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a b s t r a c t

We propose a data-driven model to predict the short-term fatigue Damage Equivalent Loads (DEL) on a
wake-affected wind turbine based on wind field inflow sensors and/or loads sensors deployed on an
adjacent up-wind wind turbine. Gaussian Process Regression (GPR) with Bayesian hyperparameters
calibration is proposed to obtain a surrogate from input random variables to output DELs in the blades
and towers of the up-wind and wake-affected wind turbines. A sensitivity analysis based on the
hyperparameters of the GPR and Kullback-Leibler divergence is conducted to assess the effect of different
input on the obtained DELs. We provide qualitative recommendations for a minimal set of necessary and
sufficient input random variables to minimize the error in the DEL predictions on the wake-affected wind
turbine. Extensive simulations are performed comprising different random variables, including wind
speed, turbulence intensity, shear exponent and inflow horizontal skewness. Furthermore, we include
random variables related to the blades lift and drag coefficients with direct impact on the rotor aero-
dynamic induction, which governs the evolution and transport of the meandering wake. In addition,
different spacing between the wind turbines and W€ohler exponents for calculation of DELs are
considered. The maximum prediction normalized mean squared error, obtained in the tower base DELs
in the fore-aft direction of the wake affected wind turbine, is less than 4%. In the case of the blade root
DELs, the overall prediction error is less than 1%. The proposed scheme promotes utilization of sparse
structural monitoring (loads) measurements for improving diagnostics on wake-affected turbines.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The load effects and degradation of structural components of
wind turbines (WTs) do not uniformly evolve across a wind farm
due to, largely, wake effects and variability in the inflow conditions
(and waves for offshore wind farms [27]). The assessment of fatigue
damage accumulation on assumption of availability of direct load
effects measurements on all main structural components across all
wind turbines within awind farm is not realistic. The assumption of
availability of high-fidelity aero-servo-elastic simulators of the
investigated wind turbines coupled to site-specific inflowandwake
models is convenient, but often not borne out of the actual reality
experienced by wind farm owners and operators. At best, the
designer/manufacturer of the wind turbine might make a single
allah).
d the publication.
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comprehensive one-off set of output load effects of such wind farm
simulations available to the owner/operator of the wind farm.

A further and, from the view of this paper, perhaps more
important hindrance lies in the precise estimation of structural
response signals that are typically not available in the standard data
emanating from the Supervisory Control and Data Acquisition
(SCADA) monitoring systems embedded on wind turbines. A
number of works therefore attempt condition monitoring on the
basis of SCADA availability [28,50]. However, when structural
monitoring information becomes available [19], then this can be
exploited as a more direct proxy to diagnose sudden damage [8], or
to further accurately assess the remaining useful lifetime of a wind
turbine in a given wind farm [18,21,36,47]. We therefore posit that
considerable improvements to the operation, maintenance and
prediction of remaining useful life of a wind turbine can be
accomplished by delivering access to transparent, simple, yet
powerful and interpretable data-driven predictive models. Such
models could be trained, tuned and updated via (fairly) easily
accessible and cheap structural response observations from a
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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Nomenclature

a Wind shear exponent
E Expected value of a random variable
V Variance of a random variable
D Rotor diameter
J Inflow horizontal skewness
s Turbulence
CD Aerodynamic drag coefficient
CL Aerodynamic lift coefficient
DEL Damage Equivalent Load
EOP Environmental Operating Points
GPR Gaussian Process Regression
mB Wh€oler exponent for blade (composites)
mT Wh€oler exponent for tower (welded steel)
ML Machine Learning
NMSE Normalized Mean Squared Error
RV Random Variable
Ti Turbulence intensity
U Mean wind speed
WT Wind Turbine
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limited number of appropriately selected wind turbines in a given
wind farm [34].

The work presented herein focuses on the effects induced by
wakes on the Damage Equivalent Loads (DELs) on structural com-
ponents of WTs. The fatigue load variation within an offshore wind
farm is primarily a product of wake-induced flow disturbances [45].
The form and severity of the wake-induced turbulence and deficit
depend on multiple factors, which are in this work grouped into
three classes:(a) ambient conditions (wind speed, ambient turbu-
lence, atmospheric stability, wave height, and others); (b) wind
turbine operational regime (rotor thrust, rotational speed, and
power set point); and (c) relative position of the wake source(s)
with respect to the disturbed turbine. Recent literature has
attempted to tackle the fatigue variability issue, by delivering
predictive frameworks that capitalize on availability of SCADA data.
The approaches in delivering such predictive models may be
distinguished in terms of two main categories, namely the physics-
based and data-driven classes.

Initiating from a physics-based approach, research in Ref. [13]
and in similar works [40,44] exploits a surrogate approach, relying
on Polynomial Chaos Expansions (PCE) and Artificial Neural net-
works (ANN), trained on pre-simulated load scenarios, to predict
the fatigue load variation on WTs for a wind farm with arbitrary
layout under wake effects. ANNs are shown to outperform PCE in
terms of prediction accuracy and computational speed [43], albeit
being prone to overfitting, while further require significantly more
data for achieving acceptable performance. Both methods allow for
obtaining analytical derivatives, which is a useful trait in optimi-
zation and sensitivity analysis. In Ref. [12] the performance of five
surrogate models is assessed by comparing site-specific lifetime
fatigue load predictions at 10 sites using an aeroelastic model of an
individual DTU 10 MW reference wind turbine. The compared
methods include PCE, quadratic response surface, universal Kriging,
importance sampling, and nearest-neighbor interpolation. The
authors argue that PCE-based (and Kriging) models may sometimes
have a practical advantage over ANNs, due to the “white-box”
features e such as being able to track separate contributions to
variance (and uncertainty). Research in Ref. [17] proposed a pro-
cedure for producing a lifetime fatigue load variation map within
an offshore wind farm. Factors such as 10-min average free wind
540
speed, free wind direction, ambient turbulence, farm layout and
wake effects, wave height, peak period, and alignment with the
wind were considered. The procedure relies on direct aero-elastic
simulations of the whole wind farm including wake effects using
the DWM model. A similar approach was adopted in the work of
Tagliatti [46]. This mapping is not directly extendable for use with
continuous and long-term structural health monitoring data
(SHM).

In a purely data-driven scheme, which does not take aeroelastic
analyses into account, Papatheou et al. [37] focus on power pre-
diction for the Lillgrund wind farm [2] for the purpose of condition
monitoring and fault detection. They adopt both ANNs and
Gaussian Processes (GPs) for producing individual and population-
based power curves. They then attempt prediction of the power
produced on individual WTs based on measurements extracted
from other turbines in the farm. A comparison between neural
networks and GPs reveals no significant difference in terms of
precision, but showcases the inherent ability of the GPs to produce
probabilistic bounds. Woo et al. [49] propose a Multi-Tasks Con-
volutional Long Short-Term Memory Network approach to simul-
taneously predict the energy output and structural load from the
target wind turbine, while modeling the spatio-temporal structure
of the input wind flow. The work is verified on simulations from a
stand-alone NREL-5MW onshore reference wind turbine. The pre-
dictions are delivered in a short-term horizon, i.e., few seconds
ahead. In both [37,49] wake effects are not considered. Wake is
tackled in Ref. [35], where a trained Variational Autoencoder (VAE)
is exploited to map the high dimensional correlated stochastic
variables over the wind-farm, such as power production and wind
speed, to a parametric probability distribution of much lower
dimensionality, with the ultimate goal of condition monitoring.

In amethod that attempts to fuse physics-based simulators with
data, in what concerns the training of predictive ML models,
Dimitrov et al. [14] propose to use a combination of limited SCADA
based measurements and wind turbine/farm simulations. An arti-
ficial intelligence framework is trained to forecast the future per-
formance of thewind turbine and the fatigue life consumption of its
components. If SCADA measurements, such as measured power
production, wind speed and rotor speed, are available, the load
mapping can be realized by training a data-driven regressionmodel
using e.g. artificial neural networks (ANN). In the absence of actual
loads data, an aeroelastic model of the turbine can be used to
generate a synthetic data set to serve for training. A comparison of
the normalized damage equivalent blade root flap moments be-
tween measurements and simulations shows a discrepancy of the
order of 10%� 15% for some of the operating wind speeds. Park &
Park [38] present an attempt to fuse data with engineering prin-
ciples via a physics-induced graph neural network (PGNN) model
able to estimate the power outputs of all wind turbines in any
layout under any wind conditions. An engineering wake interaction
model serves as a basis function, which effectively imposes physics-
induced bias for modelling the interaction among wind turbines
into the network structure. To clearly understand the role of the
physics-induced weight function, the authors compare the PGNN
performances to a purely data-induced approach, termed data-
induced GNN (DGNN). When a target turbine in a wind farm ex-
periences more complex wake interaction, the DGNN tends to
overestimate power generations. A drawback of the proposed
method is the inability to produce probabilistic output.

The overview of existing literature reveals that, on the one hand,
deep learning (DL) neural network based methods (Recurrent,
Convolution, GraphNets, Auto-encoders, etc.) are suited to the
problem at hand, but require special understanding and tuning of
the network layers to reach adequate predictive results. Moreover,
these often require large training datasets in order to avoid over-
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fitting. Despite significant advancements in this field, DL methods
remain black-box in their very nature and comprehensive inter-
pretable results remain difficult (for now). A number of surrogate
approaches are proposed but are focused on offering an emulator of
the load responses across wind turbines in a wind farm based on
pre-compiled aeroelastic simulations. A lack is noted with respect
to comprehensive efforts for predicting wake-induced load effects
on WTs. An important goal would be to predict the loads on un-
measured wake-affected WTs via direct input loads and inflow
measurements extracted fromwake-freewind turbines in the same
farm. This problem is particularly relevant in a realistic SHM setting
for wind farms, since an efficient monitoring scheme, should
involve carefully planned and, to the degree possible, sparse
structural measurements.

In this work, we propose adoption of classical Gaussian process
Regression (GPR) with Bayesian learning of hyper-parameters. We
argue that GPR offers a number of advantages over deep learning,
or some of the further surrogate modelling approaches, in that it
delivers an elegant mathematical formulation and exact inference,
it offers a flexible encoding of linear constraints, it has proven
robust in small low dimensional input spaces and scalar univariate
(non-time series) output [6,7]. Perhaps the major advantage lies in
the built-in feature for uncertainty quantification that enables
effective policies for data acquisition and experimental designs,
including Bayesian approaches for hyperparameters optimization.
On the downside, some limitations, which ought to be acknowl-
edged include limited scalability to large data-sets and high di-
mensions, as well as limited expressivity and robustness to prior
assumptions, especially in relation to the choice of kernels. The
former consideration does not pose an issue for the analysis pre-
sented herein, as we do not deal with output time series datasets,
but instead treat aggregated features (such as DELs). Furthermore,
our input dimensional space is generally limited to few essential
inflow and turbine response Random Variables (RVs). Regarding
the second consideration on expressivity, the choice of GPR kernels
is indeed a source of uncertainty. This can be tackled when kernels
are introduced as a RV, as done in Ref. [3], or alternatively Kernel
selection could be performed using Approximate Bayesian
Computation, as done in Ref. [5].

In order to verify the proposed GP-based approach, an explor-
atory and therefore simplified analysis is adopted in this work,
featuring an essential setup comprised of two interacting wind
turbines; a first WT situated up-wind, with the second positioned
directly in the wake of the first. This simple setup allows us to
illustrate our findings on utilization of the proposed framework by
means of easily interpretable results. Furthermore, we hypothesise
that this setup is suitable for a significant number of small to me-
dium onshore wind farms, such as for instance the layout shown in
Fig. 1. The wind rose indicates a narrow band of wind direction
between North-North-East and North-North-West, resulting in
single meandering wake field amongst the turbines, which is the
setup adopted in this paper.

The main contributions of this work pertain to i) identification
of dynamic differences between up-wind and wake-affected tur-
bines; ii) development of GPR-based framework to estimate short-
term fatigue DELs for the wake-affected wind turbine, based off
loads and inflow measurements on the up-wind turbine, and iii)
recommendations for a minimal set of necessary and sufficient
input random variables to predict the short-term fatigue damage
equivalent loads (DEL) on a wake-affected wind turbine. In
appropriately accounting for inherent uncertainties, beyond inflow
and fatigue related uncertainties, in our design of experiments we
inject direct aerodynamic uncertainties on the lift and drag co-
efficients of the airfoil sections along the span of the blade, thus
541
affecting the rotor induction and consequently the dynamic wake
evolution and transport.

The remainder of this article is organized as follows. In Section 2
we describe the uncertainties and simulations setups. In section 3
we provide an interpretation of the main output from the numer-
ical simulations especially with respect to the effects of the un-
certainties (Random Variables) in relation to the short-term DEL of
various structural components on the wind turbines. In section 4
we elaborate on the framework of virtual fatigue diagnostics of
the wake-affected wind turbine via Gaussian Process Regression
(GPR) model, and present the ensuing results in section 5.We finish
with concluding discussions and outlook in section 6.
2. Uncertainty modeling and wake simulations setup

In this section, we detail our uncertainty framework and the
wake meandering aero-elastic simulations setup. Three categories
of RVs are considered, namely: wind inflow RVs, aerodynamic RVs
and fatigue RVs.
2.1. Inflow RVs and their stochastic models

The variation in the structural dynamic response of wind tur-
bines is significantly dependent on the turbulent inflow wind field
conditions, including themeanwind speed, turbulence, wind shear,
and inflow skewness. In accounting for these influences, we
introduce the following RVs in the simulations setup: Mean wind
speed, U, turbulence intensity, Ti, wind shear, a, and horizontal
inflow skewness, J.

The mean wind speed follows a Weibull distribution
U � W BL ðAU ; KUÞ, truncated to ½4 � 25�m=s, with parameters
specified as follows:

EðUÞ ¼ 8:5; where AU ¼ 2� EðUÞffiffiffi
p

p

KU ¼ 2:0
(1)

The conditional dependence between the turbulence sU and the
mean wind speed U is defined in the Normal Turbulence Model
described in the wind turbine design standard [1]. Here, we elect to
use a reference ambient turbulence intensity Iref ¼ :16 (the ex-
pected value of the turbulence intensity at 15 m/s is called Iref ). This
dependency is given by the local statistical moments of
sU � L N ðmsU

; s2sU
Þ as:

EðsU jUÞ ¼ Iref ð0:75uþ 3:8Þ
VðsU jUÞ ¼

�
1:4Iref

�2 (2)

The wind profile above ground level is expressed using the
power law relationship, which defines the mean wind speed U at
height Z above ground as a function of the meanwind speed at hub
height Uh measured at hub height Zh as reference:

U
Uh

¼
�
Z
Zh

�a

(3)

where a is a constant called the shear exponent. The conditional
dependence between the wind shear exponent a � N ðma; s2aÞ and
the mean wind speed U is given by Ref. [15]:



Fig. 1. Layout of an onshore wind farm in complex terrain, located in central Greece.
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EðajUÞ ¼ 0:088ðlnðuÞ � 1Þ

VðajUÞ ¼
�
1
u

�2 (4)

We define a custom conditional dependence between the inflow
horizontal skewnessJ and themeanwind speedU, truncated to ½ �
11;11�deg:, J � N ðmJ;s2JÞ:

EðJjUÞ ¼ lnðuÞ � 3

VðJjUÞ ¼
�
15
u

�2 (5)
2.2. Aerodynamic RVs and their stochastic models

A well know result from Blade Element Moment theory (BEM)
links the aerodynamic lift (CL) and drag (CD) coefficients to axial (a)
and tangential (a0) induction factors as follows:

a
1� a

¼ s0ðCLcos4þ CDsin4Þ
4sin2

4

a0

1� a
¼ s0ðCLsin4� CDcos4Þ

4lrsin
2
4

(6)

where s0 is the rotor solidity, F is the angle of the incoming relative
wind with the rotor plane, tip speed ratio l ¼ ur

V0
, u is the rotor

speed, r is the radial distance from the rotor center, and V0 is the
542
freestream wind speed. The distribution of aerodynamic axial and
tangential induction over the rotor essentially governs the evolu-
tion and transport of the wake [26]. Hence, our approach to
affecting aerodynamic induction is by introducing a stochastic
model of the lift and drag coefficients curves in BEM. Several
sources of uncertainties affect the lift and drag coefficients with
direct impact on aerodynamic induction. These uncertainties are
associated with assessment of airfoil characteristics in wind tun-
nels, uncertainties due to 3D flow correction, uncertainties stem-
ming from surface roughness, uncertainties related to the blade
geometric distortions inmanufacturing and handling, uncertainties
related to the blade geometric distortions when deflected under
load, uncertainties due to the effects of Reynolds number, un-
certainties associated with extending airfoil aerodynamic charac-
teristics to post stall, and finally uncertainties stemming from the
validation of airfoil data by field full scale measurements. It is not
possible to quantify the joint distribution of all these RVs and, as a
result, a simplified approach is chosen via a stochastic model, as
proposed in Ref. [4]. The stochastic model consists in parameter-

izing the lift coefficient curve by the slope in the linear range vCL
va , the

point indicating the start of the trailing edge separation ðAoATES;

CL;TESÞ, the point of maximum lift ðAoAmax;CL;maxÞ and the point
where the stall recovery is initiated ðAoASR;CL;SRÞ. The drag coeffi-
cient is several orders of magnitude smaller than the lift coefficient
for small angles of attack (below stall) and, thus, its impact is
limited. Furthermore, it generally displays minor variability
regardless of the airfoil type, geometry, or thickness to chord ratio.
Consequently, the drag coefficient is only parameterized by the
point where minimum and maximum drag coefficient occurs at
AoA ¼ 0+ and AoA ¼ ±90+, respectively. According to Ref. [4] the
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probabilistic distributions, expected values, coefficient of variations
and correlation coefficients are assigned to the aforementioned
parameters (for brevity, we do not repeat these here). Fig. 2 shows
samples of the stochastic lift and drag coefficients curves. These
perturbations result in modified CL and CD curves that maintain the
primary characteristics of the original aerodynamic polars, but
differ in both magnitude and feature location. Note that these
synthetic aerodynamic lift and drag coefficients curves are sampled
independently from the wind inflow RVs.

Furthermore, we vary the spacing between the up-wind and
wake-affected WTs, as shown in Table 1.
2.3. Sampling of the random variables

We choose to sample the wind inflow and the aerodynamic RVs
using the Sobol Quasi-Random sequences, which are designed to
generate a sample that is uniformly distributed over the unit hy-
percube, i.e., as uniformly as possible over the multi-dimensional
input space [42]. In total we sample 2048 Joint samples of the
wind inflow RVs, as shown in Fig. 3. For a given spacing between
the up-wind and wake-affected WTs, a sample of U, sU , a and J,
combined with a sample of stochastic CL and CD, we generate a
realization of an inflow turbulent wind field time series as input to
the FAST-DWM aero-servo-elastic environment to simulate the
corresponding aero-elastic response of thewind turbines structure.
2.4. Fatigue RVs and their stochastic models

In this paper, we represent fatigue using the short-term fatigue
damage equivalent load (DEL) concept. The advantage of the DEL is
that it reduces a long history of random loads to one number, which
makes it convenient to compare various load and operating sce-
narios [48]. In our probabilistic calculations the exponent of the
SeN curvem (Wh€oler exponent) is considered to be a RV. To get an
impression of the influence of the Wh€oler exponent we compute
the DEL based on a range of discrete Wh€oler exponents for a given
material as shown in Table 2. We assume that the blades compos-
itesWh€oler exponent varies between 9 and 13. We assume that the
tower structural/welded steel Wh€oler exponent varies between 3
and 4. The short-term fatigue damage equivalent loads (DEL) follow
from the computed 10-min output time series response of the wind
turbine:
Fig. 2. Samples of the stochastic lift and drag coeffi
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DEL¼
�

1
Neq

X
i

niðDSiÞm
�1=m

(7)

where i corresponds to the number of a load cycle bin, DSi is the
cycle’s load range value (including the Goodman correction), ni
designates the number of load cycles for that bin,m is the inverse of
the material Wh€oler slope and Neq is the reference equivalent
number of load cycles, which is calculated taking as reference fre-
quency of 1Hz. The cycles in a given time series are computed using
the well-known Rainflow Counting Method. For further explana-
tions, chapter 2 from Ref. [10] can be consulted.
2.5. Dynamic wake meandering and aero-servo-elastic simulations
setup

Our dynamic wake meandering and aero-servo-elastic simula-
tions setup is based on the coupled DWM [33] and FAST numerical
models [22]. The simulations in DWM-FAST considered two refer-
ence NREL three-bladed up-wind, horizontal-axis WT [23] with
126m rotor diameter, 5MW rated power and hub height of 90m. The
rated power of 5MW occurs at a wind speed of 11:4m=s and a rotor
speed of 12:1RPM. We list some of themore important properties of
the simulated wind turbine in Table 3. In the DWM setup, the two
turbines are aligned as shown in Fig. 4.

FAST is a wind-turbine-specific time domain aeroelastic com-
puter simulator that employs a combined modal and multibody
dynamics formulation, adopting limited degrees of freedom (DOF).
Since FAST models flexible elements using a modal representation,
the reliability of this representation depends on the generation of
accurate mode shapes by the engineer, which are then used as
input into FAST. Large structural elements, such as blades and tower
models, are characterized by properties such as stiffness and mass
per unit length to represent the flexibility characteristics. FAST
models the turbine using 24 DOF, including two blade-flap modes
and one blade-edge mode per blade, two fore-aft and two side-to-
side tower bending modes, nacelle yaw, the generator azimuth
angle and the compliance in the drive train between the generator
and hub/rotor. The aerodynamic model is based on the Unsteady
Blade Element Momentum theory, including skew inflow, dynamic
stall and generalized dynamic wake [11]. The Blade aerodynamic
profiles’ properties are provided as a-priori input and are used as
lookup tables or for interpolation. The stochastic input wind field
uses the Kaimal turbulence model [24]. Aeroelastic simulations of
cients CL and CD curves of airfoil NACA 64-618.



Table 1
Spacing between wind turbines.

Random variable Description Probability Distribution Parameters

D Spacing in multiples of rotor diameters between turbines Discrete D ¼ ½3;5;8; 11�

Fig. 3. Samples from the joint wind inflow random variables.

Table 2
Fatigue related random variables.

Random variable Description Probability Distribution Parameters

mT Wh€oler exponent for tower (welded steel) Discrete mT ¼ ½3;4�
mB Wh€oler exponent for blades (composites) Discrete mB ¼ ½9;10;11;12;13�

Table 3
Properties of the NREL 5-MW reference wind turbine.

Number of blades 3

Rotor diameter 126m
Hub height 90m
Rated power 5MW
Cut-in wind speed 3m=s
Cut-out wind speed 25m=s
Control Variable Speed, Collective Pitch
Variable speed from cut-in to cut-out wind speed
Variable pitch from cut-in to cut-out wind speed
Rated wind speed 11:4m=s
Cut-in and rated RPM 6:9� 12:1RPM
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WTs are stochastic largely due to the stochastic nature of the input
wind field; It is thus a common practice to generate a significant
number of stochastic simulations for various operating and
544
environmental conditions in order to cover variability on aero-
elastic fatigue and extreme load analysis. Wind turbines located in
wind farms experience a wind field that is modified compared to
the undisturbed ambient wind field. A wake is characterized by a
decrease in the mean wind speed and increase in wind speed
fluctuations (turbulence) behind a turbine. The downstream
transport of a wake follows a stochastic pattern known as wake
meandering (oscillations). It appears as an intermittent phenome-
non, where winds at down-wind positions may be undisturbed for
part of the time, but interrupted by episodes of intense turbulence
and reduced mean speed as the wake hits the observation point
[30]. Thus, a correct wind turbine load prediction requires the in-
clusion of the downstream evolution of wake deficit, the increased
small-scale wake turbulence and the wake meandering. In this
paper we choose to use the DWM wake model coupled to FAST
following the NREL implementation. This coupling is well docu-
mented in Ref. [20]. The dynamic wake meander model coupled



Fig. 4. Schematic of up-wind and wake-affected wind turbines with a single meandering wake field.
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into FAST is used to model the up-wind (Turbine 1 in Fig. 4) wind
turbine’s wake effect on the structural dynamics of the down-wind
wake-affected turbine (Turbine 2 in Fig. 4). While FAST is simu-
lating an up-wind turbine, DWM calculates the wake deficit ve-
locity, the meandered wake center positions with respect to time,
and the added turbulence intensity due to the presence of the wake
mixing. While a down-wind wake-affected turbine is being simu-
lated in FAST, the inflow wind to this wake-affected turbine is
modified based on the wake modelling results of its up-wind tur-
bines. Thus, the effect of the wakes can be reflected on the wake-
affected turbine according to its immediate wake [20]. It should
be noted that the wake-induced load effects are obtained under the
assumptions underlying the DWMmodel, i. e, that the wake deficit
behaves as a passive tracer following the transverse wind fluctua-
tions and that the ambient turbulence causing the meandering can
be described by a Gaussian random turbulence model, such as the
Mann model. Consequently, the FAST and DWM models might
suffer from model-form deficiencies and lack of inclusion of some
physics, which should not distract from the main objective and
thrust of this work. Our simulations setup is limited to only two
turbines, with flow down a row. We would expect to see more
differences in larger wind farms because of blockage and deep array
effects.

2.6. Retained sensorial output of aero-servo-elastic simulations

Out of the hundreds of sensorial output available from our
simulations, we elect to retain only four for the sake of interpret-
ability of the results and brevity of the publication, as shown in
Table 4. These include the blade root and the tower base bending
moments. Our presumption is to retain the sensorial output of
aero-servo-elastic simulations that could, in the real-world, be
directly deployed with little technical and economic cost if not
Table 4
Retained sensorial output of aero-servo-elastic simulations.

Sensor Description

TwrBsMyt Tower base fore-aft bending moment
TwrBsMxt Tower base side-side bending moment
RootMyb1 Blade 1 root flapwise bending moment
RootMxb1 Blade 1 root edgewise bending moment
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already available in today’s structural healthmonitoring systems on
WTs in the field using, for instance, fiber-based strain sensing.

3. Interpreting the simulations output

In this section we attempt to provide an interpretation of the
numerical simulations, specifically with respect to the elementary
effects of the inflow RVs on the short-term DEL of the blades and
tower base in relation to the wake formation and transport. A
qualitative analysis is here offered with the purpose of informing
the subsequent GPR and sensitivity analysis.

3.1. Effect of mean wind speed U and turbulence sU

In Fig. 5 the up-wind wind turbine is operating below rated
power, which corresponds to a high thrust coefficient and high
induction, thus leading into a significant wake deficit (lower wind
speed in the wake) and an increase in turbulence. When the
spacing is set to 3� 5D the tower base fore-aft DEL of the wake-
affected wind turbine is higher compared to DEL of the up-wind
wind turbine. The high thrust coefficient and high induction from
the up-wind wind turbine lead in reduction of the mean wind
speed and an increase in the turbulence intensity of the transported
wake towards the down-wind turbine. A wake-affected wind tur-
bine experiences increased turbulence on the basis of two main
contributions. Firstly, small-scale turbulence due the breakdown of
tip vortices and turbulence generated by the shear layer in the
edges of the wake and secondly from the meandering of the wake
deficit relative to the position of the wake-affected rotor [26]. This
increase in turbulence explains why the short-term tower base
fore-aft DEL (welded steel) of the wake-affected wind turbine is
higher compared to DEL of the up-wind wind turbine. This does not
hold true for WT separation between 8� 11D, where turbulence
and wind speed recovers, nor does it hold true for the blade root
flap moment DEL. This implies a more pronounced effect of mean
wind speed and the large scale effects of wake meandering on the
composite blades versus turbulence for the welded steel tower. For
spacing above 8D the difference in DEL for both upwind and wake-
affected wind turbine are marginal for both blades and tower
structures. For wind speeds that lie above rated >11m=s and for a
spacing of 3� 5D, the upwind turbine tower base fore-aft DEL start
to exceed that of the wake-affected wind turbine (figures omitted



Fig. 5. Exceedence probabilities for tower base fore-aft bending moment DEL and blade root flapwise bending moment DEL conditional on u2½3 � 10�m=s.
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for brevity). This implies that the small scale mixing in the wake
dominates the large scale effects of wake meandering, with the
mean wind speed rendered the main driver of DEL. This may be
attributed to less efficient transport of the wake meandering, as a
result of lower thrust coefficient and induction on the rotor at
higher wind speeds. It is further noted that for increasing mean
wind speed, the gap in the blade root flapwise DEL reduces grad-
ually between the upwind and wake affected wind turbine (figures
omitted for brevity).
3.2. Effect of wind shear, a

Wind shear induces a periodic higher induction effect on one
part of the rotor, which results in loss of symmetry for the wake
deficit. This implies that elevated wind shear reduces the overall
efficiency of the rotor, while creating a less severe wake in the
process. This is particularly true for wind speeds above rated. This
effect is well captured in Fig. 6 (c). The data is filtered to u2
½15�25�m=s above rated wind speed, where rotor induction is low
to start with. The shear exponent is varied in ranges corresponding
to a2½0:05 � 0:11�, a2½0:13�0:18� and a2½0:2 � 0:31�. When the
shear exponent is low and in the narrow range a2 ½0:05�0:11� the
blade root flapwise bending moment DEL of the wake-affected
wind turbine is shown to exceed the DEL of the up-wind wind
turbine. When the shear exponent increases, the up-wind turbine
exhibits higher DELwith respect to thewake-affectedwind turbine.
For wind speeds below rated, i.e., those corresponding to high
thrust and high induction, as shown in Fig. 6a, inefficiencies due to
wind shear start to appear in the tail of the exceedence probabili-
ties (corresponding to Uz10m=s) for the blade root flapwise
bending moment DEL of the wake-affected WT, with a reversal
resulting in higher loads for a2½0:05�0:11� compared to higher
546
shear exponent ranges.

3.3. Effect of horizontal inflow skewness J

In Fig. 7a the up-wind wind turbine is operating below rated
power, resulting in significant wake deficit, i.e., lower wind speed in
thewake, and increase in turbulence.When the spacing amounts to
3� 5D and the horizontal inflow skewness is negative J2½ �
10 � 1�, the tower base side-side bending moment DEL of the
wake-affected WT is higher compared to DEL of the up-wind WT.
However, this difference in Fig. 7b vanishes once the horizontal
inflow skewness becomes positive J2½1 10�. A similar effect of
the horizontal inflow skewness is also observed on the blade root
edgewise bending moment DEL as shown in Fig. 7c and d.

3.4. Recommendations

This work aims to establish a data-driven model to predict the
loads in the wake-affected WT, relying on loads measurements
extracted from adjacent WTs, operating on availability of sparse
structural measurements across the farm. From a structural health
monitoring and life cycle assessment point of view, the following
guidelines/recommendations can be suggested for inflow RVs:

� We recommend acquiring wind inflow turbulence data with
high accuracy and precision, primarily for wind speeds below
rated, when the aim lies in yielding a confident predictor/sur-
rogate of the tower base fore-aft DEL loads of the wake-affected
wind turbine.

� We recommend acquiring wind inflow shear data with high
accuracy and precision, primarily for wind speeds correspond-
ing to maximum thrust (i.e. Uz10m=s) and above rated wind



Fig. 6. Exceedence probabilities for blade root flapwise bending moment DEL conditional on increasing shear exponent ranges, and spacing 3� 5D.

Fig. 7. Exceedence probabilities for tower base side-side bending moment DEL and blade root edgewise bending moment DEL, conditional on u2½3 � 10�m= s, and spacing 3� 5D.
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speed (i.e. U � >14m=s), when the aim lies in yielding a
confident predictor/surrogate of blade flap DEL loads of the
wake-affected wind turbine.

� We recommend acquiring horizontal inflow skewness data with
high accuracy and precision, primarily for wind speeds below
maximum thrust (i.e. U � <10m=s), when the aim lies in
yielding a confident predictor/surrogate of the tower base side-
side and blade root edgewise DEL loads of the wake-affected
wind turbine.
4. Methodological framework

This section describes the generalities of the GPR method that is
later used for prediction of DELs. Whilst to some extent the pre-
sented methodology follows the classical GPR framework, here we
introduce a Bayesian hyperparameter identification method aided
by the Metropolis-Hastings algorithm to capture the GPR modeling
uncertainty. In addition, we postulate an approach based on the
GPR hyperparameters to assess the sensitivity of the regressed
variable to individual inputs. Finally, we propose a method based
on the Kullback-Leibler divergence to compare between the DEL
response surfaces observed in up-wind and wake-affected WTs
using the obtained GPRs as surrogates.
4.1. Gaussian Processes

Consider the function f ðxÞ2R of the input vector x2 Rn. The
function f ð ,Þ is referred to as a Gaussian Process (GP) if its value,
when sampled on a finite number of inputs X ¼ ½ x1 x2 / xN �,
follows the multivariate normal distribution N ðmðXÞ;KðX;XÞÞ, with
mean mðXÞ ¼ Eff ðXÞg and covariance KðX; XÞ ¼ Efðf ðXÞ �
mðXÞÞ ,ðf ðXÞ � mðXÞÞug, where f ðXÞ ¼ ½ f ðx1Þ f ðx2Þ / f ðxNÞ �T
[39, Sec. 2.2]. In turn, the mean and covariance are of the form:

mðXÞ¼

2
664
mðx1Þ
mðx2Þ

«
mðxNÞ

3
775KðX;XÞ¼

2
664
kðx1;x1Þ kðx1;x2Þ / kðx1;xNÞ
kðx2;x1Þ kðx2;x2Þ / kðx2;xNÞ

« « 1 «
kðxN ;x1Þ kðxN;x2Þ / kðxN;xNÞ

3
775
(8)

where kðxi; xjÞ is the respective covariance function, a symmetric
positive definite function which measures the similarity between
the pair of input RVs xi and xj. The GP is determined by the mean
and covariance functions. Hereafter, the mean function is assumed
as zero, while the covariance kernel is selected as the squared
exponential, which is defined as follows [39, pp. 83e84]:

kðx; x0Þ ¼ s2f ,exp

 
� 1
2

Xn
i¼1

[2i , ðxi � xi
0Þ2
!

(9)

where s2f :¼ kðx; xÞ is the function variance, and [2i , i ¼ 1;…;n are

scaling factors for each one of the input dimensions. The scaling
factors determine the smoothness of the function on the respective
input dimension: a very large value indicates large differences be-
tween adjacent points, thus leading to non-smooth behavior; a very
small value indicates significant similarity between remote points,
and suggests that there are no significant variations on the signal.
As will be explained later, these values are adjusted to the observed
data, while the obtained scaling factors can be used to determine
the influence of the input dimensions on the function outcomes.
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4.2. Gaussian Process regression

In a Gaussian Process Regression (GPR), the covariance kernel is
utilized to associate the function values observed on a set of
training points, X ¼ ½ x1 x2 / xN �, to a test input vector x*, and
thus provide an estimate of the function value on the test point. To
this end, it is first assumed that a set of noisy values of the function
are observed yi, i ¼ 1;…;N, where yi ¼ f ðxiÞ þwi with wi a zero-
mean normally and independently distributed process, with vari-
ance s2w. The noisy function values, grouped in the vector

y :¼ ½ y1 y2 / yN �T , and the function value on the test input
f ðx*Þ are jointly normally distributed variables, as follows [39, Sec.
2.2]:

�
f ðx*Þ
y

�
� N

 �
0

0N�1

�
;

"
kðx*; x*Þ kðx*;XÞ
kðX; x*Þ KðX;XÞ þ s2wIN

#!
(10)

where kðx*;XÞ ¼ kT ðX; x*Þ ¼ ½ kðx*; x1Þ / kðx*; xNÞ � is the cross-
covariance between the test and the training input vectors. Then,
using the properties of the multivariate normal distribution, the
distribution of the function on the test input conditioned on the
training noisy function values y is also Gaussian, as follows [39, Sec.
2.2]:

pðf ðx*Þjy;XÞ¼N ðf ðx*Þ;Qðx*ÞÞ (11)

with conditional mean f ðx*Þ and variance Qðx*Þ, which are calcu-
lated as follows:

f ðx*Þ¼k*,
�
K þ s2wIN

��1
y (12a)

Qðx*Þ¼ k* �k* ,
�
K þ s2wIN

��1
,kT

* (12b)

and where k* :¼ kðx*;x*Þ, k* :¼ kðx*;XÞ, and K :¼ KðX;XÞ.

4.3. Bayesian approach for adjustment of the hyperparameters of
the GPR

The performance of the GPR is defined by the kernel parameters,
comprised by s2f , [

2
i for i ¼ 1;…;n, and s2w, which are jointly referred

to as the hyperparameters P :¼ fs2w;s2f ; [21;/; [2ng. Often, the GPR

hyperparameters are optimized via maximization of the marginal
likelihood, defined as follows [39, Sec. 2.3]:

ln pðy j X;P Þ¼ �1
2
yT
�
K þ s2wIN

��1
y�1

2

				K þs2wIN

				� N
2
ln2p

(13)

This is a non-linear optimization problem, which is typically
solved by gradient-based non-linear optimization methods with
the help of the partial derivatives of the marginal likelihood with
respect to each one of the hyperparameters. This optimization re-
sults in point estimates of the hyperparameters.

Contrariwise, Bayesian methods aim at determining a distribu-
tion for the hyperparameters given the available data, based on
some original assumptions on the hyperparameter distribution.
Therefore, Bayesian methods aim at calculating the hyper-
parameter posterior distribution [41, pp. 12e13]:

pðP jy;XÞ¼pðyjX;P Þ ,pðP Þ,p�1ðyjXÞ (14)

where pðP Þ is the prior hyperparameter distribution, which
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encapsulates any a-priori knowledge of the hyperparameter dis-
tribution, and pðyjXÞ comprises the model evidence, defined as
follows:

pðyjXÞ : ¼
ð
U

pðyjX;P Þ ,pðP Þ dP (15)

where U represents the space where P is defined.
In the case of GPR, an analytical expression for the hyper-

parameter posterior is not possible, due to the non-linear interac-
tion of the hyperparameters with the likelihood. Instead, Markov
ChainMonte Carlo (MCMC)methods can be used to obtain a sample
of the hyperparameter posterior [41, Ch. 6e7]. In the analysis pre-
sented below, the Metropolis-Hastings algorithm is used for this
purpose. Further details on the Metropolis-Hastings sampling
method can be found [41, Ch. 7].

4.4. Sensitivity analysis based on the GPR input scaling factors

The input scaling factors [2i associated with the squared expo-
nential kernel function defined in Eq. (9) determine the smooth-
ness of the kernel on the respective input dimension xi. Large
positive values of [2i indicate a very rough behavior of the function
on the dimension xi [39, pp. 21e22]. This happens because the
correlation between values on xi and xi þ Dx, with Dx a small
increment, drops very fast. Otherwise, values of [2i close to zero
indicate that the function is essentially flat on the dimension xi [39,
pp. 21e22]. In this case, the increment Dx required to produce a
significant change in the correlation needs to be very large. This
property can be used as a way to evaluate the sensitivity of a
function approximated by a GPR to each one of the input di-
mensions. This is shown below.

The squared exponential kernel in Eq. (9) can be factorized as
follows:

kðx; x0Þ ¼ s2f ,
Yn
i¼1

exp
�
� 1
2
[2i ,ðxi � xi

0Þ2
�

¼ s2f ,
Yn
i¼1

kiðxi; xi0Þ

kiðxi; xi0Þ :¼ exp
�
� 1
2
[2i ,ðxi � xi

0Þ2
�

(16)

and thus the contribution of input xi to the kernel can be decoupled.
The value Dxr is here defined as the increment in xi required to
decrease by a value r the maximum covariance value. More pre-
cisely Dxr2Rþ is the value such that:

kiðxi; xi þDxrÞ¼ kiðxi; xiÞ � r (17)

with 0< r≪1 a small positive number. Applying the definition of
kiðxi; xi 0Þ and using the fact that kiðxi;xiÞ ¼ 1, then:

exp
�
� 1
2
[2i ,Dx

2
r

�
¼1� r (18)

and then, solving for Dxr, the following value is obtained:

Dxr¼ [�1
i ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2,lnð1� rÞ

q
(19)

The value Dxr can be interpreted as the distance required to
move along the i-th input to decrease the correlation (similarity)
between the function values f ðxiÞ and f ðxi þDxrÞ by the value r. If
the value ofDxr is larger than the range of the data on the i-th input,
then the desired change in the correlation is not feasible. With r
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close to zero, this result would be an indicator of flatness of the
function in the direction xi. In turn, this indicates that the function
f ðxÞ is insensitive to the input xi.

Note that although Dxr can just be interpreted as the inverse of
[i, and both variables hold the same information, Dxr facilitates
understanding of the GPR sensitivity towards a certain input.
4.5. Kullback-Leibler divergence for comparison of GPRs

Consider two GPRs represented as M a :¼ fya;Xa;P ag and M b :

¼ fyb;Xb;P bg, with different training data and hyperparameters.
Then, it is necessary to evaluate whether or not the prediction of
GPRs M a and M b at a test point x* is the same. Considering that the
GPR prediction at the test point follows a Gaussian distribution, it is
possible to use the Kullback-Leibler (KL) divergence to compare if
both predictive distributions are the same [9, p. 57]. The KL diver-
gence for a Gaussian distribution takes the form:

DKLðx*jM a;M bÞ¼
1
2

 
Qaðx*Þ
Qbðx*Þ

þ ðf aðx*Þ � f bðx*ÞÞ2
Qbðx*Þ

þ ln
Qbðx*Þ
Qaðx*Þ�1

!

(20)

where f jðx*Þ andQjðx*Þ, with j ¼ fa;bg, are the GPR predictivemean
and variance calculated with Eq. (12) for each corresponding
model.

The global KL divergence of the predictions obtained with both
GPRs can be obtained by integrating over the whole domain
X 4Rn, as follows:

DKLðM a;M bÞ¼
ð
X

DKLðxjM a;M bÞ dx (21)

while a marginalized KL divergence for input xi, i ¼ 1;…;n can
be obtained by integrating with respect to the remaining inputs, as
follows:

DKLðxijM a;M bÞ¼
ð

X �i

DKLðxjM a;M bÞ dx�i (22)

where x�i represents the input vector after eliminating input xi, and
X �i is its respective space. Evaluation of the integrals in Eqns. (21)
and (22) is not analytically tractable, and instead, numerical ap-
proximations are required. The construction of the global and
marginalized KL divergences in Eqns. (21) and (22) is based on the
assumption that there are no cross-correlations in the predictive
distribution, or more precisely,

Efðf ðx*1Þ� f ðx*1ÞÞ , ðf ðx*2Þ� f ðx*2ÞÞ j y;Xg¼0 (23)

for x*1sx*2. Although this assumption does not comply with the
definition of the GP, it largely simplifies the calculation of the global
and marginalized KL divergences.
5. Results

5.1. Prediction and analysis of DELs from local EOPs

In this initial analysis, GPR models are built to predict the DELs
of a single WT component based on locally measured EOPs. This
corresponds to the ideal case when all the WTs are fully instru-
mented and a complete set of wind field parameters are available
on each wind turbine. The objective of this initial analysis is to
determine which input variables mostly affect the DELs and to
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determine if there are significant differences between the loads in
the up-wind and wake-affected WTs at different structural
components.

Accordingly, in the present case the input vector x2 R4 is made
up by the 10 min averages of the wind speed U :¼ x1, turbulence
intensity s :¼ x2, shear exponent a :¼ x3, and inflow horizontal
skewness J :¼ x4 of the respective WT. In turn, the output y cor-
responds to the DELs calculated from the respective 10 min loads
measured either in the root of one of the blades in the edgewise or
flapwise directions, or in the tower base in the fore-aft or side-to-
side directions. For the construction of the regression, the range
of the input variables is normalized within the interval ½0;1�, while
the values of the DELs are scaled down by a factor of 104. This
normalization is used to enhance the numerical stability of the
models. Individual GPRs are built for the DELs obtained on the up-
wind and wake-affected WTs at different spacing configurations
and with different W€ohler exponents.

The GPR-driven numerical analysis methodology of the DWM-
FAST simulations is summarized in Fig. 8. First, the GPR hyper-
parameters are identified based on the Bayesian optimization
method facilitated by Metropolis-Hastings sampling. The obtained
hyperparameter distribution is then used to perform sensitivity
analysis, while expected values are employed to perform pre-
dictions used for construction of response surfaces and comparison
of DELs in up-wind and wake-affected WTs.
5.1.1. Hyperparameter identification
The Bayesian inference approach based on the Metropolis-

Hastings (MH) sampling algorithm described in Section 4.3, is
used to estimate of the posterior hyperparameter distribution of
the GPR predictor based on the available coupled DWM-FAST
simulations. To this end, 180 input-output pairs are randomly
selected to calculate the GPR’s marginal likelihood (Eq. (13)) within
the MH sampling loop, while the remaining ones are used for
posterior model validation. To ensure even distribution of the
training samples, a sampling approach based on clustering of the
complete set of inputs is performed. More precisely, an agglomer-
ative hierarchical clustering tree based on Ward’s linkage on the
Euclidean distance is applied. Subsequently, 180 clusters are built
based on the obtained linkage and a single input and its respective
output are randomly extracted from each one of them.

Independent log-normal distributions are defined for each one
of the hyperparameters. Similarly, independent log-normal distri-
butions are selected as proposal distributions. The parameters of
Fig. 8. Flowchart summarizing the GPR-based numerical
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these distributions are summarized in Table 5.
Using the previously described set-up, a total of 10 000 samples

are simulated with the MH algorithm. Fig. 9 displays the distribu-
tion of the GPR hyperparameters based on the sample of the
hyperparameter posterior drawn with the MH algorithm, obtained
with the data from the up-wind WT tower edgewise and flapwise
DELs. It is first noted that although the initial values and prior
distributions are similar for all the GPR hyperparameters, the
posterior distributions converge to different intervals. The distri-
butions for the noise variance, kernel variance and the first three
scale parameters ([21 : wind speed; [22 : turbulence intensity; [23:

shear exponent) are quite narrow, [24 : horizontal inflow skewness,
has wider distributions in both edgewise and flapwise DELs. The
latter seems to indicate that the horizontal inflow skewness has a
reduced effect in the DELs. Further analysis based on the obtained
GRPs is provided in the sequel.

5.1.2. Analysis of DELs based on the obtained GPRs

5.1.2.1. Response surfaces. After estimation of the hyperparameter
posterior, it is possible to calculate response surfaces of the DEL for
any values in the input space. For instance, 1D slices displaying the
DEL as a function of single input variables while the remaining ones
are kept fixed can be calculated with the help of the obtained GPR.
Figs. 10 and 11 display slices of the DEL in the blade eedgewise and
flapwise directione extracted from the GPR with Maximum A Pos-
teriori (MAP) hyperparameter estimates on the up-wind and down-
wind WTs. On each frame, the remaining inputs are set to the
sample median values, while the spacing between WTs is 11 rotor
diameters, and the W€ohler exponent is m ¼ 9. In both cases, the
GPR predictive mean is similar in both the up-wind and wake-
affected WTs, while a significant decrement is found in the DEL of
the wake-affected WT at high wind speeds. On the other hand, the
confidence intervals are well confined around the mid-part of the
input range, while the dispersion increases towards the boundaries
of the input ranges. The increased dispersion is observed due to the
reduced number of points towards the boundaries.

Fig. 12 shows the GPR predictive mean of the DEL in the blade
flapwise direction as a function of wind speed and turbulence in-
tensity (a andJ set to their median values, d ¼ 11, andm ¼ 9). DEL
estimates with variance higher than 50 times the minimum pre-
dictive variance are censored in the displayed surfaces. As observed
in Fig. 11, the DEL in the blade flapwise direction increases as the
wind speed and the turbulence intensity do, with the wind speed
making the maximum effect. The training data points, displayed as
analysis methodology of the DWM-FAST simulations.



Table 5
Settings of the Metropolis-Hastings algorithm for sampling of the GPR hyperparameter posterior.

Hyperparameter Prior Proposal

Kernel variance
s2f

lns2f � N ð� 1;102Þ lns2f

			lnðs2f Þðs2f Þ� � N ðlnðs2f Þk�1;0:4Þ

Kernel scaling
[2i ; i ¼ 1;…;4

ln[2i � N ð0;102Þ ln[2i
			lnð[2i Þð[2i Þ� � N ðlnð[2i Þ�;0:4Þ

Noise variance
s2w

lns2w � N ð� 1;102Þ lns2w
		lnðs2wÞðs2wÞ� � N ðlnðs2wÞ�;0:4Þ

Number of Monte-Carlo samples 104. The symbols ðs2f Þ� , ð[2i Þ� , and ðs2wÞ� indicate the values of the same quantity drawn in the previous iteration

of the MH sampling algorithm.

Fig. 9. Boxplots displaying the distribution of the GPR hyperparameters sampled with the MH algorithm for the DELs in the blade edgewise and flapwise directions. W€ohler
exponent: 9.

Fig. 10. Slices of the DEL predictive mean and 99% confidence intervals (CI) based on a GPR with MAP hyperparameter estimates obtained on the blade in the edgewise direction in
the up-wind and down-wind WTs. Other inputs are kept at their training set sample median values indicated on each frame. WT spacing: 11 diameters; W€ohler exponent: 9.
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red dots in the surface, coincide with the GPR predictive mean, but
also are confined to the non-censored area, which indicates that the
predictive variance is well-bounded around the area spanned by
the training points. In practice, DEL estimates in points outside the
non-censored area can be deemed as unreliable, while at the same
551
time have a low probability of occurrence, according to the joint
distribution of U and s.
5.1.2.2. Error analysis. The predictive performance of the GPR is
measured in terms of the Normalized Mean Squared Error (NMSE)



Fig. 11. Slices of the DEL predictive mean and 99% confidence intervals (CI) based on a GPR with MAP hyperparameter estimates obtained on the blade in the flapwise direction in
the up-wind and down-wind WTs. Other inputs are kept at their training set sample median values indicated on each frame. WT spacing: 11 diameters; W€ohler exponent: 9.

Fig. 12. Surface displaying the GPR predictive mean of the DEL in the blade flapwise
direction as a function of wind speed and turbulence intensity, with the shear expo-
nent and horizontal inflow skewness set on their median values. W€ohler exponent: 9.
Red dots indicate input/output data points.
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calculated on the validation set. The NMSE is defined as:

NMSE¼
PNval

i¼1ðyi � f ðxiÞÞ2PNval
i¼1y

2
i

(24)

where Nval is the number of samples in the validation set. Fig. 13
displays the NMSE obtained on the prediction of the DELs in the
blade and tower on the up-wind and wake-affected WTs, with the
wake-affectedWT located at 11 rotor diameters. The error figures in
all the cases are quite low, indicating a fair predictability in all cases,
while the performance in the up-wind and wake-affected WTs is
similar. In the worst case, corresponding to the tower side-to-side
loads, the NMSE is under 3%. On the other hand, the best case,
corresponding to the blade flapwise loads, the NMSE is about two
levels of magnitude lower than that in the tower side-to-side loads.
For the blade loads, the NMSE appears to mildly increase with the
W€ohler exponent. This tendency is followed by both up-wind and
down-wind WTs.

Fig. 14 displays the NMSE as a function of the spacing between
WTs for the blade and tower loads in the wake-affected WT. The
overall error performance does not evidence large variations at
different spacing to the values observed in Fig. 13. Moreover, the
magnitude order of the NMSE is the same as that found in the
previous analysis.

5.1.3. Sensitivity analysis based on the GPR hyperparameters
A sensitivity analysis based on the increment method, described

in Section 4.4, is performed on the hyperparameter sample ob-
tained from the GPR hyperparameter posterior with the MH sam-
pling algorithm. Fig.15 displays the log-increments obtained for the
DELs of different components in the up-wind WT as a function of
the W€ohler exponent for a correlation reduction of r ¼ 0:001. The
top frame of Fig.15 displays the log-increments obtained in the case
of the loads in the blade edgewise direction. According to the re-
sults, the wind speed requires the lowest variation to perform a
change in the DEL, with the turbulence intensity and shear



Fig. 13. NMSE obtained on the prediction of different DELs on the up-wind and wake-affected WTs based on the GPR with MAP hyperparameters for different W€ohler exponents.
Wake-affected WT located at 11 rotor diameters. Top left: blade edgewise; top right: blade flapwise; bottom left: tower side-to-side; bottom right: tower fore-aft.

Fig. 14. Median NMSE averaged among W€ohler exponents as a function of the spacing between WTs in the wake-affected WT based on the GPR with MAP hyperparameters. Top
left: blade edgewise; top right: blade flapwise; bottom left: tower side-to-side; bottom right: tower fore-aft.
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exponent following in ranking. On the other hand, the horizontal
inflow skewness has a much lesser influence on the variation of the
DELs. Considering that the range of the variables is normalized to
the range ½0;1�, then the horizontal inflow skewness turns out to be
inconspicuous in the DELs. This result can be contrasted with the
response slices displayed in Fig. 10 for the wind turbine in the up-
wind position. In effect, the wind speed seems to have the most
complex influence in the DELs, with the turbulence intensity and
shear exponent introducing a less complex and almost linear
variation, while the horizontal inflow skewness seems to have a
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very reduced influence in the DELs. On the other hand, contrasting
the increments obtained for different W€ohler exponents, it appears
that this variable makes no difference on the sensitivity of DELs to
input variables.

A similar interpretation can be provided for the loads in the
blade flapwise direction, and in the tower side-to-side and fore-aft
directions. In the case of the blade flapwise direction and tower
fore-aft direction, the DELs are also sensitive to wind speed, tur-
bulence and shear exponent, while insensitive to the horizontal
inflow skewness. In contrast, the loads in the tower side-to-side



Fig. 15. Median and 90% CI of the log-increments found for each one of the input variables based on the GPR model hyperparameter sample as a function of the W€ohler exponent
for different components of the up-wind WT. From top to bottom: Blade edgewise loads, blade flapwise loads, tower side-to-side loads, tower fore-aft loads.

L.D. Avenda~no-Valencia, I. Abdallah and E. Chatzi Renewable Energy 170 (2021) 539e561
direction are insensitive to both the shear exponent and horizontal
inflow skewness. In all cases, theW€ohler exponent has no influence
on the sensitivity of the DELs to input variables.

With increasing wind speed, the rotor RPM increases linearly
below rated wind speed. This invariably results in increased num-
ber of fatigue load cycles affecting the blade edgewise loads (most
of which are driven by the weight of the blade), which explains the
influence of mean wind speed on blade edgewise DEL (more so
than turbulence and shear). Similarly, the mean thrust loading in-
creases with increasing mean wind speed, which directly in-
fluences the flapwise loads. This is explained by the fact that at
higherW€ohler exponents, small variations in themean loads have a
disproportionate influence on the DEL. Turbulence introduces sto-
chasticity to the load ranges, while shear introduces cyclic varia-
tions to the load ranges over one blade rotation, which explains
their influence on blade and thrust driven tower fatigue loads in the
fore-aft direction (e.g. turbulence driving low cycle fatigue which is
critical on welded steel components such as the tower). Further
conclusion is that the results show marginal sensitivity to errors in
the W€ohler exponent.

Fig. 16 provides a similar analysis, this time on the loads of the
wake-affected WT as a function of the spacing between WTs, with
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theW€ohler exponent set tom ¼ 9 in the case of the blade loads and
m ¼ 3 in the case of the tower loads. For the blade edgewise di-
rection loads, the spacing seems to bear no influence on the
sensitivity. However, it now appears that the horizontal inflow
skewness has an effect in the DELs of the wake-affected WT
measured in the blade edgewise direction. In the case of the blade
flapwise loads, the spacing between WTs seems to influence the
DELs, but not significantly. For the tower loads, the sensitivity to the
shear exponent and horizontal inflow skewness appears to vary
with the spacing between WTs. Particularly, for certain spacing the
shear exponent has an effect on the loads while for others it does
not. Finally, the effect of wind speed and turbulence intensity in the
loads appears to be stable in the wake-affected WT regardless of
the spacing to the up-wind WT.
5.1.4. Comparison of up-wind and down-wind DELs
The obtained GPRs are also used to determine the difference of

the loads in the up-wind and wake-affected WTs. Pointwise dif-
ferences can be evaluated by directly comparing the DEL pre-
dictions of the GPRs of the up-wind and down-wind WTs on a test
input point x*, simply as:



Fig. 16. Median and 90% CI of the log-increments found for each one of the input variables based on the GPR model hyperparameter sample as a function of the spacing between
WTs for different components of the wake-affected WT. From top to bottom: Blade edgewise loads, blade flapwise loads, tower side-to-side loads, tower fore-aft loads.
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Df ðx*Þ : ¼ f aðx*Þ � f bðx*Þ

where f aðx*Þ and f bðx*Þ are the GPR predictive mean of the
respective sensor in the up-wind and down-wind WTs. In this
sense, DEL differences are calculated on a grid of input parameter
values to compose hypersurfaces. Likewise, pointwise K-L di-
vergences are calculated as in Eq. (20) on a grid of input parameters
values, to construct a surface of pointwise K-L divergences. Fig. 17
shows the surfaces obtained on the case of the DELs in the blade
edgewise direction for different values of wind speed and turbu-
lence intensity, with the remaining input variables set to a fixed
value (shear exponent: 0.3; horizontal inflow skewness: 2.95�,
W€ohler exponent: 9, spacing between WTs: 11 rotor diameters).

The DEL point-wise difference shown in the left frame of Fig. 17
indicate that the predicted DELs tend to be higher in the up-wind
wind turbine on low wind speeds, while lower on higher wind
speeds. The point-wise K-L divergences shown in the right frame of
Fig. 17 demonstrate that higher differences in DEL predictions are
found on low turbulence intensity values on almost the complete
range of wind speeds. It is noted that although the point-wise
difference on low wind speeds appears to be significant, the
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increased predictive variance on that region due to a lower number
of training points makes the difference on the mean be over-
whelmed by the respective variance, and thus the corresponding K-
L divergences evaluated on the same region are not as significant.
On the contrary, larger K-L divergences are found on regions with a
larger population of training samples, which makes these results
more reliable.

The isolated effect of a single input variable on the K-L diver-
gence can be obtained by marginalizing with respect to the
remaining input variables. This is done in Fig. 18, where margin-
alized K-L divergences, according to Eq. (22), are calculated for the
wind speed, turbulence intensity, shear exponent and horizontal
inflow skewness for the DELs in the blade edgewise direction for
different spacing between WTs. Regarding to the wind speed, the
main difference appears for wind speeds between 5 and 15 m/s,
while at high wind speeds the difference appears to be less pro-
nounced. The DELs obtained on turbulence intensities around 15%
also display the largest differences. Similarly, shear exponents close
to 0.5 also introduce large difference on the DELs. Moreover, the
horizontal inflow skewness induces larger changes in the DELs as
its absolute value increases, as could be expected. The difference is
more pronounced as the spacing betweenWTs is reduced, although



Fig. 17. Point-wise comparison between the DELs calculated in the blade eedgewise directione in the up-wind and wake-affected WTs as a function of wind speed and turbulence
intensity, based on the corresponding optimal GPR models. Left frame: Point-wise DEL difference; right frame: Pointwise K-L divergence. Shear exponent: 0.3; horizontal inflow
skewness: 2.95� , W€ohler exponent: 9, spacing between WTs: 11 rotor diameters.

Fig. 18. Marginalized K-L divergences between the DELs of up-wind and wake-affected WTs based on the optimal GPRs, evaluated for the blade edgewise direction loads and for
different WT spacings. W€ohler exponent: 9.
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the highest difference is found when the spacing is 5 rotor di-
ameters. This tendency is consistent on all the input variables. In
section 3.1, we established that the DEL of the blades (composite
materials) are more affected by the mean wind speed versus tur-
bulence. When the spacing is 3 or 5 rotor diameters, the wake-
affected wind turbine experiences pronounced increase in inflow
turbulence and drop in mean wind speed. Furthermore, when the
spacing is 3 or 5 D the large scale effects of wake meandering
dominates the small scale mixing in the wake. According to
Ref. [31] wake meandering is fully developed (maximal) at around
4D downstream compared to 3D . A more developed wake
meandering induces larger loads variations on the downwind-
turbine, which possibly explains why we find the highest diver-
gence when the spacing is at 5D and not at 3D . Furthermore, the
point of “DWM model validity” is typically assumed to begin at 3
diameters, where the near-wake pressure field and swirl velocity
are close to zero as modelled by the DWMmodel [16] which might
have added some uncertainties to our loads simulations for the 3D
spacing case. Hence, strong wake meandering under convective
condition could account for the high KL divergence at 5D spacing,
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and the rapid decrease with the growth of spacing is due to the fast
recovery of the velocity deficit in the wind turbine wake.

A summary of the global K-L divergence, calculated as in Eq.
(21), for the DELs in the blade edgewise and flapwise directions and
in the tower base in the fore-aft and side-to-side directions for
different WT spacings and W€ohler exponents are provided in
Fig. 19. The tendency of the DELs on the blade edgewise direction
etop left frame, Fig.19e follows that described for themarginalized
K-L divergences in Fig. 18, namely, higher differences are found for
short WT spacings. The tendency follows on the different W€ohler
exponents with some variability. On the other hand, in the blade
flapwise direction, the DELs seem to have higher differences on
shorter spacings but also on higher, while the difference is not as
marked on the intermediate spacing values. The difference seems
to increase as the W€ohler exponent increases in value. The DELs in
the tower base fore-aft direction appear to have higher differences
on shortWT spacings, but this seems to not be the case for the DELs
in the side-to-side direction, which appear to have a less predict-
able relation to the spacing between WTs.



Fig. 19. Global K-L divergences between the DELs of up-wind and wake-affected WTs based on the GPRs on different sensors, as a function of the WT spacing and W€ohler exponent.
Top-left: blade edgewise direction; top-right: blade flapwise direction; bottom-left: tower fore-aft direction; bottom-right: tower side-to-side direction.
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5.2. Prediction of DELs in the wake-affected WT from remotely
measured variables

In this second analysis, a more realistic scenario, where a
measurements from a fully instrumented WT (here the up-wind
WT) are used to estimate the DELs in a secondary WT (the wake-
affected WT). The objective of this analysis is to assess the feasi-
bility of load prediction on a secondary WT based on measure-
ments from a fully instrumented one. To this end, different
scenarios corresponding to different input variable combinations
are considered, as summarized in Table 6. Scenario 1 corresponds to
a still idealized case, where all thewind features of the up-windWT
are available (speed, turbulence intensity, shear exponent and
horizontal inflow skewness). Scenarios 2 and 3 reflect more real-
istic cases, where a few elementary wind field properties of the up-
wind WT are available (wind speed and turbulence) along with the
loads on the blade of the same WT. Finally, scenario 4 corresponds
to the case when only loads from the up-wind WT are used to
predict loads in the wake-affectedWT. The last three scenarios may
conform to the conditions of actual wind parks, where one or a few
WTs may be fully instrumented, and the objective is then to predict
the loads from fully instrumented WTs to adjacent ones.

As in the previous analysis, independent GPRs are built for the
DELs measured on the blade root and tower base of the wake-
affected WTs at different spacings and with different W€ohler
Table 6
List of variables measured in the up-wind WT used for prediction of DELs in the
wake-affected WT for each one of the remote prediction scenarios.

Scen. Input variables (Measured only in up-wind WT)

Uup sup aup jup DELBEW DELBFW DELTFA DELTSS
1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓ ✓
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exponents. Moreover, input and output space normalization is
performed as in Sec. 5.1, while hyperparameter optimization is
carried out with the Bayesian approach based on MH sampling,
whose details are provided in Sec. 5.1.1 and in Table 5.

A comparison of the performance, in terms of the NMSE (Eq.
(24)), obtained on the prediction of DEL in the wake-affected WT
based on local and up-wind EOP measurements is presented in
Fig. 20. The performance is presented as a function of the spacing
betweenWTs with theW€ohler exponent set to 9 for the blade loads
and 3 for the tower loads. The overall predictive ability of the local
and remote prediction scenarios is quite similar in all the cases. In
the case of the blade DELs shown in Fig. 20ae(b), the best perfor-
mance is obtained in scenarios 2 and 3, which include the wind
speed and the blade loads of the up-wind WT, while the remaining
scenarios seem to follow closely. Otherwise, in the case of the tower
loads, the error performance in all the cases is roughly the same.
These results seem to indicate that it is feasible to predict the loads
in the wake-affected wind turbine based on measurements ob-
tained from an adjacent WT, although in a practical case it should
be necessary to include variables such as the wind direction into
the regression model. According to Fig. 20 the lowest load pre-
dictions NMSE of the wake-affected wind turbine generally occur
when the spacing between the two turbines is 11D . It is simply due
to the recovery of the velocity deficit and diffusion of the wake
meandering rendering equivalent the aerodynamic loading in the
upwind and wake-affected wind turbines. We observe that an
effective approach to reduce the load prediction errors on the
wake-affected wind turbines when spacing is in the range 3� 5D
is to introduce as input to the GPR predictive model some infor-
mation about the inflow (e.g. mean wind speed) in addition to in-
formation about the load condition of the up-wind WT (e.g. blade
load). The reason is that those two categories of variables are at the
basis of the wake formation and transport that will affect the loads
on the down-wind WT.

A global sensitivity analysis of all variables included in the
remote prediction scenarios, in terms of the log-increments defined



Fig. 20. Comparison of the NMSE as a function of the spacing between WTs obtained on the prediction of DELs on the down-wind WT based on local EOP measurements and
remote measurements corresponding to scenarios 1 to 4 in: (a) blade root edgewise direction, (b) blade root flapwise direction, (c) tower base fore-aft direction, (d) tower base side-
to-side direction.
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in Sec. 4.4, is performed with the aid of the MC samples of the
hyperparameter posterior obtained at each scenario. The resulting
median and 90% confidence intervals are displayed in Fig. 21 for
each one of the sensors in the blade and tower of the wake-affected
WT. The cases where error bars are not visible correspond to var-
iables not used in the respective scenario. Most notably, the dis-
tribution of the log-increments appears to coincide among the
different scenarios. The exception corresponds to the DELs of the
blade root flapwise direction, where the sensitivity to wind speed
and up-wind DELs changes as other variables are introduced in the
analysis. In general, it can be observed that the wind speed, tur-
bulence intensity and the DELs in the blade of the up-wind turbine
seem to be better predictors of the loads in the wake-affected WT.

6. Concluding discussions and outlook

We demonstrated how a GPR-based model can be built and
calibrated to effectively predict the loads on a wake affected wind
turbine either from local or remote wind field sensors and/or loads
sensors in adjacent WTs in a wind farm. The maximum prediction
error, obtained in the tower base DELs in the fore-aft direction,
results in less than 4% for the simulations investigated herein. In the
case of the blade DELs, the overall prediction error is less than 1%.
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Although simple, the test configuration allows us to explore sensor
selection (scenario) with the aim tominimize the prediction NMSEs
according to the spacing between turbines. According to Table 6
scenario 4 tends to yield the lowest NMSE of the predictions for
simultaneously the blade-root and tower base loads on the wake-
affected WT when the spacing is 11D, but returns the highest
prediction error for tower fore-aft when WT spacing is 5D. It turns
out that introducing wind inflow RVs as further input to the GPR
model (as in scenarios 2 and 3) tends to reduce the predictions
NMSE on the wake-affected WT when the spacing is 5D or less.

The sensitivity analysis carried out on the GPR hyperparameters
and the K-L divergence reveals that the wind speed and turbulence
intensity are the main drivers of the blade root and tower base
loads in a WT receiving the freestream inflow as well as in a wake
affected wind turbine (see Fig. 15). The wind shear affects the blade
loads to a lesser extent on the upwind wind turbine, while the
horizontal inflow skewness has no noticeable effects on the upwind
WT. The wind shear has an increased significance on the wake-
affected WT (see Fig. 16), while the horizontal inflow skewness
marginally affects the blade DELs in the edgewise direction and
tower side-side direction.

We stress that the estimations of the GPRmodel are trustworthy
only within the bounds of the variable space used for model



Fig. 21. Sensitivity analysis in the remote sensing scenarios in terms of the log-increments on each one of the input variables included in scenarios 1 to 4. Circles indicate the
median value and error bars indicate the 90% confidence intervals obtained from the MC sample of the posterior hyperparameter distribution in the case of: (a) blade root edgewise
direction, (b) blade root flapwise direction, (c) tower base fore-aft direction, (d) tower base side-to-side direction.
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calibration; any extrapolation is either not possible or may lead to
unpredictable/wrong results. It is therefore important to ensure
that the distributions used for the fatigue load diagnostics are not
outside the bounds of validity of the trained GPR model.

We note that we chose the average wind speed, turbulence,
wind shear and wind inflow skewness as the RVs that describe the
ambient freestream wind inflow conditions. There may be addi-
tional random variables that are equally suitable for the purpose,
such as the atmospheric stability that has a complex dependence
on the wind speed, turbulence, and wind shear. While combina-
tions of the aforementioned variables usually correspond to certain
stability conditions and can be used as a proxy, it may be more
convenient to directly include stability as a variable as demon-
strated in Refs. [25,29].

Outlook: We purposely initiate from a simulated experiment
adopting a simplified, yet educative, configuration of two wind
turbines. In next steps, we intend to look into scalability and
generalization of GPR with Bayesian learning for larger predictive
tasks in arbitrary wind farm layout, possibly harnessing recent
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progress in scalable GPs, e.g. scalable GPR algorithm, namely, kernel
interpolation for scalable structured Gaussian processes (KISS-GP)
along with massively scalable GP (MSGP) [32].

In the past the DWM model performance has been validated
against numerous measured load data sets, while in the present
study, a surrogate model-based approach is validated only against
the DWM-FAST model predictions. However, direct validation of
the performance of the proposed GPR approach against measured
loads data was not currently possible. This is an obvious potential
topic for future research, which we are actively working towards.

We elucidated how using the DELs one can quantify significant
differences in the dynamic response between WTs receiving free-
stream wind and those wake-affected WTs. These differences are
more apparent in the mid-range of wind speeds and turbulence
intensity (wind speed from 5 to 15 m/s and turbulence intensity
from 10 to 25%). This result suggests that the fatigue life on a WT
subject to freestream inflow can be quite distinct from that of a WT
operating in waked condition. Nonetheless, as wind field parame-
ters are the main drivers of short-term DELs, it is difficult to predict
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which of the cases will lead to a long-term reduced fatigue life on a
given structural component. Nonetheless, regression models such
as the GPR presented here can be used as surrogates of a WT in a
wind park and performMC simulations to estimate fatigue life. This
would be a subject of study in a future work. Furthermore, in
practice, the long term material degradation of various structural
components of the up-wind WT differs from that of the wake-
affected WT. So as time passes, the GPR model predictions will
gradually diverge from the real short-term DEL experienced by the
wake-affected wind turbine. Our GPR approach will have to be
modified in order to capture such multi-valued and time-
dependent relationships using some form of overlapping mixture
of probabilistic GPR models with recurrent model parameters
updates.

Although the WT set-up presented in this work is a rather
simplified approximation of actual layouts in a wind park, it has
provided many insights on the random variables influencing the
DELs on a wake-affected WT. This set-up also allowed for testing of
various combinations of wind field and loads sensors in the up-
wind WT as input for predicting the loads on a wake-affected
wind turbine. In an actual wind park, wind direction may also
greatly determine the DELs in awake-affectedWT. Namely, a wake-
affected WT can change from a fully-waked condition to a free-
stream condition according to the wind direction and the position
of adjacent WT. Also, the severity and aggregation of the wake(s)
can change according to the number of adjacent WTs from a spe-
cific wind direction. This case will also be considered in a future
work.

Finally, in section 3 we attempted to provide a qualitative
interpretation of the simulations results. Deploying probabilistic
deep machine learning algorithms could be one way to automati-
cally andmore systematically learn such complex relationships and
dependence structures in high dimensional spaces. These algo-
rithms however will potentially lack the interpretability of the
underlying physical process but would make up for it in inferring
functional relationships which are crucial in virtual diagnostics of
wake affected WT from adjacent WT. The consequence is the
realization that a physics-informed deep learning approaches
might be the way forward. This case is in fact an active area of
research of ours.
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