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Abstract

This thesis deals with the pricing and the risk management of energy
markets, in particular the mid- to long-term markets of electricity and
natural gas. The main contributions are made in proposing modeling
frameworks for pricing energy forwards and options, and for the gas storage
optimization, and towards the quantification of long-term model risk in
energy markets.

Firstly, we propose a multifactor polynomial framework to model and
hedge long-term electricity contracts with delivery period. This framework
has several advantages: the computation of forwards, risk premia and cross-
maturity correlations is fully explicit, and the model can be calibrated
to observed electricity forward curves efficiently and accurately. In this
framework, we suggest a rolling hedge which only uses liquid forward
contracts and is risk-minimizing in the sense of Föllmer and Schweizer
[1991]. We calibrate the model to over eight years of German power
calendar year forward curves and investigate the quality of the risk-
minimizing hedge over various time horizons.

Based on the polynomial framework, we propose a quadratic Gaussian
framework to model long-term electricity options that are written on
forwards with delivery period. This framework is a subclass of the
polynomial framework, which still generalizes the two-factor model. Thus
it inherits all the strengths of the polynomial framework. In this model,
we develop an exponential-quadratic transform formula, which allows us
to compute the characteristic function by solving Riccati equations, and
to price options accurately using a Fourier approach. The advantage
of this model is that it allows a consistent way of pricing options and
the underlying forwards simultaneously without approximations and
simplifying assumptions. Moreover, we calibrate the model to various
observed options and forwards of the German power exchange.

Furthermore, we propose two machine learning models for the gas
storage optimization problem, which uses the deep hedging approach
developed by Buehler, Gonon, Teichmann, andWood [2019]. Both proposed
models are the first deep hedging models for this field. The first model
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(Model I) uses spot as hedging instrument, and the second model (Model
II) extends Model I by using forwards with monthly delivery periods as
additional hedging instruments. Moreover, we compare the terminal profit
and loss generated by the strategies of our trained models with that using
Least Squares Monte Carlo (LSMC), both in in-sample and out-of-sample
tests. We find that Model I provides results that are close to LSMC, and
Model II significantly outperforms LSMC and is also more volatile.

Last but not least, we provide an extensive review of the model risk
quantification literature in which we group the applicable methods into
three categories: the pairwise model comparison, the Bayesian model
averaging, and the worst-case approach. We present two applications to
quantify model risk in modeling and hedging long-term energy options. In
the first application, we hedge an illiquid energy call using a misspecified
model, and find in numerical tests that the model risk outweighs the
tracking error of the hedge and cannot be neglected. For the second
application, we use the entropy approach of Glasserman and Xu [2014],
which gives explicit model risk with respect to the divergence in entropy
terms from a baseline model. In the second application, we calibrate three
different models to the real data, where we set one model as the baseline
model, and compute the entropy levels of each of the other models, and
quantify the model risk with respect to each entropy level. This approach
is able to assign a number to the model risk with very little computational
efforts.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Preisgestaltung und dem
Risikomanagement in Energiemärkten, insbesondere mit Forwards und
Derivaten mit mittel- bis langfristigen Anlagehorizonten in Elektrizität
und Erdgas. Der Hauptbeitrag dabei ist der Vorschlag von Modellen
zur Preisbestimmung von Energie Forwards und Optionen, sowie für
die Erdgasspeicheroptimierung und Ansätze zur Quantifizierung von
Modellrisiko in Energiemärkten.

Zuerst schlagen wir ein polynomielles Mehrfaktormodell vor zum
Hedgen von langfristigen Elektrizitätsderivaten mit Lieferperioden.
Dieses Modell bietet folgende Vorteile: Es berechnet explizit
Forwardpreise, Risikoprämien, und die Korrelation zwischen verschiedenen
Forwards. Ausserdem lässt sich das Modell durch beobachtete
Elektrizitätsforwardkurven präzise und effizient kalibrieren. In diesem
Modell schlagen wir einen rollenden Hedge vor, der ausschliesslich liquide
Forwardkontrakte nutzt und der risikominimierend ist im Sinne von
Föllmer and Schweizer [1991] ist. Wir kalibrieren das Model an einen
Datensatz von über acht Jahren deutschen Stromforwardkurven und
untersuchen die Qualität des risikominimierenden Hedges für verschiedene
Zeithorizonte.

In der Klasse polynomieller Modelle schlagen wir ein quadratisches
Gauss-Modell für langfristige Optionen auf Elektrizitätsforwards mit
Lieferperioden vor. Dieses Modell kann als eine Unterklasse des
polynomielles Modells betrachtet werden, das ein Zweifaktorenmodell
verallgemeinert. Dadurch erbt es die Vorteile eines polynomiellen
Modells. Zudem erarbeiten wir eine exponentiell-quadratische
Transformationsformel, die es erlaubt die charakteristische Funktion
durch das Lösen von Riccati-Gleichungen zu berechnen. Somit können wir
Optionen effizient mit einem Fourier-Ansatz preisen. Zudem kalibrieren
wir das Modell an verschiedenen realen Optionen und Forwardpreise der
Deutschen Electriziätsmärkte.

Im weiteren schlagen wir zwei Modelle des maschinellen Lernens für
die Erdgasspeicheroptimierung vor, die einen Deep-Hedging-Ansatz von
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Buehler, Gonon, Teichmann, and Wood [2019] verwenden. Es sind die
ersten Modelle des Deep-Hedging-Ansatzes für dieses Forschungsfeld. Das
erste Modell benutzt ausschliesslich den Spot als Hedge und das zweite
Modell benutzt zusätzlich Forwards mit monatlichen Lieferperioden. Wir
vergleichen den Gewinn/Verlust der Strategien der so trainierten Modelle
mit denen eines Monte Carlo Modells der kleinsten Quadrate. Wir sehen,
dass das erste Modell dem Monte Carlo Modell nahe kommt und dass das
zweite Modell signifikant bessere Renditen liefert bei erhöhter Volatilität.

Schliesslich liefern wir einen umfangreichen Überblick über die
Literatur im Bereich Modellrisikoquantifizierung in dem wir Methoden
in drei Kategorien einteilen: Den paarweisen Modellvergleich, die Bayes-
Modell Durchschnittsbildung und den Worst-Case Ansatz. Wir stellen
zwei Anwendungen dafür im Hedgen von langfristigen Energieoptionen
vor. In der ersten hedgen wir einen illiquiden Energie-Call mit einem
falsch spezifizierten Modell und finden in numerischen Tests, dass
das Modellrisiko dem Nachbildungsfehler des Hedges überwiegt und
somit nicht vernachlässigbar ist. In der zweiten Anwendung nutzen wir
den Entropieansatz von Glasserman and Xu [2014], der explizit das
Modellrisiko mit Bezug auf die Divergenz der Entropieterme im Vergleich
zum Basismodell angibt. Wir kalibrieren drei verschiedene Modelle an
Realdaten, wobei wir eines als Basismodell betrachten. Dann berechnen wir
Entropieterme und quantifizieren das Modellrisiko. Dieser Ansatz macht
es möglich dem Modellrisiko mit sehr geringem Rechenaufwand eine Zahl
zuzuordnen.
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Chapter 1

Introduction

Energy markets is a collective term for all commodity markets which are related
to the supply and trade of energy. The major energy commodities traded are
crude oil, oil-refined products (cracks such as gas oil, heating oil, jet fuels),
natural gas, coal and electricity. Among all energy commodities, electricity and
gas stand out due to their distinct nature, and their contract definition, as we
will discuss below.

One of the most peculiar properties of electricity is its very limited storability,
which makes the classical theory for storable commodities not directly applicable.
The main reason is that supply and demand cannot be balanced via storage, and
the usual valuation via replication, i.e. the cash and carry strategy on buying
the spot and storing it for forwards does not hold. Moreover, spot and forward
refer to different delivery periods, and are thus essentially different commodities.
The lack of storage also causes spikes in prices, which requires advanced methods
for modeling. Moreover, together with the limited grid capacity and restrictions
on grid connections, it is a regional commodity. Apart from the unstorability,
electricity has other specific features such as seasonality, possibility of intra-day
negative prices, its unique mechanism in the auction market for the day-ahead
trading, and has very liquid short-term markets, and highly illiquid mid-to long-
term markets. Another important energy commodity with limited storability is
natural gas. It is the less extreme sister of the unstorable electricity, as a small
amount of gas can be stored via underground storage facilities or via conversion
to liquefied natural gas (LNG), allowing regional and global trading respectively.
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2 Chapter 1

However, the proportion of stored gas is small, so that the properties of electricity
still apply to gas. As a consequence of the peculiar properties of electricity and
natural gas, more tailored solutions are required for their modeling.

Apart from the distinct nature of electricity and gas, another source that
contributes to the difficulty in modeling is that the futures and forwards of
electricity and gas have a delivery period, that is, a fixed hourly rate delivered
throughout the period of delivery. Despite the names, those contracts are in fact
swaps, each of which has as reference price an average price, averaged over all
spot prices in the delivery period. This significantly increases the complexity,
and restricts the choice of models with good mathematical and economical
tractabilities for modeling and hedging.

In this thesis, we deal with this interesting and challenging topic of modeling,
hedging and risk management of the electricity and gas markets using several
approaches. Regarding electricity, we focus on its mid-to long-term markets, as
the literature directly addressing these markets is very sparse. Regarding gas,
we focus on the machine learning technique for the optimization of a one-year
storage schedule for an underground gas storage facility. Throughout the thesis
we will refer to electricity and gas as the energy markets.

1.1 Outline of the thesis

This thesis is structured as follows: in the remainder of this introductory chapter
we provide a brief introduction to the energy markets and a review of quantitative
modeling methods, with a particular focus on reduced form models, and a list
of notation. In Chapter 2 we review the mathematical tools needed for this
thesis, i.e. the polynomial diffusion models. Polynomial diffusion models are
very general models which, thanks to the moment formula (see e.g. Cuchiero
et al. [2012], Filipović and Larsson [2016]), are very tractable.

Chapter 3 is based on the paper Kleisinger-Yu et al. [2020], published in the
SIAM Journal on Financial Mathematics. In this chapter, we propose a multi-
factor polynomial framework to model and hedge long-term electricity contracts
with delivery period. This framework has several advantages: the computation
of forwards, risk premia and correlations between different forwards are fully
explicit, and the model can be calibrated to observed electricity forward curves
easily and accurately. We suggest a rolling hedge which only uses liquid forward
contracts and is risk-minimizing in the sense of Föllmer and Schweizer [1991].
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This hedging mechanism allows us to address the non-storability of electricity
and the poor liquidity in its long-term markets. Moreover, we calibrate the model
to over eight years of German power calendar year forward curves and investigate
the quality of the risk-minimizing hedge over various time horizons.

Based on the modeling framework in the previous chapter, we study in
Chapter 4 the pricing of options that are written on electricity contracts
with delivery period. Here we focus on a subclass of polynomial diffusions,
the quadratic Gaussian models, as this subclass is a generalization of the two-
factor model of Chapter 3, which captures the features of electricity contracts
with delivery period accurately. For the quadratic Gaussian framework, we
propose a Fourier-style option pricing approach, for which we have developed an
exponential-quadratic transform formula to compute the characteristic function
by solving Riccati equations. The proof of the theorem is inspired by the proof
of extension of the affine transform formula (Filipovic [2009]) The strength
of this modeling framework is that it provides a consistent and tractable way
of pricing options and the underlying forwards simultaneously. Moreover, we
conduct a calibration study where we calibrate our model to volatility curves
and their underlying forwards of the German electricity exchange market (EEX)
and investigate the quality of fit.

In Chapter 5, we turn our attention to the short-to mid-term markets of gas,
and propose two models for the optimization of gas storage which uses the deep
hedging approach developed by Buehler et al. [2019]. To the best of the author’s
knowledge, our models are the first deep learning applications in this field: the
first model (Model I) is of the intrinsic valuation type, and solves the gas storage
optimization using only day-ahead gas forwards as hedging instruments; the
second model (Model II) extends Model I by additionally using the monthly
gas forwards with delivery period. Note that in reality, one uses the monthly
forwards with delivery periods as hedging instruments, and not an artificial
computed daily forward curve. And thus, Model II is useful for the real world
application. Deep hedging is machine learning approach. In particular it is a
supervised learning approach inspired by the concept of reinforcement learning:
given a time series of price dynamics as inputs, one can train neural networks
to compute the hedging strategy or the storage schedule at any point in time to
minimize according to a loss function that incorporates the inputs and outputs
(normally set to 0). This approach to solving the gas storage problem allows
us to take advantage of the recent advances in computer science, the Keras
and Tensorflow modules in Python with very efficient gradient descent methods.
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Thus, we conduct numerical tests, both in-sample and out-of-sample, to compare
the performance of both models with a benchmark case computed using Least
Squares Monte Carlo.

In Chapter 6, we study the quantification of model risk, with a strong focus on
methods that are applicable to the industry and in particular to long-term energy
markets. We discuss various aspects and definitions of model risk, and provide
an extensive review of the model risk quantification literature, in which we group
the applicable methods into three categories: the pairwise model comparison
(and parameter perturbation), the Bayesian model averaging, and worst-case
approach. Moreover, we present two applications to quantify model risk in the
modeling and hedging of long-term energy options. In Application I, we hold an
illiquid energy call which we hedge using a misspecified model. The discrepancy
from the value of hedge and the energy call consists of two errors, namely the
model misspecification error (model risk), and the model-based tracking error
of the hedge. In our simulation study, in which the Heston model is assumed
to describe the real dynamics of electricity, and the Black-Scholes model the
misspecified model, we investigate and quantify the model risk and the tracking
error. In Application II, we quantify the model risk using the entropy approach
proposed by Glasserman and Xu [2014]. The entropy approach is an worst-case
approach, which only requires a Monte Carlo estimator of the claim on the
baseline model and the divergence from the baseline model in entropy level.
In particular, we don’t need the knowledge of all models within this entropy
level, nor the prices of the claim under each of the models. It is computationally
very efficient. Hence we investigate the model risk of the volatility curve of the
calendar year 2023 German call options with respect to different entropy levels,
which we obtain by calibrating three different models to the data and computing
their divergence to a baseline model.

1.2 A brief introduction to energy markets

Since the start of the liberalization of the electricity and gas markets in the
nineties, numerous markets for spot and derivative products in various regions
have emerged, attracting the interest of various financial investors besides the
traditional market player who possesses energy producing facilities. In the
following we give a brief introduction to electricity markets.

Electricity has a lot of distinct properties that make it unique. There exist
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various commodities that can be used to produce power, e.g. coal, gas, nuclear,
wind, solar. The composition of power generation varies from region to region,
and depends heavily on the geographical properties and the geopolitical policy
of each country or region. However once generated, electricity does not differ in
quality, contrary to other energy commodities such as oil, which has different
composites: e.g. West Texas Intermediate (WTI) is “sweeter” than Brent due
to the sulfur content. Electricity can then be transmitted through the grid to
reach end users for both commercial and private purposes. Its usage has various
facets, and ranges from enabling production in a factory to lighting and heating
of a single household.

The most predominate feature of electricity is its very limited storability, it
is thus generally considered a non-storable commodity. It is both very difficult
and expensive to store power on a significant scale. Energy producers who own
power plants can store electricity in its primary generation commodities such
as water reservoirs (for hydro-based electricity production), gas, oil and coal
(thermal electricity production). The energy consumers cannot however buy
storage, and thus there is no cost of carry relationship between spot and forward
as is known in other commodities and asset classes. Because of the lack of storage,
Kirchhoff’s law applies, that is, the production must equal consumption at all
time. Any deviance from equilibrium of supply and demand cannot be balanced
through storage, and causes the price to spike, both upwards and downwards.
The occurrence of an unexpected shortfall of electricity, for example through the
shut-down of a power plant due to sudden breakdown, can immediately cause a
price spike, where the price reaches a magnitude of 10-times or even 100-times
the equilibrium price. Similarly, whenever there is a supply surplus, the producer
will be offered a price for not pumping their electricity generation into the grid,
creating a negative price of electricity. As a consequence, the volatility of real-
time electricity prices is very high. In general, the volatility of electricity depends
on the exact delivery period. The volatility of electricity contracts depends on
the remaining time to the start of delivery, i.e. time to maturity. One often
observes the so called Samuelson effect, namely the volatility is decreasing with
increasing time to maturity.

Another important property of electricity is its seasonality. Because of the
lack of storage, the demand side tends to drive the prices. It has a daily pattern,
i.e. peak loads and off-peak loads (after work hours delivery, without demand
from e.g. factories), a weekly pattern, i.e. weekday loads and weekend loads, and
monthly and quarterly patterns, i.e. winter demand and summer demand.
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Moreover, electricity is a regional commodity, and it is often not possible to
take advantage of cross-regional arbitrage. The reason, besides the unstorability
of electricity, is that the grid infrastructure is not always well integrated and the
grid capacity is very limited. There is no global market for electricity.

Electricity as a flow commodity is continuously delivering power for local use.
This is reflected by its tradable futures and forwards. The terminology seems
misleading, as all forwards, futures (and options) of electricity have delivery
periods, meaning that the contracts refer to an average-based price averaged
over the period of delivery. Therefore, despite being called futures and forwards,
these electricity contracts are swaps in nature, where the fixed leg is determined
prior to the delivery period (via the market), and the variable leg is then the
spot price or real price of electricity delivery. The existence of the swap-like
structure adds quickly to the complexity of modeling, making some models (e.g.
models of multiplicative exponential affine type) less tractable than others (e.g.
models of additive factors) for computation.

Depending on the time to the start of the delivery period, one can distinguish
between four market categories:

• The forward / futures market, where the power producers sell their
production on a forward basis. The traded forward products have
delivery periods, which range from single day to weeks, months, quarters
and calendar years.

• The day-ahead market / spot market, where each of the delivery hours of
the following day are auctioned by exchanges today. Typically market
participants submit bids in volumes and prices to the exchange till
noon local time for the following day.

• The intra-day market, which is often organized by exchanges. Here
single hours are traded for which the spot market has already been
settled.

• The adjustment / reserve / balancing market is typically organized by
the local TSO (Transmission System Operator), who is reponsible for
the grid and its stability of a market place. In this market, the TSO
auctions the right to provide flexible supply (or demand) in order to
prevent electricity shortage for the consumers and the damage of the
transmission grid through oversupply.

A visualization is provided by Figure 1.2.1. Let τ denote the time to maturity. All
markets with τ ≤ 1 year are considered short-term markets, with 1 ≤ τ ≤ 3 years
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mid-term markets, and with τ ≥ 3 years long-term markets. Electricity has highly
liquid short-term markets and illiquid mid-to long-term markets. In this thesis,
we focus on the mid- to long-term forwards / futures markets. That is we study
calendar-year contracts with a yearly delivery period, with time to maturities
ranging from one year to ten years.

t −weeks/
months/
years

t − 1 day t − 30s t = delivery starts

Forwards / futures Day-ahead Intraday, adjustment

Figure 1.2.1: Four categories of electricity markets with respect to the to the time to
the start of delivery period.

In terms of modeling, the price dynamics of electricity shows mean-reversion.
It is particularly visible in the very short-term markets with large spikes: one
sees that an upward spike is followed shortly after by a downward spike with
almost the same magnitude, expressing a mean-reversion effect towards the usual
equilibrium level. Similarly yet more subtly, it also applies to markets with longer
time to maturity, where the short-term prices fluctuate around and mean-revert
towards the long-term level which is determined through economic fundamentals
(the outlook of demand and supply of electricity of a region or a country).

Another interesting feature is that the term structure of electricity forward
curve requires multi-factor modeling. Empirical studies indicate that a large
number of factors is needed. To compare, a model with three factors (e.g. shift,
tilt and bend) is usually enough to explain around 95 − 98% of the underlying
dynamics of the interest rate term structure; see e.g. Steeley [1990], Litterman
and Scheinkman [1991], Dybvig [1988]; a model with three factors can only
explain around 70% of the electricity forward term structure; see Koekebakker
and Ollmar [2005], Frestad [2008], Benth et al. [2008a].

Natural gas is an important fuel for heating and also for electricity generation.
It has limited storability, but contrary to electricity is not completely unstorable
for consumers and investors. For example, natural gas can be stored in pipelines,
underground storage facilities and converted to LNG. The most important hubs
for gas trading are the Henry Hub, located in Louisiana in US, and the National
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Balancing Point (NBP) in the UK. Similarly to electricity, Natural gas has price
spikes, seasonality, intra-day negative prices, Samuelson effect of volatility and
multi-factor nature of term structure of forwards and futures. But the effects
are less pronounced than electricity due to some storage capacity. Moreover,
its conversion to LNG makes it possible to take advantage of cross-regional or
global price arbitrage. The contract definition of natural gas is similar to that
of electricity, and thus we omit an extensive discussion of natural gas markets.

1.3 Modeling of energy markets

There are several ways to categorize the modeling of energy markets. We follow
the classification of Carmona and Coulon [2014], and split the energy models
into the structured models and the reduced form models. Structured models
are those models that take some simplified fundamental relationships between
price and demand, capacity and/or marginal cost curves, into consideration; see
e.g. Carmona and Coulon [2014] for a review of structural models. Reduced
form models incorporate stylized properties of spot and futures / forwards and
are used mostly for derivative pricing (forward with delivery period, options);
see e.g. Benth, Benth, and Koekebakker [2008a] for in-depth treatment. In the
following we briefly review the reduced-form modeling of spot and futures /
forwards of energy markets, as the model we propose in this thesis is a reduced
form model. For the treatment below, we will use forward as the collective term
for futures and forwards. Throughout this chapter, we fix a filtered probability
space (Ω,F ,Ft,P).

Much of the energy modeling approach comes from the modeling of interest
rate market, and is modified to account for the stylized properties of the energy
markets. Most literature concentrates on the modeling of short-term markets, as
these liquid markets provide huge amounts of data, and are ideal for time-series
analysis.

The modeling of energy markets can also be split into three different tasks:
spot price modeling, derivation or modeling of forwards, and pricing of options.
Spot modeling St plays a central role in the author’s view for two reasons. Firstly,
the model describing the stochastic dynamics in the spot price is of interest for
energy traders. Secondly and most importantly, it is the reference price for the
settlement of a forward with delivery period, and such a forward is the main
interest of this thesis. Regarding the spot price dynamics, it is standard to
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use Ornstein–Uhlenbeck process (OU), as this is a natural way of describing
mean-reversion in the price dynamics.

An energy forward is in fact a swap, as it has a delivery period, and the
reference price is usually an average price, averaged over all spot prices within
the period of delivery. In this sense, an energy forward is already a derivative1.
Formally, let F (t, T1, T2) denote the time-t price of a forward with delivery in
[T1, T2). For convenience, we use a continuous setting, so that

F (t, T1, T2) =
1

T2 − T1

ˆ T2

T1

f(t, T )dT,(1.3.1)

where f(t, T ) denotes a forward with an instantaneous delivery at time T .
Note that contrary to forwards from other asset classes, f(t, T ) is purely a
computational forward and is not tradable.

For energy markets, it is difficult but essential to establish a relationship
between spot and forward. Below we discuss the forward and spot modeling
in two different subsections. In the first subsection, we will discuss in detail
three different approaches for forward modeling: the first two approaches build
on spots and rely on some spot-forward relationship; the last approach builds
the model for the forward directly. In the second subsection we discuss in some
detail the spot modeling.

Forward modeling – does a spot-forward relationship
exist?

In the following, we briefly discuss three different forward modeling approaches,
with a particular focus on their unique arguments for building the spot-forward
relationships. For a storable commodity, say oil, the notion convenience yield δ is
introduced to explain the difference between the spot St and the computational
forward f(t, T ). On the one hand, a storable commodity needs to be transported,
stored, insured, additionally to the cost of financing the purchase; therefore, the
cost of storage is positive, and in absence of arbitrage, we have a “traditional
contango”:

St ≤ f(t, T ).
On the other hand, holding a storable commodity can be highly profitable in
times of demand spikes or supply shortages; therefore, in absence of arbitrage,

1An option on an energy forward is even more exotic, namely a swaption.
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we should have a “traditional backwardation” :

St ≥ f(t, T ).

Formally the convenience yield δ is defined as:

f(t, T ) = Ste(µ−δ)(T−t)

= Steµ(T−t) ⋅ e−δ1(T−t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
benefit from owning physical

⋅ ec(T−t)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
cost of storage

,

where δ ∶= δ1−c and µ is the risk-neutral interest rate. Then the relationship can
be established via:

St = lim
t→T

f(t, T ),(1.3.2)

and (1.3.1).

This concept is popular and has been predominant for a very long time in the
classical literature for all energy commodities. The most famous model using the
convenience yield is the Gibson–Schwartz model, Gibson and Schwartz [1990].
The log spot price Xt = log(St) evolves according to the following SDE:

(1.3.3)
dXt = (µt − δt −

1

2
σ2)dt + σdWX

t

dδt = κ(θ − δt)dt + σδdW δ
t

with d⟨WX ,W δ⟩t = ρdt. This famous two-factor model falls into the class of
the exponential affine models. The seasonality is incorporated by using time-
dependent parameters µt. The forward f(t, T ) is given by

f(t, T ) = Ste
´T
t rsdseB(t,T )δt+A(t,T )

where B(t, T ) and A(t, T ) are solutions of some Riccati-equations. The drawback
of this model is that it requires δt to be independent of contract maturity T ;
this is contradictory to the Samuelson effect which implies that the forward
volatility is higher than the spot volatility; and the most important drawback is
that this theory assumes the use of storage, which contradicts the unstorability
of electricity and gas.

An alternative way of explaining the relationship is through the use of a
market price of risk λ ∶ Rd → Rd. We denote the associated Radon–Nikodym
density process by

Mλ
t = exp (

ˆ t

0

λ⊺dWs −
1

2

ˆ t

0

∥λ∥2ds ),



1.3 Modeling of energy markets 11

and assume that Mλ
t is a true martingale. We can then define Q on every

finite time interval [0, T ] via its Radon–Nikodym density dP
dQ ∣FT =Mλ

T . The risk
premium R(t, T ) then defines the difference between forward and spot, and is
given by

R(t, T ) ∶= f(t, T ) − EP[ST ∣Ft]
= EQ[ST ∣Ft] − EP[ST ∣Ft].

For F (t, T1, T2) the risk premium can be defined simply via integration over
[T1, T2):

R(t, T1, T2) ∶=
1

T2 − T1
EQ [
ˆ T2

T1

Su du ∣ Ft] −
1

T2 − T1
EP [
ˆ T2

T1

Su du ∣ Ft] .

This concept is related to the rational expectation hypothesis in interest rate
theory. Using this notion, R(t, .) < 0 refers to the “normal backwardation”; it
describes a situation in which a commodity producer wishes to hedge his revenues
by selling forwards, and is therefore willing to pay a premium on the expected
spot price; R(t, .) > 0 refers to the “normal contango”. This concept has also
become very popular. A very famous model using the market price of risk is a
short-term/long-term model, proposed by Schwartz and Smith [2000], Lucia and
Schwartz [2002]. Let Λt denote the seasonality. In this model, the deseasoned
log spot price Xt = logSt − log Λt is modeled (under P) as:

(1.3.4)

Xt =X(1)t +X(2)t ,

dX
(1)
t = −κ1X

(1)
t dt + σ1dW

(1)
t ,

dX
(2)
t = κ2dt + σ2(ρdW (1)

t +
√

1 − ρ2dW
(2)
t ),

with d⟨W (1),W (2)⟩t = ρdt. The factors X(1)t and X(2)t describe the short-term
deviation and the long-term equilibrium price levels respectively. Let κχ denote
the rate at which the short-term deviations are expected to disappear. With
a market price of risk λ, one can perform an equivalent measure change to
obtain the Q-dynamics of the spot. Moreover, the initial forward price is given
by F (0, T ) = EQ[ST ] = e−κχTχ0 + ξ0 +A(T ), with some deterministic function A.
The most notable strength of this method is that even though the convenience
yield isn’t directly modeled, it can be shown that the model is equivalent to
the Gibson–Schwartz model in (1.3.3); see Lucia and Schwartz [2002]. This fact
contributes considerably to the popularity of this type of model. In the following
years, many extensions of this model were proposed.
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An alternative modeling philosophy is to build the forwards directly, instead
of building them based on the spot, via the spot-forward relationship, and forward
with instantaneous delivery at a single point in time. In concrete, this adopts the
Heath–Jarrow–Morton (HJM) approach from the interest rate theory. If needed,
spot can be implied by the forward via (1.3.2) as a purely computational instance.
An energy model of the HJM type was proposed by Bjerksund, Stensland, and
Vagstad [2011]. In their model, the dynamics of the forward curve is represented
by:

df(t, T )
f(t, T ) =

N

∑
i=1

σi(t, T )dWi(t)

where d⟨Wi,Wj⟩t = 0 for i ≠ j. Note that σi(t, T ) = σi(T − t), i = 1, . . . ,N ,
neglecting the seasonality in volatility terms. Their PCA analysis on the British
gas data (the NBP data) indicate that N = 6. Forwards can be computed using
e.g. an Euler-scheme simulation of the following:

f(t, T ) = f(0, T ) exp(
N

∑
i=1

[
ˆ t

0

σi(T − u)dWi(u) −
1

2

ˆ t

0

σ2
i (T − u)du]).

In this model, the modeling the swap-like forwards as defined in (1.3.1) is a
challenging task. And thus, one often uses the simplifying assumption that

F (t, T1, T2) = f(t, T1).

Spot modeling

In the following we briefly discuss spot modeling, where we focus on modeling
the deseasoned and detrended spot curves. According to Benth et al. [2008a], the
modeling of energy spots can be divided into geometric and arithmetic models.
In geometric models log(St) is modeled as the sum of OU processes; this is a
classical approach, where a log-normal distribution is assumed for the energy
spot. In arithmetic models, St is directly modeled as the sum of OU-processes;
these models assume that energy spot is normally distributed.

To formalize, for i = 1, . . . ,m, j = 1, . . . , n, we let

dXi(t) = [µi(t) − αi(t)Xi(t)]dt +
p

∑
k=1

σik(t)dWk(t),

dYj(t) = [δj(t) − βj(t)Yj(t)]dt + ηj(t)dIj(t),
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be stochastic and jump factors respectively, where Wk, k = 1, . . . , p, are
independent BMs and Ij are independent jump components. Stochastic factors
have a good ability to fit the spot underlying the long-term forward prices, and
the jump factors are good at capturing possible spikes in short-term prices.

In a geometric model, the spot St is defined as:

logSt = log Λ(t) +
m

∑
i=1

Xi(t) +
n

∑
j=1

Yj(t),

where Λ(t) denotes the seasonality component. In an arithmetic model, the spot
St is defined as:

St = Λ(t) +
m

∑
i=1

Xi(t) +
n

∑
j=1

Yj(t).

The first and simplest geometric model was proposed by Schwartz [1997],
where the log spot price evolves according to the single factor:

dXt = κ(µt −Xt −
σ2

2κ
)dt + σdWt.

In this model, there is no explicit modeling of the spot-forward relationship such
as convenience yield. Yet, because of its simplicity, it is frequently used as the
benchmark model for oil, gas and electricity. In particular, it is often used as
the model for gas prices in the gas storage optimization literature; see e.g. Chen
and Forsyth [2008], Boogert and De Jong [2008], Bjerksund et al. [2011].

To account for the spot-forward relationship, the Gibson–Schwartz model
(1.3.3) and the Lucia–Schwartz model (1.3.4) were introduced. The latter model
became very popular, was extended several times (among others) by Villaplana
[2003] and Barlow, Gusev, and Lai [2004].

Arithmetic models can be built easily based on the underlying dynamics
of all geometric models mentioned above, i.e. the factors Xi

t should be used
for modeling St instead of log(St). This can be very useful when modeling
and hedging forward with delivery period, that are implied by the spot, as the
arithmetic models (working with the normal distribution) have better tractability
and calibration efficiency compared to arithmetic models. We omit an extensive
discussion on each of the models; see Benth et al. [2008a] for a detailed treatment.

Finally, we want to point out that our model in Chapter 3 is closest to an
arithmetic model and it is tractable for modeling and hedging long-term energy
forwards with delivery period. In contrast to the arithmetic model, which can
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have negative prices and prices are unbounded, our model generates non-negative
prices, or prices bounded from below by a number c ∈ R.

Seasonality

In energy markets, prices are highly dependent on the exact delivery period.
Thus, if we compare contracts with the same delivery length but different delivery
periods, that is, different subperiods of a year, it is important to first adjust for
seasonality before making a reasonable comparison.

For electricity modeling in this thesis, we only consider calendar year baseload
forwards with delivery period. All those contracts deliver throughout the year and
not only for a specific sub-period of the year. To capture these forwards in mid-to
long-term markets, it is not necessary to explicitly model seasonality. For the
gas storage optimization treated in this thesis, our focus is on the optimization
problem using machine learning and not on the modeling tasks of gas prices.
Thus, we don’t model seasonality for gas.

Nevertheless, we briefly give a review on common approaches used in
seasonality modeling. Seasonality can be either modeled as a deterministic
component, denoted Λt, or a stochastic component Λt(Xt) which depends on the
underlying stochastic dynamics Xt. The former deterministic approach is the
most popular technique used. However, the exact form of the seasonality function
always depends on the market. To capture the lower prices in summer and higher
prices in winter, a sinusoidal function like the cosine function can be a suitable
choice; see e.g. Pilipovic [2007]. Benth and Šaltytė-Benth [2004] proposed the
use of a continuous seasonal floor: Λt = a0 + a1t + a2 sin(2π(t − a3)/M , M = 250,
365. A different ansatz with a focus on the monthly seasonalities throughout the
year, suggests to use 12 dummy variables representing the lower seasonal level of
each of the 12 months of the year. These dummy variables can be represented via
a piece-wise or step function Λt, (∑12

i=1 log(Λi/12) = 0), in order to approximate
the periodic components and to incorporate them in the implementation stage
of the models; see e.g. Jaillet et al. [2004], Knittel and Roberts [2001] for more
details.
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1.4 List of notation

Throughout this thesis, we fix a filtered probability space (Ω,F ,Ft,P). Let
Q denote an equivalent risk-neutral probability measure that we use for the
pricing. For simplicity we assume zero interest rate and thus apply no discounting.
We denote by Sd the set of all symmetric d × d matrices and Sd+ the subset
consisting of positive semidefinite matrices. Let α̃ denote a multi-index, that is
α̃ ∶= (α̃1, . . . , α̃d) ∈ Nd0 with ∣α̃∣ = α̃1 + . . . + α̃d. For x ∈ Rd, let xα̃ be given by

xα̃ ∶= xα̃1
1 ⋅ xα̃2

2 ⋯xα̃dd .

Let p denote a polynomial on Rd, i.e.

p ∶ Rd → R, p(x) = ∑
α∈Nd

cαx
α,

with only finitely many of cα ∈ R that are non-zero. The degree of p is the total
degree of the multivariate polynomial, and is given by:

deg(p) = max{∣α∣ ∶ cα ≠ 0}.

If p is the zero polynomial, then deg(p) =∞. Further we let Pol denote the space
containing all polynomials on Rd, and let

Poln ∶= {p ∈ Pol ∶ deg(p) ≤ n}

denote the subspace of polynomials with degree at most n.
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Chapter 2

A review of polynomial
diffusions

2.1 Introduction

Polynomial models are highly popular in financial modeling, see e.g. Filipović
et al. [2017], Ackerer and Filipovic [2017], Ackerer et al. [2018], Cuchiero [2018],
Filipović and Willems [2018], Ackerer and Filipović [2016], Filipović et al. [2016],
Biagini and Zhang [2016], Delbaen and Shirakawa [2002] for references as well
as Cuchiero et al. [2012], Filipović and Larsson [2016] for a treatment of the
underlying mathematical theory.

In this chapter, we review the basic definition and the main properties of a
polynomial diffusion, which provides the mathematical tools needed for Chapter
3 on modeling and hedging electricity forwards with delivery period as well as
for Chapter 4 on the option pricing based on those forwards. This chapter is
structured in the following way: Section 1 we give definition of a polynomial
diffusion. The most important property that makes it popular is the moment
formula, which we give in Section 2. As a preparation for our modeling chapters,
we also provide a moment formula for polynomials of degree two. Section 3
reviews the conditions for the existence of exponential moments, and for the
uniqueness in law. The existence of a polynomial diffusion and its boundary
attainment of a subspace of Rd is then reviewed in Section 4. As jumps are

17
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not needed for the modeling in this thesis, we briefly discuss the properties of a
polynomial jump diffusions at the end of the chapter; for more details see e.g.
Filipović and Larsson [2020]. The notation of this chapter is very close to that
of Filipović and Larsson [2016].

Throughout the thesis, we let E ⊂ Rd denote a state space and assume
that E has non-empty interior. This will cover all applications of polynomial
diffusions in this thesis. Moreover, it allows us to identify polynomials on Rd

with polynomials on E.

2.2 Definition

Let a ∶ Rd → Sd and b ∶ Rd → Rd, such that for all i,j:

aij ∈ Pol2 and bi ∈ Pol1.(2.2.1)

Consider the following SDE:

dXt = b(Xt)dt + σ(Xt)dWt,(2.2.2)

where W is a d-dimensional Brownian motion and σ ∶ Rd → Rd×d is continuous,
and a(x) = σ(x)σ(x)⊺. The associated partial differential operator G is given by

Gf(x) = 1

2
Tr(a(x)∇2f(x)) + b(x)⊺∇f(x)(2.2.3)

for x ∈ Rd and any C2 function f . By Itô’s formula, the process

f(Xt) − f(X0) −
ˆ t

0

Gf(Xu)du(2.2.4)

is a local martingale. Note that due to (2.2.1), for any n ∈ N and any polynomial
p ∈ Poln, Gp is also polynomial of the same degree or lower degree, i.e. Gp ∈ Poln.

Definition 2.2.1 (Polynomial diffusion, Definition 2.1 of Filipović and Larsson
[2016]). The operator G is called polynomial if it maps Poln to itself for each
n ∈ N. In this case, we call any E-valued solution to (2.2.2) a polynomial diffusion
on E.

In fact, any G that maps Poln to itself for any n is of the form (2.2.2) and
(2.2.3).
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Lemma 2.2.2 (Lemma 2.2 of Filipović and Larsson [2016]). Let G̃f(x) =
1

2
Tr (ã(x)∇2f(x))+ b̃(x)⊺∇f(x) be a partial differential operator for some maps

ã ∶ Rd → Sd and b̃ ∶ Rd → Rd. Then the following are equivalent:

(i) G̃ maps Poln to itself for each n ∈ N

(ii) G̃ maps Poln to itself for each n ∈ {1,2}

(iii) The components of ã and b̃ lie in Pol2 and Pol1 respectively.

In this case, ã and b̃ are uniquely determined by the actions of G̃ on Pol2.

Proof. The implication (ii) to (iii) follows by applying G to monomials of degree
one and two. Other implications, (i) to (ii) and (iii) to (i) is obvious.

2.3 Moment formulas

In this section, we first review the general version of the moment formula of
Filipović and Larsson [2016], and then provide a moment formula for polynomials
of degree at most two. Both versions are used in Chapter 3 and Chapter 4.

Fix n and let N = (d+n
n

) be the dimension of Poln. Let H ∶ Rd → RN be a
function whose components form a basis of Poln. As an example, monomials
can be used to form a basis. Then for any p ∈ Poln

p(x) =H(x)⊺p⃗,(2.3.1)

Gp(x) =H(x)⊺Gp⃗,(2.3.2)

where p⃗ ∈ RN is the coordinate representation of p(x), and G ∈ RN×N the matrix
representation of the generator G.

Theorem 2.3.1 (Moment formula - general version). Let E[∣∣X0∣∣2n] <∞ and
let p be a polynomial with coordinate representations (2.3.1)–(2.3.2). Further let
Xt satisfy (2.2.2). Then for 0 ≤ t ≤ T we have:

EQ[p(XT )∣ Ft] =H(Xt)⊺e(T−t)Gp⃗.(2.3.3)

Proof. It is essential to show that the left side is not only a local martingale but
a true martingale. See Theorem 3.1. of Filipović and Larsson [2016].
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Below we give a more explicit version of the moment formula for polynomials
of degree two, which is useful for the next two chapters. Here we slightly change
the formulation of the SDE (2.2.2) to highlight the mean-reversion effect of the
underlying price dynamics of energy markets,i.e. b(x) ∶= κ(θ−x). We also assume
deterministic initial values. In detail, we consider

dXt = κ(θ −Xt)dt + σ(Xt)dWt, X0 = x,(2.3.4)

where κ ∈ Rd×d, θ ∈ Rd. Moreover, note that the quantity Tr(π a(x)) with π ∈ Sd
is quadratic in x, and thus of the form

Tr(π a(x)) = a0(π) + a1(π)⊺x + x⊺a2(π)x.(2.3.5)

for some a0(π) ∈ R, a1(π) ∈ Rd, and a2(π) ∈ Sd that depend linearly on π.

Theorem 2.3.2 (Moment formula for polynomials of degree two, Theorem 3.2
in Kleisinger-Yu et al. [2020]). Let q(x) be a polynomial of the form q(x) =
q0 + q⃗⊺x + x⊺Qx with q0 ∈ R, q⃗ ∈ Rd and Q ∈ Sd. Further let Xt satisfy (2.3.4).
Then for 0 ≤ t ≤ T we have:

EQ[ q(XT ) ∣ Ft] = φ(T − t) + ψ(T − t)⊺Xt +X⊺

t π(T − t)Xt,

where φ,ψ, π solve the linear ODE

(2.3.6)

φ′ = ψ⊺κθ + a0(π), φ(0) = q0,
ψ′ = −κ⊺ψ + 2πκθ + a1(π), ψ(0) = q⃗,
π′ = −πκ − κ⊺π + a2(π), π(0) = Q.

Proof. Define

M(t,Xt) ∶= φ(T − t) + ψ(T − t)⊺Xt +X⊺

t π(T − t)Xt.



2.4 Uniqueness 21

Let τ = T − t. Itô’s formula along with (2.3.5) and then (2.3.6) gives:

dM(t,Xt) = −φ′(τ)dt − ψ′(τ)⊺Xtdt −X⊺

t π
′(τ)Xtdt + ψ(τ)⊺dXt

+ 2X⊺

t π(τ)dXt +
1

2
⋅ 2Tr(π(τ)d⟨X⟩t)

= (−φ′(τ) − ψ′(τ)⊺Xt −X⊺

t π
′(τ)Xt + ψ(τ)⊺κθ − ψ(τ)⊺κXt

+ 2θ⊺κ⊺π(τ)Xt − 2X⊺

t π(τ)κXt +Tr(π(τ)a(Xt)))dt

+ σ̂(t,Xt)dWt

= ([−φ′(τ) + ψ(τ)⊺κθ + a0(π(τ))]

+ [−ψ′(τ) − κ⊺ψ(τ) + 2π(τ)κθ + a1(π(τ))]
⊺

Xt

+X⊺

t [−π′(τ) − π(τ)κ − κ⊺π(τ) + a2(π(τ))]Xt)dt + σ̂(t,Xt)dWt

= σ̂(t,Xt)dWt,

where σ̂(t, x) ∶= (ψ(τ) + 2π(τ)x)⊺σ(x). Thus, M(t,Xt) is a local martingale.
Now we let C ∈ R be a constant such that ∥a(x)∥op ≤ C(1 + ∥x∥2). Then with
Cauchy-Schwartz inequality,

∥σ̂(t,Xt)∥2 ≤ ∥ψ(T − t) + 2π(T − t)Xt∥2∥a(Xt)∥op

≤ C̃(1 + ∥Xt∥4),

for some constant C̃ ∈ R. Together with Tonelli’s theorem, this bound yields

E [
ˆ T

0

∥σ̂(t,Xt)∥2dt] ≤ C̃
ˆ T

0

E [1 + ∥Xt∥4]dt,

which is finite by Theorem 2.3.1. Hence, M(t,Xt) is a square-integrable true
martingale. As a result,

M(t,Xt) = E[M(T,XT )∣Ft] = E[q0 + q⃗XT +X⊺

TQXT ∣Ft] = E[q(XT )∣Ft].

This is the claimed formula.

2.4 Uniqueness

The moment formula, Theorem 2.3.1, shows that the mixed moments of a
polynomial diffusion are uniquely determined by its generator. Thus the
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uniqueness of a polynomial diffusion follows whenever moments exist and
determine the distribution. In other words, the question of uniqueness can be
transformed to the question of the existence of all finite moments. In the following,
we provide a sufficient condition, under which Xt admits finite exponential
moments. From this moment condition, the uniqueness in law follows for a
polynomial diffusion for (2.2.2) and (2.3.4) respectively. We omit the proofs and
refer to Filipović and Larsson [2016] for more details.

Theorem 2.4.1. If

E[eδ∣∣X0 ∣∣] <∞ for some δ > 0(2.4.1)

and the diffusion coefficient satisfies the linear growth condition

∣∣a(x)∣∣ ≤ C(1 + ∣∣x∣∣) for all x ∈ E(2.4.2)

for some constant C, then for each t ≥ 0 there exists ε > 0 with E[eε∣∣Xt ∣∣] <∞.

This sufficient condition of finite exponential moments for XT infer the
following result on uniqueness in law.

Theorem 2.4.2. Let X be an E-valued solution to (2.2.2). If (2.4.1) and (2.4.2)
hold, then any E-valued solution to (2.2.2) with the same initial law as X has
the same law as X.

Moreover, if X0 = x is deterministic, then (2.4.1) is satisfied. Therefore, the
only requirement for uniqueness in law is the growth condition (2.4.2). We thus
obtain the uniqueness in law for any E-valued solution Xt of (2.3.4), which
builds the underlying framework for the electricity modeling in later chapters.

Theorem 2.4.3. If the linear growth condition (2.4.2) is satisfied, then
uniqueness in law holds for any E-valued solution to (2.3.4).

Proof. This follows immediately from Theorem 2.4.2 with X0 = x deterministic.

2.5 Existence and boundary attainment

In this section, we review the most important conditions regarding the existence
of an E-value solution and the attainment of boundary of E. Here we omit all
proofs, which can be found in Filipović and Larsson [2016].
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Since the existence of Rd-valued solutions to (2.2.2) holds due to continuity
and linear growth of b and σ, existence of the E-valued solution to (2.2.2) boils
down to stochastic invariance of E. Let E = {p ≥ 0 ∣p ∈ P} for a finite collection
of polynomials P.

The underlying idea is that in order to not leave the state space, for any
point at the boundary, its drift should be inward pointing and its diffusive moves
should be parallel and not orthogonal to the boundary.

Theorem 2.5.1 (Necessary condition). Suppose there exists an E-valued
solution to (2.2.2) with X0 = x, for any x ∈ E. Then

(i) a∇p = 0 and Gp ≥ 0 on E ∩ {p = 0} for each p ∈ P

For the sufficient condition, the following assumptions on the geometry of
E, as well as the conditions on a, b are needed:

(G1) the ideal generated by {p} is real for each p ∈ P

(A1) a ∈ Sd+ on E

(A2) a∇p = 0 and Gp > 0 on {p = 0} for each p ∈ P

In particular, the conditions (G1) and (A2) together imply that a∇p = hp
for some vector of polynomials h. The following sufficient condition insures the
existence of an E-valued solution.

Theorem 2.5.2 (Sufficient condition). Suppose (G1), (A1) and (A2) hold. Then
G is polynomial on E, and there exists a continuous σ ∶ Rd → Rd×d such that
a = σσ⊺ on E and SDE (2.2.2) admits an E-valued solution X for any initial
law of X0, which spends zero time at the boundary of E:

ˆ t

0

1{p(Xs)=0}ds = 0 for all t ≥ 0 and p ∈ P(2.5.1)

The above theorem states that the diffusion X spend zero time at the
boundary of the state space, but does not state whether or not the boundary was
ever attained. The following theorem provides the necessary and the sufficient
conditions for this to occur.

Theorem 2.5.3 (Boundary attainment, necessary and sufficient conditions).
Let X be an E-valued solution to (2.2.2) satisfying (2.5.1). Let p ∈ P and h be a
vector of polynomials such that a∇p = hp.
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1. If there exists a neighborhood U of E ∩ {p = 0} such that

2Gp − h⊺∇p ≥ 0 on E ∩U

then p(Xt) > 0 for all t > 0.

2. Let x̄ ∈ E ∩ {p = 0} and assume Gp(x̄) ≥ 0 and 2Gp(x̄) − h(x̄)⊺∇p(x̄) < 0.
Then there exists ε > 0 such that if ∣∣X0− x̄∣∣ < ε almost surely, then X hits {p = 0}
with positive probability.

Although in this thesis we only consider diffusion processes, the polynomial
property also extends to jump diffusions. The extended generator of an E-valued
polynomial jump diffusion Xt is of the form

G̃f(x) = 1

2
Tr (ã(x)∇2f(x))+̃b(x)⊺∇f(x)+

ˆ
Rd

(f(x+ξ)−f(x)−ξ⊺∇f(x))ν(x, dξ),

where ν(x, dξ) is a Lévy transition kernel; see e.g. Filipović and Larsson [2020]
for an extensive treatment of polynomial jump diffusions.
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A multi-factor polynomial
framework for long-term
electricity forwards with
delivery period

3.1 Introduction

Electricity differs from other energy commodities due to specific features such
as limited storability, possibility of intra-day and day-ahead negative prices, its
unique mechanism of the auction market, high liquidity of short- to medium-term
trading and illiquidity of its long-term trading. Much of the academic literature
is dedicated to short- to medium-term modeling of electricity spot and futures
prices, as its highly frequent and huge data amount makes it ideal for empirical
studies of time series analysis. However, the literature addressing the modeling of
long-term electricity forwards and the corresponding hedging problems is scarce.

In this chapter, we propose a mathematically tractable multi-factor
polynomial diffusion framework to model long-term forwards, which captures
long-term properties such as mean reversion well. In this framework the
computation of forwards and cross-maturity correlations is fully explicit. Fitting

25
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the model to long time series of single market electricity data works easily
and accurately. Furthermore, we set up a rolling hedge mechanism that only
uses liquid forward contracts. This allows us to address the non-storability of
electricity and poor liquidity in its long-term markets. Within the setup the
hedging strategy we suggest minimizes the conditional variance of the cost
processes at any time, and thus is risk-minimizing in the sense of Föllmer and
Schweizer. A simulation study using the estimated model shows that the risk-
minimizing rolling hedge significantly reduces, yet does not fully eliminate, the
variance and skew of the long-term exposures.

The proposed modeling framework has various applications in forward
modeling. It can be used to smoothly extrapolate the curve to the non-liquid
horizon while calibrating it to the liquid horizon; it can also be used to smooth
the forward surface implied by the market once calibrated and to filter out
market noise; moreover, it can be used to model the prices within the real data
horizon between two quotation dates. Furthermore, the model can be extended
to model multiple electricity markets and other energy markets simultaneously.
It can thus serve as an alternative model for risk management purposes, and for
conducting simulations. We do however not pursue such multi-market extensions
in this thesis.

Compared to other electricity modeling classes such as affine processes
(mostly used as geometric models), this modeling framework has the advantage of
being general but still very tractable, so that pricing formulas of spots, forwards
(with instantaneous delivery) and forwards with delivery period have closed-form
solutions. Moreover, it is possible to explicitly compute locally risk-minimizing
hedging strategies in this framework which uses a rolling mechanism.

Our framework is introduced to model long-term markets and yearly forward
contracts, which are the most liquidly traded long-term contracts. The primary
focus is to capture dynamics over very long time horizons, including contracts
with maturities far beyond the liquidity of long-term futures traded on the
exchange. We calibrate the model to over-the-counter forwards with maturities
of up to ten years from the quotation date. However, our framework can easily
be extended to capture features such as spikes, seasonality and negative prices
for spots and forwards with shorter time-to-maturity (day-ahead, week-ahead,
month-ahead, quarter-ahead) and with shorter time frames (daily, monthly,
quarterly). Incorporating such features does not change the polynomial structure,
so that pricing and hedging remains tractable.

Polynomial models have been used to solve a number of problems in finance.
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With the exception of Ware [2019], the polynomial processes have not been
used for electricity modeling. Our polynomial framework makes assumption on
properties of spot and forward and not on supply-demand relation, and thus
falls into the category of classical reduced-form model (see Carmona and Coulon
[2014] for details on reduced-form model versus structural approach). It is closest
to the arithmetic models of Benth et al. [2007b,a, 2008a], and extends them by
making the spot price not a linear combination but a squared combination of
underlying polynomial processes. In doing so we extend the class of stochastic
process on the one hand, and guarantee non-negative spot prices on the other
hand.

The local risk-minimization hedging criterion of Föllmer & Schweizer 1991 is
one the two main quadratic hedging approaches; see e.g. Föllmer and Schweizer
[1991], Heath et al. [1999], Schweizer [1999, 1990] for references of the general
theory of local risk-minimization, Follmer and Sondermann [1986] for the mean-
variance hedge, and Heath et al. [2001] for a comparison of the two approaches.
In a recent paper on hedging, a locally risk-minimizing hedge was given for the
arithmetic model of Benth et al. under illiquidity; see Christodoulou et al. [2018].
Our work differs from theirs, as we consider a rolling hedge which only uses liquid
forward contracts and give explicit expression for the locally risk-minimizing
hedging strategy for our modeling framework.

This chapter is structured in the following way: In Section 2, we define the
underlying polynomial framework, model the spot price as a quadratic function
of it, and provide two main specifications. In Section 3, we define electricity
forwards with and without delivery period. We give pricing formulas for forwards,
as well as explicit expressions for covariances and correlations between different
forwards. In Section 4, to incorporate time series observations of forward prices,
we specify a market price of risk function, which determines the forward price
dynamics under the real-world measure P, and define the forward risk premium.
In Section 5, we introduce a rolling hedge mechanism with liquidity constraints
for hedging a long-term electricity commitment. Further, we give a rolling-hedge
that is locally risk-minimizing in the sense of Föllmer and Schweizer. In Section
6, we perform model estimation of a specification of the polynomial framework
to a time series of real observations of power forwards using a quadratic Kalman
filter. Further we simulate forward curves and investigate the quality of the
risk-minimizing hedge over various time horizon.

This chapter is based on Kleisinger-Yu, Komaric, Larsson, and Regez [2020].
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3.2 The model

In this section we define the underlying polynomial framework. Firstly, we model
the spot price St as a quadratic function of an underlying d-dimensional state
variable Xt which evolves according to a polynomial diffusion. More precisely,
we let

St = pS(Xt)(3.2.1)

dXt = κ(θ −Xt)dt + σ(Xt)dWt(3.2.2)

where pS(x) = c + x⊺Qx with c ∈ R+ and Q ∈ Sd+, κ ∈ Rd×d, θ ∈ Rd, W a d-
dimensional Brownian motion under Q and σ ∶ Rd → Rd×d is continuous. We
assume that the components of the diffusion matrix a(x) ∶= σ(x)σ(x)⊺ are
polynomials of degree at most two. This ensures thatXt is a polynomial diffusion,
see Lemma 2.2 in Filipović and Larsson [2016].

The above formulation allows in particular to capture mean reversion, an
important feature of electricity price dynamics. Empirically, this has been backed
up by e.g. Koekebakker and Ollmar [2005]. They examined Nordic electricity
forwards from 1995–2001 and observed that the short-term price varies around
the long-term price, indicating mean reversion. Several economic arguments also
support the mean-reverting property; see e.g. Escribano et al. [2011].

We will now focus on the following two specifications.

Specification 3.2.1 (Two-factor model). Let κZ , κY ∈ R, σZ , σY > 0, and
ρ ∈ (−1,1). The process Xt ∶= (Zt, Yt)⊺ evolves according to the SDE

(3.2.3)
dZt = −κZZtdt + σZdW (1)

t

dYt = κY (Zt − Yt)dt + ρσY dW (1)
t + σY

√
1 − ρ2dW

(2)
t

with Z0, Y0 ∈ R and Wt = (W (1)
t ,W

(2)
t )⊺ a standard two-dimensional Brownian

motion. Here Yt mean-reverts at rate κY towards the correlated process Zt. And
thus, Yt and Zt can be seen as factor processes that drive the short-end and
long-end dynamics of spot prices respectively. This model is consistent with the
empirical findings by Koekebakker and Ollmar [2005] regarding mean reversion.
Let α, β, c ∈ R+ and let the spot price be given by

St ∶= c + αY 2
t + βZ2

t .
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This guarantees nonnegative spot price, as St ≥ c ≥ 0. This specification is of the
form (3.2.1)–(3.2.2) with
(3.2.4)

Q = (β 0
0 α

) , κ = ( κZ 0
−κY κY

) , θ = (0
0
) , σ(x) = σ(z, y) = ( σZ 0

ρσY σY
√

1 − ρ2
) .

Specification 3.2.2 (Three-factor model). We now present a specification which
extends the two-factor model by modeling correlation between the underlying
processes stochastically via a Jacobi process. Conditions under which the model
exists and is unique are given below. Let κZ , κY ∈ R, κR, σZ , σY , σR > 0, and
θR ∈ (−1,1). The process Xt ∶= (Zt, Yt,Rt)⊺ evolves according to the SDE

(3.2.5)

dZt = −κZZtdt + σZdW (1)
t

dYt = κY (Zt − Yt)dt +RtσY dW (1)
t + σY

√
1 −R2

tdW
(2)
t

dRt = κR(θR −Rt)dt + σR
√

1 −R2
tdW

(3)
t

with Z0, Y0 ∈ R, R0 ∈ (−1,1), and Wt = (W (1)
t ,W

(2)
t ,W

(3)
t )⊺ a standard three-

dimensional Brownian motion. Let α, β, c ∈ R+ and let the spot price be given
by

St ∶= c + αY 2
t + βZ2

t .

This specification is of the form (3.2.1)–(3.2.2) with

(3.2.6)

Q =
⎛
⎜
⎝

β 0 0
0 α 0
0 0 0

⎞
⎟
⎠
, κ =

⎛
⎜
⎝

κZ 0 0
−κY κY 0

0 0 κR

⎞
⎟
⎠
, θ =

⎛
⎜
⎝

0
0
θR

⎞
⎟
⎠
,

σ(x) = σ(z, y, r) =
⎛
⎜
⎝

σZ 0 0

rσY σY
√

1 − r2 0

0 0 σR
√

1 − r2

⎞
⎟
⎠
.

Remark 3.2.3. Although Specification 3.2.2 is not used in our empirical
analysis, we include it as an illustration of the flexibility of the polynomial
framework.

A possible use of Specification 3.2.2 is to model multi-energy commodities
simultaneously. Here is a simple illustration of this: let one factor (Zt) drive the
short-term price of one market, and let the other factor (Yt) drive the short-term
price of the other market. Since energy markets evolve dynamically and prices
are generally non-stationary over time (Krečar et al. [2019]), it is useful to have
stochastic correlation between (the short ends of) different markets, modeled by
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a factor (Rt). The setup could be complemented with a fourth factor driving
common long-term prices.

Alternatively, two markets can also be modeled as follows: two factors with
the dynamics of Yt, (Y it , i = 1,2), can be used to model short-term prices of
each market; one factor (Zt) drives the common long-end prices. In order to
account for the changing relationship between short-term and long-term prices,
another two factors with the dynamics of Rt, (Rit, i = 1,2), can be added to model
the stochastic correlation between the short-term and long-term prices in each
market.

Proposition 3.2.4. Recall that κR > 0, θR ∈ (−1,1), and assume moreover that

κR(1 + θR) ≥ σ2
R,(3.2.7)

κR(1 − θR) ≥ σ2
R.(3.2.8)

Then for any initial condition with Z0 ∈ R, Y0 ∈ R and R0 ∈ (−1,1), there exists a
unique strong solution Xt = (Zt, Yt,Rt)⊺ of the SDE (3.2.5). Furthermore, this
solution satisfies Rt ∈ (−1,1) for all t ≥ 0.

Proof. In the following we show the existence and uniqueness of a strong solution
Rt as well as its boundary non-attainment. Once this is shown, we can explicitly
find X̃t ∶= (Yt, Zt) in terms of Rt. Indeed, Itô’s formula yields

d (eκ̃tX̃t) = eκ̃tκ̃θdt + eκ̃tσ̃(Rt)dW̃t,

where κ̃ = ( κZ 0
−κY κY

) and σ̃(r) = ( σZ 0

rσY σY
√

1 − r2
), which implies that

X̃t = e−κ̃tX̃0 +
ˆ t

0

e−κ̃(t−s)κ̃θds +
ˆ t

0

e−κ̃(t−s)σ̃(Rt)dW̃s.

We now prove existence of a weak solution of the SDE for Rt. Let ϕ(r) be
a continuous function that is equal to one for r ∈ [−1,1] and is equal to zero for
∣r∣ > 2, for example

ϕ(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ∣r∣ ≤ 1

2 − ∣r∣ 1 < ∣r∣ ≤ 2

0 ∣r∣ > 2.

We let b̃(r) ∶= b(r)ϕ(r) with b(r) ∶= κR(θR − r) and σ̃(r) ∶= σR
√

(1 − r2)+. Then
b̃(r) and σ̃(r) are continuous and bounded, and hence an R-valued weak solution
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Rt exists for the SDE dRt = b̃(Rt)dt+ σ̃(Rt)dW (3)
t ; see Theorem 4.22 of Section

5.4D in Karatzas and Shreve [1998]. We next show that Rt stays in (−1,1) using
a version of “McKean’s argument". Let p(r) ∶= 1 − r2 and note that p(R0) > 0.
Further define the stopping times τn ∶= inf{t ∶ p(Rt) ≤ 1

n
} and τ ∶= limn→∞ τn.

Observe that (3.2.7)–(3.2.8) imply that κR(1 − θRRt) − σ2
R ≥ 0 for all t < τ .

Combined with Itô’s formula, this yields

d log p(Rt) = (−(2κR − σ2
R) + 2

κR(1 − θRRt) − σ2
R

1 −R2
t

)dt − 2σRRt√
1 −R2

t

dW
(3)
t

≥ −(2κR − σ2
R)dt −

2σRRt√
1 −R2

t

dW
(3)
t ,

for t < τ . Consider the process

Mt ∶=
ˆ t

0

2σRRs√
1 −R2

s

dW (3)
s , t < τ.

Then Mt is a local martingale on the stochastic interval [0, τ). By definition,
this means that for all n ∈ N, Mt∧τn is a local martingale. We now show that
τ = ∞ a.s. Suppose for contradiction that P(τ < ∞) > 0. Then there exists a
large T <∞ such that P(τ < T ) > 0. Note that

(3.2.9) Mt ≥ −(2κR − σ2
R)t + log p(R0) − log p(Rt) ≥ −(2κR − σ2

R)T + log p(R0)

for all t < T ∧ τ . Thus Mt∧T is uniformly bounded from below, and hence a
local supermartingale on the stochastic interval [0, τ). The supermartingale
convergence theorem for processes on stochastic interval [0, τ) now gives that
limt→τMt∧T exists in R almost surely; see e.g. the proof of Theorem 5.7 in
Filipović and Larsson [2016]. Hence, in view of (3.2.9), − log p(Rt) is pathwise
bounded above on [0, T ∧ τ), which in turn means that τ > T a.s. This
contradiction shows that Rt ∈ (−1,1) for all t ≥ 0.

Now let σ(r) =
√

1 − r2. Then b̃(Rt) = b(Rt) and σ̃(Rt) = σ(Rt) on (−1,1),
and therefore, Rt is an (−1,1)-valued weak solution of the SDE dRt = b(Rt)dt+
σ(Rt)dW (3)

t . For the existence and uniqueness of strong solutions, we note that
b(.) is Lipschitz continuous, and σ(.) is Hölder continuous of order 1/2. Hence,
pathwise uniqueness holds for this SDE; see Theorem 3.5(ii) in Revuz and
Yor [2013]. As a result, any (−1,1)-valued solution is a strong solution by the
Yamada–Watanabe theorem; see e.g. Theorem 1.7 in Revuz and Yor [2013].
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Although our main focus in this chapter is on pricing and hedging of long-
term contracts, let us indicate how the framework can be adjusted to incorporate
features that are important over shorter time horizons.

Negative prices

In short-term electricity markets (real-time or day-ahead markets), prices
frequently become negative; see e.g. Carmona and Coulon [2014] for PJM,
Genoese et al. [2010] for German EEX. As electricity is non-storable, any
disturbance of demand or of supply can cause negative prices.1 The polynomial
model can be extended to allow for negative prices for short-term modeling by
simply taking c < 0. This way the spot price is bounded from below by c, St ≥ c,
which can be negative. This small modification does not change the polynomial
structure, and thus, all computations and properties for forwards and hedges
remain the same.

For long-term markets this feature is less relevant, as long-term prices are
generally insensitive to temporary shocks. Indeed, the data of German Calendar
year baseload forwards (over 8 years) does not contain negative prices.

Seasonality

In electricity markets, prices highly depend on the exact delivery period, e.g.
offpeak vs. peak hours, winter months vs. summer months, or specific quarters.
Thus, if we compare contracts with same delivery length but different delivery
periods, that is, different subperiods of a year, it is important to first adjust for
seasonality before making reasonable comparison. It is possible to incorporate
seasonality by making pS not only a state-dependent, but also time-dependent
mapping. More specifically, we can let pS(t, x) ∶= c(t)+x⊺Q(t)x, where c and Q
have temporal components. This leads to a time-inhomogeneous version of the
polynomial property, which remains tractable.

Note that all yearly baseload contracts deliver throughout the year and not
only for a specific subperiod of the year. To capture these forwards in long-term
markets, it is not necessary to explicitly model seasonality.

1To be more precise, negative prices can be caused by e.g. error predictions of
the load, high temperature volatilities, network transmission and congestion issues
(causing oversupply in one region and undersupply in another), and overdemand through
prediction error from generation via renewable energy (wind and PV).
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Spikes/Jumps

In short-term markets, one often observes extreme price changes in spot prices,
known as spikes. These result from unanticipated shocks in demand, and exist
only temporarily. In other words, prices don’t stay at the new level, but revert
rapidly back to the previous level. Because of their temporary nature, it is
reasonable to argue that the spikes have a negligible effect on long-term prices,
and therefore, should not be included in the framework for modeling long-term
electricity forwards.

However, our model can be extended to account for spikes if needed, say
to model short-term spot prices, or joint short- and long-term markets. One
possible way of doing so is to multiply the spot price by a mean-reverting jump
process that jumps and then very quickly mean-reverts towards its standard
level of 1. A simple example is given by:

ST = pS(Xt)Jt,

dJt = θJ(1 − Jt)dt +
ˆ
σJ(Xt, v)N(dv, dt),

where N(dv, dt) is a Poisson random measure, θJ a large mean-reversion
parameter, which forces the process to revert quickly to the previous level after
a jump. Another possibility is to incorporate spikes by an additive component,
e.g.

ST = pS(Xt) + Jt,

dJt = −θJJtdt +
ˆ
σJ(Xt, v)N(dv, dt).

Either way, the extensions do not change the behavior of long-dated forward but
only the short-term forward and spot, because all the jumps mean-revert very
quickly and so do not have an effect on long term prices. Provided σJ(x, v) is
chosen appropriately, many of the properties of polynomial diffusions (such as
the moment formula) still apply; see [Filipović and Larsson, 2020, Section 5] for
more details.

3.3 The term structure of forward prices

In this section we define electricity forwards, present their pricing formulas and
give expressions for covariances and correlations between different forwards.



34 Chapter 3

The price at time-t of an electricity forward with instantaneous delivery at
time T ≥ t is given by

f(t, T,Xt) ∶= EQ [ST ∣Ft] .(3.3.1)

In practice, electricity is not delivered instantaneously, but gradually over a
period of time. This leads us to the following definition: the time-t price of an
electricity forward with delivery period [T1, T2), t ≤ T1 < T2, is given by

F (t, T1, T2,Xt) ∶=
1

T2 − T1
EQ [
ˆ T2

T1

Su du∣Ft] .(3.3.2)

Note that a forward contract (financial or physical) can have settlement that
takes place either before or after the delivery period. Discounting is not needed
in the pricing, as the difference in cashflow can be evened out by the purchase
of a bond of that time period. F (t, T1, T2,Xt) is often also referred to as swap
price, as the delivery of underlying power happens over a period of time and
thus the price is the averaged price over that period.

It is intuitive that a forward with delivery period is the summation of all
forwards (with instantaneous delivery) that deliver at single time points within
the delivery period; moreover, a forward with delivery period which collapses into
one single time point should be priced the same as a forward with instantaneous
delivery. The following proposition confirms this relationship between forwards
with and without delivery period.

Proposition 3.3.1. For t ≤ T1 ≤ T2, we have:

F (t, T1, T2,Xt) =
1

T2 − T1

ˆ T2

T1

f(t, u,Xt)du.

Moreover,

lim
T2→T1

F (t, T1, T2,Xt) = f(t, T1,Xt).

Proof. In view of (3.3.1) and (3.3.2), the first identity follows from the
conditional version of Tonelli’s theorem since St is nonnegative. The second
identity then follows from the fundamental theorem of calculus, using that
f(t, T,Xt) is continuous in T , see Proposition 3.3.2 below.

The following result gives closed-form expression for the forward prices.
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Proposition 3.3.2 (Pricing formula for forwards). Let p⃗S be the coordinate
representation of pS(x). The time-t price of f(t, T,Xt) for t ≤ T is

f(t, T,Xt) =H(Xt)⊺e(T−t)Gp⃗S ,

and the time-t price of F (t, T1, T2,Xt) for t ≤ T1 ≤ T2 is

F (t, T1, T2,Xt) =
1

T2 − T1
H(Xt)⊺e(T1−t)G

ˆ T2−T1

0

euGdu p⃗S .

Proof. This follows from Theorem 2.3.1 and rearranging terms.

Note that G is a non-invertible matrix. Still,
´ τ

0
euGdu is explicit; see

Appendix 3.A for the explicit computation.

Specification 3.2.1 Recall the Specification 3.2.1 in Section 3.2. We consider
the basis given by

H(x) = (1, z, y, z2, yz, y2)⊺, x = (z, y)⊺.(3.3.3)

Then St can be uniquely represented as:

St =H(Xt)⊺p⃗S with p⃗S = (c,0,0, β,0, α)⊺.(3.3.4)

For any C2 function f and x = (z, y)⊺ ∈ R2, the generator G is :

Gf(x) = ( −κZz
κY z − κY y)

⊺

∇f(x) + 1

2
Tr(( σ2

Z ρσY σZ
ρσY σZ σ2

Y
)∇2f(x)) .

Applying G to each element of H(Xt) gives its matrix representation,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 σ2
Z ρσY σZ σ2

Y

0 −κZ κY 0 0 0
0 0 −κY 0 0 0
0 0 0 −2κZ κY 0
0 0 0 0 −κZ − κY 2κY
0 0 0 0 0 −2κY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.(3.3.5)
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Specification 3.2.2 Recall Specification 3.2.2 in Section 3.2. Here the
general G actually preserves a proper subspace of Pol2, namely the one spanned
by the components of

H(x) = (1, z, y, r, z2, yz, y2)⊺, x = (z, y, r)⊺.(3.3.6)

Therefore it is not necessary to include the remaining basis functions in the
definition of H. Then St can be uniquely represented as

St =H(Xt)⊺p⃗S with p⃗S = (c, 0, 0, 0, β, 0, α)⊺.(3.3.7)

For any C2 function f and x = (z, y, r)⊺ ∈ R3, the generator G is

Gf(x) =
⎛
⎜
⎝

−κZz
−κY y + κY z
κR(θR − r)

⎞
⎟
⎠

⊺

∇f(x) + 1

2
Tr

⎛
⎜
⎝

⎛
⎜
⎝

σ2
Z σY σZr 0

σY σZr σ2
Y 0

0 0 σ2
R(1 − r2)

⎞
⎟
⎠
∇2f(x)

⎞
⎟
⎠
.

Applying G to each element of H(Xt) gives

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 κRθR σ2
Z 0 σ2

Y

0 −κZ κY 0 0 0 0
0 0 −κY 0 0 0 0
0 0 0 −κR 0 σY σZ 0
0 0 0 0 −2κZ κY 0
0 0 0 0 0 −κZ − κY 2κY
0 0 0 0 0 0 −2κY

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.(3.3.8)

For later use, we briefly discuss the instantaneous quadratic covariation
and correlations between different forwards and give explicit forms for both
specifications. The instantaneous covariation between two forwards with
instantaneous delivery at T1 and T2 is, at time t ≤ T1 ∧ T2,

d

dt
⟨f(t, T1,Xt), f(t, T2,Xt)⟩ = p⃗⊺Se(T2−t)G

⊺

Σ(Xt)e(T1−t)Gp⃗S ,(3.3.9)

where

Σ(Xt)dt = d⟨H(X),H(X)⟩t.(3.3.10)

We define the corresponding instantaneous correlation as

(3.3.11)

Corr[f(t, T1,Xt), f(t, T2,Xt)]

= p⃗⊺Se
(T2−t)G

⊺

Σ(Xt)e(T1−t)Gp⃗S√
p⃗⊺Se

(T1−t)G
⊺

Σ(Xt)e(T1−t)Gp⃗S p⃗⊺Se
(T2−t)G

⊺

Σ(Xt)e(T2−t)Gp⃗S
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with Σ(Xt) from (3.3.10). The matrices Σ(Xt) for Specification 3.2.1 and
Specification 3.2.2 are given in Appendix 3.B. Similarly, for t ≤ T1 < T2 and
t ≤ T3 < T4, the time-t instantaneous covariation of forwards with delivery
periods [T1, T2) and [T3, T4) is

d

dt
⟨F (t, T1, T2,Xt), F (t, T3, T4,Xt)⟩ = w⃗⊺

34e
(T3−t)G

⊺

Σ(Xt)e(T1−t)Gw⃗12,(3.3.12)

and the time-t instantaneous correlation is:

(3.3.13)

Corr[ F (t, T1, T2,Xt), F (t, T3, T4,Xt) ]

= w⃗⊺

34e
(T3−t)G

⊺

Σ(Xt)e(T1−t)Gw⃗12√
w⃗⊺

12e
(T1−t)G

⊺

Σ(Xt)e(T1−t)Gw⃗12 w⃗⊺

34e
(T3−t)G

⊺

Σ(Xt)e(T3−t)Gw⃗34

with Σ(Xt) from (3.3.10) and

w⃗ij =
ˆ Tj

Ti

euGdu p⃗S .(3.3.14)

Remark 3.3.3 (Option pricing). Let p(XT ) be the payoff function of an
option based on a forward or a spot. For example, for a European call on
a forward with delivery period [T1, T2), strike K, and maturing T , we have
p(XT ) = (F (T,T1, T2,XT )−K)+. Modulo discounting, the time-t price of such an
option is the Ft-conditional expectation of p(XT ) under Q. If p is a polynomial
function, we can obtain explicit pricing for the option by Theorem 2.3.1 (if
the option is based on a spot) or Proposition 3.3.2 (if the option is based on a
forward). If p is not a polynomial, an approximation scheme is required. For
example, one can use the polynomial expansion method described in [Filipović
and Larsson, 2019, Section 7].

3.4 Market price of risk specification

In order to incorporate time series observations of real-world forward curves, we
must specify the forward dynamics under the real-world probability measure P.
Thus, in this section, we specify a market price of risk function λ ∶ Rd → Rd by

λ(x) = σ(x)−1(γ +Λx)

for some γ ∈ Rd and Λ ∈ Sd×d, and denote the associated Radon–Nikodym density
process by

Mλ
t = exp (

ˆ t

0

λ(Xs)⊺dWs −
1

2

ˆ t

0

∥λ(Xs)∥2ds ).(3.4.1)
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We choose γ and Λ such that Mλ
t is a true martingale. We can then define P

on every finite time interval [0, T ] via its Radon–Nikodym density dP
dQ ∣FT =Mλ

T .
Then, by Girsanov’s theorem, the P-dynamics of Xt becomes

dXt = [(κθ + γ) − (κ −Λ)Xt]dt + σ(Xt)dW P
t(3.4.2)

with dW P
t ∶= dWt − λ(Xt)dt. Note that the speed of mean reversion is now

adjusted to κ −Λ from κ.

Consider now Specification 3.2.1. In this case Mλ
t is a true martingale for

any choice for γ and Λ, as the following result shows.

Proposition 3.4.1. Let Xt evolve according to (4.2.5). Then Mλ
t from (3.4.1)

is a martingale.

Proof. Define X̃t ∶= (Zt, Yt, Z2
t , YtZt, Y

2
t ,
´ t

0
(σ−1γ + σ−1ΛXt)⊺dWt)⊺. Note that

X̃t has drift and diffusion that are affine in X̃t; see computations in Section 3.3,
Appendix 3.B and Section 3.6.2. Thus, by Kallsen & Muhle-Karbe (Corollary 3.9
in Kallsen and Muhle-Karbe [2010]), Mλ

t is a true martingale.

To be explicit, let Λ = diag(λZ , λY ) and γ = (γZ , γY )⊺. Then the P-dynamics
of Xt is given by:

dXt = [(γZ
γY

) − (κZ − λZ 0
−κY κY − λY )Xt]dt + ( σZ 0

ρσY σY
√

1 − ρ2
)dW P

t .(3.4.3)

This can also be written as dXt = κ′(θ′ −Xt)dt + σ(Xt)dW P
t with

κ′ = (κZ − λZ 0
−κY κY − λY ) , θ′ = (

γZ
κZ−λZ

γY
κY −λY

+ κY γZ
(κZ−λZ)(κY −λY )

) ,

and σ(x) from (3.2.4).

In the case of Specification 3.2.2 it is a more delicate problem to determine
those market price of risk parameters for which Mλ

t is a true martingale. Since
we will not use Specification 3.2.2 in our empirical analysis, we do not consider
this issue here.

Forward risk premium

We define the forward risk premium as the difference of the forward and
the predicted spot price. The time-t forward risk premium of a forward with
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instantaneous delivery at T ≥ t is thus given by

R(t, T,Xt) ∶ = EQ[ST ∣ Ft] − EP[ST ∣ Ft],

and the time-t forward risk premium of a forward with delivery period [T1, T2),
t ≤ T1 < T2, is given by

R(t, T1, T2,Xt) ∶ =
1

T2 − T1
EQ [
ˆ T2

T1

Su du ∣ Ft] −
1

T2 − T1
EP [
ˆ T2

T1

Su du ∣ Ft] .

The notion above is consistent with the ex-ante notion of forward risk premium
used by e.g. Benth, Cartea, and Kiesel [2008b], Benth and Meyer-Brandis
[2009], Benth, Kiesel, and Nazarova [2012], Benth and Schmeck [2014], Benth,
Piccirilli, and Vargiolu [2019], Krečar, Benth, and Gubina [2019]. Both the Q-
and P-conditional expectations can be computed using the pricing formula in
Proposition 3.3.2. We obtain the following explicit expressions for forward risk
premia:

R(t, T,Xt) =H(Xt)⊺[e(T−t)G − e(T−t)G
λ

]p⃗S ,

and

R(t, T1, T2,Xt) =
1

T2 − T1
H(Xt)⊺[e(T1−t)G

ˆ T2−T1

0

euGdu − e(T1−t)G
λ
ˆ T2−T1

0

euG
λ

du]p⃗S ,

where Gλ denotes the matrix representation of the generator G under P. For
example, for Specification 3.2.1 under P, Xt evolves according to (3.4.3), and
Gλ is given by

Gλ =

⎛
⎜⎜⎜⎜⎜
⎝

0 γZ γY σ2
Z ρσY σZ σ2

Y

0 λZ − κZ κY 2γZ γY 0
0 0 λY − κY 0 γZ 2γY
0 0 0 2(λZ − κZ) κY 0
0 0 0 0 (λZ + λY ) − (κZ + κY ) 2κY
0 0 0 0 0 2(λY − κY )

⎞
⎟⎟⎟⎟⎟
⎠

The forward risk premium arises from the market price of risk λ(Xt) and
the associated measure change via the Girsanov’s theorem, designed so that the
polynomial structure is preserved. This produces stochastic and time varying
forward risk premia. The risk premia do not have a definite sign, and can
alternate between being positive and negative.2 There is an extensive literature

2Empirical studies of electricity forward risk premia show mixed findings; see e.g.
Bunn and Chen [2013] for a literature survey, and Valitov [2019], Viehmann [2011] for
discussions of the risk premium in the short-term German market in particular.
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on market price of risk specifications, forward risk premia, and measure changes
for electricity modeling; see e.g Benth, Cartea, and Kiesel [2008b], Weron [2008],
Benth and Meyer-Brandis [2009], Benth and Schmeck [2014], Krečar, Benth, and
Gubina [2019], Benth, Piccirilli, and Vargiolu [2019].

3.5 Hedging

In this section we first describe a rolling hedge setup with constraints which
addresses the illiquidity and non-storability issues when hedging a long-term
electricity contract. Rolling hedges for commodities form a well-known hedging
scheme; see for example Glasserman [2001], Neuberger [1999]. We then briefly
review the locally risk-minimizing hedge of Föllmer and Schweizer, and give a
rolling hedge for our modeling framework that is risk-minimizing.

3.5.1 A rolling hedge setup

Suppose we have committed to deliver power from year T̃ to year T̃ +1 for a large
T̃ ∈ N (e.g. T̃ = 10 years) and our objective is to hedge this long-term electricity
commitment. In our framework the time-t valuation of the commitment is

F̃t ∶= F (t, T̃ , T̃ + 1,Xt) = EQ

⎡⎢⎢⎢⎢⎣

ˆ T̃+1

T̃

Sudu∣Ft
⎤⎥⎥⎥⎥⎦

Note that F̃t is a Q-martingale and the pricing formula (Proposition 3.3.2) gives
explicit pricing at any t ∈ [0, T̃ ]. In an interest rate context, the analogous
hedging problem is rather easy: just buy bonds and hold them as the payout in
10 years is known in advance. For electricity the problem is more difficult for a
number of reasons:

• Long-term forwards are not liquidly traded (otherwise buy and hold
the financial contracts as in the interest rate context);

• Electricity cannot be stored without significant costs (otherwise cash
and carry as for other storable commodities: simply buy the amount
needed in [T̃ , T̃ + 1] and hold).

• Only short-term / near-dated contracts with same delivery length is
available. But its underlying commodity (electricity) is not the same as
the one underlying a long-term contract because power is not storable.
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Some empirical evidence suggests that short-term prices carry limited
information about what spot prices will be far into the future (see
Handika et al. [2012]).

One possible strategy in this case is a rolling hedge, where we take a long
position in near-term contracts as a hedge, and roll the hedge going forward.
The underlying assumption of this strategy is that near-dated yearly contracts
are highly correlated with far-dated yearly contracts, and become more so as the
maturity date approaches3. This assumption is supported by the data; see Figure
3.C.1 in Appendix 3.C. A visualzation of this rolling mechanism is provided in
Figure 3.5.1.

0 1 2 3 4 5 T̃ − 1 T̃ T̃ + 1

Hedge here
using F (t,1,2,Xt)

0 1 2 3 4 5 T̃ − 1 T̃ T̃ + 1

Hedge here
using F (t,2,3,Xt)

0 1 2 3 4 5 T̃ − 1 T̃ T̃ + 1

Hedge here
using F (t, T̃ − 2, T̃ − 1,Xt)

0 1 2 3 4 5 T̃ − 1 T̃ T̃ + 1

Hedge here
using F (t, T̃ , T̃ + 1,Xt)

Figure 3.5.1: The mechanism of rolling hedges.

3Note that this statement does not contradict the common perception that the
short- and long-term data are not very correlated, e.g. Koekebakker and Ollmar [2005].
The first nearby calendar year forward is often considered a medium-term or even a
long-term contract.
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To formalize this, let us first define the price process Pt containing all
calendar-year forwards with a one-year delivery period (short: cal forward):

Pt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P 1
t

P 2
t

...

PN−1
t

PNt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F (t,1,2,Xt)
F (t,2,3,Xt)

...

F (t,N − 1,N,Xt)
F (t,N,N + 1,Xt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.5.1)

where N = T̃ and PNt = F̃t. Note that each P kt is a Q-martingale by its definition
(3.3.2). By Proposition 3.3.2, P kt can be expressed as

P kt =H(Xt)⊺e(k−t)Gw⃗01,(3.5.2)

where w⃗01 is defined in (3.3.14).

An admissible4 hedging strategy is an RN+1-valued process ϕt = (ηt, ξt)⊺ =
(ηt, ξ1

t , . . . , ξ
N
t )⊺, where ηt is adapted (representing bank account) and ξt is

predictable (representing amount of tradable assets or hedge ratio), and satisfies

ξit = 0 ∀t ∉ [k − 1, k), k = 1, . . . ,N.(3.5.3)

The constraint (3.5.3) reflects the liquidity issue and trading rule of those
markets:

• only the first-nearby forwards are liquid;

• a contract that has started to deliver can no longer be traded.

The value process (or the P & L) at time t ∈ [k − 1, k) for k ∈ {1, ...,N} is

Vt(ϕ) = ηt + ξ⊺t Pt = ηt + ξkt P kt = ηt + ξkt F (t, k, k + 1,Xt).

The cumulative cost of the hedge up to time t is:

Ct(ϕ) ∶= Vt(ϕ) −Gt(ϕ),

where Gt denotes the cumulative gain of the hedge up to time t:

Gt(ϕ) =
ˆ t

0

ξ⊺sdPs =
k−1

∑
i=1

ˆ i

i−1

ξisdP
i
s +
ˆ t

k−1

ξks dP
k
s(3.5.4)

=
k−1

∑
i=1

ˆ i

i−1

ξisdF (s, i, i + 1,Xs) +
ˆ t

k−1

ξks dF (s, k, k + 1,Xs)

4Note that for any polynomial processes p(Xt) all moments of Pt ∶= EQ[p(XT )∣Ft]
exist. Therefore, integration with respect to any moments of P is well-defined. And
thus, ξ ∈ L2(P ), i.e. EQ[

´ T
0 ξ⊺sd⟨P ⟩sξs] <∞, and ϕ ∶= (η, ξ)⊺ is admissible.
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for t ∈ [k − 1, k).
Note that the market is incomplete under the restriction (3.5.3), since there

are two different Brownian motions, but only one risky asset to invest in at any
given time. In an incomplete market a claim generally cannot be fully replicated
at maturity by a self-financing hedging strategy. Depending on the restriction on
cash account η, one can either use a strategy that is self-financing but does not
perfectly replicate the claim at maturity, or use a strategy that fully replicates
the claim at maturity but needs additional investment throughout the hedge, i.e.
is not self-financing. In the first case, we have residual risk and in the latter case
additional cash infusion is needed. Either way, risk cannot be fully eliminated
and can only be minimized. In the following we briefly review the concept of
risk-minimizing strategy in the sense of Föllmer and Schweizer, and then give a
rolling hedge that is locally risk-minimizing.

3.5.2 A locally risk minimizing hedging criterion

The risk-minimization criterion proposed and developed by Föllmer and
Schweizer (see e.g. Heath et al. [2001], Heath et al. [1999], Schweizer [1999],
Schweizer [1990], Föllmer and Schweizer [1991] for details), is to minimize the
conditional variance Rt(ϕ) of the cost process Ct(ϕ),

Rt(ϕ) ∶= EQ [(CT (ϕ) −Ct(ϕ))2∣Ft] ,

among all not necessarily self-financing strategies ϕ that perfectly replicate F̃
at maturity:

VT̃ (ϕ) = F̃ Q-a.s.(3.5.5)

In our setup, (3.5.5) is equivalent to ηTN = 0 and ξNTN = 1.

A strategy ϕ∗ is called risk-minimizing if for any ϕ that satisfies (3.5.5)
we have Rt(ϕ∗) ≤ Rt(ϕ), Q-a.s. for every t ∈ [0, T̃ ]; see Schweizer (page 545
in Schweizer [1990]). One can show that any risk-minimizing strategy is mean
self-financing, i.e. Ct(ϕ) is a Q-martingale. Föllmer and Schweizer showed that
the existence of such a strategy ϕ is guaranteed if the price process Pt is a
Q-local martingale. Moreover, in the martingale case, finding such a strategy is
equivalent to finding the Galtchouk–Kunita–Watanabe (GKW) decomposition
of F̃ , namely

F̃ = E[F̃ ] +
ˆ T̃

0

ξ̃⊺sdPs + L̃T̃ ,(3.5.6)
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where ξ̃ is an admissible, predictable process and L̃ is a square-integrable Q-
martingale strongly orthogonal to P with L̃0 = 0. The risk-minimizing hedging
strategy ϕrm is then given by

ϕrmt = (ηrmt , ξrmt )⊺ = (Vt(ϕrm) − ξrm
⊺

t Pt, ξ̃t)
⊺

,

where the value process is Vt(ϕrm) = E[F̃ ∣Ft] = F̃t = F̃0 +
´ t

0
ξF̃

⊺
s dPs + L̃t and

the cost process is Ct(ϕrm) = F̃0 + L̃t. Obviously this risk-minimizing strategy
satisfies VT̃ (ϕrm) = F̃T̃ , and the associated risk process Rt(ϕrm) is minimal
(zero) at t = T̃ .

3.5.3 A risk-minimizing rolling hedge

Recall that the price process Pt is a Q-martingale. Then the time-t valuation
of the long-term electricity commitment F̃T̃ has a GKW-decomposition as in
(3.5.6). We now compute the process ξ̃ in this decomposition. This will give
us the hedging strategy. Using (3.5.6), (3.5.3) and (3.5.4), we obtain for any
t ∈ [k − 1, k), k ∈ N:

⟨P k, F̃ ⟩t−⟨P k, F̃ ⟩k−1 =
ˆ t

k−1

d⟨P k,
ˆ ⋅
k−1

ξ̃ks dP
k
s ⟩u+

ˆ t

k−1

d⟨P k, L̃⟩u =
ˆ t

k−1

ξ̃ks d⟨P k, P k⟩s,

where ⟨P k, L̃⟩t = 0 as L̃ is orthogonal to P , and ⟨P k, F̃ ⟩k−1 = 0 as F̃k−1 is constant
and known at t ≥ k − 1. Rearranging and using (3.3.10) and (3.3.14) we get the
k-th component of ξ̃t for t ∈ [k − 1, k):

ξ̃kt =
d⟨P k, F̃ ⟩t
d⟨P k, P k⟩t

= w⃗
⊺

01e
(T̃−t)G

⊺

d⟨H(X),H(X)⟩t e(k−t)Gw⃗01

w⃗⊺

01e
(k−t)G⊺d⟨H(X),H(X)⟩t e(k−t)Gw⃗01

= w⃗
⊺

01e
(T̃−t)G

⊺

Σ(Xt) e(k−t)Gw⃗01

w⃗⊺

01e
(k−t)G⊺Σ(Xt) e(k−t)Gw⃗01

.

Therefore, the risk-minimizing hedging strategy of the tradable assets is given
by

ξrmt = (ξrm,1t , ..., ξrm,Nt )⊺ ,(3.5.7)
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where

ξrm,kt =
⎧⎪⎪⎨⎪⎪⎩

ξ̃kt , for t ∈ [k − 1, k);
0, otherwise.

(3.5.8)

And thus, for t ∈ [k − 1, k), the cash account ηrmt is then given by

ηrmt = Vt(ϕrm) − ξrm
⊺

t Pt = F̃t − ξ̃kt P kt ,

and the associated cost process is

Ct(ϕrm) = F̃t −
ˆ t

0

ξrm
⊺
dPs.

Remark 3.5.1. The risk minimizing strategy also minimizes the quadratic
covariation between the claim and the value of hedge without the cash account.
Indeed, formally one has

min
ξ
d⟨F̃ − ξkP k⟩t = min

ξ
(d⟨F̃ ⟩t − 2ξkt d⟨F̃ , P k⟩t + (ξk)2d⟨P k⟩t)

This expression is minimized by ξkt = d⟨Pk,F̃ ⟩t
d⟨Pk,Pk⟩t

as in (3.5.8).

3.6 Empirical analysis

In this section we demonstrate the use of our polynomial framework for modeling
and hedging long-term electricity forwards and analyzing their performance.
Based on a time series of real observations of power forwards provided by Axpo
Solutions AG, we estimate parameters of a model specification. Further we
simulate forward curves and investigate the quality of risk-minimizing hedges
over various time horizons.

3.6.1 The data

Electricity long-term contracts lack liquidity and are not available on exchange.5

In fact, long-term forwards with delivery periods are only offered by a small group
of market participants over the counter (OTC), mostly by energy producing and
trading companies.

5People usually refer to contracts with more than 2-3 years time to maturity/start
of delivery as long-term contracts.
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The data we use are provided by Axpo Solutions AG, and come originally
from Totem Markit service, which surveys prices of various electricity contracts
from each member firm and in turn provides market consensus prices. More
concretely, the data are German calender-year baseload (Cal) forwards that are
quoted monthly from January 2010 to April 2018.6 On each quotation date, we
have at most 10 quoted contracts, i.e. first to tenth nearby Cal forwards. For
each quoted contract on each quotation date, we have consensus price and the
price spread between the highest quoted price and the lowest quoted price. A
visualization of consensus prices is given in Figure 3.6.1.

(a) rolling forwards (b) a selection of forward curves

Figure 3.6.1: German Calendar-year Baseload forward from January 2010 to April 2018.
Y-axes are removed for data protection. Figure (a) shows the dynamics of each nearby
Cal forward contract with respect to quotation date. We see that not every contract
is available on every quotation date. In Figure (b), each curve is the forward curve of
a quotation date, i.e. each curve shows the prices of the first to at most tenth nearby
Cal forwards of that date. For the sake of a clearer view, we take a selection of forward
curves. These curves (of chosen quotation dates) are stacked and time-lagged into a day.
We note two shapes of forward curves: a straight contango curve and a curve which is
flat with slight backwardation at the front and contango at the back end of the curve.

3.6.2 Model estimation

In order to capture the dynamics of the forward curves with our model, a non-
linear filter is needed for model estimation, as the forward prices are quadratic
in the Gaussian underlying factor process Xt. Recall that the fundamental
assumption of Kalman filter is that the measurement space is linear and Gaussian
in the state space. Thus, in order to work with a Kalman filter, we can either

6Note that German Cal Base forwards are the most liquidly traded contracts among
all illiquid long-term contracts.
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linearize the quadratic relationship between state and measurement. This leads
to a so-called extended Kalman filter. Alternatively, we can augment the state
to incorporate the linear and quadratic terms of Xt, so that the measurements
become linear in the augmented state.

Inspired by the work of Monfort et al. [2015], we will use a time-dependent
version of the latter approach to estimate a discrete version of Specification 3.2.1
based on the data from Section 3.6.1. The estimation will be under P, which
means that we also need to estimate the market price of risk parameters.

Note that we do not have direct access to the underlying state process Xt
through the available data. Indeed, at each quotation date tk, we only see the
prevailing price F jk of the j-th nearby forward contract, with j = 1, . . . ,10.7 We
view F jk as a noisy observation of the model price. More precisely, we assume
that

F jk = F (tk, Tj , Tj + 1) +N j
kη
j
k,

where F (tk, Tj , Tj + 1) is the model price computed using Proposition 3.3.2, ηjk
are iid standard Gaussian noise, modulated by some parameters N j

k > 0. The role
of N j

k is to encode the trustworthiness of the price of the j-th nearby contract
on quotation date tk. A large value means that the price is considered noisy and
uncertain, and a small value that the price is considered accurate. The N j

k are
chosen based on the spreads δjk between the highest and lowest quoted price for
the j-th nearby contract on date tk. Specifically, we use

(N j
k)

2 = 1

3
× δjk +

1

3
× δj + 1

3
× δ,

where δj denotes the time series average of the spreads δjk for a fixed maturity
j, and δ denotes the overall average of all the spreads δjk. The use of iid noise
corresponds to assuming that our model captures all systematic effects. This is
a standard assumption to reduce the complexity of the estimation.

A quadratic Kalman filter for Specification 3.2.1 We will now
overload notation in the following manner: we write Xk for the state Xtk at
quotation date tk, and similarly for other quantities that depend on time.

Since model prices at date tk are quadratic in the state Xk, we have the
expression

F jk = a
j
k +B

j
kXk +X

⊺

kC
j
kXk +N

j
kη
j
k

7Actually, we see even less, since price data is often missing for longer maturities.
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for some ajk ∈ R, Bjk ∈ R2 and Cjk ∈ S2 that can be deduced from the pricing
formula in Proposition 3.3.2. In view of (3.3.3), and following Monfort et al.
[2015], we observe that F jk is affine in the augmented state vector

X̃k = (Zk, Yk, Z2
k , YkZk, Y

2
k )⊺.

Specifically, the vector of prices, Fk = (F 1
k , . . . , F

10
k )⊺ is given by

Fk = ak + B̃kX̃k +Nkηk,

where ak ∶= (a1
k, . . . , a

10
k )⊺ and B̃k ∶= (B̃1

k, . . . , B̃
10
k )⊺ can be computed as follows:

for each maturity j = 1, . . . ,10, we have

(a
j
k

B̃jk
) ∶= e(Tj−t)G

ˆ 1

0

euGdu p⃗S ,

with p⃗S from (3.3.4) and G from (3.3.5). Moreover, we have defined Nk ∶=
diag (N1

k , . . . ,N
10
k ) and ηk ∶= (η1

k, . . . , η
10
k )⊺. Next, the discretized (non-

augmented) state dynamics is given by

Xk = b +DXk−1 +Kεk

where εk are independent bi-variate standard Gaussians and

b = (γZ∆t
γY ∆t

),D = (1 − (κZ − λZ)∆t 0
κY ∆t 1 − (κY − λY )∆t),K = ( σZ

√
∆t 0

ρσY
√

∆t σY
√

(1 − ρ2)∆t).

Here we use the market price of risk parameters Λ = diag(λZ , λY ) and γ =
(γZ , γY )⊺ from Section 3.4. The discretized dynamics of the augmented state
X̃k is

X̃k = b̃(Xk−1) + D̃X̃k−1 + K̃(Xk−1)εk,

where the involved quantities are conveniently expressed using the standard
vector stacking operator V ec(), Kronecker product ⊗, selection matrix Hd, and
duplication matrix Gd. The resulting expressions are:

b̃(Xk−1) = ( b
H2V ec(bb⊺ +Σ)) , D̃ = ( D 0

H2(b⊗D +D ⊗ b)G2 H2(D ⊗D)G2
) ,

Γk−1 = I2 ⊗ (b +DXk−1) + (b +DXk−1)⊗ I2,

Σ̃(Xk−1) = ( Σ Σ Γ⊺k−1H
⊺

2

H2 Γk−1 Σ H2Γk−1ΣΓ⊺k−1H
⊺

2 +H2(I4 +Λ2)(Σ⊗Σ)H⊺

2
) ,
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where Σ ∶=KK⊺ and Id is the identity matrix of size d, and Λm is the standard
commutation matrix of size m2 ×m2. We then let K̃(Xk−1) be the Cholesky
factor of Σ̃(Xk−1), i.e., K̃(Xk−1)K̃(Xk−1)⊺ = Σ̃(Xk−1). We finally define Fk−1 ∶=
σ(Fk−1, Fk−2, ..., F1). The filtering algorithm is then described in Algorithm 1,
where we use the notation

X̃k∣k−1 ∶ = E[X̃k ∣Fk−1], Ṽk∣k−1 ∶= V[X̃k ∣Fk−1],
F jk∣k−1 ∶ = E[F jk ∣Fk−1], M j

k∣k−1 ∶= V[F jk ∣Fk−1].

Algorithm 1 Quadratic Kalman filtering algorithm
Anchoring:
X̃1∣1 = x̃0 = (x⊺0,H2V ec(x0x

⊺

0))⊺ = (z0, y0, z
2
0 , y0z0, y

2
0)⊺,

Ṽ1∣1 = Σ̃(x0).
State prediction:
X̃k∣k−1 = b̃(Xk−1∣k−1) + D̃X̃k−1∣k−1,
Ṽk∣k−1 = D̃Ṽk−1∣k−1D̃

⊺ + Σ̃(Xk−1∣k−1).
Measurement prediction:
Fk∣k−1 = ak + B̃kX̃k∣k−1.
Mk∣k−1 = B̃kṼk∣k−1B̃

⊺

k +NkN
⊺

k .
Ck = (F real

k − Fk∣k−1) gives the prediction error.
Update:
Kk = Ṽk∣k−1B̃

⊺

kM
−1
k∣k−1 gives the gain matrix,

X̃k∣k = X̃k∣k−1 +KkCk,
Ṽk∣k = Ṽk∣k−1 −KkMk∣k−1K⊺k = (1 −KkB̃k)Ṽk∣k−1,
F j
k∣k

= ak + B̃kX̃k∣k.

Optimization with the quadratic Kalman filter for Specification
3.2.1 For the model estimation with the quadratic filter, we use both the
Least-Squares (LS) and the Maximum Likelihood (ML) criteria. We start with
LS, as it is robust and converges fast. Once a stable result is obtained, we apply
ML to obtain further improvement. Moreover, we impose 1 ≥ κY ≥ κZ ≥ 0 on the
parameters, in line with the interpretation that Yt and Zt drive the short and
the long end of the forward curve respectively and thus mean-revert at different



50 Chapter 3

speed. The filtered underlying process Xt = (Zt, Yt)⊺ is given in Figure 3.6.2.
The estimated parameters are shown in Table 3.1.

Figure 3.6.2: The filtered underlying dynamics Xt = (Zt, Yt)⊺ of Specification 3.2.1.

c 0.239614
α 10.250035
β 0.176807
κZ 0.010022
κY 0.400207
σZ 0.406479
σY 0.889130
ρ 0.112439
λZ 0.089990
λY 0.111842
γZ 0.086791
γY 0.127365
z0 2.358048
y0 2.007557

Table 3.1: Estimated parameters of Specification 3.2.1.

In the implementation we use the R package DEoptim, which is an optimizer
based on a differential evolution algorithm; see Storn and Price [1997], Price
et al. [2006] for details of the algorithm and https://cran.r-project.org/web/
packages/DEoptim/index.html, Ardia et al. [2011a], Ardia et al. [2016], Mullen

https://cran.r-project.org/web/packages/ DEoptim/index.html
https://cran.r-project.org/web/packages/ DEoptim/index.html
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et al. [2011] Ardia et al. [2011b] for use of the package.

Figure 3.6.3 gives a visualization of the model estimation using Specification
3.2.1. We quantify the goodness of fit in terms of relative errors, both cross-
sectionally at each quotation date (Figure 3.6.4a), and across time for each nearby
forward contract (Figure 3.6.4b). The overall relative error, i.e. the average
relative error across all contracts and quotation dates, is as low as 0.661%,
indicating a very good model fit.

(a) model estimated rolling forwards (b) a selection of estimated forward curves

Figure 3.6.3: Forward curves from Specification 3.2.1 using estimated parameters: in (a)
each nearby forward is shown as a time series; in (b) each curve is a forward curve at a
particular quotation date (same date selection as in Figure 3.6.1b). Y-axes are removed
for data protection. Comparing these figures with the real observations (Figure 3.6.1),
we find that the model captures the shapes and dynamics of the time series observation
of electricity forward curves well.

In Figure 3.6.4a we notice a single spike of the time series of averaged errors
reaching almost 2% (on a quotation date in February 2016). This is due to a
single dramatic price drop of a forward curve on that date that is moderately
captured by our model as it is continuous and gives smooth prices.

Looking at the estimation of the time series of each nearby forward (Figure
3.6.4b), we find that the front end fit (i.e. the first nearby to the sixth nearby
forward contract) works very well while the fit deteriorates for longer maturities.
This occurs by construction, as the prices of contracts with very long time-to-
maturity are less reliable than those on the front end of the forward curve. In
the filter this is captured by the data variance N j

t , which is influenced by the
time series of price spread of each forward; in general N j

t tends to be higher for
longer time-to-maturity (i.e. larger j).
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(a) averaged relative errors with respect to
quotation date

(b) first to third quantile of time series of
relative errors with respect to rolling contract

Figure 3.6.4: Relative errors of model estimation. The overall relative error (averaged
over all contracts and all quotation dates) is 0.661%. In (a) the averaged relative error of
forward curve on each quotation date is shown. The spike in February 2016 is caused by
a large downward drop of the observed forward curve, leading the model to deviate 2%
on average on that date. In (b) the distribution of relative pricing errors for each nearby
contract over time is given in boxplot: each whisker gives the range from mininum value
to maximum value of the time series of relative errors for that contract (outliers are
removed). Each green box marks the 25th to 75th percentile of the time series. The
thick black line marks the median relative error. In addition to (b), the time averaged
relative errors and standard deviations for each contract are given in the table below.
We see that the first to sixth nearby contracts are well estimated by the model, while
the seventh to tenth nearby contracts have much larger estimation errors. This occurs
by construction. The real data on the back end of the forward curve are very rare and
thus have a huge price uncertainty; in particular the tenth nearby contract was only
available on four quotation dates on over nine years of monthly quotation data. The
uncertainty of real data is captured by the parameters Nj

t for each j-th nearby rolling
contract in the quadratic filter.

nearbycontract 1 2 3 4 5

av.rel.error 0.2162% 0.6211% 0.5666% 0.7362% 0.6990%
std(rel.error) 0.1741% 0.4036% 0.4401% 0.6223% 0.5560%

nearbycontract 6 7 8 9 10
av.relerror 0.3355% 0.4509% 0.8530% 1.6583% 2.1549%
std(rel.error) 0.4397% 0.4330% 0.5986% 0.9784% 1.2975%

We also performed model estimation under Q. This is equivalent to assuming
P = Q, meaning that the market price of risk is zero (λ(Xt) = 0). This produces
different parameters than those in Table 3.1, but the fit remains remarkably
good.
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3.6.3 Simulation and hedging analysis

In the following, we simulate forward surfaces, run locally risk-minimizing
hedging strategies on those, and analyze their performance with respect to
different hedging horizons.

Simulation of forward surfaces With a given set of parameters, we
generate samples of entire forward surfaces over a fixed time horizon T̃ . This
can be done efficiently by first simulating the P-dynamics of the underlying
process Xt = (Yt, Zt)⊺ until year T̃ using a simple Euler scheme (with, say, N
discretization steps). We can then compute the forward price for the 1-st through
L-th nearby contract at each point t ≤ T̃ on the time grid by applying the pricing
formula, Proposition 3.3.2. The complexity of simulatingM evolutions of forward
curves is of the order O((M ×N)L). A brief pseudo code is given in Algorithm
2.

Simulation study of hedging performance We aim to evaluate
hedging performance by comparing the unhedged exposures with exposures
when we use the locally risk-minimizing rolling hedges from Section 3.5 on
different hedging horizons. For this, we consider different claims F (t, T ) ∶=
F (t, T, T + 1,Xt) with T = 2, . . . ,10 years. Next, we simulate M = 5000 forward
curve evolutions using the estimated parameters from Table 3.1. For the Euler
discretization we use 120 time points per year. For the hedging we use a
monthly rebalancing frequency. Finally, we compare the percentage exposure if
left unhedged, i.e.

F (T,T ) − F (0, T )
F (0, T ) ,

with the percentage exposure if hedged, i.e.

F (T,T ) − F (0, T ) −
´ T

0
ξrmt

⊺dPs

F (0, T ) ,

with ξrms from (3.5.7)–(3.5.8) and Ps from (3.5.1)–(3.5.2). A visual comparison
of those exposures (hedged versus unhedged) with respect to different hedging
horizons is given in Figure 3.6.5. We see that the distribution of the exposure
widens with increasing hedging horizon, and that the sample standard deviation
and skewness go up; see the table below Figure 3.6.5. The exposure is significantly
higher if left unhedged. Moreover, in all cases, the locally risk-minimizing rolling
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Algorithm 2 Simulate forward surfaces under P (with market price of
risk)

Input: εYj , ε
Z
j
iid∼ N (0,1), j = 1, ...,N , T̃ ,M ,N ,L and all model parameters

(see e.g. Table 3.1).
Output: M simulated forward surfaces over T̃ years.

∆t = T /N
Y0 = y0

Z0 = z0

H(X0) = (1, z0, y0, z
2
0 , y0z0, y

2
0)⊺

for l = 1, ..., L do
F l0 =H(X0) elG w⃗0,1

end for
for all M simulations do
for j = 1, ...,N do
Zj = γZ∆t + (1 − (κZ − λZ)∆t)Zj−1 + σZ

√
∆t εZj

Yj = γY ∆t + κY ∆tZj−1 + (1 − (κY − λY )∆t)Yj−1 + σY
√

∆t(ρεZj +√
1 − ρ2εYj )

H(Xj) = (1, Zj , Yj , Z2
j , YjZj , Y

2
j )⊺

for l = 1, ..., L do
F lj =H(Xj) e(l−(j∆t mod 1))G w⃗0,1

end for
end for

end for

hedge significantly reduces, but does not eliminate, the variance and skew of
long-term exposures.
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Figure 3.6.5: Density of hedged exposure (green) versus that of unhedged exposure (red)
with respect to different hedging horizons. Forwards are simulated using the P-dynamics
and market price of risk. In each figure, a different forward is simulated such that the
time to maturity corresponds the hedging horizon: i.e. in top left figure, we simulate
a forward that matures and starts delivery in two years and compute the exposure at
maturity; we then compute a risk-minimizing hedge (with two years hedging horizon),
the hedged exposure, and obtain the comparison. Standard deviations and skewnesses
are reported in the table below.

hedging horizon hedged unhedged
std skew std skew

2 years 0.1532 0.2728 1.1278 1.1724
3 years 0.3099 0.3658 1.4700 1.2107
4 years 0.4959 0.5477 1.8143 1.1738
5 years 0.7125 0.6992 2.2762 1.2201
6 years 0.9583 0.8474 2.8011 1.2439
7 years 1.2266 0.9061 3.3729 1.2361
8 years 1.5406 1.0017 4.0898 1.1926
9 years 1.8991 1.0625 4.8472 1.1660
10 years 2.2982 1.0777 5.7729 1.2224
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3.A Explicit computation of
´ t
0 e

Gsds

The G-matrices arising in both specifications have a zero first column, and are
therefore not invertible. This is in general the case when 1 is part of the basis
H(x), as G1 = 0. Moreover, if we remove the first row and column of G, the
submatrix G′ is invertible and upper-triangular. In the following we show a
straightforward way to compute

´ t
0
eGsds for such G, which helps to reduce the

computational effort of evaluating the pricing formula.

Proposition 3.A.1. Let A be an upper triangular matrix of the form

A = (0 b⊺

0⃗ C
)

for some vector b and upper triangular invertible matrix C. Then

eAt = (1 b⊺C−1(eCt − I)
0⃗ eCt

) and
ˆ t

0

eAsds = (t b⊺(C−1)2(eCt − I) − tb⊺C−1

0⃗ C−1(eCt − I) )

Proof. Let F (t) denote the claimed expression for eAt. One easily checks that
F ′(t) = AF (t) and that F (0) is the identity. This implies that F (t) = eAt. The
expression for

´ t
0
eAsds is easily obtained by integrating each block of F (t).

3.B Specifications of Σ(Xt)
Instantaneous covariations and correlations in Specification 3.2.1
Equations (3.3.9), (3.3.12), (3.3.11), (3.3.13) hold with H from (3.3.3), p⃗S from
(3.3.4) and Σ(Xt) as below:

ΣXt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0

0 σ2
Z ρσY σZ 2σ2

Z Zt σ2
Z Yt + ρσY σZ Zt 2ρσY σZ Yt

0 ρσY σZ σ2
Y 2ρσY σZ Zt σ2

Y Zt + ρσY σZ Yt 2σ2
Y Yt

0 2σ2
Z Zt 2ρσY σZ Zt 4σ2

Z Z
2
t 2σ2

Z YtZt + 2ρσY σZ Z
2
t 4ρσY σZ YtZt

0 σ2
Z Yt + ρσY σZ Zt σ2

Y Zt + ρσY σZ Yt 2σ2
Z YtZt + 2ρσY σZ Z

2
t σ2

ZY
2
t + σ2

Y Z
2
t + 2ρσY σZ YtZt 2ρσY σZ Y

2
t + 2σ2

Y YtZt

0 2ρσY σZ Yt 2σ2
Y Yt 4ρσY σZ YtZt 2ρσY σZ Y

2
t + 2σ2

Y YtZt 4σ2
Y Y

2
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Instantaneous covariations and correlations in Specification 3.2.2
Equations (3.3.9), (3.3.12), (3.3.11), (3.3.13) hold with H from (3.3.6), p⃗S from
(3.3.7) and Σ(Xt) as below:
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ΣXt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0

0 σ2
Z σY σZ Rt 0 2σ2

Z Zt σ2
Z Yt + σY σZ RtZt 2σY σZ RtYt

0 σY σZ Rt σ2
Y 0 2σY σZ RtZt σ2

Y Zt + σY σZ RtYt 2σ2
Y Yt

0 0 0 σ2
R(1 −R2

t ) 0 0 0

0 2σ2
Z Zt 2σY σZ RtZt 0 4σ2

Z Z
2
t 2σ2

Z YtZt + 2σY σZ RtZ
2
t 4σY σZ RtYtZt

0 σ2
Z Yt + σY σZ RtZt σ2

Y Zt + σY σZ RtYt 0 2σ2
Z YtZt + 2σY σZ RtZ

2
t σ2

ZY
2
t + σ2

Y Z
2
t + 2σY σZ RtYtZt 2σY σZ RtY

2
t + 2σ2

Y YtZt

0 2σY σZ RtYt 2σ2
Y Yt 0 4σY σZ RtYtZt 2σY σZ RtY

2
t + 2σ2

Y YtZt 4σ2
Y Y

2
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3.C Correlation of forwards implied by the
data

Figure 3.C.1: Correlation between different nearby Calender year contracts implied by
the data.
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Chapter 4

Quadratic Gaussian models
and option pricing of
electricity forwards with
delivery period

4.1 Introduction

In the last chapter, we have shown that the polynomial framework is very
tractable, and is able to capture the underlying dynamics of electricity forwards
with delivery period easily and accurately. It is natural then to investigate
the option pricing of those forwards. Within the polynomial framework, it is
possible to use the polynomial expansion method to price options, see Remark
3.3.3. However, this is rather a theoretical result, and does not fulfill the needs
of an applicable approach for the option pricing. In this chapter, we focus on a
subclass of the polynomial framework, the quadratic Gaussian model, for which
long-term electricity options that are written on forwards with delivery period
can be computed and calibrated easily. For the quadratic Gaussian model, we
develop an exponential-quadratic transform formula, which allows us to compute
the characteristic function by solving Riccati equations. And thus, we can price

59
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options efficiently using a Fourier approach. Our option pricing presents a model-
consistent way of pricing forward and option prices, and it is able to capture
characteristics such as the Samuelson’s effect to certain extent. Moreover, as the
quadratic Gaussian model generalizes the two-factor model, Specification 3.2.1,
it can capture properties of electricity forwards very well.

The biggest challenge in modeling electricity forwards and options comes
from the fact that electricity is non-storable and the contracts have delivery
periods. This substantially increases the complexity of the modeling, and at the
same time, it reduces the choice of models with good mathematical tractability.
Various models have been proposed to model electricity forwards and options;
see in particular Benth and Schmeck [2014], Benth et al. [2008a], Benth and
Krühner [2015], Bjerksund et al. [2010], Burger et al. [2004], Carmona and
Durrleman [2003], Kiesel et al. [2009], Kluge [2006], where features such as
delivery periods are addressed, and implementation and calibration of options
written on forwards with delivery period are discussed. A stream of the literature
suggests to price energy options via Monte Carlo simulation. The majority of
literature makes simplifying assumptions on the distribution of the underlying
forwards for the sake of tractable closed-form formula for the option pricing. In
detail, they assume log-normal distributed forwards with delivery period, and
compute approximation of option prices via the Black-Scholes-76 formula; see
in particular Kiesel et al. [2009], Bjerksund et al. [2010]. The strength of our
approach is that we propose a consistent way of pricing forwards and options
without approximating assumptions. Moreover, we calibrate simultaneously
forwards with delivery periods and European-style options that are written
on these forwards. Furthermore, our approach can be extended to price and
calibrate spread options, which are popular types of energy options.

This chapter is structured in the following way: In Section 2, we define
the underlying quadratic Gaussian model and review the two-factor model
as a specification of it. We model the spot price as a quadratic function of
the underlying quadratic Gaussian model, and show that spot has a unique
representation. In Section 3, we define electricity forwards with delivery period
and options on those forwards. We give pricing formulas for forwards and for
options. The pricing formula of forward uses the moment formula of degree two,
Theorem 2.3.2. The pricing formula of options, Theorem 4.3.4, is a Fourier-based
approach and relies on the main result of this chapter, the exponential-quadratic
transform formula in Theorem 4.4.1, which we give in Section 4. The exponential-
quadratic transform formula is of interest in its own, as it allows us to compute
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the characteristic function by solving a system of Riccati equations. Moreover,
this formula holds for all x ∈ Rd if one of the two side is well-defined. We also
discuss the analytic solutions of the Riccati equations. In Section 5, we give
the proof of the exponential-quadratic transform formula. The proof is inspired
by the proof of affine transform formula, Theorem 10.3 of Filipovic [2009]. In
Section 6, we conduct a calibration study using the market data of European
Energy Exchange (EEX). Here we calibrate the two-factor model to several
traded German electricity volatility curves that are written on calendar year
forwards, and investigate the goodness of fit of the model.

This chapter is based on joint work with Damir Filipović and Martin Larsson.
We would like to thank Markus Regez for providing data and for discussion.

4.2 The model

In this section we define the underlying quadratic Gaussian model. We model
the spot price St as a quadratic function of an underlying d-dimensional state
variable Xt which is a Rd-valued Ornstein–Uhlenbeck process. More precisely,
we let

St = pS(Xt)(4.2.1)

dXt = κ(θ −Xt)dt + σdWt(4.2.2)

where pS(x) = c + x⊺Qx with c ∈ R+ and Q ∈ Sd+, κ ∈ Rd×d, θ ∈ Rd, σ ∈ Rd×d so
that a = σσ⊺ ∈ Sd+ and W a d-dimensional Brownian motion. Note that pS(Xt)
is a positive quadratic polynomial, bounded from below by c.

In the model definition above, we note that the model is not uniquely
determined by the choice of parameters. The following theorem addresses the
problem of parameter redundancy and gives a model formulation which yields a
unique parameter representation of a quadratic Gaussian model.

Theorem 4.2.1. Any d-dimensional quadratic Gaussian model that yields St
bounded from below can be represented as (4.2.1)–(4.2.2) with

(4.2.3) pS(x) = c + x2
1 + x2

2 + ... + x2
k, k ≤ d, c ∈ R

Proof. Firstly, we claim that p(x) can be expressed as

p(x) = c + (x − θ)⊺Q(x − θ).(4.2.4)
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for some positive constant c, θ ∈ R and Q ∈ Sd+. Note that any (positive) quadratic
polynomial q on Rd can be written p(x) = c̃ + ξ⊺x + x⊺Qx for some (c̃, ξ,Q) ∈
R ×Rd × Sd. By completing the square, we see that for any θ ∈ Rd,

p(x) = c + (x − θ)⊺Q(x − θ) + (ξ − 2Qθ)⊺x

with c = c̃ + θ⊺Qθ. We would like choose θ so that the last term vanishes. To see
that this is possible, we pick any ξ̂ ∈ Ker(Q) and any t ∈ R. Then p(t ξ̂) = c+t ξ⊺ξ̂,
which implies that ξ⊺ξ̂ = 0 since q was assumed positive. Hence ξ is orthogonal to
Ker(Q) = Im(Q)⊥, showing that a vector θ of the desired form exists. It remains
to prove that Q ∈ Sd+. If it fails, there is an eigenvector v with eigenvalue λ < 0.
In this case p(tv + θ) = c + t2λ∥v∥2, which is unbounded below. This contradicts
the positivity assumption and proves that a representation as in (4.2.4) exists.

Since Q ∈ Sd is symmetric, it is orthogonally diagonalizable, i.e. Q = UΓU⊺ for
some orthogonal matrix U , and Γ = diag(γ1, . . . , γd) with eigenvalues γi ≥ 0; see
[Horn and Johnson, 2012, Theorem 2.5.6]. It is clear that the affine transformation
x↦ U⊺(x−θ) leaves the form (4.2.2) of the state process invariant. We can thus
assume that p(x) = c + x⊺Γx. Finally, transforming the factor process according
to x↦ Γ1/2x then gives the claim in (4.2.3).

Below we review the two-factor model of the polynomial framework,
Specification 3.2.1, as it is also a specification of the quadratic Gaussian model.

Specification 4.2.2 (Two-factor model). Let κZ , κY ∈ R, σZ , σY > 0, and
ρ ∈ (−1,1). The process Xt ∶= (Zt, Yt)⊺ evolves according to the SDE

(4.2.5)
dZt = −κZZtdt + σZdW (1)

t

dYt = κY (Zt − Yt)dt + ρσY dW (1)
t + σY

√
1 − ρ2dW

(2)
t

with Z0, Y0 ∈ R and Wt = (W (1)
t ,W

(2)
t )⊺ a standard two-dimensional Brownian

motion. Let α, β, c ∈ R+ and let the spot price be given by

St ∶= c +X⊺

t (β 0
0 α

)Xt = c + αY 2
t + βZ2

t .

This specification is of the form (4.2.2)–(4.2.3) with X̂t = (Ẑt, Ŷt)⊺ =
(
√
βZt,

√
αYt)⊺ and

(4.2.6) κ =
⎛
⎝

κZ 0

−
√

αβ

β
κY κY

⎞
⎠
, θ = (0

0
) , σ = ( σZ

√
β 0

ρσY
√
α σY

√
α(1 − ρ2)) .
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Xt is a polynomial diffusion, and St is a polynomial function of Xt of
degree two. In other words, the quadratic Gaussian models form a subclass
of a polynomial framework. As a consequence, the moment formulas and other
important properties of polynomial diffusions apply. In particular, the moment
formula of degree two, Theorem 2.3.2, is tailored for the quadratic Gaussian
model, where the coefficients with respect to each element of the monomial basis
is given as the solutions of a system of linear ODEs.

4.3 Pricing of forwards and options

In this section we first define electricity forwards with and without delivery
period, and define European call options on them. We then present pricing
formulas for electricity forwards and options. While the forward pricing can be
obtained immediately from the moment formula, the option pricing relies on
the Fourier transform method and the characteristic function of St. In the next
section we will provide the main mathematical result for Fourier pricing, an
exponential-quadratic transform formula, which links the computation of the
characteristic function of St to the unique solution of a Riccati-system.

The price at time-t of an electricity forward with instantaneous delivery at
time T̃ ≥ t is given by

f(t, T̃ ,Xt) ∶= EQ [ST̃ ∣Ft] .(4.3.1)

The price of a European call option at time t, written on this forward, where
the option is exercised at time T (t ≤ T ≤ T̃ ) and at strike K, is given by

Cf(t,XT ;K, T̃ ) ∶= EQ [pfcall(XT ;K, T̃ )+∣Ft] ,

where pfcall(XT ;K, T̃ ) ∶= f(T, T̃ ,XT ) −K.

In practice, electricity is not delivered instantaneously, but gradually over a
period of time. This leads us to the following definition: the time-t price of an
electricity forward with delivery period [T1, T2), t ≤ T1 < T2, is given by

F (t, T1, T2,Xt) ∶=
1

T2 − T1
EQ [
ˆ T2

T1

Su du ∣Ft] .(4.3.2)

The time-t price of an European call option on this forward, where the option
is exercised at time T (t ≤ T ≤ T1 < T2) and at strike K, is given by

CF (t,XT ;K,T1, T2) ∶= EQ [pFcall(XT ;K,T1, T2)+∣Ft] ,
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where pFcall(XT ;K,T1, T2) ∶= F (T,T1, T2,XT ) −K.

Proposition 4.3.1 (Pricing formula for forwards). The time-t price of
f(t, T̃ ,Xt) for t ≤ T̃ is given by

f(t, T̃ ,Xt) = c +A(T̃ − t) +B(T̃ − t)⊺Xt +X⊺

t C(T̃ − t)Xt,

and the time-t price of F (t, T1, T2,Xt) for t ≤ T1 < T2 is

F (t, T1, T2,Xt) =c +
1

T2 − T1
[
ˆ T2

T1

A(s − t)ds +
ˆ T2

T1

(B(s − t)ds)⊺Xt

+X⊺

t

ˆ T2

T1

C(s − t)dsXt].

where (A(t),B(t), C(t)) solves the linear ODE (2.3.6) with the initial conditions:

A(0) = 0, B(0) = 0⃗, C(0) = Q.(4.3.3)

Proof. This follows from Theorem 2.3.2.

Remark 4.3.2. It is also possible to compute the forward with the general
version moment formula, Theorem 2.3.1, where spot and forwards are given as
matrix representations w.r.t a basis, and pricing relies on the explicit computation
of integral of matrix exponential where the matrix is not invertible; for details see
the pricing formula Proposition 3.3.2 ([Kleisinger-Yu et al., 2020, Proposition
4.2]).

As an immediate consequence, the time-T price of pfcall(XT ;K, T̃ ) for T ≤ T̃
is given by

pfcall(XT ;K, T̃ ) = f(T, T̃ ,XT ) −K = ũ + ṽ⊺XT +X⊺

T w̃XT ,

with

ũ ∶= c −K +A(T̃ − T ), ṽ ∶= B(T̃ − T ), w̃ ∶= C(T̃ − T ),

and the time-T price of pFcall(XT ;K,T1, T2) for T ≤ T1 < T2 is

pFcall(XT ;K,T1, T2) = F (T,T1, T2,XT ) −K = ũ + ṽ⊺XT +X⊺

T w̃XT ,
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with

(4.3.4)

ũ ∶= c −K + 1

T2 − T1

ˆ T2

T1

A(s − T )ds,

ṽ ∶= 1

T2 − T1

ˆ T2

T1

B(s − T )ds,

w̃ ∶= 1

T2 − T1

ˆ T2

T1

C(s − T )ds,

where A(t),B(t) andC(t) solve the linear ODE (2.3.6) with the initial conditions
(4.3.3).

In case of the two-factor model, Specification 4.2.2, the linear ODE (2.3.6)
simplifies to the following:

A′ = Tr(aπ), A(0) = 0,

B′ = −κ⊺B, B(0) =Ð→0 ,
C′ = −Cκ − κ⊺C, C(0) = Q.

Here we note that B(t) = B(0)e−κ
⊺t = 0 for any t. Thus, ṽ = 0 which simplifies

(4.3.4), and

pFcall(XT ;K,T1, T2) = F (T,T1, T2,XT ) −K = ũ +X⊺

T w̃XT ,(4.3.5)

The computations of EQ [pfcall(XT )
+∣Ft] and EQ [pFcall(XT )+∣Ft] appear to

be a challenging problem in general, as it is difficult to identify the region on
which the inner functions remain positive. In the following we use an approach
based on Fourier transform methods where we derive an exponential-quadratic
transform formula to compute the characteristic function by solving Riccati
equations. For the ease of notion, we will omit the superscripts f and F , the
temporal parameters as well as the strikes in the following.

Proposition 4.3.3. For any ζ > 0, the following identity

s̃+ = 1

2π

ˆ
R
e(ζ+iλ)s̃

1

(ζ + iλ)2
dλ

holds.
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Proof. Let us assume w.l.o.g. s̃ = s−k for some s, k ∈ R. For z ∈ C with Im(z) < 0,
the general Fourier transformation of s̃+ is given byˆ

∞

−∞

eizks̃+ dk =
ˆ s

−∞

eizk(s − k)dk

=
ˆ s

−∞

eizksdk −
ˆ s

−∞

eizkk dk

=e
izk

iz
s∣
s

k=−∞

− e
izk

iz
k∣
s

k=−∞

+
ˆ s

−∞

eikz

iz
dk

= e
izk

(iz)2
∣
s

k=−∞

= − e
izs

z2
.

The assumption Im(z) < 0 is necessary to prevent the integrals to explode.
Then for z ∈ C with Im(z) < 0, the generalized Fourier inverse is given by

s̃+ = F−1[−e
izs

z2
]

= − 1

2π

ˆ
∞

−∞

e−izk
eizs

z2
dz

= − 1

2π

ˆ
∞

−∞

e−izs̃

z2
dz,

where dz = d[Re(z)]. Now set Re(z) ∶= λ and Im(z) ∶= −ζ. Then for ζ > 0,

s̃+ = − 1

2π

ˆ
∞

−∞

e−i(−iζ+λ)s̃
1

((−iζ + λ))2
dλ

= 1

2π

ˆ
∞

−∞

e(ζ+iλ)s̃
1

(ζ + iλ)2
dλ.

This is the claimed formula.

Theorem 4.3.4. Let us define

q̂call(z) ∶= E [exp (zpcall(XT )) ∣ Ft] ,

for every z ∈ C for which the expectation is well-defined. Pick any ζ > 0 such
that q̂call(ζ) <∞. Then the time-t call price is given by

C(t,XT ) =
1

π

ˆ
∞

0

Re [ q̂call(ζ + iλ)
(ζ + iλ)2

]dλ.
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Proof. Let q(ds) denote the distribution of the random variable pcall(XT )
conditionally on Ft, and define its characteristic function1:

q̂call(z) =
ˆ
R
ezsq(ds).

for every z ∈ C such that the right side is well-defined and finite. Pick ζ > 0 such
that

´
R eζsq(ds) <∞. Then,

ˆ
R2

∣e(ζ+iλ)s 1

(ζ + iλ)2
∣dλ⊗ q(ds) =

ˆ
R2

eζs

ζ2 + λ2
dλ⊗ q(ds)

=
ˆ
R

eζsq(ds)
ˆ
R

1

ζ2 + λ2
dλ <∞,(4.3.6)

where the second equality follows from Tonelli’s theorem. Together with Fubini’s
theorem and Proposition 4.3.3, we obtain

E [pcall(XT )+ ∣ Ft] =
ˆ
R
s+q(ds)

=
ˆ
R
( 1

2π

ˆ
R

e(ζ+iλ)s 1

(ζ + iλ)2
dλ) q(ds)

= 1

2π

ˆ
R

q̂call(ζ + iλ)
(ζ + iλ)2

dλ

= 1

π

ˆ
∞

0

Re [ q̂call(ζ + iλ)
(ζ + iλ)2

]dλ,

where the last equality uses that the left, and hence right, side is real, together
with the observation that the real part of (ζ+iλ)−2q̂call(ζ+iλ) is an even function
of λ.

4.4 Exponential-quadratic transform formula

The option valuation is now reduced to the computation of the characteristic
function q̂call(z). In this section, we discuss how the computation of the
characteristic function can be transformed to the solutions of a system of Riccati
equations. The exponential-quadratic transform formula, Theorem 4.4.1. It is
the main theorem of this chapter, and it links the exponential of the electricity

1Note that characteristic function is normally defined on purely imaginary number
iR. Here we define it only on all complex number z.
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forward or spot to the solution of a system of Riccati equations. It is valid if
either the exponential of the forward is finite (in L1) or the maximal lifetime of
the Riccati equations are not reached. Moreover, we discuss the explicit local
solution of the Rccati system.

Theorem 4.4.1. For any u ∈ C, v ∈ Cd, w ∈ Sd + iSd, consider the following
system of ODE with initial condition:

(4.4.1)

φ′(t) = ψ(t)⊺κθ + 1

2
ψ(t)⊺aψ(t) +Tr(aπ(t)), φ(0) = u,

ψ′(t) = −κ⊺ψ(t) + 2π(t)aψ(t) + 2π(t)κθ, ψ(0) = v,
π′(t) = −π(t)κ − κ⊺π(t) + 2π(t)aπ(t), π(0) = w.

There exists a maximal lifetime T ∗(u, v,w) = T ∗(w), such that a unique solution
exists on [0, T ∗(w)).2 Further, let Xt satisfy (4.2.2), then for any T ≥ 0, the
following conditions are equivalent:

(i) The finiteness condition

Ex [∣eu+v
⊺XT +X

⊺
TwXT ∣] <∞

holds for all x ∈ Rd.
(ii) The inequality T < T ∗(Re(w)) holds.

If either condition is satisfied, the following equality

(4.4.2) Ex [eu+v
⊺XT +X

⊺
TwXT ] = eφ(T )+ψ(T )

⊺x+x⊺π(T )x

holds for all x ∈ Rd.

The proof of the theorem is given in Section 4.5. It closely follows the
arguments in [Filipovic, 2009, Chapter 10], but is simplified slightly by the
observation that the Riccati system (4.4.1) admits an explicit (local) solution.
Since this will also be useful for designing efficient methods to solve the system
numerically, we discuss in the following the explicit solution.

2Standard ODE theory (see e.g. [Filipovic, 2009, Lemma 10.1]) implies that each
initial condition (u, v,w) has an associated maximal lifetime, prior to which a unique
solution exists. Since the expression for ψ′ is linear in ψ, and since the expression for φ′
does not involve φ at all, it follows that solutions φ and ψ exist whenever a solution π
exists. The lifetime thus only depends on w, thus T ∗(u, v,w) = T ∗(w). The maximality
of T ∗(w) means that limt↑T∗(w) ∣∣π(t)∣∣ =∞ if T ∗(w) <∞.



4.4 Exponential-quadratic transform formula 69

Explicit solution of the Riccati sytem

Following Reid [1972], one considers the ODE

( 0 Id
−Id 0

)( U
′

V ′ ) = ( 0 −κ⊺
−κ 2a

)( U
V

) ,

with U(0) = Id and V (0) = w. It is easy to verify that π(t) ∶= V (t)U(t)−1 satisfies
the third equation in (4.4.1) for all t near which U(t) is invertible. Moreover,
the above system is linear with constant coefficients, so one readily computes:

(4.4.3) U(t) = eκt (Id − 2

ˆ t

0

e−κsa e−κ
⊺sdsw) , V (t) = e−κ

⊺tw.

Consequently, in case w is invertible, one obtains the formula

(4.4.4) π(t) = e−κ
⊺t (w−1 − 2

ˆ t

0

e−κsa e−κ
⊺sds)

−1

e−κt.

Next, with the Ansatz ψ(t) = π(t)f(t), the problem of finding ψ is reduced to
solving the linear equation −κf(t) + f ′(t) = 2κθ, f(0) = w−1v. Doing this, one
obtains

(4.4.5) ψ(t) = π(t)eκt (w−1v + 2

ˆ t

0

e−κsdsκθ) .

To get φ one simply integrates the first equation in (4.4.1). Of course, (4.4.4)
and (4.4.5) are only valid prior to the first t for which U(t) becomes singular,
which is always strictly positive.

The explicit expressions (4.4.4) and (4.4.5) clarify how the solution depends
on the initial conditions, and how it depends on the process parameters. As we
will see in the context of model calibration to a time series of call option values,
it is crucial to be able to compute the solution at a fixed time T , for a fixed
set of process parameters, but for a variety of initial conditions. In this case
components of the solution can be precomputed. Specifically, the integrals in
(4.4.4) and (4.4.5) do not depend on the initial conditions. Moreover, if −κ is
nonsingular we have ˆ t

0

e−κsds = −κ−1(e−κt − Id).

Furthermore, differentiation yields

d

dt
(e−κta e−κ

⊺t) = −κe−κta e−κ
⊺t − e−κta e−κ

⊺tκ⊺,
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and by integrating both sides from 0 to t we find that I(t) ∶=
´ t

0
e−κsa e−κ

⊺sds

solves the linear matrix equation

(4.4.6) −κI(t) − I(t)κ⊺ = e−κta e−κ
⊺t − a.

By computing these quantities for t = T and using (4.4.4)–(4.4.5), ψ(T ) and
π(T ) can found directly. To calculate φ(T ), numerical integration is needed,
and this necessitates calculating ψ(t) and π(t) on a grid of t-values in [0, T ].
However, by using quadrature methods the number of grid points can be taken
very small (on the order of five or ten) while retaining good accuracy. It is
then typically more efficient to compute ψ(t) and π(t) using the above explicit
expressions, than to solve the full Riccati system using a general purpose ODE
solver.

Let us finally remark that if (u, v,w) are not real, then (i) (and hence (ii))
of Theorem 4.4.1 may fail, while at the same time there is a global solution to
the Riccati system. As an example, consider the case d = 1, θ = 0, −κ = 0, a = 1

2
,

so that Xt = x + (1/
√

2)Wt. Letting u = 0 and v = 0, the Riccati system has the
explicit solution

π(t) = 1

w−1 − t , ψ(t) = 0, φ(t) = −1

2
ln(1 −wt), t < T ∗(w),

where T ∗(w) is the first time t = w−1. If w has a nonzero imaginary part this
never happens, and so a global solution exists. On the other hand, the expectation
Ex[∣ewXt ∣] is only finite for t < 1/Re(w). For these values of t, therefore, the
equality

Ex[ewXt] =
1√

1 −wt
exp( x2

w−1 − t)

holds. For t ≥ 1/Re(w) and w not real, the left side becomes ill-defined, whereas
the right side remains well-defined and finite.

4.5 Proof of Theorem 4.4.1

It is clear that there is no loss of generality to assume u = 0, so we do this from
now on. The proof relies on a number of lemmas. The first one establishes the
result under additional assumptions on the initial conditions.

Lemma 4.5.1. In the setting of Theorem 4.4.1, assume that w has negative
definite real part. Then the conditions (i) and (ii) both hold, as does the transform
formula (4.4.2).
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Proof. By Lemma 4.5.2 below, w has a symmetric inverse with negative definite
real part, so the explicit formula (4.4.4) is valid before the first time the expression
in parenthesis becomes singular. However, this never happens. Indeed, since a is
positive semidefinite, the expression in parenthesis has a negative definite real
part, so by Lemma 4.5.2 it is invertible with an inverse whose real part is again
negative definite. Therefore π given by (4.4.4) is a global solution, always with a
negative definite real part. Condition (ii) of Theorem 4.4.1 follows. Furthermore,
for any c ∈ Rd and negative definite Q ∈ Sd we have

max
y∈Rd

(c⊺y + y⊺Qy) = −1

4
c⊺Q−1c ≤ 1

4
∥c∥2∥Q−1∥.

Therefore, for any y ∈ Rd,

∣eφ(τ)+ψ(τ)
⊺y+y⊺π(τ)y∣ = eRe(φ(τ))+Re(ψ(τ))⊺y+y⊺Re(π(τ))y

≤ eRe(φ(τ))+ 1
4
∥Re(ψ(τ))∥2∥Re(π(τ))−1∥.

By continuity of (φ,ψ, π) and invertibility of π on the compact interval [0, T ],
the right side is bounded above by some constant that does not depend on τ .
This implies that condition (i) of Theorem 4.4.1 holds. It also implies that the
following complex-valued process M is uniformly bounded on [0, T ]:

Mt = eφ(T−t)+ψ(T−t)
⊺Xt+X⊺

t π(T−t)Xt , 0 ≤ t ≤ T.

Since (φ,ψ, π) satisfies the Riccati system, applying Itô’s formula separately to
the real and imaginary parts shows thatM is a local martingale. Moreover,since
M is uniformly bounded, it is in fact a true martingale. The equality Ex[MT ] =
M0 is then precisely (4.4.2), and the lemma is proved.

Lemma 4.5.2. Let w1,w2 ∈ Sd, with w1 negative definite. Then w1 + iw2 is
invertible with symmetric inverse. Moreover, the real part of the inverse is
negative definite.

Proof. In general, a matrix w1 + iw2, with w1 and w2 real and w1 invertible,
is itself invertible if and only if the Schur complement A = w1 + w2w

−1
1 w2 is

nonsingular. In this case (w1+ iw2)−1 = A−1+ iw−1
1 w2A

−1. Under the assumptions
of the lemma, it is clear that A is symmetric and invertible with negative definite
inverse. That w−1

1 w2A
−1 is symmetric is easily verified.
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We now introduce some notation. Let φ(t, v,w), ψ(t, v,w), π(t,w) be the
value at time t < T ∗(w) of the solution to (4.4.1) with u = 0. We also introduce
the following notation for the maximal set of initial conditions for which a
solution (ψ,π) on [0, t] can be found:

DR(t) = {(v,w) ∈ Rd × Sd ∶ t < T ∗(w)}
DC(t) = {(v,w) ∈ Cd × (Sd + iSd) ∶ t < T ∗(w)}.

(While T ∗ only depends on w, it will be convenient to keep the v component in
the above definitions.) For any x ∈ Rd, t ≥ 0, (v,w) ∈DC(t), we also define

F (t, x, v,w) = eφ(t;0,v,w)+ψ(t;v,w)
⊺x+x⊺π(t;w)x.

Before giving some basic properties of these objects, we state the following
comparison result for ODEs. It follows from a general theorem due to
Volkmann [Volkmann, 1973, Satz 2]. We let ⪯ denote the partial order on Sd

induced by the cone Sd+.

Lemma 4.5.3. Let w1,w2 ∈ Sd with w1 ⪯ w2, and a1, a2 ∈ Sd+ with a1 ⪯ a2. If
(fi(t) ∶ 0 ≤ t < T ), i = 1,2, solves

f ′i(t) = fi(t) − κ + −κ⊺fi(t) + 2fi(t)aifi(t), fi(0) = wi,

then f1(t) ⪯ f2(t) for all t ∈ [0, T ). In particular, with a1 = 0, a2 = a, w1 = w2 =
w ∈ Sd, we obtain

e−κ
⊺twe−κt ⪯ π(t,w), τ ∈ [0, T ∗(w)).

Proof. This is an immediate application of the specialization of Volkmann’s
theorem given in [Cuchiero et al., 2011, Theorem 4.8].

Lemma 4.5.4. For all t ≥ 0 and x ∈ Rd, the set DC(t) is open in Cd×(Sd+ iSd),
and the map (v,w) ↦ F (t, x, v,w) is analytic in DC(t). The set DR(t) is open
in Rd × Sd and star-shaped around zero.

Proof. The openness of DC(t) (and hence of DR(t)) and analyticity of F (t, x, ⋅, ⋅)
in this set follow directly from [Filipovic, 2009, Lemma 10.1] upon identifying
Cd × (Sd + iSd) with Cd+d(d+1)/2. To prove that DR(t) is star-shaped around zero,
we pick any (v,w) ∈ DR(t) and any θ ∈ (0,1], and show that (θv, θw) ∈ DR(t).
Using the ODE for π, one checks that π̃(τ) = θπ(τ,w) satisfies

π̃′(τ) = π̃(τ) − κ + −κ⊺π̃(τ) + 2π̃(τ) (θ−1a) π̃(τ), π̃(0) = θw,
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for τ ∈ [0, t]. Letting w be a negative definite matrix such that w ⪯ θw, and
noting that a ⪯ θ−1a, the comparison lemma (Lemma 4.5.3) yields

π(τ,w) ⪯ π(τ, θw) ⪯ π̃(τ), τ < T ∗(w) ∧ T ∗(θw) ∧ t.

But T ∗(w) =∞ by Lemma 4.5.1, so we deduce that T ∗(θw) > t. Hence (θv, θw) ∈
DR(t), as claimed.

For x ∈ Rd and t ≥ 0, define the sets

V (t, x) = {(v,w) ∈ Rd × Sd ∶ Ex[ev
⊺Xt+X⊺

t wXt] <∞} ,

V (t) = ⋂
x∈Rd

V (t, x).

Moreover, consider the function

G(t, x, v,w) = Ex [ev
⊺Xt+X⊺

t wXt] ,

which is well-defined and finite for all x ∈ Rd, t ≥ 0, (v,w) ∈ S(V (t, x)), where
here and in the sequel we write

S(D) =D + i(Rd × Sd)

for the strip in Cd × (Sd + iSd) generated by a subset D ⊂ Rd × Sd. Note that
G(t, x, v,w) is well-defined for all real (v,w) if we allow it to take the value infinity.
With this convention the monotone convergence theorem implies thatG(t, x, v, ⋅),
with v ∈ Rd, is left-continuous and nondecreasing on Sd in the following sense:
If wn → w, wn ⪯ wn+1, then G(t, x, v,wn) ↑ G(t, x, v,w). Finally, note that the
sets V (t, x) are convex since G(t, x, ⋅, ⋅) is a convex function.

Lemma 4.5.5. For all t ≥ 0 and all x ∈ Rd we have DR(t) ⊂ V (t, x). Moreover,
the equality

F (t, x, v,w) = G(t, x, v,w)

holds for all x ∈ Rd, t ≥ 0, and all (v,w) ∈DC(t) ∩ S(DR(t)).

Proof. By Lemma 4.5.4,DR(t) is star-shaped around zero. The claim thus follows
from [Filipovic, 2009, Lemma 10.9], with U ′ =DC(t) and h(v,w) = F (t, x, v,w),
once we establish i(Rd × Sd) ⊂ DC(t) and F (t, x, iv, iw) = G(t, x, iv, iw) for all
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(v,w) ∈ Rd × Sd. First note that for any λ ∈ R, w2 ∈ Sd and w1 ∈ Sd positive
semidefinite, the following equality holds:

det(λId −w1w2) = det(w1/2
1 [λw−1/2

1 −w1/2
1 w2])

= det(λw−1/2
1 −w1/2

1 w2)det(w1/2
1 )

= det(λ −w−1/2
1 w2w

−1/2
1 )

In other words, the eigenvalues of w1w2 and
√
w1w2

√
w1 coincide. Using this

it is easy to show that U(τ) appearing in (4.4.3), with w replaced by iw, is
invertible for all τ ≥ 0. Hence i(Rd × Sd) ⊂DC(t). Continuity of F , Lemma 4.5.1,
and dominated convergence now give

F (t, x, iv, iw) = lim
n
F (t, x, iv, iw − n−1Id)

= lim
n

Ex [eiv⊺Xt+X⊺
t (iw−n

−1Id)Xt]

= G(t, x, iv, iw).

Lemma 4.5.6. For each n ∈ N, suppose (v,wn) ∈ DR(T ), wn ⪯ wn+1,
limn ∥π(T, v,wn)∥ =∞, and assume the eigenvalues of π(T, v,wn) are bounded
from below uniformly in n. Then for some x̂ ∈ Rd,

lim
n
F (T, x̂, v,wn) =∞.

Proof. Lemma 4.5.5 implies that for all x ∈ Rd,

F (T,x, v,wn) = G(T,x, v,wn) ≤ G(T,x, v,wn+1) = F (T,x, v,wn+1),

so the limit in the statement of the lemma exists. Moreover, setting x = 0 in this
inequality shows φ(t, v,wn) ≤ φ(t, v,wn+1). Hence it suffices to find x̂ so that

(4.5.1) lim sup
n

(ψ⊺nx̂ + x̂⊺πnx̂) =∞,

where we defined ψn = ψ(T, v,wn) and πn = π(T, v,wn). Suppose first ∥ψn∥ is
unbounded, and pick a subsequence (nk) along which ∥ψnk∥→∞ and ψnk/∥ψnk∥
converges. Let x̂ be the limit. Since πn has eigenvalues bounded from below,
there is a constant c > 0 such that

lim
k

1

∥ψnk∥
(ψ⊺nk x̂ + x̂

⊺πnk x̂) ≥ lim
k

1

∥ψnk∥
(ψ⊺nk x̂ − c) = 1.
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Now (4.5.1) follows. Suppose instead ∥ψn∥ ≤ c for some c > 0. Pick a subsequence
(nk) along which πnk/∥πnk∥ converges to a limit π. Since ∥πnk∥ →∞ and πnk
has eigenvalues bounded from below, we can find x̂ so that x̂⊺πx̂ > 0. Then

lim
k

1

∥πnk∥
(ψ⊺nk x̂ + x̂

⊺πnk x̂) ≥ lim
k

1

∥πnk∥
(−c∥x̂∥ + x̂⊺πnk x̂) = x̂

⊺πx̂,

and we deduce (4.5.1).

Proof of Theorem 4.4.1. Recall that we assume u = 0. The equivalence between
conditions (i) and (ii) follows if we can prove DR(T ) = V (T ). In view of
Lemma 4.5.5, the remaining statement will then follow if we prove the inclusion
S(DR(T )) ⊂DC(T ).

Let us prove V (T ) ⊂DR(T ), the reverse inclusion being already established
in Lemma 4.5.5. Pick (v,w) ∈ V (T ) and define θ∗ by

θ∗ ∶= sup{θ ∈ R ∶ (v,w − θId) ∉DR(T )} .

We wish to show that θ∗ lies in [−∞,0). Note that for all large θ ∈ R, (v,w−θId) ∈
Rd × Sd− ⊂ DR(T ) according to Lemma 4.5.1. Therefore θ∗ ≠ ∞. It remains
now to exclude θ∗ ∈ [0,∞). Assume for contradiction that θ∗ ≥ 0 and define
w∗ ∶= w − θ∗Id. Since DR(T ) is open, (v,w∗) ∉ DR(T ). Now take a sequence
Tn ↑ T ∗(w∗) ≤ T , so that limn ∥π(Tn,w∗)∥ =∞. By continuity of π we can find
θn ↓ θ∗ such that ∥π(Tn,wn) − π(Tn,w∗)∥ < 1, and hence

(4.5.2) lim
n

∥π(Tn,wn)∥ =∞,

where wn = w−θnId ∈DR(T ). The flow property of π and the comparison lemma
(Lemma 4.5.3) give

(4.5.3) π(T,wn) = π(T − Tn, π(Tn,wn)) ⪰ e−κ
⊺
(T−Tn)π(Tn,wn)e−κ(T−Tn).

Another application of the comparison lemma gives π(Tn,wn) ⪰ π(Tn,w1), so
that the eigenvalues of π(Tn,wn) are bounded from below, uniformly in n.
Together with (4.5.2) and (4.5.3) this implies limn ∥π(T,wn)∥ = ∞ and that
the eigenvalues of π(T,wn) are uniformly bounded from below. Thus, with x̂ as
in Lemma 4.5.6, we use the left-continuity (with respect to ⪯) of G(t, x, v, ⋅) and
the fact that (v,wn) ∈DR(T ) for each n together with Lemma 4.5.5 to get

G(T, x̂, v,w∗) = lim
n
G(T, x̂, v,wn) = lim

n
F (T, x̂, v,wn) =∞.(4.5.4)
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Therefore (v,w∗) cannot lie in V (T, x̂) and hence not in V (T ). On the other
hand, as w∗ ⪯ w and G is non-decreasing (with respect to ⪯), we have

G(T,x, v,w∗) ≤ G(T,x, v,w) <∞

for all x ∈ Rd. But this contradicts (4.5.4), hence θ∗ < 0, so that (v,w) ∈DR(T )
as desired.

Finally, we prove S(DR(T )) ⊂ DC(T ). To this end, let (v,w) ∈ DR(T ), and
pick any (v,w) ∈ Rd × Sd. Define

(vθ,wθ) = (v,w) + iθ(v,w),

and let θ∗ = inf{θ > 0 ∶ (vθ,wθ) ∉ DC(T )}. We wish to show that θ∗ = ∞, and
assume for contradiction that θ∗ <∞. Since DC(T ) is open, (vθ∗ ,wθ∗) ∉DC(T ).
Now take a sequence tn ↑ T ∗(wθ∗) ≤ T , so that limn ∥π(tn,wθ∗)∥ = ∞. By
continuity of π we can find θn ↑ θ∗ with (vθn ,wθn) ∈DC(T ) for all n, such that
∥π(tn,wθn) − π(tn,wθ∗)∥ < 1. Then limn ∥π(tn,wθn)∥ = ∞. Now, (with similar
arguments as in the first part of the proof, see (4.5.3) and following), one checks
that the eigenvalues of π(T,wθn) are bounded from below uniformly in n, and
thus, limn ∥π(T,wθn)∥ =∞. Therefore, with x̂ as in Lemma 4.5.6, we have

(4.5.5) F (T, x̂, vθ∗ ,wθ∗) = lim
n
F (T, x̂, vθn ,wθn) =∞.

On the other hand,DR(T ) is also open, so for some p > 1, (pv, pw) ∈DR(T ) ⊂
DR(t) for all t ≤ T . But then by Lemma 4.5.5,

Ex [(ev
⊺Xt+X⊺

t wXt)
p

] = F (t, x, pv, pw),

which is bounded in t ∈ [0, T ] by continuity of the right side. Consequently, the
family of random variables {ev

⊺Xt+X⊺
t wXt ∶ t ∈ [0, T ]} is bounded in Lp, hence is

uniformly integrable. Together with path continuity of Xt, this implies that t↦
G(t, x, vθ∗ ,wθ∗) is continuous on [0, T ]. But since (vθ∗ ,wθ∗) ∈DC(t)∩S(DR(t))
for t < T ∗(wθ∗), Lemma 4.5.5 gives G(t, x, vθ∗ ,wθ∗) = F (t, x, vθ∗ ,wθ∗). In view
of (4.5.5), we obtain the desired contradiction. It follows that θ∗ =∞, and the
theorem is proved.

4.6 Calibration Study

In this section we demonstrate the use of our quadratic Gaussian model by
conducting a calibration test, in which the two-factor specification is fitted to
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traded German electricity option data. The author would like to thank Markus
Regez for his comments and for preparing and providing the data.

The data

The option data for our calibration study comes from the European Energy
Exchange (short: EEX) and is publicly available3. It contains European-style
options which are written on German electricity forwards with a calendar year
delivery period4. The quotation date is 27th of November 2020. The options
displayed on EEX are calls and puts with a very large range of strikes, and are
written on calendar year forwards, i.e. Cal21, Cal22, Cal23 and Cal24. Moreover,
several option expiry dates are possible on the same underyling forward, which
is a unique feature of the energy markets. Note however that electricity options
on calendar year forwards are not very liquidly traded. Not all strikes with their
settlement prices of the options displayed on the EEX are really traded. Thus,
in order to obtain traded market data, we process the raw data as follows:

• We remove all options (and their prices) which have zero open interest
both in calls and their correponding puts5. If only calls (or their
corresponding puts) are traded (in the sense of positive open interest),
then through the put-call parity, the puts (or calls) will also be
considered traded options.

• We compute the Black-Scholes delta of both puts and calls options
with various strikes and remove those with delta < 1%. This allows us
to remove very far out-of-the-money options. At the same time it also
removes the very deep in-the-money options via the put-call parity.

For the calibration study, we only use the call options. This is not restrictive, as
the put options with non-zero open interest are converted to call options via the
put-call parity. A visualization of the data is presented in Figure 1 and a detailed
description in Table 1. We see that the data exhibits the so called Samuelson’s

3The option data is available under https://www.eex.com/en/market-data/power/
options.

4We only consider options on calendar year forwards as they are the the most
liquidly traded options in mid to long-term electricity markets. Moreover, they are
directly comparable without further adjustments such as the seasonality adjustments.

5A corresponding put has the same strike and option expiry date, and the same
undelying forward contract.

https://www.eex.com/en/market-data/power/options
https://www.eex.com/en/market-data/power/options
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effect6.

Figure 1: Traded EEX German call options that are written on calendar year forwards,
priced as of 27th November 2020. The option prices at EEX are quoted in premium.
They are plotted here with respect to the moneyness (=forward over strike).

product delivery period option expiry forward number of options
calls on Cal21 2021-01-01 - 2021-12-31 2020-12-10 41.33 11
calls on Cal22 2022-01-01 - 2022-12-31 2021-03-26 44.78 2
calls on Cal22 2022-01-01 - 2022-12-31 2021-12-09 44.78 4
calls on Cal23 2023-01-01 - 2023-12-31 2022-12-08 46.30 4

Table 1: Detailed descriptive information on the German electricity call options, which
are traded on EEX, quoted as of 27th November 2020. The number of options refers
to the number of different strikes traded for a given calendar year call option.

Calibration procedure

Let’s t = 0 denote quotation date. The available financial instruments for the
calibration are forwards F (0, T1, T2,X0) and call options E[(F (T,T1, T2,XT ) −

6The volatility is increasing with decreasing time-to-maturity of options.
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K)+∣F0] which are written on F (T,T1, T2,XT ) for different T , T1 and T2. As
F (T,T1, T2,XT ) is unknown on date t = 0, the best approximation is given
by E[F (T,T1, T2,XT )∣F0] = F (0, T1, T2,X0). Hence, the calibration procedure
consists of two parts: calibration of model-based forwards and model-based calls.
For the model implementation, we use the two-factor specification, Specification
4.2.2, for which we have seen that it fits the electricity forward curves very well.
The model-based forward F (0, T1, T2,X0) can be easily implemented using the
moment formula, Theorem 2.3.2. The implementation of the model-based option
prices requires several steps, which we present in the following.

Implementation of model-based option prices

The model-based option price E[(F (T,T1, T2,XT ) − K)+∣F0] can be
implemented using the Fourier approach (Theorem 4.3.4), so that for each
z = ζ+iλ with λ ∈ R, q̂call(z) is computed via the exponential quadratic transform
formula (Theorem 4.4.1). Theoretically either side of the transform formula
(4.4.1) can be used for the computation: its left hand side suggests the use of a
Monte Carlo estimator and its right hand side needs a Riccati solver. In practice
however, a Monte Carlo estimator yields huge approximation error while the
solution to a Riccati system can be computed very accurately; see Figure 2
for a sanity test, which visualizes this fact. Thus, we evaluate option prices by
solving the Riccati system (4.4.1). For solving the Riccati system (4.4.1), we
need appropriate choices of parameters and initial values in order to guarantee
that the maximal lifetime of the system will not be reached.

For the evaluation of the Fourier integral, the Fourier integrand needs to
be solved for many z. We need to repeatedly solve the Riccati equations for
different initial values. These initial values are themselves the products of z and
the solutions of linear ODEs of the forward pricing formula. However, the linear
ODEs only need to be solved once. In detail, for each z = ζ + iλ, λ ∈ R, we solve
the Riccati system (4.4.1) for initial values

φ(0) = u0z, ψ(0) = v0z, π(0) = w0z,

where u0, v0 and w0 are the solutions of (4.3.4) implied by the linear ODEs
(2.3.6), and are the same for all Fourier integrands.

Regarding the numerical integration, there exists various build-in functions
in any programming language which can handle it. However, the convergence
of the numerical sum can be slow due to the strong oscillating property of the
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Fourier integrand. A possible way to speed it up is to add and subtract another
term, which has closed form moment generating function, so that the numerical
integration only needs to be computed on the difference between this term and
q̂call(z). A normal distributed random variable Y which has the same first and
second moment as F (T,T1, T2,XT ) can be a good choice. In the following, we
abbreviate F (T,T1, T2,XT ) to FT .

To formalize the idea, let Ỹ ∼ N (µ̃, σ̃2) be a normal distributed random
variable. Then the call price at strike K can be expressed as

E[(FT −K)+] = E[(FT −K)+ − (Ỹ −K)+] + E[(Ỹ −K)+]
= R(FT , Ỹ ,K) + E[(Ỹ −K)+],

where

R(FT , Ỹ ,K) ∶ = E[(FT −K)+ − (Ỹ −K)+]

= 1

2π

ˆ
∞

−∞

Re [ 1

(ζ + iλ)2
(E[e(ζ+iλ)(FT −K)] − E[e(ζ+iλ)(Ỹ −K)])]dλ

= 1

2π

ˆ
∞

−∞

Re [ 1

(ζ + iλ)2
(E[e(ζ+iλ)(FT −K)] − e(µ̃−K)(ζ+iλ)+

σ̃2(ζ+iλ)2
2 )]dλ.

Note that the second term in the last equation is the explicit expression of the
characteristic function7 of the normal distributed (Ỹ −K) ∼ N (µ̃ −K, σ̃2).

This approach splits the computation of the call price into the computation
of a call price where a normal distributed random variable models the underlying
dynamics, and the residual term, which is the difference between the call price
of our model and that of the normal distributed Ỹ . Adding and subtracting
E[(Ỹ −K)+] has two advantages. On the one hand, the characteristic function of
Ỹ and thus also of Ỹ −K are fully explicit. Thus, computing this additional term
does not require much additional effort, but it helps to dampen the oscillating
effect of a Fourier integral. On the other hand, E[(Ỹ −K)+] has a closed form
solution as Y is a normal distributed random variable. We will see this in the
following proposition.

Proposition 4.6.1. For any normal distributed underlying dynamics S ∼
N (µ,σ2), the call price at strike K is given by

E[(S −K)+] = (µ −K)Φ(−d) + σf(d),

7Here we define the characteristic function on the complex numbers ζ + iλ, λ ∈ R.
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with d ∶= K−µ
σ

, Φ(⋅) and f(⋅) denote the cumulative distribution function and the
density function of the standard normal distribution respectively.

Proof. Let Z ∼ N (0,1), then S law= µ + σZ. Thus,

E[(S −K)+] = E[(S −K)1{S>K}]

= E[(µ + σZ −K)1{Z>d}]

= (µ −K)(1 −Φ(d)) + σE[Z1{Z>d}].

with d ∶= K−µ
σ

. The first summand can be further simplified using the symmetry
Φ(−d) = 1−Φ(d). And for the second summand, we use f ′(z) = (−z) ⋅ 1

2π
e−z

2
/2 =

−zf(z), and thus

σE[Z1{Z>d}] = σE[Z] − σE[Z1{Z≤d}] = 0 − σ
ˆ d

−∞

zf(z)dz = σ
ˆ d

−∞

f ′(z)dz = σf(d).

This gives the claim.

It remains to discuss the choice of Ỹ . In general Ỹ can be chosen arbitrarily,
as Ỹ is in the zero-sum terms which we add and subtract at the same time. One
possible choice of Ỹ is to let µ̃ and σ̃ satisfy:

µ̃ = E[FT ] and σ̃2 = V[FT ].(4.6.1)

In the following we compute (4.6.1) for the two-factor model, Specification 4.2.2.
Recall that in the two-factor model, Xt evolves according to a two-dimensional
Ornstein-Uhlenbeck process. Thus, at any t, it is a normal-distributed random
variable, i.e. Xt ∼ N (m(t),Σ(t)), with

m(t) = e−κtX0, Σ(t) =
ˆ t

0

e−κsae−κ
⊺sds,

where Σ(t) solves 8

−κΣ(t) −Σ(t)κ⊺ = e−κtae−κ
⊺t − a.

8Alternatively, one can also solve the ODE Σ′(t) = −κΣ(t) −Σ(t)κ⊺.
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Moreover, as FT = u0 +X⊺

T w0XT (see (4.3.5)), we have9

µ̃ = u0 + E[X⊺

T w0XT ] = u0 +Tr[w0 Σ] +m⊺w0m,

σ̃2 = V[X⊺

T w0XT ] = Tr[w0Σ (w0 +w⊺

0)Σ] +m⊺(w0 +w⊺

0)Σ(w0 +w⊺

0)m,

where m =m(T ) and Σ = Σ(T ).
After the implementation of the two-factor model, Specification 4.2.2, we

calibrate it to the real option data using the least square method. In order
to speed up the fitting, we first compute the model-based forwards and call
approximations (Proposition 4.6.1), and optimize over the least squares of all
forwards and options. Once the discrepancy is within a reasonable range, we
then evaluate Fourier integral R(FT , Ỹ ,K) and compute the accurate model-
based call prices and the least square over all forwards and accurate calls. The
model fitting is visualized in Figure 3, and goodness of fit is given Table 2. The
parameters of the calibration are reported in Table 3.

Figure 3: A visualization of the calibration study. The circles represents the traded EEX
option data, and the plus represents the model-based option prices. The calibration
uses ζ = 0.0001. The calibration can roughly fit the option data while it fits the forward
data accurately.

9This uses well-known results of a normal distributed random variable; see e.g.
Section 8.2.2 of Petersen and Pedersen [2008].
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Cal21 Cal22 Cal23
forward option forward option I option II forward option

absolute error 0.7492 0.2725 0.6238 0.2917 0.2894546 0.0913 0.4332
relative error 1.812% 26.052% 1.393% 6.469% 13.348% 0.197% 6.306%

Table 2: Table of Goodness of fitting. The overall relative error is 1.38506% for the
forwards and 18.01% for the options.

c 32.4598177
α 9.7723320
β 4.9730813
κZ 0.3377648
κY 0.8018996
σZ 0.7739308
σY 0.3598896
ρ 0.8297327
z0 1.0911264
y0 0.2491788

Table 3: Estimated parameters of Specification 4.2.2.
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Figure 2: A visual comparison of accuracy between the left hand side and the right
hand side of the exponential quadratic formula (4.4.1). This comparison is based on
a special case, in which q̂call(z) is etual to the characteristic function of a non-central
χ2 distributed random variable Y ∶= u + X⊺

TwXT . The Monte Carlo estimator uses
5000 simulation paths and 1000 time steps. For solving the Riccati system, we use two
different solvers for compasion, the deSolve-package of R and a self-written solver based
on an Euler-scheme. We see that the deSolve solver gives almost accurate result, and
Monte Carlo has too significant errors (1000% relative error).



Chapter 5

A machine learning
approach to gas storage
optimization

5.1 Introduction

The prices of natural gas exhibit distinct yearly seasonal pattern. Due to the
partial storability and large fluctuation in demand of gas, its prices are generally
lower in summer, and higher and spikier in winter. In order to take advantage of
the seasonality of gas, physical storage facilities are required. And thus, producers
and other market players are highly motivated to own or to contract storage
facilities, creating worldwide a high demand in the underground gas storage
facilities. As an example, the US working gas1 in underground storage in 2020
is record high compared with that of the past five years; see Figure 1. Given the
rising price of gas storage and the smoothing effect of gas price spreads through
the use of storage facility, it is essential to optimize the use of the storage in
order to generate profit for a market player. In this chapter, we focus on the
optimization of gas storage and use machine learning approaches, in particular

1Working gas refers to the total volume of gas in the storage at a particular point
in time. It is computed as the total gas volume minus the base gas.
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deep hedging in the sense of Buehler, Gonon, Teichmann, and Wood [2019], to
solve it.

Figure 1: US natural gas (not LNG) futures curve and storage information provided
by EIA (US Energy Information Administration), as of October 2, 2020; plots are
from https://www.eia.gov/naturalgas/storage/dashboard/. Left plot shows one year
natural gas futures curves consisting of twelve monthly futures contracts with delivery
period of months ranging from November 2020 to October 2021; we see that there is
a pronounced seasonal pattern, namely high prices in winter months and low prices
in summer.The right plot shows the lower bound of underground gas storage in US
in lower 48 weekly working gas; it is obvious that the gas storage this year (2020) is
record high compared with that of the past five years.

There are three types of underground natural gas storage: depleted natural
gasfield/oilfields, aquifers, and salt caverns. They are often located close to a
pipeline, which makes the delivery of physical transactions more convenient.
Compared to the storage through conversion to LNG, the underground natural
gas storage are bigger and cheaper, but are restricted to regional use. In Table
1, we provide an overview of the main stylized characteristics of a gas storage,
that are relevant for modeling and optimization.

Over the last decades, various literature contributes to the modeling and
optimization of energy storage. For standard references see section 12.6 of
Geman [2009], section 5.3.4 of Fiorenzani et al. [2012], and Holland [2007,
2008]. Other references include e.g. De Jong [2015], Boogert and De Jong [2008],
Safarov and Atkinson [2017], Cummins et al. [2017], Carmona and Ludkovski
[2010], Bjerksund et al. [2011], Thompson et al. [2009], Hénaff et al. [2018],
Malyscheff and Trafalis [2017]. Much of the literature puts more emphasis
on the modeling (and prediction) of gas prices rather than on developing
algorithm for the optimization problems. On the optimization side, storage
was optimized via the Least Squares Monte Carlo approach (LSMC) or support
vector machine regression (SVR), considered as a stochastic control problem

https://www.eia.gov/naturalgas/storage/dashboard/
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storage optimisation constraints with unit: therm or MWh
initial storage 0 units (plus cushion gas)

terminal storage 0 units (plus cushion gas)
capacity c

injection rate on day k uk units (uk > 0)
withdrawal rate on day k `k units (`k < 0)

injection cost κ ∈ [0,1]
withdrawal cost κ ∈ [0,1]

overhead (one time expense) K $

Table 1: This table gives the most important characteristics for modeling the gas
storage. Note that in the underground storage, there is usually a cushion gas (base gas)
which is the volume of natural gas that is intended as permanent (and not withdraw-
able) inventory to maintain minimal pressure, which for modeling purpose can be
neglected. For simplicity the injection and withdrawal costs are assumed to be a
constant proportional cost of the injection and withdrawal respectively. In reality, the
cost depends on the pressure in the underground storage, which itsself depends on the
level of the working gas.

with HJB equations, or an application of real option theory. To the best of the
author’s knowledge, almost none of the machine learning techniques has been
applied to gas storage and related problems. And thus, our applications of deep
hedging from Buehler, Gonon, Teichmann, and Wood [2019] to the gas storage
is very unique. It demonstrates the potential of machine learning techniques in
storage-related modeling and optimization problems. We provide two models
based on this machine learning concept, which are of the intrinsic valuation
type. The first model (Model I) uses spot-proxy (the day-ahead forwards) as
hedging instruments. The second model (Model II) uses additionally the monthly
forwards with delivery periods as hedging instruments. The second model is very
unique in the sense that it features the real gas trading very well, due to the
use of the tradable monthly forwards. The traditional approach is to use an
artificial daily forward curve for simplicity, which is implied from the tradable
monthly forwards with delivery period. The author strongly believes that the
use of tradables, and thus the use of Model II, are more appropriate for the
gas storage optimization, as the main purpose of gas storage optimization is to
maximize the P&L or to maximize the utility for a storage manager rather than
a valuation for risk-management purpose.

This chapter is structured in the following way: In Section 2 we review
the deep hedging approach. In Section 3, we present our first model (Model
I), an intrinsic spot model which uses deep hedging. We compare our model in
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numerical tests against a set of benchmark strategies optimized using LSMC. In
Section 4, we present our second model (Model II), which uses additionally
monthly forwards with delivery periods, and investigate its performance in
numerical tests against Model I and benchmark strategies using LSMC.

Throughout this chapter, we use a discrete setting: Let T = {0,1,2,⋯,N −1}
for some N ∈ N be the trading horizon in days, and let (Ω,F ,F,P) with F =
(Fk)k∈T be a filtered probability space with real-world measure P. And we assume
the existence of an equivalent risk neutral measure Q.

This chapter is based on the joint work with Thomas Krabichler, Josef
Teichmann and Hanna Wutte. The author would like to thank Vlatka Komaric
and Michael Kettler of Axpo Solutions for posing this interesting problem, for
fruitful discussions and for providing data.

5.2 Deep hedging

The concept of deep hedging goes back to the beautiful paper of Buehler, Gonon,
Teichmann, and Wood [2019]. In the following we review this concept. The
notations and formulations we use are very similar to that of the paper and of
the lecture notes of “Machine Learning in Finance” by Christa Chuchiero and
Josef Teichmann; see https://people.math.ethz.ch/~jteichma/index.php?
content=teach_mlf2019 for more details.

Let us first recall the definition of a neural network.

Definition 5.2.1 (neural network, Buehler et al. [2019]). Let L denote the
number of layers, let N0, N1, . . . ,NL ∈ N denote the dimension of layers
respectively. In particular, N1, . . . ,NL−1 denote the dimension of the hidden
layers, and N0 and NL the dimension of the input and output layers. Further,
let σ̂ ∶ R→ R denote the (sigmoidal) activation function. For any l = 1, ..., L, let
Wl ∶ RNl−1 → RNl be an affine function. A function g ∶ RN0 → RNL defined as

g(x) =WL ○ FL−1 ○ ⋯F1 with Fl = σ̂ ○Wl for l = 1, ..., L − 1

is called a (feed forward) neutral network with L layers.

The main idea of deep hedging is that at any time point t, the hedging or
trading strategy is constructed and parametrized via a neural network. The input
variables are chosen by the user, and can be e.g. the current price of an asset
or the strategy used in the past. The training is based on a hedging criterion

https://people.math.ethz.ch/~jteichma/index.php?content=teach_mlf2019
https://people.math.ethz.ch/~jteichma/index.php?content=teach_mlf2019
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which can be translated into the minimization of a loss function. Therefore, the
outputs of the neural network which are used to train the neural network, can
be set to zero. In other words, the deep hedging can be seen as an approach of
the supervised learning. In the following, we make the idea mathematically more
precise.

Let Xk be the price of an asset on day k, and hk the hedging strategy on
day k. In terms of gas storage optimization, hk is the action of storage, and
describes the rate of injection or withdrawal on day k. A hedging strategy H
over the whole trading horizon is then H = {h0, ..., hN−1}, and its value is given
by (H ●X)N−1 ∶= ∑N−1

k=0 hk∆Xk = ∑N−1
k=0 hk(Xk+1 −Xk).

Suppose we want to hedge a claim f(XN−1) and consider a quadratic hedging
criterion such as the mean-variance criterion, then the hedging problem can be
formulated as the following optimization problem:

inf
H∈H

E[(f(XN−1) − π − (H ●X)N−1)
2],(5.2.1)

where π ∶= EQ[f(XN−1)] denote the fair price of f(XN−1), and H denotes the
set of all predictable strategies H.

Next, on each day k ∈ T, we model the hedge hk as a function of the current
price Xk and approximate it by a neural network, i.e. hk = gk(Xk). For the whole
trading horizon, we have N neural networks. The training of gk is conducted
via a loss function L implied by (5.2.1). Therefore, the hedging problem can be
formulated as the following supervised learning problem:

• Input: M trajectories of underlying : (Xi
k)k∈T;i=1,...,M ;

• Output: M 0’s;

• Training object: hedging strategy of the whole trading horizon, that is
N neural networks g0, ..., gN−1, each of which has L layers;

• Training criterion: minimize loss function L, i.e. for i = 1, ...,M.,

L(i) = (f(Xi
N−1) − π −

N−1

∑
k=0

gk(Xi
k) ⋅ [Xi

k+1 −Xi
k] − 0)2

.

The strength of deep hedging is that it allows to solve a high dimensional
hedging and optimization problem with complex underlying dynamics very
efficiently.
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5.3 Model I: intrinsic spot trading

In the following, we introduce a deep hedging model for gas storage optimization,
which is based on trading the day-ahead prices of gas. Note that in the
Commodities markets, the day-ahead futures or forward is seen as a close proxy
of the spot price. And therefore, we will refer to the trading activities of the
day-ahead price of gas as the spot trading throughout the chapter. For simplicity,
we assume no discounting (r=0) and zero transaction cost, i.e. κ =K = 0; for a
more general formulation including costs, see Remark 5.3.1.

Let Sk = (F (k, k + 1, k + 1))
k∈T denote the F-adapted gas spot price, and

hSk the Fk-measurable action on day k. hSk > 0 refers to an injection of ∣hSk ∣
MWh and hSk < 0 refers to a withdrawal of ∣hSk ∣ MWh. A trading strategy H̃ over
the whole trading horizon is then H̃S = {hS1 , ..., hSN−1} and its value is given by
(H̃S ● S)N−1 ∶= ∑N−1

k=0 hSkSk. Moreover, the storage level (or working gas) HS
n on

day n is given by

HS
n ∶=

n−1

∑
k=0

hSk ,

with initially empty storage, i.e. HS
0 ∶= 0.

Suppose the preference of the storage manager can be expressed through a
utility function U ∶ R→ R, which we want to maximize. That is we maximize:

EP[U(WN−1)],(5.3.1)

where

WN−1 ∶=
N−1

∑
k=0

−hSkSk(5.3.2)

denotes the terminal profit and loss2 (P&L). The optimisation is subject to the
following constraints:

HS
N = 0,(5.3.3)

0 ≤HS
k ≤ c, and `k ≤ hSk ≤ uk,(5.3.4)

for all k ∈ T. Alternatively, the daily constraints (5.3.4) can be expressed
iteratively using

̃̀
k ∶= max{`k,−HS

k }, and ũk ∶= min{uk, c −HS
k },

2The negative sign is added in analogy to the direction of cashflow.
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so that

̃̀
k ≤ hSk ≤ ũk.(5.3.5)

Next, we train the action hSk via deep neural networks. On day k ∈ T, the
neural net gk gets the current spot price Sk and time k as input, i.e. hSk =
gk(k,Sk). This means that in total we have N neural networks for the storage
schedule G̃(S) = {g0(0, S0), ..., gN−1(N − 1, SN−1)}. Note that the number of
neural networks can be significantly smaller than the number of trading days.
However, for the ease of notation, we set number of neural networks equal to
N , the number of trading days. The network-based storage level Gn on day n is
given by

Gn(S) =
n−1

∑
k=0

gk(k,Sk), G0 = 0.

The training of gk is conducted via a loss function L implied by (5.3.1)–(5.3.5).
In the following, we reformulate the gas storage problem in the sense of deep
hedging using an exponential utility as an example. Recall that the exponential
utility is formally defined as U(x) ∶= 1 − e−rx with a risk aversion rate r ∈ R+

for x ∈ R. Moreover, maximizing U(x) is equivalent to minimizing Ũ(x) ∶= e−rx.
Then, the model can be formulated as:

• Input: time horizon of storage T, M trajectories of the spot
(Sik)k∈T;i=1,...,M ;

• Training object: storage action (withdrawal or injection rate) of the
whole storage horizon, that is N neural networks g0, ..., gN−1, each of
which has L layers:

hi,Sk = gSk (k,Sik).

• Training criterion: minimize the loss function L, i.e. for i = 1, ...,M.,

min
G̃(Si)∈Gi

L(i) ∶= min
G̃(Si)∈G

Ũ(W i
N−1),

where

W i
N−1 =

N−1

∑
k=0

−gk(k,Sik) ⋅ Sik,

Gi = {G̃(Si) ∣ GN(Si) = 0; 0 ≤ Gk(Si) ≤ c; `k ≤ gk(k,Sik) ≤ uk for k ∈ T}.
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Remark 5.3.1. For the full case as described in Table 1, where κ and K are
non-zero, the terminal profit and loss is given by

WN−1 ∶= (
N−1

∑
k=0

−hSkSk − ∣hSkSk∣ ⋅ κ) −K

For numerical testing, spot curves of gas as well as benchmark strategies
were provided by Axpo Solutions. The spot prices is provided as a 1000 × 351

matrix, with M = 1000 scenarios each of which has prices of N = 351 trading
days. The corresponding benchmark strategies are provided in the same format.
They are computed using the LSMC.

We implemented the model above by mainly using the Keras module of
Python. In total, there are N = 351 neural networks, each of which models the
storage action on a single trading day. For each neural network gk, we used
the sigmoidal function as the activation function; the daily constraints `k and
uk, and the action hk were transformed using a linear interpolation to 0, 1

and hk−`k
(uk−`k)

∈ [0,1] respectively. Moreover, we create iterative tensor operations
which uses functions on abstract tensors as well as the sublayering technique in
the high level implementation of Keras. For incorporating the daily constraints,
we used the iterative expression (5.3.4). For the final zero storage constraint, we
check for every k:

HS
k ≤

N−1

∑
k+1

`k,(5.3.6)

to make sure that HS
N = 0 will still be realistic given the storage level on day k; if

the condition is violated for any k, the upper bound for action will be set equal
to the lower bound, forcing a complete withdrawal of storage for all days starting
from day k. In reality of course, it is possible to leave a non-empty storage by
paying some penalization fee. Yet for our modeling, the zero final storage rule
holds strictly. Figure 2 visualizes the constraints: left plot shows the normalized
zero storage constraint, the right hand side of (5.3.6), and the right plot shows
the daily injection and withdrawal bounds.

After having implemented the model, we train our model of hk based on
the spot prices. We split our data set into a training set of 900 scenarios and a
validation set of 100 scenarios in order to perform in-sample and out-of-sample
tests. All of the 1000 benchmark strategies were optimized using LSMC. Thus
they serve as the optimal solution. We want to examine how fast and how close
we get to a reasonably well solution. For that, we varied the length of training,
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Figure 2: The daily constraints of a gas storage. The left figure visualizes the empty
final storage constraint, i.e. the left hand side of (5.3.6), and is normalized by the total
capacity c. The critical boundary is reached on the trading day 269. In other words,
from day 269 until day N − 1 (N = 351) the daily action is only to withdrawal natural
gas at the maximal withdrawal rate. The right figure visualizes the daily injection and
withdrawal constraints.

the depth and the number of the neural networks (≤ N) as well as the learning
rate and the batch size of training to see what setting yields the best performance
of Model I. The training is very fast, and is good managable on a notebook with
8 cores. As an example, for an implementation of the model using as much as
N neural networks, it needs less than 10 minutes for training on 900 scenarios
for 1000 iterations. Thus regarding the speed, it is comparable with the LSMC.
Moreover, note that it is not necessary to build the above model with N neural
networks. In fact, we find that the implementation with 12 neural networks,L = 2,
N0 = 16 and N1 = 1 already gives a decent model. After 1000 training iterations
on 900 scenarios with learning rate=0.05, batch size=64 and risk aversion rate
r = 3, it gets reasonably close to the benchmark solution. Figure 3 provide a
visualization of the P&L comparison between Model I and benchmark in the in-
sample and out-of-sample tests, as well as a visualization of storage strategies of
Model I and that of benchmark respectively. A descriptive statistics comparison
of the terminal P&L between Model I and the benchmark is reported in the
table at the bottom of Figure 6.



94 Chapter 5

Figure 3: A comparison between performance of Model I and that of benchmark (LSMC).
The upper plots compare the terminal P&L between Model I and benchmark in million
CHF: upper left gives the P&L of the training set and upper right gives that of the test
set. We see that in both results are quite close to the benchmark. The bottom plots
shows the storage action computed by the neural networks of Model I, and the bottom
right plot shows the benchmark actions. Both are normalized by the capacity c. We see
that very often the strategy is to inject gas until the storage capacity is reached, and
then to withdrawal until the storage is empty. This is in accordance with the underlying
seasonality pattern: one store throughout summer months when prices are comparably
low, and withdraw and sell at higher prices in winter months until the storage is empty.

5.4 Model II: intrinsic spot and forward
trading

In the following, we extend the previous deep hedging model for gas storage by
trading additionally on the front month rolling forwards with delivery period
of a whole month. A front month rolling forward curve contains at any point
in time the first nearby monthly forward. We assume here that a monthly
forward contract is only traded before its delivery period starts, and the delivery
obligations is valued using the spot prices that has delivery day within the
delivery period. Note that we only consider those forwards that have delivery
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months within the time horizon of the storage problem. A visualization of the
forward rolling mechanism is presented in Figure 4.

n0 n1 n2 n3 n4 n5 n10 n11 n12

▷ Trade hSk unit of Sk
▷ Trade h1

k unit of F (k,n1, n2)
▷ No delivery obligation

n0 n1 n2 n3 n4 n5 n10 n11 n12

▷ Trade hSk unit of Sk
▷ Trade h2

k unit of F (k,n2, n3)
▷ Daily delivery: d1 unit

n0 n1 n2 n3 n4 n5 n10 n11 n12

▷ Trade hSk unit of Sk
▷ Trade h11

k unit of F (k,n11, n12)
▷ Daily delivery: d10 MWh.

n0 n1 n2 n3 n4 n5 n10 n11 n12

▷ Trade hSk MWh of Sk
▷ No action on forward market
▷ Daily delivery: d11 MWh.

Figure 4: The mechanism of the rolling strategies in Model II. Note that contrary to
the rolling mechanism in Figure 3.5.1, we allow physical settlement of forward thanks
to the storage facility.

Let 0 = n0 < n1 < ... < nm < N be the first days of the months J = {0,1, ...,m}
respectively. Let hJk with J ∈ J denote the action on day k on the forward
F (k,nJ , nJ+1 − 1), which has delivery period [nJ , nJ+1 − 1]. hJk > 0 refers to
buying and hJk < 0 refers to selling F (k,nJ , nJ+1 − 1). The above assumption
implies that hJk = 0 for k < nJ−1 and for k ≥ nJ ; in particular hmk = 0 for all k ∈ T.
We aim to maximize

EP[U(WN−1)],(5.4.1)
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with the terminal P&L

WN−1 ∶=WS
N−1 +WF

N−1.

Here WS
N−1 denotes the terminal P&L from the spot trading and is given by

(5.3.2), where hSk denotes only activity of spot trading, which results in schedule
of gas storage next day. And WF

N−1 denotes the terminal P&L from trading the
monthly forward, and is defined as:

WF
N−1 =

m−1

∑
J=1

nJ−1

∑
k=nJ−1

( − hJkF (k,nJ , nJ+1 − 1)(nJ+1 − nJ)).(5.4.2)

For a forward with the delivery period [nJ , nJ+1 −1], the daily delivery quantity
dJ is fixed on day nJ − 1 for J ≥ 0, and is given by:

dJ ∶=
nJ−1

∑
k=nJ−1

hJk , for J > 0,

and d0 ∶= 0. The storage level Hn on day n depends on activities from both the
spot and the monthly forward trading. For n ∈ [nI−1, nI), Hn is given by:

Hn ∶=
n−1

∑
k=0

hSk +
I−2

∑
J=1

(dJ(nJ+1 − nJ)) + dI−1(n − nI−1 + 1)

with initially empty storage, i.e. H0 ∶= 0. The optimisation of (5.4.1) is subject
to the following constraints:

HN = 0,(5.4.3)

and for nJ ≤ k ≤ nJ+1, J ≤m − 1:

0 ≤Hk ≤ c, and `k − dJ ≤ hSk ≤ uk − dJ ,(5.4.4)

and for α ∈ [0,1]:

hJk ≤ α
c

nJ+1 − nJ
(5.4.5)

Alternatively, the daily constraints ((5.4.4)) can be expressed as iterative daily
bounds for the physical storage using

̃̀
k ∶= max{`k,−Hk}, and ũk ∶= min{uk, c −Hk},

so that

̃̀
k ≤ hk + dJ ≤ ũk.(5.4.6)



5.4 Model II: intrinsic spot and forward trading 97

Remark 5.4.1. In the model above, the action of storage on day k is (hSk +dJ)
for nJ ≤ k < nJ+1. And thus, the action of pure spot trading is restricted by
the daily delivery amount dJ , which is a result of hJ

k̃
with nJ−1 ≤ k̃ < nJ . In

other words, the forward trading activity has a delayed effect on the spot trading,
but spot trading does not affect forward trading: the daily delivery quantity will
only be fixed for the following month after the forward trading of that contract
is finished; and the delivery obligations then have an effect on the spot trading
activity of that month, as the sum of daily delivery and the spot trading is bounded
by the daily withdrawal and injection rate of the storage problem.

The constraint (5.4.5) makes sure the maximal amount traded can be stored
in case of no spot trading; It can also be seen as some liquidity constraints;
moreover, with scaling factor α ∈ [0,1], we can bound the volume of forward
trading and maintain certain balance between the spot and forward trading.

Next, we train the storage action using deep neural networks. The approach
is similar to Model I of Chapter 5.3, , except that we additionally model the
action on monthly forward using different deep neural networks. For the ease of
notation, we abbreviate monthly forward Fk = F (k,nJ , nJ+1). The model can
be formulated as:

• Input: time horizon of storage T, M trajectories of the spot
(Sik)k∈T;i=1,...,M , and of rolling month forward (F ik)k∈T;i=1,...,M

respectively;

• Training object: trading strategy which can be split into action of
spot hSk and action of rolling month forward hJk . Let (gSk )k∈T denote
the neural networks for (hSk )k∈T, and let (gJk )0≥k<nM denote the neural
networks for (hJk)k∈T, so that

hi,Sk = gSk (k,Sik), and hi,Jk = gJk (k,F ik).

In total, we have N + nM neural networks, each of which has L layers.

• Training criterion: minimize the loss function L, i.e. for i = 1, ...,M

minimize:

L(i) ∶= Ũ(W i
N−1) = Ũ(W i,S

N−1 +W
i,F
N−1),

according to (5.4.2)–(5.4.5).

For the numerical testing, 1000 scenarios of spot as well as 1000 scenarios
of monthly forward price curves of 12 months are provided by Axpo Solutions.
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From the latter, we computed 1000 rolling monthly forward curves, each of which
contains only the first nearby contract on any trading day. The data set is then
split into 900 scenarios of spot and of forward prices for training the model, and
100 scenarios for testing the model. For this model, we use the same setup for
the modeling of spot trading as in Model I. To recall, model I uses 12 neural
networks with L = 2, N0 = 16 and N1 = 1. For the modeling of forward trading,
we use the exact same setup for 11 months, as in the 12th month, the front
month contract delivers beyond the trading horizon of the storage. In detail,
for forward trading, we use 11 neural networks with L = 2, N0 = 16 and N1 = 1.
After the model implementation which is more involved due to larger amount of
constraints, it was trained for 1000 iterations, with learning rate=0.05 and batch
size=100. Figure 5 visualizes the trading strategy in terms of storage level with
respect to different choice of α. Figure 6 provides a visualization and a detailed
summary statistics for comparing this model with Model I and benchmark case
for Model I. The comparison is based on the same setup for the spot strategy
part and on the same training conditions with the exception of risk aversion
rate3. Compared with the Model I, this model shows in average a significantly
higher P&L, and is also more volatile (see std). Moreover the P&L is mostly
generated from the forward trading activities, and thus, it is highly sensitive
w.r.t the choice of α from (5.4.5). Thus it is a delicate desk to set the bound α.

3The risk aversion rate r in the loss function can be used to shrink the variance of
P&L. As the use of forwards in Model II increases P&L and variance significantly, we
use a larger r to restrict the variance to certain extent. For the setup we use r = 3 for
Model I and r = 10 for Model II.
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Figure 5: A comparison between performance of Model II (with different α′s and that
of benchmark (LSMC). The upper plots compare the terminal P&L between Model II
(α = 0.1 and α = 0.5) and benchmark in million CHF: upper left gives the P&L of the
training set and upper right gives that of the test set. We see that in both plots the
P&L of Model II are significantly larger than that of the benchmark. The bottom plots
visualize the storage actions computed using model II with α = 0.1 (bottom left plot)
and with α = 0.5 (bottom right plot). The storage levels are normalized by the capacity
c. Similar as in model I, the seasonal pattern of prices and the trading strategies are
reflected by the pattern of storage level: buy at lower summer prices and store until
capacity is reached; then sell at relatively high winter prices until storage is completely
emptied.

We see in Figure 6 that Model II, which allows trading activities on forwards,
is clearly the most favourable choice in terms of maximizing the terminal
P&L. When compared to Model I, it is slightly more complex, but in terms
of computational time and effort, it is still very good manageable on a personal
notebook. The high P&L generated by using the Model II comes with high
standard deviation of P&L of all scenarios, and is very sensitive to the limitation
on forward activity, expressed by α. Thus, one possible direction of future work
is to improve the restriction for the forward trading in order to create a more
balanced wealth generated from spot and forward trading activities on the one
hand, and to generate high P&L with less risk on the other hand.
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terminal P&L in mCHF training set test set benchmark
α = 0.5 α = 0.1 Model I α = 0.5 α = 0.1 Model I spot only

average 5,429,539 4,284,428 1,440,326 5,655,886 4,425,810 1,436,510 1,448,475
median 5,362,543 4,341,783 1,391,877 5,576,047 4,258,077 1,284,445 1,382,435
std 3,111,824 2,708,985 1,132,284 2,839,238 2,526,534 1,019,118 1,109,619

Figure 6: A comparison between performance of Model I, Model II (α = 0.1 and α = 0.5)
and that of benchmark, both provided as visualization and as detailed summary table
with means, medians and standard deviations (std) of the terminal P&L. In the boxplot,
we have united the training and testing sets, and have removed the outliers that are
outside 1.5 times the interquartile range above the third and below the first quantile.
We observe that the terminal P&Ls of Model II are both higher and more volatile than
that of Model I or the benchmark (LSMC). Moreover, they depends on the choice of
α: the higher the α, the higher the terminal P&L and its std. For Model I, α = 0, and
thus both P&L and std are the lowest. Note that the benchmark (LSMC) is only the
benchmark case for the Model I and is not fully appropriate as benchmark for Model II,
as it does not allow for forward trading. When comparing performance on the training
sets with that on the test sets for Model II α = 0.5, we see that the test set yields
better results. This suggest that there is still room for improvement, e.g. on the setup
of neural networks or setup of training, or simply continuing training (more iterations).
However, for comparison with Model I, with the exception of risk aversion rates for the
loss function (r = 3 for Model I and r = 10 for Model II), we use the same setup for
spot strategy and training conditions for all models.

Another possible direction of future work is to include K > 1 forward curves
for the gas storage problem to maximize the P&L and thus, the utility of the
storage manager.



Chapter 6

Long-term model risk in
energy market

6.1 Introduction

In a financial institution, the valuation and risk management of financial products
rely heavily on the use of models. With the technological advances and needs
of higher standards, the amount of models used as well as its complexity has
grown significantly. With that, the need of model risk quantification becomes
increasingly important. The famous Statistician George E.P. Box once stated:
“All models are wrong, but some are useful.” Indeed all models use some
simplifying assumptions as a trade-off to tractability, and capture some important
but not all features that can be observed in reality. There is an increasing amount
of literature dedicated to this topic, each of which captures some model related
risk aspects. Yet, it is important to note that there is no unanimous definition
for model risk, as it has a different meaning for different group of professions
and people. Instead, model risk is a collection of important aspects in relation
to the creation and the use of a model.

This chapter provides a review of model risk, with a strong focus on applicable
methods related to derivative pricing and hedging, in particular for long-term
energy markets. It is structured as follows: in the remaining part of introduction,
we briefly discuss different definitions and aspects of model risk set by the
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financial regulators, famous practitioners and some academics. In Section 2,
we conduct a survey on model risk literature, with a strong focus on those
approaches that have great potential to be applied to adhoc problems in the
financial industry. Here we discuss three categories of model risk quantification
approaches: the pairwise model comparison, the Bayesian model averaging and
the worst case approaches. In Section 3, we then present two applications to
quantify model risk in modeling and hedging long-term energy options. In the
first application we quantify the model risk in hedging a long-term energy call
using a misspecified model. In the second application we quantify the model risk
in the modeling of a long-term energy call using an entropy approach, which is
proposed by Glasserman and Xu [2014].

For this chapter, we denote by X the stochastic elements of a model (e.g. a
random variable, a random vector, or a random process), denote by Ft (instead
of F (Xt, T, T1, T2)) the time-t forward, and denote by V (X) a payoff (e.g. of a
call option on Ft, and thus on X).

This chapter is based on joint work with Martin Larsson. The author would
like to thank Vlatka Komaric and Markus Regez for fruitful discussions and for
providing energy option data.

6.1.1 Regulatory definitions on model risk

In US, the office of the Comptroller of the Currency (OCC) of the federal reserve
published in 2011 the Supervisory Guidance on Model Risk Management. This
document provides the first regulatory definition of model risk, which has since
then become the industry standard worldwide. In this document,
“... the use of models invariably presents model risk, which is the potential for
adverse consequences from decisions based on incorrect or misused model outputs
and reports ...”

According to the document, the wrong model output and the wrong
interpretation of model output are identified as the main sources of model risk.
This definition however indirectly includes all the errors in the life circle of a
model implementation starting from wrong design. The federal reserve further
set detailed policies of model validation process which banks and other financial
institutions should comply with.

In 2013, the European Banking Authority (EBA) also published their
definition of model risk, which is similar to the one published by the OCC,
but explicitly stresses particular phases in the life cycle of a model. According
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to the article 3.1.11 in the Capital Requirement Directive (CRD IV), model risk
is
“... the potential loss an institution may incur as a consequence of decisions that
could be principally based on the output of internal models, as a result of errors
in the development, implementation or use of such models ...”

6.1.2 Types of model risk

Long before the regulators give their definition and set industry standards, there
are already researchers looking at various aspects of model risk.

In a well-known Goldman Sachs research paper published in 1996 and also in
Derman [1996], Derman pioneered in identifying and elaborating all aspects of
model risk considerations that were crucial to him. While a unanimous definition
for model risk was not possible among practitioners, this paper gives a good
summary of all aspects considered for model risk in the industry. According to
Derman the main aspects of model risk are: the inapplicability of modeling, the
use of an incorrect model, the incorrect use of a correct model, the inappropriate
use of a correct model, data issue, calibration and re-calibration errors.

In our view, it is questionable whether some of the aspects (incorrect use of
a correct model, inappropriate use of a correct model, data issue and calibration
errors) should be seen as model risk or rather operational risk. We think that
the aspect of incorrect model is crucial. That refers to either incorrect model-
based assumptions, e.g. on the dynamics (normal vs. log-normal vs. fat-tailed
distribution, or one vs. multi-factors), or the misspecification of variables (models)
and parameters.

6.1.3 Model risk vs. model uncertainty

In some but not all academic literature, people differentiate between the so
called model risk and model uncertainty, expressing the modeler’s aversion to
risk and his aversion to ambiguity respectively. In the former one, the modeler
does not have the knowledge of the exact model but knows the probabilities of
each models be the true model; in the latter one, the likelihood of each of the
model to be the true model is unknown. They are in analogy to the classical
Knightian uncertainty (Knight [1921]), Ellberg’s paradox (Ellsberg [1961]); see
e.g. Uppal and Wang [2003], Gilboa and Schmeidler [1989], Bannör and Scherer
[2014]. To demonstrate the idea, consider the situation of having a whole set of
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models S ∶= {Si; i ∈ I} to choose from for modeling; see Figure 1. We call the
risk of choosing a wrong model model uncertainty, if there is either no knowledge
on the probability measure or many specifications of probabilities are possible.
Otherwise, if there is a “known” or “canonical” or “natural” probability measure
P on the set of models S, the risk is referred to as the model risk. Following this
definition, model risk can be seen as a special case of model uncertainty. However,
we want to stress that the definition stated in this section is one way of model risk
consideration. In much of the literature, the two terms are used interchangeable.
People argue that it is possible to pre-define a unique distribution on the set S,
thus the model uncertainty can then be treated the same as model risk.

S1 p1
S2 p2

S3 p3

...

S P

Figure 1: The risk of choose a wrong model out of set S is called model risk or model
uncertainty, depending on whether or not a unique distribution P exists.

6.2 Model risk quantification - a review

In much of the literature two aspects of model risk have been addressed frequently:
the risk of model misspecification and the parameter uncertainty. Given a rich
pool of models S, the risk of have chosen the incorrect model Si ∈ S is referred
to as model misspecification; Similarly, given a model with a rich pool of
parametrizations, SΘ ∶= {S(θ); θ ∈ Θ ⊂ Rd} , the risk of having chosen the
incorrect θ (and hence use the incorrect model S(θ)), is referred to as parameter
uncertainty. These two aspects can be seen as equivalent, if the model SΘ is
flexible and general enough, so that every parametrization θi ∈ Θ corresponds
to a unique distribution, thus represents a model Si ∶= S(θi).

The general approach of model risk quantification or in identifying the best
model is to first choose a set of models S that we consider. Then we define a
mapping f , to quantify risk of each model f(S) with S ∈ S or the risk of all
models in S. Based on the valuation, one can choose the best model or estimate
the averaged or the worst case of risk.
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The mapping f is referred to as the risk measure, which is defined as follows:

Definition 6.2.1 (Risk measure, cf. Bannör and Scherer [2014], Chap. 3.1).
Let X be a collection of random variables on probability space (Ω,Ft,P), i.e.
risk-exposed quantities. Let π ∶H → R be a linear mapping on a subcollection of
random variables H ⊂ X and let V ∶ X → R be a function1.

V is called a risk measure w.r.t. π, if V fulfills the following axioms:

• V is monotone, i.e. for X,Y ∈ X and X ≥ Y , V (X) ≥ V (Y );

• V is π-translation invariant, i.e. for X ∈ X and Y ∈ H the equality
V (X + Y ) = V (X) + π(Y ) holds.

Furthermore, V may have these additional properties:

• V is called convex, if for X,Y ∈ X and λ ∈ [0,1], V (λX + (1 − λ)Y ) ≤
λV (X) + (1 − λ)V (Y ) holds;

• V is called coherent, if it is convex and positively homogeneous, i.e. for
X ∈ X , and c > 0, V (cX) = cV (X) holds.

In the following, we briefly sketch three different approaches.

6.2.1 Approach I: pair-wise model comparison,
parameter perturbation

Suppose a trader wants to hedge a derivative, say an european-style call. The
call was priced using the correct model, say model A, which is not known to
the trader. He then assumed a distribution which is unfortunately incorrect,
Subsequently, he ended up choosing a different model than model A, say model
B. How bad is then his hedge due to the model misspecification? This question
motivates the following type of pair-wise model comparison.

Let S = {A,B} be the set of models we consider, with model A = S(θ1) and
model B = S(θ2). We assume that:

• model A is the true model;

• model B is a different model that will be tested.

1H can be thought of as the set of risk-less positions or bank accounts and the
mapping π as the identity mapping.
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Note that here we keep the assumptions reasonably simple and generic and thus
omit any assumption on the relationship between model A and model B. In
some papers, the model A is assumed to be quite different and significantly more
complex than model B. In others, they are two models from a model class. As
an example, model B is a completely different parametrization or a perturbation
of model A in one parameter. In the latter case, we have that ∃j: θ(j)1 ≠ θ(j)2 and
θ
(k)
1 = θ(k)2 for k ≠ j and k = 1, ..., d.

The procedure of investigating the model misspecification can be sketched
as:

• Determine the parameters of model A by fitting it to the market data

• Calibrate model B to the data generated by model A

• Compare the pricing or hedging performance of model B and model A

This approach has been explored in various papers, mostly in simulation based
analysis; see (among others) e.g. Hull and Suo [2002], Longstaff et al. [2001],
Melino and Turnbull [1995], Green and Figlewski [1999], Driessen et al. [2003],
Hilscher et al. [2020], Schröter et al. [2012]. To the best of the author’s knowledge,
Karoui et al. [1998] is the only paper that derived an analytic solution of pricing
error for an European-style call option due to perturbation of implied volatility
in the classical Black-Scholes setting.

The main shortage of this approach is that the knowledge gained from the
pair-wise model comparison is specific to the choice of models considered and
does not allow broad knowledge transfer. Nevertheless, it is a good approach in
selecting between alternative models, and in model risk quantification regarding
hedging using a misspecified model.

We will later use this approach to investigate model risk regarding hedging,
when model A is used for pricing and model B is used for hedging a derivative;
see Chapter 6.3.1 for more details.

6.2.2 Approach II: Bayesian model averaging

As the name already suggests, the Bayesian approach relies heavily on the use
of conditional probabilities. The underlying assumption is the narrow definition
of model risk provided in Section 6.1.3: given a set of models S and a set of
observations x, there exists a probability distribution P on S, which reflects
the subjective beliefs about the likelihood of each of the models to be the true
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model2. Moreover, one assumes that the relationship between the distribution
P and data y is not static. Therefore a dynamic Bayesian process is needed in
which the knowledge of the model distribution P is constantly enhanced and
updated.

Let S = {Si(θ); i ∈ {1, ...,N}, θi ∈ Θi ⊂ Rd} be the set of models, and let
Θ ∶= Θ1 ×Θ2 × ...×ΘN be the set of parametrizations for S, where each Θi is the
(finite) set of all possible parametrizations for model Si. Hence, there are two
variables we optimize and update for in the Bayesian approach: the likelihood
of each model Si to be the true model, and the probability of using a specific θi
from Θi given the model Si. We start with prior model weights P(Si) and prior
(density) of the model parameter given model Si, i.e. p(θi∣Si). Given a data set
y, the posterior probability for model Si is

P(Si∣ y) = p(y∣Si)P(Si)
∑j∈I p(y∣Sj)P(Sj)

,

where p(y∣Sj) =
´

Θj
P(y∣θj , Sj)p(θj ∣Sj)dθj expresses the likelihood of having

data y given model Si. Figure 2 briefly sketches the updating procedure with
an example of using second moment computation to measure dispersion across
models of S. For general reference on Bayesian statistics, see e.g. Bernardo
and Smith [2009], for model-averaging references, see e.g. Hoeting et al. [1999],
Raftery et al. [1997], Kass and Raftery [1995], for model risk specific reference
see e.g. Bannör and Scherer [2014], Cont [2006].

This technique is widely used as a model selection method on (mostly) simple
model structures, i.e. linear models or simple regression-type of models. The
updating procedure improves predictive ability of some model-dependent target
quantity V (X), and the result is very stable. It is not used in quantifying model
risk, nonetheless it is widely considered a method of model risk minimization,
selection of best model, and improvement of model predictability. The main
critics of this technique are twofold: on the one hand this technique required
prior information, which would need certain probabilistic sophistication on the
modeler side; on the other hand, if we apply it on Black-Scholes type of stochastic
models, the computational effort is significant and cannot be directly applied
to a big sample, as the Baysian estimator does not have a closed-form solution;

2This idea splits statisticians into two camps: The Bayesian statistician and the
frequentist statistician who believes in a true but unknown model that exists and that
one cannot assign probabilities to different “candidate models”. This discussion is similar
to the one we had previously in Section 6.1.3.
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prior density p(θi ∣S
i)

prior model weight P(Si)

observation x

Updating procedure

Compute p(θi ∣S
i,x)

and P(Si ∣x)

Ê[X∣y] = ∑∣I∣
i=1 E[X∣x,Si]

⋅P(Si ∣x)

D̂[V (X)∣x] = ∑∣I∣
i=1{E[V (X)∣x,Si]

−Ê[V (X)∣x]}2 ⋅ P(Si ∣x)

posterior density p∗(θi ∣S
i,x)

posterior model probability P∗(Si ∣x)

Figure 2: The Bayesian updating process. Suppose we have forward data x and want
to compute the a vanilla K-striking call with the payoff V (X) ∶= (x −K)+. In each
round of the updating process, it evaluates the call X in every model, and computes
the weighted average value over all models (Ê[V (X)∣y]) and the dispersion D̂[V (X)∣y],
where the weights were the posterior probability from the last round.

see e.g. Jacquier and Jarrow [2000] where specific inference on information of
parameters and the Markov-Chain Monte-Carlo method are needed.

6.2.3 Approach III: worst case approach

This approach is the most popular one in our community. It is motivated by
the narrow definition of model uncertainty of Section 6.1.3, namely given a set
of models S, the likelihood of each model is not known or cannot be identified.
And thus, the best one can do is to compute the all valuation of V (X) and take
the worst case valuation as a measure for model risk.

The most influential early work goes back to Gilboa and Schmeidler [1989],
where they provide a firm axiomatic system, in which a risk-averse agent facing
uncertainty/ambiguity can choose among a set A of feasible alternatives by the
means of a max-min expected utility theory, i.e. maxX∈AminSi∈S ES

i

[U(V (X))].
Here the risk aversion of the modeling agent is expressed through the utility
function U , and the aversion to ambiguity is captured by taking the minimum
of all models in S. In another notable work, Cont [2006] sets out a quantitative
framework with a particular focus on derivative pricing. Note that for option
pricing only risk-neutral measures are used. To reflect that, Cont assumes that a
set of risk-neutral probability measures S is available for valuation of some claim



6.2 Model risk quantification - a review 109

(option) X, S = {Q ∶ Q is a risk-neutral measure}, and no further information is
available (in the sense of model uncertainty). Here, each risk-neutral measure
Q defines a model SQ, therefore the set S is a set of models. Then, with no
information about likelihood at hand, the worst-case bounds (best and worst
prices) are:

l(X) = inf
Q∈S

EQ[V (X)], u(X) = sup
Q∈S

EQ[V (X)],

which can be interpreted as the bid-ask prices. Note that u fulfills the axiom of
a coherent risk measure3 (according to Definition 6.2.1); see e.g. Föllmer and
Schied [2011]. Moreover, the model risk can be quantified as

ξ(X) = u(X) − l(X) = sup
Q∈S

EQ[V (X)] − inf
Q∈S

EQ[V (X)],

which is the maximal impact that model risk can have on V (X). In case that
one might have additional information about the trustworthiness of some model
Q, Cont [2006] suggests to extend the existing bounds by adding a penalization
term α ∶ S → R+

0 . In essence, the bounds are:

l̃(X) = inf
Q∈S

EQ[V (X)] − α(Q), ũ(X) = sup
Q∈S

EQ[V (X)] − α(Q),

where ũ is a convex risk measure; see e.g. Föllmer and Schied [2002] for details
on convex risk measure. The coherent risk measure of Cont [2006] has been
applied (among others) in a slight modification to quantify model risk for gas
storage valuation problems in Henaff et al. [2013]. They examined historically
estimated parameter risk associated with the storage valuation. Instead of a
set of benchmark instruments as in Cont [2006], Henaff et al. [2013] start
with two proposed spot price models for gas with spikes, calibrate them to
the historical prices using a maximum likelihood method, and then perturb
the optimal parameters with certain constraints to obtain the set of models.
The model risk (parameter risk) is then measured as the difference between
the highest value and the lowest value of V (X) among the perturbed models,
normalized by the value of V (X) using the base model.

Another different and very notable method for studying model risk
quantification was the concept of risk-captured prices; see e.g. Bannör and Scherer
[2013, 2014], Bannör et al. [2016]. Let SΘ be a parametrized family of models ,

3Example of such measures are the average value at risk, or simply value at risk
assuming a normal distribution.
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where the parameter space Θ is equipped with a distribution P expressing the
likelihood of validity of each model Sθ ∈ SΘ. Let ξ be a convex risk measure,
then the risk-captured prices of claim X is defined as

Γ(X) ∶= ξ(θ ↦ Eθ[V (X)]), Γ̂(X) ∶= −Γ(−X).

Γ(X) can be interpreted as the ask price and Γ̂(X) as the bid price. This notion
provides a nice framework for model risk quantification. In particular, Henaff
et al. [2013] showed (see Proposition 4.2) that if ξ is chosen as the average value
at risk (AVaR), then the AVaR induced risk-captured price is continuous w.r.t.
the topology of weak convergence on the parameter distribution when the pricing
function θ ↦ Eθ[X] is continuous and bounded. This provide justification for
the use of the asymptotic P̂ instead of the P in case P̂ is more tractable and
convenient to use, and makes this framework very application friendly. As a
consequence, this method has been applied (among others) for valuation of a
gas-fired power plant; Bannör et al. [2016] proposed a multi-factor structural
model for gas-fired power plant, and examined the impact each model parameter
has and expressed the model risk in terms of relative width of bid-ask-spreads4.

Last but not least, a very elegant robust approach of model risk quantification
using relative entropy was proposed by Glasserman and Xu [2014], which requires
relatively small computational efforts beyond the modeling of a baseline model.
The procedure is outlined in the following:

B∗ (f)
η

S1 (f̃1)

S2 (f̃2)

Sη
1. Fix a “nominal model” or “base” model, denoted B∗

2. Consider a set of models Sη with a given “distance”
η to the base model B∗

3. “Model risk” is given by the worst case (out of all
models within a given distance) for a given payoff

Moreover, they suggest to use relative entropy to measure the “distance” between
distributions (and thus between models): the relative entropy (in the Bayesian
sense) measures information gained through additional data, and thus it is
“a measure of the additional information required to make a perturbed model
preferable to a baseline model”. Following Glasserman and Xu [2014], let f be
the density of the nominal model for modeling a contingent claim V (X) and f̃

4In essence, they computed (∆ =
pricebid − priceask

pricemid
). They concluded that spike

risk is the most important parametric risk within their model.
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the density of the alternative model. Further, assume the likelihood ratio m = f̃
f

is well-defined. Then the relative entropy5 (or Kullback-Leibler Divergence) is
given by

E[m lnm] ∶=
ˆ
f̃(x)
f(x) ln

f̃(x)
f(x)f(x)dx.

m is also known as the Radon-Nikodym-density, which can be interpreted as
a measure change from nominal model B∗ (with density f) to an alternative
model, e.g. S1 (with f̃1).

Glasserman & Xu consider alternative models described by a set Sη of
likelihood ratios m for which E[m lnm] ≤ η. The trick is that for an alternative
model with density f̃ , the valuation of V (X) w.r.t. f̃ , Ef̃ [V (X)], can be
transformed back to a valuation w.r.t. the base model:

Ef̃ [V (X)] =
ˆ
V (x)f̃(x)dx =

ˆ
V (x)

˜f(x)
f(x)f(x)dx = E[m(X)V (X)].

And hence, the model risk is bounded by

inf
m∈Sη

E[m(X)V (X)] and sup
m∈Sη

E[m(X)V (X)]

The upper bound supm∈Pη
E[m(X)V (X)] can be solved explicitly using

the Lagrangian multiplier6. The constraints of the upper bounds are
E[m(X) lnm(X)] ≤ η and E[m(X)] = 1. Thus, with θ > 0 and µ > 0, the
Lagrangian is given by:

sup
m

E[ m(X)V (X) − 1

θ
⋅ {m(X) lnm(X) − η} + µ ⋅m(X) ].

The first order condition yields V (x)− 1

θ
(lnm(x)+1)+µ = 0. Rearranging gives

then

m(x) = eθV (x) ⋅ eθµ−1.

Moreover, as m is a likelihood ratio (E[m(X)] = 1), we obtain

E[eθV (X)] = e1−θµ.

5This actually goes back to extensive prior literature on model "robustness" (robust
statistical estimation and robust optimal control), which is used in economics but
received little attention in finance.

6The lower bound can be solved similarly (with negative θ), and thus we omit that.
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Hence, for a fixed θ:

m∗(θ,X) = eθV (X)

E[eθV (X)]
And thus, the worst case (or upper bound) is given by:

E[m∗(θ,X)V (X)] = E[V (X) ⋅ eθV (X)]
E[eθV (X)] .(6.2.1)

We see that the worst case model risk is characterized by an exponential change
of measure defined through V and θ > 0. Note that here the entropy (or level of
uncertainty) η is now linked to θ in the following way: for a given η > 0, we can
find an optimal θ̂ with m̂(θ̂) such that

η = E[m̂(θ̂) ln m̂(θ̂)].

The advantage of Glasserman and Xu [2014] become very obvious now, namely
the computation of model risk, (6.2.1), is fully explicit; Moreover, it is essentially
the estimation of V (X) under the baseline model (with e.g. a Monte-Carlo
simulation), without the estimation of all alternative models within the level
of uncertainty η, and thus is computationally very efficient. Similar approaches
have been explored by e.g. Feng and Schlögl [2018], Feng et al. [2018]. We will
give an example on energy options using this method; see Chapter 6.3.2.

The worst-case approaches are in general very robust, and require less
sophisticated inputs compared to the model averaging approach. The main
concern here is that it gives a too conservative model risk estimate.

6.3 Application to energy markets

Hull and Suo [2002] states that in liquid markets the specification of a model
is not usually a significant issue in the pricing and hedging of “plain vanilla”
instruments. They argue that if a market has sufficient liquidity, a trader can
back out a whole implied volatility surface from all liquidity traded instruments
and update them frequently, and thus the model misspecification has much less
impact on the option pricing and on the hedging performance. While this is
certainly true in a liquid market like the Equity markets, these assumptions do
not apply in the illiquid mid- to long-term energy markets, where the trader
solely relies on a model he believes in. And thus, the risk of have chosen the wrong
model (that is an insufficient model which does not fully capture all necessary
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features) is a significant concern. In the following we shows two examples which
illustrate the approaches of model risk quantification in option pricing (Chapter
6.3.2) and hedging (Chapter 6.3.1).

6.3.1 Application I: model risk in hedging energy
option

Imagine we hold an illiquid energy call option with payoff V (X) and want to
hedge it using a model. Here the real energy dynamics is very complex and
can only be described by a sophisticated and unknown model, say model A.
Moreover, we don’t have the knowledge of the model that describes the reality
or don’t have the sophistication to work with the reality, and thus, we choose to
use a simple, tractable model for hedging, say model B. How big is the error of
model risk (model misspecification), if we price and hedge w.r.t. model B? It is
essential to notice that there are actually two types of errors when comparing
the model-based hedge to the real option price:

• model-based tracking error of the hedge: this shows how well the model-
based hedge tracks the model based price; let’s denote it ε̃t.

• model misspecification error: this shows how good the model based
price tracks the real price; let’s denote it γ̃t.

To be more precise, let εt denote the discrepancy between the value of the hedge
strategy HB(X) (using model B) and real call value at time t (with model A).
That is:

εt ∶=HB(Xt) − EA[V (Xt)].(6.3.1)

Then εt can be written as εt = ε̃t + γ̃t, with

ε̃t =HB(Xt) − EB[V (Xt)], γ̃t = EB[V (Xt)] − EA[V (Xt)]

For a simple example, we assume the reality is described by the Heston model,
i.e. model A =Heston model, and we misspecify it as the Black-Scholes model,
i.e. model B = BSM . That is, BSM is used to calibrate option price and to
conduct delta hedging7; see Apendix 6.A for more details on the models. For the

7In order to make Heston model and BSM comparable, we choose σ̃ =
√
θ, where θ

expresses the long-term variance of the stochastic variance process vt.
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computation of ε̃t in the BSM, Karoui et al. [1998] gives a simple semi-analytical
formula:

(6.3.2)
ε̃t =

1

2
ert
ˆ t

0

([σ̃2 − v(u)] ⋅ F 2
u ⋅ Γ(u,Fu))du

≈ 1

2
ert

N−1

∑
i=1

([σ̃2 − vi∆t] ⋅ F 2
i∆t ⋅ Γi∆t ⋅∆t),

where Γ(t, Ft) is the Black-Scholes gamma with Γ(t, Ft) =
N ′(d1)

σ̃Ft
√
T − t

and ∆t =

T /N . With that, it is easy to quantify the model risk as the residual error, namely
γ̃t = εt − ε̃t.

Table 1 gives a summary statistics of all three errors εT , ε̃T and γ̃T , at
maturity T of the simulation; we find that the effect of model risk γ̃t outweighs
the model-based tracking error of the hedge ε̃t. Here, the parameter set is chosen
arbitrarily. To see if this observation holds more generally, we conduct sensitivity
analysis w.r.t. each of the parameters (κ, θ, τ , σ) while having the remaining
parameters unchanged. Figure 6.B.1 in Apendix 6.B provides a visualization of
the result in QQ-plot, which confirms the observation from Table 1.

Min 1st Quantile Median Mean 3rd Quantile Max
εT −0.03512 −0.004373 −0.000011 0.0001766 0.004561 0.03743
ε̃T −0.008187 −0.000936 −0.000137 −0.000298 0.000423 0.004253
γ̃T −0.03743 −0.004237 0.000296 0.0004746 0.004962 0.03833

Table 1: Summary statistics of εT , ε̃T and γ̃T . The procedure is as follows: on a
discretized time grid with N time points, we simulate M forward paths according to
the Heston model using an Euler-scheme; At each of I points in time (every N/I-th
time point) and for each forward path, we compute the Black-Scholes delta hedge, the
accumulated value process of the hedge HB(Xt); the total error εt can be computed
via (6.3.1), the tracking error of the hedge ε̃t can be computed via (6.3.2); The model
error is then simply the residual. In the simulation, we set M = 1000, N = 10,000,
I = 1000. Other parameters used for the samples are: F0/K = 1, σ̃ = 0.8, r = 0, κ = 0.5,
θ = σ̃2, ρ = 0.5, σ = 0.5, τ = 1.
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6.3.2 Application II: model risk in pricing energy
option

In long-term energy markets, the illiquidity is a big issue. In terms of the
valuations of forwards and options, this means that they highly depend on the
(subjective) choice of model one makes, and thus is vulnerable towards model
risk. Therefore, it makes sense to look at a large set of models (with a certain
specification to precisely express how large) and without pre-specifying any
likelihood of the validity of each of the models. In this context, the Glasserman
and Xu [2014] approach comes in handy, as we want to consider a set of models
as large as possible, yet we wish to evaluate them so that the computational
efforts used are minimal. In the following we give an example to illustrate the
application of Glasserman and Xu [2014] to a long-term energy option.

Our data set8 contains the volatility surface (market quotes) of the Calendar
year 2023 German power options (priced as of 23.August 2017). Based on
the data, we calibrate the Bates model, the Variance Gamma Scaled-Self
Decomposable model (VGSSD) and the simple Black-Scholes model (BSM) to
the option volatility surface, where we assume the Bates model to be our baseline
model; see Appendix 6.C for more details on the models. A visual comparison
of these three calibrated models in terms of market implied densities is provided
in Figure 3: the Bates model seems to have the best balance between capturing
the “unsmoothness” and the the fat-tail behavior (log-normal distribution) of
the market data. Moreover, we observe that the distance between VGSSD and
the baseline model is larger than the distance between BSM and the baseline
model. We then determine the entropy distance η’s between distributions of
the alternative models and the baseline model. For each uncertainty level η, we
compute the worst-case option price using the robust Monte-Carlo method
proposed by Glasserman & Xu; see Apendix 6.D for more details of the
robust Monte-Carlo. The results are listed in the Table 2. We see that the
deviation of VGSSD from the baseline model is bigger (as ηVGSSD > ηBS
and also θVGSSD > θBS). Therefore, the amount of models considered within
the distance ηVGSSD is larger than that of ηBS, and thus the upper bound
supE[m(θVGSSD)V (X)] is larger. The relationship between η, E[V (X)] and
supm E[m(X)V (X)] is shown in Figure 4: the bigger η, the higher the upper
bound for V (X). This approach can easiliy put “a number” to the model risk.
Yet, it is still an open research question about how to choose the entropy level

8The data set was provided by Axpo Solutions, for which we are very grateful.
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(uncertainty level) for a sufficient model risk consideration. One possible way of
answering this question is to draw link from entropy budget to some familiar
conditions: e.g. one calibrate the baseline model to the perturbed power option
price levels (say 10% increase or decrease of the prices), calculate the entropy
distance of the purturbed distribution η and then compute the worst-case power
option prices of that η.
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Figure 3: This figure shows a model comparison in terms of the market implied
densities of the different models w.r.t. the strikes for German Cal23 power calls. This
computation relies on the formula of Breeden and Litzenberger. We briefly illustrate the
procedure: given a fixed maturity T (here: from 23/08/2017 to 01/01/2023, expressed in
years), one extracts the call strike K and its corresponding market price C(K,T ),
and calibrates the model to the data using some minimization technique such as
least-squares. Once calibrated, one computes the model-based call prices for each
model and creates the call price curve. Note that it is common practice to imply
Black-Scholes volatility for each strike considered from each calibrated model and
create volatility curves. In case of any missing quotes or gaps to fill, one can use
interpolation techniques. Next, the market implied density (of each model) f(K) can be

computed by the Breeden and Litzenberger formula, namely f(K) = erT
∂2C(K,T )

∂K2
≈

erT
C(K +∆K , T ) − 2C(K,T ) +C(K −∆K , T )

(∆K)2
, where ∆K denotes the strike grid size.

We see that VGSSD is best in capturing the “unsmoothness” of the market data
but is not capturing the slow-decaying property, while BSM is best in capturing log-
normal but is completely smooth. Bates provides a good balance between capturing the
“unsmoothness” and the slow-decaying distribution property. Moreover, BSM is closer
to Bates in distribution than VGSSD model, suggesting the information gap in terms
of relative entropy between BSM and Bates are smaller than that between VGSSD and
Bates.
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Bates Model VGSSD BSM
(baseline)

η 0 1.82 ⋅ 10−6 4.59 ⋅ 10−7

θη 0 1.92 ⋅ 10−4 9.41 ⋅ 10−5

supE[m(θ)V (X)] 4.934 4.953 4.943

model risk 0 0.019 0.009

Table 2: This table gives the results of the example using the Glasserman and Xu
[2014] approach. From the calibrated models, one first computes the likelihood ratios
m between the alternative models and the baseline model (Bates). Based on that, one
can then compute the uncertainty level η, the penalization factor θ as well as the upper
bound of the at the money option price V (X) given the η, i.e. supE[m(θη)V (X)].
The row supE[m(θη)V (X)] provides the highest valuation of V (X) given the maximal
entropy distance in row η (or the corresponding value in row θ). As an example, if we
consider all models with a maximal distance of ηVGSSD = 1.82 ⋅ 10−6 to the baseline
model, then the highest price for V (X) is 4.953. From the table we see that the VGSSD
is further away from the baseline model, as ηVGSSD is bigger (also seen in Figure 3).
And therefore, the upper bound of V (X) given the maximal distance ηVGSSD is higher.
In other words, the bigger deviation on information (in η) we allow for our model
selection, the more models we are considering in valuation of V (X), and thus the larger
the upper bound of valuation of V (X).

B∗

Sη3

Sη2

Sη1

Figure 4: The figures show the relationship between the entropy level η and the worst-
case model risk number supE[m(θη)V (X)]: the higher the η, the higher the upper
bound of V (X). Left plot gives a visualization of this model risk consideration, where
the amount of models considered is restricted to each ball: the bigger the radius η,
the more models are considered, thus the bigger the upper bound. Right plot gives
the upper bound for the prices of the at the money Cal23 German power option w.r.t.
different η.
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6.A Models for Example I

In the following, we briefly review the Heston model and the BSM. In the BSM,
proposed in [Black, 1976], Ft is a geometric Brownian motion, given by

dFt
Ft

= rdt + σ̃dWt

The well known Black-Scholes formula states that the time-t call price with
payoff V (X) and maturity T , is given by

E[V (X)] = N(d1)Ft −N(d2)K ⋅ e−r(T−t),

where N denotes the cumulative distribution function of a standard normal
distribution and

d1 =
1

σ̃
√
T − t

(ln(St
K

+ (r + σ̃
2

2
)(T − t)) and d2 = d1 − σ̃

√
T − t,

The biggest weakness of this model is that the implied volatility is constant,
irrespective of quotation date, delivery date, expiry date and strike9.

The Heston model10 was proposed in Heston [1993] which extends the BSM
by a stochastic volatility factor

√
vt. The time-t forward Ft is given by

dFt
Ft

= rdt +√
vtdW

1
t

dvt = κ(θ − vt)dt + σ
√
vtdW

2
t ,

where d⟨W 1,W 2⟩t = ρdt. Note that the stochastic variance modeled vt is non-
negative, and for Monte-Carlo simulation where this cannot be guaranteed, one
might need additional conditions (such as vt =max(vt,0) or vt = ∣vt∣).

9In reality the implied volatility is different for options with different characteristics,
and also changes from one day to the next.

10In terms of electricity option modeling, this model can capture the long-term smile
usually quite well but not the short-term smile.
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6.B Sensitivity analysis of Example I

Figure 6.B.1: Sensitivity analysis of parameters κ (top left), τ (top right), θ (bottom
left), σ of Heston vT (bottom right). Each one is a QQ-plot, plotting the absolute
tracking error ∣ε̃T ∣ against absolute model risk ∣γ̃T ∣, when one parameter is varied while
the remaining parameters of Table 1 stays unchanged. The red line provides the diagonal.
In all plots we see that the model risk outweighs the tracking error, which confirms
what was seen in Table 1.

6.C Models for Example II

In the following, we briefly review the Bates and the VGSSD model.

The Bates model was proposed in Bates [1996], which combines the stochastic
volatility of Heston [1993] and pure jump process of Merton [1976]. The time-t
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forward Ft is given by
dFt
Ft

= −(eµJ−
1
2
σJ )λdt +√

vtdW
1
t + dZt

dvt = κ(θ − vt)dt + σ
√
vtdW

2
t

Zt =
Nt

∑
i=1

Di, with Di
iid∼ N (µJ , σJ),

where d⟨W 1,W 2⟩t = ρdt. This model can fit short-term smiles (due to Merton)
and long-term smiles (due to Heston) well.

The VGSSD process is a time-changed variance gamma process, and can
be constructed from the variance gamma process: define the scaled stochastic
process F (t) such that it is in law equal tγFV G1 , where FV G1 is a variance
gamma random variable at unit time. The characteristic function is given by

φFt(u) = φFV G1(ut
γ) = (1 − iutγvθ + 1

2
u2t2γvσ2)−

1
v .

Compared to variance gamma processes11, the VGSSD has constant skewness
and kurtosis of returns. This allows it to fit the short-term smile as well as the
long-term smile well with only four parameters. For details on VGSSD process
see e.g. Carr et al. [2002], O’Sullivan et al. [2010] and for variance gamma process
see e.g. Madan et al. [1998].

6.D Robust Monte Carlo of Glasserman and
Xu [2014]

We start by generating N independent realizations of X: (X1,X2, ...,XN). The
standard Monte Carlo estimator of E[V (X)] is given by

E[V (X)] ≈ 1

N

N

∑
i=1

V (Xi).

For any fixed and given θ, (η(θ),E[m(θ)V (X)]) is a straightforward computation
according to (6.2.1). The Monte-Carlo estimator E[m(θ)V (X)] is simply

E[m(θ)V (X)] = E[V (X) ⋅ eθV (X)]
E[eθV (X)] ≈ ∑

N
i=1 V (Xi) ⋅ eθV (Xi)

∑Ni=1 e
θV (Xi)

.

11The variance gamma process has decreasing skewness and kurtosis over time, which
makes it look like a normal distribution over long-term. Thus, it cannot fit long-term
vol smiles well.
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However, since we only know the relative entropy η and not the corresponding
level θ, an estimator for the entropy at θ, η(θ), is needed. In essence, θ can be
implicitly computed from

η̂(θ) ≈ 1

N

N

∑
i=1

η̂i(θ) =
1

N

N

∑
i=1

m̂i(θ) ⋅ ln m̂i(θ),

where the likelihood ratio m̂i(θ) for each Xi, i = 1, ...,N is:

m̂i(θ) =
eθV (X)

E[eθV (X)] ≈
eθV (Xi)

1
N ∑

N
j=1[eθV (Xj)]

.

Therefore, the procedure is the following: given a relative entropy budget η∗,
one computes (η̂(θ),E[m(θ)V (X)]) for multiple θ; Then the upper (or lower)
bound of E[V (X)] is the highest (or lowest) estimate of E[m(θ∗)V (X)] for
η(θ∗) ≤ η∗.
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