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A B S T R A C T

The thesis is divided into two parts: one focused on the analytic computation of high-order

corrections to the Higgs-boson cross-section and the other concerning a numerical approach to

the computation of amplitudes.

In the first part, we present the calculations that led to the Higgs boson rapidity distribution

through next-to-next-to-next-to-leading order in the limit of an infinite top mass. In particular,

we use finite fields and differential equations to obtain the partonic coefficient functions as an

expansion around the production energy for the Higgs boson for the gluon fusion channel. We

compute six orders of the threshold expansion with an error due to the truncation of the series

estimated to less than 1% for rapidities within |Y| < 2. The error due to missing higher-order

correction in the perturbative expansion is reduced to +0.9%
−3.4% in the range of rapidity |Y| < 3,

estimated by varying the common scale µ = mh
2 by a factor of two around its central value.

In the second part, we discuss the numerical integration of amplitudes and integrals by means

of the Loop-Tree Duality, where the energies of the loop momenta are integrated using the

residue theorem and the remaining degrees of freedom are then integrated using Monte-Carlo

techniques. To accommodate for the causal prescription of Feynman propagators in the presence

of threshold singularities, we provide a general deformation of the integration variables that

also matches the conditions arising from analytic continuation. This implementation is applied

to a diverse range of finite integrals with a varying number of external legs and loops. We

also treat the computation of divergent integrals and amplitudes at one-loop showing how

to remove their IR singularities with the aid of counterterms that are compatible with the

Loop-Tree Duality derivation. In particular, we present their application to the family of

amplitudes qq̄→ nγ at next-to-leading order in QCD for an arbitrary number of photons in

the final state and integrate for the case of two and three photons. At last, we show how the

numerical instabilities that arise from the original derivation of the Loop-Tree Duality are

handled by removing all the spurious poles that appear after the analytic integration of each

loop momentum energy.
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S O M M A R I O

Questa tesi è divisa in due parti: la prima tratta il calcolo in forma analitica di correzioni

ad alto ordine perturbativo in QCD per la sezione d’urto del bosone di Higgs, la seconda è

focalizzata su un approccio numerico per il calcolo di ampiezze ed integrali.

Nella prima parte, presentiamo i calcoli che hanno portato ad ottenere la distribuzione di

rapidità del bosone di Higgs al terzo ordine perturbativo nella teoria effettiva dove il quark

top è da considerarsi con massa infinita. Nello specifico, mostriamo l’implementazione di

campi finiti ed equazioni differenziali al fine di ottenere tale risultato. La distribuzione in

rapidità è stata calcolata per il canale di produzione dove il bosone di Higgs è il risultato dalla

fusione di due gluoni nello stato iniziale, ed ottenuta tramite un espansione intorno all’energia

di produzione del bosone. Presentiamo il risultato includendo i primi sei termini in questa

espansione e stimiamo l’errore dovuto al interruzione della serie a meno del 1% per rapidità

|Y| < 2. L’incertezza per la distribuzione in rapidità, stimata variando la scala introno al suo

valore centrale µ = mh
2 per un fattore due, è ridotta a +0.9%

−3.4% per un valore di rapidità |Y| < 3.

Nella seconda parte, discutiamo l’integrazione numerica di ampiezze ed integrali usando

la Loop-Tree Duality, dove le energie dei momenti di loop sono integrate usando il teorema

del residuo, mentre l’integrazione delle componenti spaziali è ottenuta tramite metodi di

Monte-Carlo. Presentiamo un metodo generale per deformare lo spazio di integrazione così da

soddisfare la prescrizione causale dei propagatori di Feynman e le condizione che emergono

per la continuazione analitica. Applichiamo questa tecnica ad un ampio spettro di integrali

finiti con un numero variabile di gambe esterne e loop. Inoltre consideriamo integrali ed

ampiezze a 1-loop con divergenze infrarosse e mostriamo come regolarizzarli in una maniera

che sia compatibile con la derivazione della Loop-Tree Duality. In particolare, presentiamo la

regolarizzazione locale delle divergenze nel caso della famiglia di ampiezze qq̄→ nγ al primo

ordine perturbativo in QCD per un numero arbitrario di fotoni nello stato finale. L’integrazione

numerica è presentata nel caso di due e tre fotoni. Infine mostriamo come trattare le instabilità

numeriche che affliggono l’espressione originale della Loop-Tree Duality tramite la rimozione

di tutte quelle divergenze spurie che compaiono dopo ogni integrazione analitica delle energie

dei momenti di loop.
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I N T R O D U C T I O N

Since the discovery of the first subatomic particle, the electron [7], there has been an enormous

evolution in the understanding of ordinary matter. We now know that the electron represents

only one of the six flavours of leptons, as presented in the context of the Standard Model

of particle physics (SM). The other subatomic particles are organized into quarks which are

subject to the strong interaction, and bosons that mediate the different forces of nature. The

driving force behind the organization of the interactions between subatomic particles into a

theory like the SM has been a tight collaboration between experimentalists and theoreticians.

One notable example is the electro-weak interaction, with the massive weak bosons W and

Z discovered at CERN by the UA1 and UA2 experiments in 1983 [8, 9], a mass that can be

explained by the Standard Model by the introduction of the Brout–Englert–Higgs field. More

precisely, these masses are the result of the spontaneous symmetry-breaking (SSB) caused by

the vacuum expectation value of Brout–Englert–Higgs field, a process commonly referred to as

the Higgs mechanism.

The Higgs mechanism is not only responsible for the masses of the weak bosons, but also

for the masses of all the particles with which the Brout–Englert–Higgs field interacts. This

field was theorized in 1964 [10–12] , while its quantized excitation (Higgs boson), has been

identified only in recent years by the ATLAS and CMS experiments [13, 14] with a scalar boson

of mass 125GeV. The discovery of the Higgs boson or an equivalent process was a guaranteed

outcome for the LHC in order to avoid the violation of unitarity for the WW scattering at high

energies. Its discovery is nevertheless an astonishing result, finally obtaining all the ingredients

of the SM. By the end of Run 2, not only the Higgs boson was measured with higher accuracy,

but also all of the single Higgs production channels were observed, with the latest addition

being tt̄H [15].

The standard model, however, is far from being a complete theory of nature as is not able to

explain all of the phenomena that we experience. Some examples are the observation of dark

matter through its gravitational effects, the oscillation between different flavours of neutrinos

due to their masses, the asymmetry between matter and anti-matter, and the absence of gravity

among the forces comprehend by the theory [16]. For these reasons, it is of extreme importance

1



2 introduction

to produce the utmost precise predictions to resolve the SM background and expose any

deviation that can be used to constrain its possible extensions.

In the near future, the LHC will be upgraded to its high luminosity version (HL-LHC)

designed to reach the target integrated luminosity of 3000fb−1. This will be one order of

magnitude higher than the integrated luminosity reached at the end of Run 2. The increased

luminosity will have the effect of reducing the experimental uncertainties on many observables.

For example, the uncertainty associated with pp→ H + X is currently at the level of 8% and is

expected to reduce at around 3% for the HL-LHC [17, 18].

Our computation for the differential Higgs production has been restricted to the gluon fusion

channel. This channel represents the dominant contribution to the Higgs boson cross-section

at 13TeV, accounting for more than 88% of the total result. The gluon fusion is loop-induced,

in which a fermionic loop mediates the interaction between the Higgs boson and the gluons.

As a further simplification, we work in an effective theory (EFT) where the mass of the top

quark is taken to be infinite. In this approximation, the gluons interact directly with the Higgs

boson, and the remaining five quark flavours are considered massless [19–25]. The same

approximation was used to obtain the next-to-next-to-next-to-leading order (N3LO ) inclusive

Higgs cross-section, first as an expansion around the production energy of the Higgs boson in

2015 [26] and three years later at all orders in the threshold expansion [27].

With the results presented in the thesis, we move past the inclusive cross-section and compute

the differential distribution for the Higgs boson in the threshold expansion approximation.

The theoretical uncertainty for the gluon fusion channel is dominated by the scale variation

when considering a truncation of the perturbative expansion at next-to-next-to-leading order

(NNLO). This uncertainty is reduced by more than 50% for rapidities |Y| < 3 when including

the N3LO correction. The reduced uncertainty has two major implications: the first is allowing

to make predictions that will be valid also for the increase experimental accuracy achieved

by the HL-LHC, the second is bringing the scale variation uncertainty at a level where other

uncertainties become relevant (e.g. parton distribution functions [28]).

The analytic computation of the rapidity distribution has been the result of a tremendous

effort and was successfully completed only as a threshold expansion. These kind of difficulties

are not an anomaly when computing high order corrections. In many cases, the analytic com-

putation of observables for the LHC in perturbative QCD employs well-established techniques

that rely on the combination of differential equations and integration by part identities. In

particular, the Feynman integrals are expressed as a linear combination of simpler expressions

called master integrals [29–50] and then computed by building differential equations in the dif-

ferent scales of the problem [51–70]. These master integrals, when expressed as a series in the



introduction 3

dimensional regulator, take the form of iterated integrals such as harmonic polylogarithms [54]

and elliptic functions [68–72].

All of these tools will be rendered inefficient in front of a growing number of scales due to

the presence of additional masses or the resolution of additional differential quantities in the

final states. It is therefore vital the development of alternative techniques which could help us

in the computation of physical observables. One alternative is to employ a more numerical

approach to perform the integration over the loop momenta and extract phenomenologically

relevant predictions for the LHC also from those processes that are so far prohibitive for a

fully analytical approach. There are several alternatives for performing a numerical integration

which in essence can be summarized in the fact that they perform a Monte-Carlo integration

that relies on an efficient evaluation and sampling of the integrand, whether in Feynman-

parameters space [73, 74], four dimensional Minkowski space [75–77], or three-dimensional

Euclidean space [78–81].

In this thesis, we focus our attention on the method that uses Loop-Tree duality (LTD),

where the integration over the energies of the loop momenta is performed analytically by

means of the residue theorem [78–81]. This method has been recently extended to the case

of multi-loop scalar integrals, providing an algorithmic way to build the LTD integrand [81,

82]. We show how to endow these multi-loop numerical integrations with a deformation of

the loop momenta in order to reproduce the causal prescription of the Feynman propagators,

allowing to compute integrals that contain threshold singularities.

The derivation of the Loop-Tree Duality as a sum of cut diagrams is subject to the presence of

spurious singularities that can be source of numerical instabilities. These numerical instabilities

are particularly severe in the ultraviolet region of integration. To solve this problem, we present

a way to analytically combine terms to obtain an expression which is rendered free of all

spurious singularities, resulting in a manifestly causal representation of the Loop-Tree Duality

(cLTD).

The increased stability of the numerical LTD integration yields a reliable tool that can be

implemented for the computation of physical quantities by exploiting the fact that we are

working in momentum space. One of these applications is the integration of amplitudes after

they have been regulated to remove all the infrared divergences [83]. The full potential is

made manifest in the computation of cross-sections. Given a gauge theory, one can combine

LTD with reverse unitarity in order to obtain an infrared safe quantity at every point in the

integration space. The first application of such cancellations was performed in 1999 in ref. [84]

and has been extended to more general cases in ref. [6].
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The thesis is organized as follows.

The first part is divided into three chapters. In chapter 1 we present the analytic computation

of the Higgs boson differential cross-section up to NNLO in the perturbative expansion. In

particular, we present the results for the rapidity and pT distributions, and obtain all the

ingredients contributing to the N3LO computation. In chapter 2 we show how we expand on

methods used for the NNLO computation to tackle the N3LO correction, which is performed

as a threshold expansion. The chapter concludes with the validation of the threshold expansion

for the computation of the rapidity distribution of the Higgs boson. In the last chapter of this

first part, namely chapter 3, the threshold series is extended to include six terms from the two

computed in chapter 2 and is used to make predictions on the rapidity distribution.

The second part is dived into two chapters. We start by reviewing the LTD method in

chapter 4 and present how to supply it with a general deformation of the integration variables

to match the Feynman prescription. We then use this deformation for the computation of

a physical amplitude by introducing suitable counterterms for the qq̄ → γγ and qq̄ → γγγ

processes. In chapter 4 it becomes clear that the numerical instabilities due to the spurious

singularities of the LTD integrands can have a harmful impact on the integration. In chapter 5

we address this problem by deriving an alternative representation of LTD where we remove all

the spurious singularities and drastically improve the numerical stability.
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H I G G S D I F F E R E N T I A L





1
H I G G S D I F F E R E N T I A L C R O S S S E C T I O N S

The work presented in this chapter consists of the computation of the Higgs-differential cross-

section in perturbative QCD. The perturbative series is truncated at NNLO in the strong

coupling and was presented for the first time in ref. [1]. The differential distribution for

the Higgs boson at NNLO in QCD were already obtained several years ago in refs. [85–88].

More recently , the pp → H + 1 jet fully differential cross section has been computed at

NNLO [89–93]. Combined with the N3LO inclusive cross section, this has allowed to compute

the N3LO Higgs cross section with a jet-veto [94]. This is a first example of a differential

cross section in gluon-fusion at this perturbative order. If a fully differential parton-level

Monte-Carlo at N3LO is achieved in the future, it will become possible to assess the efficiency

of the majority of event selection criteria at the same level of accuracy in perturbative QCD as

the jet-veto efficiency. To achieve this goal, one could attempt to generalise any of the available

methods at NNLO (sector-decomposition [95–98], slicing [85, 99–101], subtraction [102–105],

reweighting [106] and other methods [107]) to the next perturbative order. A generalisation of

any of these methods would be a formidable task. An intermediate goal could therefore be

to compute first some specific differential distributions of particular importance, which are

the main ingredients for a fully differential N3LO parton-level Monte-Carlo within a slicing

method.

Our aim is computing the Higgs cross-section fully differential in all components of the

Higgs momentum and its decay products, treating the associated QCD radiation inclusively at

NNLO. Moreover, by maintaining the full dependence of the Higgs-differential cross-section

on the dimensional regulator we enables the construction of the counter terms for ultraviolet

and initial-state collinear divergences at N3LO .

1.1 kinematics

At the LHC the Higgs boson is produced by colliding two protons at high energy. The

production of the boson in most cases will not be an isolated event; instead, there will be

7
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additional radiated particles in the final state. We can schematically represent a general process

that contains at least one Higgs boson in the form of an equation:

Proton(P1) + Proton(P2)→ H(ph) + X, (1.1)

P1 and P2 are the momenta of the colliding protons and ph the momentum of the Higgs boson.

All the extra radiations, denoted by X, are treated completely inclusively.

Since the protons are not fundamental particles, their interaction is not explicitly contained

in the Standard Model (SM) Lagrangian. In order to make predictions for such scattering

processes, we have to look at their constituents, the partons. If the scattering energy is high

enough, we can consider the partons within a single proton as non-interacting due to the

asymptotic freedom of QCD [108]. These high energies allow to consider the scattering as

happening between two partons coming from different hadrons. The probability distribution

of finding a specific parton j with fractional momentum pj ≡ xPi is encoded in the parton

distribution function (PDF) fij(x, µF), where µF is the factorization scale separating the hard

from the soft-collinear process.

The hard process can be computed using perturbation theory and is described by the partonic

cross-section, while the soft radiations with energies below µF are ascribed to the PDFs. The

parton distribution functions resulting from this separation are process independent and can

therefore be fit from different scattering experiments such as DIS or Drell-Yan, and then used for

other hard processes. The specific value taken by the distributions will depend on the chosen

factorization scale, with a different scale resulting in a different set of PDFs. The evolution

between different scales is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [109–111].

The computation of the Higgs-differential cross-section gives access to the probabilities

related to the observables that solely depend on the four-momentum of the Higgs boson, while

all other final state particles in X are treated inclusively. The mass associated with the collective

four-momentum of the particles in X depends on the relative collinearity and softness of its

constituents. We consider the experimental framework to be symmetric under rotation around

its azimuthal angle (i.e. around the beam axis), reducing the number of independent degrees of

freedom by one. The observables can then be expressed in terms of the rapidity Y, transverse

momentum pT and mass mh of the Higgs boson.

The four-momentum ph can be expressed in full generality in terms of these quantities

together with the azimuthal angle φ as,
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σ

P1 P2σ̂

Radi
atio

ns

p
h
−→

p1=x1P1−−−−−→ p2=x2P2←−−−−−
f1 f2

Figure 1.1: Schematic representation of a hadron collision where two partons originated by the parent
hadrons interact to give rise to the Higgs boson together with radiation particles. The
hadronic momenta are represented with capital letters, while the partonic momenta are
written in lower-case. The regions of interest for the hadronic and partonic cross-sections
are denoted by σ and σ̂, respectively.

ph ≡
(
E, px, py, pz

)
=

(√
p2

T + m2
h cosh Y, pT cos φ, pT sin φ,

√
p2

T + m2
h sinh Y

)
, (1.2)

where

Y =
1
2

log
(

E + pz

E− pz

)
, pT =

√
E2 − p2

z −m2
h. (1.3)

E, pT and pz are the energy, transverse momentum and momentum along the beam axis,

respectively. The Lorentz boost along the z-axis is expressed in terms of rapidity by noticing

that cosh(Y) = γ and sinh(Y) = βγ, where γ is the Lorentz factor and β the boost velocity.

The major advantage in describing the boost of the Higgs along the z-axis in terms of the

rapidity is that it is an additive quantity when multiple Lorentz boosts are combined.

The rapidity is reference-frame dependent, and it takes a particularly nice form in the

hadronic center of mass. With the two protonic momenta being back to back, we obtain:

P1 =

√
S

2
(1,~0⊥, 1), P2 =

√
S

2
(1,~0⊥,−1), ⇒ E + pz

E− pz
=

2P2 ph

2P1 ph
, (1.4)
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where S = (P1 + P2)2 is the hadronic collision energy. The momenta of the colliding partons

are related to the proton momenta by p1 = x1P1 and p2 = x2P2, and can be used to write the

rapidity:

Y =
1
2

log
(

x1

x2
· p2 ph

p1 ph

)
. (1.5)

The bounds of the rapidity can be found by noticing that it reaches its extrema when there is

no additional radiation beside ph, since any additional radiation will reduce the boost in the

beam direction due to energy conservation. In this framework one has p1 + p2 + ph = 0 with a

maximised boost when x1x2 = τ which results in:

exp(2Y) ∈
[

τ,
1
τ

]
, (1.6)

where τ ≡ m2
h

S is the inelasticity factor measuring the fraction of the total hadronic energy that

goes into the creation of the Higgs.

At the core of the predictive power of QCD lies the factorization theorem [112], allowing for

the independent computation of the PDFs and the hard process. For the Higgs-differential

cross-section, we can write, together with the convolution with the PDFs, the integration over

the differential quantities. By representing the integration corresponding to some observable

O with the jet function JO yields:

σPP→H+X [O] = τ ∑
i,j

∫ 1

τ

dz
z

∫ 1

τ
z

dx1

x1

∫ 1

0
dx
∫ 1

0
dλ
∫ 2π

0

dφ

2π

× fi(x1) f j

(
τ

x1z

)
1
z

d2σ̂ij

dx dλ
(z, x, λ, m2

h)JO(x1, z, x, λ, φ, m2
h). (1.7)

where the sum over i and j ranges over all contributing partons. The variables x and λ are

related to the more familiar Higgs boson rapidity and transverse momentum by

Y =
1
2

log

[
x1

x2

1− z̄λ̄
1−z̄λx

1− z̄λ

]
, p2

T = s
z̄2λλ̄x̄

1− z̄xλ
. (1.8)

where we use the notation x̄ ≡ 1− x, λ̄ ≡ 1− λ and z̄ ≡ 1− z.

The advantage of a differential cross section lays in the possibility of going beyond an

inclusive quantity, where one integrates over the whole range of possible outcomes, and ask

questions about the distribution of the final state. This ability is highlighted in eq.(1.7) by the

presence of the measurement function JO(x1, z, x, λ, φ, m2
h) which acts as a filter, selecting only

those region of the phase space which we are of interest. For example, if one wants to compute
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the probability for a Higgs boson to be produced in the rapidity interval Y ∈ [ymin, ymay], the

measurement function would take the form

JO(x1, z, x, λ, φ, m2
h) = θ

(
ymax −Y(x1, z, x, λ, φ, m2

h)
)

θ
(
Y(x1, z, x, λ, φ, m2

h)− ymin
)

. (1.9)

Moreover, the Higgs-differential cross-sections can be combined with subsequent decays of

the Higgs boson to allow for the prediction of fiducial cross-sections for Higgs boson decay

products as we are going to present at the end of this chapter.

1.2 phase space

The strong coupling constant grows smaller as the process energy grows larger, a behaviour that

is known as asymptotic freedom [113, 114]. The details on its running are outside the scope of this

thesis and can be found in many places and are nicely summarized in the Particle Data Group

review [16]. What is important is that at high energies the strong coupling becomes small

enough, taking a value of αs(mZ) = 0.1181(11), allowing for the computation of theoretical

predictions in QCD perturbation theory (pQCD).

When considering the partonic cross-section σ̂ at a given order in pQCD, one has to sum

over different contributions that differ by their kinematic configurations. In particular, the

perturbative corrections can manifest themselves as being either real or virtual. Each virtual

correction corresponds to an additional loop in the Feynman integral compared with the born

level cross-section. On the other hand, real corrections correspond to additional particles in

the final state. At fix order in pQCD, we can have different combinations of real and virtual

correction with their total multiplicity being related to the specific perturbative order. In order

to obtain the cross-section, one needs to sum over the different multiplicities that can be written

as:

σ̂ij ≈∑
m

∫
dΦH+mMij→H+X, (1.10)

were X here represents a set of m final state partons and ΦH+m the corresponding process

phase space.

The integration over the phase space for a fixed multiplicity m will lead to a divergent

integral when performed in a 4-dimensional space. These local divergences correspond to

kinematic configurations where particular propagators become soft and/or collinear, together

with the possibility that the matrix element becomes divergent for large loop momenta. We

regulate such divergences by relying on dimensional regularization [115, 116].
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The expression for the Higgs phase space with m additional massless particles in the final

state can be written in d dimensions as:

dΦH+m =
dd ph

(2π)d (2π)δ+
(

p2
h −m2

h
)
[

m+2

∏
i=3

dd pi

(2π)d (2π)δ+
(

p2
i
)
]
(2π)dδd

(
p1 + p2 + ph +

m+2

∑
i=3

pi

)

(1.11)

where the distribution δ+ denotes a Dirac delta function where only the positive energy solution

of the on-shell condition is considered,

δ+
(

p2 −m2) ≡ θ
(
−p0 −m

)
δ
(

p2 −m2) . (1.12)

Being the aim the computation of a cross-section which is differential in the Higgs boson

kinematic variables, it is convenient to separate the integration over the phase space of the

Higgs from the integration over the radiations. This can be achieved by considering the

2 → 1 + m scattering as happening in two steps. In the first step, the two incoming partons

give rise to two particles, one being the Higgs and the other carrying the collective momentum

of all the partons. The latter will then split into m massless elements. The split of the phase

space can be represented by the insertion of unity in the form of an integration over Dirac delta

functions:

1 =
∫ ddk

(2π)d (2π)dδd

(
k−

m+2

∑
i=3

pi

) ∫ ∞

0

dµ

2π
(2π)δ+

(
k2 − µ2) . (1.13)

Plugging this identity into eq.(1.11) casts the expression in the wished factorized form:

dΦH+m =
∫ ∞

0

dµ

2π
dΦHX(µ

2)dΦm(µ
2) (1.14)

where,

dΦHX =
dd ph

(2π)d (2π)δ+
(

p2
h −m2

h
) ddk
(2π)d (2π)δ+

(
k2 − µ2) (2π)dδd (p1 + p2 + ph + k) , (1.15)

dΦm =

[
m+2

∏
i=3

dd pi

(2π)d (2π)δ+
(

p2
i
)
]
(2π)dδd

(
k−

m+2

∑
i=3

pi

)
. (1.16)

From this definition, it is clear that the integration over the additional degrees of freedom, here

represented by Φm, is not affected by the particular choice of Higgs observable in which we

decided to be differential. Any dependence on specific Higgs kinematics is decoupled and only

contained into the phase space ΦHX, where the additional final state partons are only present

as a collective recoil object with momentum k and mass µ.
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(a) gluon fusion

q̄
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H

q

(b) VBF

W/Z

W/Z

q̄

q′

H

(c) WH/ZH

g

g

t

H

t̄

(d) tt̄H

Figure 1.2: Feynman diagrams corresponding to the LO contribution to the various production
channels for the Higgs Boson.

S[TeV] ggF VBF WH ZH ttH σtot[pb]

13 48.6+4.6%
−6.7% 3.78+2.2%

−2.2% 1.37+2.6%
−2.6% 0.88+4.1%

−3.5% 0.50+4.8%
−9.9% 55.1

14 54.7+4.6%
−6.7% 4.28+2.2%

−2.2% 1.51+1.9%
−2.0% 0.99+4.1%

−3.7% 0.60+6.8%
−9.8% 62.1

Table 1.1: The different contribution to the inclusive cross section as reported in ref. [16] collecting
the results for the LHC for an Higgs boson mass of mH = 125GeV from refs. [28, 117–119].

1.3 gluon fusion

No theoretical prediction has value if it is not compared with reality trough an experiment. In

our case, the experimental apparatus is the LHC with particular attention at those processes

that create a Higgs boson through the collision of two protons. We can divide into four main

categories the production mechanisms that have a single Higgs boson in the final state and are

shown in figure 1.2 with their LO diagrams.

With the collision energy at the LHC set at 13TeV, we have that the largest contribution to the

cross-section comes from the gluon fusion channel. Other channels ordered by their relative

importance are vector boson fusion, associated production with one heavy electroweak boson,

and tt̄H. The detail of their different contribution to the inclusive cross-section are collected

table 1.1 for both 13TeV and 14TeV.

The enhanced contribution of the gluon fusion channel is a consequence of the distribution

of partons within the two incoming hadrons. This distribution is shown in figure 1.3, where it

becomes clear that the probability of having a gluon taking part in the collision is much higher

than for any other parton. When considering a fixed collision energy τ, the probability of two

partons to collide can be seen as a function of the partoninc centre of mass energy expressed in

terms of luminosity:

Lij(z) =
∫

τ
z

dx
x

fi(x) f j

( τ

z · x
)

, z =
mh

s
. (1.17)

From the plot in figure 1.4 we can see how, for low partonic energies, the collision probability

is greatly enhanced for two gluons. The probability for two gluons is falling faster than the one
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Figure 1.3: MMHT2014 NNLO PDFs at a collision energy of Q2 = 10 GeV2 and Q2 = 104GeV2, with
associated 68% confidence-level uncertainty bands as presented in ref. [120].

gg

√
s = 13TeV

MMHT14 NNLO

L
ij
/L

g
g
(1
)

s/m2
h

0.01

0.1

1

0 20 40 60 80 100

gu

gd

Figure 1.4: Plot showing the relative probability of two partons to collide for a collision energy of
13TeV. The convolution has been done by means of the PDF grid given by MMHT14 from
ref. [120] through LHAPDF [121] for the top three collision probabilities where only the
mean value of the grid is used.

involving fermions, and they become of the same size around 9mh. Since most of the probability

is concentrated close to s = mh we can also understand why the threshold expansion of the

Higgs cross-section is such a reliable tool for making predictions.

In the Standard Model (SM) the Feynman rules connecting the quarks and the Higgs field

are describe by the Yukawa interaction, where the coupling is directly proportional to the mass

of the quark. As a consequence, we have that the top quark represents the primary mediator

for the gluon fusion production, having a mass of 172GeV.
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When computing the higher-order corrections to the gluon fusion channel, it becomes

challenging to calculate the partonic cross-section with the full top mass dependence. These

difficulties arise from the computation of multi-loop integrals in the presence of massive

propagators. An approximation that has shown itself to be extremely reliable is to consider

the theory in the limit of a top with infinite mass, while all other quarks are massless. This

approximation was used for the computation of the inclusive cross section for the gluon fusion

channel at NLO [122–124], at NNLO [125–127], and also at N3LO [26, 128]. The results obtained

using this effective theory can be improved by rescaling the contribution coming from the

LO cross-section by its exact top mass dependence [28]. Through this rescaling, the NNLO

cross-section is estimated to have an error due to the infinite top mass limit at the percent

level [129, 130]. The uncertainty related to the top mass has been further reduced in ref. [131]

by expanding around the top mass threshold and approximating over the whole range by

means of the Padé approximation.

The effective field theory (EFT) is built by matching the standard model in the infinite top mass

limit to the effective lagrangian where the Higgs boson couples directly to the gluons via an

effective dimension five operator given by

Le f f ≡ −
1
4

C1Ga
µνGaµνH, with C0 ≡ C1

v
. (1.18)

where is Ga
µν the gluon field strength tensor, a the color index, H the Higgs field, v ≈ 246GeV

the vacuum expectation value and C1 the Wilson coefficient. Because of the presence of the

gluon field strength tensor, the effective vertex can have from two to four gluons interacting

with the Higgs. The corresponding Feynman rules can be schematically represented as a

crossed circle, where at LO can be directly matched to the top quark loop,

t

g

g

H EFT−−→
g

g

H (1.19)

At higher orders, the structure of the interaction is richer, and it is necessary to consider also

the corrections due to additional gluons, either as real emission or virtual loops [123]. Some
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of the interactions that need to be considered for the α2
s correction to the effective vertex are

illustrated by the following diagrams:

, , ,

, .

We can see that the first four diagrams consist of pure virtual corrections and will still be

encoded in the same effective vertex as the one shown for the LO case in eq.(1.19). The last

diagram is more interesting as it includes a real correction to the LO interaction. The real

emission contribution will appear in the effective theory as a 4-point interaction between

three gluons and one Higgs boson. The effective lagrangian of eq.(1.18) allows up to 5-point

interactions which will appear only when looking at NNLO or higher corrections. All the

corresponding Feynman rules are shown in appendix A.

The Wilson coefficient corresponding to the infinite top mass limit has been computed up to

four loops in refs. [20, 22, 132, 133]:

C1(µ
2) = − αs

3 π

{
1 +

11
4

αs

π
+
(αs

π

)2
[

19
16

Lt +
2777
288

+ NF

(
1
3

Lt −
67
96

)]

+
(αs

π

)3
[

897943
9216

ζ3 +
209
64

L2
t +

1733
288

Lt −
2892659
41472

+ NF

(
−110779

13824
ζ3 +

23
32

L2
t +

55
54

Lt +
40291
20736

)

+ N2
F

(
− 1

18
L2

t +
77

1728
Lt −

6865
31104

)]
+O

(
α4

s

)}
,

(1.20)

where αs ≡ αs(µ) is the MS strong coupling constant, n f = 5 is the number of effective flavours

after the absorption of the top quark into the effective Lagrangian, and Lt ≡ log
(

µ2

m2
t

)
with µ

the renormalization scale.
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1.4 setup of the calculation

For the production of a Higgs boson with the observed mass of mh = 125GeV with a transverse

momentum below the top-pair threshold, the process can be safely described in terms of the

EFT where the top quark is infinitely heavy. The Higgs-differential partonic cross-section can

be written in the following form,

1
z

d2σ̂ij

dxdλ
= (C0)2σ̂0ηij(z, x, λ) (1.21)

=
(
C0)2

σ̂0

∞

∑
k=0

(αS

π

)k
η
(k)
ij (z, x, λ), (1.22)

where ηij denotes the partonic coefficient function (PCF), that is obtained by factorizing out the

Born cross section,

σ̂0 =
π

8(n2
c − 1)

. (1.23)

This expression represents the starting point of the computation. In this section, we will

define more precisely the partonic coefficient function for the differential cross-section and then

transform the phase space to adapt to the differential variables used to describe the system.

1.4.1 Partonic coefficient function

The PCF corresponding to the n-th order in the perturbative expansion can be written explicitly

as:

η
(n)
ij (z, x, λ) =

Nij

2m2
hσ0

n

∑
m=0

∫
dφH+mδ

(
x− s(p1 + p2 + ph)

2

(s + 2p1 · ph)(s + 2p2 · ph)

)

× δ

(
λ− s + 2p1 · ph

s−m2
h

)
M(n)

ij→H+m. (1.24)

whereM(n)
ij→H+m is the modulus squared of the amplitudes proportional to αn

S for partons i and

j producing a final state Higgs boson and m partons summed over polarizations and colours.

To obtain the n-th order correction to the partonic coefficient function, one has to consider

all the l-loop matrix elements with m final state partons such that that m + l = n. In the

above, we impose the choice of differential variables defined in eq.(1.8) employing explicit delta

function acting on the phase space ΦH+m. This choice of variable can be better understood if
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one considers the collective radiated momentum k = −∑m+1
i=3 pi as defined in eq.(1.13) to be

parametrized by z̄, λ, λ̃ and k⊥:

k = −z̄
(
λp1 + λ̃p2 + k⊥

)
. (1.25)

with p1,2 being the momenta of the two incoming partons with a center of mass energy of

(p1 + p2)2 = s. In this explicit parametrization, one can see how the variable z̄ is related

to the distance from the threshold energy for the Higgs production, with the limit z̄ = 0

corresponding to the radiation X becoming soft. Moreover, from momentum conservation, it

follows that the transverse component of k is equal and opposite to pT, provided that we work

in the rest frame of the collision. The parameter λ̃ can be easily replaced by the introduction of

an alternative variable x that relates directly to the relative hardness of the extra radiation via,

k2 = xλλ̃z̄2 (1.26)

The new set of variables x, λ and z can be defined in terms of scalar products as

x =
s k2

(2k · p1)(2k · p2)
, λ = − 2k · p2

s−m2
h

, z =
p2

h
s

. (1.27)

These variables have the advantage of developing physical singularities independently, a

property that will be discussed in more details in the next section.

At any order in perturbation theory it is possible to categorize the initial state configurations

in 6 different groups involving different combinations of partons:

g(p1) + g(p2) → H(ph) + X

q(p1) + g(p2) → H(ph) + X

g(p1) + q(p2) → H(ph) + X

q(p1) + q̄(p2) → H(ph) + X

q(p1) + q(p2) → H(ph) + X

q(p1) + q′(p2) → H(ph) + X

(1.28)

In the above g, q, q̄ and q′ represent a gluon, a quark, an anti-quark and a quark with a different

flavour respectively. From the configuration above, one can obtain all other combinations of
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explicit (anti-)quark flavours and gluons. The initial state dependent factors Nij in eq.(1.24) can

be explicitly written for all the specific cases and are given by:

Ngg =
1

4(1− ε)2(n2
c − 1)2 ,

Ngq = Nqg =
1

4(1− ε)(n2
c − 1)nc

,

Nqq̄ = Nqq = Nqq′ =
1
42

c
.

(1.29)

To obtain all the contributing Feynman diagrams required for computing the n-th order

correction to the gluon fusion channel, we generate all the relevant graphs using QGRAF [134].

Since in M(n)
ij→H+m we are summing over all polarizations, we do not have any open index.

We perform all the algebraic operation involving traces over spinor and colour indices using

FORM [135].

1.4.2 Higgs differential phase space

We now consider the phase space discussed in section 1.2 in the context of a differential

cross-section as defined in eq.(1.24). More precisely, we want to cast the Higgs dependent

phase space ΦHX as an integration over the differential variables by explicitly absorbing the

Dirac delta functions.

We can take advantage of the fact that the variables we want to map to only depend on the

energy, z-component and the magnitude of the transverse momentum of k as made explicit in

eq.(1.25). First, we notice that we can rewrite the d-dimensional integration measure for some

momentum p as follows:

dd p
(2π)d =

1
(2π)d dEdpzdd−2 p⊥ =

1
2(2π)d dEdpzd|p⊥|2dΩd−2

(
|p⊥|2

) d
2−2

. (1.30)

Then we take the definition of ΦHX and remove ph by solving the momentum conservation

condition, and replace the remaining measures with the above parametrization:

dΦHX =
(2π)2−d

2
dEkdkzd|k⊥|2dΩd−2

[
(k⊥)2

] d
2−2

× θ(−Ek − µ)θ(Ek +
√

s−mh)δ(k2 − µ2)δ(s + 2p12k + k2 −m2
h). (1.31)
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The integration over k⊥ is performed by resolving the on-shell condition, giving as result

|k⊥|2 = E2
k − (kz)2 − µ2. By means of eq.(1.27), we can rewrite the integral in terms of λ, λ̃ and

x. The integration measure is transformed under the change of variables as:

dEkdkz = s z̄2 dλdλ̃. (1.32)

While the scalar products can be written as follows:

2p1 · k = −s z̄ λ̃, |k⊥|2 = (1− x) z̄2 λ λ̃,

2p2 · k = −s z̄ λ, µ2 = x z̄2 λ λ̃.

where we hide the dependence in µ into the variable x. Thus the phase space becomes:

dΦHX =
(2π)2−d

4
sz̄2dλdλ̄dΩd−2

[
sz̄2λλ̄(1− x)

] d
2−2

θ(s x̄ z̄2 λ λ̃)

× θ(−Ek − µ)θ(Ek +
√

s−mh)δ(sz̄(1− λ− λ̄(1− z̄λx))). (1.33)

We can then integrate out the dependence in λ̃ and solve the θ constrains for the new set of

variables obtaining:

dΦHX =
(2π)2−d

4
s

d
2−2z̄d−3dλdΩd−2 (λ(1− λ))

d
2−2 (1− x)

d
2−2 (1− z̄λx)1− d

2

× θ(λ)θ(1− λ)θ(1− x)θ(z̄)θ(s). (1.34)

By plugging this result into the factorized phase space presented in eq.(1.14) we translate the

implicit dependence of µ in x:

dΦH+m =
∫ ∞

0

dµ

2π
dΦHX dΦm

=
s

d
2−1

4(2π)d−1 z̄d−1dλdΩd−2 θ(z̄)θ(s)
∫

dx θ(x)θ(1− x)θ(λ)θ(1− λ)

× (λ(1− λ))
d
2−1 (1− x)

d
2−2 (1− z̄λx)−

d
2 dΦm.

(1.35)

The analytic partonic coefficient functions for Higgs-differential cross-sections are now obtained

by performing the integration of the squared matrix over the m-parton final state elements

using the above measure.
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1.5 regularization of coefficient functions

The PCFs contain single poles in the variables z̄, x, and λ. They correspond to vanishing

transverse momentum for the Higgs boson or vanishing virtuality of the system of associated

radiations. The set of such singularities reads:

{
z̄−1+a1ε, x−1+a2ε, (1− x)−1+a3ε, λ−1+a4ε, (1− λ)−1+a5ε

}
, (1.36)

where the coefficients ai are small integer numbers. It may happen that one or more of these

singularities lay within the integration volume of a given observable. For example, it is the case

when computing the rapidity distribution or the inclusive cross-section for the Higgs boson. In

order to regulate them, we proceed as in ref. [1].

Consider a function f (x) = x−1+aε fh(x), for some integer a and with fh(x) holomorphic

around x = 0. We are interested in integrating the function over a test function φ(x) on

the range [0, 1]. In the case of our Higgs-differential cross-section, the test function φ(x)

corresponds to the product of the parton luminosity and the measurement function. The

divergence at x = 0 can be extracted explicitly from the integral:

∫ 1
0 dx f (x)φ(x) =

∫ 1
0 x−1+aε fh(x)φ(x)

=
∫ 1

0 dx x−1+aε [ fh(x)φ(x)− fh(0)φ(0)] + 1
aε f (0)φ(0).

We now want to give an expression for the partonic cross-section that is finite even if all-

inclusive integrations are performed. To this end we define in a slight abuse of notation,

fs(0) ≡ δ(x)
[

x−1+aε − 1
aε

]
fh(0). (1.37)

Here the δ-distribution is to be understood as acting only on the test function and not on its

coefficient in the square bracket. It is easy to see that fs(0) integrates to zero. We can therefore

regulate the integrand f (x) by subtracting fs(0),

I =
∫ 1

0
dx f (x)φ(x) =

∫ 1

0
dx ( f (x)− fs(0)) φ(x), (1.38)

so that every term of its ε expansion can be integrated numerically.

In the particular case of the Higgs-differential cross-section, we need to regulate potential

end-point divergences in the three remaining variables z̄, x and λ, c.f. eq. (1.7). We define the

distributions σs that subtract the limits of σ(z̄, x, λ) and label them by the kinematic limit of

the cross-section that they reproduce. For example, σs(z̄, 0, λ) takes care of the limit for the
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cross-section as x goes to zero, meaning that everything but the regulated pole in ε is evaluated

at x = 0. After partial-fractioning, to avoid simultaneous singularities on both end-points of

the integral, we obtain the following decomposition,

σf (z̄, x, λ) ≡ σ(z̄, x, λ)− σs(z̄, x, 1)− σs(z̄, x, 0)− σs(z̄, 1, λ)− σs(z̄, 0, λ)− σs(0, x, λ)

+ σs(z̄, 1, 1) + σs(z̄, 1, 0) + σs(z̄, 0, 1) + σs(z̄, 0, 0) + σs(0, x, 1) + σs(0, x, 0)

+ σs(0, 1, λ) + σs(0, 0, λ)− σs(0, 1, 1)− σs(0, 1, 0)− σs(0, 0, 1)− σs(0, 0, 0). (1.39)

More generally one can threat the case of n variables xi that have each a set of limits ai. To

produce the correct finite expression one has to consider all the limits and their combinations.

This procedure can be summarized in a compact form by

σf (x1, . . . , xn) =

[
n

∏
i=1

(
1− ∑

a∈ai

lim
xi→a

)]
σs(x1, . . . , xn). (1.40)

The limit appearing in this expression has to be applied to the arguments of the function σs

as opposite to its content. It is then straight forward to insert the single limit for z̄ and the

two end-point limits for λ and x to obtain all the 18 terms that are shown in eq.(1.39) with the

correct relative signs.

1.6 master integrals

As mentioned before, to compute all the relevant Feynman diagrams necessary for the com-

putation of the N3LO correction to the Higgs differential cross-section, we use QGRAF [134]

and then perform all the spinor and colour algebra by means of a private code written in

FORM [135]. The final result of this procedure is a set of integrals consisting of a product of

squared propagators at the denominator and a combination of scalar products at the numerator.

To be able to compute the double-differential cross-section, it is crucial to reduce the number

of integrals that appear in the final expression, which is of the order of thousands at NNLO

and 105 when considering N3LO .

The first step is casting each diagram in terms of a set of linearly independent propagators by

means of partial fractioning. Assuming we have an integral described by a set of n propagators

Di which are linearly dependent, we can then write:

n

∑
i=1

βi Di = 0 ⇒ 1 =
∑n

i=2 βi Di

β1 D1
. (1.41)
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By applying this identity to the integrand, we will obtain a sum of integrals that depend on

n− 1 denominators. The procedure is repeated till all the integrands are written in terms of

linearly independent propagators.

The second step consists of writing the scalar products appearing at the numerator in

terms of squared propagators. To this end, we notice that for a given set of kinematics with E

independent external momenta and L loops, the number of the linearly independent propagator

is bounded. In particular, the number of possible scalar propagator that involve at least one

loop momentum corresponds to Nt = E · L + L(L+1)
2 . By taking advantage of this, one can cast

any scalar product that appears at the numerator as a linear combination of a completed and

independent set of propagators of size Nt, leaving us with scalar integrals of the form:

I(ν1,ν2,...,νNt )
=
∫ [ L

∏
i=1

ddli
(2π)d

]
n

∏
j=1

1

D
νj
j

. (1.42)

where νi ∈ Z, and the denominators Dj of the form:

Dj =

(
L

∑
i=1

αjili +
E

∑
i=1

β ji pi + mj

)2

. (1.43)

All the integrals that can be described by the same set of propagators Di differing only in

their powers νi are said to correspond to the same topology.

By exploring the invariance of the integral under transformations of the loop momenta, one

can find that two topologies are isomorphic to one another and can be merged. Additional

symmetries can be applied to map different topologies into each other, for example by an

exchange of the external kinematics like p1 ↔ p2. The resulting integrals can be computed

analytically in the context of a different, isomorphic, topology with the only condition that at

the end we swap back the definitions of the external momenta.

By mapping different topologies into each other, we are able to reduce the number of integrals.

However, in most practical cases, this number remains too large or involves integrals which

are too difficult to be computed analytically. The success of many high-order computations

in QCD is due to reducing this problem to a smaller set of Master Integrals (MI) by means

of the application of integration by part identities (IBP). There are several public tools to

perform this reduction to master integrals; some notable examples are refs. [42, 43, 48]. The

implementation of the Laporta algorithm [136] is very demanding in computing power. For the

case of the N3LO Higgs-differential cross-section as computed in refs. [2, 3], a direct reduction

was unfeasible due to the complexity of the coefficients involved. To recover the coefficients

describing the reduction to master integrals, we had to rely on multiple evaluations over
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different finite fields and then reconstruct the expressions. The details of this procedure will be

discussed in the next chapter.

1.6.1 Integration by parts (IBP) identities

The IBP identities have been a reliable and successful tool to rewrite scalar integrals in terms

of master integrals. These identities arise from exploiting the condition that in dimensional

regularisation our functions have to vanish on the contour at infinity. This translates into the

following relation [29, 30, 115]:

∫ ddl
(2π)d

∂

∂lµ
F(l, {pi}) = 0, (1.44)

where the function F can be any combination of propagators, scalar products and loop

momentum vectors. For the case of several loops, one can build a set of relations that connect

different integrals I(ν1,...,νNt )
within the same topology by acting with different derivative and

vector structures:

∫ ( L

∏
k=1

lk

)
∂

lµ
q

(
lµ
r

M

∏
m=1

1
[
Dm({pi · lj}, {li · lj}, mj)

]dm

)
, q, r ∈ {1, . . . , L} (1.45a)

∫ ( L

∏
k=1

lk

)
∂

lµ
q

(
pµ

r

M

∏
m=1

1
[
Dm({pi · lj}, {li · lj}, mj)

]dm

)
,

q ∈ {1, . . . , L}
r ∈ {1, . . . , E},

(1.45b)

The number of identities that can be written with this procedure depends on the number of

linearly independent external momenta pi and loop momenta li. In the case of L loops and E

independent external momenta, we obtain a total of L · (L + E) different identities.

example

Let us consider the simple example of the massless triangle, whose topology is defined by the

scalar integral:

Tri((p1 + p2)
2; ν1, ν2, ν3) =

∫ ddl

iπ
d
2

1
l2ν1(l + p1)2ν2(l + p1 + p2)2ν3

, p2
1 = p3

2 = 0.
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The case where all the νi’s are 1 can be easily solved in terms of a bubble by summing the

single IBP identity coming from eq.(1.45a) together with the one corresponding to eq.(1.45b)

with r = 1, yielding:

p1

p2

=
2

d− 4 p12 .

This can be checked against the explicit integration of the triangle and the bubble performed

by using Feynman parameters. In the case of the triangle, we restrict to the case at hand where

all the propagators come with a unit power:

Tri((p1 + p2)
2; 1, 1, 1) =

(
(p1 + p2)

2)−1−ε 1
ε2

Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
(1.46)

For the bubble, we are going to integrate the corresponding expression in the case of general

powers for the two denominators:

Bub(p2; ν1, ν2) =
∫ ddl

iπd/2
1

[l2]ν1 [(l + p)3]ν2

= (p2)
d
2−ν1−ν2(−1)

d
2

Γ(ν1 + ν2 − d
2 )Γ(

d
2 − ν1)Γ( d

2 − ν2)

Γ(ν1)Γ(ν2)Γ(d− ν1 − ν2)
, (1.47)

where we can see that the relation between the two integrals is indeed correct.

This generic bubble integral is all one needs in order to compute any massless triangle. This

can be shown by summing the same two IBP identities as before, but this time for generic

exponents νi’s. The result can be represented in a diagrammatic way as follows:

•
•

ν2

ν3

•ν1
=

1
d− ν1 − 2ν2 − ν3




ν3 × •
•

ν2 − 1

ν3 + 1

•ν1
+ ν1 × •

•
ν2 − 1

ν3

•
ν1 + 1




,

where the exponent corresponding to each propagator is written on its side. It is clear from

this identity that is always possible to make the propagator with power ν2 disappear (ν2 = 0).

By removing one propagator from the massless triangle, we are reducing the problem to a

linear combination of bubble integrals with different powers νi as expected.
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1.6.2 Lorenz invariance identities

There is also another family of identities that can be used to relate different diagrams within

the same topology. These identities exploit the fact that any integral whose elements are all

expressed in terms of scalar products is invariant under Lorentz transformations.

Let us consider the infinitesimal version of a Lorentz transformation:

pµ → pµ + δε
µ
ν pν, δε

µ
ν = −δεν

µ, (1.48)

where δε
µ
ν is an antisymmetric tensor. The invariance of an integral I(p1, . . . , pn) can then be

translated into the following condition:

δε
µ
ν

[
n

∑
i=1

(
pν

i
∂

∂pµ
i
− pµ

i
∂

∂pν
i

)]
I(p1, ..., pn) = 0. (1.49)

Using the fact that this condition must hold for any arbitrary choice of Lorentz transformation

leads to the production of 6 identities. In ref. [37] was shown that the Lorentz invariance

identities could be expressed as a combination of IBP identities. Despite being redundant,

they can still be useful during the reduction to MI providing alternative representations of the

relations between integrals.

1.7 cutkosky’s rule

The reduction to master integrals by means of the IBPs identities is a formidable tool which

shows its full potential when combined with reverse unitarity [86, 126, 137–139]. This method

has already been successfully used in the computation of the inclusive Higgs cross-section

[26, 128, 140–145]. In this framework one casts the on-shell delta functions appearing in the

phase space of eq.(1.11) as propagators, allowing to use the reduction machinery directly to

the matrix elements.

In order to illustrate the procedure, let us consider the simple case of the LO cross-section

for the Higgs as computed in the infinite top mass effective theory. The partonic cross-section

σgg→H in the collision rest frame is written as the integration of the tree-level amplitude

squared:

σ =
1

2S

∫
ΦH |A|2, (1.50)
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where S is the energy of the process, ΦH the phase space and A the amplitude. In this simple

case the phase space becomes:

dΦH =
dd ph

(2π)d (2π)δ+
(

p2
h −m2

h
)
(2π)dδd (p1 + p2 + ph) . (1.51)

At leading order in EFT the only contribution to the amplitude comes from the three-point

interaction between the two incoming gluons and the Higgs. The cross-section is then given by:

2S σ =

∫
ΦH







︸ ︷︷ ︸
A







∗

︸ ︷︷ ︸
A∗

=: .

(1.52)

The integration over the final particle phase space, here represented by a single Higgs, is being

replaced by a forward scattering with the addition of a dashed line across the particle that has

to be considered on-shell. The d-dimensional delta function that imposes energy-momentum

conservation is solved by imposing that the final state satisfies ph = p1 + p2.

This procedure can be extended to more complicated diagrams, that may include multiple

particles in the final state. By means of the Cutkosky’s rule [146] we express the on-shell

constraints appearing in phase space integrals as cut propagators:

δ+
(
q2)→

[
1
q2

]

c
=

1
2πi

Disc
(

1
q2

)
=

1
2πi

(
1

q2 + i0
− 1

q2 − i0

)
. (1.53)

The Cutkosky’s rule can be used to "glue" together the two ends of the diagrams that interfere

inM, which can be represented as:∫
dΦ

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2

≡ .

The reduction to master integrals can be applied directly to the integral appearing on the

right-hand side by noticing that the cut propagators can be differentiated similarly as ordinary

propagators,
∂

∂qµ

([
1
q2

]

c

)ν

= −ν

([
1
q2

]

c

)ν+1

2qµ . (1.54)
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The fact that the cut propagator represents a delta function is reflected by the constraint that

any integral containing a cut propagator raised to a negative power must vanish:

([
1
q2

]

c

)−n

= 0 for n ≥ 0, (1.55)

which simplifies the reduction.

In refs. [86, 138, 139], it was introduced a modification of the reverse unitarity framework in

order to allow for the computation of differential quantities, such as the rapidity distribution.

Here we want to be fully differential in the Higgs momentum. Effectively, we apply reverse

unitarity treating ph as an additional external momentum together with p1 and p2. After

factorizing the phase space one may write:

σ̂ij(S, x, λ, m2
h) ∼∑

m

∫ ∞

0

dµ2

2π
dΦHX ×

[∫
dΦmMij→H+X

]

︸ ︷︷ ︸
Reverse Unitarity

. (1.56)

The explicit factorization of the Higgs boson phase space and the QCD radiation phase space

achieved by eq.(1.35) allows us to use different methods for the two phase spaces without

having to renounce to any of the differential quantities relative to the Higgs boson. The

analytic integration over the QCD radiation is performed inclusively in conventional dimensional

regularization (CDR) [116, 147], where the matrix elements, as well as the integration over the

phase space, are calculated in d-dimensions. This differs from the ’t Hooft Veltman dimensional

regularization (HV) [115] in the fact that the latter treats the observed states as four-dimensional

while CDR treats all the states as being d-dimensional. The latter leads to a more convenient

computational framework when dealing with infrared divergencies on the external momenta.

In both these prescriptions, it is possible to maintain a 4-dimensional spinor space. Then, in

CDR, the fermions still have two polarizations, while the gluons have d− 2 spin degrees of

freedom.

1.8 nnlo master integrals

In this section, we elaborate on the computation of the master integrals that serve as building

blocks for our partonic cross-section at NNLO. To validate our results, we follow two different

strategies. The first is based on the method of differential equations as described in refs. [51,

52, 56] to express the master integrals as a Laurent series in the dimensional regulator ε whose

coefficients are written in terms of harmonic polylogarithms or more generally elliptic functions.

The second approach is based on the direct evaluation of phase space and loop integrals. As
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MRR
1 MRR

2 MRR
3 , MRR

7

MRR
4 , MRR

6 MRR
5 MRR

8

Figure 1.5: Double-real master integrals, the double line represents the Higgs propagator with
associated mass mh, and the external lines allow for the momenta p1 and p2, while the
dashed line represents the unitarity cut.

both strategies lead to identical results, and since the first method is well established in the

field of high order computations, we will not discuss it in more details. Moreover, we limit

the discussion to master integrals involving at least one final state parton as purely virtual

corrections are well known [148, 149].

1.8.1 Double-real master integrals

At NNLO we find that the differential cross-section involving two partons in the final state

can be written in terms of eight master integrals MRR
i , corresponding to the six diagrams in

figure 1.5. Propagators crossing the dashed line in the diagrams represent cut propagators,

while the double line marks the massive Higgs boson propagator. The fact that we are

interested in Higgs-differential master integrals means that the momentum of the Higgs boson

is completely fixed.

Following the factorization of the phase-space shown in eq.(1.14), all the double-real (RR)

master integrals can be written in the form

I(p, q; α, β) ≡
∫ ddl

(2π)d−2
δ(l2)δ((l − k)2)

(l + p)2α(l + q)2β

k2 6= 0,

p2 = 0,

q2 ∈ R

(1.57)
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where again we denoted with k the momentum of the collective system of final state partons.

The generalised exponents α and β and the momenta q and p specify the propagators that

appear in the respective master integral. In particular, p and q are linear combinations of p1,

p2 and k. The integral over l stands for the integration over one of the two final state parton

momenta. The integral I(p, q; α, β) can be evaluated for generic values of the parameters in

terms of Appell’s Hypergeometric function [150]:

I(p, q; α, β) = (−1)α+β π−1+ε2−3−β+2ε(k2)−εΓ(1− β− ε)

Γ(2− β− 2ε)

(q2 − q · k)α−β

(k2(q · p)− q2(k · p))α
×

× F1

(
α; 1− β− ε, 1− β− ε; 2− β− 2ε; 1− 1 +

√
1− 4v11

2v12
, 1− 1−√1− 4v11

2v12

)
(1.58)

where we have defined the auxiliary quantities,

1− 4v11 ≡
(q · k)2 − k2q2

(q2 − q · k)2
q2=0−−→ 1,

2v12 ≡
q2(k · p)− k2(q · p)
(p · k)(q2 − q · k)

q2=0−−→ k2(q · p)
(p · k)(q · k) .

The eight master integrals, shown in Figure 1.5, contributing to the RR partonic cross-section,

expressed in terms of the function I(p, q; α, β), are given by

MRR
1 = CRR(1− 2ε) I(0, 0; 0, 0),

MRR
2 = −CRR

z̄ε

1− λxz̄
I(0, p1 + p2; 0, 1),

MRR
3 = CRR

λz̄ε
(
λ2xz̄2 − 2λxz̄ + xz̄− z̄ + 1

)

1− λxz̄
I(p2, k− (p1 + p2); 1, 1),

MRR
4 = CRR(1− λ)z̄ε I(p1, p1 + p2; 1, 1),

MRR
5 = −CRR

(1− λ)λ(1− x)z̄2ε

1− λxz̄
I(p2, k− p1; 1, 1),

MRR
6 = CRR

λz̄ε(1− xz̄)
1− λxz̄

I(p2, p1 + p2; 1, 1),

MRR
7 = CRR

(1− λ)z̄ε
(
λ2z̄2x(1− x)− z̄ + 1

)

(1− λxz̄)2 I(p1, k− (p1 + p2); 1, 1),

MRR
8 = CRR

(1− λ)λxz̄2ε

1− λxz̄
I(p2, p1; 1, 1),

(1.59)
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(a) (b) (c)

(d) (e)

Figure 1.6: Set of real-virtual integrals to build the set of master integrals MRV
i where the dashed

line represents the Cutkosky cuts, the double line represents the Higgs propagator with
associated mass mh and the external lines allows for the momenta p1 and p2, meaning that
the diagrams (c, e) can have two possible configurations while all the other are symmetric
under exchange p1 ↔ p2.

where MRR
6 and MRR

7 are related to MRR
4 and MRR

3 under the exchange of p1 with p2, respec-

tively. In the prefactor CRR we absorb additional factors that result from the phase space

measure of the integration over the Higgs boson momentum,

CRR = ε3(µ2)2εe2εγE
(4π)−2−ε (m2

h)
−εzε

Γ(1− ε)
z̄−2ε(λλ̄)−ε(1− x)−ε(1− z̄xλ)ε. (1.60)

The rational prefactors and the CRR in the above definitions of the master integrals make most

of them pure functions of uniform transcendental weight [56]. This is true for all but MRR
2

which still contains a root of a polynomial in our variables.

1.8.2 Real-virtual master integrals

In the case of the RV master integrals, the integration over the final state parton phase space

becomes trivial, and all master integrals are simply given by one-loop integrals. The masters
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necessary to describe the RV differential cross-section are shown in figure 1.6. To express them,

we define the shorthand notation for two well-known integrals:

Bub(p2) =
1

(4π)
d
2

Bub(p2; 1, 1)

=
(4π)−2+ε(−p2)−εΓ(1− ε)2Γ(ε + 1)

ε(1− 2ε)Γ(1− 2ε)
,

Box(q1, q2, q3) =
∫ ddl

i(2π)d
1

l2(l + q1)2(l + q1 + q2)2(l + q1 + q2 + q2)2 , (1.61)

where the box integral can be found, for example, in ref. [151]. The master integrals can then

be written as:

MRV
1 = −2

3
ε(1− 2ε)CRV Re

[
Bub

(
(p1 + p2)

2)] ,

MRV
2 = −2

3
ε(1− 2ε)CRV Re

[
Bub

(
p2

h
)]

,

MRV
3 = −2

3
ε(1− 2ε)CRV Re

[
Bub

(
(p2 − ph)

2)] ,

MRV
4 = −ε2s2λ̄z̄ CRV Re [Box(p2, p1,−ph)] ,

MRV
5 = ε2s2λz̄ CRV

{
11z̄λ̄ Re [Box(p2,−ph, p1)]− 23 Re [Box(p1, p2,−ph)]

}
,

MRV
6 = −2

3
ε(1− 2ε)CRV Re

[
Bub

(
(p1 − ph)

2)] ,

MRV
7 = ε2s2λz̄ CRV

{
−z̄λ̄ Re [Box(p2,−ph, p1)] + 2 Re [Box(p1, p2,−ph)]

}
.

(1.62)

The normalisation factor CRV absorbs part of the integration measure of the Higgs boson

momentum and is given by

CRV = ε2(µ2)2εe2εγE
(4π)−1−ε (m2

h)
−ε zε

2Γ(1− ε)
z̄−2ε(λλ̄)−ε. (1.63)

1.8.3 Expansion in the dimensional regulator

For further numerical evaluation, we need to expand the master integrals as a Laurent series

in the dimensional regulator ε. The Laurent expansions for the RV master integrals are well

known, so we comment here only on the expansion of the RR integrals. For the masters MRR
1 ,

MRR
4 and MRR

5 , their Appell’s hypergeometric function can be reduced to Gauss hypergeometric

functions 2F1, and can be expanded in ε with public tools such as the HypExp package [152, 153].
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For the remaining master integrals, we have to directly expand the Appell’s hypergeometric

function through weight three, starting from the following integral representation:

F1(1;−ε,−ε; 1− 2ε; x, y) = (−2ε)
∫ 1

0
dt (1− t)−1−2ε(1− yt)ε(1− xt)ε

= (−2ε)x̄εȳε
∫ 1

0
dt t−1−2ε

[ (
1−

(
1− tx′

)ε
) (

1−
(
1− ty′

)ε
)

−
(

1−
(
1− tx′

)ε
)
−
(

1−
(
1− ty′

)ε
) ]

+ (−2ε)x̄εȳε
∫ 1

0
dt t−1−2ε. (1.64)

Here we have defined x′ = x
x−1 and similarly for y′. From this reparametrization and re-

arrangement, we obtain that the first element inside the squared parenthesis integrates to a

finite quantity when ε vanishes and can therefore be expanded at the integrand level around

ε = 0. The divergent behaviour is captured by the remaining terms, which can be easily

integrated for generic ε in terms of 2F1. Combining these contributions back together yields

the following expansion for the F1:

F1(1;−ε,−ε; 1− 2ε; x, y) = 1 + ε ln(x̄ȳ)− 2ε2
[

Li2(x) + Li2(y) +
1
4

ln2
(

x̄
ȳ

)]

−2ε3
{

2 Li3(x) + 2 Li3(y)− Li3

(
x
y

)
+ Li3

(
x̄
ȳ

)
+ Li3

(
yx̄
xȳ

)

− ln
(

x̄
ȳ

)
Li2

(
yx̄
xȳ

)
− ζ3 −

1
12

ln3
(

x̄
ȳ

)

−1
6

ln3
(
− x

y

)
+

1
2

ln(x) ln2
(

x̄
ȳ

)}
+O(ε4). (1.65)

The above expression is real-valued for x ∈ [0, 1], y < 0. This allows us to express all coefficients

in the Laurent series in terms of real valued classical polylogarithms, enabling a fast and stable

numerical evaluation [154].

1.9 numerical results for the higgs diphoton signal

In this section, we carry out numerically the remaining integrations which are necessary in

order to obtain the hadronic Higgs-differential cross-sections. We present results for the LHC

at 13TeV in order to showcase the types of observables which can be readily computed with

our approach.

While our analytical results are original and extend the literature of NNLO Higgs-differential

cross-sections at O(ε), our numerical predictions for the finite part can be compared to available
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Figure 1.7: Rapidity and pT distributions for the inclusive production of a Higgs boson via gluon
fusion for different orders in perturbative QCD through NNLO. The bands represent the
variation of the cross section under changes of the unphysical scale µ w.r.t. the central
value (thick lines) by a factor of two.

computer codes. We have validated our numerical implementation against the predictions

of HNNLO [85] and MCFM [155] and we have found good agreement within Monte-Carlo

uncertainties.

For our numerical studies we use NNLO MMHT parton distribution functions [120] through-

out, as available from LHAPDF [121]. Their default value for the strong coupling constant

αS(mZ) = 0.118 and the corresponding three-loop running are also adopted. We set the Higgs

boson mass to mh = 125 GeV and neglect its width. We equate the renormalisation and

factorisation scales for simplicity and we choose µ = mh/2 as a central value. As it is common

practice, we estimate the effect of missing higher order corrections by varying µ by a factor of

two around its central value.

We start by showing distributions for the inclusive production of a Higgs boson via gluon

fusion. In Figure 2.6a we present the unbinned rapidity distribution of the Higgs boson. The

bands correspond to the variation of the cross-section at LO, NLO and NNLO in our default µ

scale range. In Figure 1.7b we show the pT distribution of the Higgs boson. In order to have

a non-vanishing transverse momentum, the Higgs boson needs to recoil against additional

radiation and therefore its pT distribution is trivial at LO.

In addition to simple inclusive distributions for a stable Higgs boson, we can also investigate

its decays. Specifically, we present differential distributions for the Higgs diphoton signal after

the application of typical selection cuts for the photons. The decay of the Higgs boson to two

photons allows for precise measurements of numerous properties (see e.g. [156–162]) due to its
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Figure 1.8: The Higgs boson rapidity distribution for different orders in pQCD through NNLO in
the fiducial volume for the diphoton decay. The bands represent the variation of the
cross-section under changes of the unphysical scale µ w.r.t. the central value (thick lines)
by a factor of two.

exceptionally clean experimental signature and it has played a crucial role in the discovery of

the Higgs boson itself [13, 14].

We impose photon selection cuts which follow as closely as possible the diphoton analysis of

ATLAS [162]. We require that the pseudorapidities of both photons satisfy ηγ < 2.37, together

with ηγ 6∈ [1.37, 1.52], which implies that there are no photons in these regions. Furthermore,

we require the photon with larger transverse momentum to satisfy pT, γ1 > 0.35 mh and the one

with smaller transverse momentum to have pT, γ2 > 0.25 mh. Since we have integrated out the

associated radiation in the production of the Higgs boson, our analysis ignores photon isolation

which is important for removing most of the diphoton background due to fragmentation [18],

but it effects in a minor way the Higgs signal that is studied here.

In Figure 1.8, we present the rapidity distribution of the Higgs boson after the application

of the photon selection cuts described above. The bands correspond to the values of the

cross-section at LO, NLO and NNLO in our default µ scale range. Due to the restrictions in

the coverage of the pseudorapidity of the photons, the Higgs rapidity distribution manifests

some non-smooth changes. In the middle panel, we show the conventional K-factors, i.e. we

normalise the rapidity distribution at LO, NLO and NNLO for a general scale µ to the LO

prediction evaluated at a fixed scale µ = mh/2. We observe that the relative size of QCD

corrections at NLO and NNLO has a pattern which is similar to the one seen for the inclusive

cross-section, although the K-factors are not entirely uniform across bins due to the effect of
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Figure 1.9: Differential distributions for the decay products of the Higgs boson for different orders
in perturbative QCD through NNLO in the fiducial volume for the diphoton decay. The
bands represent the variation of the cross section under changes of the unphysical scale µ
w.r.t. the central value (thick lines) by a factor of two.

the photon cuts. In the lower panel, we normalise the rapidity distribution at LO, NLO and

NNLO for a general scale µ to the NLO prediction at NLO at a fixed scaled µ = mh/2. This

shows that the relative K-factor from NLO to NNLO is more uniform in rapidity.

In Figure 1.9a, we present the distribution of the pseudorapidity difference of the two photons.

The distribution has a kinematic edge at leading order at ∆η ' 1.79. The perturbative expansion

contains logarithms in terms of the ratio pT
mH

which becomes large as the transverse momentum

of the Higgs boson becomes smaller. In order to improve the fixed order perturbative corrections

a resummation of these logarithms is required [163]. However, the bulk of the distribution can

be calculated in fixed order perturbative QCD.

In Figure 1.9b, we present the pT distribution of the leading photon. At LO, the photon

pT cannot exceed the value of mh/2. In addition, the experimental selection imposes a lower

pT value at 0.35 mh. This severe restriction of the phase space leads to large corrections to

the available perturbative results. As such, resummation would be required to obtain stable

predictions in this kinematical regime. Beyond LO the phase space for larger values of pT

opens up and the distribution becomes more well-behaved beyond 100 GeV.

These distributions are just a small selection of possible observables that can be computed in

our framework. Combining the production with other decay modes is straightforward and can

be used to study a number of phenomenologically relevant observables.

The analytic computation of the partonic coefficient functions η
(k)
ij (z, x, λ) as defined in

eq.(1.24) has been published in ref. [1] together with a finite version with all 18 different
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kinematic configurations of these coefficient functions as in section 1.5 each as a sum of

products of rational coefficients and master integrals, provided in Mathematica readable form

in an ancillary file together with the arXiv submission.

1.10 conclusion

In this chapter, we presented differential distributions for Higgs boson observables at NNLO

in perturbative QCD, obtained within our Higgs-differential framework. Our computational

method is a departure from common frameworks for differential calculations in that it avoids

explicit subtraction of infrared divergences at the cost of being inclusive in jet observables.

This is achieved by separating the QCD radiation phase space from the phase space of the

produced colour-neutral final state. By integrating the QCD radiation phase space inclusively

in dimensional regularisation, soft and collinear divergences are made explicit as poles in the

regulator. Furthermore, this separation enables us to employ reverse unitarity and related

techniques that have been developed in inclusive calculations, in order to simplify the phase-

space integrations over final-state partons which are produced in association with the Higgs

boson.

The NNLO cross section has been cast in terms of few master integrals, which we compute in

an arbitrary number of dimensions in terms of standard hypergeometric functions that admit

expansions to arbitrarily high order in the dimensional regulator. We have presented results

that go beyond the finite term in the ε expansion, which were unknown in the literature. These

new results are essential ingredients for the construction of collinear and UV counter terms

for Higgs-differential cross sections at N3LO. The master integrals encountered here do not

depend on the exact nature of the colourless final state produced and could be directly re-used

in a similar differential Drell-Yan calculation.

The main achievement of this chapter is lying down the mathematical framework for the

computation of the N3LO differential Higgs distribution that will be discussed in the next

chapter in the context of a threshold expansion.
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T H R E S H O L D E X PA N S I O N

In this chapter, we discuss the problems arising when dealing with the computation of the

Higgs-differential cross-section at one order higher in the perturbative expansion, namely

N3LO in the effective theory.

We start by showing a tool that has been key in order to enable us to explore the large

complexity of the problem; the implementation of the reconstruction or rational functions with

the aid of finite fields. In particular, the reconstruction of the coefficients of the reduction to

master integrals.

We then present two ways to perform the threshold expansion, one performed at the

integrand level, and another by building a system of differential equations.

At last, we present the result of the analytic computation for the first and second term of the

threshold expansion of the partonic N3LO coefficient functions for the Higgs-differential cross-

section. These results were first published in refs. [2]. In order to perform the computation we

also strongly rely on techniques recently developed in refs. [26, 128, 140, 141] together with [1]

as presented in the previous chapter.

2.1 rational function reconstruction

The reduction of an integral I(ν1,..,νn), defined in eq.(1.42), to master integrals Mk(p1, .., pn; {mi})
can be written as:

I(ν1,..,νn) = ∑
k

ck Mk(p1, .., pn; {mi}). (2.1)

were the master integrals depend on the external momenta pi and a number of massive

propagators with arbitrary masses mj. The coefficients ck that define the integral in terms of

master integrals are the result of the application of IBP identities as presented in eq.(1.45). By

combining them, it is possible to explore a growing number of relations between integrals that

differ only in their denominator powers by following the Laporta algorithm [136]. Solving

the system to retrieve the coefficients ck is performed with a simple Gaussian elimination,

which consists in the repetition of simple arithmetic operations such as addition, subtraction,

39
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multiplication and division. Since each IBP relation in eq.(1.45) corresponds to a linear

combination of integrals I(ν1,..,νn) with varying powers νi and multiplied by coefficients that

are rational functions of the external kinematics sij = (pi + pj)
2 − δij p2

i , it follows that also the

coefficients ck appearing in eq.(2.1) must be rational functions.

The evaluation of the coefficients ck is still far from simple, and performing all the steps of

the Gaussian elimination analytically may be beyond our current computing power. This is

especially true for topologies with many loops, masses or external legs, which significantly

increase the structure that such rational functions can take.

One of the limiting factors is that to reach the expression for the coefficients ck one needs to

evaluate all the intermediate steps of the Gaussian elimination, which could involve expressions

much more complicated than the final result. As has been pointed out in ref. [62], the evaluation

of all these steps is extremely fast when performed numerically. We can then perform multiple

evaluations to gather enough information to reconstruct the rational structure of the coefficients

ck. Since we want this reconstruction to be exact, we are not allowed to approximate any of the

numerical evaluation (e.g. by using float numbers), to this end we use finite fields to minimize

the loss of information without affecting the evaluation speed.

The exact analytic expression for the reduction coefficients is recovered by performing

the rational reconstructions over multiple finite fields. The procedure used to go from the

finite field representation to the one involving rational numbers is illustrated in figure 2.1. In

particular, using the Chinese Remainder Theorem (CRT) one can build a representation over

Zm with m large enough to allow for the unique identification of a rational number through

the Rational Reconstruction Theorem (RRT). The details on the work of the CRT and RRT are

discussed in the dedicated subsections.

2.1.1 Finite Field

The use of finite fields in physics has gained increasing popularity from its first applications

in refs. [39, 62] and was an important ingredient when we were working on the threshold

expansion presented in ref. [2]. Other examples of works that relied on the use of finite fields

in order to circumvent problems related to the complexity of the expressions can be found in

refs. [164–169].

In mathematics, finite field (or Galois field) are defined as commutative division ring.

commutative division ring :

A Ring (R,+, ◦) is a set R together with two binary operations + : R × R → R and

◦ : R× R→ R and fulfils the following conditions:
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(1) R is an abelian group with respect to the operation + with the identity element

denoted by 0

(2) the operation ◦ is associative

(3) Distributivity of multiplication over addition: (a + b) ◦ c = a ◦ c + b ◦ c

A Ring is said to be a commutative division ring if R \ {0} is an abelian group under ◦.
From this definition it follows that Zp is a finite field if and only if p is a prime number. For

example, if p = 3 · 5 then Z15 cannot be a commutative division ring since (3 · 5 = 0 mod 15),

meaning that neither 3 nor 5 can have a multiplicative inverse.

We now want to incorporate the use of finite fields into the evaluation of the reduction

coefficients. We can represent the evaluation of these coefficients as a black-box which contains

the set of instructions one need to follow to obtain their expressions. The only constraint

that we impose to the black-box is that all the internal operations must be represented as a

combination of addition, subtraction, multiplication and division. Assuming the reduction

coefficient depend on a set of variables t, we can represent the evaluation as,

variables t c(t) ∈ Q(t)

where Q(t) represents the space of rational functions over the field Q with variables t.

This operation could become extremely time-consuming. For our computation, we have

used FERMAT [170] to perform all the algebraic manipulations necessary to build the reduction

coefficients. These instructions were provided by a private C++ implementation of the reduction

algorithm that was already used for the inclusive N3LO Higgs cross-section in refs. [26, 128,

140, 141]. This direct manipulation of the algebraic expression became so complicated for the

N3LO Higgs-differential cross-section that, even after running the corresponding code for two

months, we couldn’t recover the coefficients. Considering that this was the reduction for a

single topology out of more than 200, this method quickly showed its limitations.

The evaluation time is drastically reduced when considering numerical values for the

variables t. This new evaluation can be represented as:

t0 ∈ Zd a
b ∈ Q
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with d the number of variables. For practical applications this numerical evaluation is not

optimal since, when sampling to reconstruct a rational function, the resulting rational numbers

may become extremely large in both the numerator and denominator. As the size of these

numbers grows so does the amount of time need for the evaluation of any algebraic operation

among them. The avoid this problem we can perform the evaluation over a finite field Zp. By

using p < 263 we ensure that all the operations are performed between machine size integers

allowing to exploit the full potential of the hardware used for the computation.

2.1.2 Rational Function Reconstruction

univariate case

The reconstruction of rational functions in one variable is a well known problem, and there

are several ways to do it. Here we are going to present the procedure followed for our

computations.

Let us assume that a function f (t) over a field K can be written in the form:

f (t) = ∑n
i=0 ai ti

1 + ∑m
i=1 bi ti =:

g(t)
h(t)

, (2.2)

where we choose to normalize the constant coefficient to one. In case the function cannot be

brought directly into this form, we can either apply a shift to the variable t or considering the

inverse function 1/ f (x). It is also convenient to define the degree of a rational function:

deg[ f (t)] ≡ 2 ·max{rank[g(t)], rank[h(t)]},

which is related to the number of points needed to complete the interpolation.

To reconstruct the expression of the rational function, we make use of Thiele’s interpolation

formula:

T
(
t; {tj, aj}j=0,..,n, an+1

)
= a0 +

t− t0

a1 +
t− t1

. . .
an+

(t−tn)
an+1

, (2.3)

where t is the variable we are reconstructing in, tj the points were we have evaluated the

function we want to interpolate, and an the coefficients that need to be fixed.



2.1 rational function reconstruction 43
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i ∈ {1, . . . , r}

ui ∈ Zp1
u1 ∈ Zpi

ur ∈ Zpr
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a
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… …

3

7

r = r + 1

Figure 2.1: Schematic representation on how the reconstruction of rational numbers is performed. In
the first step, the numerical input is an element of the finite field Zpi implying that we
are going to perform all the operations inside of the black-box over Zpi . In the third layer,
we see that the evaluation is repeated for a set of different primes pi resulting in different
representation of the rational number. All these results are then combined using the
Chinese Remainder Theorem (CRT) to create e new number u which is the representation
of the rational number modulus the product of all the primes used so far. We then try to
use the Rational Reconstruction Theorem (RRT) to recover the expression of the rational
number, if such an operation fails then we evaluate over an extra finite filed with size pr+1
to increase the size of Zp1 p2 ...pr till the RRT is successful.
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In order to illustrate how the coefficients an are fixed, it is useful to write the interpolation

formula in a recursive form. First, we introduce the shorthand notation:

Ti
j (t; {tk, ak}, an+1) := T

(
t; {tk, ak}k=i,..,j, aj+1

)
, T j+1

j

(
t; {tj, aj}, an+1

)
= an+1 (2.4)

where the second condition represents the end of the recursion that will reproduce eq.(2.3). In

particular, the recursive step that unfolds into the expression for Thiele’s interpolation formula

is written as:

Tm
n
(
t; {tj, aj}, an+1

)
= am +

(t− tm)

Tm+1
n

(
t; {tj, aj}, an+1

) . (2.5)

The number of different evaluations necessary to successfully reconstruct a function of the

form of eq.(2.2) is given by deg[ f (t)], corresponding to the degrees of freedom that need to be

fixed. The first coefficient of the interpolation is trivially set, assuming that the first evaluation

at t0 corresponds to a value f0, then a0 = f0.

Let us assume that we have all the coefficients up to an and we want to fix the next one.

This means that we have already evaluated some rational function f (t) in (n + 1) different

points and fit to the corresponding Thiele’s interpolation T0
n−1. The next step is to evaluate

the function in one extra point and solve for an+1. The system generated by this additional

evaluation corresponds to:

T0
n−1

(
tn+1; {tj, aj}, an +

(tn+1 − tn)

an+1

)
= fn+1. (2.6)

If either the reconstruction is already completed or the point is by chance aligned with the

current state of the reconstruction, one gets the following condition:

T0
n−1

(
tn+1; {tj, aj}, an +

(tn+1 − tn)

an+1

)
= T0

n−1
(
tn+1; {tj, aj}, an

)
(2.7)

⇒ (tn+1 − tn)

an+1
= 0. (2.8)

Since by assumption tn 6= tn+1, we conclude that this system has no solution. To ensure that

this corresponds to the end of the reconstruction, we discard this last point and try again with

a different evaluation point t′n+1. If we encounter the condition in eq.(2.8) enough times we can

claim with reasonable certainty that the reconstruction is concluded and take T0
n−1 as being

our original function f (t). As we will see for the multivariate case, we can also find an upper

bound for n with high confidence and avoid all the extra evaluations.
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multivariate case

We just saw how to reconstruct rational functions in the simple case where there is just one

variable; we now want to solve it for the generic case of d-variables.

Let us introduce a shorthand notation to avoid unnecessarily messy equations:

xαn =
i=d

∏
i=1

xαn,i
i , |αn| =

i=d

∑
i=1

αn,i = n.

We then consider the natural extension of the 1-dimensional case of eq.(2.2):

f (x) =
∑n

i=0 ∑αi
ai(αi) xαi

1 + ∑n
i=0 ∑βi

bi(βi) xβi
=:

g(x)
h(x)

. (2.9)

For the multivariate case, it is in general not possible to represent the function like this. For

example, the expression x1
x2

cannot be normalized to a constant in either the numerator or the

denominator. Similarly as was discussed in the 1-dimensional case, any multivariate function

f (x) can nevertheless be brought in the form of eq.(2.9) by performing a shift in the variables

and considering the new function f ′(x) ≡ f (x + x0). After a successful reconstruction, the

original expression can be recovered by reversing the shift.

Also for the higher dimensional case, it is useful to introduce the concept of degree of the

function as well as the rank for both numerator and denominator. We define the degree of the

d-dimensional rational function as:

deg[ f (x)] ≡ 2 ·max {max(|αn|), max(|βm|)} .

For any multivariate reconstruction, one can fall back to the problem of interpolating a

1-dimensional rational function. Assuming we have some arbitrary point x0 where we evaluate

the expression, we can then rescale it by some variable t1 and interpolate in it. By considering

different staring points x0, it is then possible to infer the multivariate structure. For our

reconstruction, we used the following rescaling to systematically explore the space:

xi = x0,i ·





t1, i = 1

t1 · ti, otherwise
(2.10)

By freezing the values for all ti with i > 1 we obtain a univariate rational function in t1

that can then be reconstructed by following the method discussed in the 1-dimensional case.

Such rational expression will have all of its coefficients ai and bi from eq.(2.2) to represent
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polynomials in the remaining scaling parameters t2, . . . , td. By interpolating rational functions

in t1 for different values of the other tis, we can perform a Newton polynomial interpolation of

each coefficient. The interpolation reads:

N
(
t; {tj, aj}j=0,..,n, an+1

)

= a0 + (t− t0)

(
a1 + (t− t1)

(
. . . (t− tn−1)

(
an + (t + tn)an+1

)
. . .
))

. (2.11)

Depending on the position of the coefficient in the univariate rational function, we can obtain

an upper bound for the degree of the polynomial and use it to truncate the polynomial

interpolation.

The rational reconstruction in the variable t1 requires at least deg[ f (tx0)] independent

evaluations. Instead, the number of independent evaluations needed for the other ti is related

to the rank of the variable xi. Because of this difference in the required number of evaluations,

it is convenient to assign the x1 position to the variable that appears with the highest power to

reduce the overall number of points needed to complete the reconstructions.

This brings us to the problem of extracting the ranks in the individual variables. To recover

the rank in the variable xi, we can fix the starting position to be x0 and then reconstruct the

rational function by rescaling only in this variable. In order to avoid accidental cancellations

due to the choice of x0, we repeat these reconstructions by sampling over different initial values.

The algorithmic reconstruction we just discussed is valid for any rational function over a

field K. For the purpose of computing the reduction coefficients for the Higgs-differential

cross-section, we work with finite fields (i.e. K = Zp). To restore the original expression

with K = Q we need to recover the numerical coefficients in terms of rational numbers (see

figure 2.1). To this end, we need to explain two ideas, the CRT that is used to combine different

results and the RRT that maps the numbers in Zm to their rational counterpart.

2.1.3 Chinese Remainder Theorem

One key ingredient in using RRT to successfully map back to a rational number its represen-

tation over Zm is to have the modulus m to be large enough. In particular, it must exceed in

size the square of both the numerator and denominator of the rational number. At the same

time, we want to limit the size of the finite fields to work with machine size integers allowing

to compute the algebraic operations as efficiently as possible.
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The CRT allows us to fulfil both conditions, also when the rational number in the final

expression contains reasonably large numbers at the numerator and/or denominator. The large

modulus needed for the reconstruction can be built by combining many smaller finite fields

Zp over different primes p ≈ 263.

Let us assume that we are dealing with the number x ∈ Q and all we have are its values over

several finite fields:

ui ≡ x mod pi, (2.12)

where the pi are all co-prime. What we want to achieve is a new number u, which is the

number x modulus the product of all the previous primes:

u ≡ x mod ∏
i

pi. (2.13)

The Chinese remainder theorem allows building u from the information that we already

have about the values ui. What it says is that if we have any number u that fulfils

u ∈
[

0, ∏
i

pi

]
, ui = u mod pi, (2.14)

then it must be exactly the same as eq.(2.13).

It is self evident that if we first apply the modulus a · pi for any a ∈ N and then pi it is

equivalent to applying only pi. This means that eq.(2.13) implies eq.(2.14).

We now want to show that there is only one such expression and that it is enough to define

u completely. Assume for a moment that we have two solution u and u′, then we investigate

their difference ∆u = |u− u′|:

∆u = 0 mod pi, ∀i ⇒ ∆u ∝ ∏
i

pi

⇒ ∆u = 0 mod ∏
i

pi

⇒ u = u′

This result tells us that it is sufficient to find an expression that fulfils eq.(2.14) to obtain u.

Such expression can be written explicitly as:

u = ∑
i

ui

[
∏
j 6=i

pj

(
1
pj

mod pi

)]
mod ∏

i
pi, (2.15)
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by noticing that for any pair (p, q) of co-prime we can write:

1 =

[
p
(

1
p

mod q
)]

mod q, (2.16a)

0 =

[
p
(

1
p

mod q
)]

mod p. (2.16b)

example

Take the number x = 65 and its two moduli u1 and u2 over Zp with p1 = 9 and p2 = 17. The

values of the two moduli are u1 = 2 and u2 = 14. We can then use the CRT as presented in

eq.(2.15) to build the expression for (u = x mod p1 p2):

u = 2
[

17
(

1
17

mod 9
)]

+ 14
[

9
(

1
9

mod 17
)]

mod 153

= 2(17 · 8) + 14(9 · 2) mod 153

= 65

As expected this value satisfies the conditions that (u = u1 mod p1) and (u = u2 mod p2).

2.1.4 Rational Reconstruction Theorem

If we were to reconstruct any integer number x ∈ Z, we would be able to recover it from its

value modulus m provided that m > 2|x|. Also for rational numbers, there are constrains on

the size of Zm that allows for a successful reconstruction. In particular, it is possible to map all

rational number of the form ± x
y that fulfil:

x ∈ {n ∈N | n <
√

m/2}
y ∈ {n ∈N>0 | n <

√
m/2, n and m co-prime}

(2.17)

as was proven in ref. [171].

This boundary can be understood by considering the possible rational numbers that one

can write satisfying the conditions above. By counting all possible combinations, we obtain

an upper bound of 2(
√

m/2)2, where the factor two takes care of the negative numbers. The

actual number of unique rational number will be smaller since Q is an equivalence class. To

see how the different rational numbers are represented in Zm, it is useful to consider a simple

example.
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Data: x, y ∈ Z

Result: Bézout’s coefficients and gcd(x, y) in a vector (a, b, c). Then the solution can be
written as gcd(x, y) = ax + by = c.

begin
v = (1, 0, a);
u = (0, 1, b);
while u3 6= 0 do

q = v3 quot u3;
r = v− qu;
v = u; u = r;

end
return v;

end
Algorithm 1: Extended Euclidean Algorithm (EEA)

example

Take m = 23. By assumption we should be able to map all rational numbers of the form ± x
y

with 0 < x ≤ 3 and 1 < y ≤ 3:

y�x −3 −2 −1 0 1 2 3

1 20 21 22 0 1 2 3

2 10 ↗ 11 ↑ 12 ↖ 13

3 ↗ 7 15 ↑ 8 16 ↖

Where we omitted the equivalent fractions. We see that indeed each rational number is associ-

ated with one unique number over Zm.

To understand how to map the representation of a rational number over a modulus m to its

original value, we need to review the Extended Euclidean Algorithm (EEA, see algorithm 1).

This algorithm is used for the computation of the greatest common divisor between two

numbers x and y together with the corresponding Bézout’s coefficients a and b:

gcd(x, y) = ax + by (2.18)

This same algorithm is used to find the inverse when working over a finite field Zp. Since

the number p needs to be a prime, it guarantees that the greatest common divisor between any

x ∈ Zp \ {0} and p is always one:

gcd(x, p) = ax + bp = 1 ⇒ a =
1
x

mod p. (2.19)
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Notice that when performing the EEA shown in algorithm 1, each intermediate value of v

satisfies:

v1x + v2m = v3 ⇒ x =
v1

v3
mod m.

This expression can be used to find a family of rational numbers which share the same modular

representation:

x =
v1

v3
mod m.

The RRT proved in ref. [171] tells us that only one element out of all the candidate will have v1

and v2 to fulfil the constraints show in eq.(2.17).

During our computations, we found that in the worst case we needed up to 10 machine

size primes to successfully recover the rational coefficients coming out of the reduction to

master integrals. The reconstruction was already possible with fewer prime numbers, but we

intentionally increased the size of the modulus m to ensure that the reconstruction was indeed

successful. A false reconstruction could always happen when we are not restricting ourself to

the correct bounds of (2.17). By having consistent results over an increasingly larger modulus

m, we slim this chances. As a final check, we run a slow evaluation with arbitrary precision

rational numbers of the original function and compare it with the evaluation of the expression

we just reconstructed.

When dealing with the Higgs-differential cross-section at N3LO , we recovered reduction

coefficients that needed up to 300 independent evaluations in t1 for a single univariate recon-

struction. At the same time, the individual variables were found to reach maximal ranks of up

to 100. Part of the complexity of these coefficients could be blamed on the choice of master

integrals since a different basis will also change the coefficients ck. However, we can treat the

evaluation of these coefficients as being just another intermediate step of our reconstruction. By

doing so, we were able to build the differential equations for the master integrals by combining

all the reduction coefficients directly into the matrix elements of the differential system. The

components of the differential equation take a much simpler form and therefore need also

fewer evaluations and fewer finite fields to perform the rational function reconstruction. This

is further proof of how powerful this method is, allowing to sidestep the evaluation of the

reduction coefficients altogether.

It is also possible to combine all the coefficients ck directly at the cross-section level. Since

this expression refers now to physical observable, as opposed to the result of the reduction to

master integrals, we expect these expressions to take a much simpler form.
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2.2 soft expansion of master integrals

The expression of the differential equations for the master integrals were too complicated to be

solved exactly as a Laurent series in the dimensional regulator ε. For this reason, we opted for

an expansion around the production threshold of the Higgs boson, a method that has already

been successfully implemented for the inclusive computation at N3LO in ref. [151].

It has been shown in refs. [128, 172] that the master integrals for the Higgs hadroproduction

can be expanded in a systematic way as power series around the threshold limit. This expansion

is generally not meromorphic but can nevertheless be written as a combination of meromorphic

functions. In particular, when working in d = 4− 2ε dimensions, the integral takes the form

Ii(s, λ, x, z̄) ≡ ∑
r∈sectors

z̄(βri−αrε)
∞

∑
n=0

z̄n m(r)
in (s, λ, x), (2.20)

where the index r denotes what we call the different sectors in which the soft expansion is split.

For the case of the RRV master integrals, these regions are three. One represents the hard

region (H) and has α = 4, while the two collinear regions (C1, C2) have α = 5 and the last is

the soft region (S) with α = 6.

2.2.1 Differential Equation

We are interested in expressing the master integrals in the form shown in eq.(2.20). The problem

of extracting the various expansion coefficients can be solved by looking at the differential

equation in z̄. In appendix B we show how to perform this derivative by acting directly to the

integral representation of the master integrals with differential operators written in terms of

the external momenta. The corresponding system of differential equations can be written as,

∂

∂z̄
~I(s, λ, x, z̄) = A(s, λ, x, z̄)~I(s, λ, x, z̄). (2.21)

Here ~I represents a vector whose elements are master integrals and Aij is the differential

equation matrix.

One of the first things to notice is that the different sectors, corresponding to different α in

eq.(2.20), do not mix in the differential equation. The reason for this is that the differential

operator can change the powers of z̄ only by an integer quantity. Therefore, we can threat the

expansions of each sector independently from each other. Because of this independence, we

will now drop the index r and see how to build the system for a generic region.
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Let us take the left-hand side of eq.(2.21) and replace ~I with its expanded expression:

∂

∂z̄

(
z̄(βi−αε)

∞

∑
n=0

z̄n min(s, λ, x)

)
= z̄(βi−αε)

∞

∑
n=0

(
βi − α ε + n

z̄

)
z̄n min(s, λ, x). (2.22)

We do the same for the right-hand side of eq.(2.21):

∂

∂z̄
~I(s, λ, x, z̄) = ∑

j
z̄(β j−αε)Aij

∞

∑
n=0

z̄n mjn(s, λ, x). (2.23)

Taking the difference of the two expressions and dividing by z̄(βi−αε) yields,

0 = ∑
j

∞

∑
n=0

(
z̄(β j−βi)Aij − δij

(
βi − α ε + n

z̄

))
z̄n mjn(s, λ, x), (2.24)

where the expression for the matrix Aij = Aij(s, λ, x, z̄) is still a function of z̄ and since all of its

elements are rational functions we can easily expand it as Laurent series around z̄ = 0.

Each order in z̄ in eq.(2.24) is equally zero, providing with a system of equations that can

be solved up to some boundary terms. The boundary conditions are computed by taking the

integral and expanding it around the different regions following refs. [128, 172].

The extraction of the coefficients mjn from the system of equations defined by eq.(2.24)

has been implemented in a private C++ code that uses both GiNaC [173] for performing the

Laurent expansion of the differential matrix A, and FERMAT [170] and finite fields to perform

the Gaussian elimination.

2.2.2 One-loop non-planar box expansion

As mentioned at the beginning of this section, the expression of a scalar Feynman integral is

in general not meromorphic around z̄ = 0, and a simple series expansion of the integrand is

therefore not possible. This can be illustrated by the fact that the loop momentum can take

arbitrary values that are parametrically smaller or larger compared to the expansion parameter

z̄. Let us consider a single propagator containing a loop momentum l and a rescaled final state

momentum z̄p3, the expansion of the integrand is:

1
(l2 + z̄2lp3)

=
1
l2

∞

∑
i=0

(
− z̄2lp3

l2

)i

. (2.25)

This expansion is clearly not convergent if l is uniformly smaller than z̄. We then need to

perform the expansion around the different scaling of the loop momentum. In particular, we
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can write the integrand as a sum of expansions around the loop momentum soft, hard and

collinear regions [128].

At one-loop, when we have the Higgs plus m partons in the final state, we need to consider

the regions where the loop momentum becomes collinear to either one of the incoming

momenta p1 and p2, the region where the propagators between p1 and p2 become soft, and the

hard region with respect to the soft parameter z̄. We label these regions as (C1), (C2), (S) and

(H), respectively. In the threshold limit, where all the n final states become soft, the integral

becomes the one of a triangle:

•
•

ν1

ν3

•ν2
p2

p1

(2.26)

where the number of final states going soft can be written as m = ν1 + ν2 + ν3 − 3. From this

observation, it is clear that the regions that one needs to explore are the same as the one of a

one-loop triangle.

The integral at 1-loop can be divided into the individual sectors as,

I1−loop = I(S) + I(H) + I(C1) + I(C2). (2.27)

where each sector scales in different ways in z̄. Normalizing the sector integrals by the hard

region gives the following scalings:

I(S)

I(H)
∼ z̄d−(2ν1+ν2+ν3) = z̄(4−2ν1−ν2−ν3)−2ε

I(C1)

I(H)
∼ z̄

d
2−(ν1+ν3) = z̄(2−ν1−ν3)−ε

I(C2)

I(H)
∼ z̄

d
2−(ν1+ν2) = z̄(2−ν1−ν2)−ε

(2.28)

We can see that the two collinear limits correspond to the sector with α = 1 in eq.(2.20), while

the soft maps to α = 2 and the hard region to α = 0.

In order to illustrate the ingredients used for the computation of the threshold expansion, we

analyse the simple case of the non-planar box integral shown in figure 2.2. This is an example

of an integral that contributes to the RRV cross-section. We define its propagator by routing

the loop momentum such that its soft limit corresponds to the soft divergence of the integral:

A1 = l2, A2 = (l − z̄q)2, A3 = (l − z̄q + p2)
2, A4 = (l − p1)

2. (2.29)



54 threshold expansion

44

3311

22

z̄ q

p1

p2

ph

Figure 2.2: Non planar box for soft expansion. This could correspond to the amplitude where we have
a box loop of gluon propagators and the vertex with outgoing momentum z̄q corresponds
to a 4-gluon vertex. The numbers denotes the propagators ids and are represented in
eq.(2.29).

where l = 0 sits on the intersection of the two pinched surfaces defining the two collinear

divergences.

soft region

In the soft region the loop momentum scales in the same way as the real outgoing parton,

l = z̄`.

This choice corresponds to having the momentum flowing through the propagators labelled

by ν1 in eq.(2.26) being soft. Then, the propagators in eq.(2.29) can be separated into leading

terms and the sub-leading terms of the soft expansion:

A1 = z̄2B1, B1 = `2,

A2 = z̄2B2, B2 = (`− q)2,

A3 = z̄(B3 + δB3), B3 = 2p2(`− q), δB3 = z̄(`− q)2,

A4 = z̄(B4 + δB4), B4 = −2p1`, δB4 = z̄`2.

Since δB3 and δB4 are linear in z̄, it is easy to expand the last two propagators as geometric

series. This expansion leads to a series of box-like integrals expressed in terms of a topology

defined by the leading propagators Bi:

I(S) = z̄d−6 ∑
n,m

z̄n+m
∫ dd`

B1+n
1 B1+m

2 B1−m
3 B1−n

4

. (2.30)

where the leading order in z̄ is obtained when n = m = 0.
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This leading integral can be computed using the Feynman parameters, grouping together B1

with B4 and B2 with B3:

I(S)0
zD−6 = (−1)

∫ dd`

iπd/2

∫ ∞

0
dα1dα2

1
[`2 − 2α1 p1`]2[(`− q)2 + 2α2 p2(`− q)]2

We then notice that the two propagators can be written as (l − α1 p1)
2 and (l − q + α2 p1)

2

corresponding to a massless bubble with propagators raised by an additional power and central

energy s = (α1 p1 + α2 p2 − q)2. The resulting expression over the two parameters α1 and α2

becomes:

I(S)0
zD−6 = −(−1)ε Γ(−ε)2Γ(2 + ε)

Γ(−2ε)︸ ︷︷ ︸
−2 (1+ε)

ε CΓ

∫ ∞

0

dα1dα2(
λ̃α1 + (λ + α1)α2 − xλλ̃

2

)2+ε
,

where λ = 2p2 · q and λ̃ = 2p1 · q are the light-cone coordinates of q as defined in eq.(1.25).

The integral in these two variables leads to a second order pole in ε which reflects the soft

divergence:

I(S)0
z−2−2ε

= −2(−1)−ε
(

1− x
2

)−1−ε CΓ(λλ̃)−1−ε

ε2

(
ε B

( x
2

;−ε, ε + 1
)
+ Γ(1− ε)Γ(ε + 1)

)
,

(2.31)

with B(x; a, b) the incomplete beta function, and the factor

CΓ =
Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
.

By means of the IBP identities, it is possible to show that of all the contributions in eq.(2.30)

beside the leading order can be reduced to a bubble with e centre of mass energy of s = xλ̃λ.

In the case of a massless radiation (e.g. RV corrections), we have x = 0. Therefore the

incomplete beta function becomes exactly zero as well as all the higher order corrections to the

threshold expansion.

collinear region c1

In the collinear region C1 the loop momentum scales as follows:

l2 ∼ z̄, l · p1 ∼ z̄, l · p2 ∼ 1.
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The light cone coordinates are therefore the best choice to investigate this sector:

l = (l+, l−, l⊥), l± =
l · p1,2

p1 p2
, l⊥ ∼

√
z.

We can then proceed and extract the explicit z̄ scaling for each of the light cone components of

the loop momentum:

l = (l+, l−, l⊥) = (z̄`+, `−,
√

z̄ `⊥)

⇒ `2 ∼ 1, ` · p1 ∼ 1, ` · p2 ∼ 1.

Using this rescale loop momentum, we rewrite the propagators extracting the leading behaviour

around z̄ = 0:

A1 = z̄B1, B1 = `2,

A2 = z̄(B2 + δB2), B2 = (`− λ̃p2)
2, δB2 = −[z̄(2λ`p1 − q2)−

√
z̄(2`q⊥)],

A3 = B3 + δB3, B3 = 2`p2, δB3 = −[−z̄((`− λ̃p2)
2 − λ)

A4 = z̄B4, B4 = z̄(`− p1)
2, + z̄3/2(2`q⊥) + z̄2(2λ`p1 − q2)],

The leading propagators are not linearly independent since B2 + λ̃B3 = B1. Moreover, the

threshold expansion of propagator A2 and A3 will introduce an additional scalar product

B5 = 2lq⊥. The integrals appearing in the expansion in the collinear region will then be

represented by integrals of the form:

I(C1)
(ν1,ν2,ν3,ν4,ν5)

=
∫ dd`

Bν1
1 Bν2

2 Bν3
3 Bν4

4 Bν5
5

. (2.32)

It is possible to generate two topologies composed only by linearly independent propagators

by repeated application of partial fractioning through the operator:

1 =
B2 + λ̃B3

B1
. (2.33)

The topology characterized by the absence of B3 is identically zero. This can be seen by

noticing that the integral I(c1)
(ν1,0,ν3,ν4,ν5)

can only depend on two scalar products, namely q2
⊥

and p1 p2. We then extract the dependence in these scalar products by acting with the two
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orthogonal differential operators p2
∂

∂p2
and q⊥ ∂

∂q⊥
. This basis of differential operator takes full

advantage of the presence of the two linear propagators, namely B3 and B5. We then write:

qµ
⊥

∂

∂qµ
⊥

I(c1)
(ν1,0,ν3,ν4,ν5)

= −ν5 I(c1)
(ν1,0,ν3,ν4,ν5)

,

pµ
2

∂

∂pµ
2

I(c1)
(ν1,0,ν3,ν4,ν5)

= −ν3 I(c1)
(ν1,0,ν3,ν4,ν5)

which results into,

I(c1)
(ν1,0,ν3,ν4,ν5)

= (p1 · p2)
−ν4(q2

⊥)
−ν5 C(ν1,0,ν3,ν4,ν5). (2.34)

where C(ν1,0,ν3,ν4,ν5) represents some dimensionless function. From this we can argue that the

dimension of the integral I(c1)
(ν1,0,ν3,ν4,ν5)

is the same as (p2
h)
−ν4−ν5 . At the same time by looking at

the integral representation in eq.(2.32), we can conclude that the dimension is (p2
h)

d
2−ν1−ν3−ν4−ν5 .

Because of the dependence on the dimension d = 4− 2ε, the only way in which these two

results could be compatible is if the integral itself is zero.

Now that we have all the ingredients we can get a first approximate solution for the collinear

region (C1) by expanding the expression for I(C1) as a geometric series in the sub-leading

terms:

I(C1) =z̄
d
2−3 ∑

n,m

∫
d`

(−δB2)n(−δB3)m

Bν1
1 Bν2+n

2 Bν3+m
3 Bν4

4

.

=z̄
d
2−3 ∑

n,m
z̄m
∫

d`
[
√

z̄B5 + z̄(λB1 − λB4 − q2)]n[λ− B2 +
√

z̄B5 + z̄(λB1 − λB4 − q2)]m

Bν1
1 Bν2+n

2 Bν3+m
3 Bν4

4

,

The leading order can be read by looking at the m = n = 0 and by using the partial fraction

identity in eq.(2.33) we obtain an integral that can be reduced to a bubble yielding,

I(C1)
0 = −z̄−1−ε 2(1− 2ε)

λ̃(1 + ε)
Bub(−λ̃; 1, 1)

= −(λ̃zb)−1−ε 2CΓ

ε(1 + ε)
.

(2.35)

Where we use the expression for the bubble integral computed in eq.(1.47).

collinear region c2

The conditions for the loop momentum to be collinear to p2 are:

l2 ∼ z̄, l · p1 ∼ 1, l · p2 ∼ z̄.
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This leads to the following expansion for the propagators around z̄ = 0:

A1 = z̄B1, B1 = `2,

A2 = z̄(B2 + δB2), B2 = (`− λp1)
2, δB2 = −[z̄λ̃(2`p2 − q2) +

√
z̄(2`q⊥)],

A3 = z̄(B3 + δB2), B3 = (`− λp1 + p2)
2,

A4 = −(B4 + δB4), B4 = 2`p1, δB4 = −z̄`2.

The topology defined by this set of propagators can be mapped to the one corresponding to the

collinear region C1 using the shift l → l + λp1. This transformation corresponds to exchanging

λ̃→ −λ in the integrated expressions. The leading term then reads:

I(C2)
0 = −z̄−1−ε 2(1− 2ε)

λ(1 + ε)
Bub(−λ; 1, 1)

= −(λzb)−1−ε 2CΓ

ε(1 + ε)

(2.36)

hard region

We now consider the loop momentum to be hard compared with the soft scale z̄, therefore

scaling as l ∼ 1. Dividing each propagator into the part that depends on z̄ and the one that

does not leads to:

A1 = B1, B1 = l2,

A2 = B1 + δB1, δB1 = −z̄[2ql − z̄q2],

A3 = B2 + δB2, B2 = (l + p2)
2, δB2 = −z̄[2q(l + p2)− z̄q2],

A4 = B3, B3 = (l − p1)
2.

The number of independent propagators at leading order in the threshold expansion is reduced

to three. Yet, the geometric expansion of the linear terms in z̄ gives rise to two terms at the

numerator with a dependence on the scalar product B4 = 2q · l. We can use this scalar product

to complete the topology. The expansion can then be written as:

I(H) = ∑
n,m

z̄n+m
∫ dDl[B4 − z̄q2]n[B4 − (2qp2 + z̄q2)]m

B2+n
1 B1+m

2 B3
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All the integrals of this expansion can be written in terms of a simple bubble diagram. This

is a consequence of applying the reduction to integrals that have B4 always appearing with

ν4 < 0. In the hard case the leading order term reads:

I(h)0 = −2(1− 2ε)

s2(1 + ε)
Bub(s; 1, 1)

= (−s)−1−ε 2CΓ

ε(1 + ε)

(2.37)

threshold expansion system

The power expansion around the threshold region z̄ = 0 is resolved in two ways. We either

compute the integrals appearing in the explicit expansions as shown above or by using

differential equations.

The integrand approach could become computationally expensive, like in the case of the

two collinear limits, where the presence of square roots forces us to expand twice as many

terms as the order we wish to reach in the soft parameter. Once the integrand expansion

is completed, we still need to reduce all the integrals in terms of master integrals and then

compute them. One way to compute these soft master integrals is to solve their differential

equations as expansions in ε [51, 52, 56].

Alternatively, we can extract the threshold expansion coefficients through differential equa-

tions with respect to z̄ as presented in section 2.2.1, using as boundary conditions the leading

terms of the expansion by regions computed above. The box integrals is cast into the topology

I(ν1,ν2,ν3,ν4) defined by the propagators in eq.(2.29). We then end up with a set of master inte-

grals, consisting of four bubbles and one box, for which we can write the following differential

equations:

∂

∂z̄
~M(x, λ, x, s) = Az̄ · ~M(x, λ, x, s), ~M(x, λ, x, s) =




I(0,1,0,1)

I(0,1,1,0)

I(1,0,0,1)

I(1,0,1,0)

I(1,1,1,1)




. (2.38)
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With the differential matrix defined as:

Az̄ =




a11 0 0 0 0

0 a22 0 0 0

0 0 a33 0 0

0 0 0 a44 0

a15 a25 0 a45 a55




(2.39)

with the non-zero elements given by:

a11 = − (xz̄(λxz̄− 2) + 1)ε
z̄(xz̄− 1)(λxz̄− 1)

, a22 =
ε

1− z̄
,

a33 =
(2− λxz̄)ε
z̄(λxz̄− 1)

, a44 = −ε

z̄
,

a15 =
2(λxz̄− 1)(1− 2ε)

λz̄2(λ(x− 1)z̄ + z̄− 1)(xz̄− 1)
, a45 =

2(1− 2ε)

(1− λ)z̄2(λz̄− 1)
,

a25 =
2(λxz̄ + z̄− 2)(1− 2ε)

(1− z̄)z̄(λz̄− 1)(λ(x− 1)z̄ + z̄− 1)
, a55 = − (λxz̄− 2)(1 + ε)

z̄(λxz̄− 1)
.

The space of solutions supported by this set of differential equations is constrained to the

three sectors corresponding to −αε with α = {0, 1, 2}, matching the constraints coming from

the boundary conditions. We also have that the space of solutions matches the leading powers

of the boundary conditions, meaning that we only need to fix the coefficients of the leading

terms. Moreover, since all higher terms coefficients are expressed in terms of these boundary

terms, we can conclude that all the integrals appearing in the expansions above can be reduced

using the IBP identities to the integrals appearing at leading order.

2.3 threshold expansions for higgs-differential cross-sections

As we approach the production threshold, the parameter z̄ tends to zero. To obtain the

expansion of the Higgs-differential cross-section around this limit, we perform a systematic

expansion of the partonic coefficient functions:

η
(n)
ij (z, x, λ) = η

(n,SV)
ij (z, x, λ) +

∞

∑
i=0

z̄iη
(n,i)
ij (z, x, λ). (2.40)

We separated the leading term in the expansion, indicated by the superscript (SV), commonly

referred to as the soft-virtual contribution. This particular term is singular as z̄→ 0 and acts
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as a distribution on the measurement function and the parton distribution functions as we

explain below. All higher power terms depend on z in the form of polynomials of logarithms

log(1− z). The individual terms η
(n,i)
ij (z, x, λ) depend on the threshold variable z̄ in the form

of polynomials of logarithms of the form log(z̄). In ref. [2] we obtain the first and second term

in the threshold expansion for all required partonic coefficient functions.

The purely virtual matrix elements are independent of the expansion parameter and were

computed in refs. [174]. Matrix elements with two loop and one emission were computed in

refs. [141, 144, 145] and recomputed for the purpose of our expansion and are known to all

orders in z̄.

In this section, we describe our method to perform a threshold expansion at the integrand

level for the N3LO coefficient functions that involve two or more partons. We start by consider-

ing matrix elements that correspond to purely real radiation diagrams and contain no closed

loops, and then we address the case of virtual radiations.

2.3.1 Triple-Real threshold expansion

Consider as an example the following scalar phase space integral:

I(p1, p2, k) =

p2

ph

p1

p1

ph

p2

=
∫

dΦ3
1

p2
23 p2

25 p2
34 p2

45 p2
134 p2

145
, pi1 ...in = pi1 + · · ·+ pin (2.41)

In the above picture, solid lines correspond to scalar propagators, doubled line to massive

external legs, and lines crossed by the dashed line represent the on-shell constraints of the

phase space integration measure.

The threshold limit corresponds to the kinematic configuration where all radiation produced

in association with the Higgs boson is uniformly soft. It is thus natural to perform the variable

transformation p f → z̄p f [140]. Here, p f indicates the momentum of any final state parton,

which can be identified in (2.41) by the momenta crossing the dashed line, namely p3, p4 and
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p5. This rescaling induces a transformation on the phase space measure dΦ3 → z2d−6dΦ3

contained in (2.41) given that k→ z̄k.

Performing a series expansion of the integrand yields

I(p1, p2, z̄k) = z̄2d−14
[∫

dΦ3
1

(2p2 p3)(2p2 p5)p2
34 p2

45(2p1 p34)(2p1 p45)
+O(z̄1)

]

= z̄2d−14
[

I(0) + z̄I(1) + . . .
]

. (2.42)

Every term in the soft expansion of a Feynman integral can be written in terms of a linear

combination of soft integrals as already observed in ref. [128, 175]. Soft integrals are Feynman

integrals that are independently homogeneous under rescaling of the initial momenta p1, p2 or

all momenta in the integral simultaneously.

To illustrate this property, let us look at what happens to the integral I(0) in eq.(2.42) as we

rescale p1 → λ1 p1.

I(0) → λ
γ1
1 I(0). (2.43)

The associated rescaling dimension can be easily read off the integral and in this specific case

we find γ1 = −2.

More generally, for a soft integral one can write the following scaling behaviours:

p1 → λ1 p1 : Is → λ
γ1
1 Is,

p2 → λ2 p1 : Is → λ
γ2
2 Is,

{p1, p2, p f , k} → λ3{p1, p2, p f , k} : Is → λ
γ3
3 Is.

(2.44)

The last relation denotes a rescaling of the momenta in the curly bracket. Note that the

respective scaling dimensions γi will depend in general on the specific integral in question, but

for simplicity we write them without any argument.

We realize that the integrated soft integrals are functions of four Lorentz invariant scalar

products s, k2, 2p1k and 2p2k. We can use the scaling behaviour of our soft integrals to

determine its functional dependence on three of the four scalar products. Consequently,

the soft integrals depend on one variable that is invariant under any of the three rescaling

symmetries. This invariant cross ratio is given by the dimensionless variable x = k2s
2kp12kp2

.

Combining these properties we are able to write:

Is(s, k2, 2kp1, 2kp2) = sγ1+γ2−γ3/2(2kp1)
γ3/2−γ2(2kp2)

γ3/2−γ1 Ĩs(x). (2.45)
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Once our integrand is expressed in terms of integrals that only depend on the cross ratio x we

can use standard phase space integral techniques to compute these functions. In particular,

we employ the framework of reverse unitarity [126, 137–139, 176] to express our differential

partonic cross sections in terms of a few soft master integrals. Subsequently, we make use of

the method of differential equations [51, 52, 56] to compute our soft master integrals. The soft

expansion greatly simplifies these steps as in the expression above we only need to maintain

functional dependence on x. The resulting functions are harmonic polylogarithms [53] in the x

variable.

Note, that so-far we did not apply the relation among the invariants that arises due to the

on-shell constraint for the Higgs boson, p2
h −m2

h = s + 2kp2 + 2kp3 + k2 − sz = 0. This relation

is inhomogeneous under rescaling the final state momenta k and will introduce sub-leading

terms in the z̄ expansion. In ref. [141] this issue was solved by performing a systematic

expansion of the on-shell constraint by including it in the reverse unitarity method. Here,

we choose to impose the aforementioned on-shell constraint only after reduction to master

integrals.

2.3.2 Double-Real-Virtual threshold expansion

Let us consider an integral that appears in with one virtual correction:

I(p1, p2, k) =

p2

ph

p1

p1

ph

p2

=
∫

ddl
∫

dΦ2
1

p2
23 p2

25 p2
34 p2

45 p2
134 p2

145
, pi1...in = pi1 + · · ·+ pin (2.46)

When considering the threshold limit parametrizing the final states as z̄p f , the phase space

will gain an additional overall factor transforming as dΦ2 → zd−4dΦ2. The computation of

the family of RRV integrals follows the same procedure that was presented in the previous

section for the non-planar box diagram, where one must be careful and expand around the

various regions of the loop momentum. These expansions were also addressed in much details

in ref. [128] and we refrain from repeating the procedure here.
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Once the loop and phase space integrand is expanded, we perform a reduction of the

loop integrals to loop master integrals. The initial step of performing the reduction of loop

integrals allows us to determine the rescaling behaviour of the loop integrals under the scaling

transformations introduced in eq. (2.44). Next, we embed the loop master integrals again

in terms of their Feynman propagator representation into the phase space integration and

we subsequently perform the combined loop and phase space integral in the same fashion

as the pure phase space integrals discussed above (i.e. via reverse unitarity and differen-

tial equations). Again, we benefit from having only to maintain functional dependence on

the cross-ratio x by inferring the dependence of our integral on the other variables from its

behaviour under scaling transformations. The relations between the different orders in the

threshold expansion are then compared with the expansion using the differential equations in z̄.

With the techniques discussed thus far, we can perform a threshold expansion of the partonic

Higgs differential cross sections at arbitrary order in the strong coupling constant and to

arbitrary power in z̄. Specifically, we perform the computation of tree-level partonic cross-

sections with three partons in the final state and partonic cross-section with one loop and two

partons in the final state to first and second order in the threshold expansion. As a result,

we obtain all ingredients to compute the first and second term in the threshold expansion

of the N3LO Higgs-differential cross-section. The extension of the threshold expansion to

higher powers is discussed in the next chapter in the context of obtaining the Higgs rapidity

distribution.

2.4 validating the threshold expansion for differential observables at

nnlo

When we consider the proton-proton collision at a fixed centre of mass energy, we can

understand the probability of collision for two constituent partons as a function of the partonic

centre of mass energy s. This probability is falling as s rises. In particular, it falls faster when

we consider two gluons compared with two quarks or a gluon-quark pair (see for reference

figure 1.3). As the main source of production of the Higgs boson at the LHC are two colliding

gluons, this implies that there is a kinematic enhancement for the Higgs boson to be produced

from a system of gluons with as little energy as possible.

In the past, this simple kinematic consideration was exploited to derive simplifications

for the prediction of Higgs boson cross-sections. Perturbative NNLO [125] and N3LO [26]

corrections were approximated in the form of an expansion around the threshold. For the
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inclusive cross-section, this approximation is at an astonishing precision when compared with

the result at all order in z̄ as computed in ref. [27]. Factorisation properties of the leading

term in the threshold expansion are commonly exploited to perform all order resummation of

threshold enhanced terms. In this section, we will analyse the performance of an expansion of

partonic Higgs-differential cross-sections around the production threshold.

As the partonic differential cross sections were computed analytically as a function of z̄ in

ref. [1] we can easily perform a threshold expansion a posteriori. In the following we want

to study the quality of this approximation as higher and higher terms in the expansion are

included for differential observables. In order to do so, we compute the rapidity and transverse

momentum distribution of the Higgs boson. The threshold expansion is performed only on

the matrix elements occurring at NNLO while the lower order elements are kept exact. This

allows analysing the effect of performing the expansion only on the highest correction as will

be the case for the N3LO distributions. We then truncate the expansion at different orders and

compare with the exact results.

To derive numerical values we numerically perform the remaining integrals in eq. (1.7) over

the partonic cross sections in conjunction with MMHT2014 parton distribution functions [120] in

a private C++ implementation. We perform renormalisation and convolutions with the mass

factorisation counter terms numerically. We only expand the partonic NNLO matrix elements

around the production threshold. This leads to a mismatch in the cancellation of infrared

and ultraviolet divergences which are treated in the framework of dimensional regularisation.

Specifically, the cancellation of poles in the dimensional regulator is only given up to the

respective order in the threshold expansion at which we truncate.

Let us first consider the inclusive cross-section produced at a perturbative scale µ = mh. In

refs. [177] similar studies were performed for the inclusive cross-section at NNLO, and our

findings agree. We show the inclusive cross-section through NNLO in fig. 2.3 for different

truncation orders. The first few terms in the threshold expansion (in red) significantly deviate

from the exact result (in blue). After the first five terms, the expansion stabilizes and subsequent

terms gradually improve the result. The agreement after including five terms in the expansion is

fairly good. Further improvement is achieved at a comparably slow rate. This slow convergence

of the remaining difference to the exact result can be attributed to explicit divergences of the

partonic coefficient functions at the high energy limit z = 0. Similar behaviour was observed

for the expansion of the N3LO corrections to the inclusive cross-section in refs. [26, 177, 178].

In figure 2.4 we show the rapidity and transverse momentum distribution. Increasing

truncation order of the threshold expansion is indicated by increasingly dark shades of red and

the exact result in blue. As for the inclusive cross-section we observe that the first few terms
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Figure 2.3: Inclusive production probability for a Higgs boson as a function of the truncation order
of the threshold expansion for the NNLO correction (red). The blue line represents the
unexpanded NNLO inclusive cross section.

display large variations from the full result. After about five terms, the expansion stabilizes

and adding higher terms shows gradual improvements on the approximation.

The actual quality of the expansion can be studied in more detail by analyzing the relative

deviations of the expanded distributions from the full result. In fig. 2.5 we show the rapidity

and transverse momentum distribution normalized to the respective unexpanded distributions.

We note that by including only the third term in the expansion, the rapidity distribution

at NNLO is approximated to a level better than five percent. The transverse momentum

distribution is improved as higher terms in the expansion are included. However, even with

ten terms in the expansion, the overall agreement between the exact result and the expansion

is merely at the level of ten percent.

At large rapidities, the quality of the threshold expansion deteriorates as the Higgs boson

is produced with a larger boost along the beam axis and thus on average more energy is

in the final state system. The stark difference between the behaviour of the rapidity and of

the transverse momentum distribution can be understood by considering the structure of the

partonic coefficient functions. The transverse momentum of the Higgs boson is identically zero

at leading order as there is no parton produced for the Higgs boson to recoil against. At the
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Figure 2.4: NNLO rapidity (left) and transverse momentum (right) distribution for the Higgs boson.
The blue line represents the exact result. Increasingly darker shades of red represent
higher and higher truncation order of the threshold expansion.
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Figure 2.5: NNLO rapidity (left) and transverse momentum (right) distribution for the Higgs boson
at different truncation orders of the threshold expansion normalized to the exact NNLO
distributions.

kinematic threshold, all radiation produced in association with the Higgs boson is soft and

does not provide any recoil either. Adding terms in the threshold expansion only gradually

builds up the functional dependence of the matrix elements on the transverse momentum. At

the same time, the partonic matrix elements are singular as the transverse momentum of the

Higgs boson vanishes. The partonic transverse momentum distribution contains kinematic

singularities at finite values of z̄ that are expanded by the threshold expansion. This leads to a

slower convergence compared to the rapidity distribution.

We can conclude that the quality of a threshold expansion is subject to the particularities

of individual observables. If such an expansion is to be used to approximate cross-section

predictions, a dedicated analysis of the quality of the approximation has to be performed for

the corresponding observable. Complementing threshold expansions with higher order in the

in z̄ in the rapidity of the Higgs boson is the subject of the next chapter.
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Figure 2.6: NNLO rapidity (left) and transverse momentum (right) distribution for the Higgs boson
normalized to the exact NNLO distributions. The expanded distributions are weighted
such that their cumulant reproduces the unexpanded NNLO cross section.

It is commonly the case that predictions for inclusive cross sections become available prior to

predictions for exclusive observables. Suppose this was the case for NNLO Higgs differential

cross sections. In this case we could approximate differential cross sections at NNLO by

performing a threshold expansion. To further improve the expanded results we could ensure

that the inclusive cross section is reproduced by the differential approximation and only shapes

are computed by the approximated result. We define the improved Higgs differential cross

section to be

σ
Improved
PP→H+X [O] = σFull

σExpanded
σ

Expanded
PP→H+X [O] . (2.47)

Here, σFull and σExpanded are the inclusive cross section without and with expanding around

the threshold limit respectively. σ
Expanded
PP→H+X [O] is the Higgs differential cross section based on

partonic coefficient functions approximated by a threshold expansion.

We show predictions for the rapidity and transverse momentum distribution based on

the improved approximation in fig. 2.6 normalized to their exact counterparts. The effect of

the rescaling is largest for low truncation order where the difference between the inclusive

cross-section based on the expansion and the full result is largest. We observe that the rapidity

distribution is approximated at a level significantly better than two percent including just

three terms in the threshold expansion throughout the rapidity interval [0, 3]. The significant

deviations of the shape of the transverse momentum distribution based on the threshold

expansion are only mildly impacted by rescaling the distribution to the correct inclusive

cross-section.
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2.5 approximated n
3
lo cross section

In this section, we discuss the final ingredients to promote the Higgs-differential cross-section

to distributions. When computing any hadronic observable, we require the parton distribution

functions f (x, Q2) as external inputs which are provided in the form of grids in (x, Q2) space.

We observed in [2] that default way in which LHAPDF interpolates the grid trough a log-cubic

spline was producing numerical artefacts due to the presence of logarithms of order 5 in the

rapidity distribution. This problem has been resolved by using LHAPDF for performing the µ

evolution of the PDFs and then using a private interpolator that uses polynomial of order 16 in

log(x) space. By means of this higher order interpolation, it was possible to obtain smooth

distributions.

2.5.1 Exact Scale Variation at N3LO

After ultraviolet (UV) renormalization of the coupling constant and the Wilson coefficient, and

after suitable redefinition of the parton distribution function, the Higgs differential cross-section

takes its final and finite form. The coefficient of α3
S can be written as

η̃
(3)
ij (z, x, λ, Lµ) =

0

∑
i=−3


εi

(
m2

h
µ2

)−3ε

η
(3,i)
ij (z, x, λ) + εiC(3,i)

T
(
z, x, λ, Lµ

)

+O(ε). (2.48)

Here Lµ = log
(

m2
h

µ2

)
. The coefficients C(3,i)

T correspond to the Laurent series coefficients of

the sum of UV renormalization counter term and mass factorization counter term. They are

constructed in the usual way in terms of lower order cross-sections and universal anomalous

dimensions and splitting functions [1]. The renormalized coefficient function is finite as the

residual poles of the partonic coefficient function and the counter terms cancel. consequently

we find

η
(3,i)
ij (z, x, λ) = −C(3,i)

T (z, x, λ, 0), i < 0. (2.49)

It is thus easy for us to construct these coefficients explicitly. Utilizing the above identity we

may write the finite term of the N3LO coefficient function as

η̃
(3,0)
ij (z, x, λ, Lµ) = η

(3,0)
ij (z, x, λ) + C(3,0)

T
(
z, x, λ, Lµ

)
+ 3C(3,−1)

T (z, x, λ, 0) Lµ

− 9
2

C(3,−2)
T (z, x, λ, 0) L2

µ +
9
2

C(3,−3)
T (z, x, λ, 0) L3

µ (2.50)
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Figure 2.7: N3LO correction to the rapidity distribution arising from coefficients of logarithms of the
perturbative scale µ. The band corresponds to a variation of the scale within the interval
µ ∈ [mh/4, mh].

Where all contributions explicitly depending on the perturbative scale µ of the N3LO coefficient

functions are known. Additional dependence on the perturbative scale µ arises due to the

multiplication of the partonic coefficient functions with the Wilson coefficient and due to the

dependence of the strong coupling constant, the Wilson coefficient and the parton distribution

functions on the perturbative scale.

We now present the impact of all contributions of the α3
S coefficient on the Higgs-differential

cross-sections. Specifically, we compute contributions to the rapidity distribution for the Higgs

boson given by all ingredients that explicitly contain a logarithm Lµ. We include the partonic

coefficient function at N3LO as

η̃
(3,0)
ij, RGE(z, x, λ, Lµ) = η̃

(3,0)
ij (z, x, λ, Lµ)− η̃

(3,0)
ij (z, x, λ, 0) (2.51)

as well as all contributions to the α3
S coefficient of the cross section containing renormalization

group logarithms that arise due to the multiplication of the Wilson coefficient with lower order

coefficient functions. We thus obtain all contributions to the N3LO correction to the Higgs

differential cross section involving explicit RGE logarithms.

We show the numerical impact of the contributions involving RGE logarithms on the N3LO

corrections to the rapidity distribution of the Higgs boson in fig. 2.7. We choose µ = mh
2 as a

central scale which results in the prediction given by the solid line. The red bands correspond

to a variation of the perturbative scale in the interval µ ∈
[mh

4 , mh
]
. The contribution is

monotonously rising as we increase the perturbative scale. At µ = mh the argument of the RGE
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Figure 2.8: The left plot shows the contribution of the N3LO partonic cross section to the distribution
of the absolute value of the rapidity of the Higgs boson approximated by including the
first (blue) an by including the first and second (red) term in the threshold expansion.
N3LO contributions were approximated by performing a threshold expansion through
the second term.

logarithm is one, and the contribution considered here is identically zero. The corresponding

inclusive cross-section agrees for all scales with the results of ref. [26]. The contribution

presented here on its own does not allow for an improved prediction at N3LO since the finite

coefficient functions without any RGE logarithms are still missing. However, it represents one

more essential stepping stone towards Higgs differential cross sections at N3LO.

2.5.2 Numerical Results for approximate differential Distributions at N3LO

In section 2.4 we discussed the phenomenological implications of performing a threshold

expansion for Higgs-differential cross-sections at NNLO. The findings clearly indicate that

several terms in the expansion are required. Particularly, predictions made by performing the

threshold expansion to only the first or second order displayed sizable deviations from the true

result.

We implemented the analytical results we obtained for the partonic coefficient functions

in terms of the first and second term in the threshold expansion into a private C++ code.

Furthermore, we combine our new results with our computation of the exact scale variation

contributions obtained in section 2.5.1. We show our results for the N3LO corrections to the

rapidity distribution of the Higgs boson in figure 2.8a. Results including only the first term

in the threshold expansion are shown in blue and including also the second term in red. The

bands correspond to variations of the perturbative scale around the central value µ = mh
2 by

a factor of two. It is evident that the two predictions based on the first and second order

expansion wildly differ which confirms our expectation from the analysis at NNLO. While the

scale variation of the correction to the rapidity distribution based on the leading term in the
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threshold expansion is monotonously increasing with the scale the second order approximation

is not. The negative contributions arising from the the explicit RGE logarithms are, depending

on the exact value of the scale, compensated by the positive contributions arising from the

N3LO coefficient function and the Wilson coefficient. In figure 2.8b we combine the predictions

for the corrections to the rapidity distribution at N3LO based on the the first and second term

in the threshold expansion with lower order results (in red). Exact lower order results are

shown for LO, NLO and NNLO in green, yellow and blue respectively. We observe a fairly

large impact of the approximate N3LO corrections on the rapidity distributions.

The inclusive cross section obtained with our current next-to-soft coefficient functions differs

significantly from the inclusive cross section obtained in ref. [26]. Our approximate results

show large differences between the two newly computed terms. This confirms our NNLO

analysis that demonstrates that an approximation based only on the first and second term in the

threshold expansion is insufficient in order to improve on currently existing phenomenological

predictions. Further subleading terms in the threshold expansion or a complete computation

are required.

2.6 conclusion

We achieve several key steps towards predicting differential observables to N3LO in pQCD. We

illustrate how a systematic expansion around the production threshold of Higgs-differential

cross-sections can be performed to arbitrary order and presented a set of tools to perform

such an expansion. We apply this method to obtain the first and second term in the threshold

expansion of the N3LO coefficient functions in analytical form. This analytic data represented

a cornerstone of a complete N3LO calculation as it constitutes the complete soft limit of

the cross-section and contains vital boundary information for the computation of master

integrals via differential equations and are provided as ancillary files in ref. [2] in the form of

Mathematica readable regularized expressions as presented in section 1.5. Furthermore, the

obtained information may in future work serve as data to extract anomalous dimension for the

resummation of logarithms in the transverse momentum of the Higgs boson.

Furthermore, we analyze the performance of a threshold expansion for the Higgs-differential

cross-section. We start by considering corrections at NNLO, for which also the exact result

is known. Analyzing the analytic structure of the NNLO coefficient functions shows that

their threshold expansion is convergent within the unit interval of the threshold parameter z̄.

When studying the inclusive cross-section in the threshold expansion, we observe an oscillatory

behaviour of the series when only including the first three powers in z̄. The series then stabilizes
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within the inclusion of the first five coefficients, resulting in a difference of 3% compared to

the full NNLO result. Further improvements due to including even higher order terms are

comparably slow.

Next, we analyze the quality of differential predictions obtained with threshold expansions.

The rapidity distribution of the Higgs boson at NNLO displays similar behaviour as the

inclusive cross-section. Including about five terms stabilizes initial oscillatory pattern and

leads to good approximations of the full result. The distribution starts to deviate from the full

result at high rapidities as more and more energy is required in the final state. Assuming that

the same relation between the inclusive cross-section and the rapidity distribution observed

for the NNLO case holds true also at N3LO , would mean that there is great potential in the

predictions that can be produced vie threshold expansion for this observable. Especially on the

light of the recent result presented in ref. [27] where is presented the inclusive Higgs boson

cross-section at N3LO together with a comparison with the threshold expansion approximation

of ref. [142].

The second observable we analyze is the transverse momentum distribution of the Higgs

boson. The quality of the approximation obtained, including the same amount of terms in the

threshold expansion as for the rapidity distribution, is greatly reduced. While including higher

and higher terms in the expansion is improving the approximation, the convergence is so slow

that even with ten terms in the expansion the deviations from the exact result are at the level

of ten percent.

In general, the approximations based on threshold expansions can be improved by normaliz-

ing the differential cross-sections such that their cumulant reproduces the exact inclusive result.

Our analysis at NNLO shows that the threshold expansion for Higgs-differential cross-sections

can be a powerful tool. The quality of the approximation has to be carefully assessed for every

observable under consideration. Even for comparatively inclusive observables, as the total

cross-section or the rapidity distribution, several terms in the threshold expansion are required

to obtain a reliable approximation. We also had a first look at the rapidity distribution of the

N3LO coefficient function. The resulting rapidity distribution displays a similar pattern as we

observed for the corresponding NNLO coefficient function. An analysis with higher orders in

the threshold expansion is the subject of the next chapter.





3
R A P I D I T Y D I S T R I B U T I O N

In this chapter, we present the results that were first shown in ref. [3], were predictions for

the rapidity distribution are presented through N3LO in pQCD computed as a threshold

expansion. The same quantity has also been computed by other means, in particular through

the so-called qt-subtraction scheme [85, 179, 180] and presented in ref. [181]. In this alternative

and independent prediction, the authors observed a slight deviation from an entirely uni-

form N3LO correction, but the two predictions are still compatible within the scale variation

uncertainties.

Having access to these differential quantities is of high importance, especially given that the

ATLAS and CMS experiments have accomplished remarkable results [182, 183] ever since the

discovery of the Higgs boson [13, 14]. It is then important to produce matching theoretical

predictions for the standard model, more so on the light of the fact that we are getting closer to

the high-luminosity LHC phase, where the experimental error is estimated to be ultimately

reduced to the level of 3% [17, 18].

Taking into account effects due to the neglected quark masses as well as electro-weak

corrections and appraising residual uncertainties from missing higher-order effects, the current

state-of-the-art prediction for the Higgs production cross-section in gluon fusion was obtained

in [178, 184].

The following computations for the rapidity distribution in gluon fusion are performed in

the same framework as the rest of the thesis, where the interaction of the Higgs boson with

the partons is represented in term of an EFT in the limit of an infinite top mass. The Wilson

coefficient corresponding to this EFT is written in eq.(1.20). The computation takes advantage

of the results obtained in chapter 1 by using the NNLO expansion of the cross section up to

linear terms in the dimensional regulator, together with the partial results obtained in chapter 2

for the rapidity distribution. In particular, we follow on the conclusion from the previous

chapter and increase the accuracy of the threshold expansion by computing four extra orders

in the series. We also renormalize the distribution to match the inclusive cross-section in order

to improve its accuracy.

75
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3.1 threshold expansion

For the current computation, we decide to employ a different set of variables compared with

those used in the case of the double differential computation in the previous chapter. The

probability of producing a Higgs boson with a given rapidity Y is then expressed as,

dσPP→H+X

dY
= σ̂0 ∑

ij

∫ 1

0
dx1dx2dy1dy2 fi(y1) f j(y2)δ(τ − x1x2y1y2)

× δ

(
Y− 1

2
log
(

x1y1

x2y2

))
ηij(x1, x2), (3.1)

where fi(y) are parton distribution functions (PDFs) and ηij(x1, x2) are the partonic coefficient

functions. The sum runs over all possible combinations of initial state partons and we integrate

over the energy fraction of the incoming partons, namely y1 and y2. The goal of our computation

is to analytically determine the partonic coefficient functions in perturbative QCD through

N3LO which can be expanded in the strong coupling as a power series as in

ηij(x1, x2) =
3

∑
i=0

(αS

π

)i
η
(i)
ij (x1, x2) +O(α4

S). (3.2)

The partonic coefficient functions are comprised of squared partonic matrix elements with up

to three unresolved partons in the final state integrated over the available phase space. We

compute them by employing the tools presented for the double differential study, where the

first two order in the threshold expansion at N3LO were computed. In particular, we improve

the threshold expansion by computing an additional four terms in the expansion in z̄.

In eq.(3.1), we presented the new set of variables through the introduction of Dirac delta

functions. These variables can be related to physical quantities by expressing them in terms of

scalar products of initial state partons p1 and p2, together with the final state Higgs momentum.

These variables are then written as,

x1

x2
=

ph p2

ph p1
, x1x2 = z. (3.3)

where z =
m2

h
s .

For the computation of the threshold expansion, we can introduce a new parameter δ

and redefine xi as being functions of this parameter. In particular, we want that in this
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parametrization the threshold limit corresponds to a vanishing δ. We first notice that the z̄

dependence can be expressed in terms of x1 and x2 as follows,

x̄1 + x̄2 − x̄1 x̄2 = δz̄. (3.4)

where the bar over the variable corresponds to x̄i = 1− xi. A parametrization in which both

sides vanish as δ goes to zero is provided by:

x̄′1(δ) = δ x̄1
1− x̄2

1− δ x̄2
, x̄′2(δ) = δ x̄2, (3.5)

giving a one-to-one correspondence between the expansion of the partonic coefficients around

δ = 0 and z̄ = 0.

3.2 exploiting the divergence structure

The bare PCFs at N3LO , arising from the calculation of contributing squared matrix elements,

in d = 4− 2ε dimensions, take the form

η
(3)
ij, bare(x̄1, x̄2) = η

(3)
ij, virt.δ(x̄1)δ(x̄2) (3.6)

+
3

∑
n,m=1

x̄−1−mε
1 x̄−1−nε

2 η
(3,m,n)
ij, bare (x̄1, x̄2).

The term η
(3)
ij, virt.δ(x̄1)δ(x̄2) corresponds to the purely virtual contributions with a leading

divergence of 1/ε6. The functions η
(3,n,m)
ij, bare (x̄1, x̄2) are holomorphic around x̄i = 0 and contain

fourth order poles in ε. The sum over m and n is the consequence of the threshold expansion

around various divergent regions. This sum will get contributions from (SS), (SC), (SH),

(CC), (CH) and (HH) for double virtual corrections, and (S), (C) and (H) for single virtual

ones, denoting the soft, collinear and hard regions, respectively.

To make the expansion of the PCFs in the dimensional regulator explicit, we perform a

standard expansion of singular factors in terms of delta functions δ(x̄i) and plus-distributions

∫ 1

0
dx̄iφ(x̄i)x̄−1+aε

i =
∫ 1

0
dx̄iφ(x̄i)

δ(x̄i)

aε
(3.7)

+
∫ 1

0
dx̄iφ(x̄i)

∞

∑
n=0

(aε)n

n!

[
Ln

i
x̄i

]

+

,

with Li = log(x̄i). The test function φ(x̄) corresponds in our calculation to a product of the

parton luminosity and the observable function.
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We obtain our finite renormalised N3LO coefficient function by combining the bare PCF

with a suitable mass factorisation and ultraviolet renormalisation counter term CT(3)
ij , which

is defined by the QCD β-function, the three-loop splitting functions and the lower order

contribution to the process. The expression for the counterterm will equally contain distribution

which will cancel against those of our partonic coefficient function for the singular terms

rendering it finite,

η
(3)
ij (x1, x2) = lim

ε→0

[
η
(3)
ij, bare(x1, x2) + CT(3)

ij (x1, x2)
]

= ∑
k,l

Dk(x̄1)Dl(x̄2)η
(3)
ij,(k,l)(x1, x2). (3.8)

We isolate the structures that are singular in the limit x̄i → 0 into the functions Dk(x̄i) such

that the coefficients η
(3)
ij,(k,l)(x1, x2) are either real numbers or holomorphic functions in the limit.

The non-holomorphic function Dk(x̄i) corresponds to the kth entry of the following list of 12

possible structures that can appear in the cross section through N3LO ,

{
δ(x̄i),

[
L0

i
x̄i

]

+

, . . . ,

[
L5

i
x̄i

]

+

, L0
i , . . . L4

i

}
. (3.9)

The fact that all the poles in the regulator have to cancel among the different contributions in

eq.(3.8) allows us to derive relations among the various bare partonic coefficients in eq.(3.6)

and the counter term. Knowing that only the genuine two loop contributions can produce bare

coefficient functions contributing to the n = 1 or m = 1 terms in eq. (3.6), becomes a powerful

tool to determine many of the coefficients η
(3)
ij,(k,l)(x1, x2) exactly.

All coefficients of terms proportional to two distributions were already computed in ref. [2]

and presented in the previous chapter and can also be deduced from the inclusive cross-section

at threshold (c.f. ref. [142, 175]) as was done in ref. [185]. Furthermore, we observe that if we

consider only the leading power term in either one of the x̄i, a reduced number of exponents

contributes to eq.(3.6), such that n ≤ m, which further constrains our system of equations.
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Using these relations, we were able to determine all coefficients in eq. (3.8) exactly in x̄i, except

for the terms,

η
(3)
ij, missing(x1, x2) =

[
δ(x̄1) log(x̄2)η

(3)
ij,(1,9)(0, x2)

+ δ(x̄1)η
(3)
ij,(1,8)(0, x2)

+

[
1
x̄1

]

+

η
(3)
ij,(2,8)(0, x2)

+ log(x̄2)η
(3)
ij,(8,9)(x1, x2)

]
+
[
(x1 ↔ x2)

]

+ η
(3)
ij,(8,8)(x1, x2) + log(x̄1) log(x̄2)η

(3)
ij,(9,9)(x1, x2).

(3.10)

While the above terms could not be determined exactly from our current knowledge of

unexpanded matrix elements, we obtained them via a threshold expansion as described above.

Notice, that the above contributions contain maximally one power of a logarithm that is

enhanced as x̄i → 0.

In our final approximation of the PCF we choose to re-organise the terms without any

distributions such that all terms proportional to threshold logarithms logi(z̄) with i ≥ 3 are

maintained exactly. We approximate terms with lower powers of threshold logarithms using

the threshold expansion as discussed above. Note, that the relations among the different

components of the PCF provide a highly non-trivial consistency check on the results from our

threshold expansion.

The partonic coefficient functions also depend explicitly on logarithms of the perturbative

scale µ and we can rearrange them as,

η
(3)
ij (x1, x2) =

3

∑
l=0

η
(3,l)
ij (x1, x2) logl

(
m2

h
µ2

)
. (3.11)

Naturally, the functions η
(3,l)
ij (x1, x2) can be decomposed into distribution-valued or logarith-

mically enhanced terms. However, the coefficients with l ≥ 1 can be derived exactly from

lower order cross sections by solving the DGLAP evolution equations. Consequently, we

determine them exactly, with one exception: The derivation of the non-distribution valued,

non-logarithmically enhanced term of the coefficient of log
(
m2

h/µ2) involves rather cumber-

some convolution integrals. We approximate this particular term using a threshold expansion

which modifies our approximation at terms beyond the claimed formal accuracy.
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3.3 matching to the inclusive cross section

As we show for the rapidity distribution at NNLO, the prediction coming from the threshold

expansion can be improved by rescaling the result such that it reproduced the inclusive cross-

section once the differential quantity is integrated over. The inclusive partonic coefficient

functions for the Higgs gluon fusion production at N3LO was computed exactly in ref. [27]

and can therefore be used to this end. This inclusive quantity is written as a one-parameter

function in the threshold variable z, and we can perform a change of variable to match it.

Let us consider the transformation from x̄i to (x, z̄)

x̄1 =
(1− x̄)z̄
1− x̄z̄

, x̄2 = x̄z̄ (3.12)

where now the soft limit can be taken without effecting the variable x. By looking at eq.(3.6)

we can write the second term in these new variables which now reads,

x̄−1−mε
1 x̄−1−nε

2 = x−1−nε x̄−1−mε z̄−2−(n+m)ε(1− x̄z̄)−1−nε.

Note that the last term is never singular since the upper value of z̄ will reach unit only in the

case of infinite energies. This expression could give the impression to have a non-regularizable

divergence around the threshold. However, by looking at the measure, we can see that an

additional power of z̄ is produced,

dx1dx2 =
z̄

1− x̄z̄
dxdz̄.

removing the enhanced pole in z̄. The variable x hit the singularity at the endpoints when the

radiation k goes on-shell and collinear to one of the two incoming momenta p1,2. By writing

the partonic rapidity for the Higgs:

y =
1
2

log
(

x1

x2

)
=

1
2

log
(

z
(1− x̄z̄)2

)

we see that x parameterizes the rapidity in the partonic system between z and 1
z .

With the use of the variables x and z we can now relate the differential PCF to the inclusive

one by integrating over the additional degree of freedom as in,

η
(3),inc.
ij (z) =

∫ 1

0

z̄dx̄
(1− z̄x̄)

η
(3)
ij

(
(1− x̄)z̄
1− x̄z̄

, x̄z̄
)

. (3.13)
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This relation provides an enormously stringent check on our partonic coefficient functions.

Indeed, our threshold expansion agrees with the threshold expansion of the inclusive partonic

coefficient function for all computed orders.

Furthermore, eq. (3.13) allows us to modify our differential partonic coefficient functions by

terms of higher order in the threshold expansion such that the exact inclusive cross-section is

automatically obtained if the integral over the rapidity distribution is performed,

η
(3),matched
ij (x1, x2) = η

(3),app.
ij (x1, x2)+

x1 + x2

2(1− x1x2)

[
η
(3),inc
ij (x1x2)− η

(3),inc, app.
ij (x1x2)

]
. (3.14)

Here, η
(3),app.
ij corresponds to the approximation of the PCF obtained as described in the

previous sections and η
(3),inc, app.
ij is its inclusive counterpart obtained by virtue of eq. (3.13).

Furthermore, η
(3),inc
ij is the inclusive partonic coefficient function obtained in ref. [27]. Therefore

the term in the square bracket of eq.(3.14) contains only terms that are of higher order in the

threshold expansion than those obtained as described above. This modification of the PCF

ensures that if the integration over the Higgs boson rapidity is performed, then the correct

inclusive cross-section is obtained for each partonic centre of mass energy. The approximation

defined in eq.(3.14) will be the basis for our numerical results presented below.

3.4 phenomenological results

In the previous sections, we derive an analytic approximation to the PCF for the Higgs boson

cross-section differential in the rapidity through N3LO in QCD. We now use MMHT2014

PDFs [186] to derive predictions for hadronic Higgs boson rapidity distribution at the LHC

with a centre of mass energy of 13 TeV by means of eq.(3.1). We implement our coefficient

functions into a private C++ code and use LHAPDF [121] to perform the µ2 evolution of the

PDF grids and evaluate them with a private grid interpolator that uses a polynomial of order

16 in the log(x) space as mention in section 2.5. The Cuba library [187] is used to perform the

numerical integration over the momentum fractions of the partons.

As validation, we first derive the NNLO analogue of the approximation of the PCF used

at N3LO and show the resulting predictions in the left panel of fig. 3.1 normalised to the

exact rapidity distribution through NNLO with a central scale of µ = mh/2. The blue band

corresponds to the cross-section obtained by varying the common scale µ in the interval

[mh/4, mh]. The coloured lines show the cross-section obtained by truncating the threshold

expansion in our approximation at different orders. We observe that our approximation

describes the NNLO rapidity distribution very well for central rapidities (|Y| < 3) and even
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Figure 3.1: Approximate Higgs boson rapidity distribution with threshold expansion truncated
at different orders. The top panel shows the ratio of the approximate NNLO to the
exact result, the bottom panel shows the approximate N3LO result to the best prediction
obtained in this work.
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performs fine for larger rapidities. Deterioration of the threshold approximation at larger

rapidities can be expected as on average the final state of the scattering process is more

energetic, i.e. further from the production threshold. Including an increasing number of terms

systematically improves the approximation. We also observe that all rapidity distributions

obtained from truncated threshold expansions fall well within the scale variation band of the

exact NNLO cross-section.

In the right panel of fig. 3.1 we show predictions for the N3LO rapidity distribution truncating

the threshold expansion at different orders normalised to our best approximation. Similarly

to the case at NNLO, including more terms in the expansion systematically stabilises our

approximation. Central rapidities are remarkably stable under the inclusion of more and more

expansion terms. In particular, all truncated approximations are once again contained within

the scale variation band for central rapidities. We explored relaxing some of the ingredients of

our approximation (less exact distributions or no matching to the exact inclusive cross-section)

which amounts to a modification of terms beyond those computed in our threshold expansion

and find only slight variations in our prediction. For example, basing our calculation purely

on a threshold expansion with six terms underestimates the inclusive cross-section by 0.25%

and only slightly varies the shape of the rapidity distribution. Similarly, we checked that a

simple reweighting of the threshold-expanded N3LO rapidity distribution to the exact inclusive

cross-section at N3LO produces results that are very close to our best prediction including

the matching procedure according to eq. (3.13). We observe that at NNLO we approximate

the exact PCF to better than one percent for |Y| < 2 and better than two percent for |Y| < 3.

In order to be conservative, we estimate that our prediction is at the same level of precision

relative to the exact result at N3LO.

3.5 stability

In figure 3.2 we show the rapidity distribution truncated at different order in QCD perturbation

theory. Our newly derived N3LO prediction display a stabilisation of the pertubative series as

well as a drastic reduction of the size of the pertubative scale dependence. We observe that the

ration of the rapidity distribution at N3LO relative to NNLO is uniform over the entire range

of Higgs boson rapidities. Consequently, the N3LO rapidity distribution can be reproduced to

very high accuracy by rescaling the NNLO prediction by the inclusive N3LO K-factor.
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Figure 3.2: The Higgs boson rapidity distribution at different orders in perturbation theory. The
lower panel shows the N3LO and NNLO predictions normalised to the N3LO prediction
for µ = mh/2.
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3.6 conclusion

In chapter 2, we studied the behaviour of the Higgs-differential cross-section around the

threshold limit and concluded that the approximation was suitable for computing the rapidity

distribution. In this chapter, we have focused our attention on this particular observable and

made predictions by computing six terms in the threshold expansion, four more than the one

computed in chapter 2. The final result has been rescaled at higher order in the threshold

expansion in order to match to the inclusive cross-section for each partonic center of mass

energy.

We have analyzed the behaviour of the threshold expansion for the correction coming from

different truncation orders of the PCFs and compared it with the NNLO equivalent. We see that

the series converges to a stable value in the central region of rapidity which also corresponds

to the most relevant from the phenomenological point of view, being the region that is probed

with the highest accuracy at the LHC.

Although the central value of the correction to the expansion in the strong coupling is shown

to be homogenous in rapidity, and therefore compatible with a simple rescaling by a K-factor

of the NNLO distribution, we managed to significantly reduce the uncertainty due to scale

variation. In particular, in the range of rapidity |Y| < 3 is reduce to a level of [−3.4%,+0.9%].

From the observation of the behaviour of the power expansion at different order in the soft

parameter z̄ at NNLO we estimate the error coming from the truncation to be less than 1% for

|Y| < 2 and less than 2% for |Y| < 3.

As was observed in the inclusive cross-section when compared with the threshold expansion,

the inclusion of additional order will marginally improve this prediction. In fact, the missing

part is mostly due to the high-energy behaviour, and the expansion of poles located in that

region. This is particularly evident in the behaviour in the tails of the rapidity |Y| > 3 were the

contributions coming from a Higgs with large momentum become dominant. We expect the

result of this work to be the cornerstone of future fully differential Higgs boson phenomenology.
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4
L O O P - T R E E D UA L I T Y

In this second part, we want to present an alternative approach to the computation of phe-

nomenologically relevant quantities. Especially if we consider that, despite impressive advances

in the mathematical aspects of the reduction of scattering amplitudes to master integrals [29–50],

and their subsequent computation by means of differential equations [51–70], it is believed

that the computation of many relevant higher-order corrections to important processes (e.g.

NNLO corrections to pp → tt̄H and pp → tt̄bb̄) will remain intractable with this traditional

approach. The difficulties can, for example, be due to the increase in the number of scales

relevant to the problem and to the appearance of new mathematical structures in the form of

generalised elliptic functions [68–72]. Here we decide to explore a purely numerical integration

of the virtual contribution in momentum space.

Working in momentum space is especially appealing when also performing the loop energy

integrals analytically using the residue theorem. This energy integration yields the Loop-

Tree Duality [79–81] (LTD) which provides an alternative representation for the loop integral

containing terms with as many on-shell constraints as there are loops, making them effectively

trees. This aligns the measure of phase-space and LTD integrals, thus making LTD ideally suited

to pursue the ambitious goal of directly combining real-emission and virtual contributions

and compute them numerically at once by realising the local cancellation of their infrared

singularities.

This chapter starts with the natural follow-up to ref. [81]: regulating threshold singularities

in order to numerically integrate loop integrals evaluated with physical kinematics. We achieve

this by constructing a contour deformation in the (3L)-dimensional complex integration space,

designed in accordance with the constraints imposed by the causal prescription of Feynman

propagators and by the matching conditions stemming from analytic continuation.

Contour deformations for numerical integration have been considered in the past [75, 77,

188], and we present a novel variant well-suited to the multi-loop LTD expression of ref. [81].

In order to ensure that our construction is correct for arbitrary (multi-)loop integrals, we apply

it to more than a hundred qualitatively different examples, always finding agreement with the

analytical benchmark (when available). We also demonstrate in this way that the convergence

rate of our current numerical implementation already renders it competitive.

89
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We then proceed and show how to regulate divergent one-loop integrals by building coun-

terterms that are compatible with the LTD derivation. We analyze divergent integrals also in

the context of amplitudes where, thanks to the factorisation of the infrared singularities, the

counterterms can be written in a simple form.

4.1 loop-tree duality

In this section, we fix the notation and summarise the findings presented in ref. [81]. A general

n-loop integral in four-momentum Minkowskian space can be rewritten as an integral over the

Euclidean space of the three-dimensional spatial part of the loop momenta. The integrand, in

that case, is the sum of residues obtained by iteratively integrating out the energy variables

one after the other by applying the residue theorem. Each residue identified in this manner

corresponds to a particular spanning tree (i.e. a tree graph that connects all vertices) of the

underlying loop graph, or equivalently, to a particular loop momentum basis (i.e. the n edges

that complete a spanning tree back to the original n-loop graph) together with a specific set of

signs for the energy solutions of the on-shell conditions fixing the residue location, which we

call the cut structure.

More precisely, we start from the following n-loop integral

I =
∫ n

∏
j=1

d4k j

(2π)4
N

∏i∈e Di
, Di = q2

i −m2
i + iδ, (4.1)

where e is the set of indices labelling the edges of the connected graph identifying the integral

considered and the numerator N is a regular function of the loop momenta. We assume the

Feynman propagators to be pairwise distinct with on-shell energies±Ei = ±
√
~q 2

i + m2
i − iδ and

discuss the extension to the case of repeated propagators in appendix C . The momentum flow in

a graph is uniquely determined by the choice of (consistent) signature vectors si = (si1, . . . , sin),

sij ∈ {±1, 0} for each propagator, such that qµ
i = ∑n

j=1 sijk
µ
j + pµ

i , where pµ
i is a shift that

depends on external momenta.

We consider the integration of the energies in a fixed arbitrary order, set by (k0
1, . . . , k0

n), each

along the real line and closing on an arc of infinite radius in either the upper (with winding

number Γj = +1) or the lower (Γj = −1) complex half-plane. We assume the integrand to

vanish for large loop momenta, so that we can consider the integral along this arc to be zero,

thus allowing us to relate the original integral to the sum of residues at poles located within

the contour.
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When carrying out this iterative integration of the loop energies and collecting residues, one

finds that some residues may lie within or outside the integration contour depending on the

spatial part of the loop momenta. It has been conjectured and verified explicitly in ref. [81]

that only the residues that unconditionally lie within the integration contour contribute to the

integral. We write the dual integrand corresponding to one particular residue of the original

integrand f = N/ ∑i∈e Di identified by the loop momentum basis choice b = (b1, . . . , bn),

bj ∈ e (corresponding to the list of propagators put on-shell for this residue) as

Resb[ f ] =
1

∏
i∈b

2Ei

N
∏

i∈e\b
Di

∣∣∣∣∣
{q0

j =σb
j Ej}j∈b

(4.2)

with σb = (σb
1 , . . . , σb

n ), σb
j ∈ {±1}. It describes a residue that is within the contour for all loop

momentum configurations if

n

∏
r=1

Θ
(
Γr Im[kσ

b,r]
)
= 1, ∀~k j ∈ R3, (4.3)

where

Im[kσ
b,r] =

det




σ1 Im[Ei1 ]

(sbj1 j2)1≤j1≤r
1≤j2<r

...

σr Im[Eir ]




det
(
(sbj j)1≤j≤r

) , (4.4)

which for a choice of integration order, contour closure and momentum routing (determined

by (~k1, . . . ,~kn), Γj and sij respectively), is satisfied unconditionally for exactly one configuration

of signs, the cut structure, denoted by σb.

Therefore, the original integral of eq. (4.1) is identically equal to the resulting LTD expression

I = (−i)n
∫ n

∏
j=1

d3~k j

(2π)3 ∑
b∈B

Resb[ f ], (4.5)

where B is the set of all loop momentum bases.

We stress again that the functional form of the LTD expression is implicitly dependent on the

chosen order for the integration of loop energies, the contour closure choices and the particular

momentum routing chosen for the original integral. but nevertheless evaluate to the same

expression.
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The dual integrands can become singular on surfaces which may be labeled by the residue

corresponding to the particular dual integrand in which they appear (specified through the loop

basis b) and the particular propagator of that dual integrand that becomes on-shell (specified

through the propagator index i). These singular surfaces are of the form

ξb,i,αi ≡ ∑
j∈b

αjEj + αiEi + p̃0,b
i = 0, (4.6)

with αi ∈ {±1} for i ∈ e \ b and αj = sb
ijσ

b
j ∈ {0,±1} for j ∈ b, where sb

ij and p̃µ,b
i are implicitly

defined through the change of basis qµ
i = ∑j∈b sb

ijq
µ
j + p̃µ,b

i induced by the loop momentum

basis b identifying this surface. The singular surfaces ξ can be separated into two classes:

E- and H-surfaces. E-surfaces are defined by the property of having all the non vanishing

prefactors αk that multiply the energies with equal sign, we refer to this sign as the surface sign.

We factor out the surface sign and name the resulting E-surface ηb,i. From this point on, we

consider every E-surface to have a positive sign for all energies:

ηb,i ≡ ∑
j∈b

Ej + Ei + p0
η = 0. (4.7)

E-surfaces are convex and bounded. H-surfaces are then defined by having at least one positive

and at least one negative αk and they are labelled γb,i,αi .

A particularly elegant feature of LTD is that the sum of dual integrands forming eq. (4.5)

only becomes singular on E-surfaces, as the singularities from H-surfaces cancel pairwise

thanks to a mechanism referred to as dual cancellations [79, 189]. As will be discussed in more

details later, this cancellations are source of numerical instabilities that effect many practical

applications in particular when the integrator approaches e UV region. The E-surface has a

non-empty set of real solutions in~k = (~k1, . . . ,~kn) ∈ R3n for For δ = 0 if it satisfies

(p0,b
i )2 − (~p b

i )
2 ≥

(
∑
j∈b

αjmj + αimi

)2

and p0,b
i < 0. (4.8)

When both sides of this inequality are exactly zero, the E-surface has no interior since its minor

axis is zero, and the E-surface corresponds to the location on an infrared collinear and/or soft

singularities of the integral. We refer to them as pinched E-surface, with the important property

that singularities they correspond to cannot be regularised via a contour deformation of the

loop momenta integration phase-space.
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For δ > 0 an E-surface η is uniquely regulated by the imaginary prescription

sgn Im[η] = −1. (4.9)

We do not find it particularly useful to work out the imaginary part of the the squared

propagators appearing in eq. (4.5) (referred to as dual propagator in ref. [79]). Instead, we prefer

to stress that the relevant imaginary part of the E-surface equations induced by the causal

prescription has a simple definite sign. As it will be made clear later, this observation is indeed

the only relevant one in regard to the construction of a contour deformation that satisfies

physical requirements and regulates threshold singularities.

4.2 contour deformation

Numerical integration of Feynman diagrams and physical amplitudes in momentum space

originated with the early attempts by Davison E. Soper in [84] and [78], in which the LTD

formalism was applied to virtual diagrams at one loop in order to then integrate the cross-

section directly. Interestingly, the author also explicitly mentions and utilises the mechanism of

local real-virtual cancellations to render the integrand finite at the location of the non-integrable

soft and collinear singularities. In order to avoid so-called scattering singularities, referred

to in our work as one-loop E-surfaces, the author devised a contour deformation capable of

satisfying the relevant constraints.

Several methods have since been developed for integrating diagrams and amplitudes directly

in four-dimensional loop momentum space. A first success was the computation of one-loop

photon amplitudes in ref. [75], followed by refs. [190–192] which generalised the formalism

beyond one loop and applied it to more challenging integrals. The especially inspiring feature

of these two series of publications is the focus on constructing a provably exact deformation,

through the concept of anti-selection and dynamic scaling of the deformation.

Around the same time when these techniques were developed, a different line of work

expanded on LTD and, specifically, on its aspects relevant for the (3n)-dimensional numerical

integration of integrals, amplitudes and cross sections [188, 193, 194]. The contour deformation

presented in these works is based on a linear combination of vectors normal to the existing

E-surfaces, weighted by adjustable parameters and dampened by exponential functions with

unspecified width; the deformation proves to be correct for simple threshold structures and

in the limit of arbitrarily small dampening widths. Results obtained in this way however

highlighted for the first time the potential of numerical integration over the spatial degrees of

freedom resulting from the LTD identity.
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In this section we will construct a reliable and exact deformation that is valid for an arbitrary

number of loops and legs. We will give specific examples in order to illustrate how to implement

the deformation constraints for complicated singular structures, especially on intersections of

multiple E-surfaces.

As long as an integral only features non-pinched threshold singularities, it is possible to

engineer a contour deformation yielding a finite result for the integral. The absorptive part of

the integral is correct provided that the contour deformation considered satisfies requirements

imposed by physical conditions, in particular causality. In relativistic quantum mechanics,

causality is originally realised in Feynman propagators via the iδ-prescription or, equivalently,

by the request that the theory is in the range of validity of Gell-Mann and Low’s theorem [195].

In the LTD formalism, an imaginary prescription on propagators remains and, although its

formal expression is more complicated than iδ, it still holds that on E-surfaces this prescription

sign is fixed (i.e. it does not depend on either external nor loop kinematics, see eq. (4.9)).

Contour integration of threshold singularities requires to analytically continue the LTD

integrand by replacing its dependence on the chosen basis of loop momenta~k, by the complex

variable ~k − i~κ ∈ (C3)n, where ~k = (~k1, . . . ,~kn) ∈ (R3)n and ~κ = (~κ1, . . . ,~κn) ∈ (R3)n. The

spatial momenta associated with each propagator are a linear combination of the vectors in the

chosen loop momentum basis plus an affine term:

~qj(~k) =
n

∑
i=1

sji~ki + ~pj = ~Qj(~k) + ~pj. (4.10)

Once analytically continued, these spatial momenta then also acquire an imaginary part:

~qj(~k− i~κ) = ~qj(~k)− i~Qj(~κ). (4.11)

Each surface η has an associated energy shift p0
η , defined in eq. (4.7) as a specific linear

combination of the energies of external particles.

An approximation of the imaginary part of the E-surface η can be obtained from the first

order term of its Taylor expansion in ‖~κ‖:

Im[η(~k− i~κ)] = −~∇~kη(~k) ·~κ +O(‖~κ‖2), (4.12)

The quantity ~∇~kη(~k), henceforth denoted as ~∇η, is the outward pointing normal vector to

the surface η(~k) = 0. The contour deformation is defined in the (3n)-dimensional complex

space and we parametrise it as~k− i~κ(~k). It must satisfy constraints affecting two of its key

characteristics, the direction and magnitude of the vector field ~κ(~k):
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direction : The deformation vector ~κ(~k) must induce a sign of the imaginary part of the

E-surface equation that matches the sign enforced by the causal prescription whenever
~k lies on a singular E-surfaces. This imposes conditions on the direction of the vector

field ~κ(~k). We derive these conditions by comparing the sign of the LTD prescription on

E-surfaces (eq. (4.9)) with the sign of the imaginary part of E-surfaces that results from

the deformation (eq. (4.12)). We obtain:

sgn[~∇η ·~κ] = +1, when η(~k) = 0. (4.13)

magnitude : The norm of the deformation vector is limited by three constraints:

integrand continuity : The LTD expression can be seen as a function of the on-shell

energies of the internal particles Ei =
√
~q 2

i + m2
i − iδ. These square roots have to be

evaluated on a well-defined Riemann sheet. Thus the contour must not cross the

branch cuts of any of the involved square roots.

complex pole constraint : By extending the domain of the LTD integrand from

R3n to C3n through the replacement of its functional dependency on~k with (~k,~κ), we

find that in addition to real-valued poles (corresponding to the existing E-surfaces),

the integrand also features complex-valued poles located at (~k,~κ), with ~κ 6=~0. We

stress that these complex poles exist for all E-surface equations: those (pinched or not)

already having solutions for real loop momenta (~k,~0) as well as those that do not

and which are referred to as non-existing E-surfaces (in regard to the fact that their

existence condition of eq. (4.8) is not fulfilled).

According to Cauchy’s theorem, the result of the contour-deformed integral will

only be identical to that of the original defining integral over the spatial part of the

loop momenta in the real hyper-plane, if and only if the volume defined by this

real hyper-plane and the deformed contour does not contain any of such complex

poles. The magnitude of the contour deformation must therefore be constrained to

be small enough so as to exclude these complex poles.

expansion validity : The causal constraint on the direction of the contour deforma-

tion as well as the complex pole constraint are derived from the Taylor expansion of

each energy function Ei. We must therefore impose that the norm of the contour

deformation vector field is such that the complex argument of each square root

defining an energy remains within the range of validity of its expansion.

The fulfillment of these conditions is discussed at length in ref. [4] together with the deformation

for a general intersections of different E-surface at multi-loop. To the end of presenting the
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integration of a divergent integral we limit ourself to the one loop case and we do it by

considering the following example.

4.2.1 Construction at one loop

Consider a one-loop scalar box diagram in the LTD representation after having explicitly solved

the on-shell constraint:

I = −i
∫ d3~k

(2π)3

4

∑
b=1

1
2Eb

4

∏
i=1
i 6=b

1
Di

∣∣∣∣
q0

b=Eb

= −i
∫ d3~k

(2π)3

4

∑
b=1

1
2Eb

4

∏
i=1
i 6=b

1
ηbiγbi

= −i
∫ d3~k

(2π)3

4

∑
b=1

1
2Eb

4

∏
i=1
i 6=b

1
(Eb + Ei − p0

b + p0
i )(Eb − Ei − p0

b + p0
i )

.

(4.14)

where we used that at one loop the dual propagator factorises into the product of an E- and

an H-surface, as Di(k)|q0
b=Eb

= ηbi(~k)γbi(~k). At one loop, one can also simplify the loop basis

identifier b and write it as the index b ∈ e = {1, 2, 3, 4} corresponding to the single LTD cut

considered. Thanks to the mechanism of dual cancellations, the sum of all dual integrands is

only singular on E-surfaces which, at one loop, are two-dimensional rotational ellipsoids in

spatial loop momentum space. All of the potential singular E-surfaces of this scalar box appear

as zeros of the functions

ηbi(~k) ≡
√
(~k + ~pb)2 + m2

b +
√
(~k + ~pi)2 + m2

i − p0
b + p0

i , pi ≡
i

∑
j=1

p ext
j , (4.15)

with i, b ∈ e, i 6= b, and for given four-momenta of the four external legs p ext
j , j ∈ {1, 2, 3, 4}.

The number of E-surfaces that have solutions for real loop momenta has an upper bound based

on the topology and the number of legs N. For one-loop topologies, an upper bound on the

total number of existing E-surfaces is N(N − 1)/2, since we require b 6= i and using the fact

that if ηbi exists, ηib cannot exist.

The singularity structure of the LTD expression can be studied by focusing on particular

singular E-surfaces and their intersections. In order to do this, we define the boundary and

interior operators as

∂ηbi = {~k ∈ R3 | ηbi(~k) = 0}, (4.16)

∂−ηbi = {~k ∈ R3 | ηbi(~k) < 0}. (4.17)
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The E-surface ηbi exists, that is ∂ηbi 6= ∅, if (p0
b− p0

i )
2− (~pb−~pi)

2 ≥ (mi +mb)
2 and p0

b− p0
i ≥ 0.

If two ellipsoids η, η′ exist and intersect, then ∂η ∩ ∂η′ 6= ∅. Furthermore, if they intersect

without being tangent, they also overlap: ∂−η ∩ ∂−η′ 6= ∅. As an illustrative example, we now

set particular values for the external box kinematics, which we refer to as Box4E,

p ext
1 = ( 14.0,− 6.6,−40.0, 0),

p ext
2 = (−43.0, 15.2, 33.0, 0),

p ext
3 = (−17.9,−50.0, 11.8, 0),

p ext
4 = −p ext

1 − p ext
2 − p ext

3

(4.18)

and list the resulting four members of the set of existing E-surfaces E = {η12, η13, η42, η43},

η12 =
√
(−6.6 + kx)2 + (−40 + ky)2 + k2

z +
√
(8.6 + kx)2 + (−7 + ky)2 + k2

z − 43,

η13 =
√
(−6.6 + kx)2 + (−40 + ky)2 + k2

z +
√
(−41.4 + kx)2 + (4.8 + ky)2 + k2

z − 60.9,

η42 =
√

k2
x + k2

y + k2
z +

√
(8.6 + kx)2 + (−7 + ky)2 + k2

z − 29,

η43 =
√

k2
x + k2

y + k2
z +

√
(−41.4 + kx)2 + (4.8 + ky)2 + k2

z − 46.9.

(4.19)

The four E-surfaces in eq. (4.19) are coloured according to the colour scheme used in figure 4.1.

A focal point is the loop momentum (kx, ky, kz) that sets the argument of an energy square root

to zero. Each ellipsoid has two focal points, indicated with red dots in the figure. The energy

shift p0
i − p0

b is the length of the major axis. The particular external kinematic configuration

chosen in eq. (4.18) has no component along the kz-axis and therefore the particular section

kz = 0 corresponds to the plane where the four E-surfaces have a maximal extent.

According to eq. (4.9) we require the imaginary part on any E-surface η to always be negative:

sgn(Im[η]) = −1. By replacing~k →~k− i~κ(~k) and expanding the E-surface equations to first

order in ||~κ||, we find that the prescription reads

~κ · ~∇ηbi = ~κ ·
(
~k + ~pb

Eb
+
~k + ~pi

Ei

)
> 0, ∀~k ∈ ∂ηbi, ∀ηbi ∈ E , (4.20)

which imposes that on any point on the E-surface, ~κ(~k) should point outwards of the E-surface.

On the intersection of many E-surfaces, the combined prescriptions impose that ~κ(~k) must

simultaneously point outwards of all of the intersecting E-surfaces.

One choice that always satisfies the condition of eq. (4.20) for one single E-surface as well as

for two intersecting E-surfaces is the sum of their respective normal vector fields, as shown in

figure 4.2. A similar deformation was proposed in ref. [188], where the deformation field ~κ(~k)
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Figure 4.1: A kz = 0 section of the singular structure of the example configuration Box4E. It has four
singular E-surfaces with four (partially shared) focal points coloured in red.

is written as a linear combination of the normal fields weighted by an exponential dampening

factor that ensures that each normal field vanishes away from its defining E-surface. This

particular choice of deformation vector is unsatisfactory when more than two E-surfaces exist,

since

• there could be triple intersections where the sum of the normal vectors is not guaranteed

to be correct, unless the coefficients of the decomposition on normal vector fields is

fine-tuned (and made dynamical functions of the real part of the loop momenta) so as to

induce a vector with a valid direction and

• contributions from various E-surfaces may spoil the validity of the deformation direction

on another surface. Again this must be avoided by fine-tuning the strength of the

dampening factors affecting each normal field.

In figure 4.3 we give an example with three E-surfaces, where a naive unweighted sum of

normal vectors does not yield a valid deformation. By using fine-tuned dampening of the

normal vector fields from each E-surface, such cases may be avoided but this does require an

ad-hoc treatment and can lead to poor numerical convergence.
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Figure 4.2: A correct deformation for two E-surfaces represented in the kz = 0 plane constructed by
summing the normal vector fields of each of the two E-surfaces.

The next subsection introduces the concept of deformation sources which we will use to build

a deformation that avoids the shortcomings discussed in this section when considering normal

fields.

deformation sources

Since E-surfaces are convex surfaces, given a point~s within the interior of an E-surface ∂−η,

the radial field ~v~s(~k) ≡~k−~s, centered at~s, satisfies the causal prescription Im[η]|~k−i~v~s
< 0 on

any point on the surface, where η(~k) = 0. We note that the interior of the intersection of a set

F ⊆ E of E-surfaces again defines a convex volume and therefore we analogously have that,

for any given point ~s in this volume, that is ~s ∈ ⋂η∈F ∂−η, the corresponding radial field ~v~s
simultaneously satisfies the causal prescription of all of the E-surfaces in F and, especially, on

their intersections. We call such a point~s a deformation source for the overlapping set F. For a

case in which there exists a single point~s simultaneously in the interior of all of the existing

E-surfaces, then the radial deformation field ~κ(~k) ∝ (~k−~s) satisfies the causal prescription on

all the threshold singularities (see figure 4.4).

When there is no single point simultaneously in the interior of all E-surfaces, one can

construct a deformation vector written as the sum of radial fields centered at different locations,
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Figure 4.3: An example of an incorrect deformation vector field constructed by adding the normal
vector fields of three E-surfaces. The picture on the right is an enlargement of the
problematic center region in the left image. This particular case requires fine-tuning of
the normalisation of each of the three fields added in order to obtain a valid deformation.
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Figure 4.4: A correct deformation using the radial field~k−~s generated by a single source~s contained
in the interior of all four E-surfaces.
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and adequately multiplied by an anti-selector function disabling the effect of the radial field

on all the E-surfaces in which the point is not contained. The anti-selection is constructed

such that the individual terms building the deformation vector fields are always “additive” in

their ability to satisfy the causality requirements. Indeed, a crucial aspect of our design of the

deformation is the adoption of a model in which contributions that may spoil the direction on

a particular threshold singularity are excluded (i.e. “anti-selected”), as opposed to a model that

enables (i.e. “selects”) the correct contributions on the particular thresholds they are designed

for.

We illustrate more specifically how an anti-selection model is preferable to a selection one by

highlighting the shortcomings of the latter when applied to the previously introduced Box4E

configuration whose four E-surfaces are shown in figure 4.5 in the kz = 0 plane. The “selection”

model would in this case amount to combine all four radial fields as follows (the discussion of

the analogous construction of ref. [188] that involves normal fields would be similar):

~κselection_model = ~v~s124 (T̄(η12) + T̄(η42))

+ ~v~s213 (T̄(η12) + T̄(η13))

+ ~v~s134 (T̄(η13) + T̄(η43))

+ ~v~s342 (T̄(η43) + T̄(η42)) , (4.21)

where the subscripts on the source indicate the focal points of the involved ellipsoids and the

selection function1 simply is one minus the anti-selection function T(ηbi) defined as follows:

T̄(ηbi) = 1− T(ηbi) (4.22)

T(ηbi) =
ηbi(~k)2

ηbi(~k)2 + M2
(

p0
i − p0

b

)2 , (4.23)

where M is an adjustable free parameter, and p0
i − p0

b is the length of the major axis of the

E-surfaces ηbi, which provides a measure for the size of the E-surfaces. Another possible choice

is to substitute the normalisation −p0
b + p0

i with
√
(p0

i − p0
b)

2 − (~pi − ~pb)2 − (mi + mb)2, which

is the minor axis length of the E-surface. The choice of M provides an estimate of how rapidly

T(η) saturates to one when~k is further away from the surface ηbi.

The deformation of eq. (4.21) stemming from the selection model is problematic for mainly

two reasons:

1 The selection function chosen in ref. [188] is an exponential Gaussian of adjustable width Abi: exp
(
− (ηbi(~k)γbi(~k))2

Abi

)
.
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• On the threshold E-surface η12, the deformation receives contributions mostly from ~v~s124

and ~v~s213 (which do satisfy the causal prescription) but also from ~v~s134 and ~v~s342 (which

may not satisfy the causal prescription) since the suppression factor induced by their

respective selection function is small on this surface, but not zero. This implies the necessity

of fine-tuning the suppression parameters which may be a difficult task when E-surfaces

with very different causal constraints lie close to each other.

• On the intersection of two E-surfaces, for example ∂η12 ∩ ∂η13, three of the four radial

deformation fields ~v~s124 ,~v~s213 and ~v~s134 are active without any suppression, even though only

~v~s213 is guaranteed to be correct on this particular intersection.

One may think of alleviating the intersection problem by simply removing such intersections

from the selector function applied to the deformation sources that are invalid:

~κselection_model_improved = ~v~s124 (T̄(η12)T(η13) + T̄(η42)T(η43))

+ ~v~s213 (T̄(η12)T(η42) + T̄(η13)T(η43))

+ ~v~s134 (T̄(η13)T(η12) + T̄(η43)T(η42))

+ ~v~s342 (T̄(η43)T(η13) + T̄(η42)T(η12)) . (4.24)

However, this solution is again not exact since even though T̄(η42)T(η43) and T̄(η43)T(η42)

are small quantities on ∂η12 ∩ ∂η13, they are not identically zero. In fact, it is impossible to

build a continuous selection function that identically vanishes on a particular intersection of

E-surfaces while at the same time being identically unity when evaluated anywhere on one of

the intersecting E-surfaces but outside of the intersection.

The above shows that if the the contour deformation is required to be correct (i.e. indepen-

dently of its parameters), the radial deformation fields must be combined using an anti-selection

paradigm that also avoids referring directly to intersections of E-surfaces, since one cannot

continuously (anti-)select them. In the example of Box4E, we achieve this by constructing the

final deformation vector ~κ as follows:

~κ = ~v~s124 T(η13)T(η43)

+ ~v~s213 T(η42)T(η43)

+ ~v~s134 T(η42)T(η12)

+ ~v~s342 T(η12)T(η13) (4.25)
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Figure 4.5: A correct deformation direction with functional form described by eq. (4.25) for Box4E
using four sources which are excluded on those E-surfaces whose interior does not contain
the source. The right plot is a zoom-in on the central region.

which exactly satisfies the causal requirements for~k on ∂η12 and ∂η12 ∩ ∂η13:

~κ(~k)|~k∈∂η12

!
= ~v~s124 T(η13)T(η43) +~v~s213 T(η42)T(η43)

~κ(~k)|~k∈∂η12∩∂η13

!
= ~v~s213 T(η42)T(η43). (4.26)

In general, the minimal set of sources required for constructing a valid deformation with this

anti-selection model is obtained by determining the maximal overlap structure of the E-surfaces [4].

For the kinematical case of a box with the intersection of four distinct E-surfaces, this structure

is {{η12, η13}, {η13, η43}, {η42, η43}, {η12, η42}}. After the maximal overlap structure has been

determined, one has to construct source points in the interior of each overlap listed in the

maximal overlap structure. In appendix C we present the results we obtain by testing our

deformation for a range of finite topologies with a different number of external legs and

internal loops. These results show that this method can produce reliable results, and we will

discuss in the next chapter a way to stabilize even further the integration by removing the

spurious H-surface analytically. Now that we have introduced and illustrated the key concepts

underlying our construction of a valid deformation of the integration variables, we can apply

them for the case of one-loop divergent integrals.
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4.3 subtraction

All the results presented in appendix C refer to integrals that do not have singularities for loop

momenta of large magnitude (ultraviolet (UV) singularities) or soft and/or collinear to external

legs (infrared (IR) singularities). For practical applications, such as computing amplitudes of

physical processes, this will not be the case, as individual diagrams can contain both UV and

IR divergences.

After transforming the integrand using LTD, non-integrable singularities manifest themselves

as pinched (squeezed) E-surfaces. For the case of Feynman diagrams with massless internal

propagators, this will happen when one or more of the massless external legs become on-shell.

It is still possible to compute these integrals provided that the non-integrable singularities are

regulated first. In general, this is achieved by subtracting from the integrand an expression

that contains the same pinched E-surface(s) and that approximates the original integral in

the limit where the singular surface is approached. If these subtraction terms (also known

as counterterms) are significantly simpler than the original integral, one can integrate them

analytically in dimensional regularisation and add them back to the final expression in order to

recover the original integral, including all its poles in the dimensional regulator. In this section,

we start by presenting a method to regulate divergent scalar integrals at one-loop without

the introduction of propagators linear in the loop momentum featured in ref. [196]. We then

discuss the introduction of counterterms for physical amplitudes [83] where only one term

is introduced to remove all IR divergences. This regulated expression can then be integrated

using LTD and the contour deformation discussed in section 4.2.

For the rest of this section, we will refer to the external momenta as pi for ease of reading.

4.3.1 Regularizing Divergent scalar integrals

We start by investigating scalar integrals subject to IR divergences at one-loop. In general, it

is convenient to express counterterms in terms of the same building blocks as the original

integrand, namely quadratic propagators. This allows to use the LTD formalism that has been

introduced for the case of finite scalar integrals. At one-loop, we will show that we can always

achieve such subtraction using a linear combination of triangles built by a subset of the original

propagators and with coefficients expressed in terms of the kinematic invariants sij. Since the

counterterms involve only propagators already present in the original diagram, they do not

introduce any new E-surfaces.
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general one-loop massless scalar integral

Let us consider an n-point function with all the internal propagators massless and with external

momenta pj with p2
j = m2

j . We first consider the case where only one leg i is massless (mi = 0).

As a consequence, the corresponding scalar integrand will develop a collinear singularity when

the loop four-momentum k becomes collinear to the corresponding momentum pi:

qi+1

qi

qi−1

pi+2

pi+1

pi

pi−1

pi−2

...
qi=x pi−−−→


 pi

qi



×




pi+2

pi+1 + x pi

pi−1 + x̄ pi
pi−2

...




︸ ︷︷ ︸
=: ci(x)

. (4.27)

In the expression above (where we consider the loop momentum to flow clockwise) we can see

how the integrand factorises in the collinear limit. The integration of this counterterm can be

performed as shown in ref. [196]. The variable x is a function of the loop momentum and is

defined as follows:

qi = xpi + yv + qi,⊥, where
v2 = 0,

v · pi 6= 0.
(4.28)

The expression on the l.h.s of eq. (4.27) can be written in an integral form as follows:

In ≡
∫

d4k In(k, {pi}), where





In(k, {pi}) =
1

∏n
i (qi)2 ,

qi = k + ∑i
j=1 pi,

, (4.29)

In
qi=x pi−−−→

∫
d4k

ci(x)
(qi−1)2(qi)2 . (4.30)

The coefficient ci(x) that multiplies the bubble propagators corresponds to the remaining hard

propagators with the loop momentum evaluated in the collinear limit:

ci(x) =
1

∏n+i−2
j=i+1 (x pi + qji)2

, qji ≡ qj − qi. (4.31)

The limit shown on the right-hand side of eq. (4.30) could be used to build an IR finite

expression by subtracting it from In, however such a counterterm introduces propagators that
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are linear in the loop momentum. Linear propagators yield singular surfaces that are not akin

to E-surfaces, implying that the general construction of the contour deformation presented in

section 4.2 cannot directly control the properties of the imaginary part of the loop momentum

on them. We leave the investigation of solutions for accommodating linear propagators to

future work and for now aim at casting the subtraction terms ci(x) in terms of propagators

already present in the original divergent one-loop integral.

We start by considering all possible triangles that factorise the same divergent bubble in the

collinear limit. This condition fixes two of the three propagators of the triangle to be the ones

that become singular in a specific collinear limit, whereas the third propagator can be chosen

to be any of the other ones appearing in the original n-point integral. All such triangles are:

T(i, j) ≡

qi

qi−1

qj , j ∈ Ji ≡ {i + 1, i + 2, . . . , i + n− 2}. (4.32)

with periodic conditions on the loop momenta labels. In the collinear limit, each element T(i, j)

factorises one hard propagator tij whose expression reads:

tij(x) =
1

(xpi + qji)2 .

Note that each squared momentum in the denominator of our coefficient functions is linear in

x because pi is on-shell, resulting in only one simple pole in the variables x.

In order to cancel the divergences of the n-point function we need to find a linear combination

of T(i, j) with coefficients aij(x) that satisfies:

∑
j∈Ji

tij(x)aij(x) = ci(x).

We can multiply both sides of this expression by the denominator of ci(x) which is equal to the

product of all the possible tij with i 6= j. We then obtain a polynomial of degree (n− 3) in x:

∑
j∈Ji


∏

r∈Ji
r 6=j

t−1
ir (x)


 aij(x) = 1 .

Since we have (n− 2) degrees of freedom and we insist that coefficients aij(x) are free of poles

in x, one needs to involve all terms T(i, j) in order to solve the equation above (assuming all
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the poles tij(x) are distinct). In particular, an explicit solution can be found by using the roots

of the inverse coefficients t−1
ij :

aij = ∏
r∈Ji
r 6=j

tir

(
− (qji)

2

2pi · qji

)
, (4.33)

resulting in coefficients that depend only on the external kinematics.

This procedure does not work in the case of degenerate (raised) propagators. This can be

resolved by considering a subset J̄i ⊂ Ji which contains only one member of each degenerate

subset of propagators with multiplicity νj for j ∈ J̄i. Moreover, we need to generalise eq. (4.33)

in order to support the degeneracy of the involved propagators. In the collinear limit, the linear

combination of the elements of this set gives the same singularities as the original integral,

provided that:

∑
j∈J̄i


∏

r∈J̄i
r 6=j

t−νr
ir (x)


 aij(x) = 1.

In this case we have |J̄i| parameters aij to constrain a polynomial of degree n with (|J̄i| − 1)

distinct roots. It is then clear that the coefficients aij take the same values as those given in

equation (4.33). From this point onward, we will only consider one-loop scalar integrals with

non-degenerate propagators.

We are now equipped with a method that removes single collinear singularities from integrals

with one off-shell external momentum by writing a linear combination of the triangular

elements T(i, j). When more than one external leg has a vanishing mass, we can apply the

same procedure for each of them. In this case, we have to be careful when one of the triangles

appears in more than one regularisation. For example, when two adjacent momenta are

on-shell at the same time, one has T(i, i + 1) = T(i + 1, i− 1). In this kinematic configuration

the corresponding coefficients will be same:

ai,i+1 = ai+1,i−1, when p2
i = p2

j = 0 .

Thus, one has to be careful when summing the regulator corresponding to each of the massless

external legs in order to avoid double-counting.
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We can write one general subtraction term, referred to as CTn, that can be used for any

combination of on/off-shell external momenta of a scalar one-loop n-point integral:

In|subtracted = In −CTn,

CTn =
n

∑
i=1

(
βiT(i, i + 1) +

n+(i−3)

∑
j=i+2

aijT(i, j)

)
, (4.34)

where we introduced the coefficients βi used to avoid double counting. Their expression is

βi =





ai,i+1 : p2
i = 0

ai+1,i−1 : otherwise
, (4.35)

where we make explicit use of the fact that whenever pi and pi+1 are on-shell at the same time

the two coefficients aij coincide.

Because the constructed collinear counterterms do not depend on the parameter x, they

completely remove the singularities from pinched E-surfaces, implying that they regulate both

collinear and soft divergences. As a consequence, we have that the integral In −CTn is finite

for all loop momentum configurations. The original expression In can be recovered by adding

back the integrated counterterms. The integrated counterterm consists of n(n− 3) distinct

one-loop scalar triangles that are straightforward to compute analytically for general external

kinematics using dimensional regularisation. We leave to future work the investigation of the

possible multi-loop generalisation of this construction of counterterms that do not involve any

propagators that are linear in the loop momenta.

explicit example of subtraction for a divergent one-loop scalar box

For the four-point box topology with massless propagators, there are four counterterms since

the sum in eq. (4.34) over the coefficients aij is empty. Only the βi are present and take the

following expression:

βi =





si,i+1 − p2
i+1

si,i+1si−1,i − p2
i+1 p2

i−1
: p2

i = 0

si,i+1 − p2
i

si,i+1si+1,i+2 − p2
i p2

i+2
: otherwise

, (4.36)
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where sij = (pi + pj)
2. In the particular case where all external momenta are massless and

on-shell (i.e. p2
i = 0), the final expression of the counterterms reads:

CTn =
4

∑
i=1

βiT(i, i + 1)

=
T(1, 2)

s23
+

T(2, 3)
s12

+
T(3, 4)

s23
+

T(4, 1)
s12

,

(4.37)

which coincides with the results presented in ref. [196], in which this same expression corre-

sponds to the counterterm built for the subtraction of soft singularities (and the authors also

concluded that the counterterm cancels all IR divergences in that particular case). In other

cases however, and especially beyond one-loop, the counterterms from ref. [196] introduce

linear propagators of the form of eq. (4.27).

4.3.2 One-loop amplitudes

Loop-Tree Duality has already been applied directly to the computation of amplitudes in cases

where no contour deformation was needed, for example in refs. [194, 197]. In this section, we

consider an amplitude that has both IR and UV divergences as well as threshold singularities:

the production of photons from the scattering of a quark and an anti-quark. For simplicity, the

order of the photons is kept fixed during this discussion, as performing the integration over all

permutations of the final states does not add any complications.

The tree-level contribution for qq̄→ (N − 2)V is defined as

iA0 =

p1

p2

pN

p4

p3

T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0

. .
. = C0

(
N−1

∏
i=3

1
(∑i

j=2 pj)2

)
v̄2T0u1 , (4.38)

where all the fermions are assumed to be massless and the coefficients C0, T0 depend on the

vector boson considered as a final state. If only photons are considered as final states such

coefficients are given by:

T0 = /ε 3(−/p23)/ε 4 · · · (/p15)/ε N , C0 = g3q3 . (4.39)
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These formulas can easily be extended to the electroweak bosons W± and Z by substituting

the photon polarisation vectors with generic ones /ε i → /̂ε which also encode the information

about the axial and vectorial part of the corresponding boson:

/̂ε i ≡ /ε iPi, Pi ≡ cV − cAγ5, (4.40)

with projectors defined as

PL ≡
1− γ5

2
, PZ ≡

cd
V − cd

Aγ5

2
. (4.41)

In order to obtain a more general expression we will use this new definition for the polarisa-

tion vectors. In the case of photons, all the Pis are proportional to the identity matrix.

In order to compute the one-loop QCD correction to eq. (4.38) one needs to consider all

possible insertions of a gluon along the fermionic line. The IR structure of the relevant

diagrams features one or two pinched collinear singularities if the gluon is attached to one or

both the external fermion lines, respectively. In the latter case, the diagram also features a soft

singularity.

counterterms

If the photons are physically polarised, the only pinched divergences contributing to the IR

sector involve a gluon connecting one of the propagators of the tree-level diagram with the

external quarks. There are no singularities originating from two internal quarks and an external

photon meeting at a vertex and becoming collinear, since the numerator vanishes:

[. . . ](/k − /pi)/̂ε i/k [. . . ]
k = x pi−−−→ x̄x[. . . ] /pi/̂ε i/pi[. . . ] = 0 . (4.42)

Since the pinched singularities originate uniquely from insertions of gluons connecting an

external fermion to an internal fermion, the Ward identity can be used to regulate all the

collinear and soft divergences with a general counterterm. However, it is necessary to fix a

consistent choice of routing for the loop momentum in order for cancelling divergences to
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be localised in the same region in momentum space, even though they belong to different

diagrams. The general counterterm IIR reads:

p1

p2

pN

p4

p3

T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0T0

. .
. =

C1 µ2ε(4π)2

∏N−1
i=3 (∑i

j=2 pj)2

∫ ddk
(2π)d

v̄2γµ(/k − /p2)T0(/k + /p1)γµu1

k2(k + p1)2(k− p2)2 , (4.43)

where

C1 = −iC0
CFαs

4π
. (4.44)

This integration can be performed analytically using Feynman parametrisation, and we obtain:

IIR = i
C1

∏N−1
i=3 (∑i

j=2 pj)2

(
4πµ

−s12

)ε CΓ

2− 2ε

(
−2M0

2− 2ε + ε2

ε2 +
M1

2ε
+

M2

−s

)
, (4.45)

where

M0 = [v̄2T0u1] ,

M1 =
[
v̄2γµγνT0γνγµu1

]
,

M2 =
[
v̄2γµ

/p1T0/p2γµu1
]

,

CΓ =
Γ(1− ε)2Γ(1 + ε)

Γ(2− 2ε)
.

(4.46)

Although subtracting eq. (4.43) from the original integrand allows to completely regulate IR

singularities, the subtracted integrand is still divergent in the UV sector. This divergence can

manifest itself locally, in spite of the integral itself being finite, either due to symmetries of the

integrated expression or because the IR and UV poles cancel for integrals that are scaleless in

dimensional regularisation. The behaviour for large momenta is inferred by the scaling of the

integrand in these regions, and as a result all log-divergent triangles (one gluon, two fermions)

and linearly divergent bubbles (one gluon, one fermion) that appear in the amplitude have

to be regulated. The construction of the counterterm is done by taking the UV limit of each

diagram by replacing
/k + /p

(k + p)2 → /k
k2 − µ2

UV
, (4.47)

where the only relevant momentum is now the loop momentum carried by the exchanged

gluon. The bubble diagram has a leading UV divergence that is linear in the loop momentum.

In the context of an analytic integration such contribution integrates to zero because of radial

symmetry, although the integrand is locally divergent. It is therefore necessary to also regulate
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this leading UV divergence together with the sub-leading one obtained by computing the

second order in the Taylor expansion around the UV approximation given by eq. (4.47). An

explicit example of this subtraction can be found in appendix C, where eq. (C.1.11) represents

the UV counterterm of a triangle and eq. (C.1.10) represents the counterterm of a bubble. The IR

counterterm that we introduced is UV divergent and requires regulation as well. Its divergence

can be expressed as as a triangle integral and can be subtracted by means of eq. (4.47).

The combination of counterterms can be used to build a finite amplitude expression that can

be integrated using LTD:

Afinite = A− ICT , where ICT = ∑
UV
div.

IUV + IIR − IUVIR . (4.48)

The counterterm can be integrated analytically with the use of dimensional regularisation.

In the UV contribution to the integrated counterterm we notice that the bubble and the triangle

lead to the same value in norm and opposite in sign if constructed according to the substitution

rule (4.47). Thus, the only remaining contribution is

∑
UV
div.

IUV = −i
C1

∏N−1
i=3 (∑i

j=2 pj)2

(
4π µ2

µ2
UV

)ε

Γ(1 + ε)
(1− ε)2

ε
M0 . (4.49)

Finally, regulate the IR counterterm with the same technique. The corresponding analytically

integrated counterpart reads:

IUVIR = −i
C1

∏N−1
i=3 (∑i

j=2 pj)2

(
4π µ2

µ2
UV

)ε

Γ(1 + ε)
1
4ε

M1 . (4.50)

The complete expression ICT can then be expanded in ε up to finite terms and be used to recover

the original amplitude once combined with the value coming from numerical integration. The

integrated counterterm for qq̄ to photons at one loop takes the simple form:

ICT = −i
C1

∏N−1
i=3 (∑i

j=2 pj)2
M0

(4π)ε

Γ(1− ε)

[
1
ε2 +

1
ε

(
1
2
+ lnµ

)
+

(
4 +

1
2
(
3 + lnµ

)
lnµ

)]
+O(ε) ,

(4.51)

where lnµ = log
(

µ2

−s12

)
. Any dependence on µUV has dropped from this final expression. As a

consequence, the integration of the finite amplitude will also not depend on the choice of µUV.

This condition can be used as a further check for the proper cancellation of the divergences.
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ultraviolet behaviour

When integrating the LTD expression, one has to take into account that the superficial degree

of UV divergence of each dual integrand is higher than that of the sum of its cuts. This is

because once the LTD on-shell cuts of the residues are applied, every quadratic propagator

scales as 1/|~k| in the UV instead of 1/k2. As a consequence, contrary to the Minkowskian case,

the addition of more fermion propagators to the diagram is not suppressing the scaling of the

deformation in the UV sector:

∫
d4k δ+(q2

j )
1
k2

N

∏
i

/q i
q2

i
∼ k2 ∀N , (4.52)

compared to the original scaling of the 4D integrand being

∫
d4k

1
k2

N

∏
i

/q i
q2

i
∼ k2−N . (4.53)

Summing over all the different cuts will however recover the original scaling of k2−N .

If the dual integrand scales faster than 1/|~k| in the UV, the numerical cancellation of large

numbers becomes prone to numerical instabilities. One way avoid such numerical instabilities

in the UV region is to approximate the integrand with a better behaved function in the

corresponding sector, obtained by taking a UV approximation of the integrand. The most

convenient choice is to replace all the propagators with a common UV one:

q2 → (k + pUV)
2 . (4.54)

This ensures that the approximating function only features a single dual integrand, which

directly scales as the 4-dimensional integrand. The numerator can be left unchanged for this

approximation. In section 4.3.2 we discuss the effects of this UV approximation. The UV

counterterms can be constructed as shown there for most integrals, but in the case of a bubble

integral, the subleading logarithmic divergence must also be regulated. The relevant part of

the approximation is shown below:

γµ/qγµ

q2 ≈ γµ/qγµ

(k + pUV)2 − 2k · (q− k− pUV)
γµ/qγµ

(k + pUV)3

=
γµ/qγµ

(k + pUV)2 −
γµ{/k , (/q − /k − /pUV)}/qγµ

(k + pUV)3 .
(4.55)
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Since the UV counterterms have higher-order poles, the LTD formula shown in section 4.1 can-

not be applied directly. We discuss how to apply LTD to integrals featuring raised propagators

in appendix C.

one-loop amplitude for q q̄ → γ1 γ2 γ3

We now study the specific case of the one-loop dd̄→ γ1γ2γ3 amplitude. The tree-level diagram

of this amplitude is

iA0 =

p1

p2

p5

p4

p3

= C0
M0

∏4
i=3(∑

i
j=2 pj)2

,

where the coefficients are given by

M0 = v̄2/ε 1(−/p23)/ε 2(/p15)/ε 3u1, C0 = g3q3. (4.56)

k

(D1) (D2) (D3) (D4)

(D5) (D6) (D7) (D8)

Figure 4.6: Diagrams contributing to one-loop QCD correction to qq̄→ 3 γ amplitude.

figure 4.6 shows all the diagrams involved in the one-loop QCD correction.
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Diagrams D1 – D3 and D7 – D8 are IR divergent: D1 and D7 are divergent when k is collinear

to p1 and D2 and D8 are divergent k is collinear to p2, whereas the diagram D3 is divergent in

both cases and also has a soft divergence.

Despite the fact that the integrated amplitude is UV finite, the local behaviour of the integrand

in the UV region needs to be regulated. This can be done by writing the corresponding

counterterms for all UV divergent integrals, specifically D4 – D8.

In order to ensure that the cancellation occurring across diagrams at the integrated level are

also reflected at the local integrand level for the whole amplitude, one must carefully choose

the the loop momentum routing of each diagram so as to localise cancelling divergences in the

same region of momentum space. The case at hand is quite easy in that regard, as one can

choose the gluon line to have momentum k with momentum flow against the fermionic line for

all the diagrams.

figure 4.6 shows the different behaviours when approaching the soft, collinear, and UV limits.

The different limits are approached by rescaling the loop momentum k by a factor δ for the soft

and UV limit, while for the collinear limit we use the Sudakov parametrisation of eq. (4.28)

with y and k⊥ rescaled by δ and
√

δ respectively. The different asymptotic scaling δ1, δ
1
2 and

δ−1, prove that the divergences are properly subtracted.

Despite the use of quadruple precision (f128) to rescue some unstable evaluation of the UV

region, we see that the cancellations between dual integrands are broken around δ > 108 due

to numerical instabilities. In figure 4.8 we show how these instabilities spoil the final result

in the case of double precision (f64) with and without the use of the approximating function

discussed in section 4.3.2. In the latter case it is possible to push the instability in the far UV

and reproduce the behaviour of the quadruple precision evaluation. Where the transition

between the approximated function and the all-order amplitude expression occurs, one has has

to ensure that the deformation goes to zero, since this region is not analytic. In both figure 4.7

and figure 4.8 the rescaled loop momentum is taken to be real and of the same order as s12.

4.3.3 Divergent one-loop four- and five-point scalar integrals

We apply the subtraction scheme presented in section 4.3 to one-loop four- and five-point

functions with massless propagators. For a randomly selected phase-space configuration, we go

through all combinations of setting external momenta on-shell. For both the box and pentagon

kinematics, we set s12 = 1. For the box topology, when one of the external momenta is massive,

we set m2
1 = 1

4 , m2
2 = 1

8 , m2
3 = 2

9 , m2
4 = 1

9 , respectively. For the pentagon topology, the masses

are set to m1 = 0.10, m2 = 0.11, m3 = 0.12, m4 = 0.13, m5 = 0.14. The results for these different
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Figure 4.7: Behaviour of the qq̄→ 3γ in the different regulated limits. When the various limits are
approached linearly in δ the plots (a–b) show a scaling as δ

1
2 whereas (c) goes like δ1 and

(d) as δ−1.
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Figure 4.8: Behaviour of numerical instability in the UV due to imprecise cancellations between large
numbers from each each dual integrand. The loop momentum k is rescaled by a factor δ
and the real and imaginary part of the amplitude are presented with different precision
(double and quadruple) and by expanding the expression around the UV limit as an
approximation (see section 4.3.2).
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(b) Divergent pentagon topology.

Figure 4.9: Results for the computation of divergent four- and five-point scalar one-loop integrals.
We show the real and imaginary part of the expression integrated with LTD, compared
with the analytic expression computed with MadLoop5 [198, 199](ML5) and qcdloop [200].
The (nominal) horizontal axis shows different phase-space configurations using a binary
notation, where a 1 (resp. 0) in the ith position signifies that the ith external momentum
is on-shell with p2

i = 0 (resp. off-shell, that is with p2
i 6= 0). All but one of the central

values are within 0.005% of the analytical result. The outlier with configuration 1111 lies
within 0.024% of the analytical result and has a relative standard error of 0.036%.
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configurations are shown in figure 4.9, where the particular combination of masses for the

external momenta is labelled by a binary number with the convention that a 1 in the i-th

position means that the i-th external momentum is massless. We use the Cuhre integrator from

Cuba package [187] with 200 million sample points. The time for each evaluation is independent

of the mass configuration and is similar with the one presented in table C.1.

Both the four-point (“box”) and five-point (“pentagon”) function can be integrated with high

accuracy and precision: all but one of the central values are within a 0.005% of the analytical

result. Only the imaginary part of the box topology with all the external momenta on-shell has

a large uncertainty. The reason is that the central value of this integral is ten times smaller than

for the other box configurations. However, even this point lies within 0.024% of the analytical

result and has a relative standard error of 0.036%.

The analytic expression of the box integral and the triangle integrals required to construct

the analytical expression for the counterterms have been computed using qcdloop [200]. The

pentagon integral has been obtained using MadLoop5 [198, 199] (ML5 henceforth).

4.3.4 One-loop amplitude for qq̄→ γ1γ2 and qq̄→ γ1γ2γ3

In this section we present the results from the integration of the amplitudes dd̄ to two and

three photons. For simplicity, we kept the order of the final photons fixed; the actual result for

the amplitude can then be recovered by permuting through the final-state photon momenta.

The helicities are defined following the HELAS convention [201], and are taken positive for all

the external particles. The evaluation of the numerator, involving contractions of Lorentz and

spinor indices, is performed numerically at run-time. This is not an efficient way to perform

the numerator algebra, but the aim of this work is to highlight how LTD can be used to obtain

results for physical and divergent expressions.

The analytic expressions have been compared with ML5 with gs = 1.21771, g = 0.30795 and

µr = 91.1880 as couplings. We also remind the reader that the results from ML5 are rescaled by

an overall factor (4π)ε/Γ(1− ε).

For the dd̄ → γ1γ2 process, we consider the process in its centre-of-mass rest frame, with

the quarks aligned along the z-axis. The result will only depend on the scattering energy and

angle. The former is kept fixed and corresponds to a simple rescaling of the integral and the

latter is varied in a scan and plotted in figure 4.10. We used the Cuhre integrator from Cuba

package [187] with two million evaluations. In the last plot of figure 4.10 we notice that the

result is almost completely determined by the integrated counterterms. This is especially true
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Figure 4.10: A scan of our results using numerical LTD for the dd̄ → γγ amplitude for various
scattering angle θ13. In figure (a-b) we can see the results computed with LTD compared
with the analytic expression obtained with MadLoop5 [198, 199] (ML5). In the last plot
we show the result of the integral of the the finite regulated integrand that we actually
integrate numerically. This corresponds to subtracting the integrated counterterms to
the exact analytic result for the amplitude.
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for the real part, where one can see that resulting regulated integral is six orders of magnitude

smaller than the finite part of the analytic expression.

As for the case of scalar divergent integrals, we use the Cuhre integrator with however only

2 million sample points in this case. Despite this relatively low statistics, a large fraction of the

results already have relative error below 0.05%. In the upper plot of figure 4.10 we show the

relative deviation with a large scale in order to highlight the few points that are not within

this small error. One important observation however is that the Monte-Carlo error reported

is reliable, as highlighted by the fact that all discrepancies are smaller than one (in modulus)

when expressed in unit of the Monte-Calo standard deviation σ.

In figure 4.11 we show a scan of dd̄ → γ1γ2γ3. In the same way as for the two-photon

production case, we consider the scattering in the centre-of-mass rest frame. This time

however, the number of unspecified and non-trivial degrees of freedom is four so that keeping

a fixed energy s12 = 1 leaves us with three parameters. For the kinematic configuration

d(p1)d̄(p2) → γ1(p3)γ2(p4)γ3(p5), we choose to scan in the angle θ13 = ∠(p1, p3), and s45

which gives an indication of how collinear the momenta p4 and p5 are. We fix the remaining

degree of freedom by forcing the process on a plane, which allows for the configuration where

p4 is collinear to p1, thus resulting in the valley shown in plots (a – b) of figure 4.11. For

dd̄→ γ1γ2γ3, we observe that the relative contribution from the integrated counterterms is not

as large as for dd̄→ γ1γ2, because this five-point amplitude has more contributions that are

IR-finite (specifically D4-6 from figure 4.6) and therefore not captured by the counterterms.

We can see that the relative error is < 1% for most of the points in the scan as shown in the

upper plane of plot (e–f) from figure 4.11). In the lower part of the same plots, the precision of

the result with an error that is also < 1% for most of the points. Along the valley, the relative

accuracy is not as good as in the other regions, which is to be expected when the central

value of the integrated expression becomes smaller that the values around it. Similarly as

to elsewhere in this subsection, the results were obtained using the Cuhre integrator and 2

million sample points. The low number of samples is due to two mainly two reasons: first, we

used a naive implementation of the numerator containing spinor chains that are recomputed

numerically for each evaluation and second, despite the measure taken for improving the UV

behaviour of the integrand, probing that region still requires many evaluations in quadruple

precision thus increasing the overall evaluation time by roughly one order of magnitude when

compared to the corresponding scalar topologies.

In the present work, we put no effort in optimising the numerator expression which we leave

to future work. The main objective of these results is to demonstrate the viability of computing

physical amplitudes with numerical LTD by combining the contour deformation together

with the necessary infrared and ultraviolet counterterms. Optimising the implementation of
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the numerator will allow us to handle more complicated amplitudes and to consider higher

integration statistics.

4.4 conclusion

We have established a contour deformation for regulating the threshold singularities exhibited

by loop integrals when considering physical scattering kinematics. In accordance with our long-

term goals, we built a solution that is prone to automation and made no compromise regarding

the generality of numerical LTD: availability of computational resources should remain the only

limiting factor. Moreover, we insisted that the validity of the contour deformation should be

independent of the particular values of its hyperparameters, thus guaranteeing the predictive

power of numerical LTD. We demonstrated that our construction and implementation achieves

these objectives by applying it to over 100 different representative configurations, ranging from

one-loop boxes to four-loop 2x2 fishnets.

We also presented our first step towards computing divergent integrals and physical am-

plitudes. This requires combining the LTD expression with local integrand-level counterterms

regularising divergences occurring for ultraviolet, soft and/or collinear loop momenta configu-

rations. We described this subtraction procedure at one loop and showcase explicit examples

for divergent scalar four- and five-point integrals, as well as for the one-loop amplitude of the

production of two and three photons. This paves the way for a first application of numerical

LTD to the numerical computation of two-loop divergent scalar integrals and of complete two-

loop amplitudes, using the local counterterms introduced in refs. [83, 196]. In the integration

of these amplitudes we encounter numerical instabilities in the UV region, their regulation by

building a manifestly causal LTD expression is the central subject of the next chapter.

In this chapter, we focused on further developing numerical LTD in a way that is provably

correct, general and that demonstrates predictive power. Therefore, we did not tune our

hyperparameters for the hundreds of cases we studied and, although already satisfactory, the

numerical convergence and run-time speed showcased by our results are by no means final.

We leave their improvement to future work.

The ability to locally regulate ultraviolet and infrared singularities at higher loops and

the performance of the numerical convergence are two key difficulties whose resolution will

determine the eventual viability of numerical LTD. Our work shows a clear path for this novel

approach to significantly contribute to the effort of meeting the theoretical accuracy goal set by

the needs of current collider experiments.
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Figure 4.11: A scan for dd̄→ γ1γ2γ3. The results are absolute values plotted on a log scale. The first
row (a – b) shows the real and the imaginary part of the amplitude computed with ML5.
The second row (c – d) shows the relative difference between the analytic expression and
the integrated counterterms. The last row (e – f) shows the LTD integration. They are a
combination of two plots: the surface above shows the relative error of the central value
compared with the analytic expression, the flat surface below shows the Monte Carlo
error for the point right above.
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In the loop-tree duality approach, the four-dimensional integrand is rewritten as a sum of

functions (dual integrands) in the spatial components of the loop momenta, and the singularities

are defined by the roots of their denominator; polynomials in the on-shell energies of the

virtual particles involved in the process together with the energies of the external kinematics.

Such polynomials can be factorised into linear combinations of its variables and the singular

surfaces defined by each of these factors are represented by a (convex) manifold embedded

in the integration space. These manifolds can be divided into two groups, namely H- and

E-surfaces. The H-surfaces are characterised by mixed signs in the linear combination of

energies, whereas the E-surfaces have a common sign.

Previous work on the analysis of the singular structure of LTD expressions [79, 81, 189]

revealed that each of these dual integrands could contain poles defined by both H- and E-

surface, whereas the sum of all the contributions only retains the singularities corresponding

to E-surfaces. The elimination of all the H-surfaces from the final expression is referred to

as dual-cancellation. Each E-surface that satisfies the existence condition and is not pinched,

requires an ad-hoc contour deformation [4], or other means of regulation as e.g. subtraction

of thresholds as in refs. [202] and if it is pinched, requires counterterms [83, 196, 203–207] or

some other local cancellation mechanism subject of ref. [6].

Given the polynomial nature of these H-surface singularities, one can resolve the cancellations

happening among different dual integrands through an algebraic manipulation: one can obtain

a sum of terms which involve only E-surface kind of singularities that is locally equivalent to

the original LTD expression. Such representation was studied previously for selected cases [208–

210], including three- and four-loop scalar topologies. Here we propose a systematic and

algorithmic procedure that yields such a representation for any multi-scale, multi-loop Feynman

diagram with an arbitrary numerator. We refer to this new representation as Manifestly Causal

LTD (cLTD).

The general cLTD representation presented here and introduced in ref. [5] for the first time,

contains a sum of terms which grows exponentially with the number of propagators. However,

these many terms are functions of a limited number of combinations of on-shell energies, thus

125
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offering great potential in optimising their numerical implementation by identifying common

sub-expressions.

The cLTD expression improves numerical stability w.r.t. that of the LTD representation

whenever evaluated in the vicinity of dual-cancelling H-surfaces, which is always the case

in the ultraviolet (UV) region. The UV scaling of each dual integrand of the original LTD

expression is often many orders of magnitude larger than that of the original four-dimensional

representation, and it is only due to dual cancellations that one eventually retrieves the original

scaling of the four-dimensional integrand. Especially for physical theories, dual cancellations

occur across several orders of magnitude due to the presence of a numerator. For example, in

the case of the NLO qq̄→ γγγ amplitude presented in the previous chapter, the cancellation

occurs between diverging terms that scale as k2, down to a scaling of 1/k2. In cLTD, each

summand has directly the same scaling as the four-dimensional counterpart and is, therefore,

more numerically stable in the UV region.

The outline of this chapter is as follows. In section 5.1 we will start by presenting a general

framework for removing spurious divergences which arise from applying residue theorem

to an integral with poles in the integration variable. In section 5.2, we will explain how this

general formula can be applied to physical cases, realising cLTD. Finally, in section 5.3 we

present several examples illustrating the cLTD procedure.

5.1 algebraic cancellation of spurious singularities

We consider the case of a function F defined as the integral over the real line of an integrand

consisting of a general regular functionN in the numerator and a polynomial with n+ n̄ distinct

roots in the denominator. We will now present a general procedure to rewrite F as a function

which is manifestly regular. Within our procedure, we first perform the integral by using

residue theorem. We then re-express the result by iteratively factoring each of its spurious poles.

This yields terms involving divided differences of the numerator N which evaluate to a finite

quantity on the spurious poles, thus establishing that each term of our resulting expression

is regular at these locations. In sect. 5.1.3 we specialise to the case of polynomial numerators

for which the divided differences can be explicitly evaluated algebraically. Finally, we show in

sect. 5.1.2 how our procedure can accommodate higher-order poles in F by regarding them as

the limiting case of coinciding roots of N .



5.1 algebraic cancellation of spurious singularities 127

5.1.1 Generic case

We start by introducing a general function defined as a real integral in z of the ratio of a

numerator and a polynomial in z with roots not lying on the real line

F


x

x̄
;N

 ≡ −1

2πi

∫

R
dz

N (z)
∏n

i=1(z− xi) ∏n̄
i=1(z + x̄i)

, (5.1)

where x ∈ (H∗)n and x̄ ∈ (H∗)n̄, whose components lie in the lower complex half-plane H∗.

As we intend to perform the integral using residue theorem, we assume the numerator N
to be regular such that the integrand is holomorphic on C \ {x, x̄} with vanishing residue at

infinity. We can therefore close the contour arbitrarily on an arc in either the upper or the lower

complex half-plane so as to correctly evaluate eq.(5.1).

If all components of x as well as all components of x̄ are pairwise distinct, the integrand only

has single poles in the complex plane. Otherwise, the integrand exhibits higher-order poles.

Although the treatment of higher-order poles may seem more involved at first, the expressions

in this section are valid in this case as well, and have to be understood as the limit where single

poles merge. The case of coinciding roots is discussed in section 5.1.2.

In order to keep our expressions compact we introduce the shorthand notation for a slice of

a vector y, as

y(i,j) ≡ (yi, . . . , yj), y(i,) ≡ y(i,dim(y)), [y, x1, . . . , xn] ≡ [y1, . . . , ydim(y), x1, . . . , xn], (5.2)

as well as the following two recurring function and functional:

E(xi|ȳ) ≡
1

∏
dim(ȳ)
j=1 (xi + ȳj)

, (5.3)

NF ([y, xi, xj]) ≡
NF ([y, xj])−NF ([y, xi])

xj − xi
, NF ([xi]) ≡ F (xi), (5.4)

for any regular function F and arbitrary vectors y ∈ (H∗)dim(y) and ȳ ∈ (H∗)dim(ȳ). We point

out that the recursion for NF is commonly referred to as the algorithm of divided differences.

Divided differences are symmetric in their arguments, meaning that NF ([y]) is independent of

the order in y. Furthermore, we emphasise that the recursive step in eq.(5.4) does not introduce

a pole if xj = xi but instead translates into a derivative at xi, as we will see in more detail in

section 5.1.2. Note as well that each factor in E(xi|ȳ) with xi ∈ H∗ has a definite imaginary



128 manifestly causal ltd

part, i.e. Im(xi + ȳj) < 0 and therefore cannot be singular.1 Making these observations, we can

already conclude that whereas NF has spurious poles in its arguments, E is already manifestly

free of spurious poles.

We carry on with the calculation of the integral eq.(5.1) by applying the residue theorem,

such that we arrive at

F


x

x̄
;N

 =

n

∑
i=1

NN ([xi])E(xi|x̄)
∏j 6=i(xi − xj)

, (5.5)

which sums the residues located in the lower-half complex plane. If n = 1 we define the empty

product to be one. Of course, the representation of eq.(5.5) as the sum of residues is formally

different but equivalent when closing the contour in the upper complex half-plane. We can

therefore choose a contour closure in the lower complex half-plane, thus allowing us to use the

representation in eqs. (5.5).

The poles at xi = xj are spurious since such limit corresponds to an higher order pole in the

integrand of F in which can still be integrated to a finite expression via the residue theorem. As

derived explicitly in appendix D, this procedure can be summarized in a generic recursive step

F


y

ȳ
;F (z)


 = −NF ([y1])

dim(ȳ)

∑
j=1

E
(

y1|ȳ(j,)

)
F


y(2,)

ȳ(1,j)

; 1


+ F


y(2,)

ȳ
;F ′(z)


 ,

F ′(z) ≡ NF ([y1, z]),

(5.6)

which systematically removes all spurious poles in y1, as each summand in the expression is

manifestly free of denominators (y1 − yj) for 1 < j ≤ dim(y). Of course, such denominators

are still hidden in the divided difference NF ([y1, z]). However, as mentioned before, NF is

regular if F is and therefore does not introduce singularities to F. Also, note that this recursion

holds for dim(y) > 1. Then, one can iterate the recursion for the remaining instances of F

on the right-hand side of eq.(5.6) so as to explicitly and successively remove each spurious

poles in yj. Eventually one arrives at the case dim(y) = 1, the boundary condition, where the

resulting expression for eq.(5.5) is then already manifestly free of spurious poles. Notice as

well that the recursion simplifies whenever the numerator function is constant, since in that

case the divided difference appearing in the last summand in eq.(5.6) vanishes.

1 It can be singular in the limit where the imaginary part vanishes, as in the physical case (see section 5.2, where E
will correspond to a product of E-surfaces), which however does not affect the discussion here.
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We now apply the generic algorithm in eq.(5.6) to the expression in eq. (5.5) and unfold it

into

F


x

x̄
;N

 =

n

∑
i=1

(−1)n+iNN ([x(1,i)]) ∑
~j∈Tn̄

n+1−i

n

∏
k=i

E(xk|x̄(jk ,jk−1)) (5.7)

where we defined,

Tm
k ≡

{
~j ∈Nk

∣∣∣ji+1 ≤ ji ≤ m and jk = 1
}

, (5.8)

with the additional boundary term defined as j0 ≡ n̄. We also used the property that the

function F (z) in (5.6) can itself represent a divided difference with an additional y arguments

referring to the initial uni-variate numerator function N as NN ([y, z]) which will then fulfil,

NF ([y,z])([xi]) = NNN ([y,z])([xi]) = NN ([y, xi]) . (5.9)

We emphasise that the expression in eq.(5.7) is the main result in this section. It is an alternative

representation of eq.(5.5) as well as eq.(5.1). Although eq.(5.5) provides a compact expression as

the sum of residues for the integral representation in eq.(5.1), it features spurious singularities

that render each residue potentially singular. Only in the sum of residues are these singularities

subject to exact cancellations. Our alternative representation in eq.(5.7) is manifestly free

of those spurious singularities, as each individual summand cannot become singular. This

means that eq.(5.7) also does not rely on large cancellations around singularities unlike eq.(5.5).

Although formally more complicated, the representation in eq.(5.7) can be evaluated in a

straight-forward fashion, especially because the divided differences NF are a well-known

mathematical concept.

Furthermore, it is important to note that eq.(5.7) is not the only representation of eq.(5.5)

that is free of spurious singularities. Indeed, a different choice of order in x and x̄ or contour

closure will in general yield a different formal representation of eq.(5.7). We emphasize that

such different functional representations locally evaluate to the same quantity and thus all

possess the property of being explicitly free of spurious singularities.

Despite ambiguities in the representation of eq.(5.7) , the algorithm is symmetric under

the exchange of x ↔ x̄ when picking the opposite contour closure. This implies that if

dim(x) = dim(x̄) the final number of summands in eq.(5.7) is always the same given a

particular numerator N . In general however, the total number of terms varies and depends

on the particular choice of numerator. When considering a constant numerator all but the

first summand in equation (5.7) drop out. Also, for a polynomial F of degree k, the divided
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differences NF ([y]) with dim(y) > k + 1 vanish. The final number of terms generated with a

given numerator function can be computed by noticing that

|Tm
n | =


n + m− 2

m− 1


. (5.10)

For example, if the numerator N is a polynomial of degree k < n the expression in eq.(5.7) has

a total number of

Nterms(n, n̄, k) =
k+1

∑
i=1
|Tn̄

n−i+1| =
1
n̄!

(
(n + n̄− 1)!
(n− 1)!

− (n− k + n̄− 2)!
(n− k− 2)!

)
(5.11)

summands, where setting k = n− 1 establishes an upper bound for an arbitrary numerator N
and yields

maxk [Nterms] (n, n̄) =
(n + n̄− 1)!
n̄!(n− 1)!

. (5.12)

This bound is especially important because it highlights a potential computational challenge

with the representation in eq.(5.7). As we see in eq.(5.11), the total number of terms grows

exponentially in n regardless of the value of k. Regarding computational efficiency, this is an

evident drawback of eq.(5.7) when comparing to the representation in eq.(5.5), which only has

n summands. On the other hand, we will demonstrate for polynomial numerators that eq.(5.7)

is numerically much better behaved than eq.(5.5) and that the numerical implementation of the

many summands can be drastically optimised by identifying common sub-expressions so that

it can be made competitive for physical applications.

5.1.2 Degenerate case

As we have already touched upon in the previous section, the integrand as defined in eq.(5.1)

exhibits higher-order poles if the components of x or x̄ are not pairwise distinct but two or

more components are equal. This raises the question of whether the computation of the integral

in eq.(5.5) can still be correct in this case, since it is given by a sum of single pole residues. As

we will see in this section, the case of higher-order poles, the degenerate case, does not require

special treatment but can be understood as the limit in which multiple single poles merge. This

means that equations in the previous section 5.1 are still valid when considered in this limit.

Although the limit is not straight-forward to apply to the sum of residues in eq.(5.5), it can

easily be computed in the final expression in eq.(5.7). We will now explicitly evaluate the limit
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of the degenerate case and show that the result is the same as if residues of higher-order poles

were used directly to compute the integral in eq.(5.1).

We start by computing the divided difference in eq.(5.4) in the case where r of its arguments

are equal. Since divided differences are symmetric in their arguments, we can arrange them

such that the equal components are last. It follows from the mean value theorem that the

degenerate divided difference evaluates to

NN ([x, y, . . . , y︸ ︷︷ ︸
r−times

]) =
1

(r− 1)!
dr−1

dyr−1 NN ([x, y]), (5.13)

the (r− 1)th derivative of the divided difference without degenerate arguments. In the special

case where all of the n single poles merge into one pole located at x of order n, eq.(5.7) becomes

F


x · 1

x̄
;N

 =

1
(n− 1)!

n−1

∑
r=0


n− 1

r



[

drN (x)
dxr

] [
dn−1−r

dxn−1−r E (x|x̄)
]

=
1

(n− 1)!
dn−1

dxn−1

[
N (x) E (x|x̄)

]
,

(5.14)

where we used Leibniz’s rule and

∑
~j∈Tn̄

m

m

∏
k=1

E
(

x
∣∣∣x̄(jk ,jk−1)

)
=

(−1)m−1

(m− 1)!
dm−1

dxm−1 E (x|x̄) , (5.15)

which follows from eq.(5.7) when one considers all xj to be equal, which allows to identify the

overlaps of denominators in the product of E-functions as raised powers induced by the action

of the derivative on x.

Notice that eq.(5.14) shows that the integral commutes with the limit so that we can treat

the degenerate case with higher-order poles in the same fashion as the non-degenerate one

with single poles only. This however raises a question regarding numerical evaluation in the

degenerate limit. In general, one then still expects to rely on the computation of derivatives,

unless the numerator is a polynomial as we will now demonstrate.

5.1.3 Manifest cancellations for polynomial numerators

For most physical applications of our procedure, the numerator N will be a polynomial. For

example, Feynman integrals that arise from gauge theories such as the the Standard Model

are analogous to F and have a non-trivial polynomial numerator N . More specifically, as we
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will see in section 5.2, the numerator of a Feynman integral will translate into a polynomial

numerator in the loop energy variables, as in eq.(5.1), while the variables x will correspond to

on-shell energies.

As discussed in the previous section 5.1.2, the divided differences defined in eq.(5.4) are

not singular for degenerate arguments as they correspond to a derivative in this limit. This

however means that a naive evaluation at xj = xi of the divided difference in eq.(5.4) is not

possible without computing the derivative. Furtheremore, an evaluation even close to the

degenerate case, i.e. close to xj = xi is numerically unstable, such that the expression eq.(5.4) is

in general computationally not very useful. We will now demonstrate that this does not pose

an issue whenever we deal with polynomial numerators, as we can evaluate divided differences

algebraically. More explicitly, if the numerator N is a polynomial of finite degree with

coefficients αi, we can always explicitly cancel the potentially singular denominator (xj − xi)

from eq.(5.4) and rewrite the divided differences as polynomials of smaller degree, depending

on the same coefficients αi. This implies that in practice, using the following manipulations for

polynomial numerators, the treatment of the degenerate as well as the non-degenerate case

is identical. In the application to loop integrals this means that raised propagators as well as

intersections of singular surfaces do not require special attention regarding the derivation of

the cLTD expression.

We start by writing a generic polynomial numerator of degree r as

N (x) =
r

∑
i=0

αixi .

Making use of the geometric sequence one can rearrange the differences appearing in the

numerator function in such a way that factorizes the spurious singularity,

(xn
1 − xn

2 ) = (x1 − x2)
n−1

∑
k=0

xn−k−1
1 xk

2 . (5.16)

Removing all the explicit cancellations in the recursive definition in eq.(5.4), we can express the

divided difference NN ([x]) directly as

NN ([x1, . . . , xn]) =
r−(n−1)

∑
s=0

α
(1,..,n−1)
s xs

n , (5.17)

where

α
(1,..,m)
s =

r−(m−1)

∑
k=s+1

α
(1,..,m−1)
k xk−s−1

m , α
(1)
s =

r

∑
k=s+1

αkxk−s−1
1 . (5.18)
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The iteration presented above can be completely unfolded to yield

NN ([x1, ..., xn]) =
r

∑
i0=0

i0

∑
i1=1

i0−i1

∑
i2=1

. . .
i0−∑n−1

m=1 im

∑
in=1

αi0 xi0−∑n
m=1 im

n

n−1

∏
m=1

xim−1
m

On a side note, another interesting property of a divided difference of polynomials is its

correspondence to the quotient Q in Euclid’s division theorem N (x1) = Q(x1)(x1 − x2) +R,

which allows to identify R = N (x2) and therefore Q(x2) = NN ([x1, x2]).

In general the numerator may not be a polynomial, for example if one applies the partial

fractioning procedure to manifestly remove infrared singularities in cross-sections, in which

case the numerator can include an observable function, as in ref. [6]. If the numerator function

is not a polynomial, the explicit cancellation of factors cannot be carried out explicitly and the

divided differences will be subject to the same numerical instabilities as the original expression

in eq.(5.5). One can nevertheless cure those cases locally by performing a Taylor expansion

around such points to analytically remove such instabilities with arbitrary precision. However,

the degenerate case of raised propagators can also be treated globally by computing derivatives,

as we showed in section 5.1.2.

5.2 manifestly causal ltd

In this section we present an alternative to the multi-loop LTD expression presented in refs. [80,

81], which is manifestly free of spurious singularities (denoted as H-surfaces in ref. [81] or

non-causal threshold singularities in refs. [209, 210]). The procedure outlined in this section

will explicitly perform cancellations of spurious singularities (known as dual cancellations [79]),

such that the expression does not contain any H-surfaces but only contains causal threshold

singularities, known as E-surfaces [81].

The extension to the multi-loop case uses the procedure laid out in sect. 5.1 for the integration

over one loop energy. Then, both this integration step and the extraction of spurious poles

can be repeated for the integrals over each of the remaining loop energies. We formally write

this iterative procedure by showing how the individual terms generated at each step satisfy

the necessary requirements for the identity of eq. (5.7) to apply again. Although the formal

derivation of the iterative procedure may seem involved, the algorithm can be expressed in a

short python code that was provided in the ancillary files of ref. [5].
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5.2.1 Multi-loop derivation

We consider an L-loop integrand with P propagators and perform j loop energy integrations,

as in

Ij =

(
j

∏
i=1

1
2πi

∫
dk0

i

)
N (k0

1, . . . , k0
L)

∏P
i=1 Di

, (5.19)

which, for j = L corresponds to same analytically performed integration when deriving the

multi-loop LTD expression as in ref. [81]. We define the numerator N as a regular function in

the loop energies, such that the integrand has a vanishing residue at infinity, and the Feynman

propagator as

1
Di

=
1

(`i + pi)2 −m2
i + iδ

=
1

2Ei

(
1

`0
i + p0

i − Ei
− 1

`0
i + p0

i + Ei

)

=
1

2Ei

(〈
−êi

∣∣∣êi

∣∣∣~λi

〉
−
〈

êi

∣∣∣êi

∣∣∣~λi

〉)
=

1
2Ei

∑
σi∈{−1,1}

σi

〈
−σi êi

∣∣∣êi

∣∣∣~λi

〉
,

(5.20)

where we introduced the loop line momentum `i = ∑L
j=1 λijk j, λij ≡ (~λi)j as a linear combina-

tion of the loop integration momenta, the shift of the propagator pi as a linear combination

of the external momenta, the mass mi and the canonical basis vector êi, i.e. (êi)j = δij. The

on-shell energy Ei =
√
(~li + ~pi)2 + m2

i − iδ satisfies Im Ei < 0 since the causal prescription

satisfies δ > 0. Furthermore, we introduced the generic linear propagator i with the notation

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉
≡ 1(

~λi ·~k0 +~vE
i · ~E +~vS

i · ~p0

) , ~k0 =




k0
1
...

k0
L


, ~p0 =




p0
1
...

p0
P


, ~E =




E1
...

EP


,

where ~vE
i ∈ RP and ~vS

i ∈ RP define the linear combination of on-shell energies and shifts of

propagators, respectively. The vector~λi ∈ RL encodes the flow of the loop energies, introduced

in the previous chapter as the signature of the propagator. Note that the linear combination

~vS
i · ~p0 has a unique representation if expressed in terms of external momenta, as they define a

basis of propagator shifts. Furthermore, we point out that a linear propagator i whose non-zero

components of ~vE
i are all equal corresponds to an E-surface. Otherwise it is an H-surface.

The product of Feynman propagators in eq.(5.19) can then be rewritten in terms of linear

propagators as
1

∏P
i=1 Di

=

(
P

∏
i=1

1
2Ei

)
∑

~σ∈{−1,1}P

P

∏
i=1

σi

〈
−σi êi

∣∣∣êi

∣∣∣~λi

〉
, (5.21)
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such that inserting this relation in eq.(5.19) yields an integral over a sum of terms, each

containing a product of P linear propagators. In the next section we will see that each of those

summands can be identified with a function F as in eq.(5.5) and show that this will eventually

allow us to iteratively perform one integration after the other following the partial fractioning

procedure in section 5.1, effectively solving it loop-by-loop. The final expression after carrying

out this procedure is free of spurious H-surface singularities and only contains E-surfaces.

5.2.2 Loop-by-loop iteration

In order to apply the partial fractioning procedure of section 5.1 in an iterative fashion, we

have to identify the linear propagators appearing at each stage of the integration with those of

eq.(5.1). We will characterise each iteration by a single integral over a loop energy and perform

one loop energy integral after the other. Therefore, it is necessary to pick an (arbitrary) order

k0
1, . . . , k0

L, with their respective integration contours with winding numbers Γj, j ∈ {1, . . . , L}.
Evidently, the integral will be independent of the choice of integration order, as well as the

contour closure. Note however that the representation of the result, including the number of

summands, will depend on those choices. Furthermore, the representation of the result will

also be affected by the order in which the recursion of eq.(5.6) is applied to cancel the spurious

singularities explicitly. On top of this, there is a freedom of changing the loop momentum

routing through the loop diagram. This is of particular interest since it effects the number

of terms generated in this recursion and can therefore be used to reduce the size of the final

expression.

induction hypothesis In order to make the identification clear with the procedure

given in sect. 5.1, we will provide a systematic iteration step. This iteration will eventually

allow us to write the cLTD expression. We set out our induction hypothesis to be the following:

After explicitly performing (j− 1) loop energy integrations, Ij can be expressed as a sum of

integrals over k0
j of the form

Ij =

(
P

∏
i=1

1
2Ei

)
∑

~h∈Ωj

Ij~h, Ij~h =
−1
2πi

∫

R
dk0

jF~h(k0
j ) ∏

i∈Sj~h

〈
~vE
~hi

∣∣∣~vS
~hi

∣∣∣~λ~hi

〉
. (5.22)

where Ωj is a set of indices and Sj~h ⊆ {1, . . . , P}. Ij~h is the one-dimensional integral of a

product between a regular function F in k0
j and |Sj~h| linear propagators, whose argument

~vE
~hi

is such that all of its non-zero components have the same sign. In other words, all linear

propagators are E-surfaces. Since H-surfaces are defined as linear propagators whose energy
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vectors do not have a consistent sign across their components, this induction will effectively

allow to construct an iterative procedure yielding a representation of multi-loop amplitudes

that is manifestly free of spurious H-surface singularities. In the following, we will perform

the integration for Ij~h and suppress the index~h for simplicity.

If this assumption holds true, we can identify Ij in eq. (5.22) with the starting expression

F in eq. (5.1) in the partial fractioning procedure in sect. 5.1. To now make this identification

explicit, we first have to split the product of the |Sj| linear propagators into three factors,

∏
i∈Sj

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉
=


∏

i∈S0
j

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉



∏

i∈S+
j

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉



∏

i∈S−j

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉

 ,

characterised by the disjoint sets defined as

S0
j ≡

{
i ∈ Sj

∣∣∣∣ λij = 0
}

, (5.23)

S±j ≡
{

i ∈ Sj

∣∣∣∣ λij 6= 0 and ± Γj

λij
~vE

i ≥~0
}

, (5.24)

which is sufficient as a characterisation of all possible factors due to our induction hypothesis

requiring that the non-zero components of ~vE
i all have the same sign. Indeed, because of the

induction hypothesis it follows that Sj = S+
j ∪ S−j ∪ S0

j . Notice that the linear propagators in S0
j

are constant in k0
j and therefore they are to be treated as simple prefactors of the whole partial

fractioning procedure. Each linear propagator i ∈ S±j however, has a single pole at k0
j = k0

ji,

where

k0
ji ≡ k0

j −
1

λij

(
~λi ·~k0 +~vE

i · ~E +~vS
i · ~p0

)
= − 1

λij




L

∑
r=1
r 6=j

λirkr +~vE
i · ~E +~vS

i · ~p0


 (5.25)

lies either in the lower or the upper complex half-plane. Note that k0
ji is independent of k0

j

since the first term cancels against the k0
j dependency of the first scalar product inside the

parenthesis. Since the causal prescription δ > 0 implies that Im Ei < 0 for all on-shell energies

i ∈ {1, . . . , P} and since we assume that ~vE
i have consistent signs, it follows that Im k0

ji has a

definite sign that fixes its location on either the lower or the upper complex-half plane, for all

possible values of spatial loop momenta. This effectively makes for the absence of residues

that are sometimes in and sometimes out of the integration contour, which appeared in the

derivation of our original work [81], although they dropped out in the final expression.
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We therefore conclude that S+
j and S−j enumerate the linear propagators with poles in k0

j

lying inside and outside the contour, respectively. Each linear propagator i ∈ S±j can now be

written as

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉
=

1
λij

1
k0

j − k0
ji

. (5.26)

We now explicitly express our induction hypothesis in eq. (5.22) as the expression in eq. (5.1).

According to eq. (5.26), we identify

z ≡ k0
j , x ≡ k0

j =
(

k0
ji

)
i∈S+

j

, x̄ ≡ k̄0
j =

(
−k0

ji

)
i∈S−j

, (5.27)

Ij =

(
∏

i∈S+
j

1
λij

)(
∏

i∈S−j

1
λij

)(
∏
i∈S0

j

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉)
F


x

x̄
;F

 . (5.28)

where the notation (xi)i∈S denotes a vector of components whose index runs over the (integer)

elements of S sorted in ascending order. Now that we have seen that the induction hypothesis

takes the exact same form as the starting expression in eq. (5.1), we are finally ready to carry

out the partial fractioning procedure laid out in sect. 5.1.

To prove the assumption we will first show that it is satisfied for the base case j = 1. Then

we show that performing both the integration over k0
j and as the partial fractioning procedure

for Ij implies that Ij+1 satisfies the induction hypothesis in eq. (5.22).

base case First we show that the assumption holds for the base case, where j = 1. We

consider the expression in eq. (5.19). Notice that the very first integral over k0
1 in eq. (5.19)

together with the decomposition into linear propagators in eq. (5.21) is a sum of terms, each a

product of a regular numerator,

F =

(
P

∏
i=1

σi

)
N (5.29)

as well as P linear propagators. Furthermore, Ω1 = {±1}P. To prove that the hypothesis

in eq. (5.22) is indeed satisfied for each of those summands, we have to show that all the

non-zero components of ~vE
i have the same sign for each linear propagator i. For j = 1 the linear

propagators are given as in eq. (5.20) and all satisfy ~vE
i = −σi êi. Thus, all components of ~vE

i are

zero except for its ith component, which proves our hypothesis for j = 1.

inductive step To prove the hypothesis for j > 1, we assume that it holds true for j and

show that it holds true for j + 1. Thanks to the identifications in eq. (5.28) we can directly apply



138 manifestly causal ltd

the partial fractioning procedure outlined in sect. 5.1. We can now express eq. (5.7) again in

linear propagators. To achieve this, we have to introduce some more notation.

We define ~w± ∈ N
|S±j | and ~w0 ∈ N

|S0
j | to be the vectors collecting the elements of S±j and

S0
j respectively as entries in an ascending order. That is, ~w± = (i)i∈S±j

and ~w0 = (i)i∈S0
j
. For

simplicity, we write s = |S+
j | and s̄ = |S−j |. Then

Ij =
s

∑
i=1

∑
~m∈T s̄

s−i+1

Jji~m (5.30)

with

Jji~m =
(−1)i−1NF ([k

(1,i)
j ])

∏i∈S+
j

λij ∏i∈S−j
λij




s−i+1

∏
k=1

mk−1

∏
l=mk

λw−l j

〈
~vE

w−l

∣∣∣~vS
w−l

∣∣∣~λw−l

〉 ∣∣∣
k0

j =k0
jw+

k


 ∏

i∈S0
j

〈
~vE

i

∣∣∣~vS
i

∣∣∣~λi

〉
(5.31)

and k(1,i)
j = ((k0

j )1, . . . , (k0
j )i) the analogue of x(1,i). For an arbitrary linear propagator with

index r, the evaluation at k0
j = k0

ji induces the transformation

〈
~vE′

r

∣∣∣~vS′
r

∣∣∣~λ′r
〉
≡
〈
~vE

r

∣∣∣~vS
r

∣∣∣~λr

〉∣∣∣
k0

j =k0
ji

=

〈
~vE

r −
λrj

λij
~vE

i

∣∣∣∣~vS
r −

λrj

λij
~vS

i

∣∣∣∣~λr −
λrj

λij
~λi

〉
, (5.32)

which is trivial if λrj = 0. For each linear propagator on the right-hand side of eq. (5.31), since

w−l ∈ S−j and w+
k ∈ S+

j , it therefore follows that its energy vector ~vE′
i has non-zero entries

that have a consistent sign between them. Since the linear propagator transforms into another

linear propagator with different coefficients, we conclude that it is a sum of terms just like the

starting expression in eq. (5.22) with k0
j → k0

j+1 for j < N replaced. This implies that the final

expression IL involves denominators featuring at most L + 1 on-shell energies. In summary,

re-instating the~h index, we can thus see that Ij+1 can be written as a sum of integrals

Ij+1 =

(
P

∏
i=1

1
2Ei

)
∑

~h∈Ωj+1

Ij+1~h, (5.33)

where Ωj+1 can be written in terms of Ωj as

Ωj+1 =

{
(~h, ~m, i)

∣∣∣∣~h ∈ Ωj, ~m ∈ T s̄
s−i+1, i = 1, . . . , s, s = |S+

j~h
|, s̄ = |S−

j~h
|
}

. (5.34)

The inductive step together with the base case prove the induction hypothesis.
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Finally, by construction, Ij+1 depend on one less loop energy variable with respect to

Ij. Ultimately IL no longer depends on any loop integration energies, which terminates the

recursion. After the final iteration, IL will still be expressed as a sum of terms in the form

of eq. (5.31), where each linear propagator has a definite imaginary part, determined by the

causal prescription δ > 0 alone. These linear propagators define precisely the causal threshold

singularities, i.e. the E-surfaces of the LTD integrand. As each term in the final expression is

free of non-causal singularities, i.e. H-surfaces, we have hereby proven that those spurious

singularities are indeed absent in the multi-loop LTD integrand.

5.2.3 Comparison of the cLTD and LTD representations

Despite the different functional forms of LTD and cLTD, all numerical tests up to six-loop

Feynman integrals have shown that this cLTD expression corresponds to the one previously

conjectured in ref. [81]. This equivalence holds locally at any value of spatial integration

momenta. The singular thresholds one needs the deform around are therefore the same by

construction in both expressions. The cLTD therefore serves as a proof of the hypothesis posed

in ref. [4] regarding dual cancellations. However, it does not offer an alternative algorithm for

deriving the cut structures appearing in the LTD expression.

Because the original LTD expression in ref. [81] suffers from dual cancellations, each of its

dual integrands [79] cannot be integrated individually. In contrast, each summand building

the cLTD expression can be integrated separately with a dedicated contour deformation and

importance sampling.

The main practical advantage of the cLTD expression regards its numerical stability in the

vicinity of H-surfaces. In the UV region, one is always close to an H-surface, as reflected

by a worsened UV scaling of the LTD expression compared to original the four-dimensional

integrand. More specifically, the superficial degree of UV divergence of each dual integrand

is λ3−P for a one-loop scalar integral with a constant numerator and P loop propagators,

whereas that of the original four-dimensional integrand is λ4−2P. Especially for physical

theories, dual cancellations in the LTD expression occur across several orders of magnitude.

For example, in the case of the NLO qq̄→ γγγ amplitude (see section 4.3.2), the cancellation is

between diverging terms in k2 across four orders of magnitude, down to a scaling of 1/k2 of

the summand. As a consequence, an approximate stabilisation procedure based on a Taylor

expansion in the UV region was introduced to cope with such numerical instabilities. In

contrast, each summand of the cLTD expression directly reproduces the UV behaviour of the

original Feynman integral and thus renders such approximate stabilisation unnecessary.
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5.2.4 Numerical stability

One main benefit from the cLTD expression is its improved numerical stability. In this section

we explore this statement by considering the two scalar integrals depicted figure 5.1. Our

selection is motivated by the fact that together these two integrals explore the numerical

stability obtained in terms of the three relevant complexity parameters: the loop count, the

multiplicity of external momenta and the rank of the polynomial numerator.

In order to probe the numerical stability in different relevant kinematic regions and be

definite, we fixed the external real four-momenta components to randomly chosen quantities of

order O(1) and probe the LTD and cLTD integrands along a particular one-dimensional section

of the spatial loop momenta phase-space defined by~ki = λ~ci with a variable λ spawning both

the IR (small λ) and UV (large λ) regions. The defining direction ~ci are chosen with random

real-valued components of order O(1). The numerical instabilities are correlated with the

proximity of the sampling point to H-surfaces which are not isotropically distributed so that

we expect quantitative differences when varying the choice of the directions ~ci. In practice

however, we tested several directions and found a similar qualitative behaviour of the stability

for all of them. Moreover, results from direct integration (which explores the phase-space

much more democratically) corroborate our findings presented in this section. To facilitate the

rendering of the results of both the IR and UV regions we choose to normalise the integrand

(which does not include any jacobian) by multiplying it with the factor (1 + λαUV) λαIR
1+λαIR , with

αUV and αIR chosen so as to obtain a constant asymptotic behaviour in both limits.

The first plots in figure 5.1 shows the results for the 2x2 4-loop fishnet topology with

a constant numerator set to one. We find that the double-precision result from the LTD

representation (LTD_f64) reaching the asymptotic flat behaviour (which loosely speaking

coincides with a region of lesser interest as the integrals are UV finite). This demonstrates that

for such integrals, a numerical implementation in double-precision only is inapplicable, as the

truncation of the UV region that would be necessary in this case would cause a non-negligible

approximation error in the result of the Monte-Carlo integration. We notice small spikes in the

numerical stability pattern of the LTD_f64 evaluation which we attribute to accrued proximity

to dual canceling H-surfaces for such values of λ. When considering an implementation of the

LTD expression using quadruple precision arithmetic (LTD_f128), the occurrence of numerical

instabilities is delayed by about four order in magnitude in λ but remain as severe as for

LTD_f64. Instead, we see that the cLTD representation completely removes the need for such

regularisation procedure as it offers unconditional numerical stability over the entirety of the

UV range. We remind the reader that the flooring at 10−15 of the relative accuracy of cLTD_f128

w.r.t cLTD_f64 is due to the fact the double-precision floating point representation only includes
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about 17 significant digits. In the IR region and for the integral for the fishnet we find all

representations and implementations to be numerically stable.

We now turn to the discussion of the results shown in the second plot of fig. 5.1, where we

consider the case of a 2-loop 6-point integrals with a rank-2 numerator which is arguably more

relevant to collider phenomenology. Indeed, physics applications often involve a lower loop

count than that of the 2x2-fishnet but include IR subtraction/cancellation patterns, complex-

valued loop kinematics and complicated numerators. The rank-2 numerator (k1 + k2) · p1 + k1 ·
k2 chosen for the integral for the second integrand worsens its UV behaviour and is a first step

towards exploring the benefits of the cLTD expression in the presence of such complications. In

the UV region, we found the same qualitative behaviour as for the 4-loop integral, except that

the numerical stability of the LTD_f128 implementation breaks down two orders of magnitude

earlier. In the IR region however, we observe a degradation of the numerical stability of the

cLTD_f64 implementation compared to that of its LTD counterparts. It is harder to pin-point

the origin of this feature, but it is important to note that this numerical stability breakdown is

far less severe than that of the LTD representation in the UV region and that the cLTD_f128

implementation remains stable throughout the entire λ-range and can thus be considered to be

a reliable ground truth.

5.3 examples

In the following section we will showcase a variety of example Feynman diagrams whose

cLTD representation is computed explicitly. We will vary the number of loops, the number of

external momenta and the rank of the numerator.

In order to write out explicitly the cLTD representations, we unfold the one-loop procedure

discussed in section 5.1 and the multi-loop procedure of section 5.2.2, while also extending the

notion of divided differences to multi-loop integrands. In doing so, we will illustrate the main

features and delicate issues that arise in the derivation of the cLTD expression.

We will consider three simple examples:

(1) In section 5.3.1 we illustrate how physical numerators are treated in the framework

we laid out in sections 5.1 and 5.2 with a photon one-loop self-energy diagram. This

also showcases how divided differences can be computed explicitly for polynomial

numerators.

(2) In section 5.3.2 we investigate a box diagram that highlights the intricate way in which

the number of propagators per loop line affects the structure of the linear propagators

and divided differences. Furthermore, using the same box diagram, we will consider
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Figure 5.1: Study of the numerical stability of two different functional forms of the Loop-Tree Duality
integrand representation of ref. [4] (LTD) and the new manifestly causal one introduced
here (cLTD). Each representation is compared using double-precision arithmetic (f64) and
quadruple-precision arithmetic (f128). The top plot refers to the 2x2-fishnet diagram, a
4-loop topology with four external legs and the bottom corresponds to a 2-loop 6-point
topology (epta-triangle).
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the degenerate case of a tadpole diagram with a propagator raised to the fourth power,

corresponding to the UV limit of the box itself, whose cLTD representation is obtained

directly as a limit of the non degenerate case.

(3) In section 5.3.3 we address the application of the partial fractioning procedure beyond

one loop by giving explicit examples for the two-loop sunrise diagram.

In ref. [5] we will provide a Python code in the ancillary material of the ArXiv submission,

which provides the cLTD expression for any Feynman diagram with an arbitrary external

multiplicity, loop count, and numerator.

5.3.1 One-loop photon self-energy

This first example investigates the one-loop photon self-energy:

p

k

Despite its simplicity, this case already highlights the subtleties arising when considering a

non-trivial, physical numerator. It is also the simplest setup in which it is possible to see the

basic pattern of dual cancellation as it always involves terms cancelling pairwise.

The energy integration of the one-loop vacuum polarisation diagram is given by

Π = −
∫

dk0 εµ(p, λ) tr((−ieγν)i(/k + m)(−ieγµ)i(/k − /p + m))ε∗ν(p, λ)

(k2 −m2 + iδ)((k− p)2 −m2 + iδ)
, (5.35)

whose numerator then reads:

N (k0) ≡ − 1
(2π)4 εµ(p, λ) tr((−ieγν)i(/k + m)(−ieγµ)i(/k − /p + m))ε∗ν(p, λ) (5.36)

=
−1
2πi

iα
2π2

(
c0 + c1k0 + c2(k0)2) , (5.37)

where

c0 = 4m2 + 4~k ·
(
~k− ~p

)
+ 8

(
~ε ·~k

) (
~ε∗ ·~k

)
(5.38)

c1 = 4p0 − 8
[
+ε0

(
~ε∗ ·~k

)
+ (ε0)∗

(
~ε ·~k

)]
(5.39)

c2 = 8ε0(ε0)∗ − 4 . (5.40)
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The numerator N is a second degree polynomial in the integration variable k0. As argued in

section 5.1, the numerator rank affects the total number of summands building the cLTD ex-

pression. We start by considering the usual LTD representation [81] of the vacuum polarization

bubble, which features two dual integrands, each corresponding to one of the two internal

propagators of the fermion bubble being cut with positive on-shell energy:

Π =
2α

(2π)6i

[
c0 + c1E1 + c2E2

1

2E1((E1 + p0)2 − E2
2)

+
c0 + c1(E2 − p0) + c2(E2 − p0)2

2E1((E2 − p0)2 − E2
1)

]
. (5.41)

We can rewrite each propagator evaluated at the on-shell condition as the difference of two

linear propagators multiplied by the inverse on-shell energy of the momentum flowing in that

propagator:
1

(E1 + p0)2 − E2
2
=

1
2E2

(
1

E1 + p0 − E2
− 1

E1 + p0 + E2

)
, (5.42)

which makes it clear that the zeros of the inverse propagator is the union of the zeros of an

E-surface E1 + p0 + E2 = 0 and an H-surface E1 + p0 − E2 = 0. The E-surface, characterised by

its consistent sign across all on-shell energies involved, is bounded. It corresponds to a physical

threshold. Instead, the H-surface contains different on-shell energy signs and its imaginary

prescription therefore depends on kinematics. We now show the explicit cancellation of this

H-surface by substituting eq. (5.42) in eq. (5.41) for both dual integrands:

Π =
−α/2

(2π)6iE1E2

[
N (E1)

E1 + p0 + E2
+

N (E2)

E2 − p0 + E1
− c1(E1 − E2 + p0) + c2(E2

2 − (E2 − p0)2)

E1 − E2 + p0

]
.

(5.43)

Each dual integrand yields two new summands after this substitution: one corresponding to an

H-surface singularity and one to an E-surface singularity. We see that the H-surface summands

have a common denominator and can be written as the last term of eq. (5.43). This combination

is what manifestly realises the pairwise cancellation pattern that underlies dual cancellations.

Indeed, because the numerator is a polynomial in the energy, it is possible to explicitly perform

the polynomial division. As a result, we obtain our final expression

Π =
−α/2

(2π)6iE1E2

[
N (E1)

E1 + p0 + E2
+

N (E2)

E2 − p0 + E1
− c1 − c2(E1 + E2 − p0)

]
. (5.44)

The expression is now manifestly free of spurious poles, and dual cancellations have been

realized algebraically. The remaining singularities of Π are located at the zeros of E-surfaces

which, as mentioned earlier, have a prescription with a well-defined sign across all kinematic

configurations and identify bounded surfaces.
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5.3.2 Box topology

As we increase the number of propagators per loop line (at one-loop this corresponds directly

to an increase of the multiplicity of the external momenta), the cancellation of spurious

singularities induces more terms in the cLTD representation.

We observe that for the box diagram

the original four dual integrands forming the LTD representation of ref. [81] increase to up to

35 summands in the cLTD representation. More precisely, we consider the general box integral

over the loop energy

BoxLTD =
1

2πi

∫
dk0 N (k0)

∏4
i=1
(
(k + pi)2 −m2

i + iδ
) . (5.45)

The corresponding cLTD expression following from our recursive procedure of section 5.2.2

reads:
[

4

∏
i=1

(2Ei)

]
BoxLTD =+

NN [z1])

d21d31d41
+

NN ([z1])

d21d24d34
+

NN ([z1])

d21d31d34
+

NN ([z1])

d21d23d43
+

NN ([z1])

d21d41d43

+
NN ([z1])

d21d23d24
+

NN ([z1])

d31d32d42
+

NN ([z1])

d31d41d42
+

NN ([z1])

d31d32d34
+

NN ([z1])

d41d42d43

+
NN ([z2])

d12d32d42
+

NN ([z2])

d12d14d34
+

NN ([z2])

d12d32d34
+

NN ([z2])

d12d13d43
+

NN ([z2])

d12d42d43

+
NN ([z2])

d12d13d14
+

NN ([z3])

d13d23d43
+

NN ([z3])

d13d14d24
+

NN ([z3])

d13d23d24
+

NN ([z4])

d14d24d34

− NN ([z1, z2])

d32d42
− NN ([z1, z2])

d32d34
− NN ([z1, z2])

d42d43
− NN ([z1, z3])

d23d43
− NN ([z1, z3])

d23d24

− NN ([z1, z4])

d24d34
− NN ([z2, z3])

d13d43
− NN ([z2, z3])

d13d14
− NN ([z2, z4])

d14d34
− NN ([z3, z4])

d14d24

+
NN ([z1, z2, z3])

d43
+

NN ([z1, z2, z4])

d34
+

NN ([z1, z3, z4])

d24
+

NN ([z2, z3, z4])

d14

−NN ([z1, z2, z3, z4]) .

(5.46)



146 manifestly causal ltd

Although eq.(5.46) is a sum of 35 terms, it features an underlying structure, made manifest by

the fact that there are only 12 distinct linear propagators, denoted with

dij = Ei + Ej + p0
i − p0

j . (5.47)

At one loop, the four limits involved in the finite difference functional N are simply defined by

the respective poles of the propagators in the lower complex half-plane at

zi = Ei − p0
i . (5.48)

It is interesting to note that some groups of terms in the expression (5.46) can be written in

alternative ways, making it clear that the representation is not unique, as discussed in both

section 5.1 and section 5.2. For example, one can observe that

NN ([z1])

d21d24d34
+

NN ([z1])

d21d31d34
=

NN ([z1])

d21d24d31
+

NN ([z1])

d24d31d34
. (5.49)

The non-uniqueness can also be understood by noticing that the choice of edge labelling in

Feynman diagrams is arbitrary. This means that although the final expression stays invariant

under such a relabelling, the partial fractioning procedure results in a different but equivalent

representation. This opens the possibility of separately integrating each of the summands in

the remaining spatial components of the loop variable, and finding an optimal representation

in which each of the summands has an especially convenient overlap structure.

When regulating the UV behaviour, it is convenient to introduce counterterm diagrams

that have the same asymptotic behaviour as the original integrand and are simple enough to

be integrated analytically. These counterterms are subtracted from the integrand to make it

suitable for numerical integration and their analytically integrated counterpart can be added

back to the final result. As counterterm diagrams often have degenerate edges, we show the

degenerate limit of the box diagram which corresponds to a tadpole with a single propagator

raised to the fourth power:

TadpoleLTD(4; m1) =
1

2πi

∫
dk0 N (k0)

(
(k + p1)2 −m2

1 + iδ
)4 . (5.50)

As pointed out in section 5.1, the derivation for the manifestly causal LTD expression for

diagrams with raised propagators does not require special treatment as it corresponds to the

degenerate limit of pairwise distinct propagators. We can therefore consider the limit pi = p1

and mi = m1, where dij = 2E1 ∀i, j and zi = E1 − p0
1 ∀i, and apply the formula for degenerate

divided differences given in eq. (5.13). The general box expression of eq.(5.46) then reduces to
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20 summands involving N (z1)
(2E1)3 , 10 summands involving −N ′(z1)

(2E1)2 , 4 summands involving N
′′(z1)

2!(2E1)

and one summand involving −N ′′′(z1)
3! , each with the overall prefactor 1

(2E1)4 , finally yielding

TadpoleLTD(4; m1) =
15N (z1)− 15E1N ′(z1) + 6E2

1N ′′(z1)− E3
1N ′′′(z1)

96E7
1

. (5.51)

This integrand reproduces the asymptotic UV behaviour of the original BoxLTD representation,

thus rendering it finite and integrable over the remaining spatial loop degrees of freedom using

a numerical Monte-Carlo procedure (see e.g. ref. [4]). Notice that depending on the particular

numerator and the corresponding superficial degree of UV divergence, one may also need

to include subleading terms which at one-loop always correspond to tadpole topologies, but

involving different denominator powers.

5.3.3 Sunrise topology

The simplest example beyond one-loop is the sunrise diagram

which is a two-loop two-point function with three propagators. The integral over the loop

energies reads

SunriseLTD =
1

(2πi)2

∫
dk0

1dk0
2

N (k0
1, k0

2)

∏3
i=1

(
(~λi · (k1, k2) + pi)2 −m2

i + iδ
) , (5.52)

with loop line signatures ~λ1 = (1, 0), ~λ2 = (1,−1) and ~λ3 = (0, 1) with one propagator each.

The corresponding cLTD expression is given by the following four summands

SunriseLTD = − NN ([z2], [z4])

E1 + E2 + E3 + p0
1 − p0

2 − p0
3
− NN ([z1], [z3])

E1 + E2 + E3 − p0
1 + p0

2 + p0
3

+ NN ([z1], [z4, z3]) + NN ([z1, z2], [z4]) , (5.53)

where the numerator is evaluated with the following inputs

z1 = E1 − p0
1, z2(k0

2) = E2 + k0
2 − p0

2,

z3 = E1 + E2 − p0
1 + p0

2, z4 = E3 − p0
3.

(5.54)
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Note that when evaluating the numerator NN ([z2(k0
2)], [z4]), the recursion in eq.(5.4) is per-

formed first in the first argument [z2(k0
2)], which changes the numerator’s dependence on k0

2

since Ñ (k0
2) ≡ N (z2(k0

2), k0
2). The evaluation in the second argument [z4] is then to be under-

stood in the context of the functional recursion given in eq.(5.4), applied to the function Ñ . In

order to better understand how the iteration represented by the step of eq.(5.31) works, we

unfold it here explicitly for a scalar sunrise vacuum bubble. Let us start by partial fractioning

each propagator in its Minkowski representation, as done in eq.(5.20):

Sunrisem=0 =
∫ dk0

1dk0
2/(2πi)2

8E1E2E3

[

+
1

(k0
1 − E1)(k0

1 − k0
2 − E2)(k0

2 − E3)
− 1

(k0
1 − E1)(k0

1 − k0
2 − E2)(k0

2 + E3)

− 1
(k0

1 − E1)(k0
1 − k0

2 + E2)(k0
2 − E3)

− 1
(k0

1 + E1)(k0
1 − k0

2 − E2)(k0
2 − E3)

+
1

(k0
1 − E1)(k0

1 − k0
2 + E2)(k0

2 + E3)
+

1
(k0

1 + E1)(k0
1 − k0

2 − E2)(k0
2 + E3)

+
1

(k0
1 + E1)(k0

1 − k0
2 + E2)(k0

2 − E3)
− 1

(k0
1 + E1)(k0

1 − k0
2 + E2)(k0

2 + E3)

]
,

(5.55)

and let us contour integrate in the variable k0
1 on the usual semi-circle spanning the lower half

of the complex plane. We stress that the last two terms of (5.55) vanish under this integration,

whereas the integration of the first four terms contribute and yield eight new terms; of which

many pair-wise cancel, eventually yielding

Sunrisem=0 = −
∫ dk0

2/(2πi)
8E1E2E3

[
− 1

(E1 − k0
2 + E2)(k0

2 − E3)
− 1

(k0
2 + E2 + E1)(k0

2 − E3)

+
1

(E1 − k0
2 + E2)(k0

2 + E3)
+

1
(k0

2 + E2 + E1)(k0
2 + E3)

]
.

(5.56)

We now perform the energy integration in k0
2 by closing the contour, again, in the lower-half of

the complex plane. This last integral yields the final cLTD expression for this example:

Sunrisem=0 = − 1
4E1E2E3

1
E1 + E2 + E3

. (5.57)

This cLTD expression for the sunrise diagram of eq.(5.53) agrees with the special case of a

constant numerator presented recently in ref. [210].
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5.4 conclusion

In this work, we have introduced a new iterative and systematic procedure that, given a

multi-loop multi-scale Feynman diagram with arbitrary numerator, yields a representation of

the integrand that is manifestly free of spurious poles. The resulting integrand has poles at

physical thresholds only, which are regulated by a Feynman prescription with a definite sign.

These physical thresholds, or E-surfaces, correspond to sets of particles whose four-momenta

simultaneously become on-shell. In the original LTD representation there are spurious poles

in the summands, which cancel in the sum. Our work introduces, for the first time, a general

procedure to realise their cancellation within each individual term.

The derivation of this representation involves two basic steps which are iterated over for

the integration of each loop energy variable. At each iteration, the two steps are applied in

succession: first, we analytically perform the integration in a loop energy variable using residue

theorem, and then we apply a partial fractioning procedure on all the propagators involving

the loop energy integrated over at this step. In this way, we show that it is possible to reabsorb

spurious singularities in the definition of divided differences of the product of the numerator

and physical poles of the loop integral. The analytic behaviour of divided differences of such

quantities can be determined immediately, and in particular it allows us to conclude that the

resulting expression is finite for all spurious poles. We refer to this new representation of the

integral as the Manifestly Causal Loop-Tree Duality representation, or cLTD.

Our procedure readily applies to loop integrals with arbitrary numerators. In particular,

when the numerator of the Feynman integral is a polynomial, as it in most cases of practical

interest, we recognize that divided differences can be computed explicitly. This leads to an

expression in which no spurious pole appear, neither explicitly nor implicitly. We studied the

resulting numerical stability of the cLTD expression and found the expected perfect numerical

stability arbitrarily far in the UV region. In the IR region however, the cLTD representation

yields a marginally worse numerical stability when using double precision arithmetic, which we

however show to be completely cured by the promotion to quadruple precision. This highlights

the complementarity of the cLTD and LTD representation for the numerical application of the

Loop-Tree Duality.

One additional potential drawback of the cLTD representation is that the number of terms

generated when unfolding our iterative procedure grows exponentially in the number of

propagators. However, by identifying common sub-expressions among these many terms can

drastically reduce the numerical complexity of the implementation of the cLTD representation
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and render it competitive, and sometime even advantageous, over that of its original LTD

counterpart.

The ability to systematically analyse and regularise the pole structure of Feynman diagrams,

together with the engineering of integrands that are numerically stable and fast are two key

steps towards the fully numerical computation of higher-order corrections to the prediction of

collider observables. Our novel Manifestly Causal Loop-Tree Duality representation achieves

both of these goals and offers a clear path to physics applications.

In ref. [5], we provide as ancillary material a standalone program offering an automated

generation of our novel cLTD representation for arbitrary loop integrals.



Part III

O U T L O O K





6
C O N C L U S I O N

The standard model of particle physics represents the legacy of the 20th century. With the

discovery of all of its constituents, we have at hand the most accurate theory of subatomic

physics ever written. However, it is still far from providing a complete description of nature,

leaving many questions unanswered. It is up to us to challenge its predictions in the quest for

understanding the mechanisms that guide the evolution of matter at the most fundamental

level. The ongoing and future research programme of the LHC will measure the interactions

among particles with the highest precision so far. These formidable experimental measures call

for an improvement on the theoretical accuracy of the simulation of many scattering processes.

By having an accurate understanding of the theoretical background, we could expose effects

due to physics beyond the SM.

In this direction, we have computed the rapidity distribution through N3LO in the gluon

fusion channel. For its computation, we worked in the context of the EFT of a top quark

with infinite mass and included six terms in the expansion around the threshold energy. The

errors coming from these approximations are estimated at the percent level, at least for central

rapidities (|Y| < 2). We equate the renormalisation and factorisation scales to the central value

µ = mh
2 . The theoretical uncertainty due to the truncation of the perturbative expansion is then

estimated by rescaling by a factor two the common scale around its central value. The scale

variation uncertainty is brought to +0.9%
−3.4% when also the N3LO correction is included, with a

relatively flat K-factor of around 1.03. The current uncertainty at the LHC for the Higgs boson

cross-section is about 8% [182] considering an integrated luminosity of 139fb−1 and will be

lowered to 3% once the target integrated luminosity of 3000fb−1 is reached [211]. Due to the

reduction of the scale uncertainty, other uncertainties start to become relevant (e.g. the PDFs)

as well as corrections coming from different channels and electroweak effects.

The rapidity distribution through N3LO computed as threshold expansion represents a

cornerstone in the high order corrections for the Higgs sector. However, the path to a better

understanding of nature requires a broader effort and has seen contribution coming from a

large community of high energy physicist. The analytic computations necessary to reduce the

153
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error of the theoretical predictions and expose the presence of new physics at the LHC remain

in large part unresolved. In particular, computing QCD amplitudes beyond two loops and/or

four scales remains exceptionally challenging, even with modern analytical techniques. We

identify this as one of the main bottlenecks for computing many of the higher-order corrections

necessary to decrease the theoretical uncertainty to the experimental level. This observation

is what motivates our work on numerical Loop-Tree Duality, as its strength and limitations

are orthogonal, and thus complementary, to those of the canonical paradigms for predicting

collider observables.

We have presented and validated a method for constructing a deformation of the integration

variable in the Loop-Tree Duality that is aligned with the causal prescription of Feynman

propagators and fulfils the conditions originating from analytic continuation. Empowered

by a general deformation, we can look past the numerical computation of integrals in the

Euclidean region of phase space, and start considering any finite integral that contains threshold

singularities. As a demonstration of the stability and accuracy of our method, we apply it to a

diverse range of integrals.

As a further step in the direction of building a framework for the computation of physical

processes, we have treated the case of divergent integrals at one-loop. Regulating integrals in

the context of LTD requires counterterms that are described in terms of scalar propagators,

making it particularly challenging in the presence of collinear divergences. We presented a

method for regulating individual scalar integrals at one-loop that can be used for computing

master integrals. However, the real potential of a numerical integration in momentum space

is illustrated for the class of amplitudes qq̄→ nγ at NLO in pQCD where the IR divergences

factorise. Extending the regulation of divergent scalar integral at higher loops in numerical

LTD remains to this day unresolved and an engaging subject for further studies. The regulation

of two-loop amplitudes for electron-positron annihilation to multi photons has been presented

recently in ref. [83] and constitutes the natural next step in the implementation of amplitudes

in the context of LTD.

While integrating the one-loop amplitudes, we exposed a troublesome aspect of LTD con-

sisting of being subject to large cancellations resulting in numerical instabilities. These large

cancellations happen because of the presence of spurious singularities in the LTD expression

and were conjecture to cancel when summed together. We offer a proof of these cancellations

together with a way to resolve them analytically. The resulting manifestly causal LTD expres-

sion is locally equivalent to the original LTD expression but has the advantage to cure all the

troubling instabilities for large loop momenta.

One powerful application of the Loop-Tree Duality that is left for future work consists in its

combination with reverse unitarity, where the IR divergences can be removed at the local level
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without the need of introducing additional counterterms [6]. These local cancellations make it

a viable alternative to other infrared subtraction methods for differential quantities.





Part IV

A P P E N D I X





A
F E Y N M A N R U L E S

a.1 lagrangian

The Lagrangian used for the computations presented in part i can be separated into four

contributions:

Ltot =Le f f + L f ermions + Lgauge + Lghosts. (A.1.1)

The effective Lagrangian in the one that appears in eq.(1.18) corresponding to the infinite top

mass limit:

Le f f = −
C1

4v
Ga

µνGaµνH, (A.1.2)

where C1 is the Wilson coefficient shown in eq.(1.20).

In the infinite top mass limit, all the remaining fermions have to be considered massless

yielding:

L f ermions = i
n f

∑
k=1

q̄k /Dqk = i
n f

∑
j=1

q̄ki(/∂δij − igsγ
ρTa

ijG
a
ρ)qkj (A.1.3)

where n f = 5 is the number of flavours, /D = γµDµ contains the covariant derivative defined

as Dµ := (11∂µ − igsTaGa
µ), and qk is a three dimensional vector whose elements have different

color charges (red, green and blue) qk = (gkr, gkg, gkb).

For the gauge Lagrangian, we consider only the SU(3)QCD field of the strong interaction and

is written in terms of the gluon strength tensor:

Lgauge =
1
4

Ga
µνGaµν. (A.1.4)

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν, [Ta, Tb] = i f abcTc. (A.1.5)

where the Ta are the generators of the Lie algebra of SU(3)QCD.

The ghost Lagrangian will depend on the choice of gauge and results from the Faddeev-

Popov procedure [212], it will be discuss in more details in the following section.

159
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a.2 interactions and propagators

To derive the Feynman rules coming from the effective Lagrangian of eq.(A.1.2) we write it

using the definition of the strength tensor in eq.(A.1.5):

Le f f =−
C1

4v
Ga

µνGaµνH

=− C1

4v
[2∂νGa

µ∂µGaν − 2∂µGa
ν∂νGaµ

+ 4gs f abc(∂µGa
ν)G

bµGcν

+ g2
s f abc f adeGb

µGc
νGdµGeν]H

From this expression, it is then straight forward to find the Feynman rules corresponding to

the four possible vertices:

p1, a, µ

p2, b, ν

= i
C1

v
δab(gµν p1 p2 − pν

1 pµ
2 )

p2, b, ν

p1, a, µ p3, c, σ

=
C1

v
gs f abc[−gµσ pν

1 + gµν pσ
1 + gνσ pµ

2 − gµν pσ
2 − gνσ pµ

3 + gµσ pν
3]

p4, d, ρ

p2, b, ν

p1, a, µ

p3, c, σ

= i
C1

v
g2

s

[
f abn f cdn(gµρgνσ − gµσgνρ) + f acn f bdn(gµρgνσ − gµνgσρ)

+ f adn f bcn(gµσgνρ − gµνgσρ)

]
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Next we consider the Feynman rules coming from the fermionic Lagrangian in eq.(A.1.3).

From the first term comes the propagator while the second denotes an interaction between

fermions and a gluon. They can be written as:

a, ρ

j, µ

i, ν

= igs(γρ)µνTa
ij,

i, µ j, ν = iδij (γ
ρ)µν pρ

p2 + i0
,

where i, j are the color indices and µ, ν the spinor indices.

Since the gluon field is non-abelian, the gauge Lagrangian contains self-interactions between

gluons. This can be explicitly seen by plugging in eq.(A.1.4) the expression for the strength

tensor appearing in eq.(A.1.5). The corresponding Feynman rules are:

a, µ

c, ρ

b, ν

= gs f abc[gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)
ν],

b, ν

a, µ

d, σ

c, ρ

= −ig2
s [ f eab f ecd(gµρgνσ − gµσgνρ) + f eac f edb(gµσgρν − gµνgρσ)

+ f ead f ebc(gµνgρσ − gµρgνσ)].

a.3 ghosts and gauge fixing

The gauge field has internal symmetries, and it therefore fundamental to choose a gauge to

obtain a propagator to be used during the computations. This choice does not affect the result
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of the computations for a physical observable, but it changes how the result is computed. One

choice of gauge used for our computations corresponds to Feynman-gauge, defined by taking

the Rξ-gauge with ξ = 1. This gauge can be achieved by adding an additional term to the

gauge Lagrangian:

Lgauge =
1
4

Ga
µνGaµν − 1

2ξ
(∂µGa

µ)
2

Then the gluon propagator takes the form:

iGµνab
Rξ

=
−iδab

p2 + iε

(
gµν + (1− ξ)

pµ pν

p2

)

ξ=1−−→ −iδabgµν

p2 + iε
.

The addition of this term into the Lagrangian requires to include diagrams containing ghosts in

both internal propagators as well as in the external legs to remove the unphysical polarizations

of the gluons. These ghost contributions are a direct consequence of the Faddeev-Popov

procedure [212] for fixing the gauge, where they are obtained as extra terms in the path integral

in the form of a determinant:

det

(
δ(∂µGa

µ)

δπc

)
, Ga

µ

gauge transf.−−−−−−−→ Ga
µ +

1
gs

∂µπa + f abcGb
µπc, (A.3.2)

with π = π(x) parametrizes the local transformation. This determinant can be written as a

contribution to the Lagrangian by means of the identity [212]:

(
∏

i

∫
dc∗i dci

)
e−c∗i Aijcj = det(A) (A.3.3)

where A is a non-singular matrix, and ci’s are Grassmann variables ( anticommuting Lorentz

scalars). Knowing the gauge transformation is possible to evaluate the expression inside the

determinant in eq.(A.3.2):

det

(
δ(∂νGa

µ)

δπc

)
= det

(
1
gs

δac∂2 + f abc∂µGb
µ

)
.

This leads to the ghost Lagrangian:

Lghost = (∂µ c̄a)(δac∂µ + gs f abc∂µGb
µ)c

c,

where c and c̄ are ghosts fields, and the overall factor of 1
gs

has been reabsorbed into the ghost

fields.
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These results can then be summarized by the following Feynman rules:

a, µ b, ν = iδab 1
p2 + i0

a, µ b, ν = −i
gµνδab

p2

p1, a, ρ

p3, c, ν

p2, b, µ

= gs f abc(pν
3 + pρ

1)

Checking that the final result of the computation is invariant under a gauge transformation

represents an important check on the result. In general, this would require to keep the explicit

ξ dependence of the Rξ-gauge and check that it vanishes in the final expression for the cross-

section. Alternatively, one can consider another gauge and checked whether or not the two

results agree. As second choice we have considered the Axial gauge, defined by:

Lgauge =
1
4

Ga
µνGaµν − 1

2ξ
(ηµGa

µ)
2, det

(
δ(ηνGa

µ)

δπc

)
= det

(
1
gs

δacην∂ν + f abcηµGb
µ

)

(A.3.4)

with ηµηµ = 0. We choose the physical gauge by taking the limit of ξ = 0 in the expression of

the gluon propagator:

iGµνab
Axial =

iδab

p2 + iε

(
−gµν +

ηµ pν + ην pµ

ηp
− (η2 + ξ p2)

pµ pν

(ηp)2

)
(A.3.5a)

ξ=0−−→ iδab

p2 + iε

(
−gµν +

ηµ pν + ην pµ

ηp
− η2 pµ pν

(ηp)2

)
. (A.3.5b)

In the physical gauge, we have that ηµGµνab
Axial = 0. The ghost Lagrangian is computed gauge

by means of eq.(A.3.3) from the second term in eq.(A.3.4) and comes with a factor ηµ. This

factor ensures that the ghosts decouple from the physical particles (gluons) for this particular
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choice of gauge [213]. Therefore, the only relevant Feynman rule in this gauge is the gluon

propagator, given by:

a, µ b, ν
Axial
=

iδab

p2 + iε

(
−gµν + ηµ pν+ην pµ

ηp − η2 pµ pν

(ηp)2

)
.



B
D I F F E R E N T I A L E Q UAT I O N S

b.1 differential equations

One key ingredient in the evaluation of cross-sections, and more precisely master integrals,

is the use of differential equations as in refs. [51–70]. The differential equations are used to

obtain the master integrals as an expansion in terms of the dimensional regulator or, as we

did, for performing the threshold expansion using differential equations combined with the

expansion by regions [128, 172] .

b.1.1 Differential equation in terms of external momenta

The main idea behind the use of differential equations is that, despite our inability to solve the

integrals exactly, we can still build for them a system of differential equations by looking at

their integrands. Once we have a system of differential equations, we can use it to obtain an

expression for the corresponding master integrals.

Let us consider a process with N external momenta pi, then the final expression will be

a function of the Lorentz invariant kinematics represented by sij. Notice that in the case

of on-shell externals with sii = p2
i = 0 the number of such invariants is reduced. At the

integrand level however, the scalar products con also involve the loop momenta. To extract the

dependence on the external kinematics sij from the integrand, we need to take derivatives with

respect to the external momenta pµ
i .

Assuming all sij 6= 0, we can cast the problem as follows:

∂

∂sij
= ∑

(mn)
α(ij),(mn) pµ

m
∂

∂pµ
n

, (B.1.1)

(ij), (mn) ∈ {11, 12, . . . , 1N, 22, 23, . . . , NN},
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The expression for the matrix α(ij),(mn) can be derived by acting with both sides of eq.(B.1.1) on

all the different sij. Then the problem of finding the matrix α reduces to computing the inverse:

α =
(

α−1
)−1

=

([
pµ

m
∂sij

∂pµ
n

]

(ij),(mn)

)−1

,

The problem simplifies when some of the external momenta are on-shell (massless). Because

of the reduced number of external kinematics, we can also consider a smaller set of operators

of the form pm
∂

∂pn
. When reducing the number of operators, one must be careful and ensure

that the limit sii = 0 commutes with each derivative. For example, if s11 = p2
1 = 0 we then

require that its derivative vanishes in all kinematics, yielding:

∂

∂sij
p2

1 = 0, (ij) 6= (11).

This means that every massless external momentum produces a set of constraints that, according

to eq.(B.1.1), correspond to a series of relations among different pm
∂

∂pn
operators.

example 1

Take N = 3 and p2
1 = p2

2 = p2
3 = 0. Then the set of independent kinematics is represented by

s12, s13, s23.

We can make an educated guess for the form of the solution by knowing that we need three

different differential operators. One possibility is to pick:

∂

∂sij
= ∑

(ij),k
α(ij),k pk

∂

∂pk
, (ij) ∈ {12, 13, 23}, k ∈ {1, 2, 3}
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Where now the matrix α is a 3x3-dimensional matrix. This choice of differential operators

fulfils both constraints: that the matrix [pk
∂sij
∂pk

] must not be singular and that ∂skk
∂sij

= 0. With the

aforementioned basis we can then write:

∂

∂s12
=

1
2s12

(
+pµ

1
∂

∂pµ
1
+ pµ

2
∂

∂pµ
2
− pµ

3
∂

∂pµ
3

)
,

∂

∂s13
=

1
2s13

(
+pµ

1
∂

∂pµ
1
− pµ

2
∂

∂pµ
2
+ pµ

3
∂

∂pµ
3

)
,

∂

∂s23
=

1
2s23

(
−pµ

1
∂

∂pµ
1
+ pµ

2
∂

∂pµ
2
+ pµ

3
∂

∂pµ
3

)
.

example 2

Let us consider a more interesting case, corresponding to the kinematic configurations of the

Higgs-differential cross-section. All scalar products depend on three independent external

momenta, those of the two massless incoming partons, and the massive Higgs. In this case we

write N = 3 and p2
1 = p2

2 = 0 together with p2
3 6= 0. The set of independent kinematics is now

extended to:

s12, s13, s23, s33.

In this case, we use the same set of differential operators as for the previous example, and

we choose the additional one to be p1
∂

∂p3
. It is easy to prove that they are all elements of

{pi
∂

∂pj
|pi

∂skk
∂pj

= 0, k = 1, 2}, then we get:

α =




s13s23
4s12s13s23−2s2

12s33

s13s23−s12s33
4s12s13s23−2s2

12s33
− s13s23

4s12s13s23−2s2
12s33

s23s33
4s12s13s23−2s2

12s33

s13s23−s12s33
4s2

13s23−2s12s13s33
− s13s23−s12s33

4s2
13s23−2s12s13s33

s23
4s13s23−2s12s33

− s23s33
4s2

13s23−2s12s13s33

s13
2s12s33−4s13s23

s13
4s13s23−2s12s33

s13
4s13s23−2s12s33

s33
2s12s33−4s13s23

s2
13+s12s13−s23s13+s12s33

4s2
13s23−2s12s13s33

− s13(s13−s23)+s12(s13+s33)
2s13(2s13s23−s12s33)

s12+s13+s23
2s12s33−4s13s23

2s13s23+s33s23+s13s33
4s2

13s23−2s12s13s33







∂
∂s12

∂
∂s13

∂
∂s23

∂
∂s33




= α




pµ
1

∂
∂pµ

1

pµ
2

∂
∂pµ

2

pµ
3

∂
∂pµ

3

pµ
1

∂
∂pµ

3



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For the computation of the Higgs-differential cross-section we use a different set of kinematics

to describe our system, namely (x, λ, z̄, s). To obtain the representation of the corresponding

differential operators ( ∂
∂x , ∂

∂λ , ∂
∂z̄ , ∂

∂s ), we can either rotate the differential matrix for sij or directly

use the new basis to build the matrix α in terms of the same set of operator pi
∂

∂pj
as before:

α′ =




1−λz̄
2(x−1)(λxz̄−1)

λz̄−1
2(x−1)(λxz̄−1)

λz̄−1
2(x−1)(λxz̄−1)

z̄−1
(x−1)(λxz̄−1)

λ3xz̄2+λ2x(1−2z̄)z̄+λ(z̄−2)+1
2(λ−1)λ(λz̄−1)(λxz̄−1) −λ3xz̄2+λ2x(1−2z̄)z̄+λ(z̄−2)+1

2(λ−1)λ(λz̄−1)(λxz̄−1)
λ2xz̄−2λ+1

2(λ−1)λ(λxz̄−1)
(z̄−1)(λ2xz̄−2λ+1)

(λ−1)λ(λz̄−1)(λxz̄−1)

λ2xz̄2+λxz̄−2
2z̄(λz̄−1)(λxz̄−1) − λ2xz̄2+λxz̄−2

2z̄(λz̄−1)(λxz̄−1)
2−λxz̄

2z̄−2λxz̄2
2−z̄(λx+1)

z̄(λz̄−1)(λxz̄−1)

1
2s

1
2s

1
2s 0




(B.1.2a)



∂
∂x

∂
∂λ

∂
∂z̄

∂
∂s




= α′




pµ
1

∂
∂pµ

1

pµ
2

∂
∂pµ

2

pµ
3

∂
∂pµ

3

pµ
1

∂
∂pµ

3




(B.1.2b)



C
LT D TA B L E S A N D P R O PA G AT O R D E F I N I T I O N S

c.1 expression for the qq̄→ γ1γ2γ3 amplitude and its counterterms

In order to provide an explicit parametrisation of all the integrals that appear in the computation

of the qq̄ → γ1γ2γ3, we give the expression for the diagrams and the counterterms. The

individual diagrams can be written as explicit integrals using dimensional regularisation, since

in general they contain singularities.

The integrals appearing in figure 4.6 are given by:

I1 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)γ
µ(−/k − /p23)/̂ε 2(−/k + /p15)/̂ε 3(−/k + /p1)γµu1

s23k2(k + p23)2(k− p15)2(k− p1)2 (C.1.1)

I2 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2γµ(−/k − /p2)/̂ε 1(−/k − /p23)/̂ε 2(−/k + /p15)γµ(/p15)/̂ε 3u1

s15k2(k + p2)2(k + p23)2(k− p15)2 (C.1.2)

I3 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2γµ(−/k − /p2)/̂ε 1(−/k − /p23)/̂ε 2(−/k + /p15)/̂ε 3(−/k + /p1)γµu1

k2(k + p2)2(k + p23)2(k− p15)2(k− p1)2

(C.1.3)

I4 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)/̂ε 2(/p15)γ
µ(−/k + /p15)γµ(/p15)/̂ε 3u1

s23s2
15k2(k− p15)2

(C.1.4)

I5 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)γ
µ(−/k − /p23)/̂ε 2(−/k + /p15)γµ(/p15)/̂ε 3u1

s23s15k2(k + p23)2(k− p15)2 (C.1.5)

I6 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)γ
µ(−/k − /p23)γµ(−/p23)/̂ε 2(/p15)/̂ε 3u1

s2
23s15k2(k + p23)2

(C.1.6)

I7 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)/̂ε 2(/p15)γ
µ(−/k + /p15)/̂ε 3(−/k + /p1)γµu1

s23s15k2(k− p15)2(k− p1)2 (C.1.7)

I8 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2γµ(−/k − /p2)/̂ε 1(−/k − /p23)γµ(−/p23)/̂ε 2(/p15)/̂ε 3u1

s23s15k2(k + p2)2(k + p23)2 (C.1.8)

The IR counterterm reads:

IIR = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2γµ(−/k − /p2)/̂ε 1(−/p23)/̂ε 2(/p15)/̂ε 3(−/k + /p1)γµu1

s23s15k2(k + p2)2(k− p1)2 (C.1.9)

169
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The UV counterterms read:

IUV4 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)/̂ε 2(/p15)γ
µ
(
(−/k)− (−/k)(/p15)(−/k)

k2−µ2
uv

)
γµ(/p15)/̂ε 3u1

s23s2
15[k2 − µ2

uv]
2

(C.1.10)

IUV5 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)γ
µ(−/k)/̂ε 2(−/k)γµ(/p15)/̂ε 3u1

s23s15[k2 − µ2
uv]

3 (C.1.11)

IUV6 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)γµ

(
(−/k)− (−/k)(−/p23)(−/k)

k2−µ2
uv

)
γµ(−/p23)/̂ε 2(/p15)/̂ε 3u1

s2
23s15[k2 − µ2

uv]
2

(C.1.12)

IUV7 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2/̂ε 1(−/p23)/̂ε 2(/p15)γ
µ(−/k)/̂ε 3(−/k)γµu1

s23s15[k2 − µ2
uv]

3 (C.1.13)

IUV8 = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2γµ(−/k)/̂ε 1(−/k)γµ(−/p23)/̂ε 2(/p15)/̂ε 3u1

s23s15[k2 − µ2
uv]

3 (C.1.14)

IUVIR = C1 µ2ε(4π)2
∫ ddk

(2π)d

v̄2γµ(−/k)/̂ε 1(−/p23)/̂ε 2(/p15)/̂ε 3(−/k)γµu1

s23s15[k2 − µ2
uv]

3 (C.1.15)

c.2 loop-tree duality with raised propagators

When a diagram contains raised propagators, the Minkowski representation of the integrand

features complex poles in the energy with order higher than one. Thus, in order to generalise

the integration of the energy component of loop momenta carried out in sect. 4.1, it is necessary

to use the definition of higher-order residues [214].

Raised propagators generally appear at higher loops when a diagram has a propagator

insertion on a propagator. They also appear as a result of using Integration by Parts identities.

The UV counterterm we constructed also features a raised propagator, since in the UV limit

every propagator scales as 1/
(
k2 − µ2

UV
)
.

Applying residue theorem to a general integral with raised propagators we obtain:

∮

x+
dk0

F(k0,~k)
(k0 − x+)1+n(k0 − x−)1+n =

1
n!

∂n

∂kn
0

F(k0,~k)
(k0 − x−)1+n

∣∣∣∣∣
k0=x+

=
1
n!

n

∑
m=0

(−1)n−m (2n−m)!
(n−m)!m!

∂m
k0

F(k0,~k)
∣∣∣
k0=x+

(x+ − x−)1+2n−m .

(C.2.1)

For the processes considered in chapter 4 that need UV regulation, namely the one-loop QCD

corrections to the dd̄ to photons, the numerator function F will consist of a spinor contraction
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containing a product of order n in the loop momentum k and the other propagators excluded

from this particular residue.

c.2.1 LTD tables of scalar integrals

In this appendix we present the numerical result of integrating different scalar integrals using

the deformation. We scan different topologies free of pinch singularities by setting the external

momenta off-shell (i.e p2 6= 0) or the propagator to contain a regulating mass. The results of

the integration are compared with the analytic results whenever possible.
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D
R E C U R S I V E C A N C E L L AT I O N O F S P U R I O U S S I N G U L A R I T I E S

d.1 explicit removal of spurious singularities

In what follows we derive the recursion relation presented in eq. (5.6) that allows to remove in a

systematic way all the spurious singularities from our starting expression in eq.(5.5) with n > 0.

Remember that if n = 1 it is already free of spurious singularities. We start by selecting an

(arbitary) order in x = (x1, . . . , xn), pick its first variable x1 and work towards the intermediate

goal of deriving an expression where all spurious singularities at x1 = xj for 1 < j ≤ dim(x) are

explicitly removed. As we will see, this result can in turn be expressed as a recursive formula

of terms similar to the starting expression, which are now manifestly free of singularities in

x1. The application of this recursive formula is described in section 5.1, where we apply this

relation recursively to our starting expression in eq. (5.5) to render it manifestly free of all

spurious singularities, resulting in eq. (5.7).

More explicitly, we consider our starting expression in eq. (5.5) and split off the first summand,

as

F


x

x̄
;N

 =

NN ([x1])E(x1|x̄)
∏j 6=1(x1 − xj)

+
n

∑
i=2

NN ([xi])E(xi|x̄)
∏j 6=i(xi − xj)

. (D.1.1)

We then use the identity

n

∑
i=1

1
∏j 6=i(xi − xj)

= 0 (D.1.2)

and apply it to the first summand in eq. (D.1.1) and obtain

NN ([x1])E(x1|x̄)
∏j 6=1(x1 − xj)

= −NN ([x1])
n

∑
i=2

E(x1|x̄)
∏j 6=i(xi − xj)

. (D.1.3)

Note that the identity in eq. (D.1.2) allowed us to move each of the poles x1 = xj for 1 < j ≤ n

in the product on the left-hand side in eq. (D.1.3) into a separate summand on the right-hand

side. As a next step, we want to remove this pole from each of the summands. This we will do
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182 recursive cancellation of spurious singularities

through an iteration over x̄. Therefore, we first pick an (arbitrary) order in x̄ = (x̄1, . . . , x̄n̄). We

observe that using the relation

E(x1|x̄1)− E(xi|x̄1) = (xi − x1)E(x1|x̄1)E(xi|x̄1), (D.1.4)

we can write

E(x1|x̄1)

∏j 6=i(xi − xj)
=

E(x1|x̄1)

∏j 6=i(xi − xj)
− E(xi|x̄1)

∏j 6=i(xi − xj)
+

E(xi|x̄1)

∏j 6=i(xi − xj)
(D.1.5)

=
E(x1|x̄1)E(xi|x̄1)

∏j 6=i,1(xi − xj)
+

E(xi|x̄1)

∏j 6=i(xi − xj)
, (D.1.6)

such that the pole at xi = x1 has been regulated in the first summand while remaining present

in the second term with the numerator now evaluated at xi instead of x1.

Using this result and combining factors as E(x1|x̄) = E(x1|x̄1)E(x1|x̄(2,)) we can express each

summand on the right-hand side of eq. (D.1.3) as

E(x1|x̄)
∏j 6=i(xi − xj)

=
E(x1|x̄)E(xi|x̄1)

∏j 6=i,1(xi − xj)
+

E(x1|x̄(2,))E(xi|x̄1)

∏j 6=i(xi − xj)
. (D.1.7)

Analogously, we apply the relation in eq. (D.1.5) with x̄1 ↔ x̄2 to the second summand in

eq. (D.1.7). This step is performed for all x̄r with 1 ≤ r ≤ n̄ such that we arrive at

E(x1|x̄)
∏j 6=i(xi − xj)

=
n̄

∑
r=1

E(x1|x̄(r,))E(xi|x̄(1,r))

∏j 6=i,1(xi − xj)
+

E(xi|x̄)
∏j 6=i(xi − xj)

. (D.1.8)

Before we now use this result from eq. (D.1.8), we first note that eq. (D.1.1) and eq. (D.1.3) can

be combined into a single sum as

F


x

x̄
;N

 =

n

∑
i=2

(
NN ([xi])E(xi|x̄)

∏j 6=i(xi − xj)
− NN ([x1])E(x1|x̄)

∏j 6=i(xi − xj)

)
, (D.1.9)

such that plugging in the relation in eq. (D.1.8) yields

F


x

x̄
;N

 = −

n

∑
i=2

n̄

∑
r=1

NN ([x1])E(x1|x̄(r,))E(xi|x̄(1,r))

∏j 6=i,1(xi − xj)
+

n

∑
i=2

NN ([x1, xi])E(xi|x̄)
∏j 6=i,1(xi − xj)

, (D.1.10)

Note that all of the expressions on the right-hand side are manifestly free of singularities in x1,

as no explicit denominators (x1 − xj) with 1 < j ≤ n appear. Of course, there are is a hidden

dependence on the denominator (xi − x1) in the divide difference NN ([x1, xi]) for 1 < i ≤ n,



D.1 explicit removal of spurious singularities 183

which however is regular as we discussed in sect. 5.1.2. This observation now reveals that

the singularities in x1 of the left-hand side, as they appear in each summand in eq. (D.1.1)

are indeed spurious. Futhermore, the arbitrary order in x, respectively the choice of x1 at the

beginning of this section makes it clear that the recursion can be used to explicitly remove

spurious singularities in any variable xi for 1 ≤ i ≤ n. We now observe that eq. (D.1.10) takes

the implicit form of a recursion that we can make explicit by writing

F


x

x̄
;N (·)


 = −NN ([x1])

n̄

∑
r=1

E
(

x1|x̄(r,)

)
F


 x(2,)

x̄(1,r)

; 1


+ F


x(2,)

x̄
; NN ([x1, ·])


 . (D.1.11)

It is straight-forward to make this recursion generic for an intermediate step with an arbitrary

numerator F and vectors y ∈ (H∗)dim(y) and ȳ ∈ (H∗)dim(ȳ). One then recovers precisely the

recursion in eq. (5.6), which concludes its derivation.
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