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Modeling Electromagnetic Navigation Systems
Samuel L. Charreyron1, Quentin Boehler1, Byungsoo Kim2, Cameron Weibel1, Christophe Chautems1,

and Bradley J. Nelson1

Abstract—Remote magnetic navigation is used for the manip-
ulation of untethered micro and nanorobots, as well as tethered
magnetic surgical tools for minimally invasive medicine. Mathe-
matical modeling of the magnetic fields generated by magnetic
navigation systems is a fundamental task in the control of such
tools for biomedical applications. We describe and compare
several existing and newly developed methods for representations
of continuous magnetic fields using interpolation in the context
of remote magnetic navigation. Clinical-scale electromagnetic
navigation systems feature nonlinear magnetization and mag-
netization interactions between electromagnets, which renders
accurate magnetic field modeling challenging. We first introduce
a method that can adapt existing linear models to correct for
nonlinear magnetization, with similar performance to the current
state-of-the-art nonlinear model. Furthermore, we present a
method based on convolutional neural networks that is able to
improve on the state-of-the-art method by a factor of 5.4.

Index Terms—Electromagnetic modeling, Magnetic field mea-
surement, Magnetic fields, Medical robotics

ACRONYMS
ANN Artificial Neural Network
CNN Convolutional Neural Network
CNN-DF Divergence-free Convolutional Neural Network
eMNS Electromagnetic Navigation System
FEM Finite Element Method
GPU Graphics Processing Unit
MAE Mean Absolute Error
MNS Magnetic Navigation System
MPEM Multipole Electromagnet Model
N-MAE Normalized Mean Absolute Error
N-RMSE Normalized Root Mean Square Error
RBF Radial Basis Function
RBF-G-3D 3D RBF Interpolation with Gaussian Kernel
RBF-G-DF Divergence-free RBF with Gaussian Kernel
RBF-MQ-3D 3D RBF Interpolation with Multiquadric Kernel
RBF-MQ-DF Divergence-free RBF with Multiquadric Kernel
RF Random Forest
RMSE Root Mean Square Error
S-MPEM Saturated Multipole Electromagnet Model
SPL-3D B-Spline 3D Interpolation
SPL-LPL Laplacian Constrained 3D B-Spline Interpolation
TRI-3D Tricubic 3D Interpolation
TRI-LPL Tricubic Laplacian Constrained Scalar Field Interpolation

I. INTRODUCTION

REMOTE magnetic navigation is an actuation technology
for minimally invasive surgery in which magnetic fields

are used to wirelessly navigate devices containing magnetic
material inside the body. Magnetic fields have the advantage
of permeating biological tissue while being virtually harmless.
Magnetic navigation results from generating magnetic torques
and forces on the navigated magnetic agent by modulating the
magnetic fields and the magnetic field gradients respectively,
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which are generated from outside the body of a patient. The
reader is directed to [1] for a recent review of magnetic
navigation.

Magnetic navigation of cardiac catheters is the single
application that has seen successful clinical adoption with
over 100,000 procedures completed [2], and spawning three
competing magnetic navigation technologies by Stereotaxis
Inc., Aeon Scientific AG1, and Magnetecs Corp. Nevertheless,
the field of magnetically-actuated micro and nanorobots has
seen considerable research attention in the past decade [3],
with potential applications in targeted drug delivery, minimally
invasive surgery, and diagnostics.

A. Magnetic Navigation Systems

In remote magnetic navigation, magnetic fields are generated
by a Magnetic Navigation System (MNS) that consists of
magnets located around the body of the patient. These are
either strong permanent magnets, which are rotated or trans-
lated in order to modulate the generated magnetic field, or
electromagnets where the magnetic fields are modulated by the
amount of electrical current that is running through conductive
windings. A MNS using electromagnets is referred to as an
Electromagnetic Navigation System (eMNS).

There are advantages and disadvantages to both approaches.
Permanent magnet-based systems can be less expensive to
manufacture at smaller-scales, magnetic field modeling is
more straightforward, and patient access may be easier, since
field control can be achieved with fewer magnets. MNSs can
achieve larger field strengths, allow for independent control
of magnetic gradients, and, in contrast to permanent magnets,
can be “switched off.”

B. Mathematical Modeling of MNS Field Generation

We define a mathematical model of a eMNS as a mathematical
mapping between the electrical currents i ∈ RNe running
through the Ne electromagnets, and the magnetic field b ∈ R3

that is generated inside the workspace at a position p ∈ R3.

b(p) = g(p, i) (1)

This publication focuses on forward models that predict the
magnetic fields given the currents in the electromagnets. Con-
versely, backward models are used to determine the currents
that result in a desired magnetic field. Although these will not
be discussed here, strategies for inverting forward models are
given in Appendix A.

1Aeon Scientific AG is a former spinoff company of the Multi Scale Robotics
Lab
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Magnetic fields induce magnetic torques on magnetized
material, which cause locomotion via bending or rotation.
Some untethered magnetic agents are also navigated using
magnetic forces, which depend on the spatial variation or the
gradient of the magnetic field.

A further simplification can be made when electromagnets
have a linear relationship between the electromagnet currents
and the magnetic fields. This occurs when the electromagnets
do not contain ferromagnetic cores, or when the cores do not
exhibit saturation or hysteresis. We refer to this category as a
linear magnetic model. The advantage of such models is that
they obey the principle of superposition, and the combined
effect is simply the linear superposition of the individual
electromagnet contributions, scaled by the current in each
electromagnet, as seen in (2).

b(p) =

Ne∑
k=1

bk(p) ik (2)

The individual electromagnet contributions can be grouped
into a position-dependent actuation matrix Am ∈ R3×Ne .

b(p) = Am(p) i (3)

C. Motivations

This work is motivated by (1) the need of accurate models of
MNSs in several applications of remote magnetic navigation,
(2) the need of better guidelines to compare and choose a
model for a given application. Choosing a method is often
delicate due to the lack of common performance metrics
among the community, and due to the variety of available
types of methods.

Besides, accurate model are relevant for several applica-
tions, including for the control of robotic systems involving
steerable medical continuum robots such as catheters [4], en-
doscopes [5] needles [6], and untethered micro or nanorobots
[3]. The electromagnet currents or magnet positions of a MNS
can be seen as joint parameters in the framework of robot
kinematics, since they can be mapped to resultant forces and
torques on the agent. MNS modeling is thus part of the
development of accurate kinematic models.

Precise prediction of the magnetic fields is particularly
relevant in the context of untethered devices that are controlled
using magnetic field gradients, since these are much more sen-
sitive to modeling inaccuracies. Most research in the literature
has been limited to benchtop MNSs with small workspaces and
relatively homogeneous magnetic fields, but that are too small
for in vivo applications. Gradient control was demonstrated
in a large-scale eMNS in [7], but the magnetic field model
had to be corrected in real time using magnetic hall effect
sensors placed in the workspace. Such solutions are likely to
be impractical for applications featuring human patients, due
to the difficulty of placing sensors in proximity to where the
magnetic field is to be controlled.

Accurate models are also required in the context of magnetic
positioning using quasi-static magnetic fields. Magnetically
navigated surgical tools must often be located with respect
to the anatomy in which they operate. In many applications

Fig. 1. The CardioMag, a large-scale eight-electromagnet eMNS

of minimally invasive surgery, tools are not visible, since
they are located inside the body, and live imaging using
medical imaging modalities is either prohibitive (MRI or CT),
of low-quality (ultrasound imaging), or harmful when (C-
arm fluoroscopy). The use of onboard cameras in endoscopy
may be used for localization, but is not possible for devices
with small diameters, in confined or opaque spaces such
as the vascular system, or inside tissue. There exist a host
of electromagnetic trackers using arrays of coils generating
dynamic electromagnetic fields which are detected by pickup
coils embedded in surgical tools, but these are prone to
interference from metallic objects, and large ferromagnetic
bodies that are contained in eMNSs. A solution would be
to use onboard magnetic sensors combined with magnetic
field predictions from a MNS model, in order to estimate
the tool configuration. This concept was demonstrated in a
MNS featuring permanent magnets in [8], and [9], but has not
yet been demonstrated in an eMNS. The accuracy of such a
method is tightly coupled to the accuracy at which magnetic
fields can be measured by the onboard sensors, and predicted
by the model. For a MNS generating gradients on the order
of 300 mT/m, as could be expected in a larger eMNS such
as the Aeon Phocus [7], modeling and sensing errors should
not exceed 300 µT for sub-mm position accuracy. Such values
are only rough estimates and would, of course, depend on the
specifics of the implementation.

D. Contributions

The aim of this paper is to compare different methodologies
for obtaining (1). Mathematical models can be distinguished
from electromagnetic simulations in that the former should
provide a simplified relationship between the variable param-
eters and the magnetic fields, and should be amenable to real-
time computation, while the latter may provide accurate results
at the expense of intractable computation times associated
with solving the governing electromagnetic boundary-value
problems. In this work, we restrict our study to mathematical
models, and more particularly models which can be obtained
from magnetic field data rather than from a priori information
about a MNS.

We primarily focus our efforts on eMNSs with stationary
electromagnets. When appropriate, we use data from the
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CardioMag [10] shown in Fig. 1, a clinical-size eMNS with
eight electromagnets, because it exhibits most of the properties
that render modeling an eMNS complex, namely a large
workspace, a large number of electromagnets, and nonlinear
magnetization.

In this paper, we contrast methods that are based on
mathematical interpolation, and assume that the magnetization
is linearly related to electromagnet currents and that the
measurements are error-free, described in III, from models that
are fit to data using error minimization techniques, described
in IV. In addition to a comparative analysis of eMNS modeling
strategies, we introduce several modeling methods not found
in the literature. Most notably, we report the first use of a
Convolutional Neural Network (CNN) to obtain state-of-the-
art modeling accuracy on data from the CardioMag.

We first discuss prior work in the literature in II. We then
outline and compare methods for modeling general magnetic
fields in free-space via interpolation in III. Methods that take
into account physical constraints on the magnetic field are con-
trasted to fully unconstrained methods, based on interpolation
of synthetic data of an eMNS. We then consider an eMNS
with multiple electromagnets, accounting for electromagnet
interactions in IV, and evaluating the different methods on real
magnetic field data from the CardioMag. Finally, we conclude
in V.

II. RELATED WORK

A. Analytical Models

Early prototypes from Stereotaxis relied on air-core coils,
which were modeled using single current loops [11]. By
using the Bio-Savart law, the expression for the magnetic field
magnitude b(z) can be obtained in (4) for a loop of radius a
with n turns and current i at a distance z of the loop center,
and with µ0 as the vacuum permeability.

b(z) =
µ0

2

na2i

(a2 + z2)
3
2

(4)

While such a model is accurate for simple current loops, it
does not hold for electromagnets with more complex designs.
For uniform current distributions on simple geometries such as
wires, cylinders, and solenoids, the magnetic vector potential
A can be expressed analytically using elliptical integrals [12].
The magnetic field vector can then be obtained by taking the
curl of A.

b = ∇×A (5)

In [13], lookup tables of magnetic fields were calculated at a
number of discrete points by modeling eMNSs as cylinders
of uniform charge and calculating the Bio-Savart integrals
directly. In [14], the magnetic fields of coils of uniform charge
of an eMNS were modeled using elliptical integrals.

B. Finite Element Methods

For more complex electromagnet geometries, analytic ex-
pressions often do not exist. Additionally, the problem of
calculating magnetic field distributions becomes difficult in

the presence of ferromagnetic materials that are magnetized
in ambient fields, since they have the property of “shaping”
magnetic fields. Nevertheless, ferromagnetic materials are of-
ten used in electromagnets, where current-carrying material is
wound around a ferromagnetic core, because they can increase
the magnet strength by several orders of magnitude. It is
possible to calculate the magnetic field of any arbitrary geom-
etry of current distributions and ferromagnetic material using
Finite Element Method (FEM). In FEM, the magnetic vector
potential A, and the magnetic field are solved numerically
by generating boundary-value problems [15]. By definition,
FEM calculates physical quantities at a discrete set of positions
on a mesh, for a given distribution of electrical charge on
the mesh. More accurate and detailed field calculations can
be performed by using a finer mesh, but the computational
complexity scales with O(N3) where N is the number of
nodes in the mesh [16]. While FEM is attractive due to its
versatility, its computational requirements are prohibitive for
real-time computations on standard computing hardware.

C. Interpolation of Magnetic Field Data

FEM modeling does not take into account certain effects
such as manufacturing defects, inhomogeneous or mischarac-
terized materials, or the presence of unmodeled disturbances.
Alternatively, one can directly measure the magnetic fields
generated by a MNS using a magnetometer that is moved
through space, or using several magnetometers simultaneously.
The engineering effort can be higher than relying on simu-
lated data, since the magnetometer must be reliably placed
at a high number of positions using a robot-arm or other
positioner, or alternatively, a large number of of accurately
placed magnetometers is required. Magnetic field data that is
available as discrete data points, either from FEM modeling
or from physical measurements, can be interpolated in space
to obtain a continuous function representation of the field. In
[17], [18], and [19], field data was interpolated with trilinear
interpolation, and with tricubic interpolation in [20]. B-Spline
interpolation of the fields was performed in [21]. In [8], the
magnetic field generated by an external permanent magnet was
modeled using modal-basis functions using data from FEM
simulation.

The advantage of interpolation is that it is completely
independent of the MNS if the magnetic data is available.
Provided the magnetic measurements are error-free and of
sufficient resolution, interpolation can yield an accurate contin-
uous representation of the magnetic field with very little effort
required to parametrize the model. For eMNSs, the number
of dimensions increases with the number of electromagnets.
For systems with more than one or two electromagnets, and
where the individual effects of the electromagnets cannot
be separated due to nonlinear magnetization, these methods
become intractable due to the curse of dimensionality.

D. Reduced Analytical Models

Between magnetic field calculations based on solutions of
Maxwell’s equations, and interpolation of magnetic field data,
there exist a class of models that are based on simplified
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MNS models. These are analytical models in that they are
expressions of a valid magnetic field, but do not seek to
be a true representation of the magnetic field distribution
everywhere in space. Magnetic fields that are defined in a
space without free-currents can be seen as the gradient of
a magnetic scalar potential ψm. Furthermore, if the space is
devoid of magnetic materials such as in free-space, the scalar
potential is a solution of Laplace’s equation. For a point source
located at the origin, the potential at a given position in free-
space, represented in axially-symmetric spherical coordinates
by (r, θ), can be expressed using a multipole expansion, as
shown in (6).

ψm(r, θ) =

∞∑
l=1

Bl
rl+1

Pl(cos θ) (6)

Bl is the multipole coefficient of order l, and Pl(x) is the
Legendre polynomial of order l. The orders l = 1, 2, 3 are
often called the dipole, quadrupole, and octopole, respec-
tively. By using measured or FEM data of the magnetic
fields, one can find the unknown coefficients and positions
and orientations of the point sources by fitting them in a
least-squares sense. The higher order poles have a rapidly
decreasing effect on the potential field as the distance r to the
source increases. Therefore, given a sufficient distance from
the source, a lower-order representation is often sufficient to
represent the magnetic field distribution with a given precision.
For example, electromagnets are modeled as single dipoles in
[18] and [22]. This assumption is generally valid given that the
electromagnets are sufficiently far away from the workspace,
such that the dipole terms of the magnetic field dominate
other terms, and far enough from each other such that they
can be considered as independent sources. In [23], an eMNS
was modeled with several sources per electromagnet, and
the magnetic scalar potential from each source was modeled
using a multipole expansion. We refer to this method as the
Multipole Electromagnet Model (MPEM).

The advantage of reduced-analytical models is that they gen-
erate physically-consistent vector fields that are divergence-
free, i.e. ∇·b = 0, which is a property of all magnetic fields,
and curl-free ∇ × b = 0, which is a property of magnetic
fields in which there are no free currents, such as in free-
space. Because they are fit to data in a least-squares sense,
they show some robustness to measurement uncertainties,
provided that the underlying assumptions of the model are
accurate. The disadvantage of these models is the need to
define the underlying parametrization. It is not inherently
obvious how many sources and of what order are necessary
to obtain accurate results for any MNS. Furthermore, such
models are usually fit to data using iterative methods such
as the Levenberg-Marquardt (LM) algorithm, which can be
sensitive to initial values of the fitted parameters and only
converge towards local minima.

E. Machine Learning

Recently, we investigated using machine learning to model
an eMNS in [24]. The problem was cast as multivariate
regression with the inputs being the electromagnet currents

and the position at which to calculate the field, and the output
being a magnetic field vector. Random Forests (RFs) and
Artificial Neural Networks (ANNs) were both implemented,
yielding improved magnetic field prediction over MPEM,
which was used as a baseline. Such methods can handle the
nonlinear relationship between the electromagnet currents and
magnetic fields, which occurs when electromagnets exhibit
saturation. Additionally, as black-box methods, they do not
require knowledge of domain-specific parameters such as the
number, order, position, and strength of the magnetic sources.
A drawback is that they do not yield physically-consistent
fields in contrast to reduced-analytical models, since there are
no constraints that restrict the magnetic fields to be curl-free
or divergence-free.

III. MAGNETIC FIELD INTERPOLATION IN FREE SPACE

The following methods, also described in II-C, can be
used to obtain a continuous representation of magnetic fields
from discrete data. In addition to predicting field values
at unmeasured locations from measurements on individual
electromagnets, magnetic field interpolation can also be used
to convert coarse measurements to finer ones, also known as
upscaling the magnetic field data.

A. Structured Grid Methods

Multivariate interpolation methods either work on regular
grids or on unstructured data. In this section, we assume that
magnetic field data is available on a n × m × l regular 3D
grid.

1) Tricubic 3D Interpolation (TRI-3D): While some prior
work used trilinear interpolation of magnetic fields [17] [20],
we consider tricubic interpolation, since it not only provides
continuity of the function but also of the three first deriva-
tives of the function. This is of particular importance if one
wishes to have continuous magnetic field gradients. Tricubic
interpolation is a local method, because an interpolated value
only depends on the eight values at the corners of the voxel
containing that point. We interpolate a separate tricubic func-
tion for each component of the magnetic field, resulting in a
3×64 coefficient matrix c. The expression of the interpolated
magnetic field b at position (x, y, z) is

b(x, y, z) =

3∑
i,j,k=0

cijk x
i yj zk (7)

The 64 coefficients of each interpolant are found by solving a
linear system that results from constraining the values of the
field, the first derivatives of the field, and an additional set of
higher order derivatives, as described in [25]. The values of
the magnetic field derivatives are obtained by finite difference
approximations. For the vector-valued magnetic field, each
voxel of the grid is associated with three vectors of 64
coefficients, which can be precomputed and stored in a lookup-
table resulting in (n−1)×(m−1)×(l−1)×192 coefficients.
Computing the magnetic field gradient is straightforward and
follows from the gradient of (7).
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2) Tricubic Laplacian Constrained Scalar Field Interpola-
tion (TRI-LPL): We can also use the fact that the magnetic
field should be the gradient of a scalar potential to instead
perform a tricubic interpolation of the scalar potential (TRI-
LPL).

ψm(x, y, z) =

3∑
i,j,k=1

aijk x
i yj zk (8)

The gradient of the scalar potential is constrained to equal the
magnetic field values at the grid points.

b(x, y, z) = −∇ψm (9)

This results in an interpolant that is naturally curl-free but
not necessarily divergence-free. The gradient of the magnetic
field is obtained by taking the Hessian of the interpolant. It is
symmetric but does not have zero trace.

The Laplacian of the interpolated potential ∇2ψm is con-
strained to be zero at the grid points and, we also constrain
the second derivatives of the interpolated potential ∂Bx

∂y , ∂Bx

∂z ,
∂By

∂z , ∂
2Bx

∂yz , which are obtained using finite difference approx-
imations. The number of coefficients is (n− 1)× (m− 1)×
(l − 1)× 632.

3) B-Spline 3D Interpolation (SPL-3D): Similar to poly-
nomial interpolation, B-splines generate continuous function
representations of discrete data through piecewise polynomial
functions [26]. In contrast to tricubic interpolation, which only
considers the values of the function on the corners of the
voxel surrounding the interpolation position, B-splines have
higher support, in that the adjacent voxels also contribute to the
interpolation value. This increases the interpolation accuracy
at an increased computational cost.

A B-spline function f : R → R of degree d is uniquely
defined by a sequence of knots {t1, · · · , tq}, and coefficients
{c1, · · · , cq}. The basis functions can be calculated using the
recursive Cox-de Boor formula.

Ni,1(x) =

{
1 if ti ≤ x < ti+1

0 otherwise
(10)

Ni,d(x) =
x− ti
ti+d − ti

Ni,d−1(x) +
ti+d+1 − x
ti+d+1 − ti+1

Ni+1,d−1(x)

(11)

The interpolant is a weighted linear combination of the basis
functions

f(x) =

q∑
i=1

ci Ni(x) (12)

For multivariate functions, one can use the tensor product
of B-splines. For a function of three variables, we define
the sets {Ni(x)}q1, {Mj(y)}r1, {Pk(z)}s1 as basis functions
with respective knot sequences {ki}q1, {kj}r1, and {kk}s1.
Similarly to TRI-3D, vector-valued functions are represented

2the constant parameter a000 of the tricubic interpolant can be set to any
value, since it is not be affected by the derivatives.

using vectors of coefficients for each basis function. In the
SPL-3D method, we represent b : R3 → R3 with

b(x, y, z) =

q,r,s∑
i,j,k=1

cijk Ni(x) Mj(y) Pk(z) (13)

The coefficients {cijk}q,r,si,j,k=1 can be obtained by solving a
linear system. We stack the field values at the grid points
in a matrix Db ∈ Rnmp×3. We also stack the basis-function
values in Nb ∈ Rn×q , Mb ∈ Rm×r, and Pb ∈ Rp×s. We
obtain the tensor product of the basis-function values in matrix
Zb ∈ Rnmp×qrs.

Zb = (Nb ⊗Mb)⊗Pb (14)

We then solve the following linear system with Cb ∈ Rqrs×3
as the stacked coefficients

Db = Zb Cb (15)

4) Laplacian Constrained 3D B-Spline Interpolation (SPL-
LPL): In [21], a constrained version of SPL-3D was intro-
duced, such that the divergence and curl of the interpolated
magnetic field was zero at points on a separate e×f ×g grid.
We call this method SPL-LPL. The system (15) is modified,
such that it becomes a linearly-constrained quadratic program.

min
Cb

||Db − Zb Cb||2

s.t. ∇ · b(xi, yj , zk) = 0
∇× b(xi, yj , zk) = 0
∀i ∈ 1 · · · e, ∀j ∈ 1 · · · f, ∀k ∈ 1 · · · g

(16)

The e×f×g grid of constraints can be chosen to be arbitrarily
fine at the expense of the accuracy of the interpolation of field
values. In this work, we use the same grid for both the field
measurements and for the constraints.

For both SPL-3D and SPL-LPL, we found that using
d = min{n,m, l} provided the best results. Knots were
placed using the MATLAB curve fitting toolbox’s aptknt
acceptable knot sequence function.

B. Unstructured Methods

The magnetic field data can be specified at arbitrary po-
sitions and does not need to be on a regular grid. This is
particularly useful when one cannot specify where the data
is obtained, for example when a dataset has already been
collected, if it contains “holes” in the measurements, or when
the data is not located on a grid.

1) Scalar Radial Basis Functions: Radial Basis Functions
(RBFs) are linear combinations of smooth basis functions that
are centered at N control points {ri}N1 . The 3D multivariate
vector-valued RBF b : R3 → R3 can be expressed as

b(p) =

N∑
i=1

φ(||p− ri||) ci (17)

where ci ∈ R3 are the weights associated with each basis
function. φ : R→ R is called a kernel and several options can
be found in the literature [27]. In this work we limit ourselves
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to two of the most popular, the Gaussian and multiquadric
kernels. The Gaussian kernel is defined as

φg(x) = e−ε|x|
2

(18)

while the multiquadric kernel has the following expression

φmq(x) =
√

1 + ε |x|2 (19)

Both kernels are infinitely differentiable with C∞ continuity,
and have global support, since they are always non-zero. A
shape parameter ε controls the amount of “spread” between
the control points. If ε is small, the basis functions are flatter
and spread to neighboring control points. We call 3D RBF
interpolation with a Gaussian and multiquadric kernel RBF-
G-3D and RBF-MQ-3D, respectively.

The measurement values are grouped into a matrix Dr ∈
RN×3, and the kernels are evaluated at all the measurement
positions to form an interpolation matrix Ar ∈ RN×N . The
coefficients Cr ∈ RN×3 can be found by solving the following
linear system.

Dr = Ar Cr (20)

2) Divergence-free Radial Basis Functions: Matrix-valued
RBFs can be used to represent vector fields with physical
properties such as zero divergence or curl [28]. NB. there is
no known matrix-valued kernel that has both properties, so
we focus on divergence-free kernels, since it is a property
of all magnetic fields. A divergence-free matrix-valued RBF
Φ(x) ∈ R3×3 can be obtained from a scalar kernel by using
the following operation

Φ(x) = (−∇2 I3 +∇∇T ) φ(x) (21)

The expression of the interpolant is similar to the scalar case

b(p) =

N∑
i=1

Φ(||p− ri||) ci (22)

The coefficients are also found by solving a linear system
(20). In this case, Ar ∈ RN×3×3×N is a tensor with four
dimensions and is contracted with Cr ∈ RN×3 over the third
and fourth dimensions to obtain Dr ∈ RN×3. We refer to
the two matrix-valued methods as Divergence-free RBF with
Gaussian Kernel (RBF-G-DF) and Divergence-free RBF with
Multiquadric Kernel (RBF-MQ-DF).

C. Results on Synthetic Data

To evaluate and compare the different proposed magnetic
field interpolation methods, we used synthetic data that was
obtained from an existing eMNS model. We did so because
it allowed us to easily generate large quantities of physically-
consistent magnetic field and gradient data from an eMNS
without resorting to simulations or measured data, and because
we were concerned with the interpolation of general free-space
magnetic fields rather than accurately modeling the magnetic
field generation of a particular eMNS.

1) Dataset: The data was generated using a MPEM model
[23] of the CardioMag using a set of 100 randomly-generated
electromagnet current vectors on regular position grids of
varying size. The workspace consisted of a cube of size 20 cm.
For sake of brevity, we denote a grid of size Ng as a grid of
size Ng×Ng×Ng . For evaluation, we used data on a grid of
size Ng = 16.

2) Performance Metrics: The following metrics were used
for evaluating magnetic field prediction accuracy. We denote
a dataset of size M with scalar prediction x ∈ RM and
corresponding observations y ∈ RM . For vector data such as
3D fields, scalar metrics are evaluated component-wise unless
specified otherwise. The Root Mean Square Error (RMSE) is

RMSE(x,y) =

√√√√ 1

M

M∑
i=1

(xi − yi)2 (23)

We also include a Normalized Root Mean Square Error (N-
RMSE) where the RMSE is normalized by the range of the
observations. This is useful for making comparisons between
datasets where the range of the data is different.

N-RMSE(x,y) = RMSE(x,y) / (max
i

y −min
i

y) (24)

The Mean Absolute Error (MAE) is

MAE(x,y) =
1

M

M∑
i=1

|xi − yi| (25)

and corresponding Normalized Mean Absolute Error (N-
MAE) is

N-MAE(x,y) = MAE(x,y) / (max
i

y −min
i

y) (26)

The RMSE is easily affected by variability in the data, with
larger errors contributing more to the combined error than
small errors. It is therefore more sensitive to outliers and is
always higher than the MAE [29]. The MAE in contrast gives
less weight to outliers and is our preferred metric.

We also sometimes report the coefficient of determination
(R2)

R2(x,y) = 1−
∑M
i=1(xi − yi)2∑M
i=1(yi − ȳ)2

(27)

where ȳ is the mean of all observations. The R2 describes
the “goodness of fit,” and how well a model’s predictions
approximate the real data. Values closer to 1 indicate a strong
performance while low values indicate a poor performance.

3) Choosing RBF Shape Parameters: The performance
of an RBF interpolant depends on the value of its shape
parameter ε. Due to the well-known “uncertainty relation,”
there is a trade-off between the numerical stability of (20)
and the interpolation performance [30]. The optimal value of
the shape parameter depends on the set of interpolation points
and the interpolant kernel. We evaluated the effect of the shape
parameter on the mean N-RMSE across all components and
data points using the previously described dataset. We also
recorded the condition number λc = cond(Ar). An example is
shown in Fig. 2. According the the literature, the optimal shape
parameter often lies close to the limits of machine precision
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[30]. An option is to use a safe value of ε at the cost of a loss
in performance. For regular grids and positions normalized to
vary between 0 and 1, our results on the CardioMag suggest
using values on the order of ε = 1 for the RBF-MQ kernels,
ε = 2.5 for RBF-G-3D and ε = 4 for RBF-G-DF for grid
sizes below Ng = 8. A better option is to perform leave-one-
out cross validation in order to estimate the optimal shape
parameter [31] for a given dataset.
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Fig. 2. Left: Illustration of the uncertainty relation between the shape
parameter and the interpolation performance for RBF-MQ-3D with Ng = 5.
The condition number is also shown as the red line. Right: Comparison of
optimal shape parameters for different grid sizes for the different RBF kernels.
Note that for both plots, the position values were normalized using min-max
scaling to lie between 0 and 1.

4) Comparison of Field Interpolation Performance: We
directly compared all methods. For the RBF methods, we
used optimized shape parameters for the dataset positions.
We performed the measurements with increasing grid sizes
between 3 and 6. The average N-MAE results are shown
in Fig. 3. The scalar metrics reported were averaged over
all components and all positions in the dataset. The numeric
values for grid size Ng = 5 are reported in Table I.

For all methods, there is a natural increase in performance
with an increase in the grid size. Our results suggest that
using grid sizes of at least Ng = 4 are preferable in the
defined workspace of the CardioMag, since they resulted
in interpolation errors of below 1% in the N-MAE for all
methods. Overall the best performing methods were RBF-G-
3D and SPL-3D, both exceeding all other methods on almost
all of the field and gradient metrics shown in Fig. 3 and
Table I. Both methods are unconstrained and have nonlocal
support. We also found that the divergence-free versions of
the RBF methods always performed worse than their scalar-
valued counterparts, owing possibly to a worse numerical
conditioning in solving (20). Amongst the different RBF
kernels, the Gaussian kernel performed better for scalar valued
kernels, while the multiquadric kernel performed better in the
divergence-free matrix valued kernel.

While for RBF, physically-constrained methods performed
worse, that was not the case with the tricubic methods. TRI-
LPL consistently outperformed TRI-3D, showing that the con-
straints imposed by the curl-free expression, and constraints
on the Laplacian at the voxel corners, both served to improve
the interpolation performance. Overall we found that increased
support did not necessarily lead to better performance, par-
ticularly at lower Ng values. This is particularly the case at

Ng = 3 where TRI-3D and TRI-LPL fared well compared to
RBF-G-3D and SPL-3D. At all grid values, the local TRI-LPL
method outperformed the nonlocal SPL-LPL, RBF-G-DF, and
RBF-MQ-DF methods.

5) Computing Magnetic Field Gradients: Magnetic gra-
dient information is necessary for estimating the magnetic
forces that act on magnetic agents in magnetic navigation.
Due to the difficulty in accurately measuring magnetic field
gradients, gradients are often estimated from interpolated field
values rather than direct interpolation of measured or simulated
gradient values. The gradient is usually represented by the 3×3
gradient matrix ∇b.

∇b(x, y, z) =
[
∂b
∂x

∂b
∂y

∂b
∂z

]
(28)

Note that because ∇ · b = 0, the gradient has 8 independent
parameters since tr(∇b) = 0. In free-space where ∇×b = 0,
the gradient matrix is symmetric and the gradient has five
independent parameters. In that case one can replace (28) with
the following vector

G5 =
[
∂bx

∂x
∂bx

∂y
bx

∂z
∂by

∂y
∂by

∂z

]T
(29)

Gaussian and multiquadric RBF kernels both have the ad-
vantage of being C∞ smooth, and therefore all derivatives
of interpolants are continuous. In contrast, polynomial in-
terpolants including tricubic and B-spline interpolation have
limited continuity. Tricubic interpolation has C1 continuity
[25] and therefore TRI-3D has continuous gradients, while
TRI-LPL does not, since the interpolant must be differentiated
twice to obtain magnetic field gradients. B-spline interpolants
of order d have at best Cd−1 continuity, and the continuity at
a given knot is Cd−k where k is the multiplicity of that knot.

We measured the gradient interpolation performance as in
III-C4 and report the results in Fig. 3 and Table I. Note that
the performance metrics were averaged across all evaluation
positions and the nine components of the gradient matrix.
Similarly to the field results, the best performing interpolants
were again RBF-G-3D and SPL-3D.

6) Physical Considerations: We computed the divergence
and curl on the evaluation grid, and compared the values
predicted by the interpolants. The mean of the absolute value
of divergence over all evaluation positions, and the mean of
the curl magnitude at all positions is shown in Fig. 4 and in
Table I. For methods that are naturally divergence-free, namely
RBF-G-DF and RBF-MQ-DF, or curl-free namely TRI-LPL,
the quantities are naturally zero. The divergence and curl for
SPL-LPL are also negligible, showing that the constraints in
(16) are successful at minimizing the curl and divergence
throughout the entire workspace. This is, however, at a cost
in interpolation accuracy of the gradients, as can be seen by
comparing the N-MAE of SPL-LPL and SPL-3D in Table I.
When physical properties are not enforced, unsurprisingly the
best performing methods RBF-G-3D, RBF-MQ-3D, and SPL-
3D also yield lower average field divergences and curls, since
they are better able to approximate magnetic field gradients.

7) Computational Complexity: While methods with global
support such as RBFs benefit from generally better interpo-
lation performance, they are associated with a higher com-



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AS A REGULAR PAPER 8

TABLE I
FIELD AND GRADIENT INTERPOLATION PERFORMANCE RESULTS WITH Ng = 5

RBF-G-3D RBF-G-DF RBF-MQ-3D RBF-MQ-DF SPL-3D SPL-LPL TRI-3D TRI-LPL

Field

MAE (mT) 0.1 0.6 0.2 0.4 0.1 0.7 0.3 0.1
N-MAE (%) 0.1 0.3 0.1 0.2 0.1 0.4 0.2 0.1
RMSE (mT) 0.2 0.9 0.4 0.6 0.2 1.2 0.5 0.3
N-RMSE (%) 0.1 0.5 0.2 0.3 0.1 0.6 0.3 0.2
R2 1.000 0.999 1.000 0.999 1.000 0.998 1.000 1.000

Gradient

MAE (mT/m) 5.3 25.3 11.9 17.8 5.2 24.0 18.9 10.7
N-MAE (%) 0.4 1.9 1.0 1.4 0.4 1.9 1.5 0.9
RMSE (mT/m) 14.0 41.2 23.9 30.6 14.2 43.1 40.7 25.9
N-RMSE (%) 1.2 3.2 1.9 2.4 1.2 3.5 3.2 2.0
R2 0.997 0.974 0.992 0.985 0.996 0.973 0.980 0.991
|∇ · b| (mT/m) 9.6 0.0 24.1 0.0 10.0 0.0 38.7 29.3
||∇ × b|| (mT/m) 14.5 105.0 32.3 71.9 14.1 0.0 57.6 0.0
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Fig. 3. Interpolation field performance comparison for all methods at increasing grid sizes

putational cost. One can distinguish the cost of setting up
the interpolation and computing coefficients from the cost of
computing the interpolant. In the former case, computational
complexity is less of an issue in real-time control applications
since it can generally be done offline. It can be a bottleneck,
nonetheless, if interpolation is used to upsample a magnetic
field that may come from real-time measurements, or from the
output of a model yielding predictions at discrete locations.
For N data locations, the setup cost of 3D RBF methods
is O(N3) and for large N , there can be numerical issues
associated with calculating the coefficients. The interpolation
cost is then O(N). B-spline methods generally afford from
more favorable complexity over RBFs because they have more
compact support and therefore sparsities in the linear algebra
computations in both the set-up and interpolation. For B-spline
methods of order d, the setup complexity is O(d3N3), where
N is the total number of points in the grid. The interpolation
cost is O(d2N) [32]. For tricubic methods, the setup cost is
O(N) and the interpolation cost is a constant, since each voxel
can be considered independently from its neighbors.

The accuracy of interpolation methods can be greatly im-
proved by increasing the grid size. Nevertheless, we have
found that relatively small grid sizes Ng < 8 are needed
to interpolate magnetic fields with high accuracy in the Car-
dioMag, and all methods can be computed fast on modern
computing hardware. In that light, we recommend using the

best performing method available while disregarding compu-
tational cost. Nevertheless, in applications with finer grids,
where the interpolation coefficients can not be precomputed,
when upsampling a magnetic field in real-time for example,
computationally favorable methods like TRI-LPL may be
preferred.

IV. MODELING ELECTROMAGNET DRIVEN MAGNETIC
FIELDS

We now consider the more general nonlinear magnetic
model in (1). For systems that exhibit a linear relationship
between electromagnet currents and core magnetization, a
simple matrix relation (2) can be used to combine the effects of
multiple electromagnets. In certain systems, particularly those
with large ferromagnetic cores and high current densities, as
is the case for clinical scale systems such as the CardioMag,
the magnetization response to electromagnet current is far
from linear, since the ferromagnetic material comprising the
electromagnets exhibits magnetic saturation.

A. Dataset Description

We measured magnetic field data using a 3D array of 119
Hall-effect magnetic sensors placed in the workspace of the
CardioMag. The dataset contains 3, 590 distinct vectors of
electromagnet currents and magnetic field readings from all
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sensors. More information on the dataset can be found in our
previous work [24]. We randomly split the data into training
and testing datasets with a 9:1 ratio. The dataset contains
current levels of varying intensity. In Fig. 5, we show the
distribution of maximum absolute values in each vector of
electromagnet current.

B. Methods

1) Multipole Electromagnet Model (MPEM): We trained a
MPEM model of order 2 (dipole) on a subset of the previously
mentioned training dataset, as it is usually considered of suffi-
cient order to capture the fields in the workspace of an eMNS
[1]. Data was discarded if the maximum electromagnet current
exceeded 5 A, in order to ensure that the electromagnets did
not exhibit saturation and that the linearity assumption was
ensured.

2) Saturated Multipole Electromagnet Model (S-MPEM):
A natural extension to linear magnetic models is to include a
correction for the saturating electromagnets. For electromagnet
number k, a saturation function hk : R → R applies a
correction based on the core saturation, and produces the
saturated current iks = hk(ik). (2) was modified with the
following scalar saturation correction.

bs(p) =

Ne∑
k=1

bk(p) iks (30)

The saturation is minimal at low currents, so the following
parametrization was used. The slope at zero current was as-
sumed to correspond to the linear coefficients of the magnetic
field at a given position p.

bk(p) =
∂bs
∂ik

∣∣∣∣
ik=0

(31)

The saturation function of individual magnets was determined
as follows. A magnetometer was placed inside the workspace
of the CardioMag. The magnetometer measured the magnitude
bs of the magnetic field bs at a location p. The currents on a
given electromagnet k were ramped in steps of 0.5 A, while
maintaining zero current on the other electromagnets. This
was performed for each of the eight electromagnets. We tested
different sigmoid functions using least-squares fitting to model
bs(ik), the relationship between the magnetic field magnitude,
and the current ik on a single electromagnet.

We selected hs(ik) =
√
π

2βk
erf(βkik) as our preferred

representation of saturation where βk is a fitting parameter
controlling the degree of saturation, since it obtained good
results with a minimal number of parameters, resulting in the
following expression of the saturation corrected magnetic field.

bs(p) =

Ne∑
k=1

bk(p)

√
π

2βk
erf(βkik)︸ ︷︷ ︸
hk(ik)

(32)

An example of fitting the current saturation function on the
current ramp of an electromagnet is shown in Fig. 6, showing
close agreement between the measurements and the saturation
function that was estimated.

3) Artificial Neural Network (ANN): The modeling of an
eMNS can be cast as a multivariate regression problem,
which can be solved using nonlinear black-box models. In
our previous work [24], we used an ANN to represent (1).
The ANN consisted of three hidden layers of 100, 50, and 25
neurons with hyperbolic tangent activation functions at each
hidden layer.

4) Convolutional Neural Network (CNN): Accurate sim-
ulation of 3D fluid flows using Deep Fluids, a generative
CNN was shown in [33]. By modeling a vector potential, it
was also shown that divergence-free fields could be obtained.
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Fig. 6. Magnetic field data from ramping a single electromagnet k. The
measurements using a magnetometer placed in the CardioMag are shown as
the blue points. The saturation function bs(ik) = ak erf(βkik) is shown as
the solid line, where βk is the saturation parameter, ik the current, and ak
the initial slope of the magnetization curve of that electromagnet. A straight
line of equation bl = ak ik showing the linearity at low currents is shown for
reference, where bl would be the magnetic field magnitude with no saturation.
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Fig. 7. Block diagram of the generative CNN used for magnetic field
prediction

We used a modified version of the Deep Fluids architecture,
shown in Fig. 7. The network takes as input the vector of
electromagnet currents and outputs y = G(i), a discretized
vector field on a regular 3D grid of size Ng . We used Ng = 16,
since the network works with powers of two, and that level of
discretization sufficiently captures the positional variations of
the magnetic field over the entire workspace, as evidenced in
III. We used both a regular parametrization that predicted the
magnetic field directly (CNN), and a divergence-free version
(CNN-DF). For CNN, the output is the predicted magnetic
field y = b, while for CNN-DF it represents the magnetic
vector potential y = A. In that case, the magnetic field is then
obtained by taking the numerical curl of the vector potential.

The input layer is a linear fully connected layer that projects
the 8× 1 input vector i to a 4× 4× 4× 64 tensor m. Next,
a convolutional layer with kernel size 3 and stride 1 (3k1s)
was applied with 64 filters, followed by the LReLu activation
function, which adds nonlinearity to the network. Skip residual
networks were also used to increase training robustness by
reducing the effect of “vanishing gradients.” These three
elements constitute a small block, which is repeated four times.
The output is then upsampled by a degree of two, using
nearest-neighbor interpolation. This constitutes a big block,
which is repeated twice to upsample the input tensor to size
8 × 8 × 8 × 64, followed by 16 × 16 × 16 × 64. Finally an
output convolutional layer 3k1s produces the output tensor y
of size 16× 16× 16× 3.

We upsampled the CardioMag dataset to a Ng = 16 grid,
using 3D RBF interpolation. The data was normalized using
min-max normalization, such that all features varied in the
range [−1, 1]. The same 9:1 training test split was used as in
the regression models, with the same training examples being
used in all methods. The only difference was the upsampling
of the data to the Ng = 16 grid.

Deep fluids was implemented in Google’s TensorFlow li-
brary version 1.8.0 [34]. The loss function for a single training
example is

L(y) = λb‖bm − bp‖1 + λg‖∇bm −∇bp‖1 (33)

where ‖ · ‖1 represents the L1 norm, bm is a measurement
point, and bp is the magnetic field prediction output by the
network, both representing magnetic fields on a Ng = 16 grid.
λb and λg are scalar parameters that trade-off the accuracy of
the magnetic field and the accuracy of the magnetic field gra-
dient. The gradient term in the loss function serves to reduce
overfitting of the network to the magnetic field values, and
allows for a smoother output over space. The gradient values
were approximated using numerical differentiation. Since the
training data was pre-normalized, we used λb = λg = 1, as
was done in the original Deep Fluids implementation.

The networks were trained for 350 epochs, using the Adam
optimizer [35] with β1 = 0.5 and β2 = 0.99. We performed all
computations on a computer with a NVidia Titan Xp Graphics
Processing Unit (GPU) running Ubuntu 16.04. Training took
approximately one hour for both CNN and CNN-DF.

Since the performance of machine learning based methods
can depend on the quantity of data that is available, we
evaluated the effect of the training set size on performance.
Smaller sets of the training data were obtained by randomly
selecting a subset between 10% and 90% of the training data,
while evaluating the trained model on the same separate test
set. The results are shown in Fig. 8. There is a monotonic
increase in performance as more data is available for training,
attested by decreasing MAE values. With up to 30% of the
training data, corresponding to roughly 1000 current samples,
there is a noticeable increase in performance, with the MAE
being halved for both CNN and CNN-DF. The remaining 70%
of training data further reduced the MAE by a factor of two,
showing the diminishing returns of using more training data.

C. Field Prediction Performance

We compared magnetic field predictions to the measured
magnetic fields in the test dataset. We used the same metrics
as in III-C2. The metrics were averaged across all positions
and field components. For CNN and CNN-DF, the data was
upsampled to a grid of size Ng = 16 in order to match
the prediction output. The results are reported in Table II.
We additionally split the training set by current in order
to visualize each method’s ability to handle electromagnet
saturation. Data was put into a bin if the maximum absolute
value of the current across all electromagnets did not exceed
a threshold. We selected thresholds of 5, 10, 15, 20, 25, and
30 A. We evaluated the MAE separately for each bin and
report the results in Fig. 9. The performance of the linear
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Fig. 8. Performance of the CNN-based methods depending on the training
set size. The models were trained on increasingly large subsets of the initial
training set. The MAE scores were averaged across all currents and positions.

TABLE II
FIELD PREDICTION PERFORMANCE COMPARISON ACROSS ALL METHODS

MPEM S-MPEM ANN CNN-DF CNN

MAE (mT) 8.98 2.84 2.76 0.62 0.51
N-MAE (%) 2.75 0.87 0.85 0.19 0.17
RMSE (mT) 14.9 4.44 3.88 0.96 0.83
N-RMSE (%) 4.57 1.36 1.19 0.28 0.27
R2 0.809 0.983 0.987 0.997 0.998

MPEM decreased significantly with increasing current, since
it did not take into account electromagnet saturation. The
ANN showed inferior performance to the S-MPEM at lower
currents, possibly due to a bias towards higher current values
in the dataset, as can be seen in Fig. 5. The CNN and CNN-DF
showed superior performance to all methods across all current
values.

The worst performing method was unsurprisingly MPEM,
since it does not take into account the saturation of the elec-
tromagnets, which is significant in the case of the CardioMag.
Introducing a simple saturation model in the S-MPEM signif-
icantly improved the prediction performance. One should note
that the saturation model of the S-MPEM does not take into
account the interactions between the electromagnets, since it is
a scalar function of the electromagnet current. Nevertheless,

0-5 5-10 10-15 15-20 20-25 25-30 30-35
Current Level (A)

0

5

10

15

20

M
AE

 (m
T)

MPEM
S-MPEM
ANN
CNN-DF
CNN

Fig. 9. MAE depending on the maximum absolute current across all
electromagnets.

the performance gain is significant compared to the MPEM
and is close to that of the previously published ANN. The
performance even exceeds the ANN at lower current values,
while it is slightly worse at higher current ranges, where the
interactions between electromagnets are most significant.

The ANN already improved the prediction performance by
a factor of 3.3x over the linear MPEM when comparing the
average MAE. In comparison, the newly introduced CNNs
perform significantly better than the current state-of-the-art,
with factor of improvement up to 5.4x over the ANN. This
is testament to the power of the large neural architectures of
“deep learning” for modeling complex physical phenomena
including magnetic fields. NB. CNN-DF performed slightly
worse than CNN, again suggesting that physical constraints
do not improve prediction performance, given uncertainty in
the dataset, due to variations between magnetic sensors, mea-
surement noise, positional errors, or time-dependent variations.
Nevertheless, it remains a method that combines performance
nearly matching the CNN, with the guarantee that predicted
fields are divergence-free.

D. Computing Gradients

Gradients in the MPEM and S-MPEM have analytical
expressions. For the ANN, gradients can be computed using
automatic differentiation, which is available in most neural-
network programming frameworks since it is inherent to the
backpropagation algorithm, which optimizes the parameters
of the network. For the CNN, positions do not appear as
quantities in the regression problem, and gradients can not be
obtained directly. One can however resort to an interpolation
method such as RBF-G-3D to convert the discretized field to a
continuous function of position, and compute the gradients as
discussed in III-C5. In contrast to III-C5, proper evaluation of
gradient predictions is not possible since local gradient mea-
surements were not available, and estimations using numeric
differentiation of adjacent magnetic field measurements would
be too inaccurate.

E. Prediction Speed

It is difficult to perform a rigorous and fair benchmarking of
the CNN, ANN, and MPEM models, since they use different
computational paradigms and run on different hardware. The
CNN models used in this work contain 1.36 million floating
point parameters, which is significantly higher than the number
of parameters in MPEM, where the number is in the hundreds.
Nevertheless CNNs can be trained and queried rapidly on GPU
hardware. Our tests showed that an entire Ng = 16 field map
could be computed in 4.37 ms on average. For comparison, a
single computation of the MPEM at a single position took
6.85 ms on average, and 665 µs for the ANN method. For
applications where having the whole magnetic field map is
useful, the computational benefit of CNNs is clear. Moreover,
for applications where the field must be computed at a single
position, there does not appear to be a significant performance
penalty.
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V. CONCLUSION

Accurate modeling of the magnetic fields generated by
MNSs is a fundamental task for magnetic navigation in
robotics. We estimate that a field prediction accuracy on
the order of 0.3 mT would be required for mm position
tracking of devices inside a clinical-scale system like the
CardioMag. Several methods were compared for generating
continuous expressions of magnetic fields from measurements
using interpolation. For eMNSs with several large electro-
magnets, as can be expected in clinical applications, the
nonlinear magnetization of the electromagnets and interactions
between electromagnets render the magnetic field prediction
task challenging. In our previous attempts [24], we introduced
the use of ANNs for nonlinear prediction of the magnetic fields
generated by a large-scale eMNS. In this work, we introduced
two new methods for predicting these magnetic fields. The
S-MPEM is a simple addition to current linear models while
exhibiting similar performance to the ANNs. We reported the
first use of deep-learning methods for modeling eMNSs with
significant improvement in accuracy over the ANNs. Using a
CNN, we achieved a MAE of 0.5 mT, which is on the order of
the aforementioned 0.3 mT requirement for position tracking.

APPENDIX
INVERTING EMNS MODELS

Backward models relate a desired magnetic field, magnetic
field gradient, or combination thereof to a controlled param-
eter, and are therefore crucial in robotics applications. In the
case of a linear magnetic model, there exists is a closed form
inverse map to (3). If there are more than three electromagnets
and (3) is underdetermined, one may express the solution that
minimizes the power consumption of the eMNS by solving

min
i

iT i

s.t. Am i = bd
(34)

where bd ∈ R3 is a desired magnetic field value at position p
and i ∈ RNe is the vector electromagnet currents. The solution
id is

id = A†m bd (35)

where A†m denotes the Moore-Penrose pseudoinverse of Am.
For the saturated linear models such as the S-MPEM intro-
duced in IV-B2, the backward map is straightforward, provided
that an inverse saturation function h−1k (y) exists, as is the case
for most sigmoid functions. The inverse of (30) is

ĩ = A†m bd (36)

id =
[
h1
−1(̃i1) · · · hNe

−1(̃iNe
)
]T

(37)

Such expressions are convenient, since they can be computed
in closed-form independent of the type of linear model.
Note that if the electromagnets all have the same electrical
resistance and the same saturation, this also minimizes the
power consumption of the eMNS. For the more general
nonlinear magnetic model and for other types of constraints,
the backward model generally does not have a closed-form

expression. In such cases one may pose the inversion problem
as a constrained nonlinear optimization

min
i
‖g(p, i)− bd‖2

s.t. h(i) = 0
f(i) ≤ 0

(38)

where h(i) and f(i) represent equality and inequality con-
straints on the current, respectively. Since the generative CNNs
predict a discretized map of the magnetic field (see IV-B4), an
additional interpolation step may be required to invert desired
fields at arbitrary positions, but the inversion problem can also
be solved using iterative optimization.

Solving for a set of currents that achieves a desired magnetic
field while minimizing the power consumption of the eMNS.
This can be performed with an unconstrained nonlinear solver
such as Ceres [36] using the following L2 regularized mini-
mization

min
i
‖g(p, i)− bd‖2 + λ iT i (39)

where λ ∈ R is a small number.
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