (BA)
on all estimates. VIO ensures a stable pose estimation of each UAV in six Degrees of Free-
dom (DoF) and is expected to drift, but can be used to safely stabilize the UAV. The decoupling
of the VIO from the rest, the map management threads that can run on a ground station; VIO
communicates KF messages to the back-end. While the absence of feedback from the global
map to the VIO prohibits direct corrections of the VIO’s state upon map changes, it enables the
use of an off-the-shelf VIO with only minimal modifications. Furthermore, as transformation
between the global map’s and the VIO’s coordinate can be easily estimated, the UAV would still
be able to make use of corrections, as e.g. presented by [102].
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Figure 5.2: A schematic of the proposed pipeline to fuse the experiences of multiple UAVs into
a joint, globally consistent map, by reusing information obtained by the VIO running onboard
each UAV (in purple). At first, correspondences between keyframes and landmarks are estab-
lished and new landmarks get initialized (boxes in cyan). The scene structure and UAVs’ poses
are then optimized frequently on a local scope and upon detection of loop closures, optimization
is performed on a global scale.

During Landmark Matching and Mapping (in cyan in Fig. 5.2), past observations get asso-
ciated with the landmarks in the resulting, joint map from both UAVs, while new landmarks
get initialized in this map. The map comprises of a set of 3D landmarks and KFs, where each
KF consists of the corresponding UAV pose, a set of 2D observations and the landmarks visible
from it. Each landmark in the map stores the KF-IDs that have observed it, an estimate of the
local surface normal based on the viewing angles of all corresponding observations, as well as
the most representative image descriptor for this landmark across all observations, as proposed
in [96] – this aims to increase the re-detectability of the landmarks.

A Covisibility Graph is maintained throughout each session, with nodes corresponding to
individual KFs. Two nodes share an edge if the corresponding KFs share a minimum number
of landmark observations (αmin = 12 in our implementation), and each edge is associated
with a weight α reflecting the number shared landmark observations. An Essential Graph is
also maintained (this notion was first introduced in [96]), which is of similar structure to the
Covisibility Graph, only preserving the most essential information, by restricting edges even
more (e.g. αmin = 100). In addition to the purely spatial KF covisibility, we also keep track
of the temporal predecessor of each KF, distinguishing the agent (i.e. here the UAV), from
which the KF originates, as this necessary for the constraints used to obtain metric scale.

Since Loop-Closure Detection is mostly independent of Mapping and Local BA they run in
separate threads. However, in case of a loop-closure, the system waits until the Local BA for the
current KF has finished, and then triggers the loop correction, blocking the processing of new
KFs until the map is updated with the result of the Global BA. At the core of the proposed system
is the optimization of both the KF poses and scene structure (i.e. landmarks) simultaneously,
including any IMU readings obtained between consecutive KF poses. This aims at recovering
each UAV’s trajectory in metric scale. Local BA is performed for more frequent small-scale
corrections, while Global BA is used to optimize all poses and landmarks obtained from all
participating agents.
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3.2 Visual-Inertial-Odometry Input
The proposed system is generally independent of the choice of the VIO pipeline used, with the
only requirement of providing metrically scaled current poses and corresponding 2D observa-
tions. For the experiments presented in this paper, the publicly available VIO system OKVIS
[82] is employed with some adaptations to reuse the matching results. OKVIS performs a joint,
non-linear optimization over a constant number of KFs, including inertial measurements.

Packing the relevant information for the current KF as provided by VIO into KF-messages,
these then serve as input to the proposed back-end framework. Each KF-message encloses
the current KF’s pose, the IMU readings since the last KF, the locations of the current KF’s
kyepoints in the image, and their corresponding descriptors – thus, eliminating the need for
sending full images. Each KF-message also includes a list of global identifiers of its associated
keypoints, enabling tracing of the KF’s keypoints back to older KFs that they were matched
from, within the local window (of retained KFs) of VIO. This enables re-use of data associations
as discussed in the next section. Note that this latter part of a KF-message is optional, as for
example, filter based VIO systems (e.g. [9]) may not have this information available. As the
KFs arrive at an unknown rate, we store arriving KF-messages within a first-in-first-out buffer,
before processing them sequentially.

3.3 Landmark Matching and Mapping
Landmark matching consists of establishing correspondences of the current frame to the ex-
isting landmarks (via 3D-2D matching) and the creation of new correspondences (via 2D-2D
matching) across different KFs. In order to establish matches to existing landmarks, every ob-
servation in the current KF is checked for correspondences with the past KFs via the global
landmark identifiers listed in the KF-message. Before accepting a new correspondence, this is
checked for consistency in terms of the reprojection error and the descriptor distance within
the map. In order to establish additional 3D-2D correspondences, or in case the VIO system
at hand does not provide matching information, the system uses the relative transformation
Tk−1,k between the current keyframe (KFk) and the previous KF (KFk−1) stemming from the
same agent, as estimated by the VIO. Given an estimate for the pose T k−1

WS of KFk−1, the
system predicts the current pose (T̂ kWS ) as

T̂ kWS = T k−1
WS · Tk−1,k . (5.4)

As a result, all landmarks predicted to be visible inKFk from KFk−1 and its first-order neigh-
bors (Nk−1) in the Covisiblity Graph, are projected in it. Similarly to [96], the search for match-
ing observations is restricted within a radius around the predicted projection of a landmark,
while a correspondence is established to the observation with the smallest descriptor distance.
In case of multiple landmarks matching to the same 2D observation, only the correspondence
to the landmark with the biggest number of observations is established, or the landmark with
the smallest descriptor distance, if the first criterion is inconclusive. This process is performed
first using a large radius (i.e. for coarse matching) followed by solving the P3P problem as in
[71] for a number of RANSAC iterations (40 iterations) for outlier filtering on the initial cor-
respondences. The projection based matching is then repeated, using the pose obtained by the
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previous RANSAC step, with a more restrictive radius to find additional matches. Using all
the established correspondences, the current KF pose is refined by minimizing the reprojection
error of the matched landmarks in the current KF, while keeping the landmark position fixed.

Initialization of new landmarks is only performed when the UAV is in an exploratory state,
which is determined by a minimum number on the 3D-2D inlier correspondences found (here
60). In order to initialize new landmarks, we first attempt to triangulate the remaining corre-
spondences obtained by the VIO system (using their identifiers), for which no 3D association
was found. At a second stage, new matches of unassociated observations are searched for. The
candidate frames used for match searching are extracted again as the first-order neighbors of the
previous keyframe (KFk−1) in the Covisibility Graph. We only attempt to match observations
corresponding to the same visual word as computed by the loop-closure detector, rendering the
matching more efficient than brute force. All matches found are checked for consistency before
inserting their correspondence as landmarks into the map. For every newly inserted landmark,
we set its reference KF to the more recent one used to perform the triangulation. Due to this
two-stage correspondence search, our system is capable of running without the need for matches
obtained by the VIO system.

In a cleanup step, duplicated landmarks get merged by projecting all landmarks associated
in KFk to the covisible KFs and matches are searched for in the same fashion as for the ini-
tial 3D-2D matching. In case different landmarks are associated to one observation, they get
merged into one landmark, i.e. the one with most observations associated to it. When there
is no landmark associated with an observation, a new correspondence with that landmark is
established.

3.4 Factor Graph Formulation
Keyframe-based VI-SLAM can be formulated as a factor graph [75], where the variable nodes
θj represent the system state, and factor nodes fi are given by the relation of measurements and
the variables (observations). The factor graph defines the factorization of a function f(Θ) as

f(Θ) =
∏
i

fi(Ai) , (5.5)

where Ai represents the set of variable nodes affected by the factor fi. The goal is to find the
values of the variables Θ∗, which maximize the factorization function Equation (5.5). Under
the usual assumption that observations are corrupted by zero-mean gaussian noise (gaussian
measurement model), the problem can be stated as

Θ∗ = arg max
Θ

{f(Θ)} = arg min
Θ

{− log f(Θ)}

= arg min
Θ

{
− log

∏
i

exp

(
−

1

2
‖zi − hi(Ai)‖2Σi

)}

= arg min
Θ

{∑
i

‖zi − hi(Ai)‖2Σi

}
(5.6)
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= arg min
Θ

{∑
i

eᵀiΣ
−1
i ei

}
= arg min

Θ

{∑
i

eᵀiWiei

}
,

where ‖x‖2Σ = xᵀΣ−1x denotes the squared Mahalanobis distance, ei represents the resid-
ual error, Σi the covariance matrix, and Wi the information matrix of the measurement i. In
this paper, we use the residual notation to describe the objective function we are looking to min-
imize. Within VI-SLAM, we essentially use 3 different types of factors, which are introduced
below based on the corresponding residual error terms for the factors.

Reprojection Factor. Given the position of a landmark Sr l
j expressed in KFr and the corre-

sponding keypoint observation zk,j in the image coordinates of KFk , we define the reprojection
error as

ek,jr := zk,j − h
(
KkTCST

k
SWT

r
WSSr l

j
)
, (5.7)

where h(·) converts homogeneous coordinates into image measurements and K is the camera
matrix. Since we use undistorted keypoint coordinates the error function does not contain a
distortion model.

IMU pre-integration Factor. Given a set of IMU (accelerometer and gyroscope) readings
between two subsequent KFs, we can perform integration of the measurements with an initial
estimate of the bias terms as in [42], which later can be optimized without the need to perform
numerical re-integration of the raw measuremsents. With a given estimate of the pre-integration,
the resulting residuals can be written as

ek−1,k
∆R = log

((
∆R̃k−1,k(b̄k−1

g ) exp

(
∂∆R̄k−1,k

∂bg
δbg

))ᵀ

Rk−1ᵀ

WS RkWS

)
ek−1,k

∆v = ∆Rk−1ᵀ

WS

(
W v

k −W v
k−1 −W g∆tk−1,k

)
−
(

∆ṽk−1,k(b̄) +
∂∆v̄k−1,k

∂ba
δba +

∂∆v̄k−1,k

∂bg
δbg

)
(5.8)

ek−1,k
∆t = Rk−1ᵀ

WS

(
∆tkWS − t

k−1
WS −W v

k−1∆tk−1,k −
1

2
g∆t2k−1,k

)
−
(

∆t̃k−1,k(b̄k−1) +
∂∆t̄k−1,k

∂ba
δba +

∂∆t̄k−1,k

∂bg
δbg

)
,

where ·̃ denotes values obtained by the current estimate of the pre-integration and ·̄ denotes
values obtained with the bias b̄ used at the time that the integration was performed. For more
detailed explanation of pre-integration the reader is kindly referred to [42]. The scalar ∆tk−1,k

represents the integration time between KFk−1 and KFk . As a result, the residual terms of
Equation (5.8) are as follows

ek−1,k
a =

[
ek−1,kᵀ

∆R , ek−1,kᵀ

∆v , ek−1,kᵀ

∆t

]ᵀ
. (5.9)

Prior Factor. Given prior knowledge of a variable θ at time tk , the residual for a prior factor
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Figure 5.3: Schematic for the local optimization. The state variables participating in the op-
timization are shown in clear circles, whereas static variables are shaded. The Factors in the
optimization (residuals) are shown as squares and a prior on a variable is drawn as a small disc.

is the difference between the prior knowledge θ̄k and the estimate θk:

ekθ = θ̄k − θk . (5.10)

Note that for non-Euclidean variables (i.e. rotations) the minus operation has to be adapted to
the commonly used box-minus operator, as shown in [55].

3.5 Local Bundle Adjustment (BA)
Since a full BA quickly becomes computationally infeasible for real-time or close to real-time
applications, local optimization is performed frequently as in most KF-based SLAM systems
today [96], [128]. While for pure visual SLAM, it is well-established as shown by [96] that
selecting the local optimization window based on covisibility is a reasonable choice, the situa-
tion in the case of VI-SLAM is different, as a temporal ordering of the keyframes is of crucial
importance in order to obtain well defined constraints formed by the IMU cues.

In this work, we employ a strategy similarly to [98], where the the local optimization window
of KFs is defined as the set of the N most recent KFs as illustrated in Fig. 5.3. In the multi-
agent case, we consider the last N KFs stemming from the same agent as KFk . In addition to
the KFs in the Local Window, KFs that share observations with the Local Landmarks visible
in the Local Window are placed as fixed variables in the optimization (Static Window). For
landmarks with only two observations, we check the KF within the Local Window whether it is
the last one inside the window, in which case the landmark is completely deleted from the map,
as it is unlikely to be re-detected. By doing so, landmark culling is performed by design without
the need for further bookkeeping of the landmark observations.

Since the optimization of the bias terms is limited to the Local Window, we impose a prior
on the Nth KF in order to constraint the variation of the bias. Therefore, the objective function
for the local BA in terms of residuals can be written as

J(Θ) := eN
ᵀ

b WN
b e

N
b +

∑
k∈V

∑
j∈L(j)

δ
(
ek,j

ᵀ

r W k,j
r ek,jr

)
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+
∑

k−1,k∈V\Vs

ek−1,kᵀ

a W k−1,k
a ek−1,k

a (5.11)

+
∑

k−1,k∈V\Vs

ek−1,kᵀ

b W k−1,k
b ek−1,k

b ,

where δ(·) represents a robust cost function – here, the Cauchy loss function. The set of static
KFs is denoted as Vs. Optimization is performed using the Levenberg-Marquardt algorithm
available in the optimization framework GTSAM1, while we approximate the information ma-
trixWN−1

b for the bias prior in the next iteration by extracting the diagonal block of the Hes-
sian matrix corresponding to bN−1, computed by linearizing Equation (5.11) at the updated
state Θ.

3.6 IMU Bias Initialization
While we use the ability of the VIO system to accurately initialize the gravity direction and
initial scale, the estimation of the IMU bias terms b is more sensitive, as all axes need to be
sufficiently excited and therefore, the initialization is dependent on the movement. While the
gyroscope bias usually can be estimated well after a few KFs, the accelerometer bias is more
sensitive. When performing Local BA, the bias terms that are outside the Local Window are only
re-adjusted following global optimization and therefore, usually at the beginning of a mission
they are incorrect. We propose to perform an initial correction using an bundle adjustment
triggered based on the uncertainty of the bias estimates. As described in the previous section,
we compute the marginal an approximation information matrix of bN−1, which gives us an
estimate of the uncertainty. As it is safe to assume that the accelerometer bias is problematic,
we only look at the part ofWN−1

b corresponding to bN−1
a and extract

wmin :=

√
min

(
diag

{
WN−1

ba

})
, (5.12)

which approximates the minimal square root information on the accelerometer bias under the
assumption that WN−1

b is predominant on the diagonal. The global optimization as in Sec-
tion 3.9 is triggered as soon as wmin is above a threshold parameter winit. We do the same
procedure for both agents, however, if the second agent only has very few frames in the map,
the initialization is postponed until a sufficient number of KFs form this agent are processed in
order to avoid unstable results.

3.7 Keyframe Management
While inserting keyframes is a necessity during exploration, insertion of new KFs in a well
mapped area is problematic in the sense that the number of error terms in Equation (5.11) grows
unbounded causing the optimization to slow down. For purely visual SLAM, it is well estab-
lished that this can be avoided by dropping KFs (culling) containing predominantely reduntant
information [96]. Here we assume a KF to be redundant if more than 90 percent of its landmark

1https://research.cc.gatech.edu/borg/gtsam
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are observed in at least 3 other KFs as well. When using IMU information, this approach is
problematic, as the preintegrated IMU measurements form a weaker constraint the larger the
integration time between two consecutive KFs gets. While [98] uses a fixed time-based thresh-
old to limit the integration time between KFs, we propose to utilize the estimated uncertainty of
the preintegrated measurement. Since the translational part of the preintegrated measurement
is crucial to recover a trajectory of metric scale and is also the most sensitive value due to the
double integration of the acceleration, we only use the sub-part of Σa corresponding to the
translation. We only allow a KF k to be culled, if it is outside the Local Window of both agents
and

σk−1,k+1
min :=

√
min

(
diag

{
Σk−1,k
a + Σk,k+1

a

})
< σcull (5.13)

holds. This results in a more generic threshold as a maximal integration time, since it accounts
for the uncertainty of the bias used for the preintegration which changes over the trajectory and
furthermore naturally considers the noise of the IMU measurements allowing to use the same
threshold for different IMU measurement noise levels (i.e. for different sensors).

3.8 Loop-closure Detection & Frame Localization
In order to be able to correct accumulated drift over larger trajectories when going back to a
previously mapped area, the need to recognize visited place arises. As OKVIS is a purely VIO
system, it does not have an implementation of loop-closure detection nor correction. As a result,
in our implementation we employ the bag of binary words approach [51] together with the
appearance and geometric checks used in [96]. In brief, loop-closure candidates are accepted if
the similarity score of an older matching keyframe (KFm) is larger than the minimal similarity
of the KFs sharing connections on the Covisibility graph with the current keyframe (KFk).
Once a suitable candidate (KFl) is found, the KFs are matched via descriptor matching and a
projective RANSAC is performed to filter outliers and finally decide upon the inlier observation
whether the match is accepted as a loop-closure. In case a match is found, we transform the
loop-closuring keyframe (KFk) and its neighbors into the coordinate frame of the re-detected
KFl and search for additional matches before merging duplicated landmarks as described in
Section 3.3. After the merging step, the newly generated correspondences are inserted in the
Covisibility Graph and a pose graph optimization followed by Global BA is triggered.

A similar routine is performed to initialize our multi-agent setup. Note that here, we assume
that the first agent has already initialized the map and we try to localize any subsequent agent
in this map. Since at this stage we do not have any covisibility information from the additional
agent, we only start searching based on the descriptor similarity score, which we threshold in
order to avoid tedious searching. To verify a candidate for initialization, we solve the P3P prob-
lem using [71] together with RANSAC to filter outliers. Once the initialization is performed,
we directly associate the observations matched with landmarks and proceed with the normal
mapping.
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3.9 Global BA
During Global BA, a full optimization of both the structure and the KF states is performed. In
our system, this optimization is carried out in three cases; when we detect a loop closure, when
we trigger the initialization and also at the end of a mission. In the case of loop-closure, we
fist perform an optimization of the Essential Graph as a 6DoF pose graph optimization without
optimization of the velocity and bias terms. The second step of the global optimization, the
Global BA, is identical for all of the three possible cases.

In the Global BA, we perform a full BA including the estimation of velocity and bias terms
for all KFs. In contrast to the Local BA, all states variables are included in the optimization and
we do not impose any prior on the bias terms. Therefore, the objective function to be minimize
is expressed as

J(Θ) := e0ᵀ

p W
0
p e

0
p +

∑
k∈V

∑
j∈L(k)

δ
(
ek,j

ᵀ

r W k,j
r ek,jr

)
+

∑
k−1,k∈V

ek−1,kᵀ

a W k−1,k
a ek−1,k

a (5.14)

+
∑

k−1,k∈V
ek−1,kᵀ

b W k−1,k
b ek−1,k

b ,

where the first term of Equation (5.14) is a prior on the root KF, in order to remove the ambiguity
arising by the choice of the reference coordinate system. Again, a Cauchy loss function is used
on the reprojection terms. Since Global BA is only performed after a local optimization, we can
expect only a very limited number of outliers, therefore we carry out the full optimization using
the Levenberg-Marquardt algorithm and only perform an outlier removal afterwards.

4 Experimental Results

4.1 Experimental Setup
In order to evaluate the proposed system, we perform experiments on the publicly available
EuRoC dataset [11], consisting of different sequences recorded from a UAV flying different
trajectories both in a smaller room (Vicon Room) as well as in a larger industrial environ-
ment (Machine-Hall), where we put our focus on the Machine-Hall sequences. This dataset is
specifically selected to enable a direct and fair comparison of the proposed pipeline to the most
relevant state of the art system in VI-SLAM, namely VI-ORB-SLAM [98], as it was evaluated
on this dataset and it is closed source. In order to conduct experiments in a multi-UAV setup,
we run two different sequences from this dataset simultaneously, while treating each sequence
as coming from a separate UAV.

Since the proposed system aims to achieve a globally consistent map and we only optimize
KFs, we choose the Absolute Trajectory Error (ATE) as our evaluation metric for comparison.
Assuming an estimated trajectory of n KF poses T 1:n

WS and the corresponding trajectory in the
ground truth T 1:n

GS , where G is the origin of the ground truth poses, we can compute TGW to
transform the estimated trajectory into the origin of the ground truth, e.g. by using the method
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VI-ORB-SLAM Proposed
RMSE Scale Err. RMSE* RMSE Scale Err. RMSE* KF-rate

[m] [%] [m] [m] [%] [m] [Hz]
V1_01_easy 0.023 0.8 0.016 0.044 1.5 0.034 7.4
V1_02_medium 0.027 1.0 0.019 0.021 1.0 0.012 9.7
V1_03_difficult X X X 0.046 2.0 0.034 10.0
MH_01_easy 0.068 0.3 0.068 0.018 0.2 0.015 6.5
MH_02_easy 0.073 0.4 0.072 0.027 0.4 0.020 6.5
MH_03_medium 0.071 0.1 0.071 0.031 0.2 0.030 6.3
MH_04_difficult 0.087 0.9 0.066 0.089 0.1 0.089 8.4
MH_05_difficult 0.060 0.2 0.060 0.070 0.5 0.054 8.1

Table 5.1: The scale and RMSE errors of VI-ORB-SLAM [98] and the proposed monocular-
inertial pipeline evaluated on the EuRoC dataset (averaged over 3 runs). The best RMSE per-
formance in each sequence is indicated in bold. RMSE* records the error when performing the
alignment to the ground-truth trajectory using a 7DoF transformation, indicating the error that
would be achieved with perfect scale estimation.

of Horn [59]. The error is computed as the Root Mean Squared Error (RMSE) of the translation
(trans(·)) for all poses as

RMSE(T 1:n
WS) :=

√√√√ 1

n

n∑
i=1

‖trans
(
(T iGS)−1TGWT

i
WS

)
‖2 . (5.15)

The evaluation of our system was performed on an Intel Core i7-4710MQ running at 2.5 GHz
with 16GB RAM.

4.2 Results
We first evaluate the system in a single UAV configuration and compare against VI-ORB-SLAM
as shown in Table 5.1. Note that the values for VI-ORB-SLAM are copied from [98] for ref-
erence, as there is no open-source implementation of this method. For our approach we report
the mean value over three runs. In the smaller Vicon-Room sequences, the proposed system
generally has a higher error level compared to VI-ORB-SLAM, although for the sequence
V1_02_medium we perform slightly better. We attain this to the low-textured scene of this
sequence, in which a tight coupling between front-end and back-end as employed by VI-ORB-
SLAM is advantageous, enabling reaction to a low number of matches, e.g. triggering the
detection of additional, weaker keypoints.

On the MH sequences, we are able to achieve over 50% reduction on the trajectory error
compared to VI-ORB-SLAM for the well-textured sequences MH_01- MH_03. On MH_04
and MH_05, which exhibit partially very bad illumination, we perform comparably to VI-ORB-
SLAM with marginally bigger errors. Evidently, the proposed system achieves higher accuracy
in feature rich sequences (i.e. well-textured scenes with sufficient illumination), which we attain
to the following points. Compared to [98], we generally create fewer landmarks, allowing the
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Figure 5.4: Breakdown of the computation time of the proposed pipeline performed for every
KF for the sequence MH_03_medium. To filter fluctuations between KFs,the timings presented
are computed using a moving average filter over 10 KFs. The average incoming KF-rate for this
sequence is approximately 4Hz (250 ms).

inclusion of more KFs in our Local Window, therefore increasing the scope of the Local BA.
Furthermore, the use of the inverse distance parametrization together with the local reference
keyframe formulation generally results in a better conditioned optimization problem for larger
trajectories. Additionally the inclusion of a soft prior in the local optimization results allows to
adjust the bias terms more freely in the course of the local optimization, damping the diffusion
of initial errors over the whole trajectory.

The fluctuations of the error, however, across the different sequences attest to the fact that the
front-end is a crucial component in handling difficult scenarios e.g. with bad illumination and
low-textured scenes. So while proposing a powerful back-end is shown to improve significantly
the accuracy of the estimation processes, further investigation in interfacing it with the front-end
promises to result to even further improvement. This is most evident for visually challenging
Vicon-Room sequences, for which reason our evaluation was focused on the Machine Hall.

Evaluation of the complexity of the proposed system and the resulting timings is not straight-
forward, as real-time performance here depends on the rate at which KFs are processed rather
than a fixed frame rate, therefore, we analyze complexity using the average KF-rate, as shown
in Table 5.1. Note that the KF-rate is both scene- and motion-dependent, and thus, it varies both
across sequences and throughout one sequence. As a result, we consider the system to be real-
time capable, if it is able to process the KFs faster than the average KF-rate. The average KF
processing rate for each sequence is shown in Table 5.1 with the system achieving real-time ca-
pability across all sequences. A detailed breakdown of the execution time for MH_03_medium
is shown in Fig. 5.4. Since the execution time has relatively large fluctuations between KFs,
we process the timings using a moving average filter. As it can be seen, the runtime is slowly
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5 Conclusion

UAV A: MH_01 MH_03 MH_04
UAV B: MH_02 MH_02 MH_05

RMSE [m] 0.021 0.026 0.059
Scale Err. [%] 0.3 0.05 0.1

RMSE* [m] 0.015 0.026 0.59

Table 5.2: Average ATE for the proposed pipeline in the two-UAV setup. Different combina-
tions of sequences are used to conduct experiments of different levels of difficulty. In Fig. 5.1,
the map as obtained by MH_02 & MH_03 is shown

increasing with a growing number of KFs, which is caused by the need for well defined IMU-
constraints, prohibiting arbitrary KF culling and therefore, although the number of variables is
approximately constant, the number of error terms contributing to the cost function increases
(Static Window). The fluctuation within the sequence is attained to the fact that exploration
generally tends to be cheaper, as the number of KFs in the Static Window decreases. Although
the Global BA is the most expensive part of the system (included in the recorded average KF-
processing rate), it is only sporadically triggered and therefore, the bottleneck for real-time
operation is, on average, the Local BA including the computation of the prior information for
the bias.

Evaluation using two UAVs was performed by combining different MH sequences. The
trajectory error was computed by aligning the joint map to the ground-truth in the same fashion
as for the single UAV setup. An overview of the results is in Table 5.2, whereas the trajectory
and landmarks for the combination MH_02 & MH_03 is shown in Fig. 5.1.

Although there are no IMU measurements between KFs from different UAVs to impose fur-
ther constraints, it can be seen that the overall accuracy is maintained or increases compared to
the single UAV case, indicating global consistency of the two trajectories in the common map
frame. The advantages of collaborative sensing from two UAVs become evident especially in
the difficult sequences. However, at this stage we are only able to process the data close to
real-time (factor of ~1.5), due to our sequential setup.

5 Conclusion

This work presents a back-end to monocular-inertial odometry from one or multiple agents,
contributing towards achieving globally consistent SLAM, while resolving the scale ambiguity.
The system considers the state of the bias estimate in both a local optimization and during the
keyframe culling and is real-time capable in the single agent case. An evaluation on the EuRoC
benchmarking dataset reveals over 50% improvement in accuracy at times over the state of the
art. Finally, this system is demonstrated to achieve globally consistent collaborative VI mapping
from two UAVs.

The significant reduction of the trajectory error in some of the test cases reveals the room for
improvement still existing on the state of the art. However, the reported fluctuations emphasize
the need for a tight integration between front-end and back-end in order to allow appropriate re-
actions to difficult conditions, such as low-textured scenes or bad illumination. Future work will
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aim at addressing this integration into the proposed system. Furthermore, appropriate methods
to summarize IMU-constraints in order to expand the horizon for keyframe culling are essential
towards the goal of life-long real-time SLAM.
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Abstract
With robotic perception constituting the biggest impediment before robots are ready
for employment in real missions, the promise of more efficient and robust robotic per-
ception in multi-agent, collaborative missions can have a great impact many robotic
applications. Employing a ubiquitous and well-established visual-inertial setup on-
board each agent, in this paper we propose CVI-SLAM, a novel visual-inertial frame-
work for centralized collaborative SLAM. Sharing all information with a central
server, each agent outsources computationally expensive tasks, such as global map
optimization to relieve onboard resources and passes on measurements to other par-
ticipating agents, while running visual-inertial odometry onboard to ensure autonomy
throughout the mission. Thoroughly analyzing CVI-SLAM, we attest to its accuracy
and the improvements arising from collaboration, and evaluate its scalability in the
number of participating agents and applicability in terms of network requirements.
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1 Introduction

With state-of-the-art Simultaneous Localization And Mapping (SLAM) systems having reached
substantial robustness and accuracy in the centimeter range [96] for single-robot applications,
multi-robot systems have been gaining growing popularity in numerous scenarios, ranging from
search-and-rescue applications to digitization of archeological sites. Increasing the robustness
of the system by sharing information amongst the participants, boosting the efficiency of a mis-
sion by dividing up a task or enabling tasks otherwise impossible for a single robot are only
some of the advantages a team of robots has to offer. At the same time, multi-robot scenarios
pose significant challenges, such as dealing with network characteristics (e.g. time delays and
bandwidth) and ensuring transparent and consistent information access among all agents. In

Figure 6.1: A snapshot of CVI-SLAM with two agents collaboratively building the map. Tra-
jectories and map points are colored in white and green for agent 1 and 2, respectively. Cov-
isibility constraints across different agents are indicated in red. The inlet on the bottom right
depicts the limited local map of agent 1 with the newest frame and its observed map points
colored in yellow, and keyframes which received pose updates from the server in orange.

this spirit, this paper proposes CVI-SLAM, a centralized Collaborative SLAM system for mul-
tiple robotic agents, each equipped with a Visual-Inertial (VI) sensor suite, and a central ground
station, the “server”. Fig. 6.1 shows a snapshot of our proposed system. Taking the powerful
monocular setup of [119] a step further towards real deployment, CVI-SLAM agents employ a
visual-inertial sensor suite, enabling metric scale estimation and gravity alignment of the esti-
mated trajectories and maps, which is necessary for autonomous exploration of an environment,
guaranteeing higher accuracy and robustness compared to monocular SLAM [83], [98], due to
the complimentary nature of the sensors. Similarly to [119], here information is consequently
shared amongst all agents. However, incorporating an Inertial Measurement Unit (IMU) in-
creases the complexity of the system, since more data has to be processed, and sharing and
removing of data becomes more difficult, since IMU constraints depend on the relative timings

66



2 Related Work

between measurements. Furthermore, camera images and IMU measurements need to be syn-
chronized, varying IMU bias terms need to be constantly estimated, and for accurate results,
the manifold structure of the rotation group SO(3) needs to be addressed. Therefore, we use
a new visual-inertial odometry system designed for CVI-SLAM, implementing on-manifold
pre-integration of IMU measurements [42], having shown its beneficial characteristics for IMU
handling already in other SLAM systems [98], [111]. We thoroughly evaluate CVI-SLAM on
a public dataset in scenarios with one to four agents on aerial platforms, as some of the most
challenging platform for robotic perception (due to their high agility and constrained resources).
Our analysis discusses the bandwidth requirements for CVI-SLAM and its scalability to the
number of agents. Attesting to the accuracy of CVI-SLAM and improved performance from
sharing data, we compare the collaborative trajectory estimates against ground truth, exhibiting
equivalent performance to other state-of-the-art SLAM systems in single agent scenarios, while
outperforming these system in the multi-agent applications.

2 Related Work

While several works in the literature deal with either collaborative localization [5], [108], [34]
or collaborative mapping [138], [53], [14], only few existing works are able to perform col-
laborative SLAM with multiple agents. Eliminating the need of a pre-computed map (as in
collaborative localization) or known robot poses (required in collaborative mapping), collabo-
rative SLAM promises to exploit the full spectrum of possibilities for robot collaboration in far
more generic and realistic setups.
A centralized architecture for robotic collaboration is usually employed in the literature when
it comes to systems applied to practical scenarios. However, some works tackle collaborative
SLAM in a decentralized manner, such as [27], proposing a fully distributed SLAM system
evaluated in simulation, emulating a sensor setup with visual, inertial and Global Positioning
System (GPS) sensors. An efficient place recognizer distributed amongst all agents with real
data, but in simulation was shown in [22]. Most recently, Choudhary et al. [19] showed a decen-
tralized SLAM system where co-localization of the participating robots is based on commonly
observed pre-trained objects.
Guaranteeing data consistency and avoiding double-counting are the biggest challenges in a
decentralized setup, whereas a centralized system has a clearer allocation of information. Fur-
thermore, a centralized client-server-architecture allows agents to outsource non time-critical,
but computationally expensive algorithms, such as global map optimization, to the server, which
is potentially much more powerful. This allows an agent to allocate its potentially limited on-
board resources to the most critical tasks, such as visual odometry.
Probably the most powerful vision-only collaborative SLAM system is CoSLAM [149], which
has the ability to handle dynamic environments, albeit at high computational cost, requiring
GPUs, often prohibitive in resource-constraint robots. Receiving image data from multiple mo-
nocular cameras as input, CoSLAM groups cameras with scene overlap, relying on the assump-
tions that all cameras are synchronized and observe the same scene at initialization. Together
with the requirement for a GPU, these assumptions render CoSLAM impractical to run online
onboard multiple robots.
In an earlier attempt to multi-robot collaboration, [43] extended a structure from motion pipeline
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to collaborative SLAM for Unmanned Aerial Vehicle (UAV), with each agent running a keyframe-
based visual odometry sending all keyframes to a central server. The server would search for
overlap across maps and merge them if necessary. While impressive, this system fell short of
sending any feedback from the server back to the agents and therefore, cannot profit from opti-
mization results and data from other agents.
In a system more suitable for multi-robot collaboration, C2TAM [114] proposed to perform
position tracking onboard each agent, while all mapping tasks are run on the server. The server
then sends the complete map to each agent for further tracking steps, enabling operation with
agents with very limited computational resources. However, C2TAM’s assumption that an agent
is always in communication with the server heavily restricts the agent’s autonomy, while the as-
sumption of being able to repeatedly send the whole map to an agent further restricts C2TAM’s
practicality and generality.
Targeting multi-device mapping applications with hand-held devices, MOARSLAM [94] pro-
posed to employ a server to act as central memory for storing and distributing data amongst
agents, with each agent executing all parts of a full SLAM system (i.e. visual odometry, place
recognition and global map optimization) onboard. While employing a visual-inertial setup,
MOARSLAM only uses the IMU as one of two alternatives for scale disambiguation during
pose estimation from visual odometry (with stereo images being the second option). The server
back-end presented by Deutsch et al. [33] can be run on a server to combine different SLAM
systems in a collaborative framework. Shifting all intelligence and computation to the agents,
[94] and [33] do not exploit the centralized architecture to its full potential, restricting its em-
ployment with powerful agents. Instead, CVI-SLAM outsources tasks that are computationally
too expensive for the resource-limited agents to make full use of the potential of a centralized
collaborative architecture, while ensuring that all tasks critical to the autonomy of each agent
are still run onboard, as opposed to [114]. In contrast to systems sending no [43] or only par-
tial [33], [93] feedback to the agents, CVI-SLAM consequently promotes full transparency of
information.
Proposing collaborative monocular SLAM, [119] showed a proof of concept of a powerful
centralized architecture suitable for resource-constraint platforms. Inspired by the extent of col-
laboration that this architecture can enable, in this work we propose a system to fuse visual and
inertial information from each agent to a globally consistent map that can be reused in full or in
parts by each agent. Adding to the challenge of consistent sharing of data and efficient handling
of multiple agents, CVI-SLAM enables collaborative SLAM estimation with metric scale and
high accuracy, and boosts the robustness and scalability of the system employing redundancy
detection and removal at global scope.

3 Preliminaries

3.1 Notation
For the denotion of vectors we use bold small letters (e.g. a), while matrices are denoted by
bold capital letters (e.g. A). To distinguish different coordinate frames we use capital letters
(e.g. A). As a result, a vector expressed in A is denoted by Ax. For the coordinate frames, S
denotes the IMU body frame, C the camera coordinate system and W for the origin (i.e. the

68



4 Methodology

inertial frame). The summarization of sets of variables is denoted by calligraphic letters (e.g.
A). To denote a rigid body transformation from coordinate frame B into A we use the notation
TAB , where the rotational and the translational part of T are denoted byR and t, respectively.

3.2 IMU Model and System States
In this paper, we use the standard IMU measurement model, assuming that measurements from
both the accelerometer Sa(t) and the gyroscope SωWS(t) are corrupted by additive white
noise η and have an unknown, time varying sensor bias b:

Sa(t) = Rᵀ
WS(t) (W â(t)−W g) + ba(t) + ηa(t) , (6.1)

SωWS(t) = Sω̂WS(t) + bg(t) + ηg(t) . (6.2)

The true values of the respective variables are indicated by ·̂, while W g denotes the gravity
vector. In order to account for these characteristics of the IMU measurements, the system state,
denoted by Θ, besides the Keyframe (KF) poses {RWS , tWS} and Map Point (MP) positions
W l also includes the linear velocities W v and bias terms b:

Θ := {RkWS , t
k
WS ,W v

k, bk︸ ︷︷ ︸
KFk

, Sr l
i} ∀k ∈ V, ∀i ∈ L , (6.3)

where the set of all KFs and all MPs are denoted by V and L, respectively. In this paper,
we denote individual state variables as θj when appropriate. As proposed in [7], instead of
expressing the MPs in a global reference frame, we express them in coordinates of a reference
KF Sr . While in our system we employ the inverse depth parameterization for the MPs, for
the sake of readability in the following we treat the MPs as if they were expressed in Euclidean
coordinates.

4 Methodology

4.1 System Architecture

CVI-SLAM uses the basic system architecture shown in Fig. 6.2, which was first introduced
in [119]. Here, however, each agent runs the visual-inertial odometry (VIO) system discussed
in Sec. 4.3 onboard, and the messages and processes are adapted to handling visual and inertial
data. VIO estimates the local trajectory of each robot and maintains a local map limited to a
fixed number of N KFs of the immediate surroundings of the robot. Furthermore, a communi-
cation interface on each agent module serves as the interface from and to the server. The server
can communicate with all agents, coordinating the exchange of information amongst them. The
server maintains maps of unbounded size (server maps) on a server map stack, holding all data
that was collected by all agents throughout the mission. Starting with one server map for each
agent, the server merges maps throughout the mission to associate the data from the individual
agents. The agent handlers on the server side, one for each individual agent, distribute the in-
formation from their corresponding agent to the correct modules on the server. The server runs
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Figure 6.2: Overview of the CVI-SLAM’s system architecture. An agent runs real-time VIO maintaining
a local map. A communication interface is used to exchange keyframes (KF) and map points (MP) between
the agent and the server. The server is a powerful computer that runs computationally expensive and non
time-critical tasks: redundancy detection, loop detection, map fusion, and bundle adjustment (BA).

two place recognition modules, a loop detection module to detect loop closure inside one map,
and a map matching module to detect overlap between distinct maps, allowing to merge these
individual maps. A keyframe database implements an efficient look-up procedure allowing for a
new KF to query other KFs, using an inverted file index. A successful query of the place recog-
nition modules is then followed by a global optimization step (aka Bundle Adjustment (BA)).
All optimization schemes are implemented using the Ceres1 solver. An in-depth discussion of
the system architecture can be found in [119]. In addition to the handling of IMU data, here
we use an extended version of this architecture employing the redundancy detection module
discussed in Section 4.5.

4.2 Error Residuals Formulation
The problem of KF-based VI-SLAM can be expressed as a nonlinear weighted least-squares op-
timization, where the state variables θj are optimized w.r.t. to some observation measurements
zi. With the definition of a residual error as:

ei := zi − hi(Ai) , (6.4)

where Ai denotes all variables θj involved in measurement zi and hi(·) is a function that
predicts the measurement according to the current state. Using this notation, the objective that

1http://ceres-solver.org

70

http://ceres-solver.org


4 Methodology

is minimized can be written as:

Θ∗ = arg min
Θ

{∑
i

‖zi − hi(Ai)‖2Wi

}

= arg min
Θ

{∑
i

eᵀiWiei

}
, (6.5)

where ‖x‖2W = xᵀWx denotes the squared Mahalanobis distance in information form.
Within our VI-SLAM system, we use essentially three different types of residuals:

Reprojection Residual

With a given MP position Sr l
j expressed in the reference KF’s IMU frame Sr , the KF poses

for both KFk and KFr and the keypoint observation zk,j in the image of KFk , we define the
reprojection residual as:

ek,jr := zk,j − g
(
KkTCST

k
SWT

r
WSSr l

j
)
, (6.6)

where g(·) is a function to convert homogeneous into image coordinates and Kk represents
the camera intrinsics matrix. Note that in this paper we use undistorted keypoints, hence, Equa-
tion (6.6) does not contain a distortion model.

IMU pre-integration Residual

With a given sequence of IMU readings between two consecutive KFs, both from the ac-
celerometer and the gyroscope, integration of the measurements can be performed in order
to obtain a relative constraint between the KFs. In order to avoid re-integration of the mea-
surements upon changes in the bias terms, [42] presented a method allowing to perform the
integration only once and apply linearized corrections considering changes of the biases af-
ter the integration. With a given pre-integration, the resulting residuals can be written as

ek−1,k
∆R = log

((
∆R̃k−1,k(b̄k−1

g ) exp

(
∂∆R̄k−1,k

∂bg
δbg

))ᵀ

Rk−1ᵀ

WS RkWS

)
ek−1,k

∆v = ∆Rk−1ᵀ

WS

(
W v

k −W v
k−1 −W g∆tk−1,k

)
−
(

∆ṽk−1,k(b̄) +
∂∆v̄k−1,k

∂ba
δba +

∂∆v̄k−1,k

∂bg

)
(6.7)

ek−1,k
∆t = Rk−1ᵀ

WS

(
∆tkWS − t

k−1
WS −W v

k−1∆tk−1,k −
1

2
g∆t2k−1,k

)
−
(

∆t̃k−1,k(b̄k−1) +
∂∆t̄k−1,k

∂ba
δba +

∂∆t̄k−1,k

∂bg
δbg

)
,

where values denoted by ·̄ are obtained with the bias estimate b̄ at the time of the pre-integration
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Figure 6.3: Schematics depicting the variables involved in the local optimization during frame
tracking (left) and the Local Bundle Adjustment (LBA) with a local window of M KFs running
onboard the agent (right). While the tracking considers only the most recent n KFs stemming
from the same agent, the LBA can also include KFs from other agents.

and ·̃ denotes values using the current estimate of the state variables. The scalar value ∆tk−1,k

represents the time interval between the two KFs. For a detailed explanation of the used pre-
integration method, we kindly refer the reader to [42]. Using the individual parts in Equa-
tion (6.7), we define the residual vector for the IMU pre-integration as

ek−1,k
a =

[
ek−1,kᵀ

∆R , ek−1,kᵀ

∆v , ek−1,kᵀ

∆t

]ᵀ
. (6.8)

Prior Residual

In order to use prior knowledge θ̄k about a variable θ at time instance tk , we define the prior
residual as

ekθ := θ̄k − θk . (6.9)

Here, for non-Euclidean variables, such as rotations or bearing vectors, the minus operation
needs to be adapted to the widely used box-minus operator.

4.3 Visual-Inertial Odometry
Frame Tracking

For every incoming Frame F , we extract a set of ORB features [116] and perform integration
of the IMU readings queued since the last frame. Using the integrated IMU measurements, we
perform a prediction of the pose for the current frame to carry out a guided correspondence
search by projecting the agent’s MPs in the current frame and matching the associated descrip-
tors. Using the established correspondences, we perform an alignment step by minimizing the
reprojection error against the observed MPs followed by a second correspondence search. In
order to obtain a smooth trajectory and an accurate velocity estimate for the current frame, we
execute a motion-only BA in which we optimize the KF poses and the IMU states of the most
recent n KFs together with the current frame as shown in Fig. 6.3. After the optimization, we
check whether to insert a new KF in the agent’s map. A new KF is inserted when one of the
three following conditions is met:

(a) more than 20 frames have passed since the last KF was created,
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(b) the area where 2D keypoints are found covers less than 40% of the image, or

(c) less than 15 MPs are observed by the current frame.

Criterion (a) enforces temporal constraints between successive KFs, in order to avoid weak
IMU constraints due to the accumulated uncertainty from the integration. Criteria (b) and (c)
ensure sufficient overlap between the KFs, while adaptively inserting more KFs during chal-
lenging motions such as fast rotations.

Local Map

The local map holds the KFs and MPs in the surroundings of the current position. It is bounded
to the N closest KFs in the vicinity of the agent, with N primarily depending on the available
computational onboard resources of the agent. The KFs in the local map are both connected by
the IMU constraints between consecutive KFs as well as covisibility constraints derived from
common observations of MPs. In CVI-SLAM, two KFs are considered covisible if they share
at least 15 MPs. As indicated in Fig. 6.3, we keep a constant number M , smaller than N , of
consecutive KFs in a local window inside the local map, in order to ensure well defined IMU
constraints. Note that while the temporal KFs must come from the same agent as the local map,
the covisible KFs are purely defined by their covisibility, regardless of which agent created the
KF. This allows the local odometry to benefit from experiences of other agents and improve the
accuracy of the estimation in collaboration.

Local Mapping

The local mapping of our VIO runs in a separate thread and is responsible for maintaining and
optimizing the local map and is triggered every time the tracking inserts a new KF. For map
maintenance, we employ a scheme inspired by [96], in which MPs with insufficient observations
in the tracking are culled. After culling we triangulate new MPs between the local KFs and
merge them with existing MPs considering their vicinity and their associated ORB descriptors.
In order to improve the accuracy and consistency of the local map, we perform a Local Bundle
Adjustment (LBA) step. The scope of the LBA is defined by the most recent M KFs in the
local window, and all MPs observed in those KFs. Additionally we insert all KFs that have
common observations with the KFs in the local window, as illustrated in Fig. 6.3. These KFs
outside the local window are inserted with their pose fixed and serve as anchors to stabilize the
optimization. Therefore, we can formulate the objective of the LBA as follows:

J(Θ) :=
∑
k∈V

∑
j∈L(k)

δ
(
‖ek,jr ‖2Wk,j

r

)
(6.10)

+
∑

k−1,k∈V\Vs

(
‖ek−1,k
a ‖2

W
k−1,k
a

+ ‖ek−1,k
b ‖2

W
k−1,k
b

)
,

where δ(·) is a robust cost function, here the Cauchy loss, aiming to reduce the influence of
outliers, L(k) are the MPs observed by KF k, and ek−1,k

b penalizes changes in the IMU bias
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for successive KFs. The set Vs, denoting all KFs inserted with a fixed pose, can include KFs
created by other agents.

IMU Initialization

Since the IMU biases, as well as the gravity direction are unknown, a dedicated initialization
is necessary in order to perform the tracking as described above. In this work, we employ the
strategy proposed in [111], which performs the initialization in three steps. In the initial phase,
the vision-only tracking as in [119] is employed, while performing the IMU pre-integration with
all bias variables set to zero. To avoid large integration windows between the KFs, we restrict
the number of frames between KFs to 3. After reaching 15 KFs, the visual structure is bundle
adjusted and the gyroscope bias is initialized in a linear least squares fashion. Afterwards, the
scale of the visual structure, the velocities in S and gravity direction are linearly estimated
followed by a refinement of the gravity direction. Upon successful computation of all steps,
the visual structure is scaled and aligned with the gravity direction, while the body velocities
are rotated in the world frame W . If the initialization fails up to a window of 20 KFs, we
re-initialize the visual-only tracking and start again.

4.4 Communication
The communication modules on the agents’ and the server’s sides act as the interface between
both sides that serializes and de-serializes data that is shared between them. Using this interface,
each agent informs the server about changes in its local map, i.e. any added or changed KFs
and MPs. Constantly sending the whole data structure for KFs and MPs (including e.g. 2D
feature keypoints extracted from the image) would result in high network traffic, with messages
of around 300 Bytes for MPs and 29 KB for KFs (for our setup with 500 ORB features per
KF). Therefore, after sending a KF or a MP once, for all following changes an update message
is sent, having only a size of 184 Bytes for KFs and 52 Bytes for MPs. Messages from the
server to the agent contain the K KFs with the strongest covisibility to the current position
of the agent, to augment the agent’s local map with past data and KFs and MPs from other
agents. Using these messages, we also transmit IMU related information (IMU measurements
and current bias and velocity estimates) from the agents to the server. From the KF messages
received from the agent, we reconstruct the initial pre-integration factors created by VIO for
incorporation in global map optimiation (Section 4.6). From the agent to the server, we do not
include the pre-integration factors, since IMU data is not considered for KFs outside the local
window. However, we include the most current velocity and bias estimates for KFs to update
this data on the agent with refined results from BA. In case of a loss of connection to the server,
an agent will not be able to exchange data with the server any more, and fall back to a VIO
system with limited local map size N .

4.5 Redundancy Detection and Removal
When one or more agents visit the same location multiple times during a mission, the map
contains several KFs from the same distinct place. Some of these KFs encode almost the same
information, if the measurement was taken from a similar viewpoint. Since the size of the map
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affects the timings of most processes on the server, such as place recognition, map queries or
BA, it is desirable to remove these redundancies to boost the scalability of the system. Our
rejection scheme randomly selects a KF from the map, and compares it to its neighbors in the
covisibility graph. If the number of commonly observed landmarks with all neighbors is higher
than a pre-defined threshold, the KF is considered redundant. Furthermore, for consecutive KFs
connected by IMU constraints, we allow a maximum time of 2s between two KFs, to bound
inaccuracies from IMU integration for optimization.

4.6 Loop & Map Fusion
To detect repeatedly visited locations inside one server map (loop closure) and separated maps
(map matching) on our server map stack, we employ a multi-stage place recognition system.
Firstly, for a query Keyframe KFq , we select a subset of possibly matching candidates C from all
map data using a bag-of-words approach [51], followed by a brute force descriptor matching of
KFq against all KFs in C. Upon successful matching of KFc, we employ a projective RANSAC
scheme to compute the initial transformation Tcq , which is then refined by minimizing the
reprojection error. Using the optimized Tcq , we search for additional matches in the vicinity of
KFq and KFc by projecting associated MPs from KFq into KFc and vice versa. In the case of
a loop closure, we first perform a pose-graph optimization using the scheme of [119], followed
by transforming the MPs using the optimized poses. For the map matching, we transform the
map of the query KF into the map of the candidate KF using Tcq . Finally we perform global
BA (GBA) using the following objective function:

J(Θ) := ‖ecp‖2W c
p

+
∑
k∈V

∑
j∈L(k)

δ
(
‖ek,jr ‖2Wk,j

r

)
(6.11)

+
∑

k−1,k∈V

(
‖ek−1,k
a ‖2

W
k−1,k
a

+ ‖ek−1,k
b ‖2

W
k−1,k
b

)
,

where the first term is a prior on the pose of KFc in order to remove the gauge degree of freedom.
The optimization is performed in two steps; at first, we only optimize the MP positions and the
IMU states, while fixing the KF poses, followed by a full optimization over all states involved
in Equation (6.11). Note that the IMU constraints in Equation (6.11) are only inserted between
consecutive KFs created by the same agent.

5 Experimental Results

We evaluate CVI-SLAM in a variety of different scenarios to test its performance, applicability,
scalability and accuracy. We analyze the network traffic between agents and the server to reveal
the bandwidth requirements of CVI-SLAM, as well as the timings of the modules onboard
an agent, in single-agent and multi-agent scenarios. Furthermore, we show the importance
of the redundancy detection on the server side, and evaluate the accuracy of the system on
the five Machine Hall (MH) sequences (MH1 – MH5) of the EuRoC dataset [11], where a
small UAV flies several trajectories through an industrial environment, and compare the results

75



Paper III: CVI-SLAM – Collaborative Visual-Inertial SLAM

to other state-of-the-art SLAM and VIO systems, namely the visual-inertial version of ORB-
SLAM [98] and VINS-mono [111], which both also use an IMU pre-integration scheme. For
all experiments, we use the following setup:

• Server: Lenovo Legion Y920 notebook (Core i7-7820HK @ 2.90GHz× 8, 32 GB RAM)

• Agents 1 – 4: Intel NUC 5i7RYH (3.1 GHz × 4, 8 GB RAM), used e.g. on the AscTec
Neo UAV

Throughout our experiments, we use a local window size of M = 10 KFs, local map size of
N = 20 KF, and K = 10 KF for messages from the server to an agent. For the analysis on
the pre-recorded datasets, the agents and the server are connected via a wireless network, so
that real communication between the server and the agents takes place. Then the datasets are
processed onboard the agents. This makes our evaluation across different runs more comparable
and provides us with ground truth, while still using real network communication as we would
during a robotic mission. All values in this section are averaged over 3 runs for each experiment
if not stated otherwise.

5.1 Accuracy
In order to obtain a baseline for the accuracy of CVI-SLAM, we first evaluate the absolute error
as well as the scale error for the KF trajectory obtained from the server, while running a single
agent and compare against state-of-the-art methods. In Table 6.1, we compare the performance
to both VI-ORB-SLAM and VINS-mono. With the exception of the sequence MH4, we perform
comparably or slightly better than the state-of-the-art methods, indicating the effectiveness of
CVI-SLAM’s server-agent architecture. We attain the higher error on the MH4 sequence to the
fact that CVI-SLAM is able to close the loop approximately half-way through the trajectory,
but does not do so at the end and therefore, does not propagate the correction over the whole
trajectory. For the evaluation of the map merging capability of our system, we run experiments

Table 6.1: Single-agent RMSE and scale error over the global KF trajectory. The lowest error
is indicated in bold.

Dataset VI-ORB [98] VINS [111] CVI-SLAM
RMSE Scale RMSE Scale RMSE Scale

MH1 0.075 m 0.5% 0.177 m 0.359% 0.085 m 1.81%

MH2 0.084 m 0.8% 0.13 m 1.117% 0.063 m 1.055%

MH3 0.087 m 1.5% 0.1 m 0.318% 0.065 m 0.336%

MH4 0.217 m 3.4% 0.155 m 0.947% 0.293 m 3.178%

MH5 0.082 m 0.5% 0.136 m 0.314% 0.081 m 0.299%

both in a two-agent as well as in a four-agent setting, while for each agent we use a different
sequence of the dataset. As VI-ORB-SLAM is closed source, we are unable to compare against
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in this setup. The comparison with the open-sourced VINS-mono is performed using its multi-
session capability by sequentially running the different sequences. The values in Table 6.2
report the error of the joint trajectory of all agents at the end of all runs. In all sequences,
we consistently perform better than VINS-mono. This can be explained by the fact that we
can correct both the KF states as well as the map structure during loop-closures rendering the
optimization much more powerful than the pose-graph optimization employed by VINS-mono.
Furthermore, as we maintain a covisibility graph and are able to re-use parts of the map, the
constraints upon loop-closures are generally stronger. Compared to the single-agent scenario,
we get more consistent errors in a similar range, indicating the power of sharing and re-using
information between agents in the collaborative setting.

Table 6.2: Multi-agent joint KF-trajectory evaluation with 2 and 4 agents. The lowest error is
indicated in bold.

Datasets VINS [111] CVI-SLAM
RMSE Scale RMSE Scale

MH1 & MH2 0.158 m 0.150% 0.050 m 0.673%

MH2 & MH3 0.197 m 0.408% 0.073 m 0.538%

MH4 & MH5 0.198 m 0.575% 0.115 m 0.756%

MH1;2;3;5 0.244 m 1.33% 0.156 m 0.137%

The last experiment aims at the investigation of the collaborative setting on the tracking that
runs onboard an agent. For this purpose, we run the experiments both in a single-agent as
well as in a two-agent setting. The error values reported in Table 6.3 are computed by align-
ing the global trajectory obtained by the tracking with ground truth. For each experiment we
align and evaluate only the results of the second sequence in the multi-agent case, while for the
single-agent case we only run the second sequence. As it can be seen, the tracking accuracy is
consistently improved in the multi-agent setting, even for the sequences MH2 & MH3, which
have only little overlap. This highlights the clear benefit of sharing information obtained from
multiple agents amongst them in order to improve the accuracy in real-time during collabora-
tion.

Table 6.3: Tracking error on the agent.

Datasets CVI-SLAM Single CVI-SLAM Multi
RMSE Scale RMSE Scale

MH1 & MH2 0.224 m 3.693% 0.139 m 1.002%

MH2 & MH3 0.295 m 1.444 % 0.256 m 0.856%

MH4 & MH5 0.412 m 3.341% 0.34 m 1.208%
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5.2 Scalability
The efficient architecture of CVI-SLAM boosts the scalability of the system in terms of agents.
Fig. 6.4 shows the timings of the onboard processes on the agent (frame tracking, local map-
ping of the VIO, communication) with the number of participating agents. The number of
participants in CVI-SLAM does not influence the timings onboard each agent. With an average
tracking time of around 36 ms per frame, the onboard modules can run in real-time with the
20 Hz camera image stream provided by the sensor used for the EuRoC dataset. Also for the
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Figure 6.4: Timings of the agent’s onboard modules with a growing number of participating
agents, measured on Agent 1. All values are averaged over 5 runs using the EuRoC dataset
sequences MH1, MH2 and MH3.

network traffic shown in Fig. 6.5, no increase from more participating agents can be observed,
implying a linear scalability of the network traffic with the number of agents. The reduced
network traffic from server to agent originates from the situation that in a multi-agent scenario,
more loop closures occur compared to the single-agent case, resulting in a increased number of
optimization steps and therefore, more time periods where a server map is locked and no data
is be transmitted to the agents.

On the server’s side, more participating agents result in more data to be managed. While
place recognition using an inverted file index scales linearly with the number of KFs, the com-
plexity of BA is cubic in the number of KFs and MPs incorporated in the optimization step.
Therefore, the detection and removal of redundant information is essential for the scalability of
a collaborative SLAM system with the number of agents. Fig. 6.6 shows the resulting number of
KFs in the server map stack with and without redundancy detection throughout the experiment,
evaluated in a 4-agent scenario. The tendency clearly shows a smaller increase in the number of
KFs in the system over time, boosting the scalability of CVI-SLAM. The redundancy detection
could reduce the number of KFs by 20% from 1460 to 1170, achieving similar accuracy of the
resulting estimate.
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Figure 6.5: Network traffic between agent and server with a growing number of participat-
ing agents. All values are averaged over 5 runs for each experiment using the EuRoC dataset
sequences MH1, MH2 and MH3.
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Figure 6.6: Number of KFs in the server map stack over runtime in a 4 agent scenario, with
and without redundancy detection and removal, using the EuRoC sequences MH1, MH2, MH3
and MH5.

79



Paper III: CVI-SLAM – Collaborative Visual-Inertial SLAM

5.3 Network Traffic
Three sequences of the EuRoC dataset are used to analyze the network traffic between the agents
and the server. While an agent sends new KFs and MPs to the server when they enter the map,
the server sends with every message the K = 10 closest KFs to the current position of the
agent. The agent can send up to 5 messages per second to the server, while for the server this
number is limited to 2, since these messages are usually larger than the ones from the agent.
Table 6.4 shows the average traffic between server and agent. On the server, the average traffic
is around 0.7 MB/s, which is composed of 2 × 10 KF messages per second of approximately
30 KB, plus a varying number of observed MPs. By reducing the publishing frequency or the
number K of KFs per message, the network traffic can be reduced, though also reducing the
information shared with the agent. For the agent, the main influencing factor on the traffic,
besides the message limit per second, is the number of KFs inserted in the map. Since the
datasets MH3 and MH5 are more challenging than MH1, more KFs are inserted here, resulting
in a slightly higher network traffic from the agents to the server for these datasets.

Table 6.4: Mean network traffic between an agent and the server on different trajectories of the
EuRoC dataset

Dataset Agent→ Server [MB/s] Server→ Agent [MB/s]

EuRoC MH1 0.119 0.697

EuRoC MH3 0.135 0.707

EuRoC MH5 0.151 0.720

Fig. 6.7 shows the network traffic between the server and the agent over runtime. The com-
munication from agent to server starts with successful IMU initialization, therefore the first
message contains the initial map with the size of this depending on the size of the IMU initial-
ization window (15 KFs in our case), causing the spike in the network traffic at the beginning
of each experiment.

From server to agent (S→A), the traffic first fluctuates around the mean traffic of approxi-
mately 0.7 MB/s, but shows several drops later in the experiment. When the agent returns to
previously visited locations, the global BA triggered by the loop closures temporarily suspends
the transmission of data to the agents, causing these drops.

6 Conclusion

In this paper, we present CVI-SLAM, an accurate and powerful system for keyframe-based
collaborative SLAM. Participating agents are equipped with a visual-inertial sensor suite and
constraint onboard calculation power, sharing all information throughout the mission with a
more powerful central server. The server merges information from the participating agents and
distributes it throughout the system, such that agents can profit from measurements contributed
by collaborating agents. Our experiments demonstrate that CVI-SLAM’s accuracy is com-
parable to state-of-the-art visual-inertial SLAM systems, outperforming them in collaborative
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Figure 6.7: Network traffic from agent to server (A→S) and vice-versa (S→A) on several
sequences of the EuRoC dataset. Sending the initial map after IMU initialization causes a
higher traffic on the agent side at the beginning. Global optimization locking the map for data
exchange, resulting from loop closure, causes the drops towards the end of the trajectories on
the server side.

scenarios. Furthermore, our evaluation confirms that sharing information amongst participat-
ing agents during collaborative SLAM estimation improves the accuracy of pose estimation
onboard each agent in real-time compared to single-agent scenarios. A comparison of single-
and multi-agent experiments and analysis of the network traffic attests to the scalability and
applicability of CVI-SLAM. Compared to existing collaborative SLAM systems, CVI-SLAM
combines efficient collaboration in mapping and localization, sharing all information amongst
all participating agents, with accurate collaborative scene estimation and practical applicability
of the system. To the best of our knowledge, CVI-SLAM is the first full visual-inertial collab-
orative SLAM system implementing two-way communication between agent and server, tested
on real data. Future work will focus on further boosting the accuracy improvements achieved
from collaborative scene estimation, and increasing the number of participating agents in the
system.
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Abstract
Driven by the promise of leveraging the benefits of collaborative robot operation, this
paper presents an approach to estimate the relative transformation between two small
Unmanned Aerial Vehicles (UAVs), each equipped with a single camera and an inertial
sensor, comprising the first step of any meaningful collaboration. Formation flying
and collaborative object manipulation are some of the few tasks that the proposed
work has direct applications on, while forming a variable-baseline stereo rig using
two UAVs carrying a monocular camera each promises unprecedented effectiveness
in collaborative scene estimation.
Assuming an overlap in the UAVs’ fields of view, in the proposed framework, each
UAV runs monocular-inertial odometry onboard, while an Extended Kalman Filter
fuses the UAVs’ estimates and common image measurements to estimate the metri-
cally scaled relative transformation between them, in real-time. Decoupling the direc-
tion of the baseline between the cameras of the two UAVs from its magnitude, this
work enables consistent and robust estimation of the uncertainty of the relative pose
estimation. Our evaluation on both on simulated data and benchmarking datasets con-
sisting of real aerial data, reveals the power of the proposed methodology in a variety
of scenarios.
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Figure 7.1: A snapshot of the proposed system on the EuRoC [11] dataset, showing the camera
views of the two UAVs. Green points correspond to map landmarks successfully detected in
image space. The ellipses indicate the projected uncertainty of the predicted landmark positions
in the image plane, with yellow corresponding to any unmatched landmarks. Fusing cues from
monocular-inertial odometry running onboard each UAV with cross-camera correspondences
into an EKF framework, the relative pose between the two UAVs gets estimated in real-time.

1 Introduction

The capability of a robot to estimate its pose in a previously unknown environment, while simul-
taneously mapping the scene, commonly referred to as Simultaneous Localization And Map-
ping (SLAM), is a key enabler of autonomous navigation. While initially the problem of SLAM
was addressed using range sensors, it was with the emergence of real-time capable SLAM sys-
tems using a monocular camera, such as [31] and [70] that SLAM onboard small Unmanned
Aerial Vehicle (UAV) started being investigated. Using the combination of both visual mea-
surements as well as readings from an Inertial Measurement Unit (IMU), [141] demonstrated
the strength of this combination in a vision controlled flight using only onboard sensing capa-
bilities, rendering Visual-Inertial (VI) sensing as the preferred choice for the control and the
navigation of a small UAV. Current state of the art Visual Inertial Odometry (VIO) systems,
such as OKVIS [82] and ROVIO [9], have reached a remarkable maturity and robustness and
their publicly available implementations had great impact in the community. Most recently, the
work of [98] presented a complete VI-SLAM system achieving global consistency of the map
at metric scale.
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Alongside with the increased maturity of single-robot SLAM systems, the community started
to gain interest in collaborative SLAM using multiple robots. The system proposed in [149] for
example, leverages view overlap from multiple individual moving cameras to perform SLAM in
challenging dynamic scenes. While the system introduces very powerful ideas, the reliance on
a GPU and the absence of metric scale limits the applicability of the approach in robotic appli-
cation, especially on UAVs. The approaches of [43] and [119] demonstrate the use of multiple
UAVs, each equipped with a monocular camera to perform efficient mapping and collaborative
SLAM, respectively. Whereas these systems use a centralized architecture, ongoing research
has been studying the SLAM estimation process in a distributed fashion aiming for scalability
of the approach with the number of agents. While [27] presented a method to achieve con-
sistency using only peer-to-peer communication and assuming known correspondences, [34]
showed a distributed SLAM pipeline on multiple UAVs utilizing 2D laser scans for mapping.

Consistent mapping from multiple UAVs is necessary for planning the movements of a swarm
of robots, e.g. coordinating their trajectories for efficient exploration, however, for a wide
variety of tasks, such as collaborative manipulation of objects using multiple UAVs or formation
flying, knowing the relative pose between UAVs is most important. The work of [41] aims at
estimating the relative pose between a UAV and a ground robot by observing a set of LED
markers mounted on the UAV with a monocular camera on the ground robot. While [41] relies
on direct measurements between the robots, [5] presented an approach to fuse inertial readings
together with scaled relative pose measurements obtained via overlap in the Field of View (FoV)
in the images from two UAVs.

In this paper, we present an approach to estimate the relative transformation between two
UAVs following the footsteps of [5] by utilizing overlap between the images captured from
two UAVs in combination with inertial data. As demonstrated by [129], optimization based
approaches to visual odometry allow the estimation over a larger set of state variables more
efficiently than filter based methods. However, as shown by [9], including a low number of
landmarks in the filter state enables a computationally inexpensive state estimation while ex-
hibiting a considerable robustness. Furthermore, the employment of a filter as opposed to an
optimization based method allows the extraction of a probability distribution without the need
for additional computations, offering a significant advantage in a robotic scenario, e.g. to define
safety margins to avoid collisions in a formation flight. Motivated by this, we base our approach
on an Extended Kalman Filter (EKF) to fuse local odometry estimates from two UAVs together
with the image measurements to estimate the metrically scaled relative transformation between
the two UAVs in real-time. The proposed system is completely expressed in local coordinates,
reducing the influence of drift stemming from the local odometry system. Furthermore, in con-
trast to [5], we demonstrate and evaluate the proposed approach both on simulated data as well
as on a benchmarking dataset consisting of real data captured with a UAV.

The main contribution of this work is the presented EKF design for the relative pose estima-
tion, where we express the baseline between the two UAVs using a bearing vector and an inverse
distance parametrization for the magnitude of the baseline, allowing to reflect the uncertainty
of the estimation problem in a natural and intuitive way. Finally, the presented system design
is shown to be capable of running in real-time with two UAVs, only requiring peer-to-peer
communication, while sharing some of the computational load.
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2 Problem Setup

2.1 Notation
In this paper, small letters are used for scalars (x), capital letters for coordinate frames (X)
according to their definition in Fig. 7.2, bold capitals for matrices (X), and bold small let-
ters for vectors and unit quaternions (x). An arbitrary variable xk

id can be characterized by its
timestamp k and some identifier id, which is used to either label the variable (e.g. x1,x2,...)
or to distinguish the coordinate frame it is expressed in (e.g. xA,xB,...). In order to differ-
entiate between predicted and updated state variables at each timestamp, we use the following
convention:

• x̂k+1: the predicted state variable at time k + 1 given the posterior state and system
input at time k.

• xk+1: the updated state variable at time k+ 1 given the measurements obtained at time
k + 1.

For the representation of rotations, we use unit quaternions, denoted by q. Concatenations of
two quaternions are denoted by q1 ◦ q2 and the rotation of a vector v by the quaternion q is
denoted by q(v).

2.2 System Requirements and Assumptions
The proposed system considers two UAVs, each equipped with one monocular camera onboard
and a module producing metrically scaled 6-Degrees of Freedom (DoF) egomotion estimation,
such as VIO and the ability to to exchange data amongst each other (e.g. over WiFi). While our
system does not impose any general constraints on the movements of the UAVs, we make the
following assumptions:

• the cameras experience overlap in their fields of view most of the time,

• the system clocks as well as the cameras of the two UAVs are synchronized, and

• the egomotion estimation for both UAVs is stable at all times.

Although a stable egomotion estimation is assumed, the odometry estimates can be noisy and
drift over time and we do not require any prior knowledge about the transformation of their
local origins.

3 Relative Pose Filter Setup

3.1 State Representation and Parametrization
As the goal of the filter is to estimate the relative pose of the two UAVs independently of
their global position, the reference frame for all state variables is chosen to be the camera
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Figure 7.2: The transformations and the coordinate frames used in this paper, with the shaded
regions marking the pair of UAVs used as a setup here at two consecutive timestamps (k and
k + 1). The coordinate frames OA and OB correspond to the local odometry origins for the
UAV A and UAV B, respectively.

coordinate frame of UAV A (A). In this work, we co-estimate a number of landmarks from
both UAVs enabling tight coupling between the updates arising from visual measurements and
the predictions computed by odometry. The filter state, when there are N visual landmarks
tracked, is:

x :=
(
b s q µ · · · µ %1 · · · %N

)
, (7.1)

where the following state variables are used:

• b: the bearing vector of the baseline from B to A, expressed in A,

• s: the inverse of the metric magnitude of the baseline between the two monocular cam-
eras mounted on the two UAVs,

• q: the relative rotation from B to A,

• µi: the bearing vector of landmark i in frame A, and

• %i: the inverse depth of landmark i in frame A.

In order to avoid singularities in the state variables, we express rotations as q ∈ SO(3) and
the bearing vectors as b,µ ∈ S2, while both are parameterized as quaternions. To obtain a
minimal representation of the state covariance matrix, the lie algebra and the tangent space rep-
resentations are used for rotations and bearing vectors, respectively. For a detailed explanation
and analytical expressions of the used parameterization, we refer the interested reader to [8].

Note that we do not only represent the landmarks using the inverse distance parametrization,
but also employ the same parametrization to represent the baseline of the relative transformation.
This is especially advantageous at the initialization stage of the filter, as we can get a direct
measurement on the direction from only one pair of frames, but not on the metrically scaled
distance. The baseline of the relative transformation between UAV A and UAV B is intrinsically
expressed by the decoupled nature of the (inverse) distance and the bearing vector formulation.
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3.2 State Prediction
For the state prediction, we utilize the poses as obtained by the local odometry systems as

t̃k+1
i =

(
qkOi

)−1 (
tk+1
i − tki

)
+ δt, δt ∼ N (0,Σt) (7.2)

q̃k+1
i =

((
qkOi

)−1
◦ qk+1

Oi

)
� δq , δq ∼ N (0,Σq) , (7.3)

where the subscript i is used to differentiate the inputs from UAV A and B. The � operator
denotes the generalization of the addition operation for rotations as in [8]. We assume the noise
covariances Σt and Σq of the computed relative transformations to be diagonal. For simplicity,
we summarize the odometry predictions to an input vector given by

uk :=
(
t̃k+1
A q̃k+1

A t̃k+1
A q̃k+1

B

)
. (7.4)

Using the obtained odometry estimates for the two UAVs, the state prediction is performed by
closing the transformation loop:

b̂k+1 =
(
q̃k+1
A

)−1
(
qk(t̃k+1

B ) +
1

sk
bk − t̃k+1

A

)
/cb (7.5)

ŝk+1 =
1

cb
(7.6)

q̂k+1 =
(
q̃k+1
A

)−1
◦ qk ◦ q̃k+1

B (7.7)

µ̂l+1
i = q̃k+1

A

(
1

%ki
µki − t̃

k+1
A

)
/ci (7.8)

%̂k+1
i =

1

ci
, (7.9)

where the intermediate normalization constants cb, ci are given by

cb :=

∥∥∥∥qk(t̃kB) +
1

sk
bk − t̃k+1

A

∥∥∥∥
2

, ci :=

∥∥∥∥∥ 1

%ki
µki − t̃

k+1
A

∥∥∥∥∥
2

(7.10)

Since the used model is already discrete in time, the EKF equations for the covariance prediction
can be directly applied:

P̂ k+1 = F kP k F k
T

+GkQk Gk
T
, (7.11)

whereQk ∈ R12×12 is the covariance matrix of the odometry noise obtained by stacking Σq

and Σt for both UAVs. The matrices F k and Gk are the jacobians of the predicted state with
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respect to the state variables and the odometry input, respectively:

F k :=
∂x̂k+1

∂xk
∈ R6+3N×6+3N (7.12)

Gk :=
∂x̂k+1

∂uk
∈ R6+3N×12 , (7.13)

3.3 State Update
For every pair of images from the two UAVs, an update of the state is performed. Assuming
that the camera intrinsics for both UAVs are known, the mapping between a bearing vector µ in
the camera’s coordinate frame and the corresponding pixel coordinates p in the image is given
by

p = π (µ) . (7.14)

Using the reprojection error in the image plane as a measurement, we can formulate the residuals
as

rk+1
i,j = zk+1

i,j − hj(x̂
k+1) , (7.15)

where zk+1
i,j denotes the measured detection of landmark i in image plane of UAV j and hj(·)

corresponds to the prediction of the measurement, given as

hA(x̂k+1) = πA(µ̂k+1
i ) (7.16)

for the prediction in UAV A’s image and

hB(x̂k+1) = πB

q̂k+1

(
1

%̂k+1
i

µ̂k+1
i −

1

ŝk+1
b̂k+1

)−1
 (7.17)

for the measurement prediction in UAV B’s image frame. The residual vector rk+1 is ob-
tained by stacking all residual terms for both UAVs. Similarly, we obtain the observation matrix
Hk+1 ∈ R4N×6+3N by stacking the individual jacobians of the predicted measurements
given by

Hk+1
i,j =

∂hi(x̂
k+1)

∂x̂k+1
∈ R2×6+3N . (7.18)

Together with the predicted covariance, we can compute the residual covariance given by

Sk+1 = Hk+1P̂ k+1 Hk+1 T +Ok+1 , (7.19)

withOk+1 = diag
(
. . . , σ2

zj,i
, σ2
zj,i

, . . .
)
∈ R4N×4N representing the stacked covariances

of the measured landmark detections. At this stage, we perform a Mahalanobis distance based
outlier detection, allowing to reject spurious matches by comparing the obtained residuals with
the predicted residual covariance. Using the the residual covariance, the Kalman gain K is
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computed by
Kk+1 = P̂ k+1 Hk+1 T Sk+1−1

. (7.20)

Given the Kalman gain, the updated state is computed using

xk+1 = x̂k+1 ⊕Kk+1rk+1 , (7.21)

where we use the operator ⊕ to indicate the use of + for vector and scalar states and the �
operation for rotations and bearing vectors. The updated state covariance is then computed
using

U = I −Kk+1Hk+1 (7.22)

P k+1 = UP̂ k+1UT +Kk+1Ok+1 Kk+1 T (7.23)

4 System Design

In order to keep the computational complexity of the filter bounded, the proposed approach
maintains a constant number of landmarks in the state for the estimation. Therefore, as land-
marks can get out of the overlapping field of view during motion, we employ a heuristic strategy
to dynamically initialize new and replace any old landmarks that have not been measured con-
sistently during operation. The rest of the section describes these processes in detail.

4.1 Computation Architecture and Keypoint Detection
One of the main motivations of this work is to be able to run an odometry system onboard
of each UAV independently, permitting fail-safe control regardless of communication issues of
(e.g. network delays). In this way, in the case that collaboration is not possible, the UAVs
can still be able to stabilize themselves, while when the UAVs experience sufficient overlap
in their fields of view, the proposed filter estimates the relative pose of the two UAVs leading
to collaborative mapping. We propose to perform the execution of the filter onboard UAV A,
which forms our reference frame. However, keypoint detection can be performed independently
on each camera feed and thus, can be run onboard the each UAV independently, distributing
some of the computation. In the proposed system, the keypoints are detected using customized
Harris corner detection used in [82] and described via an ORB descriptor extraction [116].
Therefore, UAV B forms messages only summarizing its local odometry pose estimate together
with its keypoint locations and their descriptors and transmit these to UAV A. As a reference,
in our setup each keypoint requires 40 Bytes, 32 for the ORB descriptor and 8 for the keypoint
location. With a upper limit on the detected keypoints of 500 and 20Hz framerate, adding up
to a bandwidth requirement of 0.4 MB/s, which is easily feasible using standard WiFi modules
(e.g. IEEE 802.11g standard).
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Figure 7.3: Workflow of the dynamic landmark replacement in the filter state. All steps are
performed for both UAVs and the decision for landmark replacement is based on the combined
statistics.

4.2 State Initialization
For the initialization of the filter, we assume that a rough estimate of the magnitude of the
UAVs’ baseline is available. As both the bearing vector and the relative orientation can be
estimated from a single pair of images, we establish a set of 2D correspondences via descriptor
matching between the images of the two UAVs captured at the same time. As described in [82],
the descriptor matching of binary descriptors can be performed very fast, permitting brute-
force search for correspondences across the two images. Relative RANSAC is then performed
using [72] on the matched keypoints to reject outliers and compute the relative transformation
between the two UAVs. This transformation is scaled to the magnitude of the initial guess for
the baseline. Finally, we attempt to triangulate any remaining matches using the scaled initial
pose. If enough matches can be triangulated, we select a random subset for the initialization
and set the state variables according to the relative pose and the selected triangulated landmarks,
respectively. Initially, the covariance of the metric magnitude of the baseline s is set to a large
nominal value, while the covariances of b and q are set to smaller values as in contrast to s, these
are measured during the initialization. The initial covariances of the landmarks are obtained by
considering the uncertainty of the (relative) pose used for the triangulation. In order to be able
to re-detect landmarks, we associate each landmark to both of the keypoint descriptors used to
triangulate it.

4.3 Matching and Landmark Management
Since landmark positions are estimated in the state, their predicted positions at the next times-
tamp are used to obtain new landmark measurements for the state update. This is performed
by projecting the landmarks into the corresponding image of each UAV and searching for can-
didate keypoint matches within a radius, which is chosen reflecting the projected uncertainty
of the landmark. During matching, the descriptor used for each landmark is the one obtained
during the initialization of this landmark. The candidate with the lowest descriptor distance to

91



Paper IV: Collaborative 6DoF Relative Pose Estimation for Two UAVs with Overlapping
Fields of View

Figure 7.4: Simulated trajectory of the two UAVs for the experiment with a constant relative
transformation.

the query landmark that is smaller than a threshold is considered to be a match.
For the decision on when to replace a landmark, we employ a heuristic approach as illustrated

in Fig. 7.3 accounting for different failures of the detection of each landmark. In essence, each
landmark has two counters associated to it; one for each UAV-agent, which gets incremented
by a fixed value in case a test fails and decreases (until the minimum of zero) if a successful
update is carried out. The increment for a failure at different cases is increasing, e.g. an outlier
is weighted stronger than a landmark that is projected outside of the image. Both counters are
independent from each other, however, at the decision whether a landmark needs to be replaced,
the counter with the higher value is decisive. Upon the decision to replace landmarks, we per-
form again brute force matching on the keypoints without a landmark association, followed by
checking the distance to the epipolar line in order to reject outliers. The remaining correspon-
dences are used for triangulation, after which we select the landmark(s) used to newly insert in
the state, at random. As described in Section 4.2, we associate the two corresponding feature
descriptors to the landmark and insert it into the state.

5 Experimental Results

In this section, results using both simulated as well as real data using the EuRoC [11] bench-
marking dataset are presented. For both experiments we set the number of landmarks estimated
in the filter state to be 40.

5.1 Simulation Setup
In the simulation, we setup an environment consisting of a set of 3D-landmarks randomly dis-
tributed in a plane. We generate ground truth trajectories for both UAVs and construct artificial
frames with ground truth for both the keypoints’ positions obtained by projecting the map land-
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marks, as well as for the matching correspondences given by an identifier of the projected land-
mark. This allows to test the filter performance without any uncertainty introduced in match-
ing. The odometry input is computed by disturbing the relative poses between two subsequent
frames with a noise of σt = 0.005m and σq = 0.1◦. Furthermore, the keypoint positions
are disturbed by zero-mean gaussian noise with 2 pixels standard deviation. In this setup, we
performed two experiments: (i) one maintaining a constant relative transformation between the
UAVs, while performing an constant movement along the x-axis and sinusoidal excitation both
along the camera axis as well as the z-axis, as shown in Fig. 7.4, and (ii) one, where UAV A
performs the same motion as in (i), while UAV B moves in a similar manner, but with an offset
resulting in a somewhat oscillating relative transformation.

5.2 Real Data Experimental Setup
For the experiments using real-data, we utilize the publicly available EuRoC dataset [11], which
consists of different sequences recorded from a UAV flying various trajectories in two different
environments, both for a room sized scenario (Vicon Room) and in a larger industrial environ-
ment (Machine Hall). The onboard sensor suite captures stereo WVGA images at 20Hz from
a global shutter camera along with inertial readings at 200Hz from a hardware-synchronized
IMU.

The Vicon Room sequences are not suitable for these experiments, as the UAV is equipped
with a forward-looking camera exhibiting predominantly fast rotations rendering it impossible
to guarantee overlapping fields of view. Therefore, we evaluate the proposed system on the
Machine Hall scenario, namely on the sequences MH_01_easy and MH_02_easy. As the dataset
consists of single UAV trajectories and there is only sporadic view overlap amongst different
sequences, we simulate the two UAVs using one EuRoC sequence for one UAV and the same
one for the other UAV, but with a time-offset, choosing the left stereo camera of the sensor suite
for UAV A and the right one for UAV B. We test with a time-offset of 1s for both sequences, as
well as 2s time-offset for MH_02_easy, leading to reasonable baselines and sufficient variation,
while maintaining sufficient view overlap throughout each test. All experiments are run on a
single computer, however, using the same architecture as described in Section 4.1, i.e. data
exchange is performed via internal memory access instead of WiFi. For the VIO estimation of
both UAVs, we use ROVIO [9]. Note that the approach is agnostic to the used VIO system.

5.3 Results and Discussion
The results for both simulated experiments are shown in Fig. 7.5, while the averaged errors are
reported in Table 7.1. Note that for the computation of the Root Mean Squared Error (RMSE),
only estimates obtained after the convergence of the filter are considered. As it can be seen, the
filter is able to converge in both cases. In contrast to the approach in [5], the proposed system
is able to converge even without relative motion. However, as it is evident on the angular error
for the full experiment, the relative orientation converges coupled with the position, which is
related to the fact that in our system the relative poses of the UAVs are estimated via landmark
estimation.

For the real-data experiments, a resulting error plot for the initial part of the sequence MH_02_easy
with a time offset of 1s is shown in Fig. 7.6. After an initial error on the relative distance of
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(a) Constant distance (b) Full motion

Figure 7.5: The resulting errors converted into roll-pitch-yaw angles and Euclidean coordinates.
(a) shows the error for the experiment with a constant relative transformation, while (b) shows
the result for the experiment with some oscillating relative motion.

about 1m, the error, both on translation and rotation decreases initially quickly and reaches a
convergent state after approximately 8s. However, during our experiments we could observe
that the convergence rate usually is variable, depending on the initial configuration, but also
on the initial matches, which are chosen at random as outlined in Section 4.2. The averaged
RMSE for both rotation and translation are reported in Table 7.1. The average errors for the 1s
offset experiments are approximately 0.5◦ on the rotation and 0.06m on the translation. On the
sequence MH_02_easy with a 2s offset, the errors increase compared to the experiments with
1s offset, which can be attained to two reasons: (a) the baseline is generally larger indirectly
influencing the error, as, for example, any scale error in the estimation results in proportional
errors in the absolute distance of the baseline, and (b) the viewpoint changes are larger, result-
ing to a smaller overlap, which in turn, results in shorter feature tracks (i.e. on average a larger
number of landmarks gets replaced per frame pair).

To evaluate the complexity of the proposed algorithm, the runtime was recorded over all real-
data sequences. The statistics, broken down into the different parts of the algorithm are shown
in Table 7.2. All timings are obtained on an Intel Core i7-4710MQ with 16GB RAM running at
2.5GHz. On average, the total execution time per frame pair is approximately 13.5ms, resulting
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(a) Trajectory (b) Error

Figure 7.6: The initial part of the MH_02_easy sequence with 1s offset.(a) shows the relative
transformation over time, where the estimated transformation is plotted with dashed line and
the ground-truth with the continuous line, and (b) shows the resulting errors on the relative
transformation. Note that the error in orientation is too small for the dashed line to be visible in
the top left figure.

in an average frame rate of 74Hz, whereas the maximum time per frame pair overall is 25ms.
With a frame rate of 20Hz our algorithm can therefore, easily run in real-time. The largest
variation in timings correspond to the landmark management, since the 2D-2D matching is only
executed upon the initialization of new landmarks, as described in Section 4.3. Note that the
timings for the keypoint detection and descriptor extraction, which together require 7.5ms on
average per frame, are not included in Table 7.2, as this process runs in parallel to the actual
algorithm.

6 Conclusion

This work presents an EKF design enabling real-time 6-degree-of-freedom relative pose es-
timation between two UAVs with overlapping fields of view, using local odometry estimates
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RMSE q [◦] RMSE t [m]
Sim. Constant 0.39 0.054
Sim. Dynamic 0.56 0.071
MH_01_easy (1s) 0.63 0.058
MH_02_easy (1s) 0.48 0.063
MH_02_easy (2s) 0.82 0.093

Table 7.1: Average RMS errors of the relative transformations for both the simulation and
the real experiments. The rotational errors are obtained by transforming in the roll-pitch-yaw
formulation, while the translation errors t are obtained by transforming b and s in Euclidean
coordinates. All results are recorded by averaging over 5 runs.

Prediction Matching Update Landmark Manag.
mean [ms] 1.31 0.15 7.51 4.49

std [ms] 0.29 0.05 0.95 4.41
max [ms] 3.60 1.03 13.76 12.66

Table 7.2: The execution time of the proposed framework, broken down into the different steps.
The reported statistics correspond to the real experiments, when using 40 landmarks in the state.

along with monocular vision measurements. Along with the filter design, we propose a new,
minimal parametrization of the baseline between the UAVs’ cameras as a bearing vector and
an inverse-distance, enabling a consistent representation of the uncertainty of the estimation
problem. The outlined lightweight system is designed to run onboard two UAVs only using
peer-to-peer communication with a bandwidth requirement under 0.5MB/s, while distributing
some of the computational load. We demonstrate the capability of the proposed system both on
simulated data as well as on real data on the EuRoC benchmarking dataset.

Future work will address the landmark management system in order to improve the perfor-
mance through longer feature tracks by storing a larger number of landmarks than in the actual
filter state (e.g. as in [9]). Furthermore, we believe the robustness of the system could be
boosted by incorporating more informed feature selection in the spirit of [16].
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Distributed Variable-Baseline Stereo SLAM

from two UAVs

Marco Karrer and Margarita Chli

Abstract
Visual Inertial Odometry (VIO) has been widely used and researched to control and aid
the automation of navigation of robots especially in the absence of absolute position
measurements, such as Global Positioning System (GPS). However, when observable
landmarks in the scene lie far away from the robot’s sensor suite, as it is the case at
high altitude flights, the fidelity of estimates and the observability of the metric scale
degrades greatly for these methods. Aiming to tackle this issue, in this article, we
employ two Unmanned Aerial Vehicles (UAVs) equipped with one monocular camera
and one Inertial Measurement Unit (IMU) each, to exploit their view overlap and
relative distance measurements between them using Ultra-Wide Band (UWB) modules
onboard to enable collaborative VIO. In particular, we propose a novel, distributed
fusion scheme enabling the formation of a virtual stereo camera rig with adjustable
baseline from the two UAVs. In order to control the UAV agents autonomously, we
propose a decentralized collaborative estimation scheme, where each agent hold its
own local map, achieving an average pose estimation latency of 11ms, while ensuring
consistency of the agents’ estimates via consensus based optimization. Following a
thorough evaluation on photorealistic simulations, we demonstrate the effectiveness
of the approach at high altitude flights of up to 160m, going significantly beyond
the capabilities of state-of-the-art VIO methods. Finally, we show the advantage of
actively adjusting the baseline on-the-fly over a fixed, target baseline, reducing the
error in our experiments by a factor of two.
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Figure 8.1: Using two UAVs, equipped with one IMU and one monocular camera each, while
measuring the relative distance between them using an ultrawideband module, the proposed
sensor fusion framework is able to reliably estimate both UAVs’ poses in metric scale at the
particularly challenging case of high-altitude fights. This is achieved by adjusting the baseline
between the UAVs adaptively, to realize a desired triangulation angle αt. In the distributed im-
plementation, each agent holds its own version of the map, indicated by the green and magenta
points in the top image, enabling low latency pose estimation of the UAVs, while consistency
across the agents is achieved via a consensus based optimization scheme. The red and blue
circles in the bottom two images indicate keypoints with and without 3D point associated with
them, respectively.

1 Introduction

Awareness of a robot’s pose in previously unseen environments is one of the key elements to-
wards enabling autonomous navigation of robots. While GPS is of tremendous help towards
achieving this goal, its availability and quality are still limited, e.g. indoors or close to structure,
hence in a general scenario strong reliance on GPS can be a critical limitation. Addressing this
issue, research into Simultaneous Localization And Mapping (SLAM) has received quite some
attention as it potentially enables ego-motion estimation only using the sensors carried onboard
the robot.
Due to the low cost and low power consumption of cameras and their ability to capture rich
information about the environment, they have become a popular sensor choice for performing
SLAM. With the first systems [31], [36], [70] demonstrating the ability to estimate the ego-
motion up to scale using only a single camera, soon more mature and complete systems, such
as [96], emerged. While the scale ambiguity inherently present in monocular systems can be
resolved, for example, by using a stereo camera rig [97], the lack of information in-between
frames renders purely vision-based systems sensitive to fast motions, which are rather common
when employed onboard small UAVs. Therefore, the complementary characteristics of IMUs
and cameras have been explored extensively to develop robust and accurate state estimation by
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the means of Visual Inertial Odometry (VIO) systems, such as [8], [83], [111], which quickly
became a standard for autonomous navigation of UAVs [105].
While VIO techniques have been successfully applied in situations where the scene is in the
close proximity to the camera (e.g. in autonomous driving, in low-altitude flights or operations
indoors), in scenarios where the scene is further away from the camera, such as at high altitude
flights, VIO methods experience difficulties to establish similar levels of accuracy. As all VIO
methods rely on triangulation of scene landmarks, the scene depth estimates become more un-
certain the smaller the triangulation angle gets. For monocular VIO, this angle is determined by
the camera motion and the scene depth. As the overall scale of monocular VIO conceptually,
is determined via the integration of IMU measurements, with increasing scene depth, a larger
range of motion is required in order to obtain a large enough triangulation angle. This leads
to the integration of more IMU readings, which at some point results in a numerically weakly
constrained scale. The same effect can be observed when using stereo cameras, where the fixed
baseline dictates the maximum depth that can be reliably detected [57] and thus, limiting the
effectiveness of the imposed constraints on the scale. The choice of the stereo baseline is, thus, a
crucial parameter and ideally, one would be able to modify this parameter on-the-fly depending
on scene depth or accuracy requirements of the task at hand [50].
Inspired by the idea of using two UAVs as agents equipped with one camera each, to form a
virtual stereo camera rig [5], we propose a novel, complete system utilizing view-overlap across
two agents together with relative distance measurements obtained via Ultra-Wide Band (UWB)
in order to collaboratively estimate the pose of these two cameras. As the two agents are capable
of modifying their relative poses, the baseline between their cameras can be adjusted accord-
ingly, e.g. achieving a desired triangulation angle. In order to allow for a low latency pose
estimation onboard the agents, independently of network delays, we propose a novel decentral-
ized optimization architecture allowing each agent to hold their own estimate of the map, while
ensuring consistency of common scene estimates amongst them. In brief, the main contributions
of this work are the following:

• a novel, real-time sensor fusion framework combining monocular visual and inertial data
from two UAVs, and relative distance measurements between them (e.g. using ultra-
wideband modules on each agent) enabling a reliable relative pose estimation of each
other even at high altitudes,

• the adaptation of the framework of [107] for asynchronous multi-agent estimation to
enable sliding-window bundle adjustment in a decentralized fashion for the first time to
the best of our knowledge,

• a thorough evaluation of the proposed system using photorealistic simulation showing
the improvements over state-of-the-art stereo-inertial methods at higher altitudes, and

• demonstration of the advantage of an adjustable baseline in the proposed two-UAV stereo
setup for accurate pose estimation by the means of a simple high-level formation con-
troller.
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2 Related Work

Alongside the emergence of vision based SLAM for single robots [8, 70, 83, 97, 111], research
into multi-robot systems started to attract attention recently. The collaborative framework pro-
posed in [43], demonstrates how Keyframe (KF) data from cameras mounted on different UAVs
can be combined into a global map. Designed for mapping visual-inertial data from multiple
agents, [64] builds up a global map, showcasing the benefit of collaboration on the overall tra-
jectory error. Utilizing Manhattan-World like structures where available in order to constrain
the map optimization, [53] propose a large scale visual-inertial mapping framework and [93]
utilize a cloud computer to generate 3D maps, collaboratively. While these approaches are fo-
cused on mapping, other systems aim to distribute the processes of the SLAM pipeline between
the agents and a server [66, 114, 120], promising to reduce the computational load onboard the
agents and to make map data generated from one agent available to all the robotic team. On the
other hand, there also exist multi-session frameworks, such as [111, 122] that allow the user to
re-localize in previously generated maps. In order to allow these systems to scale up to larger
teams of robots, research effort has been aiming to avoid a central server entity and perform all
operations in a distributed fashion instead. Many works focus on optimizing a specific aspect of
the multi-agent system for a distributed setup, such as place recognition [22], robustness [146],
or efficient data exchange [21].
All the aforementioned frameworks make use of collaboration of some form ranging from
combining map data into a larger map, to re-using parts of a map created from other agents.
Nonetheless, the tracking front-ends of these systems do not require any tight collaboration
amongst them and therefore, share the same limitations as their single-agent counterparts, for
example, degrading quality of the pose estimate at higher altitudes. A counter example is the
collaborative system CoSLAM [149], which addresses the problem of inaccuracies due to dy-
namic objects in the scene by using multiple freely moving cameras with view-overlap. This
approach allows reliable pose estimation of cameras, which only observes the dynamic scene
points in collaboration with their neighboring cameras. However, the system requires all image
data to be collected at a single access point and makes heavy use of GPU computation, limiting
the applicability of the approach to a robotic problem.
The problem of degrading quality of VIO state estimation at high altitudes has recently received
some attention in the literature. In wind turbine inspection using UAVs, for example, [134]
proposed a framework with two UAVs, one equipped with LED markers and a GPS module
and the other one with one camera that can detect the markers and one camera for turbine in-
spection. For the estimation, the UAV with the cameras observes the other UAV’s markers and
flies close to the turbine, where the GPS signal is disturbed, while the UAV with the markers
flies further away from the turbine to secure more reliable GPS reception, while staying in the
field of view of the observing UAV. While this method fits well to inspection of structures,
where GPS reception is reliable at least slightly further away from the structure, it is clear that
unreliable or imprecise GPS readings have a strong effect on the quality of the pose estimates.
Other methods deal with creating a large stereo baseline by placing the two cameras at the tips
of a fixed-wing aircraft [57, 58], where the authors model and correct for movements between
the cameras due to deformation of the structure essentially continuously estimating the stereo
extrinsics. In the work of [5] and [63] the estimation of the relative transformation between
two independently moving UAVs equipped with monocular cameras by the means of (rela-
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tive) motion and view overlap is investigated. While conceptually, such a configuration can be
interpreted as a stereo camera, the absolute scale of the baseline only gets estimated via mo-
tion (e.g. IMU measurements), hence suffering from the same limitations as monocular VIO.
Nonetheless, taking inspiration from [5], here we propose a framework performing VIO with
two agents, each equipped with a monucular camera and an IMU in tight collaboration with
each other using relative distance measurements between the agents, e.g. using UWB mod-
ules, the scale ambiguity of the variable baseline setup can be addressed, allowing to effectively
obtain a virtual stereo camera with a baseline that can be adjusted according to the scene and
accuracy requirements. In contrast to other collaborative estimators with tight collaboration on
the front-end such as [149], we propose a decentralized architecture allowing for low-latency
pose estimation independent of communication delays and fitting well within the bandwidth
limitations of a standard WiFi module.

3 Preliminaries

3.1 Notation
Throughout this work, we use small bold letters (e.g. a) to denote vector values, capital bold
letters (e.g. A) to denote matrices and plain capitals (e.g. A) denote coordinate frames. To
indicate a submatrix formed by the rows ri to rj and the columns cl to ck of A we use the
notation A [ri, rj ; cl, ck], where a 1 based indexing is used. A vector x expressed in the
coordinate frame A, is denoted as Ax. Rigid body transformations from coordinate frame B to
coordinate frameA are denoted by TAB , comprising the translational part of the transformation
pAB and the rotational part RAB . For notational brevity, at times we use quaternions qAB
interchangeably with such rotation matrices. The concatenation of two quaternions q1 and q2

is denoted by q1 ◦ q2, whereas the rotation of vector v by a quaternion is denoted by q(v).
Values that correspond to a prediction are indicated with ·̂, whereas measurements are denoted
with ·̃. Finally, sets of variables are denoted using capital calligraphic letters (e.g. A).

3.2 Asynchronous-parallel ADMM
The Alternating Direction Method of Multipliers (ADMM) was first introduced by [56] and is
an algorithm that aims to solve problems of the following form:

minimize
x,y

f(x) + g(y)

subject to Ax + By = w,
(8.1)

for proper, convex functions f(·) and g(·), by forming the augmented Lagrangian Lγ introduc-
ing the dual variables z and the penalty weight γ as follows:

Lγ(x,y, z) = f(x) + g(y) + zT (Ax + By −w) +
γ

2
‖Ax + By −w‖22 . (8.2)
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The ADMM algorithm solves the problem in Eq. (8.1) by performing the following update
steps iteratively:

xk+1 = arg min
x

Lγ(x,yk, zk) (8.3)

yk+1 = arg min
y

Lγ(xk+1,y, zk) (8.4)

zk+1 = zk + γ(Axk+1 + Byk+1 −w) , (8.5)

where k is the iteration number. While the problem formulation in Eq. (8.1) corresponds to
generic constraint optimization, unconstrained optimization problems with additive cost func-
tions can be brought into an equivalent form, allowing for a distributed implementation over N
nodes as used by [147], for example. The form of this distributed problem is given by

mininize
xi

N∑
i=1

fi(xi)

subject to xi = Siy, i = 1, . . . , N ,

(8.6)

where Si corresponds to an indicator matrix, selecting the entries in y corresponding to the
variables of xi. Note that in relation to Eq. (8.1), here g(y) = 0, w = 0, A is the identity
matrix and B corresponds to the stacked version of the indicator matrices −Si. As shown in
[147], this formulation reduces the update step of y in Eq. (8.4) to a simple averaging operation
(consensus).
While the algorithm proposed by [147] can parallelize the most expensive operation of solving
the local optimization problems in Eq. (8.3)-(8.5), in order to compute the consensus terms, all
data needs to pass through one central point. So in effect, the synchronized structure of the al-
gorithm dictates the frequency of the ADMM iterations to be equal to the slowest participating
node. The algorithmic framework “ARock" introduced in [107], specifically addresses this lim-
itation allowing to arrive to an asynchronous implementation of the ADMM algorithm, which
we adopt in this work. A brief overview of the ARock ADMM algorithm presented in [107] is
provided below, while the specific details of the algorithm related to the proposed framework
are introduced in Section 4.4.
In the general setup, consider a set of nodes 1, . . . , N , forming a graph connecting the nodes
by a set of edges E = {(i, j)|if node i connects to node j, i < j}. A node can be seen as
a computational unit holding a partial, local estimate xi of the optimization state variable x.
For the sake of notational simplicity, in the following, all local variables xi are assumed to be
realizations of the full state x, i.e. the dimensions of all xi are equal to the dimension of x.
Additionally, we assume that not every node can communicate with every other node and the
edges in E is given by pairwise set of nodes that can communicate with each other. As shown
in Section 4.4, this can be generalized to sharing only a subset of variables between the nodes.
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In such a setup, the problem formulated in Eq. (8.6) can be expressed as:

minimize
xi,yij

N∑
i=1

fi(xi)

subject to xi = yij , xj = yij ∀(i, j) ∈ E .

(8.7)

Let Ei denote the set of edges connected to node i and let |Ei| denote its cardinality. Further-
more, letLi = {j|(j, i) ∈ Ei, j < i} andRi = {j|(i, j) ∈ Ei, j > i}, separating the ordered
indices to the left and the right of i, respectively. For every pair of constraints xi = yij and
xj = yij , such that (i, j) ∈ E in Eq. (8.7), the dual variables zij,i and zij,j get associated on
node i and j, respectively. Consequently, the ADMM iterations for every node i can be written
as

xk+1
i = arg min

xi

fi(xi) + (zki )Txi +
γ

2
|Ei| · ‖xi‖2 (8.8)

zk+1
li,i = zkli,i − ηk ·

(
(zkli,i + z̄li,l)/2 + γxk+1

i

)
, ∀l ∈ Li (8.9)

zk+1
ir,i = zkir,i − ηk ·

(
(zkir,i + z̄ir,r)/2 + γxk+1

i

)
, ∀r ∈ Ri , (8.10)

where the variables denoted with ·̄ represent the latest received values from the neighboring
nodes and the weight ηk is a factor to account for communication delays and the corresponding
potential use of outdated dual variables. Note that zki corresponds to

zki =
∑
l∈Li

z̄kli,l +
∑
r∈Ri

z̄kir,r . (8.11)

Finally, after every iteration of Eq. (8.8)-(8.10) for node i, the updated dual variables zk+1
ji,i get

communicated to the nodes j ∈ Ei connected to i.

3.3 Z-Spline based 6DoF Pose Interpolation
Representing a trajectory as a continuous-time curve offers several advantages, for example the
handling of sensors, which acquire data over a period of time, such as rolling-shutter cameras
or LiDARs, as well as simplified fusion of data from multiple, possibly not time-synchronized
sensors. One of the most popular representations for continuous-time trajectories are B-splines
due to their simple parametric form and their local support properties. In the literature, B-splines
have been applied successfully to tackle visual-inertial SLAM using rolling-shutter cameras
[47], [86]. As outlined in [86], a standard B-spline curve of degree k − 1 is defined by

x(t) =

n∑
i=0

xiBi,k(t) , (8.12)
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where xi ∈ RN are the control points of the spline at the times ti with i ∈ [0, n] and Bi,k(t)
are the continuous time basis functions. By reorganizing Eq. (8.12), the formulation can be
brought into the cumulative form given by

x(t) = x0B̄0,k(t) +

n∑
i=1

(xi − xi−1)B̄i,k(t) , (8.13)

where B̄i,k(t) represents the cumulative basis function and the relationship between the cumu-
lative and the standard basis functions is described by

B̄i,k(t) =

n∑
j=i

Bj,k(t) . (8.14)

The basis functions for B-splines can be easily computed using De Boor-Cox’s recursive for-
mula [24], [32]. In this work in order to represent the continuous time trajectory, we propose to
utilize a third order Z-spline representation introduced in [117]. While Z-splines have the same
local support properties as B-splines, their basis functions are defined as piece-wise polynomi-
als. In particular, the third order basis function for the Z-spline are defined as

Z(s) =


1− 5

2
s2 + 3

2
|s|3 |s| ≤ 1,

1
2

(2− |s|)2(1− |s|) 1 < |u| ≤ 2,

0 |u| > 2 ,

(8.15)

where s denotes a real-value scalar. As in this work we employ cubic splines and utilize control
points that are equally spaced in time (i.e. ti+1 − ti = ∆t, ∀i ∈ [0, n − 1]) for any t ∈
[ti, ti+1), exactly four control points are required, namely the ones at times ti−1, ti, ti+1 and
ti+2. Transforming the time t into a local time u(t) = t−ti

∆t
, the interpolation using the cubic

Z-spline can be written as:

x(u) = Z(u+ 1)xi−1 + Z(u)xi + Z(u− 1)xi+1 + Z(u− 2)xi+2 , (8.16)

with u(t) denoted by u for brevity. Note that the definition of the cumulative form remains
the same as in (8.13). A comparison between the base functions and their cumulative forms is
shown in Fig. 8.2. As evident in Fig. 8.2c, in contrast to the B-splines, the Z-spline interpolation
passes through the control points exactly. While the use of such a spline formulation on values
in RN is straightforward, the interpolation of rigid body transformations needs to be considered
more carefully. The authors in [86] proposed to interpolate the 6 Degrees of Freedom (DoF)
pose using the cumulative formulation on SE3, however, here we perform the interpolation of
the rotation on SO3 and the translation parts on R3 separately. This was already advocated in
[68], as such a split representation removes the coupling of the translation and the rotation and
avoids artifacts on the translation-interpolation during phases with large rotational velocities.
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Figure 8.2: Comparison between the basis functions of B-splines and Z-splines. The plot in (a)
shows the normal basis functions and (b) shows the corresponding cumulative basis function,
while (c) shows a comparison of the interpolation result between B-splines and Z-splines using
the same control points.

Therefore, the interpolated translation is given by

p(u) = pi−1Z̄(u+ 1) +
2∑
j=0

(pi+j − pi+j−1)Z̄(u− j) . (8.17)

Following the approach of [68], the interpolated rotation is computed by

q(u) = q
Z̄(u+1)
i−1

2∏
j=0

exp
(

log(q−1
i+j−1qi+j)Z̄(u− j)

)
, (8.18)
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where qλ = exp(λ log(q)). Essentially, the operations in (8.18) correspond to a mixture of
SLeRP interpolations [124] within the local support window of the spline.

4 Method

4.1 System Overview
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Figure 8.3: Schematic of the processes running on each of the two agent for the proposed system
mainly comprising of frame-wise tracking, mapping and non-linear optimization. Consistency
between the two agents is achieved by communicating Keyframe (KF) data and Dual Variables
associated to the KF poses via wireless communication.

The system performing distributed, collaborative SLAM is designed to be run as two identi-
cal instances on two machines, called ‘agents’, communicating with each other over a wireless
connection. An overview of the essential parts of one such instance is shown in Fig. 8.3. The
functionality of each instance is partitioned into three main threads: tracking, mapping, and
optimization.
In the tracking thread, the image observations are fused together with IMU readings in order
to localize against the current state of the 3D Map Points (MPs). The fusion is performed by
the means of an Extended Kalman Filter (EKF), which allows for a computationally efficient
and low-latency frame-wise pose tracking. The tracked frame is further processed to decide
whether a KF should be created or not. In the proposed system this decision is purely based on
time constraints, i.e. if the time difference between the last KF and the current frame is larger
than a threshold, the current frame is marked to become a KF. This scheme is motivated by the
simplicity in the book-keeping, but also by the fact that we use the KF poses as base poses in the
spline representation of the trajectory in the back-end optimization, hence, using uniform sam-
pling between the KFs reduces the complexity of the interpolation. When a KF is newly created
at one agent, the relevant information such as the 2D keypoints, descriptor data as well pose re-
lated information gets immediately communicated to the other agent. In the following the KFs
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created on its own by an agent are referred to as native KFs, while KFs received via communi-
cation but created by the other agent are referred to as non-native KFs. Both, native- as well as
non-native KFs are passed to the mapping part of the pipeline. In the mapping thread, we try
to establish new 3D MPs via triangulation between the newest native KF and a selected subset
of established KFs. In order to reduce the required book-keeping for the map maintenance, the
system is designed such that each agent can hold its own set of map points, avoiding complex
synchronization between the two agents. Besides the creation of new MPs, the mapping thread
is also responsible to update the uncertainty estimates of the MPs and establish correspondences
between the existing MPs and non-native KFs. In order to avoid extensive locking of data dur-
ing these operations, the interface between the tracking- and the mapping-thread copies the last
state of the MPs to be used for tracking. While the mapping thread initializes the MP positions
and maintains an estimate of their uncertainty, we utilize nonlinear optimization to update the
MP positions and fuse UWB distance measurements between the two agents into the estimation.
As we have two instances of the map estimated, one on each agent, in the optimization thread
we make use of the asynchronous ADMM introduced in Section 3.2 to ensure that both agents
converge to a common trajectory estimate by the means of a pose consensus, enforced by ex-
changing a set of dual variables. In order to keep the computational complexity of the optimiza-
tion bounded, we only keep a fixed sized window of KFs in the Map, whose size is maintained
after every round of optimization.

4.2 EKF-based Pose Tracking
In order to enable both robust and timely tracking of each robot’s pose, we designed an EKF
fusing the IMU information together with 3D-2D measurements against the current state of the
MPs. As the MP positions are conceptually considered as given in the tracking thread, the EKF
state Xtr is chosen as follows:

Xtr ..=
[
qWM qMS pMS Sv ba bω

]
, (8.19)

where qWM denotes the rotation (in quaternion form) of this agent’s map origin into the gravity
aligned world frame, [qMS ,pMS ] corresponds to the pose of the IMU frame in the map, Sv
denotes the robocentric velocity of the IMU frame, and ba and bω denote the accelerometer-
and the gyroscope biases, respectively. The covariance associated to the state Xtr is denoted as
ΣΣΣtr . While rotations are parameterized as quaternions, the gravity rotation (qWM ) only has
two DoF (roll and pitch), whereas the pose (qMS ) has 3DoF, resulting in ΣΣΣtr ∈ R17×17. As
commonly employed in filtering based visual-intertial frameworks, such as in [8], we use the
IMU readings to propagate the filter state. The acceleration S ãS and gyroscope measurements
Sω̃ωωWS are modeled to be the true acceleration SaS and rotational velocity SωωωWS affected by
both noise and biases:

SaS = S ãS − ba −wa (8.20)

SωωωWS = Sω̃ωωWS − bbbω −wω , (8.21)

where wa,wω are zero-mean Gaussian noise variables acting on the acceleration and the ro-
tational velocity measurements, respectively. Using the IMU readings, the continuous time
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behavior of the system can be described by

q̇WM = wg (8.22)

q̇MS = −q−1
MS(wg) +S ωωωWS (8.23)

ṗMS = − Sωωω
×
WSpMS + SvS (8.24)

S v̇S = − Sωωω
×
WS SvS + SaS + q−1

MS ◦ q−1
WM (W g) (8.25)

ḃa = wba (8.26)

ḃω = wbω , (8.27)

where wba and wbg are white Gaussian noise processes modeling the time variation of the
accelerometer and gyroscope biases and ω× is denoting the skew symmetric matrix constructed
from the tupleωωω. The termW g denotes the gravity vector in the inertial frame and the Gaussian
noise process wg models a time variation of the rotation of the map with respect to the inertial
frame W . The time continuous equations in our implementation are transformed to a set of
discrete prediction equations using an Euler forward integration scheme as proposed in [8]
resulting in:

q̂k+1
WM = qtWM (8.28)

q̂k+1
MS = qkMS � (∆t Sωωω

k
WS) (8.29)

p̂k+1
MS = pkMS + ∆tqkMS(SvkS) (8.30)

S v̂k+1
S = SvkS + ∆t

(
(qkWM ◦ qkMS)−1(W g) +

SaS − (Sωωω
k
WS)× SvkS

)
(8.31)

b̂k+1
a = bka (8.32)

b̂k+1
g = bkg . (8.33)

Note that in Eq. (8.29) we use the boxplus operator (�), which generalizes the functionality of
addition for quantities which are not in a vector space [55]. In this case the � operator is used
on rotations and is briefly outlined in Appendix 7.1. Based on the discrete prediction equations
(8.28)-(8.33), we propagate the state covariance as follows:

Σ̂ΣΣ
k+1
tr = FΣΣΣktrF

T + GWGT , (8.34)

where F is the jacobian of the prediction step with respect to the state, G is the jacobian with
respect to the process noise w∗ and W is the covariance of the process noise in matrix form.
The analytical expressions and the form of G,F and W are provided in Appendix 7.2.
For updating the EKF-state, we use projective correspondences to the current position estimates
of the MPs as measurements. In order to establish these correspondences, we use the predicted
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pose q̂k+1
MS , p̂

k+1
MS and project all MPs Mmi into the camera frame:

zproji = π(TCST̂−1
MS Mmi) , (8.35)

where the function π(·) denotes the projection function (including distortion). The transforma-
tion TCS between the IMU and the camera is considered to be known and can be obtained
from calibration. In order to associate the 2D keypoints to the projected MPs, the descriptors
in a small radius around the projection zproji are matched against the MP’s descriptors. After
a first data association step, we perform an outlier rejection step using 3D-2D RANSAC [71].
Using the remaining inlier correspondences, the reprojection residuals given by

yi,j = z̃j − zproji (8.36)

are constructed, where z̃j is the pixel coordinates of the 2D keypoint j in the image space that
was associated with MP i. By stacking all reprojection residuals to form the residual vector y,
we can formulate the innovation covariance as

S = HΣ̂ΣΣtrH
T + R , (8.37)

where H is the jacobian matrix of the residual with respect to the EKF state and R is the
measurement covariance obtained by stacking the individual measurement covariance Ri,j as-
sociated to yi,j . As the MPs are not part of the EKF state, we use the MP uncertainty ΣΣΣpi ,
estimated as described in Section 4.3, in order to inflate the measurement uncertainty by pro-
jecting it onto the image plane:

Ri,j = HpiΣΣΣpiH
T
pi

+

[
σ2
obsj

0

0 σ2
obsj

]
, (8.38)

where Hpi is the jacobian of the projection of MP i into the image and σobsj is the keypoint
uncertainty, which in our case is only dependent on the octave that this keypoint was detected.
Leveraging the computed innovation covariance, we employ a Mahalanobis distance based out-
lier rejection in order to exclude additional outliers that slipped through the first RANSAC step.
Using the remaining correspondences, the Kalman gain can be computed by

K = HΣ̂ΣΣtrH
TS−1 . (8.39)

The computed gain is utilized to update the state variables and the associated covariance as
follows:

Xtr = X̂tr � (−Ky) (8.40)

ΣΣΣtr = (I17×17 −KH)Σ̂ΣΣtr , (8.41)

where the notation in Eq. (8.40) indicates that the � operator is applied for the appropriate
states.
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4.3 Mapping
The mapping thread in the proposed pipeline is responsible to generate new MPs and to maintain
an estimate of the uncertainty in their positions.

Initialization of new Map Points

The initialization of new MPs is performed by triangulating of 2D correspondences between
the most recent native KF (target) and the KFs that are already in the Map (candidates). As
an exhaustive correspondence search against all established KFs would be computationally too
expensive, instead, we propose to limit the search to a small subset of candidate KFs. In order
to select such a subset, we assign a penalty value sj to every established KF j based on the
relative viewpoint with respect to the target KF i as follows:

sj := βv,j · w(αv,j , av , bv , cv) + βt,j · w(αt,j , at, bt, ct) , (8.42)

where βv,j , βt,j are weights chosen such that non-native KFs are preferred in order to establish
a stronger constraints across the agents, i.e. the weights for native KFs are chosen 10 times
larger. The value αv,j is the angle between the camera axes of KF j and KF i, and αt,j is
defined as the triangulation angle between the KFs for a given scene depth. The parameters
ai, bi, ci with i ∈ {v, t} are internal parameters of the weighting function w. In order to
approximate the unknown scene depth, we compute the median distance of the MPs seen in
the most recent couple of KFs. The weighting function w(x, a, b, c) is chosen in the form of a
tolerant loss function:

w(x, a, b, c) = b · log

(
1 + exp

(
(x− c)2 − a

b

))
− c0 (8.43)

c0 = b · log

(
1.0 + exp

(
−a
b

))
.

Using the candidate KFs with the smallest score, we sequentially perform a brute force descrip-
tor matching followed by a 2D-2D RANSAC-based outlier rejection. For the obtained inlier
correspondences we perform a SVD-based linear triangulation to obtain the 3D position of the
new map pointsMmi,j using the KFs pose estimates TMSi

,TMSj
. Leveraging the estimated

covariances of the KFs poses ΣΣΣTMSi
,ΣΣΣTMSj

, we estimate the MP uncertainty ΣΣΣ
M

mi,j as:

ΣΣΣ
M

mi,j = (Ji,jWi,jJi,j)
−1 [1, 3; 1, 3] , (8.44)

where Ji,j is the jacobian of the reprojected MPs and the poses. The form and the analyt-
ical expression of Ji,j is provided in Appendix 7.2. The matrix Wi,j is the corresponding
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information matrix and is given by

Wi,j =


1

σ2
obs

I2×2 0 0

0 ΣΣΣ−1
TMSi

0

0 0 ΣΣΣ−1
TMSj

 . (8.45)

Estimation of the Map Points’ uncertainty

As introduced in Section 4.2, we utilize the uncertainty of MPs in the update of the pose track-
ing. In order to obtain an approximation of the uncertainty for each MP with limited computa-
tional effort, we employ an independent EKF per MP. For the initialization of the EKFs’ state,
we use the triangulated positions along with the covariance as computed by Eq. (8.44). As the
EKF’s state represents the MP position in M , the prediction step from timestep k to k + 1 is
trivial, as the MPs are assumed to be static:

Mm̂k+1
i = Mmk

i , (8.46)

while for the covariance we add diagonal noise to account for missing or removed observations
due to the sliding window approach:

Σ̂ΣΣ
k+1
mi

= ΣΣΣkmi
+ σ2

m · I3×3 , (8.47)

where σm is the noise parameter modeling the MP’s changes in position (e.g. during opti-
mization) and in our implementation was chosen to be 0.2m. In the update step, we use the
re-projection error yi of the established 2D-3D correspondences, independent of whether the
KF used is a native or not. In order to include the uncertainty of the KF pose into the estimation,
a similar operation as in Eq. (8.38) is employed:

Rpy,i = HTMS
Σ̂ΣΣTMS

HT
TMS

+ σ2
obs · I2×2 , (8.48)

where the Jacobian HTMS
is given by

HTMS
=

∂yi

∂TMS
. (8.49)

With the resulting measurement noise from Eq. (8.48), the innovation covariance Syi can be
computed as

Syi = HpiΣ̂ΣΣpiH
T
pi

+ Rpy,i . (8.50)

Using the resulting Kalman Gain Kyi = ΣΣΣpiHpiS
−1
yi

, the updated MP position is given by

pi = p̂i −Kyiyi , (8.51)

111



Paper V: Distributed Variable-Baseline Stereo SLAM from two UAVs

while the corresponding MP’s covariance is given by

ΣΣΣpi = Σ̂ΣΣpi −KyiSyiK
T
yi
. (8.52)

Note that the described EKF is mainly employed to estimate the uncertainty of the MPs, there-
fore, the state update in Eq. (8.51) is only performed until the MP has seen the first update from
the Nonlinear Optimization as described in Section 4.4.

4.4 Distributed Optimization Back-End
The optimization back-end constitutes the core element of the system and is responsible for the
fusion of the UWB distance-measurements together with the visual measurements and main-
taining a consistent estimate among the two agents. In this section, we first introduce the opti-
mization objective assuming a centralized system followed by the undertaken steps to optimize
the objective in a decentralized fashion.

Centralized Objective Function

The optimization variables in the back-end consist of the KF poses inside a fixed window size
of N and the corresponding M MPs visible in these KFs:

X := [T1
MSA

, · · ·TNMSA︸ ︷︷ ︸
agent A’s KFs

,T1
MSB

, · · · ,TNMSB︸ ︷︷ ︸
agent B’s KFs

,Mm1, · · · ,MmM︸ ︷︷ ︸
Map Points

] . (8.53)

Over these variables, we can define the optimization objective as:

f(X ) :=
∑
i∈K

∑
j∈M(i)

δc
(
yTproji,jWi,j

r yTproji,j

)
+
∑
u∈D

δc

(
1

σ2
d

eud
2

)
, (8.54)

where the set K indicates all KFs i, native and non-native, that are currently inside the sliding
window and accordingly,M(i) indicates all the MPs that are visible in KF i. The function δc(·)
denotes a robust loss function, in our case the Cauchy loss function, introduced to reduce the
influence of outliers. The terms yproji,j are the reprojection residuals as defined in Eq. (8.35)

and (8.36) and the corresponding weights are Wk,j
r = 1/σ2

obs · I2×2. The set of relative
distance measurements with standard deviation σd between the two agents is denoted by D,
while the corresponding residual terms are given by

eud :=‖qMSA
(t)pUA

+ pMSA
(t)− qMSB

(t)pUB
− pMSB

(t)‖ − dumeas , (8.55)

where dumeas corresponds to the distance measurement taken at time t, and pUi
, i ∈ {A,B}

is the UWB antenna offset expressed in the corresponding IMU frame. The interpolated poses
pMSi

(t),qMSi
(t), i ∈ {A,B} are computed following (8.17) and Eq. (8.18), while the base

poses correspond to the KF poses surrounding the timestamp t.
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Distributed Optimization

To avoid a complex synchronization effort between the two agents in order to obtain a unique,
common map, we allow each agent to hold its own version of the map and, instead, propose to
use an ADMM based distributed optimization scheme to obtain a common trajectory estimate
across both agents. In order to optimize f(X ) in a distributed fashion, the problem in Eq. (8.54)
needs to be brought into the form of Eq. (8.7). Based on the need for both agents’ trajectories
in (8.55) and the absence of a shared map across the agents, we split the problem by their
trajectories, resulting in the following distributed state:

Xi := [T1
MSi

, · · ·TNMSi︸ ︷︷ ︸
native KFs

,T1
MSpi

, · · · ,TN−lMSpi︸ ︷︷ ︸
non-native KFs

,Mm1, · · · ,MmMi︸ ︷︷ ︸
Map Points

], i ∈ {A,B} ,

(8.56)
where the notation pi indicates the opposite index, i.e. i = A⇒ pi = B. The parameter l ≥ 0
is used to represent a lag between the creation of a KF on one agent until it is available to the
other one, e.g. caused by network delays. To ensure consistency between the trajectories on
both agents, the constraint in Eq. (8.7) for the state as in Eq. (8.56) is given by

TiMSA,A
= TiMSA,B

, TiMSB,A
= TiMSB,B

, ∀i ∈ [1, N − l] . (8.57)

Using these constraints, the centralized problem in (8.54) can be written in the form of (8.8)

Xk+1
i = arg min

Xi

f(Xi) +
N∑
j=1

‖ei,jc ‖2 +

N−l∑
j=1

‖epi,j
c ‖2 , (8.58)

where ec denotes the consensus error term which is responsible to enforce the constraints in
Eq. (8.57). As we perform consensus based on variables in SO3, special care needs to be taken
while handling the consensus terms in Eq. (8.8). To do so, we propose to perform the consensus
on the tangent space of a fixed reference rotation, leading to a modified version of Eq. (8.57) in
terms of the rotation:

δqiA,A = δqiA,B , δqiB,A = δqiB,B ∀i ∈ [1, N − l] , (8.59)

where for example δqiA,A is defined via the following relation

qiMSA,A
= qiA,ref � δq

i
A,A. (8.60)

The reference rotation qiA,ref is fixed and is chosen to be the estimated rotation after the pose

tracking. Following this definition, we can write down the terms ei,jc as

ei,jc,q =

(
1

2γq
zi,q + δqi,j

)√
2γq , and (8.61)

ei,jc,p =

(
1

2γp
zi,p + pMSi,j

)√
2γp . (8.62)
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Note that inserting these into Eq. (8.58) is equivalent to the formulation in Eq. (8.8), however,
as in our implementation we use the Ceres [6] library to solve the minimization, by using the re-
arranged notation the consensus-errors can be directly inserted. The update of the dual variables
as in Eq. (8.9), (8.10) for the rotational part of the poses is again performed in the tangent space
of the associated reference rotations

zk+1
qi,j

= zqi,j − η
(

(zkqi,j
+ ẑqi,j ) + γδqk+1

i

)
. (8.63)

The translational part is update as defined in Eq. (8.9), (8.10). The obtained dual variables
zki,j are then passed to the communication module Section 4.5, which transmits the information
to the other agent. As the ADMM scheme used is iterative by design and is employed in a
sliding window fashion, we continuously run the optimization. Similarly as proposed in [147],
we only execute a limited number of iterations in the minimization step. At the end of every
minimization step of Eq. (8.58), we shift the sliding window and remove the KFs that fall
outside the window and remove MPs that have no observations within the shifted window.

4.5 Communication
The communication module of the proposed pipeline is responsible to communicate newly cre-
ated data (i.e. KFs) as well as for exchanging updates on the dual variables over a wireless
network. In the proposed system we employ ROS [125] to serialize/de-serialize data and com-
municate it between the agents. Every time a new KF gets inserted in the window, this KF is
passed to the Communication module. As sending the full data of this KF, e.g. image informa-
tion, would lead to tremendous network traffic, we summarize the necessary information into a
message containing the following information:

• KF timestamp and KF ID information

• 2D keypoint locations and extraction octave information

• Keypoint descriptors

• Pose TMS after tracking

• Covariance ΣΣΣTMS
of the tracked pose.

Note that the sent pose is not only used as an initial guess, but it also defines the reference
rotation used in the pose consensus.
In order to update the consensus error terms, the dual variables associated to the KFs within
the optimization window get exchanged after every update step in Eq. (8.9), (8.10). As the
dual variables are uniquely assigned to a KF pose, we use the identifier of the associated KF in
order to correctly assign the dual variables. In summary, for every performed update on the dual
variables, we stack the following information into a message and transmit it to the neighboring
agent:

• Identifier of the sender (i.e. the agent ID)
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• Vector of dual variables (in 6D)

• Vector of associated KF IDs

Note that the latest received dual variables constitute the ẑ in Eq. (8.8)-(8.10).

4.6 Initialization
While the previous sections describe the normal mode of operation for the system, an initializa-
tion procedure is required in order to build up the initial conditions. As this initialization phase
is only active for a limited time, we perform all the necessary computations on a single agent in
order to increase the ease the implementation.
To bootstrap the map, based on the timestamp we select the two frames from the agents, which
are closest together in time and perform brute force descriptor matching to find 2D-2D corre-
spondences. After a 2D-2D RANSAC outlier rejection, the inlier correspondences are used to
compute the relative pose up to scale between the two frames. In order to remove the scale ambi-
guity, we scale the obtained baseline between the initial frames using the closest available UWB
measurement and attempt to triangulate the inlier correspondences to generate MPs. Every sub-
sequent frame (both native and non-native), gets matched and aligned against the existing MPs
using a zero-velocity motion model. After the alignment, we attempt the triangulation of new
MPs using the newest frame-pair and vision-based bundle adjustment is performed optimizing
the frame poses and the MPs. In the case, where we are unable to align a frame, i.e. due to
lack of sufficient correspondences, the initial Map is reset and we start with another initial pair
again. This process is repeated until the number of frames is sufficient to create at least 4 KFs.
Once the minimal number of KFs is reached, we aim to initialize the IMU related variables for
the tracking, namely qWM , Sv and bω . For this, we utilize use a method inspired by the IMU-
initialization proposed by [111], which first estimates the gyroscope biases bω and then solves
for velocity states and gravity direction in a least-squares fashion. As we perform the initial-
ization for two trajectories, we jointly solve for the velocities of both agents, but only a single,
shared gravity direction. Here, in contrast to [111], as we utilize the UWB measurements, we
are able to avoid including the scale as an estimation parameter. After successful initialization,
the agent responsible for the computations sends the all of its native KFs along with the MPs
and the IMU states to the other agent, and from then on the system enters the normal mode of
operation as outlined in the previous sections.

5 Experimental Evaluation

5.1 Run-time efficiency of combined Z-spline interpolation
In this section, we investigate the influence of the trajectory representation proposed here using
a combination of KF poses and a Z-spline based interpolation along these poses on the run-time
efficiency. As, computationally, the most expensive part in the proposed system is the mini-
mization of Eq. (8.58), reducing the execution time of this minimization permits the execution
of more distributed optimization iterations, which in return potentially boosts the accuracy of
the estimates.
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(a) B-spline (b) Combined Z-spline

Figure 8.4: Comparison between the resulting Hessian matrix for the same problem when using
standard B-spline based interpolation (a) versus the usage of the proposed combined Z-spline
based KF-interpolation (b). While the structure is very similar in both cases, the non-zero
elements (“nz”) are reduced by 15% in (b)

As the minimization in Eq. (8.58) is performed using a second order method, the iteration time
is, to a large extent, determined by the time required to solve the resulting normal equations,
which in turn is highly depending on the sparsity of the resulting Hessian matrix. As a re-
sult, we investigate the influence of the proposed trajectory representation on the sparsity of the
resulting Hessian matrix. For the relative distance error terms in Eq. (8.55) there is no struc-
tural difference between the combined Z-spline based interpolation and the standard B-spline
interpolation. On the other hand, for the reprojection errors, the Jacobian structure changes
significantly. While computing the error using the traditional B-spline based interpolation four
base poses have a non-zero contribution in the Jacobian, utilizing the KFs as base poses for a
Z-spline based interpolation, one can directly compute the reprojection error using the KF-pose.
As a result, the number of non-zero elements in the underlying Jacobian matrix is roughly 1/4
(as the number of residuals is dominated by the reprojection errors), compared to the standard
B-spline interpolation.
Using a sample over a trajectory length of 8 seconds with a KF interval of 0.15 seconds and
roughly 2000 MPs we build up the normal equation for the same problem, both using B-spline
interpolation as well as the proposed interpolation scheme and extract the resulting Hessian ma-
trices. In Fig. 8.4 the corresponding Hessians with the number of non-zero elements are shown.
While the structure itself is similar in both cases, one can see that the proposed Z-spline based
formulation improves the sparsity of the resulting Hessian matrix by around 15%. The spar-
sity remains after performing factorization, indicating that the proposed interpolation scheme
indeed reduces the computational complexity in the solving step.
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mean ±2σ2σ2σ [ms] max [ms] rate [Hz]
Tr

ac
ki

ng
BRISK Extraction 7.9± 3.4 20.8

20Matching 0.5± 0.4 8.7

Tracking EKF 1.4± 1.3 12.0

Total Latency 10.3± 4.2 25.0

M
ap

pi
ng Uncertainty EKF 0.2± 0.1 1.4 6.7

BF-Matching 8.3± 8.5 26.1 1.6

Triangulation 0.1± 0.5 1.8 1.6

Table 8.1: Runtime evaluation of the different parts of the tracking and mapping, recording
the mean ± twice the standard deviation of the respective measurement, and the rates of the
corresponding operations performed on average.

5.2 Runtime and Bandwidth Evaluation
As real-time capabilities and data sharing rates are crucial elements for the applicability of a
distributed system, in this section we analyze the run-time of the main elements of the proposed
system and investigate the bandwidth requirements for the necessary data exchange. In order
to evaluate the system under realistic conditions, all the experiments are performed using two
Intel Core i7-8550U computers communicating with each other via a wireless TP-Link AC1750
router configured to use the 2.4GHz interface.

Runtime Evaluation

As the proposed system runs multiple threads, the decisive element for the real-time capability
of the overall system is the tracking-thread, which needs to process every frame. Nonetheless,
the timings of the other parts, i.e. mapping and optimization, are important for the overall per-
formance of the system and thus are measured. For example, a slow optimization step will result
in fewer ADMM-iterations, possibly leading to bigger inconsistencies and inaccuracies. In Ta-
ble 8.1, the timings for the main tracking- and mapping processes are reported. On the tracking
side, the most expensive operation is the extraction of the BRISK features with approximately
8ms per frame, while the matching-step and EKF estimation roughly take up to 2ms per frame.
The total latency describes the effective time it takes from the reception of the image until the
pose estimate is computed, which takes on average 10ms. Even in the worst case recorded, the
latency stays within a 25ms budget, which corresponds to twice real-time. The timings for map-
ping are dominated by the correspondence search, while the time for uncertainty maintenance
and triangulation is almost neglectable. Note that the EKF based uncertainty maintenance of
the MPs gets called for every KF, which in our case corresponds to every third frame, whereas
the matching and triangulation processes only get called if new MPs need to be inserted. The
optimization loop, which includes communicating and updating the dual variables, takes ap-
proximately 77ms on average with a standard deviation of 11.5ms. With a KF-interval of
150ms, this means on average per KF, two ADMM-iterations are performed.
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Bandwidth Usage
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Figure 8.5: Bandwidth usage over time for the different messages and agents during a single ex-
periment. The total bandwidth requirement is approximately 250KB/s, which is easily possible
using e.g. standard WiFi communication.

In the proposed system, the data exchanged consists of KF-data and the dual variables ex-
changed in the ADMM scheme. As we use ROS for the communication, the built-in func-
tionality for monitoring bandwidth usage was used to obtain the data presented in this section.
Fig. 8.5 shows an example of the required bandwidth for one of the datasets used in Section
5.4. As it can be observed, the total bandwidth requirement remains generally constant around
250KB/s, whereas the majority of the exchanged data is contained in the KFs with approxi-
mately 100KB/s per agent, while the exchange of the dual variables generates about 25KB/s of
network traffic per agent. Note that while on the basis of the fixed optimization window of 5s,
the package size for the exchange of the dual variables is constant, the rate of the exchange is
coupled with the frequency of the optimization-loop, which is subject to fluctuations. A sum-
mary of the bandwidth usage over a larger set of experiments is provided in Table 8.2. As it
can be observed, the overall bandwidth usage is not subject to large fluctuations and on average
is below 250KB/s, which is easily feasible with a standard WiFi module (e.g. IEEE 802.11g
standard).

mean ±2σ2σ2σ [KB/s] max [KB/s]
Dual Variables 48.6± 14.0 68.5
Keyframes 197.3± 8.8 214.5
Total 245.8± 19.1 270.9

Table 8.2: Bandwidth usage of the different message types summed together for both agents,
recording the mean ± twice the standard deviation for the corresponding measurements.
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(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Figure 8.6: Snapshots of the four photo-realistic scenes used to render experimental data for
the evaluation of the proposed system

5.3 Photo-Realistic Synthetic Datasets
Performing outdoor experiments with two UAVs flying relatively close to each other at high
altitudes is extremely challenging as at that altitude the pilot has very limited visual under-
standing of the motion of the UAVs, posing a significant risk of losing control of the aircraft.
Furthermore, obtaining ground-truth of the robots’ poses allowing a quantitative evaluation of
the proposed framework on real data is problematic due to fluctuations in the accuracy of GPS
measurements and the challenging estimation of the orientation. As a result, inspired by the
idea in [135], we create synthetic photorealistic datasets from real images to test and evaluate
the proposed approach. Analogously to [135], we simulate both UAVs’ dynamics using the
RotorS Gazebo simulator [48] and utilize the Blender render engine to generate the associated
image data from 3D models obtained by photogrammetric reconstruction1. The visual-inertial
sensor data was simulated to mimic the data-stream obtained from a sensor as in [101], con-
sisting of a global-shutter grayscale image-stream, time-synchronized with the IMU data. The
images are rendered with a resolution of 480 × 752 at 20Hz and the IMU data has a rate of
200Hz. The UWB-distance measurements are simulated by computing the ground-truth rela-
tive distance between the UAVs and disturb it with gaussian noise. The UWB-data is simulated
at 60Hz with a noise level of 0.1m standard deviation. The simulated UAVs have a maximal

1https://github.com/VIS4ROB-lab/visensor_simulator
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diameter (from tip-to-tip) of 0.85m and during all experiments, we set the smallest allowed
baseline to be 1.0m.
In order to control the relative pose between the two UAVs, we employ the control strategy as
outlined in Section 5.5, while the estimated scene depth is obtained by computing the median
depth from a rendered depth image. We use four different scenes, as shown in Fig. 8.6, and
rendered multiple trajectories for each scene.
Scene 1: A suburban housing settlement consisting of smaller houses with gardens, small parks
and connecting streets spanning an area of approximately 450m × 450m. The, from high alti-
tudes, plane-like structure along with the well textured scene, results in well suited imagery for
vision based methods.
Scene 2: A mine with different levels of erosion, small trails and some parts with steep flanks,
resulting in abrupt changes in the scene depth of up to 35m. The steep flanks in combination
with the, at times, uniform texture prohibit lengthy and uniform feature association.
Scene 3: Mediterranean countryside with sections containing different kinds of vegetation as
well as some small canyons and trails offering a mixture of texture-rich and low-textured areas
along with some depth variation across the canyons.
Scene 4: Same structure as Scene 3 but with an artificially added hill structure of about 40m
height in order to increase the depth variations in the scene.

5.4 Comparison to Visual-Inertial SLAM at higher altitudes
In this section, we provide a comparison of the proposed approach against the two highest per-
forming state-of-the-art stereo VIO methods that are publicly available, namely VINS-Fusion
[111] and OKVIS [83], to test their accuracy of estimates at increasing scene depths. To illus-
trate this effect, we generated spiral-shaped trajectories over Scenes 1-3 with gradually increas-
ing altitude. The trajectories have a radius of 25 meters and increase their height with a rate of
25 meters per turn up to a height of approximately 160 meters. The fixed stereo camera baseline
for VINS-Fusion and OKVIS was chosen to be 0.22m, which was chosen to be twice the size
of the sensor proposed in [101].
An example of such a trajectory along with the aligned estimates of both our system and
the stereo-inertial estimators is shown in Fig. 8.7a. Initially, all the estimates are close to
the ground-truth, however, with increasing height, both estimates of VINS-Fusion as well as
OKVIS start to diverge with increasing altitude, while the estimate of the proposed system re-
mains close to the ground-truth trajectory. As it can be observed, the trajectories of the stereo
VIOs are mainly fluctuating in scale and less in the shape of the trajectory itself. In order to
evaluate the scale uncertainty, we perform an evaluation in a similar fashion to a relative error
evaluation as described in [148]. We select a sub-trajectory of a given length (here 100 frames),
align it to the ground-truth with a similarity transform as computed using the approach in [3]
and record the scale. The selected sub-trajectory is then shifted by 5 frames and the alignment
is repeated until the end of the trajectory is reached, resulting to statistics of the scale error.
Using the altitude as an approximation of the scene depth, in Fig. 8.7b, the scale-error statistics
with respect to the altitude are reported. As it can be observed, with increasing altitude, the
scale errors quickly become significant resulting in a large uncertainty of the estimate. While
VINS-Fusion generally shows a slower increase of the scale error than OKVIS, both VIO meth-
ods suffer from the same tendency with increased scene depth, whereas the proposed method
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(a) Example run for a spiral trajectory on Scene 1
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(b) Scale error for different altitudes

Figure 8.7: Evaluation results for spiral trajectories with increasing altitudes. In (a) is the
result of a single run, where the estimates of both stereo VIOs start to diverge with increasing
altitude, while (b) summarizes the scale errors over all performed spiral experiments, where it
is evident that the effectiveness of the imposed scale constraints becomes an issue for (stereo-)
VIO methods with increasing altitude.

exhibits a constant scale uncertainty over the full altitude range.
In order to allow for a quantitative comparison between our proposed approach to the two state-
of-the-art stereo VIOs, different trajectories at altitudes ranging between 15 − 35 meters are
rendered. In particular two different trajectories are created for Scenes 1-3 summing up to a
total trajectory length of 3.4km. For the proposed method, the baseline between the two agents
is chosen to be roughly 2m, while this is allowed to fluctuate slightly without considering the
particular scene depth. The resulting relative comparison between the relative odometry errors
of the stereo VIO methods and the proposed method is shown in Fig. 8.8. As it can be ob-
served, compared to the existing VIO methods, the proposed system has both a lower median
error as well as smaller fluctuations in the statistics, as expected, due to the fact that the se-
lected baseline should exhibit more favorable behavior for the overall scene depth. Between the
two existing stereo VIOs, OKVIS performs slightly better than VINS-Fusion on the evaluated
datasets, whereas to a large extent the increased error of the latter can be traced back to an in-
creased yaw-drift. Note that the evaluated datasets are closer to the intended use-cases of the
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Figure 8.8: Comparison of the relative odometry error between state-of-the-art stereo VIO
methods and the proposed approach. The reported errors are obtained by computing the er-
ror statistics over all datasets over 3 runs.

proposed system, i.e. scene depths above 10m, than the VIOs, which are generally designed and
evaluated on datasets closer to the ground or indoors. Hence, we do not claim to outperform
these systems in the general case, however, we can show the advantage of the proposed ap-
proach already at flying altitudes significantly below the heights where the stereo VIO systems
start to fail.

5.5 Active Baseline Control
As the proposed collaborative system estimates the poses of the agents in a common reference
frame, we are able to control the relative distance between the UAV agents. For this purpose, we
designed a high-level controller with the goal of controlling the agents’ baseline in order to form
a virtual stereo camera, as illustrated in Fig. 8.9. For simplicity, we assume that the monocular
cameras are mounted at an identical viewing angle onboard each agent and that aligning the
agents along their X-axes results to a valid stereo configuration. Note that with a few additional
computations, this approach can be adapted to a more generic setup, such as having different
mounting angles of the cameras on the UAVs, as well. The relative translation between the
cameras in the virtual stereo setup is given by the average of the two agents’ poses:

pkWV =
1

2

(
pkWSA

+ pkWSB

)
. (8.64)

In order to obtain the yaw angle, we first project the relative baseline onto the X-Y plane of the
inertial frame

pproj =

[
1 0 0
0 1 0

](
pkWSB

− pkWSA

)
(8.65)

and from that we compute the resulting orientation as:

ψWV = atan2 (pproj,y ,pproj,x) + π/2 , (8.66)
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Agent B

Agent A

Agent B
Agent A

at time instant k

at time instant k + i

Figure 8.9: Illustration of the virtual stereo setup with two agents. Using the desired location
of the virtual stereo center V and a target triangulation angle αt, the required agent poses are
computed.

where pproj,x corresponds to the first and pproj,y to the second entry of pproj .
For a given 4-DoF target pose (xt, yt, zt, ψt) and the scene depth ds, suitable poses for the
agents can be computed by reformulating Equations (8.65), (8.66). Using the desired triangu-
lation angle αt (here set to 10◦) and ds, the resulting baseline of the virtual stereo camera is
given by

bV = 2 · tan(αt/2) · ds . (8.67)

Hence, the resulting agents’ target translations are given by

pWSA/B
=

xtyt
zt

+

cos(ψt) sin(ψt) 0
sin(ψt) cos(ψt) 0

0 0 1

 0
∓bV /2

0

 , (8.68)

where the minus sign corresponds to agent A and the plus sign to agent B, assuming that agent A
acts as the right camera in the virtual stereo setup. The target yaw angles of the agents are set to
the target yaw angle of the virtual stereo camera. The computed target poses for both agents are
fed to the MPC-based position controller running on each agent [62]. Note that in order to limit
the speed of the response, for target setpoints that are far away, we linearly interpolate between
the current and the target pose, such that the intermediate goal is only a limited distance away
from the current pose.
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Figure 8.10: Comparison of the relative translation error over all runs on all datasets. The
results for agent A are shown in (a), whereas (b) shows the corresponding errors for agent B.

5.6 Fixed vs. Adaptive Virtual Stereo Baseline
In this section, we evaluate the influence of actively adapting the virtual stereo baseline, i.e. a
fixed αt, between the two UAVs against maintaining a fixed target distance between the two air-
craft. As this generally cannot be achieved using the exact same trajectories, for every dataset,
we create two versions; one using a fixed baseline of 2m and another, where the baseline gets
constantly adjusted to achieve a triangulation angle αt (of 10◦). However, the waypoints as
well as the simulation parameters are otherwise chosen to be identical. The estimator parame-
ters in both versions are identical. In particular, the KF interval is set to 0.15 seconds and the
trajectory horizon to 5.0 seconds for all the experiments in this section. In total, five datasets
are generated on the four scenes shown in Fig. 8.6, where the waypoints are chosen to follow
mostly exploratory paths with some height variation, leading to scene depths ranging between
25− 120m. The resulting error statistics of the obtained odometry estimates for both cases are
summarized in Fig. 8.10. As it can be observed, the position drift is significantly reduced when
adapting the baseline versus having a fixed baseline. The relative translation error of the fixed
baseline approach ranges between 1.8 − 2.5%, while using an adaptive baseline the error can
be reduced to 0.9− 1.9%, corresponding to up to a twofold reduction.
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Fixed Baseline Adaptive Baseline
agent A agent B combined agent A agent B combined

RMSE
[m]

Scale
[%]

RMSE
[m]

Scale
[%]

RMSE
[m]

Scale
[%]

RMSE
[m]

Scale
[%]

RMSE
[m]

Scale
[%]

RMSE
[m]

Scale
[%]

Scene 1 - 1 3.73 2.28 3.68 2.31 3.70 2.29 2.16 0.66 2.10 0.66 2.13 0.66
Scene 2 - 1 0.92 0.39 0.92 0.39 0.92 0.39 0.81 0.14 0.82 0.15 0.81 0.14
Scene 3 - 1 1.54 1.19 1.51 1.16 1.52 1.17 0.48 0.33 0.48 0.32 0.48 0.32
Scene 3 - 2 1.79 1.63 1.79 1.66 1.79 1.64 0.77 0.24 0.74 0.25 0.76 0.24
Scene 4 - 1 2.71 1.95 2.73 1.92 2.72 1.93 0.88 0.67 0.89 0.71 0.89 0.69

Table 8.3: Comparison of the absolute trajectory errors when using a fixed baseline versus using
the adaptive baseline control scheme. All the the reported values are obtained as average over 3
runs. To illustrate the consistency of the distributed approach, the errors of the individual agents
(aligned individually) as well as the error of the combined trajectory are reported.

Comparing the global Root Mean Squared Error (RMSE) in the agents’ trajectories on the
datasets presented in Table 8.3, the differences are clearly visible and are, at times, up to a
factor of 3. However, as it can be seen in Table 8.3, the fixed baseline approach mainly suffers
from worse scale estimates, which in return, leads to increased RMSEs on the trajectory. This
is not surprising and supports our thesis that the correct scale estimation becomes a crucial el-
ement for robust and stable pose estimation at high altitudes. For the generated datasets used
here, the fixed stereo baseline of 2m, is rather small compared to the scenes’ depth, which are
to a large extent, given by the flight altitude, and therefore, the scale estimation becomes more
uncertain than for larger baselines. On the other hand, on the dataset of Scene 2, no significant
difference between the adaptive and the fixed baseline approach can be observed, which can
be explained by the fact, that the corresponding scene has more depth variations to it, which
leads to having some close (e.g. side walls), but also some farther away parts of the scene (e.g.
ground) in the view overlap, which results in smaller differences between the adaptive baseline
and the fixed one.
Besides the advantage of actively controlling the baseline between the agents, also the con-
sistency between the estimates of the two agents is indicated in Table 8.3. To illustrate this,
we report the global RMSE of the individual agents aligning their trajectories independently,
as well as the resulting errors when aligning both trajectories treating the two trajectories as a
single one. If the two trajectories were inconsistent with respect to each other, an increase in
the combined trajectories error should be observed, however, throughout all datasets this is not
the case, indicating the consistency of the distributed estimate. Note that there is no noticeable
difference in the consistency between the adaptive and the fixed baseline approach, which indi-
cates that the distributed approach works reliably even when the estimate itself becomes more
uncertain (i.e. fixed baseline).

6 Conclusion

In this article, we present a novel framework using two UAVs, equipped with one IMU and
one monocular camera each, while measuring the relative distance between them using an Ul-
trawideband module in order to compute the 6DoF pose estimation for both UAV in real-time
to estimate the scene in a virtual-stereo setup. The pipeline is implemented in a decentralized
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fashion allowing each agent to hold its own estimate of the map, enabling low-latency pose
estimation that does not depend on network delays. In order to ensure consistency across the
agents, a consensus based optimization scheme is employed. Using the two agents as a virtual
stereo camera with adjustable baseline, potentially large scene depths can be handled, which are
problematic for existing VIO system using monocular or (fixed-baseline) stereo rigs.
A thorough experimental analysis using synthetic, photorealistic data reveals the ability of the
proposed approach to reliably estimate the pose of the agents even at high altitudes. Using
trajectories with increasing altitudes, we show the problematic behavior of existing the stereo
VIO methods at high altitudes, while the proposed approach is able to maintain high quality
estimation of both VIO agents’ poses. Furthermore, the comparison with state-the-art stereo in-
ertial methods demonstrates, that the proposed approach already proves advantageous in terms
of estimation accuracy at altitudes marginally higher than 15m. Employing a simple formation
controller, which adjusts the baseline between the two agents depending on the observed scene
depth, the benefit of having the ability to adjust the stereo baseline on-the-fly is be demon-
strated, achieving a nearly twofold reduction in the pose estimation error compared to a fixed
target baseline.
The applicability of the approach is verified by reporting practical timing and bandwidth mea-
surements. Owing to the decentralized approach, the proposed system achieves an average
latency of 11ms for the pose tracking. The required bandwidth of the overall system remains
under 250KB/s and therefore, can easily be handled by a standard WiFi module.
Future work includes employing the system in the field and perform extensive outdoor experi-
ments. Furthermore, it would be interesting to investigate non-uniform KF intervals, to dynam-
ically adjust them depending on the performed motions. Also the investigation of the proposed
system to be used as virtual stereo-camera for 3D reconstruction would be highly interesting as
this potentially allows to quickly obtain a coarse reconstruction of a large areas.
Following the demonstration of the ability of the proposed method to drastically increase the
fidelity of estimates at high flying altitudes using two UAV agents, future work will aim to lever-
age the power of the asynchronous estimation framework proposed to scale up to bigger number
of agents in the air. In this way, we aim to push towards tightly collaborating multi-agent SLAM
in a distributed architecture.

7 Appendix

7.1 Rotation Calculus
First we introduce the exponential map, mapping a vectorϕϕϕ ∈ R3 to a rotation q

q = exp (ϕϕϕ) = (q0, q̆) =

(
cos(‖ϕϕϕ‖/2), sin(‖ϕϕϕ‖/2)

ϕϕϕ

‖ϕϕϕ‖

)
, (8.69)

where q0 is the real-part and q̆ is the imaginary part of the quaternion q. The inverse mapping,
the logarithmic map, maps a quaternion q to its corresponding tangent vectorϕϕϕ:

ϕϕϕ = log(q) = 2atan2 (‖q̆‖, q0)
q̆

‖q̆‖
. (8.70)
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Using these mappings, boxplus and boxminus operations adopting the functions of addition and
subtraction [55] can be constructed as follows:

� : SO(3)× R3 → SO(3), (8.71)

q,ϕϕϕ 7→ q ◦ exp(ϕϕϕ)

� : SO(3)× SO(3)→ R3 (8.72)

q1,q2 7→ log(q−1
2 ◦ q1) ,

where ◦ indicates the concatenation of two quaternions.

7.2 Pose Tracking and Map Point EKFs
The state transition jacobian used in Eq. (8.34) is given by:

F =



I2×2 0 0 0 0 0
∂q̂k+1

MS

∂qk
MS

0 0 0
∂q̂k+1

MS

∂bk
g

∂ S v̂k+1

∂qk
WM

∂ S v̂k+1

qk
MS

0
∂ S v̂k+1

S
vk −∆tI3×3 ∆t

[
Svk

]×
0 0 0 0 I3×3

0 0 0 0 0 I3×3


(8.73)

with

∂q̂k+1
MS

∂qkMS

= R(exp(∆t Sωωω
k
WS))T (8.74)

∂q̂k+1
MS

∂bkg
= −∆tΓ(∆t SωωωWS) (8.75)

∂ S v̂k+1

∂qkWM

= ∆tR(qkMS)T
[
R(qkWM )T g

]×
Jrp(qkWM ) (8.76)

∂ S v̂k+1

qkMS

= ∆t
[
R(q−1

MS ◦ q−1
WM )g

]×
(8.77)

∂ S v̂k+1

Svk
= I3×3 −∆t [SωωωWS ]× , (8.78)

where Γ(·) is the jacobian of the exponential map given by

Γ(ϕϕϕ) = I3×3 −
1− cos(‖ϕϕϕ‖)
‖ϕϕϕ‖2

[ϕϕϕ]× +
‖ϕϕϕ‖ − sin(‖ϕϕϕ‖)

‖ϕϕϕ‖3
([ϕϕϕ]×)2 (8.79)
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and Jrp(q) denotes the jacobian of the local roll-pitch parameterization and is given by

Jrp(q) =

[
1 0 0
0 cos(roll(q)) − sin(roll(q))

]T
. (8.80)

The function roll(q) extracts the roll angle from a quaternion q.
Analogously, the jacobian matrix of the prediction noise can be described as

G =



∆tI2×2 0 0 0 0 0
0 0 0 ∆tΓ(SωωωWS) 0 0
0 ∆tR(qkMS) 0 0 0 0

0 0 ∆tI3×3 ∆t
[
Svk

]×
0 0

0 0 0 0 ∆tI3×3 0
0 0 0 0 0 ∆tI3×3


(8.81)

The corresponding noise matrix W can be written as

W =



σ2
gI2×2 0 0 0 0 0

0 σ2
vI3×3 0 0 0 0

0 0 σ2
aI3×3 0 0 0

0 0 0 σ2
ωI3×3 0 0

0 0 0 0 σ2
ba

I3×3 0

0 0 0 0 0 σ2
bg

I3×3

 ,
(8.82)

where σi represents the discrete time noise of the corresponding variable i.
The measurement jacobian as used in Eq. (8.37) for a single observation of the MP i is given
by:

Hi =

[
02×2

∂π(Cmi)
∂q̂k+1

MS

∂π(Cmi)
∂p̂k+1

MS

02×9

]
, (8.83)

where

∂π
(
Cmi

)
∂q̂k+1

MS

= −
∂π
(
Cmi

)
∂ Cmi

R(qCS) [Smi]
× (8.84)

∂π
(
Cmi

)
∂p̂k+1

MS

=
∂π
(
Cmi

)
∂ Cmi

R(qCS)R(q̂k+1
MS )T , (8.85)

where
∂π(Cmi)
∂

C
mi

is the jacobian of the camera model including the lens distortion.
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The jacobian Ji,j used to compute the MP uncertainty in Eq. (8.44), is given by

Ji,j =



∂π
(
Ci

m
)

∂
Ci

m

∂ Ci
m

∂
M

m

∂π
(
Ci

m
)

∂
Ci

m

∂ Ci
m

∂TMSi
02×6

∂π

(
Cj

m

)
∂

Cj
m

∂ Cj
m

∂
M

m
02×6

∂π

(
Cj

m

)
∂

Cj
m

∂ Cj
m

∂TMSj

06×3 I6×6 06×6

06×3 06×6 I6×6


, (8.86)

where again the
∂π(Cm)
∂

C
m

corresponds to the projection model. The remaining terms are given

by

∂ Ck
m

∂Mm
= RCSRT

MSk
(8.87)

∂ Ck
m

∂TMSk

=

[[
RT
MC(Mm− pMC)

]×
03×3

03×3 −RT
MC

]
, (8.88)

where k ∈ [i, j].
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