ETH zürich

Crystal structure of a 1,1dibutyl-1H,3H-naphtho[1,8-cd] [1,2,6]oxastannaborinin-3-ol

Journal Article

Author(s): Breitwieser, Kevin (D; Chen, Peter (D)

Publication date: 2021-02

Permanent link: https://doi.org/10.3929/ethz-b-000471294

Rights / license: Creative Commons Attribution 4.0 International

Originally published in: Acta Crystallographica Section E: Crystallographic Communications 77, <u>https://doi.org/10.1107/S2056989021000712</u>

This page was generated automatically upon download from the <u>ETH Zurich Research Collection</u>. For more information, please consult the <u>Terms of use</u>.

ISSN 2056-9890

Received 13 January 2021 Accepted 21 January 2021

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; boron; tin; heterocycle; stannaborininol.

CCDC reference: 2057745

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a 1,1-dibutyl-1*H*,3*H*-naphtho-[1,8-c*d*][1,2,6]oxastannaborinin-3-ol

Kevin Breitwieser and Peter Chen*

Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland. *Correspondence e-mail: peter.chen@org.chem.ethz.ch

The title oxastannaborininol compound, $[Sn(C_4H_9)_2(C_{10}H_7BO_2)]$, has been synthesized and crystallized. While heterocycles containing a C–O–B group are common, heterocycles containing an *E*–O–B unit, where *E* is an element of the carbon group except for carbon, are rare. In fact, while heterocycles containing Si–O–B units are occasionally reported (although without crystal structures), there are no reports for the corresponding germanium, tin or lead analogues. Herein, the first synthesis and crystal structure of a heterocycle containing an Sn–O–B unit is described. The asymmetric unit contains one molecule showing a notable disorder of the tin atom and the butyl groups. They occupy two sets of positions with site-occupancy factors of 0.295 (6) and 0.705 (6).

1. Chemical context

Both tin and boron organic compounds are widespread reagents for cross-coupling reactions in organic synthesis (Negishi, 2002). The combination of tin- and boron-containing groups in one molecule can be advantageous, as they can undergo cross-coupling under different conditions. While the stannyl group easily undergoes transmetalation at elevated temperatures, a boronic acid will not do so with an additional activator, usually a base (Cárdenas, 2003). However, those groups are not usually connected. The only reported use of esters of stannanols and boronic acids lies in their increased Lewis acidity compared to the free boronic acid (Beckett *et al.*, 1999). They have been otherwise mentioned only in one publication, although no applications were reported (Murphy *et al.*, 1993).

Heterocycles containing an E-O-B unit (E = Si, Ge, Sn, Pb) have so far only been reported for silicon (Fig. 1). Benzosiloxaboroles, containing a five-membered ring with an Si-O-B

Chemical structure of compounds known in the literature that contain a heterocycle with an Si–O–B unit. Compound **2** (Brzozowska *et al.*, 2015) is a benzosiloxaborole, while compound **3** (Sumida *et al.*, 2018) and compound **4** (Su *et al.*, 2018) are oxasilaborininols.

unit, have shown promising properties for medical applications, being strong antimicrobial (Durka *et al.*, 2019) and antifungal agents (Brzozowska *et al.*, 2015).

Oxasilaboroninols have only been described in two cases. Sumida and co-workers accidentally stumbled upon 3 while trying to synthesize an oxasilole. They showed that both organometallic moieties can be replaced successively through Suzuki–Miyaura and Hiyama coupling (Sumida *et al.*, 2018). Su and Hartwig on the other hand synthesized oxasiliaboroninol 4 using ruthenium catalysis (Su *et al.*, 2018). In their report, they describe multiple transformations for this product, being able to replace selectively the boronic acid group while leaving a silanol group behind.

2. Structural commentary

The title molecule (1) is a cyclic intramolecular ester of a boronic acid and a stannanol. The asymmetric unit contains

Table 1	
Hydrogen-bond geometry	y (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^{i}$	0.88 (2)	1.93 (2)	2.805 (2)	172 (3)

Symmetry code: (i) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z$.

one molecule (Fig. 2). It shows notable disorder of the tin atom and the butyl groups. They occupy two sets of positions with site-occupancy factors of 0.295 (6) and 0.705 (6). It is furthermore planar, pointing towards electron delocalization over almost the whole molecule. The C–C bond lengths in the naphthalene structure are between 1.352 (4) and 1.439 (3) Å. This is in line with the bond lengths in naphthalene ranging from 1.350 to 1.421 Å (Abrahams *et al.*, 1949). The Sn–O bond distance is 2.0041 (17) and 2.040 (3) Å and the Sn–C bond connecting the tin atom to the aromatic ring has a length of 2.151 (6) Å and 2.210 (4) Å, varying due to disorder. The B–C bond has a length of 1.594 (3) Å, the B–O bond lengths are 1.352 (3) Å (B–OSn) and 1.362 (3) Å (B–OH).

3. Supramolecular features

In the crystal, the molecules form dimers through pairs of hydrogen bonds between the ring oxygen atom and the hydroxyl group with a distance of 2.805 (2) Å between the two involved oxygen atoms (Fig. 3, Table 1).

Figure 2

Crystal structure of the title compound **1**. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as fixed-size spheres with a radius of 0.15 Å. The tin atom and the butyl groups show notable disorder.

Figure 3

Structure of the dimer formed through hydrogen bonding. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as fixed-size spheres with a radius of 0.15 Å.

research communications

Figure 4

Structures of the compounds with the C–B–O–E–C motif (E = Si, Ge, Sn, Pb) and reported crystal structures. Compound **5** is the only one where this motif is formed by covalent bonds only (Ito *et al.*, 2011), while the compounds **6** (Boese *et al.*, 1996) and **7** (Braunschweig *et al.*, 2017) contain coordinative bonds.

4. Database survey

Searching the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom *et al.*, 2016), not a single ester of a boronic acid and a stannanol has been crystallized. The same is true for the corresponding germanol and plumbanol derivatives. One ester of a boronic acid and trimethylsilanol (5) has been crystallized (Ito *et al.*, 2011). Two additional crystal structures containing the C-B-O-Sn-C motif have been reported. However, in those cases, either the O-Sn bond in 6 (Braunschweig *et al.*, 2017) or the O-B bond in 7 (Boese *et al.*, 1996) are not covalent, but rather coordinative bonds. Those three molecules are shown in Fig. 4.

The CSD lists three stannanols, all of which are triaryl stannanols (Růžička *et al.*, 2013; Barbul *et al.*, 2012). For those compounds, the Sn-O bond has a length of 1.981 to 2.057 Å, agreeing with the bond length of 2.0041 (17) Å found for the title compound. The Sn $-C_{Ar}$ bond length varies between 2.143 and 2.208 Å, matching the corresponding bond in the title compound.

5. Synthesis and crystallization

8-Iodo-1-naphthylboronic acid was prepared according to literature (Katz, 1986). Under argon, 122.6 mg (0.412 mmol, 1 eq.) of 8-iodo-1-naphthylboronic acid and 0.13 mL (0.459 mmol, 1.1 eq.) of tributyltin methoxide were heated to 373 K for 22.5 h; 0.2 mL (0.706 mmol, 1.7 eq.) of tributyltin methoxide were added and stirring was continued for 21 h at 373 K. Then 0.5 mL (1.764 mmol, 4.3 eq.) of tributyltin methoxide were added and the mixture was heated to 403 K for an additional 23 h. The mixture was cooled to RT and diluted by the addition of hexane. It was washed with equal volume 1 M aq. NaOH, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by column chromatography (pure hexane to hexane:ethyl acetate 1:1) to obtain a yellowish solid that was crystallized by slow evaporation of a solution in 1,2-dimethoxyethane at 258 K and washed with pentane to obtain 27.3 mg (0.068 mmol, 15%) of colorless crystals suitable for X-ray crystallography.

Crystal data	
Chemical formula	$[Sn(C_4H_9)_2(C_{10}H_7BO_2)]$
Mr	402.88
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	200
a, b, c (Å)	30.1386 (6), 11.2948 (1), 16.4726 (3)
β (°)	139.457 (4)
$V(Å^3)$	3644.9 (2)
Ζ	8
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	11.17
Crystal size (mm)	$0.26 \times 0.13 \times 0.02$
Data collection	
Diffractometer	Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 300K
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.234, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28847, 3923, 3724
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.638
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.066, 1.08
No. of reflections	3923
No. of parameters	264
No. of restraints	167
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.45, -0.39

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

¹H NMR (400 MHz, CDCl₃) δ 8.44 (*dd*, *J* = 7.0, 1.5 Hz, 1H, H12), 7.93 (*dd*, *J* = 8.2, 1.5 Hz, 1H, H10), 7.89 (*dd*, *J* = 7.1, 2.6 Hz, 1H, H14), 7.55 (*dd*, *J* = 8.1, 7.0 Hz, 1H, H11), 7.51–7.38 (*m*, 2H, H15 & H16), 4.80–4.37 (*s*, 1H, OH), 1.67 (*dtd*, *J* = 14.3, 7.2, 2.5 Hz, 4H, H2*A* & H2*B* & H6*A* & H6*B*), 1.47–1.29 (*m*, 8H H1*A* & H1*B* & H3*A* & H3*B* & H5*A* & H5*B* & H7*A* & H7*B*), 0.87 (*t*, *J* = 7.3 Hz, 6H H4*A* & H4*B* & H4*C* & H8*A* & H8*B* & H8*C*).

¹¹B NMR (128 MHz, CDCl₃) δ 27.22 (*s*, *br*, B1).

¹³C NMR (101 MHz, CDCl₃) δ 142.65 (*s*, C18), 139.20 (*s*, C13), 137.30 (*s*, C12), 134.50 (*s*, C16), 133.78 (*s*, C17), 132.13 (*s*, C10), 130.81 (*s*, C14), 125.86 (*s*, C11), 124.55 (*s*, C15), 27.55 (*s*, C2 & C6), 27.10 (*s*, C3 & C7), 17.51 (*s*, C1 & C5), 13.70 (C4 & C8). C9 is not visible due to C–B interactions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Data were collected at 200 K, as a phase transition leads to breaking crystals at lower temperatures. The disordered tin atom and butyl groups were restrained using rigid body (RIGU) restraints with σ for 1–3 distances and 1–2 distances of 0.004 and same-distance (SADI) restrains were applied to equivalent 1,2- and 1,3distances within the disorder. Ellipsoids of four atoms and their equivalents in the alternate orientation were constrained to be equal (EADP). H atoms were refined with riding coordinates [C-H = 0.93–0.97; $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O,$ C-methyl)] except for the proton involved in the hydrogen bond, which was only lightly restrained with DFIX.

Acknowledgements

X-ray services were provided by SMoCC – The Small Molecule Crystallography Center of ETH Zurich. The authors acknowledge Nils Trapp for proof-reading the manuscript.

Funding information

Funding for this research was provided by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

References

- Abrahams, S. C., Robertson, J. M. & White, J. G. (1949). Acta Cryst. 2, 233–238.
- Barbul, I., Varga, R. A. & Silvestru, C. (2012). *Rev. Roum. Chim.* 57, 313–319.
- Beckett, M. A., Owen, P. & Varma, K. S. (1999). J. Organomet. Chem. 588, 107–112.
- Boese, R., Wrackmeyer, B. & Wagner, K. (1996). CSD Communication (refcode SUSFER; deposition number 1264745). CCDC, Cambridge, England..

- Braunschweig, H., Dömling, M., Kachel, S., Kelch, H., Kramer, T., Krummenacher, I., Lenczyk, C., Lin, S., Lin, Z., Possiel, C. & Radacki, K. (2017). *Chem. Eur. J.* **23**, 16167–16170.
- Brzozowska, A., Ćwik, P., Durka, K., Kliś, T., Laudy, A. E., Luliński, S., Serwatowski, J., Tyski, S., Urban, M. & Wróblewski, W. (2015). Organometallics, 34, 2924–2932.
- Cárdenas, D. J. (2003). Angew. Chem. Int. Ed. 42, 384-387.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Durka, K., Laudy, A. E., Charzewski, Ł., Urban, M., Stępień, K., Tyski, S., Krzyśko, A. & Luliński, S. (2019). *Eur. J. Med. Chem.* 171, 11–24.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ito, K., Tamashima, H., Iwasawa, N. & Kusama, H. (2011). J. Am. Chem. Soc. 133, 3716–3719.
- Katz, H. E. (1986). Organometallics, 5, 2308-2311.
- Murphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J. & Gallagher, J. F. (1993). *J. Mater. Chem.* **3**, 1275–1283.
- Negishi, E. (2002). J. Organomet. Chem. 653, 34-40.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Růžička, A., Padělková, Z., Švec, P., Pejchal, V., Česlová, L. & Holeček, J. (2013). J. Organomet. Chem. **732**, 47–57.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Su, B. & Hartwig, J. F. (2018). Angew. Chem. Int. Ed. 57, 10163– 10167.
- Sumida, Y., Harada, R., Sumida, T., Hashizume, D. & Hosoya, T. (2018). Chem. Lett. 47, 1251–1254.

Acta Cryst. (2021). E77, 180-183 [https://doi.org/10.1107/S2056989021000712]

Crystal structure of a 1,1-dibutyl-1H,3H-naphtho[1,8-cd]

[1,2,6]oxastannaborinin-3-ol

Kevin Breitwieser and Peter Chen

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

1,1-Dibutyl-1H,3H-naphtho[1,8-cd][1,2,6]oxastannaborinin-3-ol

```
Crystal data
[Sn(C_4H_9)_2(C_{10}H_7BO_2)]
                                                                             F(000) = 1632
M_r = 402.88
                                                                             D_{\rm x} = 1.468 {\rm Mg} {\rm m}^{-3}
Monoclinic, C2/c
                                                                             Cu K\alpha radiation, \lambda = 1.54184 Å
a = 30.1386 (6) Å
                                                                             Cell parameters from 21527 reflections
b = 11.2948 (1) Å
                                                                             \theta = 4.5 - 79.4^{\circ}
                                                                             \mu = 11.17 \text{ mm}^{-1}
c = 16.4726 (3) Å
                                                                             T = 200 \text{ K}
\beta = 139.457 (4)^{\circ}
V = 3644.9 (2) Å<sup>3</sup>
                                                                             Plate, clear colourless
                                                                             0.26 \times 0.13 \times 0.02 \text{ mm}
Z = 8
Data collection
Rigaku Oxford Diffraction XtaLAB Synergy,
                                                                             3923 independent reflections
   Dualflex, Pilatus 300K
                                                                             3724 reflections with I > 2\sigma(I)
   diffractometer
                                                                             R_{\rm int} = 0.033
\omega scans
                                                                             \theta_{\rm max} = 79.6^{\circ}, \, \theta_{\rm min} = 4.5^{\circ}
Absorption correction: gaussian
                                                                             h = -38 \rightarrow 29
   (CrysAlisPro; Rigaku OD, 2018)
                                                                             k = -14 \rightarrow 14
T_{\min} = 0.234, T_{\max} = 1.000
                                                                             l = -17 \rightarrow 20
28847 measured reflections
Refinement
Refinement on F^2
                                                                             Hydrogen site location: mixed
Least-squares matrix: full
                                                                             H atoms treated by a mixture of independent
R[F^2 > 2\sigma(F^2)] = 0.024
                                                                                 and constrained refinement
wR(F^2) = 0.066
                                                                             w = 1/[\sigma^2(F_0^2) + (0.0359P)^2 + 2.7329P]
S = 1.08
                                                                                where P = (F_0^2 + 2F_c^2)/3
3923 reflections
                                                                             (\Delta/\sigma)_{\rm max} = 0.001
                                                                             \Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}
264 parameters
                                                                             \Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}
167 restraints
Primary atom site location: dual
```

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	0.80127 (4)	0.57065 (8)	0.24979 (9)	0.03908 (16)	0.705 (6)
01	0.75421 (8)	0.66412 (13)	0.09740 (13)	0.0452 (3)	
O2	0.66330 (9)	0.77545 (16)	-0.07920 (16)	0.0560 (4)	
H2	0.6923 (15)	0.790 (3)	-0.079 (3)	0.084*	
C18	0.65789 (11)	0.61897 (17)	0.12184 (19)	0.0411 (4)	
C17	0.72252 (13)	0.56497 (18)	0.2265 (2)	0.0465 (5)	
C9	0.64190 (11)	0.68493 (18)	0.02737 (19)	0.0427 (4)	
C13	0.60618 (13)	0.6048 (2)	0.1109 (2)	0.0498 (5)	
C16	0.73393 (15)	0.5022 (2)	0.3129 (3)	0.0606 (6)	
H16	0.776391	0.467551	0.380439	0.073*	
C12	0.54116 (13)	0.6536 (3)	0.0087 (3)	0.0628 (6)	
H12	0.507856	0.643613	0.002056	0.075*	
C15	0.68324 (17)	0.4895 (3)	0.3016 (3)	0.0676 (7)	
H15	0.692174	0.447318	0.361363	0.081*	
B1	0.69046 (12)	0.7075 (2)	0.0188 (2)	0.0403 (4)	
C14	0.62094 (16)	0.5390 (2)	0.2029 (3)	0.0609 (6)	
H14	0.587231	0.529701	0.195310	0.073*	
C10	0.57682 (13)	0.7313 (2)	-0.0696 (2)	0.0571 (6)	
H10	0.565960	0.775310	-0.130655	0.069*	
C11	0.52614 (14)	0.7150 (3)	-0.0803 (3)	0.0698 (7)	
H11	0.482665	0.746192	-0.148228	0.084*	
C7	0.9197 (5)	0.8346 (9)	0.5547 (9)	0.0641 (11)	0.705 (6)
H7A	0.927199	0.892715	0.522732	0.077*	0.705 (6)
H7B	0.962017	0.791753	0.621729	0.077*	0.705 (6)
C6	0.8653 (4)	0.7496 (5)	0.4523 (7)	0.0553 (11)	0.705 (6)
H6A	0.823204	0.793127	0.385509	0.066*	0.705 (6)
H6B	0.857484	0.692717	0.484475	0.066*	0.705 (6)
C1	0.8221 (5)	0.3983 (7)	0.2290 (11)	0.0757 (19)	0.705 (6)
H1A	0.854211	0.357484	0.308673	0.091*	0.705 (6)
H1B	0.780202	0.352665	0.169737	0.091*	0.705 (6)
C5	0.8825 (3)	0.6821 (5)	0.3978 (6)	0.0555 (11)	0.705 (6)
H5A	0.923203	0.634959	0.462947	0.067*	0.705 (6)
H5B	0.891816	0.738315	0.367705	0.067*	0.705 (6)
C8	0.9005 (7)	0.8980 (10)	0.6062 (8)	0.0776 (15)	0.705 (6)
H8A	0.855991	0.932701	0.538591	0.116*	0.705 (6)
H8B	0.933280	0.959032	0.662845	0.116*	0.705 (6)
H8C	0.900010	0.842311	0.649544	0.116*	0.705 (6)
C3A	0.9362 (9)	0.469 (2)	0.2939 (13)	0.131 (9)	0.295 (6)
H3AA	0.980912	0.440122	0.340706	0.158*	0.295 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3AB	0.940412	0.552561	0.313166	0.158*	0.295 (6)
C2	0.8516 (4)	0.4040 (4)	0.1841 (8)	0.110 (2)	0.705 (6)
H2A	0.859231	0.324071	0.175231	0.132*	0.705 (6)
H2B	0.818392	0.441013	0.102315	0.132*	0.705 (6)
C4	0.9615 (5)	0.4669 (7)	0.2585 (10)	0.142 (3)	0.705 (6)
H4A	0.943675	0.519424	0.193075	0.213*	0.705 (6)
H4B	0.962191	0.387520	0.238623	0.213*	0.705 (6)
H4C	1.007051	0.490615	0.335834	0.213*	0.705 (6)
C4A	0.8861 (8)	0.4541 (14)	0.1525 (11)	0.117 (6)	0.295 (6)
H4AA	0.840486	0.445560	0.109470	0.176*	0.295 (6)
H4AB	0.898299	0.384852	0.138891	0.176*	0.295 (6)
H4AC	0.888484	0.522479	0.121278	0.176*	0.295 (6)
C3	0.9174 (5)	0.4718 (7)	0.2707 (12)	0.149 (5)	0.705 (6)
H3A	0.906412	0.554416	0.264650	0.179*	0.705 (6)
H3B	0.945236	0.446432	0.354910	0.179*	0.705 (6)
C2A	0.9121 (6)	0.4051 (10)	0.3302 (14)	0.091 (4)	0.295 (6)
H2AA	0.941594	0.426381	0.416263	0.110*	0.295 (6)
H2AB	0.919817	0.321779	0.330202	0.110*	0.295 (6)
C1A	0.8408 (11)	0.4164 (14)	0.261 (3)	0.100 (8)	0.295 (6)
H1AA	0.833837	0.357857	0.293132	0.120*	0.295 (6)
H1AB	0.810547	0.396319	0.173984	0.120*	0.295 (6)
Sn1A	0.8101 (2)	0.5864 (4)	0.2649 (3)	0.0696 (7)	0.295 (6)
C5A	0.8830 (9)	0.7164 (16)	0.4067 (17)	0.0555 (11)	0.295 (6)
H5AA	0.926737	0.677223	0.474024	0.067*	0.295 (6)
H5AB	0.888251	0.774727	0.371250	0.067*	0.295 (6)
C6A	0.8671 (11)	0.7814 (15)	0.4627 (19)	0.0553 (11)	0.295 (6)
H6AA	0.827565	0.831359	0.398553	0.066*	0.295 (6)
H6AB	0.854627	0.723469	0.486213	0.066*	0.295 (6)
C7A	0.9231 (13)	0.856 (3)	0.574 (2)	0.0641 (11)	0.295 (6)
H7AA	0.931733	0.920516	0.547875	0.077*	0.295 (6)
H7AB	0.964334	0.808857	0.633969	0.077*	0.295 (6)
C8A	0.9093 (18)	0.908 (3)	0.637 (2)	0.0776 (15)	0.295 (6)
H8AA	0.879434	0.974810	0.589615	0.116*	0.295 (6)
H8AB	0.951534	0.932796	0.719433	0.116*	0.295 (6)
H8AC	0.888151	0.849241	0.640933	0.116*	0.295 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0426 (2)	0.0423 (2)	0.04336 (19)	0.00587 (15)	0.03572 (17)	0.00775 (15)
01	0.0546 (8)	0.0530 (8)	0.0488 (7)	0.0110 (6)	0.0450 (7)	0.0129 (6)
O2	0.0562 (9)	0.0733 (11)	0.0550 (9)	0.0151 (8)	0.0468 (8)	0.0221 (8)
C18	0.0557 (11)	0.0377 (9)	0.0490 (10)	-0.0046 (8)	0.0451 (10)	-0.0059 (8)
C17	0.0602 (13)	0.0475 (11)	0.0514 (12)	-0.0012 (9)	0.0478 (11)	0.0012 (8)
C9	0.0521 (11)	0.0445 (10)	0.0475 (10)	0.0001 (8)	0.0423 (10)	-0.0010 (8)
C13	0.0656 (13)	0.0488 (11)	0.0632 (13)	-0.0119 (10)	0.0568 (12)	-0.0116 (10)
C16	0.0771 (16)	0.0629 (15)	0.0624 (14)	0.0033 (12)	0.0587 (14)	0.0109 (11)
C12	0.0598 (14)	0.0779 (17)	0.0756 (16)	-0.0075 (12)	0.0584 (14)	-0.0072 (13)

C15	0.095 (2)	0.0702 (16)	0.0759 (17)	-0.0076 (15)	0.0759 (17)	0.0055 (13)
B1	0.0510 (12)	0.0406 (10)	0.0437 (11)	0.0022 (9)	0.0399 (10)	0.0014 (9)
C14	0.0834 (17)	0.0627 (14)	0.0767 (16)	-0.0206 (13)	0.0720 (16)	-0.0132 (13)
C10	0.0570 (13)	0.0690 (15)	0.0602 (13)	0.0105 (11)	0.0486 (12)	0.0125 (11)
C11	0.0553 (14)	0.091 (2)	0.0741 (17)	0.0102 (13)	0.0522 (14)	0.0107 (15)
C7	0.084 (2)	0.058 (4)	0.062 (3)	0.003 (2)	0.059 (2)	-0.0001 (19)
C6	0.0703 (16)	0.047 (4)	0.066 (2)	-0.001 (3)	0.0567 (16)	-0.002 (2)
C1	0.093 (4)	0.040 (2)	0.132 (5)	0.010(2)	0.096 (4)	0.012 (3)
C5	0.0517 (13)	0.066 (4)	0.0520 (16)	0.003 (2)	0.0403 (13)	-0.006 (2)
C8	0.123 (4)	0.062 (3)	0.078 (5)	0.003 (3)	0.084 (5)	0.000 (3)
C3A	0.094 (10)	0.25 (3)	0.098 (9)	-0.067 (13)	0.087 (8)	-0.059 (12)
C2	0.163 (6)	0.063 (3)	0.188 (7)	0.031 (3)	0.157 (6)	0.013 (3)
C4	0.176 (8)	0.098 (4)	0.244 (11)	0.024 (5)	0.185 (9)	0.019 (6)
C4A	0.095 (10)	0.087 (9)	0.094 (8)	0.003 (7)	0.050 (8)	-0.011 (7)
C3	0.165 (7)	0.094 (5)	0.291 (13)	0.022 (5)	0.202 (9)	0.007 (6)
C2A	0.095 (8)	0.061 (6)	0.146 (12)	0.022 (5)	0.099 (9)	0.031 (7)
C1A	0.124 (13)	0.057 (9)	0.17 (2)	0.030 (9)	0.127 (16)	0.039 (10)
Sn1A	0.0836 (12)	0.0915 (15)	0.0617 (9)	0.0361 (8)	0.0630 (9)	0.0338 (8)
C5A	0.0517 (13)	0.066 (4)	0.0520 (16)	0.003 (2)	0.0403 (13)	-0.006 (2)
C6A	0.0703 (16)	0.047 (4)	0.066 (2)	-0.001 (3)	0.0567 (16)	-0.002 (2)
C7A	0.084 (2)	0.058 (4)	0.062 (3)	0.003 (2)	0.059 (2)	-0.0001 (19)
C8A	0.123 (4)	0.062 (3)	0.078 (5)	0.003 (3)	0.084 (5)	0.000 (3)

Geometric parameters (Å, °)

Sn1—O1	2.0041 (17)	C8—H8A	0.9600
Sn1—C17	2.098 (3)	C8—H8B	0.9600
Sn1—C1	2.151 (6)	C8—H8C	0.9600
Sn1—C5	2.110 (5)	СЗА—НЗАА	0.9700
O1—B1	1.352 (3)	СЗА—НЗАВ	0.9700
O1—Sn1A	2.040 (3)	C3A—C4A	1.546 (13)
O2—H2	0.882 (18)	C3A—C2A	1.439 (12)
O2—B1	1.362 (3)	C2—H2A	0.9700
C18—C17	1.427 (3)	C2—H2B	0.9700
С18—С9	1.439 (3)	C2—C3	1.501 (9)
C18—C13	1.435 (3)	C4—H4A	0.9600
C17—C16	1.380 (3)	C4—H4B	0.9600
C17—Sn1A	2.210 (4)	C4—H4C	0.9600
C9—B1	1.594 (3)	C4—C3	1.489 (8)
C9—C10	1.382 (3)	C4A—H4AA	0.9600
C13—C12	1.401 (4)	C4A—H4AB	0.9600
C13—C14	1.422 (4)	C4A—H4AC	0.9600
С16—Н16	0.9300	С3—НЗА	0.9700
C16—C15	1.399 (4)	С3—Н3В	0.9700
С12—Н12	0.9300	C2A—H2AA	0.9700
C12—C11	1.352 (4)	C2A—H2AB	0.9700
С15—Н15	0.9300	C2A—C1A	1.483 (13)
C15—C14	1.357 (4)	C1A—H1AA	0.9700

C14—H14	0.9300	C1A—H1AB	0.9700
С10—Н10	0.9300	C1A—Sn1A	2.157 (13)
C10—C11	1.410 (3)	Sn1A—C5A	2.154 (12)
С11—Н11	0.9300	C5A—H5AA	0.9700
C7—H7A	0 9700	C5A—H5AB	0.9700
C7—H7B	0.9700	C5A - C6A	1513(12)
C7—C6	1 500 (6)	C6A—H6AA	0.9700
C7 - C8	1.500 (0)	C6A—H6AB	0.9700
C6—H6A	0.9700	C6A - C7A	1489(13)
C6—H6B	0.9700	C7A H7AA	0.9700
C6 C5	1 535 (6)	C7A H7AB	0.9700
C_1 H_1 A	0.9700	C7A - C8A	1.498(13)
	0.9700		0.0600
C1 = C2	1,530 (0)		0.9000
$C_1 = C_2$	0.0700		0.9000
C5 H5P	0.9700	Сод—подс	0.9000
СЭ—ПЭВ	0.9700		
O1 Sm1 $C17$	00.20(8)		100 5
O1 = Sn1 = C1	99.30 (8)	$H\delta B = C\delta = H\delta C$	109.5
01 - Sn1 - C1	107.0(3)	НЗАА—СЗА—НЗАВ	108.1
01 - sn1 - Cs	103.2(2)	C4A = C3A = H3AA	109.6
C1/-Sn1-C1	111.7 (2)	$C_{A} = C_{A} = H_{A} = H_{A}$	109.6
C1/-Sn1-C5	112.8 (2)	C_{2A} C_{3A} H_{3AA}	109.6
C5—Sn1—C1	120.1 (3)	C2A—C3A—H3AB	109.6
BI—OI—Snl	121.92 (13)	C2A—C3A—C4A	110.4 (11)
B1—O1—Sn1A	124.28 (15)	C1—C2—H2A	108.9
B1—O2—H2	113 (2)	C1—C2—H2B	108.9
C17—C18—C9	123.78 (18)	H2A—C2—H2B	107.7
C17—C18—C13	117.34 (19)	C3—C2—C1	113.2 (7)
C13—C18—C9	118.9 (2)	C3—C2—H2A	108.9
C18—C17—Sn1	121.60 (15)	C3—C2—H2B	108.9
C18—C17—Sn1A	122.42 (16)	H4A—C4—H4B	109.5
C16—C17—Sn1	117.84 (19)	H4A—C4—H4C	109.5
C16—C17—C18	120.5 (2)	H4B—C4—H4C	109.5
C16—C17—Sn1A	117.0 (2)	C3—C4—H4A	109.5
C18—C9—B1	127.12 (19)	C3—C4—H4B	109.5
C10—C9—C18	117.46 (19)	C3—C4—H4C	109.5
C10—C9—B1	115.39 (18)	C3A—C4A—H4AA	109.5
C12—C13—C18	120.0 (2)	C3A—C4A—H4AB	109.5
C12—C13—C14	120.3 (2)	C3A—C4A—H4AC	109.5
C14—C13—C18	119.6 (2)	H4AA—C4A—H4AB	109.5
C17—C16—H16	119.2	H4AA—C4A—H4AC	109.5
C17—C16—C15	121.7 (3)	H4AB—C4A—H4AC	109.5
C15—C16—H16	119.2	С2—С3—НЗА	107.0
C13—C12—H12	119.5	С2—С3—Н3В	106.9
C11—C12—C13	121.0 (2)	C4—C3—C2	121.5 (9)
C11—C12—H12	119.5	С4—С3—НЗА	106.9
C16—C15—H15	120.2	C4—C3—H3B	106.9
C14—C15—C16	119.6 (2)	НЗА—СЗ—НЗВ	106.7

C14_C15_H15	120.2	$C3\Delta$ $C2\Delta$ $H2\Delta\Delta$	106.9
01 - B1 - 02	118 44 (18)	C_{3A} C_{2A} H_{2AB}	106.9
01 - B1 - C9	126.12 (18)	$C_{3}A - C_{2}A - C_{1}A$	121.8(14)
$O_2 B_1 C_9$	115 AA (18)	$H_{2AA} = C_{2A} = H_{2AB}$	106.7
$C_{13} = C_{14} = H_{14}$	110 /	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106.0
$C_{13} - C_{14} - C_{14}$	112.4	C1A C2A H2AP	106.9
C15 - C14 - C13	121.5 (2)	$C_{1A} = C_{2A} = H_{1A}$	100.9
C_{13} C_{14} H_{14}	119.4	C_{2A} C_{1A} U_{1A}	108.0
C9 = C10 = C11	110.3	C_{2A} C_{1A} $S_{r_{1A}}$	108.0
	123.1 (2)	C2A—CIA—SIIIA	117.2 (11)
	118.5	HIAA—CIA—HIAB	107.2
	119.6 (3)	SnIA—CIA—HIAA	108.0
C12—C11—H11	120.2	SnIA—CIA—HIAB	108.0
C10—C11—H11	120.2	Ol—Sn1A—C17	94.66 (15)
H7A—C7—H7B	107.9	O1—Sn1A—C1A	105.8 (10)
С6—С7—Н7А	109.2	O1—Sn1A—C5A	106.7 (7)
С6—С7—Н7В	109.2	C1A—Sn1A—C17	110.1 (4)
C6—C7—C8	112.1 (6)	C5A—Sn1A—C17	113.4 (5)
С8—С7—Н7А	109.2	C5A—Sn1A—C1A	122.2 (8)
С8—С7—Н7В	109.2	Sn1A—C5A—H5AA	108.0
С7—С6—Н6А	108.7	Sn1A—C5A—H5AB	108.0
С7—С6—Н6В	108.7	Н5АА—С5А—Н5АВ	107.3
C7—C6—C5	114.2 (5)	C6A—C5A—Sn1A	117.2 (11)
H6A—C6—H6B	107.6	С6А—С5А—Н5АА	108.0
С5—С6—Н6А	108.7	С6А—С5А—Н5АВ	108.0
С5—С6—Н6В	108.7	С5А—С6А—Н6АА	108.3
Sn1—C1—H1A	109.1	С5А—С6А—Н6АВ	108.3
Sn1—C1—H1B	109.1	Н6АА—С6А—Н6АВ	107.4
H1A—C1—H1B	107.8	C7A—C6A—C5A	115.7 (13)
C2—C1—Sn1	112.7 (5)	С7А—С6А—Н6АА	108.3
C2—C1—H1A	109.1	С7А—С6А—Н6АВ	108.3
C2—C1—H1B	109.1	С6А—С7А—Н7АА	108.6
Sn1—C5—H5A	109.4	С6А—С7А—Н7АВ	108.6
Sn1—C5—H5B	109.4	C6A—C7A—C8A	114.7 (14)
C6-C5-Sn1	111 2 (4)	H7AA—C7A—H7AB	107.6
C6—C5—H5A	109.4	C8A - C7A - H7AA	108.6
C6-C5-H5B	109.4	C8A - C7A - H7AB	108.6
H5A-C5-H5B	108.0	C7A - C8A - H8AA	100.0
C7_C8_H84	109.5	C7A - C8A - H8AB	109.5
C7 C8 H8B	109.5	C7A $C8A$ $H8AC$	109.5
C7 C8 H8C	109.5		109.5
	109.5		109.5
$\Pi \delta A = C \delta = \Pi \delta D$	109.5	$H_{A} = C_{A} = H_{A} C$	109.5
Н8АС8Н8С	109.5	Н8АВ—С8А—Н8АС	109.5
Sn1—O1—B1—O2	176.60 (15)	C13—C18—C17—C16	-0.2 (3)
Sn1—O1—B1—C9	-4.7 (3)	C13—C18—C17—Sn1A	-176.2 (2)
Sn1—C17—C16—C15	-177.2 (2)	C13—C18—C9—B1	-177.74 (19)
Sn1—C1—C2—C3	59.5 (9)	C13—C18—C9—C10	0.0 (3)
C18—C17—C16—C15	-0.1 (4)	C13—C12—C11—C10	-0.7 (5)

	C9-C10-C11-C12 1.5 (5) C5A-C6A-C7A-C8A -173 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1.1 \ (4) \\ -0.4 \ (4) \\ 0.3 \ (4) \\ 1.6 \ (3) \\ 179.3 \ (2) \\ -178.6 \ (2) \\ 0.1 \ (3) \\ 0.5 \ (4) \\ -2.6 \ (3) \\ -179.5 \ (2) \\ 4.4 \ (3) \\ 0.8 \ (3) \\ 179.5 \ (2) \\ 1.5 \ (5) \end{array}$	B1-C9-C10-C11 $C14-C13-C12-C11$ $C10-C9-B1-O1$ $C10-C9-B1-O2$ $C7-C6-C5-Sn1$ $C1-C2-C3-C4$ $C8-C7-C6-C5$ $C3A-C2A-C1A-Sn1A$ $C4A-C3A-C2A-C1A$ $Sn1A-O1-B1-O2$ $Sn1A-O1-B1-C9$ $Sn1A-C17-C16-C15$ $Sn1A-C5A-C6A-C7A$ $C5A-C6A-C7A-C8A$	179.0 (3) $176.9 (3)$ $-179.1 (3)$ $-175.2 (2)$ $3.6 (3)$ $-177.6 (7)$ $167.2 (8)$ $-179.4 (8)$ $-66 (3)$ $-49 (3)$ $168.6 (2)$ $-12.7 (3)$ $176.1 (3)$ $170.7 (19)$ $-173 (2)$
--	---	--	--	---	---

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
02—H2…O1 ⁱ	0.88 (2)	1.93 (2)	2.805 (2)	172 (3)

Symmetry code: (i) -x+3/2, -y+3/2, -z.