
ETH Library

Continuous authentication in
Secure Messaging

Master Thesis

Author(s):
Poirrier, Alexandre

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000474066

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000474066
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Continuous authentication in Secure
Messaging

Master Thesis

A. Poirrier

Tuesday 9th March, 2021

Supervisor: Prof. Dr. K. Paterson
Advisors: Dr. B. Dowling, Dr. F. Günther

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Messaging applications providing end-to-end encryption such as Sig-
nal can be vulnerable to Man-in-the-Middle (MitM) attacks, in which
case authenticity may no longer be guaranteed. For Signal, authentic-
ity relies on out-of-band protocols such as a comparison of long-term
public keys. When a MitM attacker is detected, the usual response is
to close the session and reopen a new one to restore security. Because
long-term keys may have been compromised users need to change their
long-term keys to be certain that security is restored. However such an
operation is costly and requires human interaction.

This thesis addresses this issue by providing users with some degree of
certainty on whether their long-term secrets have been compromised. It
defines a security model capturing a notion of demonstration of knowl-
edge of long-term secrets, in which an attacker tries to gain a MitM po-
sition without being detected by honest parties and without revealing
their knowledge of a long-term secret. In this security definition the
attacker has two goals: first they need to breach the authenticity of a
session without being detected if users rely only on the in-band chan-
nel for detection. If users use an out-of-band channel for detecting the
presence of adversaries, then the second goal of attacker is that users
make a wrong choice on whether the attacker has used a long-term
secret to remain undetected in-band. The attacker has full control of
the network and can leak session secrets and long-term secrets.

This thesis also offers modifications on the original Signal protocol.
Those modifications have two objectives: the first one is to detect the
first type of attackers in-band, which allows users to close and reopen a
session to lock the attacker out. The second one is to detect an attacker
using their knowledge of long-term secrets to avoid in-band detection
thanks to an out-of-band protocol. This enables parties to change their
long-term secrets.

This paper proves formally the security of the proposed protocol ac-
cording to the security definition offered.

It also presents a Java implementation based on the official Signal li-
brary. Practical tests verify that the original implementation does not
guarantee security while the modifications achieve to restore security.
The paper also presents an analysis with benchmarking of the space
and computational overhead introduced by the modifications.

i

Contents

Contents iii

1 Introduction 1
1.1 Related work . 2
1.2 Contributions . 3
1.3 Report outline . 4

2 Signal protocol 5
2.1 Notations . 6

2.1.1 Cryptographic notations 6
2.1.2 Stages and states . 6
2.1.3 Keys . 7

2.2 Registration phase . 7
2.3 X3DH . 8
2.4 Asymmetric ratcheting . 8
2.5 Symmetric ratcheting . 10
2.6 Out-of-order messages . 11

3 Continuous Man-in-the-Middle detection 13
3.1 High-level security definition 13
3.2 Messaging scheme . 15
3.3 Signal is a messaging scheme 17
3.4 Formal security game . 21
3.5 Signal (in)security . 26

4 Modified Signal protocol 29
4.1 Modification overview . 29

4.1.1 Recording ciphertexts 30
4.1.2 Authentication steps . 31

4.2 Out-of-order messages . 34

iii

Contents

4.3 Protocol soundness . 34
4.4 Detecting long-term secret compromise 37
4.5 Authentication steps protocol as a messaging scheme 37

5 Security of the new Signal protocol 41
5.1 Cryptographic primitives . 41
5.2 Security proof . 43

5.2.1 Upper bound for false negatives 45
5.2.2 Upper bound for false positives 48

6 Extensions and limitations 51
6.1 Immediate decryption . 51

6.1.1 Weaker security game 51
6.1.2 Extending the Signal protocol 52

6.2 Multi-party setting . 53
6.3 Simultaneous session initiation 54
6.4 Deniability . 55
6.5 Application to other settings 55

7 Implementation 57
7.1 Original implementation . 57
7.2 Tests . 59
7.3 Extending the protocol . 63

7.3.1 Presentation of the modifications 63
7.3.2 Test results . 65

7.4 Overhead introduced by authentication steps 67
7.4.1 Space and computation overhead 67
7.4.2 Benchmarking the space overhead 68

7.5 Observations on the official implementation 70
7.5.1 Design of an attack breaking post-compromise security 70
7.5.2 Explanation behind this weaker property 71
7.5.3 Fixing post-compromise security 72

8 Conclusion 73

Bibliography 75

iv

Chapter 1

Introduction

The establishment of a secure communication channel over an adversarially-
controlled network between two parties can typically be separated into two
steps: first parties execute a key exchange protocol with long-term asym-
metric keys, whose public part is publicly distributed, to derive a shared
secret. This initial shared secret is then used to open a session in which
parties use symmetric cryptography to get a secure channel [22].

One such protocol is Signal [17], which uses the X3DH protocol [19] as its
initial key exchange to share an initial secret and then the Double Ratchet
protocol to exchange messages securely. Signal is a messaging protocol –
implemented in the Signal app itself, in Facebook Messenger [10] and What-
sapp [27] – the latter having several billions of users [26].

A unique property of messaging protocols is that sessions have a long life-
time, which can typically live for several months or years. This is a substan-
tial problem as the presence of a Man-in-the-Middle (MitM) attacker could
break security for the whole duration of the session if the attacker remains
undetected [9].

Moreover, when detecting a compromised session, the standard response
would be to close the session and open a new one. However, this does not
necessarily restore security in the event of a long-term secret being compro-
mised.

This paper addresses both issues, and derives a solution for detecting an
adversary modifying a session between two users and forcing the adversary
to reveal their knowledge of a long-term secret, which enables parties to
refresh their long-term keys if compromised.

1

1. Introduction

1.1 Related work

The Signal protocol has been designed and widely deployed before any se-
curity analysis was given. It is only years later that its creators, Marlinspike
and Perrin, published a detailed description of both components of the Sig-
nal protocol:

• the X3DH (eXtended Triple Diffie-Hellman) protocol [19], the initial
key exchange,

• the Double Ratchet protocol [17], which is at the core of the end-to-end
encryption of Signal.

The very first analysis of Signal comes from Cohn-Gordon et. al [6]. They
present an in-depth formal security analysis of the specific Signal protocol,
based on its implementation due to the lack of formal specification. They
focus on the Multi-Stage Key Exchange protocol aspect of Signal and define
security definitions in term of key indistinguishability. The proposed model
evaluates a tree of stages, which represents the various chains in Signal. That
paper proves that the Signal protocol is secure according to the given secu-
rity definition, from which usual properties such as forward secrecy or post-
compromise security are derived. While the threat model is quite strong
(capturing security against a network active adversary which can compro-
mise long-term and medium-term keys as well as devices’ states), the ad-
versary is constrained using ‘freshness’ predicates. Long- and medium-term
keys are supposed authenticated out-of-band: key impersonation attacks
like the one described in [13] are excluded, as well as MitM attacks follow-
ing state corruption as the paper focuses exclusively on keys exchanged by
both parties.

Following those publications, there has been numerous analysis of the Sig-
nal protocol. Bellare et. al [2] have studied the security of single, one-side
ratcheting. The considered protocol is a simplification of Signal. In the se-
curity game, the receiver is never corrupted and does not need to update
its state. This allows the authors to come up with a simple secure solution
but which does not extend well to the complete Signal protocol. However,
Bellare et. al offer one of the first formalisation of the security properties of
end-to-end communication. They also separate Ratcheted Encryption from
Ratcheted Key-Exchange, by reducing the analysis of Signal’s security to the
security of its keys.

Concentrating on the Double Ratchet part of the Signal protocol, Alwen et.
al [1] provide a formalised definition of ‘secure messaging’, which captures
forward secrecy, post-compromise secrecy and immediate decryption. They
also build a generic Signal protocol which aligns with their definition of se-
cure messaging, from which the actual Signal protocol can be implemented.
They exclude from their analysis the X3DH key exchange mechanism, by

2

1.2. Contributions

assuming parties share a secret from the beginning. Furthermore, the defi-
nition of post-compromise security is quite restrictive as it forces the attacker
to remain completely passive after compromise. As a session is considered
established and long-term keys are not used in the Signal protocol beyond
first key exchange, compromise of long-term secrets is not relevant in that
context.

As the definitions of post-compromise security given by [6] and [1] both fo-
cus on secrecy, Dowling and Hale [8] offer a new security model including
post-compromise security for authentication. They prove the original fin-
gerprinting protocol is not secure as an attacker can compromise a device
and gain an active MitM position by making the states of both devices di-
verge. Minor modifications to the protocol can provide a solution to restore
security. This solution creates fingerprints derived from the Key Derivation
Function (KDF) at the core of the Double Ratchet protocol. However authen-
tication still happens out-of-band when parties meet, with the possibility of
having an adversary controlling the phone outputs, i.e. the adversary can
display wrong information on the device or input information instead of
the user.

1.2 Contributions

While Dowling and Hale’s paper [8] use an out-of-band channel for verify-
ing authenticity of parties in a session, this paper offers protocol modifica-
tions to detect if an adversary is present by using the in-band channel. This
detection procedure is secure assuming the adversary has not compromised
a long-term secret.

Moreover, this paper presents an out-of-band detection step which coupled
with the previous modifications can reveal if the attacker has used a long-
term secret to avoid detection in-band. This allows users to know if their
long-term secret has been compromised so they can refresh it only if neces-
sary.

The protocol modifications have been implemented on top of the official
Java library for the Signal protocol. Concrete test sets show that the original
Signal implementation does not provide security, which is ensured with the
modifications presented. The paper also proposes a benchmarking analysis
of the computational and space overhead introduced by those modifications,
using a database of SMS messages and given different channel reliabilities
and conversation layouts.

3

1. Introduction

1.3 Report outline

The remaining of this paper is organised as follows. Section 2 presents the
original Signal protocol. Section 3 defines the security notion for detecting
adversaries and Section 4 modifies the Signal protocol presented in Section
2 to ensure security according to the definition given in Section 3. Security
of the modified Signal protocol is proven in Section 5. Section 6 evaluates
the limitations of the protocol defined in Section 4 and provides some ex-
tensions to overcome the encountered issues. Finally, Section 7 describes
the Java implementation of the protocol modifications, as well as the differ-
ent tests and benchmarking performed. Finally Section 8 summarizes the
contributions of this thesis.

4

Chapter 2

Signal protocol

This section gives an overview of the Signal protocol, inspired from [6].
Signal is an asynchronous messaging protocol, meaning it enables two par-
ties to communicate even if the receiver is offline when messages are sent.
It aims at providing end-to-end secure encryption, with specific security
properties such as forward secrecy and post-compromise security.

On a high level, the protocol consists of four distinct stages:

• Registration: users publish on a server their public key material, re-
ferred as pre-key bundle, composed of their public identity (long-term)
key, a medium-term key signed using the identity key and ephemeral
keys. More details are provided in Section 2.2.

• Session establishment: When one user (Alice) wants to open a session
with another (Bob), she fetches the corresponding pre-key bundle on
the semi-trusted server and uses it to derive a root key. When she sends
her first message to Bob, she attaches some public material with the
ciphertext so Bob can also derive the same root key. This root key is
used as an initial shared secret for the session. Details are provided in
Section 2.3.

• Asymmetric ratchet: when a user (Alice) receives a message from the
other (Bob) containing a new public ratchet key, she performs a Diffie-
Hellman computation combining the newly received public ratchet
key with her last private ratchet key, deriving a new root key and re-
ceiving chain key. She then generates a new ratchet key-pair, combines
the private part with the received public ratchet key to derive a new
root key and sending chain key. Section 2.4 provides more detailed
information.

• Symmetric ratchet: given the chain keys derived from the asymmetric
ratchet, users can derive message keys to encrypt or decrypt messages

5

2. Signal protocol

using an AEAD scheme. More details are provided in Section 2.5.

An overview of the Double Ratchet protocol (asymmetric and symmetric
ratcheting) can be found in Figure 2.2.

2.1 Notations

In the remainder of this paper, sessions are initiated by Alice who wants
to communicate with Bob. Signal is a complex protocol, involving different
stages and keys. This section presents notations used in this paper.

2.1.1 Cryptographic notations

This paper uses the following notations:

• x||y represents the concatenation of byte sequences x and y.

• DH(x, y) represents the shared secret output from an Elliptic Curve
Diffie-Hellman function involving keys x and y. x and y may repre-
sent one public and one private key to precise how the computation is
performed, or both public keys if this precision does not matter. In the
Signal protocol, the curve will either be the X25519 or X448 [15] elliptic
curve.

• KDF(x) represents the 32 bytes output of a HKDF algorithm [14] exe-
cution given the following inputs:

– input key material: F||x where F is a bytestring containing enough
0xFF bytes to get a correct input length,

– salt: null bytes sequence.

• SIGsk(x) represents an XEdDSA [16] signature of x produced with pri-
vate key sk. Verification is performed by using Vfypk(x, σ) where pk is
a public key and outputs 1 if the verification succeeds and 0 otherwise.

• x $←− Proc() signifies x is chosen at random from the image of pro-
cedure Proc. The distribution is determined by the procedure and is
uniform if not specified.

• x ∈R S means x is chosen uniformly at random from set S.

2.1.2 Stages and states

A session is divided in epochs: an epoch is a unidirectional stream of mes-
sages sent by one party, without receiving a reply from the other party.

6

2.2. Registration phase

Public key Private key Description
ipkA ikA A’s identity (long-term) key-pair

prepkB prekB B’s medium-term (signed) prekey pair
epkA ekA Ephemeral key pair for the initial handshake
rpkA

i rkA
i A’s ratchet key pair on epoch i

ski Root (state) key on epoch i
cki,j jth chain key on epoch i
mki,j Message key for message j of epoch i

Table 2.1: Keys used in the Signal protocol. If the public key is absent then the description is
of a symmetric key.

Epochs are numbered in increasing order1, such that even epoch numbers
belong to Alice sending messages and odd epoch numbers to Alice receiving
messages (recall Alice is defined as the initiator of the session). Inside an
epoch, messages are also monotonically increasing from 0. The current local
state of Alice in epoch i while sending or receiving message j is denoted as
πA

i,j. This local state does not includes long-term secret information, which
is stored in another set LTSA.

For Signal, at most one message is exchanged and accepted for an epoch i
and index j. The corresponding plaintexts are denoted ptU

i,j (for user U) and
the ciphertext ci,j.

2.1.3 Keys

Signal distinguishes several types of keys, summarized in Table 2.1. Keys
are written in italics and end with the letter k. For private/public key-pairs,
public keys end with pk and have the same prefix than their private counter-
part. If necessary, the user who generated the key is written in superscript
and the stage number in subscript.

There can be several ephemeral keys generated by each parties.

2.2 Registration phase

Each party P generates upon installation of the messaging application:

• a long-term identity key-pair (ipkP, ikP),

• a medium-term prekey pair (prepkP, prekP),

• multiple ephemeral key-pairs (epkP
(i), ekP

(i)).
1In the specification and the implementation, this is not the case and epochs are instead

referred by the public ratchet key chosen by the sender of the epoch. However epochs can
be numbered by integers increasingly, which simplifies the theoretical considerations.

7

2. Signal protocol

The public long-term key, the public prekey signed using the long-term
key and the ephemeral public keys are published on a server. Those keys
constitute the prekey bundle of party P. From time to time, each party adds
ephemeral keys and changes the medium-term key.

Ephemeral keys are to be used only once in the X3DH protocol. After use
they are discarded.

2.3 X3DH

When Alice wants to open a session with Bob, she fetches the pre-key bun-
dle Bob uploaded on the server during registration. She then generates an
ephemeral key-pair (epkA, ekA) and performs the following computations:

DH1 = DH(ikA, prepkB), DH2 = DH(ekA, ipkB),

DH3 = DH(ekA, prepkB), DH4 = DH(ekA, epkB)

The fourth computation is optional and depends whether there remains an
ephemeral key in Bob’s prekey bundle. A summary of performed Diffie-
Hellman computations is given on Figure 2.1.

Finally, Alice computes the initial shared secret:

sk0 = KDF(DH1||DH2||DH3||DH4)

Once again, the fourth value is not used if there is no ephemeral key in Bob’s
prekey bundle.

In her first message, Alice will include in the associated data (recall mes-
sages are encrypted using an AEAD scheme, which will be presented in
Definition 2.1) her identity public key ipkA, her ephemeral public key epkA

and an identifier for Bob to know which ephemeral key epkB has been used.
Upon receiving this first message, Bob will be able to compute the same
Diffie-Hellman shared secrets and finally compute the same initial shared
secret sk0 than Alice.

2.4 Asymmetric ratcheting

At the core of the Signal protocol is the Double Ratchet protocol. As the
name suggests, the protocol uses two ‘ratchets’, which are KDF chains. A
KDF chain holds an internal state, which can be initialised using a key. Then
by passing an optional input to the KDF chain, the internal state is updated
and an output value is produced thanks to a KDF.

To communicate, Alice and Bob both use 3 KDF chains: one root chain, one
sending chain and one receiving chain. Asymmetric ratcheting advances the

8

2.4. Asymmetric ratcheting

Alice Bob

prekB Prekey

ikA ikB Identity keys

ekA ekB Ephemeral keys

Figure 2.1: X3DH Diffie-Hellman keys. The dashed line is not used if there is no ephemeral key
in the pre-key bundle downloaded from the server.

root chain, whose outputs are used to initialise the sending and receiving
chains.

In this setting, we assume Alice and Bob share a secret ski. This secret value
is used as the internal state of both root KDF chains.

Asymmetric ratcheting is triggered when a user receives a message contain-
ing a new ratchet key. Let’s assume Bob receives a ciphertext from Alice
containing a new ratchet key rpkA

i .

Then Bob combines the newly received ratchet public key with his own
private ratchet key:

DHi = DH(rkB
i−1, rpkA

i)

If this is the first message from Alice, Bob uses his medium-term key as a
ratchet key: rpkB

−1 = prepkB.

Then Bob advances his root KDF chain by providing DHi as input. The
output is a chain key, which will be used to initialise his receiving KDF
chain.

ski+1, cki,−1 = KDF(ski||DHi)

He then discards his ratchet key, and generates a new ratchet key-pair
(rpkB

i+1, rkB
i+1). He performs the same operation as above to initialise his

sending KDF chain:
DHi+1 = DH(rkB

i+1, rpkA
i)

ski+2, cki+1,−1 = KDF(ski+1||DHi+1)

The generated ratchet key rpkB
i+1 will be included in the associated data (of

the AEAD scheme, see Definition 2.1) of every message sent from this point,
until he changes the key.

9

2. Signal protocol

To initialise her very first sending chain, Alice performs the second part of
the asymmetric ratcheting to derive her first sending chain, by using Bob’s
medium-term key as a ratchet key.

Both KDF root chains of Alice and Bob are synchronised (meaning they
have the same internal state). The Diffie-Hellman computations ensure they
provide the same inputs to their root chains, and therefore Alice’s sending
chains are synchronised with Bob’s receiving chains and vice-versa.

Figure 2.2 illustrates this exchange, and how asymmetric ratcheting is com-
bined with symmetric ratcheting to send messages.

2.5 Symmetric ratcheting

Symmetric ratcheting is triggered when a user wants to encrypt or decrypt
a message. Symmetric ratcheting assumes asymmetric ratcheting has been
performed and the sending or receiving chain has been initialised at some
point.

To derive a message key for encryption or decryption, a user advances their
receiving or sending KDF chain without providing any input. The output
of the KDF chain is the message key:

cki,j, mki,j = KDF(cki,j−1)

The message key is then used to encrypt (or decrypt) a message using a
symmetric AEAD scheme. The associated data contains the following infor-
mation:

• the public ratchet key of the sender;

• the message number;

• the total number of messages sent in the previous sending epoch;

• additional data identifying the session (identity keys, session version,
etc).

An AEAD scheme is defined as follows:

Definition 2.1 An AEAD scheme is a set of two algorithms (Enc, Dec):

• Enc takes as input a key k, associated data AD and a plaintext m and outputs
a ciphertext c $←− Enc(k, m, AD),

• Dec takes as input a key k, a ciphertext c and associated data AD and outputs
a plaintext m← Dec(k, c, AD).

10

2.6. Out-of-order messages

The AEAD scheme verifies the correctness property:

∀k ∈ K, ∀AD, m ∈ {0, 1}∗, Dec(k, Enc(k, m, AD), AD) = m

Dec may output a special symbol ⊥ which corresponds to a decryption error.

Symmetric ratcheting steps are the small KDF chains at the right of Figure
2.2.

As the sending chain of the sender is synchronised with the receiving chain
of the receiver thanks to the asymmetric ratchet, the index of the message in
the epoch ensures the same key is derived on both sides. The correctness of
the AEAD scheme thus ensures messages are correctly decrypted.

2.6 Out-of-order messages

As the message number (as well as its epoch) are sent alongside the mes-
sage in the associated data, a user receiving a message can deduce if some
message has been missed, and in that case can store the corresponding keys
to ensure decryption once the corresponding message arrives.

Such keys and message identifier are stored in a dictionary

MKSKIPPED : N×N→ K

(where K is the key space).

A parameter determines how long (in term of number of messages and
number of epochs) such keys are stored on the device before being erased2.

2In the official Signal implementation, a maximum of 2000 keys are stored in the state.
Keys older than 5 epochs are also automatically deleted.

11

2. Signal protocol

KDF

DH

sk0

Alice generates

rpkA
0 rkA

0

to Bob

From Bob

prepkB

sk1 ck0,−1

KDF

ck0,0

mk0,0

KDF

ck0,1

mk0,1

KDF

DH

rpkB
1

sk2 ck1,−1

KDF

ck1,0

mk1,0

Figure 2.2: Double ratchet overview, from Alice’s perspective. Asymmetric ratchet uses shared
secret (in red) and ratchet keys (in green) to produce next shared secret and chain key (in grey).
Symmetric ratcheting uses a chain key to produce the next chain key and a message key (in
blue). In epoch 0 Alice uses message keys to send messages and in epoch 1 to decrypt received
messages.

12

Chapter 3

Continuous Man-in-the-Middle
detection

This section presents and formalises a security model capturing the notion
of demonstrating knowledge of long-term secrets for asynchronous messaging
protocols. This security model takes the form of a security game in which
two honest parties communicate. They are in presence of an attacker who
has full control of the network and can compromise sessions as well as long-
term secrets in order to break the secrecy or authenticity of the session.
The attacker’s first objective is to break authenticity by injecting a message
without being detected by the communicating parties if they only use the
in-band channel. If users can use an out-of-band channel to detect some
session tampering, the attacker can still win if parties incorrectly guess if
the attacker knows a long-term secret.

3.1 High-level security definition

In messaging protocols such as Signal, an active attacker compromising a
session state may gain access to a MitM position, as stated in the original
Signal specification [18]:

The attacker could substitute her own ratchet keys via con-
tinuous active MitM attack, to maintain eavesdropping on the
compromised session.

Such a position breaks both secrecy and authenticity for the remainder of
the session. If such an attacker is discovered, the typical response would be
to close the session and reopen a new one. However this does not lock the
attacker out if they know the long-term secrets of parties. This means that
long-term keys also need to be refreshed in this event.

This section presents a security definition which enables users to detect

13

3. Continuous Man-in-the-Middle detection

MitM adversaries by using the in-band channel if they do not use long-term
secrets, and which forces the attacker to prove their knowledge of long-term
secrets if users use an out-of-band channel.

Given the possibility of attackers to disclose all secrets, an attacker could
impersonate parties and therefore the attacker is indistinguishable from the
honest peer from a user’s point of view. Therefore a winning condition for
the attacker is to be able to inject a message while remaining undetected by
honest parties in-band, without ever compromising a long-term secret.

The attacker has a second winning condition. Indeed, if a message is in-
jected (and different from a honestly produced message), then users can by
using an out-of-band channel compare their transcripts and deduce some
attacker is present. As stated in the introduction, the usual response is to
close the session, but to restore security parties need to know if they need to
refresh their long-term secrets. Such an operation is expensive and should
be avoided if not necessary. Indeed, changing a long-term secret would re-
quire to authenticate it (with out-of-band means) to every other peer, which
involves human interaction.

Therefore messaging schemes should implement an out-of-band detection
procedure, which uses an out-of-band channel to detect if an adversary is
present and knows a long-term secret. The attacker can win if parties make
the wrong decision. It means the out-of-band detection procedure should
verify the following properties:

• if an attacker compromises and uses a long-term secret, users should
be able to detect it (no false negatives);

• if the attacker does not disclose a long-term secret, parties should de-
cide that no long-term secret is compromised (soundness property).

The security definition is expressed through a game, in which an attacker
interacts with oracles simulating communication between two parties. In
this game, the attacker’s objective is to tamper with the communication, by
injecting at least one forged ciphertext, without parties being aware that this
ciphertext is not legitimate. Moreover, once parties meet, the attacker can
win the game if parties make an incorrect decision about the knowledge of
a long-term secret of the attacker.

In practice, this corresponds to the following scenario. Parties face a pow-
erful adversary who can corrupt the session state of one or both devices.
By corrupting a device, it can inject messages, pretending to be the other
party. As parties may not meet or compare messages for a long time, the
attacker wishes to remain undetected for as long as possible and retain its
MitM position.

14

3.2. Messaging scheme

An example of secure messaging scheme may compare messages and state
regularly, using long-term secrets to authenticate such messages. An at-
tacker wishing to remain undetected would be required to use long-term
secrets. That would be a proof of their knowledge of some long-term secret,
which will be discovered once parties meet and detect tampering.

This paper presents such a scheme in Section 4, whose security is proved in
Section 5.

In the following, Section 3.2 formally defines messaging schemes. Section
3.3 shows how the original Signal protocol presented in Section 2 fits this
definition of messaging scheme. Section 3.4 presents the formal security
game and Section 3.5 explains why the original Signal protocol is insecure.

3.2 Messaging scheme

This section defines formally messaging schemes. A messaging scheme
consists of several algorithms to create users (Register), initiate sessions
between them (InitState) and let them create and receive messages (Send

and Recv).

The definition supports an arbitrary number of users, but only two-parties
sessions (no group chat).

In addition to the four traditional messaging procedures, StartAuth is a
procedure which can be used to make a user require in-band authentica-
tion. This procedure can leave the state unchanged if the messaging scheme
does not support in-band authentication. Another additional procedure, De-
tectOOB, compares the states of participants in a session out-of-band and
decides if an adversary knowing a long-term secret is present.

Definition 3.1 (Messaging Scheme) A messaging scheme MS consists of six
probabilistic algorithms:

MS = (Register, InitState, Send, Recv, StartAuth, DetectOOB)

Those algorithms have the following signature:

• Register creates a user U and outputs long-term information and secret as
well as medium-term information and secret (LTIU , LTSU , MTIU , MTSU)

$←−
Register(),

• InitState takes as input the long- and medium-term secret of a user U, the
long-term information of a user V and optionally some medium-term infor-
mation for user V and creates an initial session state for U to communicate
with V: πU

$←− InitState(LTSU , MTSU , LTIV , MTIV),

15

3. Continuous Man-in-the-Middle detection

• Send takes as input the state πU and private long-term information LTSU of
the sender as well as a message m and outputs a new state, a ciphertext and a
message index (π′U , c, idx) $←− Send(πU , LTSU , m),

• Recv takes as input the state πU and long-term private information LTSU of
the receiver as well as a ciphertext c and outputs a new state, a plaintext and
an index (π′U , m, idx) $←− Recv(πU , LTSU , c),

• StartAuth takes as input a state πU and outputs a new state π′U
$←− Star-

tAuth(πU),

• DetectOOB takes as input two states πA and πB and outputs a bit d $←−
DetectOOB(πA, πB).

Recv may return an error (⊥) instead of the plaintext which signals the ciphertext
has not been accepted. Moreover, it may send a Close exception which signifies the
party closes the connection.

Register creates users, InitState creates a blank state for initiating a new
session. Send and Recv procedures allow to send and receive messages.
Private information is passed to Send and Recv to allow users to use long-
term secrets to create ciphertexts or modify their state.

To create a session between two users, the initial state should be created
with InitState. For protocols such as Signal in which the initiator retrieves
data from a server, this data can be included in the MTIV parameter.

States hold an auth flag which is initially set to None. StartAuth is a
special procedure which may set this flag to some value in the state of the
party, indicating the party wants to perform an authentication step. If no
authentication steps are implemented, as in the original Signal protocol, this
method does not change the state. The authentication step is passed once the
auth flags of both parties are back to None.

Note that in the remainder of this paper, if some variable x can be None,
then x can be considered as a boolean variable being True if x is not None
and False otherwise.

DetectOOB is another special procedure which simulates parties using an
out-of-band channel to compare their local states and decide if their com-
munication has been tampered with or not.

On top of Definition 3.1 which describes the syntax of a messaging scheme,
Definition 3.3 adds some semantics. Schemes studied in this paper satisfy
this correctness definition.

Before defining correctness for messaging schemes, the following definition
introduces the notion of matching states.

Definition 3.2 (matching states) If the following applies for two users A and B:

16

3.3. Signal is a messaging scheme

• Register outputs (LTIA, LTSA, MTIA, MTSA) for user A (resp. for user B),

• A creates her initial state πA ← InitState(LTSA, MTSA, LTIB, MTIB),

• B creates his initial state πB ← InitState(LTSB, MTSB, LTIA, None).

Then states πA and πB are matching.

This enables to define correct messaging schemes.

Definition 3.3 (Correct messaging scheme) Let MS be a messaging scheme. Let
also A and B be two users created with the Register algorithm. MS is correct if it
follows the following properties:

1. The index idx returned by Recv is efficiently computable from the ciphertext;

2. Indexes come from a totally ordered set;

3. If idx is returned by Send(πA, LTSA, m), then idx is greater than every index
corresponding to a message sent or received using πA;

4. Recv returns plaintext ⊥ if the ciphertext corresponds to an index which has
already been decrypted;

5. If Recv returns plaintext ⊥, then the state remains unchanged;

6. If states πA and πB are matching, A uses Send to create (π′A, c, idx) ←
Send(πA, LTSA, m) from a plaintext m, and B inputs this ciphertext to create
(π′B, m′, idx′)← Recv(πB, LTSB, c), then m = m′, idx = idx′ and states π′A
and π′B are still matching;

7. Given two matching states, if one of them has π.auth 6= None, then there
exists a finite number of calls to Send and Recv such that both states get
back to π.auth = None.

Property 1 makes immediate decryption possible. Properties 2 and 3 ensure
the indexes come from a totally ordered set and are distributed increasingly.
Moreover property 4 makes sure messages decrypted correspond to differ-
ent indexes. Property 5 ensures bad ciphertexts do not break the scheme.

Property 6 ensures this soundness property propagates to all messages in
the communication. Note that this soundness property is weaker than what
Signal offers, as immediate decryption is not included with this definition.
The reader may refer to [1] to get a more precise definition of soundness
property for the Signal protocol.

Property 7 rules out schemes where an authentication step can never end.

3.3 Signal is a messaging scheme

The Signal protocol presented in Section 2 matches the Definition 3.1 of a
messaging scheme.

17

3. Continuous Man-in-the-Middle detection

Indeed, the different algorithms of Definition 3.1 can be defined in a sim-
plified version as described on Figure 3.1. Notations on this figure follow
notations from Section 2.1.1 and use AEAD procedures from Definition 2.1.

Throughout the paper, procedures from the messaging scheme are in Small-
Capitals with CamelCase. Helper procedures are in TeletypeFont, also in
CamelCase. Oracles from security games are written sansSerif.

KeyGen is a special procedure sampling key-pairs uniformly at random. The
X3DH computations are not detailed here. The one in Connect-Send returns
a new root key and an index to identify which ephemeral key has been used.
The one in Connect-Recv returns the same root key. More details can be
found on Section 2.3.

The Recv-Epoch procedure takes a state as parameter, and returns true if
the state is currently in receiving epoch. Its actual implementation is not
explicitly shown, as it would require the state to hold more variables which
are not useful for this paper. The badIdx procedure verifies if the given pair
(i, j) is correct given the state, i.e. the pair has not already been decrypted
using this state and corresponds to the peer’s sending epoch.

There are two helper functions:

• AsymRtch takes as input a state, an optional private ratchet key and
a ratchet public key and performs one turn of the asymmetric ratchet
(modifying the state given as input). It uses the ratchet keys given in
parameter, and if no private ratchet key is provided, one is randomly
generated.

• IdxMgmt takes as input a state and associated data from a ciphertext.
It advances the state to derive the message key corresponding to this
associated data, by computing intermediary keys and storing them in
the state if necessary.

DetectOOB is voluntarily left unimplemented as there are no strategy in the
Signal protocol to detect compromise or tampering out-of-band. As shown
in Section 3.5, any implementation will result in an insecure scheme.

The implementation presented in Figure 3.1 is simplified. For instance, sig-
natures for prekey bundles are not included in the description. A full im-
plementation would require to verify those signatures at the beginning of
Connect-Send. Also the state should conserve some information on whether
the party is the initiator of the connection or not, in order to correctly imple-
ment the badIdx and Recv-Epoch functions. Simple checks for consistency
of parameters are also omitted, for instance for Send and Recv there is no
check to verify the state and the long-term secrets belong to the same user.

The Signal protocol verifies the correctness definition given in Definition 3.3.
Indeed, message indices are included in the associated data (i.e. appears in

18

3.3. Signal is a messaging scheme

1 procedure Register():
2 n ∈R N

3 (ipkP, ikP) $←− KeyGen()

4 (prepkP, prekP) $←− KeyGen()

5 ∀i ∈ J1, nK, (epkP
(i), ekP

(i))
$←− KeyGen()

6 MTIP ←
(

prepkP, epkP
(1), ..., epkP

(n)

)
7 MTSP ←

(
prekP, ekP

(1), ..., ekP
(n)

)
8 return (ipkP, ikP, MTIP, MTSP)

1 procedure StartAuth(πP):
2 return πP

1 procedure
InitState(LTSU , MTSU , LTIV , MTIV):

2 if MTIV :
3 return

Connect-Send(LTSU .ikU , LTIV , MTIV)

4 πU ← {LTIV : LTIV , MTSU : MTSU}

5 return πU

1 procedure Send(πU , LTSU , m):
2 if Recv-Epoch(πU):
3 πU

$←−
AsymRtch(πU , None, πU .rpkV)

4 (πU .i, πU .jU)← (πU .i + 1, 0)

5 else:
6 (πU .ckU , πU .mk)← KDF(πU .ckU)

7 πU .jU ++

8 AD← πU .AD∪
{(πU .i, πU .jU), πU .tot, πU .rpkU}

9 πU .AD← ∅

10 c $←− Enc(πU .mk, m, AD)

11 return (πU , (c, AD), (πU .i, πU .jU))

1 procedure Recv(πU , LTSU , c):
2 π′U ← πU

3 (c, AD)← c

4 if πU .MTSU :
5 π′U ←

Connect-Recv(LTSU .ikU , πU .MTSU , πU .LTIV , AD)

6 try:
7 IdxMgmt(π′V , AD)

8 except BadIdx:
9 return (πV ,⊥, (AD.i, AD.j))

10 m← Dec(π′V .mk, c, AD)

11 if m == ⊥:
12 return (πV ,⊥, (AD.i, AD.j))

13 return (π′V , m, (AD.i, AD.j))

Figure 3.1: Simplified implementation of the Signal protocol following the messaging scheme
definition. Auxiliary functions are defined on figure 3.2

19

3. Continuous Man-in-the-Middle detection

1 procedure
Connect-Send(ikU , LTIV , MTIV):

2 πU ← {auth : None,
i : −1, jU : 0, jV : 0, tot : 0, LTIV : LTIV}

3 (epkU , ekU) $←− KeyGen()

4 (πU .sk, kid) $←−
X3DH(ikU , LTIV , MTIV , ekU)

5 πU .rpkV ← MTIV .prepkV

6 πU .AD← (epkU , kid)

7 return πU

1 procedure
Connect-Recv(ikU , MTSU , LTIV , AD):

2 πU ← {auth : None,
i : −1, jU : 0, jV : 0, tot : 0}

3 πV .sk ← X3DH(ikU , MTSU , LTIV , AD)

4 πU .rkU ← MTSU .prekU

5 return πU

1 procedure AsymRtch(πP, rk, rpk):
2 if ¬rk:
3 (πP.rpkP, πP.rkP) $←− KeyGen()

4 rk ← πP.rkP

5 tmp← DH(rk, rpk)

6 (πP.sk, πP.ckP)← KDF(π.sk||tmp)

7 (πP.ckP, πP.mk)← KDF(πP.ckP)

8 return πP

1 procedure RecordSkipped(πU , AD):
2 if AD.i > πU .i:
3 πU .tot← πU .jU

4 while πU .jV < AD.tot:
5 (πU .ckU , πU .mk)←

KDF(πU .ckU)

6 πU .jV ++

7 πU .MKSKIPPED[(πU .i, πU .jV)]←
πU .mk

8 πU ←
AsymRtch(πU , πU .rkU , AD.rpk)

9 (πU .i, πU .jV)← (AD.i, 0)

10 while πU .jV < AD.j:
11 (πU .ckU , πU .mk)← KDF(πU .ckU)

12 πU .jV ++

13 πU .MKSKIPPED[(πU .i, πU .jV)]←
πU .mk

1 procedure IdxMgmt(πU , AD):
2 if badIdx(πU , (AD.i, AD.j)):
3 raise BadIdx

4 if (AD.i, AD.j) ∈ πU .MKSKIPPED:
5 πU .mk ←

πU .MKSKIPPED.pop((AD.i, AD.j))

6 else:
7 RecordSkipped (πU , AD)

8 (πU .ckU , πU .mk)← KDF(πU .ckU)

9 πU .jV ++

Figure 3.2: Auxiliary functions used in the Signal implementation.
20

3.4. Formal security game

cleartext), therefore are efficiently computable. They come from N2 which
is a totally ordered set with the lexicographical order. The index manage-
ment for Signal (described in detail in [1] for instance) verifies property 3.
The badIdx method explicitly performs the check from property 4, and by
reading the implementation of Recv, the reader can make sure every time
⊥ is returned for the plaintext the state remains unchanged.

The soundness property 6 can also be proven. The reader may refer for
instance to [2] to understand why keys are correctly derived and the Signal
protocol is sound. This was also quickly explained in Section 2.

In this original version, states are never authenticating (i.e. π.auth is always
None). Therefore property 7 is immediate.

3.4 Formal security game

This section presents the formal security game corresponding to the notion
briefly presented in Section 3.1.

In this game, the attacker is active on the network and can corrupt devices,
i.e. disclose their current state. It can also disclose long-term secrets, which
activates a flag signifying that the attacker knows them.

The attacker has two ways of winning the game: it can either break au-
thenticity without being detected or make a user incorrectly decide that the
attacker knows long-term secrets.

For the first winning condition, the attacker needs first to tamper with the
communication, i.e. to inject a forged message to one party which will be
successfully decrypted. Then it needs to launch the in-band detection proce-
dure using the StartAuth function (which is accessible through an oracle)
and be undetected by this procedure. In practice, this procedure may be
triggered automatically and periodically during the communication.

When the attacker stops, an out-of-band detection step is triggered. If the
attacker successfully injected a message and passed an authentication step,
but the out-of-band detection does not detect an adversary knowing a long-
term secret, the adversary wins.

The second winning condition is triggered if the out-of-band detection step
detects an adversary knowing a long-term secret but the adversary never
used the compromise oracle.

The security game creates two users, Alice and Bob, and lets the attacker
interact with them using oracles to simulate a communication. Because the
final objective is to detect long-term secret compromise, the long-term se-
crets are distributed honestly to parties. However medium term secrets are
only generated and can be tampered with.

21

3. Continuous Man-in-the-Middle detection

The attacker has access to the following oracles:

• createState-A /B creates the initial state of a party given some prekey
bundle provided by the attacker,

• transmit-A /B takes a plaintext as input and simulates one party send-
ing it,

• deliver-A /B takes a ciphertext as input and simulates one party receiv-
ing it,

• corruptState-A /B returns the current state of the party,

• auth-A /B makes one party request authentication,

• corruptLTS-A /B leaks the long-term secret of the party.

Those oracles are defined on Figure 3.3. The game itself and the security
notion are defined in the following definition.

Definition 3.4 (Detection game) Let A be a probabilistic polynomial-time ad-
versary against a messaging scheme MS. It has access to oracles defined on Figure
3.3. The security game is the following:

1 game Detection-Game(A, MS):
2 (LTIA, LTSA, MTIA, MTSA)

$←− MS.Register()

3 (LTIB, LTSB, MTIB, MTSB)
$←− MS.Register()

4 πA, πB ← None, None

5 win← False, closed← False, compromised← False

6 transA, transB ← ∅, ∅

7 lastrecvA, lastrecvB, authidx← 0, 0, 0

8 injA, injB, authinj, passinj← ∅, ∅, ∅, ∅

9 AoraclesMS(LTIA, LTIB, MTIA, MTIB)

10 detectTrial()

11 return win∧ ¬closed

detectTrial is defined in Algorithm 2.

The advantage of adversary A against the messaging scheme MS in the tampering
game is:

Adv(A) = Pr [Security-Game(A, MS) = 1)]

The messaging scheme MS is said secure if for all adversaries A, Adv(A) is negli-
gible.

22

3.4. Formal security game

The game defines internal variables to keep track of the communication and
of the adversary’s actions:

• πA, πB are the states of both legitimate users.

• win is a flag representing if the adversary has met the winning condi-
tions.

• closed is a flag representing the state of the connection (if it is closed or
not).

• compromised records if the adversary has compromised either of the
parties’ long-term secrets.

• transU is a set holding ciphertexts created by a legitimate user U.

• lastrecvU represents the highest message index received by user U.

• authidx is an index used during authentication steps which represents
the index of the last message to authenticate.

• injU is a set containing messages injected to user U (which user U
accepted) that are yet to be authenticated.

• authinj is a set used during authentication steps which holds all in-
jected messages currently being authenticated.

• passinj is a set containing all injected messages that successfully passed
authentication.

Those variables are updated in the oracles defined in Figure 3.3.

Figure 3.3 shows the implementation of oracles available to the adversary
in the game. Each oracle presented on this figure has a counterpart for the
other party, which is omitted in the figure. The figure shows the oracles
with Alice sending messages and Bob receiving them.

transmit-A /B is a wrapper around Send, which records ciphertexts created
legitimately by users by storing them in the trans sets (see line 8 of transmit-A
on Figure 3.3).

Similarly, deliver-A /B is a wrapper around Recv. If decryption happens
correctly (i.e. the message is accepted), the oracle checks if the message is le-
gitimate, i.e. is in the corresponding trans set. If that is not the case, it means
that the message has been successfully injected and is therefore added to
the inj set (see lines 11 and 12 of deliver-B on Figure 3.3). It also manages
lastrecvB (see lines 5 and 6 of deliver-B on Figure 3.3).

The lines 4 to 7 in transmit-A in Figure 3.3 prevent a trivial attack from
the attacker. For this attack, the attacker could inject some messages to a
party and make their peer generate the exact same message. That way the
message would be considered by the game as injected, but will be honestly

23

3. Continuous Man-in-the-Middle detection

1 procedure createState-A(MTI):
2 assert(¬πA)

3 πA
$←−

InitState(LTSA, MTSA, LTIB, MTI)

1 procedure corruptLTS-A():
2 compromised← True

3 return LTSA

1 procedure transmit-A(m):
2 assert(πA)

3 (πA, c, idx) $←− Send(πA, LTSA, m)

4 if c ∈ injB ∪ authinj∪ passinj:
5 injB ← injB \ {c}

6 authinj← authinj \ {c}

7 passinj← passinj \ {c}

8 transB.append(c)

9 return c

1 procedure deliver-B(c):
2 assert(πB)

3 try:
4 (π′B, m, idx) $←− Recv(πB, LTSB, c)

5 if m 6= ⊥∧ idx > lastrecvB:
6 lastrecvB ← idx

7 if ¬πB.auth∧ π′B.auth:
8 authinj← authinj∪ {c ∈

injB|c.idx ≤ authidx}

9 CheckAuthStepPassed()

10 πB ← π′B

11 if c /∈ transB ∧m 6= ⊥:
12 injB[idx]← c

13 return m

14 except Close:
15 closed← True

1 procedure corruptState-A():
2 if πA:
3 return πA

4 return MTSA

1 procedure auth-A():
2 assert(lastrecvA >

0∧ ¬πA.auth∧ ¬πB.auth)

3 πA
$←− StartAuth(πA)

4 authinj, authidx← injA, lastrecvA

Figure 3.3: Oracles in the security game accessible by the adversary. The MS. prefixes for
functions of the messaging scheme are omitted. The CheckAuthStepPassed function is defined
in Algorithm 1. Each oracle has a counterpart whose implementation is similar by swapping A
and B in the implementation.

24

3.4. Formal security game

generated later and therefore the injected message is the same as a legitimate
ciphertext. Therefore those ciphertexts are removed from injected sets.

This attack is excluded from the winning conditions, as there is no real
breach of authenticity as the attacker only injects messages that get honestly
generated.

The attacker can require one party to start an authentication step thanks
to the auth-A /B oracles. This oracle can only be called when no parties
are currently authenticating (with the ¬πA.auth∧ ¬πB.auth condition). This
condition is enforced by the game to restrict the adversary from starting an
authentication step if one is already ongoing. In practice, this condition can
be enforced by messaging schemes by scheduling authentication steps in
advance.

When Alice starts an authentication step, authinj is filled with all messages
that were injected to her. Also, the index authidx is set to the highest index
amongst messages she has received. Messages authenticated will be those
with index lower than authidx.

When Bob receives the first authentication message, all injected messages
to Bob with index lower than authidx are added to authinj. This is what
happens in lines 8 and 9 of deliver-B on Figure 3.3.

Whenever the adversary calls deliver-A /B, the CheckAuthStepPassed func-
tion is called (defined in Algorithm 1). This function checks if the adversary
has successfully injected a message and passed an authentication step. In
that case, it adds the injected messages that were successfully authenticated
in passinj and removes them from authinj and inj sets.

1 procedure CheckAuthStepPassed():
2 if authinj 6= ∅ ∧ ¬πA.auth∧ ¬πB.auth:
3 passinj← passinj∪ authinj
4 injA ← injA \ authinj
5 injB ← injB \ authinj
6 authinj← ∅
Algorithm 1: CheckAuthStepPassed checks if the adversary succeeded
in injecting a message which passed an authentication step.

More precisely, the CheckAuthStepPassed function performs two checks:

• it checks if authinj is not empty. This set contains messages successfully
injected by the adversary which are in the authentication process or
were already authenticated.

• it also checks if π.auth is None for both parties, which means that no
authentication step is currently happening.

25

3. Continuous Man-in-the-Middle detection

If both conditions are met, this means that the attacker has successfully
injected a message which has been authenticated (as it is in authinj but there
is no authentication happening).

The win flag can only be set to True in the detectTrial function, which is
defined on Algorithm 2. This happens either if parties output True to the
out-of-band detection step but the long-term secret was not compromised
or if they output False but communication was successfully tampered with
and an authentication step passed.

In this game, the detectTrial function is called when the adversary stops.
This strengthens the adversary by allowing them to choose the optimal mo-
ment to call the function (while in practice, this happens when users decide
to perform the check out-of-band which may be at any point during the
communication).

1 procedure detectTrial():
2 assert(πA ∧ πB ∧ ¬πA.auth∧ ¬πB.auth)
3 d← DetectOOB(πA, πB)
4 if d∧ ¬compromised:
5 win← True
6 elif ¬d∧ passinj 6= ∅:
7 win← True
Algorithm 2: Out-of-band detection step performed at the end of the
game.

3.5 Signal (in)security

Signal fails to meet the security definition of the security game defined in
Definition 3.4 because the post-compromise security property guaranteed by
the protocol only concerns privacy, but not authentication. In other words,
an attacker compromising the state can impersonate parties and no mecha-
nism prevents that if parties do not have access to an out-of-band channel.

Concretely, the following attacker wins the game with probability 1.

26

3.5. Signal (in)security

Proposition 3.5 Let A be the following adversary:

1 attacker A(LTIA, LTIB, MTIA, MTIB):
2 m0, m1 6= m′1, m2 ∈R {0, 1}∗

3 createState-A(MTIB)

4 createState-B(None)

5 c0
$←− transmit-A(m0)

6 deliver-B(c0)

7 c1
$←− transmit-B(m1)

8 (c1, AD1)← c1

9 πA ← corruptState-A()

10 tmp← DH(AD1.rpkB, πA.rkA)

11 (, ck)← KDF(πA.sk||tmp)

12 (, mk)← KDF(ck)

13 c′1
$←− Enc(mk, m′1, AD1)

14 deliver-A((c′1, AD1))

15 auth-A()

16 c2
$←− transmit-A(m2)

17 deliver-B(c2)

If the messaging scheme MS of Definition 3.4 is the Signal protocol as described
in Section 2 (and whose simplified implementation is given in Section 3.3), then
attacker A wins the game with probability 1.

Proof The proof is quite straightforward. First the attacker opens a legiti-
mate session between both users and uses transmit-A and deliver-B to send a
message from Alice to Bob. Then, using transmit-B, the attacker makes Bob
create message 0 of epoch 1 for plaintext m1.

However, instead of delivering the created ciphertext, the attacker drops it
and forges her own ciphertext instead. To do so, she corrupts the local state
of Alice using corruptState-A and uses the private ratchet key rkA of Alice
and the shared root key sk to derive a valid message key.

Indeed, by looking at the implementation of the Recv procedure on figure
3.1, the computations performed by the attacker lead to the same message
key than the ones performed by Alice once she receives c′1 when the attacker
calls deliver-A.

27

3. Continuous Man-in-the-Middle detection

Because c1 and c′1 correspond to different plaintexts, and because of the
correctness of the Signal protocol, c1 6= c′1, which means (c′1, AD1) /∈ transA.

Finally, the attacker calls auth-A. As (c′1, AD1) has been successfully injected,
(c′1, AD1) ∈ injA ⊂ authinj. Then the attacker transmits one message from
Alice to Bob. When Bob receives the message, CheckAuthStepPassed is
called. As StartAuth does not change the state, both conditions authinj 6= ∅
and ¬πA.auth∧ ¬πB.auth are satisfied, and therefore (c′1, AD1) ∈ passinj.

When detectTrial is called, the attacker wins whatever the implementa-
tion of DetectOOB is. Indeed, if DetectOOB outputs d = 1, then as A
never compromised a long-term secret, compromised is False and therefore
the attacker wins. On the other hand, if DetectOOB outputs d = 0, then as
passinj is not empty the attacker also wins the game.

Thus the attacker wins with probability 1. �

28

Chapter 4

Modified Signal protocol

This section presents modifications to the Signal protocol. Those modifica-
tions transform the original Signal protocol to a new protocol whose objec-
tive is to detect, without using any out-of-band channel, a breach of authen-
ticity for active adversaries who control the network and may corrupt de-
vices. Only adversaries knowing a long-term secret should be able to avoid
detection. Therefore if parties later use an out-of-band channel and discover
some authenticity issue which has not been detected by the protocol, they
can deduce the adversary knows a long-term secret.

Signal is an asynchronous protocol running on a potentially lossy channel.
This means that sent messages may not be received. Therefore only mes-
sages modified or injected by the adversary are relevant for detection. Such
an action is called tampering with the communication in this paper.

Adversaries which can modify the state of a party, even in case of compro-
mise, are excluded.

4.1 Modification overview

The new protocol extends the Double Ratchet protocol to add some authen-
tication steps in the asymmetric ratchet. Authentication steps may happen
regularly at defined epochs in a session. Users might also initiate authenti-
cation steps.

In those authentication steps, long-term secrets are involved. In the existing
Signal protocol, the long-term secret of a user consists of their private iden-
tity key. The modified protocol introduces a new type of long-term secret,
which is a signing key sigkU . In practice, the identity key is already reused
to sign the medium-term public key, and therefore an implementation may
reuse the identity key as a signing long-term key. This additional key is
introduced to formally prove security. Signing keys have the same setting

29

4. Modified Signal protocol

as identity keys: it is assumed that they define the identity of the generator
and are distributed honestly.

The objective of an authentication steps is dual:

1. to convince parties that they are communicating with the holder of
their peer’s private key,

2. to detect tampering with messages since the last authentication step.

To that end, each party sends their own view of the communication since the
last authentication step. This additional information is transmitted on the
usual channel used by the Signal protocol. It is included alongside regular
messages exchanged between users.

In order to maintain forward secrecy, the additional information derives
from ciphertexts, as ciphertexts are public and already known to a potential
adversary. To save space, intermediate computations compress those cipher-
texts as they are sent or received. Those intermediate computations and an
authentication step are illustrated on Figure 4.1.

Adversaries having disclosed long-term secrets can avoid detection by au-
thentication steps. However they require to use the disclosed long-term se-
crets to avoid detection and therefore prove their knowledge of a long-term
secret, which may be detected with an out-of-band channel later.

4.1.1 Recording ciphertexts

In an authentication step, parties wish to compare their view on messages
they have received. They want to know if they agree on the transcript of ci-
phertexts received. The order in which messages are received is not relevant
as reordering may be caused by the unreliable channel. Ciphertext indices
make sure both parties have the final same view of the conversation.

Plaintexts are the relevant information for parties. However, sending plain-
texts in an authentication step would breach forward secrecy, as an attacker
compromising the state during the authentication step would be able to de-
crypt older messages.

Therefore, authentication steps transmit a transcript of ciphertexts received
and sent since the last authentication step. Ciphertexts are public knowl-
edge, therefore sending them would not break forward secrecy. Moreover,
a ciphertext includes the message epoch and number in cleartext, which
makes it easy to order them. If every ciphertext received corresponds to a
sent ciphertext, then there has been no tampering.

Sending during an authentication step the transcript of ciphertexts as such
would introduce a huge overhead, as a certain number of ciphertexts would

30

4.1. Modification overview

need to be transmitted alongside the regular ciphertext. I also requires stor-
age space to save every ciphertext between authentication steps.

Thus, instead of storing ciphertext as such, parties compute hashes of those
ciphertexts and store them in a dictionary, with the index corresponding to
the message epoch and number. Those hashes are then combined during
the authentication step to be sent to the other party.

More specifically, at every step of the symmetric ratchet, each user U com-
putes and stores the following hash:

HU
i,j = H

(
cU

i,j

)
where H is a hash function and cU

i,j is the ciphertext corresponding to message
j sent or received in epoch i by user U.

Hash functions are defined more precisely in Definition 5.1.

This corresponds to the computations HU
i,j performed by each party on Fig-

ure 4.1.

4.1.2 Authentication steps

The computations from the previous section are used in authentication steps
which are described in this part.

To guarantee security, authentication steps should happen regularly in the
Signal protocol. The scheduling of authentication steps is left to developers.
An authentication step is a 3-way protocol and therefore requires 3 epochs
to be completed. In the following, an authentication step is described with
Alice sending the first authentication message.

If authentication information is missing from a message while it should
be included, then parties should dismiss the message. For instance, if an
authentication step starts at epoch i, then all messages from epoch i to i + 2
must hold authentication information. If that is not the case, parties need
to discard those ciphertexts. If developers define a specific schedule for
authentication steps, both parties can be aware of when an authentication
step is supposed to happen.

During an epoch of an authentication step, the sender includes the informa-
tion described below in every message they send to their peer. That way,
the peer receives at least once the authentication information. If they do not
receive it, it means no message from this epoch has been received and thus
the epoch does not increase.

This additional information can be included as a header of messages. This
header can be encrypted as described by section 4 of [17]. Header encryption

31

4. Modified Signal protocol

uses additional header keys which are beyond the scope of this paper. In this
paper, the additional information is displayed as an addition to the plaintext
and is therefore encrypted by the message keys.

In the first epoch, Alice sends the following additional information:

• the indexes of messages present in MKSKIPPEDA, denoted SKIPPEDA,

• the index of the most recent message she has received from Bob, de-
noted authidx,

• a signature SIGsigkA((authidx, SKIPPEDA))

This allows Bob to know which messages Alice wants to authenticate. When
Bob receives this message, he first checks the signature using Alice’s signing
public key. If it fails, Bob closes the connection. In case of success, Bob
computes the following hash:

HB = H
(

NB||HB|| ||(i,j)∈IB
HB

i,j

)
with H a hash function, HB the previous hash he computed in his last authen-
tication step (or ε if this is the first authentication step). The concatenation
happens in lexicographic order over IB, the set of all messages sent and
received by Bob since last authentication step until message authidx, exclud-
ing messages with index in SKIPPEDA. NB is a counter used to number the
authentication steps Bob has completed in this session.

The first message potentially in IB is the message following authidx of the
previous authentication step.

The only requirement is that authentication steps should not overlap, and
parties must wait for the current authentication step to finish before starting
the next one. This ensures at least two epochs pass before a new authenti-
cation step is triggered, thus letting all parties know which one is the first
message to authenticate, even if it has been dropped.

When the next epoch arrives (with Bob sending messages), Bob sends along
the following information:

• SKIPPEDB,

• SIGsigkB((HB, SKIPPEDB)).

When Alice receives Bob’s message, she extracts the list SKIPPEDB and com-
putes the following hash:

HA = H
(

NA||HA|| ||(i,j)∈IA
HA

i,j

)
Once again, the concatenation happens in lexicographic order and IA is the
set of messages sent and received by Alice between the last message authen-
ticated and message authidx, excluding messages in SKIPPEDB.

32

4.1. Modification overview

c0,0HA
0,0 ← H(cA

0,0) HB
0,0 ← H(cB

0,0)

Alice Bob

c0,1HA
0,1 ← H(cA

0,1)

c0,2HA
0,2 ← H(cA

0,2) HB
0,2 ← H(cB

0,2)

SKIPPEDB = {(0, 1)}
c1,0HA

1,0 ← H(cA
1,0) HB

1,0 ← H(cB
1,0)

c2,0HA
2,0 ← H(cA

2,0)

c1,1HA
1,1 ← H(cA

1,1) HB
1,1 ← H(cB

1,1)

c1,2 HB
1,2 ← H(cB

1,2)

c2,1HA
2,1 ← H(cA

2,1) HB
2,1 ← H(cB

2,1)

SKIPPEDB = {(0, 1), (2, 0)}
c3,0HA

3,0 ← H(cA
3,0) HB

3,0 ← H(cB
3,0)

c4,0 HB ← H(0||HB
0,0||HB

0,2||HB
1,0||

c5,0

c6,0

SKIPPEDA = {(1, 2)}

HB
1,1||HB

2,1||HB
3,0)

HA ← H(0||HA
0,0||HA

0,2||HA
1,0||

HA
1,1||HA

2,1||HA
3,0)

last message: (3, 0)

{(0, 1), (2, 0)},
SIGsigkB(HB||{(0, 1), (2, 0)})

(3, 0), {(1, 2)},
SIGsigkA((3, 0), {(1, 2)})

SIGsigkA(HA)

Figure 4.1: An example authentication step. The actual authentication step is performed
during epochs 4 to 6, with authenticated messages from epoch 0. Additional data sent for those
messages is included below arrows. For epochs 4 to 6, Hi,j hashes are still computed by both
parties, but they are omitted in this graph as they concern the next authentication step.

Alice then checks the signature received from Bob, using Bob’s public sign-
ing key, on data (HA, SKIPPEDB). If it is not valid, she closes the connection.
Otherwise, in the third epoch she sends a signature SIGsigkA(HA).

When Bob receives it, he checks the signature’s validity on HB using Alice’s
signing public key. If it is invalid, he closes the connection.

If both parties reach this point without closing the connection, then they
have passed the authentication step.

On Figure 4.1, authentication steps correspond to epochs 4 to 6.

33

4. Modified Signal protocol

4.2 Out-of-order messages

Signal operates on an unreliable channel. Therefore messages can be dropped
or arrive out-of-order.

The above construction does not deal with late messages. A late message is a
skipped message such that an authentication step passed between the mo-
ment it was sent and the moment it is received.

This section presents two potential solutions for dealing with such messages.

The first solution, which is easier, is to simply discard keys for late messages
when an authentication step happens. In that case, such messages will never
be decrypted even if they do arrive later on. This diminishes the immediate
decryption property of the Signal protocol, as it is less resilient to delayed
messages.

The second solution makes the protocol more complex. Alice and Bob need
to maintain another dictionary, composed of messages that were skipped
in a previous authentication step, but arrived since then. They would hash
the corresponding ciphertexts and add them in the final hash computation.
Both Alice and Bob would send this dictionary to the other party, next to
SKIPPED messages.

More details on immediate decryption are provided in Section 6.1.

4.3 Protocol soundness

This section shows the correctness of the protocol, i.e. the protocol matches
Definition 3.3.

Properties 1 to 5 are easy to prove and come directly from the properties of
the original Signal protocol.

To prove the remaining properties, we first demonstrate that parties al-
ways receive authentication information if they continue to communicate.
Then we prove that they agree on the same set of messages to authenticate
(IA = IB with the notations of the previous section). We finally conclude by
showing the hashes computed are the same and each signature verification
succeeds.

Lemma 4.1 If no adversary tampers with the communication, then parties either
stay in the same epoch or receive the authentication information from their peer.

Proof The authentication information is sent along all messages in an epoch.
To advance to the next epoch, a party needs to receive at least one message
from their peer’s epoch, which includes the authentication information. In-
deed, if the authentication information is absent from a message when it

34

4.3. Protocol soundness

is supposed to be present, the message is discarded and the state remains
unchanged. Therefore parties cannot advance to the next epoch without re-
ceiving the authentication information. As ciphertexts are not modified or
injected in this context, the information received is legitimate. �

Lemma 4.2 If no adversary tampers with the communication, then computed sets
IA and IB by each party are equal: IA = IB.

Proof We begin the proof by proving by induction that for every authenti-
cation step, Alice and Bob agree on the same period of messages to authen-
ticate, where a period of messages is defined as the lower and upper bounds
on the chosen set of messages.

For the first authentication step, Alice and Bob agree on the lower bound:
it is message (0, 0). Then the initiator (for instance Alice) chooses the last
message she wants to authenticate (one of Bob’s message) and sends this
index to Bob. Bob receives this index correctly thanks to Lemma 4.1. So for
the first authentication step, Alice and Bob agree on the period of messages
to authenticate.

Let’s assume Alice and Bob agreed on the period of messages to authenticate
for the last authentication step. Then the first message to authenticate in this
authentication step is the message following the upper bound chosen in the
previous authentication step. As at least two epochs have passed between
this message and the authentication, both parties know which message it is
as the total number of messages in that epoch has been transmitted. As by
induction both Alice and Bob agreed on the upper bound for the last au-
thentication step, they now agree on the lower bound for this authentication
step.

Once again, the initiator (for instance Alice) chooses the last message to
authenticate and transmits her choice to Bob, so both agree on the upper
bound.

By induction, for every authentication step, Alice and Bob agree on the same
period of messages to authenticate.

Then for a given authentication step (with Alice as initiator), IB is the set
of message indexes that Bob has sent or received in this period, except for
messages that Alice did not receive (whose indices she sends in SKIPPEDA).
Therefore IB is the set of all messages in the agreed period that Bob sent and
which arrived to Alice, and all messages that Bob received.

On the other hand, IA is the set of message indexes that Alice has sent or
received, except for messages that Bob did not receive (sent in SKIPPEDB).
IA is the set of messages that Alice sent and Bob received and messages that
Alice received.

35

4. Modified Signal protocol

In both cases, IA and IB are the union of the set of messages received by Alice
and the set of messages received by Bob. This proves that IA = IB = I. �

Lemma 4.3 If no adversary tampers with the communication, then Alice and Bob
see the same number of authentication steps.

Given the notations of the previous section, this means that NA = NB when they
are used to compute hashes.

Proof As stated in the specification, authentication steps cannot overlap,
therefore Alice and Bob can clearly number their authentication steps.

As no adversary is present, they perform authentication steps with one an-
other and thus see the same number of authentication steps.

Therefore during authentication steps, NA = NB. �

Proposition 4.4 (Protocol soundness) If no adversary tampers with the commu-
nication, i.e. modifies or injects a ciphertext, then parties pass authentication steps.

Proof Parties pass authentication steps if the connection does not close dur-
ing the authentication step.

As no adversary is present, the first signature verification performed by Bob
always succeeds as the signed data is sent alongside the signature.

If no adversary is present, then ciphertexts received will be the same as
ciphertexts sent:

∀(i, j) ∈ R, cA
i,j = cB

i,j

(where R is the set of indices of received messages).

The hash function is deterministic, therefore:

∀(i, j) ∈ R, HA
i,j = H

(
cA

i,j

)
= H

(
cB

i,j

)
= HB

i,j

Because of Lemma 4.2, Alice and Bob agree on sets IA = IB = I ⊂ R.
Moreover ciphertexts are ordered correctly as the identification information
is included in the ciphertext and was stored accordingly.

If HA = HB, then by concatenating hashes the next computed HA and HB
also verify HA = HB. Indeed Lemma 4.3 proves that NA = NB, the induction
gives the previous HA = HB.

As HA = HB = ε at the beginning of the communication, by induction
hashes HA and HB computed in an authentication step are equal.

In the second epoch, Bob signs HB, SKIPPEDB. Because we have shown
HA = HB, Alice succeeds in verifying the signature on the data HA, SKIPPEDB

36

4.4. Detecting long-term secret compromise

she computes. In the third epoch, considering HA = HB, Bob also succeeds
in verifying the signature.

Finally, Alice and Bob have passed the authentication step. �

The above proposition confirms that messages are decrypted as expected
and that there is a way to end authentication steps, which proves properties
6 and 7.

4.4 Detecting long-term secret compromise

This section presents the protocol Alice and Bob use to detect if one long-
term key is compromised. In this setting, Alice and Bob have communicated
and passed at least one authentication step. The following protocol enables
them to decide if there has been a tampering with their communication.

At each authentication step, parties derive a hash HA or HB. Authentica-
tion steps succeed if the signatures over those hashes match. Users also
store a counter for each session to count the number of authentication steps
performed. When parties meet, they compare the last hash they have com-
puted, which they store in their state until next authentication step as well
as the number of authentication steps performed.

The core idea is that if the hash or the number of authentication steps per-
formed differs, it means that the communication has been tampered with,
and thus parties can deduce that an attacker is present. As all authentication
steps were successful, the attacker probably knows a long-term secret and
used it to avoid in-band detection (i.e. to pass authentication steps).

4.5 Authentication steps protocol as a messaging scheme

This section shows that the authentication step protocol described above
matches the messaging scheme definition from Definition 3.1. It is based on
the Signal implementation from Section 3.3, where procedures are modified
to include the changes described above.

There are four main modifications compared to the implementation from
Section 3.3:

• there is a new long-term key, which is the signing key,

• ciphertexts are hashed and hashes are stored in the local state,

• the StartAuth procedure now modifies the state, and if an authentica-
tion step is happening, Send and Recv procedure behave accordingly,

• the out-of-band detection procedure DetectOOB is implemented as
presented in Section 4.4 .

37

4. Modified Signal protocol

Those modifications require more state to be maintained locally by devices.
Therefore, in Connect-Send and Connect-Recv procedures, the line π ←
{...} adds the following elements to the state:

• ctxthashes : ∅ is a set used to store ciphertexts hashes;

• Hauth : ε is the hash computed during the last authentication step;

• lastauth : (0, 0) is the index of the last message authenticated;

• changedEpoch : True is a flag used to track if an authentication message
is the first one received or not;

• nauth : 0 is the authentication step counter.

The StartAuth procedure changes auth to some relevant information about
the authentication step as described on Figure 4.2. Also, Send and Recv pro-
cedures record the ciphertexts and manage the authentication steps. Those
changes are described on Figure 4.2. In order to highlight only the changes
for those procedures, as well as the change in Register, the implementation
is depicted as a wrapper around the original Signal procedures (referred as
Signal.Register, Signal.Send and Signal.Recv).

38

4.5. Authentication steps protocol as a messaging scheme

1 procedure Send(πU , LTSU , m):
2 authinfo← ∅

3 if πU .auth∧ πU .i ≥ πU .auth.startEpoch:
4 πU .changedEpoch← True

5 authinfo.σ $←− SIGLTSU .sigkU (πU .auth)

6 if πU .auth.step == 1:
7 authinfo.auth← πU .auth

8 elif πU .auth.step == 2:
9 authinfo.auth←

πU .auth.SKIPPEDU

10 (πU , c, idx) $←−
Signal.Send(πU , LTSU , (m, authinfo))

11 πU .ctxthashes[idx]← H (c)

12 return (πU , c, idx)

1 procedure Recv(πU , LTSU , c):
2 (π′U , m, idx) $←−

Signal.Recv(πU , LTSU , c)

3 if m == ⊥:
4 return (πU ,⊥, idx)

5 (m, authinfo)← m

6 if πU .auth∧ (idx.i ≥
πU .auth.startEpoch) ∧ ¬authinfo:

7 return (πU ,⊥, idx)

8 π′U .ctxthashes[idx]← H (c)

9 if (idx.i 6= π′U .i) ∨ (πU .auth∧
¬πU .changedEpoch) ∨ ¬authinfo:

10 return (π′U , m, idx)

11 π′U .changedEpoch← False

12 manageAuth(πU .LTIV , π′U , authinfo)

13 return (π′U , m, idx)

1 procedure Register():
2 (ipkP, ikP, MTIP, MTSP)

$←−
Signal.Register()

3 (sigpkP, sigkP) $←− KeyGen()

4 LTIP ←
(

ipkP, sigpkP
)

5 LTSP ←
(

ikP, sigkP
)

6 return (LTIP, LTSP, MTIP, MTSP)

1 procedure StartAuth(πU):
2 if Recv-Epoch(πU):
3 lastIdx← (πU .i, πU .jV)

4 e← πU .i + 1

5 else:
6 lastIdx← (πU .i− 1, πU .jV)

7 e← πU .i + 2

8 πU .auth← {step : 1, startEpoch :
e, authidx : lastIdx, SKIPPEDU :
πU .SKIPPEDU}

9 πU .changedEpoch← False

10 return πU

1 procedure DetectOOB(πA, πB):
2 return πA.Hauth 6= πB.Hauth

Figure 4.2: Procedures modified from the original Signal implementation. The helper procedure
manageAuth is defined on Algorithm 3.

39

4. Modified Signal protocol

1 procedure manageAuth(LTIV , πU , authinfo):
2 if authinfo.auth∧ (¬πU .auth∨ (πU .i < πU .auth.startEpoch)):
3 if ¬VfyLTIV .sigpkV (authinfo.auth, authinfo.σ):
4 raise Close
5 πU .auth← authinfo.auth
6 πU .auth.step← 2
7 πU .auth.SKIPPEDU ←

πU .SKIPPEDU ∩ [πU .lastauth, authinfo.authidx]
8 I ← [πU .lastauth, authinfo.authidx]\(πU .auth.SKIPPEDU ∪

πU .auth.SKIPPEDV)
9 πU .lastauth← authinfo.authidx

10 πU .auth.H ← H
(

πU .Hauth|| ||k∈sorted(I)πU .ctxthashes[k]
)

11 πU .nauth ++
12 πU .Hauth ← πU .nauth || πU .auth.H
13 elif πU .auth.step == 1:
14 πU .auth.SKIPPEDV ← authinfo.SKIPPEDV
15 πU .auth.step← 2
16 I ← [πU .lastauth, πU .auth.authidx]\(πU .auth.SKIPPEDU ∪

πU .auth.SKIPPEDV)
17 πU .lastauth← authinfo.authidx

18 πU .auth.H ← H
(

πU .Hauth|| ||k∈sorted(I)πU .ctxthashes[k]
)

19 πU .nauth ++
20 πU .Hauth ← πU .nauth || πU .auth.H
21 if ¬VfyLTIV .sigpkV (πU .auth, authinfo.σ):
22 raise Close
23 πU .auth.step← 3
24 elif πU .auth.step == 2:
25 πU .auth.step← 3
26 if ¬VfyLTIV .sigpkV (πU .auth, authinfo.σ):
27 raise Close
28 πU .auth← None
29 elif πU .auth.step == 3:
30 πU .auth← None
Algorithm 3: Management of the state when receiving such an authen-
tication step message. Each if part corresponds to one epoch of the
authentication step. U is the user calling the procedure and V their peer.

40

Chapter 5

Security of the new Signal protocol

This section proves that the construction given in Section 4 is secure in the
detection game of Definition 3.4.

Before the actual theorem and proof of security, Section 5.1 defines the se-
curity notions for the cryptographic primitives used in this paper.

5.1 Cryptographic primitives

Section 5’s goal is to prove that the scheme defined in Section 4 is secure
given the assumption that the underlying cryptographic primitives are se-
cure, namely the hash function and the signature scheme. This section de-
fines formally those primitives and their security properties.

Definition 5.1 (Hash function security) Let λ ∈ N be a security parameter
and P : N→ ({0, 1}∗)∗ a system parameterization.

A hash function H is an efficient deterministic algorithm H : (N, {0, 1}∗, {0, 1}∗)→
{0, 1}k which takes as input security parameter λ, a system parameter Λ ∈ P(λ)
and a message m of arbitrary length and outputs a digest of fixed size k.

We denote Hλ,Λ(m) = H(λ, Λ, m), or even omit the λ, Λ part if the context is clear.

The collision resistance game is as follows:

1. given λ, the challenger generates Λ $←− P(λ);

2. the challenger gives (λ, Λ) to the adversary;

3. the adversary A outputs two distinct messages m1 6= m2.

The adversary wins the game by finding a collision for the hash function, i.e. if
H (m1) == H (m2). We call advantage of A her probability of winning the game:

AdvH[A](λ) = Pr [H (m1) == H (m2)]

41

5. Security of the new Signal protocol

The hash function is collision resistant if for every polynomial-time adversary A,
the advantage of A is negligible. We define:

Advcoll
λ (H) = supA AdvH[A](λ)

The following definition defines signature schemes.

Definition 5.2 (Signature scheme) A signature scheme is a triple S = (KeyGen, SIG, Vfy)
of efficient algorithms where:

• KeyGen: ∅→ PK× SK generates key-pairs.

• SIG : SK×{0, 1}∗ → S is the signing algorithm. It takes as input a private
key and a message and outputs a signature from an output space S.

• Vfy : PK × {0, 1}∗ ×S → {0, 1} is the verifying algorithm. It takes as
input a public key, a message and a signature and outputs a bit to signify if
the verification accepts or rejects.

A signature scheme verifies the following correctness property:

∀m ∈ {0, 1}∗, (pk, sk) $←− KeyGen() =⇒ Pr [Vfy(pk, m, SIG(sk, m)) = 1] = 1

We denote SIGsk(m) = SIG(sk, m) and Vfypk(m, σ) = Vfy(pk, m, σ) for (pk, sk, m, σ) ∈
PK× SK× {0, 1}∗ ×S.

The following definition gives the existential forgery security property for
signature schemes. For this security property, the attacker has access to an
oracle to sign arbitrary messages (CMA: Chosen Message Attack) and she
needs to come up with a forgery (EUF: Existential UnForgeability).

Definition 5.3 (EUF-CMA) Let S = (KeyGen, SIG, Vfy) a signature scheme.
The EUF-CMA game runs as follows between a challenger and an attacker A:

1. the challenger generates a key-pair (pk, sk) $←− KeyGen() and gives the public
key pk to A;

2. A may query the challenger with messages mi ∈ {0, 1}∗; the challenger
answers with σi

$←− SIGsk(mi);

3. Eventually A outputs a pair (m∗, σ∗) /∈ {(m1, σ1), ...}.

We denote advantage of A his probability of finding a valid forgery, i.e.:

AdvS (A) = Pr
[
Vfypk(m

∗, σ∗) = 1
]

A signature scheme S is EUF-CMA secure if for all polynomial-time adversary A,
their advantage is negligible. We define:

AdvEUF−CMA(S) = supA AdvS (A)

42

5.2. Security proof

5.2 Security proof

Before proving the security of the modified Signal protocol presented in
Section 4, several useful definitions and lemmas are defined.

The following definition defines events that will be used in the proof.

Definition 5.4 Given an adversaryA playing the detection game of Definition 3.4,
we define the following events:

• W is the event that the A wins the game,

• FP is the event that at the end of the game, ¬closed ∧ ¬compromise ∧ d is
true,

• FN is the event that at the end of the game, ¬closed ∧ passinj 6= ∅ ∧ ¬d is
true.

FP and FN respectively stand for false positive and false negative.

The following lemma shows that from one party’s point of view, their au-
thentication steps never overlap. This enables to number their authentica-
tion steps, and to link each authentication step to the transcript and set of
messages they compute.

Lemma 5.5 Let A be an adversary in the detection game of Definition 3.4 playing
against the modified Signal protocol of Section 4.

Then from Alice’s point of view (resp. Bob’s), no authentication steps overlap. That
way, we can number Alice’s authentication steps from 1 to nA (resp. nB for Bob).

Moreover, each passed authentication step with index iU from U’s point of view
(where U ∈ {A, B} is one party) produces exactly one element HU saved in the
state πU .Hauth ← iU ||HU . To compute this element, exactly one set of indexes IU is
computed.

Proof By definition, an authentication step starts from a party U’s point of
view when πU .auth becomes not None. Given the implementation on Figure
4.2 and Algorithm 3, an authentication step can start only when StartAuth

is called or by receiving a message containing authentication information if
the party is not currently performing an authentication step.

More precisely, the initiator U of the authentication step starts with πU .auth.epoch =
1. There are two possibilities:

1. either the StartAuth procedure was called during a receiving epoch
(the case on line 2 of the StartAuth procedure on Figure 4.2)

2. either the StartAuth procedure was called during a sending epoch
(case on line 5).

43

5. Security of the new Signal protocol

For the first case, the initiator receives messages from the current epoch i,
then sends authentication messages in epoch i + 1. For the second case, the
initiator does not send authentication messages in epoch i, receives messages
in epoch i + 1 and finally sends the first authentication messages in epoch
i + 2.

That way, in any case, authentication messages are always sent for every
message in an epoch: an authentication step cannot start in the middle of an
epoch. In the second case, if the initiator receives a message with authenti-
cation information in epoch i + 1, it assumes the role of responder.

After the initiator has sent the first authentication messages in epoch j (with
j = i + 1 for the first case and j = i + 2 for the second case), the initiator
will be receiving a message from epoch j + 1, which contains authentication
information. Using it, it can compute exactly one set IU , which is used to
compute the hash HU that is set as the value of πU .Hauth. This is the case
line 13 of the manageAuth procedure in Algorithm 3.

The initiator then goes to πU .auth.epoch = 3 and their authentication step
ends when receiving a message from the next epoch.

On the other hand, the responder V of the authentication step enters the
authentication step once he receives a message containing authentication
information and if he has no authentication step happening (this is described
by the case line 2 of manageAuth in Algorithm 3). In that case, the responder
computes exactly one set IV and stores one hash HV in πV .Hauth, then goes
to πV .auth.epoch = 2. The authentication step ends once receiving a message
from the next epoch.

Therefore authentication steps do not overlap, and for each one exactly one
hash is added to Hauth and exactly one set is computed per authentication
step. �

Given the previous lemma, we can number authentication steps from a user
U’s point of view. For j ∈ J1, nUK, we denote H(j)

U the element such that

πU .Hauth ← j||H(j)
U and I(j)

U the set computed during the jth authentication
step of party U.

The following theorem states the security property for the modified Signal
protocol.

Theorem 5.6 Given some collision resistant hash function H and some EUF-CMA
signature scheme I , the protocol presented in Section 4 is secure for the detection
game of Definition 3.4.

More precisely, if A is an adversary playing the detection game against the modified
Signal protocol of Section 4, its advantage is bounded according to the following
inequality:

44

5.2. Security proof

Adv(A) ≤ Advcoll
λ (H) + 2 · AdvEUF−CMA(S)

The proof uses results from Propositions 5.8 and 5.9 which are found in the
next sections.

Proof Let A be an attacker in the detection game.

Because of the implementation of the detectTrial function and because the
win flag is only set in this function, it is immediate that W = FPt FN which
are the events defined in Definition 5.4.

Therefore:

Adv(A) = Pr [W]

= Pr [FP] + Pr [FN]

Moreover, Proposition 5.9 states that Pr [FP] ≤ 2 ·AdvEUF−CMA(S) and Propo-
sition 5.8 states that Pr [FN] ≤ Advcoll

λ (H), which proves the inequality. �

5.2.1 Upper bound for false negatives

This section gives an upper bound on the probability Pr [FN] that an adver-
sary produces a false negative in the game. It first defines some lemmas
which are used to prove the proposition at the end of the section.

Lemma 5.7 Let A be an adversary playing the detection game of Definition 3.4
against the modified Signal protocol from Section 4.

If passinj 6= ∅ at the end of the game, it means that there exists some message index
i such that both conditions are true:

1. there exists a user U ∈ {A, B} and an authentication step j for user U such
that i ∈ I(j)

U ,

2. cA
i 6= cB

i (where one of the ciphertext could be ⊥ if the corresponding user has
received no ciphertext for index i).

Proof Because of Lemma 5.5, it makes sense to number the authentication
steps for each user and to link to each authentication step their computed
set I.

In the following we consider an execution of the game which leads to passinj 6=
∅ at the end of the game.

Let i be the index of a ciphertext in passinj. passinj is filled only in the
CheckAuthStepPassed function (see Algorithm 1) if authinj is not empty.

45

5. Security of the new Signal protocol

authinj is filled only at two places: at line 4 of the auth-A /B oracle, or at
line 8 of deliver-A /B (see Figure 3.3). For both cases, this happens when
a party enters an authentication step. Let U be one user entering authen-
tication step j such that ciphertext i is added to authinj when entering the
authentication step (and therefore ciphertext i is added to passinj at the end
of the authentication step).

Message i has already been received because it is added to authinj, and
therefore is in one inj set when added to authinj, i.e. when the authentication
step begins. Because of the StartAuth implementation on Figure 4.2, i ≤
auth.authidx. Moreover, this message is not a skipped message for U as it
has already been received.

πU .lastauth contains the index of the last message authenticated. As authinj
is cleared at the end of every authentication step, having the ciphertext cor-
responding to index i in authinj means that it has not been authenticated in
a previous authentication step. Moreover, it is specified in Section 4.2 that
messages coming before the previous authentication step are not decrypted,
which means that necessarily i > πU .lastauth.

This proves that for this authentication step j, i ∈ [πU .lastauth, authinfo.authidx]
and not in U’s skipped dictionary, which means i ∈ I(j)

U (see its definition
line 8 and 16 in Algorithm 3).

Therefore point 1 is proved.

Moreover, i ∈ passinj at the end of the game. As stated earlier, this means
that some user V received and accepted the ciphertext cV

i (when it was
added to injV). If V̄ is the peer of V, then cV̄

i (if it exists) cannot be equal
to cV

i because otherwise it would have been generated honestly by V̄ and
therefore removed from injected sets in lines 5 to 7 of transmit-A /B in Fig-
ure 3.3, or never added to injV because in transV (see line 8 of transmit-A and
line 11 of deliver-B in Figure 3.3).

This proves the second point of the lemma. �

The following proposition gives an upper bound on the probability that the
adversary produces a false negative.

Note that in the construction given in Section 4, hashes are used to save
space for ciphertexts. However, if no hashes were used and transcripts of
actual ciphertexts were stored instead, false negatives could never happen.

Proposition 5.8 (False negative) Let A be an adversary in the detection game of
Definition 3.4 playing against the modified Signal protocol presented in Section 4.

Then Pr [FN] ≤ Advcoll
λ (H)

46

5.2. Security proof

Proof Let A be an adversary producing event FN. Recall from Definition
5.4 that FN = ¬closed∧ passinj 6= ∅ ∧ ¬d.

In particular, passinj is not empty at the end of the game. According to
Lemma 5.7, this implies the existence of some index i such that i ∈ I(j0)

V for
some user V and authentication step j0 of V and such that cA

i 6= cB
i .

However, d is False. Given the computation of d in the DetectOOB proce-
dure of Figure 4.2, it means that πA.Hauth = πB.Hauth.

Recall that πU .Hauth corresponds to the concatenation of the authentication
step index nauth and the hash H(nU)

U computed in U’s last authentication step
(for U ∈ {A, B}). From lines 10 and 18 of manageAuth in Algorithm 3, those
hashes are computed as follows:

H(j)
U ← H

(
j− 1 || H(j−1)

U || ||
k∈sorted(I(j)

U)
πU .ctxthashes[k]

)
with H(0)

U = ε.

Having πA.Hauth = πB.Hauth means that Alice and Bob have seen the same
number of authentication steps.

Moreover, if for some index j > 1, H(j)
A = H(j)

B , then there are two possibili-
ties:

• either H(j−1)
A || ||

k∈sorted(I(j)
A)

πA.ctxthashes[k] 6= H(j−1)
B || ||

k∈sorted(I(j)
B)

πB.ctxthashes[k];

• either they are equal.

For the first case, because H(j)
A = H(j)

B but the two inputs to the hash function
are different, we have a hash collision.

The second case would induce a propagation property and yield H(j−1)
A =

H(j−1)
B .

As the equality H(j)
A = H(j)

B is true for the last authentication step, by induc-
tion we can deduce that either there is a hash collision or for all authentica-
tion step j > 0:

H(j−1)
A || ||

k∈sorted(I(j)
A)

πA.ctxthashes[k] = H(j−1)
B || ||

k∈sorted(I(j)
B)

πB.ctxthashes[k]

.

This is true in particular for j = j0. Recall that elements of πU .ctxthashes are
hashes of ciphertexts computed on line 11 of Send and 8 of Recv on Figure
4.2.

As the hash function produces outputs of the same length, it means that
there are exactly the same number of hashes in each concatenation. More-
over, i ∈ I(j0)

V so one hash corresponds to the ciphertext with index i. Let’s

47

5. Security of the new Signal protocol

denote HV = H(cV
i) and HV̄ = H(cV̄) the corresponding hashes (where HV̄ is

at the same position in the concatenation that HV but in the other concate-
nation).

Because the concatenations are equal, HV = HV̄ . However, either cV̄ does
not correspond to index i, and in that case cV̄ 6= cV

i because the index is
efficiently computable from the ciphertext. Or cV̄ does correspond to index
i, but we showed that cA

i 6= cB
i . In both cases, there is a hash collision.

Therefore, any case leading the adversary to a false negative shows that the
adversary could produce an explicit hash collision, and therefore the reduc-
tion from the compromise game to the hash collision game is immediate.

This shows that Pr [FN] ≤ Advcoll
λ (H). �

5.2.2 Upper bound for false positives

This section gives an upper bound on the probability Pr [FP] that the adver-
sary produces a false positive in the game.

Proposition 5.9 (False positive) Let A be an adversary in the detection game of
Definition 3.4 playing against the modified Signal protocol of Section 4.

Then Pr [FP] ≤ 2 · AdvEUF−CMA(S).

Proof Let A be an adversary producing event FP.

Recall from Definition 5.4 that FP = ¬closed∧ ¬compromise∧ d.

Having ¬compromise means that A never calls the corruptLTS oracle. More-
over ¬closed means the communication never closes. Given the implemen-
tation on figure 4.2, this means that signature checks always succeed. We
will therefore build an adversary B in the EUF-CMA game against signa-
ture scheme S as a wrapper around A, which acts as a challenger in the
detection game for A.

B creates two users Alice and Bob, but will not generate one of both party’s
signing key-pair and use the public key given by his own challenger instead,
using his signing oracle to get signatures. This is performed on line 6 of the

48

5.2. Security proof

following:

1 attacker B(pk):
2 b ∈R {0, 1}

3 (Ub, U1−b)← (A, B)

4 (LTIU0 , LTSU0 , MTIU0 , MTSU0)
$←− MS.Register()

5 (LTIU1 , LTSU1 , MTIU1 , MTSU1)
$←− MS.Register()

6 (LTIU0 .sigpkU0 , LTSU0 .sigkU0)← (pk, ε)

7 πU0 , πU1 ← None, None

8 m∗, σ∗ ← ⊥,⊥

9 AoraclesMS(LTIA, LTIB, MTIA, MTIB)

10 return m∗, σ∗

As user U1 is entirely generated by B, the attacker can simulate the oracles
concerning U1 and therefore they are similar to the oracles defined in Figure
3.3. The attacker does not need to keep track of injected messages or to
check if A wins at the end of the game.

B keeps track of signature forgeries. Every time B signs a message using
the oracle provided by his challenger, he stores it. Moreover, every time a
signature on the given signing public key pk is verified in the manageAuth

function, B checks is the message is forged. If that is the case and the
verification is successful, B stops and outputs the corresponding pair m∗, σ∗.

To simulate user U0 whose private key is unknown, B can also use the same
oracles, except for transmit−U0 which is the only oracle using U0’s private
signing key in the Send procedure. Recall that the corruptLTS-A /B oracles
are not called by adversary A and therefore B does not need to simulate
those oracles when the event FP happens (if such an oracle is called, B stops
and returns random values, but this case is of no interest for the reduction
that follows).

U0’s signing private key is only used on line 5 of the Send procedure de-
fined on figure 4.2. In order to create the signature, B can query their own
challenger with message πU0 .auth to get the signature using U0’s private key.

Therefore B is correctly defined and can act as a challenger for A.

Let’s now prove that if A produces the event FP, then B wins the EUF-CMA
game with probability at least 1

2 .

When FP happens, at the end of the game parties output d = True. From
the implementation of DetectOOB on Figure 4.2, this means that πA.Hauth 6=
πB.Hauth.

49

5. Security of the new Signal protocol

Given the definition of πU .Hauth on lines 12 and 20 of manageAuth on Algo-
rithm 3, it means that during the last authentication step of each party:

πA.nauth||πA.auth.H 6= πB.nauth||πB.auth.H

There are two disjoint possibilities:

1. either πA.nauth 6= πB.nauth;

2. either πA.nauth = πB.nauth but πA.auth.H 6= πB.auth.H.

During his last authentication step, U1 verified a signature σ on πU1 .auth by
using U0’s public signing key sigpkU0 . This happens either on line 21 or 26
of manageAuth in Algorithm 3. πU1 .auth contains in particular:

• the nauth computed by U1;

• H computed by U1;

If case number 2 happens, then πA.nauth = πB.nauth = n. As parties will
only compute at most one hash per authentication step, there is only one
signature of a set πU0 .auth produced by U0 which has nauth = n. If case 2
happens, then πA.auth.H 6= πB.auth.H. Recall however that the connection
does not close, which means that all signatures verifications are successful.
This is especially true for signature σ checked by U1 on πU1 .auth, which
contains πU1 .auth.H.

πU1 .auth contains nauth = n and πU1 .auth.H 6= πU0 .auth.H. As stated earlier,
parties can produce at most one signature on sets with the same nauth, there-
fore πU1 .auth has not been produced by U0, i.e. by the signing oracle of the
signature game.

Therefore if case 2 happens, σ is a valid forged signature on πU1 .auth.

If case number 1 happens, then πA.nauth 6= πB.nauth. Recall that U0 and U1
are chosen uniformly at random at the beginning of the game. Because the
signing key-pair and signatures are sampled and created in the same way
in the detection game and in the reduction when using the signing oracle,
A cannot distinguish which key-pair is used in the signing game. Therefore
with probability 1

2 , πU0 .nauth < πU1 .nauth.

In that case, U0 cannot have signed a set πU0 .auth with nauth = πU1 .nauth as
it has not yet reached the correct number of authentication steps. This once
again yields a valid signature forgery.

Therefore, with probability at least 1
2 , if A produces the event FP then B

wins the EUF-CMA game.

This leads to the upper bound:

Pr [FP] ≤ 2 · AdvEUF−CMA(S) �

50

Chapter 6

Extensions and limitations

In order to simplify the construction from Section 4 and the security proof,
some simplifications have been made to highlight the main contributions by
limiting the amount of easy but cumbersome technical details. This section
highlights those simplifications and provides some answers to the issues
deriving from those.

6.1 Immediate decryption

As stated in Section 4.2, messages that were sent before an authentication
step but arrive after it has begun are not decrypted.

This weakens the Signal protocol’s immediate decryption property as every
unreceived message when an authentication step starts are discarded.

This section offers two solutions. The first solution undermines the security
guarantees of the delayed messages. Those messages can still be decrypted
when they are received but are considered tainted and their authenticity is
no longer guaranteed.

The second solution modifies the protocol from Section 4 in order to account
for these delayed messages and include them in the next authentication step.

6.1.1 Weaker security game

The following modifications weaken the security game from Section 3, which
enables the protocol presented in Section 4 to be secure even if messages sent
before an authentication step are allowed to be decrypted afterwards.

This removes the limitation imposed in Section 4 on the immediate decryp-
tion property about late messages. Recall that we refer to a late message as
a skipped message sent before some authentication step and arriving after
it.

51

6. Extensions and limitations

To achieve this notion, another condition is added to line 11 of the deliver-B
oracle defined on Figure 3.3:

if c /∈ transB ∧m 6= ⊥∧ idx ≥ authidx:

As a result of this change, only messages whose index is greater than the
last message authenticated are added to the inj sets.

Thus, thee attacker cannot win the game by injecting a late message, which
weakens the security properties achieved by our proposed protocol. How-
ever, this allows the protocol from Section 4 to decrypt those messages and
still be secure given this security game.

In addition, the security proof only requires a small modification in the proof
of Lemma 5.7. Recall that the proof finds a message with index i such that
i ∈ I(j)

U . This message is selected by taking a message in passinj. One step to
prove this belonging is to prove that i ∈ JπU .lastauth, authinfo.authidxK.

In the original proof, the reason why i ≥ πU .lastauth comes from the fact
that older messages are not decrypted. For this new version of the security
game, the reason is that those older messages are not added to the inj set
and therefore cannot be present in authinj nor in passinj.

6.1.2 Extending the Signal protocol

This section presents another solution to the immediate decryption issue.
The protocol presented in Section 4 is extended to deal with older messages.

We introduce a new array, LATE, which is used to store the indices of late
messages when they are received. Those messages are decrypted immedi-
ately as they are received and will be authenticated in the next authentica-
tion step.

In practice, this new array is added to the state in Connect-Send and Connect-Recv.
Moreover, in the Recv procedure on Figure 4.2, the following is added be-
tween lines 8 and 9:

1 if idx < πV .lastauth:
2 π′V .LATE.append(idx)

This adds to the LATE array the indexes of every late message.

Moreover, those messages are later represented in the authenticated mes-
sages. This can be done by replacing lines 8 and 16 of manageAuth on Algo-
rithm 3 by the following two lines:

1 I ← πU .LATE∪ [πU .lastauth, authinfo.authidx]\(πU .auth.SKIPPEDU ∪
πU .auth.SKIPPEDV)

2 πU .LATE← ∅

52

6.2. Multi-party setting

Moreover, during authentication steps, when the SKIPPED dictionary is sent
to the other party, the LATE array is also sent. Upon reception, it is merged
to the local LATE dictionary.

The security proof remains unchanged apart from the proof of Lemma 5.7.
There are two cases: either the chosen message from authinj is a not-late
message, and the original proof applies, or it is a late message. Because
late messages are always inserted into a LATE array and that those arrays
are transmitted during authentication steps, then late messages are also in-
cluded in I sets during authentication steps.

The main idea remains that every received message is authenticated in the
authentication step following the reception.

6.2 Multi-party setting

The security definition given in Section 3 only involves two parties. How-
ever, in practice Signal conversations involve several (billions) participants
who may have conversations with more than a unique peer1.

This section gives an insight on how our proposed security game could be
modified to fit the multi-party setting and gives some intuition on how the
two-party setting proof can be extended to cover the multi-party setting.

Given the notion of proving long-term secret knowledge, a multi-party se-
curity definition would assume a finite number of known users whose long-
term public keys are correctly distributed. The difference with the two-party
setting is that the attacker can open several distinct sessions between partic-
ipants.

A straightforward modification to the security game could be done as fol-
lows: given an established session between two defined users Alice and Bob,
the attacker’s objective remains the same as in the two-party setting, except
that it can now open more sessions.

With respect to changes to the proof in the two-party setting presented in
Section 5, the attacker will still need to either forge a signature on a hash
computed during an authentication step or produce a hash collision.

Ratchet keys are sampled at random by parties and can therefore act as
nonces. This makes it highly unlikely that all ratchet keys would be sampled
in the same way, and therefore the attacker has a very small chance of being
able to make one party sign the same hash across sessions. Therefore, the
adversary can win the security game as in the two-party setting, but can
also win if one party signs the same value in two different sessions. The

1We still exclude group chats in this paper, sessions can only be opened with two people
but more than one session can be opened

53

6. Extensions and limitations

advantage of the adversary in the multi-party setting is thus the advantage
of the adversary in the two-party setting plus the probability of this event
happening. The probability of having a honest party sign the same data
twice is lower or equal than the probability of generating the same ratchet
keys in two sessions (as public ratchet keys are directly included in the
ciphertexts). Thus, if the attacker does not control the source of randomness
of the parties, the probability of this collision happening is quite low.

On the other hand, opening more sessions does not help the adversary to
find a hash collision.

Therefore, intuitively the protocol would still be secure in a multi-party set-
ting, with a security bound a little bit looser than in the two party setting.

6.3 Simultaneous session initiation

Either because of chance or because of the channel reliability, two parties
may decide to initiate a session simultaneously, which means that both par-
ties send their first message before the other party receives a message.

That edge case is not considered in the main part of this paper because it
makes the agreement on the order of messages complicated for the hash
computation during authentication steps. Note that in the implementation
of the modified Signal protocol described in Section 4, this situation cannot
happen. Indeed, if both Alice and Bob send a message with epoch 0, when
Alice receives a message from Bob with epoch 0, she will discard it as it
has an invalid epoch number corresponding to her state. In the security
game, this situation can occur but then no message will be accepted and the
attacker cannot win the game.

The creators of Signal deal with this case by using the Sesame algorithm,
which manages sessions from their asymmetric creation to their symmetric
usage [20].

If this particular event occurs, when a party detects the simultaneous initia-
tion, both parties choose deterministically one of both created sessions and
discard the other (for instance by choosing the session initiated by the party
with the smaller public identity key) [5].

The issue can be resolved in the same spirit as Section 6.1, either by defining
a weaker security game in which the attacker cannot initiate two sessions
at the same time but authorizing the protocol to open two sessions, or by
extending the protocol to deal with this situation. In the latter case, one
could perform a final authentication step on the discarded session to assess
the presence of an attacker, and add the resulting hash to the session kept
alive. Normally participants should be aware of this situation from the very
first epoch, which means only one flow of messages will be discarded. This

54

6.4. Deniability

flow could also be included as the first epoch of the communication for
authentication step hash computation.

6.4 Deniability

One security property at the core of the Signal protocol which has not been
considered so far in this report is deniability [6].

Deniability, and more specifically offline deniability, is the ability to deny hav-
ing participating in a communication given a transcript of the conversation.
The original Signal protocol is deniable because it is composed of a deniable
key exchange followed by a protocol based solely on the shared key derived
from this key exchange [25].

More specifically, offline deniability has the following set-up: two users,
Alice and Bob, have a conversation using a messaging scheme. Alice is a
honest participant, while Bob may deviate from the protocol to force Alice
to prove her participation in the the conversation. Offline deniability is
achieved if there exists a simulator which doesn’t have access to Alice’s
long-term private keys and can produce transcripts of communication with
the same distribution as transcripts generated between Alice and Bob.

The modified Signal protocol presented in Section 4 introduces signatures
performed on the ciphertexts exchanged using the long-term secrets of par-
ties. This very likely breaks the deniability property.

One possible mitigation to get the deniability property back would be to
used Designated Verifier Signatures [12]. For this kind of security primitives,
only the designated verifier is convinced of the validity of the signature, even
if the verifier shares secret information.

Informally, as the original Signal protocol offers deniability, then there ex-
ists a simulator creating transcripts with the same distribution as transcripts
produced between Alice and Bob. Moreover, Designated Verifier Signatures
can also be produced by Bob, as no third party can verify their validity.
Therefore a simulator could assign random values to signatures and a third
party could not distinguish between real transcripts and generated tran-
scripts, which would mean the Authentication Steps protocol still has offline
deniability.

6.5 Application to other settings

The research presented in this paper could be extended to a more broader
class of protocols where long-term keys are used to initiate a session, and
the authenticity of a session relies only on the first derived shared secret.

55

6. Extensions and limitations

For those protocols, an adapted version of authentication steps might pro-
vide stronger authenticity guarantees.

For instance, TLS 1.3 implements a session resumption mechanism [21].
With this mechanism, when a session is opened with the traditional hand-
shake, a resumption shared key is created for both the client and the server.
Using this resumption key, sessions can be resumed without having to au-
thenticate the parties again with certificates. This leads to long-lived ses-
sions and may potentially lead to authentication issues in case of certificate
revocation for instance [11].

Reintroducing some type of certificate verification in the same spirit of au-
thentication steps could lead to better authenticity guarantees while keeping
the advantages of session resumption for 0-RTT session establishment.

56

Chapter 7

Implementation

This section describes a Java implementation for our new protocol. The
implementation is based on the official Java implementation for the Signal
application [24].

In the following, Section 7.1 presents how the original implementation works.
Section 7.2 presents how tests have been designed to verify that modifica-
tions do not impact the existing functionalities and that they match the se-
curity specifications of Section 3. Section 7.3 presents first the modifications
performed then the tests results. Section 7.4 presents some benchmarking
on the overhead introduced by the changes made to the protocol. Finally
Section 7.5 presents some observations made on the official implementation.

7.1 Original implementation

For the purpose of this paper, only interactions between two parties and a
potential attacker are considered. The existing unit test SessionCipherTest
implements an interaction between two parties Alice and Bob. After the
initialization of both sessions, the object retrieved is a SessionCipher.

SessionCipher exposes two public methods, whose signature are as follows:

1 /**

2 * Encrypt a message.

3 *

4 * @param paddedMessage The plaintext message

bytes , optionally padded to a constant multiple

.

5 * @return A ciphertext message encrypted to the

recipient+device tuple.

6 */

57

7. Implementation

7 public CiphertextMessage encrypt(byte[]

paddedMessage) throws UntrustedIdentityException

8

9 /**

10 * Decrypt a message.

11 *

12 * @param ciphertext The {@link SignalMessage} to

decrypt.

13 *

14 * @return The plaintext.

15 * @throws InvalidMessageException if the input is

not valid ciphertext.

16 * @throws DuplicateMessageException if the input

is a message that has already been received.

17 * @throws LegacyMessageException if the input is a

message formatted by a protocol version that

18 * is no longer

supported.

19 * @throws NoSessionException if there is no

established session for this contact.

20 */

21 public byte[] decrypt(SignalMessage ciphertext)

22 throws InvalidMessageException ,

DuplicateMessageException ,

LegacyMessageException ,

23 NoSessionException , UntrustedIdentityException

Listing 7.1: Methods of SessionCipher

This class can be used in the following way, where aliceCipher and bobCipher

both are SessionCipher:

1 byte[] alicePlaintext = "This is a plaintext

message.".getBytes ();

2 CiphertextMessage message = aliceCipher.encrypt(

alicePlaintext);

3 byte[] bobPlaintext = bobCipher.decrypt(new

SignalMessage(message.serialize ()));

4 assertTrue(Arrays.equals(alicePlaintext ,

bobPlaintext));

Listing 7.2: Example of usage of the libsignal library

A SessionCipher object is thus used to encrypt or decrypt messages. decrypt
can throw several exceptions if the decryption fails. Plaintexts are described

58

7.2. Tests

SessionCipher

encrypt: byte[] → CiphertextMessage

decrypt: SignalMessage → byte[]

CiphertextMessage

CiphertextMessage ← byte[]
serialize: () → byte[]

SignalMessage

implements

IdentityKeyStore

IdentityKeyPair identity

SessionStore

SessionState

SessionStructure

byte[] rootKey
Chain senderChain

Chain[] receiverChains

...

Figure 7.1: Simplified class diagram for the original Signal implementation.

as byte arrays and ciphertexts are SignalMessage which implements the
CiphertextMessage interface. The interface offers a serialize function to
transform the ciphertext to a byte array to send it on the network and can
be initialized by providing a byte array.

In order to implement the encrypt and decrypt functions, a SessionCipher

has access to different storage spaces. In particular, it has access to an
IdentityKeyStore which holds the identity key-pair of the party. It also
has access to a SessionStore, which holds a SessionState object. This ex-
isting separation between storage of long-term secrets and session secrets
implicitly justifies the security model where the adversary could compro-
mise the local state but not long-term secrets.

The SessionState class represents the state of a device. It is a wrapper
around a SessionStructure variable, which is a protocol buffer [7] holding
the state such as the different KDF chains and message keys.

The diagram on Figure 7.1 gives a simplified vision of the different classes
and their interaction.

7.2 Tests

This section presents the different tests implemented to check if the mod-
ifications performed do not break the messaging scheme and provide the
necessary security guarantees. The original Signal tests can be used to check
if all previous functionalities are still working.

59

7. Implementation

Test name Authentication steps Out-of-order Attacker
testNoAdvOneAuth 1 Simple None
testReplaceOneAuth 1 Simple Replace
testInjectOneAuth 1 Simple Inject
testNoAdvTwoAuth 2 Simple None
testReplaceTwoAuth 2 Simple Replace
testInjectTwoAuth 2 Simple Inject
testManyEpochs 150 None None

testInjectAcrossAuth 2 Late Inject

Table 7.1: List of the different kinds of tests implemented.

Newly created tests vary according to the following parameters:

• the number of authentication steps;

• the presence of out-of-order or dropped messages;

• the presence of an attacker.

There are several types of out-of-order messages. The type denoted as sim-
ple describes any message dropped or out-of-order, even messages during
authentication steps. They can arrive in any possible order, but messages
sent before an authentication step never arrive after it. This is in contrast
to late messages, which are out-of-order messages that can arrive even after
an authentication step arrives. This is to distinguish the different cases of
immediate decryption as described in Section 6.1.

We also capture two types of attackers: replace and inject. Attacker replace
leaks the state of one party. When the party sends the next message, the
attacker drops the message and replaces the ciphertext with a forged cipher-
text, encrypting a different plaintext message. On the other hand, attacker
inject leaks the state of one party at the end of an epoch, and adds a new
message at the end of the epoch.

The different tests are summarized in Table 7.1. The different types of at-
tackers and out-of-order messages are also illustrated on Figure 7.2.

There are four different types of scenarios. For all those scenarios, the au-
thentication steps scheduling is predefined: one authentication step begins
every 7 epochs. The first kind of tests, which end with OneAuth, have only
one authentication step. The main objective of those tests is to assess the
reliability of the protocol in case of out-of-order or dropped messages, even
in the event of authentication messages being delayed or dropped. The sec-
ond kind, ending with TwoAuth, introduces a second authentication step. If
there is an attacker, it injects a message between the first and the second
authentication step. The goal of those tests is to ensure that having one

60

7.2. Tests

0,0
Alice Bob

0,1

0,2

1,0
2,0

1,1
1,2

2,1

3,0
4,0

5,0

6,0

replace

inject

4,1
4,2

5,1

authentication
step

Eve

Figure 7.2: Illustration of a test. In red are both types of attackers, one injecting message (0,3)
and the other replacing message (0,1). In the communication messages may arrive out-of-order
(such as (2,0)) or be dropped (such as (4,1)). This is an illustration of the simple version for
out-of-order messages. However message (1,2) in green is a late message as it was sent before
the authentication step but arrives after it.

authentication step does not compromise the reliability of the protocol for
the next authentication step. The third kind of test, testManyEpochs, ver-
ifies if the protocol is reliable for long-lived sessions with a lot of epochs.
This test is solely a soundness test, where no adversaries are present and
no messages are dropped or reordered. Finally, the fourth kind of tests,
testInjectAcrossAuth, checks the immediate decryption property across
authentication steps, verifying that such messages are indeed decrypted and
that their authenticity is still guaranteed by authentication steps.

A new exception, AuthStepSignatureException, is defined. It is used by
the protocol to indicate some signature verification in an authentication step.
It corresponds to the Close event from Section 3.

1 public void testNoAdvOneAuth () throws ...

2 {

3 Pair <SessionCipherAuthStep , SessionCipherAuthStep

61

7. Implementation

> ciphers = initializeSessionsV3 ();

4

5 runOneAuthStep(ciphers.first(), ciphers.second (),

AttackerType.NONE);

6 }

7

8 public void testReplaceOneAuth () throws ...

9 {

10 Pair <SessionCipherAuthStep , SessionCipherAuthStep

> ciphers = initializeSessionsV3 ();

11

12 try {

13 runOneAuthStep(ciphers.first(), ciphers.second

(), AttackerType.REPLACE);

14 throw new AssertionError("Authentication step

should not succeed when an adversary is

present");

15 } catch(AuthStepSignatureException e) {

16 // With the adversary the authentication step

should fail.

17 // So if we’re here this is good.

18 }

19 }

Listing 7.3: Implementation of two tests case

Tests all follow the same structure, which is illustrated on Listing 7.3. First,
two SessionCipher objects are initialized (one for Alice and one for Bob).
They actually are SessionCipherAuthTest objects, which inherits from SessionCipher.
It may override the encrypt and decrypt functions, and add some proce-
dure for leaking the state to let an attacker inject messages.

One function is called to perform the simulation. In the listing this function
is runOneAuthStep, which corresponds to the test case with one authenti-
cation step. The third parameter determines the type of attacker. If no at-
tacker is present, then no exceptions should occur, as in testNoAdvOneAuth.
However if an adversary is present, SessionCipherAuthTest should occur,
therefore the exception is caught and an error is thrown if the exception
does not occur.

In addition to those above, a test has been designed to verify the correct-
ness of the out-of-band protocol for detecting adversaries knowing long-
term secrets. In this test, an adversary leaks the local state and long-term
secrets of both parties and impersonate them. At the end of the commu-
nication, parties perform the out-of-band protocol. The adversary should

62

7.3. Extending the protocol

be detected, which is determined in the Java code by a new exception
OutOfBandCheckException.

Moreover, every soundness test described above (in which no adversary is
present) is augmented to include at the end of the communication an out-
of-band check, which should not raise any exception.

7.3 Extending the protocol

This section presents how the original Signal implementation presented in
Section 7.1 has been modified to integrate the changes from Section 4.

The second part of this section describes how the implementation works as
expected.

7.3.1 Presentation of the modifications

The actual Java implementation is very similar to the pseudo-code used
in Figure 4.2. Figure 7.3 shows the different extensions performed on the
original Signal implementation. The class diagram comes from Figure 7.1
and coloured text indicates some modification performed on the original
implementation.

The SessionCipher class is extended to SessionCipherAuthStep to add
functionalities.

A new class Attacker represents both types of attackers. A leakState

method is added to the SessionCipherAuthStep class to return the local
state of a party. Those additions are displayed in dark blue on Figure 7.3.

Additions in dark red are used to implement the global numbering of epochs.
Indeed, the original implementation identifies each epoch by the ratchet
public key corresponding to that epoch and not by an epoch number. How-
ever, the modified protocol requires a monotonically increasing epoch num-
ber in order to identify which messages are authenticated. Therefore the
state holds a list associating the most recent ratchet public keys to epoch
numbers. This list is used in the getEpochNumber method to convert a
ratchet public key to an epoch number.

Additions in dark spring green denote modifications made to hash cipher-
texts and store the hashes in the ctxtHashes variable of the state. This
happens in the storeCiphertext method. In the original Signal implemen-
tation, only keys of skipped messages are stored, as the MKSKIPPED dictio-
nary (see Section 2.6). The updateSkipped method also stores the indices of
those skipped messages in the currentSkipped array (which corresponds to
the SKIPPED dictionary presented in Section 4.1.2). When an authentication
step begins, this vector is copied to ourSkipped in the fixSkipped method.

63

7. Implementation

SessionCipher

SessionCipherAuthStep

encrypt: byte[] → CiphertextMessage

decrypt: SignalMessage → byte[]
leakState: () → SessionState

leakIdentity: () → IdentityKeyPair

getFingerprint: () → byte[]
checkFingerprint: byte[] → boolean

inherits CiphertextMessage

CiphertextMessage ← byte[]
serialize: () → byte[]

SignalMessage

implements

IdentityKeyStore

IdentityKeyPair identity

SessionStore

SessionState

getEpochNumber: ECPublicKey → int

storeCiphertext: SignalMessage × int→ ()
updateSkipped: int → ()

fixSkipped: () → ()
startAuth: () → ()

getAuthInfo: ECPrivateKey → AuthSet

manageAuthentication: byte[] → ()
updateHash: Pair[] × Pair[] → ()

SessionStructure

byte[] rootKey
Chain senderChain

Chain[] receiverChains

...
ECPublicKey[] ratchetHashes

bytes[][] ctxtHashes
int[] currentSkipped
Pair[] ourSkipped
HashAuth hashAuth

Pair lastAuth

boolean changedEpoch

int nAuth

boolean authInProgress

int step

Pair[] lateMessages

Attacker

Attacker ← SessionState × IdentityKeyPair

encrypt: byte[] → CiphertextMessage

decrypt: SignalMessage → byte[]

AuthSet

int step

Pair[] skipped

HashAuth hash

byte[] sig

Pair[] late

Figure 7.3: Extended implementation for authentication steps. The encrypt and decrypt

functions are overridden accordingly. Blue additions enable the presence of an attacker, red
to convert public ratchet keys to epoch numbers, green to hash ciphertexts and keep track of
skipped messages, purple to perform authentication steps, orange to keep track of late messages
and pink to implement the out-of-band protocol.

64

7.3. Extending the protocol

Additions in dark magenta show the additional state needed to perform
authentication steps. hashAuth stores the index and hash value of the last
authentication step and lastAuth is the index of the last authenticated mes-
sage. There are several additional functions: manageAuthentication is the
Java version of the manageAuth function of Algorithm 3, updateHash per-
forms the hash computation for a given authentication step and getAuthInfo

returns the authentication information to send.

This authentication information is of a new type AuthSet. It can be serialized
and deserialized and is prepended to every Signal plaintext. In order to
correctly decode it, the first four bytes of every plaintext are used to encode
the size of this additional information.

Signatures are computed by already existing code, in the same way signa-
tures of medium term keys are performed. The hash function used here is
SHA-512.

Changes in dark orange highlight how late messages (which arrive after the
authentication step following their sending) are dealt with. It adds a new
dictionary to keep track of late messages. This dictionary is added to the au-
thentication information transmitted and is used to compute authentication
step hashes.

Finally, changes in persian pink implement the out-of-band detection proto-
col, with a method for creating a fingerprint and another method for check-
ing the validity of the peer’s fingerprint. In case of failure, the OutOfBandCheckException
is raised. Moreover, the adversary is extended to be able to leak the identity
key of each party and to entirely simulate a honest party.

7.3.2 Test results

The whole implementation can be found on the ETH Gitlab1.

Tests were performed on three different implementations:

1. the original implementation; tests can be launched on branch test0

(commit 83bb9964);

2. the implementation without late messages management (as described
on Listing 7.3 without the orange modifications); tests can be started
on branch test1 (commit ce316071);

3. the full implementation presented on Listing 7.3; tests can be started
on branch test2 (commit c90ef00b).

The results of tests can be found on Table 7.2. Tests can be launched with
the following command:

1https://gitlab.ethz.ch/bdowling/continuous-auth-in-sec-msg

65

https://gitlab.ethz.ch/bdowling/continuous-auth-in-sec-msg

7. Implementation

Or
ig
in
al

Si
gn
al

te
st
s

te
st
No
Ad
vO
ne
Au
th

te
st
Re
pl
ac
eO
ne
Au
th

te
st
In
je
ct
On
eA
ut
h

te
st
No
Ad
vT
wo
Au
th

te
st
Re
pl
ac
eT
wo
Au
th

te
st
In
je
ct
Tw
oA
ut
h

te
st
Ma
ny
Ep
oc
hs

te
st
In
je
ct
Ac
ro
ss
Au
th

Original 4 4 8 8 4 8 8 4 8

Without Late 4 4 4 4 4 4 4 4 8

With Late 4 4 4 4 4 4 4 4 4
Table 7.2: Tests results

./ gradlew clean test --tests TestName

with TestName the name of the group of tests to launch. There are 3 original
Signal tests, SessionBuilderTest, SessionCipherTest and SimultaneousInitiateTests.
All tests described in Section 7.2 are in the group AuthStepTest.

The original version fails all tests where an adversary is present: it does not
detect the described adversarial behaviour as there are no authentication
steps.

For the modified versions, every test without an adversary is working as
expected, which tells that the protocol is sound. Moreover, tests with ad-
versary but without late messages succeed. This shows the desired security
properties are met.

The implementation without management of late messages fails the test
where a late message is injected, but the implementation with management
of late messages succeeds.

Every successive implementation pass the original Signal tests.

In addition to the tests in Table 7.2, the soundness tests have been extended
to check the soundness of the out-of-band detection protocol.

Moreover, the new test testOutOfBand checking that an adversary with
long-term secret knowledge is detected by the out-of-band procedure suc-
ceeds.

Those tests concerning the out-of-band protocol can be run on the testOOB

branch (commit 6574c367).

66

7.4. Overhead introduced by authentication steps

7.4 Overhead introduced by authentication steps

This section gives some remarks about the implementation. The additional
security properties come at the cost of some overhead, in term of bytes trans-
mitted, of additional space taken on the device and on computational over-
head.

7.4.1 Space and computation overhead

Authentication steps require more data to be computed and stored. This
data is kept in the state and corresponds to:

• ciphertext hashes;

• public ratchet keys for epoch numbering;

• lists of skipped and late messages.

This data is purged from the state when it has been used after each authen-
tication step.

Therefore the storage overhead is a function of the following parameters:

• the size of a hash;

• the channel reliability: if the channel is less reliable, the state will hold
more indices for keeping track of dropped messages;

• the Signal parameters on immediate decryption: data for messages
which will no longer be decrypted can be safely purged;

• the frequency of authentication steps: the more frequent authentica-
tion steps are, the less data needs to be stored;

• the average number of messages per epoch: the more messages there
are in an epoch, the more messages there will be between authentica-
tion steps and therefore the more ciphertext hashes need to be stored.

The average number of messages per epoch is the most crucial parameter,
as it can induce an unbounded overhead as compared to the original Signal
state’s size. Indeed, the sender cannot know in advance which messages the
peer has received. Thus there is no alternative possibility than storing every
ciphertext hash individually.

On the other hand, keeping the skipped messages list and the public ratchet
keys do not overly impact the memory as those are already stored in the
original Signal state. The only additional data stored is the conversion from
keys to actual integer indexes which is of the same magnitude.

Ciphertexts overhead is impacted by the same parameters. Indeed, a hash is
included in ciphertexts in authentication steps as well as the list of skipped

67

7. Implementation

messages. The less authentication steps there are, the lower the ciphertext
overhead will be on average, as only messages during authentication steps
introduce a significant overhead. However if an authentication step epoch is
long, this can introduce an unbounded overhead.

As for computational overhead, computing the ciphertext hashes involves
one hash invocation. During authentication steps, some signature opera-
tions are also required.

The signature scheme employed by Signal and during authentication steps is
XEdDSA [16]. Signing data is typically the same amount of work as a Diffie-
Hellman key computation. As there is at most one additional signature
generation per epoch introduced by authentication steps, the computational
overhead is at most the same magnitude as the original protocol.

7.4.2 Benchmarking the space overhead

In order to give an estimation of the space overhead induced by the au-
thentication steps, a simulation of a communication has been performed to
compare the ciphertext sizes as well as the states sizes.

Input texts come from a SMS dataset [3] composed of English text messages
provided by Singaporean students [4]. This dataset only provides messages
samples but not entire conversations with relations between messages.

Therefore the communication has been simulated as follows. First an av-
erage number of messages for each epoch is chosen. Then for each epoch,
the actual number of messages in this epoch is chosen randomly using a
Poisson law.

Moreover, the channel is unreliable, meaning that some messages are dropped
randomly. The reliability of the channel is a parameter of the experiment
and its impact is studied in the following.

For the benchmarking performed in this section, the hash function is SHA-
512 as presented earlier. Authentication steps happen regularly every 7
epochs.

Figure 7.4 compares the ciphertext and state sizes every time a ciphertext is
sent. 10000 messages were sent, with on average 3 messages per epoch.

Randomness here depends on a chosen seed. To verify the seed is not biased,
95% confidence intervals have been computed to assess the mean cipher-
texts and sessions sizes. The confidence intervals are displayed on Figure
7.4, sometimes not appearing as they are really small (the length of the con-
fidence intervals are around 5 bytes for ciphertext sizes and around 20 bytes
for session sizes). For computing those confidence intervals, only two dif-
ferent seeds were required and the intervals are already sufficiently small to

68

7.4. Overhead introduced by authentication steps

0 100 200 300 400
Ciphertext size (bytes)

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e

fre
qu

en
cy

0 1000 2000 3000 4000 5000 6000
Session's state size (bytes)

Line type
Cumulative frequency
Mean
95% confidence interval

Colors
Original
AuthStep

(a) Channel reliability of 95%

0 100 200 300 400
Ciphertext size (bytes)

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e

fre
qu

en
cy

0 1000 2000 3000 4000 5000 6000
Session's state size (bytes)

Line type
Cumulative frequency
Mean
95% confidence interval

Colors
Original
AuthStep

(b) Channel reliability of 99%

Figure 7.4: Comparison of ciphertexts and states sizes between the modified and the original
Signal protocol. For this experiment, 10000 messages were exchanged with an average of 3
messages per epoch.

be confident in the results obtained (the diameter of the confidence interval
is more than 50 times smaller than the mean). Those confidence intervals
assume that each seed leads to independent experiments, where the cipher-
texts and sessions sizes means are distributed according to a normal law of
unknowns mean and deviation.

As discussed in the previous section, the experiment shows that even if ses-
sions take around 4 times the size of an original session, the session size is
still bounded throughout the experiment and does not grow indefinitely. As
for ciphertexts, there is a bigger proportion of large ciphertexts in compari-
son to the original Signal protocol, which comes from the additional data.

Figure 7.5 studies the impact of the channel reliability and the length of
epochs on the size of the state.

As stated in the previous section, while the average epoch length does not
impact the session size in the original protocol, it does increase linearly
for the authentication steps, as every ciphertext hash needs to be stored.
However this does not impact the ciphertext sizes (graph not shown here).

The less reliable the channel, the more state parties need to store in order to

69

7. Implementation

2 4 6 8 10
Average epoch length

2000

4000

6000

8000

Av
er

ag
e

se
ss

io
n

siz
e

(b
yt

es
) Original

AuthStep

(a) Evolution of the state’s size with longer
epochs. The channel is reliable in this ex-
periment.

0.2 0.4 0.6 0.8 1.0
Channel reliability

0

2500

5000

7500

10000

12500

15000

Av
er

ag
e

se
ss

io
n

siz
e

(b
yt

es
) Original session size

AuthStep session size
Original ciphertext size
AuthStep ciphertext size

120

140

160

180

200

220

240

Av
er

ag
e

cip
he

rte
xt

 si
ze

 (b
yt

es
)

(b) Evolution of the state and ciphertext
average size with the channel reliability. On
average there are 3 messages per epoch.

Figure 7.5: Overhead introduced by the authentication steps depending on the channel reliability
and average epoch length. For this experiment, 10000 messages were exchanged.

keep immediate decryption. This explains the monotony of both curves in
the channel reliability graph. Moreover, while the channel reliability does
not impact the ciphertext sizes in the original protocol, having a more unre-
liable channel makes the ciphertexts bigger in the authentication steps mes-
sages. Indeed, indices of skipped messages need to be sent to the other party
during authentication steps, which makes ciphertexts bigger on average.

7.5 Observations on the official implementation

While implementing the proposed protocol, I found out that the state dele-
tion strategy in the code [24] is different from the strategy described in anal-
ysis such as [1] or [6], even if the latter is based on the implementation.

The official Signal specification [17] itself is unclear, and the strategy used
in the implementation is implied but not made explicit.

In [1] or [6], post-compromise security happens after two epochs, which
means that two epochs after a state compromise, security is restored. This
happens by the deletion of no longer necessary state once an epoch is ended.
However, the implementation deletes this state only 5 epochs later, which is
a hardcoded value.

Thus, we come to the conclusion that the official implementation has weaker
post-compromise security properties than claimed in the literature.

7.5.1 Design of an attack breaking post-compromise security

We use the previous observation to introduce the following attack breaking
post-compromise security in the Signal implementation.

70

7.5. Observations on the official implementation

In the middle of a communication between Alice and Bob, an attacker leaks
the state of Alice. Let’s assume we are at epoch i and Alice sends ni messages
in this epoch. Then the attacker can, by using the leaked state, create a valid
ciphertext for message (i, ni + 1) (and even more messages).

In epoch i + 3, according to the usual post-compromise security definition,
as the adversary has remained passive on the network, it should not be able
to decrypt or inject new messages.

However, with the Signal implementation, as the state for epoch i is not yet
deleted in epoch i + 3, the attacker can inject messages (for epoch i) to Bob,
which breaks post-compromise security.

Note however that security is restored 5 epochs after compromise, there-
fore the implementation still guarantees a weaker post-compromise security
property.

This attack has been implemented both for the official Java implementation
(see branch attackjava, commit b0310d3e)and for the official C implementa-
tion [23] (see branch attackc, commit c4ccf066). For both implementations, a
test has been designed to check if injected messages are rejected upon recep-
tion. Both tests fail as the post-compromise security is not strong enough
and injected messages are decrypted by the victim.

7.5.2 Explanation behind this weaker property

In the implementation, the state of parties holds one Chain object per re-
ceiving epoch. This object contains both the chain key for this epoch and
potentially computed message keys for missed messages. When the next
receiving epoch arrives, the receiving party knows the total number of mes-
sages sent by their peer as it is included in the associated data of the cipher-
text. The chain key should then be used to compute all message keys for
this epoch and then be discarded.

However, in the implementation, developers made the choice to disregard
the total number of messages sent in the previous epoch, and instead keep
the chain key without computing in advance message keys for missed mes-
sages.

This saves computation time and space as the keys are not computed if mes-
sages never arrive (as they were already missed). The immediate decryption
property is still valid as the chain key is kept and message keys can be
derived if needed.

Note also that in the theoretical definitions of post-compromise security, an
attacker is allowed to inject messages from previous epochs which would
have been missed, which is what happens here. However in this case, parties
can detect that the injected message is not legitimate.

71

7. Implementation

7.5.3 Fixing post-compromise security

On the fix branch (commit c2123110), I have implemented a fix for the Java
library. When a new receiving epoch begins, the value of the total number
of messages is used to derive all message keys for this epoch, then the chain
key is deleted from the state. This brings back a strong post-compromise
security, as shown by the test which no longer fails.

72

Chapter 8

Conclusion

Authenticity of messages exchanged using a protocol like Signal rely on
out-of-band protocols to verify that users in a session have matching states.

This paper offers a solution to detect MitM attackers using the in-band chan-
nel. This solution relies on long-term keys which still need to be authenti-
cated with an out-of-band channel. It adds authentication steps to the Signal
protocol, which may be triggered regularly. Those authentication steps cer-
tify that a user is communicating with a holder of their peer’s long-term
secret.

At the expanse of computational and space overhead, MitM adversaries who
do not know long-term secrets are detected by the protocol proposed in this
paper without using an out-of-band channel.

Moreover, if out-of-band checks are still required to verify the authenticity
of long-term secrets, they can also be used to detect adversaries having used
long-term secrets to avoid detection on the in-band channel. This enables
users to refresh their long-term secrets only if attackers have demonstrated
a compromise of their long-term secrets.

While this paper presents authentication steps for the Signal protocol, the
core ideas of the new protocol may be adapted to other settings, such as the
TLS 1.3 sessions resumption mechanism, to provide additional authenticity
guarantees.

73

Bibliography

[1] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet:
Security notions, proofs, and modularization for the signal protocol. In
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 129–158. Springer, 2019.

[2] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and
Igors Stepanovs. Ratcheted encryption and key exchange: The security
of messaging. In Annual International Cryptology Conference, pages 619–
650. Springer, 2017.

[3] T. Chen and Kan Min-Yen. The National University of Singapore SMS
Corpus. [Dataset] https://doi.org/10.25540/WVM0-4RNX, 2015.

[4] Tao Chen and Min-Yen Kan. Creating a live, public short message
service corpus: the nus sms corpus. Language Resources and Evaluation,
47(2):299–335, 2013.

[5] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messaging
protocol. Cryptology ePrint Archive, Report 2016/1013, 2016. https:

//eprint.iacr.org/2016/1013.

[6] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messag-
ing protocol. 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, pages 451–466, 2017.

[7] Google Developers. Protocol buffers. https://developers.google.

com/protocol-buffers, 2021.

75

https://doi.org/10.25540/WVM0-4RNX
https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2016/1013
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

Bibliography

[8] Benjamin Dowling and Britta Hale. There can be no compromise: The
necessity of ratcheted authentication in secure messaging. IACR Cryp-
tol. ePrint Arch., 2020:541, 2020.

[9] Simon Eberz, Martin Strohmeier, Matthias Wilhelm, and Ivan Marti-
novic. A practical man-in-the-middle attack on signal-based key gener-
ation protocols. In European symposium on research in computer security,
pages 235–252. Springer, 2012.

[10] Facebook. Messenger secret conversation, techni-
cal whitepaper. Technical report, Facebook, 2016.
https://about.fb.com/wp-content/uploads/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf.

[11] Steffen Fries. Question to TLS 1.3 and certificate revocation
checks in long lasting connections. IETF Mail Archive, 2021.
https://mailarchive.ietf.org/arch/msg/tls/vTxwj2iShME6c7AHg_

Ub-_eS_fM/.

[12] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated
verifier proofs and their applications. In Ueli Maurer, editor, Advances
in Cryptology — EUROCRYPT ’96, pages 143–154, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg.

[13] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Auto-
mated verification for secure messaging protocols and their implemen-
tations: A symbolic and computational approach. In 2017 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), pages 435–450. IEEE,
2017.

[14] Hugo Krawczyk and Pasi Eronen. Hmac-based extract-and-expand key
derivation function (hkdf). RFC 5869, RFC Editor, May 2010. https:

//www.ietf.org/rfc/rfc5869.txt.

[15] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic curves for
security. RFC 7748, RFC Editor, January 2016. http://www.ietf.org/

rfc/rfc7748.txt.

[16] T. Perrin. The xeddsa and vxeddsa signature schemes. Technical report,
2016. https://whispersystems.org/docs/specifications/xeddsa/.

[17] Trevor Perrin and Moxie Marlinspike. The double ratchet al-
gorithm. https: // whispersystems. org/ docs/ specifications/

doubleratchet/ , 2016.

76

https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://mailarchive.ietf.org/arch/msg/tls/vTxwj2iShME6c7AHg_Ub-_eS_fM/
https://mailarchive.ietf.org/arch/msg/tls/vTxwj2iShME6c7AHg_Ub-_eS_fM/
https://www.ietf.org/rfc/rfc5869.txt
https://www.ietf.org/rfc/rfc5869.txt
http://www.ietf.org/rfc/rfc7748.txt
http://www.ietf.org/rfc/rfc7748.txt
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/

Bibliography

[18] Trevor Perrin and Moxie Marlinspike. Recovery from com-
promise. https: // whispersystems. org/ docs/ specifications/

doubleratchet/ #recovery-from-compromise , 2016.

[19] Trevor Perrin and Moxie Marlinspike. The x3dh key agreement pro-
tocol. https: // whispersystems. org/ docs/ specifications/ x3dh/ ,
2016.

[20] Trevor Perrin and Moxie Marlinspike. The sesame algorithm: Ses-
sion management for asynchronous message encryption. https: //

signal. org/ docs/ specifications/ sesame/ , 2017.

[21] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, RFC Editor, August 2018.

[22] Gustavus J Simmons. Symmetric and asymmetric encryption. ACM
Computing Surveys (CSUR), 11(4):305–330, 1979.

[23] Open Whisper Systems. libsignal-protocol-c. https://github.com/

signalapp/libsignal-protocol-c, 2021.

[24] Open Whisper Systems. libsignal-protocol-java. https://github.com/
signalapp/libsignal-protocol-java, 2021.

[25] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo
Krawczyk. On the cryptographic deniability of the signal protocol. In
Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spog-
nardi, editors, Applied Cryptography and Network Security, pages 188–209,
Cham, 2020. Springer International Publishing.

[26] Whatsapp. Whatsapp security advisories, 2021. https://www.

whatsapp.com/security/advisories.

[27] WhatsApp. Whatsapp security page. Technical report, Facebook, 2021.
https://www.whatsapp.com/security/.

77

https://whispersystems.org/docs/specifications/doubleratchet/#recovery-from-compromise
https://whispersystems.org/docs/specifications/doubleratchet/#recovery-from-compromise
https://whispersystems.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/sesame/
https://github.com/signalapp/libsignal-protocol-c
https://github.com/signalapp/libsignal-protocol-c
https://github.com/signalapp/libsignal-protocol-java
https://github.com/signalapp/libsignal-protocol-java
https://www.whatsapp.com/security/advisories
https://www.whatsapp.com/security/advisories
https://www.whatsapp.com/security/

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

CONTINUOUS AUTHENTICATION IN SECURE MESSAGING

POIRRIER Alexandre, Phuoc, Jean-Marc, Basile

Zürich, on 04/03/2021

