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ABSTRACT

In the last 50 years, technological advancements have shaped the progress in numer-
ous areas, from medicine and biology, to social and political sciences. Machine learning
models have started to extend in the clinical domain, to enable personalized treatments
and precision medicine tasks. The goal of these algorithms is to support experts’ di-
agnosis and facilitate early detection and prevention of diseases, while tracking their
progression. Thus, the creation of complete and organised health databases, to store
patients records and medical history, is crucial to the success of automated predictive
algorithms. Additionally, the growing abundance of data generation coming in dif-
ferent formats, from hospital discharge to imaging and genetic samples, require the
development of new systems designed to handle the data structure and problem of
interest.

Amongst all, medical imaging data have received considerable interest lately. Their
collection is consistently integrating as part of standard clinical routines, partially due
to more accurate scanner protocols and economically affordable machines. In particu-
lar, brain Magnetic Resonance Imaging (MRI) data are invaluable resources to unfold
the understanding of this complex organ, whose anatomy and functionality are still
highly mysterious. From an analytical perspective, brain MRI data give rise to multiple
challenges. For instance, the discrepancy across samples, caused by intrinsic noise, or
differences of the scanner and individual brain anatomy, requires consistent and robust
processing to guarantee a reliable evaluation. Moreover, the multitude of biomarkers
and feature extraction strategies, culminates in a variety of data modalities and struc-
tures, all carrying complementary information form the same input.

Navigating the heterogeneity of data and methodologies in brain MRI is far from
being trivial. In this thesis, we address these challenges from different perspectives
and integrate methodologies for the analysis of graphs, to eventually model diverse
structured biomedical data.

In the first part, we perform a multi-modal and multi-task analysis on two cohorts
of brain imaging data, including patients diagnosed with Multiple Sclerosis and De-
pression, as well as healthy individuals. We extract whole-brain features, either from
high-resolution voxels or aggregating summary statistics from regions of interest. We
compare several classification strategies and establish an optimal pipeline for health
status prediction. Furthermore, we investigate the complex tasks of treatment response,
disease progression, and patients subtype categorization. We propose to use multiple
kernel learning methods to combine information from different modalities, and evalu-
ate their impact on the prediction. Our findings are variegated. Depression health sta-
tus and response to Electroconvulsive therapy (ECT) of patients can be predicted with
significant accuracy, while resulting in clinically interpretable brain activation patterns.
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Complex tasks, including unsupervised patient subtypes and assessment of disease
progression, still require more investigation. In our cohort, combining images from
multiple modalities can improve over their individual counterpart on selected scenar-
ios, although we often observe the performance to be dominated by the single best
modality.

In the second part of this thesis, we propose novel methodologies for the analysis of
graph structured data, with applications on molecular property prediction tasks. We
develop a similarity measure on graphs inspired by optimal assignment solutions, cal-
culating a distance over the distribution of their node embeddings. Our approach eval-
uates the difference between substructures by computing local similarities, overcom-
ing the limitation of classical aggregation steps. We extend the successful Weisfeiler–
Lehman propagation scheme to graphs with continuous attributes, and outperform
the state-of-the-art classification performance in several benchmark data sets. Subse-
quently, we introduce a framework to extend transfer learning on graph structured
data, by enhancing Graph Neural Network (GNN) models with adversarial layers.
Employing shared knowledge from large molecular data sets to small target specific
domains, we improve the prediction on multiple experimental settings.

We conclude our work envisioning the next steps of our research, and detailing the
ideas to integrate the individual contributions of this thesis. Undoubtedly, graphs are
flexible structures to encode different data types, while brain MRI have a natural graph
representation given by their anatomical and functional connection. Besides, the low
sample availability is known as a major shortcoming in the clinical data domain, and
particularly in imaging studies. From this perspective, it is undeniable that transfer
learning will play a crucial role in the years to come, to guarantee efficient extension of
successful machine learning models in the field of healthcare.
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SOMMARIO

Negli ultimi 50 anni, gli avanzamenti della tecnologia hanno modellato il progresso in
numerose aree dalla medicina e la biologia, alle scienze sociali e politiche. I modelli
dell’apprendimento automatico hanno iniziato ad estendersi nell’ambito clinico, per
permettere trattamenti personalizzati e medicina di precisione. Lo scopo di questi algo-
ritmi è quello di supportare gli esperti nelle diagnosi e di facilitare la diagnosi precoce
e la prevenzione di malattie, allo stesso tempo tracciando il loro progresso. Ne con-
segue che la creazione di banche dati sanitarie complete e organizzate, per contenere
la cartella clinica del paziente e la sua storia medica, è fondamentale per il successo
di algoritmi automatici predittivi. Inoltre, la crescente abbondanza nella generazione
di dati in diversi formati, dai moduli di dimissione, alle immagini e ai campioni ge-
netici, richiede lo sviluppo di nuovi sistemi per gestire le strutture dati e il problema in
questione.

Tra tutti, i dati delle immagini mediche hanno recentemente suscitato un notevole
interesse. Il loro raccoglimento si sta constantemente integrando negli esami di rou-
tine, anche grazie a protocolli di scanner piu accurati e macchine a prezzi accesibili. In
particolare, i dati rilevati dalle immagini a risonanza magnetica (Magnetic Resonance
Imaging; MRI) del cervello, sono risorse inestimabili per svelare e comprendere la strut-
tura di questo organo complesso, la cui anatomia e funzionalità sono ancora un mistero.
Da una prospettiva analitica, i dati MRI del cervello presentano diverse sfide. Per es-
empio, la discrepanza tra i campioni, a causa del rumore di fondo, o differenze negli
scanner e nell’anatomia individuale del cervello, rechiede approcci solidi per garantire
una valutazione affidabile. Inoltre, l’esistente moltitudine di biomarcatori e strategie
per l’estrazione di caratteristiche, culmina in una varietà di strutture e modalità di dati,
ognuno contenente informazioni complementari dalla stessa sorgente.

Navigare l’eterogeneità di dati e metodologie per gli MRI del cervello è tutt’altro che
banale. In questa tesi, affrontiamo queste sfide da diverse prospettive e integriamo
metodologie per l’analisi di grafi, con lo scopo finale di modellare una diversità di dati
biomedici strutturati.

Nella prima parte, eseguiamo un’analisi multi-modale e multi-tasking in due gruppi
di dati di immagini del cervello, che includono pazienti affetti da depressione e scle-
rosi multipla, così come individui sani. Estraiamo caratteristiche dall’intero cervello,
sia tramite voxels ad alta risoluzione, sia dall’aggregazione di statistiche ottenute da re-
gioni di interesse. Compariamo diversi classificatori e stabiliamo una pipeline ottimale
per la predizione dello stato di salute. Inoltre, investighiamo i complessi problemi della
risposta al trattamento, della progressione delle malattie, e della categorizzazione dei
sottogruppi di pazienti. Proponiamo di usare metodi kernel multipli per combinare
l’informazione tra diverse modalità di dati, valutandone l’impatto sul problema di
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predizione. Le nostre scoperte sono variegate. Lo stato di salute della depressione e
la risposta alla terapia elettroconvulsiva (Electroconvulsive therapy; ECT) dei pazienti
possono essere predetti con un’accuratezza significativa, risultando in pattern di at-
tivazione del cervello clinicamente interpretabili. Problemi complessi, che includono
l’apprendimento non supervisionato dei sottogruppi di pazienti e la valutazione della
progressione della malattia, rechiedono maggiore investigazione. Nel nostro gruppo, la
combinazione di immagini in diverse modalità puo migliorare sulla singola controparte
in scenari selezionati, sebbene osserviamo spesso che la prestazione è dominata dalla
singola migliore modalità di immagine.

Nella seconda parte di questa tesi, proponiamo una nuova metodologia per l’analisi
di strutture dati grafo, con applicazioni nella predizione di proprietà delle molecole.
Sviluppiamo una misura di similarità tra grafi ispirata da soluzioni per i problemi
di assegnazione, calcolando una distanza tra distribuzioni di embedding di nodi. Il
nostro approccio valuta la differenza tra sotto-strutture, computando similarità locali,
superando le limitazioni dei classici step di aggregazione. Estendiamo lo schema di
propagazione Weisfeiler–Lehman, che ha gia avuto molto successo, a grafi con attributi
continui, e superiamo le prestazioni di classificazione dello stato dell’arte in numerosi
set di dati di riferimento. Successivamente, introduciamo un framework per estendere
il transfer learning su strutture dati grafo, migliorando i modelli di Graph Neural Net-
works (GNNs) con livelli antagonisti (adversarial layers). Condividendo la conoscenza
da un grande campione di dati molecolari a piccoli domini specifici (target domains),
miglioriamo la predizione in molti protocolli sperimentali.

Concludiamo questo lavoro prefigurando gli step successivi della nostra ricerca ed
esponendo le idee per integrare le singole contribuzioni di questa tesi. Indubbiamente,
i grafi sono strutture flessibili che possono codificare diversi tipi di dati, mentre gli MRI
del cervello posseggono una naturale rappresentazione a grafo generata dalle loro con-
nessioni anatomiche e funzionali. Inoltre, la scarsa disponibilità di campioni di dati
è nota per essere uno dei maggiori difetti nell’ambito dei dati clinici, specialmente
negli studi con le immagini. In questa prospettiva, è innegabile che il transfer learn-
ing giocherà un ruolo cruciale negli anni avvenire, per garantire l’efficiente estensione
dei metodi di successo dell’apprendimento automatico nel campo della sanità.
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1 INTRODUCTION

“It is not the strongest of the species that survives, nor the most intelligent, but the
one most responsive to change.”

Leon C. Megginson – previously attributed to Charles Darwin

The path leading to the writing of this thesis has gone throughout a multitude of
unforeseen swings and fluctuations over the years of my PhD. The appealing idea of
integrating recent deep learning developments with graph based models, to detect rel-
evant patterns and features from brain images, has met the inevitable reality of data
limitations. To overcome the issue of missing information, researchers came up with
the elegant solution of transfer learning. This technique permits knowledge translation
across domains and exploits the abundance of different sources from related problems,
to solve the tricky ones. In this work, we investigate through all these aspects, start-
ing with classical analysis of MRI data, followed by the development of a novel graph
kernel, and concluding with the expansion of domain adaptation strategies on graph
structured data. We envision the integration of our advances in graph learning with
MRI data analysis to be the ultimate outlook of this dissertation, progressing the ambi-
tious and fascinating goal of understanding the human brain.

1.1 MOTIVATION

Of all the organ systems in the human body, the brain holds the record for being the
most complex and challenging when it comes to unveiling its processes. It serves as an
intermediary from the external stimuli of the outside world to our perception of them,
besides controlling our movements, speech and thoughts. Nevertheless, our biological
understanding of the brain, its functionality and anatomy, is far from being complete.
Medical advances over the last 50 years have made enormous progresses towards a
better understanding of this complex organ, with genetic and imaging data playing a
crucial role for it. While medical data acquisition is increasingly becoming an integrated
part of the standard clinical routine, the harmonized and standardized data collection
as well as data curation remain major challenges. In general, the collected features and
samples will not be comparable across studies posing a major challenge for the data
analysis and interpretation. Furthermore, imaging techniques are still bound to a high
economical cost, with the consequence that physicians must carefully select which data
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modalities to collect, leading to possible biases. As opposed to the tech related fields
that are hallmarked by an exponential explosion of data availability (e.g., smartphones,
smartwatches, social media, and web services), this growth is moving at a slower pace
in the medical domain. Noisy and small data possibly represent the primary obstacle
for the application and innovation of machine learning methods. This is particularly
pronounced in the deep learning area, where neural networks have reached top level
accuracy and exceeded the ability of human experts [106, 163], but still require a large
data set for model training. This problem has not been ignored by researchers, with
transfer learning being proposed as the most promising approach to surpass the short-
comings arising from limited domain knowledge [139, 201]. The success of the transfer
learning idea, to improve model learning capabilities by transferring information across
domains, has been supported by its positive impact on different research areas [32, 117,
146]. In addition, meaningful representation of medical data is far from being trivial,
due to the variety of features and their hidden interactions. From images throughout
time series, to graphs and tabular data, users are presented with multiple choices for
visualizing and structuring their data. By virtue of their structural flexibility, graphs are
a powerful tool to represent different types of objects and their connections, from pa-
tients and diseases in knowledge graphs, towards brain structures in medical images,
to chemical bonds and genetic interaction networks. This thesis bridges the gap across
these research areas. Learning to transfer information across structured data, offers
the opportunity to extend machine learning models on different applications, where
intrinsic data limitations have been an obstacle in the past.

1.2 BRAIN MRI FOR STUDYING NEUROLOGICAL DISORDERS

The anatomy of the brain is per se conglomerated: a standard segmentation divides it
into White Matter (WM), Grey Matter (GM), and cerebrospinal fluid (CSF). WM tracts,
made of nerve fibres (axons), transmit impulses between neurons which constitute
the GM, ultimately forming the structural connection across brain areas. Besides the
anatomical structure, a multitude of activations and signals occur during static times
and as a reaction to external stimuli. These activations generate the so-called functional
connectivity of the brain. A detailed picture of the brain can be obtained by means of
magnetic resonance imaging (MRI). This is a non invasive technique that outputs high
resolution images using a magnetic field, generated while a subject lies inside a scanner
machine (Figure 1.1). Depending on the information of interest, different modalities of
MRI can be acquired; at an high-level, they separate between structural and functional,
accordingly to the type of connectivity detected. Figure 1.1 shows a typical acquisi-
tion protocol in the clinic with a Siemens scanner (left panel), and an example of the
outcome, a structural MRI image, with standard segmentation into WM, GM, and CSF
(right panel). While certain alterations of functional and structural connectivity are part
of the natural evolution, unexpected changes are typically the consequence, or early
signs, of neurological and psychiatric medical conditions. MRI analysis is particularly
useful for studying these disorders, in the context of diagnosis, as well as early detec-
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1.2 Brain MRI for studying neurological disorders

Figure 1.1: A standard MRI acquisition protocol (left) with a Siemens scanner in the clinic. The
outcome is an MRI structural image, with segmentation into white matter (yellow),
grey matter (blue), and cerebrospinal fluid (red).

(a) Siemens scanner.a

aSource https://www.indiamart.com/proddetail/

siemens-trio-�t-mri-scanner-�����������.html

(b) Example of a T1 segmentation.
Source: Nagel and Kroenke [128].

tion and treatment response prediction. Neurological disorders affect and damage the
nervous system, with the most common including Parkinson, Alzheimer, Schizophre-
nia and Multiple Sclerosis. Other diseases causing mental illness, such as Major and
Bipolar depression, are categorized as psychiatric disorders. Nevertheless, as depres-
sion directly affects the brain connectivity it has been discussed whether to include it in
the neurological group [95]. Within this thesis, we will refer to neurological disorders
also including depression. Either mental and psychiatric diseases, as well as neurolog-
ical conditions, have been widely investigated with the help of MRI images. Providing
a complete picture of the brain they constitute a major step forward to understand and
study such diseases.

Affecting more than 264 million people worldwide, clinical depression is among the
most common mental disorders [93]. Depression is related to disruption in the cogni-
tive domain, specifically affecting working memory related tasks [188]. Neuroimaging
studies have tried to highlight the dysfunctional areas and mechanisms affected in the
brain, but showed conflicting results. To solve these inconsistencies, replicating previ-
ous studies on a larger cohort is a first and important step. Additionally, employing
multivariate machine learning analysis rather than classical statistical inference [55],
helps to circumvent the multiple comparison problem [46] while detecting distributed
patterns of activity.

Similar considerations apply for other neurological disorder, such as Multiple Sclero-
sis (MS), a neurodegenerative disease affecting approximately 2 million people world-
wide [91]. As MS damages the white matter tracts, MRI images are valuable instruments
to detect these injuries and enable early diagnosis. Nonetheless, the unpredictable
course of MS is still a major limitation for the diagnosis, since subjects with similar
symptoms might evolve to totally different severity levels over the years. Moreover,
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MRI images often report lesions undetectable by the human eye. Machine learning has
helped to find and interpret the subtle aberrations in the MRI, to support prediction of
early diagnosis of MS and other complex neurological tasks [173].

Classical analysis of MRI data extracts image based features as input for the learn-
ing algorithm. Relevant information can be obtained either at whole-brain or regional
level. In the latter case, patches are selected containing knowledge and characteristics
associated to individual diseases, which are known to affect different brain areas. An
alternative to the standard image feature representation of MRI data is tu use graph
structures. Thanks to their flexibility, graphs permit to unveil and efficiently combine
hidden patterns from the images and can also be exploited to integrate MRI data with
other type of clinical information.

1.3 GRAPH MODELLING OF CLINICAL DATA

A lot of the knowledge coming from real world domains, from social networks, smart-
phone and mobility data, through signal processing and software, to healthcare and
genetic data, cannot be represented in basic vectorial representation but require com-
plex data structures. Graphs are used to represent relations between objects, and are
then extremely useful for many of these applications. In biology, networks can rep-
resent protein-protein interaction or genes interaction, with the edges depicting func-
tional relationships. In a more general context, knowledge graphs encode any kind of
relational information between different sources. For example, in healthcare, we can
construct a knowledge graph by relating subjects with diseases, hospitals or symp-
toms. In chemoinformatics, graphs have been widely used to model compounds. For a
molecule, atoms correspond to nodes while their bond represent the edges. Finally,
graphs can encode the complex structure of the brain, either showing structural or
functional connectivities [27, 164]. At the functional level, the nodes represent brain
areas, while edges form the correlation between their activity; at the structural level,
the network is defined by the anatomical connection between regions or brain tissue.
A schematic overview of the brain graph is provided in Figure 1.3. Approaches have
been proposed to analyse and compare brain graphs, mostly based on the extraction
of topological properties. Modern machine learning techniques can directly take the
graphs as input for the learning algorithms, exploiting nodes and edge features then
employing various propagation schemes along the graph to extract vectorial represen-
tations. These methods are mainly divided into two categories, kernel based and deep
learning approaches, primarily differing in the procedure to determine the weights of
the model. Overall, the advancements of network analysis strategies, and in particular
the exploitation of complex graph substructures, has lead to improved performance
in many fields, when compared to standard approaches. As a consequence, many
researchers have focused on the development of graph based analysis techniques for
brain MRI studies, pursuing the ambitious goal of bringing the understanding of the
brain and its disorders to a new level. Overall, despite the numerous data collection
efforts, research in the MRI area still suffers from the lack of homogeneous and large
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Figure 1.3: A representation of the brain graph for functional and structural networks. Adapted
from multiple sources: Islam et al. [92] and Heuvel et al. [83]
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cohorts. To address this problem, the efficient machine learning approach is to apply
transfer learning.

1.4 TRANSFER LEARNING

Transfer learning has been developed with the goal to improve model learning, when
difficulties arise from the data itself, due to small sample size or incomplete domain
knowledge. In a nutshell, the idea is to learn a model exploiting information from
a source domain and adapt it to the limited target domain. In image analysis, these
methods have shown to be effective, where it is well known that low-level features
capture general properties, while deeper features are task specific [201]. In general, the
transfer can occur at different levels, including model parameters or task and input re-
lated knowledge. A key question is to understand how and what to transfer in order to
guarantee sufficient similarity across the source and target, and avoid negative transfer,
which hurts the model performance [152]. To date, a profound understanding of trans-
ferability still remains an open problem. In healthcare applications, and in particular
on medical imaging, this research is still at the dawn, due to the difficulty to find good
source data to transfer from. A recent work by Raghu et al. [146] performed a comprehen-
sive evaluation studying the effect of transfer learning on model performance, from the
ImageNet [42] database to various medical imaging tasks, including the diagnosis of di-
abetic retinopathy and five different diseases from chest x-rays. The authors report the
gain offered from transfer learning to be negligible, with small models reaching compa-
rable performances. Exploring the learned features, they also observed that transferred
models tend to overfit, suggesting that hybrid approaches which only adapt part of
the network are the most promising for future investigation. According to this study,
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understanding how to maximize the gain from learning large scale models in medical
imaging domains, is still an open and active research area. Similar considerations ap-
ply on the brain MRI domain, where transfer learning studies are even rarer and more
problematic, due to the intrinsic data inconsistencies across different studies.

The successive step of integrating transfer learning with graph based algorithms is
far from being trivial. A major issue is due to the lack of a straightforward feature in-
terpretation where the data structure is heterogeneous across samples, as it occurs for
graphs with different topology. Recent work attempted to combine transfer learning
with various graph neural network models, taking advantage from the deep learning
perspective, while the application areas spaced from chemoinformatics to text classifi-
cation [89, 194]. Nevertheless, efficient domain adaptation on brain MRI graphs is yet
an unexplored topic. We hope that the growing interest and development in graph
transfer learning methods could also motivate the neuroimaging community to further
develop these techniques, overcoming the long lasting problem of data limitation.

1.5 ORGANISATION AND CONTRIBUTIONS OF THIS THESIS

In this section we detail the main contributions of this thesis and present the organi-
sation of the text. We will provide a brief summary of each of the upcoming chapters,
listing the of corresponding publications as well as individual contributions. The con-
tent of this thesis is presented in four parts:

(i) An introduction and background, with an overview of kernels and neural network
approaches for graph structured data;

(ii) Analysis of multi-modal and multi-task brain MRI data, with application to stud-
ies on major depression and multiple sclerosis;

(iii) Learning on graph structured data, from the development of a new kernel to trans-
fer learning on graphs;

(iv) Conclusion and outlook for future work.

Part of the Introduction (Chapter 1), is based on all the publications listed below.

1.5.1 KERNELS AND NEURAL NETWORKS FOR GRAPH STRUCTURED DATA

In Chapter 2 we present a short introduction to kernel methods, followed by a an
overview of the current state-of-the-art in graph kernels. We categorize graph kernels
according to the type of substructure and aggregation strategy used to build the simi-
larity matrix, from the most popular R – convolution framework to recently developed
optimal assignment approaches. Then, we offer a brief self-contained description of
graph neural networks, with particular attention to the message passing framework,
and highlight their connection to the class of Weisfeiler–Lehman kernels. Part of this
chapter is based on the following review:
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• Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and
Bastian Rieck. Graph Kernels. State-of-the-art and future challenges. Foundations
and Trends in Machine Learning, 2020.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and
Bastian Rieck structured the review and designed the experiments. Bastian Rieck
performed the experiments, with contributions from Elisabetta Ghisu, Felipe Llinares-
López, and Leslie O’Bray. All authors wrote the manuscript. The list of authors is
ordered alphabetically.

1.5.2 CLASSIFICATION OF DEPRESSION HEALTH STATUS WITH BRAIN MRI

The collection of brain MRI data has exploded in the clinic in the latest years, with
scanner machines becoming more accurate and cheaper, providing an invaluable tool
for medical doctors to detect early signs of diseases. With a variety of available imag-
ing modalities, it is unclear which type should be collected for the task of interest. In
Chapter 3 we study the patients versus control classification task, in a cohort of healthy
individuals and patients diagnosed with depression using task-based fMRI data and
employing multivariate analysis tools. We find that subjects can be successfully sepa-
rated into the two clinical groups, based on different evaluation metrics. Inferring the
most informative features from the classification model, we detect relevant patterns in
the brain that are associated with either patients or controls. We then experiment on the
integration of different MRI modalities with multiple kernel learning techniques, and
discuss their ultimate contribution to improve the learning performance. Part of this
chapter is based on the following publication:

• Matti Gärtner⇤, Elisabetta Ghisu
⇤, Milan Scheidegger, Luisa Bönke, Yan Fan,

Anna Stippl, Ana-Lucia Herrera-Melendez, Sophie Metz, Emilia Winnebeck, Mar-
ial Fissler, Anke Henning, Malek Bajbouj, Karsten Borgwardt, Thorsten Barnhofer,
and Simone Grimm. Aberrant working memory processing in major depression:
evidence from multivoxel pattern classification. Neuropsychopharmacology 43, no.
9 (2018): 1972–1979. ⇤ = Equal contribution.

Matti Gärtner, Elisabetta Ghisu, Karsten Borgwardt, and Simon Grimm designed
the study. Matti Gärtner performed the pre-processing and post-hoc region of
interest analysis. Elisabetta Ghisu performed the machine learning classification
analysis. Matti Gärtner and Simone Grimm contributed to the clinical interpreta-
tion of results, with support from Elisabetta Ghisu on the analytical side. Matti
Gärtner and Elisabetta Ghisu wrote the manuscript, with contributions from Karsten
Borgwardt, Simone Grimm, and all other authors.

1.5.3 ANALYSING COMPLEX NEUROLOGICAL TASKS

While detecting the patients versus control phenotype is one of the most common prob-
lem in biological and medical applications, it is far more interesting and relevant for the
clinic to study complex tasks, such as early detection of diseases or treatment response.
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We investigate this problem in Chapter 4, where we analyse MRI samples from pa-
tients diagnosed with major depression and MS, testing supervised and unsupervised
machine learning techniques to predict individual therapy responses and identify pa-
tient subtypes. We further discuss the limitations and challenges of our study, with an
outlook on the open problem of predicting the progression of neurological disorders.
Part of this chapter is based on the following manuscript:

• Matti Gärtner, Elisabetta Ghisu, Ana Lucia Herrera-Mendelez, Michael Koslowski,
Sabine Aust, Patrick Asbach, Christian Otte, Francesca Regen, Isabella Heuser,
Karsten Borgwardt, Simone Grimm⇤, Malek Bajbouj⇤. Using routine MRI data of
depressed patients to predict individual responses to electroconvulsive therapy.
Experimental neurology (2020): 113505. ⇤ = Equal contribution.

Matti Gärtner, Elisabetta Ghisu, Simon Grimm, and Malek Bajbouj designed the
study. Matti Gärtner processed the data and performed the clinical analysis. Elis-
abetta Ghisu performed the machine learning experiments, including the classi-
fication and regression analysis. Matti Gärtner, Simon Grimm, and Malek Ba-
jbouj contributed to the clinical interpretation of results, with support from Elis-
abetta Ghisu on the analytical side. Matti Gärtner and Elisabetta Ghisu wrote
the manuscript, Karsten Borgwardt, Simone Grimm, Malek Bajbouj, and all other
authors.

1.5.4 WASSERSTEIN WEISFEILER-LEHMAN KERNEL

In Chapter 5 we present one of the main methodological contributions of this thesis,
the Wasserstein–Weisfeiler Lehman Kernel (WWL). To create a new similarity measure,
we represent graphs as distributions of node embeddings and utilize tools from opti-
mal transport theory to evaluate their distance. We develop a theoretical framework
to support the validity of our approach, extending the Wasserstein Distance on graph
structured data. We evaluate the performance in terms of runtime and accuracy, com-
paring WWL with other state-of-the-art graph kernels on real-world and synthetic data
sets. This chapter is based on the following publication:

• Matteo Togninalli⇤, Elisabetta Ghisu
⇤, Felipe Llinares-López, Bastian Rieck, and

Karsten Borgwardt. Wasserstein Weisfeiler-Lehman graph kernels. In Advances in
Neural Information Processing Systems, pp. 6439-6449. 2019. ⇤ = Equal contribution.

Matteo Togninalli, Elisabetta Ghisu, Bastian Rieck, and Karsten Borgwardt con-
ceived the research. Matteo Togninalli and Elisabetta Ghisu performed the ex-
periments, with contributions from Bastian Rieck. Matteo Togninalli and Bastian
Rieck proved the theoretical results, with contributions from Elisabetta Ghisu.
Matteo Togninalli and Elisabetta Ghisu wrote the paper, with contributions from
Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
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1.5.5 ADVERSARIAL GRAPH NEURAL NETWORKS

As the neuralized version of kernel methods, graph neural networks have gained a
lot of attention in the latest years, although they are usually confined to large sample
size regimes. In Chapter 6 we propose a general approach to apply transfer learning on
graph neural networks, improving their learning capabilities on limited sample size do-
mains. We present a comprehensive empirical evaluation and conclude with a critical
discussion to establish the conditions for effective adversarial based domain adaptation
on graphs. This chapter is based on the following manuscript:

• Elisabetta Ghisu, Matteo Togninalli, Felipe Llinares-López, and Karsten Borg-
wardt. Adversarial Graph Neural Networks. In submission.
Elisabetta Ghisu, Matteo Togninalli, Felipe Llinares-López, and Karsten Borg-
wardt conceived the project. Elisabetta Ghisu performed the experiments, with
contributions from Matteo Togninalli. Elisabetta Ghisu wrote the paper, with con-
tributions from Matteo Togninalli, Felipe Llinares-López, and Karsten Borgwardt.

1.5.6 OUTLOOK AND APPENDIX

We conclude this work by detailing ideas for future directions to explore within our
research. In particular, we present an outline to integrate the graph based methodology
developed in this thesis with the clinical application on the brain MRI domain. In the
appendix, we describe the software created for the different sub-projects. Part of the
content discussed in Chapter 7 and Appendix B is based on the following published
work:

• Christian Bock⇤, Matteo Togninalli⇤, Elisabetta Ghisu, Thomas Gumbsch, Bas-
tian Rieck, and Karsten Borgwardt. A Wasserstein Subsequence Kernel for Time
Series. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 964-969.
IEEE, 2019. ⇤ = Equal contribution
Christian Bock, Matteo Togninalli, Elisabetta Ghisu, Thomas Gumbsch, Bastian
Rieck, and Karsten Borgwardt conceived the research. Christian Bock and Matteo
Togninalli performed the experiments, with contributions from Elisabetta Ghisu
and Thomas Gumbsch. Elisabetta Ghisu implemented the kernel baselines. Chris-
tian Bock, Matteo Togninalli, and Bastian Rieck wrote the paper, with contribu-
tions from Elisabetta Ghisu, Thomas Gumbsch and Karsten Borgwardt.

• Mahito Sugiyama, Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borg-
wardt. graphkernels: R and Python packages for graph comparison. Bioinformat-
ics 34, no. 3 (2018) 530–532.
Mahito Sugiyama, Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borg-
wardt designed the work. Mahito Sugiyama coded the backend C/C++ interface
and the R library. Elisabetta Ghisu implemented the frontend Python package and
wrapper from C/C++. Mahito Sugiyama and Elisabetta Ghisu wrote the application
note, with contributions from Felipe Llinares-López and Karsten Borgwardt.
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2 FROM KERNELS TO NEURAL NETWORKS
FOR GRAPH STRUCTURED DATA

Kernel methods have been extensively developed in the last decades to provide an ex-
pressive representation of many real world data, to uncover hidden relations and pat-
terns, and facilitate the applicability of learning algorithms. Classical machine learning
methods for regression, classification, or clustering are designed to take as input a tab-
ular data matrix, where each row is a sample and the columns represent categorical or
continuous features. On one hand, in the setting of high dimensional data, i.e. when
the number of features is very large, using this explicit feature representation becomes
computationally infeasible. On the other hand, many real word data such as images,
graphs, and time series are challenging for standard machine learning algorithms, be-
cause they do not come in a vectorial representation. For example, a 2D picture has a
spatial component that cannot be retrieved by simply flattening the pixel space into a
1D array, as we would loose information about the proximity and similarity among the
pixels’ location. Additionally, most of the classical approaches were developed to cap-
ture linear interactions within the data. This type of relations do not always reflect real
world scenarios, where non-linear dependencies occur between patterns and should
be detected to enable a meaningful understanding [86]. Kernel based approaches have
been mostly motivated by the necessity to overcome these limitations.

Kernel methods will be at the foundation of our analyses in Chapters 3 and 4. We will
explore how kernels can be incorporated in classical machine learning models to learn
similarity measures and solve classification and regression problems. These methods
will be applied on brain MRI data and extended to combine multiple modalities, by
capturing complementary characteristics from heterogeneous data sources.

The versatility of the Weisfeiler–Lehman (WL) kernel scheme 2.2.5, and the current
limitations of the R-convolution framework 2.1.3, motivated us through the develop-
ment of the Wasserstein Weisfeiler-Lehman (WWL) kernel (Chapter 5). We will for-
mulate a general Weisfeiler–Lehman propagation scheme, to generate node and graph
embeddings from arbitrarily attributed graphs. Optimal assignment theory will play a
crucial role to obtain similarity matrices that are sensitive to the difference in node dis-
tributions, as opposed to the R-convolution framework which only accounts for local
structural similarities.

We will conclude this chapter with an overview on graph neural networks (GNNs),
considering their relation with the label refinement scheme. As for most deep learning
based methods, the performance of GNNs suffers in small sample size regimes, due to
the risk of overfitting. Nevertheless, it is yet unclear to which extent it is more con-
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venient to use GNNs versus graph kernels. On one hand, the GNN models have the
advantage of learning the update and aggregation function, while accounting for non-
linear interactions in the data, therefore potentially have the ability to capture more
subtle differences in substructures. On the other hand, especially in low sample size
regimes, the GNN has the high risk to overfit, ultimately learning a model that is over
representative of the training instances. On the runtime perspective, there are also con-
flicting visions. The GNN has a minimum required training time due to the backprop-
agation step, while efficient graph kernels can be very fast for small and sparse graphs.
However, while GNNs are still tractable in big data regimes, computing kernels be-
comes infeasible for large and dense graphs. Finding the best trade-off between the
usage of graph kernels and graph neural networks is yet an open research questions.
We will discuss a related problem in Chapter 6, integrating GNNs with tools from do-
main adaptation and adversarial training, hence addressing the issue of data limitation
from a transfer learning perspective.

2.1 AN OVERVIEW OF KERNEL METHODS

Broadly speaking, a kernel is a dot product in some, possibly high dimensional, feature
space. By virtue of the so-called kernel trick, many algorithms can be reformulated to
work on the kernel space defined by the dot product, such that the feature representation
does not have to be explicitly computed. Intuitively, this implicit kernel representation
is a measure of similarity between pair of objects in the explicit feature space. Addition-
ally, the similarity matrix can be directly inferred from structured data, by combining
relational and value based information. We will further extend this idea in the next
section, when presenting the R – convolution framework [82], which allows to derive
similarity measures between objects by aggregating information from sub-parts of the
original data. In the remainder of this section, we will present the mathematical rig-
orous required to understand kernel methods and introduce the notation and concepts
that we will used throughout this thesis.

2.1.1 REPRODUCING KERNEL HILBERT SPACES

Before diving into the formal characterisation of kernels, we introduce one of the crucial
ingredients to their construction, the Reproducing Kernel Hilbert Spaces. Let us assume
we have a pair of instances in some input space, i.e. x, x0 2 X . The implicit kernel rep-
resentation denoted as k(x, x0) = hf(x), f(x0)i, is defined as an inner product between
the explicit feature map f : X 7! H. In order for k to be well defined1 the feature space
H has to be a vector space endowed with a dot product, more precisely it has to be an
Hilbert space.

1The meaning of a well defined kernel will be clarified in the next sections; for the moment it is enough to
note that a kernel has to satisfy certain properties in order to be a valid input for the machine learning
algorithm.

14



2.1 An overview of kernel methods

Definition 2.1 (Hilbert space). An Hilbert space over a vector field (R or C) is an inner
product space which induces a complete metric space. A metric space is complete if
every Cauchy sequence is convergent.

Definition 2.2 (Cauchy sequence). A sequence x1, x2, . . . of elements in H, equipped
with a norm k · kH is said to be a Cauchy sequence if for every e > 0 there exists q such
that for all i, j � q, kxi � xjk < e.

A reproducing kernel Hilbert space (RKHS) is a particular instance of the Hilbert
space defined above, with the further requirement that the set of functions evaluated at
each point x 2 X are a continuous linear functional.

Definition 2.3 (Reproducing Kernel Hilbert Space). Given a non empty set X and an
Hilbert space of functions f 2 H where f : X 7! R, we say that H is a reproducing kernel
Hilbert space (RKHS) is there exist a function k : X ⇥X 7! R, such that:

(i) the kernel k has the reproducing property, i.e.

f (x) = hk(x, ·), f i for all f 2 H (2.1)

with
k(x, x0) = hk(x, ·), k(·, x0)i; (2.2)

(ii) the space H is spanned by k, therefore k(x, ·) 2 H for every x 2 X .

2.1.2 KERNELS

We now extend these concepts to characterise the kernel as a class of functions, repre-
senting similarities scores between objects.

Definition 2.4. Let X be a non empty set. Let k : X ⇥ X 7! R be a function associated
with a reproducing kernel Hilbert space H, such that there exists a map f : X 7! H
satisfying

k(x, x0) = hf(x), f(x0)iH (2.3)

for all x, x0 2 X . Then, we say that k is a kernel.

As a crucial highlight from Definition 2.4, we remark that the function f does not
have to be explicitly computed, indeed it is often an high dimensional representation
and is infeasible to deal with it. Kernel methods rely solely on the function k to perform
inference and prediction on the data x 2 X . In practice, we require k to satisfy ad-
ditional properties to be well defined and valid to be used in kernel based algorithms,
specifically k has to be a positive definite (PD) kernel. The concept of a PD kernel is strictly
related to the analogous PD matrix.

Definition 2.5 (Positive definite matrix). Given a real-valued symmetric matrix K 2
n⇥ n, the following statements are equivalent:
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2 From kernels to neural networks for graph structured data

(i) for all ci 2 R;
Â
i,j

cicjKij � 0 (2.4)

(ii) the eigenvalues of K are nonnegative, i.e.

ztKz > 0, for all non zero z 2 Rn; (2.5)

(iii) K is positive definite.

It is easy to deduct from Definitions 2.4 and 2.5, that applying a kernel k to every
pair of instances xi, xj in a finite space X , |X | = n gives rise to a symmetric matrix K
encoding the corresponding kernel value, such that Ki,j = k(xi, xj), for all i, j = 1, . . . , n.
The matrix K is also called Gram matrix.

Definition 2.6 (Gram matrix). Let x1, . . . , xn 2 X with kernel k : X ⇥ X 7! R. Then,
the matrix

K = k(xi, xj) (2.6)

for all i, j = 1, . . . , n is called the Gram matrix or kernel matrix of k with respect to
x1, . . . , xn.

Combining Definitions 2.4 to 2.6 we can reformulate the notion of a positive definite
kernel.

Definition 2.7 (Positive definite kernel). Let k be a kernel as per Definition 2.4. If k
gives rise to a positive definite Gram matrix K, then k is a positive definite kernel with
associated kernel matrix K.

Strictly speaking, positive definiteness as deduced from Definition 2.5 also requires
ci = 0 for all i. This condition is often not necessary in machine learning, and is relaxed
to result in positive semi-definite kernels (PSD). For the purpose of this thesis, we will
indistinguishably talk about PD and PSD kernels, with reference to Definition 2.5. From
now on, we will also refer to kernels and implying that these are PSD, if not mentioned
otherwise.

It can be shown that PD kernels are closed under certain properties, including sum,
product, and multiplication for a scalar. Given two kernels K1 and K2, we define the
following composite matrices:

(i) Ksum = K1 + K2

(ii) Kprod = K1 ⇥ K2

(iii) Ksc = cK1

If K1 and K2 are kernels, then Ksum, Kprod, and Ksc are also kernels for every c 2 R.
An important consequence of using k as defined in Definition 2.4, is that any machine

learning algorithm relying on the dot product can be "kernelised" and formulated in
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2.1 An overview of kernel methods

terms of the kernel. This substitution is called kernel trick and many of the most pop-
ular algorithms such as Support Vector Machines or k-Nearest Neighbour fall into this
framework [158]. The kernel trick allows to apply these algorithms via the gram matrix
only, without computing the explicit feature representation f(x). This scheme permits
the extension of numerous machine learning models on complex data domains, such
as graphs and strings, that lack a natural vectorial representation. We will later discuss
how the closure properties play a crucial role, as they help to generate and combine
kernels to define novel similarity measures. We will now introduce some of the most
popular and established kernel functions, which are well-known to produce valid ker-
nels, while modelling different type of relations within the data. In the following we
assume x, x0 2 X ⇢ Rp are p – dimensional instances defined in some finite subset of
the real valued space.

DIRAC KERNEL. The Dirac kernel (or delta kernel) is possibly the most simple kernel
function, aiming to assess if two objects are the same:

kd(x, x0) =

(
1, if x = x0

0, else
(2.7)

LINEAR KERNEL. The linear kernel is also a very simple and popular representation,
defining the similarity in terms of linear interactions via a dot product:

klin(x, x0) = hx, x0i. (2.8)

POLYNOMIAL KERNEL. To take into account higher order interactions between data,
the polynomial kernel can be used:

kpoly(x, x0) = (hx, x0i+ c)d, (2.9)

with an additive factor c and the degree of the polynomial d, as kernel parameters.

GAUSSIAN RADIAL BASIS FUNCTION (RBF) KERNEL. The RBF kernel (or Gaussian ker-
nel) models a gaussian relationship between the samples and is defined as:

kRBF(x, x0) = exp(�gkx� x0k2), (2.10)

with kernel parameter g.

SIGMOID KERNEL. Finally, the sigmoid kernel defines the similarity via a non-linear
hyperbolic activation function:

ksig(x, x0) = tanh(g · hx, x0i+ c), (2.11)

for kernel parameters c and g.
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2 From kernels to neural networks for graph structured data

2.1.3 R-CONVOLUTION FRAMEWORK

There exist plenty of possibilities to construct valid kernels starting from the standard,
well established, functions. Exploiting the closure properties, for instance, allows to
combine different kernels providing a complementary source of information. A con-
venient approach, particularly suitable for complex structured data such as strings,
graphs, or trees is the R – convolution framework proposed by Haussler [82]. The under-
lying idea relies on applying well known kernels on substructures of the original data,
then aggregate the results to define the similarity measure on the entire entity. For this
method to be valid, it is required that the object can be decomposed into a finite set of
parts or substructures which, properly combined, retrieve the original instance.

To formalise the intuition behind the R – convolution framework, let x 2 X be a data
object having the "composite property", i.e. assume that x can be divided into D "parts"
{x1, . . . , xD}, where xd 2 Xd, and 1  d  D. Therefore, we can represent the relation
for a specific object x 2 X and its sub-parts xd in terms of the general relation between
Xd and X . Let x̄ = {x1, . . . , xD} and denote by R(x̄, x) the relation: "{x1, . . . , xD} are
part of x". We further define the inverse relation as R�1(x) = {x̄ : R(x̄, x)} and we say
that R is finite if R�1(x) is finite, that is there are finitely many parts xd. We observe that
a relation and its inverse uniquely define a decomposition of the object x into a finite
set of sub-parts.

Definition 2.8 (R – convolution). Suppose we have two objects x, x0 2 X such that x̄, x̄0
are the parts of x, x0, respectively. Assume there exist a kernel k : Xd ⇥Xd 7! R on each
Xd generating kernel matrices Kd = k(xd, x0d), for each d = 1, . . . , D. Then we define a
the R� convolution kernel of K1, . . . , KD from the kernel function k as,

K(x, x0) = Â
x̄2R�1(x),x̄02R�1(x0)

D

’
d=1

k(xd, x0d). (2.12)

From the closure properties, it follows that the kernel in equation 2.12 is a valid PD
kernel, given that k is a PD kernel. The R – convolution kernel defined in terms of
the decomposition relation introduced above can be applied to many different data
domains, from strings to tuples. In the next section, we will exploit it for our application
of interest on graph structured data.

2.2 GRAPH KERNELS

Graphs are ideal candidates to fit into the R – convolution framework, given their in-
trinsic modular structure. In a nutshell, these approaches rely on a graph decomposi-
tion into different substructures, such an paths, walks, or trees, followed by an aggre-
gation step, most commonly average or sum. From Definition 2.8, it follows that a com-
plete convolution based approach would split the graph over all its possible subparts.
This results in a very high computational complexity, due to the exponential growth in
the number of substructures necessary to reconstruct the graph. Graph kernels are de-
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2.2 Graph kernels

signed to find smart ways to simplify the decomposition, restricting the computation
to a limited and informative number of subparts. To navigate into the abundance of
existing graph kernels, we will define criteria to categorise these approaches into sub-
classes, depending on the type of substructure used to develop the kernel. On a succes-
sive level, it is also crucial to distinguish between the kind of graphs that these methods
can handle, for instance node and edge attributes, or directed versus undirected graphs.
Within the scope of this thesis, we do not aim to provide and exhaustive description of
all the existing graph kernel methods, but rather present a general overview and focus
on the most relevant instances.

2.2.1 PRELIMINARIES ON GRAPHS

Before diving into the description of the different graph kernel methods, we recall the
basic definitions and introduce our terminology and notation on graphs.

Definition 2.9 (Graph). We define a graph as a tuple G = (V, E) with vertices |V| = n
and edges |E| = m. If an edge exist between nodes u, v 2 V we denote it as eu,v = (u, v).
A graph G is said to be directed if the pair (u, v) is ordered; otherwise, we say that G is
undirected.

Definition 2.10 (Adjacency matrix). Given an undirected graph G = (V, E) the adja-
cency matrix A 2 Rn⇥n uniquely determines the topology of the graph. It is defined as
Ai,j = ai,j, with i, j = 1, . . . n, such that ai,j = 1, if evi ,vj exists, ai,j = 0, else.

The concept of neighbourhood is one of the most fundamental in graph theory. Gener-
ally speaking, the neighbourhood of a node consists of all the nodes that are connected
to it by an edge. More precisely, we also call this the 1 – neighbourhood. Then, a k –
neighbourhood is defined according to the node distance within the graph.

Definition 2.11 (Node distance). Given an undirected graph G = (V, E) we define
the distance between two nodes u, v 2 V, d(u, v), as the minimum number of edges
necessary to reach v from u, and viceversa.

Definition 2.12 (K-neighbourhood). Given a graph G = (V, E) we define the k -neighbourhood
of a node v 2 V the set of nodes that can be reached from v with at most k hops, i.e.
that have distance k from v. Equivalently, a node u 2 V is in the neighbourhood of v if
u and v are separated by at most k edges:

N k(v) = {u 2 V : d(u, v)  k}. (2.13)

In the following, we will refer to the neighbourhood of a node as its 1 – neighbourhood,
unless specified otherwise

Definition 2.13 (Degree). The degree of a node v 2 G in a graph, is defined as the
cardinality of its 1 – neighbourhood, or equivalently as the number of outgoing edges
from v, that is:

deg(v) = |N (v)|. (2.14)
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2 From kernels to neural networks for graph structured data

We now have all the ingredients to define fundamental elements in graph theory, i.e.
walks and paths, which are substructures of the original graph and will be especially
useful to design convolution kernels.

Definition 2.14 (Walk, path, shortest path). We define a walk w in a graph G = (V, E)
as a sequence of nodes w = {v1, . . . , vr}, vi 2 V for i = 1, . . . , r, where consecutive
nodes are connected by edges, i.e. (vi, vi+1) = evi ,vi+1 2 E for 1  1 < r. The length
of the walk is equal to the number of edges r � 1. If it holds that vi 6= vj () i 6= j,
or equivalently there are no self-loops, then the walk is called a path. The shortest path
between two nodes vi and vj in V is the path of minimal length connecting them.

Enumerating shortest paths in a graph is a non trivial task, due to the high compu-
tational complexity from having to evaluate all the paths and their length between two
nodes. In practice, shortcuts can be employed to reduce the search space. Two popular
algorithms to find all shortest paths in polynomial time are Dijkstra [43] and Floyd-
Warshall [53, 190].

Nodes and edges often contain additional information depending on the nature of
the data. For example, the edges might be weighted according to the spatial distance
between the objects (nodes). The nodes are often representative of specific entities and
contain an associated feature representation. This information is encoded within the
graph structure in the format of attributes or labels.

Definition 2.15. Let G = (V, E) be a graph such that |V| = n and |E| = m. We charac-
terise node and edge attributes and labels as follows.

(i) The graph G is node attributed, or simply attributed, if there exist an embedding
function ` : |V| 7! Rp such that `(G) = XG 2 Rn⇥p. We call XG the node feature
matrix, where each row i = 1, . . . , n contains the node attributes of node vi. In the
special case where p = 1 and R = N the attributes are categorical, we refer to
them as labels and to G as a categorically labelled, or simply labelled graph.

(ii) We say that G is edge attributed if there exist a function w : |E| 7! Rq such that
w(G) = WG 2 Rm⇥q. We call WG the edge feature matrix, where each row i =
1, . . . , m contains the edge attributes of edge ei. In the special case where q = 1 and
the attributes express a measure of similarity between their end nodes, we refer to
them as weights, to WG as the weight matrix, and we say that G is a weighted graph.

Throughout the text, when referring to an attributed graph we implicitly consider it
to be node attributed, unless specified otherwise. We will also use the terms labelled and
categorically labelled indistinguishably.

GRAPH ISOMORPHISM PROBLEM. Intuitively, one can define a criteria for equivalence
between graphs based on their topological structure. This is called the graph isomor-
phism problem, which is NP and, as of today, no algorithm is known to solve it in
polynomial time [62].
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2.2 Graph kernels

Definition 2.16 (Graph isomorphism). Let G = (V, E) and G0 = (V 0, E0) be two graphs.
They are said to be isomorphic if there exist a bijection between their nodes. More for-
mally, a graph isomorphism between G and G0 is a bijective function f : V 7! V 0 preserv-
ing adjacency, i.e. if (u, v) 2 E are adjacent in G, then ( f (u), f (v)) 2 E0 are adjacent in
G0.

The criteria for isomorphism defines a similarity measure between graphs. However,
this would be computationally infeasible, poorly scaling with the number of nodes.
Furthermore, similarity measures based on exact isomorphism could be too restrictive,
since two graphs will be considered similar if and only if their structures exhibit exact
matching [161]. Overcoming these issues, was one of the main motivation for the explo-
ration of graph kernels. Gärtner et al. [66] observed that computing a similarity over all
substructures of the graph, is equivalent to check if they are isomorphic. Then, graph
kernels were developed as a family of graph comparison algorithms, which evaluated
partial similarities by limiting the search space to a finite set of substructures.

2.2.2 GRAPH KERNELS BASED ON NODES OR EDGES

The simplest entities composing graphs are nodes and edges, as well as their attributes.
Then, the most naive kernels we can construct are based on these objects.

THE NODE KERNEL

Graph kernels based on nodes define a measure of similarity that ignores the edge
structure, therefore neglecting the graph topological information. These kernels, while
being very simplistic, can be of help for certain scenario, in particular: (1) they repre-
sent an excellent baseline to evaluate the effectiveness of different methods that exploit
more complex graph structures; (2) they can show very good performance if the nec-
essary information is encoded in the attributes. We consider two kind of node based
graph kernels. A more general one that is suitable for all type of attributed graphs, the
all node-pairs kernel, and another formulation that is particularly designed for labelled
graphs, the node histogram kernel. The all-node pairs kernel is an R – convolution in-
spired framework that compares node attributes pairwise and subsequently aggregate
those to derive a kernel similarity.

Definition 2.17 (All node-pairs kernel). Given two attributed graphs G = (V, E) and
G0 = (V 0, E0), we define the all node-pairs kernel as:

KN(G, G0) = Â
v2V

Â
v02V0

knode(v, v0). (2.15)

In the above formulation, knode(v, v0) is a valid base kernel, for example linear or RBF,
defined between node attributes:

knode(v, v0) = kbase(xv, xv0) (2.16)
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2 From kernels to neural networks for graph structured data

where xv and xv0 are the corresponding rows in the node feature matrices XG and XG0 ,
respectively.

For special cases of xv and knode, it is easy to find the corresponding explicit graph
feature representation and compute the kernel via inner product, saving considerably
runtime. For example, if the graphs have categorical node labels and kbase = klin, then

KN(G,G0) = hf(G), f(G0)i, (2.17)

where f(G) = Âv2V xv and similarly f(G0) = Âv02V0 xv0 .
For categorical node labels, we can also define a kernel by creating histograms of the

node labels.

Definition 2.18 (Node histogram kernel). Let G, G0 being categorically labelled graphs,
such that ` : {V, V 0} 7! SV,V0 , i.e. SV,V0 is the joint alphabet of node labels of G and G0.
We denote by f(G) and f(G0) the histogram of node labels in G, G0. Then,

KNH(G, G0) = kbase(f(G), f(G0)). (2.18)

Particular choices of the kernel and node labels lead to specific formulation of the
node kernels. In particular, one can verify that:

(i) If kbase is the linear kernel, then f(G) and f(G0) are the explicit feature represen-
tation of G and G0 for kernel KNH.

(ii) If knode is a Dirac kernel and kbase is linear then kN = kNH.

(iii) Complexity of KN is O(n2 p) and of KNH is O(np), where p is the attribute dimen-
sion and node is the number of samples.

THE EDGE KERNEL

As for the node, the edge kernels are very useful baselines when developing new meth-
ods and can be exploited to assess the relative impact of the edge information. Edge
kernels can be defined analogously to node kernels.

Definition 2.19 (All edge-pairs kernel). Given two attributed graphs G = (V, E) and
G0 = (V 0, E0), we define the all edge-pairs kernel as:

KE(G, G0) = Â
e2E

Â
e02E0

kedge(e, e0), (2.19)

where kedge(e, e0) is any base kernel (e.g. linear or RBF) defined between edge attributes.

Definition 2.20 (Edge histogram kernel). Let G, G0 being such that the edge attributes
are categorical and denote by fE(G) and fE(G0) the histograms counting the occurrence
of edge labels in G, G0. Then,

KEH(G, G0) = kbase(fE(G), fE(G0)). (2.20)
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2.2 Graph kernels

2.2.3 GRAPH KERNELS BASED ON WALKS AND PATHS

Despite the attractiveness of node and edge kernels, due to their simplicity and straight-
forward interpretation, they lack the ability to capture the complete topology of the
graph and the relation among distant sub-entities. Enabling the use of sub-structures
as walks and paths leads to a wider range of possibilities for kernels generation. We be-
gin by considering walks as sub-parts of the original graph: comparing two graphs by
evaluating every possible walk between node pair is known to be NP-hard, as it is com-
putationally equivalent to solving the graph isomorphism problem [66]. To overcome
these difficulties, kernels defined on fixed length random walks and on label matching
strategies between walks have been proposed [66, 97]. The random walk kernel is based
on the idea of counting occurrences of label sequences of a certain length in the direct
product graph, which is constructed by connecting pairs of vertices in G and G0, if they
are both connected in the original graph [66]. While this can only be applied on categor-
ically attributed graphs, at the same time, Kashima et al. [97] proposed a generalisation
on graphs with continuous node and edge attributes. Both methods have been shown
to be computable in polynomial time, however the runtime depends on the number of
nodes n as O(n6), making the computation practically infeasible on large size graphs.

Following the sharp development of random walk kernels, two phenomenons have
been discovered to negatively affect their empirical performance and theoretical effec-
tiveness, tottering and halting. By definition (see Definition 2.14), walks are allowed
to visit the same node multiple times, then they can be "stuck" in a cycle leading to
very high similarities values for graphs that might have only a few nodes and edges
in common. Such phenomenon is known as tottering. An extension of the marginalised
graph kernel has been proposed to prevent this issue by adjusting the probability of re-
visiting the same node in the random walk process [118]. Halting can be empirically
observed in geometric random walk kernels [20], referring to the problem that long walks
are downweighted due to the exponential decay employed in the computation of the
similarity score. This results in the kernel values being dominated by walks of unitary
length. Sugiyama and Borgwardt [167] studied this phenomenon and proposed a k-step
random walk kernel, which alleviates the problem by fixing the weight parameter and
upper bounding the length of the walk with a limited number of steps.

SHORTEST PATH KERNEL

A different line of research was devoted to address the drawbacks of walk kernels,
embracing the potential of replacing walks by paths. It is worth to note that by using
paths instead of walks the problem of tottering disappears, since a path cannot visit
the same node or edge twice (see Definition 2.14). The shortest path kernel [21] is in
spirit similar to a random walk kernel, evaluating the similarity between graphs by
aggregating a score matching of their shortest paths. More formally, given a graph G =
(V, E) the first step is to compute the transformed shortest path graph as S = (V, ES),
where S has the same nodes as G and the edges are labelled by the length of the shortest
path between their end nodes in G.
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2 From kernels to neural networks for graph structured data

Definition 2.21 (Shortest-path kernel). Let G = (V, E) and G0 = (V 0, E0) being at-
tributed graphs and let S = (V, ES) and S0 = (V 0, E0S) be their shortest-path transfor-
mation, then we define the shortest path kernel as

KSP(G, G0) = Â
e2ES

Â
e02E0S

kwalk(e, e0) (2.21)

where kwalk is a kernel on edge walks of length 1 defined on the transformed shortest
path graphs.

For example, in the case of categorically labelled graphs, one can define:

kwalk(e,e0) := knode(u, u0) · kedge(e, e0) · knode(v, v0), (2.22)

where e = (u, v) and e0 = (u0, v0). In particular, by setting knode as the Dirac kernel, we
obtain

kwalk(e, e0) =

(
1, if `(u) = `(u0) ^ `(v) = `(v0)
0, else

(2.23)

Within this setting, KSP values are obtained by counting occurrences of paths with equal
start and end point node labels. In general, the formulation of the shortest path kernels
allows for applicability on various type of graphs, with both node and edge attributes.
However, the implicit formulation in Definition 2.21 has a runtime of O(n4), since the
kernel must be evaluated between every pair of nodes. Nevertheless, for the categor-
ically labelled case, an explicit feature representation has been derived resulting in a
drastic runtime improvement to O(n2) [104].

A speed-up extension of the shortest path kernel on continuously attributed graphs,
relies on limiting the search space to paths with the same length. This approach is
known as GraphHopper kernel and enjoys an equivalent runtime as the explicit shortest
path of O(n2 p), where p is the dimension of the attributes [50].

2.2.4 GRAPH KERNELS BASED ON SUB-GRAPHS

Despite their expressiveness, walks and paths only incorporate a selected type of the
graph information. A more expressive approach would be to use subgraphs of arbitrary
type which ultimately can fully represent the graph. However, enumerating all possi-
ble sub-graphs degenerates to the graph isomorphism problem, while simultaneously
having the issue of getting a similarity measure that overfits on the selected graph. The
Graphlet kernel [160] aims at exploiting sub-graphs of arbitrary shape, but of a limited
size, alleviating both the overfitting and complexity issue. Similarly as for the walks
and paths, a kernel can be defined by counting the occurrences of selected graphlets in
the graphs.
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2.2.5 GRAPH KERNELS BASED ON ITERATIVE LABEL REFINEMENT

A novel and successful class of graph kernels was introduced by Shervashidze and Borg-
wardt [159] based on the idea of iterative label refinement. In a nutshell, these methods
construct a multi-iterative set of graphs, where the representation at each iteration is an
updated version of the previous one, starting with the original graph at iteration zero.
As the number of iterations evolve, more topological information is incorporated into
the graph and after h-steps the information on the h-hop neighbourhood is included.

Definition 2.22 (Label refinement). Let us consider a graph G = (V, E), for simplicity
we assume that G is categorically labelled and without edge attributes. Let `(v0

i ) be the
label of node vi, for each vi 2 V, with i = 1, . . . , |V|. Then, we define the label refinement
of graph G at step h via a node label update, as:

`(vh
i ) = f (`(vh�1

i ), g(`(uh�1
i ) : ui 2 N (vi))), (2.24)

for arbitrarily chosen functions f and g.

The specific formulation of f and g generates different kind of graph kernels. We
will see that this label refinement step is extremely close to the modern Graph Neural
Networks (GNNs) approaches, where f is typically a non-linear activation function
and g incorporates a weighted combination with learned parameters. The relationship
between graph kernels and GNNs will be explored in Section 2.3. In the following, we
will discuss the most popular label refinement kernel methods.

THE WEISFEILER-LEHMAN KERNEL FRAMEWORK

Inspired by the Weisfeiler–Lehman test of isomorphism [192], the corresponding kernel
based framework achieved outstanding empirical performance in graph classification
and has built the foundation for many existing methods. Intuitively, the Weisfeiler-
Lehman test of isomorphism relies on the concept of iteratively creating multisets, i.e.
a sorted string consisting of the label of each node and its neighbours, to be hashed
to new node label. This procedure is repeated until the desired number of iterations
or until no label update is performed. Ultimately, the comparison among sequence of
compressed labels establishes a criteria for graph isomorphism, which we now state
without proof; additional details can be found in [10].

Proposition 2.1. Given two graphs G and G0 and their corresponding sequence of compressed
labels, if the sequences are different we conclude that G and G0 are non-isomorphic; if the se-
quences are equal, then the graphs are likely to be isomorphic [10].

Proposition 2.1 implies that the equality of label sequences is necessary, although not
sufficient, to conclude that two graphs are isomorphic.

The Weisfeiler–Lehman (WL) kernel follows the same iteration scheme. Graph fea-
tures are obtained by aggregating the compressed labels sequence and input to a linear
kernel to get a similarity value. More precisely, the WL kernel creates a label sequence
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2 From kernels to neural networks for graph structured data

for each node and iteration, where at each iteration the new label is defined by a unique
hash of the ordered string composed by current node labels and those of its neighbours.
Mathematically, this corresponds to replacing f by a perfect hash function and g with
the identity in Equation 2.24, i.e.:

`h+1(v) = hash(`h(v),N (v)). (2.25)

We refer to the iterative procedure generated by equation 2.25 as the WL labelling re-
finement scheme. As a consequence of the perfect hashing, two nodes at iteration h + 1
will have the same label if and only if both their label and those of their neighbours at
iteration h are equal. In the general formulation, the WL kernel framework defines a
sum of kernels, where each contribution is given by the kernel between graphs at the
different iterations. The most used instance of the WL framework is the WL subtree ker-
nel, which employs histograms of node labels at multiple iterations to derive a graph
feature representation.

Let G = {G0 = (V, E, `0(V)), . . . , GH = (V, E, `H(V))} be the sequence of graphs
obtained by the WL labelling scheme. With a slight abuse of notation, let us denote
by |`h(V)| = L the cardinality of the node labels at iteration h, that is the number of
unique node labels at each iteration. We define the histogram of graph G at iteration h as
fh(G) = [|`h

0|, . . . , |`h
L|], where |`h

j | is the number of occurrences of label `j in graph Gh.
Then, we call f(G) = (f0(G), . . . , fH(G)) as the concatenation of features at different
iterations, the WL feature representation.

Definition 2.23 (WL subtree kernel). Given two graphs G, G0 with WL graph feature
representations f(G) and f(G0), the WL subtree kernel is defined as

KWL�subtree(G, G0) = hf(G), f(G0)i (2.26)

We will often denote KWL�subtree = KWL. We can express the WL subtree kernel
using explicit node and graph feature representation, that will provide us with a direct
connection with the GNN discussed in Seciton 2.3

Definition 2.24 (Node WL feature). For a graph G, let `0(V) be the original node labels
associated to it. Let A0

` be the alphabet of original node labels; by analogy, we define
`h(V) and Ah

` the corresponding labels and alphabet at WL iteration h. We define a
node feature associated to a node v 2 V at some iteration h as:

xh
WL(v) = onehot(`h(v)), (2.27)

that is xh
WL(v) = [xh

0,WL(v), xh
1,WL(v), . . . , xh

|Ah
` |�1,WL(v)] 2 N|Ah

` | satisfies

xh
i,WL(v) =

(
1, if `h(v) = i
0, else

(2.28)

By definition of histogram and of f(G), it follows that
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2.2 Graph kernels

fh(G) = Â
v2V

xh
WL(v) (2.29)

and
f(G) = [f0(G), . . . , fH(G)]. (2.30)

Therefore, it is possible to explicitly compute the WL subtree kernel (in Equation 2.26)
by a sum of node WL features which generate the graph feature itself. In terms of the
R – convolution framework, the WL subtree kernel can be seen in a sum aggregating
fashion, where the parts of the graph are represented by the node features obtained
via the WL scheme at multiple iterations. In practice, a node and its neighbourhood
are seen as substructures. We will discuss in Chapter 5 how these perspective of WL
allows us to extend the existing framework to continuously attributed graphs. We will
also replace the sum aggregation with a more complex function, to better capture the
similarities between distribution of node labels.

Plenty of new kernels have been developed to extend the original WL framework
in the subsequent years. The neighbourhood hash kernel [84] was proposed in parallel to
the WL kernel and is based on a similar label refinement scheme. The core difference
between the two approaches appears in the hashing step, which is non-perfect in the
latter one, implying that collisions can occur. This is achieved by representing updated
labels via binary strings of fixed length, which could then be mapped to the same value
despite their ordered string being different. This approach benefits from reduced run-
time, at the cost of expressivity. An improvement that aimed at optimising the trade-off
between expressivity and efficiency came several years later with the Hadamard code
kernel, which reduces the expected amount of collisions by introducing a special en-
coding scheme [98]. A common limitation of these iterative label refinement kernels is
the lack of applicability to continuously attributed graphs; the propagation kernel [130]
and hash graph kernels [126] explore this direction.

2.2.6 BEYOND THE R–CONVOLUTION FRAMEWORK

At the beginning of this section, we mentioned that most graph kernels rely on the R –
convolution framework, performing a simple aggregation step, such as sum or average,
across substructure similarities. However, one might be interested to find partial over-
laps, i.e. optimal matches (assignments) between subparts of the graph [57]. The first
optimal assignment kernel by Fröhlich et al. [57] was later shown not to be guaranteed as
positive definite, leading to theoretical complications for the classificaiton learning al-
gorithm [182]. Recently, Kriege et al. [105] proposed an optimal assignment kernel based
on label refinement features obtained with WL and proved it to be positive semidefi-
nite.

Definition 2.25 (Optimal assignment kernel). Given two graphs G = (V, E), G0 =
(V 0, E0) categorically labelled, such that V, V 0 2 A, the alphabet of all potential node
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2 From kernels to neural networks for graph structured data

labels, let f (V, V 0) be the set of all bijections between their nodes. Suppose knode is a
base kernels on the set of vertices, then the optimal assignment kernel is defined as

KOA(G, G0) = max
f2 f (V,V0)

Â
v2V,v02V0

knode(v, v0), (2.31)

with k(G, G0) = 0 if |V| 6= |V 0|.

Kriege et al. [105] showed that if knode arises from a hierarchical partition of the kernel
domain, then KOA is positive semidefinite. Choosing knode as a Dirac kernel and defin-
ing the hierarchical structure via the Weifeiler–Lehman iterations leads to a new family
of graph kernels, the Weifeiler–Lehman optimal assignment kernel (WL-OA). Following
the notation for the Weisfeiler–Lehman scheme (see Section 2.2.5), WL-OA between
G = (V, E) and G0 = (V 0, E0) is defined between their nodes while using a base ker-
nel that evaluates the compressed labels, i.e. the WL node features xh

WL(v) at multiple
iterations:

knode(v, v0) =
H

Â
h=0

kd(xh
WL(v), xh

WL(v
0)), (2.32)

where kd is a Dirac delta kernel and v, v0 2 V, V 0.

2.3 GRAPH NEURAL NETWORKS

The late explosion of deep learning has influenced nearly every subfield of machine
learning and data mining, and graph representation learning is not an exception. The
earliest Graph Neural Network (GNN) was proposed more than a decade ago by Gori et
al. [74] and later extended in Scarselli et al. [155]. These approaches rely on a node feature
update via Recurring Neural Networks (RNN) and can be considered as precursors of
the recent deep learning based GNNs. The main difference with modern methods is in
the training procedure, which in the original work was performed until convergence,
rather than via fixed number of iterations or early stopping criteria [30]. Subsequent at-
tempts to generalize Convolutional Neural Networks (CNN) employed spectral graph
theory to model the signal [26, 41]. However, these came with several limitations such as
high complexity, difficulties in incorporating node and edge features, and extension to
inhomogeneous structured set of graphs. Most of the modern GNNs fall under the gen-
eral message passing framework, consisting in two main steps: (1) node or edge features
aggregation; (2) feature update. The main idea is closely related to the propagation
scheme presented for the WL kernels. Given an initial node or edge feature representa-
tion, the feature is updated by a weighted aggregation over connected structures (e.g.
the 1 – neighbourhood) and then transformed with a non-linearity function. The most
popular GNN methods include: the Neural Fingerprints Network [45], pioneer work in
the field designed with the aim to neuralize classical circular fingerprints as molecular
descriptors [70]; Graph Convolutional Networks [100], which combined spectral repre-
sentation with an expressive propagation scheme; the Graph Invariant Network [198]
that notably depicts the link to the graph isomorphism problem. We refer to a recent
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survey for a general overview [196] and to the work of Gilmer et al. [69] for additional
details on the message passing framework. In the reminder of this section, we will pro-
vide a formal introduction to GNNs and particularly discuss their relationship with the
WL propagation scheme [69, 198].

2.3.1 THE GRAPH NEURAL NETWORK MODEL

Consider a graph G = (V, E), with |V| = n and |E| = m; let XG 2 Rn⇥p be the node
feature matrix, that is x0

v 2 Rp is the initial node attribute associated with node v. For
each node v 2 V we denote by u 2 N (v) the nodes in their neighbourhood. Given the
number of layers H in the GNN, we define the recursive updating scheme at each layer
h = 1, . . . , H as:

zh�1
v =g(xh�1

u ) (2.33)

xh
v = f (xh�1

v , zh�1
v ), (2.34)

for arbitrarily chosen g and f . The function g is also called the aggregation function, de-
termining the aggregation step of the GNN, and is usually defined as a weighted linear
combination, e.g. a sum. The function f is typically non-linear activation, for example a
ReLU or tanh, giving rise to the update step. We emphasise the explicit analogy between
equations 2.33, 2.34 and equation 2.25: choosing g as the identity function and f as a
perfect hashing we recover the WL refinement scheme. In other words, if the initial node
feature x0

v corresponds to the onehot encoding of the node label, then it is also equivalent
to the WL node feature introduced in Definition 2.24.

The GNN model is suitable for various graph based prediction tasks, including node
classification, link prediction, and graph level classification and regression. In node
level prediction task, the node representation at multiple layers xh

v is sufficient to solve
the classification or regression problem. Then, either a softmax or a linear layer are ap-
plied to xh

v to perform the prediction and subsequently employed in a loss function to
optimise the parameters of the GNN. In a setting of graph-level classification or regres-
sion, an additional step is required to obtain a graph embedding. Specifically, the node
representations are combined to generate a graph-level feature as input for the softmax
or linear layer. This combination step is defined as follows:

fh(G) =r({xh
v | v 2 V}) (2.35)

f(G) =c({fh(G) | h = 0, . . . , H}). (2.36)

The function r in equation 2.35 is often called the readout function. For the map c it is
common to choose a function that only keeps the latest representation fH(G), but in
principle intermediate layers can be incorporated [45]. Again, we should point out the
similarity with the WL scheme and in particular with Equations 2.29 and 2.30. Here, it
is straightforward to observe that replacing r by a sum and c by a concatenation, we have
an exact correspondence with the WL subtree kernel.

29



2 From kernels to neural networks for graph structured data

2.3.2 THE GRAPH ISOMORPHISM PROBLEM IN GNNS

We earlier discussed how pioneer approaches in graph kernels (see Section 2.2.3, [66,
97]) explicitly addressed the issues related to the complexity of the graph isomorphism
problem, and aimed at building efficient methods while maximising the expression
power. Besides, the direct derivation of the WL kernel from the WL test of isomor-
phism, again affirms the crucial importance of establishing a connection between the
graph isomorphism problem and representation learning algorithms. From Proposi-
tion 2.1 it follows that, despite equal WL sequences are luckily to be generated from
isomorphic graphs, there exists graphs which are isomorphic and cannot be distin-
guished by the WL test, thus neither by the WL kernel. Therefore, it comes naturally to
wonder whether modern and expressive GNNs are more powerful than the WL test in
distinguishing isomorphic structures [198]. The answer is negative; indeed, the GNN
framework as described in Section 2.3.1, can be at most as powerful as the WL test in
discriminating graph structures. In other words, if two graphs G and G0 are mapped
into different embeddings f(G) 6= f(G0) by a GNN, then the WL sequences are also
different. Furthermore, for the GNN to be as powerful as the WL test, the functions g
and r need to satisfy specific properties.

Theorem 2.2 ( Xu et al. [198]). Let f(G) and f(G0) be the graph feature representation of G
and G0 obtained by a GNN model, through the updating scheme (Equations 2.33, 2.34, 2.35,
2.36). If the WL test of isomorphism decides that G and G0 are different then, with a sufficient
number of layers, the GNN generates different embeddings, i.e. f(G) 6= f(G0) if the functions
f , g, and r (Equations 2.33, 2.34, 2.35) are injective.

Not every GNN satisfies the injective property, for example the very popular Graph
Convolutional Network [100] does not. However, choosing f as a multi-layer percep-
tron (MLP; [54]) and by virtue of the universal approximation theorem [87], it can be
shown that the resulting neural network is an instance of Theorem 2.2; such a model is
called Graph Isomorphism Network (GIN). The node updating rule for the GIN archi-
tecture can be written as:

xh
v = MLPh

✓
(1 + eh)xh�1

v + Â
u2N (v)

xh�1
u

◆
, (2.37)

corresponding to an aggregation function g (Equation 2.33) being a sum and the update
function f (Equation 2.34) is an MLP with additional parametrization given by e. The
graph graph feature is obtained with a readout (Equation 2.35) equal to sum and using
concatenation to combine different iterations (Equation 2.36):

f(G) = concatenate({Â{xh
v | v 2 V}, h = 0, . . . , H}) (2.38)

We refer the reader to Xu et al. [198] for additional technical details and the proof of
Theorem 2.2.
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DISORDERS
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3 CLASSIFICATION OF PATIENTS AND
HEALTHY INDIVIDUALS USING BRAIN
MRI

Characterising the morphology of the human brain and understand the elemental changes
occurring within the presence of a neurological disorder, has been a major topic of in-
vestigation in the last decades. Precision medicine aims to develop efficient person-
alized therapies based on the clinical, historical, and genetics characteristics of the in-
dividual. Then, extracting individual significant patterns and features from clinical
exams is crucial in this context. Brain imaging data is playing a central role in this
development, with the acquisition of patient scans becoming more common in clinical
routines and scanner machines improving their quality. However, collection of brain
magnetic resonance imaging (MRI) data is still an expensive procedure, with respect to
time and economical cost. Besides, it is generally an uncomfortable practice for the sub-
ject themselves. These obstacles lead to MRI studies often suffering from small sample
size. Furthermore, intrinsic differences among scanner machines and inhomogeneity of
procedures and acquisition strategies causes sample cohorts to be incomparable across
studies. To partially overcome these limitations, the importance to establish consistent
and organised databases from medical, and in particular MRI data, is arguably one of
the major challenges of the XXI century. The enormous potential of new analytic algo-
rithms, to detect hidden patterns in big data, could bring to the discovery of early signs
of disease and personalised treatments. The need to collect large and organised med-
ical data has been supported by numerous initiatives in the MRI field, creating public
cohorts available for researchers and clinicians. Among the most famous, we recall
the Human Connectome Project 1 (HCP; [47]), whose objective is to create a complete
map of the human brain, including functional and structural connections, within and
across individuals. We also recall another popular database created for the study of
Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI; [127]).
The project started as a research collaboration, with the goal to collect longitudinal
data, including clinical, imaging, genetic and biochemical sources to track the devel-
opment of Alzheimer disease. Another powerful resource is the UK Biobank 3 [176],
a national effort to improve treatment, diagnosis and prevention of multiples diseases.

1http://www.humanconnectomeproject.org
2http://adni.loni.usc.edu
3https://www.ukbiobank.ac.uk
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The created database includes a variety of sources, for example genetic samples, clinical
variable, and ultimately imaging data.

Our work can be seen in the context of a similar initiative supported by Horizon
20204, within a project with the ambition to develop a clinical decision support system
for the analysis of multi-modal quantitative MRI data (CDS-QuaMRI5). A European
consortium including universities, hospitals, and companies was established to bring
together data and experts from several fields. The major aim was to create an homoge-
neous database and a software framework to apply latest machine learning techniques
on novel MRI data metrics. The novel multi-modal techniques aim to overcome the
boundaries of conventional MRI readouts, which have shown limited prognostic value
and only partially explain disease progression and treatment response. We will inves-
tigate the predictive power and learning capabilities of several state-of-the-art machine
learning algorithms on two clinical studies, from Major Depression Disorder (MDD)
and Multiple Sclerosis (MS) subjects as well as matched Healthy Controls (HC). We
aim to understand the effect of using a single or a combination of MRI images, and
unfold their relevance with respect to several neurological tasks.

The remainder of this chapter is organised as follows. We first describe the data
collection and preprocessing steps in Section 3.1, from our two separate cohorts of de-
pressed and multiple sclerosis patients. Subsequently, we introduce the main method-
ologies and pipelines used for the machine learning analysis, including the prediction
models (Section 3.2) and feature extraction techniques (Section 3.3). We finally report
our experimental setup and findings in Section 3.4 and conclude with a discussion.
We particularly focus on the limitations of our study and the relevance of multi-modal
images (Section 3.5).

3.1 DATA DESCRIPTION

3.1.1 MAJOR DEPRESSIVE DISORDER STUDY

Major depressive disorder (MDD), also simply referred as (clinical) depression, is a
mental health disorder characterised by generalised low mood and multiple associated
symptoms, which may include sadness, loss of interest, anger, anxiety, sleep distur-
bance, weight alteration, and reduced attention. Diagnosis of MDD is performed by
a clinical expert based on the presence for a prolonged period of times (usually two
weeks) of one or several of these symptoms. The assessment is generally accompanied
by a questionnaire and sometimes a blood test. Nevertheless, even for an expert psy-
chiatrist, clearly define the depression phenotype is far from being trivial, due to the
lack of universally established criteria. As a result, the clinical label is often uncertain,
especially for the borderline patients. Furthermore, several scales to define the severity
of the disorder exist, which makes the evaluation even more challenging. This confu-

4https://ec.europa.eu/programmes/horizon����/en
5https://cds-quamri.eu/

34



3.1 Data description

Table 3.1: Descriptive statistics of the MDD study cohort.

MDD (n = 57) HC (n = 61) Group statistics

Age (mean, std) 40.5 ± 12.7 38.3 ± 10.1 t(116) = 1.04, p > 0.1 6

Sex (m/f) 25/32 35/26 c2(1, n = 118) = 2.15, p > 0.1 7

BDI (mean, std) 27.42 ± 8.28 NA NA
Number of episodes (mean, std) 7.51 ± 5.43 NA NA
Medication status 8 (med. free/on med.) 35/22 NA NA
WM accuracy (in %; mean, std) 73.6 ± 16.5 70.3 ± 30.0 t(115) = 0.73, p > 0.1 6

WM reaction time (in ms; mean, std) 646 ± 1.37 590 ± 179 t(115) = 1.90, p > 0.05 6

sion will inevitably be reflected in the machine learning analysis, as we will discuss in
Section 3.5.

DATA SELECTION

The MDD study consists of 57 patients with depression and a set of 61 matched healthy
controls (HC), recruited at the Free University of Berlin (FUB) and at the University
of Zuerich (UZH). The depressed patients (DP) have had at least one acute depressive
episode and the MDD severity was assessed with the Back Depression Inventory (BDI)
criteria [12]. The HC were screened for psychiatric disorders using the short version
of the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental
Disorders. Subjects from both groups were excluded based on the following criteria:
major medical illness, history of seizures, head trauma with loss of consciousness, and
pregnancy. For MDD patients, screening was also done with respect to atypical forms
of depression, suicidal ideation, any other psychiatric disorder, history of substance
abuse or dependence, and Electroconvulsive Therapy (ECT) in the previous 6 months.
For HC, subjects with present or previous diagnosis of any psychiatric or neurological
disorder were excluded. All the participants signed a written consent before entering
the study, which was carried out in accordance with the latest version of the Declaration
of Helsinki [8]. Data descriptive statistics of the cohort are reported in Table 3.1.

DATA ACQUISITION AND PREPROCESSING

The acquisition and processing protocol established for the MDD sample data included
MRI images from several modalities collected at the FUB and UZH. An overview of the
different MRI modalities and their characteristics, as well as additional details on the
preprocessing and acquisition pipelines is provided in Appendix A.

6two sample t-test
7chi-squared test for categorical data
8Number of patients that took antidepressant medication during the study
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TASK-BASED FMRI. It is well know that MDD causes disruption in various cognitive
domains, while the performance in working memory (WM) tasks is generally highly
correlated with the loss of cognitive functions [63]. Neuroimaging studies based on
functional Magnetic Resonance Imaging (fMRI) data acquired during tasks have be-
come abundant in the past years. Indeed, the alteration observed in the blood-oxygen-
level-dependent (BOLD) signal, has been found to be related to disruption in the cog-
nitive ability of the subject. Our study is a 2-back WM task: during the scanning session
a sequence of stimuli is presented to the participant, who is asked to remember if the
current stimuli matches the one observed two times back. In this study, stimuli were
German nouns taken from the Berlin Affective Word List (BAWL; [185]) categorised as
negative, positive and neutral. A block design was used during the experiment: each
block consisted of 15 words shown in sequence and followed by a break (Fixation), for
a total of 15 blocks, i.e. 5 per each type of stimuli. Then, a sequence of fMRI images
were acquired on a Siemens Trio 3T (FUB) and a Philips Achieva 3T scanner (UZH) us-
ing standard echo planar imaging sequences [75, 156]. Standard preprocessing pipelines
employing SPM 9 [141] were used, including mean registration, motion correction, and
spatial smoothing.

RESTING STATE FMRI. Resting-state MRI data were also acquired on the same co-
hort at UZH and CHAR using the same scanners and similar parameters as for the
task-based fMRI (see also Appendix A for details). The preprocessing pipeline was
performed in Matlab (Version R2015a) using SPM and the CONN 10 toolbox (Version
17c; [193]) and consisted of the following steps: motion correction (realignment and un-
warping), slice-timing correction, automatic detection of MRI artifacts, normalization
to MNI space, and spatial smoothing (8 mm).

STRUCTURAL MRI. For the structural MRI images T1–weighted sequence (3D; magnetization-
prepared rapid gradient echo) with an isotropic spatial resolution of 1 mm3 was used, to
allow a good differentiation between grey matter (GM), white matter (WM), and cere-
brospinal fluid (CSF). Data were acquired at UZH and FUB, on the same scanner and
cohort as for the resting state and task-based fMRI modalities. Head motion was re-
duced during scanning using a foam restraint. Preprocessing of the structural data was
conducted using the default parameters from the CAT12 11 toolbox [67] implemented
in SPM. The T1–weighted images were corrected for bias field inhomogeneities, seg-
mented into GM, WM and CSF [7] and spatially normalized using the DARTEL algo-
rithm [6].
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Figure 3.1: Multiple sclerosis disease subtypes [116]. Source: https://www.nationalmssociety.org/

What-is-MS/Types-of-MS

3.1.2 MULTIPLE SCLEROSIS STUDY

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease
of the central nervous system (CNS), which targets and destroys the myelin and the
axons [71]. The cause of MS is yet unknown, though it is generally accepted that it in-
volves a combination of genetic and non-genetic factors, environmental or metabolic.
Furthermore, the progression of MS is extremely varied and difficult to predict. Diag-
noses is performed via a combination of clinical findings and assessments, such as walk
impairment and the occurrence of at least 2 MS episodes. Additionally, the presence of
lesions in the axons may be examined with the help of diagnostic tools, such as MRI
images. Finally, inflammation of the CNS is also taken into account, as determined by
the analysis of the CSF. Depending on the course of the disease, and in particular con-
sidering the frequency and severity of the episodes, MS patients can be categorised into
four subgroups.

1. Relapsing-remitting MS (RRMS). It is the most common form of MS (approxi-
mately 80%� 85% of the patients are initially diagnosed with RRMS) and is char-
acterised by an alternate sequence of relapsing episodes (attacks) and remission
periods. During the remission periods, symptoms may completely disappear,
partially continue, or become permanent. Following a relapse, the disability can
either increase (worsening of the disease) and then stabilized (during remission),
or get back to a state prior to the current episode.

2. Secondary progressive MS (SPMS). This status may develop in some patients
initially diagnosed with RRMS. It is characterised by a continuous worsening of

9https://www.fil.ion.ucl.ac.uk/spm/software/spm��/
10https://web.conn-toolbox.org/
11http://www.neuro.uni-jena.de/cat/
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the disease, and eventually of symptoms severity, with our without periods of
remission.

3. Primary progressive MS (PPMS). Approximately 10% of MS patients belong this
subgroup. Since the initial diagnosis, symptoms worsen over time and there are
no relapses or remissions. Nonetheless, there might be periods of stable progres-
sion of disease severity, so–called plateau.

4. Progressive-relapsing MS (PRMS). PRMS is the rarest form of MS and 5% of
patients are diagnosed with it. Progression of symptoms occurs from the start,
with alternate worsening and no remission periods.

Despite these MS subgroups being clinically established, it is often controversial to as-
sign patients into the correct subcategory. A subject may also be placed into a different
category over time and the characterisation into a MS subtype is usually done retro-
spectively, since at the initial phase of the disease is yet unclear how the course will
evolve. Besides, in recent literature PRMS has been disregarded as MS category and
those subjects are now categorised as PPMS [116]. For the purpose of this thesis, we
will use this characterisation. An overview of the MS disease course with these latest
three subtypes is depicted in Figure 3.1.

DATA SELECTION

The data sample for the MS study include 12 HC, as well as 13 patients with PPMS,
26 patients with RRMS, and 18 patients with SPMS. The subjects were recruited at the
University College London (UCL) with MRI scanned acquired at baseline and after 24
months (approximately). The clinical assessment was performed by an expert and the
severity of the disease was evaluated via the Expanded Disability Status Scale (EDSS;
[108]). The subjects were then grouped into their corresponding subtype for the retro-
spective analysis.

DATA ACQUISITION AND PREPROCESSING

All MRI images were acquires on a 3T Philips Achieva scan for multiple modalities:
conventional structural imaging (volumetric 3D T1-weighted gradient echo imaging;
2D PD-weighted and T2-weighted axial spin echo imaging); single-shell diffusion-weighted
magnetic resonance imaging (DWI); magnetization transfer (MT)–weighted imaging.
Standard image preprocessing was performed consistently within the cohort using the
FMRIB Software Library 12 (FSL; [94]). For diffusion images, the preprocessing steps in-
cluded correction for motion and eddy currents (FSL eddy) and for Echo-planar imag-
ing (EPI) distortions (BrainSuite 13; [157]). Affine co-registration to a mid-way MRI
space obtained from baseline and follow up diffusion images was applied between all
the modalities: MT, anatomical images, and diffusion. From the MT–weighted and

12https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
13http://brainsuite.org/
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DWI images, magnetization transfer ratio (MTR) map and diffusion tensor imaging
(DTI) metrics were also calculated in voxel-by-voxel fashion (see Section 3.3.2). Ad-
ditional information on the data modalities, acquisition, and preprocessing is given in
Appendix A.

3.2 PATTERN ANALYSIS METHODS IN NEUROIMAGING

In this section, we present the core methodology and pipelines developed for the imag-
ing studies. We first introduce classical univariate analysis approaches (statistical para-
metric map (SPM); Section 3.2.1) and discuss their limitations, leading us to the exten-
sion to multivariate methods which we will present in Section 3.2.2. We conclude by
illustrating the Multiple Kernel Learning (MKL) approach, expanding the multi-variate
analysis from uni-modal to multi-modal images (Section 3.2.3).

3.2.1 UNIVARIATE ANALYSIS: STATISTICAL PARAMETRIC MAP

Univariate mass voxel-based analysis methods introduced by Friston et al. [55] have been
widely used to analyse fMRI data, with the scope to obtain a map of the brain area
activated under a given condition [37]. This approach relies on a general linear model
(GLM) to extract statistical parametric maps (SPM), which provides information on the
association of individual voxels with respect to a certain hypothesis. For example, in
the WM block-design fMRI task, we might be interested to determine group of voxels
that activate with a given condition (e.g. positive, negative, or neutral stimuli), for the
group of MDD or HC. The classical GLM analysis consists of two major steps:

1. First-level analysis: within subject;

2. Second-level analysis: across subjects.

GENERAL LINEAR MODEL: FIRST–LEVEL ANALYSIS

The first-level analysis models the time series fMRI for each voxel and subject indepen-
dently, inferring the relationship between the BOLD fMRI signal over time as a function
of the experimental design. For the moment, let us assume to have a sequence of scans
for a single individual. We denote by yi 2 RT the signal of a single voxel vi over time,
where T corresponds to the number of 3D images acquired per each subject, i.e. the
length of the time series. We define the design matrix X 2 Rn⇥p encoding the experi-
mental design information (for instance a block matrix for a block design experiment)
and potential confounding factors; here, n is the number of voxels per scan and p de-
pends on the experiment and covariates. The first–level GLM establishes a simple linear
dependency between the signal of a single voxel and the experimental design matrix:

yi = Xb + e. (3.1)
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In agreement with the classical linear regression model, the errors are assumed to be
normally distributed e ⇠ N (0, s2 I), and ordinary least squares is employed to solve
the problem independently for each voxel yi, i = 1, . . . , n. The parameters

b = bi,1, . . . , bi,p

for each voxel vi are estimated from the GLM model. Aggregating the beta values over
the voxel space results in a set of 3D

beta images : b1, . . . , bp

for a single-subject and for each experimental condition. The beta images are directly
related to the activation level of the subject with respect to the experimental design, for
instance a particular stimuli. To represent the difference between experimental condi-
tions, one can derive contrast images from the beta parameters. These are linear combi-
nations, with the weights defining the relation of interest. Formally, the contrasts are
determined by contrast weights and can be written as:

c =[c1, . . . , cp] (3.2)
C =cb. (3.3)

For example, one can choose c0 = 1 and c1 = �1 to obtain the contrast C to find voxels
that are more active in condition 0 (b0) than condition 1 (b1). As for the beta images,
the contrasts are defined as ci,1, . . . , ci,q for each voxel vi and number of combinations of
interest q. The contrast images also are MRI images themselves.

GLM SECOND-LEVEL ANALYSIS.

Nevertheless, to analyse the contrast images and understand the different reactions of
the brain in group of subjects, we need to take an extra step. The second-level analysis
extends the first-level mass univariate approach to the group level. Considering a co-
hort with subjects belonging to two (or more) different groups, such as patients and
controls, we are interested to tackle brain areas that are showing a consistent activation
behaviour within the group. Then, the statistical analysis assesses the difference across
activation at the group level. In other words, we might want to know whether a con-
trast depicts a peculiar activation pattern (group of voxels higher or lower activated)
across groups of subjects. A t� test is used for this scope, after averaging the contrasts
within the group.

LIMITATIONS OF THE STATISTICAL ANALYSIS

While being a classical and well established procedure, the standard GLM exhibits sev-
eral pitfalls. To begin with, since the first-level GLM treats the voxels independently,
their interactions are not taken into account. Secondly, the mass-univariate GLM is a
applied to a very large voxel space. Typically, an fMRI image contains more than 100000
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voxels resulting in a huge multiple comparison problem: for example, assuming that
100000 is the voxels dimension, choosing a significance level a = 0.005 will potentially
result in 5000 voxels to be significant by chance (false positives). To overcome this prob-
lem, methods for multiple comparison correction may be employed [131]. However, it
is not straightforward to decide about a meaningful, yet not too conservative approach
and there is no general rule on how this threshold should be defined [46, 171]. In the
last decade, the advent of machine learning methods has revolutionised a lot of fields.
Then it should not come as a surprise that these methods have also been extended to
the neuroimaging area to conquer its limitations, leading to several methodological and
experimental improvements.

3.2.2 MULTIVARIATE CLASSIFICATION ANALYSIS FOR BRAIN IMAGING DATA

Multi-variate analysis approaches rely on state-of-the-art supervised or unsupervised
machine learning techniques and have been initially proposed to overcome the two ma-
jor limitations of the GLM approaches: (1) the missing interaction across voxels; (2) the
multiple comparison problem. In this section, we will mostly focus on the multi-voxel
pattern classification (MVPC) method which combines machine learning classifiers and
feature selection methods for the analysis of imaging data. We will integrate our de-
scription with regression and clustering based techniques in Chapter 4.

The goal of MVPC is twofold. On one hand, we are interested in finding patterns
of activities that differ across experimental conditions and groups of subjects. On the
other hand, the classification component aims at predicting the group label of a new
unseen out-of-sample image with maximal accuracy, based on a model learned on the
available training data. More precisely, given a standard classification problem, we
want to learn the decision function f to predict f (x) = y 2 0, 1 for a new input data
x 2 Rp, where f has been learned on the available training data. In our case, x 2 Rp is
an MRI image and the goal is to find a proper trade-off to learn a model to jointly max-
imise prediction accuracy and getting interpretable patterns. When the relationship be-
tween the outcome y and features x is linear, the pattern interpretation can be inferred
from the weights of the learned model directly: this is the case with linear support vec-
tor machines (SVMs) [23, 35]. We briefly recall the standard C-SVM model, which can
be roughly described as finding the optimal hyperplane separating two classes, while
maximising the margin in the training data:

minw,b,x
1
2
kwk2 + C

n

Â
i=1

xi

s.t. yi(hw, xii+ b) � 1� xi, xi > 0, 8i = 0, . . . , n� 1.
(3.4)

In Equation 3.4, xi 2 Rp is the feature vector of sample i, w 2 Rp is the weight vector,
while b is the bias term; the regularization parameter C determines the misclassification
rate, and xi provides an upper bound for the number of training errors. Assuming
that the feature space x coincides with the imaging voxel space, we can interpret the
learned weights as indicating the relevance of that brain area (or voxel) with respect to

41
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the classification task. From now on, we will refer to Equation 3.4 as the SVM or C-SVM
model, indistinguishably.

In multiple machine learning applications and especially in neuroimaging studies,
a critical issue is given by the curse of dimensionality, where the number of samples is
much lower than the number of features n ⌧ p. This setting can generate several is-
sues, including overfitting and computational burden [14]. To partially leverage for it,
the SVM can be equipped with a feature selection or dimensionality reduction strat-
egy and paired with a leave-one-out cross validation [178, 179]. Any feature selection
strategy can be easy combined with SVMs [34]. We choose the F-score criteria, a compu-
tationally fast and meaningful way to assess the correlation between each feature and
the classification task. The F-score method is a univariate feature selection strategy that
ranks their importance based on the F-value:

F =
between-groups variance

within-group variance
=

ÂK
k=1 nk(Â

nk
j=1 xk,j �Ân

i=1 xi)/(K� 1)

ÂK
k=1 Ânk

j=1(xk,j � 1
nk

Ânk
j=1 xk,j)2/(n� K)

. (3.5)

Here, n is the total number of sample; K is the number of classes; nk is the number
of samples in class k. We will denote the method that performs feature selection via
F-value combined with the C-SVM classifier as SVM-fScore.

While a linear classification method is very convenient in terms of interpretability, it
is possible that other classifiers have an higher discriminative power and result in bet-
ter classification performance. In principle, we can extend the MVPC pipeline with any
classifier that can take as input the flatten images in a vectorial representation. Further-
more, the kernel trick (Section 2.1) allows to apply different non-linear kernels on data,
to input directly in the classifier. This is achieved by reformulating Equation 3.4, as we
will expand in the next Section 3.2.3. Other popular classifiers include RandomForest
and k-NearestNeighbours. However, neither of them provide an easy interpretation of
the selected features. Furthermore, MVPC can also be equipped with different feature
selection methods to replace the F-score approach. A widely popular technique in both
genetic and medical imaging studies is recursive feature elimination (RFE) [77], which is
based on an iterative selection of the features that minimise the generalisation error
with respect to the classification task. Since this is an embedded method, the learning
performance is usually very good, though it has the disadvantage of having to re-fit
the SVM model at each iteration, thus being computationally expensive. We will re-
fer to the SVM method equipped with recursive feature elimination as SVM-RFE. For
a detailed overview and introduction to classification strategies and feature selection
methods we refer the interested reader to Bishop [16] and Friedman et al. [54].

3.2.3 MULTI-MODAL ANALYSIS

The methods discussed so far are designed to work on single input feature space.
Nonetheless, in many clinical settings it is common to acquire more than one image
modality per subject, during a single or multiple scanning sessions. Different modali-
ties carry unique information about certain lesions or aspects of the brain which may be
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affected in a specific task (see Appendix A for an overview of MRI modalities). There-
fore, methods to analyse and efficiently integrate the relevant information from multi-
ple images have been developed as a natural follow-up to the multi-variate unimodal
approach. While it is possible to consider every modality as independent from each
other, examining their interaction has the potential to drastically improve not only the
classification performance but also the clinical practice. For instance, a clinician pro-
vided with a quantitative measure about the relevance of acquiring a given modality
for a task of interest, would be guided on the acquisition protocol for the patient by the
automated healthcare system.

The easiest way to combine different source of data is via feature concatenation. Triv-
ially, given two samples xp1 2 Rn⇥p1 and xp2 2 Rn⇥p2 , we define the joint sample as
xp1+p2 = (xp1 , xp2) 2 Rn⇥(p1+p2). The same algorithms can be applied on the new con-
catenated instances to infer the result on the combined data. Another classical strategy
to combine modalities is the so–called ensemble learning. The high level idea is to run
the model separately on each of the data source, e.g. xp1 and xp2 , and aggregate the
performance of the model in a post-hoc fashion, for example by averaging the results.
However, none of these strategies explicitly take into account the interaction between
data sources. In Section 2.1 we discussed how kernels provide a measure of similar-
ity between objects in an implicit form, while different kernels detect specific relations
in the original feature space. Using the closure properties, it is possible to apply and
combine different kind of kernels on the same object and features, obtaining a joint
similarity measure.

As before, let xp1 = x1, x2, . . . , xn 2 Rp1 be n objects in the same feature space and
denote the corresponding kernel matrices as kRBF(xp1) and klin(xp1). One can define the
combined kernel matrix as

k(xp1) = kRBF(xp1) + klin(Xp1), (3.6)

representing a joint similarity value of the linear and RBF kernels. Similarly, let xp2 =
x1, x2, . . . , xn 2 Rp2 be the same n objects in a different feature space. Then we can
define a linear kernel on this feature space as klin(xp2) to obtain a joint kernel on xp1+p2
as

k(xp1+p2) = klin(xp1) + klin(xp2), (3.7)

combining the information from the two spaces. We used the sum for simplicity, but
any weighted linear combination could be applied. The family of methods dealing with
the analysis, optimisation and generation of these combined kernel is called Multiple
Kernel Learning (MKL) [72]. We will now provide an overview of these methods, with
particular emphasis to their application in neuroimaging and for our data cohort.

MULTIPLE KERNEL LEARNING

To combine multiple kernel matrices and encode them as joint input for a classifier or
regressor, the first step is to "kernelise" the SVM to allow an input kernel matrix in
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the learning algorithm. This is achieved by applying the Lagrangian dual function in
Equation 3.4 and solve the alternative optimisation problem:

max
a

n

Â
i=1

ai �
1
2

n

Â
i=1

n

Â
j=1

aiajyiyjhf(xi), f(xj)i

s.t.
n

Â
i=1

aiyi = 0, 0  ai  C, 8i = 1, . . . , n
(3.8)

where a is the vector of Lagrangian dual variables. The inner product hf(xi), f(xj)i is
a kernel between xi and xj, leading to the predicting model being expressed as:

f (x) =
n

Â
i=1

aiyik(xi, x) + b. (3.9)

From the closure properties of kernels, it follows that multiple linear combinations of
kernels can be defined and still be a valid instance to employ in Equation 3.8. Different
optimisation strategies to combine the kernels result in different solutions. We consider
a general combination of the form

kMKL =
R

Â
r=1

brkr, (3.10)

where R is the number of kernels to aggregate. The optimization problem consists in
finding the best parameter values br such that kMKL is mostly representative of the joint
similarity. We further aim to maximise the predictive power of the model (Equation 3.9)
with respect to the generalization error of the classification or regression problem. The
simple choce of br = 1

R and r = 1, for each r = 1, . . . , R, leads to the average and sum of
kernels, respectively. We will refer to the average MKL approach as avgMKL. The am-
bition of any MKL algorithm is to outperform the average and sum baselines, although
these simple combinations often exhibit a good empirical performance. Besides, they
have the advantage of being computationally cheap, given that no tuning strategy is
required to find the optimal br.

EASY MULTIPLE KERNEL LEARNING

We now present the particular instance of MKL employed in our experiments [1]. An
overview of different approaches can be found in Gönen and Alpaydin [72].

Assume we are given a set of training samples {x1, . . . , xn} with xi 2 Rp and asso-
ciated class labels yi = {1,�1}, for i = 1, . . . , n. We denote the arbitrary kernel matrix
as K 2 Rn⇥n and let y = {y1, . . . , yn} be the set of all class labels. The subset of pos-
itive and negative training samples are denoted as y+, y� where i 2 y+, yi = 1 and
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i 2 y�, yi = �1, respectively. Then, we consider the set of corresponding probability
distribution, namely:

G = {g > 0 : Â
i2y+

gi=1, Â
i2y�

gi = 1}. (3.11)

Aiolli and Donini [1] propose to exploit the domain of G distributions and solve the MKL
problem via a the KOMD (Kernel method for Optimization of the Margin; [2]) algo-
rithm. More precisely, the data distribution of the training class labels is included to
constrain the g vector to better generalise on unseen data, that is:

min
g2G

D(g) := gTyKyg. (3.12)

Defining R(g) = gTg the final optimization problem is reformulated as:

min
g2G

(1� l)D(g) + lR(g), (3.13)

where l 2 [0, 1] plays the role of a regularization parameter, encouraging a low vari-
ance solution via the term R(g). The prediction function for a new example xnew is
given by:

f (x) =
n

Â
i=1

giyik(xi, xnew) = knew(x)yg,

knew(x) =[k(xi, xnew), . . . , k(xn, xnew)]
T.

(3.14)

We now plug-in the MKL component by defining k = ÂR
b=1 brkr, br � 0 and reducing

to solve Equation 3.13 with respect to g and b, simultaneously. Ultimately, we want to
maximise the distance between the positive and negative samples, i.e.:

max
kbk=1

min
g2G

(1� l)gTy(
R

Â
r=1

brKr)yg + lkgk2. (3.15)

Aiolli and Donini [1] show that by rewriting Db(g) = {gTyk1Yg, . . . , gTyKRYg}, there

exist an analytic solution b? =
Db(g)
kDb(g)k of Equation 3.15. Plugging in b? we obtain:

min
g2G

Q(b?, g) := (1� l)kDb(g)k+ lkgk2. (3.16)

It follows that the optimization of the MKL problem Q(b?, g) is equivalent to solve the
KOMD algorithm for a single kernel matrix (see Equation 3.13). We refer to this method
as EasyMKL. In practice, an upper bound of Equation 3.16 is minimized; details on the
optimization strategy can be found in Aiolli et al. [2].

For our scope, MKL is applied on the MRI data by defining a single kernel per modal-
ity, assuming that for a subject a set of multi-modal images has been acquired. We will
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Figure 3.3: Multiple Kernel Learning pipeline on the MDD data. Linear combination of kernels
defined on the three modalities: sMRI, task-based fMRI and resting-state fMRI.

elaborate on this in the next sections; an overview of the MKL strategy on the MDD
study with three modalities is shown in Figure 3.3.

3.3 FEATURE EXTRACTION

All the algorithms described so far require a meaningful set of features extracted from
the image, which are informative of their characteristics, and a suitable input for the
classifiers. At an high level, we distinguish between two major feature extraction ap-
proaches:

(i) High-dimensional high-resolution whole brain features

(ii) Low-dimensional low-resolution region of interest (ROI) features

In (i) the feature space is inferred from the whole brain in a voxel-by-voxel fashion,
leading to a very high dimensional representation containing single voxel signal. In
(ii), the focus is shifted on specific brain areas or regions of interest (ROI), either in a
voxel-by-voxel fashion or by summarising the information within a region, resulting
in a significant reduction of the dimensionality. In either case, the feature extraction
can be coupled with classical feature selection or dimensionality reduction techniques
(Principal Component Analysis (PCA); Independent Components Analysis (ICA); [54])
to further reduce the search space. This step is particularly relevant in neuroimaging
studies, due to the sample size being generally much smaller than the number of fea-
tures. More recently, deep learning based methods have become incredibly popular in
the neuroimaging community, and applied as feature extractor either in an unsuper-
vised or supervised fashion [3].
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3.3 Feature extraction

Table 3.2: Beta and contrast images for the WM block design experiment

(a) Beta parameters

Beta image ID Condition

Beta01 negative stimuli
Beta02 neutral stimuli
Beta03 positive stimuli
Beta04 break stimuli
Beta05 - Beta10 movement parameter
Beta11 constant

(b) Contrasts of interest.

Contrast ID (#) Contrast Type

Con01 WM > Fix
Con02 Pos > Fix
Con03 Neg > Fix
Con04 Neu > Fix
Con05 Emo > Neu

3.3.1 HIGH-DIMENSIONAL FEATURES

For the MDD study, we extract voxel–by–voxel high dimensional features either di-
rectly from the image or after some preprocessing step to select the most relevant in-
formation. For each of the modality described in Section 3.1.1, a different strategy is
considered.

TASK-BASED FMRI

We observed that the the first-level analysis of the classical GLM ignores the group
and interaction components of the data, only focusing on single subject analysis. On
the preprocessed task–based fMRI, a single subject general linear model analysis was
performed. The haemodynamic response (HR) as was modelled as explanatory vari-
able, while the different conditions (Fixation, Negative, Neutral, Positive) and realign-
ment parameters were included as independent variables in a block design [55]. As an
outcome, contrast images for each subject for the following contrasts were derived, as
summarised in Table 3.2:

1. All WM conditions versus fixation condition (WM > Fixation);

2. Positive WM condition versus fixation condition (Pos > Fixation);

3. Negative WM condition versus fixation condition (Neg > Fixation);

4. Neutral WM condition versus fixation condition (Neu > Fixation);

5. Emotional (positive and negative) WM conditions versus neutral WM condition
(Emo > Neutral).

We use the beta and contrast images obtained from the first level analysis to extract
features for the task–based fMRI. To extract voxel–wise brain tissue and disregard the
background noise, we computed a group level mask for each of the beta and contrast
image. The mask has been computed using a 90% threshold at a group level, meaning
that a voxel was included in the group mask if and only if it was identified as brain
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Figure 3.4: Machine learning pipeline on task-based fMRI for the MDD study

tissue in at least 90% of the subjects. In a second step, we flattened the voxel space into
a one dimensional array per subject and per image type. In this context, beta and contrast
images are informative of the activation voxels at a particular block in the experimental
design or of difference in signal between experimental tasks. For each beta and contrast
image, we finally obtain a data matrix Xtask 2 R118⇥41248 as input for the classifier. The
pipeline is depicted in Figure 3.4.

RESTING STATE MRI

On the resting state data, the CONN toolbox was used to obtain pairwise correlation
measures for each region. More precisely, 106 regions from the FSL Harvard-Oxford At-
las were obtained to calculate ROI-to-ROI correlation maps, by leveraging the residual
blood oxygen level-dependent (BOLD) time courses between pairs of regions and com-
puting Pearson’s correlation coefficients. The correlation coefficient were converted to
normally distributed z-scores using the Fisher transformation to improve the validity
of second-level General Linear Model analysis [64]. The correlation matrices obtained
by this procedure are treated as features in the machine learning pipeline, by using their
lower/upper diagonal, resulting in a data matrix Xrs 2 R118⇥5565.

STRUCTURAL MRI

We further extract sMRI based features from the whole–brain T1 images by masking the
brain tissue with an analogous procedure as for the task–based fMRI images. Of course,
the ultimate feature space dimension will change given the differences in resolution and
group mask generation between the task–based and sMRI data. This procedure results
in a resting–state data matrix Xsruct 2 R118⇥483591.

3.3.2 LOW RESOLUTION REGION OF INTEREST FEATURES

In the MS cohort, we begin by extracting a set of imaging based features obtained
from diffusion and MT images, as a result of whole–brain approach and segmentation
preprocessing pipelines. The following metrics are derived:

1. White matter MS lesions maps extracted manually by an expert neurologist on
the PD-weigthed/T2/weighted scans;
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3.4 Experiments

Figure 3.5: ROI parcellation with GIF.
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2. Cortical thickness calculated with GIF and FreeSurfer 14 [150];

3. MTR map calculated from the MT-weighted scans voxel–by–voxel;

4. DTI metrics, calculated from DWI images voxel-by-voxel: Fractional Anisotropy
(FA), Mean Diffusivity (MD), Radial Diffusivity (RD), Axial Diffusivity (AD).

We focus on (3) and (4): here the voxel–by–voxel metrics are also images obtained from
the preprocessed DWI and MT scans, respectively. Contrarily to the whole–brain ap-
proach, we perform a ROI based feature extraction on these data. We use a brain par-
cellation strategy to select ROIs obtained via GIF algorithms 15 [28, 144] which results
in 158 regions. We subsequently average the voxel values within each ROI to get a sin-
gle value measure of the selected brain area. Therefore, for every metric (image) we
obtain a data matrix in the low-dimensional ROI space: Xmt 2 R69⇥158; Xf a 2 R69⇥158;
Xmd 2 R69⇥158; Xrd 2 R69⇥158; Xad 2 R69⇥158. The subscripts stand for the respective
metric. An overview of the feature extraction strategy is depicted in Figure 3.5.

3.4 EXPERIMENTS

We perform an extensive experimental study to analyse and investigate the properties
of the MDD and MS studies with respect to various prediction tasks. We compare the
classification performance of different machine learning models on a patient vs control
problem and assess the individual contribution of each modality, as well as of their
combination. The following tasks are considered in our experimental setting:

(i) DPvsHC - uni. The data matrices Xstruct, Xtask and Xrs are all used independently as
input for the model classifier. The Xtask matrix indicates a general task-based MRI
image. However, the different beta and contrast images can be handled separately,
therefore we index the corresponding data matrix by the beta or contrast ID as
reported in Table 3.2. For example: Xb02 denotes the data matrix of MRI beta
image of the neutral condition; Xc01 denotes the data matrix from the MRI image
of the WM > Break contrast. When used, the corresponding kernel matrices are

14https://surfer.nmr.mgh.harvard.edu/
15http://niftyweb.cs.ucl.ac.uk/
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also similarly indexed, for instance Klin,b02 denotes the kernel matrix obtained via
a linear kernel on Xb02.

(ii) DPvsHC - multi. In the multi-modal scenario, the data or kernel matrices of the
various modalities are combined and optimised, with the goal to pick the most
relevant information from each of them. We use a "+" symbol to denote the com-
bination of two or more images.

(iii) MSvsHC - uni. This scenario is comparable to (1), despite the low-dimensional
ROI feature matrix is used from the respective metric of interest.

(iv) MSvsHC - multi. We combine metrics from (3) in an analogous fashion as for the
DPvsHC - multi.

3.4.1 EXPERIMENTAL SETUP

We compare the classification performance of a variety of linear an non-linear classi-
fiers. As we mentioned, the linear classifiers have the advantage of being easy to inter-
pret since a one-to-one correspondence between the feature importance and prediction
task can be derived. Nevertheless, it is often the case that non–linear interactions play
a crucial role to build a predictive model and cannot be ignored. For the uni-modal
analysis the following settings are used.

(i) linSVM. A support vector machine with linear kernel. The C parameter is chosen
in the grid {10�3, 10�2, . . . , 103}.

(ii) rbfSVM. A support vector machine with gaussian kernel. The C parameter is cho-
sen in the grid {10�3, 10�2, . . . , 103} and the g parameter is chosen in the grid
{2�3, 2�2, . . . 23}.

(iii) polySVM. A support vector machine with polynomial kernel. The C parameter is
chosen in the grid {10�3, 10�2, . . . , 103}. We use wither degree 2 or 3.

(iv) sigSVM. A support vector machine with sigmoid kernel. The C parameter is cho-
sen in the grid {10�3, 10�2, . . . , 103}.

(v) LR. A logistic regression classifier. The regularisation C parameter is chosen in the
grid {10�3, 10�2, . . . , 103}.

(vi) LDA. A linear discriminant analysis classifier. No hyperparameters are tuned.

(vii) KNN. A k - nearest neighbours classifier. The parameter k determining the number
of neighbours is chosen in the grid {2, 5, 7, 10}.

(viii) RF. A Random Forest classifier. The parameter n-trees determining the number of
trees in the forest is chosen in the grid {10, 20, 30}.
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We refer to the method equipped with the corresponding feature selection as ⇤ -fScore
and ⇤ -RFE, where ⇤ is one of the methods mentioned above; if not denoted otherwise,
we imply that no feature selection is performed. When selecting the features, we choose
a range in the grid {10%, 20%, . . . , 100%} of the original dimension. In the multi-modal
setting the following methods are considered:

(i) Feature Concatenation (FC): a simple concatenation of the uni-modal features per
subjects.

(ii) Average Multiple Kernel Learning (avgMKL): the MKL approach with uniform kernel
weights, either with linear (linAVG) or RBF (rbfAVG) kernel. The regularisation C
parameter is chosen in the grid {10�3, 10�2, . . . , 103} and the g parameter for the
RBF is chosen in the grid g = {2�3, 2�2, . . . 23}.

(iii) EasyMKL: the Easy MKL method introduced in Section 3.2.3, with l parameter
tuned in the range l = {0.001, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. As for avgMKL, the ap-
proach will be denoted as linEASY or rbfEASY depending on the kernel chosen;
g and C parameters are chosen in the same range as for avgMKL.

All the experiments are performed via a nested leave—one–out cross validation (LOOCV),
with all the parameters selected on the training set only via 5 fold cross validation (CV).

EVALUATION

In the context of clinical studies, it is extremely relevant to evaluate the classifier in
terms of different criteria that can account for the medical relevance. For example, for
a physician might be more important if the model prevents a large occurrence of false
negatives, since diagnosing a sick patient as healthy is more risky than wrongly classify
an healthy subject as sick. Therefore, we are especially interested in considering evalu-
ation criteria that can take this risk assessment specifically into account. The following
abbreviations are used:

• TP: true positives. Number of patients correctly classified as such.

• TN: true negatives. Number of healthy controls correctly classified as such.

• FP: false positives. Number of healthy controls wrongly classified as patients.

• FN: false negatives. Number of patients wrongly classified as healthy controls.

Using these four counting characterisation of the predicted classes, we define a set of
well established evaluation metrics as follow:

• Accuracy = TP+TN
TP+FP+TN+FN

• Precision = TP
TP+FP

• Recall/Sensitivity = TP
TP+FN
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• Specificity = TN
TN+FP

The sensitivity is particularly relevant in the medical context, assessing how many of the
patients (TP+FN) have been correctly identified. Similarly, the specificity measures the
proportion of healthy individuals (TN+FP) that are effectively healthy (TN). An impor-
tant metric taking both these measures into account idthe receiver operation character-
istic curve (ROC-curve), which shows the true positive rate (TPR; sensitivity, recall) ver-
sus the false positive rate (FPR; 1-specificity). Additionally, the Precision-Recall curve
(ROC-PR-curve) is also informative of the relationship between the respective quanti-
ties, with the advantage of being quite robust to unbalanced data.

PERMUTATION TEST. To further corroborate the predictive power of our classifier, a
permutation test can be used to assess the statistical significance of the results. The
predicted labels are permuted 1000 times and the whole machine learning pipeline is
re-applied considering the permuted labels as the real ones. The null hypothesis states
that the group predicted labels are randomly assigned; a p-value is calculated by as-
sessing the probability of observing a predictive performance better or equal than the
calculated one.

POST-PROCESSING ANALYSIS

INTERPRETABILITY. In the uni-modal linear classification scenario, we can interpret
the weights obtained from the SVM as proportional to the corresponding feature dis-
criminative power in the classifiers. In practice, in our applied label convention denot-
ing the positive class (patients) by y = +1 and the negative class by y = �1, a large
positive weight depicts more activation in that voxels of the patients, while a large neg-
ative weight is a signal of more activation in the healthy controls [60, 81]. Nevertheless,
the nested CV approach implies a possibly different set of features, and consequently
weight maps, in each fold. To obtain the final unique weight map different aggregation
strategies can be employed; in our experiments, we use a simple average and select the
number of features via majority vote across folds [179].

POST-HOC ROI. The weight maps obtained from the SVM do not account for the spa-
tial distribution of the voxels within the image, consequently it is possible to obtain
isolated voxels with high values. While from a methodological perspective this is ac-
ceptable, in the neuroimaging context we are interested to find patterns as cluster of
voxels that activate together, as representative of one or more brain areas. To create
post-hoc ROI clusters we kept 20% of the highest classification weights, masked the
remaining, and used a cluster threshold of 50 voxels at the minimum, to overcome ob-
taining small and isolated activation area. The difference between groups was assessed
via an analysis of variance (ANOVA) and a Bonferroni correction was used to account
for multiple testing.
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Figure 3.6: Performance of multiple beta images with a linear SVM. The left plot shows accuracy
precision and recall for each beta and for the average image. On the right side, the
ROC curve is reported.

EFFECT OF SCANNER TYPE. In medical imaging, the type of scanner used and its setup
is a key confounding element in any statistical or machine learning based analysis. This
is due to the intrinsic properties of each scanner that generate unique images, implying
that a naive model that does not take into account the scanner type might pick up a
signal that is informative of the acquisition site, rather than of the clinical group. While
this is generally implicitly handled in automated machine learning model, investigat-
ing the effect of the scanner type in a post-hoc study provides an extra validation layer
to the analysis. Our assessment includes three scenarios that explicitly consider the
Zurich or Berlin acquisition site as a label for the data:

(i) classification performed on the entire sample and evaluation on single site data,
i.e. the performance is separately evaluated on the subsets of Zurich and Berlin;

(ii) classification performed on the subgroups of Zurich and Berlin data, separately
and independently;

(iii) classification on the Zurich data by training on the Berlin data only, that is a single
train/test split with Berlin/Zurich, respectively.

3.4.2 RESULTS

MAJOR DEPRESSIVE DISORDER STUDY

UNI-MODAL CLASSIFICATION. We begin by examining the DPvsHC - uni task for the
MDD study, evaluating the classification performance of the different classifiers on each
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Figure 3.7: Performance of multiple beta images with an rbfSVM. The left plot shows accuracy
precision and recall for each beta and for the average image. On the right side, the
ROC curve is reported.

of the beta images. In Figure 3.6 and Figure 3.7 we report the results with a linear and
RBF kernel, on the individual beta images and their average. Additional results with
other kernels are reported in Appendix A. We observe that the beta02 data matrix, cor-
responding to the neutral stimuli condition, achieves the best performance on both the
RBF and linear kernel. These findings agree with the literature, that reported the activa-
tion response to neutral stimuli in different brain areas to be associated with MDD [88,
137]. Unsurprisingly, we also note that the beta04 predictor, corresponding to the break
condition, achieves the worst result. Furthermore, we observe that using an average of
the beta image is comparable to the best performing (rbfSVM) or inferior to it (linSVM.;
Technically, imaging average can be seen as a multi-modal analysis, nevertheless, no
specific multi-modal approach was yet used. Overall, we do not notice a clear differ-
ence among the different choices of beta images, while the predictive performance is
superior to a random classifier in every condition. As a next step, we compare the
SVM with other linear and non-linear classifiers: k-NN, LDA, RF and LR. Given the
similar performance of linear and RBF kernel, and considering the crucial importance
of interpretability, we pursue our analysis with respect to the linSVM method only. In
this experiment, we further apply the F-score feature selection method. Results on the
beta02 image are shown in Figure 3.8. We are positively surprised to observe that two
of the linear methods, linSVM and LR show the highest predictive power. Overall,
we obtain the worse performance with k-NN, probably due to the Euclidean distance
measure being inappropriate as a similarity score in the images. Indeed, despite the
spatial imaging structure is currently being ignored, it would certainly be interesting
to include this component into our analysis, and a distance based classifier as the k-NN
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Figure 3.8: Classifiers comparison on the neutral stimuli condition. Performance on the neutral
stimuli condition with different classifiers and f-Score feature selection. The left plot
shows accuracy precision and recall for each classifier. On the right side, the ROC
curve is reported.

will benefit the most from it. Despite beta images providing predictive and meaningful
results, it would be more difficult to extrapolate a satisfying clinical interpretation from
the weight maps. Nonetheless, contrast images produce a straightforward understand-
ing of the obtained patterns with respect to the features importance, as the voxels reflect
the difference in reaction between experimental conditions across groups of individu-
als. We are especially interested in contrasts defining the activation difference between
a stimuli and break condition. We compare th results of three feature selection based
variants of the linear SVM model: SVM-fScore, SVM-RFE, and SVM without feature
selection (SVM-wFs). Classification performance is reported in Table 3.4. We observe
that the MVPA method, and in particular SVM-fScore, yields significant classification
accuracies in all the working memory condition versus break contrasts. With a 73.74%
accuracy, the Neu > Break contrast reports the best results, as it is further confirmed
by the highest sensitivity and specificity. The Neg > Break also gives good predictive
performance, with accuracy sensitivity and specificity all above 70%. Slightly lower
but still significant results are identified when the whole WM conditions or the posi-
tive condition against the break are considered as input image. The classifiers trained
on the Emo > Neu contrast, that only evaluates differences between conditions (and no
break), is comparable to a random one, yielding non-significant prediction for each of
the three variants of our pipeline. Overall, we observe that the SVM-fScore method is
the most successful for analysing this cohort, accordingly we restrict our post-hoc anal-
ysis to it. Additional results with 10 fold CV, for comparison and validation purposes,
are reported in Appendix A.
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Table 3.4: Classification results on the contrast of interest with linear SVM and different feature
selection strategies. An asterisk ⇤ depict significant classification result based on the
permutation test (p� value < 0.001).

SVM-fScore SVM-RFE SVM-wFs

Contrast Acc Sens Spec Acc Sens Spec Acc Sens Spec

WM > Break 66.10⇤ 68.42 63.93 64.41 68.42 60.66 62.72 66.66 59.02
Pos > Break 63.56⇤ 68.42 59.02 61.86 70.18 54.10 60.16 66.66 54.10
Neg > Break 71.18⇤ 71.93 70.49 62.25 70.18 60.66 64.41 68.42 60.66
Neu > Break 73.73⇤ 71.93 75.41 72.88 80.70 65.57 66.94 70.17 63.94
Emo > Neu 49.15 64.91 34.43 50.00 75.44 26.23 39.83 57.89 22.95

SITE EFFECT. The classification accuracies on the three scenarios introduced to asses
the influence of the acquisition site, suggest that similar performance is obtained when
using samples from either of the two sites. In scenario (i), where the evaluation step
is performed on each site separately, we obtain an accuracy of 64.29% and 66.67% on
Zurich and Berlin, respectively. This suggests that our method gives similar perfor-
mance when we evaluate on each of the two sub-samples, showing that it is not biased
towards one of the two groups and the learning power of the model is homogeneous
across images from different domains. In the second case (ii), where training and evalu-
ation are both treated independently on each sample, the accuracy is 57.14% on Zurich
and 68.89% on Berlin. Remarkably, this indicates that, as expected, a lower sample size
(Zurich) is negatively affecting the ability of the model to perform accurate predictions.
Lastly, when training is performed on Berlin (larger sample size) and evaluation on
Zurich, the accuracy is 60.71%, demonstrating that our classifier trained on a different
(larger) sample (Berlin) can successfully be adapted for out–of–sample predictions on a
smaller domain (Zurich). We conclude that the site does not particularly affect the anal-
ysis, while the specific sample size plays a crucial role in enhancing the performance. It
must be remembered that these results are only valid in the context of a post-processing
analysis and should not be interpreted as informative of the sample generalisation per-
formance.

POST-HOC ROI We conclude the MDD study by evaluating the post-hoc ROI cluster
analysis based on the weight map obtained by SVM-fScore on the WM>break contrast.
Despite not providing the highest classification accuracies, the WM>break contrast is
the most relevant in a psychiatric evaluation. In fact, previous studies confirmed the
existing differences in BOLD activation values between depressed and healthy subjects,
when performing a working memory task. More importantly, the literature reported
inconsistent results regarding the activated area and regions, while we aim to overcome
some of these limitations by considering a larger sample size, using a combination of
the WM tasks (WM>break) and employing an MVPC pipeline. The cluster analysis
resulted in 14 regions, half of which depicted higher activity in the DP vs HC, and
viceversa. The average contribution of each region with respect to the SVM weights is
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Figure 3.9: Average SVM weights in ROIs. The average value of the weights (⇥10�3) in each
region as obtained by the SVM-fScore classification is shown. The dotted lines show
the average of all positive and negative weights in the whole brain.

Figure 3.10: SVM weight map. The location of the most relevant SVM classification weights
from the WM > fixation contrast are shown (20% of the highest weights with a
cluster threshold of 50 voxels). Red regions depict more activation in MDD pa-
tients. Blue regions depict more activation in healthy controls.

reported in Figure 3.9 and their correspondence in the brain is shown in Figure 3.10.
The post-hoc results suggest that the majority of regions with discriminative power
were located in the default mode network (DMN) and dorsolateral prefrontal cortex
(DLPFC) brain area, which are typically involved in cognitive control. We refer the
interested reader to Gärtner et al. [63] for an extended discussion on the clinical findings.
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MULTI-MODAL IMAGING ANALYSIS. Finally, we analyse the MDD cohort from a multi-
modal perspective. We evaluate the performance of EasyMKL and avgMKL with lin-
ear and RBF kernels, as well as the feature concatenation baseline. Results are reported
in Table 3.5. Because of the exploding cardinality when considering all the possible

Table 3.5: Classification results of the multi-modal analysis.

Modality linFC rbfFC linAVG rbfAVG linEASY rbfEASY

Con04 69.49% 71.19% 68.64% 70.34% 68.64% 70.34%
RS 66.10% 69.49% 68.64% 64.41% 68.64% 64.41%
Struct 63.56% 50.85% 65.25% 50.85% 65.25% 50.85%

Con04 + RS 69.49% 68.64% 68.64% 68.64% 67.80% 72.88%
Struct + RS 65.25% 55.08% 68.64% 60.17% 70.34% 62.71%
Con04 + Struct 63.56% 61.02% 64.41% 55.93% 66.10% 57.63%

ConAll 72.88% 61.02% 70.34% 64.41% 70.34% 67.80%
ConAll + Struct + RS 64.41% 61.02% 61.86% 61.02% 64.41% 56.78%
Con04 + Struct + RS 68.64% 61.02% 66.94% 63.56% 68.64% 58.57%

modalities combination, we restrict to an informative subset by aggregating the best
performing (Neu > Break) contrast with resting state and structural data, as well as with
a combination of all the contrast images. It can be observed that a combination of all the
contrast images performs the best in all the linear methods. On the other hand, with
the RBF kernel, the optimal contrast image already achieves the best accuracy with-
out additional data integration. With EasyMKL and RBF kernel the resting state image
with the Neu > WM contrast gives the higher result, with a 2% improvement over con04
and an 8% improvement over RS. Nevertheless, we overall observe that there is no
clear benefit in using more complex MKL methods over simple feature concatenation
strategies, and sometimes even as compared to the uni-modal setting.

MULTIPLE SCLEROSIS STUDY

For the MS study we use the ROI based extracted features to compare the classification
performance of the MS vs HC task with diffusion and MTR metrics. The comparison
includes a linSVM, rbfSVM and RF classifiers. For the multi-modal approaches we com-
pare each of these models to feature concatenation and to EasyMKL, with RBF and lin-
ear kernels. Figures 3.11 and 3.13 summarise our findings by showing the precision re-
call curves, and in particular evaluating the AUPRC. The choice of this particular eval-
uation is motivated by the highly unbalanced sample in our cohort (see Section 3.1.2).
We clearly observe that either with single modalities or via concatenation of them, the
linearSVM performs quite poorly. However, the non–linear approaches including the
rbfSVM and RF provide a clear improvement in the predictive performance in both
the uni–modal and multi–modal scenario. Nevertheless, the feature concatenation ap-
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proach does not seem to be beneficial in this case, leading to either no improvement
with respect to the best performing modality or to a performance decrease. Looking
at the EasyMKL methods (Figure 3.13), again we see that the linear kernel has a worse
performance than the RBF. However, in the linear case, we note a clear benefit of using
MKL as compared to the naive feature concatenation or uni-modal setting. For the RBF
this is not as clear, although it is evident that the worse performing modality MTR, does
not affect the prediction and the results are either dominated by the best modality or
outperform the isolated contribution of individual images.

3.5 DISCUSSION

STUDY LIMITATIONS. We are certainly limited by several factors affecting the results
and interpretation of our findings, either inherent within the MRI data or specific to our
cohort. The low sample size is a huge limitation on the learning power of the machine
learning models. We partially overcome this issue by employing a LOOCV strategy.
Besides, classical machine learning algorithms such as SVM or RF are known to still
perform well in low data availability regimes. Furthermore, the phenotype assignment
is a problem both in MDD and MS, and the uncertainty of the diagnosis is also reflected
on the assessment of disease severity and subtypes. These issues are particularly prob-
lematic for border line cases, where a binary label assignment could be inadequate.

UNI-MODAL VERSUS MULTI-MODAL. A remaining open question is whether adding
more modalities is beneficial for the classification task. So far, our results show conflict-
ing outcomes, but overall we conclude that in this cohort there is no clear improvement
in the performance when multiple MRI modalities are combined. Certainly, our find-
ings have to be seen in the context of the current data and they are particularly limited
by the small sample size. Indeed, the more complex the model and the more features
are included, the larger is the negative impact of limited data availability. Actions can
be taken to overcome these limitations, for instance employing transfer learning strate-
gies would be a natural follow up, as we argue in Chapter 7.
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Figure 3.11: Precision-Recall curves. Comparison of uni-modal and multi-modal classifiers.
Feature concatenation is used for the multi-modal approaches
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Figure 3.13: Precision-Recall curves. Easy Multiple Kernel Learning with Linear and RBF ker-
nel.
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4 PREDICTING COMPLEX TASKS

The previous chapter mostly focused on patient control phenotype prediction, and on
understanding the effect on the classification performance of multiple MRI modalities
integration. Nevertheless, in clinical studies the patient control task is typically among
the most trivial for a predictor. Especially for neurological disorders, the assessment
performed by a clinician who evaluates visible symptoms and behavioural hints oc-
curs at a stage where the health status is already clear. For example, in MS the brain
alterations are visible by eye on the MRI, so the benefit of an automated algorithm
are minimal. In contrast, more complex prediction tasks such as disease progression,
early diagnosis, or treatment response are harder to assess in the clinic. In general, the
symptomatic evolution of the patient is not easy to forecast at an early stage. In re-
cent years, many efforts towards personalized and precision medicine have been taken
within the machine learning community, aiming to support the physicians in early in-
tervention and personalised treatments. The recommendation automated systems ex-
ploit the complex feature interactions to predict the task. For instance, one could be
interested to learn the best drug treatment to apply on a single patient to maximise the
probability of a positive response. Thus, the algorithm would perform the prediction
based on a combination of clinical features and historical data, by discovering hidden
connections that might be missed by the human expert. Unsurprisingly, acquisition and
analysis of MRI data have played a crucial role in this development, representing an ad-
ditional source of information for the doctors and a valuable input for the automated
systems.

In this chapter, we extend our investigation of the MDD and MS studies to complex
neurological tasks. Specifically, we examine the response to Electroconvulsive Therapy
(ECT), an effective and yet aggressive procedure to treat certain psychiatric conditions,
on a subset of the MDD cohort. For the MS study, we explore the capacity of unsuper-
vised learning algorithms to cluster the MS patients into disease subtypes and discuss
the task of predicting the course of MS.

The reminder of this chapter is organised as follows. In Section 4.1 we examine the
MDD treatment response prediction task. We introduce the data and problem, dis-
cussing the difference between a regression and classification based approach, and sub-
sequently present our experimental findings. Section 4.2 describes the MS study and
results, presenting an unsupervised based approach to tackle the disease subtype cate-
gorisation. Our discussion in Section 4.3 addresses the limitations of the current study
and explores directions for further investigation.
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4.1 TREATMENT RESPONSE PREDICTION IN DEPRESSION

4.1.1 DATA AND FEATURE EXTRACTION

We begin by describing the data type and feature extraction steps. Since the MDD
cohort partially overlaps with the one introduced in Chapter 3, we will omit a complete
description and solely focus on the additional details relevant for this context. A more
comprehensive overview can also be found in [65].

We consider a set of patients diagnosed with Major Depressive Disorder (MDD; see
Section 3.1.1), our goal is to assess their response to Electroconvulsive therapy (ECT) us-
ing MRI imaging data as input. This is a retrospective study, implying that the response
has been already recorded, while the MRI scan has been performed before ECT. This
image prior to treatment will be used for the prediction task. While ECT is a very suc-
cessful therapy for severe depression cases, with a response rate between 60%-80%, it is
still a very demanding procedure and can bring several side effects, including memory
loss [11, 29]. Motivated by this rich and interesting nature of the treatment, we deem as
a very important task to be able to provide accurate recommendations to the psychia-
trist on how the subject will respond to the ECT. To solve this problem, many studies
have been based on demographics and clinical factors, such as psychotic symptoms or
depression severity [177, 187]. Other work exploited biological information, in partic-
ular MRI based biomarkers [44, 143]. Recently, an approach using structural MRI and
Grey Matter Volume (GMV) features in a machine learning framework achieved very
high classification performance [149]. Inspired by this work, we first aim to replicate
this study in our larger cohort. Subsequently, we extend the investigation to predict a
continuous percentage change value in the disease severity, therefore turning the clas-
sification problem into a regression task. Indeed, defining a binary label as responders
and non-responders is often problematic since several patients only showed a partial
response.

ELECTROCONVULSIVE THERAPY. ECT was conducted 3 times a week with a total of
12 sessions. Patients showing a partial response received further ECT sessions, until
they did not show improvement any more. Physiological monitoring included two–
lead electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG),
blood pressure and oxygen saturation. Initially, the stimulus intensity to set the seizure
threshold was 5%, then treatment was performed with an intensity 7 times higher than
the threshold. If the seizure activity was less than 20 seconds in EEG, in the following
ECT sessions the stimulus intensity was raised in steps of 5-10%.

CLINICAL ASSESSMENT. Depression severity was assessed weekly during the treat-
ment with the Montgomery-Asberg Depression Rating Scale (MADRS; [125]). Further-
more, to evaluate symptom severity the Beck Depression Inventory second version
(BDI-II; [13]) as a self-report was used before and after ECT. To quantify the treatment
efficiency, the percent of symptom reduction (PSR) was calculated as percent change
from MADRS baseline ([MADRS score after ECT – MADRS baseline score] / MADRS
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baseline score x 100), and patients with a PSR greater or equal than 50% were classified
as responders. Hospital discharge summaries where also checked for the final assess-
ment, to verify that the improvement was not due to other treatments and to verify
possible inconsistencies.

DATA SELECTION

The current study consists of 71 patients, including 41 females (age: 50.72 ± 17.66; age
range: 19-90) and the remaining matching males, diagnosed with a major effective dis-
order and that received an ECT treatment. ICD-10 codes were used as diagnostic crite-
ria to select the subjects of interest, which were recruited at the Department of Psychi-
atry, Charitè Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin (CHAR)
between 2012 and 2018. In particular, 66% of the subjects are classified with severe re-
current major depressive disorder (F33), but other related disorders are also included
(F32-14%, F31-13%, F25-4%, F34-3%). Patients who received a structural MRI before
ECT treatment and simultaneously receiving antidepressant medication were included.
Exclusion criteria were based on incomplete data only. The study was approved by the
institutional review board at CHAR.

DATA ACQUISITION AND PREPROCESSING

A structural MRI (sMRI) scan was acquired for all subjects before ECT, as part of a
clinical routine. The scan was performed on either a 1.5 Tesla scanner (Magnetom
Aera, Siemens Healthineers, Erlangen) or a 3 Tesla scanner (Magnetom Skyra, Siemens
Healthineers, Erlangen) both equipped with a 20 -channel head/neck surface coil. All
patients were scanned head-first in supine position using a 3 D isotropic high-spatial
resolution T1-weighted Turbo-Flash sequence with near identical sequence. Parameters
were set as follows: TR: 1900 - 2200 ms; TE: 2.49 - 2.88 ms; TI: 900 ms; Flip-angle:  15�;
voxel size: 0.9⇥ 0.9⇥ 0.9 mm3 at 3 Tesla or 1⇥ 1⇥ 1 mm3 at 1.5 Tesla; number of excita-
tions: 1; parallel imaging with an acceleration factor of 2 (GRAPPA algorithm [76]); ac-
quisition time: 4.23 - 4.56 minutes. All the images were preprocessed with the CAT12 1

toolbox [67] implemented in SPM 12, as described in Section 3.1.1 and Appendix A. The
result of the preprocessing steps is a gray matter volume (GMV) probability map of the
brain per subject, that allows to quantify the presence of GM tissue in the brain.

4.1.2 METHODS

We investigate the ECT response prediction task from the two perspectives, either as
classification or regression. In the classification task, we used the binary label as as-
signed via clinical assessment. For the regression problem, we used the PSR as a per-
centage of symptom reduction, where 0% implies no improvement after ECT and 100%
means full recovery. In practice, we observed that most of the response rates lie in the
middle range and are centred around 50%, making the classification task particularly

1http://www.neuro.uni-jena.de/cat/
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problematic due to the uncertainty of the assigned labels. A regression based analysis
can soften this issue by predicting a continuous response, and possibly providing the
clinician with a more informative measure.

We first briefly review the multivariate pattern analysis (MVPA) approach intro-
duced in Section 3.2.2, and subsequently extend it to the regression scenario.

MVPA pipelines extend machine learning models to MRI imaging analysis, with the
major objective to extract MRI based features or interactions of them, that are jointly in-
formative for the clinical interpretation and predictive for the learning task. The main
advantage of a multivariate approach over the univariate counterpart, is indeed to al-
low for dependency between features (Section 3.2.1). Either the entire image or a sub-
part of it, determined by a feature selection strategy, represent a valid input for the pre-
diction model. The MVPA will outcome the optimal prediction and a set of features that
are mostly informative with respect to group separation (classification) or associated to
a continuous prediction target (regression). These features translate into patterns of ac-
tivity, eventually located in distant brain areas. In this study, the classification problem
is to distinguish between responder and non-responders, while the regression task cor-
responds to estimate the reduction of symptom severity. In general, MVPA methods
should be equipped with cross validation techniques, to guarantee generalisation abil-
ity on an independent sample with similar characteristics [119]. In the next sections,
we will present in details the machine learning pipeline on the ECT prediction task. An
overview is shown in Figure 4.1.

FEATURE EXTRACTION

The first step of both the classification and regression pipeline is to extract MRI features
that are informative for the task of interest and representative of the sample cohort. For
this study, we use probability maps of the GM, that is the voxel values obtained from
the sMRI. We will also refer to these features as GMV, since the voxel values ultimately
return the grey matter volume when aggregated. To guarantee that the extracted voxels
are grey matter we compute a brain mask, where all the values below 0.1 are considered
as non-GM tissue. To obtain the group mask we intersect single subject masks. Both
whole brain and regions of interest are considered, leading to the following two types
of features:

(i) Whole - brain GMV: the GM map of the whole brain tissue, resulting in an input
matrix of size Xwhole 2 R71⇥469386, after masking and GM voxel filtering;

(ii) aPHCr GMV: the GM map of the anterior right parahippocampal gyrus (aPHCr)
region, extracted with the FSL Harvard-Oxford Atlas and resulting in a data ma-
trix of size XaPHCr 2 R71⇥1679.
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Figure 4.1: Machine learning pipeline for the classification and regression analysis. Input for all
predictive analyses conducted is the smoothed modulated whole-brain gray matter
volume (GMV). Steps in the classification analysis: Masking, using a whole-brain
coverage mask. Feature extraction using SVM-fScore. SVM-based classification us-
ing responders (resp) vs non-responders (non-resp) class labels. Steps in the post-
hoc regression analysis: Masking, using an anatomical ROI mask of the right anterior
parahippocampal gyrus (aPHCr). Feature extraction corresponding to GM voxels in
the ROI mask. Linear regression to predict the percentage of symptom reduction
(PSR).
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CLASSIFICATION

For the classification task of predicting responders versus non-responders, we employ
the SVM-fScore approach as described in Section 3.2.2, using as input the whole - brain
GMV features.

POST-PROCESSING CLUSTER ANALYSIS. As discussed in Chapter 3, we are particu-
larly interested to obtain classification results that are of relevance to the clinician. We
used the weight maps extracted from the linear SVM in order to identify brain regions
that are mostly contributing to the classification task. To this end, we retain 5% of
the highest absolute weights and apply a cluster threshold of 500 voxels, to focus on
anatomically meaningful clusters. As observed in the previous chapter, it is meaning-
less in an MRI image to provide an interpretation of a single isolated voxel activation,
but we are interested in finding brain areas that characterize the task of interest. The use
of linear separation boundaries in the SVM allowed for a straightforward interpretation
of the feature weights, implying that higher absolute values corresponded to the most
discriminative features. Due to the applied label convention in the classification model,
a positive weight sign indicates higher GMV in responders, and a negative weight sign
indicated higher GMV in non-responders.
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REGRESSION

It is natural to extend the MVPC methods (Section 3.2.2) to a regression model, such as
an Support Vector Regression or a simple multivariate linear regression. In our work,
we use multivariate linear regression analysis to predict the PSR with respect to the
MADRS score, that is:

yi = b0 + b1xi,1 + b1xi,2 + . . . + bpxi,p + ei, (4.1)

for each i = 1, . . . , n. Here, n is the number of samples, p is the number of features (e.g.
voxels), b are the parameters, y is the response variable (e.g. PSR) and x is the explana-
tory variable, for instance the vector of voxel values. We assume that the noise term e is
normally distributed with constant variance and uncorrelated, i.e. e ⇠ N (0, s2). As for
the classification pipeline, we can perform a feature selection step by using some regres-
sion based criteria. We replace the F-score in classification with and F-test for regression.
First, the correlation coefficient between the response and feature is computed, as:

ri =
(x·,j � x̄·,j) · (y� ȳ)

(sj, sy)
(4.2)

where sj and sy are the sample standard deviation of feature j and y, respectively. Then,
we can use an F-test to obtain a p-value and rank the feature importance accordingly. In
the regression study, we used GMV aPHCr features as input.

4.1.3 EXPERIMENTS

EXPERIMENTAL SETUP

CLASSIFICATION. In the classification analysis the whole–brain GMV features were
used as input for the machine learning pipeline. A leave–one–out cross validation
(LOOCV) was employed to evaluate the classifier performance, as recommended for
limited sample size domains [179]. The tuned hyperparameters, i.e. the C in SVM
and and the percentage of selected features, are learned on the training data only via
5 fold cross validation. For the SVM parameter, the grid C = {10�5, 10�2, . . . , 101}
was used, while to select the number of features, varying percentages in the range
{10%, 20%, . . . , 50%} were evaluated. The classification weight maps for subsequent
analyses were constructed by averaging the weights over all folds of the cross valida-
tion. The performance of the classifier was evaluated in terms of accuracy, sensitivity,
and specificity, and the statistical significance of the classification accuracy was assessed
via permutation test, with 1000 repetitions (see Section 3.4.1 for details on these proce-
dures).
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4.1 Treatment response prediction in depression

Figure 4.2: Classification weight maps. Blue colour depicts a cluster of the most contributing
classification weights in the right anterior parahippocampal gyrus (aPHCr; MNI co-
ordinates of center: 18, 0, �30; size: 573 voxels).

REGRESSION. In the regression analysis the aPHCr features were used as input. The
predictive performance was evaluated with a LOOCV approach, minimising the mean
squared error:

MSE =
1
n

n

Â
i=1

(yi � ŷi)
2 (4.3)

the features were selected on the training data only via inner 5 fold cross validation,
in a range of {10%, 20%, . . . , 100%}. To evaluate the performance, we use the Pearson
correlation coefficient (PCC) between true (y) and predicted (ŷ) PSR:

r(y, ŷ) = Ân
i=1(yi � ȳ)(ŷi � ¯̂y)p

Ân
i=1(yi � ȳ)2

p
Ân

i=1(ŷi � ¯̂y)2
. (4.4)

RESULTS

CLASSIFICATION. The SVM-fScore approach was applied on the 71 patients, of which
39 positively responded to ECT and 32 are non-responders. We obtained a classification
accuracy of 69.01%, with a sensitivity of 66.67% and specificity of 71.87%, that is 26/39
responders and 23/32 non-responders were correctly classified by SVM-fScore. The
permutation test (p-value = 0.008) revealed that structural MR images in our sample
provided enough signal and information to distinguish between responders and non-
responders. Subsequently, we performed the post-processing cluster analysis, which
showed that a GMV cluster in the right anterior parahippocampal gyrus (aPHCr) pro-
vided most informative contribution in the characterization of ECT response (Figure 4.2).

We also evaluate the performance obtained by simple clinical predictors, which are
known to be related to the response task, and use these as input features for the SVM-
fScore, either in a univariate or in a multivariate fashion. Outperforming the clinical
feature baseline is crucial to affirm the importance of acquiring good quality MRI im-
ages. Results showed that no statistically significant predictive power was observed
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4 Predicting complex tasks

Figure 4.3: Descriptive statistics of clinical predictors in ECT responders and non-responders.
A: Presence of psychotic symptoms. B: Age at start of ECT. C: Baseline depression
severity (MADRS score).

with respect to age, presence of psychotic symptoms and depression severity. We also ob-
served that in most of the CV splits, and for almost every sample, the classifier was
predicting the majority class (responders). This suggests that no significant information
is hidden in the clinical variables to provide a meaningful separation. Classical statisti-
cal analysis supports the machine learning findings, given that no differences between
ECT responders and non-responders is observed for psychotic symptoms (chi-square,
p = 0.61), age (t-statistic, p = 0.72), and depression severity (t-statistic, p = 0.65), as
shown by the descriptive statistics in Figure 4.3.

REGRESSION. To predict PSR changes, we used a subset of the original data consisting
of 54 patients, selected by availability and quality control. We used an anatomical mask
of the aPHCr and apply a multivariate regression analysis on the GMV voxel values
from this region. The aPHCr has been previously associated with depression and also
showed discriminative power in our post-hoc classification analysis [202, 203]. Results
are presented in Figure 4.4. In the figure, the green line represents a linear regression fit
of the predicted outcome against the true PSR, with the shaded green area highlighting
a confidence interval for the regression slope parameter. The findings show a positive
significant correlation (r = 0.36; p-value = 0.007) between the predicted PSR on aPHCr
and the corresponding true percentage variation. Therefore, we conclude that a signal
in the GMV values of the aPHCr region can be identified as significantly associated
with the PSR changes after ECT.
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4.2 Identifying patient subtypes in Multiple Sclerosis

Figure 4.4: Regression results on aPHCr region. Predicted PSR versus true PSR with a linear
regression fit. Green area is a confidence interval for the slope parameter.

4.2 IDENTIFYING PATIENT SUBTYPES IN MULTIPLE SCLEROSIS

For the MS study, we used the same data cohort and modalities as described in Sec-
tion 3.1.2, with analogous preprocessing and acquisition steps. We investigate the com-
plex tasks of identifying patient subtypes and establish the progression of MS. Both
scenarios are very challenging from a clinical perspective, given that the phenotype
exhibits high uncertainty. For the MS subtype, we recall our distinction across RRMS,
SPMS, PPMS. Despite the subgroups being clinically definable, the symptoms and evo-
lution of MS might vary across subjects, and a patient may be assigned to a different
group at a later stage of the disease, leading to the uncertainty of sub-group assign-
ment. This uncertainty, certainly reflects in the disease progresion task as well. Here,
the challenges come from the unstable disease evolution, on one side, and from the
clinical assessment evaluation, on the other side. We consider the MS subtype task
in an unsupervised fashion. Namely, we aim at clustering patients based on the MRI
scans, to ultimately assess if the established separation is informative of the MS type.
Of course, we aim for the patients belonging to the same MS type to be assigned to the
same cluster.

DATA AND FEATURE EXTRACTION. The MS cohort, including the acquisition and pre-
processing protocol was established in Section 3.1.2. As input for the analysis, we also
use the same ROI based features extracted from the diffusion metrics and MTR images,
as detailed in Section 3.3.2.

4.2.1 METHODS AND RESULTS

To analyse the power of unsupervised algorithms for the MS subtypes task, we per-
form a comparison of different clustering approaches. The number of subgroups to
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consider, corresponding to the number of clusters, is particularly tricky to assess. In
principle, it should be treated as an unknown parameter and selected using established
evaluation criteria, for example a measure of consistency or cluster similarity. Several
techniques exist for assessing the optimal number of clusters. For instance, one can use
cross–validation based methods, that evaluate the performance of cluster similarity on
test data. Another possibility is the Silhouette coefficient, which employs the distance
between and within cluster objects to evaluate the quality of the separation. The El-
bow method is also a valid alternative, as it looks at the explained variation of the data
with varying number of clusters. To facilitate the clustering task, already challenging
from a clinical and analytical perspective, we omit this step and rather perform a retro-
spective investigation. In practice, we assume to know how many subgroups (clusters)
are defined in our cohort and we wish to understand how well the model can retrieve
those.

CLUSTERING. We use traditional clustering methods including Spectral Clustering [186],
DBSCAN [48], K-Means and Hierarchical Clustering [54]. We also conduct a principal
components analysis (PCA [54]) as a preprocessing step on the ROI features and apply
clustering on the reduced data, to facilitate interpretation and visualisation and poten-
tially peak patterns from the PCA transformed features that might be hidden in the
original space.

EVALUATION. For clustering evaluation, we use the Rand Index, and in particular
the adjusted version, which is a classical measure of similarity to evaluate the overlap
between the true and assigned cluster label. The Rand index is indeed equivalent to
accuracy, and can be defined in terms correct and wrong prediction counts as:

RI =
TP + TN

TP + FP + FN + TN
. (4.5)

The adjusted-rand Index is a corrected version of RI. The adjustment is made with
respect to the expected similarity of the comparison, in pracitce correcting for random
chance. This is defined as:

ARI =
RI � Exp(RI)

(max(RI)� Exp(RI))
. (4.6)

where Exp(RI) is the expected outcome of a random algorithm.

RESULTS. Overall, clustering into the 3 MS sub-types did not provide satisfactory re-
sults. When comparing across different input metrics, we observed that the best overall
results are achieved with the FA images, reporting the following accuracies: k-means
ARI= 0.23; hierarchical ARI= 0.28; spectral ARI= 0.20. The DB scan was unable to
pick any meaningful signal, classifying all the points as "noisy". This minimal perfor-
mance suggested that the ROI features are unsuitable to provide any distinction among
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Figure 4.5: First and second PCA of the ROI features. For the SP+PP group (purple) versus RR
(yellow).

the MS types. Therefore, in our subsequent step we aim at reducing the complexity of
the model by considering a binary separation. In particular, given that the PP patients
are a minority (5%) and they belong to the set of the most severely diagnosed subjects,
we merge them with the SP, generating the new separation task SP + PP vs RR. With
this approach, we clearly observe that more signal can be retrieved. While the spectral
and DBSCAN clustering still outcome non significant clusters, with k-means and hi-
erarchical clustering we achieve an accuracy of 65% and 74%, respectively. Lastly, we
evaluate the effect of performing PCA and clustering on the first two principal compo-
nents only. This analysis also reveals more promising results. In figure 4.5 we show the
first and second principal components and label the points according to the MS. It is
evident that a good separation of the two groups is achievable. Running a hierarchical
clustering analysis, we also observe a pretty good recovery of 77% between the true
and assigned MS type.

4.3 DISCUSSION

4.3.1 TREATMENT RESPONSE

Our classification results confirm that there is predictive power in structural brain im-
ages of ECT patients. This is further supported from the analysis of the weight maps,
which showed that a region in the right anterior hippocampal cortex contributed most
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to the prediction. These findings align with the literature, as GMV increases in the
hippocampus after ECT, while patients with less GMV in this region are more likely to
respond to the treatment [154]. We also showed that, compared to the clinical predictors
lacking statistical signal (Figure 4.3), MRI biomarkers were successfully able to predict
the response to ECT. These considerations raise the question of whether it would be
beneficial to integrate additional MRI modalities to further improve the prediction per-
formance. Our findings in the previous chapter would suggest that redundant signal
could indeed negatively affect the model learning capabilities. Nevertheless, those re-
sults referred to a different and simpler prediction task (MDD vs HC), while in this
complex scenario it is plausible that hidden interactions can be extracted via combina-
tion of multiple MRI features. Lack of data in our cohort did not allow to explore this
hypothesis, but we are confident to recommend that future studies should consider
MKL and multi-modal integration for the ECT task.

Another major discussion point concerns the choice of the dichotomisation of the re-
sponse label, turning the PSR into a binary prediction task, motivating us to explore the
regression perspective. Indeed, as we can observe from Figure 4.4 the majority of either
true and predicted value are centred around 50%. This poses an issue to the binary
response phenotype, since with this threshold many subjects lie at the boarder of the
two classes. While our results are yet not optimal, given the large prediction interval,
we believe that future work should investigate the regression based approach in more
details. Obtaining narrow intervals and accurate PSR predictions is certainly among
the most relevant information to provide to a clinician. The choice of the modality
and small sample size are possible reasons to justify our modest results. Nevertheless,
our correlation coefficient appears to be close to the 0.05 significance level, a promising
outcome that encourages further investigation.

4.3.2 COMPLEX TASKS IN MULTIPLE SCLEROSIS

The classification of MS subtypes is particularly challenging, as well as it is often un-
clear for a medical expert to assign the patient to the correct group, mostly due to the
unpredictable course of MS. We performed a clustering based analysis to evaluate the
prediction power of diffusion MRI metrics in the patient subgroup separation task.
Overall, our results confirm the difficulty of determining a correct label assignment to
a specific subgroup. We verified that only a subset of the ROI features was associated
with the MS subtype phenotype, suggesting that using the whole ROI data might be
not necessary, if yet uninformative. This speculation is confirmed by the PCA analysis,
where we observed that in a low dimensional space it is easier to identify clusters of
patient subgroups. However, our study should be interpreted in retrospect since the
number of clusters was considered to be fixed. Future work should focus on optimis-
ing this parameter given that, a priori, the distribution of the MS patients across the
subtypes is unknown. Of course, a larger sample size is required for this investiga-
tion, as opposed to our cohort where each group only could use an handful of subjects,
resulting in the learning capabilities of the algorithm to be limited.
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An additional complex and crucial task in MS is the assessment of disease progres-
sion. There are several ways to evaluate progression, for example looking at established
criteria as the EDSS score or at the volume of the white matter lesions in the brain. Both
are assessed by experts, either via clinical investigation or via observation by eye on
the image itself. While we did not report these results, the preliminary classification
and statistical analysis within our cohort suggested that very little signal could be re-
trieved from the available data to successfully solve the progression task. We certainly
envision that future work could benefit from an extended data acquisition and we rec-
ommend to extend the uni– and multi–modal approaches developed in Chapter 3 to
the MS progression task.
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PART III

LEARNING ON GRAPHS
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5 WASSERSTEIN WEISFEILER-LEHMAN
GRAPH KERNELS

In previous chapters, we focused on applications of kernel based methods on MRI
imaging analysis. We showed how kernels can be integrated in classical machine learn-
ing algorithms and combined to optimally learn information from different data modal-
ities. We will now shift our attention to kernel applications on the graph structured
data domain, as we presented in Chapter 2. Most of the these graph kernels rely on
the R – convolution framework [82], based on a decomposition of structured objects
into substructures defining local similarities, which are then aggregated to compute the
final similarity score. However, one of the major limitations of these approaches lies
in the naive aggregation step, which is generally a sum or average. For example, in
the popular WL kernel one–dimensional node features are summed to obtain a graph
representation and ultimately the kernel value (Section 2.2). Therefore, complex struc-
tural similarity and non–linear dependencies across node representations are ignored
at the graph level, resulting in a potential loss of information. Indeed, the simplicity
of the readout step (see Section 2.3) is also an issue in many graph neural network ap-
proaches, where the complexity of the model needs to be controlled in order to contain
the hyperparameter space and runtime, while preventing overfitting. Finding a good
trade–off within the model complexity is one of the most active research area in the
GNN domain [129, 198].

Multiple attempts have been made in the graph kernel field to overcome this limi-
tation, mainly addressing it from the perspective of an optimal assignment problem,
i.e. to find good matching between substructure by minimizing a given cost function.
Fröhlich et al. [57] proposed a kernel that performed optimal assignment on molecular
graphs at the node label level. Nonetheless, it was later shown that this kernel is not
positive definite [182], potentially creating inaccuracies when used as input for ker-
nelized learning algorithms. Later on, Kriege et al. [105] developed a WL based kernel
that employs optimal assignment on the node features at multiple iterations. However,
these methods, as well as most of the existing graph kernels, have a major restriction
in their applicability since they do not generalized on continuously attributed graphs.
Extensions exist, mostly relying on hashing-based techniques, which can still result in
a loss of information [126, 130]. We propose a method that overcomes the limitations
of R – convolution kernels while being suitable for graphs with continuous attributes.
This is achieved by integrating ideas from optimal transport theory, defining a kernel
on vectorial graph representations obtained with a propagation scheme that iteratively
aggregates information from the original, high–dimensional node attributes. Our so-
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lution is built upon an efficient computation of Wasserstein distances [4, 36, 183] ex-
tended to the graph domain, paired with a Weisfeiler–Lehman inspired embedding
scheme that can handle arbitrarily attributed and weighted graphs, at node and edge
level. Our approach, the Wasserstein Weisfeiler–Lehman (WWL) graph kernel [172] has
shown successful experimental performance on several benchmark data sets for graph
classification, and in particular molecular graphs, outperforming the state–of–the–art.

The remainder of this chapter is organised as follows. We begin by reviewing the ba-
sic concepts from optimal transport theory and define the Wasserstein distance, which
is at the foundation of our method (section 5.1). Then, we extend the Wasserstein dis-
tance to graph structured data at the node feature level and derive a WL based propa-
gation scheme to construct node embeddings (section 5.2). In section 5.3 we investigate
how to obtain valid kernels from the Wasserstein distance on graphs. Experiments eval-
uating the empirical performance of our approach in comparison to the state–of–the–art
are described in section 5.4, both with respect to classification accuracy and runtime.
We conclude by summarizing our contributions and sketching ideas for future work
(section 5.5).

5.1 OPTIMAL TRANSPORT

In this section we introduce concepts from optimal transport theory, particularly the
Wasserstein distance as a measure of similarity, that will be later expanded to accom-
modate the graph setting.

Informally, the aim of optimal transport is to find the best matching or transportation
that minimises the distance between two probability distributions. In other words, the
is goal to find the functional minimum cost to transform a distribution into another one,
where the objective minimising the cost is chosen accordingly to the problem of inter-
est. The Wasserstein distance is a core ingredient in optimal transport, since it provides
a distance measure between probability distributions, that can be later employed to op-
timize the cost in terms. More precisely, assuming we have samples or probability mass
from two distributions s and µ the Wasserstein distance can be interpreted as a ground
distance between them. Then the optimal transport problem aims at solving the opti-
mization to find the most "inexpensive" way to transform s into µ. We can think about
the optimal transport problem in a one–dimensional domain via an intuitive example.
Suppose we have a pile of sand and we want to reassemble it to create a second pile
of a different "shape" or to fill a hole; the optimal mass transportation problem aims at
finding the minimal effort way to transform the pile from one distribution to the other
one. An illustration of this example is given in Figure 5.1. Another typical intuitive
representation of the optimal transport problem was suggested by Monge in his initial
formulation [124]. Assume we have a set of bakeries producing bread every morning
and having to deliver it to cafés, supposing that we know the amount of bread that will
be consumed at each café. We can model this amount as a probability measure in a cer-
tain space, which here corresponds to the city map, equipped with a natural distance
between points given by their shortest path (i.e. bakery-café distance). The goal is to
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5.1 Optimal transport

Figure 5.1: Optimal mass transportation problem. The sand pile on the left is assembled to build
the pile on the right. Source: Mémoli [123].

ᷘ ᵫ

find the best transport strategy by determining the amount of bread going from each
bakery to each café, such that the transportation cost is minimised (Figure 5.2; [183]).
The general idea of optimal transport problem was formulated by Monge [124] and
later revisited by Kantorovich [96]. Then, the formulation as described in this section is
also called the Kantorovich, or Monge-Kanterovich problem [183].

5.1.1 WASSERSTEIN DISTANCE

To introduce the optimal transport problem from a more technical perspective, let us
begin by recalling the notion of coupling in probability theory, of which the optimal
transport plan is one of the most famous instances.

Definition 5.1 (Coupling [183]). We are given two probability distributions µ and s in
some space X and Y , with random variables X ⇠ µ and Y ⇠ s. Then, we say that (X, Y)
is a coupling on (µ, s) if X and Y are defined on a joint probability space S = X ⇥ Y
and follow the same distribution as X and Y in the original space.

Equivalently, one can say that a measure p is defined on X ⇥Y such that µ and s are
the marginals on X and Y , respectively. Optimal transport is an instance of coupling,
i.e. a law between two distributions defined on a joint probability space.

Let (X , µ) and (Y , s) be two probability spaces and define a cost function c(x, y) on
(X ⇥ Y). According to the previous discussion, we interpret c as the cost of transform-
ing one distribution into another one. The optimal transport minimization problem is
formulated over all possible couple of random variables X ⇠ µ and Y ⇠ s to find

C(X, Y) = inf E[c(X, Y)], (5.1)

or equivalently in terms of a probability measure

C(X, Y) = inf
Z

X⇥Y
c(x, y)dg(x, y). (5.2)
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Figure 5.2: Illustration of the optimal transport problem with the bakery example. Source:
slides from M. Cuturi for a course on Computational Optimal Transport [142].

We minimise with respect to the set of all joint probability measures g 2 G(s, µ), where
G(s, µ) are called transport plans and the solution of 5.2 is the optimal transport plan. The
Wasserstein distance is defined as a special instance of equation 5.2.

Definition 5.2. The Lp-Wasserstein distance for p 2 [1, •) is given by

Wp(s, µ) :=
✓

inf
g2G(s,µ)

Z

M⇥M
d(x, y)p dg(x, y)

◆ 1
p

, (5.3)

where G(s, µ) is the set of all transportation plans g 2 G(s, µ) with marginals s and µ,
over M⇥M, where M contains the distances d(x, y).

Here, d is an arbitrary ground distance, for example Euclidean.

Theorem 5.1 (Villani [183]). The Wasserstein distance satisfies the axioms of a metric, if d is a
metric.

Proof. The three properties of a metric can be checked as follows.

(i) Wp(s, µ) = Wp(µ, s). It follows by definition, assuming that d is a metric then
d(x, y) = d(y, x).

(ii) If s = µ then there exist X, Y with X = Y and d(X, Y) = 0 and Wp(s, µ) = 0.
Similarly, if Wp(s, µ) = 0 there exist the diagonal transport plan with X = Y
implying that µ = s.
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5.1 Optimal transport

Figure 5.3: Schematic view of the optimal transport problem in the discrete setting. Source:
adapted from a slide of M. Cuturi for a course on Computational Optimal Trans-
port [142].
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(iii) Let s1, s2, s3 probability measures on X , with X1, X2 and X2, X3 be the optimal
plan for s1, s2 and s2, s3. Then, by the gluing lemma (see Villani [183]) there exist
random variables X01, X02, X03 such that (X01, X02) ⇠ (X1, X2) and (X02, X03) ⇠ (X2, X3)
and X01, X03 is an optimal plan for s1, s3. Therefore, if d is a metric we can write:

Wp(s1, s3)  (Ed(X01, X03)
p)

1
p (5.4)

 (E(d(X01, X02)
p + d(X02, X03)

p))
1
p (5.5)

 (Ed(X01, X02)
p)

1
p + (Ed(X02, X03)

p)
1
p (5.6)

= Wp(s1, s2) + Wp(s2, s3) (5.7)

following from the Minkowski inequality and knowing that (X01, X02) and (X02, X03)
are optimal plans.

A special case of the Wasserstein distance for p = 1 is also called L1 – Wasserstein. We
will mostly focus on this in the remainder of this chapter and refer to it as Wasserstein
distance, unless specified otherwise. Our ultimate goal, is to extend the Wasserstein
distance in the setting of node embeddings, in particular to evaluate the distance be-
tween set of nodes. Therefore, we can restrict our methodology to the discrete setting,
in practice replacing the integral with a simpler sum and reformulate the problem in
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matrix notation [153]. Let X 2 Rn⇥p, X0 2 Rm⇥p the two set of vectors (e.g. node
embeddings), then the Wasserstein distance can be written as:

W1(X, X0) := min
P2G(X,X0)

hP, Mi. (5.8)

Here, M 2 Rn⇥m is a matrix containing all the distance values between vectors d(x, x0),
for each pair of x 2 X and x0 2 X0, while P 2 G is a transport matrix and h·, ·i is the
Frobenius dot product. The matrix P 2 Rn⇥m contains all the valid transport plans
to transfer values from X to X0, determining the fraction of mass to be transported.
Because we are in a probabilistic framework, the total mass to be transferred from X to
X0 equals 1, it follows that the row and columns of P sum to 1

n and 1
m respectively. A

schematic view is presented in Figure 5.3.

5.2 WASSERSTEIN DISTANCE ON GRAPHS

In this section we introduce the major methodological contribution of our work, the
Wasserstein distance on graphs and corresponding graph embedding scheme. We recall
that our motivation to enhance graph kernel with optimal transport based distances,
lies in the unsatisfactory nature of the R – convolution kernels. The averaging step
might result in loss of substructure similarity, following our need to build more infor-
mative similarity measures that can account for complex interactions. Our method is
developed upon 3 main steps:

1. Graph embedding scheme: transform each graph into a new representation as a
set of node embeddings

2. Graph Wasserstein distance: evaluate the Wasserstein distance between graphs

3. Compute a similarity matrix from the distance and use it in the learning algorithm

We will now elucidate steps (1) and (2), while step (3) will be investigated in the next
section.

5.2.1 GRAPH EMBEDDING SCHEME

The goal of the graph embedding scheme is to generate an accurate representation of
each graph as a set of node embeddings.

Definition 5.3 (Graph Embedding Scheme). Given a graph G = (V, E), a graph em-
bedding scheme f : G ! R|V|⇥p, f (G) = XG is a function that outputs a fixed-size
vectorial representation for each node in the graph. For each vi 2 V, the i-th row of XG
is called the node embedding of vi.

A priori, Definition 5.3 does not make any assumption on f which can be an arbitrary
function. The dimension p depends on the function f ; typically, the node attributes or
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categorical labels are used to determine the input dimension p. We will now present a
graph embedding scheme inspired by the WL kernel, that is general enough to allow
for either continuously attributed and categorically labels graphs, both as the edge and
node level.

NODE EMBEDDINGS

We begin by recalling the WL iterative label scheme, as defined in section 2.2.5. With
a similar notation let us define a graph G = (V, E) with `(v) = `0(v) being the initial
node label, for each node v 2 V. For the moment, let us assume that the graph is
categorically labelled, i.e. `0(v) 2 N. Let H be the number of iteration of WL, then we
defined the recursive scheme to generate node labels at different iterations as:

`h+1(v) = hash(`h(v),N h(v)). (5.9)

where N h(v) = {`h(u0), . . . , `h(udeg(v)�1)} is the neighbourhood of v, with neighbour-
hood node labels defined via WL at iterations h. Given the perfect hashing function,
the updating rule might be too strict in terms of similarity, as the algorithm cannot dis-
tinguish between partially overlapping and totally different neighbours. Furthermore,
the updating scheme as provided by the original WL does not extend to continuously
attributed graph. We then modify the WL scheme to account for continuous attributes
and partial similarities, to also resembles the updates step in GNNs. Nevertheless, con-
trarily to a GNN, our approach does not learn the updating function which is assumed
to be fixed. While having the disadvantage of less flexibility, such an approach enjoys
a tremendous speed up and is still powerful enough to detect hidden similarities, with
a low risk of overfitting on a small sample size regime.

CONTINUOUS WL SCHEME. To make a clear enough distinction from the categorical
case, we will now denoted the continuous attribute as a(v) 2 Rp, rather than `(v). As
before, a0(v) = a(v) denote the original node attributes for each v 2 V. The idea be-
hind the continuous WL scheme resemble the categorical case, by creating updates that
leverage the information of the current node features and average over the neighbour-
hoods to create the updated embedding at the next iteration. Efforts in this direction
have been already made to compute kernels that encode these node–level similarities
on the continuous features. However, they usually rely on additional hashing or bina-
rization of the continuous attributes, therefore loosing relevant information from the
input [126, 130]. We define the recursive step to compute continuous WL features as
follows:

ah+1(v) =
1
2

 
ah(v) +

1
deg(v) Â

u2N (v)
w((v, u)) · ah(u)

!
. (5.10)

A visual overview of our embedding scheme is provided in Figure 5.4. Here, w(v, u)
is the edge weight, if available, and w(v, u) = 1 otherwise. The term in parenthesis
from Equation 5.10 is a sum between the node feature itself and a weighted average of
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5 Wasserstein Weisfeiler-Lehman graph kernels

Figure 5.4: Intuitive representation of the WL graph embedding scheme. The node feature of
the current node (vh

1, yellow) at iteration h is updated by averaging the nodes in its
neighbourhood (vh

2, vh
4), then again evaluating their mean. The new node feature at

iteration h+ 1 is obtained vh+1
1 . This procedure is applied to every node in the graph.
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the neighbourhood node features, since deg(v) = |N (v)| and w(v, u) is the weighting
factor. For the neighbourhood component, it is also possible to use a customised or
expert guided weight term w instead of the edge weights, though we believe that our
current choice keeps the formulation as general as possible and applicable to any graph,
without the need for extra domain knowledge. Additionally, we could also add another
scaling factor on the node features themselves, though again an informed decision on
this value should be guided by a learning or expert based criteria, which might not be
known in the generic framework. The 1/2 factor ensures a similar feature scale across
iterations., while leveraging the contribution of the node itself and the neighbourhood.
Indeed, due to the sum term, without a proper scaling the feature value itself would
explode as the iteration number increases, leading to embeddings not fully comparable
over the different iterations. Per our definition, the WL continuous refinement step is
not directly related to a test of isomorphism as for the categorical setting; nevertheless
it is a natural extension of it (see Sections 2.2.5 and 2.3).

WL FEATURES. Combining the universal graph embedding scheme with the WL re-
finement step for continuous and categorical label, we define a WL based graph em-
bedding procedure. This generates the so–called WL features which can be interpreted
as the node features obtained via the WL scheme; the input is given by either the con-
tinuous or categorical attributes.

Definition 5.4 (WL features). Let G = (V, E) and let H be the number of WL iterations.
Then, for every h 2 {0, . . . , H}, we define the WL features as

Xh
G = [xh(v1), . . . , xh(vnG)]

T, (5.11)
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5.2 Wasserstein distance on graphs

Figure 5.5: Visual summary of the graph Wasserstein distance. First, f generates embeddings
for two input graphs G and G0. Then, the Wasserstein distance between the embed-
ding distributions is computed.

where xh(·) = `h(·) for categorically labelled graphs and xh(·) = ah(·) for continuously
attributed graphs. We refer to Xh

G 2 RnG⇥p as the node features of graph G at iteration h.
Then, the node embeddings of graph G at iteration H are defined as

f H : G ! RnG⇥(p(H+1))

G 7! concatenate(X0
G, . . . , XH

G ).
(5.12)

It is worth to mention that it is possible to also jointly consider continuous and cate-
gorical labels, for example by concatenating them. However, as we will see in the next
section, we ultimately have to calculate a distance between node features to construct
the Graph Wasserstein Distance. While it is easy to choose ground distances on either
the continuous or categorical case, establish a joint measure is far from being trivial,
and we leave this extension for future work [165].

5.2.2 GRAPH WASSERSTEIN DISTANCE

Once the node feature have been computed, for example with the WL embedding
scheme, the next step is to compute a distance between those. We define a Wasserstein
based distance between graphs as a distance between their node embeddings, and we
will refer to it as Graph Wasserstein Distance (GWD).

Definition 5.5 (Graph Wasserstein Distance). Assume we have two graphs G = (V, E)
and G0 = (V 0, E0) and a graph embedding scheme f : G! R|V|⇥p to output their node
representation. Let d : Rp ⇥Rp ! R be a ground distance defined on individual pair
of node vectors. We define the Graph Wasserstein Distance (GWD) as

D f
W(G, G0) := W1( f (G), f (G0)). (5.13)
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5 Wasserstein Weisfeiler-Lehman graph kernels

The GWD should be interpreted as a measure of affinity between graphs, as rep-
resented by the set of their node embeddings. When the GWD runs over the entire
graph, the embedding correspond to the random variable in Equation 5.8, so the ob-
jects are represented as a distribution of nodes. This characterisation allows to preserve
partial similarities across node embeddings, assessing the closeness between their rep-
resentative vectors. A visual summary of the first two steps of our method, consisting
of the graph embedding scheme and computation of the Graph Wasserstein Distance is
reproduced in Figure 5.5.

COMPUTING THE DISTANCE. The ground distance d in Definition 5.5 should be a valid
metric. Different choices are possible depending on the nature of the embeddings, i.e.
categorical versus continuous. For categorical node features, we use a normalised ver-
sion of the Hamming distance:

dHam(v, v0) =
1

H + 1

H+1

Â
i=1

r(vi, v0i), r(x, y) =
⇢

1, x 6= y
0, x = y (5.14)

The Hamming distance is equivalent to a normalised sum, over the number of WL iter-
ations H, of the discrete metric r evaluating the discrepancy between node features. If
the vectors are identical, then the Hamming distance is 0, and if they have no common
features their distance is 1. We observe that it is legitimate to use this distance assuming
that the categorical node labels do not have any meaning per se, e.g. ordering, and they
can be transformed to a one–hot–encoding fashion. In the classical WL, this is guaran-
teed by the neighbourhood aggregation and hashing step (see 2.2.5). In the continuous
setting, we use a standard Euclidean distance between node features:

dE(v, v0) = ||v� v0||2. (5.15)

These distances, and in principle any other one appropriate for the problem of interest,
should be plug-in to Equation 5.3 and the optimal transport problem is then solved
with a network simplex method [142].

ALTERNATIVES TO THE WASSERSTEIN DISTANCE. While the Wasserstein Distance is
appealing as providing a probabilistic perspective to the similarity score, it is imagin-
able to replace it with any other measure. A valuable alternative would be to use a
Gaussian distance metric, i.e. replacing the GWD with an RBF kernel. Using a kernel
instead of a distance also has the benefit to be a ready–to–use matrix for the learning
algorithm, contrarily to the Wasserstein based approach where we need to take an ex-
tra step to compute the kernel (see Section 5.3). We define the RBF–WL as the approach
employing an RBF kernel on the WL features.
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5.3 From distance to kernels

Definition 5.6 (RBF–WL). Let G = (V, E) and G0 = (V 0, E0) two graphs with |V| = n,
|V 0| = n0 with WL features at each iteration h given by Xh

G and Xh
G0 , respectively. Then,

we define the node kernel matrix as:

Kh(G, G0) = RBF(Xh, X0h) (5.16)

with Kh(G, G0) 2 Rn⇥n0 . Ultimately, we sum up the element of Kh(G, G0) to get:

Kh
RBF�WL(G, G0) =

n

Â
i=1

n0

Â
j=1

Kh(G, G0)i,j (5.17)

as a kernel similarity value between G and G0.

The parameter h should be tuned in the learning algorithm. To get the final similarity
matrix on a set of graphs, the kernel should be computed pairwise, at the cost of an high
computational complexity. It is easy to see that such an approach is theoretically legit-
imate, as proved by the closure properties of kernels; indeed, any other valid kernel,
could be used instead of the RBF.

5.3 FROM DISTANCE TO KERNELS

We presented how the GWD results in a distance over graphs applicable to arbitrary
node embeddings. However, for the use of classification and regression learning al-
gorithms as kernel based methods, we need to go one step further and obtain a valid
kernel from the distance matrix. Luckily, there are multiple ways to convert a distance
matrix into a similarity measure, while certain conditions need to be verified for it to be
a PSD kernel. In this section, we will show how to obtain kernels form the GWD and
investigate on their (in)definiteness.

All the steps performed so far, grant us all the ingredients to define the final crucial
contribution of our work, the Wasserstein–Weisfeiler Lehman kernel.

Definition 5.7 (Wasserstein Weisfeiler–Lehman). Given a set of graphs G = {G1, . . . , GN}
and the GWD defined for each pair of graph on their WL embeddings, we define the
Wasserstein Weisfeiler–Lehman (WWL) kernel as

KWWL = e�lD fWL
W . (5.18)

In general, a kernel defined as in Equation 5.18 for some ground distance belongs
to the family of the geodesic Laplacian kernel. These kernels have been shown to pro-
vide theoretical guarantees for positive definiteness under favourable conditions, even
for non-Euclidean distances, which is generally a trickier scenario to prove [49]. To in-
vestigate the theoretical properties of our kernel and assess the positive definiteness,
we will distinguish between the continuous and categorical case, depending on the
attribute nature of the graphs. The whole procedure consisting of WL features genera-
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5 Wasserstein Weisfeiler-Lehman graph kernels

Algorithm 1 Compute Wasserstein graph kernel

Input: Two graphs G1, G2; graph embedding scheme f H; ground distance d; l.
Output: kernel value kWWL(G1, G2).
XG1  f H(G1); XG2  f H(G2) // Generate node embeddings
D  pairwise_dist(XG1 , XG2 , d) // Distance between pair of node embeddings
DW(G1, G2) = minP2GhP, Di // Compute the Wasserstein distance
kW(G1, G2) e�lDW(G1,G2)

tion, GWD and finally obtaining the WWL completes the methodological development
or our approach, which is outlined in Algorithm 1.

5.3.1 DEFINITENESS OF THE WWL

In the context of Euclidean space, it is well known how to generate valid kernels from
distances, while theoretical and practical aspects have been widely investigated [78].
Unfortunately, the general Wasserstein distance does not generate a Euclidean space,
i.e. it is not isometric to an L2 norm and the corresponding metric space depends on
the choice of the ground distance and type of input [51]. Overall, being a metric (e.g.
Wasserstein distance) is a necessary but not sufficient condition to generate positive
definite kernels with standard substitution approaches [78], motivating our need for a
more in depth investigation on the subject. Several attempts have been made to estab-
lish the positive definiteness from optimal transport problems, and the field is still an
active research area. Nevertheless, general considerations and results from the distance
based and Laplacian application can be useful and extended to our particular setting.

Definition 5.8 (Conditional definite kernel). Given a symmetric function k : X ⇥X 7!
R yielding a positive definite kernel, i.e. Ân

i,j=1 cicjKij � 0, with Kij = k(xi, xj) for every
ci 2 R, n 2 N and xi 2 X , we say that k is conditional positive definite (CPD) if the
condition holds for all ci 2 R with Ân

i=1 ci = 0. Analogously, if Ân
i,j=1 cicjKij  0 for all

ci 2 R with Ân
i=1 ci = 0, we say that k is conditional negative definite (CND).

The conditional positive definiteness is a weaker condition than classical PD, as it
restricts its validity to a subset of the input space. Nevertheless, it is sometimes easier
to generate CPD kernels from certain distance functions.

Proposition 5.2. [78] Let d(x, x0) be a symmetric, non-negative distance function with d(x, x) =
0. If d is isometric to an L2-norm, then

knd
d (x, x0) = �d(x, x0)b, b 2 [0, 2] (5.19)

is a valid CPD kernel.

We refer to [78] for a proof. This proposition is extremely useful to define positive
definiteness, presenting a very easy and intuitive way to transform a distance to ker-
nel. However, we still have the issue that the Wasserstein distance, in its general for-
mulation, is not isometric to an L2 space. To overcome this limitation, Feragen et al. [49]
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5.3 From distance to kernels

presented a family of exponential kernels that enjoy positive definiteness, under certain
conditions, even when the distance function is non-Euclidean:

k(x, x0) = e�ld(x,x0)q
for l, q > 0. (5.20)

Proposition 5.3. [49] Let us call the geodesic Laplacian kernel the one obtained from Equa-
tion 5.20 for q = 1. The geodesic Laplacian kernel is positive definite for all l > 0 if and only if
the geodesic distance d is conditional negative definite.

We refer the interested reader to [49] for a complete poof, based on previous argu-
ments and background presented in [15]. Despite this proposition, in the general for-
mulation we still cannot guarantee negative definiteness of the Wasserstein distance.

THE CASE OF CATEGORICAL EMBEDDINGS

When the original node labels are categorical, the node embeddings will also be in-
tegers, in practice a concatenation of histograms. We will show that this condition,
together with the WL procedure scheme, is enough to guarantee positive definiteness
for the Laplacian based WWL kernel from Definition 5.7. At the core of our analysis
is the following statement: if the Wasserstein distance is defined with a discrete metric
as ground distance (e.g. the Hamming distance), then it is conditional negative defi-
nite [61]. Several considerations will then lead us to prove our final results concerning
the positive definiteness of categorical WWL.

We begin by observing that the solutions to the optimal transport problem over node
embeddings generated with the Weisfeiler–Lehman labelling scheme are also shared
across iterations, since the label dictionary is shared within graphs. We denote the
Weisfeiler–Lehman embedding scheme as defined in Definition 5.4 as f H

WL, and let D fWL
W

be the corresponding GWD on a set of graphs G with categorical labels. Let dHam(v, v0)
of Equation 5.14 be the ground distance of D fWL

W . Then, we can prove a series of useful
results.

Lemma 5.4. If a transportation plan g with transport matrix P is optimal as established by
Definition 5.2 for distances dHam between embeddings obtained with f H

WL, then it is also optimal
for the discrete distances ddisc between the H-th iteration values obtained with the Weisfeiler–
Lehman scheme.

Proof. Recalling the notation from Section 5.1.1 and in particular from 5.8, we denote
by M the cost or distance matrix, also P 2 G is a transport matrix (or joint probability),
and h·, ·i is the Frobenius dot product. Since each of the vectors has equal weight (i.e.,
equal probability mass), G contains all nonnegative n⇥ n0 matrices P with

n

Â
i=1

pij =
1
n0

,
n0

Â
j=1

pij =
1
n

, pij � 0 8i, j.

For notation simplicity, let us denote the Hamming matrix DHam( f h
WL(G), f h

WL(G0)) by
Dh

Ham, where the ij-th entry is given by the Hamming distance between the embedding
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5 Wasserstein Weisfeiler-Lehman graph kernels

of the i-th node of graph G and the embedding of the j-th node of graph G0 at iteration h.
Similarly, Dh

disc is defined to be the discrete metric distance matrix, with the ij-th entry
is given by the discrete distance between feature h of node embedding i of graph G
and feature h of node embedding j of graph G0. Therefore, the two matrices [Dh

Ham]ij 2
[0, 1] and [Dh

disc]ij 2 {0, 1} are restricted to values in the corresponding range and, by
definition of the WL scheme, we obtain:

DH
Ham =

1
H

H

Â
h=0

Dh
disc.

Additionally, from the classical WL procedure, it follow that if two labels are different
at iteration h they will also be different at iteration h + 1. Hence, we deduce that

h
Dh

Ham

i

ij

h

Dh
disc

i

ij

and consequently [Dh
Ham]ij = 0 () [Dh

disc]ij = 0. From the definition of an optimal
transportation plan Ph for the embeddings f h

WL, it always holds that:
D

Ph, Dh
Ham

E

D

P, Dh
Ham

E
8P 2 G.

Now, assume that Ph is not optimal for Dh
d . Then, there exists P⇤ such that

D
P⇤, Dh

disc

E
<
D

Ph, Dh
disc

E
.

Since we showed that the entries of Dh
disc are restricted to be either 0 or 1, we can define

the set of indices tuples H =
�
(i, j) | [Dh

disc]ij = 1
 

and rewrite the last inequality as:

Â
i,j2H

p⇤ij < Â
i,j2H

ph
ij.

Again, the constraints on the entry values of P⇤ and Ph imply that Âi,j p⇤ij = Âi,j ph
ij = 1

and, by rearranging the transport map, there is more mass that could be transported at
0 cost, i.e.

Â
i,j/2H

p⇤ij > Â
i,j/2H

ph
ij.

However, as we observed, entries of Dh
d that are 0 must also be 0 in Dh

Ham. Therefore, a
better transport plan P⇤ would also be optimal for Dh

Ham:
D

P⇤, Dh
Ham

E
<
D

Ph, Dh
Ham

E
.

This is a contradiction of the optimality assumption, then we can conclude that Ph is
also optimal for DH

disc.
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Lemma 5.5. If a transportation plan g with transport matrix P is optimal in the sense of
Definition 5.2 for distances dHam between embeddings obtained with f H

WL, then it is also optimal
for distances dHam between embeddings obtained with f H�1

WL .

Proof. Intuitively, the transportation plan at iteration h is a “refinement” of the trans-
portation plan at iteration h� 1, where only a subset of the optimal transportation plans
remains optimal for the new cost matrix Dh

H. As a consequence of Lemma 5.4 and in
light of the WL procedure, two labels that are different at iteration h will also be differ-
ent at iteration h + 1. Applying the distances definition, the following inequalities can
be obtained: h

Dh
Ham

i

ij

h

Dh+1
Ham

i

ij
h

Dh
disc

i

ij

h

Dh+1
disc

i

ij
h

Dh
Ham

i

ij

h

Dh
disc

i

ij
.

Also, an optimal transportation plan Ph for the WL embeddings f h
WL(G) has to satisfy

D
Ph, Dh

Ham

E

D

P, Dh
Ham

E
8P 2 G,

which is equivalent to

D
Ph, Dh

Ham

E
=

1
h

⇣
(h� 1) ·

D
Ph, Dh�1

Ham

E
+
D

Ph, Dh
disc

E⌘
.

We know that for increasing h, the values of Dh
Ham increase in a step–wise fashion and

their ordering remains constant, except for entries that were 0 at iteration h � 1 and
became 1

h at iteration h. Given the monotonicity conditions of our metric, and since Ph

is optimal for Dh
disc, from Lemma 5.4 we deduce that

D
Ph, Dh�1

Ham

E

D

P, Dh�1
Ham

E
8P 2 G.

Therefore, Ph is also optimal for the WL embeddings f h�1
WL (G) at iteration h� 1.

These results lead us to postulate that the Wasserstein distance between categorical
WL node embeddings is a conditional negative definite function.

Theorem 5.6. D fWL
W (·, ·) is a conditional negative definite function.

Proof. Using the same notation as for Lemma 5.4, we obtain

D fWL
W (G, G0) = min

PH2G

D
PH, DH

Ham

E

= min
PH2G

1
H

H

Â
h=0
hPH, Dh

disci.
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Let P⇤ be an optimal solution for iteration H. Then, from Lemmas 5.4 and 5.5, it is also
an optimal solution for DH

disc and for all h = 0, . . . , H� 1. We can express this condition
as a sum of optimal transport problems:

D fWL
W (G, G0) =

1
H

H

Â
h=0

min
P⇤2G
hP⇤, Dh

disci. (5.21)

This corresponds to a sum of one–dimensional optimal transport problems relying on
the discrete metric, which were shown to be conditional negative functions [61]. It fol-
lows that the final sum is also conditional negative definite.

We are now in the position to state our main result for the definiteness of kernels in
the categorical setting.

Theorem 5.7. The categorical WWL kernel is positive definite for all l > 0.

Proof. The result is a direct consequence of Theorem 5.6 and Proposition 5.3.

THE CASE OF CONTINUOUS EMBEDDINGS

In the continuous setting, it is still an open problem to determine the positive definite-
ness of our method. We postulate a series of considerations and we conjecture that,
under particular conditions, it is possible to prove that WWL is PD for continuous em-
beddings as well. Nevertheless, we do no have a formal proof yet, which we leave as
an extension for future work. We will now present several supporting arguments that
further agree with our empirical findings (see Section 5.4). Indeed, we will observe
that in our data sets, after standardisation of the input features before the embedding
scheme, GWD matrices are conditional negative definite.

At an high level, our argument is based on the properties and curvature of metric
spaces, and how they relate to the Euclidean space. The curvature is a concept in ge-
ometry determining the "shape" of a manifold, as well as their orientation. Euclidean
spaces are "flat" and the curvature of a space is an indication of how much they "devi-
ate" from the flatness. More formally, the curvature indicates to what extent a geodesic
triangle will be deformed in the space. Determining the curvature ultimately charac-
terizes the corresponding space.

Definition 5.9 (Alexandrov space). A metric space is called an Alexandrov space if its
sectional curvature is � k, for some real value k.

Flat spaces are characterised by a curvature of k = 0. Feragen et al. [49] shows that
there is a strong connection between a kernel positive definiteness and the underlying
metric space via its curvature, as an indication of its "closeness" to Euclidean spaces.

Proposition 5.8. The geodesic Gaussian kernel (i.e., q = 2 in Equation 5.20) is positive definite
for all l > 0 if and only if the underlying metric space (X, d) is flat in the sense of Alexandrov,
i.e., if any geodesic triangle in X can be isometrically embedded in a Euclidean space.
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It is generally not true that the space induced by the Wasserstein distance is (locally)
flat, as not even the geodesics (i.e., shortest paths between points in metric spaces)
connecting graph embeddings are unique, which is a requirement for a space to be flat.
As for the categorical case, according to Proposition 5.3, we would need to prove that
the metric used in the kernel function is CND. This is yet an open problem, but we can
prove that the opposite is not true. In particular, if X is the is metric space induced by
the GWD, we can show that its curvature is not bounded from above.

Definition 5.10. A metric space (X, d) is said to be CAT(k) if its curvature is bounded
by some real number k > 0 from above.

Theorem 5.9. X is not in CAT(k) for any k > 0, meaning that its curvature is not bounded
by any k > 0 from above.

Proof. Our argument is similar to the one presented in Turner et al. [174]. We provide
here a sketch of the proof.

Given two graph G and G0, let us assume that X is a CAT(k) space for some k > 0.
Then, it has been shown [25, Proposition 2.11, p. 23] that if D fWL

W (G, G0) < p2/k, there is
a unique geodesic between them. We observe that it is possible to construct a family of
graph embeddings for which this is not the case. In particular, let e > 0 and fWL(G)
and fWL(G0) be two graphs with node embeddings a1 = (0, 0), a2 = (e, e) as well as
b1 = (0, e) and b2 = (e, 0), respectively. Since we used the Euclidean distance as a
ground distance, there exist two optimal transport plans: the first maps a1 to b1 and a2
to b2, whereas the second maps a1 to b2 and a2 to b1. Hence, we have found two distinct
geodesics that connect G and G0. Choosing e arbitrarily small, it follow that the space
cannot be CAT(k) for k > 0.

While this does not provide an upper bound on the curvature, we can state the the
following conjecture.

Conjecture 5.10. X is an Alexandrov space with curvature bounded from below by zero.

For a proof idea, we refer to Turner et al. [174]; the main argument involves characteriz-
ing the distance between triplets of graph embeddings. The importance of this conjec-
ture is hidden in the non–negativity of the curvature of Alexandrov spaces, a necessary
condition for X to be a Hilbert space [136]. Furthermore, Feragen et al. [49] showed that
CND metrics and Hilbert spaces are intricately linked, strongly indicating that such
metrics could be obtained in our setting, under appropriate conditions. Moreover, our
empirical results (Section 5.4), will indicate that it is possible to turn the GWD into a
CND metric, after normalisation. The intuition is simple, as for high-dimensional input
spaces, standardisation of input features changes the curvature of the induced space by
making it locally (nearly) flat.

Indeed, arguments related to the flatness of the space have already been proposed as
possible ways to ensure positive definiteness. For example, one can use an alternative
to the classical Wasserstein distance denoted as the sliced Wasserstein [145]. The idea is
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to project high–dimensional distributions into one–dimensional spaces, hereby calcu-
lating the Wasserstein distance as a combination of these representations. Kolouri et al.
[101] showed that in one dimension each of the Wasserstein distances is CND, therefore
obtained a kernel on high-dimensional representations as a combination of the one–
dimensional positive definite counterparts.

5.3.2 KREĬN SUPPORT VECTOR MACHINES

So far, our considerations cannot guarantee the positive definiteness of the WWL in the
general continuous case. We empirically observed that our kernel matrices are nearly
positive definite (see Section 5.4), meaning that their eigenvalues are close to zero.
While the kernelized SVM is robust to these cases, we still aim to guarantee the the-
oretical correctness of our approach. In fact, the positive definiteness of the kernel ma-
trix is a necessary condition to ensure exactness of the kernelized SVM (Equation 3.9).
Therefore, we employ a new class of algorithms recently developed that formally ex-
tends the SVM for learning with indefinite kernels [138]. It has been shown that for
non positive Gram matrices one can define an extension of the RKHS, the reproducing
kernel Kreı̆n spaces (RKKS) induced by the kernel k, that shares many properties with
the RKHS learning framework. The essential difference between RKHS and RKKS is in
the characterization of the inner product, which is indefinite in the Kreı̆n space.

Definition 5.11 (Kreı̆n space [115, 138]). Let (K, h·, ·i) be a an inner product space. We
say that K is a Kreı̆n space if there exist two Hilbert spaces H+,H� spanning it, such
that:

1. For each f 2 K there is a decomposition f = f+ + f�, with f+ 2 H+ and f� 2 H�
2. For all f , g 2 K the inner product can be written as:

h f , giK = h f+, g+iH+ � h f�, g�iH�

This definition implies that there exist an associated Hilbert space H and if both
H+,H� are RKHS, then we say that K is a reproducing kernel Kreı̆n space. For a com-
plete characterization, we refer the interested reader to previous literature [9, 18, 138].
When extending the SVM to RKKS the issue is in the optimization problem, since the
lack of a positive inner product implies that the loss in the dual problem can no longer
be minimized (Equation 3.8). The solution relies on replacing the minimisation problem
with a stabilization approach, which has been shown to provide theoretical correctness
and good empirical results [138]. This approach has been later proved to be a valuable
solution to solve the SVM problem and extended for applicability in this domain [115].
Alternatives to the standard stabilization technique have been proposed, which employ
regularization to improve theoretical consistency and guarantee, while providing an ef-
ficient and effective solution [135]. Besides the theoretical relevance, these approaches
showed clear benefits from learning in RKKS when the kernel is not guaranteed to be
PSD, also in terms of classification performance. Therefore, in our experiments we use
a Kreı̆n SVM (KSVM, [115]) as a classifier for the case of continuous attributes.
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Table 5.1: Description of the experimental data sets.

Data set Class Ratio Node Labels Node Attributes Edge Weights # Graphs Classes

MUTAG 63/125 X - - 188 2
NCI1 2053/2057 X - - 4110 2
PTC-MR 152/192 X - - 344 2
D&D 487/691 X - - 1178 2

ENZYMES 100 per class X X - 600 6
PROTEINS 450/663 X X - 1113 2

BZR 86/319 X X - 405 2
COX2 102/365 X X - 467 2
SYNTHIE 100 per class - X - 400 4
IMDB-B 500/500 - (X) - 1000 2
SYNTHETIC-NEW 150/150 - X - 300 2

BZR-MD 149/157 X - X 306 2
COX2-MD 148/155 X - X 303 2

5.4 EXPERIMENTS

We now analyse the classification performance of WWL in comparison to state–of–the–
art graph kernels on molecular and collaboration graph datasets, with respect to sev-
eral tasks. We also perform a runtime experiment to investigate the computational re-
quirement of our approach, and assess the benefit of applying speed-up approximation
tricks [4, 36].

5.4.1 DATA SETS

To investigate the classification performance we collect multiple real–world and syn-
thetic benchmark data sets from the graph kernel literature [161, 184]. Complete infor-
mation of the data is reported in Table 5.1. All data sets have been downloaded from a
public repository1 [99].

DATA DESCRIPTION. The data sets are equipped with either continuous or categori-
cal attributes, and therefore suitable for both variants of WWL. Some of the data sets
contain categorical labels only, namely MUTAG, PTC-MR, NCI1, and D&D; oth-
ers, have both categorical and continuous attributes (ENZYMES and PROTEINS);
additionally, IMDB-B, BZR, COX2, SYNTHIE and SYNTHETIC-NEW only have
continuous attributes; finally, BZR-MD and COX2-MD contain both node labels and
edge weights. Most of these data sets belong to the chemoinformatics domain and
include small molecules (MUTAG, PTC-MR, NCI1), macromolecules (ENZYMES,
PROTEINS; [22]) and chemical compounds (BZR, COX2; [169]). We also include two
sythentic data sets SYNTHIE and SYNTHETIC-NEW, created by Morris et al. [126] and

1https://ls��-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Feragen et al. [50], respectively. Lastly, a movie collaboration data set IMDB [200] is also
considered.

DATA PROCESSING. The BZR-MD and COX2-MD data sets are the only ones con-
taining an edge weight, i.e. the atomic distance between each connected atom. Here,
we only consider distances between connected nodes [102] as edges and to obtain a
node attribute we use the one–hot–encoding of the original node labels, representing
the atom type. For IMDB-B we employed the node degree as a (semi-)continuous node
feature [200]. For all the other data sets we use the off–the–shelf version provided in the
repository [99].

5.4.2 EXPERIMENTAL SETUP

To assess the learning capability of WWL as a kernel similarity measure we compare
its prediction power with well established graph kernels. Referring to the methods
description in Section 2.2, the following approaches are included as competitors in the
categorical setting: Weisfeiler-Lehman subtree kernel (WL); Weisfeiler-Lehman optimal
assignment kernel (WL-OA); node histogram kernel (NH); edge histogram kernel (EH).
For continuously attributed graphs, we compare WWL with the graph hopper kernel
(GH) and two variants of the hash graph kernel (HGK-SP; HGK-SP); we also consider
two baselines directly derived by node embeddings, the all node-pairs kernel with an
RBF as base kernel (N-RBF), and the RBF-WL from Definition 5.6.

Either a KSVM or an SVM are used as classifiers, for the continuous and categorical
setting, respectively. To evaluate the classifier generalisation ability we use a 10 -fold
cross–validation, selecting the hyperparameters on the training set only. Each cross–
validation split is repeated 10 times to account for randomness and we report the aver-
age accuracy and standard deviation. The same splits are used across all methods, in
order to ensure comparability of our findings.

As for the classifiers hyperparameter tuning, we select the C of KSVM in the range
C = {10�3, . . . , 103}, for continuous attributes; in the categorical case, C of the SVM
is chosen in the range C = {10�4, . . . , 105}. For the kernel parameters, the number of
iterations h of WL is selected in in the grid h = {0, . . . , 7}, while for the l parameter of
the WWL we use l = {10�4, . . . , 101}. For RBF-WL and N-RBF, we use the default g
parameter for the Gaussian kernel, that is we set g = 1/p, where p is the size of node
attributes. Following the recommendations in Feragen et al. [50] and Morris et al. [126], we
also fix the g parameter to 1/p in GH, and the number of iterations to 20 for each data
set, except for SYNTHETIC-NEW where we use 100, for the HGK methods. Moreover,
since HGK is a randomised method, each kernel matrix is computed 10 times and we
average the results to get the final prediction score. For high–dimensional continuous
attributes p > 1, these are normalised to ensure comparability among the different
feature scales, in each data set except for BZR and COX2, where the node attributes
are location coordinates hereby the normalisation would result in the loss of attributes
meaning.
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Table 5.2: Classification accuracies on graphs with categorical node labels. Comparison of
Weisfeiler–Lehman kernel (WL), optimal assignment kernel (WL-OA), and our
method (WWL). The best result is highlighted in bold. An ⇤ denotes a statistically
significant difference between the best performing method and all other approaches.

Method MUTAG PTC-MR NCI1 PROTEINS D&D ENZYMES

NH 85.39 ± 0.73 58.35 ± 0.20⇤ 64.22 ± 0.11 72.12 ± 0.19 78.24 ± 0.28 22.72 ± 0.56
EH 84.17 ± 1.44 55.82 ± 0.00⇤ 63.57 ± 0.12 72.18 ± 0.42 75.49 ± 0.21 21.87 ± 0.64

WL 85.78 ± 0.83 61.21 ± 2.28⇤ 85.83 ± 0.09 74.99 ± 0.28 78.29 ± 0.30 53.33 ± 0.93
WL-OA 87.15 ± 1.82 60.58 ± 1.35⇤ 86.08 ± 0.27 76.37 ± 0.30

⇤ 79.15 ± 0.33 58.97 ± 0.82

WWL 87.27 ± 1.50 66.31 ± 1.21
⇤ 85.75 ± 0.25 74.28 ± 0.56 79.69 ± 0.50 59.13 ± 0.80

When available, we use the implementation provided by the authors to compute the
kernel, i.e. for HGK, WL-OA and GH.

5.4.3 CLASSIFICATION RESULTS

We evaluate the classification results in terms of accuracy for all the data sets, both in
the categorical and continuous case. To evaluate the difference across methods and
measure statistical significance, we perform a 2-sample t-tests with a threshold of 0.05
and Bonferroni correction for multiple hypothesis testing, within each data set. Never-
theless, since no meaningful comparison can be performed between the two settings,
due to methods being not applicable in either of the scenario or the information used
to compute the kernel (categorical or continuous) being different, we make a separate
discussion between the two cases.

CATEGORICALLY LABELLED GRAPHS. The results of the categorical WWL against the
competitor approaches are reported in Table 5.2. The main take home message is that,
on the categorical data sets, WWL is comparable to the WL-OA kernel, and both WWL
and WL-OA improve over the classical WL. Indeed, we see that on two data sets, PTC-
MR and D&D, WWL is either clearly or slightly better, while on NCI1 and PROTEINS,
WL-OA outperforms WWL. In the the other data sets, on MUTAG and ENZYMES the
standard deviations overlap and no clear winning method can be identified. We con-
clude that the two approaches are comparable on these data sets. Such an observation
does not come as a surprise, indeed the WL–OA formulation relies on solving the opti-
mal assignment problem by defining Dirac kernels on histograms of node labels, using
multiple iterations of WL. It is evident that this is very similar to WWL on categorical
data, despite WL–OA relying on optimal assignment rather than the optimal transport;
therefore, it requires one-to-one mappings instead of continuous transport maps. An-
other difference is that we solve the optimal transport problem on the concatenated
embeddings, hereby jointly exploiting representations at multiple WL iterations. Con-
trarily, the WL–OA performs an optimal assignment at each iteration of WL and only
combines them in the second stage. While these modifications result in different kernel
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Table 5.3: Classification accuracies on graphs with continuous node and/or edge attributes.
Comparison of hash graph kernel (HGK-WL, HGK-SP), GraphHopper kernel (GH),
and our method (WWL). The best result is highlighted in bold. An ⇤ denotes a sta-
tistically significant difference between the best performing method and all other ap-
proaches

Method ENZYMES PROTEINS IMDB-B BZR COX2 BZR-MD COX2-MD

N-RBF 47.15 ± 0.79 60.79 ± 0.12 71.64 ± 0.49 74.82 ± 2.13 48.51 ± 0.63 66.58 ± 0.97 64.89 ± 1.06
RBF-WL 68.43 ± 1.47 75.43 ± 0.28 72.06 ± 0.34 80.96 ± 1.67 75.45 ± 1.53 69.13 ± 1.27 71.83 ± 1.61

HGK-WL 63.04 ± 0.65 75.93 ± 0.17 73.12 ± 0.40 78.59 ± 0.63 78.13 ± 0.45 68.94 ± 0.65 74.61 ± 1.74
HGK-SP 66.36 ± 0.37 75.78 ± 0.17 73.06 ± 0.27 76.42 ± 0.72 72.57 ± 1.18 66.17 ± 1.05 68.52 ± 1.00

GH 65.65 ± 0.80 74.78 ± 0.29 72.35 ± 0.55 76.49 ± 0.99 76.41 ± 1.39 69.14 ± 2.08 66.20 ± 1.05

WWL 73.25 ± 0.87
⇤

77.91 ± 0.80
⇤

74.37 ± 0.83
⇤

84.42 ± 2.03
⇤

78.29 ± 0.47 69.76 ± 0.94 76.33 ± 1.02

matrices, the difference is not pronounced enough to appreciate variations in perfor-
mance on these data sets, possibly due to the type of labels or small sample size.

Nevertheless, the key advantage and empirical superiority of WWL over WL–OA is
in its capacity to handle the continuous attributes, as we will discuss next.

CONTINUOUSLY ATTRIBUTED GRAPHS. Results on continuously attributed graphs on
the real-world datasets are reported in Table 5.3. We observe that overall WWL shows
high accuracies in comparison to the other approaches. In particular, on 4 datasets
(ENZYMES, PROTEINS, IMDB-B, and BZR) WWL significantly outperforms the other
methods. Specifically, on COX2 the performance is on par to HGK-WL, as both mean
and standard deviation overlap. On the other 2 data sets, BZR-MD and COX2-MD,
WWL still has the best performance, despite the difference with the second best ap-
proach being non statistically significant. Calculating the average rank of the methods,
we obtain: WWL = 1, HGK-WL = 2.86, RBF-WL = 3.29, HGK-SP = 4.14, and VH-C =
5.86. From these perspective, WWL clearly scores as first, establishing a new state–of–
the–art in graph kernels classification on the continuous setting. The HGK-WL method
appears to be the strongest competitor of our approach. In spirit, the idea of HGK-WL
is not so different from WWL, since it is based on a WL inspired propagation scheme
to update the node features at each iteration. However, the HGK performs an hashing
step to deal with the continuous case, compressing and potentially loosing the original
information. To leverage for this issue, they use multiple hashing functions instead of a
perfect map, but that might still not capture all the small differences between continu-
ous attributes. Furthermore, the random hashing step requires additional hyperparam-
eters making the generation of the kernel matrix sensitive to the chosen seed, while also
increasing the runtime. The benefit of a fully continuous and deterministic approach is
confirmed by the gap in performance observed between the WWL and HGK-WL. Our
method, always outperforms the baselines with the RBF kernel. This result is particu-
larly important in the context of the GWD component, implying that standard kernel
between node features, such as the RBF, are not expressive enough to capture all the
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Table 5.4: Classification accuracies on synthetic graphs with continuous node attributes. Com-
parison of hash graph kernel (HGK-WL, HGK-SP), GraphHopper kernel (GH), and
our method (WWL).

Method SYNTHIE SYNTHETIC-NEW

N-RBF 27.51 ± 0.00 60.60 ± 1.60
RBF-WL 94.43 ± 0.55 86.37 ± 1.37

HGK-WL 81.94 ± 0.40 95.96 ± 0.25
⇤

HGK-SP 85.82 ± 0.28 80.43 ± 0.71

GH 83.73 ± 0.81 88.83 ± 1.42

WWL 96.04 ± 0.48
⇤ 86.77 ± 0.98

hidden patterns and similarities between nodes. In the optimal transport formulation
the node distribution is used, generating a more precise matching score between set of
nodes.

We also perform a comparison on the synthetic data sets, as shown in Table 5.4. We
observe that on these data sets the methods seem to give unstable results, with a large
gap in performance across them. In our preliminary experiments, contrarily to the real
world scenario, we observed that varying the scale of the node features (e.g., normali-
sation or scaling of the embedding scheme) resulted in a large change of performance
(up to 15%). It is also unclear if the use of synthetic continuous node attributes is ben-
eficial on these data sets, since both Morris et al. [126] and Feragen et al. [50] showed that
on SYNTHETIC-NEW, the WL kernel with degree treated as categorical node label
outperforms the competitors. Such considerations remark the crucial importance of
choosing appropriate data sets for graph kernels when designing a novel approach, to
ensure a fair assessment and comparison with the state–of–the–art.

POSITIVE DEFINITENESS. From a theoretical perspective, we pointed out that the ker-
nel obtained from continuous attributes is not necessarily positive definite. Neverthe-
less, the empirical results supported our theoretical considerations, since the obtained
kernel matrices are nearly positive definite, i.e. the eigenvalues are closed to zero. This
suggests that after proper normalization the node feature space is (locally) nearly flat
and, within certain bounds, properties of the Euclidean space still hold. Indeed, the dif-
ference between the results obtained from classical SVMs in RKHS and those with the
KSVM approach is negligible, suggesting that in practice we might not need to account
for the indefiniteness of the kernel.

5.4.4 RUNTIME AND COMPLEXITY

One of the disadvantages of the Wasserstein distance is the computational complexity,
which is O(n3log(n)), with n being the cardinality of the indexed set of node embed-
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dings, i.e., the number of nodes in the two graphs. From a theoretical perspective, both
WL and WL–OA scale linearly with the number of nodes, so they are computationally
less expensive than WWL. Strategies to speed up the Wasserstein distance evaluation
have been proposed, for instance via approximations relying on Sinkhorn regularisa-
tion [36], which can reduce the computational burden to near-linear time, while pre-
serving accuracy [4]. In particular, the Sinkhorn method solves the following entropic
regularisation problem,

Pg = arg min
P2G(X,X0)

hP, Mi � gh(P). (5.22)

Such speedup tricks are incredibly useful in high-dimensional regimes, due to the reg-
ularization term making the optimization faster. However, the difference might be neg-
ligible in small size scenarios, if not harmful, due to the extra parametrization of the
model.

In practice, looking at the runtime of WWL we observe that in our data sets the ker-
nel matrix can be computed in a median time of 40 seconds, and since this is a one time
operation, the theoretical computational burden is certainly not unbearable. Empiri-
cally, we see that for the continuous attributes our approach has a runtime comparable
to GH. However, we expect the gap to grow for larger graphs, since GH was shown to
empirically scale quadratically with the number of nodes [50]. Both HGK variants are
considerably slower than WWL, as a consequence of the multiple hashing and stochas-
tic component, requiring a certain number of iterations and repetitions for the method
to converge.

To estimate the benefit of using approximations for the Wasserstein distance com-
putation, we simulated a fixed number of graphs with a varying average number of
nodes per graph. In particular, we generate random node embeddings for 100 graphs
and varying the average number of nodes; for each graph, the number of nodes is taken
from a normal distribution centered around the average. Then, we compute the kernel
matrix on each set of graphs and compare the runtime of regular Wasserstein with the
Sinkhorn regularised optimisation. As shown in Figure 5.6, the speedup can only be
appreciated when the number of nodes grows to 200 or more, which is larger than the
size of our data sets. The right plot in Figure 5.6 depicts a logarithmic scale, where it is
clear that in small graphs regime running the Sinkhorn is more harmful than beneficial,
given the hyperparametrization of the problem.

We perform a final experiment to evaluate the accuracy on one of the data sets (ENZYMES),
with Sinkhorn versus regular Wasserstein. With the Sinkhorn approximation, we need
to account for the extra g parameter (Equation 5.22) to select via cross validation, that
we choose in the range g 2 {0.01, 0.05, 0.1, 0.2, 0.5, 1, 10}. We observe that g values se-
lected most of the time are 0.3, 0.5, and 1; the accuracy on ENZYMES is 72.08 ± 0.93,
which is slightly lower than regular Wasserstein but still above the state–of–the–art.

102



5.5 Discussion

Figure 5.6: Runtime performance of the WWL Kernel computation step with a fixed number
of graphs. We also report the time taken to compute the ground distance matrix as
distance_time. Here, total_time is the sum of the time to compute the ground distance
and the time taken to solve the optimal transport (ot) problem for the regular solver
or the Sinkhorn-regularised one. The standard (left) and logarithmic (right) scales
are shown.

(a) Standard scale (b) Logarithmic scale

5.5 DISCUSSION

In this chapter we presented a new family of graph kernels, the Wasserstein Weisfeiler–
Lehman (WWL) graph kernels. Our method combines elements from optimal transport
theory with an efficient WL propagation scheme, to obtain an informative and versa-
tile similarity measure between node embeddings. We proved that WWL is PSD on
categorically labelled graphs and we discussed the positive definiteness in the con-
tinuous scenario. We performed several experiments on graph classification settings
and showed that WWL outperforms the state–of–the–art in the scenario with continu-
ously attributed graphs, while is at least as performing as other methods in the cate-
gorical node label regime. We also evaluated the benefits of using approximations of
the Wasserstein distance in terms of runtime and preservation of the predictive perfor-
mance. Further investigating this aspect, would lead to natural extensions of our work
to the large graphs regime, and is certainly an exciting future direction. Still with the
aim of improving runtime, one should also think about deriving the explicit feature
representation in the RKKS, as this would also provide a consistent speedup. On the
theoretical side, major contributions could be made by defining bounds and conditions
to ensure the positive definiteness of the WWL kernel in the case of continuous node
attributes. Finally, neuralizaiton of the current method for the development of a new
graph neural network, would be a promising and high–impact extension.
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6 ADVERSARIAL GRAPH NEURAL
NETWORKS

In the previous chapter we presented our novel Weisfeiler–Lehman Graph Kernel (WWL),
that combined optimal transport theory with an iterative propagation scheme, to obtain
improved node representations and boost the state–of–the–art in graph classification.
We already observed that graph neural networks (GNN; Section 2.3) are a powerful
alternative to graph kernels. The machine learning community recently witnessed an
enormous explosion of these methods, in parallel with increasing abundance of large
data sets. Nonetheless, graph kernels are generally limited to a small sample size
regime, given the computational complexity of both the kernel generation step and
classification learning algorithm (e.g. SVM). As argued in Section 5.4.4, for the WWL
and for many other graph kernels, this bottleneck is negligible when the size and edge
density of the graph is limited, while the whole pipeline from kernel generation to pre-
diction can still be computed in a reasonable time. On the contrary, GNNs thanks to the
backpropagation step and modern power resources (Graphical Processing Unit; GPU)
have a considerably lower runtime, with the advantage of learning a complex func-
tion on a wide parameter space. However, as most neural network based approaches,
GNNs tend to overfit on small data sets. Besides, for many relevant applications, and
especially in medical and biologically related domains, it is often difficult to find and
collect a large number of samples for a given task. In the field of chemoinformatics,
this lack of data collection is particularly pronounced, due to the wide variety of ex-
isting compounds and the high cost and effort to evaluate their molecular properties
or reactions with respect to the same prediction task. Despite generic graph molecu-
lar database exist [38, 68], only a subset of them in consistently annotated across tasks,
while the majority is unlabelled, thus unsuitable, to be directly used in classification or
regression problems.

Our goal to leverage all these aspects of the problem by introducing a domain adap-
tation scheme for graph neural networks, to simultaneously benefit from the high learn-
ing capabilities of GNNs and overcoming the small sample size issues. On one hand,
transfer learning techniques aim to get better models on limited (target) domains, when
the sample size is too small or prediction labels are missing, by learning information on
a similar source domain and adapt it to the target [139]. These approaches have been
largely developed in recent year, especially within deep learning applications, where
their broad potential success is restricted by data scarcity [106, 201]. On the other hand,
adversarial based networks were firstly introduced for generative models, to create new
instances from a sample, by minimising an objective distinguishing between the gen-
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erated and true data [73]. To put this all together, domain adversarial networks learn
shared feature representations transferable across domains, with the adversary compo-
nent aiming at optimally discriminate between samples coming from source and target
data. We combine all these ingredients and present a novel framework to perform ad-
versarial domain adaptation on graphs, the Adversarial Graph Neural Networks. We
consider several applications on molecular data sets, from transfer to multi-task learn-
ing scenarios.

The remainder of this chapter is organised as follows. In Section 6.1 we introduce
the transfer learning framework. In Section 6.2 we extend the various transfer learning
scenarios to our domain of interest, Graph Neural Networks. The empirical evaluation
and findings, including applications on different settings from molecular graph prop-
erty prediction are presented in Section 6.3. We conclude with a critical discussion and
ideas for future work in Section 6.4.

6.1 TRANSFER LEARNING

We will now formalize the transfer learning framework and characterize multiple set-
ting of it. Ee particularly focus on domain adaptation methods and their integration on
neural networks via adversarial training. This section is partially adapted from Pan and
Yang [139] and Ganin et al. [58].

Most of the machine learning methods are established on the underlying assumption
that samples are drawn from the same distribution, accordingly to the data collection
and modelling strategy. However, this is often not the case in practical applications
where data are assembled at different iterations, individual samples often miss rele-
vant information (e.g. class labels), background noise is not filtered or unknown, or the
acquisition process is so complex to get a large cohort. For example, these are all com-
mon issues in MRI data, as we saw in Chapters 3 and 4, where sample size is limited
and intrinsic differences between scanner and acquisition protocols make the modelling
and comparison across samples challenging. The idea of transfer learning is to actually
transfer the information across domains, generally from a source to a target, and exploit
the knowledge learned from a different problem to solve the new one. The source and
target domain belong to different but related distributions and in the classical scenario
more knowledge is available on the source, while limited information is given on the
target. The term transfer learning is quite broad and it has been given different names
and/or subfields such as inductive transfer learning, knowledge transfer, domain adap-
tation, multi-task learning. The latest one is a closely related area where the goal is to
learn a join model across multiple tasks. Sometimes, multi-task learning is presented as
an instance of transfer learning. For the purpose of this thesis, we will characterize dif-
ferent transfer learning scenarios, such as domain adaptation, multi-task learning and
supervised transfer learning. We begin by providing a general introduction to the topic
and we will later present the different settings of transfer learning which are of interest
for our method.
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6.1 Transfer learning

Let us assume we are given a source domain Ds = (Xs,P(Xs)) on an input feature
space Xs ⇠ P(Xs) with probability distribution P , samples Xs = {xs,1, . . . , xs,m} 2 X
and labels Ys = {ys,1, . . . , ys,m} 2 Ys. A model on the source can be defined as

f : Xs 7! Ys

f (xsi) = ŷsi ,
(6.1)

with associated task denoted as a pair Ts = {Ys, f (·)}. The function f is then adapted or
transferred to a function f̃ and applied on a target domain Dt = (Xt,P(Xt)), to predict
the target labels:

f̃ (xtj) = ŷtj , (6.2)

with Yt = {yt,1, . . . , yt,n} 2 Yt. With this notation in mind, the transfer learning problem
can be summarised in a definition.

Definition 6.1 (Transfer learning [139]). For a source domain Ds and task Ts, the aim of
transfer learning is to improve the predictive model f̃ (·) on a target domain Dt with
learning task Tt, exploiting the knowledge from Ds and Ts, where Ds 6= Dt or Ts 6= Tt.

A characterization of the source and target domain, in terms of their distributions
and label availability provides a characterization of the different settings of transfer
learning.

6.1.1 SUPERVISED TRANSFER LEARNING

The supervised transfer learning, or inductive transfer learning, is one of the most com-
mon scenario: given a source and target domain, both labelled, we learn a model on the
source and adapt it to the target. Typically, the distribution of the input data and/or
labels need to be aligned for the transferring to be successful. Specifically, we consider
the setting where all Ts, Tt, Ds, Dt are given, Ts 6= Tt while Ds and Dt can be either the
same or not. In our application, the feature space of source and target is the same, i.e.
Xs = Xt, but the distribution of data itself could differ, P(Xs) 6= P(Xt). The model
functions f , f̃ can take different formats: in deep learning this is a neural network, in
classical methods it could be a supervised classification or regression model, e.g. SVM
or linear regression.

PRE-TRAINING IN DEEP LEARNING. In the context of deep learning, the supervised
pre-training approach can be seen as an instance of the supervised transfer learning,
though for our purpose we will characterize it as a separate application (see Section 6.2.4).
The parametrized network model read as

ŷs = f (q, Xs), (6.3)
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for parameter space q. After training, the optimal parameters are learned q̂ and used as
input for the transferred function f̃

ŷt = f̃ (q̂, Xt), (6.4)

i.e. f̃ has input parameters q̂ initialized with a pre-training on the source. It is possible
to either fix q or perform a further training on the target. A standard approach is to fine-
tune only the last layers and freeze the initial ones, from the rationale that initial layers
represent shared features representative of the input data while the last layers output
target specific features. This setting is commonly used in deep learning applications,
when a lot of labelled data is available in the source and limited samples are provided
in the target.

6.1.2 MULTI-TASK LEARNING

The multi-task learning scenario is similar to the supervised transfer learning, with the
difference that all the the tasks are learned simultaneously while the transfer learning
focuses to improve performance on the target task of interest. Suppose we are given T
different tasks and each task Tj = {Yj, f (·)} is defined on a domain Dj = (X ,P(X)),
where D0 = D1 = . . .DT, i.e. same domain across task. In the general formulation,
the function f can have a shared and task specific component and is modelled simultane-
ously on the multi-task data, with the goal to improve performance over the single task
specific model. The general multi-task learning function can be written as

ŷj = f (X) = fsh(X) + f j(X), for all j = 1, . . . , T (6.5)

where f is decomposed into fsh and f j, the shared and task-specific components, re-
spectively. Modifications of the model are possible, for instance one might restrict the
shared component to a subset of the tasks, given by expert domain knowledge and
relatedness across tasks.

6.1.3 THE SCENARIO OF DOMAIN ADAPTATION

We now consider a different scenario, which we identify as the domain adaptation. Sup-
pose we have related source and target domain with the same input feature space; we
are also given target tasks Tt and labels Yt, but the source labels are not available. We
note that Pan and Yang [139] define this setting as an instance of inductive transfer learn-
ing, or self-taught learning. We call this the domain adaptation or unsupervised domain
adaptation scenario, given that no label is available on the source and no assumption
can be made on the similarity of the tasks. Here, the model should reflect that no infor-
mation can be exploited from the source domain, but we can exploit both source and
target features in the predictive model:

ŷt = f̃ (Xs, Xt). (6.6)
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6.1.4 DOMAIN ADVERSARIAL TRAINING

We conclude this section by discussing an extension of the classical transfer learning
framework, specifically developed for deep learning models and exploiting recent ad-
vances in adversarial networks. The numerous attempts made to combine transfer and
multi-task learning methods with adversarial based approaches, aim to encourage the
learning of shared and task specific features by including a domain classifier to sepa-
rate them [58, 111, 175]. Adversarial networks have been first introduced in the context
of generative models (GANs; [73]), integrating the generator with a discriminator layer.
While the generator creates sample data, the discriminator is a classifier whose predic-
tion task is to distinguish if the input data is fake or real. On a related scope, adversarial
layers for transfer learning aim to separate instances of the source and target domain,
simultaneously wishing for the learned feature representations to be shared between
source and target, such that the source model f can be easily adapted to f̃ on the tar-
get. In the original model proposed by Ganin et al. [58], the discriminator makes use of
a gradient reversal layer, changing the sign of the gradient during backpropagation and
acting as an identity in the forward pass. The ultimate loss is a weighted subtraction of
the task classification loss and discrimination (domain) loss, i.e. when the label corre-
sponds to source and target. Practically, the loss function of the domain classifier Ldom
is multiplied by a weighting constant l and added to the classifier loss Lcls, while a
negative update is performed during backpropagation:
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∂Ldom
∂qdom

!
=)

 
� lLdom;�l

∂Ldom
∂qdom

!
(6.7)

Ltotal = Lcls + Ldom (6.8)

6.2 ADVERSARIAL LAYERS FOR GRAPH NEURAL NETWORKS

We will now leverage the concepts described in Section 6.1 and develop them into
a novel framework, that combines graph neural networks with an adversarial based
transfer learning approach. We present different instances of our method, correspond-
ing to the three transfer learning setting introduced: supervised transfer learning, un-
supervised domain adaptation, and multi-task learning.

We recall that our problem of interest is a graph–level prediction task: given a set of
graphs with associated label, we aim to infer their structural and task specific similar-
ities to optimally model the prediction. In the context of transfer learning this is the
target data set, where we want to improve the performance. More formally, let Gt =
{G1, . . . , Gn} be a set of graphs in the target domain, with labels Y = {y1, . . . , yn} 2 Yt.
In the standard machine learning scenario, we model the prediction problem by learn-
ing a function f (G) = Y. We consider this to be a challenging target prediction, due
to lack of information or limited number of data points. To get back to the chemoin-
formatics example, where the graphs represent small molecules, it is a common issue
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that only a subset of the data has been screened for particular molecular tasks, lead-
ing to limited labelled data. However, the overall availability of chemical compounds
is huge, but the variety of different annotation (task) is also large, leading to an inho-
mogeneous big molecular cohort. This is indeed a perfect setting for transfer learning,
where information from different or inexistent labels need to be exploited, in order to
learn a better model on the small, complete, target data. We denote the source domain
Gs = {G1, . . . , Gm}, with m > n (ideally m >> n), with labels Y = {y1, . . . , ym} 2 Ys.
We will consider different scenario, depending on the format of Y: (1) the source label
come from a different task than target; (2) the source labels are not collected (unsu-
pervised). In our application, the two domains are clearly related, representing small
molecules modelled as graphs. Furthermore, with consistent input definition, the fea-
ture space of source and target coincides. We summarize the main idea of our method,
as learning a GNN that takes as input source and target molecules, and learns a global
graph molecular feature representation to employ in the target classification layer. The
speculation is that this graph feature simultaneously incorporates a shared and task spe-
cific component, and is an improvement over the representation that would be obtained
if the target graphs (only) were given as input to the GNN. The gradient reversal layer
is included in the model, to encourage the embeddings to be as agnostic as possible of
the input domain, while representative of the target task.

6.2.1 ADVERSARIAL GRAPH NEURAL NETWORKS

Consider the union of source and target domain, denoted as Gs,t = Gs [ Gt, and let
XGs,t 2 RnG⇥p be the input feature of graph G with nG being the number of nodes in
graph G and p the feature dimension. As a first step, we define a generic GNN model,
which we interpret as the feature extractor GNN:

GNNext(·; qf) : R(nG⇥p) 7! Rpo

GNNext(Gi; qf) = f(Gi), for each Gi,2 Gs,t.
(6.9)

with parameters qf, and output graph features f(G) 2 Rpo . The next step of a GNN is
to use the extracted features as input for the classification layer, i.e.

GNNcls(Gi; q f ) = f (GNNext(Gi)) = f (f(Gi)) = ŷi (6.10)

where f is a general classification function that can include multiple linear and non-
linear layers with corresponding parameters q f . The feature extractor and classification
part are then trained together in an end-to-end fashion, with the following loss function:

Lcls(Gs,Gt,Yt) =Lcls( f (f(Gt)),Yt). (6.11)

Here, we are giving as input either a source or target graph, however the loss function
is only defined on the target data. Therefore, in this formulation the source data is
not contributing to the learning step, but in practice is used as phantom data, i.e. being
ignored by the model. To benefit from the extra information provided by the source, we
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6.2 Adversarial layers for graph neural networks

need to define a loss that also incorporate a learning task on the source. This is achieved
with the adversarial layer (GNNadv), taking as input the graph feature representations
obtained with GNNext and constructing a new classification layer(s), whose prediction
task is to discriminate between a source and target instance. GNNadv uses a gradient
reversal layer [58], meaning that in the backpropagation step the sign of the gradient
is flipped, to enforce the graph representation obtained via GNNext to be as general
as possible and indistinguishable between source and target, that is f(Gs) ⇠ f(Gt).
Suppose the domain label is given by Zd = {z1, . . . , zm, . . . , zm+n}, where zi = 0 if
Gi 2 Gs and zi = 1 if Gi 2 Gt. Then, we define GNNadv(·, qd) with parameters qd as:

GNNadv(Gj; qd) = d(GNNext(Gj)) = d(f(Gj)) = ẑj (6.12)

where d is the general classification function, encoding linear or non-linear layers. The
domain adversarial component of the loss is defined on both source and target instances
as follows:

Ldom(Gs,Gt,Z) = Ldom(d(f(Gs,t)),Z). (6.13)

Ultimately, we combine the domain classifier and task specific classifier to postulate the
optimisation problem of GNNadv, as a joint minimisation of the two components:

min
qf,q f ,qd

1
n

n

Â
i=1

Lcls( f (f(Gi; qf); q f ); yi)

�l
n+m

Â
j=1

Ldom(d(f(Gj; qd); q f ); zj)

(6.14)

where l is a weighting constant and Gi 2 Gt, yi 2 Yt, Gj 2 Gs,t, zj 2 Z . We can rewrite
it more compactly to define the loss of GNN-ADV as:

Ladv(Gs,Gt,Yt,Z) = Lcls(Gt,Yt)� lLdom(Gs,Gt,Z). (6.15)

An overview of the GNN-ADV architecture is depicted in Figure 6.1. The GNN-ADV
architecture is agnostic of the source class labels, therefore it is a suitable solution for
the unsupervised domain adaptation scenario. We will discuss in Section 6.2.2 how
to incorporate labels in the source domain to cover the supervised transfer learning
setting.

TASK-BASED VERSUS SHARED FEATURES

Our architecture implicitly assumes the existence of a universal graph molecular fea-
ture f(G), incorporating hidden graph properties and patterns of the source and target
domain, while being representative of the target task of interest. While this could be
achieve in specific problems, it an oversimplification in many real–world applications.
Indeed, it is hard to learn features that are simultaneously general enough and task
specific. In the classical neural networks this issue is addressed by combining the in-
formation on multiple layers or concatenating intermediate features. For example, in
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Figure 6.1: Schematic view of adversarial Graph Neural Networks (GNN-ADV).
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a multi-layer deep architecture for image analysis, it is known that the initial features
encode general structural properties of the data, while the deeper layers generate task
specific embeddings. Therefore, it might be more convenient to separate the feature ex-
tractor step after a fixed number of common layers to obtain separated task specific and
shared features, which are then properly combined in the classification layers. Follow-
ing this rationale, we propose an alternative architecture that generates for each graph
two set of features, f(G)Ts and f(G)Sh; the initial layers of the network are shared and
then at a deeper level they separate, to obtain task specific and shared representations.
This is achieved by separating the feature extractor GNN as:

GNNextTs(Gi; qfTs) = f(Gi)Ts (6.16)

GNNextSh(Gi; qfSh) = f(Gi)Sh, (6.17)

with Gi 2 Gs,t. We denote by GNNextTs the task specific layers and by GNNextSh the
extractor for the shared representation. On one hand, the shared features f(G)Sh are
used as input for the adversarial layer and optimised via the domain classification loss.
On the other hand, a concatenation of f(G)Ts and f(G)Sh is used in the classification
part of the GNN to perform the target prediction task. In practice, the layers of the GNN
extractors, and therefore their parameters, are joint at the beginning and separate at a
deeper level. This is integrated in our architecture which we denote as GNN-ADV-TS,
as shown Figure 6.2.

6.2.2 SUPERVISED TRANSFER LEARNING

Until now, we did not included any task related label information on the source do-
main and only considered the unsupervised scenario. In the field of chemoinformatics,
the same compound may be screened for multiple properties (multi-task learning) or
different molecules are available for varying prediction tasks. Then, we can exploit dif-
ferent functional labels collected on the source data to enhance the model prediction on
the target. However, the issue still remain that the labels need to be related in order
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Figure 6.2: Schematic view of task-shared adversarial GNN.
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to get a successful transfer. Using unrelated labels might result in task specific embed-
dings which are not suitable to be shared across domains, hereby increasing the level of
noise in the model. We will further investigate this aspects in our experimental evalua-
tion and discussion later throughout this chapter. For the theoretical development, we
assume that the task are similar enough to allow for a supervised transfer learning ap-
proach. We then refine our architectures to also take the new source label into account.
This is achieved with a simple adjustment in Equation 6.14, including graphs from both
source and target in the classification loss, therefore rewriting the optimization problem
as:

Lcls(Gs,Gt,Yt,Ys) =Lcls( f (f(Gs,t)),Ys,t). (6.18)

6.2.3 MULTI-TASK ADVERSARIAL LEARNING

We now consider the multi-task learning scenario as a straightforward extension of our
framework, which is particularly relevant if different functional tasks are available from
the same domain. In this setting, is especially important to account for the difference
between shared and task based representation: it would be over optimistic to look for a
graph representation that is shared across input structures, and simultaneously relevant
for multiple tasks of interest. Following a similar rationale as before, we consider that
the early layers capture general graph molecular properties, while the deeper layers
create a feature representation that is associated to the task. Therefore, our multi-task
learning model expands over the task-shared architecture (GNN-ADV-TS), such that
the weights of the network are shared in the first layers and at a deeper level generate
different sets of graph features. We then obtain a shared representation and multiple
task specific embeddings. For each task, the adversarial layer distinguishes between
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shared and task related features, to then average their contribution. Mathematically,
we express the loss as:

min
qf1,...,fT ,q fd , f1,..., fT ,qd

1
n

n

Â
i=1

1
T

T

Â
j=1

Lcls( f (f(Gi; qfj); q f j); yi,j)

�l
n

Â
i=1

1
T

T

Â
j=1

Ldom(d(f(Gi; qd); f(Gi; qfj); q fd); zi).

(6.19)

The first part of Equation 6.19 is an average of the classification loss evaluated indepen-
dently on each task, with respect to their specific feature f(Gi)Tj , for each j = 1, . . . , T
with T being the number of tasks, while yi,j is the label of sample i per task j. The sec-
ond part of the loss incorporates the discriminator, to distinguish between graph fea-
tures f(Gi)Tj and shared features f(Gi)Sh, where zi is the corresponding domain label
encoding the type of feature. The individual contributions are averaged across tasks.
In practice, as for the GNN-ADV-TS model, we will use a concatenation of the shared
and task-specific features as input for the classification layer. We call this the graph
neural network adversarial multi-task architecture (GNN-ADV-MT). Additionally, we
will also consider the vanilla variant, the multi-task graph neural network (GNN-MT).
This is obtained by disregarding the second component of Equation 6.19, thus only
considering the label classification loss.

6.2.4 PRE-TRAINING GRAPH NEURAL NETWORKS

In deep learning, one of the most simple transfer learning strategies is a pre-training
of the neural network on the source domain with fine-tuning on the target [201]. While
complex variants exist, the vanilla approach to pre-training requires little extra techni-
cal development from the original architecture. The idea is to use the same model on
the source and target; when training on the target, the hyperparameters are initialized
with the optimal weights obtained on the source. Usually, the initial layers are freezeed
(i.e. no training learning on the target), while the deeper layers are optimized for some
additional iteration on the target domain. Other common tricks, for example regulariz-
ing the loss or sharing sub–parts of the network, can also be employed depending on
the problem of interest and domain knowledge [113, 114]. This approach comes with
several advantages. First, the pre–training only needs to be performed once, hence get-
ting a speed up of training time on the target data which will require fewer epochs to
learn and fit the model. Second, pre-training on a large dataset can prevent overfitting
in small sample size regimes, where deep learning architectures often present limita-
tions.

A recent study by Hu et al. [89] proposed several strategies to pre–train GNNs, show-
ing that a successful approach requires pre–training to be performed jointly at graph
and node-level tasks. They also reported that straightforward pre–training approaches,
treating node and graph-level representations separately, can prevent generalisability
of the learned model and lead to negative transfer [89, 152]. The node–level pre-training
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Table 6.1: Complete information about the target data sets.

Data set Category # Compounds # Tasks # Classes

BACE Biophysics 1513 1 2

BBBP Physiology 2039 1 2
CLINTOX Physiology 1478 1 2
SIDER Physiology 1427 27 2
TOX21 Physiology 7831 12 2

is a self-supervised approach, ensuring that nodes with similar structural character-
istics are mapped to similar embedding representations. The graph–level supervised
pre-training encourages to learn global graph features, to promote their transferability
across tasks. We integrate these pre–training strategies within our method, creating
additional variants of our approach. We define a model by pre–training the main GN-
Next on the source only, and successively fine–tune it jointly with the adversarial layer
on the source and target. The variants of our approach are called: preGNN-ADV-G,
preGNN-ADV-N, preGNN-ADV-N-G, depending on whether the pre-training step is
applied at graph–level, node–level, or both, respectively. Hu et al. [89] proposed several
node–level pre–training strategies, we choose to employ the ContextPrediction, as the
authors reported it to be the most effective. For additional details on the methodology
and architecture we refer the reader to the original publication [89].

6.3 EXPERIMENTS

In this section we evaluate the performance of GNN-ADV and its variants on multiple
molecular data sets. We discuss the different scenario of transfer learning and empiri-
cally assess the impact of integrating the adversarial layer.

6.3.1 DATA SETS

TARGET DATASETS. As target, we consider 5 data sets with various size and molecu-
lar property prediction labels: BACE, BBBP, CLINTOX, SIDER, TOX21. BACE is from
the biophysics domain, containing qualitative binding results for a set of inhibitors of
human b - secretase 1 [166]. The other data sets all belong to the physiology category:
BBBP has binary labels of blood-brain permeability [120]; CLINTOX encodes qualitative
data of drugs approved by the FDA and those that have failed clinical trials for toxi-
city reasons [133]; SIDER is a database of marketed drugs and adverse drug reactions
(ADR), grouped into 27 system organ classes [107]; TOX21 reports toxicity measure-
ments on 12 biological targets, including nuclear receptors and stress response path-
ways [31]. In terms of the prediction task, all the data are designed for the graph–level
classification problem, either single- or multi-task, as detailed in Table 6.1. The data can
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be found in the MoleculeNet database [197] and we extracted them from the DeepChem
repository [147].

SOURCE DATASETS. Different source data sets are used in the unsupervised and su-
pervised settings. For domain adaptation we used a curated version of the ChEMBL [38,
68] database containing ⇠ 1.8 million compounds. For supervised transfer learning we
create source data sets by mixing staamples of different, but related, functional tasks
from the targets. In particular, BBBP, CLINTOX, SIDER, and TOX21 all contain labels
from physiology measurements, such as toxicity information or drug reaction. There-
fore, when predicting on one target data set we can create combined source from the
other ones.

DETAILS ON DATA SPLITTING, PROCESSING AND FEATURES

For all data sets we exclude graphs having more than one connected components,
as well as singletons, i.e. graphs consisting of a single isolated node. On the source
CHEMBL we further exclude small graphs with less than 10 nodes, to match the dis-
tribution of the target data and to ensure detection of meaningful and informative pat-
terns. For the node features, we use a similar input as Duvenaud et al. [45] and con-
catenate one-hot-encoding arrays, resulting in 75 features of different atom properties
obtained from RDKit1 [109]: atom type, degree, implicit valence, hybridization type,
number of radical electrons, aromaticity, number of attached hydrogen atoms, formal
charge. To guarantee generalisation ability of our algorithm on out–of–distribution
samples, we use a scaffold train, validation and test splitting [147]. With a scaffold split,
molecules are divided according to their substructure, such that structurally dissimi-
lar molecules are placed in different splits, making the prediction task on the test and
validation set more challenging than a random split.

SELECTING DATA FOR PRE-TRAINING. For the pre-training step, we randomly sam-
ple two subsets of 500k molecules from CHEMBL, independently for the node-level
and graph-level strategy, respectively. These molecules are then excluded as candidate
source data for GNN-ADV, to avoid the pre-training and adversarial components of the
network to overfit on the same samples. For the supervised graph-level learning task
we use a set of 111 molecular predictors extracted from RDKit.

6.3.2 EXPERIMENTAL SETUP

In all our experiments we use a 5-layer GIN (see Section 2.3.2) model with parameter
e = 0 and 300 hidden units as the main feature extractor GNNext [198]. In the mul-
titask setting (GNN-MT; GNN-ADV-MT) and in the GNN-ADV-TS, the first 4 layers
are shared and the last layer is split to generate task specific and shared features. The
GNNcls layer is a linear classifier with a softmax activation function, where we use the

1https://www.rdkit.org
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negative log likelihood as a loss function. The GNNadv network consists of 2 fully con-
nected linear layers, and the prediction is performed by a sigmoid activation with cross
entropy loss function. As a baseline, we use the vanilla GNN trained and evaluated
on the target data only; this is also a GIN model ad the parameters are chosen as in
the adversarial counterpart. In the pre–training approaches, we follow the recommen-
dation in Hu et al. [89] and use a 3-layer GIN for the contextGNN with inner and outer
radius being set to r1 = 1 and r2 = 4, respectively; in this step, we further exclude
small graphs for which the context was not computable for these parameters. All the
baselines and the GNN-ADV models are trained for 100 epochs, while the pre–training
runs for 50 epochs, using the Adam optimiser, a learning rate of 0.001, and a batch size
of 32. Accordingly to the methodology described in Section 6.2, we define 4 different
experimental settings.

1. Unsupervised domain adaptation (Scenario 1). We apply GNN-ADV on a joint
dataset consisting of unlabelled source (CHEMBL) and labelled target, with var-
ious functional molecular prediction tasks.

2. Supervised transfer learning (Scenario 2). In this setting GNN-ADV is trained
as for Scenario 1, with the inclusion of functional labels on the source data. We
investigate the performance on the three small sample size regime data sets from
the physiology target domain (BBBP, CLINTOX and SIDER). For each target data,
the remaining two plus TOX21 are used as source, resulting in the following trans-
fer learning tasks: BCT ! SIDER; BST ! CLINTOX; CST ! BBBP (here the
acronyms reflect the data used as source, e.g. BCT = BBBP + CLINTOX + TOX21).

3. Multi-task learning (Scenario 3). Here we evaluate the multi-task adversarial
GNN on TOX21 and SIDER, the two datasets from our cohort for which predic-
tion labels from multiple tasks available.

4. Pre-training (Scenario 4). The pre-training strategy is applied on the vanilla GNN
and as a variant of GNN-ADV (Scenario 1). In this experiment, the GNN graph
and node level is pre-trained on CHEMBL and the learned model is used to ini-
tialise the target GNN [89].

EVALUATION. The batches are balanced to guarantee an equal proportion of source
and target samples. For training, we randomly sample from the source domain the
same number of compounds available in the target split. In the unsupervised domain
adaptation setting (Scenario 1) the batches are balanced with respect to the target class
label and source, with a proportion of 1/3 each, and only the samples from the negative
class are passed through the adversarial. In the supervised transfer learning (Scenario
2), we used standard balanced batches, with half of the sample coming from the target,
and source, respectively. The parameter l in GNN-ADV is defined according to the
guidelines in [58], thus updated at each epoch during training, with the following rule:

q =
epoch

NumEpoch
; l =

2
1 + exp(�10 · q)

+ 1, (6.20)
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Table 6.2: Classification results in the unsupervised domain adaptation scenario. Test AUROC
performance of our method with the two architectures: GNN-ADV and GNN-ADV-
TS. The winning approach is highlighted in bold and an ⇤ indicates a statistically
significant difference to the baseline.

Dataset CLINTOX SIDER BACE BBBP TOX21

GNN 80.17 ± 3.42 53.76 ± 4.08 70.20 ± 3.38 62.95 ± 2.61 61.30 ± 4.13

GNN-ADV 80.70 ± 5.80 58.78 ± 4.75
⇤ 70.67 ± 2.73 62.24 ± 2.14 63.85 ± 3.97

GNN-ADV-TS 70.49 ± 5.48 55.46 ± 6.40 75.55 ± 2.12
⇤ 61.50 ± 2.75 66.04 ± 3.81

⇤

where epoch is the current epoch at training time and NumEpoch is the total number
of epochs. We evaluate the performances on validation set using the best average area
under the ROC curve (AUROC) over 10 random initialisation of the model; we then re-
port the corresponding performance on the test set. For the multi-task datasets (TOX21;
SIDER), we average the test performance over tasks (Scenario 1 and 2); in Scenario
3, this is not necessary, since the average performance is already included in the loss
function (Equation 6.5).

6.3.3 RESULTS ON MOLECULAR DATASETS

UNSUPERVISED DOMAIN ADAPTATION

We compare the two instances of our approach GNN-ADV and GNN-ADV-TS with the
GNN vanilla baseline and report our main findings in Table 6.2. Overall, we observe
that adding an adversarial layer is beneficial in 4 out of 5 datasets. The superiority is
mostly pronounced in SIDER, BACE, and TOX21, where GNN-ADV-TS improves by
2%, 5%, and 5%, respectively. However, the best performance on SIDER is achieved
with GNN-ADV, with also a +%5 gap over the vanilla baseline. On CLINTOX, GNN
and GNN-ADV are on par, while the task-shared representation harms the performance
by 10%. We do not have a conclusive reason yet to justify this behaviour, but we will
also observe oscillating performance on this data set in the supervised transfer learning
scenario. We speculate that this could be due to the peculiarity of the data distribution
of the functional task, which represent a qualitative measure rather than an effective
physiological property, hence not aligning with the source domain. On the BBBP data,
a vanilla GNN appears to be sufficient to achieve high classification performance.

SUPERVISED TRANSFER LEARNING

In the supervised setting, we exploit the functional tasks in the source domain, which
therefore need to be related to the target labels, if we aim for the task specific features
learned in the source to be transferable to the target. As previously described, this is
achieved by restricting our analysis to the physiology data domain. As for the unsu-
pervised setting, we compare GNN-ADV and GNN-ADV-TS with the vanilla baseline
and report the average AUROC curve on the target data sets in Table 6.3. In BBBP and
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Table 6.3: Classification results in the supervised transfer learning scenario. Test AUROC per-
formance of our method with the two architectures: GNN-ADV and GNN-ADV-TS.

Dataset BST! ClinTox BCT! SIDER CST! BBBP

GNN 80.17 ± 3.42
⇤ 53.76 ± 4.08 62.95 ± 2.61

GNN-ADV 69.28 ± 6.40 59.31 ± 7.39 63.59 ± 1.18

GNN-ADV-TS 55.33 ± 6.09 56.09 ± 4.42 60.15 ± 2.79

SIDER, we observe that GNN-ADV outperforms GNN, despite the standard deviations
overlap in both cases. This suggests that the embeddings are successfully transferred
from source to target task. However, the benefit is not as pronounced as for the un-
supervised scenario, possibly due to the source size being smaller or the tasks being
too inhomogeneous. As for Scenario 1, the CLINTOX data set seems to be an outlier in
this cohort with respect to the transferability of graph related features. Remarkably, the
best overall results on SIDER and BBBP are achieved in this scenario by GNN-ADV.
This is a key observation, implying that the relatedness of the functional tasks makes
the explicit modelling of separated tasked based and shared features obsolete.

MULTI-TASK LEARNING

According to the availability of multiple functional tasks in our cohort, we can only
evaluate the adversarial multi-task learning on two data sets. We first observe that the
vanilla multi-task GNN-MT, with shared features at the early layers and task-specific
embeddings at a deeper level, achieves an AUROC of 54.68 ± 0.62 and 60.49 ± 0.67 on
SIDER and TOX21, respectively. This is very close to the vanilla GNN (Table 6.2) and
in agreement with previous literature, which already suggested that on these molecular
datasets multi-task deep architectures are not always beneficial [148]. However, when
adding the adversarial layer, a slight improvement can be observed on TOX21 (AU-
ROC = 62.41 ± 0.84), showing the potential of our method. Besides, GNN-ADV-TS and
GNN-ADV both perform better, without the need to explicitly model the multi–task
component. Nevertheless, it is worth to note that, as opposed to Scenario 1 and Sce-
nario 2, the standard deviations are very small, indicating that our findings are more
robust and reliable. This was also expected, since we are considering a single data set
the input is less heterogeneous.

6.3.4 PRE-TRAINING ADVERSARIAL GNN

We conclude our empirical analysis by investigating the impact of pre-training graph
neural networks, either with or without the adversarial layer. Results are reported
in Table 6.4. Unsurprisingly, except for CLINTOX, the pre-training provides higher
performance than the vanilla GNN. Overall, the adversarial layer has a mixed effect
when paired with pre-training: we do not see a clear pattern of either improvement or
drop in classification performance. Such effect could be due to the choice of the pre-
training task, given that we used molecular predictors which are built-in properties of
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Table 6.4: Classification results with pre-training. Test AUROC performance of our
method with the pre-training variants at node-level (preGNN-ADV-N), graph-level
(preGNN-ADV-G) and node-level+graph-level pre-training (preGNN-ADV-N-G).
The baselines are denoted as GNN-N, GNN-G and GNN-N-G, with node-level,
graph-level, and node-level + graph-level pre-training.

Dataset clintox sider bace bbbp tox21

preGNN-G 74.64 ± 5.40 57.67 ± 4.79 72.39 ± 2.06 62.19 ± 1.04 66.08 ± 3.22
preGNN-ADV-G 72.76 ± 5.48 59.31 ± 2.47 74.49 ± 2.03 62.09 ± 1.07 65.74 ± 3.76

preGNN-N 75.54 ± 3.99 57.30 ± 4.43 70.81 ± 2.12 64.10 ± 2.98 62.31 ± 2.13
preGNN-ADV-N 74.19 ± 3.84 55.03 ± 5.53 73.71 ± 2.85 63.31 ± 3.21 63.40 ± 4.69

preGNN-N-G 73.96 ± 4.22 56.36 ± 6.41 74.24 ± 2.19 60.69 ± 1.14 68.01 ± 5.41
preGNN-ADV-N-G 69.41 ± 6.68 55.47 ± 4.11 75.14 ± 1.28 61.07 ± 2.15 62.32 ± 5.43

the molecules that are unrelated to the functional target task. We further observe that
our experimental setting is slightly different from Hu et al. [89], indeed we find that the
combination of node and graph level pre-training is not always beneficial.

6.4 DISCUSSION

RUNTIME ANALYSIS. Our GNN-ADV method and its variants require little additional
runtime compared to the vanilla GNN approach. The computational complexity equals
the complexity of the main GNNext and GNNcls models plus domain layers, since no
additional operations are performed. The higher runtime is only conditional on the
size of the source domain in the training set. In our experiments, we employ a source
sample size proportional to the target, with a 1 : 1 ratio; since our datasets are already
small, we observe that the computational bottleneck of adding the source domain is
relatively limited. The pre-training is computationally expensive, especially when the
graph-level and node-level is combined. However, as it is only performed once, the
targte runtime itself is not impacted

NOVELTY AND EMPIRICAL FINDINGS. To the best of our knowledge, our work is the
first one proposing adversarial layers on GNN to solve the supervised graph-level clas-
sification problem via transfer learning. We presented multiple variants of adversar-
ial graph neural networks with applications in different settings, including multi-task
learning, supervised and unsupervised domain adaptation. Overall, we observe that
the proposed approach leads to interesting empirical considerations and can improve
classification performance on multiple target data sets, when the sample size is limited
or in multi-task learning scenarios. Nevertheless, negative transfer can also occur [152],
in particular when the prediction task in the target data set is not well defined. We em-
pirically demonstrated that our approach overcomes these limitations if the data from
source and target are aligned, since the functional task of interest and the similarity in
the molecular graph domain are crucial elements to successfully transfer information
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across data sets. We further observe that most of the methods exhibit a rather large
standard deviation. We speculate the reasons to be small sample size and choice of the
splitting. The scaffold splitting, while being the most effective to establish an out-of-
distribution generalisation performance, can also lead to the instability of the methods
due to the structure of the molecules being very different among the training, validation
and test set.

FUTURE WORK. Future research should focus on obtaining a deeper understanding
of the negative transfer behaviour, investigating the task of interest in more details
and comparing the distribution of source and target, with respect to input and learned
features. The impact of varying the sample size in the source domain in also an in-
teresting aspect to investigate. Overall, developing an insightful understanding of the
graph properties, their topological structure and domain knowledge, will be decisive
to ultimately establish well defined criteria for evaluating transferring capabilities. An-
other interesting future direction is to extend the current framework to other super-
vised learning problems on graphs, as node classification and link prediction. Finally,
given the broad applicability and abundance of graphs, it will be exciting to explore
the power of adversarial layers on different application domains, including signal and
social networks or knowledge graphs.
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7 CONCLUSIONS AND OUTLOOK

The aim of this chapter is to summarize and discuss the main findings of our research,
and then outline, in our critical opinion, the more promising directions to extend this
work.

At the beginning of this thesis we described the complexity of the human brain, pre-
senting some of the learning tools and ideas that researchers have investigated to gain
a better understanding of it. While this ambitious goal is still far from being achieved,
by now we have moved a few steps forward in this process.

7.1 FURTHER EXPLORATION OF NEUROLOGICAL TASKS

In Chapters 3 and 4 we performed an extensive analysis of MRI data with respect to
various modalities and tasks. Our study offers a unique perspective in terms of sample
size and images availability. Indeed, compared to most of the previous neuroimaging
literature, our cohort has a larger number of subjects and benefits from a wide variety
of imaging modalities. Nevertheless, from a machine learning perspective the sample
size is still too small, leading to several issues as we will illustrate below.

DETECT BRAIN ACTIVITY ASSOCIATED WITH THE DISEASE. In the MDD application,
we analysed a population of 118 individuals. In neuroimaging, such a large cohort is
usually obtained via meta-analysis, i.e. combining different studies, hence leading to
obvious challenges in terms of data alignment, acquisition protocol and preprocess-
ing [189]. Within our work, we were able to detect patterns of activity in different brain
areas associated with the disease, while resolving some of the conflicting findings from
the literature. At the same time, we obtained satisfying predictive performance when
distinguishing between patients and controls. Possibly, the most relevant limitation of
our study is the heterogeneous nature of depression as a disease itself. It is known that
different MDD subtypes result in different effects on the cognitive process. Further-
more, some of the subjects in our population were under medication, possibly causing
brain alterations both at the structural and functional level [66]. While these problems
are partially addressed within the MVPC approach, which inherently takes into account
confounding factors and noise in the data, future studies should investigate the effect
of medication and disease subtype on brain activation patterns. Although this aspect
was not considered for the MDD vs control task, our subsequent study addressed the
related problem of treatment response prediction in the patient group. In this case, we
were able to identify a particular brain region (aPHCr) that was mostly involved in the

125



7 Conclusions and outlook

response prediction task, while obtaining significant classification accuracies. How-
ever, since structural data were used for the analysis, the brain area of interest should
be interpreted as informative of a structural alteration rather than an activation pattern.
An interesting next step would be to combine the two studies to detect functional alter-
ations as an effect of treatment or integrate the treatment effect as a controlling factor
in the MDD phenotype prediction task.

IMPROVED MODALITY INTEGRATION. While we have not yet investigated task inter-
actions so far, we examined the problem of imaging integration. Previous work has
found a positive outcome from MRI data fusion in depression, as reported in a recent
review [59]. In our cohort, the findings are not so clear. On one hand, we observe that
specific subset of modalities combination can improve over their individual counter-
parts. On the other hand, we should note that the improvement was not consistent
across data, with the performance often being dominated by the best single modality.
Additionally, our analysis should be interpreted in retrospect, considering that only a
selected subset of the possible modalities was tested, without accounting for the multi-
ple comparison problem. We speculate a possible reason for our limited improvement
to be the small sample size. Indeed, we used a whole-brain voxel space, resulting in the
number of features being much larger than the number of samples. Previous work of-
ten used region based features, reducing the search space but also loosing information.
Hereby, it is not surprising that, contrarily to our case, in such a scenario a combination
of multiple data source could provide additional insights. In our setting the single fea-
tures were informative enough to detect the brain signal, therefore adding information
could be redundant, if not harmful. Similar considerations also apply to the multiple
sclerosis study. Despite using region based features, the combined data metrics were
all extracted from the same diffusion images, hence providing related information that
a machine learning model might be incapable to pick in a small sample size regime.
Then, the natural next step for investigation should be on the feature architecture side.
Providing input information that has already been optimized for the task of interest,
would be particularly advantageous for a multi-modal approach. We envision that su-
pervised and unsupervised deep learning based approaches will play a major role in
this context, given their undeniable ability to generate meaningful embeddings [80].

FEATURES FOR COMPLEX TASKS. Finally, we observed that complex tasks in MS are
extremely challenging due to the unpredictable course of the disease. We believe that
extracting relevant features is even more important in this context, considering that
only with a bare eye observation of the image it is often impossible to identify the
progressive status of the disease. Again, deep learning models have a great potential
to improve the feature learning step, by capturing hidden interactions invisible to the
human eye [173].
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7.2 EXTENDING WASSERSTEIN KERNELS

Chapter 5 introduced the Wasserstein Weifeiler–Lehman kernel, overcoming two of the
major limitations of previous work: (1) the simplicity of the aggregation step in the R –
convolution framework; (2) the lack of generalization to graphs with continuous node
attributes. While our method successfully addressed these shortcomings, we envision
several next steps for extension and improvement of our work.

EDGE ATTRIBUTES. Our setup did not explicitly account for high–dimensional edge
attributes. However, with proper adjustments, the propagation scheme we defined in
equation 5.10 can include edge attributes of arbitrary dimension. The easiest solution,
would be to aggregate the high dimensional array into a single value, then treat it as an
edge weight. A more interesting option would be to use the dual graph, constructed by
reversing the node-edge representation. In the dual graph, nodes are the edges of the
primal (original) graph; the latter are connected if the corresponding edges share a node
in the primal graph. Ultimately, one could apply the WWL node propagation scheme
on the primal and dual graph, then combine the kernels by appropriate weighting.

POSITIVE DEFINITENESS IN THE CONTINUOUS CASE. From a theoretical perspective,
the main challenge of our approach is the lack of proof for the positive definiteness of
the WWL kernel in the continuous setting. The considerations in Section 5.3.1 lead us
to speculate that, under certain conditions, the WWL can be proved to be positive def-
inite, as also supported by the experimental analysis. The complementary arguments
rely on the observation that the space created via the Graph Wasserstein Distance is
locally flat. While we were not able to present a complete proof yet, we hypothesize
that this holds if the dimensionality of the feature space does not explode. Indeed, we
conjecture the existence of a theoretical bound depending on the dimensionality and
on the features scale. We certainly encourage future research to pursue this direction
and formalise our high-level discussion in searching for a definitive proof. Although
recent workaround to account for indefinite kernels have gained increasing interest in
the community, most of the well established algorithms assume the Gram matrix to be
positive definite. Therefore, guaranteeing this condition is a crucial step to extend the
applicability of our method on new domains.

SPEED-UP AND EXTENSION TO NEURAL NETWORKS. Another important discussion
point is in the scalability of the WWL. In our data sets with small graphs we observed
that the computation of the Wasserstein distance is still tractable, especially as this is
a one-time operation for the algorithm. However, it would be appealing to be able to
extend the approach on different data domains, such as social networks, or to differ-
ent prediction tasks, for example node classifications or link prediction. These kind of
applications normally deal with very large graphs, with hundreds of thousand or even
million of nodes, for which the Wasserstein distance would be infeasible to compute in
the classical implementation. We empirically tested the impact of using approximation
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algorithms that speed-up the computation of the Wasserstein distance (see Section 5.4),
indeed observing the more benefits as the number of nodes in the graph grows. While
using these tricks can lead to a slight drop in predictive performance, these algorithms
can be extremely useful to guarantee a broad applicability of our method. In the litera-
ture, the Wasserstein distance has been successfully applied as a loss function in neural
networks and generative models [5, 56]. Combining this idea with our method could
lead to novel Wasserstein based graph neural networks, whose development is still at
an early stage [122]. Besides, developing a Wasserstein based GNN inspired by our
propagation scheme would also facilitate applicability on large graph settings.

WASSERSTEIN KERNELS ON DIFFERENT DATA STRUCTURES. Lastly, we observed that
Wasserstein distances can be exploited to create kernels on a variety of data structures.
We already performed a pioneer work following this direction on the time series do-
main [17]. In our work, we defined a Wasserstein distance on subsequences of the time
series to create effective similarity measures for classification. We showed that, as for
the graph application, our approach overcomes the limitations of the R –convolution
framework, which in the time series context degenerates into a simple comparison of
their means. Our competitive experimental results on benchmark data sets [33] empha-
size the importance of using optimal transport theory to simultaneously capture local
and global characteristics of the data. We are confident that Wasserstein inspired ker-
nels would be beneficial in many other application domains, such as strings or images,
as preliminary research is already suggesting [39].

7.3 PERSPECTIVES IN DOMAIN ADAPTATION

Our ADV-GNN model and its variants represent a pioneer work in the field of adver-
sarial learning on graphs, for the application on supervised graph–level classification.
In this section we discuss some of the related work and outline both extensions and
limitations of our method with respect to the existing literature.

TOWARDS MODEL IMPROVEMENT. Given the unique perspective of our approach, we
envision the existence of almost limitless possibilities in terms of architectural improve-
ments to increase the efficiency of our method. Related work focused on revising the
feature learning representation step to encourage similar embeddings on the two do-
mains. This is achieved either by minimising the distance between source and target
distribution [113, 114], or employing a generative component [85]. A first incremental
step would be to integrate these ideas within our framework, with the simple action
of including an additional term in the loss function. Another interesting exploration
would establish the impact of node and graph-level transfer, in a similar fashion as Hu
et al. [89], where they showed that a combined methodology yields the more competi-
tive results. A similar rationale could be applied on the adversarial layer component,
by devising a multi-layer architecture jointly discriminating embeddings at the node
and graph level. Moreover, including a node-level adversarial layer would facilitate
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applications on different tasks, such as link prediction or node classification. Despite
domain adaptation for node classification was already investigated, our view would
substantially differ from previous work [195]. Wu et al. [195] studied the case of transfer-
ring to unlabelled target data from large labelled source domain, while we are consid-
ering the scenario of limited labelled target data with unlabelled source. Besides, given
the versatility of graph based representations our approach could be extended on dif-
ferent application areas, for example text classification, as already explored [194]. The
potential success of our method on different domains is already confirmed by previ-
ous work, where a task-shared based architecture was devised for image classification
problems [24]. In fact, the idea of explicitly separate the learned latent features into do-
main versus class specific is well known in image classification, where it has shown to
clearly improve over the naive transfer learning techniques [140].

GRAPH DISTRIBUTION. One of the most critical discussion points in any transfer learn-
ing setting is the type of relation between distribution of source and target. Ideally, the
most similar they are the better the features can be shared across domains. In our em-
pirical evaluation, we chose all data sets containing small molecules, sometimes also
screened for related properties. Hereby, we consider this similarity to be sufficient for
the transfer learning task. However, formally evaluating the alignment between distri-
butions, and eventually filter outlier samples, should be a common research practice.
Nonetheless, for graphs it is not so trivial to establish a meaningful measure of domain
similarity. Indeed, we believe that our graph Wasserstein distance could further be
employed for this task.

7.4 A UNIFIED FRAMEWORK FOR GRAPHS IN BRAIN MRI

In MRI data analysis, the feature extraction step is possibly the most relevant to the
subsequent prediction. Depending on the task of interest, one can derive a multitude of
different information from the scan. In our work we focused on image related features,
either high-resolution (voxel-by-voxel) or low-dimensional region of interest. Never-
theless, to capture the complexity of the brain one can exploit more involved extraction
pipelines, leading to a representation with different data structures. In the introduction
of this work, we argued how graphs are ideal candidates to represent the complexity of
the brain, given their flexibility in the type of information they can store. We observed
that, at an high-level, one can distinguish between functional and structural networks
(see Section 1.3 and Figure 1.3). In particular, each of the MRI modalities that we con-
sidered, structural, functional and diffusion MRI, lead to different type of graphs [27,
79].

CONSTRUCT THE BRAIN GRAPH. In general, nodes are defined either at a voxel level
(i.e. one node per voxel) or at a region level (i.e. one node per brain area). In the
latter case, the regions could be determined by well established anatomical masks. User
customized masks can also be created, for example using a fixed radius or number of
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voxels within the region, ultimately resulting in a total brain parcellation. With respect
to the graph edges, the way they are defined is strictly dependent on the MRI modality.

1. Structural MRI: anatomical connectivity is inferred by looking at the covariance
of morphological measures, such as volume or cortical thickness.

2. Diffusion MRI: the connectivity is defined via the probability of existing white
matter tracts between pair of grey matter regions.

3. Functional MRI: measure of statistical correlation between regions of the brain,
based on the time series BOLD signal response.

For fMRI images, most commonly, networks are obtained from resting state data. In
the task-based experiments, it is not so trivial to define correlation measures, given
that the time series consists of blocks of related stimuli. Then, one should consider the
different trials independently and subsequently aggregate the results or employ new
specific measures to look at task-related synchronization [112]. Possibly, the trickiest
component to create the brain network is in the threshold definition for edge selection.
In principle, both at the structural and functional level, using the procedure described
one could obtain (almost) fully connected graphs. For example, the correlation based
fMRI matrix can be obtained for every pair of regions or voxels, resulting in the fully
connected graph. Nevertheless, for an interpretable representation, we aim to reduce
the edge density, so that only the significant connections are displayed. This is achieved
by introducing a threshold and remove edges which do not meet the required criteria.
How to define the threshold is still an active research question: typical approaches
use customized, statistical or expert based criteria. For instance, one can choose to
only keep the edges that survive a statistical significant assessment at the group level
(SPM; see Section 3.2.1). Another option would be to employ a cross validation based
approach, testing different threshold values on independent set of images and select the
most promising with respect to the task of interest. User defined techniques mostly rely
on findings from previous literature, or comparing the network to well-known default
connections in an healthy population [27].

GRAPH ANALYSIS. With respect to the subsequent graph analysis of brain MRI data,
we identify two main perspectives: (1) topological and statistical; (2) graph modelling.
Intuitively, the topology is a characterization of the shape of the graph. This is deter-
mined, for example, by nodes degree, edge density, shortest path length or, more gen-
erally, by connectivity and efficiency measures. Once the topological properties have
been defined, one can compare individual brain graphs among subjects from different
groups, or with respect to established brain networks. The topological measures can
also be employed as input features for a classifier. From a statistical point of view, in-
ference between extracted topological and general graph properties can be performed,
to assess the statistical difference across networks.

The most interesting direction in the perspective of this thesis is the graph modelling
application, which would include graph kernels and graph neural networks as the ma-
jor methodological tools. Remarkably, earlier work already employed the WL kernel
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for classification of tasked-based fMRI [180, 181]. Nevertheless, these studies did not
include a clinical phenotype prediction problem, but rather aimed to predict the type
of stimuli from the voxel time series. Later on, this idea was extended by Zhou et al.
[204] who tried to distinguish between Schizophrenic subjects from healthy controls us-
ing WL graph kernels on resting state networks. We performed a similar preliminary
analysis on our cohort which did not result in an outstanding outcome. However, this
unsatisfactory performance could be due to the limited sample size or to the image
processing step. Therefore, we strongly encourage further exploration in this direction
possibly leading to a major breakthrough in graph–based MRI analysis. Furthermore,
previous work could not account for edge weights, given the inability of the classical
WL to include them. As a consequence, we speculate that WWL will be an improved
and more versatile solution to solve graph classification problems in the MRI domain.
Graph neural networks would also be an extremely interesting methodology and re-
search direction to pursue for the particular MRI application. To date, this area of in-
vestigation has done very little progress, presumably due to the lack of imaging data
which is a major obstacle for deep learning approaches. Nonetheless, some pioneer
studies have explored the development of GNNs for various clinical prediction task of
MRI networks, reporting promising initial results [110, 121, 191].

ROBUSTNESS OF THE GRAPH. One of the main limitations when dealing with brain
graphs is the uncertainty of the underlying structure and features. As we mentioned,
there are no clearly defined approaches to choose appropriate thresholds, which ulti-
mately define the graph adjacency matrix itself. Besides, also node and edge features
are arbitrarily defined, being either categorical location arguments, tissue characteris-
tics, or functional activation. Therefore, employing methodologies that are robust with
respect to graph perturbation would certainly guarantee more reliable results. Graph
kernels represent ideal candidates from this perspective, since their robustness to node
and edge alterations has been studied. The empirical findings showed that, under small
noise perturbations, the classification performance does not drastically drop [132, 199].
In parallel, robustness of graph neural network is mostly an unexplored topic. Never-
theless, recent efforts have been made to equip existing GNNs with robust training and
regularization techniques, with the aim to improve robustness [19, 170, 205]. Further
studies focusing on the identification of criteria for assessing perturbation robustness
in graph neural network models, would certainly provide additional inspiration for
applied researchers to employ these methods on MRI data.

7.4.1 UNDERSTANDING DOMAIN ADAPTATION FOR MRI

In Chapter 6 we presented adversarial graph neural networks, a family of approaches to
extend transfer learning techniques on the graph domain via adversary layers. Transfer
learning is mostly required for model improvement on small sample size and limited
data domains, then it is also an efficient strategy to overcome data related shortcomings
in MRI. Indeed, the successful results obtained in classical imaging analysis suggest that
a similar pattern of improvement could be observed on brain MRI scans. Within our
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multiple sclerosis and depression study, we already emphasized the uncertainty of the
phenotype. A wrongly assigned class label not only results in suboptimal models, but
further contributes to create a label distribution which is different from the real one.
In this scenario, one could turn the problem into a semi–supervised task and employ
domain adaptation techniques to learn on a large source and predict on the small target
domain with missing label information. Another challenge faced in the MDD study
came from the images being acquired at multiple acquisition sites. As it is problematic
to exactly reproduce the same conditions in different sites, MRI studies often present
intrinsic data discrepancies within the same cohort. Again, transfer learning could be
extremely valuable in these cases, where the site condition can be explicitly taken into
account to derive shared features representation across domains. Of course, the prob-
lem of getting reliable annotated source data sets still remains. Luckily, a lot of work
was done in recent years to create databases and biobanks supporting researchers in
the data collection [127, 176]. With these resources keep growing, we expect that trans-
fer learning will shape the future of MRI data analysis in the coming years.

TRANSFER LEARNING ON BRAIN GRAPHS We conclude this section outlining the per-
spective integration of all the ingredients we developed so far in a unifying framework.
On one hand, obtaining improved and robust graph based representation of brain MRI
data opens the path to multiple opportunities. Mostly, one could gain benefit from the
large progress of graph based machine learning models. Graph kernels and graph neu-
ral networks have been widely developed in the last two decades and this grow will
likely continue in the future. On the other hand, limitations in MRI data and the small
sample size regime make many of these techniques suboptimal. Therefore, transfer
learning plays the crucial role of linking the input brain MRI data with machine learn-
ing classification methods, and particularly graph based approaches. Sharing knowl-
edge across MRI studies and domains will improve the learning algorithm capabilities
and optimize the feature space to the limited target data set, hereby resulting in higher
performance.

7.5 CONCLUSION

It is undeniable the enormous effect that machine learning and artificial intelligence are
having across a variety of application fields, with no signs that this race will stop any
time in the near future. Despite this exponential technological growth, there are still
many open challenges for researcher and practitioners to address. The clinical domain
is certainly among the most fascinating, due to the clear relevance and direct impact
on our life. In this work, we discussed how the low sample size limitation is a non
negligible burden for machine learning models, strongly affecting their learning capa-
bilities. Model interpretation is another crucial aspect in the medical field. To this end,
effective collaborations between data analysts and clinicians are almost mandatory in
any healthcare related study, above all on MRI, where expert knowledge from radiolo-
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gists and engineers is also required to ensure correctness of acquisition and processing
protocols.

In this thesis we tackled some of these challenges from a broad perspective, dis-
cussing the relevance of structured graph data and MRI analysis, to ultimately enable
knowledge transfer on limited biomedical domains. We believe that research in these
area will continue to expand. The development of methodologies to translate across
domains will be crucial in this context, as part of a fully integrated system comprising
software, analysis, and medical databases to handle this knowledge explosion.
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A MAGNETIC RESONANCE IMAGING:
MODALITIES, ACQUISITION,
PREPROCESSING, AND ANALYSIS

A.1 MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that
uses a magnetic fiend to create 3 D images of the body 1. We are particularly interested
in brain MRI, that is MRI images of the human head. Depending on the signal acquisi-
tion technique and scanner setup different modalities of brain MRI data can acquired,
providing a diverse type of information of the anatomical and functional activity of the
brain.

A.1.1 STRUCTURAL MRI

Structural MRI (sMRI) is especially used to represent the anatomy of the brain, includ-
ing shape and size, but can also provide a tissue separation into White Matter (WM),
Gray Matter (GM) and Cerebrospinal Fluid (CSF). The magnetic field producing the
MRI signal is characterized by the pulse frequency, which determined the time be-
tween the input is delivered and he signal reception. Varying the pulse and the length
of acquisition, determine a different contrast of the image and therefore an emphasize
different characteristics. The most common sequences in MRI are T1 -weighted and
T2-weighted: the first one provides a good contrast between GM and WM, while the
latter one between brain tissue and CSF 2.

DIFFUSION MRI. Diffusion weighted imaging (DWI) [52] is also a structural tech-
nique, however contrarily to the T1 -weighted sMRI instead of depicting the standard
anatomy of the brain, it aims at detecting movements in water molecules within the
brain. More precisely, DWI collects a sequence of T2 -weighted images, and applying
gradient pulses in the 3 orthogonal directions derives the water diffusion paths from a
measure of tissue density. An hypointense diffusion signal is a sign of tissue damage,
and in particular of the white matter tracts in the brain; consequently, diffusion MRI
is particularly suitable to detect disease that structural brain damage such as ischemia,
acute stroke. or demyelination, which is also associated with multiple sclerosis.

1Source: https://www.mayoclinic.org/tests-procedures/mri/about/pac-��������
2Source: https://cfmriweb.ucsd.edu/Howto/�T/structure.html
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A.1.2 FUNCTIONAL MRI

Functional MRI is a neuroimaging technique which measures the activity in the brain
by detecting changes associated with blood flow 3 [151]. This is achieved by looking at
the blood-oxygen-level dependent (BOLD) contrast, that can be measured within the
scan by exploring variations in the hemodynamic response; in practice, the response is
evaluated by looking at the blood flow signal and its rapidity, which is associated with
the ability of a subject to respond to specific stimuli [90].

RESTING-STATE FMRI. Resting-state fMRI (rs-fMRI) is type of functional image, where
the BOLD signal is recorded when the subject is a at rest, implying that no task is per-
formed. This is used to identify inherent and physiological brain activity patterns, and
often used to map the functional brain network structure [134].

TASK-BASED FMRI. In the task-based fMRI the subject performs a give task during
the scanner session. These tasks are typically related to motor, auditory and visual
stimuli, for example looking at a group of images or listening to music. The stimuli
are shown in sequence and often a block designed is used, such that contrast measures
between sequence of images within a block can be derived for subsequent analysis.

A.2 MAJOR DEPRESSIVE DISORDER STUDY

A.2.1 DATA ACQUISITION AND PREPROCESSING

TASK-BASED FMRI

At FUB, functional data were acquired with 37 oblique axial slices of 3 mm (field of
view 192 mm, 3⇥ 3 mm in-plane, repetition time 2s or 2.3 s, echo time 30 ms, flip an-
gle 70�). At UZH functional data were acquired using a sensitivity-encoded single-shot
echo-planar sequence (TE = 35 ms; field of view = 22 cm; acquisition matrix = 80⇥ 80,
interpolated to 128⇥ 128, voxel size = 2.75⇥ 2.75⇥ 4 mm, and sensitivity-encoded ac-
celeration factor R = 2.0) sensitive to blood oxygenation level-dependent (BOLD) con-
trast (T 2⇤ weighting). Using a midsagittal scout image, 32 contiguous axial slices were
placed along the anterior–posterior commissure plane covering the entire brain with
a repetition time of 2000 ms (q = 82�). During preprocessing, functional data were
registered to the mean, corrected for motion artefacts, mean-adjusted by proportional
scaling, normalized into standard stereotactic space (template provided by the Mon-
treal Neurological Institute), and spatially smoothed using a 6 mm FWHM Gaussian
kernel. The time series were high-pass filtered to eliminate low-frequency components
(filter width 128 s) and adjusted for systematic differences across trials. Single sub-
ject analysis on the preprocessed fMRI data was performed by modelling the different
conditions (Fixation, Negative, Neutral, Positive) convolved with a hemodynamic re-
sponse function as explanatory variables within the context of the general linear model

3https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging

136



A.3 Multiple Sclerosis study

on a voxel-by-voxel basis. Realignment parameters were included as additional regres-
sors in the statistical model.

RESTING-STATE FMRI

The resting state data at FUB were collected in 8 minute runs (210 vol) . At UZH the
functional images were collected in 10 min runs (200 vol) with 32 contiguous axial slices
of 4 mm and a repetition time of 3000 ms. All the other parameters are analogous to the
task-based fMRI data. The resulting residual BOLD time series were further band-pass
filtered (0.01� 0.1 Hz).

STRUCTURAL MRI

The images were acquired using a standard quadrature head coil (TR = 1900 ms; TE =
2.52 ms; flip angle = 9�; 176 contiguous sagittal slices; field of view = 256 mm; acquisi-
tion time 4 : 26 min). The raw and preprocessed images were individually inspected for
artifacts and image quality; in addition, all scans passed through an automated quality
check protocol. None of the analysed images showed abnormalities. The normalized
GM maps were smoothed with an isotropic Gaussian kernel (FWHM = 8 mm).

A.2.2 ADDITIONAL RESULTS

BETA IMAGES. We report the complete results with the different Beta images of a C-
SVM with various kernels: polynomial with degree 2 and 3 and sigmoid (Figures A.1, A.2, A.3).
We observe a very similar pattern as for the linear and RBF examples reported in the
main text: unsurprisingly, the break stimuli image (B 04) tends to give lower results
and no clear benefit is observed by combining an average signal of the 4 images.

CONTRAST IMAGES. Being aware of the limitations of a leave-one-out approach in
terms of robustness and stability [178] we additionally repeat the experiments of SVM-
fScore on the contrast images using a 10 fold CV. The results reported in Table A.1 cor-
roborate the validity of our findings, despite the predictive performances are slightly
lower than the LOO approach; this is not surprising given the limited sample size avail-
ability.

A.3 MULTIPLE SCLEROSIS STUDY

A.3.1 DATA ACQUISITION

The MRI protocol consisted of single-shell diffusion weighted MRI (b = 1200 s/mm2 61
gradient directions; resolution 2⇥ 2⇥ 2 mm; TE = 68 ms; TR = 24000 ms, depending
on the cardiac gate), while MT data included MT ”on” and MT "off" images. Standard
anatomical 3 D T1 -weighted gradient echo and 2 D PD-T2 -weighted turbo spin echo
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A Magnetic resonance imaging: modalities, acquisition, preprocessing, and analysis

Figure A.1: Performance of multiple Beta images with polynomial kernels of degree 2.The left
plot show accuracy precision and recall for each Beta and for the average image. On
the right side, the ROC curve is reported.

Table A.1: Classification results on the contrast of interest with SVM-fScore and 10 fold CV.

Contrast Accuracy Sensitivity Specificity

WM > Break 64.24 ± 2.36 68.42 ± 1.92 60.33 ± 3.80
Pos > Break 62.54 ± 1.96 65.61 ± 3.25 59.67 ± 2.22
Neg > Break 62.88 ± 1.64 65.26 ± 4.49 60.66 ± 4.27
Neu > Break 68.14 ± 2.60 71.93 ± 2.48 64.59 ± 3.04
Emo > Neu 50.51 ± 2.66 75.44 ± 2.94 27.21 ± 3.38

images were also acquired as part of the protocol in all subjects and time points, as this
would enable detailed tissue segmentation and MS lesions delineation.
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A.3 Multiple Sclerosis study

Figure A.2: Performance of multiple Beta images with polynomial kernels of degree 3.The left
plot show accuracy precision and recall for each Beta and for the average image. On
the right side, the ROC curve is reported.

Figure A.3: Performance of multiple Beta images with a sigmoid kernel.The left plot show ac-
curacy precision and recall for each Beta and for the average image. On the right
side, the ROC curve is reported.
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B SOFTWARE AVAILABILITY

B.1 A CLINICAL DECISION SYSTEM FOR MRI DATA: SOFTWARE
INTEGRATION

As part of the Clinical Decision System of the CDS-QuaMRI1 Horizon 2020 project, we
aim to integrate our classification modules implemented for the MRI analysis into a
unified software framework. The system has been developed at GyroTools2 and al-
ready includes several modules for processing of quantitative MRI data. With respect
to the classification module, we rely on three main tasks: (1) data upload; (2) feature
extraction; (3) model training. The classification module is a central application in the
clinical decision support system, which relies on all other modules to perform feature
extraction from the different labelled modality data, training of a classifier using ma-
chine learning principles, and finally applying the trained model for prediction on un-
labelled data.

B.1.1 DATA UPLOAD

As it became clear during the implementation of the project, the system should allow
to handle multiple classification strategies, as no unified technique will be applicable to
a broad variety of input data. Also, due to increased regulatory constraints regarding
data safety and privacy, centralized data collection from centres in different institutions
and countries has become virtually impossible. As a consequence, the requirements for
the framework implementation had to be expanded to allow for decentralized process-
ing of data and decentralized training of the classification model. This is also a setup
aligned with the user, who will be able to upload the MRI data and create a personalised
data base.

B.1.2 FEATURE EXTRACTION

The feature extraction is fully integrated as a task in the system framework and devel-
opd in Python. The adopted solution takes a set of image data in Nifti format as input.
Then, data of different formats is converted and the output is a vector of features (.npy
format), to feed to the database system for optional storing. Features are then aggre-
gated over samples to create the input data matrix for the model training module. The
feature extraction pipeline can be summarized as:

1https://cds-quamri.eu/
2https://www.gyrotools.com/gt/
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B Software availability

• Create mask. Input: single subject (directory containing Nifti image). Output:
mask (Nifti file)

• Create Features. Input: single subject (directory containing Nifti file) and a mask
(Nifti file). Output: array of features (.npy)

• Create Data Matrix. Input: list of subjects (directories containing Nifti file) and
mask. Output: data matrix (.npy)

B.1.3 MODEL TRAINING

The training of the model is also realized in Python using publicly available machine
learning libraries. The input is the data matrix generated in the previous step. Output
are the model parameters as refined by the training algorithm. The model is then stored
in the database and can be applied on other data, for example to determine classification
performance on a test sample. At the moment, a prototype of a Support Vector Machine
model has been used, given the successful performance obtained in Chapters 3 and 4.
The model training pipeline can be summarized as:

• Train model. Input: data matrix. Output: model parameters

• Save model. Input: trained model parameters. Output: binary model file

B.1.4 SYSTEM INTEGRATION

The classification module is entirely realized as a task in the overall framework. The
framework allows for exchange of tasks between sites with different installations of the
framework. Also the models can be exchanged between installations, which allows to
refine a partially trained model with additional data at a different site or institution.

B.2 A SOFTWARE FRAMEWORK TO COMPUTE GRAPH KERNELS

One of the key issued in the graph kernels field is reproducibility. Section 2.2 introduce
a variety of different approaches, which is not even inclusive of all the available meth-
ods [103]. Overall, there is no agreement about the benchmark data set used, training
and validation splits, or hyperparameters selection, leading to inconsistent empirical
results across publications. Furthermore, the lack of published code, or implementa-
tion in different programming languages, is a major obstacle in establishing a common
experimental setting within the community. To address this problem, public software
packages that facilitate the application and implementation of graph kernels in popular
and uniform coding languages have recently been developed [162, 168]. Our contribu-
tion, is the graphkernels package, including Python and R libraries relying on an efficient
C++ backend implementation [168]. The user-friendly interface permits the computation
of individual kernel matrices with only a few lines of code. Furthermore, the similar
interface between the Python and R versions, facilitate the user with versatility across the
two languages. graphkernels supports 14 kernels from the following families:
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B.2 A software framework to compute graph kernels

(i) Graph kernels between node and/or edge histograms:

• Linear: VertexHist, EdgeHist, VertexEdgeHist, VertexVertexEdgeHist

• Gaussian RBF: VertexHistGauss, EdgeHistGauss, VertexEdgeHistGauss

(ii) Graphlet kernels: Graphlet, ConnectedGraphlet

(iii) Random walk kernels: KStepRandomWalk, GeometricRandomWalk, ExponentialRandomWalk, Short-
estPath

(iv) The Weisfeiler-Lehman subtree kernel: WL

B.2.1 HOW TO USE graphkernels

The user interface is very simple: given a collection of graphs G1 . . . , Gn, the kernel
matrix K 2 Rn⇥n is returned with respect to each kernel. Here, we illustrate an example
usage of the Python package using the benchmark dataset MUTAG [40], which is also
provided with the installation.

1. Load the required packages. Import the graphkernels library and numpy library.

>>> import graphkernels.kernels as gk

>>> import numpy as np

2. Load the data.

>>> # Load the data in the graphkernels package folder

>>> data = np.load("graphkernels/data.mutag")

3. Compute the kernel matrix with WL

>>> K = gk.CalculateWLKernel(data, �)

computes the WL kernel kWL for the parameter h = 5, corresponding to the num-
ber of WL iterations.

Additional examples and details on the implemented kernels can be found in Sugiyama
et al. [168] and in our GitHub repository3.

3https://github.com/BorgwardtLab/GraphKernels
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