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Abstract

Safe planning problem arises in many applications including autonomous driving and explo-

ration scenarios. In this thesis, we focus on a particular case studied for emergency rescue

missions. The main challenge of such problems is the computational complexity of handling

a dynamic uncertainty, e.g., a spreading hazard. A multi-agent extension can potentially im-

prove the safety of the mission. However, it further increases the computational complexity

with the need to consider exponentially many possible task-robot combinations. To over-

come these computational issues, we propose a two-stage framework splitting the multi-robot

safe planning problem into a low-level single-agent safe planning problem and a high-level

multi-robot task allocation problem. For single-agent safe planning, we utilize an efficient

Monte-Carlo sampling-based approximation to handle the dynamic uncertainty. For the task

allocation problem, we use forward and reverse greedy heuristics to obtain approximate so-

lutions. These algorithms are equipped with provable performance bounds on the safety

of the resulting approximate solutions. Finally, we present several case studies on example

environments to compare the performance of these different algorithms.
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1 Introduction

The usage of multi-agent systems is of increasing interest in robotics [1]. In many appli-

cations, a fleet of robots has to operate cooperatively to reach a common goal, such as in robotic-

teamwork football games [2], automated guided vehicle systems in warehouses [3], surveillance

or monitoring missions [4–6] and others. Systems using multiple agents enjoy trivial advan-

tages over single-agent solutions. They can distribute tasks or workload among themselves and

reduce execution time by working in parallel. This makes multi-agent solutions capable of han-

dling problems with higher complexity, larger number of tasks, carrying out more deliveries

at a given time span, or covering larger areas in surveillance missions than their single-agent

counterparts. Multi-agent systems are also highly reliable and robust against failure, since the

system can still continue working even in case of multiple agents failing. These advantages,

however, come with an increased computational complexity which requires the usage of more

sophisticated approaches and algorithms. The challenges and the tools can vary depending on

the application. This thesis aims to extend the existing research in planning for safety-critical

rescue missions to a multi-agent framework. This requires a combined study of two fields: safe

planning and multi-agent task allocation.

The goal of safe planning is to maximize the probability of successfully executing a given

set of tasks by deriving control policies in a potentially hostile environment. The applications

include safe autonomous driving [7], exploration scenarios [8], or as in our case, emergency rescue

missions with dangerously spreading fire or toxic contamination threatening the life of survivors

[9]. This problem comes with several challenges to provide solutions in such applications. A

major challenge originates from modelling the dynamic uncertainties of the environment caused

by the evolving hazard. Many approaches either use restrictive Gaussian models [10,11] or more

general yet computationally intractable Markov models [12]. We build on the previous work

of [13] which provides a trade-off between both issues by using a Monte-Carlo sampling-based

approximation to reduce the state space required for its Markov model. Another challenge

originates from high-level decision making such as the one of ordering sequential execution

of multiple tasks. To handle both these high-level decisions and the low-level point-to-point

path planning, an extended state space definition is used in [9, 13] incorporating the execution

of tasks into the problem definition. The optimal policies are derived using the well-known

dynamic programming algorithm [14].

Multi-agent task allocation problems aim to decide which tasks should be executed by

which agents in order to maximize a collective success measure. In their general form, such set

partition problems are known to be NP-hard, hence the usage of heuristics as an approximate

solution method is an attractive option for their scalability [15]. Variants of the greedy algo-

rithm are widely-used in combinatorial optimization literature [4, 5, 16–24]. A valid allocation

constituting a partition is known to be given by the base of a matroid where the ground set

is all agent-task pairs. Our goal is then to maximize the set function mapping allocations to

some collective objective. The greedy algorithm achieves this by iteratively adding the best
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agent-task pair towards a valid allocation. Under a submodular objective function greedy en-

joys 1/2 performance guarantee [4, 16–19, 21]. The probability of successful navigation in the

emergency rescue missions is, however, non-submodular. To mitigate this issue, the concepts

of submodularity ratio and curvature were introduced, which measure how far a function is

from being submodular and supermodular, respectively. Previous works on non-submodular set

function maximization used the notion of the submodularity ratio [22,25], the curvature [24,26]

or both [20,23] to provide performance guarantees for the greedy algorithm. We build on these

studies and provided two novel performance guarantees for greedy algorithms in matroid opti-

mization. The first is on the forward greedy algorithm, improving and generalizing [16] and [22]

by the inclusion of both the submodularity ratio and curvature properties, respectively. The

second is on the reverse greedy algorithm improving and generalizing [27] by removing the strong

requirement of using the notion of total curvature, and [23] by reducing the requirement on the

cardinality of the ground set.

It is important to note alternative approaches to solve set partition problems, coinciding

with a multi-agent task allocation problem. The authors in [28] consider a set partitioning

problem, where each subset of tasks is associated with a fixed cost for agents, and the goal is

to find the optimal partitioning. This approach requires the cost of each subset to be evaluated

in advance. In our case, this can only be obtained by solving the single-agent safe planning

problem for all these subsets, which would be computationally demanding. Another approach

would be to use a bipartite graph listing all agents and tasks as vertices where the edges, each

associated with a cost, represent the assignment between them, see [29]. In our multi-agent

safe planning problem, we cannot define such costs for each task-agent pair independently, since

our objective is non-additive (in other words, non-modular). We can only define such costs for

subsets of tasks allocated to an agent. In conclusion, none of the aforementioned approaches are

applicable for our purposes.

Combining safe planning and multi-agent task allocation, our contribution is to provide

a scalable framework for the multi-robot emergency rescue scenario. The usage of multiple

agents could potentially improve success probability, the system would be able to handle more

tasks, hence more survivors could be saved with higher probability. On the high-level, task

allocation aims to allocate each survivor to a robot. According to the taxonomy in [15], this

problem would be classified as a multi-task robot, single-robot task, instantaneous assignment1

problem (MT-SR-IA). On the other hand, notice that each robot can handle multiple tasks. Task

allocation is solved via greedy algorithms. We analyze two different algorithms, the forward and

reverse greedy approaches, and compare them both in terms of their theoretical performances,

experimental performances, and computational times. In doing that, we provide two novel

performance guarantees for these greedy algorithms applied to general matroid optimization

problems. On the low-level, we derive control policies for each agent for a given subset of

tasks, while maximizing the probability of successful navigation. This low-level framework is an

efficient implementation of the ones in [9,13], where a Monte-Carlo sampling based algorithm is

1Since we allocate the tasks to the robots before execution, we have the so-called instantaneous assignment
setting.
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proposed to overcome the computational burdens of Markovian models of stochastically evolving

hazard.

We organize this thesis report as follows. Preliminaries summarize the necessary math-

ematical background for this report in Section 3. In Section 4, we introduce the two-stage

framework by formulating both the single-robot safe planning and the multi-robot task alloca-

tion problems. Next, we propose the two greedy approaches in Section 5, the forward and reverse

greedy algorithms. Finally, we show three case studies comparing algorithm performance, see

Section 6, and we then conclude the paper in Section 7.

2 Notations

Unless stated otherwise, we use the following conventions when naming variables through-

out the thesis report. We denote finite sets by block letters, their elements by lower case letters,

and families of sets by calligraphic block letters. Let X be a finite set. We use the definition

of indicator function 1x̄ : X → {0, 1} for an element x̄ ∈ X and 1X̄ : X → {0, 1} for a subset

X̄ ⊂ X. They are defined the following way

1x̄(x) =

1 if x = x̄,

0 otherwise,

1X̄(x) =

1 if x ∈ X̄,

0 otherwise.

Furthermore, let |X| denote the size of a finite set X. We use the notation ∧ for the logical ‘AND’

and ∨ for the logical ‘OR’ in mathematical statements. Let p(x = x̄) denote the probability of

a discrete random variable x taking the value of x̄.
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3 Preliminaries

In this section, we introduce well-studied notions from discrete mathematics literature [30–

33]. These notions will be used for the derivations in the remainder of this report. Let W be a

nonempty ground set and f : 2W → R a set function for the following definitions.

Definition 1 (Monotonicity properties) The set function f is non-decreasing if for all A ⊆
B ⊆ W , f(A) ≤ f(B). We call −f non-increasing. If the inequality is strict, then f is strictly

increasing and −f is strictly decreasing.

Definition 2 (Discrete derivative) For the set function f , A ⊆ W and e ∈ W , the discrete

derivative of f at A with respect to e is given by

ρf (e|A) := f (A ∪ {e})− f(A).

We simply use the notation ρ(e|A), if the function f is clear from the context. Moreover for any

set B ⊂W , we will generalize the definition above to denote ρ(B|A) = f (A ∪B)− f(A).

Definition 3 (Submodularity) A non-decreasing set function f is submodular if it holds that

ρ(e|B) ≤ ρ(e|A), (1)

for all A ⊆ B ⊆W , for all e ∈W \B.

Submodularity is a useful property commonly used in combinatorics. Equation (1) ex-

presses that the marginal gains of f are decreasing when expanding the set A to B, which

happens to be the case in many realistic examples, see [33–35]. Many set function optimiz-

ing algorithms take advantage of this notion, such as the greedy algorithm used later in this

report. Unfortunately, the objective functions used in many problems, including ours, do not

have the submodular property. Instead, these problems allow the use of submodularity ratio

describing how far a non-submodular set function is from being submodular. This property was

first introduced in [25].

Definition 4 (Submodularity ratio) The submodularity ratio of a nondecreasing set function f

is the largest scalar γ ∈ R+ such that

γ · ρ(e|B) ≤ ρ(e|A), (2)

for all A ⊆ B ⊆W , for all e ∈W \B.

It can easily be verified that f is submodular if and only if γ = 1, and we also have

γ ∈ [0, 1]. For derivations, kindly refer to [20]. Furthermore, there exist an alternative but
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non-equivalent submodularity ratio notion [20,36]: the cumulative submodularity ratio of a non-

decreasing set function f is the largest scalar γ′ ∈ R+ such that

γ′ · ρ(B|A) ≤
∑

e∈B\A

ρ(e|A), (3)

for all A,B ⊆ W . The submodularity ratio of Equation (2) satisfies the inequalities listed in

Equation (3), but the reverse argument does not necessarily hold. Hence, γ ≤ γ′ [23, Ap-

pendix B]. Later in Sections 5.1 and 5.2, we discuss the necessity of utilizing this notion as per

Definition 4 for the guarantee we derive for the greedy algorithms.

Definition 5 (Supermodularity) A non-decreasing set function f is supermodular if it holds

that

ρ(e|A) ≤ ρ(e|B), (4)

for all A ⊆ B ⊆W , for all e ∈W \B.

Supermodularity is the property describing that the marginal gain of f is increasing

when expanding the set A to B. Similar to the discussions provided for the submodularity ratio,

whenever supermodularity is not found, it may instead be possible to use the notion of curvature

to describe how far a non-supermodular function is from being supermodular.

Definition 6 (Curvature) The curvature of a non-decreasing set function f is the smallest

scalar α ∈ R+ such that

(1− α) · ρ(e|A) ≤ ρ(e|B), (5)

for all A ⊆ B ⊆W , for all e ∈W \B.

It can easily be verified that f is supermodular if and only if α = 0, and we also have

α ∈ [0, 1]. For derivations, kindly refer to [20]. Finally, note that it is also possible to have

cumulative definitions of the curvature, similar to that of Equation (3). However, for our deriva-

tions in Sections 5.1 and 5.2, we draw special attention on where we require the inequalities in

Equation (5).

Complex constraints in many combinatorial optimization problems can be modelled by

using notions from matroid theory introduced in the following. Reformulating this way gener-

alizes the constraints and helps to provide performance guarantees.

Definition 7 (Matroid). A matroid is a pair M = (W, I), such that I ⊆ 2W is a collection of

subsets of W called the independent set satisfying the two following properties

(i) A ⊆ B ⊆W and B ∈ I implies A ∈ I
(ii) A,B ∈ I and |B| > |A| implies ∃e ∈ B \A such that A ∪ {e} ∈ I.

The concept of a matroid is considered to be a generalization of linear-independence

well known from linear algebra. We introduce a special type of matroid used for the problem

formulations of this report, the partition matroid.
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Definition 8 (Partition matroid) The pair M = (W, I) is a partition matroid if a partition

of W exists characterized by {Bi}i=1,...,n, where W =
n⋃
i=1

Bi and Bi ∩ Bi′ = ∅ for all pairs

i, i′ ∈ {1, . . . , n}, furthermore there exist a set of positive integers li ∈ Z+ for all i = 1, . . . , n,

such that

I = {A ⊆W | |A ∩Bi| ≤ li,∀i = 1, . . . , n} .

Furthermore, we also use the following matroid theory related properties.

Definition 9 (Base of a matroid) Let M = (W, I) be a matroid. We call B ∈ I a base of

matroid M, if |A| ≤ |B| for all A ∈ I. In other words, a base of a matroid is an inclusion-wise

maximal independent set. Notice, that every base has the same cardinality.

Definition 10 (Dual of a matroid) For a matroid, M = (W, I), the dual matroid M̄ = (W, Ī)

is defined so defined so that the bases B̄ ∈ Ī are exactly the complements of the bases B ∈ I,

that is, B̄ = W \B.
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4 Two-stage multi-robot safe planning framework

In this section, we introduce the multi-robot safe planning problem and propose a frame-

work that provides a computationally tractable solution. Consider a fleet of autonomous agents

navigating through an environment with a stochastically evolving hazard, for example, a fire

inside a building. The mission of the fleet is to visit a set of known targets and then get out

safely (e.g. rescuing survivors). Each target is required to be visited once by any robot. The

map of the environment, the initial position of the robots, the areas initial contaminated by

the hazard, and the stochastic model of the dynamics of both the hazard and the robots are

assumed to be known. The multi-robot safe planning problem aims to design control policies for

the robots. These control policies maximize the probability of success – the probability of suc-

cessfully finishing the mission. However, planning for multiple robots is computationally much

more challenging than planning for a single robot. Hence our framework splits the problem into

the following two hierarchical stages: high-level task allocation (dividing the targets between

robots) and low-level path planning (optimizing control policies for each robot individually for a

subset of assigned targets). We call this the two-stage multi-robot safe planning framework. The

low-level stage introduced in Section 4.1 aims to obtain an optimal control policy for a single

robot maximizing the probability of successfully visiting only a chosen subset of all targets. The

high-level stage, which builds upon the low-level one, is a multi-robot task allocation problem

aiming to divide the targets among robots and is described in Section 4.2. To justify the need

for splitting the problem into stages as in our framework, we formulate a safe planning problem

for the whole fleet combined in Section 4.3 and show its computational burdens. Throughout

this section, we use an example multi-agent planning problem to illustrate our framework, see

Figure 2.

4.1 Single-robot safe planning problem

This section introduces the low-level singler-robot safe planning framework for a single

agent aiming to obtain an optimal control policy by maximizing the probability of successfully

visiting a set of targets and leave the environment while avoiding the evolving hazard. The

problem formulation is based on previous works in path planning under dynamic uncertainties,

namely, [9] and [13], and presented as follows. We first concisely introduce this model and leave

the details in the following subsections. We start by considering a single-robot system, describe

the environment with a discretized map, then introduce the robot and hazard evolution dynam-

ics. Next, we show how the agent keeps track of the high-level target execution. We then define

a combined state space for path planning considering the robot dynamics, the target execution

and hazard avoiding aspects. Finally, we define the controller synthesis problem and present

a dynamic programming algorithm that solves this problem. To obtain a tractable version of

this approach, we propose an approximation based on Monte-Carlo sampling to overcome the

computational issues caused by the presence of dynamic uncertainties.
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Figure 2: Example environment. The fleet of robots have to reach the goal position after
cooperatively visiting the targets while avoiding the stochastically evolving hazards.

4.1.1 Map model

We define a discretized model of the map where the robot operates. Let

Mm×n = {(a, b) | a ∈ {0, . . . ,m− 1}, b ∈ {0, . . . , n− 1}} ,

be an m × n-sized grid-shaped map (the grid length equals to 1) and O ⊂ Mm×n be a set

of obstacles (e.g., walls) untraversable for the robot. Then, X = Mm×n \ O is the set of all

traversable positions. Furthermore, for all x ∈ X let

N(x) =
{
x′ ∈ X | ‖x′ − x‖2 = 1

}
,

D(x) =
{
x′ ∈ X | ‖x′ − x‖2 =

√
2
}
,

be the neighboring and diagonally neighboring positions for x, respectively. We use the notation

‖x′ − x‖2 for the Euclidean distance between points x and x′. The usage of a discredited

map simplifies the formulation from a non-convex continuous optimization problem to an easier

combinatorial optimization problem. It is a reasonable approximation of the environment also

used in [9] and [13].
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4.1.2 Robot dynamics

We introduce the dynamics of the motion of the robot. We define a set of possible inputs:

U = {Stay, North, East, South, West}. Each input u ∈ U is associated with a direction

dStay = (0, 0), dNorth = (0, 1), dEast = (1, 0),

dSouth = (0,−1), dWest = (−1, 0).

In each position x ∈ X, the set of

U(x) = {u ∈ U |x+ du ∈ X} ⊆ U,

are the inputs available to the robot.

The motion of robot r is defined by a stochastic Markov process xk+1 ∼ τX
(
· |xk, uk

)
,

k ∈ {0, 1, . . . } with initial position x0
r ∈ X, where τX : X×X×U → [0, 1] denotes the transition

kernel between xk ∈ X at time step k and xk+1 ∈ N(x) at step k + 1 under control input

uk ∈ U(xk). Note that different robots can be equipped with different dynamics. We say that

the robot dynamics are deterministic, if for all xk ∈ X and uk ∈ U(xk)

τX

(
xk+1 |xk, uk

)
= 1xk+d

uk
(xk+1). (6)

4.1.3 Hazard dynamics

We introduce the model of the hazard and how it spreads across the map. Let Y = 2X

be the hazard state space. Each element y ∈ Y denotes a set of contaminated cells being a

subset of the reachable map X. The stochastic Markov process yk+1 ∼ τY
(
· | yk

)
, k ∈ {0, 1, . . . }

defines the hazard evolution dynamics with transition kernel τY : Y × Y → [0, 1] between states

yk ∈ Y at time step k and yk+1 ∈ Y at step k+1. At time 0, we assume the hazard state y0 ∈ Y
to be known to the robot.

4.1.4 Target execution

During the execution of the mission, the agent needs to keep track of which target loca-

tions have already been visited. To this end, we introduce the following target execution state.

First we define Tr ⊂ X as the target list of robot r, the set of all target locations the agent has

to visit. Then we define the set Q = 2Tr and the target execution state qk ⊆ Tr at time step

k, where qk ∈ Q for all k. The transition at time step k from qk to qk+1 given the robot is at

position xk+1 at step k + 1 is described by the following time homogeneous transition kernel

τQ(qk+1 | qk, xk+1) =

1 if qk+1 = qk ∪ (xk+1 ∩ Tr),

0 otherwise,
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where τQ : Q×Q×X → [0, 1]. Every time one of the target positions xk+1 ∈ Tr is visited, it is

added to the list qk+1. For any other non-target position xk+1 /∈ Tr, we have xk+1 ∩ Tr = ∅ and

qk+1 = qk stays the same. If a target position xk+1 ∈ Tr is visited more then one time, hence

xk+1 ∈ qk, then qk+1 = qk ∪ {xk+1} = qk.

4.1.5 Combined state space

In this section, we define the combined state space of the agent in order to model the

complex mission of motion, target collection and hazard avoidance. At time step k the state

should contain both the robot location xk ∈ X and the target execution state qk ∈ Q. Some

pairs of (qk, xk) are impossible to occur specifically, when xk ∈ Tr but xk /∈ qk, hence we can

reduce the size of the state space by removing these pairs. We further assume that the agent

cannot observe the state of the hazard yk ∈ Y , which is a reasonable assumption in most realistic

scenarios, hence we do not include yk in the state space 2. However, a contamination state noted

by sH should be introduced to capture the contamination of the robot. The agent transmits

into state sH if it moves to a contaminated area xk ∈ yk, after which it cannot leave this state

anymore. Reaching the contamination state indicates an unsuccessful mission. We can now

write the combined state space as follows

S = {sH} ∪ (Q×X) \ {(q, x) |x ∈ Tr ∧ x /∈ q}. (7)

We can further specify the goal location as xG ∈ X and the goal state denoted by sG = (Tr, xG).

The state sG indicates a successful mission, where every target is visited and the robot has

reached the safe goal location without getting contaminated. We also define the initial state

for robot r as s0
r = (∅, x0

r), where no targets are visited and the robot is at the initial position

x0
r . The state s0

r is certain and known to the agent, since x0
r , the initial position of robot r is

assumed to be given.

Although the agent cannot observe the state of the hazard yk ∈ Y at a certain time step

k, it can still use the knowledge of the hazard dynamics τY and the initial hazard state y0. To

this end, we define the function pkH : X ×X → [0, 1] describes the contamination risk, the risk

the robot takes while moving to a new grid cell at a given time step k. The value of pkH(xk+1, xk)

for the pair xk+1 and xk is equal to the probability of xk+1 ∈ yk+1 getting contaminated at time

step k + 1, given that xk /∈ yk is not contaminated at step k. For values xk+1 = x̄k+1 and

xk = x̄k

pkH(x̄k+1, x̄k) = P (xk+1 ∈ yk+1 |xk /∈ yk, xk+1 = x̄k+1, xk = x̄k). (8)

We provide the details of calculating pkH in Appendix 8.1. Due to the exponentially increasing size

of |Y | = 2|X|, the precise calculation of function pkH described in Appendix 8.1 is computationally

intractable. In order to overcome this issue, a Monte-Carlo sampling based algorithm is proposed

2For further justification why yk should not be included in the state space, let us study the complexity of X, Q
and Y . The size of X depends on the size of the map, whereas the number of target execution states |Q| = 2|Tr|

grows exponentially with the size of Tr. In practice, we have |X| � |Tr|. Thus, the size of the hazard state space
|Y | = 2|X| is the main source of complexity. Including Y in the state space would make the problem intractable
even for small maps.
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in [13, Algorithm 1], which provides a tractable approximation of pkH . For the rest of the report

we refer to pkH as the approximate value obtained by [13, Algorithm 1].

The evolution of the combined state of the agent can now be described by the following

stochastic process defined by transition kernel τkS : S × S × U → [0, 1]. Given that the robot is

in state sk at time step k, the probability of getting into state sk+1 at step k + 1 by applying

control input uk can be written as follows (see Appendix 8.2)

τkS(sk+1 | sk, uk) =



1 if sk+1 = sk ∈ {sG, sH},∑
xk+1∈X

pkH(xk+1, xk)

×τX(xk+1 |xk, uk) if sk+1 = sH

∧ sk = (qk, xk) /∈ {sG, sH},(
1− pkH(xk+1, xk)

)
×τQ(qk+1 | qk, xk+1)

×τX(xk+1 |xk, uk) if sk+1 = (qk+1, xk+1) 6= sH

∧ sk = (qk, xk) /∈ {sG, sH},

0 otherwise.

(9)

Both the goal sG and hazard sH states are defined to be absorbing, which means, once they are

reached, the system state does not change anymore. In any other states sk = (qk, xk) /∈ {sG, sH},
the agent can either get contaminated and reach state sH or move to another state following

the dynamics defined by transition kernels τX and τQ.

4.1.6 Controller synthesis via dynamic programming

Based on the previously described combined state space and transition dynamics, we

state the success probability maximizing optimization problem. We also propose a dynamic

programming algorithm to solve this problem and obtain the optimal control policy. We assume

that robot r, a set of target locations Tr ⊂ X, the initial state s0
r and a finite time horizon

N ∈ N>0 is given. We aim to compute the optimal (that is success probability maximizing)

closed-loop control policy πr(Tr) = {µ0
r , . . . , µ

N−1
r } as a function of Tr, where µkr : S → U refers

to the control law at time step k, so that uk = µkr (s
k). We denote the optimal probability

of success under the optimal control policy πr(Tr) by fr(Tr). Furthermore, the probability

of success fr(π, Tr) under a generic control policy π = {µ0, . . . , µN−1} can be described by

reaching the goal state sk = sG at any step within the given time horizon k ≤ N while avoiding

the contamination state sk = sH at all time steps k = {0, . . . , N}. Since both sH and sG are

absorbing, the condition sN = sG is sufficient for a successful mission as shown below

fr(π, Tr) = P
(
sN = sG |π

)
. (10)
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Our goal is then to solve

πr(Tr) = arg max
π

fr(π, Tr). (11)

Problem (11) can be solved using the well known dynamic programming algorithm [14]: For

k = N , let us define V N (sN ) = 1sG(sN ) as the value function, while for 1 ≤ k ≤ N ,

V k−1(sk−1) = max
u∈U(xk−1)

{ ∑
sk∈S

τk−1
S (sk | sk−1, u) · V k(sk)

}
. (12)

Now µkr (s
k) can be obtained as the optimal u ∈ U(xk) at step k. Furthermore it holds (see

Appendix 8.3), that

fr(Tr) = fr(πr, Tr) = max
π

fr(π, Tr) = V 0(s0
r). (13)

4.2 Multi-robot task allocation problem

In this section, we formulate the high-level task allocation problem aiming to optimally

assign the targets among the agents. Let T be the set of all targets and R the set of all robots.

A valid task allocation assigns each task to exactly one agent by dividing set T into partitions

{Tr}r∈R, where Tr ⊂ T for all r ∈ R, Tr ∩ Tr′ = ∅ for any pair r, r′ ∈ R where r 6= r′ and⋃
r∈R Tr = T . Each partition Tr represents the subset of targets assigned to robot r. We aim

to find the optimal task allocation which maximizes the probability of successfully finishing the

mission of visiting every target without getting any of the agents contaminated 3. We use the

multiplicative group success as the objective function defined by

F ({Tr}r∈R) =
∏
r∈R

fr(Tr), (14)

where the values of fr(Tr) are obtained by solving the single-robot path planning problem

introduced in Section 4.1 for each r ∈ R (see Equation (13)). Note that the multiplicative

group success equals the product of single-agent success probabilities. Hence it assumes these

success probabilities to be independent of each other. This assumption does not hold in general.

However, in most cases, one of the robots succeeding makes it more probable for the others to

succeed as well (see Appendix 8.5). Under this mild condition, the multiplicative group success

can serve as a good and computationally tractable approximation. Now we can formulate the

task allocation problem as follows

F ∗ = max
{Tr}r∈R

∏
r∈R

fr(Tr) s.t. Tr ∩ Tr′ = ∅, ∀r 6= r′,
⋃
r∈R

Tr = T. (15)

Every task is allocated to exactly one robot. Following this argument, each task can

3According to the taxonomy in [15], this problem can be classified as an NP-hard multi-task robot, single-
robot task, instantaneous assignment task allocation problem (MT-SR-IA). Multi-task robot – because one robot
can visit multiple targets, single-robot task – since it is enough for targets to be visited by only a single robot,
and instantaneous assignment – since tasks are allocated only once before the run and not continuously during
execution.
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be allocated to any robot among |R| different robots. Hence there are |R||T | possible alloca-

tions in total. Therefore, the problem is exponential in the number of tasks, which motivates

using polynomial-time heuristic algorithms to obtain approximate solutions. We propose such

algorithms in Section 5 and provide detailed descriptions.

Furthermore, adding a task to the target list of a robot cannot increase its success prob-

ability. Because when one additional task is added to the task list of a robot, the updated path

due to this additional task either becomes longer or deviate from the original path in most of

the cases. Both of them decreases the probability of success. To capture this, we assume the

individual functions fr to be strictly and bounded decreasing, hence ∃f
r
, f r ∈ R such that

0 < f
r
≤ fr(Tr)− fr(Tr ∪ t) ≤ f r < 1, (16)

for all Tr ( T , for all t ∈ T \ Tr and every r ∈ R. We use this assumption in Section 5. This

assumption might occasionally be violated if task t already lies on the path of robot r when

executing task list Tr. In this rare case fr(Tr ∪ t) = fr(Tr).

4.3 Full-fleet safe planning framework

We generalize the single-robot planning formulation introduced in Section 4.1 and propose

the full-fleet safe planning framework for |R| ≥ 1 as an alternative approach for solving the multi-

robot safe planning problem. We also show the computational burdens of this approach and

compare it to the two-stage multi-robot safe planning framework (Section 4).

When describing robot locations, instead of considering the position of a single robot

x ∈ X, we define the tuple xM = (x1, . . . , x|R|) ∈ XM as the combined position of the fleet,

where XM = X |R|. As this is not the main focus of this study, we assume that the robots do not

collide with each other. Hence multiple robots can occupy the same grid at the same time. We

also define the combined input of the fleet as uM = (u1, . . . , u|R|) ∈ UM = Un. We extend the

state space S introduced in Section 4.1.5 to be consistent with the definition of xM the following

way

SM = {sH,M} ∪ (Q×XM ) \ {(q, xM ) | ∃r ∈ R st. xr ∈ T ∧ xr /∈ q}, (17)

where sH,M is the combined contamination state and q ∈ Q is the task execution state analogous

to sH and Q defined in Section 4.1.5 and 4.1.4. The system transmits to sH,M if at least one robot

becomes contaminated. Finally, we formulate the control synthesis of the full-fleet safe planning

framework. We show the details of this formulation in Appendix 8.4. The solution to the full-fleet

safe planning problem for a task list T is the optimal group policy πM (T ) = {µ0
M , . . . , µ

N−1
M },

where µkM : SM → UM is the group control law used at step k, and the probability of group success

FM (T ) ∈ [0, 1] using policy πM (T ). These notations are defined analogous to the optimal policy

πr(Tr) and the probability of success fr(Tr) introduced in Section 4.1.6 with the difference of

considering the fleet as a whole for |R| > 1 instead of optimizing the path of a single-robot.

The state space of the full-fleet safe planning formulation grows exponentially in the

number of robots, since XM = X |R| (see Equation (17)). This phenomenon causes the solution
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of the problem to be intractable even for a few number of robots and for small sized maps.

The two-stage multi-robot safe planning framework overcomes this issue by using the following

relaxations. First, it decouples the decisions of the agents. Instead of solving a joint problem

for all robots at once and calculating the combined optimal group policy πM (T ), we consider

single-robot solutions defined by Section 4.1 obtaining policies {πr(Tr)}r∈R for individual agents

r ∈ R independently from each other. Second, we consider the success of individual robots to

be independent. Instead of considering the probability of group success FM (T ), the probability

of every robot succeeding simultaneously, we use the multiplicative group success defined by

Equation (14), which is the product of individual robot success probabilities. This way we neglect

the existing correlation between agents succeeding or failing, but obtain a computationally

tractable optimization problem. We provide a detailed example to illustrate this correlation

in Section 6.2. Under some mild conditions introduced in Appendix 8.5, the multiplicative

group success F ({Tr}r∈R) is a lower bound of the probability of group success FM (T ). For the

remainder, we restrict our attention to the multiplicative group success.
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5 Greedy approach for multi-robot task allocation under dy-

namic uncertainties

We introduce the greedy approach which provides a computationally tractable approxi-

mation to the multi-robot task allocation problem of Section 4.2. We formulate the forward and

reverse greedy algorithms in Section 5.1 and 5.2, respectively. The forward greedy approach is

initialized with no tasks allocated to the robots and iteratively updates the allocation by adding

the task-robot pair obtaining the best optimality gain until every task is allocated. The reverse

greedy algorithm, however, allocates every task to every robot in the beginning and keeps re-

moving the task-robot pairs. It converges when every task is allocated to exactly one robot. We

also provide performance guarantees for both algorithms (see Section 5.1 and 5.2) and compare

them in Section 5.3.

5.1 Forward greedy algorithm

This section introduces the forward greedy algorithm and provides a performance guar-

antee. First, we reformulate the allocation problem described by Equation (15) to a set function

minimization problem over matroid constraints and propose the forward greedy algorithm. Then

we state the performance guarantee comparing the approximate solution of the greedy algorithm

to the optimal solution of the task allocation problem. Since the multiplicative group success

(see Equation (14)) is a non-submodular objective function, we use the submodularity ratio

(Equation (2)) and curvature (Equation (5)) properties to obtain the performance guarantee.

Finally, we provide a distributed formulation of the forward greedy algorithm where robots make

computations in parallel in order to increase calculation speed.

5.1.1 Algorithm formulation

In the following, we reformulate the task allocation problem described by Equation (15)

as a set function minimization problem over matroid constraints and define the forward greedy

algorithm. First of all, let the set of tasks be denoted by T and the set of robots by R. In

Section 4.2, we described a valid task allocation by partitions {Tr}r∈R, where Tr ⊂ T denotes

the set of tasks allocated to robot r ∈ R. In order to ensure that every task is allocated to

exactly one robot, we introduced the constraints below, also used in Equation (15)

Tr ∩ Tr′ = ∅,∀r, r′ ∈ R, r 6= r′,
⋃
r∈R

Tr = T. (18)

Now, we define an alternative yet equivalent description for a valid task allocation. We define

P = T × R as the ground set of all task-robot pairs and Pt = {(t, r)}r∈R ⊂ P as the task-

robot pairs related to task t ∈ T . Note that the sets {Pt}t∈T define a partitioning of P , since

Pt∩Pt′ = ∅ for all pairs t, t′ ∈ T if t 6= t′ and
⋃
t∈T Pt = P . Now A ⊂ P is a valid task allocation
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expressed as a set of task-robot tuples, if

|A ∩ Pt| = 1, ∀t ∈ T, (19)

which is equivalent to the constraints described by Equation (18). Note that we can transform

{Tr}r∈R to A the following way

A =
⋃
r∈R
{(t, r)}t∈Tr . (20)

Let us further define K = |T |, the set

I = {A ⊂ P | |A ∩ Pt| ≤ 1, ∀t ∈ T} ,

the partition matroid M = (P, I) (see Definition 8) and the objective function Ffg : P → [0, 1]

Ffg(A) = −
∏
r∈R

fr(Tr), (21)

where the relationship between A and {Tr}r∈R is defined by Equation (20). Now Equation (15)

can be reformulated the following way

A∗ = arg min
A∈I

Ffg(A) s.t. |A| = K, (22)

where A ∈ I together with |A| = K ensures the conditions of Equation (19). Finally, we propose

the forward greedy algorithm (see Algorithm 1) based on [23, Algorithm 1] which approximates

the solution of the optimization problem defined by Equation (22).

Algorithm 1 Forward Greedy Algorithm over Matroid

Input: set function Ffg, ground set P , matroid M = (P, I), K cardinality constraint

Output: approximately optimal task allocation Afg = A|K|

1 begin

2 initialization: A0 = ∅, U0 = ∅, k = 1 while Uk−1 6= P ∧ |Ak−1| < K do

3 ak ← arg min
a∈P\Uk−1

ρFfg
(a|Ak−1)

4 if Ak−1 ∪ {ak} /∈ I then

5 Uk−1 ← Uk−1 ∪ {ak}

6 else

7 Ak ← Ak−1 ∪ {ak}

8 Uk ← Uk−1 ∪ {ak}

9 k ← k + 1

10 end

11 end

12 end

19



Let us analyse Algorithm 1 step-by-step. We first define Ak ∈ I as the task allocation at

algorithm step k, and Uk as a set keeping track of task-robot pairs which the algorithm already

checked. In Line 2 we initialise with no tasks allocated and no task-robot pairs checked. We

iterate the following steps until we run out of possible task-robot pairs or we already allocated

all K tasks (Line 2). In each step, we choose the task-robot pair ak from the available ones

P \Uk−1 which minimises the marginal gain ρFfg
(a|Ak−1) (Line 3). If adding ak does not satisfy

the constraints, hence Ak−1 ∪ {ak} /∈ I, we add it to Uk−1 (Line 5), otherwise we add it to the

current allocation and to Uk−1 (Lines 7–9).

5.1.2 Performance guarantee

We propose the following performance guarantee for Algorithm 1 defined by Theorem 1.

We provide the proof in Appendix 8.6.

Theorem 1 Let A∗ denote the optimal allocation defined by Equation (22) and Afg the forward

greedy allocation obtained by Algorithm 1. Then, the following holds

Ffg(Afg)− Ffg(∅)
Ffg(A∗)− Ffg(∅)

≤ 1

γ · (1− α)
,

where α and γ are the curvature and submodularity ratio properties of the non-submodular

objective function Ffg introduced by Equations (5) and (2), respectively.

Note that because of the assumption of Equation (16) and the definition of Ffg in Equation (21),

Ffg is strictly and bounded increasing. Combining this with the definitions of the submodularity

ratio and curvature (see Equations (2) and (5), respectively), we have 0 < γ < 1 and 0 < α < 1,

hence 1 < 1
γ·(1−α) <∞.

Calculating the values of γ and α for function Ffg is challenging. According to Definition 4

and 6, the calculations involve checking every possible combinations of A ⊆ B ⊆ P and e ∈ P \B,

which is computationally intractable. To mitigate the issue, [20] uses the greedy submodularity

ratio γG and greedy curvature αG. Both values can be obtained without additional calculations

during the execution of the greedy algorithm. However, the guarantee of Theorem 1 does not

hold for γG and αG, they can serve as computationally tractable approximations of γ and α,

since γG ≥ γ and αG ≤ α hold.

5.1.3 Distributed algorithm formulation

We also propose an equivalent distributed version (Algorithm 2) of the forward greedy

algorithm (Algorithm 1) which approximates the solution of the task allocation problem defined

by Equation (15). We take advantage of the fact, that the step in Line 3 of Algorithm 1 can be

calculated in parallel by the robots.
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Algorithm 2 Forward Distributed Greedy Algorithm

Input: set of robots R, set of tasks T , set functions {fr}r∈R
Output: approximately optimal task allocation {T fg

r = T
|T |
r }r∈R

1 begin

2 initialization: T 0
r = ∅, f0

r = fr(∅), ∀r, J0 = T , R0 = R for k = 1, . . . ,K = |T | do

3 for r ∈ Rk−1 do

4 tkr ← arg min
t∈Jk−1

−ρfr(t|T k−1
r )

5 δkr ← −ρfr(tkr |T k−1
r )

6 end

7 (tkr , δ
k
r )← (tk−1

r , δk−1
r ) ∀r /∈ Rk−1

8 rk ← arg minr∈R δ
k
r ·
∏
r′∈R\{r} f

k−1
r′

9 fkr ←

f
k
r − δkr , if r = rk

fk−1
r , otherwise

10 T kr ←

T
k
r ∪ tkr , if r = rk

T k−1
r , otherwise

11 Rk ←
{
r | tkr = tk

rk

}
12 Jk ← Jk−1 \ tk

rk

13 end

14 end

Let us analyse Algorithm 2 step-by-step. We first define the following variables for each

algorithm step k: {T kr }r∈R denotes the current task allocation while {fkr }r∈R refers to the

evaluated function values for each robot r. The evaluation of fkr (T kr ) requires solving the single-

robot safe planning problem of Section 4.1, which comes with a significant computational cost.

Therefore once we evaluated the function for a specific target allocation, we save it in variable

fkr . Furthermore, Jk is the set of tasks not yet allocated and Rk is the set of robots which

need to update their bids in the next step. We initially assign no tasks to the robots, hence

T 0
r = ∅ and f0

r = fr(∅) for all r ∈ R and we evaluate and save values {f0
r }r∈R, J0 and R0 (see

Line 2). Since in each step exactly one task is allocated, we need K = |T | steps to complete the

allocation of every task (Line 2). In each iteration k, all robots r ∈ R submit a bid (see Line 3–7),

which consists of the pair (tkr , δ
k
r ). Each robot r chooses the task tkr from the list of unallocated

tasks Jk−1, which obtains the best optimality gain δkr with respect to the individual objective

function of the robot, fr. After collecting all bids, we choose the robot rk which generates the

best optimality gain with respect to the collective objective, the multiplicative group success

F (Line 8). Between Lines 9–12, we simply set the values of fkr , T kr for all r ∈ R and Rk, Jk

according to our choice of task allocation at step k. Note that only the robots choosing the

same task as rk have to update their bids in the next iteration, hence we define the set Rk in
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Line 11 and use it in Line 3. The rest of the robots simply submit their bids from the previous

iteration (see Line 7). The variable Rk is initialized with R0 = R, since in the first iteration all

robots have to calculate their bids.

5.2 Reverse greedy algorithm

This section introduces the reverse greedy algorithm and provides a performance guaran-

tee. First, we reformulate the allocation problem described by Equation (15) to a set function

maximization problem over matroid constraints and propose the reverse greedy algorithm. Then

we state the performance guarantee comparing the approximate solution of the greedy algorithm

to the optimal solution of the task allocation problem. Since the multiplicative group success

(see Equation (14)) is a non-submodular objective function, we use the submodularity ratio

(Equation (2)) and curvature (Equation (5)) properties to obtain the performance guarantee.

Finally, we provide a distributed formulation of the reverse greedy algorithm where robots make

computations in parallel in order to increase calculation speed.

5.2.1 Algorithm formulation

In the following, we reformulate the task allocation problem described by Equation (15)

as a set function maximization problem over matroid constraints and define the reverse greedy

algorithm. First of all, let the set of tasks be denoted by T and the set of robots by R. In

Section 4.2, we described a valid task allocation by partitions {Tr}r∈R, where Tr ⊂ T denotes

the set of tasks allocated to robot r ∈ R. In order to ensure that every task is allocated to

exactly one robot, we introduced the constraints below, also used in Equation (15)

Tr ∩ Tr′ = ∅,∀r, r′ ∈ R, r 6= r′,
⋃
r∈R

Tr = T. (23)

Now, we define an alternative yet equivalent description for a valid task allocation. We define

P = T × R as the ground set of all task-robot pairs and Pt = {(t, r)}r∈R ⊂ P as the task-

robot pairs related to task t ∈ T . Note that the sets {Pt}t∈T define a partitioning of P , since

Pt ∩ Pt′ = ∅ for all pairs t, t′ ∈ T if t 6= t and
⋃
t∈T Pt = P . Now Ā ⊂ P defines a valid task

allocation expressed as a set of task-robot tuples to be removed from P , where

A = P \ Ā, (24)

is the task allocation used for the forward greedy algorithm in Section 5.1. Note that every task

should be removed from all the robots except for one, hence the following should hold for Ā

|Ā ∩ Pt| = |R| − 1, ∀t ∈ T, (25)
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which is equivalent to the constraints described by Equation (23) and Equation (19). Note that

we can transform {Tr}r∈R to Ā the following way

Ā = P \
⋃
r∈R
{(t, r)}t∈Tr . (26)

Let us further define K̄ = |T | · (|R| − 1), the set

Ī =
{
Ā ⊂ P | |Ā ∩ Pt| ≤ |R| − 1, ∀t ∈ T

}
,

the partition matroid M̄ = (P, Ī) (see Definition 8) and the objective function Frg : P → [0, 1]

Frg(Ā) =
∏
r∈R

fr(Tr) = −Ffg(P \ Ā), (27)

where the relationship between Ā and {Tr}r∈R is defined by Equation (26) and between Ā and A

by Equation (24). Note that M̄ is the dual of matroidM, see Definition 10. Now Equation (15)

and Equation (22) can be reformulated the following way

Ā∗ = arg max
Ā∈Ī

Frg(Ā) s.t. |Ā| = K̄, (28)

where Ā ∈ Ī together with |Ā| = K̄ ensures the conditions of Equation (25). Finally, we propose

the reverse greedy algorithm (see Algorithm 3) based on [23, Algorithm 2] which approximates

the solution of the optimization problem defined by Equation (28).

Algorithm 3 Reverse Greedy Algorithm over Matroid

Input: set function Frg, ground set P , matroid M̄ = (P, Ī), K̄ cardinality constraint

Output: approxiamtely optimal exclusion set Ārg = Ā|K̄|

1 begin

2 initialization Ā0 = ∅, U0 = ∅, k = 1 while Uk−1 6= P ∧ |Āk−1| < K̄ do

3 āk ← arg max
ā∈P\Uk−1

ρFrg(ā|Āk−1)

4 if Āk−1 ∪ {āk} /∈ Ī then

5 Uk−1 ← Uk−1 ∪ {āk}

6 else

7 Āk ← Āk−1 ∪ {āk}

8 Uk ← Uk−1 ∪ {āk}

9 k ← k + 1

10 end

11 end

12 end
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Let us analyse Algorithm 3 step-by-step. We first define Āk ∈ Ī as the task allocation at

algorithm step k, and Uk as a set keeping track of task-robot pairs which the algorithm already

checked. In Line 2 we initialise with no tasks removed, hence every task allocated to every robot

simultaneously and no task-robot pairs checked. We iterate the following steps until we run

out of possible task-robot pairs or we already removed every task from all the robots except for

one, hence we removed K̄ = |T | · (|R| − 1) task-robot pair (Line 2). In each step, we choose

the task-robot pair āk from the available ones P \ Uk−1 which maximises the marginal gain

ρFrg(ā|Āk−1) (Line 3). If adding āk does not satisfy the constraints, hence Āk−1 ∪ {āk} /∈ Ī, we

add it to Uk−1 (Line 5), otherwise we add it to the current allocation and to Uk−1 (Lines 7–9).

5.2.2 Performance guarantee

We propose the following performance guarantee for Algorithm 3 defined by Theorem 2.

We provide the proof in Appendix 8.7.

Theorem 2 Let Ā∗ denote the optimal allocation defined by Equation (28) and Ārg the reverse

greedy allocation obtained by Algorithm 3. Then, the following holds

γ̄

1 + γ̄ · ᾱ
≤ Frg(Ārg)− Frg(∅)
Frg(Ā∗)− Frg(∅)

,

where ᾱ and γ̄ are the curvature and submodularity ratio properties of the non-submodular

objective function Frg introduced by Equations (5) and (2), respectively.

Note that because of the assumption of Equation (16) and the definition of Frg in Equation (27),

Frg is strictly and bounded decreasing. Combining this with the definitions of the submodularity

ratio and curvature (see Equations (2) and (5), respectively), we have 0 < γ̄ < 1 and 0 < ᾱ < 1,

hence 0 < γ̄
1+γ̄·ᾱ < 1.

Calculating the values of γ̄ and ᾱ for function Frg is challenging. According to Definition 4

and 6, the calculations involve checking every possible combinations of A ⊆ B ⊆ P and e ∈ P \B,

which is computationally intractable. To mitigate the issue, [20] uses the greedy submodularity

ratio γ̄G and greedy curvature ᾱG. Both values can be obtained without additional calculations

during the execution of the greedy algorithm. However, the guarantee of Theorem 2 does not

hold for γ̄G and ᾱG, they can serve as computationally tractable approximations of γ̄ and ᾱ,

since γ̄G ≥ γ̄ and ᾱG ≤ ᾱ hold.

5.2.3 Distributed algorithm formulation

We also propose an equivalent distributed version (Algorithm 4) of the reverse greedy

algorithm (Algorithm 3) which approximates the solution of the task allocation problem defined

by Equation (15). We take advantage of the fact, that the step in Line 3 of Algorithm 3 can be

calculated in parallel by the robots.
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Algorithm 4 Reverse Distributed Greedy Algorithm

Input: set of robots R, set of tasks T , set functions {fr}r∈R
Output: approximately optimal task allocation {T rg

r = T
|T |·(|R|−1)
r }r∈R

1 begin

2 initialization: T 0
r = T , f0

r = fr(T ), ∀r, J0 = T , R0 = R for k = 1, . . . , K̄ = |T | · (|R|− 1) do

3 for r ∈ Rk−1 do

4 tkr ← arg max
t∈Jk−1∩Tk−1

r

fr(T
k−1
r \ t)− fr(T k−1

r )

5 δkr ← fr(T
k−1
r \ tkr )− fr(T k−1

r )

6 end

7 (tkr , δ
k
r )← (tk−1

r , δk−1
r ) ∀r /∈ Rk−1

8 rk ← arg maxr∈R δ
k
r ·
∏
r′∈R\{r} f

k−1
r′

9 fkr ←

f
k
r + δkr , if r = rk

fk−1
r , otherwise

10 T kr ←

T
k
r \ tkr , if r = rk

T k−1
r , otherwise

11 Rk ←


{
r | tkr = tk

rk

}
, if
∣∣{r | tk

rk
∈ T kr

}∣∣ = 1

{rk}, otherwise

12 Jk ←

J
k−1 \ tk

rk
, if
∣∣{r | tk

rk
∈ T kr

}∣∣ = 1

Jk−1, otherwise

13 end

14 end

Let us analyse Algorithm 4 step-by-step. We first define the following variables for each

algorithm step k: {T kr }r∈R denotes the current task allocation while {fkr }r∈R refers to the

evaluated function values for each robot r. The evaluation of fkr (T kr ) requires solving the single-

robot safe planning problem of Section 4.1, which comes with a significant computational cost.

Therefore once we evaluated the function for a specific target allocation, we save it in variable

fkr . Furthermore, Jk is the set of tasks not yet removed and Rk is the set of robots which need

to update their bids in the next step. We initially assign all tasks to every robot simultaneously,

hence T 0
r = T and f0

r = fr(T ) for all r ∈ R and we evaluate and save values {f0
r }r∈R, J0 and R0

(see Line 2). Since in each step exactly one task is removed, we need K̄ = |T | · (|R| − 1) steps

(Line 2). In each iteration k, all robots r ∈ R submit a bid (see Line 3–7), which consists of

the pair (tkr , δ
k
r ). Each robot r chooses the task tkr from the list of unremoved tasks Jk−1, which

obtains the best optimality gain δkr with respect to the individual objective function of the robot

fr. After collecting all bids, we choose the robot rk which generates the best optimality gain
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with respect to the collective objective, the multiplicative group success F (Line 8). Between

Lines 9–12, we simply set the values of fkr , T kr for all r ∈ R and Rk, Jk according to our choice

of task allocation at step k. Note that a task tk
rk

is removed from Jk if it is only allocated to

single robot, hence |{r|tk
rk
∈ T kr }| = 1. Also note that only the robots choosing the same task as

rk have to update their bids in the next iteration and only when tk
rk

just got removed from Jk,

hence we define the set Rk in Line 11 and use it in Line 3. The rest of the robots simply submit

their bids from the previous iteration (see Line 7). The variable Rk is initialized with R0 = R,

since in the first iteration all robots have to calculate their bids.

5.3 Comparison of performance guarantees for forward and reverse greedy

approaches

We compare the forward and reverse greedy algorithms in terms of their performance

guarantees. First, we build on previously derived relations between the two greedy formulations.

Then we obtain equations suitable for comparison of the performance guarantees. Finally, we

compare the algorithms in terms of their performance guarantees.

According to Equation (24), if A = P \Ā, then A and Ā describe the same task allocation.

In this case, we can also write Frg(Ā) = −Ffg(A) (Equation (27)). Furthermore, since the

problems described by Equation (22) and (28) are equivalent, we have A∗ = P \Ā∗ and Frg(Ā∗) =

−Ffg(A∗). Now we define the following variables

F ∗ = Frg(Ā∗) = −Ffg(A∗), (29)

F fg = −Ffg(Afg), (30)

F rg = Frg(Ārg), (31)

where F ∗,F fg and F rg denote the probability of success obtained by the optimal, the forward

greedy and the reverse greedy task allocations, respectively. Furthermore, we describe the

relationship between the submodularity ratio γ, γ̄ and curvature α, ᾱ values of the functions

Ffg and Frg, respectively (see Theorem 1 and 2). According to [23, Proposition 2], we can write

γ̄ = 1− α, (32)

ᾱ = 1− γ. (33)

Now based on Equations (24), (27), (29)–(31) and (32)–(33) we can rearrange the performance

guarantees in Theorem 1 and 2 the following way

−F fg − Ffg(∅)
−F ∗ − Ffg(∅)

≤ 1

γ · (1− α)
, (34)

1− α
1 + (1− α) · (1− γ)

≤ F rg − Frg(∅)
F ∗ − Frg(∅)

. (35)

At this point we make assumptions about Ffg(∅) and Frg(∅). In the former case A = ∅, no

tasks are allocated to the robots. This means that each robot has a high probability of success
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due to the lack of tasks, hence we can assume (−Ffg(∅)) ≈ 1. In the latter case Ā = ∅ and

A = P \ Ā = P , all tasks are allocated to all robots. This means that each robot has a low

probability of success due to being overwhelmed with tasks, hence we can assume Frg(∅) ≈ 0.

Using these assumptions we can rearrange Equation (34) and (35) the following way

F ∗ · 1

γ · (1− α)
+
γ · (1− α)− 1

γ · (1− α)
= gfg(α, γ, F ∗) ≤ F fg, (36)

F ∗ · 1− α
1 + (1− α) · (1− γ)

= grg(α, γ, F ∗) ≤ F rg. (37)

In Equation (36) and (37) the expressions gfg(α, γ, F ∗) and grg(α, γ, F ∗) provide lower bounds

on the probability of success obtained by the forward and reverse greedy solutions (F fg and

F rg). The lower bounds are expressed as a function of the α,γ properties and the probability of

success obtained by the optimal task allocation F ∗.

Figure 3: Comparison of forward and reverse greedy algorithms in terms of performance guar-
antees. For each optimal F ∗ value, the shaded region represents the (α, γ) pairs for which the
forward greedy outperforms the reverse greedy. For F ∗ ≤ 0.5, the reverse greedy outperforms
the forward greedy for any (α, γ) pair.

In Figure 3, we shaded the (α, γ) pairs defined by {(α, γ) ∈ [0, 1]× [0, 1] | gfg(α, γ, F ∗) ≥
grg(α, γ, F ∗)} for specific values of F ∗. The shaded area for a certain F ∗ value represents the

(α, γ) pairs, where the forward greedy algorithm has a higher performance guarantee than the

reverse greedy, hence it is more reliable. If F ∗ is approximately 1, using the forward greedy

algorithm is a better choice in terms of reliability regardless of the values of α and γ. However,

if F ∗ is below 0.5, the reverse greedy approach enjoys better performance guarantees for all
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(α, γ) pairs. By decreasing the value of F ∗ from 1 to 0.5, the area where the forward greedy

algorithm is more reliable, shrinks. According to the figure, the performance guarantee of the

reverse greedy approach becomes higher for combinations with high α and low γ values.

28



6 Numerical case studies

We illustrate our findings by presenting three case studies. In the first one, shown in

Section 6.1, we solve an example via our two-stage multi-robot safe planning framework under

different task allocation methods. We then compare the performance of these methods both in

their success probabilities and computation time. We provide the second example in Section 6.2

to illustrate the rare case when using the multiplicative group success (see Equation (14)) as the

objective function is inaccurate. Finally, the example shown in Section 6.3 highlights the compu-

tational benefits of the two-stage planning approach over the full-fleet safe planning framework.

6.1 Performance comparison of task allocation algorithms

We introduce an example solution of the two-stage multi-robot safe planning framework

defined in Section 4. For implementing the high-level task allocation stage of the framework (see

Section 4.2) we used the approximate forward and reverse greedy approaches of Section 5. We

designed the example to be small enough in size so that we can calculate the brute force optimal

allocation as well for comparison. The brute force solution is obtained by check each valid task

allocation separately. This would not be possible for larger examples. We considered the 17-

by-13 sized grid-shaped map and the initial state shown in Figure 4. Three robots enter the

environment from different entries, they visit the five target positions while avoiding the evolving

hazard and leave safely through the goal location within the given time horizon. We set the

time horizon to N = 100 steps, which is long enough for each robot to be able to finish. For

this example, we chose the robots to behave the same way according to the deterministic robot

dynamics defined by Equation (6). The only difference between them is their initial positions.

We planted five different hazard sources defined by their initial positions, parameters of their

spreading speed θ (see the table attached to Figure 4) and evolution dynamics described by

Appendix 8.8. To help visualize the nature of the hazard spread, we also added a heat map

showing the probability of a cell getting contaminated within the given time horizon. The higher

this probability is for a cell, the more dangerous the cell is for the robots.

Let us now analyze the results. We compared the solutions and computational perfor-

mance of the three different task allocation methods in Table 1. The forward and reverse greedy

algorithms are approximating the solution of the brute force allocation. In this case, both

greedy approaches have found the optimal allocation, hence all three solutions match. However,

the measured computation time results reveal the benefits of the greedy approximations. Both

greedy algorithms outmatched the brute force solution in terms of computational complexity by

orders of magnitude. It is clear, that for larger examples it would be intractable to use brute

force. The greedy algorithms provide a tractable approximation close to optimality. Note that

the reverse greedy algorithm takes significantly more time to converge, then the forward greedy

solution. It can be explained with two arguments. By looking at Algorithm 2, we see, that

the forward greedy approach takes |T | steps, while the reverse greedy version (Algorithm 4)

29



Hazard source spread speed parameters

θa = 0.002 θb = 0.004 θc = θd = θe = 0.012

Figure 4: Example environment. The robots have to reach the goal position after visiting the
targets while avoiding the evolving hazards. The hazard spread is illustrated by a heat map
showing the probability of each cell getting contaminated within 100 time steps. The spread
speed parameters of the hazard sources are shown in the table below the map.

needs |T | · (|R| − 1) steps, which is significantly larger. The computation time of evaluating the

solution of the single-robot path planning problem (see Section 4.1) for a subset of tasks Tr ∈ T
depend greatly on the number of targets |Tr| allocated to a robot. Section 4.1.4 explains, that

|Q| = 2|Tr| grows exponentially with |Tr|, which has an effect on computational complexity and

computation times. The forward greedy method starts with a smaller number of tasks allocated

to the robots and possibly never evaluates the single-robot path planner with nearly all tasks

assigned to a single agent. However, the reverse greedy approach starts with all tasks being

allocated to every agent and improves by removing them. This requires the evaluation of the

single-agent path planning framework multiple times with a high number of targets per agent,

which explains the significantly increased computation times. We also examined what would

happen if we allocated every task to a single agent, robot 3. The probability of success in this

case would be 0.21. This shows the significance of using multiple agents since for this example,

30



Table 1: Comparison of task allocation algorithms. The meaning of each column: Task allocation
– optimal allocation provided by the corresponding algorithm, Computation time – full algorithm
run time 4, Success probability – probability of success under the optimal allocation provided by
the corresponding algorithm.

Algorithm
Task

allocation
Computation

time
Success

probability

Forward
Greedy

Robot Tasks

8 minutes
42 seconds 0.702

1 {i}
2 {ii, iii}
3 {iv, v}

Reverse
Greedy

Robot Tasks

35 minutes
52 seconds 0.702

1 {i}
2 {ii, iii}
3 {iv, v}

Brute
Force

Robot Tasks
6 hours

15 minutes
41 seconds

0.702
1 {i}
2 {ii, iii}
3 {iv, v}

it can increase the probability of success by almost 50%. It also reveals that a proper task

allocation method is necessary and tasks should not be allocated arbitrarily or randomly.

We now analyze the common optimal allocation and robot paths shown in Figure 5 using

our intuition. Since we used the deterministic robot dynamics for the example, we can show the

optimal agent paths assuming a scenario where neither of the robots got contaminated. ‘Task

i’ is taken by ‘robot 1’ due to its accessibility for the agent on its way to the exit. ‘Task ii’

could be taken by both ‘robot 1’ or ‘robot 2’ based on their distance. According to Figure 4,

‘hazard d’ has a high spread speed parameter, 0.012, hence ‘task ii’ is in great danger, it has to

be urgently saved. We can also confirm this by looking at the heat map of Figure 5 representing

the probability of each cell getting contaminated in the given time window. ‘Robot 2’ has the

highest chance for saving ‘task ii’, since this agent is located to closest to its position initially.

Note that visiting this task means greater danger for ‘robot 2’, since it has to take a longer route

going in the opposite of the exit, but this decision is beneficial for the group objective. ‘Task

iii’ is also taken by ‘robot 2’, since it arrives to this location the first among all three robots.

‘Tasks iv’ and ‘task v’ are allocated to ‘robot 3’ due to their close locations. By looking at the

chosen paths of the individual robots, there are two interesting details. Each robot has to go

through the room in the top right corner of the map before leaving the map through the goal

location. They all have to navigate between hazard a and e and passing by an obstacle in the

middle (location (13,9)). The choice of direction is not arbitrary. Since ‘hazard e’ spreads faster,

they prefer to go closer to ‘hazard a’. Also notice, that ‘robot 3’ chooses a slightly longer path

through position (8,2) instead of directly passing next to ‘hazard c’ through (10,2) which would

be more dangerous. The choices of tasks and optimal paths seem intuitively reasonable for all

4Measured on a computer equipped with Core i7 CPU running at 2.6GHz, with 8GB of RAM.
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robots. It also shows the group and individual objective maximizing decisions made during the

task allocation and path planning stages, respectively.

Figure 5: Optimal robot paths and task allocation obtained by the algorithms.

6.2 Counterexample for the usage of the multiplicative group success

In Section 4.3 we highlighted the computational advantages behind the usage of the mul-

tiplicative group success F ({Tr}r∈R) (see Equation (14)) in comparison to the probability of

group success FM (T ) (see Appendix 8.4). We also mentioned that the multiplicative group

success assumes independence between individual agents succeeding. In this example, we in-

troduce a counterexample when this independence does not hold and the multiplicative group

success is a misleading objective. We also show how under some mild conditions introduced in

Appendix 8.5, the multiplicative group success can be used as a lower bound of the probability

of group success, hence a computationally tractable approximation.

The example in Figure 6 shows two robots both of which can choose independently

between two different paths in order to reach the goal position: ‘path 1’ or ‘path 2’. We

removed the tasks from this example, the mission of the fleet is simply to reach the exit safely.

We consider deterministic robot dynamics for both agents (see Equation (6)). Let the evolution
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Figure 6: Counterexample for the usage of the multiplicative group success.

τkY,b : Y × Y → [0, 1] of ‘hazard b’ at position (5, 4) be defined the following way: for k = 0 let

τ0
Y,b(y

1|y0) =



0.5 if y0 = {(5, 4)},

∧ y1 = {(5, 4), (5, 5)},

0.5 if y0 = {(5, 4)},

∧ y1 = {(5, 4), (5, 3)},

0 otherwise,

while for all k 6= 0 let τkY,b(y
k+1|yk) = 1yk(yk+1). This way at step 1 either position (5, 5) or (5, 3)

is contaminated with equal 0.5 probability and stay that way throughout the whole process. Let

the evolution τkY,a : Y × Y → [0, 1] of ‘hazard a’ at positions (5, 0) and (5, 8) be defined in a

similar fashion: for k = 0 let

τ0
Y,a(y

1|y0) =



0.7 if y0 = {(5, 0), (5, 8)},

∧ y1 = {(5, 0), (5, 8), (5, 1), (5, 7)},

0.3 if y0 = {(5, 0), (5, 8)},

∧ y1 = {(5, 0), (5, 8)},

0 otherwise,

while for all k 6= 0 let τkY,a(y
k+1|yk) = 1yk(yk+1). This way at step 1 either both (5, 1) and (5, 7)

get contaminated with probability 0.7 or the hazard stops spreading with 0.3 chance for the rest
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of the process. ‘Hazard a’ and ‘hazard b’ are considered to spread independently.

Now we compare the solution of the two approaches. First, let us analyze the two-stage

multi-robot framework solution. Both robots decide their paths individually, they either choose

‘path 1’ passing next to ‘hazard b’, which provides a safe passage with probability 1−0.5 = 0.5,

or ‘path 2’ close to ‘hazard a’, where there is a 1 − 0.7 = 0.3 chance of succeeding. This

way both robots choose ‘path 1’, and the multiplicative objective is F = 0.5 · 0.5 = 0.25.

However, since ‘hazard b’ contaminated at least one of the robots due to the design of the

example, the chance of success for both robots simultaneously is actually 0. The difference can

be explained by the fact that the multiplicative group success handles the success of agents

as independent random variables and neglects the existing correlation between them. In this

case, the multiplicative group success is overly optimistic about the outcome. The full-fleet safe

planning framework, however, considers path planning for both agents simultaneously. This way

the choices are the following: sending both robots on ‘path 1’ – the probability of group success

is 0, sending one of the robots on ‘path 1’ the other on ‘path 2’ – the probability of group success

is (1− 0.5) · (1− 0.7) = 0.5 · 0.3 = 0.15, or sending both robots on ‘path 2’ – the probability of

group success is 1 − 0.7 = 0.3. The algorithm chooses the third option, which has a 0.3 group

success probability in comparison to the 0 gained from using the multiplicative objective. This

example clearly shows how misleading the multiplicative group success can be. Note that in this

scenario if ‘robot 1’ succeeds, the probability of ‘robot 2’ also succeeding decreases to 0 and vice

versa. Hence, the conditions of Appendix 8.5 do not hold.

Let us change the behavior of ‘hazard b’ the following way so that the conditions of

Appendix 8.5 hold: for k = 0 let

τ0
Y,b(y

1|y0) =



0.5 if y0 = {(5, 4)},

∧ y1 = {(5, 4), (5, 3), (5, 5)},

0.5 if y0 = {(5, 4)},

∧ y1 = {(5, 4)},

0 otherwise,

while for all k 6= 0 let τkY,b(y
k+1|yk) = 1yk(yk+1). This way in step 1 either both (5, 3) and

(5, 5) get contaminated simultaneously with 0.5 chance, or none of them become hazardous with

probability 0.5 for the rest of the process. In this case, the individually generated paths for

robots do not change, the agents both choose to go on ‘path 1’, and the multiplicative group

success stays 0.5 · 0.5 = 0.25. However, the probability of both robot succeeding simultaneously

is now 0.5. The available choices for the full-fleet safe planning framework also changed the

following way: sending both robots on ‘path 1’ – the probability of group success is 0.5, sending

one of the robots on ‘path 1’ the other on ‘path 2’ – the probability of group success is (1 −
0.5) · (1− 0.7) = 0.5 · 0.3 = 0.15, or sending both robots on ‘path 2’ – the probability of group

success is 1−0.7 = 0.3. In this case, the algorithm choices the first option, which has a 0.5 group

success probability. The multiplicative group success became overly pessimistic when changing
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the example for the conditions of Appendix 8.5 to hold. Note that the chosen paths for both

approaches now match.

6.3 Performance comparison of full-fleet safe planning and two-stage multi-

robot safe planning

In this section, we highlight the computational benefits of the two-stage multi-robot

safe planning framework over the full-fleet safe planning approach through an example. Let

us consider the environment shown in Figure 7, where two robots need to visit three targets

before leaving without getting contaminated. Similarly to the example shows in Section 6.1,

the agents differ in their initial positions only and we use the deterministic robot dynamics (see

Equation (6)). We also use the hazard model defined in Appendix 8.8. The time horizon is set

to N = 20 now due to the small size of the map.

Hazard source spread speed parameter

θa = 0.001

Figure 7: Example environment. The robots have to reach the goal position after visiting the
targets while avoiding the evolving hazards. The hazard spread is illustrated by a heat map
showing the probability of each cell getting contaminated within 20 time steps. The spread
speed parameter of the hazard source is shown in the table below the map.
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In order to solve the proposed problem, we used four different algorithms: forward greedy,

reverse greedy, brute force and full-fleet safe planning framework. Similarly to the case study

shown in Section 6.1, the first three algorithms are based on the two-stage multi-robot frame-

work. The difference between them is the implementation of the task allocations stage. For

this example, all four algorithms generated the same task allocation, optimal paths and success

probabilities as shown in Table 2 and Figure 8. However, their performance in terms of compu-

tation time differs greatly. As expected from the example presented in Section 6.1, the forward

greedy is the fastest algorithm, followed by the reverse greedy and the brute force approaches,

respectively. The full-fleet safe planning algorithm performed the worst in terms of computation

time by orders of magnitude. This phenomenon can be explained by the fact that the state

space used for this formulation is much larger than in the case of all three other algorithms

(see Section 4.3). This example shows how computationally inefficient it is to use the full-fleet

safe planning framework without any significant optimality gain. For larger problems, this ap-

proach becomes intractable leaving the two-stage multi-robot safe planning framework as the

only option for generating the solution.

Figure 8: Optimal robot paths and task allocation obtained by the algorithms.

36



Table 2: Comparison of task allocation algorithms. The meaning of each column: Task allocation
– optimal allocation provided by the corresponding algorithm, Computation time – full algorithm
run time 5, Success probability – probability of success under the optimal allocation provided by
the corresponding algorithm.

Algorithm
Task

allocation
Computation

time
Success

probability

Forward
Greedy

Robot Tasks

0.45 seconds 0.626
1 {i, ii}
2 {iii}

Reverse
Greedy

Robot Tasks

0.66 seconds 0.626
1 {i, ii}
2 {iii}

Brute
Force

Robot Tasks

1.11 seconds 0.626
1 {i, ii}
2 {iii}

Multi Robot
Dynamic

Programming

Robot Tasks

13 minutes
54 seconds 0.626

1 {i, ii}
2 {iii}

5Measured on a computer equipped with Core i7 CPU running at 2.6GHz, with 8GB of RAM.
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7 Conclusions

In this thesis, we proposed a two-stage framework for solving a multi-robot safe planning

problem in a computationally tractable way. We built on previous research in safe planning and

extended the existing approaches to a multi-agent framework to increase system performance.

We mitigated the issue of the increased computational complexity of using multiple agents

by splitting the problem into a low-level single-robot path planning and a high-level multi-

robot task allocation problem. We used greedy approximation algorithms to solve the NP-hard

task allocation problem and provided performance guarantees. We also verified our framework

by introducing case studies. We made comparisons between the approximate solution of our

framework and the optimal one. We found that our algorithms perform well both in terms of

computation time and optimality in the examined examples.
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8 Appendix

8.1 Calculating the contamination risk pkH

We provide the details for calculating the contamination risk pkH : X ×X → [0, 1]. The

contamination risk is defined so that a robot can calculate the risk of moving to a contaminated

area. This is challenging, since the robot cannot observe the hazard state. The calculations

have to rely on the knowledge of the initial hazard state and hazard evolution model. The value

pkH(x̄k+1, x̄k) denotes the probability of robot position xk+1 ∈ yk+1 being contaminated at time

step k+ 1 given the robot moves from xk = x̄k to xk+1 = x̄k+1 and xk /∈ yk is not contaminated

at step k. Based on Equation (8) we can write the following

pkH(x̄k+1, x̄k) = P (xk+1 ∈ yk+1 |xk /∈ yk, xk+1 = x̄k+1, xk = x̄k)

(1)

=
P (xk+1 ∈ yk+1, xk /∈ yk |xk+1 = x̄k+1, xk = x̄k)

P (xk /∈ yk |xk+1 = x̄k+1, xk = x̄k)

(2)

=

∑
ȳk+1:x̄k+1∈ȳk+1

∑
ȳk:x̄k /∈ȳk

P (yk+1 = ȳk+1, yk = ȳk)∑
ȳk:x̄k /∈ȳk

P (yk = ȳk)
, (38)

where we made the following steps:

(1) Using well known transformations from probability theory for conditional probabilities.

(2) Using conditions xk+1 = x̄k+1 and xk = x̄k and the addition rule of probabilities.

We can also write

P (yk+1 = ȳk+1, yk = ȳk)
(1)

= P (yk+1 = ȳk+1 | yk = ȳk) · P (yk = ȳk)

(2)

= τY (ȳk+1 | ȳk) · P (yk = ȳk), (39)

due to steps:

(1) Using well known transformations from probability theory for conditional probabilities.

(2) By the definition of τY in Section 4.1.3.

Furthermore, we can write

P (yk = ȳk)
(1)

=
∑

ȳk−1∈Y

P (yk = ȳk, yk−1 = ȳk−1)

(2)

=
∑

ȳk−1∈Y

P (yk = ȳk | yk−1 = ȳk−1) · P (yk−1 = ȳk−1)

(3)

=
∑

ȳk−1∈Y

τY (ȳk | ȳk−1) · P (yk−1 = ȳk−1)
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(4)

=
∑

ȳk−1∈Y

τY (ȳk | ȳk−1) ·
∑

ȳk−2∈Y

P (yk−1 = ȳk−1, yk−2 = ȳk−2)

(5)

=
∑

ȳk−1∈Y

· · ·
∑
ȳ0∈Y

τY (ȳk | ȳk−1) · · · τY (ȳ1 | ȳ0) · 1y0(ȳ0), (40)

where the following hold:

(1) Using marginalization of discrete random variables.

(2) Using the definition of conditional probabilities.

(3) By the definition of τY in Section 4.1.3.

(4) Similarly to Step (1).

(5) Continue iterating Steps (1)-(3) and finally adding that the initial hazard state y0 is

known.

Combining Equations (39) and (40) with Equation (38), we finally get

pkH(x̄k+1, x̄k) =

∑
ȳk+1:x̄k+1∈ȳk+1

∑
ȳk:x̄k /∈ȳk

τY (ȳk+1 | ȳk) · P (yk = ȳk)∑
ȳk:x̄k /∈ȳk

P (yk = ȳk)
,

with

P (yk = ȳk) =
∑

ȳk−1∈Y

· · ·
∑
ȳ0∈Y

τY (ȳk | ȳk−1) · · · τY (ȳ1 | ȳ0) · 1y0(ȳ0).

8.2 Definition of the combined transition kernel τ kS

In this section, we provide a detailed description of the combined state transition kernel

τkS : S × S × U → [0, 1] (see Equation (9)). We consider three cases of transitions: from

sk ∈ {sG, sH} to sk+1 ∈ S, from sk ∈ S \ {sG, sH} to sk+1 = sH , from sk ∈ S \ {sG, sH} to

sk+1 ∈ S \ {sH}.

• Transition from sk ∈ {sG, sH} to sk+1 ∈ S:

Once the system transmits into the goal or contamination state, it stays in that state,

hence if s̄k+1 = s̄k ∈ {SG, SH}, then for any k and for all ūk ∈ U

τkS(s̄k+1 | s̄k, ūk) = P (sk+1 = s̄k+1 | sk = s̄k, uk = ūk) = 1. (41)

• Transition from sk ∈ S \ {sG, sH} to sk+1 = sH :

The transition to the contamination state sk+1 = sH from sk 6= sH happens if and only

if xk+1 ∈ yk+1 and xk /∈ yk. Hence if s̄k+1 = sH and s̄k = (q̄k, x̄k), then for any k and

ūk ∈ U

τkS(s̄k+1 | s̄k, ūk) = P (sk+1 = s̄k+1 | sk = s̄k, uk = ūk)

(1)

= P (xk+1 ∈ yk+1 |xk /∈ yk, qk = q̄k, xk = x̄k, uk = ūk)
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(2)

= P (xk+1 ∈ yk+1 |xk /∈ yk, xk = x̄k, uk = ūk)

(3)

=
∑

x̄k+1∈X

P (xk+1 ∈ yk+1, xk+1 = x̄k+1 |xk /∈ yk, xk = x̄k, uk = ūk)

(4)

=
∑

x̄k+1∈X

P (xk+1 ∈ yk+1 |xk /∈ yk, xk+1 = x̄k+1, xk = x̄k, uk = ūk)

× P (xk+1 = x̄k+1 |xk /∈ yk, xk = x̄k, uk = ūk)

(5)

=
∑

x̄k+1∈X

P (xk+1 ∈ yk+1 |xk /∈ yk, xk+1 = x̄k+1, xk = x̄k)

× P (xk+1 = x̄k+1 |xk = x̄k, uk = ūk)

(6)

=
∑

x̄k+1∈X

pkH(x̄k+1, x̄k) · τX(x̄k+1 | x̄k, ūk), (42)

where we made steps:

(1) Due to the definition of s̄k+1 and s̄k.

(2) Since both xk+1 and yk+1 are independent of qk.

(3) Using the addition rule of probabilities.

(4) Using well known transformations from probability theory for conditional probabil-

ities.

(5) Since xk+1 = x̄k+1 and xk = x̄k already entails uk = ūk. Furthermore,xk+1 is

independent of yk.

(6) By the definition of τX in Section 4.1.2.

• Transition from sk ∈ S \ {sG, sH} to sk+1 ∈ S \ {sH}:
The transition between states sk+1 6= sH from sk 6= sH happens if and only if xk+1 /∈ yk+1

and xk /∈ yk. Hence if s̄k+1 = (q̄k+1, x̄k+1) and s̄k = (q̄k, x̄k), then for any k and ūk ∈ U

τkS(s̄k+1 | s̄k, ūk) = P (sk+1 = s̄k+1 | sk = s̄k, uk = ūk)

(1)

= P (xk+1 /∈ yk+1, qk+1 = q̄k+1, xk+1 = x̄k+1 |xk /∈ yk, qk = q̄k, xk = x̄k, uk = ūk)

(2)

= P (xk+1 /∈ yk+1, qk+1 = q̄k+1 |xk /∈ yk, xk+1 = x̄k+1, qk = q̄k, xk = x̄k, uk = ūk)

× P (xk+1 = x̄k+1 |xk /∈ yk, qk = q̄k, xk = x̄k, uk = ūk)

(3)

= P (xk+1 /∈ yk+1 |xk /∈ yk, qk+1 = q̄k+1, xk+1 = x̄k+1, qk = q̄k, xk = x̄k, uk = ūk)

× P (qk+1 = q̄k+1 |xk /∈ yk, xk+1 = x̄k+1, qk = q̄k, xk = x̄k, uk = ūk)

× P (xk+1 = x̄k+1 |xk /∈ yk, qk = q̄k, xk = x̄k, uk = ūk)

(4)

= P (xk+1 /∈ yk+1 |xk /∈ yk, xk+1 = x̄k+1, xk = x̄k)

× P (qk+1 = q̄k+1 |xk+1 = x̄k+1, qk = q̄k) · P (xk+1 = x̄k+1 |xk = x̄k, uk = ūk)

(5)

=
(

1− P (xk+1 ∈ yk+1 |xk /∈ yk, xk+1 = x̄k+1, xk = x̄k)
)
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× τQ(q̄k+1 | q̄k, x̄k+1) · τX(x̄k+1 | x̄k, ūk)
(6)

= (1− pkH(x̄k+1, x̄k)) · τQ(q̄k+1 | q̄k, x̄k+1) · τX(x̄k+1 | x̄k, ūk), (43)

where we used the following steps:

(1) Due to the definition of s̄k+1 and s̄k.

(2) Using well known transformations from probability theory for conditional probabil-

ities.

(3) Similarly to Step (2).

(4) Since xk+1 = x̄k+1 and xk = x̄k already entails uk = ūk, and xk+1 and yk+1 are

independent of qk and qk+1. Furthermore, qk+1 is also independent of xk, yk and uk,

and xk+1 is independent of yk and qk.

(5) Due to well known properties of probabilities. Furthermore, by the definition of τQ

and τX in Section 4.1.4 and 4.1.2, respectively.

(6) By the definition of pkH in Section 4.1.5.

Combining Equations (41), (42) and Equation (43), we finally get

τkS(s̄k+1 | s̄k, ūk) =



1 if s̄k+1 = s̄k ∈ {sG, sH},∑
x̄k+1∈X

pkH(x̄k+1, x̄k)

×τX(x̄k+1 | x̄k, ūk) if s̄k+1 = sH

∧ s̄k = (q̄k, x̄k) /∈ {sG, sH},(
1− pkH(x̄k+1, x̄k)

)
×τQ(q̄k+1 | q̄k, x̄k+1)

×τX(x̄k+1 | x̄k, ūk) if s̄k+1 = (q̄k+1, x̄k+1) 6= sH

∧ s̄k = (q̄k, x̄k) /∈ {sG, sH},

0 otherwise.

8.3 Proof of Equation (13)

This section aims to prove how the dynamic programming algorithm (see Equation (12))

solves the single-agent safe planning problem (see Equation 11), i.e., Equation (13). Let us

reformulate Equation (10) the following way

fr(µ, Tr) = P (sN = sG |µ)
(1)

=
∑
s̄N∈S

1sG(s̄N ) · P (sN = s̄N |µ)

(2)

=
∑
s̄N∈S

1sG(s̄N ) ·
∑

s̄N−1∈S

P (sN = s̄N , sN−1 = s̄N−1 |µ)

(3)

=
∑
s̄N∈S

1sG(s̄N ) ·
∑

s̄N−1∈S

P (sN = s̄N | sN−1 = s̄N−1 |µ) · P (sN−1 = s̄N−1 |µ)
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(4)

=
∑
s̄N∈S

1sG(s̄N ) ·
∑

s̄N−1∈S

τN−1
S (s̄N | s̄N−1, µN−1(s̄N−1)) · P (sN−1 = s̄N−1 |µ)

(5)

=
∑
s̄N∈S

1sG(s̄N ) ·
∑

s̄N−1∈S

τN−1
S (s̄N | s̄N−1, µN−1(s̄N−1))

· · ·
∑
s̄0∈S

τ0
S(s̄1, | s̄0, µ0(s̄0)) · P (s0 = s̄0), (44)

where we made the following steps:

(1) Due to the definition of the indicator function in Section 2.

(2) Using marginalization of discrete random variables.

(3) Using the definition of conditional probabilities.

(4) By the definition of τkS in Section 4.1.5.

(5) Continue iterating Steps (2)-(4) and finally adding that the initial state s0
r = (∅, x0

r) is

known.

Now, by combining equations (44) and (11) with (12), we can write

fr(Tr) = fr(µr, Tr) = max
µ

fr(µ, Tr)

= max
µ

{ ∑
s̄N∈S

1sG(s̄N ) ·
∑

s̄N−1∈S

τN−1
S (s̄N | s̄N−1, µN−1(s̄N−1))

· · ·
∑
s̄0∈S

τ0
S(s̄1, | s̄0, µ0(s̄0)) · 1s0r(s̄0)

}
= max

µ

{ ∑
s̄0∈S

· · ·
∑

s̄N−1∈S

∑
s̄N∈S

1sG(s̄N ) · τN−1
S (s̄N | s̄N−1, µN−1(s̄N−1))

· · · τ0
S(s̄1, | s̄0, µ0(s̄0)) · 1s0r(s̄0)

}
=
∑
s̄0∈S

max
µ0

{
· · ·max

µN−2

{ ∑
s̄N−1∈S

max
µN−1

{ ∑
s̄N∈S

1sG(s̄N ) · τN−1
S (s̄N | s̄N−1, µN−1(s̄N−1))

}
× τN−2

S (s̄N−1 | s̄N−2, µN−2(s̄N−2))
}
· · · τ0

S(s̄1, | s̄0, µ0(s̄0))
}
· 1s0r(s̄0)

=
∑
s̄0∈S

max
µ0

{
· · ·max

µN−2

{ ∑
s̄N−1∈S

max
µN−1

{ ∑
s̄N∈S

V N (s̄N ) · τN−1
S (s̄N | s̄N−1, µN−1(s̄N−1))

}
· τN−2
S (s̄N−1 | s̄N−2, µN−2(s̄N−2))

}
· · · τ0

S(s̄1, | s̄0, µ0(s̄0))
}
· 1s0r(s̄0)

=
∑
s̄0∈S

max
µ0

{
· · ·max

µN−2

{ ∑
s̄N−1∈S

V N−1(s̄N−1) · τN−2
S (s̄N−1 | s̄N−2, µN−2(s̄N−2))

}
· · · τ0

S(s̄1, | s̄0, µ0(s̄0))
}
· 1s0r(s̄0)

= · · · =
∑
s̄0∈S

V 0(s̄0) · 1s0r(s̄0) = V 0(s0
r), (45)

which coincides with Equation (13).
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8.4 Full-fleet safe planning problem

Based on the formulation used in Section 4.1 we define the full-fleet safe planning problem

for multiple agents. Let us consider the target list T ∈ X and the set of robots R, where

|R| = n > 1. At each step k, instead of considering the position of a single-robot xk ∈ X, we

use the position of the fleet as a tuple xkM = (xk1, . . . , x
k
n), where xkr is the position of agent r at

step k. We can write xkM ∈ XM = Xn. We assume that multiple agents can occupy the same

location at the same time. We modify the rest of the notations introduced in Section 4.1 to be

consistent with the definition of XM .

Let UM = Un be the set of possible inputs for the fleet. The input applied at step

k can be described by ukM = (uk1, . . . , u
k
n), where ukr is the input of agent r. Furthermore,

UM (xM ) = {uM ∈ UM |xr + dur ∈ X, ∀r ∈ R} ⊆ UM is the set of available inputs for the fleet.

The transition kernel τX,M : XM ×XM × UM → [0, 1] defines the fleet dynamics, where

τX,M (xk+1
M |xkM , ukM ) =

∏
r∈R

τX(xk+1
r |xkr , ukr ),

consistently with Section 4.1.2. The hazard dynamics τY is defined the same way as in Sec-

tion 4.1.3.

The definition of the target execution state at step k denoted by qk ∈ Q = 2T coincides

with that of Section 4.1.4. The transition kernel, however, can now be described by τQ,M :

Q×Q×XM → [0, 1], where

TQ,M (qk+1 | qk, xk+1
M ) =


1 if qk+1 = qk, xk+1

r /∈ T, ∀r ∈ R

∨ qk+1 = qk ∪ {xk+1
r |xk+1

r ∈ T},

0 otherwise.

If none of the agents step on a target location xk+1
r /∈ T for all r ∈ R, then qk+1 = qk.

If any of the robots visit a target location, it is added to the target execution state, hence

qk+1 = qk ∪ {xk+1
r |xk+1

r ∈ T}.

We can now define the combined state space SM based on Section 4.1.5. First, we define

the contamination state sH,M , which indicates an unsuccessful mission. The fleet transmits into

state sH,M at step k if at least one of the robots get contaminated, hence there exist r ∈ R such

that xkr ∈ yk. Second, we can reduce the state space of SM by removing the set of impossible

states {(q, xM ) | ∃r ∈ R st. xr ∈ T ∧ xr /∈ q}, where not all visited target positions were added

to the target execution state. Now we can define the combined state space

SM = {sH,M} ∪ (Q×XM ) \ {(q, xM ) | ∃r ∈ R st. xr ∈ T ∧ xr /∈ q}. (46)

Furthermore, we can define the goal position xG ∈ X, the goal position of the fleet xG,M =

(xG, . . . , xG) and the goal state sG.M = (xG,M , T ) of the fleet. Reaching sG,M indicates a

successful mission, where every robot has reached the goal position and all targets have been
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visited by the fleet. The initial robot positions x0
M = (x0

1, . . . , x
0
n) and the initial state s0

M =

(∅, x0
M ) is assumed to be known.

We now define the contamination risk for the fleet pkH,M : XM × XM → [0, 1] based

on Appendix 8.1. The value of pkH,M (x̄k+1
M , x̄kM ) is defined as the probability of at least one

robot getting contaminated at step k + 1 (there exist r ∈ R such that x̄k+1
r ∈ yk+1) given

that no robots are contaminated at step k (x̄kr /∈ yk for all r ∈ R) and the transition between

xkM = x̄kM = (x̄k1, . . . , x̄
k
n) and xk+1

M = x̄k+1
M = (x̄k+1

1 , . . . , x̄k+1
n ), i.e.,

pkH,M (x̄k+1
M , x̄kM ) = P (yk+1 ∈ Ȳ k+1(x̄k+1

M ) | yk ∈ Ȳ k(x̄kM ), xk+1
M = x̄k+1

M , xkM = x̄kM ),

where we define the following sets

Ȳ k(x̄kM ) = {ȳk ∈ Y | x̄kr /∈ ȳk, ∀r ∈ R},

Ȳ k+1(x̄k+1
M ) = {ȳk+1 ∈ Y | ∃r ∈ R st. x̄k+1

r ∈ ȳk+1}.

Similarly to pkH , calculating the values of pkH,M is computationally intractable, hence the usage

of the Monte-Carlo sampling based approximation is advised (see [13, Algorithm 1]).

Similarly to Section 4.1.6, we propose the controller synthesis and provide the solution

via dynamic programming. Given the initial state s0
M and the time horizon N ∈ N>0, for a

generic control policy π = {µ0
M , . . . , µ

N−1
M } (where µkM : SM → UM is the control law for the

fleet at step k) and target list T , the probability of success is defined by the following equation

(consistently with Equation (10))

FM (π, T ) = P (sNM = sG,M |π).

The aim of the safe planning problem is to find the optimal control policy πM (T ) by maximizing

the probability of success, hence (consistently with Equation (11))

πM (T ) = arg max
π

FM (π, T ).

We can now formulate the dynamic programming algorithm for solving the problem (consistently

with Equation (12)): For k = N , let us define V N
M (sNM ) = 1sG,M (sNM ), while for 1 ≤ k ≤ N ,

V k−1
M (sk−1

M ) = max
uM∈UM (xM )

 ∑
skM∈SM

τk−1
S,M (skM | sk−1

M , uM ) · V k
M (skM )

 .

The control law µkM (skM ) can be obtained as the optimal uM ∈ UM (xM ) at step k. Furthermore

similarly to Appendix 8.3 it holds, that

FM (T ) = FM (πM , T ) = max
π

FM (π, T ) = V 0
M (s0

M ).
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8.5 Mild conditions for multiplicative group success to be a lower bound on

the probability of group success

We introduce the following proposition.

Proposition 1 If knowing that a robot r ∈ R succeeds does not decrease the probability for other

robots R′ ⊂ R \ {r} succeeding, then the multiplicative group success F (T ) (see Equation (14))

is a lower bond on the probability of group success FM (T ) (see Appendix 8.4).

Proof (Proposition 1) First, we define cπrr to be a discrete random variable. Let cπrr = True

indicate that robot r ∈ R ended its mission successfully under control policy πr and task allocation

Tr ⊂ T . Hence, we can write P (cπrr = True) = P (sN = sG|π) = fr(Tr) consistently with

Equation (10). Furthermore let P (cπrr = False) = 1 − P (cπrr = True). Now, we can express

proposition 1 as follows

P
(
{cπr′r′ = True}r′∈R′ | cπrr = True

)
≥ P

(
{cπr′r′ = True}r′∈R′

)
,

for all r ∈ R and R′ ⊂ R \ {r}. This implies

P ({cπrr = True}r∈R) ≥
∏
r∈R

P (cπrr = True) =
∏
r∈R

fr(TR) = F (T ). (47)

Furthermore, according to Appendix 8.4, we have FM (T ) = maxπ FM (π, T ) and consequently

FM (T ) ≥ P ({cπrr = True}r∈R) ≥
∏
r∈R

P (cπrr = True) , (48)

for any set of policies {πr}r∈R. Finally, by combining Equation (47) and (48) we can write

FM (T ) ≥ P ({cπrr = True}r∈R) ≥
∏
r∈R

P (cπrr = True) ≥ F (T ),

which concludes the proof. �
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8.6 Performance guarantee for the forward greedy algorithm

In this section we provide a proof for the performance guarantee introduced in Theorem 1.

Lemma 1 For any M ∈ I, |M | = K, the elements of M = {m1, . . . ,mK} can be ordered, so

that

ρ(mk|Ak−1) ≥ ρk = ρ(ak|Ak−1),

where the sets Ak = {a1, . . . , ak} for all k and Afg = A|K| are obtained using Algorithm 1.

Furthermore, if mk ∈ Afg, then mk = ak holds.

Proof (Proof of Lemma 1) First, we need to prove by induction, that Akm

= {a1, . . . , ak−1,mk,mk+1, . . . ,mK} ∈ I and consequently Akm ⊃ {a1, . . . , ak−1,mk} ∈ I holds

for all k.

This statement holds for k = K. Since (P, I) is a matroid and Afg = {a1, . . . , aK} ∈ I,

therefore AK−1 = {a1, . . . , aK−1} ∈ I. Note that M = {m1, . . . ,mK} ∈ I and because |M | >
|AK−1|, due to matroid properties, there exists mK ∈ M \ AK−1 for which AK−1 ∪ {mK} =

{a1, . . . , aK−1,mK} = AKm ∈ I.

Assuming the statement holds for k+1, we know, that Ak+1
m = {a1, . . . , at,mk+1,mk+2, . . . ,mK} ∈

I. Consequently {a1, . . . , ak−1,mk+1,mk+2, . . . ,mK} ∈ I. Now, due to matroid properties, since

M ∈ I and |M | > |Ak+1
m |, there exist mk ∈M \Ak+1

m for which Ak+1
m ∪ {mt} =

{a1, . . . , ak−1,mk,mk+1, . . . ,mK} = Akm ∈ I. It is now easy to see, that Akm ⊃ {a1, . . . , ak−1,mk}
∈ I also holds.

If mk ∈ Afg, then at step k of the induction proof above, mk = ak can be chosen. Since for all

k′ > k it holds that mk = ak ∈ Ak′+1
m and mk′ ∈ M \ Ak′+1

m , therefore mk′ 6= mk, it cannot get

chosen at an earlier step. Consequently, if mk ∈ Afg, then mk = ak can be written.

Note that if {a1, . . . , ak−1,mk} = Ak−1 ∪ {mk} ∈ I, then the following holds for all k

ρ(mk|Ak−1) ≥ min
a:Ak−1∪{a}∈I

ρ(a|Ak−1) = ρ(ak|Ak−1),

which concludes the proof. �

Lemma 2 For all A ⊆ P , and for any a /∈ A, we have that

ρ(a|A) ≥ (1− α) · ρ(a|∅).

Proof (Proof of Lemma 2) Trivial, directly comes from the definition of curvature, see Def-

inition 6. �
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Lemma 3 For all A ⊆ P , and for any a /∈ A, we have that

ρ(a|∅) ≥ γ · ρ(a|A).

Proof (Proof of Lemma 3) Trivial, directly comes from the definition of submodularity ratio,

see Definition 4. �

Proof (Proof of Theorem 1) Let A∗ = {a1
∗, . . . , a

K
∗ }, where the elements ak∗ are ordered ac-

cording to lemma 1. Let Ak∗ = {a1
∗, . . . , a

k
∗} for k = 1, . . . ,K, and A0

∗ = ∅. Using this definition

and Lemma 2, we obtain

Ffg(A∗)− Ffg(∅) =
K∑
k=1

ρ(ak∗|Ak−1
∗ ) ≥ (1− α) ·

K∑
k=1

ρ(ak∗|∅). (49)

Let us further define the following sets:

Kint. =
{
k ∈ {1, . . . ,K} | ak ∈ Afg ∩A∗

}
,

Kfg =
{
k ∈ {1, . . . ,K} | ak ∈ Afg \A∗

}
,

K∗ =
{
k ∈ {1, . . . ,K} | ak∗ ∈ A∗ \Afg

}
.

It is easy to see, that K∗ = Kfg, which follows from Lemma 1. Now, using Lemma 1, we obtain

the following for the greedy solution

Ffg(Afg)− Ffg(∅) =
K∑
k=1

ρk =
∑

k∈Kint.

ρ(ak|Ak−1) +
∑
k∈Kfg

ρ(ak|Ak−1)

≤
∑

k∈Kint.

ρ(ak|Ak−1) +
∑
k∈K∗

ρ(ak∗|Ak−1).

By noticing, that for any ak∗ /∈ Afg we have ak∗ /∈ Ak−1, furthermore ak /∈ Ak−1 holds for any

k ∈ Kint., and by invoking Lemma 3, it holds, that

Ffg(Afg)− Ffg(∅) ≤
∑

k∈Kint.

ρ(ak|Ak−1) +
∑
k∈K∗

ρ(ak∗|Ak−1)

≤
∑

k∈Kint.

ρ(ak|Ak−1) +
1

γ
·
∑
k∈K∗

ρ(ak∗|∅)

≤ 1

γ
·
∑

k∈Kint.

ρ(ak|∅) +
1

γ
·
∑
k∈K∗

ρ(ak∗|∅).

Now, by Lemma 1, if ak ∈ A∗, then ak = ak∗, therefore

Ffg(Afg)− Ffg(∅) ≤
1

γ
·
∑

k∈Aint.

ρ(ak|∅) +
1

γ
·
∑
k∈K∗

ρ(ak∗|∅)
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=
1

γ
·
∑

k∈Kint.

ρ(ak∗|∅) +
1

γ
·
∑
k∈K∗

ρ(ak∗|∅)

=
1

γ
·
K∑
k=1

ρ(ak∗|∅). (50)

Finally, combining Equations (49) and (50) completes the proof

Ffg(Afg)− Ffg(∅)
Ffg(A∗)− Ffg(∅)

≤
1
γ ·
∑K

k=1 ρ(ak∗|∅)

(1− α) ·
∑K

k=1 ρ(ak∗|∅)
=

1

γ · (1− α)
.

�

8.7 Performance guarantee for the reverse greedy algorithm

In this section we provide a proof for the performance guarantee introduced in Theorem 2.

Lemma 4 For any M ∈ Ī, |M | = K̄, the elements of M = {m1, . . . ,mK} can be ordered, so

that

ρ(mk|Āk−1) ≤ ρ̄k = ρ(āk|Āk−1),

where the sets Āk = {ā1, . . . , āk} for all k and Ārg = Ā|K̄| are obtained using Algorithm 3.

Furthermore, if mk ∈ Ārg, then mk = āk holds.

Proof (Proof of Lemma 4) First, we need to prove by induction, that Ākm

= {ā1, . . . , āk−1,mk,mk+1, . . . ,mK̄} ∈ Ī and consequently Ākm ⊃ {ā1, . . . , āk−1,mk} ∈ Ī holds

for all k.

This statement holds for k = K̄. Since (P, Ī) is a matroid and Ārg = {ā1, . . . , āK̄} ∈ Ī,

therefore ĀK−1 = {ā1, . . . , āK̄−1} ∈ Ī. Note that M = {m1, . . . ,mK̄} ∈ Ī and because |M | >
|ĀK̄−1|, due to matroid properties, there exists mK̄ ∈ M \ ĀK̄−1 for which ĀK̄−1 ∪ {mK̄} =

{ā1, . . . , āK̄−1,mK̄} = ĀK̄m ∈ Ī.

Assuming the statement holds for k+1, we know, that Āk+1
m = {ā1, . . . , āk,mk+1,mk+2, . . . ,mK̄} ∈

Ī. Consequently {ā1, . . . , āk−1,mk+1,mk+2, . . . ,mK̄} ∈ Ī. Now, due to matroid properties, since

M ∈ Ī and |M | > |Āk+1
m |, there exist mk ∈M \ Āk+1

m for which Āk+1
m ∪ {mk} =

{ā1, . . . , āk−1,mk,mk+1, . . . ,mK̄} = Ākm ∈ Ī. It is now easy to see, that Ākm ⊃ {ā1, . . . , āk−1,mk}
∈ Ī also holds.

If mk ∈ Ārg, then at step k of the induction proof above, mk = āk can be chosen. Since for all

k′ > k it holds that mk = āk ∈ Āk′+1
m and mk′ ∈ M \ Āk′+1

m , therefore mk′ 6= mk, it cannot get

chosen at an earlier step. Consequently, if mk ∈ Ārg, then mk = āk can be written.

Note that if {ā1, . . . , āk−1,mk} = Āk−1 ∪ {mk} ∈ Ī, then the following holds for all k

ρ(mk|Āk−1) ≤ max
ā:Āk−1∪{ā}∈Ī

ρ(ā|Āk−1) = ρ(āk|Āk−1),

which concludes the proof. �

52



Proof (Proof of Theorem 2) In this section we extend the existing results shown in [?, The-

orem 2.9] by considering the submodularity ratio of function Frg as well. By using the definition

of the curvature (see Definition 6), we obtain the following

Frg(Ā∗ ∪ Ārg)− Frg(Ā∗) =
K̄∑
k=1

ρ(āk|Ā∗ ∪ Āk−1)

≥ (1− ᾱ) ·
K̄∑
k=1

ρ(āk|Āk−1)

= (1− ᾱ) · (Frg(Ārg)− Frg(∅)). (51)

Furthermore, by invoking the definition of the submodularity ratio (see Definition 4) and Lemma 4,

we can write

Frg(Ā∗ ∪ Ārg)− Frg(Ārg) =
K̄∑
k=1

ρ(āk∗|Āk∗ ∪ Ārg)

≤ 1

γ̄
·
K̄∑
k=1

ρ(āk∗|Āk−1)

≤ 1

γ̄
·
K̄∑
k=1

ρ(āk|Āk−1)

=
1

γ̄
· (Frg(Ārg)− Frg(∅)). (52)

Let us now combine Equations (51) and (52) to conclude the proof

Frg(Ā∗) + (1− ᾱ) · (Frg(Ārg)− Frg(∅)) ≤ Frg(Ā∗) + Frg(Ā∗ ∪ Ārg)− Frg(Ā
∗)

= Frg(Ā∗ ∪ Ārg)

≤ Frg(Ārg) +
1

γ̄
· (Frg(Ārg)− Frg(∅)).

Now, by substracting Frg(∅) from both sides and rearranging the equation, we obtain

Frg(Ā∗)− Frg(∅) + (1− ᾱ) · (Frg(Ārg)− Frg(∅)) ≤ Frg(Ārg)− Frg(∅) +
1

γ̄
· (Frg(Ārg)− Frg(∅))

Frg(Ā∗)− Frg(∅) ≤
(

1 +
1

γ̄
− (1− ᾱ)

)
· (Frg(Ārg)− Frg(∅))

1

1 + 1
γ̄ + (ᾱ− 1)

≤ Frg(Ārg)− Frg(∅)
Frg(Ā∗)− Frg(∅)

γ̄

1 + γ̄ · ᾱ
≤ Frg(Ārg)− Frg(∅)
Frg(Ā∗)− Frg(∅)

,

which concludes the proof. �
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8.8 Example hazard model τY

In the following, we propose the hazard dynamics τY also used in Section 6 based on [9,

Section IV./C.]. Let yk ∈ Y be the hazard state and x ∈ X \ yk be an uncontaminated

cell at time step k. We also introduce the scalar parameter θ ∈ [0, 1] as the spread speed

parameter which controls the speed of the evolving hazard. Now, let us say, that x can be

ignited by any of its contaminated neighbours x̄N ∈ N(x) ∩ yk with probability θ and diagonal

neighbours x̄D ∈ D(x) ∩ yk with probability θ /
√

2, to take the distance into account. We

also say, that nN (x, yk) = |N(x) ∩ yk| and nD(x, yk) = |D(x) ∩ yk| denote the numbers of

contaminated and diagonally contaminated neighbours of x. Now, we can define the following

function pnc : X × Y → [0, 1] as the probability of uncontaminated position x remaining non-

contaminated given hazard state yk at step k

pnc(x | yk) = (1− θ)nN (x,yk) ·
(

1− θ√
2

)nD(x,yk)

.

Note that the smaller the value of θ, the less likely position x becomes contaminated, hence the

slower the hazard spreads. Once the hazard reaches a cell, it remains contaminated throughout

the whole process. In order to model this behaviour, we define pc : X × Y → [0, 1] representing

the probability of position x getting contaminated given hazard state yk at step k the following

way

pc(x | yk) =

1− pnc(x | yk) if x /∈ yk,

1 if x ∈ yk.

Finally, we can define transition kernel τY : Y × Y → [0, 1] as

τY

(
yk+1 | yk

)
=

∏
x∈yk+1

pc(x | yk) ·
∏

x∈(X\yk+1)

1− pc(x | yk). (53)

Function τY defined this way is a valid transition kernel for any k if the following condi-

tions hold.

Condition 8.1 For all yk+1, yk ∈ Y it holds that τY
(
yk+1 | yk

)
≥ 0.

Condition 8.2 For all yk ∈ Y it holds that
∑
y∈Y

τY
(
y | yk

)
= 1.

We can verify that these conditions hold for τY defined by Equation (53) in the following.

Proof (Condition 8.1) For all x ∈ X and yk ∈ Y we can write the following. Since θ ∈ [0, 1]

and both nN (x, yk) ≥ 0 and nD(x, yk) ≥ 0, it also holds that pnc(x|yk) ∈ [0, 1]. This implies

that pc(x|yk) ∈ [0, 1] and finally τY (yk+1 | yk) ∈ [0, 1]. Hence, τY (yk+1 | yk) ≥ 0 for any pair

yk+1, yk ∈ Y . �

Proof (Condition 8.2) Let {x1, . . . , x|X|} be an ordering of the elements in set X. Further-

more, we define the discrete random variable xci ∈ {True, False}. The random variable takes
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the value xci = True if xi is contaminated (xi ∈ y), and xci = False, if it is not contaminated

(xi /∈ y), given hazard state y ∈ Y . We can rewrite τY the following way

τY

(
y | yk

)
= τY

(
xc1, . . . , x

c
|X| | y

k
)

=

|X|∏
i=1

1True(x
c
i ) · pc(xi|yk) · 1False(xci ) · (1− pc(xi|yk)), (54)

where we also used Equation (53) and the definition of the indicator function (see Section 2).

Based on the above, we can write

∑
y∈Y

τY

(
y | yk

) (1)

=
∑

xc1∈{True,False}

· · ·
∑

xc|X|∈{True,False}

τY

(
xc1, . . . , x

c
|X| | y

k
)

(2)

=
∑

xc1∈{True,False}

· · ·
∑

xc|X|∈{True,False}

·
|X|∏
i=1

1True(x
c
i ) · pc(xi|yk) · 1False(xci ) · (1− pc(xi|yk))

(3)

=
∑

xc1∈{True,False}

· · ·
∑

xc|X|−1
∈{True,False}

·
|X|−1∏
i=1

1True(x
c
i ) · pc(xi|yk) · 1False(xci ) · (1− pc(xi|yk))

×

 ∑
xc|X|∈{True,False}

1True

(
xc|X|

)
· pc
(
x|X||yk

)
· 1False

(
xc|X|

)
·
(

1− pc
(
x|X||yk

))
(4)

=
∑

xc1∈{True,False}

· · ·
∑

xc|X|−1
∈{True,False}

·
|X|−1∏
i=1

1True(x
c
i ) · pc(xi|yk) · 1False(xci ) · (1− pc(xi|yk))

×
(
pc

(
x|X| | yk

)
+
(

1− pc
(
x|X| | yk

)))
(5)

=
∑

xc1∈{True,False}

· · ·
∑

xc|X|−1
∈{True,False}

·
|X|−1∏
i=1

1True(x
c
i ) · pc(xi|yk) · 1False(xci ) · (1− pc(xi|yk))

(6)

= · · · =
∑

xc1∈{True,False}

1True(x
c
1) · pc(x1|yk) · 1False(xc1) · (1− pc(x1|yk))

(7)

= pc(x1|yk) + (1− pc(x1|yk)) = 1, (55)

by using the steps below:

(1) By Equation (54).

(2) By Equation (54).

(3) By rearranging the sum.

(4) By evaluating the last term.

(5) By evaluating the last term.

(6) Continue iterating Steps (3)-(5).

(7) By evaluating the last term.

This concludes the proof. �
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