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1 Introduction

In recent years we have seen growing evidence for the equivalence between string theory
on AdS3 × S3 × T4 with one unit of NS-NS flux (k = 1), and the symmetric orbifold
theory of T4 [1–3], see also [4]. In particular, it was shown in [2] that the spectra of
the two descriptions agree precisely, and the structure of correlation functions has also
been matched [3, 5].

The case with NS-NS flux k = 1 is best established, but there is also good evidence
that the long-string sector of the world-sheet theory with k > 1 is dual to the symmetric
orbifold of N = 4 Liouville theory times T4 [6]. Furthermore, this k > 1 generalisation also
seems to apply to the bosonic set-up for which there is a relation between string theory on
AdS3×X at the WZW point [7], and the symmetric orbifold of Liouville theory times X [6].
Some aspects of this bosonic correspondence were tested further in [8, 9]. In particular,
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it was shown in [8] that the null-states of the Liouville theory of the symmetric orbifold
theory correspond to BRST exact states from the dual world-sheet perspective, and the
general structure of twisted sector correlators (in particular, the differential equations that
characterise them) was studied in [9], see also [10–16] for earlier work on twisted sector
correlators in symmetric orbifold theories.

In this paper we subject the bosonic duality proposal to another consistency check. In
reproducing the spectrum of the dual CFT from the world-sheet the identification of the
scaling operator of the dual CFT, LCFT

0 with one of the sl(2,R) currents of the WZWmodel,
LCFT

0 = J3
0 , was used. This allowed one, for example, to calculate the full (single-particle)

partition function of the symmetric orbifold theory from the world-sheet perspective [1, 2].
However, we can also identify the symmetric orbifold stress-tensor with a specific world-
sheet vertex operator, see [8]. Then we can calculate the 3-point correlation functions of
this vertex operator with, say, the vertex operators that correspond to the w-cycle twisted
sector ground states of the dual CFT, from which we can also read off the conformal
dimension of the latter. At least on the face of it, this gives a different way of determining
these conformal dimensions, and it is the aim of this paper to confirm that this alternative
method leads to the same result. Among other things, our analysis also confirms that
the method of determining the correlators and the solution proposed in [3] is consistent
with this constraint.1 We also make a few technical advances in this paper. First of all,
we clarify precisely which stress-energy operator in the dual CFT our world-sheet vertex
operator corresponds to, see section 2.1 — this is slightly subtle since the world-sheet theory
only sees the single particle sector of the symmetric orbifold theory. Furthermore, in the
process of determining the correlation functions we had to generalise the methods of [3] to
allow also for descendant states, see section 3.2. While this is in principle straightforward,
the analysis is actually quite complicated (and the problem becomes over-constrained), and
it is very reassuring to see that this really works out as expected.

The paper is organised as follows. We introduce our notation and set the stage for our
calculation in section 2. Section 3 reviews the derivation of the sl(2,R) Ward identities
of [3], and shows how they can be generalised to descendant states, see section 3.2. This is
then applied to the correlators of interest in section 4. We conclude in section 5, and there
are three appendices where some of the more technical material is described.

2 The basic world-sheet set-up

In this paper we shall consider bosonic string theory on AdS3 × X, for which the AdS
factor can be described by an sl(2,R)k WZW model [7]. We shall work in the conventions
in which the sl(2,R)k generators satisfy

[J3
m, J

3
n] = −k2 mδm+n,0 , (2.1a)

[J3
m, J

±
n ] = ±J±m+n , (2.1b)

[J+
m, J

−
n ] = kmδm+n,0 − 2J3

m+n . (2.1c)
1Previous work on calculating these spectrally flowed sl(2,R) correlation functions includes in particu-

lar [17], see also [18–20].
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Since the central charge of the sl(2,R)k algebra is c = 3k
k−2 , the central charge of the internal

CFT has to be
cX = 26− 3k

k − 2 , (2.2)

so that the complete background is critical.
The states that reproduce the symmetric orbifold spectrum sit in the (spectrally flowed)

continuous representations of the sl(2,R)k algebra [1, 4], and we shall denote the corre-
sponding highest weight states by |j,m〉. Here j = 1

2 + is with s ∈ R denotes the spin,
while m takes values in m ∈ Z + λ, with λ being an independent parameter of j (or s).
The Casimir of the sl(2,R) representation depends on j via

C(j) = −j(j − 1) , (2.3)

and we shall work in the conventions in which the modes of sl(2,R)k act on these states as

J+
0 |j,m〉 = (m+ j) |j,m+ 1〉 , J+

n |j,m〉 = 0 , n > 0 , (2.4a)
J3

0 |j,m〉 = m |j,m〉 , J3
n |j,m〉 = 0 , n > 0 , (2.4b)

J−0 |j,m〉 = (m− j) |j,m− 1〉 , J−n |j,m〉 = 0 , n > 0 . (2.4c)

The dual CFT is not just the symmetric orbifold ofX, but also involves a Liouville factor [6].
The stress-energy tensor of Liouville is strictly speaking not part of the Liouville spectrum,
and this is reflected on the world-sheet in that it arises from a discrete representation with
j ∈ R and j > 1

2 [8], see eq. (2.9) below.
The above description refers to the representations before spectral flow. The spectrally

flowed representations are obtained from them by composing the action of the modes with
the spectral flow automorphism

σw(J±n ) = J±n∓w , σw(J3
n) = J3

n + k w

2 δn,0 . (2.5)

This is to say, on the states of the w-spectrally flowed representation [ψ](w), the modes of
the affine algebra act as

Ja
n [ψ](w) ≡ [σw(Ja

n)ψ](w) , (2.6)

where ψ is a state in the highest weight representation eq. (2.4), and w ∈ N.

2.1 The symmetric orbifold stress-energy tensor

We are interested in analysing correlation functions of the symmetric orbifold stress-energy
tensor on the world-sheet. In order to be able to do so, we first need to identify the world-
sheet state that corresponds to the spacetime stress-energy tensor. Actually, there are
two natural stress-energy tensors that appear, namely the full stress-energy tensor of the
symmetric orbifold theory, and the one that is just associated with the Liouville factor.
Using the DDF operators of [6, 21], the relevant world-sheet states which we shall denote
by T = L−2|0〉 and TL = LL

−2|0〉, respectively, were worked out explicitly in [8], and they
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take the form

T =
[
c−J

−
−2 |j,m+ 1〉+ c3J

3
−2 |j,m〉+ c+J

+
−2 |j,m− 1〉

+ c−−J
−
−1J

−
−1 |j,m+ 2〉+ c−3J

−
−1J

3
−1 |j,m+ 1〉

+ c−+J
−
−1J

+
−1 |j,m〉+ c33J

3
−1J

3
−1 |j,m〉

+ c3+J
3
−1J

+
−1 |j,m− 1〉+ c++J

+
−1J

+
−1 |j,m− 2〉

](1)
, (2.7)

TL =
[
cL
−J
−
−2 |j,m+ 1〉+ cL

3J
3
−2 |j,m〉+ cL

+J
+
−2 |j,m− 1〉

+ cL
−−J

−
−1J

−
−1 |j,m+ 2〉+ cL

−3J
−
−1J

3
−1 |j,m+ 1〉

+ cL
−+J

−
−1J

+
−1 |j,m〉+ cL

33J
3
−1J

3
−1 |j,m〉

+ cL
3+J

3
−1J

+
−1 |j,m− 1〉+ cL

++J
+
−1J

+
−1 |j,m− 2〉 − LX

−2 |j,m〉
](1)

, (2.8)

where
m = 2− k

2 , j = k − 2
2 or j = 1− k − 2

2 , (2.9)

and the coefficients c−, c+, . . . and cL
−, c

L
+, . . . that appear in eqs. (2.7) and (2.8), respec-

tively, are functions of j, k andm, see appendix A for more details. We should mention that
for k 6= 3 — this corresponds to the situation where the dual Liouville theory has a non-
trivial background charge, see eq. (2.42) of [6] — the two choices j = k−2

2 vs. j = 1− k−2
2

are not exactly equivalent: while in general the sl(2,R) representation defined by eq. (2.4)
differs from the one where j is replaced by 1 − j only by an m-dependent rescaling of
the basis vectors (and hence defines an equivalent representation), these rescaling factors
become zero (or infinity) if m ± j = 0 or m ± (1 − j) = 0, and this actually happens
in the above case.2 For most of the calculations we will perform below, the results will
actually be independent of which choice we make, but for the case of the 2-point functions
in sections 4.3.3 and 4.3.4 the two choices lead to slightly different normalisation factors.

The above stress-energy tensors have central charges

cseed = 6k , cL
seed = cseed − cX = 1 + 6(k − 3)2

k − 2 , (2.10)

where in either case the central charge refers to that of a single copy (i.e. the so-called seed
theory) of the symmetric orbifold. These central charges appear in the 2-point function of
the corresponding stress-energy tensors, i.e. the dual CFT correlators have the form

〈T (x1)T (x2)〉 = cseed
2(x1 − x2)4 ,

〈
TL(x1)TL(x2)

〉
= cL

seed
2(x1 − x2)4 . (2.11)

The attentive reader may be surprised that the central charge of the seed theory (rather
than that of the full symmetric orbifold theory) appears here. The reason for this is that
the world-sheet operator only sees the single-particle sector of the dual CFT, see also the

2For example, for j = k−2
2 , m−1+j = 0, and thus this problem arises for the terms of the form |j,m−1〉

in eq. (2.7) and (2.8).
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discussion in section 2.5.1 of [6]. More specifically, the w-twisted sector of the symmetric
orbifold theory contains (for w ≥ 2) two separate ∆h = 2 descendants, namely

w∑
i=1

Li
−2σw , and

N∑
i=w+1

Li
−2σw , (2.12)

where we have assumed that the corresponding permutation is simply πw = (12 · · ·w).
Only the first state is a single particle state — and this is therefore the state that is dual to
a world-sheet vertex operator — while the actual stress-energy descendant of the twisted
sector ground state is the sum of the two terms, see also the discussion around eq. (5.13)
in [22]. The dual CFT state to the world-sheet state T is the w = 1 generalisation of the
first state, and therefore describes in effect the stress-energy tensor of the seed theory.3

Obviously the same considerations apply to the correlators where we replace T by TL.
The other family of correlators we shall be reproducing from the world-sheet are the

dual CFT correlators of the form

〈σw(∞)T (x)σw(0)〉 , and
〈
σw(∞)TL(x)σw(0)

〉
, (2.13)

where σw denotes the ground state of the w-cycle twisted sector of the symmetric orbifold.
We can calculate these correlators by going to the covering space, i.e. by rewriting the x
variables in terms of the covering map z 7→ Γ(z) with

Γ(z) = xzw . (2.14)

(This function maps (0, 1,∞) to (0, x,∞), and has the correct branching behaviour near
each of these points.) Then we can use the transformation property of the stress-energy
tensor under general conformal tranformations, see e.g. [23]

T (x) = 1
Γ′(z)2

(
T (z)− cseed

12 S[Γ(z)]
)
, TL(x) = 1

Γ′(z)2

(
TL(z)− cL

seed
12 S[Γ(z)]

)
,

(2.15)
where S[Γ(z)] is the Schwarzian derivative, and the coefficient in front of S[Γ(z)] comes
from L2T and L2T

L, respectively, where Ln are the modes of T ; this then leads to cseed
and cL

seed, respectively. Note that in either case the central charge that appears here is that
of the seed theory, see the discussion around eq. (2.11).

For the above choice of Γ(z) the Schwarzian derivative equals

S[Γ(z)] = Γ′′′(z)
Γ′(z) −

3
2

(
Γ′′(z)
Γ′(z)

)2

= −(w2 − 1)
2z2 . (2.16)

After we have applied the covering map, the ground state σw disappears, and thus only
the second term in (2.15) contributes. Thus the correlator equals (upon setting z = 1)

〈σw(∞)T (x)σw(0)〉 = cseed(w2 − 1)
24w2

1
x2 . (2.17)

3For general w ≥ 2, the centraliser of πw is Zw × SN−w, and thus both states in (2.12) are separately
orbifold invariant. For w = 1, on the other hand, the actual centraliser is SN , and thus only the sum of the
two states is really orbifold invariant. However, the sum of the two states has central charge Ncseed, and
therefore does not make sense in the large N limit which is always implicit in the perturbative world-sheet
description. The world-sheet calculation therefore picks out the analogue of the first term.
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Similarly, we find for the correlator where we have replaced T by TL, eq. (2.17) with cL
seed

in place of cseed.
It is the aim of this paper to calculate the correlators (2.11) and (2.13) from the world-

sheet perspective. At least on the face of it, this is a fairly non-trivial consistency check
on the calculation of the world-sheet correlators (and the specific solution proposed in [3],
see eq. (3.7)), as well as more generally of the precise duality proposal.

Note that for the world-sheet calculation of the 3-point functions in (2.13) we also need
to identify the world-sheet state that corresponds to the w-cycle twisted sector ground state;
this was already done in [3], and it is a w-spectrally flowed affine highest weight state, i.e.
a state of the form [|j,m〉](w), where j = k−2

2 or j = 1− k−2
2 , and m is determined by the

mass-shell condition.

2.2 The x-dependence of the vertex operators

One important subtlety that appears in the calculation of these correlation functions is that
the vertex operators on the world-sheet naturally depend on two kinds of coordinates [3].
First of all, the vertex operators depend on the usual position z where they are inserted on
the world-sheet. However, it is also natural to make them depend on a coordinate x that
refers to the position on the boundary sphere where the corresponding dual CFT state is
inserted. In fact, there is a canonical way in which these dependencies can be determined:
starting from the identification of vertex operators and states at, say, z = x = 0, the
dependence on the two coordinates is determined by conjugation with the corresponding
translation operators,

V (ψ;x, z) = ezL−1 exJ+
0 V (ψ; 0, 0) e−xJ+

0 e−zL−1 , (2.18)

where L−1 is the usual translation operator on the world-sheet, and we have used the
identification J+

0
∼= LCFT

−1 . While this may seem overly pedantic, it actually has a significant
impact on the definition of the vertex operators associated to spectrally flowed states. The
basic reason for this is that in defining the spectral flow automorphism, see eq. (2.5), a
preferential role is given to the J3

0 generator of sl(2,R), but this choice is not invariant
under conjugation with respect to exJ+

0 , and as a consequence the ‘direction’ of spectral
flow depends on x in a non-trivial manner.4 In fact, this can be seen very explicitly
by considering the OPE of the sl(2,R) currents with spectrally flowed vertex operators.
Writing

V w
h (x; z) ≡ V

(
[|j,m〉](w);x, z

)
, with h = m+ kw

2 , (2.19)

and suppressing the j-dependence, we have the OPE relations

J+(z)V w
h (x;ζ)∼

(
h− kw2 +j

)
V w

h+1(x;ζ)
(z−ζ)w+1 +

w−1∑
l=1

J+
l V

w
h (x;ζ)

(z−ζ)l+1 + ∂xV
w

h (x;ζ)
(z−ζ) , (2.20a)

4Most previous work on spectrally flowed sl(2,R) correlators, see e.g. [18–20], has set x = 0 uniformly,
which is not appropriate in our context.
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J3(z)V w
h (x;ζ)∼x

(
h− kw2 +j

)
V w

h+1(x;ζ)
(z−ζ)w+1 +x

w−1∑
l=1

J+
l V

w
h (x;ζ)

(z−ζ)l+1 + (h+x∂x)V w
h (x;ζ)

(z−ζ) ,

(2.20b)

J−(z)V w
h (x;ζ)∼x2

(
h− kw2 +j

)
V w

h+1(x;ζ)
(z−ζ)w+1 +x2

w−1∑
l=1

J+
l V

w
h (x;ζ)

(z−ζ)l+1 + (2hx+x2∂x)V w
h (x;ζ)

(z−ζ) ,

(2.20c)

where we have only written out the singular terms. They follow from the ‘usual’ OPE
relations5 at z = x = 0,

J+(z)V w
h (0; 0) ∼

(
h− kw

2 + j

)
V w

h+1(0; 0)
zw+1 +

w−1∑
l=1

J+
l V

w
h (0; 0)
zl+1 + ∂xV

w
h (0; 0)
z

, (2.21a)

J3(z)V w
h (0; 0) ∼ hV w

h (0; 0)
z

, (2.21b)

J−(z)V w
h (0; 0) ∼

(
h− kw

2 − j
)
V w

h−1(0; 0) zw−1 +O(zw) (2.21c)

by using the conjugation action of exJ+
0 on the currents, see [3] for more details.

3 The Ward identities on the world-sheet

The basic strategy to determine the world-sheet correlators is to use the Ward identities
associated to the sl(2,R)k currents. This method was developed for correlators involving
only primary states in [3], see also [5] for a generalisation to the free field realisation of
psu(1, 1|2)1; this general method will be briefly reviewed in section 3.1. For the application
we have in mind we also need to determine the Ward identities for correlators involv-
ing descendant states, and we explain in section 3.2 the modifications that are required
for that case.

3.1 Ward identities for correlators of highest weight states

Let us start with reviewing how the Ward identities for the correlators of the form〈
n∏

i=1
V wi

hi
(xi; zi)

〉
(3.1)

can be derived. Given the OPEs of the sl(2,R) currents with these vertex operators,
see eq. (2.20), we can determine the correlators where we insert a current Ja(z) into
the above correlator. Since all the singular terms are either explicitly known, or involve
the action of a J+

` mode, we can thereby express all of these correlators in terms of the
‘unknown’ correlators

F i
` ≡

〈
[J+

` V
wi

hi
] (xi; zi)

∏
j 6=i

V
wj

hj
(xj ; zj)

〉
, (3.2)

5In order to obtain these formulae we expand the currents in terms of modes as J(z) =
∑

n
Jnz

−n−1,
and then use the action defined by (2.6).
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where ` = 1, . . . , wi − 1, and i = 1, . . . , n. The key idea by means of which one can
determine these unknowns is to use the fact that the OPE (2.21c) is regular, i.e. that the
singular terms in (2.20c) simply arise because of the conjugation with exJ+

0 . This allows
us to remove these singular terms for any fixed j; for example, for z ∼ zj the combination〈(

J−(z)− 2xjJ
3(z) + x2

jJ
+(z)

) n∏
i=1

V wi
hi

(xi; zi)
〉

=
(
hj −

kwj

2 + jj

)〈
V

wj

hj−1(xj ; zj)
∏
i 6=j

V wi
hi

(xi; zi)
〉

(z − zj)wj−1 +O
(
(z − zj)wj

)
, (3.3)

is regular. On the other hand, as mentioned before we can also compute the left-hand-side
directly using the OPEs (2.20), and we find〈(

J−(z)− 2xjJ
3(z) + x2

jJ
+(z)

) n∏
i=1

V wi
hi

(xi; zi)
〉

=
∑
i 6=j

(
2(xi − xj)hi + (xi − xj)2∂xi

(z − zi)
〈 n∏

l=1
V wl

hl
(xl; zl)

〉
+

wi−1∑
`=1

(xi − xj)2

(z − zi)`+1F
i
`

+
(
hi −

kwi

2 + ji

) (xi − xj)2

(z − zi)`+1

〈
V wi

hi+1(xi; zi)
∏
l 6=i

V wl
hl

(xl; zl)
〉)

, (3.4)

where F i
` has been defined in (3.2). Requiring that this expression is of the form of eq. (3.3),

i.e. Taylor expanding (3.4) for z → zj and comparing it with (3.3), then leads to wj

identities for each j. In particular, the first wj − 1 coefficients define a homogeneous linear
system for the unknowns F i

` with ` ∈ {1, . . . , wi − 1}; this linear system has as many
equations as unknowns, namely

∑n
i=1(wi − 1), and a non-trivial solution exists provided

that [3] ∑
i 6=j

wi ≥ wj − 1 (3.5)

for all j. In this case, all the F i
` can be written in terms of the correlators in (3.1) (and vice

versa). Moreover, by comparing the terms of order (z − zj)wj−1 in the Taylor expansion
of (3.3) and (3.4), recursion relations for correlators with shifted values of the hi can be
derived, see [3] for more details. In general, these recursion relations are complicated to
solve, but provided that6

j1 + j2 + j3 = k

2 , (3.6)

a simple solution exists [3]

〈V w1
h1

(x1; z1)V w2
h2

(x2; z2)V w3
h3

(x3; z3)〉

= C(j1, j2, j3)
3∏

i=1
(aΓ

i )−hi
∏
i 6=j

(zi − zj)∆0
l−∆0

i−∆0
j , (3.7)

6This is the condition for the case of a 3-point function. There are also some constraints on the spectral
flow labels wi, see eq. (5.2) in [3], but they will always be satisfied for us.
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where the coefficients aΓ
i (that are determined by the corresponding covering map) read

explicitly [3, 13, 15]

aΓ
i =

(
1
2(wi + wi+1 + wi+2 − 1)

1
2(−wi + wi+1 + wi+2 − 1)

)
(

1
2(−wi + wi+1 − wi+2 − 1)
1
2(wi + wi+1 − wi+2 − 1)

) (xi − xi+1)(xi+2 − xi)(zi+1 − zi+2)wi

(xi+1 − xi+2)(zi − zi+1)wi(zi+2 − zi)wi
, (3.8)

and the indices in eq. (3.8) are to be understood mod 3. Note that the last factor in (3.7) just
reproduces the usual zi dependence of a 3-point function of quasi-primary fields, where the
relevant (world-sheet) conformal dimensions are ∆0

i = ∆i +wi hi, and ∆0
l is the conformal

dimension associated to the ‘third’ field, i.e. the one which is neither i nor j.

3.2 Ward identities for correlators of descendants

For the analysis of the correlation functions we are interested in, we also need to compute
correlation functions of the form (3.2) where yet an additional current Ja(z) has been
inserted. These correlators can be determined by considering the OPEs

J+(z) [J+
l V

wi
hi

](xi; zi) ∼
wi∑

m=1

[J+
l J

+
mV

wi
hi

](xi; zi)
(z − zi)m+1 +

∂xi [J+
l V

wi
hi

](xi; zi)
(z − zi)

, (3.9a)

J3(z) [J+
l V

wi
hi

](xi; zi) ∼
wi−l∑
m=1

[J+
m+lV

wi
hi

](xi; zi)
(z − zi)m+1 + xi

wi∑
m=1

[J+
l J

+
mV

wi
hi

](xi; zi)
(z − zi)m+1

+
((hi + 1) + xi∂xi) [J+

l V
wi

hi
](xi; zi)

(z − zi)
, (3.9b)

J−(z) [J+
l V

wi
hi

](xi; zi) ∼ 2xi

wi−l∑
m=1

[J+
m+lV

wi
hi

](xi; zi)
(z − zi)m+1 + x2

i

wi∑
m=1

[J+
l J

+
mV

wi
hi

](xi; zi)
(z − zi)m+1

+
(
2xi(hi + 1) + x2

i ∂xi

)
[J+

l V
wi

hi
](xi; zi)

(z − zi)
, (3.9c)

that can be derived as before, see footnote 5, but now taking into account that the vertex
operator [J+

l V
wi

hi
](xi; zi) is associated with a descendant state. However, as is clear from

the right-hand-sides of the above expressions, more complicated ‘unknowns’ will appear in
the process, in particular,

Gi (`,m) ≡
〈

[J+
` J

+
mV

wi
hi

](xi; zi)
n∏

r 6=i

V wr
hr

(xr; zr)
〉
, (3.10)

Mi,p (`,m) ≡
〈

[J+
` V

wi
hi

](xi; zi) [J+
mV

wp

hp
](xp; zp)

n∏
r 6=i,p

V wr
hr

(xr; zr)
〉
. (3.11)

In order to determine them, we consider the correlator〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
)

[J+
` V

wi
hi

](xi; zi)
n∏

r 6=i

V wr
hr

(xr; zr)
〉
, (3.12)
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where ` ∈ {1, . . . , wi−1}, and analyse it in two different ways. First we evaluate it directly,
using (3.9), and thereby obtain

〈 (
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
)

[J+
` V

wi
hi

] (xi; zi)
n∏

r 6=i

V wr
hr

(xr; zr)
〉

=
(
2(hi + 1)(xi − xj) + (xi − xj)2∂xi

)
F i

`

(z − zi)

+
wi−`∑
m=1

2(xi − xj)F i
`+m

(z − zi)m+1 +
wi∑

m=1

(xi − xj)2Gi(`,m)
(z − zi)m+1

+
∑

p 6=j,i

((
2(xp − xj)hp + (xp − xj)2∂xp

)
F i

`

(z − zp) +
wp∑

m=1

(xp − xj)2Mi,p(`,m)
(z − zp)m+1

)
. (3.13)

On the other hand, we know that as z → zi the correlator must behave as

〈 (
J−(z)− 2xiJ

3(z) + x2
i J

+(z)
)

[J+
` V

wi
hi

](xi; zi)
n∏

r 6=i

V wr
hr

(xr; zr)
〉

= (2hi − k`)
〈
V wi

hi
(xi; zi)

n∏
r 6=i

V wr
hr

(xr; zr)
〉

(z − zi)`−1 +O
(
(z − zi)`

)
, (3.14)

while for z → zp with p 6= i we find instead〈 (
J−(z)− 2xpJ

3(z) + x2
pJ

+(z)
)

[J+
` V

wi
hi

](xi; zi)
∏
r 6=i

V wr
hr

(xr; zr)
〉

=
(
hp −

kwp

2 − jp
) 〈

[J+
` V

wi
hi

](xi; zi)V
wp

hp−1 (xp; zp)
n∏

r 6=i,p

V wr
hr

(xr; zr)
〉

(z − zp)wp−1

+O ((z − zp)wp) . (3.15)

As before, we can thus compare the Taylor expansion of (3.13) for z → zj for j = i and
j 6= i with eqs. (3.14) and (3.15), respectively. For each choice of ` ∈ {1, . . . , wi − 1}, we
get ` relations of the first kind, and wj + 1 of the second, and they relate Gi(`,m) and
Mi,p(`,m) to F i

` and correlators without any insertions of J+
` modes.7 Since the latter

have already been determined, this allows us then to solve for all Gi(`,m) and Mi,p(`,m);
in fact, the problem is overdetermined, and it is a non-trivial consistency condition that a
solution exists at all.

4 Explicit computations and results

With these preparations at hand, we can now evaluate the correlation functions that are
of interest to us: the world-sheet correlator that corresponds to (2.11) is

〈V (T ;x1, z1)V (T ;x2, z2)〉 , (4.1)
7In both cases, some of the hj values may be shifted.
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where j1 and j2 are chosen as in (2.9); and the world-sheet correlator that corresponds
to (2.13) is

〈V w
h1 (0; 0) V (T ;x, z) V w

h3 (∞;∞)〉 , (4.2)

where
h1 = h3 = 6k (w2 − 1)

24w . (4.3)

Since the normalisation of the correlators is not fixed by the Ward identities, we must
in each case divide by the corresponding vacuum correlators, where we replace V (T ;x, z)
by V 1

0 (x; z), i.e. the vertex operator that corresponds to the vacuum in the dual CFT.
Note that the vacuum vertex operator arises for the same values of m and j as the stress-
energy tensors, see eq. (2.9); as a consequence the j-dependent normalisation factors of the
correlators, see e.g. eq. (3.7), drop out of this ratio.

In the above formulae, we have written these correlators for the case of the full stress-
energy tensor of the dual symmetric orbifold, but we will also be considering the corre-
sponding correlators where T is replaced by TL, the stress-energy tensor associated to the
Liouville factor. It is the aim of this section to explain in some detail how these world-sheet
calculations can be performed.

4.1 Decoupling spurious states

In order to simplify the calculation, we first recall that the world-sheet theory contains
spurious states that decouple from all correlation functions. They take the form [8, 24]

|ψ〉 = L−1 |χ1〉+
(
L−2 + 3

2L
2
−1

)
|χ2〉 , (4.4)

where

|χ1〉= 4a (j−m−1)J3
−1 |j,m〉+4b (j−m−1)J+

−1 |j,m−1〉+a (k+2m)J−−1 |j,m+1〉 ,
|χ2〉= |j,m〉 , (4.5)

and a and b are arbitrary parameters.8 As a consequence, we are free to add suitable
multiples of these spurious states to T and TL in order to simplify the above expressions
for them. In particular, we can replace in this manner the contribution of the J−−1J

3
−1,

J−−1J
+
−1 and the J−−1J

−
−1 terms in T and TL at the cost of modifying the coefficients of the

other terms entering in (2.7) and (2.8). This allows us to bring T and TL into the form

T = c1 J
3
−1J

+
−1

∣∣∣∣j, 1− k

2

〉
+ c2 J

3
−1J

3
−1

∣∣∣∣j, 2− k

2

〉
+ c3 J

3
−2

∣∣∣∣j, 2− k

2

〉
+ c4 J

−
−1J

+
−1

∣∣∣∣j, 2− k

2

〉
+ c5 J

+
−2

∣∣∣∣j, 1− k

2

〉
+ c6 L

X
−2

∣∣∣∣j, 2− k

2

〉
, (4.6)

TL = cL
1 J

3
−1J

+
−1

∣∣∣∣j, 1− k

2

〉
+ cL

2 J
3
−1J

3
−1

∣∣∣∣j, 2− k

2

〉
+ cL

3 J
3
−2

∣∣∣∣j, 2− k

2

〉
+ cL

4 J
−
−1J

+
−1

∣∣∣∣j, 2− k

2

〉
+ cL

5 J
+
−2

∣∣∣∣j, 1− k

2

〉
+ cL

6 L
X
−2

∣∣∣∣j, 2− k

2

〉
, (4.7)

8For some of these states we have also checked explicitly that they vanish in correlation functions, using
the techniques of this paper. A more general argument for this was already given in [8].
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where j is either j = k−2
2 or j = 1 − k−2

2 . The explicit form of the coefficients c1, . . . and
cL

1 , . . . are spelled out in appendix A.

4.2 Wrapping of modes

We begin by discussing the correlators of the form (4.2), which we can write as a sum of
terms of the form

〈V w
h1 (x1; z1)V

(
[|φ〉](1) ;x2, z2

)
V w

h3 (x3; z3)〉 , (4.8)

where the state |φ〉 stands for any of the terms appearing in eqs. (4.6) or (4.7). For
concreteness, let us discuss the case |φ〉 = J3

−2 |j,m〉 with j = k−2
2 and m = 2 − k

2 . Since
the spectral flow of J3

−2 is trivial, we have
[
J3
−2 |j,m〉

](1) = J3
−2 [|j,m〉](1), and we can write

the J3
−2 mode in terms of a contour integral, which we can then wrap around the other

insertion points〈
V w

h1 (x1; z1)V
([
J3
−2 |j,m〉

](1)
;x2, z2

)
V w

h3 (x3; z3)
〉

(4.9)

=
∮

z2

dz

(z − z2)2

〈(
J3(z)− x2J

+(z)
)
V w

h1 (x1; z1)V
(
[|j,m〉](1) ;x2, z2

)
V w

h3 (x3; z3)
〉

= −
∑

i=1,3

∮
zi

dz

(z − z2)2

〈(
J3(z)− x2J

+(z)
)
V w

h1 (x1; z1)V 1
h2 (x2; z2)V w

h3 (x3; z3)
〉
,

where in the final step we have rewritten V
(
[|j,m〉](1) ;x2, z2

)
= V 1

h2
(x2; z2) since this is

now the w = 1 spectrally flowed image of a highest weight state (with j = k−2
2 ). The OPEs

of J3(z) and J+(z) near z = z1 and z = z3 can now be determined from eq. (2.20), and
this leads to〈

V w
h1 (x1; z1)V

([
J3
−2 |j,m〉

](1)
;x2, z2

)
V w

h3 (x3; z3)
〉

= −
∑

i=1,3

[
hi + (xi − x2)∂xi

(zi − z2)2

〈
V w

h1 (x1; z1)V 1
h2 (x2; z2)V w

h3 (x3; z3)
〉

(4.10)

+ (xi − x2)
w∑

`=1

(−1)`(`+ 1)
(zi − z2)`+2

〈(
J+

` V
w

hi

)
(xi; zi)V 1

h2 (x2; z2)V w
hp

(xp; zp)
〉]
,

where p ∈ {1, 3} with p 6= i. The other terms can be computed in a similar manner,
albeit that analysis is more complicated since for some of the terms that involve two Ja

modes, we will also need the OPEs of the form (3.9), and thus also the more complicated
unknowns (3.10) and (3.11) will appear. We have collected the explicit results of these
calculations in appendix B.

4.2.1 The 2-point case

The analysis of the correlators of the form (4.1) is similar, except that now we have a sum
of contributions of the form

〈V
(
[|φ〉1](1) ;x1, z1

)
V
(
[|φ〉2](1) ;x2, z2

)
〉 , (4.11)
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where |φ〉1 and |φ〉2 stand for any of the terms appearing in eqs. (4.6) or (4.7). For
example, let us discuss the case with |φ〉1 = J+

−2 |j1,m〉 and |φ〉2 = J+
−2 |j2,m〉, where our

choice for j1 and j2 will be discussed below, see eq. (4.19). Since σ(J+
−1) = J+

−2, we have[
J+
−2 |j,m− 1〉

](1)
= J+

−1 [|j,m− 1〉](1), and the correlator becomes9

〈
V
([
J+
−2 |j1,m− 1〉

](1)
;x1, z1

)
V
([
J+
−2 |j2,m− 1〉

](1)
;x2, z2

)〉
(4.12)

=
∮

z1

dz

(z − z1)
〈
J+(z)V 1

h−1 (x1; z1)V
(
J+
−1 [|j2,m− 1〉](1) ;x2, z2

)〉
=

(h− 1− k
2 + j2)

(z2 − z1)2

〈
V 1

h−1 (x1; z1)V
(
J+
−1 [|j2,m〉](1) ;x2, z2

)〉
− 1

(z2 − z1)
〈
V 1

h−1 (x1; z1) V
(
J+
−1J

+
0 [|j2,m− 1〉](1) ;x2, z2

)〉
, (4.13)

where we have first written the J+
−1 mode in terms of a contour integral around z1, and

then evaluated the contour integral by considering the residue at z = z2. In a second step
we then repeat the same procedure for the J+

−1 mode acting on the vertex operator at
z = z2. In the end this leads to〈

V
([
J+
−2 |j1,m− 1〉

](1)
;x1, z1

)
V
([
J+
−2 |j2,m− 1〉

](1)
;x2, z2

)〉
=

(
h− 1− k

2 + j1
) (
h− 1− k

2 + j2
)

(z1 − z2)4 〈V 1
h (x1; z1)V 1

h (x2; z2)〉

− ∂x1∂x2

(z1 − z2)2 〈V
1

h−1 (x1; z1)V 1
h−1 (x2; z2)〉 . (4.14)

The other terms contributing to eq. (4.1) can be computed in a similar manner, and the
explicit results can be found in appendix C. In order to compute some of the most tedious
terms, we have made use of the Thielemans OPE package [25], and of the Virasoro package
developed by Matthew Headrick [26].

4.3 Recovering the dual CFT correlators from the world-sheet

We can now put the various pieces of the calculation together. Let us first consider the
3-point functions of eq. (4.2).

4.3.1 The 〈σw T σw〉correlator

Combing eqs. (4.6) and (4.7) with the results of appendix B, we can express eq. (4.2) in
terms of the unknowns F i

` . As explained in section 3, the sl(2,R) Ward identities allow us
to determine these unknowns in terms of the corresponding correlators of primary fields〈

V w
h1(x1; z1)V 1

h2(x2; z2)V w
h3(x3; z3)

〉
, (4.15)

with in general shifted values of hi. While the Ward identities do not fix the latter cor-
relators completely, there exists a natural answer [3], namely eq. (3.7), provided that the

9We work with the convention that m = 2− k
2 ; then the m eigenvalue of the term involving J+

−2 in (4.6)
or (4.7) is m− 1.
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spins sum up to k
2 , see eq. (3.6). We will in the following work with this solution,10 and

choose the ji as

j1 = k − 2
2 , j2 = k − 2

2 , j3 = 1− k − 2
2 , (4.16)

so that eq. (3.6) is satisfied. We have checked that the result is unchanged if we permute
the roles of j1, j2 and j3 in (4.16).

We can therefore determine the correlators in (4.2) completely, except that the solution
for the unknowns F i

` is not known in closed form, but needs to be worked out case by
case. We have performed this analysis for w = 1, 2, . . . , 6 (with the help of Mathematica),
and we find

〈V w
h3 (∞;∞)V (T ;x, z) V w

h1 (0; 0)〉 = C(j1, j2, j3) 6k(w2 − 1)
24w2

1
x2

1
z
. (4.17)

For a 3-point function on the world-sheet, the integral over the world-sheet moduli space is
trivial since we can use the Möbius symmetry to set z = 1. Dividing by the correlator where
we replace T with the vacuum vertex operator V 1

0 (x; z) removes the factor of C(j1, j2, j3),
and we thus reproduce the dual CFT answer eq. (2.17) with cseed = 6k.

4.3.2 The 〈σw TL σw〉 correlator

The analysis of the correlator where we replace T by TL is similar. The only difference is
that now not just the unknowns F `

i appear at an intermediate stage, but also Gi(`,m) and
Mi,p(`,m), see e.g. eq. (B.1). Again, we cannot solve for them analytically, but we have
worked them out case by case, using the relations of section 3.2, as well as Mathematica;
for w = 2, 3 we have confirmed that11

〈V w
h3 (∞;∞)V

(
TL;x, z

)
V w

h1 (0; 0)〉 = C(j1, j2, j3) c
L
seed (w2 − 1)

24w2
1
x2

1
z
, (4.18)

where cL
seed is given in eq. (2.10). Thus we reproduce again (2.17).

4.3.3 The 〈TT 〉 correlator

Given the results of section 4.2 and appendix C, it is also straightforward to compute the
correlator (4.1). For the choice of spins

j1 = 1− j2 = k − 2
2 , (4.19)

the analogue of (3.7) is simply

〈V 1
h (x1; z1)V 1

h (x2; z2)〉 = C

(x1 − x2)2h(z1 − z2)2∆ , (4.20)

10In the supersymmetric case based on psu(1, 1|2)1, it was recently shown in [5] that this is in fact the
only solution.

11Since the system of relations of section 3.2 is overcomplete, it is a non-trivial consistency check that a
solution exists at all.

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
0
3
6

where C is an arbitrary constant, and ∆ denotes the conformal dimension on the world-
sheet. Collecting all the terms in eqs. (4.14), (C.2) – (C.9) and setting h = 2, we then find

〈V (T ;x1,∞)) V (T ;x2, 0))〉 = C
6k
2

1
(x1 − x2)4 . (4.21)

Dividing by the corresponding vacuum correlator, i.e. removing the overall normalisation
C, we thus reproduce the dual CFT expectation, see eq. (2.11), where we have again used
that cseed = 6k.

We should mention that if instead of (4.19) we perform the calculation for the choice
j1 = j2 = k−2

2 (and k > 5, say, to avoid some low level exceptions), the result (4.21)
picks up an additional factor of (k − 2), while for the choice j1 = j2 = 2 − k

2 (again with
k > 5, say) the additional factor is 1

(k−2) . We do not have a detailed understanding of
these phenomena, except that these factors are trivial for k = 3 where the dual Liouville
theory does not have a background charge.12 We also note that in the general case with
background charge, the choice (4.19) is the most natural one, see eq. (5.43) of [3].

4.3.4 The 〈TLTL〉 correlator

The computation of the correlator where we replace T by TL works similarly. Collecting
all the terms in eqs. (4.14), (C.2) – (C.17) and setting h = 2, we find

〈
V
(
TL;x1,∞)

)
V
(
TL;x2, 0)

)〉
= C

cL
seed
2

1
(x1 − x2)4 , (4.22)

where we have worked with the choice (4.19), and cL
seed is given by (2.10). Again, after

dividing by the corresponding vacuum correlator, we reproduce the dual CFT expectation,
see eq. (2.11). If we replace in (4.19) j1 7→ 2 − k

2 or j2 7→ k−2
2 , we pick up some rather

complicated rescaling factors, but as above they become trivial (once suitably regularised)
for k → 3.

5 Conclusions

In this paper we have calculated some simple world-sheet correlators that correspond
to stress-energy correlators in the dual CFT, see in particular the 2-point functions of
eq. (4.21) and the 3-point functions of eq. (4.17). While the calculations on the world-
sheet are quite complicated — in general the more general Ward identities of section 3.2
had to be used in order to evaluate them — the main motivation for the paper was to
show that (a) one can in principle determine them with these generalised techniques; and
(b) they reproduce the expected conformal dimensions of, e.g., the twisted sector ground
states. In the process we also clarified which symmetric orbifold field is actually dual to the
‘stress-energy’ tensor vertex operator on the world-sheet, see the discussion in section 2.1.

It would be interesting to generalise the analysis of this paper to the supersymmetric
theory, in particular using the free field realisation of psu(1, 1|2)1 that was recently employed

12Recall that k = 3 for the bosonic algebra corresponds to the supersymmetric case with ksusy = 1, which
is the example that has been established best.
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in [5]. It would also be interesting to use similar techniques to rederive the symmetry
algebra of the dual CFT from the world-sheet; this would complement the analysis of [6,
8, 9], where this was done algebraically. As we noted in section 3.2, the Ward identities
for the descendant states lead to an overconstrained system; it would be interesting to
see whether this gives additional constraints on the solutions (and maybe even shows that
eq. (3.7) is in fact the only solution). Recently, the large twist limit of these correlators
was shown to have a simple solution [27]; it would be interesting to analyse whether (and
if so how) the Ward identities of the correlators also reflect this simplification.
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A Coefficients for the total and the Liouville stress-energy tensor

The coefficients entering eq. (2.7) read [8]

c++ = 3
(
2j2 + j(4k − 6) + k2 − k(m+ 3) + 4

)
2(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1a)

c3+ = −3
(
4j2 + 6j(k − 2) + k(k − 2m− 5) + 8

)
(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1b)

c−+ = 6(j − 1)(j + k − 2)− 3km
(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1c)

c−3 = 3
(
−4j2 − 2j(k − 6) + k(k + 2m+ 3)− 8

)
(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1d)

c−− = 6(j − 3)j − 3k(k +m+ 1) + 12
2(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1e)

c33 = 12(j − 1)(j + k − 2)− 6km
(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1f)

c3 = 3km− 3(j − 1)
(
4j2 + 4j(k − 2) + (k − 3)k

)
(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1g)

c+ = 3
(
8j3 + 12j2(k − 2) + 2j(k − 2)(3k − 4) + k((k − 5)k − 2m+ 8)

)
2(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1h)

c− = 8j3 + 4j2(k − 4)− 2j(k(k + 2) + 4)− k
(
k2 + k + 6m+ 2

)
+ 16

2(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.1i)

while those entering eq. (2.8) are [8]

C = 1
4(k − 2)(j + k − 2)(2j + k − 2)(2j + k − 1) , (A.2a)

cL
++ = C

(
12j2(k − 2) + j

(
24k2 − 61k + 20

)
+ 6k3

− 6k2(m+ 5) + k(83− 11m) + 52m− 100
)
, (A.2b)
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cL
3+ = −2C

(
24j2(k − 2) + 36j(k − 2)2 + 6k3

− k2(12m+ 65) + k(229− 22m) + 4(26m− 63)
)
, (A.2c)

cL
−+ = 2C

(
12j2(k − 2) + j

(
12k2 − 83k + 124

)
− k2(6m+ 35) + k(146− 11m) + 52m− 152

)
, (A.2d)

cL
−3 = −2C

(
24j2(k − 2) + 4j

(
3k2 − 47k + 88

)
− 6k3

− 3k2(4m+ 25) + k(355− 22m) + 4(26m− 89)
)
, (A.2e)

cL
−− = C

(
12j2(k − 2)− 3j(35k − 76)− 6k3 − 2k2(3m+ 20)

− 11k(m− 19) + 52m− 204
)
, (A.2f)

cL
33 = 4C

(
12j2(k − 2) + j

(
12k2 − 83k + 124

)
− k2(6m+ 35)

+ k(146− 11m) + 52m− 152
)
, (A.2g)

cL
3 = −2C

(
24j3(k − 2) + 4j2

(
6k2 − 53k + 88

)
+ j

(
6k3 − 146k2 + 501k − 460

)
− 29k3

+ k2(151− 6m)− k(11m+ 215) + 52(m+ 1)
)
, (A.2h)

cL
+ = C

(
48j3(k − 2) + 4j2

(
18k2 − 95k + 124

)
+ 4j

(
9k3 − 71k2 + 182k − 152

)
+ 6k4

− 65k3 + k2(229− 12m)− 2k(11m+ 126) + 104m
)
, (A.2i)

cL
− = C

(
16j3(k − 2) + 4j2

(
2k2 − 35k + 68

)
− 4j

(
k3 + 23k2 − 75k + 44

)
− 2k4 − 21k3

+ k2(75− 12m) + k(34− 22m) + 8(13m− 21)
)
. (A.2j)

The coefficients c1, . . . , c6 in eq. (4.6) are

c1 = −1 , c5 = 2 , c2 = c3 = c4 = c6 = 0 , (A.3)

for j = k−2
2 and

c1 = −1 , c2 = −2
(
k2 − 5k + 6

)
(k − 5)(k − 4) , (A.4a)

c3 = 2
(
k3 − 9k2 + 32k − 42

)
(k − 5)(k − 4) , c4 = (−k3 + 11k2 − 42k + 54)

(k − 5)(k − 4) , (A.4b)

c5 = 2 , c6 = −2
(
k2 − 5k + 6

)
(k − 5)(k − 4) , (A.4c)
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for j = 1− k−2
2 . Similarly, the coefficients cL

1 , . . . , c
L
6 in eq. (4.7) are

cL
1 = (−12k2 + 65k − 88)

6(k − 2)(2k − 3) , cL
2 = (52− 23k)

(24k2 − 84k + 72) , (A.5a)

cL
3 = (23k − 52)

4 (2k2 − 7k + 6) , cL
4 = (52− 23k)

24 (2k2 − 7k + 6) , (A.5b)

cL
5 = (25k2 − 139k + 196)

(24k2 − 84k + 72) , cL
6 = (k + 16)

36− 24k , (A.5c)

for j = k−2
2 and

cL
1 = (−6k2 + 35k − 52)

6(k − 2)k , (A.6a)

cL
2 = (−12k4 − 8k3 + 591k2 − 2076k + 2080)

6(k − 5)(k − 4)(k − 2)k , (A.6b)

cL
3 = (12k5 − 109k4 + 548k3 − 1916k2 + 3844k − 3120)

6(k − 5)(k − 4)(k − 2)k , (A.6c)

cL
4 = (−12k4 + 109k3 − 314k2 + 106k + 520)

12(k − 5)(k − 4)k , (A.6d)

cL
5 = (6k2 − 35k + 52)

3(k − 2)k , (A.6e)

cL
6 = (−18k3 + 45k2 + 194k − 520)

6(k − 5)(k − 4)k , (A.6f)

for j = 1− k−2
2 .

B Wrapping of modes for the three-point function

The various terms of the form (4.8) read〈
V
([
J3
−1J

3
−1 |ji,mi〉

](1)
;xi, zi

) ∏
l 6=i

V wl
hl

〉

=
∑
j 6=i

[
hj + (xj − xi)∂xj

(zj − zi)

(
hj + (xj − xi)∂xj

(zj − zi)
〈
∏

l

V wl
hl
〉

+ (xj − xi)
wj∑
`=1

(−1)`

(zj − zi)1+`

〈
[J+

` V
wj

hj
]
∏
l 6=j

V wl
hl

〉)

+ (xj − xi)
wj∑

r=1

(−1)r

(zj − zi)1+r

(
hj + 1 + (xj − xi)∂xj

(zj − zi)
〈
[J+

r V
wj

hj
]
∏
l 6=j

V wl
hl

〉

+
wj−r∑
`=1

(−1)`

(zj − zi)`+1
〈
[J+

`+rV
wj

hj
]
∏
l 6=j

V wl
hl

〉
+ (xj − xi)

wj∑
`=1

(−1)`

(zj − zi)`+1
〈
[J+

r J
+
` V

wj

hj
]
∏
l 6=j

V wl
hl

〉)]
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+
∑

p 6=j,i

[
hj + (xj − xi)∂xj

(zj − zi)

(
hp + (xp − xi)∂xp

(zp − zi)
〈
∏

l

V wl
hl
〉

+ (xp − xi)
wp∑
`=1

(−1)`

(zp − zi)`+1
〈
[J+

` V
wp

hp
]
∏
l 6=p

V wl
hl

〉)

+ (xj − xi)
wj∑

r=1

(−1)r

(zj − zi)1+r

(
hp + (xp − xi)∂xp

(zp − zi)
〈
[J+

r V
wj

hj
]
∏
l 6=j

V wl
hl

〉
+ (xp − xi)

wp∑
`=1

(−1)`

(zp − zi)`+1
〈
[J+

r V
wj

hj
] [J+

` V
wp

hp
]
∏

l 6=p,j

V wl
hl

〉)]
, (B.1)

〈
V
([
J+
−1J

+
−1 |ji,mi − 2〉

](1)
;xi, zi

)∏
l 6=i

V wl
hl

〉
= ∂2

xi

〈
V 1

hi−2
∏
l 6=i

V wl
hl

〉
, (B.2)

〈
V
([
J−−1J

+
−1 |ji,mi〉

](1)
;xi, zi

)∏
l 6=i

V wl
hl

〉

= −
∑
j 6=i

[
2hj(xj − xi) + (xj − xi)2∂xj

(zj − zi)2 ∂xi〈
∏

l

V wl
hl
〉

+ (xj − xi)2
wj∑
`=1

(−1)`(`+ 1)
(zj − zi)`+2 ∂xi

〈
[J+

` V
wj

hj
]
∏
l 6=j

V wl
hl

〉]
, (B.3)

〈
V
([
J3
−1J

+
−1 |ji,mi − 1〉

](1)
;xi, zi

)∏
l 6=i

V wl
hl

〉

= −
∑
j 6=i

[
hj + (xj − xi)∂xj

(zj − zi)
∂xi〈V 1

hi−1
∏
l 6=i

V wl
hl
〉

+ (xj − xi)
wj∑
`=1

(−1)`

(zj − zi)`+1∂xi〈[J+
` V

wj

hj
]V 1

hi−1
∏

l 6=j,i

V wl
hl
〉
]
, (B.4)

〈
V
([
J+
−2 |ji,mi − 1〉

](1)
;xi, zi

)∏
l 6=i

V wl
hl

〉

= −
∑
j 6=i

[
∂xj

(zj − zi)
〈V 1

hi−1
∏
l 6=i

V wl
hl
〉

+
wj∑
`=1

(−1)`

(zj − zi)`+1
〈
[J+

` V
wj

hj
]V 1

hi−1
∏

l 6=j,i

V wl
hl

〉]
. (B.5)

C Wrapping of modes for the two-point function

In this appendix we collect the explicit results for the computation of the correlator

〈V (T ;x1, z1)V (T ;x2, z2)〉 . (C.1)
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In section 4 we have already computed the term (4.14). Following a similar procedure, for
the other terms appearing in eq. (4.6) we find〈

V
(
J+
−1 [|j1,m− 1〉](1) ;x1, z1

)
V
(
J3
−1J

+
0 [|j2,m− 1〉](1) ;x2, z2

)〉
=

(x1 − x2)
(
h− 1− k

2 + j1
) (
h− 1− k

2 + j2
)

(z1 − z2)4 ∂x2〈V 1
h (x1; z1)V 1

h (x2; z2)〉

+ (∂x1 − h ∂x2 − (x1 − x2)∂x1∂x2) ∂x2

〈V 1
h−1 (x1; z1)V 1

h−1 (x2; z2)〉
(z1 − z2)2 , (C.2)

〈
V
(
J3
−1J

+
0 [|j1,m− 1〉](1) ;x1, z1

)
V
(
J3
−1J

+
0 [|j2,m− 1〉](1) ;x2, z2

)〉
=
(
1− (x1 − x2)∂x2 + (x1 − x2)∂x1 − (x1 − x2)2∂x1∂x2

)
×

(
h− 1− k

2 + j1
) (
h− 1− k

2 + j2
)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉

(z1 − z2)4

+
(

(x1 − x2)2∂x1∂x2 + h(x1 − x2)∂x2 − h(x1 − x2)∂x1 − (x1 − x2)∂x1

+ (x1 − x2)∂x2 − h2 − k

2

)
∂x1∂x2〈V 1

h−1 (x1; z1)V 1
h−1 (x2; z2)〉

(z1 − z2)2 , (C.3)

〈
V
(
J+
−1 [|j1,m− 1〉](1) ;x1, z1

)
V
(
J3
−2 [|j2,m〉](1) ;x2, z2

)〉
=

(
h− 1− k

2 + j1
)

(z1 − z2)4 (−3 + 2(x1 − x2)∂x2) 〈V 1
h (x1; z1)V 1

h (x2; z2)〉 , (C.4)

〈
V
(
J+
−1 [|j1,m− 1〉](1) ;x1, z1

)
V
(
J−−2J

+
0 [|j2,m〉](1) ;x2, z2

)〉
(C.5)

=
(x1 − x2)

(
h− 1− k

2 + j1
)

(z1 − z2)4 (−6 + 2(x1 − x2)∂x2) ∂x2 〈V 1
h (x1; z1)V 1

h (x2; z2)〉 ,

〈
V
(
J+
−1 [|j1,m− 1〉](1) ;x1, z1

)
V
(
J3
−1J

3
−1 [|j2,m〉](1) ;x2, z2

)〉
=

(x1 − x2)2
(
h− 1− k

2 + j1
) (
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6 〈V 1
h+1 (x1; z1)V 1

h+1 (x2; z2)〉

+

(
h− 1− k

2 + j1
)

(z1 − z2)4

(
2h+ 1− 2(h+ 1)(x1 − x2)∂x2 + 4(x1 − x2)∂x1

− 2(x1 − x2)2∂x1∂x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 , (C.6)〈

V
(
J−−2J

+
0 [|j1,m〉](1) ;x1, z1

)
V
(
J3
−1J

+
0 [|j2,m− 1〉](1) ;x2, z2

)〉
=

(x1 − x2)
(
h− 1− k

2 + j2
)

(z1 − z2)4

(
−4(h+ 1) + (2h+ 5)(x1 − x2)∂x2

− 4(x1 − x2)∂x1 + 2(x1 − x2)2∂x1∂x2

)
∂x1〈V 1

h (x1; z1)V 1
h (x2; z2)〉 , (C.7)
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〈
V
(
J3
−1J

+
0 [|j1,m− 1〉](1) ;x1, z1

)
V
(
J3
−2 [|j2,m〉](1) ;x2, z2

)〉
=

(
h− 1− k

2 + j1
)

(z1 − z2)4

(
2h− 2(x1 − x2)∂x2 + (2h+ 3)(x1 − x2)∂x1

− 2(x1 − x2)2∂x1∂x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 , (C.8)〈

V
(
J3
−1J

3
−1 [|j1,m〉](1) ;x1, z1

)
V
(
J3
−1J

+
0 [|j2,m− 1〉](1) ;x2, z2

)〉
=

(x1 − x2)2
(
h− 1− k

2 + j2
) (
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6

×
(
−2 + (x1 − x2)∂x2

)
〈V 1

h+1 (x1; z1)V 1
h+1 (x2; z2)〉

+

(
h− 1− k

2 + j2
)

(z1 − z2)4

(
−2h2 − k + (5 + 6h+ 2h2 + k)(x1 − x2)∂x2

− 2(h+ 1)(x1 − x2)∂x1 − 2(h+ 2)(x1 − x2)2∂2
x2 (C.9)

+ 2(h+ 3)(x1 − x2)2∂x1∂x2 − 2(x1 − x2)3∂x1∂
2
x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 .

Similarly, in order to compute the correlator〈
V
(
TL;x1, z1

)
V
(
TL;x2, z2

)〉
, (C.10)

we need the following additional terms〈
V
(
LX
−2 [|j1,m〉](1) ;x1, z1

)
V
(
LX
−2 [|j2,m〉](1) ;x2, z2

)〉
= 1

(z1 − z2)4

(
13− 3k

2(k − 2)

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 , (C.11)

〈
V
(
J3
−2 [|j1,m〉](1) ;x1, z1

)
V
(
J3
−2 [|j2,m− 1〉](1) ;x2, z2

)〉
=

4(x1 − x2)2
(
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6 〈V 1
h+1 (x1; z1)V 1

h+1 (x2; z2)〉

+ 1
(z1 − z2)4

(
h2 + 3k + (3 + h)(x1 − x2)∂x1 − (3 + h)(x1 − x2)∂x2

− (x1 − x2)2∂x1∂x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 , (C.12)〈

V
(
J3
−2 [|j1,m〉](1) ;x1, z1

)
V
(
J−−2J

+
0 [|j2,m〉](1) ;x2, z2

)〉
=

4(x1 − x2)2
(
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6

(
−1 + (x1 − x2)∂x2

)
× 〈V 1

h+1 (x1; z1)V 1
h+1 (x2; z2)〉

+ 1
(z1 − z2)4

(
6h+ 2(−3− 2h+ h2 + 3k)(x1 − x2)∂x2 − 2h(x1 − x2)2∂2

x2 (C.13)

+ (h+ 4)(x1 − x2)2∂x1∂x2 − (x1 − x2)3∂x1∂
2
x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 ,
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〈
V
(
J−−2J

+
0 [|j1,m〉](1) ;x1, z1

)
V
(
J−−2J

+
0 [|j2,m〉](1) ;x2, z2

)〉
=

4(x1 − x2)2
(
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6

(
4− 2(x1 − x2)∂x2 + 2(x1 − x2)∂x1

− (x1 − x2)2∂x1∂x2

)
〈V 1

h+1 (x1; z1)V 1
h+1 (x2; z2)〉

+ 1
(z1 − z2)4

(
4h2 − 4h(h− 2)(x1 − x2)∂x2 + 4h(h− 2)(x1 − x2)∂x1

− 2(−4− 2h+ 2h2 + 3k)(x1 − x2)2∂x1∂x2 + 2h(x1 − x2)2∂2
x2

+ 2h(x1 − x2)2∂2
x1 − 2(h+ 1)(x1 − x2)3∂2

x1∂x2 (C.14)

+ 2(h+ 1)(x1 − x2)3∂x1∂
2
x2 + (x1 − x2)4∂2

x1∂
2
x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 ,〈

V
(
J−−2J

+
0 [|j1,m〉](1) ;x1, z1

)
V
(
J3
−1J

3
−1 [|j2,m〉](1) ;x2, z2

)〉
=

2(x1 − x2)2
(
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6

(
2h+ 5 + (2h+ 9)(x1 − x2)∂x1

+ 2(x1 − x2)2∂2
x1

)
〈V 1

h+1 (x1; z1)V 1
h+1 (x2; z2)〉

+ 1
(z1 − z2)4

(
2h(1− 2h) + 2(h3 − 1 + 2h(k − 2) + 2k)(x1 − x2)∂x1

− (h2 + 6h+ 8)(x1 − x2)2∂x1∂x2 − (2h+ 7)(x1 − x2)3∂2
x1∂x2 (C.15)

+ 2(2h2 + h− 1 + 2k) (x1 − x2)2∂2
x1

+ 2h(x1 − x2)3∂3
x1 − (x1 − x2)4∂3

x1∂x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 ,〈

V
(
J3
−2 [|j1,m〉](1) ;x1, z1

)
V
(
J3
−1J

3
−1 [|j2,m〉](1) ;x2, z2

)〉
=

2(x1 − x2)2
(
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6

(
−(2h+ 5)− 2(x1 − x2)∂x1

)
× 〈V 1

h+1 (x1; z1)V 1
h+1 (x2; z2)〉

+ 1
(z1 − z2)4

(
−h(h2 + 2k) + (h2 + 4h+ 3)(x1 − x2)∂x2 (C.16)

− (3 + 3h+ 2h2 + 2k)(x1 − x2)∂x1 + (2h+ 5)(x1 − x2)2∂x1∂x2

− (h+ 2)(x1 − x2)2∂2
x1 + (x1 − x2)3∂2

x1∂x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 ,〈

V
(
J3
−1J

3
−1 [|j1,m〉](1) ;x1, z1

)
V
(
J3
−1J

3
−1 [|j2,m〉](1) ;x2, z2

)〉
=

(x1 − x2)4
(
h− k

2 + j1
) (
h− k

2 + j2
) (
h+ 1− k

2 + j1
) (
h+ 1− k

2 + j2
)

(z1 − z2)8

× 〈V 1
h+2 (x1; z1)V 1

h+2 (x2; z2)〉

+
(x1 − x2)2

(
h− k

2 + j1
) (
h− k

2 + j2
)

(z1 − z2)6

(
2(10 + 8h+ 2h2 + k)
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− 4(3 + h)(x1 − x2)∂x2 + 4(3 + h)(x1 − x2)∂x1

− 4(x1 − x2)2∂x1∂x2

)
〈V 1

h+1 (x1; z1)V 1
h+1 (x2; z2)〉

+ 1
(z1 − z2)4

(
h4 + 2h2k + k2

2 − (h+ 1)(2h2 + 3h+ 3 + 2k)(x1 − x2)∂x2

+ (h+ 1)(2h2 + 3h+ 3 + 2k)(x1 − x2)∂x1

− (13 + 12h+ 4h2 + 2k)(x1 − x2)2∂x1∂x2

+ (h+ 2)2(x1 − x2)2∂2
x1 + (h+ 2)2(x1 − x2)2∂2

x2

− (2h+ 5)(x1 − x2)3∂2
x1∂x2 + (2h+ 5)(x1 − x2)3∂x1∂

2
x2

+ (x1 − x2)4∂2
x1∂

2
x2

)
〈V 1

h (x1; z1)V 1
h (x2; z2)〉 . (C.17)

Of course, given the explicit result for a term of the form (4.11), by exchanging the roles
of j1, x1, z1 with j2, x2, z2, respectively, one immediately obtains the term where |φ〉1 and
|φ〉2 have been exchanged.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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