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Abstract: The lattice Boltzmann method, now widely used for a variety of applications, has also
been extended to model multiphase flows through different formulations. While already applied to
many different configurations in low Weber and Reynolds number regimes, applications to higher
Weber/Reynolds numbers or larger density/viscosity ratios are still the topic of active research.
In this study, through a combination of a decoupled phase-field formulation—the conservative
Allen–Cahn equation—and a cumulant-based collision operator for a low-Mach pressure-based flow
solver, we present an algorithm that can be used for higher Reynolds/Weber numbers. The algorithm
was validated through a variety of test cases, starting with the Rayleigh–Taylor instability in both
2D and 3D, followed by the impact of a droplet on a liquid sheet. In all simulations, the solver
correctly captured the flow dynamics andmatched reference results very well. As the final test case,
the solver was used to model droplet splashing on a thin liquid sheet in 3D with a density ratio of
1000 and kinematic viscosity ratio of 15, matching the water/air system at We = 8000 and Re = 1000.
Results showed that the solver correctly captured the fingering instabilities at the crown rim and
their subsequent breakup, in agreement with experimental and numerical observations reported in
the literature.

Keywords: lattice Boltzmann method; multiphase flows; conservative Allen–Cahn; phase field

1. Introduction

The lattice Boltzmann method (LBM) is a discrete solver for the so-called discrete
velocity Boltzmann equation (DVBE), initially developed as an alternative to classical
solvers for the incompressible hydrodynamic regime [1,2]. Due to the simplicity of the
algorithm, low computational cost of discrete time-evolution equations, and locality of non-
linear terms and boundary conditions, it has rapidly grown over the past few decades [3].
While intended for the incompressible regime, the LBM formally solves the compressible
isothermal Navier-Stokes (NS) equations at a reference temperature. While originally tied
to the considered flow’s temperature, in the context of the lattice Boltzmann (LB) solver, the
reference temperature is a numerical parameter allowing for control over convergence and
consistency [1]. Weak compressibility in the formulation along with the parabolic nature of
the partial differential equation (PDE) governing the evolution of pressure, as opposed to
Chorin’s original artificial compressibility method (ACM), made the scheme efficient and
applicable to unsteady flows [4]. Although originally used for single-phase flows, it has
since been extended to multiphase, multispecies, and compressible flows.

While generally based on diffuse-interface formulations, LB solvers for multiphase
flows can be categorized as pertaining to one of three major categories: (a) pseudopoten-
tial [5,6], (b) free energy [7,8], and (c) phase field. Other types of formulations can also be
found in the literature, but they are not as widely spread and/or developed as these three.

In the context of the free-energy formulation, the expression for the nonlocal nonideal
pressure tensor is found through the free-energy functional. The appropriate pressure
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tensor is then introduced into the LB solver via a moment-matching approach assigning
coefficients to different terms in the equilibrium distribution function (EDF) [8]. This
formulation is consistent and differentiated from the generic double-well potential-based
Cahn–Hilliard formulation because, in the minimization process of free energy, the equation
of state (EoS) is explicitly considered. As is the case for the pseudopotential formulation, the
explicit intervention of the EoS within the free functional ties the thickness of the interface
to physical parameters, e.g., surface tension, density ratio, and EoS. As a consequence, the
choice of the EoS and/or tuning of the coefficients in the EoS is a method of choice to widen
the area of accessible density ratios. This approach was later extended by introducing
nonideal components of the pressure tensor via external body forces. Introducing these
effects with a body force made the scheme more stable by reducing Galilean invariance
issues tied to the third-order moments of the EDF [9].

The pseudopotential formulation follows more of a bottom–up approach in introduc-
ing nonideal dynamics into the solver. It follows the general philosophy of the Boltzmann–
Vlasov equation, introducing a nonlocal potential to account for nonideal effects. While
the original formulation relied on what was termed effective density, actual EoS were
introduced into the pseudopotential in [10,11]. Apart from thermodynamic consistency,
the possibility of using different EoS allowed for higher density ratios to be modelled. As
the free-energy formulation, this model is limited to lower Weber number regimes because
it naturally comes with large surface-tension values. While more advanced models allow
for the independent tuning of surface tension [12], the spectrum of values covered by the
model is rather limited and barely allows for variations of one order of magnitude [13].

The last category is based on the free-energy functional minimization approach,
just like the free-energy approach. However, contrary to the latter, the surface and bulk
energies used in the minimization process are those of a generic double-well potential [14],
allowing for decoupling, among other parameters, the interface thickness from the fluid
physical properties. Another consequence of this choice of functional is the partial loss
of thermodynamic consistency, making the extension of the formulation to more complex
physics such as thermal flows, compressible flows and acoustics less straightforward,
although a number of attempts were documented in the literature [15–17]. Nevertheless, it
was observed to be very effective and robust for multiphase flows in the incompressible
regime, and readily able to deal with larger Weber numbers. For a more comprehensive
overview of the developments of such models, interested readers are referred to [18].
Approaches relying on the explicit tracking of the interface with a consistent energy
functional making use of the nonideal EoS were also proposed as ways to improve the
stability of the original free-energy formulation [19,20].

Over the past few decades, much effort has been put into developing phase-field-
based LB solvers for various applications [16,21,22]. Given that in such formulations local
density is a dependent variable on the local value of the order parameter, they have to be
coupled to a modified form of the LB solver for the flow usually referred to as incompress-
ible formulation. The so-called low-Mach formulation is mostly based on the modified
distribution function introduced in [19], where pressure is the zeroth-order moment of the
distribution function. This flow solver was combined with different forms of interface-
tracking formulations, e.g., Allen-Cahn (AC), conservative AC, or Cahn-Hilliard (CH) to
model multiphase flows. The aim of the present study is to introduce a multiphase solver
relying on the pressure-based formulation of [19] and a multiple relaxation time (MRT)
realization for the flow solver coupled with a LB solver for the conservative AC. The use of
the MRT collision operator in cumulant space with the decoupled interface tracking allows
for simulations in high Reynolds and Weber regimes. After a brief introduction of the
model, it is used to simulate a variety of test cases, proving its ability to reproduce correct
physics and its robustness. All models were implemented in our in-house multiphysics
solver, ALBORZ [23].
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2. Theoretical Background
2.1. Target Macrosopic System

As briefly stated in the introduction, the aim of the present work is to solve multiphase
flow equations within the context of the diffuse interface formulation in the limit of an
incompressible regime, where interface dynamics are followed and accounted for via an
additional indicator field, φ. As such, at the macroscopic level, low Mach NS equations are
targeted:

∂tρui + ∂jρuiuj + ∂jσij + µφ∂iφ + Fb,i = 0, (1)

where ui is fluid velocity, ρ the fluid density, and Fb,i designates external body forces.
The stress tensor σij is defined as:

σij = phδij − η
(
∂iuj + ∂jui

)
+

(
2
3

η − ξ

)
∂kukδij, (2)

where η is the fluid dynamic viscosity tied to kinematic viscosity ν as η = ρν, ξ the bulk
viscosity and ph the hydrodynamic pressure. The chemical potential µφ is defined as

µφ = 2βφ(φ− 1)(2φ− 1)κ∆φ, (3)

where ∆ = ∇2 is the Laplacian operator, and β and κ are parameters specific to the AC
formulation. The second term on the right hand side (RHS) of Equation (1) accounts for
surface-tension effects. For the sake of clarity, free parameters are detailed in the next
paragraph.
The interface was tracked using the conservative AC equation, where order parameter φ
evolved as [24,25]:

∂tφ + ∂iuiφ− ∂i M
[

∂iφ− ni
4φ(1− φ)

W

]
= 0, (4)

where the order parameter φ takes on values between 0 and 1, M is mobility, W is interface
thickness, and ni is the unit normal to the interface, obtained as

ni =
∂iφ

||∇φ|| . (5)

Interfaces can be found through isosurfaces of the order parameter, i.e., φ = 1/2. To recover
the correct surface tension, free parameters appearing in the chemical potential, i.e., κ and β,
are tied to surface tension σ and interface thickness W in the AC equation via β = 12σ/W
and κ = 3σW/2.

2.2. LB Formulation for Conservative Phase-Field Equation

The conservative AC equation can be readily recovered by appropriately defining the
discrete equilibrium state and relaxation coefficient in the advection–diffusion LB model:

∂tgα + cα,i∂igα + Sα = Ωφ
α , (6)

where gα and cα are populations and velocities in the discrete velocity kinetic model, and
the collision operator is defined as

Ωφ
α =

1
τφ

(
g(eq)

α − gα

)
. (7)

The EDF is defined as

g(eq)
α = wαφ

2

∑
n=0

1
n!c2n

s
Hn : a(eq)

n , (8)
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whereHn and a(eq)
n are the Hermite polynomial and coefficient of order n, cs is lattice sound

speed, and wα are weights tied to each discrete velocity (resulting from the Gauss–Hermite
quadrature). The expressions for these polynomials and corresponding coefficients are
listed in Appendix A. The source term in Equation (6) is defined as [26]

Sα = wαHini
4φ(1− φ)

W
. (9)

Given that the source term affects the first-order moment, a nonconserved moment of the
distribution function, the distribution function is tied to the phase parameter as

φ = ∑
α

gα. (10)

The relaxation coefficient is fixed as
τφ =

M
c2

s
. (11)

After integration in space/time, the now-famous collision-streaming form can be recovered:

ḡα(x + cαδt, t + δt) =

(
1− δt

τ̄φ

)
ḡα(x, t) +

δt

τ̄φ
g(eq)

α (x, t) + δtS̄α(x, t), (12)

where the source term takes on a new form, i.e.,

S̄α =

(
1− 1

2τφ

)
wαHini

4φ(1− φ)

W
, (13)

and:
τ̄φ = τφ +

δt

2
. (14)

The derivatives of the order parameter appearing in the various discrete time-evolution
equations are computed using isotropic finite differences, i.e.,

∂iφ =
1
c2

s
∑
α

wαcα,iφ(x + cα), (15)

and
∂2

i φ =
2
c2

s
∑
α

wα[φ(x + cα)− φ(x)]. (16)

While the present work makes use of a second-order EDF, the same macroscopic PDE, i.e.,
Equation (4), can also be recovered by using a first-order EDF and an additional correction
term of the following form [27]:

Cα =
wα

c2
s
Hi∂tφui, (17)

which as for Equation (13), postdiscretization changes into

C̄α =

(
1− 1

2τφ

)
wα

c2
s
Hi∂tφui. (18)

Such correction terms were first introduced in the context of advection–diffusion LB
solvers [28], and further extended to nonlinear equations in the same context [29]. Detailed
derivation and multiscale analyses are readily available in the literature, e.g., [30].
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2.3. LB Model for Flow Field

The flow solver kinetic model follows the low-Mach formulation used, among other
sources, in [31–33], and is based on the original model introduced in [19]

∂t f
′
α + cα,i∂i f

′
α = Ωα + Ξα, (19)

where the collision operator is

Ωα =
1
τ

(
f (eq)
α

′

− f
′
α

)
, (20)

Ξα is defined as

Ξα = c2
s

(
f (eq)
α

ρ
− wα

)
(cα,i − ui)∂iρ + wαc2

s ρ∂iui + (Fb,i + Fs,i)(cα,i − ui)
f (eq)
α

ρ
, (21)

and the relaxation coefficient τ is tied to fluid kinematic viscosity ν as

τ =
ν

c2
s

. (22)

Forces Fb,i and Fs,i represent external body forces and surface tension, respectively, i.e.,

Fs,i = µφ∂iφ. (23)

The modified distribution function f
′
α is defined as

f
′
α = wα ph + c2

s ( fα − wαρ), (24)

where fα is the classical isothermal distribution function. The modified equilibrium follows
the same logic and is defined as

f (eq)
α

′

= wα ph + wαρc2
s

2

∑
n=1

1
n!c2n

s
Hn : a(eq)

n . (25)

Density is tied to the order parameter as

ρ = ρl + (ρh − ρl)φ, (26)

where ρh and ρl are the densities of the heavy and light fluid, respectively. For detailed
analysis of the macroscopic equations recovered by this model and the derivation of
the discrete equations, interested readers are referred to [23,32]. In the context of the
present study, the low-Mach model was wrapped in a moment-based formulation where
postcollision populations f

′∗
α to be streamed as

f
′
α(x + cαδt, t + δt) = f

′∗
α(x, t), (27)

are computed as

f
′∗

α = ρc2
s f p∗

α +
δt

2
Ξα. (28)



Entropy 2021, 23, 166 6 of 16

The postcollision preconditioned population f p∗
α is

f p∗
α = C−1(I −W)Kp + C−1WKp, (29)

where C is the moment transform matrix from preconditioned populations to the target
momentum space, I is the identity matrix, andW is the diagonal relaxation frequency
matrix. Following [34], prior to transformation to momentum space, populations are
preconditioned as

f p
α =

1
ρc2

s
f
′
α +

δt

2ρc2
s

Ξα. (30)

This preconditioning accomplishes two tasks, namely, normalizing the populations with
density and thus eliminating the density dependence of the moments, and introducing the
first half of the source term. As such, moments Kp are computed as

Kp
β = Cαβ f p

α . (31)

The transformation from distribution function (DF)s to cumulants is carried out using
the steps suggested in [35], which allows for a more efficient algorithm. The DFs are first
transformed into central moments:

Π̃p
β = ∑

α

(cα,x − ux)
nx
(
cα,y − uy

)ny(cα,z − uz)
nz f p

α . (32)

Here, β = xnx yny znz . The central moments are then transformed into the corresponding
cumulants using the following relations:

Kp
x =Π̃p

x , (33a)

Kp
xy =Π̃p

xy, (33b)

Kp
x2 =Π̃p

x2 , (33c)

Kp
xy2 =Π̃p

xy2 , (33d)

Kp
xyz =Π̃p

xyz, (33e)

Kp
x2yz =Π̃p

x2yz −
[
Π̃p

x2 Π̃p
yz + 2Π̃p

xyΠ̃p
xz

]
, (33f)

Kp
x2y2 =Π̃p

x2y2 −
[
Π̃p

x2 Π̃p
y2 + 2(Π̃p

xy)
2]

, (33g)

Kp
xy2z2 =Π̃p

xy2z2 −
[
Π̃p

z2 Π̃p
xy2 + Π̃p

y2 Π̃p
xz2 + 4Π̃p

yzΠ̃p
xyz + 2(Π̃p

xzΠ̃p
y2z + Π̃p

xyΠ̃p
yz2)

]
, (33h)

Kp
x2y2z2 =Π̃p

x2y2z2 −
[
4(Π̃p

xyz)
2
+ Π̃p

x2 Π̃p
y2z2 + Π̃p

y2 Π̃p
x2z2 + Π̃p

z2 Π̃p
x2y2 + 4(Π̃p

xyΠ̃p
x2yz+

Π̃p
xzΠ̃p

xy2z + Π̃p
xyΠ̃p

xyz2 + 2(Π̃p
xy2 Π̃p

xz2 + Π̃p
x2yΠ̃p

yz2 + Π̃p
x2zΠ̃p

y2z))+

(16Π̃p
xyΠ̃p

xzΠ̃p
yz + 4((Π̃p

xz)
2
Π̃p

y2 + (Π̃p
yz)

2
Π̃p

x2 + (Π̃p
xy)

2
Π̃p

z2) + 2Π̃p
x2 Π̃p

y2 Π̃p
z2)
]
.

(33i)

The remainder of the moments can be easily obtained via permutation of the indices.
The collision process was performed in cumulant space according to [35]. The fluid
viscosity is controlled via the collision factor related to second-order cumulants (e.g., Kp

xy,
Kp

x2 −K
p
y2 , Kp

x2 −K
p
z2 etc). The rest of the collision factors were set to unity for simplicity.
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Once the collision step had been applied, cumulants were transformed back into central
moments as

Π̃p∗
x =Kp∗

x , (34a)

Π̃p∗
xy =Kp∗

xy , (34b)

Π̃p∗
x2 =Kp∗

x2 , (34c)

Π̃p∗
xy2 =Kp∗

xy2 , (34d)

Π̃p∗
xyz =K

p∗
xyz, (34e)

Π̃p∗
x2yz =K

p∗
x2yz +

[
Π̃p∗

x2 Π̃p∗
yz + 2Π̃p∗

xyΠ̃p∗
xz

]
, (34f)

Π̃p∗
x2y2 =Kp∗

x2y2 +
[
Π̃p∗

x2 Π̃p∗
y2 + 2(Π̃p∗

xy)
2]

, (34g)

Π̃p∗
xy2z2 =Kp∗

xy2z2 +
[
Π̃p∗

z2 Π̃p∗
xy2 + Π̃p∗

y2 Π̃p∗
xz2 + 4Π̃p∗

yz Π̃p∗
xyz + 2(Π̃p∗

xz Π̃p∗
y2z + Π̃p∗

xyΠ̃p∗
yz2)

]
, (34h)

Π̃p∗
x2y2z2 =Kp∗

x2y2z2 +
[
4(Π̃p∗

xyz)
2
+ Π̃p∗

x2 Π̃p∗
y2z2 + Π̃p∗

y2 Π̃p∗
x2z2 + Π̃p∗

z2 Π̃p∗
x2y2 + 4(Π̃p∗

xyΠ̃p∗
x2yz+

Π̃p∗
xz Π̃p∗

xy2z + Π̃p∗
xyΠ̃p∗

xyz2 + 2(Π̃p∗
xy2 Π̃p∗

xz2 + Π̃p∗
x2yΠ̃p∗

yz2 + Π̃p∗
x2zΠ̃p∗

y2z))−

(16Π̃p∗
xyΠ̃p∗

xz Π̃p∗
yz + 4((Π̃p∗

xz )
2
Π̃p∗

y2 + (Π̃p∗
yz )

2
Π̃p∗

x2 + (Π̃p∗
xy)

2
Π̃p∗

z2 ) + 2Π̃p∗
x2 Π̃p∗

y2 Π̃p∗
z2 )
]
.

(34i)

After this step, postcollision central moments could be readily transformed back into
populations. All transforms presented here and upcoming simulations are based on the
D3Q27 stencil. The following set of 27 moments were used as the basis for the moments:

β ∈ {0, x, y, z, xy, xz, yz, x2 − y2, x2 − z2, x2 + y2 + z2,

xy2 + xz2, xyz, xy2 − xz2, x2 + yz2, x2z + y2z, x2y− yz2, x2z− y2z, x2y2 − 2x2z2 + y2z2,

x2y2 + x2z2 − 2y2z2, x2y2 + x2z2 + y2z2, x2yz, xy2z, xyz2, x2y2z, x2yz2, xy2z2, x2y2z2},
(35)

where β = x2 − y2 stands for a central moment of form Π̃p
x2 − Π̃p

y2 . Previous systematic
studies of the flow solver showed second-order convergence under diffusive scaling [32].

3. Numerical Applications

In this section, the proposed numerical method is validated through different test cases.
All results and simulation parameters are reported in LB units, i.e., nondimensionalized
with time step, grid size, and heavy fluid density.

3.1. Static Droplet: Surface-Tension Measurement

As a first test, to validate the hydrodynamics of the model, we considered the case
of a static droplet in a rectangular domain with periodic boundaries all around. All cases
consisted of a domain of 256× 256 size filled with a light fluid. A droplet of the heavier
fluid was placed at the center of the domain. Simulations were pursued till the system had
converged. The pressure difference between the droplet and surrounding lighter fluid was
then extracted. Using Laplace’s law, i.e.,

∆P =
σ

r
, (36)

where ∆P is the pressure difference, and r the droplet radius, one can readily obtain the
effective surface tension. Three different surface tensions, i.e., σ = 1× 10−1, 1× 10−3, and
1× 10−6, along with four different droplet radii, i.e., r = 25, 30, 35, and 45, were considered
here. Obtained results are shown in Figure 1. Results presented here consider a density
ratio of 20 and nondimensional viscosity of 0.1.
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 P
/

Figure 1. Changes in pressure difference around droplet for different surface tensions and droplet
radii. Red, blue, and black symbols illustrate results from present study with σ = 10−1, 10−3, and
10−6, respectively.

The model satisfied Laplace’s law and recovered the correct surface tensions. Fur-
thermore, it could span a wide range of surface tensions, as opposed to other classes
of multiphase solvers, such as free energy or pseudopotential formulations [36,37], and
maintain relatively low spurious currents. For example, at a density ratio of 1000 and
σ = 10−3, spurious currents were found to be only of the order of 10−6, in strong contrast
with previously cited approaches.

3.2. Rayleigh–Taylor Instability

The Rayleigh–Taylor instability is a well-known and widely studied gravity-driven
effect occurring when a layer of a heavier fluid lies on top of another layer of a lighter
fluid [38–40]. Perturbation at the interface between the two fluids causes the heavier one to
penetrate the lighter fluid. In general, the dynamics of this system are governed by two
nondimensional parameters, namely, the Atwood and Reynolds numbers. The former is
defined as

At =
ρh − ρl
ρh + ρl

, (37)

while the latter is:
Re =

ρhU∗L
µh

, (38)

where ρl and ρh are densities of the heavy and light fluids, respectively, µh is the dynamic
viscosity of the heavy fluid, Lx the size of the domain in the horizontal direction and U∗

the characteristic velocity, defined as

U∗ =
√

gLx, (39)

where g is gravity-driven acceleration. The characteristic time for this case is defined as

T =
Lx

U∗
. (40)
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Following the setup studied in [19], we considered a domain sized Lx × 4Lx with Lx = 600.
Initially, the top half of the domain was filled with the heavy liquid, and the bottom half
with the lighter one. The interface was perturbed via the following profile:

hi(x) =
L
10

cos
(

2πx
Lx

)
+ 2Lx. (41)

While periodic boundaries were applied in the horizontal direction, at the top and bottom
boundaries, no-slip boundary conditions were applied using the half-way bounce-back
scheme [1]. The At number was set to 0.5, while two different Re numbers were considered,
i.e., Re = 256 and 2048. In both cases, g = 6× 10−6, while the nondimensional viscosities
were 0.1406 and 0.0176, respectively. To validate the simulations, the position of the
downward-plunging heavy liquid spike was measured over time and compared to the
reference data from [19]. Results are illustrated in Figure 2.

Figure 2. (Left) Evolution of interface for Rayleigh–Taylor instability for (top row) Re = 256 and
(bottom row) Re = 2048 at different times: (from left to right) t/T =1, 2, 3, 4, and 5. (Right) Position
of penetrating spike over time: (black) Re = 256 and (red) Re = 2048. (plain lines) Results and
(symbols) data from [19].

Both simulations agreed very well with the reference solution of [19]. To showcase the
ability of the solver to handle under-resolved simulations, and illustrate the convergence
of the obtained solutions, simulations were repeated at two additional lower resolutions
with Lx = 300 and 150, with an acoustic scaling of the time-step size. Results obtained with
those lower resolutions are shown in Figures 3 and 4.

The position of the plunging spike clearly shows that, while minor differences ex-
ist, even the lowest resolution captures the correct position. Smaller features, however,
especially at Re = 2048, need higher resolutions to be correctly captured. At Re = 256 for
instance, even the secondary instability was converged as, at Lx = 300, no segmentation
was observed. For Re = 2056, on the other hand, while a larger structure started to converge,
thinner features clearly needed more resolutions.



Entropy 2021, 23, 166 10 of 16

Figure 3. (Left) Interface for Rayleigh–Taylor instability at t/T =5 and Re=256 for three different
resolutions (left to right) Lx = 150, 300, and 600. (Right) Position of penetrating spike over time:
(black) Lx = 600, (red) Lx = 300, and (blue) Lx = 150.

Figure 4. (Left) Interface for Rayleigh–Taylor instability at t/T = 5 and Re = 2048 for three different
resolutions (left to right) Lx = 150, 300, and 600. (Right) Position of penetrating spike over time:
(black) Lx = 600, (red) Lx = 300, and (blue) Lx = 150.

3.3. Turbulent 3D Rayleigh–Taylor Instability

To further showcase the ability of the solver to deal with complex flows, we also
considered the Rayleigh–Taylor instability in 3D. The studied configuration followed those
studied in [41]. The definitions of nondimensional parameters were similar to those used
in the previous section. The domain was discretized using 100× 100× 1200 grid points,
with L = 100. The interface was placed at the center of the domain along the z axis
and perturbed using

hi(x, y) =
L
10

[
cos
(

2πx
L

)
+ cos

(
2πy

L

)]
+ 6L, (42)

and Reynolds and Atwood numbers were set to 1000 and 0.15, respectively. As for pre-
vious configurations, periodic boundaries were applied in the horizontal direction and
no-slip boundaries at the top and bottom. The body force was set to g = 3.6× 10−5, and
viscosity to 0.006. The position of the downward-plunging spike was measured over time
and compared to reference data from [41]. After the penetration of the two liquids into
each other, the Kelvin–Helmholtz instability caused the plunging spike to roll up and
take a mushroomlike shape. As the mushroom-shaped spike further progressed into the
lighter fluid, the cap disintegrated into four fingerlike structures. As is shown later, these
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fingers were reminiscent of instabilities leading to splashing in the impact of a droplet on
liquid surfaces.

Overall, as shown in Figure 5, obtained results from the present simulation were in
good agreement with the reference data.

Figure 5. (Left) Evolution of interface for 3D Rayleigh–Taylor instability for Re = 1000 at different
times: (from left to right) t/T = 1.9, 3.9, 5.8, 7.8, and 9.7. (Right) Position of penetrating spike over
time: (plain lines) Results and (symbols) data from [41].

3.4. Droplet Splashing on Thin Liquid Film

As the final case, we considered the impact of a droplet on a thin liquid layer. This
configuration is interesting, as it involves complex dynamics such as splashing, and it is of
interest in many areas of science and engineering [42,43]. Immediately after impact, the
liquid surface is perturbed. In many instances, at the contact point (line), a thin liquid jet
forms, and it continues to grow and propagate as a corolla. As the crownlike structure
radially propagates, a rim starts to form. At high-enough Weber numbers, the structure
breaks into small droplets via the Rayleigh–Plateau instability [44]. A detailed study of the
initial stages of the spreading process showed that the spreading radius scales with time
regardless of Weber and Reynolds numbers [44]. While widely studied in the literature
using different numerical formulations [26,45–47], simulations are usually limited to lower
density and viscosity ratios, and/or Weber and Reynolds numbers [26,36,45,46]. As such,
we first focused on a 2D configuration considering three sets of We and Re numbers,
namely: Re = 200 and We = 220, Re = 1000 and We = 220 and Re = 1000 and We = 2200.
In all simulations, density and viscosity ratios were set to ρh/ρl = 1000 and νl/νh = 15,
emulating a water/air system. The geometrical configuration is illustrated in Figure 6.

D

6D

12D

D/2

Figure 6. Geometrical configuration of droplet impact on liquid sheet case in 2D.
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The top- and bottom-boundary conditions were set to walls modelled with the half-
way bounce-back formulation, while symmetrical boundaries were applied to the left and
right. The droplet diameter was resolved with 100 grid points. Initial velocity in the droplet
was set to U0 =0.05, and νL was determined via the Reynolds number:

Re =
ρhU0D

µh
. (43)

Furthermore, the We number is defined as

We =
ρl DU0

2

σ
. (44)

The evolution of the liquid surface, as obtained from the simulations, is shown in Figure 7.
Following [44], rim breakup and splashing occurred for larger impact parameters, defined
as

K = We1/2Re1/4. (45)

Accordingly, impact parameters for the studied 2D cases were K = 55.7, 83.4, and 263.8. The
evolution of the systems in Figure 7 clearly shows that, in agreement with observations
in [44], larger values of the impact parameter led to droplet detachment from the rim
and splashing.

t/T=1

t/T=5

t/T=3

t/T=7

Figure 7. Impact of circular droplet on liquid sheet at different We and Re numbers with ρh/ρl = 1000
and νl/νh = 15. (black) Re = 200 and We = 220, (red) Re = 1000 and We = 220, and (blue) Re = 1000
and We = 2200.

Furthermore, the evolution of spreading radii rK over time for different cases is shown
in Figure 8. The radii scaled with time at the initial stages of the impact, in agreement with
results reported in [44].

As a final test case, to showcase the robustness of the proposed algorithm, a 3D
configuration with Re = 1000 and We = 8000 was also ran. The evolution of the liquid
surface over time is shown in Figure 9.
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10
-1

10
0

10
1

t/T

10
0

10
1

r K
/D

Figure 8. Evolution of spreading radius rK as function of time for droplet impact on liquid film case.
Circular symbols designate 2D simulations: (black) Re = 200 and We = 220, (red) Re = 1000 and We =
220, and (blue) Re = 1000 and We = 2200. Rectangular symbols belong to 3D simulation with Re=1000
and We = 8000. Dashed line is rK

D = 1.1
√

t/T.

t/T = 0.2 t/T = 0.4 t/T = 0.6

t/T = 0.8 t/T = 1 t/T = 1.2

Figure 9. Impact of spherical droplet on thin liquid sheet at We = 8000 and Re = 1000 at
different times with ρh/ρl = 1000 and νl/νh = 15.

After the initial impact, a thin liquid jet was formed at the contact line between the
droplet and sheet. Then, the crown evolved and spread. At later stages, the fingerlike
structures started to form at the tip of the crown. These liquid fingers then became
detached from the crown, and liquid splashing was observed. This sequence of events was
in excellent agreement with those presented in [44]. Furthermore, the spreading radius,
as plotted in Figure 8, agreed with the theoretical predictions.

4. Conclusions

An LB-based solver relying on the conservative AC equation, and a modified hydro-
dynamic pressure/velocity-based distribution and MRT collision operator in cumulant
space was presented in this study with the aim to model multiphase flows in larger We-
ber/Reynolds regimes. While stability at high Weber numbers, i.e., low surface tensions, is
achieved through the decoupled nature of conservative AC formulation, the added stability
in terms of kinematic viscosity, i.e., larger Reynolds numbers, is brought about by the colli-
sion operator and modified pressure-based LB formulation for the flow. Compared to other
models available in the literature based on AC formulation, the use of cumulants allows
for stability at considerably higher Reynolds numbers, i.e., lower values of the relaxation
factor. For instance, configurations such as 3D droplet splashing were not stable with
single relaxation time (SRT) formulation for the same choice of nondimensional parameters,
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i.e., resolution and relaxation factor. The algorithm was shown to capture flow dynamics
and be stable in the targeted regimes. The application of the proposed algorithm to more
complex configurations, such as liquid jets, is currently being studied and will be reported
in future publications.
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Appendix A. Hermite Polynomials and Coefficients

Hermite polynomials used in EDFs of different solvers, defined as

H0 = 1, (A1a)

Hi = cα,i, (A1b)

Hij = cα,icα,j − c2
s δij, (A1c)

where δij denotes Kronecker delta function, while corresponding equilibrium coefficients
are

a(eq)
0 = ρ, (A2a)

a(eq)
i = ρui, (A2b)

a(eq)
ij = ρuiuj, (A2c)
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