
ETH Library

Does rated visual landscape
quality match visual features? An
analysis for renewable energy
landscapes

Journal Article

Author(s):
Spielhofer, Reto ; Hunziker, Marcel; Kienast, Felix; Wissen Hayek, Ulrike; Grêt-Regamey, Adrienne 

Publication date:
2021-05

Permanent link:
https://doi.org/10.3929/ethz-b-000465535

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Landscape and Urban Planning 209, https://doi.org/10.1016/j.landurbplan.2020.104000

Funding acknowledgement:
173808 - ENERGYSCAPE: Landscape strategy for renewable energy systems (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-0943-779X
https://orcid.org/0000-0001-8156-9503
https://doi.org/10.3929/ethz-b-000465535
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.landurbplan.2020.104000
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Landscape and Urban Planning 209 (2021) 104000

Available online 25 January 2021
0169-2046/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research Paper 

Does rated visual landscape quality match visual features? An analysis for 
renewable energy landscapes 

Reto Spielhofer a,*, Marcel Hunziker b, Felix Kienast c, Ulrike Wissen Hayek a, 
Adrienne Grêt-Regamey a 

a Planning of Landscape and Urban Systems (PLUS), Institute for Spatial and Landscape Development, ETH Zurich, 8093 Zurich, Switzerland 
b Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Economics and Social Sciences, Social Sciences in Landscape Research Group, 8903 
Birmensdorf, Switzerland 
c Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Land Change Science, Land-Use-Systems Group, 8903 Birmensdorf, Switzerland   

H I G H L I G H T S  

• Rated coherence and legibility correlate with preference for energy landscapes. 
• Rated visual landscape qualities and measured visual features are correlated. 
• Landscape preference decreases with increasing renewable energy systems. 
• Flatlands revealed low preference regardless of share of renewable energy systems. 
• Rated landscape coherence is an index of place-technology-fit in energy landscapes.  

A R T I C L E  I N F O   
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A B S T R A C T   

Finding the “right” sites for developing renewable energy systems (RES) is one of the major challenges in planning 
strategies for energy transitions. The visibility aspects of such infrastructure are important factors that explain local 
opposition. Classical visibility and viewshed analyses of RES disregard people’s perceptions and estimations of new 
infrastructure. To address this void, we demonstrate an approach that combines rated visual landscape qualities 
with measured visual features. In doing so, we established visual stimuli with systematically controlled visual 
impact scenarios featuring the use of renewables in different landscape types. The study investigated how ratings of 
landscape qualities are affected by landscape changes stemming from RES. We also identified measurable visual 
features that might help to operationalize landscape qualities. Finally, we intended to improve the understand of 
how rated landscape qualities lead to preferences for different RES visual impact scenarios. Our results showed that 
rated coherence is strongly influenced by renewable energy infrastructure, whereas complexity ratings are affected 
mainly by variations in landscape types. These findings let us to conclude that the visual understanding and visual 
connectedness between energy systems and surrounding landscapes are core drivers of people’s visual preferences 
for landscapes altered with RES. Considering landscape qualities within impact assessments of RES can augment our 
grasp of how the visual character of a landscape changes through renewable energy infrastructure.   

1. Introduction 

To reach global climate targets and close the energy gaps resulting 
from phasing out nuclear or fossil energy production, countries 
increasingly focus on renewable energy resources such as wind, hydro
power, solar or biomass (Mathiesen, Lund, & Karlsson, 2011; 

Wüstenhagen, Wolsink, & Bürer, 2007). In 2016, the production of wind 
and solar energy amounted to a global volume of only 1.5 Mio. GWh, 
whereas coal remained the major source of global electricity production 
(9 Mio. GWh, (World Energy Council, 2019) In the last three decades, 
the worldwide electricity demand has doubled from 11′000 TWh to 
23′000 TWh and is expected to grow annually by up to 1% during the 
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next decades (World Energy Council, 2019). Addressing growing energy 
demand combined with an enhanced focus on renewable energy, re
quires an increasing amount of land for energy production. Let us take 
Switzerland, which served as the study site in this work, a technical
–economic production potential of approx. 14 TWh from wind energy 
and approx. 58 TWh of photovoltaic energy (Cattin et al., 2012) are 
estimated. Today, Switzerland annually produces 0.16 TWh and 2.2 
TWh of electricity from wind and solar energy, respectively (Swiss 
Federal Office of Energy, 2019). According to the goals indicated in the 
“Swiss Energy Strategy 2050” the production of electricity from 
renewable energy should amount to 11.4 TWh in 2035 and 24.2 TWh in 
2050. With these developments come fundamental transformations that 
are expected to reshape ecosystem services at the landscape scale (e.g., 
biodiversity, recreation, food production) (Nadaï and van der Horst, 
2010; Plieninger et al., 2016). Several services have been shown to 
conflict with the production of renewable energy (e.g., Hastik et al., 
2015; Kienast, Frick, van Strien, & Hunziker, 2017; Santangeli et al., 
2016). Exemplarily for Switzerland, Kienast et al. (2017) estimate that 
on 88% of the potential locations for wind energy production and on 
32% of the potential areas for solar panels, compete with one or more 
other services. Therefore, the conflict of wind (Warren, Lumsden, 
O’Dowd, & Birnie, 2005; Wolsink, 2007) and photovoltaic energy 
infrastructure (Chiabrando, Fabrizio, & Garnero, 2009; Zoellner, 
Schweizer-Ries, & Wemheuer, 2008) with landscape aesthetics is an 
important factor for the decreased social acceptance of such projects. 
Over the last decades, studies have revealed that, in general, people 
visually prefer natural landscapes over built environments (e.g., Kaplan 
and Kaplan, 1989; Ulrich, 1986; Ulrich et al., 1991). Given that RES are 
artificial installations, studies conclude that adding RES to landscapes 
generally diminish visual landscape quality ratings (Zoellner et al., 
2008). Specifically, in landscapes perceived as having high visual 
quality, the presence of RES strongly reduces visual quality compared to 
areas of low quality (Betakova, Vojar, & Sklenicka, 2015; Lothian, 2008; 
Molnarova et al., 2012). Although standardized visual impact assess
ments (VIA) are widely used in practice to quantify RES visual impact, 
these methods cannot illuminate why people visually prefer certain land
scapes altered with RES over others. Correspondingly, the majority of VIAs 
quantify the visibility of RES instead of assessing RES siting-induced 
changes in the visual quality of landscapes (Wolsink, 2018). Inquiring 
into the visual qualities of RES-altered landscapes can elevate our un
derstanding of the preference forming process for such landscapes. The 
insights accordingly derived can also help landscape planners and de
signers involve people in decision making on RES projects. 

The overarching goal of this study was to investigate how people 
perceive RES-driven visual changes in different landscapes. All the goals 
pursued in this work, along with two concepts that constituted the 
theoretical framework are detailed in the succeeding sub-sections. 

1.1. Perceiving and rating landscape qualities 

Landscape perception is defined as “the seeing of [landscape] quali
ties” (Coeterier, 1996). This strong link between landscape and perception 
is underlined by the idea that a landscape is such only if it is perceived by 
people (Council of Europe, 2000). “Perception” orders the sensory input 
(e.g., seeing), matches it with mental concepts and integrates objects into 
a whole (Coeterier, 1996; Ware, 2011). Although landscape perception 
differs between genders, ages and social or cultural background (Stamps, 
1999; Strumse, 1996; Zheng, Zhang, & Chen, 2011), there is a high 
consensus in human perception and preferences for specific landscapes 
(Bell, 2012; Hägerhäll et al., 2018; Kaplan and Kaplan, 1989; Ulrich, 
1986; van den Berg and Koole, 2006). Two main paradigms explain the 
landscape preferences of people. The first is the paradigm constituted by 
“cultural theories,” which assume that landscape preference is strongly 
influenced by social and cultural characteristics (Bell, 2012). These the
ories see familiarity with the landscape or knowledge about the ecological 
values as key factors for preferences (Gobster, 1999). The second 

paradigm is that comprising “evolution-based theories,” which explain 
landscape preferences as reflections of landscape qualities that were 
favorable for survival in early ages (Kaplan and Kaplan, 1989; Steg, 
2013p. 38–46). From both paradigms evolved methods that transform 
physical landscape structures into psychological dimensions of landscape 
qualities (Bell, 2012; Coeterier, 1996; 2013: 38–46p. 38–46). Evolu
tionary theories encompass prospect-Refuge theory (Appleton, 1996), 
savanna Theory (Orians, 1980), and the preference matrix (Kaplan and 
Kaplan, 1989). The preference matrix, which is one of the most frequently 
used theories for assessing landscape qualities, distinguishes psychological 
dimensions of landscape preferences along two axes. The first encom
passes two basic informational needs: “understanding”’ and “exploring”’. 
The former refers to the need of humans to make sense of a scene, whereas 
the latter depicts the need to gather more information (Kaplan, 1987; 
Kaplan and Kaplan, 1989). The second axis discriminates between the 
immediacy with which information is processed (Kaplan, 1987; Steg, 
2013), that is, completed immediately or within further mental steps 
(inferred) (Kaplan, 1987). The two axes span the four visual qualities 
“complexity, coherence, mystery and legibility” (Kaplan and Kaplan, 1989). 
Complexity is the immediate exploration and assessment of how many 
different visual elements are distinguishable and how much is going on in 
a scene (Kaplan, 1987). Coherence reflects immediate understanding and 
refers to a sense of order or context that guides a view and thus enables 
people to understand landscapes (Kaplan, 1987). Uniform textures and 
shapes increase redundancy and advance the distinction of specific areas 
within a scene, thereby strengthening one’s sense of coherence (Kaplan, 
1987). Mystery represents an inferred exploration that captures hidden 
elements by assessing how much can hypothetically exist if one can 
further walk into a scene (Stamps, 2004). Exemplarily, the partial 
coverage of elements with foliage or changes in topography motivate 
further exploration of a landscape and, thus, increases mystery (Kaplan, 
1987; Kaplan and Kaplan, 1989). Finally, legibility pertains to inferred 
understanding and describes the readability and possibility with which to 
navigate through a landscape (Stamps, 2004). Landmarks, such as 
mountains or lakes, influence the legibility of a landscape and enhances its 
orientation (Kaplan, 1987). 

Lothian (2008) and Betakova et al. (2015) investigated the qualities 
of landscapes with and without RES. The authors concluded that in high- 
quality landscapes, RES strongly diminishes perceived landscape quality 
compared with low-quality areas. Pasqualetti (2000) specified that the 
artificiality of RES “rudely” interrupts peoples’ understanding of slow- 
growing nature and might consequently influence perceived perma
nence. To permanence, disturbance is an antagonist, whose presence 
indicates a lack of coherence (Tveit, Ode, & Fry, 2006). Permanence 
refers to a sense of continuity, which is an important factor for estab
lishing place identity and place attachment (Twigger-Ross and Uzzell, 
1996). In relation to wind turbines, Devine-Wright and Howes (2010) 
asserted that opposition to such projects is related to the disruption of 
place attachment. Johansson and Laike (2007) found that perceived 
unity most strongly predicts and explains opposition against wind tur
bines. Unity reflects ‘How well the various components in the environment 
fit, and function together’ (Johansson and Laike, 2007). Thus, unity and 
coherence are closely related, since both refer to a sense of hanging 
together (Kaplan, 1987) and the comprehension that “the whole is more 
than the sum of its part” (Kuiper, 1998; Tveit et al., 2006). In addition, 
Stanton (2016) conclude that the sense of hanging together and relations 
between object is important for people to judge scale of wind turbines. 

This work treated “landscape qualities” as the perceived visual qual
ities of RES-altered landscapes. As indices of these perceptions, ratings 
ascribed to coherence, complexity, mystery, and legibility were defined 
in accordance with the preference matrix (Kaplan & Kaplan 1989). 
However, relying exclusively on visual landscape qualities in rating 
might be a critical shortcoming given the questionable reliability 
claimed by some researchers (Palmer, 2000; Stamps, 2004). Stamps 
(2004), for instance, conducted a meta-analysis and found low reliability 
and replicability for the preference matrix. Similarly, Palmer (2000) 
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showed that assessing visual landscape qualities using the matrix re
quires a substantial number of raters to obtain the minimum reliability 
score of 0.7. Stamps (2004) recommended that measures grounded on 
mathematical principles (i.e., entropy or visible extent) be used instead 
of individual landscape quality ratings. 

1.2. Relating visual features to landscape qualities 

As described above, there is strong evidence that the detection of visual 
features such as edges, shapes, colors, textures and patterns plays an 
important role in people’s visual perception and, eventually, landscape 
preference (Bell, 2012p. 179). We emphasize, however, that this is only 
one—albeit important—entry point in examining landscape experience. 
Other entry points are place attachment and place meaning. We provide a 
short overview of quantitative studies that underscored relating visual fea
tures to preference ratings (Berman et al., 2014; Dramstad, Tveit, Fjellstad, 
& Fry, 2006; Hunziker and Kienast, 1999; Ibarra et al., 2017; Kardan et al., 
2015; Ode, Fry, Tveit, Messager, & Miller, 2009; Valtchanov and Ellard, 
2015). Color tone (hue) and saturation diversity (Kardan et al., 2015), 
spatial frequency (Valtchanov and Ellard, 2015) and fractality (Forsythe, 
Nadal, Sheehy, Cela-Conde, & Sawey, 2011; Hagerhall et al., 2008) are 
significant predictors of landscape preferences. Additionally, the image 
compression size revealed as an accurate proxy for image content 
complexity (Tuch, Bargas-Avila, Opwis, & Wilhelm, 2009), it might also 
function as such for landscape images. A work worth considering is that of 
Rosenholtz, Li, and Nakano (2007), who developed two indices for visual 
saliency and redundancy, namely, feature congestion and subband entropy. 

Although the authors did not specifically test these with landscape images, 
both measurements address degree of visual organization and redundancy 
and may therefore be associated with perceived complexity or coherence. 
Empirically, Kuper (2017) found a direct correlation between rated 
complexity and measured entropy with perspective images of landscapes. In 
contrast to measuring the visual quality of landscapes using perspective 
images, landscape metrics were developed probe into ecological processes 
derived from analyses of landscape patterns on land cover or land use maps 
(Cushman, McGarigal, & Neel, 2008; O’Neill et al., 1988). On the basis of 
information theory (Shannon, 1948) and fractal geometry (Mandelbrot, 
1983), studies related landscape metrics to landscape preferences (Frank, 
Fürst, Koschke, Witt, & Makeschin, 2013; Fry, Tveit, Ode, & Velarde, 2009; 
Hunziker and Kienast, 1999; Ode et al., 2009; Palmer, 2004). Specifically, 
the number of patches on land cover maps, were shown to be significantly 
correlated with preference estimates of corresponding perspectives (Dram
stad et al., 2006; Ode et al., 2009). Further, edge density (Palmer, 2004), 
Shannon’s diversity and the shape index (Frank et al., 2013) are correlated 
with landscape preferences. Hunziker and Kienast (1999) applied landscape 
metrics to perspective images in order to analyze gray-tone patches and 
patterns. Their results showed significant correlations of landscape prefer
ences with Simpson’s diversity and evenness as well as the interspersion 
index. Both interspersion and evenness might serve as proxies for coherence 
seeing as the increasing homogeneity of landscape patches enhances the 
sense of coherence (Palmer, 2004). 

Visual features such as color, shape, texture, size, and contrast are 
principal components in visual impact assessments (VIA) of RES. These 
features have been used intensively to determine the contrasting effects 

Fig. 1. Overview of the study goals.  
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of RES with surrounding landscapes (e.g., Bishop and Miller, 2007; 
Brahms and Peters, 2012; Torres Sibille, Cloquell-Ballester, Cloquell- 
Ballester, & Darton, 2009a; 2009b). Empirical explorations indicated 
that contrasting effects measured via color differences between wind 
turbines and backgrounds are strong predictors of perceived visual 
impact (Bishop and Miller, 2007; Lothian, 2008). The number of wind 
turbines and their distance to observers are strongly correlated with 
perceived visual landscape quality (Betakova et al., 2015). A more 
specific explanation was provided by Johansson and Laike (2007), who 
disentangled visual perceptions regarding wind turbines and found that 
contrasting effects directly influence perceived unity and, subsequently, 
the intention to oppose wind turbine projects. 

In the present research, we treated the term “visual features” as per
taining to numerically assessed visual parameters of images containing 
RES–landscape scenarios. Although many studies investigated the visual 
effects of RESs, little is known about how visual features (i.e., colors, 
shapes, and textures) relate to the perceived visual qualities of RES- 
altered landscapes. 

1.3. Goals and hypothesis 

Stimulated by the theories and empirical findings described in Sub- 
sections 1.1 and 1.2, we defined three goals for our study (Fig. 1). 

Goal 1. To understand how RES infrastructure influences landscape 
quality ratings, that is, ratings involving Kaplan and Kaplan’s (1989) 
dimensions: With previous research (e.g., Johansson and Laike, 2007; 
Pasqualetti, 2000) as basis, we expected landscape qualities to be 
affected by RESs. In particular, we expected that in natural landscapes, 
the sense of permanence, as defined by Pasqualetti (2000), is disrupted 
by RESs and thus potentially influences the rating of other landscape 
qualities. 

Goal 2: To delve into the relationship between landscape quality 
ratings and measured visual features for RES-altered landscapes: 

Motivated by Kuper (2017), who discovered a correlation between 
stated complexity and designed entropy, we assumed that additional 
relationships exist between visual features and visual landscape quali
ties in the context of RES-altered scenes. 

Goal 3: To determine how landscape quality ratings and visual fea
tures correlate with the overall preference for RES-landscape scenarios: 
Studies showed associations between measured visual features and 
landscape preferences (e.g., Hunziker and Kienast, 1999; Ibarra et al., 
2017; Kardan et al., 2015) and drew connections between rated visual 
landscape qualities and preferences scores (Kaplan, 1987; Kuper, 2017; 
van der Jagt, Craig, Anable, Brewer, & Pearson, 2014). Along the same 
lines, we hypothesized that both visual landscape qualities and visual 
features are related to preference for RES-altered landscapes. 

2. Methods 

To investigate landscape qualities and visual features in the context 
of RES, we elaborated visual stimuli with different landscape types. Each 
landscape type was altered with two levels of RES visibility. Thus, all 14 
stimuli contain the two visual variables ‘landscape types’ (LANDSCAPE) 
and ‘visibility of renewable energy systems’ (RES_VISIBILITY). 

2.1. Visual stimuli 

Landscape types (LANDSCAPE) 
Firstly, we selected typical Swiss landscape types following the 

widely used biogeographic regionalization of Switzerland (Gonseth, 
Wohlgemuth, Sansonnens, & Buttler, 2001) (Fig. 2). We removed the 
landscape types of ‘large city centers’ because of planning restrictions for 
wind turbines in settlement areas. Additionally, we did not integrate 
landscapes, which contain lakes, due to the fact that water has a strong 
influence on landscape quality and preference ratings (Ibarra et al., 
2017; Tveit et al., 2006). The final seven landscape types show 

Fig. 2. Distribution of the landscape types used in this study. Black rectangle indicates the location of the vista in each landscape type.  
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considerable potentials for the production of renewable energy, though 
at widely varying environmental costs (Kienast et al., 2017). However, 
according to the Swiss Energy Strategy 2050 (Swiss Federal Office of 
Energy, 2012) all of them are - in principle - valid sites to generate the 
required energy amount to phase out the nuclear power production. The 
final seven selected landscape types vary considerably in their topog
raphy and their land use. They cover the northern areas of flat plateaus 
primarily used for settlements (PLAT_URB) or agricultural production 
(PLAT_AGRI). Additionally, we considered the Jura ridges (JURA) and 
the hilly and less densely populated, northern pre-alpine areas (PRE_
ALPS). We then divided the alpine areas with steep terrains into the 
large inner-alpine valleys, with a relatively high population density 
(ALP_URB), the alpine landscapes used for tourism (ALP_TOUR), and the 
near-natural alpine regions (ALP). During a workshop 25 experts from 
the fields of landscape planning, wind and photovoltaic project devel
opment, as well as employees of the national energy and spatial plan
ning authorities evaluated the seven landscape types. For each 
landscape type the experts rated several specific views from pedestrian 
perspective (vistas), according to the potential for representing a future 
energy landscape, encompassing wind turbines and photovoltaic panels. 
To visualize the vistas, we used landscape models based on light 
detection and ranging (LiDAR) data (XYZ). LiDAR in combination with 
image data represents the landscape characteristics (i.e., color, vegeta
tion, topography) highly detailed. In addition, LiDAR data comes along 
with three-dimensional geographical coordinates and thus it is possible 
to site RES accurately in the models. Hence, we combined terrestrial 
(RIEGL VZ-1000) and airborne LiDAR data to colored 3D visualizations 
for all seven landscape types. Fig. 2 shows the locations of the vistas 
(rectangle) and the distribution of the landscape types. The final visu
alizations show a 160◦ field of view for each vista. 

Visibility of RES (RES_VISIBILITY) 
In a second step, the middle 53.3◦ of each landscape visualization was 

altered with two scenarios of RES visual impact. Although we used VIA to 
develop the scenarios, we conservatively call this variable visibility because 
we neglect other aspects of visual impact (Wolsink, 2018). Both scenarios 
contain a concurrent visibility of wind and photovoltaic infrastructure. To 
control for the visibility of wind turbines and photovoltaic panels in each 
landscape, we made use of two objective visual impact assessments. Namely 
the ‘objective aesthetic impact of solar power plants index’ (OAISPP, 
Appendix A.1; Torres-Sibille, Cloquell-Ballester, Cloquell-Ballester, & Arta
cho Ramírez, 2009b) and the ‘visual impact parameter for wind turbines’ 
(VIWT, Appendix A.2; Brahms and Peters, 2012). The OAISPP combines 
four measures (i.e., visibility, color, fractality, and contrast, Appendix A.1) 
for the photovoltaic panels and ranges from 0 (no visual impact) to 1 (strong 
visual impact). We did not include a climatology coefficient as proposed by 
Torres-Sibille, Cloquell-Ballester, Cloquell-Ballester, and Artacho Ramírez 
(2009b) because atmospheric conditions were held constant across all 
landscapes. The VIWT considers the number of wind turbines, partial visi
bility, and distance from the observer and ranges from 0 (i.e., no visual 
impact) to (theoretically) infinity (Appendix A.2). In the high visibility 
scenarios, we show ten, and in the low visibility scenario three wind tur
bines. After the initial placement, we iteratively adjusted the exact locations 
of the turbines in order to reach a minimal VIWT of 1 in all landscape types 
(Appendix A.3). Subsequently, we placed the three wind turbines in the low 
visibility scenario in order to reach approximately 70% lower VIWT 
compared to the high scenario. For the photovoltaic infrastructure, we sited 
the panels clearly visible in the fore-, and mid-, and background of all 
landscapes so that OAISPP range between 0.13 and 0.18 in the high and 
between 0.02 and 0.04 in the low visibility scenarios (Appendix A.4). This 
procedure allowed control for the variable RES_VISIBILITY in two ways. 
Firstly, we could clearly distinguish between the LOW and the HIGH level of 
RES visibility in each landscape. Secondly, we kept the visibility of RES 
more or less constant between all landscape types within the LOW or the 
HIGH scenarios of RES visibility. Fig. 3 illustrates the two levels of 
RES_VISIBILITY for all seven landscape types. We provide the full field of 
view (160◦) in the data repository of this article. 

Subsequently, we animated the visualizations with rotating wind 
turbine blades and moving clouds. We kept motion of rotor blades, at
mospheric conditions, lightning and seasonality constant between all 
stimuli, since these parameters influence the visibility of RES (Apostol, 
Palmer, Pasqualetti, Smardon, & Sullivan, 2016p. 180). Finally, we 
rendered 30-second panoramic videos from pedestrian perspective with 
a resolution of 5760 by 1080 pixels (see additional data). 

Fig. 3. Visualization of the middle 53.3◦ field of view for each landscape type 
with the two levels of RES_VISIBILITY. 
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2.2. Procedure 

We collected the data for each participant individually in a laboratory 
lasting for app. 45 min. All participants reported being native German 
speakers, physically and psychologically healthy, with normal or 
corrected-to-normal vision and hearing. The study was approved by the 
ethics committee of ETH Zurich. Participants were compensated 30 Swiss 
franc after finishing the session. To keep experimental conditions (i.e. 
light, sound) constant, we used a Mobile Visual Acoustic Laboratory 
(MVAL; Manyoky et al., 2016). Within the MVAL we projected the stimuli 
on three 106◦ angled screens (7.1 m × 0.6 m). The entire experiment was 
performed with the software ‘Experiments in Virtual Environments’ (EVE; 
Grübel et al., 2017). This software allows the experimenter to interactively 
present questions to participants, while showing still images, videos or 
virtual realities. Particularly, we used this software to record physiological 
responses on landscape changes caused by RES (reported in Spielhofer 
et al., 2021). After signing the declaration of consent, the participants 
were familiarized with laboratory conditions and the keyboard control 
with a training trial. The training trial consisted of two 30-second scenes 
(videos of a moving blue circle and a moving red cube), presented to 
participants sequentially. Following the training stimuli pair, we asked 
participants to use the arrow keys on the keyboard in order to select their 
preferred stimulus. The main experiment was divided into two parts 
(Fig. 3). In the first part, participants completed three testing trials. Each 
trial consisted of two subsequently presented landscape-RES scenarios, 
followed by the participants choice of their preferred scenario. In addition 
to the preference, we measured participants’ physiological arousal 
response, which is reported in XYZ. The three testing trials were separated 
by 20-second intervals consisting of a black cross on a gray background. 
We paired the stimuli so that one trial consisted of two ‘HIGH’ RES visi
bility videos, one trial consisted of a ‘HIGH’ and a ‘LOW’ RES visibility 
video, and one trial consisted of two ‘LOW’ visibility videos. The order of 

these trial types and the landscapes that composed each trial type were 
randomized and counterbalanced across participants, except that a 
participant never saw the same landscape more than once. In the second 
part of the session (Fig. 4), we showed the same six stimuli from part one 
again in a new randomized order. Participants rated the landscape qual
ities for each of the six stimuli based on the landscape preference matrix 
(Kaplan and Kaplan, 1989). We closed the session with a post question
naire to record participants’ socio demographics. 

2.3. Measures 

In this section, we present the questions to assess people’s preference 
and the rated landscape qualities for the landscape-RES scenarios. 
Further, we show the visual features, measured on each stimulus. 

Preferences 
To assess people’s landscape preference some studies used pairwise 

comparisons of stimuli (e.g., Courcoux and Semenou, 1997) other 
studies used rating (e.g., Schirpke, Tappeiner, Tasser, & Tappeiner, 
2019). Particularly, for subjective ratings, the pairwise comparison 
method has been shown as useful due to the simplicity of the assessment 
(Courcoux and Semenou, 1997) and no substantial differences to ordinal 
rating scales revealed (Hunziker and Kienast, 1999; Stamps, 2004). 
Thus, we used pairwise comparisons in this study, to assess landscape 
preferences. In part 1 (Fig. 3) of the experiment, each participant saw 
three times two scenarios sequentially and choose their preferred sce
nario based on the question ‘Which landscape do you like better’ (original 
germ.: ‘Welche Landschaft gefällt Ihnen besser?’). 

Rated landscape qualities 
To rate the landscape qualities, we used the four dimensions 

complexity, coherence, mystery and legibility from the preference ma
trix (Kaplan and Kaplan, 1989). We assessed the four landscape qualities 
with a set of nine questions and report the original German question and 

Fig. 4. Example of an experimental proceeding in the MVAL for one participant, presenting randomly six stimuli from the total amount of 14 stimuli.  
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corresponding English translation in Appendix B.1. Thus, within part 
two of the experiment (Fig. 3), each participant answered all nine 
questions for each of the six scenarios with a 5-point Likert scale. The 
questions, scale and the wording were adopted from (Kienast et al., 
2015). With slightly different wording but similar terms these questions 
were used in other studies (Singh, Todd Donavan, Mishra, & Little, 2008; 
e.g., van der Jagt et al., 2014). 

Visual features 
Based on the middle view (1920 by 1080 pixels), of the first video frame 

we computed 20 visual features for each of the 14 stimuli. To select the 
visual features, we refer to measures which have been found as relevant in 
the context of landscape perception and preferences (Appendix B.2). Firstly, 
we applied pixel- based statistics, where information from each single pixel 
is extracted and summed up to the total amount of pixels of the image. These 
statistics mainly cover color aspects (hue, sat, bright), visual information 
density (fc, se, bytes) and spatial frequency (sf_low, sf_high). Secondly, we 
used landscape metrics with color classified images as input. We classified 
the images with 12 centers by the use of a k-nearest neighbor classifier 
(Hunziker & Kienast, 1999). Based on the 12 class RGB reduced images 
(Appendix B.3), all landscape metrics were calculated in R-Studio (V.3.5.5) 
on landscape level with the R-package ‘landscape metrics’ (Hesselbarth, 
Sciaini, With, Wiegand, & Nowosad, 2019; McGarigal, Cushman, & Ene, 
2012). Thirdly, we calculated the number of pixels and edges which are 
exclusively related to the RES. 

2.4. Data processing and analysis 

With R studio version 3.5.1 (R Core Team, 2018) we conducted 
descriptive and inferential statistics. As a first step, we tested the inter-item 
reliability for the two items of coherence, complexity, mystery and the three 
items of legibility (Appendix B.1). We consider a Cronbach alpha of 0.7 as 
an acceptable reliability (Palmer, 2000) and averaged the corresponding 
items with the median for each participant. We then checked the data for 
normal distribution (Shapiro test) and examined homogeneity of variances 
(Levene test). Secondly, we assessed the effect of the two independent 
variables RES_VISIBILITY and LANDSCAPE on each of the 20 visual features 
with split-plot ANOVAS. Split-plot ANOVAS were used because each 
LANDSCAPE contains two dependent levels of RES_VISIBILITY. In a third 

step, we examined the effects of RES_VISIBILITY and LANDSCAPE on the 
landscape quality ratings and the binary choice data. In order to select an 
appropriate model for the landscape quality ratings and the choice, we 
compared general linear models (glm) with mixed effect models (lmer) with 
Likelihood-ratio tests (Giampaoli and Singer, 2009). For the landscape 
quality ratings, Likelihood-ratio tests revealed lower AIC for mixed effect 
models with integrated random effects compared to general linear models. 
Thus, we calculated the lmer with the R-package ‘lme4′ (Bates, Mächler, 
Bolker, & Walker, 2015). We considered the rated landscape qualities as 
dependent and the LANDSCAPE and RES_VISIBILITY as independent vari
ables (Table 1). Mixed models have the advantage that they can account for 
variation in the data that is related to further aspects and not explicitly 
expected in the hypotheses (i.e., random factors). We used the subjects 
(SUBJ_ID) as random factors to account for the fact that the ratings of 
landscape qualities are not fully independent since we have a repeated 
measurement design (each subject rated six times the landscape qualities). 
Further, mixed models are more suitable for imbalanced study designs (each 
participant assessed only 6 out of the total 14 scenarios). In addition to the main 
effects (RES_VISIBILITY & LANDSCAPE), we tested the effect of socio de
mographics on the landscape qualities (Stamps, 1999; Strumse, 1996; Zheng 
et al., 2011). Specifically, we examined the effect of GENDER, AGE and the 
fact that a stimulus might represent the participants’ home landscape 
(HOME_LT; Hunziker et al., 2008). In order to test the effect of age, we split 
our data into a group (AGE_GROUP) with people younger than 30 years and 
a group with people older than 29 years. For the preference date, 
Likelihood-ratio tests revealed lower AIC for generalized linear models 
(glm) with binomial logit regression compared to mixed effect models. The 
inclusion of random effect would lead to model overfitting. In consequence, 
we applied a glm to determine the effect of LANDSCAPE and RES_VISI
BILITY on the binary choice data (Table 1). In order to calculate p and Х2 

values for the main effects within the lmer and the glm models, we used 
additional Likelihood-ratio tests. We compared the null-model with the one- 
fixed factor model to assess the effects of each individual fixed factor and the 
two-fixed factor model with the three-fixed factor model to determine the 
interaction effects of LANDSCAPE and RES_VISIBILITY (Table 1). We then 
calculated the effect size (R2 & f2) with the R-package ‘Sjstats’ (Lüdecke, 
2020). For mixed models, we used marginal R2 which represents the 
explained variance from the fixed, without the random effects (Nakagawa 
and Schielzeth, 2013). According to Cohen (1992), we consider f2 = 0.02 as 
small effects, f2 = 0.15 as medium effects and f2 > 0.3 as strong effects. For 
the logit models of with the binary choice as dependent variable we 
calculated the coefficient of determination (D; Tjur, 2009). 

With the median we aggregated the landscape quality ratings to the 
average quality rating for each scenario (N = 14). Similarly, we aggre
gated the binary choices to a preference score (PREF_SCORE) for each 
scenario by dividing the total number the scenario has been shown by 
the number the scenario has been preferred. Finally, we applied Kendall 
and spearman correlations with a Bonferroni corrected alpha level for 
multiple testing to analyze the relationship between the average land
scape qualities, the visual features and PREF_SCORE. Non-parametric 
correlations were used because of a relatively small sample size (N =
14 scenarios) and not normally distributed data. 

3. Results 

A total of 135 participants (61 women and 72 men, mean age = 28 years, 
SD = 11.74, age range = 19–73 years) completed the experiment. Two par
ticipants were excluded because of software issues. The young AGE_GROUP 
contains 98 participants (47 woman, 51 men, mean age = 22.4 years, SD =
2.28, range = 19–29 years), the older AGE_GROUP 28 (11 woman, 17 men, 
mean age = 46.6 years, SD = 12.33, range = 32–73 years). Nine participants 
could not be included into an age group since they did not state their age. 

The inter item reliability for each landscape quality was calculated for 
several data subsets and for the whole dataset (Table 2, Appendix C). 
Independent of the data subset, the two items of coherence and 
complexity as well as the three legibility items, revealed acceptable (>0.7) 

Table 1 
Models to calculate effect of fixed effects on dependent variables landscape 
qualities or CHOICE with Likelihood-Ratio tests.   

Dependent 
variable 

Fixed factors Random 
factors 

Linear mixed-effects model (lmer) 
three- 

fixed- 
factor 
model 

Landscape 
qualities 

LANDSCAPE + VISIBILITY+
(LANDSCAPE * VISIBILITY) 

SUBJ_ID 

two-fixed- 
factor 
model 

Landscape 
qualities 

LANDSCAPE + VISIBILITY SUBJ_ID 

one-fixed- 
factor 

Landscape 
qualities 

VISIBILITY OR LANDSCAPE OR 
GENDER OR AGE OR 
HOME_LANDSCAPE 

SUBJ_ID 

Null model Landscape 
qualities 

1 SUBJ_ID 

Generalized linear model with binomial regression (glm) 
three- 

fixed- 
factor 
model 

CHOICE LANDSCAPE + VISIBILITY+
(LANDSCAPE * VISIBILITY) 

No random 
effects 
included 

two-fixed- 
factor 
model 

CHOICE LANDSCAPE + VISIBILITY 

one-fixed- 
factor 

CHOICE VISIBILITY OR LANDSCAPE OR 
GENDER OR AGE OR 
HOME_LANDSCAPE 

Null model CHOICE 1  
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overall reliability. In consequence, we averaged the items with the median 
for each landscape quality. In contrast, the two items of mystery revealed 
too low overall reliability, hence the two items (MYST_A, MYST_B) will be 
treated as separate variables in the further analysis. 

3.1. Rated qualities of RES altered landscapes 

Since we have an unbalanced experimental design, the number of 
landscape quality ratings for each scenario varies between 48 and 70 
(Appendix D.1). We calculated the median and Inter-Quartile Range 
(IQR) of the landscape quality ratings (Fig. 5) and reference to 
Appendix D.1 for exact values. 

Main effects of RES_VISIBILITY and LANDSCAPE on landscape qualities 
Despite complexity, all landscape qualities revealed a significant 

effect on RES_VISIBILITY. However, coherence ratings show the stron
gest effect on RES_VISIBILITY (f2 = 0.2, Table 3). Additionally, all 
landscape qualities varied significantly between the levels of LAND
SCAPE. A strong effect (f2 < 0.3) of LANDSCAPE could be observed for 
Mystery_B, Legibility and Complexity (Table 3). Mystery_B revealed the 
only landscape quality with a significant and strong interaction effect of 
LANDSCAPE and RES_VISIBILITY. Contrarily, the effect of different 
LANDSCAPES is stronger for complexity, legibility and Mystery_A. 

Coherence is the only landscape quality which shows a stronger ef
fect on the levels of RES_VISIBILITY compared to the levels of LAND
SCAPE. Therefore, a post hoc analysis between the levels of 
RES_VISIBILITY has been performed for each landscape type. In the near 
natural alpine landscape (ALP, df = 763, T = − 3.591, p = .024, d = −

0.6), the touristic alpine area (ALP_TOUR, df = 763, T = − 3.502, p =
.032, d = − 0.58) and the urban alpine valley (ALP_URB, df = 763, T =
− 4.588, p = .0004, d = − 0.78) post hoc analysis show significantly 
higher rated coherence in the low-, compared to the high visibility. In 
the urban and agricultural plateaus (PLAT_URB & PLAT_AGRI), the hilly 
landscapes of the JURA and the pre alps (PRE_ALPS) the degree of vis
ibility of RES does not affect rated coherence significantly (Fig. 6). 

Effects of socio demographics on landscape qualities 
The effects of GENDER, AGE and HOME_LT on the ratings of the 

landscape qualities have been tested with mixed linear models and 
Likelihood-Ratio tests (Table 1). The test revealed a significant, medium 
effect of AGE_GROUP on coherence (Х2(1) = 7.302, p = .007, R2 =

0.144, f2 = 0.17). Additionally, a strong effect of GENDER and MYS
TERY_A evolved (Х2 (6) = 3.922, p = .048, R2 = 0.243, f2 = 0.32) 
(Appendix E). The effect that high visibility is rated with lower coher
ence is stronger for young people compared to older people (Table 4). 

3.2. Relation between measured visual features and rated landscape 
qualities 

We report the descriptive statistics of the 20 visual features in 
Appendix D.2. 

Correlation between visual features and landscape qualities 
To test the correlation between 20 visual features and five landscape 

qualities, we correct the alpha level to p = .002, in order to correct for 
possible alpha inflation. To find relations between rated visual land
scape qualities and measured visual features for N = 14 scenarios, we 
applied spearman’s rank and Kendall correlations (Fig. 7; see 
Appendix F, for exact numerical r and p values). 

Only a few visual features correlate significantly (p < .002) with the 
landscape qualities. The contiguity index with rated complexity (tau =
− 0.582, tau p = .003, r = − 0.758, p = .0016) and the amount of RES 
related edges with rated coherence (tau = − 0.582, tau p = .003, r = −

0.75, p = .002). Additionally, we report a strong correlation between the 
high spatial frequency (sf_high) and the individually treated item Mys
tery_B (tau = 0.736, tau p = 7.7e-5, r = 0.88, p = 2.5e-5). 

Main effects of RES_VISIBILITY and LANDSCAPE on the visual features 
Split-plot ANOVAS showed that most of the visual features vary signif

icantly between the landscape types (LANDSCAPE) but not between the 
LOW and the HIGH RES visibility. Nevertheless, subband entropy (se, F(1) 
= 6.069, p = .05), feature congestion (fc, F(1) = 28.78, p = .002), file size of 
the stimuli (bytes, F(1) = 16,15, p = .007) and color hue (F(1) = 39.6, p =
.0008) show an additional significant effect on the levels of VISIBILITY 
(Appendix G). The two visual features, which relate exclusively on RES 
(PIX_RES, EDGE_RES), vary much stronger between the levels of RES VIS
IBILITY compared to the levels of LANDSCAPE (Appendix G). This result is a 
proof that the visual balancing between the landscape types was successful 
and the combined visibility of wind and photovoltaic infrastructures is 
comparable between the different landscape types. 

3.3. Preference scores for RES altered landscapes 

Fig. 8 indicates that people generally prefer the LOW compared to 
the HIGH visibility scenario. However, in the flat areas with mainly 
settlements the HIGH scenario is more preferred compared to the LOW. 
The highest preference scores, independent from the amount of RES can 
be observed in the hilly and less densely populated areas of the JURA 
and the pre alps (PRE_ALPS).Fig. A3.Fig. A4. 

For the preference data, the comparison between the three-fixed- 
factor model and the two-fixed-factor model (Table 1) revealed a sig
nificant interaction between LANDSCAPE and VISIBILITY (Х2 (1) =
17.134, p = .008, D = 0.09). In addition, the comparisons between the 
one-fixed-factor models and the null model revealed significant effects 
for LANDSCAPE (Х2 (6) = 51.843, p < 2.6e-9, D = 0.06) and RES_VI
SIBILITY (Х2 (1) = 7.431, p = .006, D = 0.009) on participants’ pref
erences. These effects suggest that participants preferred low visibility of 
RES (compared to high visibility) and that this effect varied across 
landscapes. Notably, this trend can be observed for each landscape 
except for PLAT_URB and PLAT_AGRI (Fig. 8). 

Relation between visual features and preference scores 
With a Pearson correlation we checked the relation between the 20 vi

sual features and the preference score. Again, we consider an alpha level of 
0.002 as a significance threshold. However, no correlation between the 
visual features and the preference score revealed significant (Appendix H.1) 

Relation between landscape qualities and preference score 
Finally, we applied Kendall and spearman rank correlation in order 

to find relations between the five aggregated ratings of landscape 
qualities and the preference score. We correct the alpha level to 0.01 
since we tested only five possible correlations. Coherence (tau = 0.538, 
tau p = .006, p = .012, r = 0.13), legibility (tau = 0.494, tau p = .013, p =
.003, r = 0.72) and mystery_B ratings (tau = 0.648, tau p = 7e-4, p = 7e-4, 
r = 0.79), correlated significantly with preference scores. Mystery_A (p 
= .48, r = 0.2) and complexity (p = .93, r = − 0.02) did not show any 
significant relation with the preference score (Appendix H.2). 

Table 2 
Inter-item reliability of the landscape qualities for the overall data set, the subsets of landscape types (LANDSCAPE) and the subset of RES_VISIBILITY.  

Landscape qualities LANDSCAPE RES_VISIBILITY Overall  

PLAT_URB PLAT_AGRI JURA PRE_ALPS ALP_URB ALP_TOUR ALP LOW HIGH  

Coherence 0.81 0.77 0.86 0.83 0.86 0.82 0.86 0.82 0.84 0.84 
Complexity 0.71 0.78 0.82 0.75 0.71 0.7 0.85 0.78 0.79 0.78 
Legibility 0.76 0.74 0.68 0.78 0.77 0.68 0.6 0.73 0.75 0.74 
Mystery 0.54 0.73 0.7 0.67 0.46 0.72 0.72 0.66 0.58 0.62 
N data subset 112 120 118 104 119 110 116 400 399 799  
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4. Discussion 

This section summarizes the results, discusses their implication for 
each goal separately and ends with a description of the study’s limitations. 

Goal 1: Rated qualities of RES altered landscapes 
First, we investigated the influence of RES infrastructure on people’s 

landscape quality ratings. Rated coherence varies stronger between the 
two levels of RES visibility compared to mystery, legibility and 

Fig. 5. Median and (IQR) of the landscape quality ratings.  
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complexity. Kaplan and Kaplan (1989) asserted that coherence is pro
cessed immediately. Consequently, or first result implies that people’s 
perception of RES altered landscapes contains a substantial affective 
component. Therefore, we support the finding of Maehr, Watts, Han
ratty, and Talmi (2015). The authors discovered that measured physi
ological arousal, which expresses an immediate affective reaction, is 
higher for landscapes containing wind turbines than other infrastruc
ture. Further, we found that people generally rated a high RES visibility 
as less coherent over a low impact. We conclude that an increasing 

number of RES decreases the sense of coherence. This finding contrasts 
with the statement of Tveit et al. (2006) that enhancement of the visual 
redundancy should increase the sense of coherence in a scene. Although, 
RES add visual repetitions and uniformity to landscapes (Apostol et al., 
2016), the sense of coherence might increase with only a low RES visi
bility up to a certain point. After reaching this point, which is specific for 
different landscape types, coherence decreases with more RES visibility. 
Further research should test the relationship between amount of RES 
and coherence more in detail. Aside from finding a generally lower rated 

Fig. 6. Rated coherence for each landscape-RES scenario.  

Table 3 
Effects of VISIBILITY, LANDSCAPE and Interactions on landscape qualities (N = 798).  

Landscape qualities Fixed effects  

RES VISIBILITY LANDSCAPE INTERACTION  

χ2(1) Marginal R2 Cohens f2 p χ2(1) Marginal R2 Cohens f2 p χ2(1) Marginal R2 Cohens f2 p 

Coherence  71.804  0.17  0.2 2.2e-16  58.478 . 153  0.18 9.16e-11  11.16  0.241  0.32  0.08 
Complexity  0.018  0.064  0.07 0.667  137.78 0.239  0.31 0  8.35  0.25  0.33  0.21 
Legibility  14.417  0.124  0.14 0.0001  120.28 0.257  0.35 0  8.8  0.272  0.37  0.18 
Mystery_A  6.746  0.049  0.05 0.009  93.499 0.162  0.19 0  7.55  0.179  0.22  0.27 
Mystery_B  15.877  0.027  0.03 6.76e-5  215.81 0.277  0.38 0  12.88  0.304  0.45  0.045  

Table 4 
Effects of RES_VISIBILITY, LANDSCAPE and Interactions on rated coherence, separated by AGE_GROUP.    

RES_VISIBILITY LANDSCAPE INTERACTION 

AGE GROUP N X2 p R2 f2 X2 p R2 f2 X2 p R2 f2 

<30 98  62.509 2.60E-15  0.1  0.11  45.64 1.40E-08  0.07   5.9514  0.428   
>30 28  7.412 0.006  0.03  0.038  12.662 0.048  0.061  0.065  7.6657  0.26    
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coherence of high RES visibility, we discovered this effect to be strongest 
in urbanized alpine areas, touristic alpine regions, and near natural 
alpine landscapes. Contrarily, in the densely populated flat plateau 
(PLAT_URB), coherence is rated almost equally in high- and the low RES 
visibility scenarios. This finding indicates two things. Firstly, the visual 
coherence of the PLAT_URB landscape is not affected by the amount of 
RES. Thus, from a visual perspective, this landscape seems to have po
tential for a stronger visibility of RES. Secondly, the degree of natural
ness does not serve as a unique predictor for the coherence difference 
between low and high RES visibility scenarios. Most likely, the coher
ence differences between high- and low RES visibility is influenced by 
further landscape connotations. Therefore, we see coherence ratings as a 
potential indicator for the ‘place-technology-fit’ (Devine-Wright and 
Howes, 2010). However, further research needs to build up on this 
statement and test whether coherence mainly describes a visual part (e. 
g., scale; Stanton, 2016) or also a functional part of place-technology-fit. 

In contrast to coherence, complexity varies strongly among the seven 
landscape types but not between the RES visibility scenarios. 
Complexity is an immediate exploration involving an assessment of how 
many visual elements are present in a landscape (Fry et al., 2009; Kaplan 
and Kaplan, 1989; Stamps, 2004). On the grounds of the landscape types 

selected for our experimental stimuli, we implicitly represented this 
visual richness to some extent. Our results show that landscapes con
taining many man-made elements and diverse topographies are rated as 
more complex, whereas uniform flat areas with few man-made elements 
are less complex. Mystery and legibility are not related exclusively to 
RES visibility or the landscape types. Both dimensions need further 
processing (Kaplan and Kaplan, 1989) and might consequently entail 
more cognitive considerations, which possibly involve scrutinizing a 
landscape, including an RES, as a whole. 

Goal 2: Relationship between landscape qualities and visual features 
Motivated by the critiques of Stamps (2004) regarding the reliability of 

the preference matrix, we inquired into the association between measured 
visual features derived from the stimuli and the rated visual qualities of 
RES altered landscapes. The analysis revealed that rated complexity is 
negatively correlated with measured contiguity. Specifically, the analysis 
shows that diversity in land use and topography leads to lower contiguity 
and high complexity values. This finding is in line with La Fuente Val et al. 
(2006) who demonstrated that contiguity is inversely related to patch 
richness and positively correlated with the Shannon evenness index. 
However, compared to Kuper (2017) and Stamps (2004), we could not 
find a significant correlation between the measured entropy and the rated 

Fig. 7. Correlation matrix with averaged visual landscape qualities and visual features for N = 14 scenarios.  
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complexity of the scenes. This could be due to the slightly different 
formulation of the questions used to assess complexity in our German- 
language study. On the other hand, one has to consider that we did not 
calculate the entropy according to Shannon (1948), but the subband en
tropy according to Rosenholtz et al. (2007). 

Rated coherence revealed as significantly correlated with counted 
edges, exclusively related to wind and solar infrastructure. The more 
RES edges are visible within a scenario, the less coherent the scenario, 
consistent with Kuper’s (2017) work. Within a plant context, the author 
showed that a high number of planted regions in a scene drives down 
ratings of coherence. Although the measured feature congestion was not 
significantly correlated with rated coherence, we propose to further 
investigate this relationship. Feature congestion varied significantly 
between the RES visibility scenarios, indicates a degree of visual orga
nization and redundancy, and might thus influence coherence (Bell, 
2012; Tveit et al., 2006). However, most of the visual features 
commonly used to operationalize landscape qualities potentially fail to 
measure RES-prompted landscape changes. 

Goal 3: Preference for RES-altered landscapes 
We found that visual preference is significantly influenced by the 

landscape types and by the RES visibility level. However, the two variables 
landscape types and RES visibility could only explain a very small part of the 
preference. Although we specifically asked about people’s visual preference 
for energy landscapes, this result implies that people think beyond visual 
aspects when evaluating such scenes. Overall, people prefer low RES visi
bility scenarios over high-visibility counterparts, in congruence with the 
findings of Betakova et al. (2015), who reported lower visual preferences for 
higher number of wind turbines. Independent of the number of RES, the 
hilly and sparsely populated pre alpine area is the most strongly favored 
landscape. By contrast, the inner alpine valley and the urban plateau are the 
least preferred. Interestingly, the urbanized plateau (PLAT_URB), which is 
generally rated as of low visual quality, is the only landscape in which a 
high-visual-impact scenario is preferred over a low-impact equivalent. Thus, 
our results support those of Lothian (2008) and Betakova et al. (2015), who 
found that installing wind farms in high-visual-quality landscapes decreases 
visual quality, whereas adding wind turbines in low-visual-quality land
scapes may increase visual quality. 

We found no direct correlation between measured visual features and 
preferences, thus substantiating the finding of Fuente Val et al. (La Fuente 
Val et al., 2006). The study revealed only limited correlation of visual 
indices with scenic beauty estimations and conclude that might be attrib
uted to the broad and very normative concept of landscape preference. 

Rated complexity and the similar item of mystery (MYST_A: ‘There is 

much to discover in this landscape’) are unrelated to preference. 
Contrarily, coherence, legibility and one item related mystery (‘I would 
like to get to know this landscape better ‘) are correlated with visual pref
erences for RES altered landscapes. Hence, “making sense,” “under
standing,” and “readability” are more important factors for preferences of 
RES altered landscapes compared to diversity aspects. Similarly, 
Johansson & Laike (2007) demonstrated that “how well landscape com
ponents fit and function together”, are important aspects for the opposition 
against wind turbines. 

Limitations 
We worked under the premise that for successful energy transition, the 

right question is not “if” RES should be established but “where” and “how 
many”. Correspondingly, we showed only landscape stimuli containing 
RES. This decision prevented us from identifying a connection between a 
landscape change from RES presence to no RES presence. Our study design 
nonetheless cleared the way for illuminating the effects on people’s 
quality ratings and preferences with regard to different landscape types. 

In addition, we showed only combined visual impact of wind and 
photovoltaic infrastructure. Future studies should show landscape stimuli 
separated by energy facilities in order to investigate differences in land
scape quality ratings between wind turbines and solar panels. Although 
other researchers found connections between measured visual features 
and landscape preferences (Ibarra et al., 2017; Hunziker & Kienast, 1999; 
Kardan et al., 2015), we detected no direct relationship between visual 
features and rated preferences. This may be explained by the setting of our 
experiment, which involved only seven landscape types and therefore 
covered inadequate variance within single visual features. Further studies 
directed toward ascertaining this association may need a wider variety of 
landscape types and, thus, more visual stimuli. However, both mentioned 
issues lead to significantly more stimuli, which increases the risk that 
evaluations are influenced by fatigue effects. 

Another shortcoming is that our study was conducted in German. The 
slightly different wording and formulation of the language could explain 
the differences in our results and those of research carried out in English. 
This issue might be of special interest in further meta-analysis, wherein the 
correct meanings of German and English terms are carefully considered. 

Finally, we used the preference matrix (Kaplan and Kaplan, 1989) as 
only one of several methods for assessing people’s perception of land
scape qualities. Because the preference matrix distinguishes between 
immediate and inferred ratings of landscape quality, we used this 
assessment to relate landscape qualities to measured immediate, phys
iological arousal responses (Spielhofer et al., 2021). Combining physi
ological data and landscape quality ratings leads to a better 

Fig. 8. The number of choices and no choices and the preference score for each of the 14 scenarios.  

R. Spielhofer et al.                                                                                                                                                                                                                              



Landscape and Urban Planning 209 (2021) 104000

13

understanding of the individual response and assessment of landscape 
changes caused by renewable energy infrastructure. 

5. Conclusion 

The visual aesthetic effects of RES on landscapes are important fac
tors for resistance against energy infrastructure and therefore hamper 
the cultivation of sustainable societies. Our results revealed that land
scapes with the potential to facilitate the establishment of connections 
with energy facilities might be visually preferred by people. Possible 
connectors can be visual (repetitive shapes, colors, and textures) but also 
contextual/functional in nature, such as other man-made elements or 
similar land uses. Further study is needed to specifically look into these 
visual and contextual connectors. We cannot directly formulate recom
mendations for landscape planners and policy makers, but value for 
these stakeholders may come in the form of this work’s unearthing of the 
potential to incorporate visual qualities into VIAs. Further our results 
can contribute to determine landscape specific visual thresholds, which 
incorporate visual qualities. Capitalizing on visual qualities might pro
vide additional insights into what people think about landscape changes 
through RES instead of merely focusing on RES visibility. Finding suit
able areas that incorporate people’s visual perception can help mitigate 
resistance against RES. Rated coherence can serve as a starting point 
given its suggested effectiveness in the assessment of RES-induced visual 
changes in landscapes. Future research should investigate coherence, its 
connection to place–technology fit, and possible objective visual fea
tures in the context of RES landscapes. Specifically, such scholarship 

should account for the different connotations of various landscape types 
and how these are influenced by renewable energy systems. 
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Appendix A. Visual impact of RES 

Scenario development with calculated visual impact values for photovoltaic panels (OAISPP) and wind turbines (VIWT). 
Parameters OAISPP 
Table A1. Mean and standard deviation for calculated visual impact parameters of photovoltaic panels (OAISPP), in the LOW and the HIGH 

Renewable Energy Systems (RES) SCENARIO levels (Torres-Sibille et al., 2009)    

Feature Visibility Color Fractality Concurrence Objective Aesthetic 
Impact of Solar 
Power Plants 

Number of pixel 
covered with PV 

Number of edge 
pixel relating to 
PV  

RES visual impact  
dimension 

Area (pixel) 
covered with PV 
related to 
background 
pixel 

Color contrast of 
panel vs. close 
surrounding 

Artificiality of 
installations against 
natural background 

More than one type 
of solar panel within 
a plant produce 
concurrence and 
influence on 
perception 

Weighted overall 
visual impact of PV 
system    

Scale [0 -1]No PV – 
total view 
covered with PV 

[0 – 1]No color 
contrast – high 
contrast between 
PV ad 
background 

[0 – 2]Background 
has higher fractality 
as PV [If<1]PV has 
higher fractality than 
background [If>1] 

[0 -1]Highest 
concurrence if two 
panel types are 
equally distributed 

0 = No visual 
impact1 = highest 
visual impact    

Calculation Calculation steps proposed by Torres-Sibille et. al., (2009) implemented in MATLAB script (appendix) Pixel subtraction 
(Scenario – No- 
RES scenario) 

MATLAB Canny 
edge detection 

LOW RES  
SCENARIO 

mean 0.1 0.014 0.044 0.3 0.095 16264 3822  

Standard deviation 0.02 0.007 0.02 0.1 0.02 4606 1219 
HIGH RES  

SCENARIO 
mean 0.15 0.02 0.04 0.64 0.16 26738 7379 
Standard deviation 0.04 0.01 0.02 0.16 0.01 7432 4658   

Parameters VIWT 
Table A2. Mean and standard deviation for calculated visual impact parameters of wind turbines (VIWT) in the LOW and the HIGH Renewable 

Energy System (RES) SCENARIO levels (Brahms and Peters, 2012).  
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Feature Absoulut 
number of WT 

Effect of 
additional WT 

Pratial visibility Distance effect Total visual impact wind Number of 
pixels covered 
with wind 
turbine 

Number of edge 
pixels relating to 
wind turbines  

RES visual  
impact  
dimension 

Total number of 
WT placed in 
scene 

Reduction effect 
of additional WT 

Effect of partial 
visible WT in 
landscapes 

Effect of distance 
to closest WT 

Total calculated visual impact 
of wind turbines    

Scale  1 = only single 
WT~0.18 = add 
30 + WT 

∑NUM WT
i=1 part visi(0 

= all WT total 
invisible or no WT)  

1 = 0 m0.03 ~ 
10′000 m 

=RED_NUM_WT * 
PART_VIS_WT*EFF_DIST_WT    

Calculation  Calculation steps 
proposed by 
(Brahms und 
Peters., (2012) 
implemented in 
MATLAB script    

Pixel subtraction 
(Scenario – No- 
RES scenario) 

MATLAB Canny 
edge detection 

LOW RES  
SCENARIO 

mean 3 0.33 2.73 0.32 0.29 3341 1316 

Standard  
deviation 

0 0 0.24 0.04 0.04 1845 1182 

HIGH RES  
SCENARIO 

mean 10 0.24 8.89 0.59 1.27 5085 3244 

Standard  
deviation 

0 0 0.78 0.1 0.25 1982 920     

VIWT for all scenarios (N ¼ 14) 
Fig. A3 

OAISPP for all scenario (N ¼ 14) 
Fig. A4 

Fig. A3. VIWT for LOW and HIGH scenarios of all landscape types.  
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Appendix B. Measures 

Table B1. Nine items to assess the landscape qualities based on the preference matrix (Kaplan & Kaplan, 1989). Originally the questions were asked 
in German. All statements have been answered on a 5-point Likert scale ranging from 1 = totally disagree (Germ. “Trifft gar nicht zu”) – 5 = totally 
agree (Germ. “Trifft sehr zu”).   

Item Question Landscape quality 

COMPL_A “There are many different things in this landscape.” 
German: “In dieser Landschaft gibt es viel Verschiedenes.” 

Complexity 

COMPL_B “This landscape is diverse.” 
German: “Diese Landschaft ist abwechslungsreich.” 

Complexity 

COHER_A “This landscape is coherent in itself.” 
German: “Diese Landschaft ist in sich stimmig.” 

Coherence 

COHER_B “The individual things or components of this landscape fit together.” 
German: ”Die einzelnen Dinge oder Bestandteile dieser Landschaft passen gegenseitig zusammen.” 

Coherence 

LEGI_A “This landscape is clear.” 
German: “Diese Landschaft ist übersichtlich.” 

Legibility 

LEGI_B “There are landmarks in this landscape that help you find your way.” 
German: “In dieser Landschaft gibt es Orientierungspunkte, die einem helfen, sich zurechtzufinden.” 

Legibility 

LEGI_C “I find my way around this landscape very well.” 
German: “Ich finde mich in dieser Landschaft sehr gut zurecht.” 

Legibility 

MYST_A “There is much to discover in this landscape.” 
German: “In dieser Landschaft gibt es viel zu entdecken.” 

Mystery 

MYST_B “I would like to get to know this landscape better.” 
German: “Ich möchte diese Landschaft gerne besser kennen lernen.” 

Mystery   

Table B2. Calculated visual features and their related concepts for visual perception of landscapes  
Concept Relevance for visual perception Index (coding) (Source) / calculation 

Pixel based measures 
Color & contrast Color tone Hue (hue) (Berman et al., 2014; Kardan et al., 2015) MATLAB image 

processing toolbox Color intensity Saturation (sat) 
Light and shadow Brightness (bright) 

Visual information 
density 

Visual saliency / redundancy Feature congestion 
(fc) 

(Rosenholtz et al., 2007) Free available MATLAB script 

Subband entropy (se) 
Visual complexity JPEG file size (bytes) (Tuch et al., 2009)File size on storage 

Spatial frequency Sharpness Low spatial 
frequency (sf_low) 

(Valtchanov and Ellard, 2015) Gaussian filter and Fourier 
transformation. Python script provided by D. Valtchanov 

High spatial 
frequency (sf_high)  

Landscape metrics 
Area & edges Detection of edges → perceived naturalness Edge density (ed) (Kardan et al., 2015) MATLAB image processing toolbox 
Shape Complexity or naturalnessof shapes → landscape preference Shape index (shape) (Ode et al., 2009) 

Fractality (frac) (Forsythe et al., 2011; Hagerhall et al., 2008) 
Contiguity (contig) (La Fuente Val, Atauri, & de Lucio , 2006) → antagonist of 

evenness 

(continued on next page) 

Fig. A4. OAISPP for LOW and HIGH scenarios of all landscape types.  
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(continued ) 

Concept Relevance for visual perception Index (coding) (Source) / calculation 

Core area Area shape interaction Core area (cai)  
Aggregation Dispersion / interspersionHigh interspersion values if same patches 

are homogeneously distributed → related to landscape preferences 
Dispersion (ai) (Ode et al., 2009) 
Interspersion (iji) (Hunziker and Kienast, 1999) 

Subdivision of patches → landscape preference in agricultural 
landscape context 

Number of patches 
(np) 

(Dramstad et al., 2006; Ode et al., 2009) 

Diversity of patches landscape → preference in agricultural 
landscape context → complexity 

Shannon diversity 
index (shdi) 

(Dramstad et al., 2006) 

Evenness of patches, relation to landscape preferences Shannon evenness 
index (shei) 

(Hunziker and Kienast, 1999; La Fuente Val et al., 2006)  

Related exclusively on RES 
Amount of edges 

related to RES 
Aspect of visual contrast (edges_res) MATLAB canny edge detection 

Amount of pixels 
related to RES  

(pix_res) Manual calculation with Adobe Photoshop  

RGB Images decomposed with 12 classes 

Appendix C. Reliability analysis 

Each participant rated the landscape qualities for six stimuli. Here we report Cronbach alpha separated for each of the six trails.   

Landscape quality RATING ORDER  

1st 2nd 3rd 4th 5th 6th 

Coherence 0.79 0.86 0.92 0.78 0.85 0.82 
Complexity 0.72 0.73 0.82 0.83 0.8 0.8 
Legibility 0.71 0.81 0.69 0.71 0.76 0.75 
Mystery 0.63 0.64 0.51 0.65 0.6 0.7 
N data subset 132 133 133 133 133 134  

Appendix D. Descriptive statistics 

For the landscape qualities, we report the descriptive statistics separated by individual scenarios (Table D.1). 
Table D1. Descriptive statistics for the landscape qualities   

Landscape qualities SCEANRIOS  

PLAT_URB PLAT_AGRI JURA PRE_ALPS ALP_URB ALP_TOUR ALP  
LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH 

COHERENCE [MED] 3.5 3.5 4 4 4.5 4 4.25 4 4 2.5 4 3 4 3.5 
COHERENCE [SE] 0.14 0.14 0.1 0.15 0.13 0.15 0.14 0.18 0.16 0.13 0.16 0.14 0.13 0.18 

COMPLEXITY [MED] 3.5 3.5 3 3 3.5 3 3.75 4 4 4 3 3 3.5 3.5 
COMPLEXITY [SE] 0.14 0.13 0.09 0.14 0.1 0.12 0.1 0.12 0.13 0.09 0.13 0.11 0.13 0.15 

LEGIBILITY [MED] 3.33 3 4 4 4.33 3.67 4 4 3.67 3.33 3.5 3.67 4 4 
LEGIBILITY [SE] 0.12 0.12 0.09 0.12 0.09 0.1 0.12 0.11 0.13 0.11 0.09 0.1 0.09 0.12 

MYSTERY_A [MED] 4 3 3 3 4 4 4 4 4 4 3 3 4 4 
MYSTERY_A [SE] 0.13 0.15 0.12 0.16 0.13 0.12 0.1 0.13 0.16 0.12 0.17 0.14 0.14 0.17 

MYSTERY_B [MED] 2 2 3 3 4 4 4 4 3 2 4 4 5 4 
MYSTERY_B [SE] 0.15 0.15 0.14 0.17 0.12 0.15 0.12 0.15 0.16 0.15 0.17 0.15 0.11 0.16 

N 57 55 68 52 65 53 56 48 49 70 46 64 59 57     

SCEANRIOS  

PLAT_URB PLAT_AGRI JURA PRE_ALPS ALP_URB ALP_TOUR ALP  
LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH 

N CHOICE 17 24 33 26 41 32 38 32 19 16 28 27 44 24 
N NOCHOICE 40 31 35 26 24 21 18 16 30 54 18 37 15 33 
PREFERENCE 0.31 0.44 0.49 0.5 0.63 0.6 0.68 0.67 0.39 0.22 0.61 0.42 0.75 0.42   

Table D2. Descriptive statistics for the visual features, measured on N = 14 scenarios  
Image Statistics Mean SD SE Median 

Pixel based measures 
hue  0.316  0.065  0.017 0.332 
sat  0.352  0.044  0.012 0.369 
bright  53.543  6.028  1.611 51.900 
fc  2.466  0.360  0.096 2.488 

(continued on next page) 
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(continued ) 

Image Statistics Mean SD SE Median 

se  4.501  0.243  0.065 4.462 
bytes  3201570.857  654711.232  174978.937 3058877.5 
sf_low  7.756  0.178  0.048 7.763 
sf_high  7.902  0.226  0.060 7.871 
Landscape metrics 
ed  3447.157  1493.666  399.199 3041.314 
shape  1.367  0.058  0.015 1.376 
frac  1.259  0.031  0.008 1.26 
ai  82.820  7.477  1.998 84.852 
contig  0.287  0.049  0.013 0.270 
cai  6.100  2.448  0.654 5.119 
iji  58.024  5.238  1.400 59.245 
np  126341.929  69948.262  18694.459 126,128 
shdi  2.350  0.048  0.013 2.354 
shei  0.946  0.019  0.005 0.948 
Related exclusively on RES 
PIX_RES  20464.357  13465.360  3598.769 18277.000 
EDGES_RES  6204.071  5539.226  1480.420 3864.500  

Appendix E. Socio demographics 

Fixed effects of age, gender and if the rated landscape was similar to the landscape where the participant live.   

Landscape qualities Fixed effects of socio demographics  

AGE HOME LANDSCAPE GENDER  
χ2(1) Marginal R2 Cohens f2 p χ2(1) Marginal R2 Cohens f2 p χ2(1) Marginal R2 Cohens f2 p 

Coherence  7.009  0.144  0.17  0.008  0.655  0.131  0.15  0.418  0.068  0.13  0.15  0.794 
Complexity  0.114  0.142  0.17  0.736  0.109  0.147  0.17  0.741  1.127  0.151  0.18  0.288 
Legibility  0.101  0.129  0.15  0.749  36.923  0.131  0.15  1.229e-9  1.891  0.142  0.17  0.169 
Mystery_A  0.779  0.121  0.14  0.342  1.476  0.115  0.12  0.224  2.753  0.243  0.32  0.048 
Mystery_B  1.296  0.243  0.32  0.274  27.414  0.249  0.33  1.6e-7  0.773  0.247  0.33  0.379  

Appendix F. Correlation analysis 

Correlation analysis with N = 14 scenario and a corrected alpha level of 0.002. 
Correlation coefficient (r)    

COHERENCE COMPLEXITY LEGIBILITY MYSTERY_A MYSTERY_B 

hue  0.275 − 0.262  0.226 − 0.525 − 0.125 
sat  − 0.182 0.455  − 0.429 0.495 0.121 
bright  0.080 − 0.549  0.177 − 0.647 − 0.372 
fc  − 0.578 0.169  − 0.486 0.090 − 0.451 
se  − 0.187 − 0.547  − 0.015 − 0.147 0.020 
bytes  − 0.468 0.644  − 0.534 0.604 − 0.130 
sf_low  − 0.508 0.429  − 0.521 0.099 − 0.464 
sf_high  0.288 0.081  0.648 0.376 0.886 
ed  − 0.415 0.424  − 0.451 0.552 0.055 
shape  − 0.455 − 0.204  − 0.301 0.090 0.002 
frac  − 0.433 0.253  − 0.508 0.380 − 0.033 
ai  0.415 − 0.424  0.451 − 0.552 − 0.055 
contig  0.174 − 0.758  0.209 − 0.631 − 0.090 
cai  0.073 − 0.635  0.165 − 0.613 − 0.279 
iji  − 0.262 0.490  − 0.358 0.244 − 0.134 
np  − 0.240 0.587  − 0.288 0.697 0.222 
shdi  0.086 − 0.090  0.059 − 0.130 − 0.046 
shei  0.086 − 0.090  0.059 − 0.130 − 0.046 
PIX_RES  − 0.446 0.055  − 0.235 − 0.284 − 0.200 
EDGES_RES  − 0.749 − 0.037  − 0.314 − 0.147 − 0.262  

Significance level (p)   
COHERENCE COMPLEXITY LEGIBILITY MYSTERY_A MYSTERY_B 

hue  0.342  0.366  0.436  0.054  0.670 
sat  0.533  0.102  0.126  0.072  0.681 
bright  0.786  0.042  0.545  0.012  0.190 
fc  0.030  0.563  0.078  0.759  0.106 
se  0.523  0.043  0.958  0.615  0.946 
bytes  0.091  0.013  0.049  0.022  0.659 
sf_low  0.064  0.126  0.056  0.737  0.095 
sf_high  0.318  0.782  0.012  0.185  0.000 

(continued on next page) 
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(continued )  

COHERENCE COMPLEXITY LEGIBILITY MYSTERY_A MYSTERY_B 

ed  0.140  0.131  0.106  0.041  0.852 
shape  0.102  0.483  0.296  0.759  0.994 
frac  0.122  0.383  0.064  0.180  0.911 
ai  0.140  0.131  0.106  0.041  0.852 
contig  0.553  0.002  0.474  0.016  0.759 
cai  0.805  0.015  0.573  0.020  0.334 
iji  0.366  0.075  0.208  0.401  0.648 
np  0.409  0.027  0.318  0.006  0.446 
shdi  0.771  0.759  0.840  0.659  0.876 
shei  0.771  0.759  0.840  0.659  0.876 
PIX_RES  0.110  0.852  0.418  0.326  0.493 
EDGES_RES  0.002  0.899  0.274  0.615  0.366  

Appendix G. Visual features   

Df Sum Sq Mean Sq F value Pr(>F) 

PIX_RES 
LANDSCAPE 6 4.49E + 08 7.48E + 07  4.42 0.047 * 
RES_LEVEL 1 1.81E + 09 1.81E + 09  106.71 4.81e-05 *** 
Residuals 6 1.02E + 08 1.69E + 07   
EDGES_RES 
LANDSCAPE 6 76,886,638 12,814,440  1.289 0.383 
RES_LEVEL 1 262,337,401 262,337,401  26.385 0.002 ** 
Residuals 6 59,655,324 9,942,554   
cai_mn 
LANDSCAPE 6 76.52 12.753  55.322 5.45–05 *** 
RES_LEVEL 1 0.01 0.006  0.024 0.882 
Residuals 6 1.38 0.231   
contig_mn 
LANDSCAPE 6 0.03 0.005  43.156 0.0001 *** 
RES_LEVEL 1 >0.0001 >0.0001  0.101 0.761 
Residuals 6 0.0006 0.0001   
enn_mn 
LANDSCAPE 6 3.607 0.601  69.376 2.81e-05 *** 
RES_LEVEL 1 0.007 0.007  0.862 0.389 
Residuals 6 0.052 0.87   
frac_mn 
LANDSCAPE 6 0.012 0.002  17.521 0.001 ** 
RES_LEVEL 1 >0.0001 >0.0001  0.228 0.649 
Residuals 6 0.0007 0.0001   
shape_mn 
LANDSCAPE 6 0.039 0.006  14.776 0.002 ** 
RES_LEVEL 1 0.0009 0.0008  1.896 0.217 
Residuals 6 0.003 0.0004   
ai 
LANDSCAPE 6 718.1 119.68  84.846 1.55e-05 *** 
RES_LEVEL 1 0.3 0.26  0.181 0.685 
Residuals 6 8.5 1.41   
ed 
LANDSCAPE 6 28,656,295 4,776,049  85.031 1.54e-05 *** 
RES_LEVEL 1 10,194 10,194  0.181 0.685 
Residuals 6 337,010 56,168   
iji 
LANDSCAPE 6 312.04 52.01  7.077 0.015 * 
RES_LEVEL 1 0.58 0.58  0.079 0.788 
Residuals 6 44.09 7.35   
np 
LANDSCAPE 6 6.16E + 10 1.03E + 10  38.072 0.0001 *** 
RES_LEVEL 1 4.38E + 08 4.38E + 08  1.627 0.249 
Residuals 6 1.62E + 09 2.69E + 08   
shdi 
LANDSCAPE 6 0.014 0.003  0.881 0.559 
RES_LEVEL 1 0.0004 0.0004  0.169 0.695 
Residuals 6 0.016 0.003   
shei 
LANDSCAPE 6 0.002 0.0004  0.881 0.559 
RES_LEVEL 1 >0.0001 >0.0001  0.169 0.695 
Residuals 6 0.003 0.0004   
sf_low 
LANDSCAPE 6 0.319 0.053  3.866 0.062 . 
RES_LEVEL 1 0.013 0.013  0.918 0.375 
Residuals 6 0.082 0.014   
sf_high 
LANDSCAPE 6 0.655 0.109  72.847 2.43e-05 *** 

(continued on next page) 
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(continued )  

Df Sum Sq Mean Sq F value Pr(>F) 

RES_LEVEL 1 0.001 0.001  0.879 0.385 
Residuals 6 0.009 0.002   
frac 
LANDSCAPE 6 0.078 0.013  1119.783 7.09e-09 *** 
RES_LEVEL 1 >0.0001 >0.0001  3.523 0.11 
Residuals 6 >0.0001 >0.0001   
bright 
LANDSCAPE 6 472.4 78.73  1.02e30 <2e16 *** 
RES_LEVEL 1 0 0  1.18e− 01 0.643 
Residuals 6 0 0   
bytes 
LANDSCAPE 6 5.57E + 12 9.29E + 11  18817.5 1.5e-12 *** 
RES_LEVEL 1 7.97E + 08 7.97E + 08  16.15 0.007 ** 
Residuals 6 2.96E + 08 4.94E + 07   
ec 
LANDSCAPE 6 2.00E + 09 333,382,549  842.367 1.66e-08 *** 
RES_LEVEL 1 6.98E + 05 697,991  1.764 0.232 
Residuals 6 2.38E + 06 395,769   
fc 
LANDSCAPE 6 1.6839 0.281  8456.39 1.65e-11 *** 
RES_LEVEL 1 0.001 0.001  28.78 0.002 ** 
Residuals 6 0.0002 >0.0001   
se 
LANDSCAPE 6 0.765 0.128  631.467 3.94e-08 *** 
RES_LEVEL 1 0.001 0.001  6.069 0.049 * 
Residuals 6 0.001 >0.0001   
hue 
LANDSCAPE 6 0.055. 0.009  17753.9 1.79e-12 *** 
RES_LEVEL 1 >0.0001 >0.0001  39.6 0.0007 *** 
Residuals 6 >0.0001 >0.0001   
sat 
LANDSCAPE 6 0.026 0.004  80.694 1.85e-10 *** 
RES_LEVEL 1 >0.0001 >0.0001  2.557 0.161 
Residuals 6 >0.0001 >0.0001   
Signif. co  : 0 ‘***’ 0.001 ‘**  ’ 0.01 ‘ *’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Appendix H. Preferences 

H.1 Relation (R & p) between visual features and preference score    

R p 

hue  0.301  0.296 
sat  0.011  0.970 
bright  − 0.151  0.607 
fc  − 0.692  0.006 
se  − 0.187  0.523 
bytes  − 0.437  0.118 
sf_low  − 0.556  0.039 
sf_high  0.618  0.019 
ed  − 0.327  0.253 
shape  − 0.319  0.267 
frac  − 0.319  0.267 
ai  0.327  0.253 
contig  0.002  0.994 
cai  − 0.121  0.681 
iji  − 0.209  0.474 
np  − 0.108  0.714 
shdi  0.046  0.876 
shei  0.046  0.876 
PIX_RES  − 0.011  0.970 
EDGES_RES  − 0.305  0.288  

H.2 Relation between landscape qualities and preference scores   
R p 

COHERENCE  0.710  0.004 
COMPLEXITY  − 0.024  0.935 
LEGIBILITY  0.723  0.003 
MYSTERY_A  0.204  0.483 
MYSTERY_B  0.793  0.001  
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Appendix I. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.landurbplan.2020.104000. The following link to the papers 
data repository on mendeley data: https://dx.doi.org/10.17632/wvf56j6nps.1. 

References 

Appleton, Jay (1996). The experience of landscape. Book. doi:9780471962359. 
Apostol, D., Palmer, J., Pasqualetti, M., Smardon, R., & Sullivan, R. (2016). The renewable 

energy landscape: preserving scenic values in our sustainable future. Florence: Taylor and 
Francis.  
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