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Abstract

Timber-concrete composite (TCC) slabs play an essential role in modern timber construction.

Consisting of a timber member in the tension zone, a concrete layer in the compression zone and

a shear connection between the two parts, TCC slabs feature a number of advantages that make

them ideally suitable for use in both office and residential buildings. However, currently used

TCC slab systems carry loads only in one direction. This represents a restriction of architectural

flexibility, as irregular floor plans are difficult to realise and columns cannot be used as direct

point supports. As a contribution towards overcoming these limitations and thus expanding the

application field of TCC slabs, a novel two-way spanning TCC slab system was developed and

investigated in this research project.

The developed TCC slab uses beech laminated veneer lumber (LVL), an engineered wood

product providing high strength and stiffness in both load-bearing directions. It was found that

an optimised stiffness-to-mass ratio can be achieved if the core of the slab between the timber

and concrete layers is filled with a light-weight material such as cellulose fibres or stone wool.

As a direct consequence of this concept choice, TCC connectors with a high bending stiffness

have to be used. Therefore, a solution using steel tubes as connectors was developed.

The local behaviour of this steel tube connection was investigated in an extensive experi-

mental campaign, providing information about the stiffness, shear capacity and ductility of the

connection. The results show that a sufficient stiffness can only be achieved if a grouting sys-

tem is used in the connection of the steel tubes with the timber layer. A ductile failure mode

was observed in the connection tests due to inelastic compression deformations in timber and a

redistribution of internal forces in concrete.

Based on these results, the load-bearing behaviour of the novel TCC slab was investigated

in uniaxial bending tests. These tests showed that the connection behaviour governs the global

load-bearing behaviour. Cross-sectional failures in timber or concrete were not observed. A duc-

tile failure mode in the connectors led to a remarkably ductile global load-bearing behaviour.

Two calculation models are provided in this thesis that can be used for a prediction of the

uniaxial load-bearing behaviour of the TCC slab. A comparison of the test results with the

corresponding predictions showed that the deformations under service loads, the fundamental

frequency and the load-bearing capacity can be predicted with high accuracy.

The biaxial load-bearing behaviour of the novel TCC slab was investigated in an elaborate

large-scale experiment. A modular test setup was developed that allowed to perform static and

dynamic tests on the same specimen in different support conditions. A substantial increase

in stiffness and fundamental frequency in biaxial versus uniaxial support conditions was ob-

served. Two calculation models were developed that represent well the observations made in

the experiments.

In conclusion, the great potential of the novel two-way spanning TCC slab for the application

in practice was demonstrated in this research project. Calculation models were developed that

allow for an accurate prediction of the load-bearing behaviour in uniaxial and in biaxial bending.
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Kurzfassung

Holz-Beton-Verbunddecken (HBV-Decken) spielen eine wichtige Rolle im modernen Holzbau.

Eine Vielzahl von Vorteilen haben in den vergangenen Jahrzehnten zu einem zunehmenden

Einsatz dieses Deckensystems in Büro- und Wohngebäuden geführt. Gegenwärtig sind die ver-

fügbaren HBV-Deckensysteme einachsig tragend. Dies stellt eine Einschränkung der architek-

tonischen Flexibilität dar, da unregelmässige Grundrisse schwierig zu realisieren sind und eine

Punktlagerung der Decken auf Stützen nicht möglich ist. Um diese Einschränkungen zu überwin-

den und somit den Einsatzbereich von HBV-Decken zu erweitern, wurde in diesem Forschungs-

projekt ein neuartiges, zweiachsig tragendes HBV-Deckensystem entwickelt und untersucht.

Die entwickelte HBV-Decke verwendet Buchenfurnierschichtholz, ein Holzwerkstoff, der eine

hohe Festigkeit und Steifigkeit in beide Tragrichtungen aufweist. Das Verhältnis zwischen Decken-

steifigkeit und -masse lässt sich optimieren, wenn zwischen Holz- und Betonschicht eine Lage aus

einem leichten Material wie Zellulosefasern oder Steinwolle eingefügt wird. Als direkte Konse-

quenz dieses Konzeptes müssen HBV-Verbinder mit einer hohen Eigenbiegesteifigkeit eingesetzt

werden. Daher wurde eine Lösung mit Stahlrohren als Verbinder entwickelt.

Das lokale Tragverhalten dieser Stahlrohrverbindung wurde anhand eines umfangreichen

Versuchsprogramms untersucht. Die Ergebnisse zeigen, dass eine ausreichende Steifigkeit nur

erreicht werden kann, wenn in der Verbindung der Stahlrohre mit der Holzschicht ein Verguss-

system verwendet wird. In den Verbindungsversuchen wurde ein duktiler Versagensmodus be-

obachtet, der auf inelastische Druckverformungen im Holz und eine Umverteilung der inneren

Spannungen im Beton zurückzuführen ist.

Basierend auf diesen Erkenntnissen wurde das Tragverhalten der neuartigen HBV-Decke

in einachsigen Biegeversuchen untersucht. Dabei zeigte sich, dass das globale Tragverhalten

primär durch das Verbindungsverhalten bestimmt wird. Ein duktiler Versagensmodus in den

Verbindungen führte zu einem bemerkenswert duktilen Tragverhalten des HBV-Deckensystems.

Im Rahmen dieser Arbeit werden zwei Berechnungsmodelle präsentiert, die eine Prognose des

einachsigen Tragverhaltens der HBV-Decke ermöglichen. Ein Vergleich der jeweiligen Ergebnisse

mit den Versuchsresultaten zeigt, dass die Modelle eine zutreffende Prognose der Verformungen

unter Gebrauchslasten, der Eigenfrequenz und der Tragfähigkeit erlauben.

In einem umfangreichen Grossversuch wurde das biaxiale Tragverhalten der neuartigen HBV-

Decke untersucht. Um statische und dynamische Tests am selben Prüfkörper unter verschiedenen

Auflagerbedingungen durchführen zu können, wurde ein spezieller modularer Versuchsaufbau

entwickelt. Eine wesentliche Erhöhung der Steifigkeit und der Eigenfrequenz bei zweiachsiger

gegenüber einachsiger Tragwirkung wurde beobachtet. Zwei Berechnungsmodelle wurden ent-

wickelt, deren Resultate gut mit den Beobachtungen aus den Experimenten übereinstimmen.

Die in der vorliegenden Arbeit vorgestellten und diskutierten Untersuchungen zeigen das

grosse Potential des neuartigen, zweiachsig tragenden HBV-Deckensystems auf. Die vorgestellten

Berechnungsmodelle erlauben eine zuverlässige Prognose des Tragverhaltens und eine einfache,

praxistaugliche Bemessung des HBV-Deckensystems.
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Chapter 1

Introduction

1.1 Motivation and background

Timber-concrete composite (TCC) slabs play an essential role in modern timber construction.

Consisting of a timber member in the tension zone, a concrete layer in the compression zone and

a shear connection between the two parts, they show a number of advantages that make them

ideally suitable for use in both office and residential buildings. Compared to traditional timber

slabs, TCC slabs show increased stiffness and load-bearing capacity, better dynamic behaviour

and seismic resistance, improved sound insulation and higher fire resistance. Compared to

conventional solid reinforced concrete slabs, a significant reduction of self-weight is achieved

when using TCC slabs. In addition, reducing the necessary amount of concrete and steel leads to

a more sustainable solution with lower CO2 emissions and grey energy consumption. The ceiling

soffit can be kept in wood, which is appreciated by many architects, investors and residents.

However, using TCC slabs also imposes certain limitations to architectural flexibility. Cur-

rently used TCC slab systems carry loads only in one direction, which means that walls or

beams are always necessary as continuous supports and columns cannot be used as direct point

supports. Furthermore, this characteristic of the system makes it difficult to realise irregular

floor plans with openings. As a contribution towards overcoming these limitations and thus ex-

panding the application field of TCC slabs, a novel two-way spanning slab system was developed

and investigated in this research project.

Most TCC slab systems consist of a relatively thick timber section and a thin concrete slab.

In these structures, concrete cracking can often be neglected since the concrete section is almost

entirely in compression, as shown e. g. by Müller [59]. In these TCC slab systems, the conif-

erous timber species Norway spruce (Picea abies Karst.) is typically used. Using engineered

wood products with higher strength, such as beech laminated veneer lumber (beech LVL), al-

lows for a substantial reduction of the timber layer thickness. However, in order to achieve a

sufficient bending stiffness of the composite member, the total height has to remain in a simi-

lar range, leading to an increased ratio of concrete to timber height. Boccadoro [4] developed

and investigated such a system consisting of 40 mm thin beech LVL plates and a concrete layer

approximately four times as thick. As a consequence, more than half of the concrete section
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cracks and therefore does not significantly contribute to the bending stiffness of the composite

member while substantially increasing the self-weight. To optimise the ratio between weight and

stiffness, a large part of the cracked concrete section can be replaced with a lightweight material.

However, introducing such an interlayer between the timber and concrete sections makes it im-

possible to use notches as a connection system. Also, thin dowel-type fasteners (e. g. screws) are

not applicable because they do not provide enough stiffness to connect the timber and concrete

sections in this case. Therefore, a solution using steel tubes as connectors was developed and

investigated in this research project.

Floor slabs are responsible for a large part of the total mass of buildings and, thus, contribute

substantially to the forces acting on vertical load-bearing members such as columns, walls and

the foundation. Horizontal forces generated during an earthquake are directly influenced by the

floor slab mass. Especially in large-volume buildings, using optimised light-weight slab solutions

leads to significant savings in the design of vertical members and the foundation. This is not only

an economical advantage but also allows to save resources and reduce the total environmental

impact of construction projects. At the same time, reducing the mass of floor slabs may affect

its dynamic behaviour and acoustic insulation properties negatively. Therefore, these aspects

have to be studied as well.

This thesis is the result of a research project initiated by the Institute of Structural Engineer-

ing (IBK) of ETH Zurich in collaboration with the construction company Implenia Schweiz AG

and the engineering office WaltGalmarini AG. The project was funded by the Swiss Innovation

Agency Innosuisse (former Commission for Technology and Innovation, CTI ).

1.2 Objectives

The objectives pursued in this research project can be divided into two categories. Firstly, the

concept of a novel two-way spanning TCC slab system is developed with the following goals:

� A two-way spanning TCC slab shall be developed that (a) has no visible supporting beams,

(b) offers the possibility of using columns as direct point supports and (c) allows for a

comparable degree of design flexibility as a reinforced concrete flat slab.

� The TCC slab should be applicable as one-way or two-way spanning slab and enable a

seamless combination of both options (slab with one-way and two-way spanning areas).

� An efficient and economical construction process is pursued, either using cast-in-situ con-

crete or full prefabrication of TCC elements.

� The self-weight of the TCC slab shall be minimised, without violating the requirements

regarding dynamic behaviour and sound insulation.

Secondly, the load-bearing behaviour of the developed slab is studied in detail, pursuing the

following objectives:
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� A profound understanding of the load-bearing mechanisms in the slab is to be developed

with regard to the local connection behaviour, uniaxial bending and biaxial bending, using

experimental and analytical approaches.

� The most important parameters of the system and their influence on the stiffness, load-

bearing capacity and ductility of the TCC slab should be identified.

� Practice-oriented calculation methods shall be developed that allow for a safe design of

the TCC slab in both serviceability and ultimate limit states.

1.3 Concept of the developed TCC slab system

The two categories of objectives explained above cannot be pursued independently. For example,

experimental investigations are necessary to understand the load-bearing behaviour of different

connection types. The findings of the same experiments, however, serve also as a basis for the

decision about which connection type suits best the requirements of the pursued slab concept.

Therefore, concept development and investigation of the load-bearing behaviour are closely

related and influence each other.

As a consequence, the different test series carried out in the scope of this research project are

not all based on the exact same final version of the concept. Covering the entire development

process in detail, including all concept approaches that were abandoned along the way, would

exceed the scope of this thesis. Therefore, only the final concept is described below. Any resul-

ting differences between test specimens and the final concept are addressed in the respective

chapters covering the experimental investigations (Chapters 3 – 5).

The final concept of the TCC slab features a steel tube connection and is depicted in Fig. 1.1.

The structure consists of three layers:

� Concrete layer: On top, the compression zone of the composite member consists of a

concrete layer of 80 – 120 mm thickness. A steel reinforcement mesh is placed in the middle

of the concrete section to prevent any extensive shrinkage cracks.

� Interlayer: The core of the TCC slab is filled with a light-weight material such as cellulose

fibres or stone wool and is approximately 100 – 200 mm thick. This layer does not serve

any structural purpose other than ensuring a constant distance between the load-carrying

timber and concrete sections. Installations such as electrical lines or a sprinkler system

can be arranged in this layer, which is an advantage compared to conventional TCC slab

systems.

� Timber layer: At the bottom, the tension zone of the composite member consists of

60 mm thick plates made of beech laminated veneer lumber (beech LVL). The material

used in this project (BauBuche Q, Chapter 2.1) contains cross-layers (veneers oriented

perpendicular to the main direction), providing strength and stiffness in both directions.
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beech LVL plate, 60 mm

concrete layer concrete filled steel tubes

filling material (e.g. cellulose fibers or stone wool)

concrete edge beam

(a)

ring-shaped
cutout (CNC)

epoxy grouting

(b)

Fig. 1.1: Concept (a) longitudinal section and (b) connection of the steel tube in the beech LVL plate.

The load-carrying timber and concrete sections are connected using steel tubes that can be

arranged according to the shear forces. Fig. 1.1a shows a possible arrangement for a simply

supported beam subjected to uniformly distributed load. The connection of the steel tubes is

illustrated in Fig. 1.1b. Ring-shaped cutouts are milled in the beech LVL plate using CNC

machining. The thickness of the cutouts is chosen such that gaps are left both inside and

outside the steel tube. These gaps are filled with a high performance epoxy grouting system

(Sikadur®-42 HE ), creating a stiff and slip-free connection.

After placing the interlayer and reinforcement mesh, concrete is poured on top of the inter-

layer and inside the steel tubes. In this way, the concrete layer and its connection with the steel

tubes is created in the same production step.

At the location of the supports, high shear forces have to be introduced into the composite

slab. In this area, the interlayer is replaced by concrete, creating an edge beam (Fig. 1.1a). This

conceptually prevents a local shear force peak in the timber section and high normal forces in

the first row of steel tubes.

Different versions of the TCC slab with steel tube connection

The general slab concept as described above can be adapted to different project boundary

conditions as follows:

� Full prefabrication of TCC elements or on-site construction using cast-in-situ concrete

� Conception as a one-way or two-way spanning slab
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This leads to the following versions of the slab:

� Full prefabrication: In this case, TCC elements of max. 1.82 m width (max. production

width of BauBuche Q plates) are fully prefabricated as explained above. Any electrical

cables or pipes for a sprinkler system are installed in the factory. Precambered elements

can be produced by placing spacers of varying height under the beech LVL plate before

concreting. On site, the concrete layers of neighbouring elements have to be connected to

enable transmission of membrane forces (e. g. horizontal forces from earthquake or wind

action).

� On-site construction using cast-in-situ concrete: In some projects, using cast-in-

situ concrete may be more economical than connecting prefabricated elements on site. In

this case, formwork elements are prepared in the factory or on site, with additional upper

beech LVL beams connected to the steel tubes (Fig. 1.2). These beams help to increase

the stiffness of the formwork elements during concreting, allowing a construction process

without the need for extensive propping. Depending on the span, propping may be omitted

entirely. The connection of the steel tubes with the upper beams is achieved by drilling

precisely fitting holes in the beams, inserting the steel tubes and securing the position with

a self-tapping dowel from the side. The steel tubes protrude from the upper timber beam

to achieve a connection with the concrete layer in the final state (Fig. 1.2). The interlayer

including installations can be placed on site in one step for an entire storey, eliminating

many interface and connection issues compared to the prefabrication option.

additional upper
beech LVL beam

cross-section, final state

Fig. 1.2: Formwork element with additional upper beech LVL beams and connection in the final state.
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� Two-way spanning slab: In order to achieve a biaxial load-bearing behaviour, the beech

LVL plates have to be connected along their side edges. This connection is referred to as

‘side connection’ hereinafter and enables the transmission of tensile forces in transversal

direction of the beech LVL plate (perpendicular to the main veneer orientation). Fig. 1.3

illustrates the developed side connection concept using glued-in rods. The steel box on

the right side is produced either as a cast iron part or using a standard RRW steel profile,

welded together with a base plate. The steel box is connected to the beech LVL using

several glued-in rods in the factory. On the left side, a steel plate is connected analogously.

On site, standard steel bolts are used to connect the two elements. A conical groove is

milled into the side edge of the beech LVL plate to ensure the vertical alignment of the

elements on site. In horizontal direction, production tolerance is accommodated with

a slotted hole in the steel box. These side connections can be arranged according to the

expected transversal bending moment, based on the project boundary conditions. In areas

where the slab carries loads only in the main direction, they can be omitted. Experiments

on alternative side connection concepts have been carried out in an early stage of this

research project. However, the examined alternative side connections are not compatible

with the final slab concept described in this thesis.

The two-way spanning TCC slab can be designed such that from below, it looks like a

point-supported flat slab without any visible beams. However, this is only possible if in

the location of the point supports, the interlayer is replaced by concrete (Fig. 1.1a). The

resulting beams can be designed in reinforced concrete, acting as integrated linear supports

for the two-way spanning TCC slab. The corresponding load-bearing mechanism differs

from that of a flat slab where point support forces are directly introduced into the slab with

torsional moments. In this system, point support forces can only be introduced indirectly

using internal beams.

glued-in rods M12

conical
edge grooves

for vertical
alignment

glued-in
rods M12

steel plate with inner threads M12/M16

steel box with inner threads M12
and slotted hole (hor. tolerance)

standard steel bolts
M16 with washer

(a) (b)

Fig. 1.3: Concept for the side connection, (a) element prefabrication and (b) connection on site.
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In the beginning of this research project, the concept version using cast-in-situ concrete was the

favoured option. In this scenario, introducing a weight-saving interlayer is a logical consequence

for the following reasons:

� A connector with high bending stiffness is necessary in any case, to effectively activate the

stiffness of the additional timber beams during the construction state.

� Limiting the formwork deflections during concreting is one of the main design challenges

in this scenario (propping is undesired). Reducing the amount of concrete to a necessary

minimum is therefore a priority.

During the project, investigations by Implenia Schweiz AG and WaltGalmarini AG led to the

conclusion that in most cases, prefabrication is expected to be the more economical construction

process than casting concrete on site. Therefore, this thesis focuses mainly on this version of

the concept.

1.4 Outline and overview

The structure of this thesis is illustrated in Fig. 1.4. Following this introduction, Chapter 2

provides a brief overview on the state of the art regarding beech LVL and the field of timber-

concrete composite (TCC) slabs. Currently available TCC slab systems and calculation models

are discussed. A special focus is placed on studies exploring the use of beech LVL or steel tubes

in TCC slabs and research projects investigating two-way spanning TCC slabs.

Chapters 3 – 5 present the experimental investigations that were carried out within the

scope of this research project. Three series of connection shear tests were conducted to develop

an optimised connection concept. The main results of these tests were the connection stiffness,

shear capacity and deformation capacity. These results are used as input parameters for the

calculation models for uniaxial and biaxial bending (Fig. 1.4). Two further experimental cam-

paigns investigated the load-bearing behaviour of the TCC slab with steel tube connection in

uniaxial and biaxial bending.

Chapter 6 presents two different calculation models that can be used to predict the uniaxial

load-bearing behaviour of the investigated TCC slab. Based on a comparison with the results

of the uniaxial bending tests, these models are discussed in detail with regard to their accuracy

and their applicability in a practical design process.

In Chapter 7, the two calculation models from Chapter 6 are extended to represent the

biaxial bending behaviour of the novel two-way spanning TCC slab. In these models, the results

of the connection shear tests and the uniaxial bending models are used as input parameters

(Fig. 1.4). The performance of the two calculation models is assessed on the basis of a comparison

with the results of the biaxial bending test.

Chapter 8 provides a summary of the most important conclusions of this research project.

The limitations of the presented results are discussed and an outlook is given regarding possible

further research on the novel TCC slab with steel tube connection.
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1. INTRODUCTION

8. CONCLUSIONS AND OUTLOOK

Experimental investigations Calculation models

2. STATE OF THE ART

3. CONNECTION SHEAR TESTS
Determination of empirical parameters:

connection stiffness, shear capacity
and deformation capacity

4. UNIAXIAL BENDING TESTS
Investigation of stiffness,
fundamental frequency,

load-bearing capacity and ductility

5. BIAXIAL BENDING TEST
Investigation of stiffness,
fundamental frequency,

load-bearing capacity and ductility

7. MODELS FOR BIAXIAL BENDING

Orthotropic plate model

Coupled shell model

Comparison with test results

6. MODELS FOR UNIAXIAL BENDING

Elasto-plastic γ-method

Strut-and-tie model

Comparison with test results

Fig. 1.4: Overview of the structure of this thesis.



Chapter 2

State of the art

2.1 Beech laminated veneer lumber

Beech (Fagus sylvatica L.) is one of the most common wood species in Central Europe. In

Switzerland, Germany and Austria, beech accounts for 10 – 18% of the total wood stock and for

56 – 68% of hardwood resources [2; 69]. Although its potential for structural use was recognised

already in 1884 by Sarrazin & Schäfer [68], beech wood is still mostly used as firewood or for

other non-structural purposes, e. g. in the furniture industry [42; 43]. For structural applications,

beech is processed into a number of wood-based products, either consisting of lamellas (thickness

greater than 20 mm, for glued laminated or cross laminated timber) or 2 – 4 mm thin, rotary-

peeled veneers. A comprehensive summary of the research work published on the topic of beech

glued laminated timber (glulam) is presented by Ehrhart [28].

Using thin veneers rather than lamellas as a basis for engineered wood products leads to

a more homogeneous material and consistent, reliable mechanical properties. In addition, the

production process for rotary-peeled veneers results in lower material losses than sawing rect-

angular lamellas out of circular logs. Laminated veneer lumber (LVL) is produced either with

all veneers oriented in the same direction, or including cross-layers. The latter option allows

to overcome some of the limitations caused by the strong anisotropy of wood such as its low

tensile strength and stiffness perpendicular to the grain. Early studies on the mechanical prop-

erties of beech LVL were published by Kolb [40] in 1968 and Ehlbeck & Colling [25; 26; 27] in

the 1980’s. The technological advancements in the industrial production of beech LVL by the

German company Pollmeier GmbH since the beginning of the 21st century transformed beech

LVL from a niche product to an economically competitive solution used in many modern tim-

ber construction projects [34]. Extensive tests for the determination of all relevant mechanical

properties have been carried out by van de Kuilen & Knorz [88; 89]. Based on the results of

these studies, a National Technical Approval was obtained in Germany for glulam made of beech

LVL [22] (replaced by a European Technical Assessment [61] in 2015), as well as for beech LVL

plates with and without cross-layers (BauBuche S and BauBuche Q) in 2013, updated in 2016

and 2018 [24]. All relevant mechanical properties of the beech LVL plates that were used in this

research project can be obtained from the latest version of the manufacturer’s declaration [63].
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Since the initial tests in 2012/13 [88; 89], the range of available plate thicknesses and their

corresponding veneer layouts have been adjusted. The cross-layer ratio n90/ntot (with n90 and

ntot being the number of cross-layers and total layers, respectively) varies depending on the plate

thickness (Fig. 2.1) and strongly influences the mechanical properties, especially in the direction

perpendicular to the grain. This dependence is addressed in a simplified way in the National

Technical Approval [24] and the manufacturer’s declaration [63] with conservative strength and

stiffness values for two thickness categories. A selection of these values is given in Tab. 2.1.

More information on the statistical distribution of the mechanical properties is provided by van

de Kuilen & Knorz [88; 89] for BauBuche S and BauBuche Q with a cross-layer ratio of 22%.

Fig. 2.1: Cross-layer ratio in BauBuche Q.

Tab. 2.1: Selection of material properties of BauBuche, strength and stiffness values in [MPa] and

densities in [kg/m3], as declared in [63].

Property BauBuche S BauBuche Q

t ≤ 24 mm t ≥ 27 mm

char. plate bending strength ‖ to grain fm,0,flat,k 80 70 81

char. plate bending strength ⊥ to grain fm,90,flat,k – 34 21

char. tensile strength ‖ to grain ft,0,k 60 46 49

char. tensile strength ⊥ to grain ft,90,edge,k 1.5 15 8.0

char. compressive strength ‖ to grain fc,0,k 57 57 62

char. compressive strength ⊥ to grain fc,90,edge,k 14 40 22

char. plate shear strength ‖ to grain fv,0,flat,k 8.0 3.8∗ 3.8∗

mean MOE ‖ to grain E0,mean 16’800 11’800 12’800

mean MOE ⊥ to grain E90,mean 470 3500 2000

mean density ρmean 800 770 800

∗ rolling shear in the cross-layers
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2.2 One-way spanning timber-concrete composite slabs

2.2.1 Timber-concrete composite systems

Timber-concrete composite (TCC) slabs consist of a timber member, a concrete layer and a shear

connection in between. The two materials are typically arranged in such a way that timber and

concrete are subjected to tensile and compressive stresses, respectively. This combination leads

to a number of advantages such as high stiffness and load-bearing capacity, as already discussed

in Chapter 1.1.

Comprehensive summaries of the history and development of TCC slabs have been written

by many authors, e. g. Blass et al. [3], Müller [59] and Yeoh et al. [91]. A large variety of different

TCC systems have been developed in the past three decades. They can be divided into two main

groups, based on the chosen type of timber element:

� Linear TCC systems (Fig. 2.2a), using beams made of timber or glulam. The space

between the timber beams can be used for installations, which makes these systems suitable

especially for industrial or office buildings.

� Planar TCC systems (Fig. 2.2b), using timber elements that cover the entire lower surface

of the structure, such as Brettstapel elements, cross laminated timber (CLT) or LVL plates.

In many residential buildings, this is the preferred system due to its visually calmer soffit

and because less space for installations is needed.

concrete slab

timber beams

formwork
screws

(a)

concrete
slab

Brettstapel

dowels or
screws

notches

(b)

Fig. 2.2: (a) Linear and (b) planar TCC systems, adapted from [30].

TCC slabs can be produced in different ways:

� Full prefabrication of TCC elements. In this case, an industrialised element production

in controlled factory conditions and rapid erection on site is possible. At the same time,

transportation costs are high and some concrete or mortar is still necessary on site to

connect the elements.
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� Erecting the timber structure and casting the concrete on site. I this case, the timber

elements act both as formwork in the construction state and as tensile and bending member

in the final state. Propping is often necessary to limit deflections during concrete casting.

� Connecting the timber structure with a prefabricated concrete slab on site. Compared

to cast-in-situ concrete, this option has the advantage that deformations due to concrete

shrinkage can be omitted.

The structural behaviour of TCC slabs is strongly influenced by the load-slip behaviour of the

used connection system. Therefore, many research projects have focused on the development of

efficient TCC connection systems, pursuing three main goals:

� High connection stiffness: This allows for an effective activation of the composite action,

leading to high bending stiffness and load-bearing capacity of the TCC member.

� Ductility: A brittle failure of the structure without any warning can be avoided if the

connection is ductile. The robustness of the TCC slab improves if the connection system

allows for a force redistribution.

� High load-bearing capacity: The connectors have to be strong enough to transmit the

shear forces at the interface between timber and concrete.

A comprehensive literature research on all available connection systems for TCC slabs was

carried out within the framework of COST Action FP1402 / WG 4 [21], partly based on a

publication by Monteiro et al [58]. Approximately 60 publications were grouped in the following

three categories, using the number of publications per category to quantify how much research

had been done in the respective fields:

� Dowel-type fasteners (45%)

� Notches or notches combined with steel fasteners (33%)

� Other connection systems (22%)

The first category includes screws and glued-in rods (both vertical and inclined), dowels, nails,

bolts, staples and other metallic connectors. Most research within this category has focused on

screws, nails and dowels, as the use of these fasteners was already well-established in timber-

to-timber connections. Dowel-type fasteners typically show low to medium connection stiffness

and load-bearing capacity and often exhibit relatively high ductility. Dowel-type fasteners were

tested and described by many authors, e. g. Dias [17], Dias et al. [19; 20], Frangi [30], Gelfi et

al. [32] and van der Linden [90]. A frequently observed characteristic of dowel-type fastener is

their pronounced nonlinear load-slip behaviour [18].

Notched connections are usually produced by milling cutouts in the timber section. They

show very high stiffness and load-bearing capacity. However, their failure mode is brittle in

many cases and they provide no resistance against vertical gap opening. Therefore, notches are

often combined with vertical steel fasteners to mitigate these issues, which has been a subject
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of controversial discussion among researchers in the past decade. Ductile failure of notches has

been observed by Frangi & Fontana [31] and Boccadoro [4]. Among others, Michelfelder [54]

and Kudla [46] investigated the structural behaviour of notches in TCC structures.

A large variety of other connection systems have been investigated such as friction based con-

nections [48], direct gluing of timber and concrete [8; 41; 70; 75; 85] or other special proprietary

systems. The numbers of publications per connection category given above do not necessarily

reflect the use of these connection systems in practice but they can be used as a rough indicator

for that [21].

TCC systems using beech LVL

Most well-established TCC systems use timber elements made of standard-strength spruce. This

typically results in a structure with a relatively thin concrete slab, i.e. a ratio of concrete to

timber height h1/h2 < 1. In general, if linear timber elements are chosen (Fig. 2.2a), the ratio

h1/h2 is lower than with planar elements (Fig. 2.2b). In both cases, the relatively thin concrete

section is almost entirely subjected to compressive stresses and therefore, concrete cracking does

not play a significant role in these systems.

For a long time, the use of high performance wood-based materials such as beech LVL

in TCC slabs was not a focus in research because such a system would not have resulted in

an economically competitive solution. Only in the past decade, with the start of industrial

production of BauBuche on a large scale, the cost of beech LVL dropped substantially and

researchers started investigating the use of this material in TCC slabs.

A planar system with beech LVL plates (BauBuche Q) and notches as connectors was devel-

oped by Boccadoro [4]. This research project strongly focused on the development of a notched

connection that is able to exhibit plastic deformations at failure. The geometry of the notches

was chosen such that a ductile timber compressive failure in the notch front is governing and any

other brittle failures can be excluded. This ductile failure mechanism was shown both in local

shear tests as well as in bending tests [6] and an analytical model was developed for predicting

the load-bearing behaviour of a single-span beam [7]. Large global plastic deformations in the

bending tests (mid-span deflection) were only observed if vertical gap opening was prevented by

installing external vertical end-to-end reinforcement [6]. Furthermore, the local shear transfer

close to the notches was investigated [5]. Other aspects relevant for the use in practice such as

the prediction of deformations and dynamic behaviour were not studied in detail.

A similar system with notched connection was tested by Mönch [57], using glulam made

of beech LVL, resulting in a vertical orientation of the laminations. The same notch depth of

15 mm as in [4] was used and additional vertical screws were installed in the notches. Ductile

timber compressive failure in the notches was observed, accompanied by vertical gap opening

and followed by a brittle combined bending-shear failure in concrete after small global plastic

deformations.

Linear TCC systems using beech LVL were investigated by Yeoh et al. [93; 92] and later by

Sebastian et al. [73; 74]. While in the former study vertically oriented 60 – 120 mm thin LVL
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boards were used, the latter investigated the use of glulam joists made of beech LVL with a

horizontal orientation of the laminations. In both research projects, the structural behaviour

was examined in double-shear push-out tests and bending tests. Yeoh et al. investigated three

different connection types: rectangular and triangular notches combined with a vertical screw

as well as staggered toothed metal plates. In contrast, Sebastian et al. focused on a connection

using screws, varying several parameters such as different inclinations of the screws, arrangement

as single screws or as pairs in X-formation, using fully threaded or partially threaded screws

and different push-out test setups with concrete in compression or in tension, corresponding to

the situation in sag and hog zones in a continuous TCC beam.

The superior strength of beech LVL compared to glulam made of spruce allows for a signifi-

cant reduction of the timber cross-section. In the case of a design with linear timber elements,

the concrete section is still thin compared to the timber height (h1/h2 < 1). However, the

ratio h1/h2 increases substantially if planar elements made of beech LVL are used, ranging from

2.0 [57] up to 4.0 [6]. While the bending and tensile strength of beech LVL is around 2.5 – 3 times

higher than in spruce glulam GL24, its MOE is only 10 – 20% higher. Therefore, the necessary

bending stiffness can only be achieved with a certain total height of the TCC member. However,

in TCC slabs with high h1/h2 ratios, typically more than half of the concrete section is cracked.

While cracked concrete does not significantly contribute to the bending stiffness, it makes the

structure relatively heavy, similar as in classical reinforced concrete slabs.

The fact that the use of high performance wood-based materials in TCC slabs has been

studied only in recent years explains why concepts with a lightweight interlayer between timber

and concrete have not been a focus of research so far. Adding such an interlayer is a promising

strategy especially in TCC slabs with a high-strength timber section. This is because, in these

cases, the lightweight interlayer replaces a part of the cracked concrete section.

TCC systems with steel tube connection

The french construction company Paris Ouest started developing a proprietary TCC system

called Sylvabat in the late 1980’s, using linear timber members and steel tubes as a connector.

The company obtained an Avis Technique, allowing them to use this system in construction

projects in European and Overseas France. This document has been revised several times, most

recently in 2018 [9]. Fig. 2.3 shows cross-section drawings of this TCC system. The steel tubes

have a diameter of 30, 50 or 70 mm and a wall thickness of 2 mm. A vertically-guided drilling

machine is used to mill ring-shaped cutouts of 40 mm depth and a diameter 0.4 mm smaller than

the used steel tube to achieve a form-fitting connection without using any glue. This production

step is done either on site or in the factory, where CNC machining can be used as an alternative.

A formwork of max. 25 mm thickness is installed and concrete is always casted on site. The

formwork is either continuous (Fig. 2.3a) or discontinuous (Fig. 2.3b), which has an influence on

the connection stiffness and shear capacity. The structural behaviour of the connection system

was studied experimentally. No detailed test report is publicly available, but design values are

given for the connection stiffness and shear capacity (Tab. 2.2).



2.2. One-way spanning timber-concrete composite slabs 15

(a) (b)

(c)

Fig. 2.3: TCC system Sylvabat, with (a) continuous and (b) discontinuous formwork at the location of

the connectors, and (c) a design option with an insulation layer, reprinted from [9].

Tab. 2.2: Mechanical properties of the steel tube connection Sylvabat according to [9], valid for timber

beams with a density ρ ≈ 450 kg/m3.

Steel tube diameter Formwork ∗ Stiffness Design shear capacity

D [mm] Kser [kN/mm] Rd [kN]

30 d 88.2 14.3

c 29.4 10.3

50 d 49.0 25.0

c 55.3 19.6

70 d 49.0 31.5

c – –

∗ c = continuous (Fig. 2.3a), d = discontinuous (Fig. 2.3b)

An option including an interlayer made of isolation material is also mentioned in the docu-

ment (Fig. 2.3c). According to the authors, this design may be chosen for the following reasons:

(a) improved acoustic and thermal insulation properties and/or (b) increased stiffness to mass

ratio. In this design, the insulation interlayer is disrupted at the location of the timber joists

(Fig. 2.3c), leaving a concrete beam of the same width as the timber joist or at least 30 mm

wider than the diameter of the steel tubes.
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According to the Avis Technique, this TCC system has been used in over a thousand con-

struction projects, building a total floor area of approximately 500’000 m2. Applications covered

the refurbishment of old timber slabs as well as the construction of new buildings.

Lukaszewska et al. [52] investigated a number of potential solutions for connecting off-site

prefabricated concrete slabs to timber beams on the construction site. Among these, two con-

nector types are similar to the steel tube connection investigated in the scope of this thesis:

� Connector ‘SST + S’ (Fig. 2.4a – 2.4c): A 20 mm diameter, 47 mm long steel tube with a

welded flange is cast into the concrete slab and connected to the timber beam using a

20× 120 mm hexagon head coach screw.

� Connector ‘GDF’ (Fig. 2.4d – 2.4f): A 20 mm diameter steel dowel with two flanges is cast

into the concrete slab and connected to a hole in the timber beam using epoxy glue.

(a) (b) (c)

(d) (e) (f)

Fig. 2.4: Selection of connection systems investigated by [52], connector ‘SST + S’: (a) drawing, (b) in

formwork before concreting and (c) after connection with timber beam; connector ‘GDF’: (d) drawing,

(e) in formwork before concreting and (f) prefabricated concrete slab before connection with timber beam;

reprinted from [52].

Push-Out tests were performed with all connectors to investigate their load-slip behaviour.

Type ‘SST + S’ showed the lowest stiffness of all tested connectors whereas type ‘GDF’ showed

a medium stiffness. Both connection types showed a pronounced nonlinear load-deformation

curve, which is typical for dowel-type fasteners [18], and a very ductile failure. Despite its lower

stiffness, type ‘SST + S’ was chosen for further testing rather than type ‘GDF’, mainly due to

concerns about the quality of application and curing of epoxy glue on the construction site.
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2.2.2 Calculation models

The load-bearing behaviour of TCC structures is strongly affected by the connection stiffness.

Fig. 2.5 illustrates this influence using two limit cases. If no connection is present, no shear

forces can be transmitted between the partial sections of the composite member and therefore,

an external bending moment is carried entirely by the bending moments in the partial sections

Mi. In the case of a rigid connection, no slip occurs between the partial sections and a significant

portion of the external bending moment is carried by the pair of normal forces N · e. Both

maximum strain (and stress) as well as cross-section curvature are minimal in this structurally

optimal case. However, in contrast to steel-concrete composite structures, such a rigid connection

is difficult to implement in TCC structures. Therefore, flexible connectors are typically used,

which results in a structural behaviour somewhere in between the two discussed limit cases,

often described as ‘partial composite action’. As a consequence of the connection flexibility, the

assumption that plane sections remain plane after deformation (Bernoulli’s hypothesis) is not

valid for entire TCC members, but only for their individual components.

N

N

M
e

M1

M2

ε

no connection
no composite action

ε

flexible connection
partial composite action

ε

rigid connection
full composite action

M i = Mi,max

N  = 0
M i = Mi,min

N  = Nmax
 < M i < Mi,max

0 < N  < Nmax
Mi,min

M  = M1 + M2 + N·e

χ

χ

χ

χ

χ

Fig. 2.5: Influence of connection stiffness on composite action.

Differential equation

The structural behaviour of composite members with a flexible connection can be described with

a differential equation, as derived by Stüssi [83; 84] in 1943. Solutions for various boundary con-

ditions have been published by many authors (e. g. Natterer & Hoeft [60] and Smith et al. [82]).

While the differential equation allows deriving closed-form solutions, the effort increases sub-

stantially for cases with irregular material properties, loading and support conditions, connector

layout etc.

The γ-method

For practical applications, a number of simplified calculation methods have been developed. The

most widely used is the γ-method, which is closely related to Möhler’s model [56] and described

in Annex B of Eurocode 5 [13]. Its derivation is based on the solution of the differential equation
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for the case of a simple span beam under sinusoidally distributed load with constant cross-section

geometry, material properties and connection stiffness across the entire span (uniform spacing

of the connectors). For these boundary conditions, the solution of the differential equation is

particularly simple and the reduction of the bending stiffness due to the flexible connection can

be described using the γ-factor. As a simplification, the same definition can also be applied

for other boundary conditions such as a simple span beam subjected to uniformly distributed

load. All necessary formulas are given e. g. in Annex B of Eurocode 5 [13] and are applied and

explained in Chapter 6.2 for the geometry of the system described in this thesis.

As discussed by Müller [59], different definitions of the γ-factor have been suggested and used.

While all definitions lead to the same end results if consequently applied, this is a common source

of confusion for engineers using this method. The definition suggested by Möhler [56] is used by

most researchers and was adopted in Annex B of Eurocode 5 [13]. Furthermore, this definition is

also the basis for the long-term models adopted in the final draft of the CEN/TC250/SC5 Tech-

nical Specification on the structural design of TCC structures (hereinafter called TS TCC) [15].

Therefore, this definition is used also in the scope of this thesis.

One of the most common discrepancies between the assumptions of the γ-method and TCC

structures in practice is the distribution of the connectors along the span. While the γ-method

assumes a uniform spacing of the connectors, these are almost always concentrated in areas with

high shear forces (typically near the supports) to optimise the performance of the TCC member.

Several methods of estimating an equivalent even spacing sef in such cases have been compared

by Michelfelder [54]. She found that using different approaches can significantly influence the

bending stiffness resulting from the γ-method. The most commonly used approximation is the

following, as adopted in the TS TCC [15]:

sef = 0.75 · smin + 0.25 · smax (2.1)

with smin and smax denoting the minimum and maximum connector spacing, valid for cases where

smax ≤ 4 ·smin. A more precise definition of smin and smax is provided by Michelfelder [54], which

is shown in Fig. 2.6 and was used in the scope of this thesis.

The main advantage of the γ-method for practical use is its simplicity and the fact that

all design verifications can be done using analytical formulas. This allows for easy parametric

design optimisation using spreadsheet calculations, as done in many engineering offices.

l/2
smin smax

Fig. 2.6: Definition of minimum and maximum connector spacing according to [54].
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Strut-and-tie models

With the increasing usability and popularity of FEM software, new calculation approaches

were developed on this basis. A well-established and widely used method is the strut-and-tie

model, which was first described by Grosse et al. [33] and Rautenstrauch et al. [65]. The term

strut-and-tie model (presumably translated from the German Stabwerkmodell) is established in

the TCC community [21], although the model actually is a frame, rather than a truss with

struts and ties. Fig. 2.7 shows an example for a single span TCC beam with three notches

per shear area. The timber and concrete chords are modelled as individual beams, connected

with (a) beam elements representing the TCC connectors and (b) hinged rigid beam elements

representing the vertical contact of the two members. A hinge is inserted in the connector

beam element at the height of the interface between timber and concrete, to correctly model

the eccentricity of the connection. The bending stiffness of the connector beam elements is

calculated as follows:

EI∗ =
K

3
·
(
z3

1 + z3
2

)
(2.2)

l/2

z1
z2

(a) connector beam element (EI*)

timber chord (EI2, EA2, GA2)

concrete chord (EI1, EA1, GA1)

(b) hinged rigid beam element

z1
z2

Fig. 2.7: Strut-and-tie model for a single span TCC beam with three notches per shear area.

The main advantages of strut-and-tie models are their flexibility and intuitive interpretation of

the results. Engineers can model the connectors in their precise location and analyse arbitrary

loading and support conditions. The internal forces resulting from the model can be used

directly for the design verifications. In addition, strut-and-tie models are particularly useful for

the following tasks:

� Iterative optimisation of the connector layout for a given loading situation, pursuing an

even distribution of the shear forces in all connectors: Using this technique, both bending

stiffness and load-bearing capacity of the TCC member can be maximised for a given

number of connectors.

� Modelling of multi-span TCC beams: The situation in the hog zones can be accurately

modelled by changing the properties of the concrete chord in these areas. For example, if
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the concrete section is assumed to be fully cracked in the hog zone, the stiffness properties

can be set to EI1 = 0 and EA1 according to the steel reinforcement. This is, however,

an iterative procedure as these stiffness properties influence the distribution of internal

forces and in turn, the resulting length of the hog zone. An example for this procedure is

provided by Müller [59].

� Nonlinear analyses: Strut-and-tie models can be modified such that the nonlinear load-slip

behaviour of the connectors can be considered. A corresponding approach is discussed in

Chapter 6.3.

While the range of application is by far wider compared to the γ-method, strut-and-tie models

require a higher effort and are not as convenient for parametric design optimisation. Further

limitations concern TCC members where significant concrete cracking occurs under positive

bending moments. This is often the case in TCC members with a high concrete to timber height

ratio h1/h2. This topic is analysed in detail in Chapter 6.3.

Other calculation models

The γ-method and strut-and-tie models are by far the most used calculation methods in engi-

neering practice. However, further models have been developed that may be needed in special

situations. If more than two layers are connected with flexible connectors, the shear analogy is

a useful model. This method was developed by Kreuzinger [45] and further work was done by

Scholz [71]. In special cases, full 3D FE models can be used for the analysis of TCC structures.

While this method offers almost unlimited possibilities, the complexity and time effort of such

an analysis is substantial. Therefore, this approach is almost exclusively used in research. A

comprehensive summary and comparison of all available calculation models is provided by Dias

et al. [21].

2.3 Two-way spanning timber-concrete composite slabs

Up to date, almost all TCC slabs are one-way spanning. Only in recent years, a few research

projects started focusing on the development of two-way spanning slabs. So far, all of these

research projects focused on composite slabs using CLT made of spruce.

In 2013, the American company Skidmore, Owings & Merrill, LLP (SOM) started a research

project with the goal to develop a structural system for high-rise buildings using mass timber

as the main structural material [38; 80]. The concept development focused on architectural,

structural, economical and ecological aspects and includes solutions for the vertical elements and

the floor slabs. Based on a comparison of different floor slab types, the authors concluded that a

two-way spanning CLT-concrete composite slab would be best suited to meet the requirements

of such a building. The concept is intended to be used in multi-span systems to optimise the

structural behaviour regarding deformations and vibrations. The structural behaviour of this

TCC slab was investigated in an extensive experimental campaign by Higgins et al. [35] and

SOM [81]. The following four test series were carried out in 2017:
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� Uniaxial small scale 3-point bending tests to compare different TCC connection systems

� Biaxial small scale tests to determine the orthotropic stiffness values of the TCC slab

� Uniaxial full scale 4-point bending tests with clamped supports to investigate the load-

bearing behaviour in multi-span systems

� Uniaxial full scale long-term tests to investigate the creep behaviour

The biaxial small scale tests were performed on three identical quadratic specimens of approx-

imately 2.4 m side length. The CLT and concrete thickness was 171 and 57 mm, respectively.

Inclined self-tapping screws were chosen as connectors. Two different test setups were used to

determine all orthotropic stiffness parameters of each specimen under service loads. The bending

stiffness in both load-bearing directions was measured in a uniaxial 3-point bending test setup.

The torsional stiffness was obtained by supporting three corners of the specimen and applying a

point load on the fourth corner. All stiffness parameters were determined under positive (con-

crete in compression) and negative (concrete in tension) bending moments, resulting in a total

of six values per specimen.

For a prediction of the biaxial load-bearing behaviour of the CLT-concrete composite slab,

the authors used an FE model with orthotropic plate elements. The bending stiffness values in

both load-bearing directions for the orthotropic stiffness matrix were calculated independently,

using the γ-method. This was done for both positive and negative bending moments, achieving

good agreement with the test results. In the FE model, the positive and negative bending

stiffness values were iteratively assigned to the sag and hog zones of the multi-span slab. The

authors do not give any recommendations with regard to the calculation of the torsional stiffness.

A similar two-way spanning CLT-concrete composite slab was developed and investigated by

Loebus & Winter [50]. The most important results of this research project are summarised by

Loebus et al. [49]. Two different concepts for the shear connection between CLT and concrete

were pursued: inclined self-tapping screws and rectangular notches.

In the biaxial stress field of a two-way spanning TCC slab, the direction of the principal shear

force varies. Investigating the influence of this varying shear force direction on the connection

behaviour was one of the main goals of the research project. Double-shear push-out tests and

FEM analyses were carried out for both notches and inclined screws with varying force direction.

In the case of notches, the authors concluded that it is important to always activate the CLT

layers parallel to the grain, leading to different notch depths depending on the shear force

direction. In the case of inclined screws, the conclusion was that all connectors should be aligned

along the direction of the principal shear forces. A spring model was suggested to account for

the directional dependency of the connection stiffness in the case of inclined screws.

The torsional stiffness was investigated in a test setup identical to the one used in the research

project by SOM [35; 81], on quadratic specimens of 2.1 m side length. A significant reduction

of the torsional stiffness was observed after concrete cracking occurred. No ultimate failure was

reached as the experiments were stopped at a deflection of the loaded corner of 50 mm.
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The global load-bearing behaviour of the two-way spanning TCC slab was investigated in a

small scale biaxial test. Four quadratic specimens of 3.5 m side length were loaded in a test setup

that is the biaxial equivalent of a 4-point-bending test setup (hinged line supports on all sides,

point loads at 1/3 and 2/3 of the span). Both connection concepts (notches and inclined screws)

were investigated. According to the authors, all specimens showed high stiffness and load-bearing

capacity. Limited ductility was observed before ultimate failure occurred due to combined

tension and bending in the CLT element. FEM analyses were performed to compare the load-

bearing behaviour of the two-way spanning TCC slab with a one-way spanning equivalent. This

comparison confirmed the high potential of two-way spanning TCC slabs.

Another similar two-way spanning CLT-concrete composite slab was developed by the Swiss

companies Pius Schuler AG and Schilliger Holz AG [72]. The shear connection between CLT

and concrete is achieved by gluing 20 mm thick timber blocks on the CLT surface. Brittle shear

failure in the glue line between CLT and timber blocks was governing the load-bearing capacity

of the TCC slab in experiments. This slab system has already been implemented in a few

residential buildings in Switzerland.

In all of the above-mentioned studies on two-way spanning TCC slabs, a significant increase

in stiffness was observed compared to a one-way spanning alternative. Given that the design

of TCC slabs is typically governed by deformation or vibration criteria, this result confirms the

great potential of two-way spanning TCC slabs.



Chapter 3

Connection shear tests

3.1 Introduction

This chapter covers the shear tests that were conducted to study the behaviour of the steel tube

connection used in the considered TCC slab concept. The main objectives of these tests were:

� Investigating the stiffness, shear capacity and ductility of the connection

� Understanding the structural behaviour and the governing failure mechanisms

� Studying the influence of various parameters on the connection behaviour

� Providing empirical data as an input for the uniaxial and biaxial bending models

Three series of push-out tests were conducted. Series A (12 specimens) focused on the connection

concept development. A considerable number of parameters were varied as an experimental basis

to choose the best design for further tests. In series B (8 timber specimens) and C (8 concrete

specimens), the structural behaviour of the final connection concept was further investigated.

The main findings are presented and discussed in this chapter. A detailed report of all conducted

experiments is provided in [44].

3.2 Materials and methods

3.2.1 Specimens

The investigated TCC slab concept contains three different connection types, which is shown in

Fig. 3.1. All of these connection types were investigated in separate experiments. Connection

type 2 only occurs if a construction process with cast-in situ concrete is chosen. In the case of

full prefabrication, an upper beam is not necessary and thus, only types 1 and 3 occur in the

structure. As towards the end of this research project, full prefabrication was considered to be

the more economical option, this chapter focuses mainly on connection types 1 and 3.

The beech LVL boards used for all timber specimens were produced by the company Pollmeier

GmbH in Creuzburg. At the time of the first test series (series A), plates thicker than 40 mm
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were not available. Therefore, the specimens were manufactured by block gluing several plates

of 40 mm thickness. At the time of test series B, plates of 60 mm could be used for the side

members without block gluing, which represents the situation in the TCC slab more accurately.

Further details on the used materials are given in Tab. 3.1.

type 1

type 3

(a)

type 1

type 2

(b)

type 1

type 3type 2

(c)

Fig. 3.1: Connection types in different concept versions of the TCC slab: (a) full prefabrication or

(b) & (c) using cast-in-situ concrete (construction and final state); connection type 1: steel tube in beech

LVL, type 2: steel tube penetrating upper beech LVL beam, type 3: steel tube in concrete.

For the specimens with type 3 connections, concrete was ordered according to the specifi-

cations given in Tab. 3.1. All other test series in the scope of this research project were done

with concrete strength class C30/37. Time constraints made it necessary to test the specimens

already after eight to nine days. Therefore, strength class C35/45 was chosen to compensate for

the shorter hydration time. Concrete tests were performed to determine the MOE according to

SIA 262/1 [77], the cylinder compressive strength according to EN 12390-3 [11] and the splitting

tensile strength according to Chen [16]. A detailed report of these tests is provided in [44].

Tab. 3.2 shows that the measured strength values are as expected for concrete C35/45 at this

age. However, the tested samples reached only a third of the expected MOE value, which will

be discussed in Chapter 3.3.4.

The geometry of all specimens is depicted in Fig. 3.2 and the chosen set of specimen pa-

rameters is summarised in Tab. 3.3. The geometry was chosen such that symmetrical vertical

loading was possible in the test setup (Chapter 3.2.2). Consequently, each specimen contained

four identical steel tube-timber or steel tube-concrete connections. In the specimens with type 2

connections, the shape of the middle member was modified accordingly. Every specimen was

given a name consisting of the test series (A,B,C), connection type (1,2,3) and an ascending

number per test series, e. g. B-2-4. In order to get an overview of the influence of different pa-

rameters with as few specimens as possible, all test series were based on the following principle:

In each specimen group, one reference configuration was chosen (marked with ◦ in Tab. 3.3).

All other specimens were used to vary one of the parameters at a time (bold print in Tab. 3.3),

while the other parameters remained unchanged with regard to the reference configuration.

Connection type 1 is usually fabricated using a CNC milling machine (Chapter 1.3). In this

case, a ring is cut out of the LVL plate, leaving an inner tenon in place. The specimens of test

series B were fabricated like this (Fig. 3.3a). Due to limitations in the fabrication facility at the

time of test series A, an alternative construction process had to be chosen. Instead of removing
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only a ring, a full cavity was cut out (Fig. 3.3b). This modification allowed for a fabrication in

two steps. First, a hole was drilled in one of the two LVL plates by means of core drilling. In

a second step, this plate was block glued to the other LVL plate. Specimen A-1-3 presents an

exception. In this case, the core was put aside, reduced to a smaller diameter and glued to the

base of the cavity (Fig. 3.3c).

Tab. 3.1: Materials used in the push-out specimens.

Material Description Details

BauBuche Q Thickness 40 mm

(series A) Veneer layout ||| − |||||| − |||
Cross-layer ratio 14%

BauBuche Q Thickness 60 mm

(series B) Veneer layout ||| − || − ||||||| − || − |||
Cross-layer ratio 19%

Concrete Ordered quality C35/45, self-compacting (SCC)

(series C) Max. aggregate size 16 mm

Admixture MasterLife SRA 895 (2% of cement mass)

Concrete age 8 (concrete tests) and 8 – 9 days (push-out)

Reinforcement Standard mesh K335 B500A, ∅ 8 @ 150 mm

Steel tubes ROR 60.3/2.0 S235, welded

ROR 60.3/3.6 S235, welded

ROR 60.3/8.0 E355

ROR 82.5/3.6 E355, seamless

ROR 82.5/8.0 E355

ROR 101.6/3.6 S235, welded

RRW 80×80/3.6 S355, hot-rolled

Grout types Sikadur®-Pronto 12 Acrylic repair mortar and grout [78]

Sikadur®-42 HE High performance epoxy grouting system [79]

Tab. 3.2: Results of concrete tests, 8 days after production.

Mean value [MPa] COV n

Modulus of elasticity E1 9’800 5% 3

Cylinder compressive strength f1,c 34.6 9% 3

Splitting tensile strength f1,t,sp 2.6 13% 4
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Fig. 3.2: Geometry of the push-out specimens, depth (out of plane) of all specimens: 220 mm.
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Tab. 3.3: Parameters of the push-out specimens.

Name Conn. Grout Embed- Space Steel tube Inner Add.

type type ∗ ment between dimensions tenon hor.

depth members support

a [mm] h0 [mm] D / t [mm]

A-1-1.1 ◦ 1 none 40 80 ROR 82.5/3.6 no no

A-1-1.2 ◦ 1 none 40 80 ROR 82.5/3.6 no no

A-1-2.1 1 g1 40 80 ROR 82.5/3.6 no no

A-1-2.2 1 g2 40 80 ROR 82.5/3.6 no no

A-1-3 1 none 60 80 ROR 82.5/3.6 yes no

A-1-4 1 none 40 0 ROR 82.5/3.6 no no

A-1-5 1 none 40 40 ROR 82.5/3.6 no no

A-1-6 1 none 40 120 ROR 82.5/3.6 no no

A-1-7 1 none 40 80 ROR 60.3/3.6 no no

A-1-8 1 none 40 80 ROR 60.3/2.0 no no

A-1-9 1 none 40 80 ROR 101.6/3.6 no no

A-1-10 1 none 40 80 RRW 80/3.6 no no

B-1-1.1 ◦ 1 g2 40 80 ROR 82.5/8.0 yes yes

B-1-1.2 ◦ 1 g2 40 80 ROR 82.5/8.0 yes yes

B-1-1.3 ◦ 1 g2 40 80 ROR 82.5/8.0 yes no

B-1-2 1 g2 40 120 ROR 82.5/8.0 yes yes

B-1-3 1 g2 40 80 ROR 60.3/8.0 yes yes

B-2-4 2 g2 60 80 ROR 82.5/8.0 no yes

B-2-5 ◦ 2 none 60 80 ROR 82.5/8.0 no yes

B-2-6 2 none 60 80 ROR 60.3/8.0 no yes

C-3-1.1 ◦ 3 - 40 80 ROR 82.5/3.6 - yes

C-3-1.2 ◦ 3 - 40 80 ROR 82.5/3.6 - yes

C-3-1.3 ◦ 3 - 40 80 ROR 82.5/3.6 - no

C-3-2 3 - 30 80 ROR 82.5/3.6 - yes

C-3-3 3 - 50 80 ROR 82.5/3.6 - yes

C-3-4 3 - 60 80 ROR 82.5/3.6 - yes

C-3-5 3 - 40 120 ROR 82.5/3.6 - no

C-3-6 3 - 40 80 ROR 60.3/3.6 - yes

∗ Grout types: g1 = Sikadur®-Pronto 12, g2 = Sikadur®-42 HE
◦ Reference configuration

After the preparation of the timber members (connection types 1 and 2), the specimens were

assembled. In the case of a grouted connection, the assembly had to be split up into several
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phases to ensure that the connection is fabricated in the same way as in a real structure, with

the steel tubes always in a vertical position. In contrast to the timber specimens, the concrete

specimens (connection type 3), were produced with the steel tubes in a horizontal position. A

formwork was fabricated with openings for the steel tubes (Fig. 3.4). To make sure that the

concrete would fill the steel tubes, a self-compacting concrete (SCC) was used.

(a) (b) (c)

Fig. 3.3: Production differences of connection type 1 specimens in (a) test series B, (b) test series A

and (c) specimen A-1-3.

(a) (b)

(c)

Fig. 3.4: Production of concrete push-out specimens: (a) formwork and concrete cylinders, (b) close-up

of one specimen before casting, (c) formwork and concrete cylinders after casting of concrete.
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3.2.2 Test setup

The double-shear push-out test is a well-established method to determine the load-bearing be-

haviour of TCC connectors [15]. In conventional connection systems, there is no or only a very

small gap between the two structural members (h0 ≈ 0). The investigated TCC structure,

however, includes a substantial gap. Therefore, the classical double-shear push-out test setup

(described e. g. in the TS TCC [15]) had to be modified. Fig. 3.5 and 3.6 show the used test

setup.

The experiments were conducted on the universal testing machine Schenck Hydropuls 1600 kN

(Fig. 3.6a) in the laboratories of ETH Zurich. The vertical forces were introduced in such a way

that potential shear failures in the timber member were not excluded by the boundary conditions

of the test setup.

Due to the force eccentricity in the tested connection, horizontal supports for the outer

members of the specimen were necessary. At the bottom, these were realised using square full

steel profiles (45× 45 mm) connected with two M13 threaded rods ( 7 and 8 in Fig. 3.5).

At the top, horizontal displacements were prevented using steel profiles LNP 80× 8 mm coated

with PTFE plates ( 4 ). Similar PTFE plates were glued to the specimen in these locations

to minimise friction forces. In test series A, these supports were installed only on the inner

side, because this is where horizontal displacements were expected. During the tests, however,

displacements towards the outside were observed in some cases. Therefore, additional outer

supports were installed in test series B and C, preventing the outer members from tilting.

To investigate the influence of this modification, one of the three identical reference config-

uration specimens in both test series B and C was tested in the original test setup without the

additional supports. No substantial influence on stiffness, load-bearing capacity or ductility was

observed. Specimen C-3-5 was also tested in the original test setup (Tab. 3.3), because given its

large width, the additional supports could not be attached to the steel base plate.

To ensure that the middle timber member would remain perfectly vertical throughout the

test, four guiding supports were installed in the middle of the bottom base plate ( 6 ). This

was important because an inclination of the middle timber member could have led to deviation

forces and asymmetrical loading of the two steel tubes.

3.2.3 Measurements and test procedure

The cylinder force was measured using the internal load cell of the testing machine. Two NDI

Optotrak Certus position sensors were installed to record the deformations on both front and

rear side of the specimen. Strobers (Fig. 3.6) were glued to both the specimen and the testing

machine, which allowed for a precise 3D tracking of these points throughout the experiments.

Their locations are shown in Fig. 3.5. Depending on the specimen type, 16 – 24 strobers were

used on each side. Additionally, the distance between the two steel base plates was measured

using a linear variable differential transformer (LVDT), confirming the accuracy of the NDI

measurement.
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. max. possible deformation: 60 mm

1

2

3

4

5

6

7

8

9

10 lower support of testing machine
(fixed)

upper support of testing machine
(moving vertically)

upper steel base plate

lower steel base plate

support construction inhibiting
vertical and horizontal deformation

4 guiding supports inhibiting
horizontal deformation, LNP 80x8
coated with 4mm PTFE plates

NDI strobers glued to specimen
for deformation measurement

horizontal supports, LNP 80x8
coated with 4 mm PTFE plates
additional outer supports in
test series B and C

steel plates for introduction of
vertical force without excluding
potential shear failures in timber

threaded rod M13

Fig. 3.5: Test setup used for double shear push-out experiments.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.6: Photos of the test setup: (a) testing machine, (b) overview with specimen A-1-3, (c) 4 addi-

tional outer support in series B and C, (d) 3 introduction of the vertical force, (e) 7 bottom support

construction and (f) 6 guiding supports for the middle member.
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The tests were conducted according to the following procedure: After centering the specimen

in the testing machine, all horizontal supports ( 4 and 6 in Fig. 3.5) were positioned and

tightened. The lower support construction ( 8 ) was tightened. This was done by hand, making

sure there would be no slip, however avoiding any substantial post-tensioning. The used loading

protocol is based on the recommendations given in EN 26891 [10]. The specimen was loaded at

a constant displacement rate (Fig. 3.7), so that the post-peak behaviour of the connection could

be observed as well. Depending on the expected stiffness of the specimen, the displacement rate

of the first loading/unloading cycle was 0.01 or 0.02 mm/s. For the second loading ramp, the

displacement rate was doubled. In a few cases, additional unloading and reloading cycles were

performed after the maximum force had been reached to assess the remaining elastic connection

stiffness in this state. The experiment was stopped when either a brittle failure led to a significant

force drop or when the capacity of the test setup was reached at a displacement of 60 mm.

(a) (b)

Fig. 3.7: Typical (a) displacement-time and (b) force-time diagrams.

3.2.4 Data evaluation

In the investigated TCC connector, a large part of the deformation occurs in the embedded

part of the steel tube in the timber or concrete member. Using a rotational spring is the most

practical way to account for the connection stiffness in a calculation model (e. g. for a TCC

beam using this connection system). Therefore, describing the moment-rotation behaviour of

the connection was one of the main goals of this test series. However, as neither the bending

moment nor the rotation in the connection could be measured directly, they had to be calculated

from the vertical force T and the relative vertical displacement between the middle member and

the side members, hereinafter called relative displacement parallel to the beam axis ∆u. Fig. 3.8

shows the mechanical model that was used for this calculation. The following simplifications

were made to calculate the moment-rotation behaviour of the connection:

� The location of the rotational spring is assumed at the base of the steel tube (Fig. 3.8b)

for connection types 1 and 3. Connection type 2 is always symmetrical, thus the spring

location is assumed in the middle of the timber member.
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Fig. 3.8: Mechanical model used to calculate the moment-rotation behaviour of the tested connection:

(a) position of the supports in the test setup, (b) simplified model and position of the rotational springs

and (c) free body diagram.
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� The force acting on the middle member is assumed to be equally distributed to the left

and right connection (Fig. 3.8c).

� The part of the deformation that is caused by bending and shear in the steel tube is calcu-

lated using Timoshenko beam theory. In the case of concrete filled steel tubes (connection

type 3), both steel and concrete sections are considered in the calculation of EIT and GAT.

The shear area used in the calculation of the steel tube shear stiffness GAT is estimated

according to Eurocode 3 [14], section 6.2.6(3):

Av = 2A/π = 2t · (D − t) (3.1)

� The deformation of the outer timber or concrete members due to bending and shear is

not accounted for in the calculation of the connection moment-rotation behaviour. This

is equivalent to assuming that all timber or concrete members are rigid (Fig. 3.8c). Small

deformations of the outer members were measured, mainly towards the end of the ex-

periments (post-peak). These deformations could lead to a slight overestimation of the

calculated rotation ϕ (Eq. 3.3). However, their influence on the moment-rotation behaviour

in absolute terms is estimated to be negligible.

Based on the described mechanical model and its assumptions, the connection moment-rotation

behaviour is calculated as follows:

M = T · lT
2

(3.2)

ϕ =
∆u

lT
−

T l2T
12EIT

− T

GAT
(3.3)

Linear regression was performed in the linear part of the force-displacement and the moment-

rotation curves (approximately between 0.1 – 0.4Tu) to calculate both global stiffness ks = T/∆u

and local rotational stiffness km = M/ϕ of the connection. This was done on both the initial

loading and reloading curve, resulting in four linearised stiffness values ks,1, ks,2, km,1 and km,2.

More details on the regression are given in [44].

3.3 Results and discussion

3.3.1 Introduction

The recorded NDI measurement data allowed for an in-depth analysis of the deformations that

happened throughout the loading tests. A detailed report of each experiment including all the

observations and analyses made is given in [44]. In the following part of this thesis, the most

important results are presented and discussed separately for the three investigated connection

types (Chapters 3.3.2 – 3.3.4), focusing on the observed structural behaviour and the influence

of the studied parameters. In Chapters 3.3.5 – 3.3.7, additional aspects concerning all three

connection types are discussed.
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3.3.2 Connection type 1: steel tube in beech LVL

Structural behaviour and observed failure mechanisms

In the studied connection, a shear force T and a bending moment M have to be transmitted

from the steel tube to the timber member. The shear force is transmitted via contact pressure

at the interface with the timber (Fig. 3.9). In almost all specimens, the resulting compressive

stresses in the timber led to inelastic deformations at the front side of the cutout (Fig. 3.10b).

This timber compressive failure is the main reason for the nonlinear load-bearing behaviour

and the ductility that was observed in most connection tests. Depending on the steel tube wall

thickness t, local buckling was observed at the same location in the steel tube (Fig. 3.9a and

3.10a). Buckling is not expected to occur in the real structure when the steel tube is filled with

concrete. Therefore, in test series B, the wall thickness t was increased in order to exclude this

failure mechanism.

The bending moment from the steel tube is transmitted with a combination of two force pairs:

a pair of contact forces (horizontal forces in Fig. 3.9) and a pair of shear forces at the interface

(vertical forces in Fig. 3.9). In a form-fitting connection without grouting, shear forces can be

transmitted only by friction and are therefore limited. In a grouted connection, a larger portion

of the bending moment can be transmitted in this way, leading to a higher stiffness but also to

higher tensile stresses perpendicular to the grain, especially on the rear side of the connection.

In many cases, this resulted in a combined failure due to shear and tension perpendicular

to the grain on the rear side of the connection (Fig. 3.10d). Another shear failure was

observed on the front side of the connection due to the introduction of the main shear force

from the steel tube (Fig. 3.9b and 3.10c). This failure usually occurred in a cross-layer, where

the shear strength is lowest (rolling shear).

T

local buckling
of steel tube

rear side front side

(a)

rear shear failure
combined with tension

perpendicular to the grain

compressive
failure (ductile)

front shear
failure

(b)

Fig. 3.9: Illustration of the forces acting in type 1 connections and observed failure mechanisms (a) in

the steel tube and (b) in the timber part.

The typical force-displacement behaviour of test specimens with type 1 connections was linear

at forces up to 0.3 – 0.5Tu, after some initial slip in case of a form-fitting connection without

grouting. At this load level, inelastic compression deformations (and in some cases steel tube
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buckling) started occurring. These deformations increased gradually, leading to a pronounced

nonlinear behaviour and eventually to a plateau in the force-displacement diagram. The above-

described shear failures usually happened after reaching the maximum force, resulting in a force

drop and limiting the deformation capacity of the connection. Tab. 3.4 lists the main results of

all type 1 connection tests.

(a) (b)

(c) (d)

Fig. 3.10: Photos of observed failure mechanisms in push-out tests on type 1 connections: (a) local

buckling of steel tube (specimen A-1-3), (b) timber compression deformation (A-1-1.2), (c) front shear

failure (B-1-1.1) and (d) rear shear failure combined with tension perpendicular to the grain (B-1-3).

Form-fitting connection without grouting

Test series A focused on the investigation of a form-fitting type 1 connection without grouting.

The main goal of this preliminary experimental campaign was to quantify the influence of several

parameters on the stiffness, load-bearing capacity and ductility of the connection. The final
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Tab. 3.4: Results of all type 1 connection tests.

Specimen Max. connection Global stiffness Rotational stiffness

name force and moment 1st/2nd loading 1st/2nd loading

Tu Mu ks,1 ks,2 km,1 km,2

[kN] [kNm] [kN/mm] [kN/mm] [kNm/rad] [kNm/rad]

A-1-1.1 54.0 4.32 6.36 15.3 84.4 215

A-1-1.2 51.9 4.15 4.07 10.7 53.4 146

A-1-2.1 33.1 2.65 18.8 25.8 269 386

A-1-2.2 77.8 6.22 45.2 56.5 778 1’060

A-1-3 60.4 6.04 7.69 13.5 165 305

A-1-4 135 5.39 42.9 66.3 150 244

A-1-5 40.5 ∗ 2.43∗ 10.8 28.0 80.5 223

A-1-6 45.8 4.58 3.84 9.37 79.4 204

A-1-7 33.3 2.66 4.32 10.7 58.0 154

A-1-8 18.1 1.45 2.41 9.19 32.4 142

A-1-9 49.5 3.96 7.05 22.6 92.8 317

A-1-10 33.9 2.71 3.05 13.1 39.7 181

B-1-1.1 95.0 7.60 62.0 68.2 956 1’070

B-1-1.2 100 8.02 67.0 70.0 1’050 1’110

B-1-1.3 92.6 7.40 76.3 75.4 1’230 1’220

B-1-2 75.4 7.54 31.2 36.5 720 864

B-1-3 71.1 5.69 32.4 44.9 506 767

∗ Premature shear failure due to insufficient quality of the timber block gluing. Specimen

was reloaded to reach compressive failure in timber at Tu = 77.5 kN /Mu = 4.65 kNm.

type 1 connection concept was chosen based on the results found in this test series and further

investigated in test series B.

The influence of all studied connection parameters on both global force-displacement and

local moment-rotation behaviour is shown qualitatively in Fig. 3.11. Specimens A-1-1.1 and

A-1-1.2 correspond to the reference configuration and are therefore shown in all plots. Specimen

A-1-1.2 had large differences in the production tolerance of the connections on the left and

the right side of the specimen. This led to a significantly lower initial stiffness due to slip on

one side (asymmetric loading). For better clarity in Fig. 3.11, the respective curve was shifted

horizontally and the data before the unloading/reloading cycle are not plotted. The respective

raw data are presented in [44].

Fig. 3.11a and 3.11b show the influence of the embedment depth a on both global force-

displacement and local moment-rotation behaviour. Increasing the embedment depth by 50%
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led to an approximately 40% higher Mu and doubled the rotational stiffness km,1. No significant

influence on the ductility was observed.

The influence of the space between the members h0 was investigated with a subset of five spec-

imens. As expected, this parameter has a significant influence on the global force-displacement

behaviour (Fig. 3.11c). Both stiffness and shear capacity increase with decreasing h0. In spec-

imen A-1-5, a premature shear failure occurred due to insufficient quality of the timber block

gluing. The specimen was reloaded, reaching compressive failure in timber at Tu = 77.5 kN,

Mu = 4.65 kNm (not plotted in Fig. 3.11c and 3.11d).

Specimen A-1-4 was tested as a limit case of the connection system with h0 = 0, allowing for a

comparison with the values given in the Avis Technique describing the Sylvabat TCC system [9].

For a slightly smaller steel tube diameter of 70 mm and a significantly lower mean timber density

of ρ ≈ 450 kg/m3, the given stiffness value is Kser = 49.0 kN/mm and the specified design shear

capacity Rd = 31.5 kN (Tab. 2.2). The measured global stiffness of specimen A-1-4 is in a similar

range (ks,1 = 42.9 kN/mm, ks,2 = 66.3 kN/mm). In terms of shear capacity, a comparison is

difficult as the value given in [9] is a design value. It is, however, to be expected that the shear

capacity of the connection tested in this study (135 kN) is higher than the experimental mean

value determined for [9], due to the superior mechanical properties of beech LVL. Compared to

all other specimens, almost no ductility was observed in specimen A-1-4, due to brittle shear

failure in timber.

Fig. 3.11d and 3.12a show that the chosen mechanical model with rotational springs is

able to decouple the influence of the parameter h0 appropriately, as all specimens show similar

rotational stiffness km, maximum moment Mu and ductility. For the sake of completeness, the

moment-rotation behaviour of specimen A-1-4 (h0 = 0) was also plotted. However, the model

does not make much sense in this case, because the choice of the spring location (Fig. 3.8b) has

a substantial influence on the result if h0 is small. This is confirmed by the significant difference

compared to the other specimens (Fig. 3.11d).

Fig. 3.11e and 3.11f show the results of six specimens with different steel tubes. The influence

of the steel tube diameter on km and Mu is shown in Fig. 3.12b. While the stiffness increases

continuously with larger steel tube diameters, the moment capacity could not be increased for

D > 80 mm. Increasing D with constant t reduces the resistance to local buckling. In contrast

to the reference configuration, the steel tube in specimen A-1-9 (D = 101.6 mm) buckled, which

explains the lower moment capacity. In specimen A-1-8 with a lower wall thickness t = 2 mm,

strong local buckling was observed (Fig. 3.13a), which significantly reduced its load-bearing

capacity and stiffness. The potential use of quadratic RRW profiles instead of round ROR

profiles was investigated in specimen A-1-10. The results show that the connection behaviour

is less advantageous in this case because of stress concentrations in the corners of the timber

cutout (Fig. 3.13b) and early local buckling on the flat side of the steel profile. In addition,

the connection behaviour of quadratic profiles is expected to depend substantially on the shear

force direction, which is an important factor to be considered in two-way spanning slabs, as

discussed by Loebus & Winter [50]. In contrast, the directional dependency in connections with

point-symmetric profiles such as ROR is a function only of the veneer layout in the LVL plate.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.11: Force-displacement and moment-rotation behaviour of type 1 connections without grouting:

influence of (a) & (b) embedment depth, (c) & (d) space between the members and (e) & (f) different steel

tubes.
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(a) (b)

Fig. 3.12: Influence of (a) space between the members h0 and (b) steel tube diameter D (t = 3.6 mm)

on moment capacity and rotational stiffness. The data points that are off the trend line correspond to

specimen A-1-1.2 where tolerance differences led to asymmetric loading and a significantly lower stiffness.

(a) (b)

Fig. 3.13: (a) Strong buckling in specimen A-1-8 with reduced steel tube wall thickness and (b) stress

concentrations in specimen A-1-10 with RRW steel profiles.

Comparison of grouting systems

In addition to investigating the influence of the geometric parameters discussed above, an impor-

tant goal of test series A was to compare the form-fitting connection concept with the alternative

of milling a larger cutout in the timber part and then filling the gap with a grouting system.

Two different grout types were tested. Fig. 3.14 and Tab. 3.4 show the pronounced influence of

grouting on the connection behaviour. The initial slip deformations, typical in form-fitting con-

nections, are effectively eliminated with both of the two grouting systems. This is an important

aspect, because initial slip deformations caused by production tolerances are difficult to quan-

tify and control. As seen in specimen A-1-1.2, these deformations can also affect the effective
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connection stiffness. In addition to this improvement, significant adhesion between the grouting

and the timber surface was achieved in the case of Sikadur®-42 HE. This was well visible after

dismantling the specimen, which took a considerable effort and led to a timber tensile failure

rather than adhesion failure of the grouting (Fig. 3.14d). This adhesion led to a substantial

stiffness increase, with km,1 almost ten times higher and km,2 five times higher than in specimen

A-1-1.1 without grouting. In addition, the load-bearing capacity was increased by 40%.

The grouting system Sikadur®-Pronto 12 allowed for a considerable increase in stiffness as

well, but to a much lesser degree than in the case of Sikadur®-42 HE. The reason for this is

that no significant adhesion with the timber part was achieved with this grouting system. Its

main effect in the connection was the elimination of initial slip and an increase of the effective

steel tube diameter compared to the form-fitting design. This was visible during the experiment

when the entire grouting block was rotated out of the timber cutout together with the steel tube

(Fig. 3.14c). In addition, a compressive failure was observed in the grouting layer, resulting in

a load-bearing capacity 40% lower than in the corresponding form-fitting connection.

(a) (b)

(c) (d)

Fig. 3.14: Comparison of different grouting systems tested in series A: (a) force-displacement and

(b) moment-rotation behaviour, (c) adhesion failure and compressive failure in the grouting of specimen

A-1-2.1 and (d) timber tensile failure perpendicular to the grain after dismantling specimen A-1-2.2.
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Final connection with grouting

Based on the findings in test series A, the final type 1 connection concept was defined as described

in Chapter 1.3, using the Sikadur®-42 HE grouting system. The main reason for this decision

was the high stiffness. In a TCC system with steel tube connection and direct contact between

timber and concrete, such as in the Sylvabat system [9], grouting would not lead to an economical

solution because the connection is already very stiff. In the TCC concept investigated in the

scope of this thesis, however, the additional stiffness provided by the grouting system is extremely

valuable because it allows for an efficient composite action despite the presence of a light-weight

interlayer between timber and concrete.

A set of 5 specimens was tested, using the same material (60 mm thick beech LVL plates

without block gluing close to the connections) and production process (Fig. 3.3a) as in a real

structure. Fig. 3.15 shows the resulting force-displacement and moment-rotation behaviour of

the tested specimens. The obtained stiffness values and load-bearing capacities are listed in

Tab. 3.4. The three reference configuration specimens showed a consistent behaviour, with

all values of Mu and km within ±5% and ±15% of the respective mean value. In all three

tests, inelastic deformations were observed before shear failures occurred on the rear and/or

front side of the connection (Fig. 3.9). These brittle shear failures led to force drops and, from

a more global perspective, a linear softening post-peak behaviour (Fig. 3.15). Compared to

a form-fitting connection without grouting, the deformation capacity was considerably lower.

In specimen B-1-1.2, a post-peak unloading/reloading cycle was performed, showing that the

remaining elastic stiffness in this damaged stage was around a third of the initial stiffness.

(a) (b)

Fig. 3.15: (a) Force-displacement and (a) moment-rotation behaviour of connection type 1 with grouting.

In addition to the 5 specimens from test series B, specimen A-1-2.2 is plotted as well in

Fig. 3.15. The different production procedure of the connection with a full cavity (Fig. 3.3b)

led to a stiffness reduction of 25% in this case. The moment capacity was also lower (−20%),
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which can be explained with the shear failure occurring in the block gluing close to the base

of the connection. The influence of the distance between the members h0 and the steel tube

diameter D was assessed with specimens B-1-2 and B-1-3. In both cases, a similar influence as

in the specimens without grouting was observed.

3.3.3 Connection type 2: steel tube penetrating upper beech LVL beam

Connection type 2 is used only in case of a production process with cast-in-situ concrete. Given

its main purpose is to reduce the deflections of the formwork elements during concrete casting,

achieving a high stiffness is the primary goal in this connection type. Two specimens with

form-fitting connections (as described in Chapter 1.3) were tested, with steel tube diameters

of 80 mm (B-2-5) and 60 mm (B-2-6). As a comparison, one specimen was fabricated with

grouted connections (B-2-4) and D = 80 mm. Fig. 3.16 shows the observed load-displacement

and moment-rotation behaviour and Tab. 3.5 lists the main results.

(a) (b)

Fig. 3.16: (a) Force-displacement and (b) moment-rotation behaviour of connection type 2.

Tab. 3.5: Results of type 2 connection tests.

Specimen Max. connection Global stiffness Rotational stiffness

name force and moment 1st/2nd loading 1st/2nd loading

Tu Mu ks,1 ks,2 km,1 km,2

[kN] [kNm] [kN/mm] [kN/mm] [kNm/rad] [kNm/rad]

B-2-4 115 8.07 53.5 70.2 592 809

B-2-5 85.6 5.99 13.1 27.9 132 290

B-2-6 74.5 5.21 8.08 15.9 81.9 167



44 Chapter 3. Connection shear tests

Similar as in type 1 connections, grouting has a pronounced influence on the load-bearing be-

haviour. Initial slip is eliminated and adhesion leads to a rotational stiffness about 5 times

as high as in the corresponding specimen without grouting. Nevertheless, grouted type 2 con-

nections are not expected to be an economical solution because of their higher cost and time

consumption in the production process.

T
(a)

compressive
failure (ductile)

shear failure

(b)

Fig. 3.17: Illustration of the forces acting in type 2 connections and observed failure mechanisms (a) in

the steel tube and (b) in the timber part.

Fig. 3.18: Shear failure in the right timber member (specimen B-2-5).

The two specimens with form-fitting connections showed a very ductile behaviour due to

compression deformation in the timber. A shear failure occurred only after large deformations

(Fig. 3.17 and 3.18). Compared to a type 1 connection with the same steel tube diameter

and embedment depth (A-1-3), specimen B-2-5 shows a 20% lower stiffness. While in type 1
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connections the steel tube ends in a ring-shaped cutout, in type 2 connections it penetrates the

timber member entirely. In the former case, this leads to higher embedment stiffness close to

the steel tube base, which explains this difference in the test results. The influence of the steel

tube diameter was similar as observed already in type 1 connections.

3.3.4 Connection type 3: steel tube in concrete

Structural behaviour and observed failure mechanisms

In all type 3 connection specimens, a ductile failure mode was observed. The following chapter

describes the observed structural behaviour and explains the load-bearing mechanisms.

The used test setup with horizontal supports both at the lower and upper end of the side

members is statically indeterminate (Fig. 3.8). Equilibrium is achieved with or without a com-

pressive normal force in the steel tube H, leading to different horizontal support reactions HS

and HS − H and different bending moments in the side member. Fig. 3.20a shows the forces

acting on the right side member of a push-out specimen, rotated by 90◦ counter-clockwise, and

the bending moments for the two limit cases H = 0 and H = HS. Because of the symmetry of

the test setup, the middle member of the push-out specimen is not exposed to any significant

bending moments. The boundary conditions in the side members are similar to the situation in

a bending beam in the left half of a simple span setup, as shown in Fig. 3.20d. Therefore, the

observations and analyses in this chapter generally focus on the side members of the push-out

specimens.

Fig. 3.19 gives an overview on the observed crack propagation in the concrete side members.

The first crack occurred when the tensile stresses reached the concrete tensile strength in the

location where the maximum bending moment is expected for 0 < H < HS (Fig. 3.20a). After

this, the observed stiffness decreased, leading to an almost horizontal plateau in the force-

displacement diagram (Fig. 3.21). During this phase, additional cracks developed perpendicular

to the initial crack, as shown in Fig. 3.19b and 3.19e. Eventually, a compressive failure in

concrete occurred, which led to a substantial force-drop, limiting the connection deformation

capacity and denoting the end of the experiment (Fig. 3.19c and 3.19f).

After the first crack forms, the reinforcement bars (placed centrally in the concrete member),

have to take over the tensile force that was carried by concrete tensile stresses before cracking.

In order to explain the structural behaviour of the connection in cracked reinforced concrete,

several truss models have been developed. Fig. 3.20b shows a theoretical truss model, assuming

H = 0. The introduction of the bending moment from the steel tube is idealised with two point

forces ζT and (ζ − 1)T , where ζ is a factor depending on:

� the embedment depth a, defining the lever arm between the two point forces

� the distance between the members h0, defining the ratio of the shear force T and bending

moment M that have to be transmitted in the connection
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The models show both the geometry of the compression and tension struts as well as the graph-

ical force equilibrium of each node, illustrating the magnitude of all forces in relation to the

connection shear force T .

The theoretical truss model shown in Fig. 3.20b is not compatible with the observations

made during the experiment, because one of the compression struts is oriented perpendicular to

the crack shown in Fig. 3.19a and 3.19d. Furthermore, relatively large vertical tensile stresses

in concrete are needed to achieve equilibrium. Redirecting the mentioned compression strut in

the truss model to avoid the cracked area would increase the vertical tensile force even more.

This tensile force explains the second crack that forms in the concrete side member (Fig. 3.19b

and 3.19e).

T
(a)

T
(b)

concrete
crushing

T
(c)

(d) (e) (f)

(g)

Fig. 3.19: Typical observed crack propagation and failure in concrete side member, schematic and

photos of right side member rotated by 90◦ counter-clockwise: (a) & (d) cracks due to tensile stresses

from bending moment, (b) & (e) additional cracks due to transversal tensile stresses, (c) & (f) concrete

crushing and (g) longitudinal crack due to splitting tensile stresses.
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H
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M2N
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Fig. 3.20: Illustration of the compressive (- - -) and tensile (—) forces acting in the side member of

a type 3 connection specimen: (a) beam model representing the uncracked state, (b) theoretical truss

model explaining the cracked state if H = 0 is assumed, (c) truss model representing the cracked state,

for H = HS, with the typology and graphical force equilibrium of all nodes, (d) equivalent situation in a

bending beam.

A new equilibrium state without compression struts in the cracked area can only be found for

H 6= 0. Fig. 3.20c shows a possible truss model for the limit case H = HS. In the perspective

of Fig. 3.20, the main longitudinal reinforcement bars are placed in front and behind the steel
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tube (visible in Fig. 3.3). Therefore, the forces ζT and (ζ − 1)T from the steel tube have to

be redirected outwards, to reach the plane of the reinforcement bars, which is not visible in the

perspective of Fig. 3.20. The resulting transversal tensile forces led to a longitudinal crack in

the side members shown in Fig. 3.19g. After cracking, the respective tensile forces are taken

over by the transversal reinforcement bars.

When the longitudinal reinforcement reaches its yielding force, the connection starts ex-

hibiting plastic deformations. The deformation capacity is limited by a concrete compressive

failure. The graphical force equilibrium of the respective node confirms that the largest concrete

compressive force is indeed in the location where the respective failure was observed.

The magnitude of the steel tube normal force H is unknown in the push-out test and also in a

full scale bending beam, because the system is always statically indeterminate. In the equivalent

area in a bending beam (Fig. 3.20d), the support force HS in the push-out test corresponds to the

shear force in the concrete member. Arriving at the steel tube, this shear force can either remain

in the concrete member, or it can be transferred to the timber beam below. This distribution of

the shear force is difficult to estimate as it depends on the current stiffness of the connection and

can change with increasing load. The crack patterns observed in the push-out tests, combined

with the discussed truss models allow for a qualitative assessment of this behaviour. It can

be assumed that at low loads, a large part of the shear force remains in the concrete member.

Once cracks start to occur, the stiffness of the concrete beam decreases and a substantial part

of the shear force is transmitted through the steel tube, leading to a new equilibrium as shown

in Fig. 3.20c.

Influence of the studied connection parameters

Fig. 3.21 shows the force-displacement and moment-rotation behaviour and Tab. 3.6 lists the

main results of all type 3 connection tests. The graphs in Fig. 3.21 are divided into two subsets,

showing qualitatively the influence of the investigated connection parameters.

The influence of the embedment depth a was investigated with a subset of six specimens.

Fig. 3.21a and 3.21b show that both the global stiffness and shear capacity as well as the

rotational stiffness and moment capacity consistently increase with a larger embedment depth

a. In Fig. 3.22 the main test results of the same subset of specimens are plotted as a function of a,

confirming this influence quantitatively. It is clearly visible that the influence of the embedment

depth a on the reloading stiffness km,2 is more pronounced than on the first loading stiffness

km,1. This aspect will be discussed in the following Chapter 3.3.5. Looking at the truss model

explaining the structural behaviour of the steel tube connection in cracked reinforced concrete

(Fig. 3.20c), this observed influence of the embedment depth a makes sense. Increasing a leads

to a larger lever arm between the point forces that are introduced in the connection, reducing

the magnitude of these forces for constant T and M .
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Tab. 3.6: Results of type 3 connection tests.

Specimen Max. connection Global stiffness Rotational stiffness

name force and moment 1st/2nd loading 1st/2nd loading

Tu Mu ks,1 ks,2 km,1 km,2

[kN] [kNm] [kN/mm] [kN/mm] [kNm/rad] [kNm/rad]

C-3-1.1 52.3 4.18 56.7 138 906 3’440

C-3-1.2 56.1 4.49 58.1 180 935 6’250

C-3-1.3 55.8 4.47 56.7 143 907 3’710

C-3-2 42.7 2.99 54.0 107 621 1’480

C-3-3 60.2 5.42 63.5 164 1’440 9’900

C-3-4 62.8 6.28 87.9 144 3’460 15’000

C-3-5 40.0 4.00 40.9 87.4 1’060 3’420

C-3-6 29.8 2.38 27.7 62.8 482 2’010

(a) (b)

(c) (d)

Fig. 3.21: Force-displacement and moment-rotation behaviour of connection type 3: Influence of

(a) & (b) embedment depth and (c) & (d) space between the members and steel tube diameter.
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Fig. 3.22: Influence of embedment depth a on the moment capacity and the rotational stiffness.

The influence of the steel tube diameter D and the distance between the concrete members

h0 was investigated with one specimen each. The results are shown qualitatively in Fig. 3.21c

and 3.21d. Reducing D to 60 mm led to a reduction of rotational stiffness and moment capacity

of around 50%, which is in a similar range as the respective reduction observed in type 1 con-

nections. The specimen with increased h0 = 120 mm showed significantly lower global stiffness

and shear capacity, while rotational stiffness and moment capacity remained similar as in the

reference specimens. This confirms that the chosen mechanical model with rotational springs

is able to decouple the influence of the parameter h0 appropriately, as already observed in the

investigations on type 1 connections.

While the material tests on the used concrete showed a normal compressive strength, the

measured MOE of 9’800 MPa was very low, which was most likely due to poor concrete mixing.

This was observed both during the production of the specimens (liquid and inhomogeneous fresh

concrete) and during the tests (most of the aggregates were at the bottom of the specimens).

It is to be expected that the connection stiffness would be higher if a standard concrete with

an MOE according to the specifications was used. However, further experimental campaigns

are needed to quantify this influence. The connection shear capacity is not expected to be

significantly affected by the low MOE.

3.3.5 Difference between first loading and reloading stiffness

In all connection shear tests, an unloading/reloading cycle was performed after reaching ap-

proximately 40% of the expected shear capacity. While in some specimens the observed stiffness

during reloading was substantially higher than during first loading, other specimens showed no

significant difference in stiffness. In this chapter, these differences and their relevance in the

assessment of the structural behaviour of TCC slabs with steel tube connection are discussed.

Tab. 3.7 lists the ratio km,2/km,1 for the different connection types investigated in this ex-

perimental campaign. The results show that in type 1 and 2 connections with grouting, the

stiffness increase caused by pre-loading was relatively small. In contrast, type 1 and 2 connec-
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Tab. 3.7: Ratio of rotational stiffness during first loading and reloading.

Connection type n km,2/km,1

min mean max

Type 1 with grouting 7 0.99 1.24 1.52

Type 2 with grouting 1 – 1.37 –

Type 1 without grouting 10 1.63 2.91 4.56

Type 2 without grouting 2 2.04 2.12 2.20

Type 3 8 2.38 4.45 6.88

tions without grouting as well as type 3 connections exhibited a substantial stiffness increase.

This is also well visible in the moment-rotation plots shown in Fig. 3.23.

The large stiffness increase after pre-loading in type 1 connections without grouting may

be explained with the production tolerance leading to a small gap between the steel tube and

the timber (Fig. 3.24a). When the connection is loaded, some initial rotation is needed for the

steel tube to reach the horizontal contact points at the edge of the timber cutout (Fig. 3.24b),

which is the reason for the low initial stiffness in Fig. 3.23a for ϕ < 10 mrad. Assuming the steel

tube to be rigid, the contact area in the situation illustrated in Fig. 3.24b is infinitely small.

Additional rotation leads to compression deformation in timber and, as a consequence, to an

expansion of the contact height as illustrated in Fig. 3.24c and 3.24d. Because a part of the

compression deformation in timber is inelastic, this contact height is primarily a function of the

maximum force T that the connection has been exposed to. In other words, the contact height

is not significantly reduced during the unloading and reloading cycle, which explains the higher

stiffness in that phase. In Fig. 3.24, the tolerance is chosen much larger than it would be in

a real connection, for illustrative purposes. As a consequence, the rotations are exaggerated,

leading to a large vertical displacement of the left base corner of the steel tube in Fig. 3.24d

and a significant reduction of the lever arm between the two point forces. While this happens

(a) (b) (c)

Fig. 3.23: Typical moment-rotation behaviour in the range M < 0.5 ·Mu, linear regression with con-

sidered data range for km,1 and km,2 plotted in black and dark grey, respectively, (a) type 1 without

grouting (A-1-1.1), (b) type 1 with grouting (B-1-1.3), (c) type 3 (C-3-3).
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(a)

T

(b)

T

(c)

T

(d)

Fig. 3.24: Influence of production tolerance on the behaviour of type 1 connections: (a) situation before

loading, (b) deformation needed for contact of the steel tube with the timber, (c) & (d) expansion of

activated contact height in the timber depending on the current maximum shear force Tmax.

also in a connection with realistic tolerance (or even no tolerance), the effect is much smaller,

especially under service loads.

The same explanation for the stiffness differences is valid also for type 2 connections without

grouting. In grouted connections (both type 1 and 2), the gap between the steel tube and timber

is filled. Therefore, the mechanism described in Fig. 3.24 does not apply to these connections,

explaining why pre-loading has no significant effect on the connection stiffness (Fig. 3.23b). In

the case of type 3 connections, it can be assumed that small cracks develop around the steel

tube as a consequence of concrete shrinkage, which leads to a similar situation as in type 1

connections without grouting.

The above-described influence of pre-loading on the connection stiffness is relevant especially

in the assessment of the dynamic behaviour of the presented TCC structure. For the estimation

of deformations (SLS) and load-bearing capacity (ULS), the assumed connection behaviour

should be based on the first loading curve (Fig. 3.25), because in these cases, the absolute

connection deformation is relevant. In dynamic calculations, a small cyclic load is considered

that typically does not lead to a new maximum force in the connection (Fig. 3.25). Therefore, the

reloading stiffness applies in these cases, describing the relative connection deformation during

the load cycles.

Δu

T

load cycle at T1 < Tmax,1

Tmax,1

T1

Tmax,2

T2 load cycle at T2 < Tmax,2

first loading curve

Fig. 3.25: Influence of the current maximum shear force Tmax on the connection behaviour.
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3.3.6 Displacements in the direction of the steel tube axis

In most connection shear tests, displacements in the direction of the steel tube axis ∆w were

observed. In the test setup (Fig. 3.5), ∆w manifested as a horizontal displacement of the mid-

point of the side members, oriented towards the outside. This displacement can be explained by

the fact that the used steel tubes are not slender enough to be idealised as beams with no width.

Rotating the tube around one of its base corners (Fig. 3.26) leads to the following displacements:

∆u = D · (1− cosϕ) + lT · sinϕ (3.4)

∆w = D · sinϕ+ lT · (cosϕ− 1) (3.5)

The initial slope of the displacement path (Fig. 3.26) is:

(∆w/∆u)0 = lim
ϕ→0

D · sinϕ+ lT · (cosϕ− 1)

D · (1− cosϕ) + lT · sinϕ
= · · · = D/lT (3.6)

The maximum displacement perpendicular to the beam axis is reached when ∆u = D:

∆wmax =
√
D2 + l2T − lT (3.7)

lT

D

Δw

Δu

φ

lT

D

Δwmax

φ
φ Δu

Δw

D 2D

Δwmax

D

(Δw/Δu)0
1

Fig. 3.26: Geometry of the steel tube rotation and parameters of the displacement path.

The displacement ∆w reaches 0 again at ∆u = 2D. Fig. 3.27 shows a parametric study of the

displacement path for different steel tube dimensions. As shown already in Eq. 3.6 and 3.7, the

displacements perpendicular to the beam axis become relevant especially for short steel tubes

with a large diameter. In a real structure, the rotation of the steel tube is generally small,

remaining in the quasi-linear part of the theoretical displacement path. Fig. 3.28a shows typical

displacement paths observed in grouted type 1 and type 3 connections. The observed ratio

(∆w/∆u)0 was nearly linear in most cases. Fig. 3.28a also shows that the simplified geometrical

model presented above significantly overestimates the displacement perpendicular to the beam

axis. The model neglects the following deformations in the connection:

� compression deformations in the timber (perpendicular to the grain) or in the concrete

close to the rotation point
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� bending and shear (and buckling) deformations in the steel tube

All of these deformations reduce the real ratio (∆w/∆u)0, explaining the observed deviations.

Fig. 3.28b shows all collected data points from grouted type 1 and type 3 connections, obtained

by linear regression. While the model consistently overestimates (∆w/∆u)0, the influence of

the steel tube dimensions seem to be correctly represented. The deformations mentioned above

may be accounted for with an empirical correction factor using a linear fit as follows:

(∆w/∆u)0,corr = 0.63 ·D/lT (3.8)

Fig. 3.27: Displacement path for different steel tube dimensions.

(a) (b)

Fig. 3.28: Comparison of theoretical model with test results: (a) displacement path and (b) initial slope

of the displacement path, data points with original and corrected model.

3.3.7 Empirical data for models with nonlinear rotational springs

One of the main goals of test series B and C was to obtain empirical data as an input for the

calculation models for uniaxial and biaxial bending (Chapters 6 – 7). For simplified calculations,
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the connection behaviour is often linearised. However, this may lead to inaccurate results, as dis-

cussed by Dias [18]. Therefore, the nonlinear moment-rotation behaviour of the most important

connection configurations tested in this experimental campaign is assessed in this chapter.

Various authors have suggested mathematical functions for this purpose (e. g. Ramberg & Os-

good [64], Foschi [29], Richard & Abbott [67]). These functions can be fitted to experimental

data using 3 – 4 parameters. While this allows for a relatively simple description of the nonlin-

ear connection behaviour and potential use in analytical models, fitted curves never perfectly

represent the experimental data.

Most modern FEM software solutions allow for nonlinear calculations based on multi-linear

curves as an input, rather than using parametric mathematical functions. Therefore, a more

direct approach was chosen in the assessment of the nonlinear connection behaviour than fitting

mathematical functions. A set of moment-rotation values is provided in Tab. 3.8 for the most

important connection configurations that are used in the final concept of the TCC slab. The

resulting multi-linear functions were fitted visually to the test data. Fig. 3.29 shows the results

of this approximation as well as the corresponding linear fit with km,1. In most cases, the yield

moment My was set equal to the maximum moment from the push-out test Mu (exception:

specimen C-3-2, Fig. 3.29b). For the configurations where more than one test result was avail-

able, km,1 and My were averaged. The maximum rotation ϕmax was defined at the point where

the first significant force drop occurred. The multi-linear functions provided in Tab. 3.8 and

Fig. 3.29 can directly be used as an input in suitable FEM software.

Tab. 3.8: Moment-rotation values for empirical multi-linear functions representing the behaviour of

type 1 and 3 connections with D = 82.5 mm, M in [kNm], ϕ in [mrad].

Type 1 Type 3 Type 3 Type 3 Type 3

a = 40 mm a = 30 mm a = 40 mm a = 50 mm a = 60 mm

M ϕ M ϕ M ϕ M ϕ M ϕ

0 0 0 0 0 0 0 0 0 0

2.10 1.80 0.50 0.20 0.80 0.24 0.80 0.12 1.40 0.12

3.00 3.19 1.07 1.20 1.40 0.82 1.33 0.36 2.33 0.55

3.46 4.00 1.68 3.50 1.90 1.60 1.59 0.52 3.90 1.98

4.25 6.00 2.16 6.00 2.50 2.90 2.52 1.80 4.85 4.00

5.30 10.0 2.45 8.00 3.00 4.20 2.99 2.90 5.42 6.39

6.36 15.0 2.63 9.70 3.45 6.00 4.23 7.00 5.98 10.0

7.03 20.0 2.73 13.0 3.90 9.00 4.83 11.0 6.28 15.0

7.39 25.0 2.73 40.0 4.15 13.0 5.28 18.0 6.28 20.0

7.59 30.0 4.38 20.0 5.39 23.0

7.68 35.0 4.38 30.0 5.39 30.0

7.68 40.0

5.60 80.0
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(a)

(b) (c)

(d) (e)

Fig. 3.29: Moment-rotation behaviour of the most important connection types that are used in the final

concept of the TCC slab, with linear approximation and multi-linear fit according to Tab. 3.8.
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3.4 Conclusions

The load-bearing behaviour of the steel tube connection used in the investigated TCC slab

system was studied in a test campaign with a total of 28 specimens. The connection shear

capacity and linearised stiffness values as well as empirical nonlinear moment-rotation curves

have been obtained for different parameter configurations. These can be used as a basis for the

analysis of the load-bearing behaviour of the TCC slab with steel tube connection in uniaxial

and biaxial bending. Below, the main conclusions drawn from this experimental campaign are

summarised:

� The most important parameter influencing the stiffness and shear capacity of type 1 con-

nections is the use of a grouting system to fill the gap between the steel tube and the

timber cutout. Compared to the form-fitting connection concept, the stiffness is up to

10 times higher and the shear capacity is increased by 40%. Based on these results, the

final type 1 connection concept was defined, using the Sikadur®-42 HE grouting system.

� The steel tube diameter D and the embedment depth a are the main connection design

parameters and have a similar influence in all connection types.

� The used mechanical model with rotational springs representing the connection stiffness

is able to decouple the influence of the interlayer height h0.

� The shear capacity of type 1 connections is governed by inelastic compression deformations,

leading to a ductile behaviour. The deformation capacity is limited by shear failures in

timber.

� A ductile failure mechanism was observed in all type 3 connections, which is achieved

through force redistribution and eventually reinforcement yielding. The deformation ca-

pacity is limited by concrete crushing close to the steel tube.

� Further tests are necessary on type 3 connections to quantify the influence of the MOE,

which was very low in the investigated specimens. Increased connection stiffness is expected

if a standard concrete with normal MOE is used.

� A significant influence of pre-loading on the connection stiffness was observed in type 3

and type 1 and 2 connections without grouting. The first loading curve should be the

basis for calculations regarding deformations (SLS) and load-bearing capacity (ULS). The

higher reloading stiffness is relevant for dynamic analyses.
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Chapter 4

Uniaxial bending tests

4.1 Introduction

This chapter covers the uniaxial bending tests that were conducted in the scope of this research

project. At the time when these experiments were planned, the concept of the TCC slab with

steel tube connection mainly focused on a production process using cast-in-situ concrete. The

specimens were therefore based on this version of the concept, including an upper LVL beam in

order to increase the bending stiffness in the construction state, as described in Chapter 1.3. The

experimental campaign was divided into two phases: In a first step, formwork elements were pro-

duced and their bending stiffness was tested. Subsequently, the production of the specimens was

completed and the stiffness and ultimate load-bearing capacity of the TCC slab elements were

determined by means of destructive tests. The main objectives of this experimental campaign

were:

� Investigating the stiffness, natural vibration frequency, load-bearing capacity and ductility

of the TCC slab in uniaxial bending

� Understanding the structural behaviour and the governing failure mechanisms

� Studying the influence of various parameters on the load-bearing behaviour

� Providing experimental data as a basis to validate the calculation models for uniaxial

bending (Chapter 6)

The main findings are presented and discussed in this chapter, with a focus on the second phase

of the experimental campaign where the TCC slab in the final state was investigated. A detailed

report of all conducted experiments is provided in [44].
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4.2 Materials and methods

4.2.1 Specimens

In the scope of this experimental campaign, eleven bending specimens with a length of 5.46 m

were produced and tested. The design of the specimens is based on the concept with a production

process using cast-in-situ concrete, including three upper LVL beams per formwork element of

1.82 m width as illustrated in Fig. 1.2. The test specimens correspond to a third of the width

of one formwork element, resulting in a width of 0.6 m.

The geometry of all specimens is depicted in Fig. 4.1 and 4.2 and the chosen set of param-

eters is summarised in Tab. 4.1. Specimens 1 – 8 were used to investigate the uniaxial bending

behaviour in the main (longitudinal) direction of the TCC slab. Specimens 1.1 and 1.2 corre-

spond to the reference configuration. In specimens 2 – 8, either the number of connectors per

shear area m, the interlayer height h0 or the connector stiffness (with or without grouting, or

smaller steel tube diameter D) was varied. In Tab. 4.1, the respective varied parameter is high-

lighted in bold print. The first letter of the specified connection concept (e. g. ‘g – f’) refers to

the lower connection (type 1) whereas the second letter describes the connection with the upper

LVL beam (type 2).

The interlayer was fabricated using stone wool plates with cutouts for the steel tubes and

the upper LVL beam. The relative position of the upper LVL beam is shown in Fig. 4.1 and

was identical in all specimens. The concrete layer was reinforced with a steel mesh ∅8 @ 150 mm

placed directly on the upper LVL beam as shown in Fig. 4.1. In specimens 1 – 8, the steel tubes

were arranged according to the expected shear forces as shown in Fig. 4.2.

Tab. 4.1: Parameters of the uniaxial bending specimens.

Name Connection Connectors Interlayer Steel tube

concept ∗ per shear area height dimensions

m [-] h0 [mm] D / t [mm]

1.1 g – f 4 120 ROR 82.5/3.6

1.2 g – f 4 120 ROR 82.5/3.6

2 g – g 4 120 ROR 82.5/3.6

3 g – f 3 120 ROR 82.5/3.6

4 g – f 6 120 ROR 82.5/3.6

5 g – f 4 100 ROR 82.5/3.6

6 g – f 4 160 ROR 82.5/3.6

7 f – f 4 120 ROR 82.5/3.6

8 f – f 4 120 ROR 60.3/3.6

T1 g – f 4 120 ROR 82.5/3.6

T2 g – f 5 120 ROR 82.5/3.6

∗ g = grouted connection, f = form-fitting connection without grouting
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b = 600

h2 = 60

h0

h1 = 80

D

asup = 30

ainf  = 40

40

upper beech LVL beam
b/h = 180/60

reinforcement mesh
Ø8 @ 150

Fig. 4.1: Cross-section of specimens 1 – 8, dimensions in [mm].

150 322 367 410 455 500 526

150 377 529 683 991

150 453 757 1370

m = 6 (specimen 4)

m = 4 (specimens 1, 2, 5, 6, 7, 8)

m = 3 (specimen 3)

303 607 607 303

m = 4 (specimen T1)

303 607

150 331 393 491

m = 5 (specimen T2)

303 607455

2730

Fig. 4.2: Longitudinal section of specimens, dimensions in [mm].
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Specimens T1 and T2 represent the transversal load-bearing direction of a two-way spanning

version of the slab. In this concept, the weight of the fresh concrete during construction is carried

mainly in the longitudinal direction of the slab. The slab shows a biaxial load-bearing behaviour

only in the final state, after hardening of the concrete layer. The idea behind specimens T1

and T2 was to ‘extract’ a transversal stripe from this two-way spanning slab to investigate

the uniaxial bending behaviour in this direction. Consequently, the main veneer direction was

perpendicular to the span direction in these specimens and the timber layer was assembled from

three beech LVL elements of 1.82 m length. The concept of the side connection as described in

Chapter 1.3 was not yet developed at the time of this test series. A different connection concept

was applied, using glued-in rods (GIR) with opposite threads, connected with a coupling nut

as shown in Fig. 4.3. After gluing the threaded rods, the coupling nut was tightened with a

torque of 100 Nm to achieve a slip-free connection. The reason why this connection concept was

eventually abandoned is discussed in Chapter 5.

In specimen T1, the steel tubes and upper LVL beams were arranged with uniform spacing,

in accordance with the formwork element concept depicted in Fig 1.2. In specimen T2, one

additional steel tube close to the supports was added to investigate the respective influence on

the structural behaviour in transversal direction.

The beech LVL parts needed for specimens 1 – 8 (longitudinal direction) were cut out of

five LVL boards of 5.5 m length and 1.82 m width. In addition, two specimens for tensile tests

were cut out of each board. All five LVL boards were marked with a colour, ensuring that the

respective material used in the bending specimens could be identified. The parts needed for

specimens T1 and T2 (transversal direction) were all cut out of the same LVL board, along with

five pieces for tensile tests. The concrete was ordered according to the specifications listed in

Tab. 4.2. Concrete tests were performed to determine the MOE according to SIA 262/1 [77],

the cylinder compressive strength according to EN 12390-3 [11] and the splitting tensile strength

according to Chen [16]. A detailed report of all material tests is provided in [44]. Tab. 4.3 and

4.4 show the main results of the material tests.

32

5 6

1

4

2

3

1 5

6250

1 Cutout in beech LVL plate

2 GIR M16 with left-hand thread

3 GIR M16 with right-hand thread

4

Coupling nut with left- and right-hand threads5

Reinforcing screws preventing splitting failure in LVL plate6

Cutout for steel tube

150

300

150

Fig. 4.3: Side connection in specimens T1 and T2, top view (left) and longitudinal section (right),

dimensions in [mm].
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Tab. 4.2: Materials used in the uniaxial bending specimens.

Material Description Details

Beech LVL Thickness 60 mm

(BauBuche Q) Veneer layout ||| − || − ||||||| − || − |||
Cross-layer ratio 19%

Stone wool Flumroc MEGA Insulation plates for interlayer

Plate thickness 120 mm

Concrete Ordered quality C30/37

Max. aggregate size 16 mm

Admixture MasterLife SRA 895 (2% of cement mass)

Steel tubes ROR 82.5/3.6 E355, seamless

ROR 60.3/3.6 S235, welded

Grout type Sikadur®-42 HE High performance epoxy grouting system [79]

Glued-in rods Threaded rods M16 Strength grade 8.8

Resin and hardener WEVO EP 32 S / B22 TS [23]

Tab. 4.3: Results of material tests, production group 1 (specimens 1 – 8).

Material Property Mean value COV n

[MPa]

Concrete Modulus of elasticity E1 35’000 8% 3

(age: 25 days) Cyl. compressive strength f1,c 44.1 2% 3

Splitting tensile strength f1,t,sp 3.3 4% 4

Beech LVL MOE ‖ to grain E2,0 15’200 10% 10

(BauBuche Q) Tensile strength ‖ to grain f2,t,0 63.4 12% 10

Tab. 4.4: Results of material tests, production group 2 (specimens T1 and T2).

Material Property Mean value COV n

[MPa]

Concrete Modulus of elasticity E1 31’000 5% 3

(age: 40 days) Cyl. compressive strength f1,c 38.0 7% 3

Splitting tensile strength f1,t,sp 2.7 13% 4

Beech LVL MOE ⊥ to grain E2,90 4’930 9% 5

(BauBuche Q) Tensile strength ⊥ to grain f2,t,90 14.2 24% 5
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4.2.2 Test setup

All experiments were conducted in the laboratories of ETH Zurich. The stiffness of the formwork

elements was measured in a 4-point bending test setup with a span of l = 5.24 m and a distance

between the two applied forces at mid-span of 1.6 m. Three loading cycles were performed in the

linear-elastic range of the load-deflection curve. A detailed description of the used test setup is

given in [44].

The tests in the final state were performed in a 10-point bending setup as depicted in Fig. 4.4

and 4.5. The force applied by the hydraulic cylinders ( 8 in Fig. 4.4) was distributed to eight

points of equal distance along the span using steel beams ( 9 ). This was done to represent as

accurately as possible the loading conditions of a simply supported beam subjected to uniformly

distributed load. All cylinders were connected to the same hydraulic circuit with the oil pressure

controlled by a manually operated pump.

4.2.3 Measurements and test procedure

The oil pressure in the hydraulic circuit was measured using the internal manometer of the

manually operated pump. Based on this measurement, the cylinder forces were calculated. Two

NDI Optotrak Certus position sensors were installed to record the deformations on the front

side of the specimen. Strobers (visible e. g. in Fig. 4.5c) were glued to both the specimen and

the supporting construction allowing for a precise 3D tracking of these points throughout the

experiments. The strober locations are shown in Fig. 4.4. They were chosen according to the

position of the steel tubes in the respective specimen, allowing for a calculation of the relative

displacements between the timber and concrete sections at these points. Additional strobers

were used to record the bending line of the specimen. Furthermore, one LVDT was installed to

measure the deflection at mid-span, for live monitoring during the experiments and to confirm

the accuracy of the NDI measurement.

After centering the specimen in the test setup and before the hydraulic cylinders were low-

ered, dynamic tests were conducted. Impulse excitation was achieved with a hammer hit at

x = L/4, L/2 and 3L/4, which was repeated three times. The free vibration response of the

specimen to each of the nine impulse excitations was recorded at a rate of 1’200 Hz with an

acceleration sensor glued to the top of the concrete layer at mid-span (Fig. 4.5e).

After the dynamic tests, the acceleration sensor was removed and the load-distribution con-

struction was lowered and positioned on the specimen with the hydraulic cylinders. The oil

pressure was relaxed and all measurements were tared. The loading protocol was similar as in

the connection shear tests (Chapter 3) and is based on the recommendations in EN 26891 [10],

including an unloading and reloading cycle after 40% of the estimated failure load was reached.

The manual control with the hand operated oil pump is comparable to force based control in

the elastic range and displacement based control in the plastic range of the experiment. Typical

force-time and deflection-time graphs are shown in Fig. 4.6. The experiment was stopped when

either a brittle failure led to a significant load drop or when the displacement capacity of the

hydraulic cylinders was reached at a mid-span deflection of approximately 300 mm.
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Fig. 4.4: Test setup for the uniaxial bending experiments in the final state, dimensions in [mm].
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(a)

(b) (c)

(d) (e)

Fig. 4.5: Photos of the test setup (a) overview, (b) 6 pinned and (c) 7 rolling support, (d) load

distribution construction and (e) hammer and acceleration sensor used for dynamic tests.



4.2. Materials and methods 67

(a) (b)

Fig. 4.6: Typical (a) deflection-time and (b) force-time diagrams.

4.2.4 Data evaluation

This chapter covers briefly the most important steps of the data evaluation. More detailed

information on each step is given in [44]. The bending stiffness of the formwork elements was

calculated based on the measured cylinder forces, mid-span deflection and the geometry of the

test setup. Linear regression was performed on all three loading cycles to obtain EIcon,1 and

EIcon,2, the latter being the mean value from the second and third loading cycle.

The acceleration measurements recorded in the dynamic tests (Fig 4.7a) were transferred to

the frequency domain with a fast Fourier transform (FFT). Fig. 4.7b shows a typical resulting

plot from which the fundamental frequency was obtained.

(a) (b)

Fig. 4.7: Typical result of dynamic test (a) time domain and (b) frequency domain (specimen 5).

Using the NDI measurement data, the bending line of both timber and concrete layers could

be reconstructed at every point in time throughout the static loading tests. Fig. 4.8 shows the

bending line of specimen 4 before test start and at maximum load, as an example. Of particular

interest were the mid-span deflection wm as well as the relative displacements of the timber and

concrete layers, parallel and perpendicular to the beam axis ∆u and ∆w, respectively. ∆u, also

referred to as slip displacement, and ∆w were calculated at the location of each connector by
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projecting the horizontal and vertical relative displacements to the current bending line at the

considered point. The connectors are identified as shown in Fig. 4.8.

Fig. 4.8: Bending line before test start and at maximum load (specimen 4).

A linearised stiffness was calculated for both first loading and reloading cycle, using linear

regression similar as in the connection shear tests (Fig. 3.23). The respective bending stiffness

EI1 and EI2 was calculated based on the measured cylinder forces Fcyl, mid-span deflection wm

and the geometry of the test setup (static system depicted in Fig. 4.4).

To allow for an easier interpretation of the test results, an equivalent distributed load q was

calculated as follows:

q =
4 · Fcyl

b · l
(4.1)

For the calculation of the load-bearing capacity, the self-weight of the specimen (measured with

the integrated scale of the laboratory crane, ms = 850 – 945 kg depending on the specimen) and

the load distribution construction (mLDC = 140 kg) were added as follows:

q∗u = qu +
(ms +mLDC) · g

b · l
(4.2)

4.3 Results

4.3.1 Load-bearing behaviour in the longitudinal direction

This chapter summarises the load-bearing behaviour and the main failure mechanisms that were

observed in specimens 1 – 8, representing the longitudinal direction of the TCC slab. A detailed

report of each individual experiment is given in [44]. Fig. 4.13 – 4.15 show the load-deflection

diagrams of each test, along with the slip displacement ∆u at the location of each connector in

the specimen.

In almost all of the longitudinal specimens, no significant load drop due to a brittle failure

was observed until the end of the experiment, when the displacement capacity of the hydraulic

cylinders was reached at a mid-span deflection of approximately 300 mm. The only exception

was specimen 2 with a stiffer, grouted connection in the upper LVL beam, which had a distinct

influence on the connection ductility. This aspect will be discussed in Chapter 4.4.1. It is likely

that the load could have been further increased in most cases, until a brittle failure in the
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connectors or in the cross-section, such as concrete crushing or timber tensile-bending failure,

would have occurred. However, given the very flat slope (almost horizontal) of the load-deflection

curve at the end of the experiments, it is not to be expected that the true load-bearing capacity

would have been substantially higher than the maximum measured load during the tests.

In the beginning of the experiments, the load-deflection behaviour was approximately linear

up to roughly 40% of the maximum load. After that, a non-linear phase followed. The behaviour

in this second phase is related to the loss of stiffness in the connection starting at the same load

level, which can be seen in the plots showing the slip displacements ∆u. Furthermore, bending

cracks started occurring in the concrete section (Fig. 4.9), which may also explain a part of

the observed continuous decrease in bending stiffness during this phase. In all specimens, a

longitudinal crack on the top of the concrete section opened up along the entire span during

this phase. This likely happened because the timber beam in the middle of the section provided

a stiffer support for the concrete than the stone wool on the sides of the section. Thus, the

concrete section was subjected to a negative transversal bending moment.

After this non-linear phase, a plastic phase was observed, during which the deflections sub-

stantially increased at a small, but positive q/wm gradient. An overview of the failure mecha-

nisms observed during this phase is given in Fig. 4.9. On the timber side of the connectors, the

following three failure types were identified:

� Front block shear failure (FBS): block shear failure between the connector closest to the

support (L1 and R1) and the end of the specimen (Fig. 4.10a and 4.10b)

� Local front shear failure (LFS): local shear cracks on the front side of the connector,

towards the support (Fig. 3.9b and 4.10c)

� Rear shear/tensile failure (RST): local cracks due to shear and and tension perpendicular

to the grain on the rear side of the connector, towards mid-span (Fig. 3.9b and 4.10d)

In some cases (e. g. specimen 1.1, Fig. 4.13a), these shear failures led to small load drops in the

global load-deflection diagram, but the load could be further increased afterwards. In other cases

(e. g. specimen 4, Fig. 4.14e), they only led to additional deformations without any noticeable

load drop.

Front block shear failures (FBS) were visible already during or directly after the experiments

(Fig. 4.10a) and were observed in all specimens (exception: specimen 8), in most cases only on

one side. The other two failure types were noticed only acoustically or suspected due to small

load drops during the experiment. They were visually detected only after removing the stone

wool, which was done for specimens 1.1, 2, 4 and 6. In specimen 6, the beech LVL plate was cut

with a circular saw to confirm both failure types LFS and RST (Fig. 4.10c and 4.10d). These

failures typically occurred on the same side of the span as the FBS, close to connector 2. Close

to connector 3, only small cracks were visible in some cases.

Removing the stone wool from the specimens further revealed that in some connectors, the

grouting had failed, such as in specimen 4 (Fig. 4.11a). However, it could not be determined if

this had happened before or after the other failures.
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In most specimens, during the plastic phase of the experiment, several cracks on top of the

concrete section were observed close to the first steel tube on the side (L1 and R1), as shown

in Fig. 4.11b. Similar cracks had already been observed and discussed in the connection shear

tests (Chapter 3.3.4).

FBS RSTLFS

bending cracks in concretecracks in concrete close to connection

L1 L2 L3 L4

Fig. 4.9: Overview of main failure mechanisms observed in longitudinal specimens.

(a) (b)

(c) (d)

Fig. 4.10: Photos of connection shear failures in timber (a) front block shear failure (FBS) in specimen

4 close to connector L1, directly after the test and (b) after removing the stone wool layer, (c) local front

shear failure (LFS) in specimen 6 close to connector R2, visible cut oriented towards the support, (d) rear

shear/tensile failure (RST) in specimen 6 close to connector R1, visible cut oriented towards mid-span.
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In specimen 4, a local concrete compressive failure was observed close to mid-span, shortly

before the end of the experiment (Fig. 4.11c). However, this did not lead to any noticeable

load drop. No cross-sectional failures such as bending tensile or shear failures were observed

neither in the main timber section nor in the upper LVL beam (exception: specimen 2). In

all specimens, the load-bearing behaviour was governed by the connection behaviour, not by

cross-sectional failure modes.

(a) (b)

(c)

Fig. 4.11: Photos of (a) failure in grouting (specimen 4, connector R1), (b) cracks on top of the concrete

section (specimen 1.1, connector L1) and (c) local concrete compressive failure in specimen 4 close to

mid-span.

Opening specimen 2 (with a stiffer, grouted connection in the upper LVL beam) revealed

additional failure types that were not observed in any of the other specimens:

� Timber compressive failure close to the connector (buckling of the fibers, Fig. 4.12a)

� Failures in the upper LVL beam close to connectors L1 – L4 due to shear and tension

perpendicular to the grain (Fig. 4.12b)

� Distinct vertical pulling out of the steel tube in the lower connections during the post-peak

phase of the experiment, along with crushing of the grouting (Fig. 4.12b)
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The difference in failure mechanism of specimen 2 compared to the other specimens will be

discussed in Chapter 4.4.1.

(a) (b)

Fig. 4.12: Failures in specimen 2: (a) timber compressive failure close to connector L2, (b) failures in

the upper LVL beam due to shear and tension perpendicular to the grain, vertical pulling out of the steel

tubes and crushing of the grouting.

(a) (b)

(c) (d)

Fig. 4.13: Test results of specimens 1.1 and 1.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.14: Test results of specimens 2 – 5.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.15: Test results of specimens 6 – 8.

4.3.2 Load-bearing behaviour in the transversal direction

The load-bearing behaviour of the transversal specimens T1 and T2 was governed by the con-

nection behaviour, similar as in the longitudinal specimens. Fig 4.16 shows the main results of

these two experiments. Compared to specimens 1 – 8, the following differences were observed:

� After reaching the maximum load qu, a substantial load drop was observed. The failure

mechanism was less ductile than in the longitudinal specimens.
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� The orientation of the upper LVL beams was rotated by 90◦ compared to specimens 1 – 8,

which had a distinct influence on the behaviour of the steel tube – concrete connection.

Whereas in the longitudinal specimens, the upper LVL beam likely provided some resis-

tance for the connection, this was not the case in specimens T1 and T2. On the contrary,

in these specimens, the upper LVL beams imposed a kinematic constraint to the connec-

tion that led to a pulling out of the steel tube from the concrete with increasing rotation

of the steel tubes (visible in Fig. 4.17a). To a lesser extent, this effect was already ob-

served in the connection shear tests and discussed in Chapter 3.3.6. Translated to these

considerations, the presence of the upper LVL beam would be equivalent to an increased

steel tube diameter D.

� No shear failures were observed in the timber. After opening specimen T2, cracks in the

grouting in connector L1 were visible (Fig. 4.17b).

� In specimen T2 (with an additional connector close to the support, without upper LVL

beam), the non-linear phase started at a higher load level than in all other specimens.

The load-deflection behaviour remained approximately linear up to a load of roughly 70%

of the maximum load. The two load drops at 11.0 and 12.2 kN/m2 visible in Fig. 4.16c

were due to cracking of the concrete above connectors L1 and R1, leading to a significant

stiffness reduction.

(a) (b)

(c) (d)

Fig. 4.16: Test results of specimens T1 and T2 (transversal direction).
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(a) (b)

Fig. 4.17: Specimen T2 (a) pulling out of the steel tube from the concrete due to kinematic constraint

of upper LVL beams (L2 and L3), (b) cracks in the grouting of connector L1.

During the linear phase of the experiments, no significant influence of the two side connections

(i.e. the two GIR connections located at 1/3 and 2/3 of the span) was observed. With increasing

load, however, the bending line was not as continuous as in the longitudinal tests anymore, but

slightly polygonal. Fig. 4.18 shows the bending line of specimen T1 reconstructed from the NDI

measurement at different load levels, illustrating this observation. Attempting to quantify these

kinks in the bending line at the location of the side connections, the inclination of the timber

plate on both sides of the connection (shown in Fig. 4.18) was derived from the measurement

data. The difference of the inclination was then calculated according to Eq. 4.3 and plotted in

Fig. 4.19.

∆ϑ = |ϑs − ϑm| (4.3)

Fig. 4.19a (specimen T1) shows a noticeable change in the slope of the ∆ϑ curve at q ≈ 5 kN/m2.

It is likely that this was due to a loss of stiffness in the side connections, starting at this load

level. Fig. 4.19b (specimen T2) shows a similar change at q ≈ 3.5 kN/m2, however the data are

less clear in this case.

Fig. 4.18: Bending line of specimen T1 before test start, at q = 0.8 · qu and q = qu.
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(a) (b)

Fig. 4.19: Difference of the bending line inclination at the side connections in (a) specimen T1 and

(b) specimen T2 (post-peak behaviour not plotted).

In specimen T1, a local failure in the timber section occurred close to L3 (Fig. 4.20), shortly

before the experiment was stopped. It is likely that this failure was significantly influenced by

the glued-in rods at this location, leading to tensile stresses perpendicular to the grain. However,

this failure occurred at large deformations after the load had already dropped to roughly 65%

of the maximum load.

Fig. 4.20: Local failure due to tensile stresses perpendicular to the grain close to connector L3 in

specimen T1.

4.3.3 Summary of the test results

A summary of the main results is given in Tab. 4.5. All values were derived according to the

procedure described in Chapter 4.2.4.
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Tab. 4.5: Main results of all uniaxial bending tests.

Spec. Formwork stiffness Mass Fund. Bending stiffness Max. test load

1st/2nd loading freq. 1st/2nd loading excl./incl. self-weight

EIcon,1 EIcon,2 ms f1 EI1 EI2 qu q∗u
[kNm2] [kNm2] [kg] [Hz] [kNm2] [kNm2] [kN/m2] [kN/m2]

1.1 1’290 1’320 915 12.0 4’090 8’750 29.7 33.0

1.2 1’330 1’350 870 11.6 4’270 8’420 26.9 30.0

2 1’820 1’810 880 13.0 5’130 9’130 31.7 34.8

3 970 1’120 900 11.6 3’360 8’720 25.6 28.8

4 1’500 1’460 905 12.8 5’240 9’760 37.6 40.8

5 1’070 1’170 850 11.4 4’040 8’080 29.7 32.7

6 1’460 1’600 940 12.0 4’630 9’620 30.9 34.2

7 740 930 915 11.2 2’630 8’130 27.5 30.7

8 720 930 890 10.0 1’910 7’120 23.2 26.4

T1 – – 945 9.2 2’460 4’670 12.4 15.7

T2 – – 935 8.8 3’140 4’320 13.2 16.5

4.4 Discussion

4.4.1 Comparison with the results of the connection shear tests

Ductility and connection deformation capacity

In all specimens representing the longitudinal load-bearing direction of the investigated TCC

slab, considerable ductility was observed. Fig. 4.21 shows the load-deflection curves of all tests

and, as a reference, two limit predictions based on the minimum and maximum possible bending

stiffness of the composite section. Using the measured MOE values (Tab. 4.3) and the reference

cross-section geometry (h0 = 120 mm), the following two limit cases were assessed:

� EII,γ=1

with a rigid connection and uncracked concrete (calculation with the n-method)

� EIII,γ=0 = EI1,II + EI2

with no connection and cracked concrete. The bending stiffness of the cracked concrete

section EI1,II was calculated considering the steel reinforcement bars as shown in Fig. 4.1.

Fig. 4.21 shows that the bending stiffness in the elastic phase was substantially lower than

EII,γ=1 in all specimens. As expected, a good prediction of the bending stiffness can only be

achieved if the flexibility of the connection is considered. However, this leads to an individual

prediction for each specimen that will be presented and discussed in Chapter 6.4.
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Fig. 4.21: Load-deflection curves of all longitudinal specimens and limit predictions based on the mini-

mum and maximum possible bending stiffness of the composite cross-section.

Fig. 4.21 further shows that after the non-linear phase, all curves (exception: specimen

2) approach an asymptote that is approximately parallel to the prediction using EIII,γ=0. This

means that, after the connectors reach their shear capacity at the end of the non-linear phase, all

additional load is carried by increasing bending moments in the partial cross-sections (cracked

concrete section and timber section). The part of the load carried by composite action is

equivalent to the vertical distance between the line based on EIII,γ=0 and the respective load-

deflection curve. This part remains approximately constant during the plastic phase, meaning

that the shear force in the connectors did not significantly decrease throughout the experiment.

Fig. 4.22 illustrates the amount of deformation that specimen 4 was able to accommodate during

the plastic phase while the load was still increasing at the end of the experiment.

While also in the connection shear tests some ductility was observed, the connection defor-

mation capacity was limited (Chapter 3). Except for type 1 and 2 connections without grouting,

a brittle failure or a softening post-peak behaviour was always observed. However, the results

of the bending tests indicate that the shear force in the connectors did not significantly decrease

after reaching the shear capacity, even at large slip displacements up to ∆u ≈ 40 mm. In the

following paragraphs, possible reasons for this difference in the observed deformation capacity

are discussed.

In the specimens produced for the bending tests, an upper LVL beam was included, leading

to a combined type 2/3 connection in the final state (Fig. 3.1c). In the connection shear tests,

connection types 2 and 3 were investigated only separately and therefore, no direct informa-

tion regarding a potential interaction between these two connections is available. However, a

comparison of the results of push-out specimens B-2-5 and C-3-2 (geometry corresponding to

the connections in the bending specimens) shows that the connection in concrete (type 3) is

almost five times stiffer. In addition, the cross-section area and MOE of the concrete section are

significantly higher than in the case of the upper LVL beam. Therefore, the contribution of the
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Fig. 4.22: Photos of specimen 4 before the test and at qu = 37.6 kN/m2, wm = 299 mm.

upper LVL beam to the bending stiffness of the composite member is expected to be negligible.

Specimen 2 presents an exception, with a substantially stiffer, grouted type 2 connection. In this

specimen, a higher stiffness was observed in the bending test. Furthermore, opening this speci-

men after the test revealed shear failures in the upper LVL beam, confirming that this member

had been subjected to higher stresses than in the other specimens, where no such failures were

observed. The plastic phase was not as extended as in the other specimens and a softening

post-peak behaviour with several load drops was observed. This indicates that the presence of

the upper LVL beam may indeed have had an influence on the connection deformation capacity.

It is possible that in the other specimens, the upper LVL beam, while being negligible during

the linear phase, had a positive influence on the connection behaviour in the plastic phase of

the experiment. The upper LVL beam may have offered additional load paths in the connection

of the steel tube with the concrete, acting as a flange on the steel tube. However, based on the

collected data it is not possible to clearly verify or quantify this influence. Further bending tests

on specimens without an upper LVL beam would be necessary as a comparison.

On the timber side, the connections were built identically for both push-out and bending

tests. However, the observed shear failures were different in the two experimental campaigns.

While in the push-out tests the shear failures always developed over the full specimen width of

220 mm, this did not happen in the bending tests because the LVL plate was significantly wider

(600 mm). Therefore, block shear failures were often observed instead, as shown in Fig. 4.10b.

Given that the shear failures were the main factor limiting the deformation capacity in the push-

out tests, this may explain a part of the observed difference in ductility between the two test

campaigns. Further push-out tests with an increased specimen width could be carried out to

achieve a similar block shear mechanism and to further investigate the connection deformation

capacity in this case.

In the push-out tests on type 3 connections, the deformation capacity was limited by a

concrete compressive failure close to the steel tube. The quality of the used concrete was not
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ideal. Especially the mix between aggregates and matrix was not sufficiently homogeneous,

which was visible during casting and when preparing the concrete cylinders, resulting in low

MOE values (Tab. 3.2). Even though the measured compressive strength reached the required

values, it is possible that the poor mixing led to a lower local compressive strength and thus to a

reduced deformation capacity of the connection. In further push-out tests, particular attention

should be paid to the concrete quality in order to avoid this possible influence.

Furthermore, it should be mentioned that push-out tests can never perfectly replicate the

mechanical situation in a bending beam. A push-out test setup is always subject to simplifi-

cations and often, discrepancies concerning the lateral forces acting on the push-out specimen

(equivalent to vertical forces in the bending beam) have to be accepted. Therefore, the results of

bending tests are often considered to be more significant when differences compared to push-out

tests are observed. For example, Müller [59] adjusted the connection stiffness and shear capacity

values determined in push-out tests after observing a slightly different behaviour in correspond-

ing bending tests, so that they correctly represent the latter. In the present case, however, a

similar adjustment of the connection deformation capacity would not be on the safe side. The

main reason for this is that, based on the conducted experiments, it cannot be excluded that

the upper LVL beam had a positive influence on this property. Therefore, the connection de-

formation capacity should be based on the results of the push-out tests until further bending

tests without an upper LVL beam allow for more concise conclusions. The observed connection

deformation capacity in the bending tests will be further discussed in Chapter 6.4, based on a

comparison of model calculations with the measured test data.

Difference between first loading and reloading stiffness

In the connection shear tests, a substantial difference of the stiffness during first loading and

reloading cycles was observed for connections of type 1/2 without grouting and type 3 (Chap-

ter 3.3.5). The results of the bending tests confirm these observations. Tab. 4.6 shows the

ratio of the bending stiffness EI1/EI2 in the formwork elements and in the final state, grouped

based on the connection types. The specimens with standard connection type configuration

‘g – f’ showed almost no difference in stiffness in the construction state. This is because in these

cases, the grouted type 1 connection is around eight times stiffer than the form-fitting type 2

connection. The stiffness of the entire steel tube connection is therefore mainly provided by the

Tab. 4.6: Ratio of bending stiffness during first loading and reloading.

Connection n EIcon,2/EIcon,1 EI2/EI1

types ∗ min mean max min mean max

g – f 6 0.97 1.06 1.15 1.86 2.11 2.60

g – g 1 – 0.99 – – 1.78 –

f – f 2 1.26 1.27 1.29 3.09 3.41 3.73

∗ g = grouted connection, f = form-fitting connection without grouting
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former, which showed no significant pre-loading dependency in the push-out tests. In the final

state, this changes because a significant contribution to the stiffness is made by the type 3 con-

nection, which showed the strongest dependency in the push-out tests. While in the specimens

with connection types ‘g – g’ the values of EI1/EI2 are lower, they increase in the case of connec-

tion types ‘f – f’, which is in agreement with the results of the push-out tests. The coherence of

these static bending stiffnesses and the measured fundamental frequencies is further investigated

in Chapter 6.4 by means of model calculations.

4.4.2 Influence of parameter variation in the longitudinal specimens

Number of connectors

The influence of the number of connectors per shear area m was investigated with a subset of four

specimens in longitudinal direction. The load-deflection curves of these specimens are plotted

in Fig. 4.23a and the main results in the final state as a function of m are shown in Fig. 4.23b

and 4.23c. The results clearly show that a higher number of connectors leads to a consistent

(a) (b)

(c) (d)

Fig. 4.23: Influence of the number of connectors per shear area m on (a) load-deflection curves in

the final state, (b) maximum test load qu and bending stiffness EI in the final state, (c) fundamental

frequency in the final state, (d) bending stiffness of the formwork elements in the construction state.
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increase in bending stiffness, load-bearing capacity and fundamental frequency. This is according

to the expectations, as a higher number of connectors increases the connection efficiency of

the composite structure. The same conclusion is also valid for the formwork elements in the

construction state (Fig. 4.23d). Regarding ductility, no influence of the number of connectors

was observed.

Interlayer height

The influence of the interlayer height h0 was investigated with a subset of four specimens in

longitudinal direction. The load-deflection curves of these specimens are plotted in Fig. 4.24a

and the main result values in the final state as a function of h0 are shown in Fig. 4.24b and

4.24c. The influence of the interlayer height h0 is more complex than the number of connectorsm.

Increasing h0 leads to a larger static height of the composite member, which generally leads to a

higher bending stiffness and load-bearing capacity, if the connection system is sufficiently stiff.

However, increasing h0 also leads to a larger lever arm of the steel tubes and therefore to a lower

(a) (b)

(c) (d)

Fig. 4.24: Influence of the interlayer height h0 on (a) load-deflection curves in the final state, (b) maxi-

mum test load qu and bending stiffness EI in the final state, (c) fundamental frequency in the final state,

(d) bending stiffness of the formwork elements in the construction state.



84 Chapter 4. Uniaxial bending tests

connection stiffness K per connector. In the tested specimens, these two influences neutralised

each other, leading to a similar first loading bending stiffness EI1 and load-bearing capacity qu

in all cases. Increasing h0 by 60% (from 100 to 160 mm) resulted in an only 15% higher EI1

and 4% higher qu.

However, this does not mean that a higher bending stiffness and load-bearing capacity can

generally not be achieved by increasing h0 in the TCC slab with steel tube connection. Whether

this is possible or not depends mainly on the following two factors:

� The connection efficiency in the composite member before changing h0: If the connection

efficiency is low from the beginning, the part of the external load carried by composite

action (pair of normal forces in the partial sections) is low, and therefore, increasing h0

will not significantly influence the structural behaviour.

� The rotational stiffness km of the steel tube connections: High values of km allow to

minimise the loss of connection stiffness K with increasing h0.

The γ-method, described in Chapter 2.2.2, is the simplest and most widely used model to

describe the load-bearing behaviour of TCC structures and is based on the definition of the γ-

factor (Eq. 4.4). While this factor should not be used to assess the efficiency of a given composite

structure in absolute terms, it is a useful indicator to qualitatively compare the connection

efficiency in different composite systems and it shows the main influencing parameters.

γ1 =
1

1 + π2E1A1sef
Kl2

(4.4)

Combining Eq. 4.4 with the considerations made above, it can be concluded that the following

boundary conditions are favourable for achieving a higher bending stiffness and load-bearing

capacity by increasing h0:

� low stiffness EA of the partial cross-sections

� large span l

� large number of connectors m (low distance between the connectors sef)

� high rotational stiffness km of the steel tube connections

This explains why the increase of bending stiffness in the formwork elements during construction

is substantially larger than in the final state (Fig. 4.24d). The stiffness EA of the upper partial

cross-section is much lower in the construction state (LVL beam 180× 60 mm) than in the final

state (concrete 600× 80 mm). Furthermore, Fig. 4.24b shows that the increase of the reloading

stiffness EI2 is larger than for EI1, which can be explained with the higher rotational stiffness

km in this case. The noticeable increase in the measured fundamental frequency (Fig. 4.24c)

can be explained in the same way, as it depends on the reloading stiffness of the connection.

Regarding ductility, no influence of the interlayer height was observed.
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Connection stiffness

Different connection types were tested in a subset of five specimens to assess the influence of the

stiffness per connector K on the structural behaviour. The main purposes of these tests were:

� Re-evaluating and confirming the chosen connection concept with a grouted type 1 connec-

tion and, in case of a production process using cast-in-situ concrete, a form-fitting type 2

connection, as described in Chapter 1.3.

� Providing a broader experimental basis for the validation of the corresponding calculation

models (Chapter 6), covering a wider range of connection efficiencies.

Fig. 4.25 shows that the choice of the connection type has a distinct influence on the structural

behaviour. The absence of grouting in the type 1 connection (‘f – f’) leads to a substantial loss in

bending stiffness and a lower fundamental frequency and load-bearing capacity. Using grouting

in all connections (‘g – g’) allows to consistently improve these properties with respect to the

standard configuration. However, as discussed already in Chapter 4.4.1, the failure mechanism

in this specimen was substantially less ductile than in all other cases.

The results confirm that the chosen connection concept with grouted type 1 connections is the

best option for practical use in TCC slabs with an interlayer. Form-fitting type 1 connections are

not promising due to their substantially lower stiffness and using grouting in type 2 connections

does not seem to justify the higher production cost. While in the latter case stiffness and load-

bearing capacity are improved, the failure mode is less ductile, which would lead to an overall

loss of robustness in the system.

4.4.3 Transversal load-bearing behaviour

The load-deflection curves of the two specimens investigating the transversal load-bearing direc-

tion of the TCC slab are plotted in Fig. 4.26, along with the longitudinal reference specimens.

The load-bearing capacity of specimens T1 and T2 was similar and reached around 45% of the

corresponding longitudinal specimens 1.1 and 1.2. In terms of bending stiffness EI1, specimens

T1 and T2 reached 60% and 75% of the longitudinal pendant, respectively. This confirms that

one additional steel tube connector can increase the bending stiffness substantially. Not only

the regression value EI1 was higher in specimen T2, but also the linear phase lasted longer, up

to a load of almost 0.7 · qu, which is clearly visible in Fig. 4.26.

With increasing load, a visible influence of the side connection was observed in both ex-

periments. During the linear phase in the beginning of the tests, no significant influence was

visible. However, the recorded measurement data did not allow for a quantification of the side

connection stiffness during this phase.

Considering that the used beech LVL plates have a cross-layer ratio of only 19%, the measured

bending stiffness of 60 – 75% of the longitudinal direction is an encouraging result. Based on

these findings, it can be expected that in a quadratic two-way spanning TCC slab, activating

the transversal load-bearing direction significantly improves the structural behaviour, especially

regarding vibrations and deflections under service loads.
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(a) (b)

(c) (d)

Fig. 4.25: Influence of the connection type on (a) load-deflection curves in the final state, (b) maximum

test load qu and bending stiffness EI in the final state, (c) fundamental frequency in the final state,

(d) bending stiffness of the formwork elements in the construction state.

Fig. 4.26: Load-deflection curves of the two transversal specimens, compared to the longitudinal refer-

ence specimens.
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4.5 Conclusions

The load-bearing behaviour of the TCC slab with steel tube connection was studied in a series

of uniaxial bending tests comprising eleven specimens. The collected experimental data provide

a sound basis for the validation of the calculation models for uniaxial bending (Chapter 6),

covering a wide range of different connection efficiencies. Below, the main conclusions drawn

from this test campaign are summarised:

� The observed load-bearing behaviour can be divided into three phases: a linear phase

up to 0.4 · qu, a non-linear phase up to 0.8 · qu and a plastic phase, during which the

deflections increase substantially. In almost all specimens, no significant load drop due to

a brittle failure was observed throughout the experiment, reaching a mid-span deflection

of wm ≈ l/18 ≈ 300 mm.

� The structural behaviour of the TCC slab is governed by the connection behaviour, not

by cross-sectional failure modes. A ductile failure mode with limited deformation capacity

was already observed in the connection shear tests. The results of the bending tests,

however, indicate a plastic connection behaviour up to slip displacements of ∆u ≈ 40 mm,

which is significantly more than what would be expected based on the connection shear

tests. A part of this difference may be explained by poor concrete quality and premature

shear failures reducing the deformation capacity in the connection shear tests. However,

it cannot be excluded that also the upper LVL beam that was integrated in the bending

specimens, had a positive effect on the connection ductility.

� The chosen connection concept with a grouted type 1 connection and, in case of a produc-

tion process using cast-in-situ concrete, a form-fitting type 2 connection, as described in

Chapter 1.3, was confirmed to be the optimal solution for practical use in TCC slabs with

an interlayer.

� The results consistently show that a higher number of connectors leads to a significant

increase in bending stiffness and load-bearing capacity.

� In the tested specimens, increasing the interlayer height h0 did not lead to a substantially

higher bending stiffness or load-bearing capacity. The positive effect of a larger static

height of the composite beam is compensated by a reduced connection stiffness K due to

the larger lever arm of the steel tubes.

� The two specimens in transversal direction reached a bending stiffness of 60 – 75% of the

corresponding longitudinal specimen. Based on this result, a significant contribution of

the transversal load-bearing direction can be expected in the two-way spanning version of

the TCC slab with steel tube connection (Chapters 5 and 7).
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Chapter 5

Biaxial bending test

5.1 Introduction

This chapter covers the experiments that were conducted to study the biaxial load-bearing be-

haviour of the TCC slab with steel tube connection. Several static and dynamic tests were

performed on one quadratic specimen of 5.46 m side length. The main objectives of this experi-

mental campaign were:

� Determining the orthotropic stiffness parameters of the two-way spanning TCC slab

� Investigating the stiffness, natural vibration frequency, load-bearing capacity and ductility

of the TCC slab in biaxial bending

� Understanding the structural behaviour and the governing failure mechanisms

� Providing experimental data as a basis to validate the calculation models for biaxial bend-

ing (Chapter 7)

Fig. 5.1 shows an overview of this experimental campaign, which was divided into two main

phases. The first phase was dedicated to the determination of the orthotropic stiffness param-

eters in static loading tests under service loads. For this purpose, a test setup was developed

that allowed to vary the support conditions of the slab (Chapter 5.2.2). Fig. 5.2a, 5.2b and 5.2c

illustrate the concept of the three static loading tests conducted in this phase. The bending

stiffness in x- and y-direction EIx and EIy were determined in uniaxial bending tests (two line

supports on the respective opposite edges of the slab). For the third test, point supports were

installed in all four corners. One of the supports was lowered while measuring its support force

and vertical displacement, which allowed for a calculation of the torsional stiffness EIxy.

The maximum load in all static loading tests during phase 1 was chosen such that no ir-

reversible deformations due to concrete cracking or a connection failure should occur in the

specimen. Dynamic tests were performed to determine the fundamental frequency before and

after each experiment (Fig 5.1). A comparison of the respective measurement results allowed to

detect a possible change in the specimen stiffness due to unwanted cracks or connection failures.
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As shown in Fig. 5.1, the fundamental frequency in the biaxial test setup was determined before

and after phase 1. A comparison of these results confirmed that no significant change in stiffness

occurred in the static loading tests and during the test setup modifications.

Biaxial setup

Setup modification
Dynamic tests

Uniaxial bending Y

Uniaxial bending X

Torsion

Biaxial bending

Phase 0
Dynamic reference tests

Phase 1
Static tests under service loads
for the determination of
orthotropic stiffness parameters
EI  , EIy and EIxy

Phase 2
Static tests in biaxial bending:
· Three-day creep test under service loads
· Destructive test (load-bearing capacity)

x

Fig. 5.1: Overview of the experimental campaign on a two-way spanning TCC slab including static and

dynamic tests in different support conditions.

x
y z

(a) (b)

(c) (d)

Fig. 5.2: Test concept for the determination of the orthotropic stiffness parameters: (a) bending stiffness

in x-direction EIx, (b) bending stiffness in y-direction EIy, (c) torsional stiffness EIxy and (d) load-

bearing behaviour in biaxial bending.
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The second phase focused on the investigation of the global load-bearing behaviour of the

slab in a two-way spanning setup. Line supports were installed on all four sides of the slab

(Fig. 5.2d). After a three-day creep test under service loads, the load-bearing capacity of the

two-way spanning TCC slab was determined by means of a destructive test.

The main findings of this experimental campaign are presented and discussed in this chapter.

A detailed report of all conducted experiments is provided in [44].

5.2 Materials and methods

5.2.1 Specimen

The specimen for the biaxial bending test consisted of three elements of 5.46 m length and

1.82 m width (maximum width of BauBuche Q plates). The element length was chosen as three

times the width so that a quadratic specimen would result after assembly. These elements

were fully prefabricated in the production facilities of Implenia Schweiz AG. In contrast to the

specimens tested in uniaxial bending (Chapter 4), no upper LVL beam was included. After

transporting the three elements to the testing laboratory at ETH Zurich, the specimen was

assembled directly in the test setup. Fig. 5.3 shows the geometry of the assembled specimen

and Tab. 5.1 lists all materials that were used in the production. Concrete tests were performed

to determine the MOE according to SIA 262/1 [77], the cylinder compressive strength according

to EN 12390-3 [11] and the splitting tensile strength according to Chen [16]. A detailed report

of these tests is provided in [44]. Tab. 5.2 shows the main results of the material tests.

A concrete edge beam ( 1 in Fig. 5.3) was included along the four sides of the specimen

for the introduction of the support reaction forces. The edge beams contained no longitudinal

reinforcement and they were not connected at the interface between the elements. Fig. 5.4a

shows a photo of one of the two side elements before concreting.

The steel tubes ( 4 ) were arranged in a 9× 9 grid with a uniform distance of 600 mm. This

corresponds to the simplest possible way of arranging the steel tubes in a two-way spanning

slab. This connector layout was chosen in the expectation that this would simplify the com-

parison with the model predictions. Four steel tubes in this grid were omitted because holes

in the test specimen were necessary at these positions ( 5 ) due to the design of the test setup

(Chapter 5.2.2). The standard connection concept with a grouted type 1 connection was applied

(Fig. 3.1a). The embedment depth of the steel tube in concrete was 50 mm, leaving a concrete

cover of 30 mm.

Four anchor points were installed on each of the three elements ( 3 ), which allowed to move

them using a crane. Furthermore, four anchor points were installed in the concrete edge beam

( 2 ), which allowed to lift the entire specimen during the modification of the test setup. The

location of all anchor points was chosen such that no significant tensile stresses would occur in

the concrete layer during this process.

The side connections ( 9 ) were planned in analogy to the specimens tested in uniaxial

bending (Fig. 4.3). In contrast to those specimens, the cutout in the LVL plate was done such
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that the connections could be accessed and inspected from below. An attempted assembly

of the three elements revealed that the planned side connection concept is not applicable for

elements of this size. The envisioned direct connection with a coupling nut does not allow for

any production tolerance. This led to a blocking of the nuts and eventually the destruction of

the threads of the GIR. Based on this experience, an improved concept for the side connections

was developed as described in Chapter 1.3.
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Fig. 5.3: Biaxial bending specimen: top view of one quarter of the symmetric quadratic specimen and

sections in both directions, dimensions in [mm].
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For the side connection in the test specimen, an alternative concept had to be found based

on the given boundary conditions. Fig. 5.5 shows the chosen solution using a custom made

oversized nut that was placed on the GIR and filled with an epoxy adhesive anchoring system.

A rubber sealing ring ensured a central position of the GIR. Two holes were drilled in the nut

to avoid any air inclusions during the injection. The adhesive was injected from below until

it exited the upper hole. The load-bearing capacity of this connection was determined in six

tensile tests. A mean value of 69.1 kN was measured, which corresponds to 55% of the tensile

strength of the M16 threaded rod. A detailed report of these experiments is provided in [44].

The three prefabricated elements were positioned with the laboratory crane (Fig. 5.4b) and

pulled together with two ratchet lashing straps (Fig. 5.4d). After injecting the side connections

(Fig. 5.6a), the interlayer in these locations was filled with styrofoam. The gap in the concrete

layer between the elements was filled with mortar, creating a form-fitting joint (Fig. 5.6b). The

concrete edge beams were flush with the LVL plate, resulting in a contact joint at the element

interfaces (Fig. 5.6c).

Tab. 5.1: Materials used in the biaxial bending specimen.

Material Description Details

Beech LVL Thickness 60 mm

(BauBuche Q) Veneer layout ||| − || − ||||||| − || − |||
Cross-layer ratio 19%

Cellulose fibres Isocell Compressed to approx. 60 kg/m3

Concrete Ordered quality C30/37

Max. aggregate size 16 mm

Admixture MasterLife SRA 895 (2% of cement mass)

Jointing mortar ProOne GROUT 4 For concrete joints between the elements

Steel tubes ROR 82.5/3.2 P235TR1, welded

Grout type Sikadur®-42 HE High performance epoxy grouting system [79]

Glued-in rods Threaded rods M16 Strength grade 8.8

Resin and hardener WEVO EP 32 S / B22 TS [23]

Connection injection Hilti HIT-RE 500 V3 [62]

Tab. 5.2: Results of concrete tests, 89 days after production.

Mean value [MPa] COV n

Modulus of elasticity E1 37’200 5% 3

Cylinder compressive strength f1,c 50.4 2% 3

Splitting tensile strength f1,t,sp 3.9 5% 4
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(a) (b)

(c) (d)

Fig. 5.4: (a) Prefabrication of one of the two side elements with concrete edge beam, cellulose fibres

(packed in plastic), reinforcement bars, steel tubes, four anchorage points and placeholders for the two

holes in the element, (b) & (c) positioning of the prefabricated elements with the laboratory crane and

(d) with two ratchet lashing straps during the assembly of the specimen in the test setup.

Injection Hilti HIT

GIR M16

Beech
LVL

Rubber sealing ring

Custom made
oversized nut

80
84

32

(a) (b) (c)

Fig. 5.5: Solution for the side connection in the specimen after the initial concept failed: (a) geometry

and injection concept, (b) GIR with rubber sealing ring, (c) custom made oversized nut with two holes

for the injection and an inner thread for optimal adhesive bonding.
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(a) (b) (c)

Fig. 5.6: (a) Assembled side connection before injection, (b) form-fitting joint of the concrete layer at

the element interfaces filled with mortar and (c) contact joint of the concrete edge beam.

5.2.2 Test setup

The concept of this experimental campaign (Fig. 5.1 and 5.2) involved static loading tests on the

same specimen in four different support conditions. A special test setup had to be designed to

accomplish this with a specimen of this size and weighing approximately ten tons. The developed

solution is illustrated in Fig 5.7. In a classical test setup with hydraulic cylinders mounted on

a frame above the specimen (such as in Fig. 4.4), access to the specimen by crane is not easily

possible. Therefore, the setup was inverted. Four hydraulic hollow piston cylinders (11 in

Fig. 5.7) were installed beneath the strong floor (13 and Fig. 5.9a), suspended using dywidag

tie rods (10). These rods passed through the holes in the test specimen and were connected

to a load distribution construction on top of the specimen. This connection was constructed

using a steel support cone and a spherical nut ( 5 and Fig. 5.9d) to avoid the transmission of

any bending moments. An additional nut (11) was installed beneath the specimen so that the

hydraulic cylinders could be mounted directly on the strong floor whenever they were not needed

during an experiment. All cylinders were connected to the same hydraulic circuit with the oil

pressure controlled by a manually operated pump. The four load distribution constructions

led to a total of 16 point forces in the bending tests. Thick elastomer mats ( 6 ) were placed

between the cross beams ( 3 ) and the specimen to compensate for uneven deformation and to

avoid local force concentrations. The resulting situation with 16 point loads is comparable to a

slab subjected to a uniformly distributed load.

Four line supports and four point supports were constructed to cover all required test config-

urations. All of these support constructions could be moved either manually (point supports) or

using two manual pallet jacks (line supports) while the specimen was suspended on the labora-

tory cranes (Fig. 5.9b). This allowed for a relatively easy modification of the test setup. Fig. 5.8

shows the resulting four support configurations used in this experimental campaign.
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Fig. 5.7: Test setup used for the biaxial bending experiments, all dimensions in [mm].
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Each of the line supports (Fig. 5.9c) had two built-in force cells ( 9 in Fig. 5.7), allowing

to measure the support reactions during the experiments. Each force cell was post-tensioned

to approximately 90 kN with two threaded rods ( 8 and Fig. 5.9e) to provide the necessary

stability of the support construction. Steel tubes ( 2 ) of 4 m length minimised the transmission

of any horizontal support forces. For the uniaxial stiffness tests during phase 1, additional short

tubes were added, increasing the effective length of the line supports to 4.7 m.

Three point supports were built using HEB 300 steel profiles ( 1 ) and spherical support

bearings (14 and Fig. 5.9f). A hydraulic cylinder with a locking nut and a force cell was used

as the fourth point support ( 7 and Fig. 5.9g). In the torsional tests performed by Higgins

et al. [35] and by Loebus & Winter [50], an external load was applied in one of the specimen

corners. This was not necessary in the present study. A controlled lowering of one point support

led to a reduction of the reaction force in this support and in the one diagonally opposite. Due

to the 2.5 times larger span than in the mentioned experiments, this differential point force

was sufficient to assess the torsional stiffness. Furthermore, the complete removal of one point

support would already have led to substantial concrete cracking, which was unwanted in this

phase of the experimental campaign.

(a) (b)

(c) (d)

Fig. 5.8: Test setup configurations from the bird’s eye view: (a) uniaxial bending in x-direction, (b) uni-

axial bending in y-direction, (c) torsion and (d) biaxial bending.
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(a) (b)

(c)

(d)

(e) (f) (g)

Fig. 5.9: Photos of the test setup: (a) hydraulic hollow piston cylinders installed beneath the strong floor,

(b) modification of the support conditions with the specimen suspended on the laboratory cranes, (c) line

support construction, (d) connection of the dywidag tie rods with the load distribution construction using

a steel support cone and a spherical nut, (e) built-in force cells in the line support with post-tensioned

threaded rods, (f) point support with spherical support bearings and (g) lowerable point support with

force cell.
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5.2.3 Measurements and test procedure

Various measurement sensors were installed in the test setup to record displacements, forces

and accelerations. Fig. 5.10 shows their positions on the specimen. The oil pressure in the

hydraulic circuit was measured using the internal manometer of the manually operated pump.

Based on this measurement, the cylinder forces could be calculated. Two NDI Optotrak Certus

position sensors were installed to record the deformations on the side of the specimen in the

area marked in Fig. 5.10. Strobers (visible e. g. in Fig. 5.9g) were glued to both the specimen

and the supporting construction allowing for a precise 3D tracking of these points throughout

the experiments. The strober locations on the specimen are shown in Fig. 5.7. They were

chosen according to the position of the steel tubes, allowing for a calculation of the relative

displacements between the timber and concrete sections at these points.

The LVDTs measuring vertical displacements (Fig. 5.11a) at the edge of the specimen w6,7,8,9

were installed only during the experiments where no line support was present in that position.

During the torsional test, the reaction force of the lowerable point support F9 was measured

with a force cell (Fig. 5.9g) and w11 was used for live monitoring. The LVDT measuring w10

was installed only during the biaxial bending tests at the end of the experimental campaign.

Six additional LVDTs si were installed at the interface of the specimen elements to measure the

relative horizontal displacements in these locations (Fig. 5.11b).

Five acceleration sensors ai (Fig. 5.11a) were installed in the locations shown in Fig. 5.10 for

the dynamic tests that were performed at several time points during this experimental campaign

(Fig. 5.1). Impulse excitation was achieved with a heel drop at all five sensor locations. This
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Fig. 5.10: Measurement setup in the biaxial bending experiments, all dimensions in [mm].
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(a) (b)

Fig. 5.11: (a) LVDT measuring the vertical displacements of the slab wi and acceleration sensor used

during the dynamic tests, (b) LVDT measuring the relative horizontal displacements si at the element

interfaces.

was repeated three times and the free vibration response was recorded at a rate of 1’000 Hz. The

load distribution construction (LDC) was not removed for the dynamic tests during phase 1.

An overview of the tests conducted in the scope of this experimental campaign is shown in

Fig. 5.1. The three static loading tests during phase 1 were performed at low load levels in order

to avoid any irreversible deformations in the specimen. For the uniaxial bending tests in x- and

y-direction, predictions of the uniaxial load-bearing capacity were made using the calculation

model presented in Chapter 6.2. The maximum load during the test was set at 35% of the

predicted failure load including the specimen self-weight. In the uniaxial bending tests, three

loading and unloading cycles were performed. The torsional test was started with the hydraulic

cylinder set at the same height as the other point supports. Starting from this neutral position,

two cycles were performed in each direction until a differential support reaction of ±10 kN was

reached (Fig. 5.15a).

In the biaxial setup, the specimen was loaded to approximately 20% of its load-bearing

capacity for 69 hours. This load level was chosen assuming a non-structural permanent load of

2 kN/m2 and a live load of 3 kN/m2, adding up to 5 kN/m2. Because of a technical problem

with the measurement hardware, the experiment had to be aborted after two hours. Three

days later, the load was applied again and was then held constant for 69 hours. This was the

only experiment where the load was not applied using a manually operated oil pump. Instead,

a pendulum manometer was used to hold a constant load level throughout the time of the

experiment.

The loading protocol of the final test was similar as in the connection shear tests (Chap-

ter 3) and the uniaxial bending tests (Chapter 4). Based on the recommendations given in

EN 26891 [10], an unloading and reloading cycle was performed after 40% of the estimated fail-

ure load was reached. The manual control with the hand operated oil pump is comparable to

force based control in the elastic range and displacement based control in the plastic range of the

test. The experiment was stopped when the deformation capacity of the test setup was reached.
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5.2.4 Data evaluation

During all experiments, the oil pressure in the hydraulic system was measured with a manometer

and the sum of support reactions was measured with force cells. Comparing these measurement

data from the uniaxial bending test in x-direction showed that the total friction force in the

hydraulic cylinders was approximately 12 kN. During the experiments in phase 1, the total

applied force never exceeded 150 kN, which means that the friction forces were not negligible

(> 8% of the total force) in these tests. The total force acting on the specimen was therefore

computed from the force cell measurements:

Ftot =
8∑
i=1

Fi (5.1)

In the final biaxial bending test, the specimen was loaded until failure and therefore the forces

were up to five times higher than in all previous experiments. A comparison of the oil pressure

measurement (accuracy of ±0.5%) with the force cell measurements showed that the latter

measurements were approximately 10% too low. The most likely reason for this deviation is

that the larger forces and deformations in the test setup led to eccentric loading of the force

cells. The used force cells are sensitive to such eccentric loading. At lower load levels, the pre-

stressed threaded rods in the line supports were able to prevent any significant rotations that

would lead to eccentric loading of the force cells. It is likely, however, that this was not the case

anymore at the higher load levels in this experiment.

Therefore, for the final biaxial bending test, the total force acting on the specimen was

computed from the oil pressure measurement. The friction forces (< 2% of the total force) were

deducted from the total force:

Ftot = 4 · Fcyl − 12 kN (5.2)

As all four line supports were constructed identically, it can be assumed that the measurement

error due to eccentric loading was similar in all force cells. Based on this assumption, the ratio

between the force cell measurements was used despite the measurement errors. In particular, the

ratio of the support reactions in x- and y-direction with regard to the total force were computed:

Fx

Ftot
=

∑4
i=1 Fi∑8
i=1 Fi

and
Fy

Ftot
=

∑8
i=5 Fi∑8
i=1 Fi

(5.3)

To allow for an easier interpretation of the test results, an equivalent distributed load q was

calculated as follows:

q = Ftot/l
2 (5.4)

For the calculation of the load-bearing capacity, the self-weight of the specimen (measured with

the integrated scale of the laboratory crane, ms = 9750 kg), the load distribution construction

(mLDC = 1250 kg) and the hydraulic cylinders (mcyl = 440 kg) were added as follows:

q∗u = qu + (ms +mLDC +mcyl) · g/l2 (5.5)
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The relative displacements of the timber and concrete layers in x-direction ∆u and in y-direction

∆v were derived from the NDI measurements in analogy to the procedure described in Chap-

ter 4.2.4. All steel tube connectors and side connections were given a name as shown in Fig. 5.12.

In the uniaxial bending tests during phase 1, the mean mid-span deflection was calculated

with Eq. 5.6, from wi as depicted in Fig. 5.10.

wm =

(w6 + w1 + w3 + w5 + w9)/5 for bending in x-direction

(w7 + w2 + w3 + w4 + w8)/5 for bending in y-direction
(5.6)

A linearised stiffness value was calculated for each loading cycle, using linear regression similar

as in the connection shear tests (Fig. 3.23). The respective bending stiffness EIx and EIy was

calculated based on the cylinder forces Fcyl, mid-span deflection wm and the geometry of the

test setup (Fig. 5.7). The data range used for the linear regression is shown in the respective

result plots in the subsequent chapters.

The torsional stiffness was derived directly from the differential cylinder force Fcyl and dis-

placement wcyl in the specimen corner according to Eq. 5.7. For each loading cycle, linear

regression was applied to obtain a linearised value of the orthotropic stiffness parameter EIxy.

EIxy =
F9 · l2

4 · wcyl
(5.7)

The acceleration measurements recorded in the dynamic tests were transferred to the frequency

domain with a fast Fourier transform (FFT). This was done in analogy to the uniaxial bending

tests (Fig. 4.7).
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Fig. 5.12: Identification of the steel tube connectors and the side connections.
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5.3 Results

5.3.1 Uniaxial bending in x- and y-direction and torsion

Fig. 5.13 – 5.15 show the main result plots of the two uniaxial bending tests and the torsional

test. The orthotropic stiffness values determined from all three experiments are summarised in

Tab. 5.3.

Before the first static loading test, the entire specimen had already been suspended on the

laboratory crane during a test setup modification (Fig. 5.9b). This process led to visible bending

cracks in the unreinforced concrete edge beams, especially on the two sides where this beam was

continuous (spanning in x-direction). These cracks were visually assessed throughout phase 1 of

the experimental campaign and no significant growth was observed.

In the uniaxial bending test in x-direction, three main loading cycles were performed. The

first one was split in two sub-cycles due to a technical issue with the manually operated oil pump.

Fig. 5.13b shows the load-deflection diagram that was used to calculate the bending stiffness

EIx with linear regression. The bending line along the span was symmetrical (Fig. 5.13c), with

slightly larger mid-span deflections on the positive y-side (Fig. 5.13d).

(a) (b)

(c) (d)

Fig. 5.13: Result plots from the uniaxial bending test in x-direction: (a) force-time, (b) force-deflection

and linear regression of bending stiffness with the considered data range for 1st and 2nd/3rd loading

stiffness values plotted in black and dark grey, respectively, (c) & (d) measured bending line in x- and

y-direction, before test start and at the points in time marked in (a) and (b) (dotted line: wm).
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In the uniaxial bending test in y-direction, three loading cycles were performed as shown in

Fig. 5.14a. The measured bending line along the span was slightly asymmetrical (Fig. 5.14d).

Fig. 5.14c shows that the deflections at mid-span were similar across the width of the slab.

Fig. 5.15a shows the loading protocol of the torsional test. The observed stiffness was

approximately equal for both loading directions. The cylinder force and displacement was defined

as positive for an extension of the hydraulic cylinder (raising of the point support).

Tab. 5.3: Experimentally determined orthotropic stiffness values in [kNm2/m].

Loading cycle i

1 2 3

Bending stiffness in x-direction EIx,i 5’310 9’850 9’860

Bending stiffness in y-direction EIy,i 2’380 4’160 4’050

Torsional stiffness, pos. EI+
xy,i 3’090 3’640 –

Torsional stiffness, neg. EI−xy,i 2’960 3’590 –

(a) (b)

(c) (d)

Fig. 5.14: Result plots from the uniaxial bending test in y-direction: (a) force-time, (b) force-deflection

and linear regression of bending stiffness with the considered data range for 1st and 2nd/3rd loading

stiffness values plotted in black and dark grey, respectively, (c) & (d) measured bending line in x- and

y-direction, before test start and at the points in time marked in (a) and (b) (dotted line: wm).
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(a) (b)

(c) (d)

Fig. 5.15: Result plots from the torsional test: (a) force-time, (b) force-displacement and linear re-

gression of torsional stiffness with the considered data range for 1st and 2nd loading stiffness values in

both directions, plotted in black and dark grey, respectively, (c) & (d) measured bending line in x- and

y-direction, before test start and at the points in time marked in (a) and (b).

5.3.2 Dynamic tests

Fig. 5.16 shows the frequency spectra of all dynamic tests and Tab. 5.4 lists the obtained

fundamental frequencies. The experiment with a heel drop excitation at the centre of the

slab was performed identically before and after the respective static loading test (Fig. 5.1). A

comparison of Fig. 5.16a and 5.16b shows that in the uniaxial bending setup in x-direction,

the first mode split into two modes after the static loading test. No mechanical explanation

was found for this observation. In all other support conditions, the fundamental frequency was

similar before and after the static loading tests.

Tab. 5.4: Experimentally determined fundamental frequency in [Hz], with heel drop excitation at the

centre of the slab and load distribution construction installed, before and after the static loading test.

Support conditions f1,before f1,after

Uniaxial bending in x-direction 10.1 (9.0/12.0)

Uniaxial bending in y-direction 6.3 5.9

Point supports in the slab corners 5.9 5.9

Biaxial bending (before and after phase 1) 14.4 14.4
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.16: Frequency spectra of all dynamic tests with heel drop excitation at the centre of the slab

in different support conditions: (a) & (b) uniaxial bending in x-direction, (c) & (d) uniaxial bending in

y-direction, (e) & (f) point supports in the slab corners, (g) & (h) biaxial bending.
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5.3.3 Biaxial bending

Three-day creep test

The main result plots of the three-day creep test are shown in Fig. 5.17. The first attempt of

this test had to be aborted after two hours due to a technical problem with the measurement

hardware. The load-deflection curve of this test (grey line in Fig. 5.17b) corresponds to the first

loading path of the slab in biaxial bending. At the beginning of the second test, another loading

cycle was performed (second and third loading). Tab. 5.5 shows that during second and third

loading, the global stiffness was similar, around 25% higher than during first loading. After the

last loading cycle, the load was held at a constant level for 69 h (Fig. 5.17a). During this time,

the deflection at the slab centre w3 increased from 6.35 to 7.69 mm (+21%). Fig. 5.17c and

5.17d show no significant change in the shape of the bending line during the test.

Tab. 5.5: Global stiffness of the slab in biaxial bending, calculated with linear regression.

1st loading 2nd loading 3rd loading

q/w3 [kN/m2/mm] 0.613 0.756 0.781

(a) (b)

(c) (d)

Fig. 5.17: Result plots from the 69 h creep test: (a) force-time, (b) force-deflection from the first test,

which had to be aborted after 2 h, and the second test with a duration of 69 h, (c) & (d) measured bending

line in x- and y-direction, before start of the second test and at the points in time marked in (a) and (b).
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Destructive test

The main result plots of the last test of this experimental campaign are shown in Fig. 5.18.

A distinct stiffness decrease is visible in Fig. 5.18a at q ≈ 7 kN/m2. This is likely due to

the preloading that was performed during the three-day creep test. During the unloading and

reloading cycle, the inclination of the load-deflection curve corresponds to the initial (reloading)

stiffness again, which supports this explanation. Fig. 5.18c shows that during this phase of the

test under service loads, the ratio of the support reactions in x- and y-direction was 60% and

40%, respectively.

At q = 17 kN/m2, a sudden increase in relative displacements occurred at the element

interface with side connections CA1 – CA8 (sensors s1,2,3 in Fig. 5.18e), which also manifests

in the load-deflection curve ( 1 in Fig. 5.18a). It is possible that one or several glue line failures

in the side connections occurred at this time. However, this could not be confirmed as the

connections were not visible during the test.

Starting at a load level of q ≈ 23 kN/m2, several minor load drops are visible in the load-

deflection curve ( 2 in Fig. 5.18a). At the same time, local punching failures in the concrete

cover above connectors A4, A5, A6, J4, J5 and J6 were observed (Fig. 5.20b, 5.21a and 5.21b). It

is likely that the load drops were caused by these local failures. The total load further increased

up to qu = 25.5 kN/m2 (q∗u = 29.5 kN/m2 including self-weight according to Eq. 5.5) and the

deflection at the slab centre reached w3 = l/58 = 92 mm at this point.

A brittle failure of several side connections among CA1 – CA8 led to a vertical offset between

the two adjacent slab elements and a load drop of 5 kN/m2 ( 3 in Fig. 5.18a, Fig. 5.20c and

5.20d). As a consequence of this failure, the ratio of the support reactions in x- and y-direction

changed (Fig. 5.18c). During the following post-peak phase of the experiment, 75 – 80% of the

load was carried in x-direction. Fig. 5.18d shows no significant change of the bending line

shape in x-direction. In y-direction (Fig. 5.18f), the ratio w3/w1 substantially increased during

the post-peak phase due to the vertical offset between the elements. The load level remained

approximately constant between q ≈ 20 – 22 kN/m2 while the deflections further increased up to

w3 = l/35 = 152 mm. Further local punching failures were observed during the post-peak phase

( 4 in Fig. 5.18a). The test was stopped when the dywidag rods (10 in Fig. 5.7) were close to

touching the edge of the holes in the specimen because of the large deformations at this point.

The measurements of the relative displacements between the timber and concrete sections

∆u and ∆v were not as conclusive as in the uniaxial bending tests (Chapter 4). However,

Fig. 5.19 shows that the relative displacements in y-direction ∆v were around two times higher

than the corresponding displacements in x-direction ∆u before the maximum load was reached.

A substantial increase of ∆v was observed during the post-peak phase. Relative displacements

in both directions were larger at the centre of the slab edges than in the slab corner.

Throughout the entire experiment, the slab corners exhibited an upward displacement (lift-

ing). This lifting was more pronounced in the concrete edge beam than in the beech LVL plate,

which led to a gap opening between the two layers, visible in Fig. 5.20a. This gap opening in

the slab corners increased at higher loads, reaching a maximum of around 15 mm.
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(a)

Sudden increase in relative displacements at
the element interface with side connections
CA1 – CA8 (sensors s     )

1

Local punching failures in the concrete cover
above connectors A4, A5, A6, J4, J5, J6
(Fig. 5.21a)

2

Failure of side connections CA1 – CA8
leading to a vertical offset between the two
adjacent slab elements

3

Local punching failures in the concrete cover
above further connectors (Fig. 5.21a)

4

1,2,3

(b)

(c) (d)

(e) (f)

Fig. 5.18: Results of the final biaxial bending test: (a) force-deflection, (b) observations, (c) ratio of

the support reactions in x- and y-direction, (d) & (f) measured bending line in x- and y-direction, before

test start and at the points in time marked in (a) (sensor w5 dropped shortly after the reloading cycle),

(e) deformation at the side connections.
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(a) (b)

Fig. 5.19: Relative horizontal displacements between the timber and concrete sections at the connector

positions (a) in x- and (b) y-direction.

(a) (b)

(c) (d)

Fig. 5.20: Photos taken during the final biaxial bending test: (a) lifting and gap opening at the slab

corner close to J1, at q ≈ 20 kN/m2, (b) 2 local punching failures in the concrete cover above connectors

J4, J5 and J6 at q ≈ 24 kN/m2 shortly before 3 , (c) & (d) post-peak phase with vertical offset between

two slab elements after 3 failure of several side connections among CA1 – CA8.
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Initiating punching cracks visible

Punching failure in concrete cover

No punching failure or cracks visible

Visible cracks on the concrete surface

Failures and cracks on the concrete surface

Failure of the threaded rod

Failures in the side connections

Failure in the glue line

CA1 – CA8

CB1 – CB8

No failure

(a)

(b) (c)
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Fig. 5.21: Inspection of the specimen after the test: (a) overview of the visible failures on the concrete

surface and in the side connections, (b) steel tube A5 after effortless removal of the concrete cover (slab

edge towards the left side), (c) failure in the glue line between nut and GIR (left) and plastic bending

deformation of the threaded rod (right) in side connection CA5, (d) & (e) failure of the threaded rod in

side connection CA2.
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5.4 Discussion

Serviceability criteria regarding deformations and vibrations often govern the design of TCC

slabs in practice. Therefore, increasing the slab stiffness is the main motivation for choosing a

two-way spanning TCC slab over a one-way spanning alternative. The results of this experimen-

tal campaign allow for a direct comparison of the stiffness and the fundamental frequency of the

same TCC slab in uniaxial and in biaxial support conditions. Tab. 5.6 shows that activating the

second load-bearing direction leads to a substantial increase in both stiffness and fundamental

frequency. This result is supported by the measurement of the support force ratio in the biaxial

bending test, which showed a load distribution of 60% in x-direction and 40% in y-direction.

The measured stiffness values can be further discussed using a theoretic comparison with

an isotropic slab. The static stiffness of a quadratic, isotropic slab with hinged line supports

on all four sides is expected to be around 200% higher than in uniaxial support conditions.

However, this is only the case if the supports are built in a way that prevents uplift of the slab

corners. For the geometry of the used test setup with unconstrained slab corners, the expected

stiffness increase would be 150%. This is still substantially more than what was observed in the

experiment. The same theoretical comparison can also be drawn with regard to the expected

fundamental frequency. For a quadratic, isotropic slab with hinged line supports on all sides,

an increase of 100% would be expected if uplift of the slab corners is not prevented. The main

reason for these differences in static stiffness and fundamental frequency is the low bending

stiffness of the tested slab specimen in transversal direction EIy = 0.45 · EIx. It is likely that

this stiffness value was affected by the alternative side connection concept that had to be used

in the test specimen (Fig. 5.5).

Tab. 5.6: Comparison of the global slab stiffness q/wm (1st loading) and the fundamental frequency f1

in uniaxial (x-direction) and in biaxial support conditions.

Uniaxial Biaxial Rel. difference

q/wm [kN/m2/mm] 0.457 0.613 +34%

f1 [Hz] 10.1 14.4 +43%

Even though the measured stiffness and the fundamental frequency are lower than what

would be expected in an isotropic slab, the findings of this experimental campaign confirm the

great potential of two-way spanning TCC slabs for the application in practice. The benefit of a

two-way spanning slab compared to a one-way spanning alternative is greatest in the case of a

quadratic slab geometry. Loebus & Winter [50] investigated the influence of other span ratios

ly/lx on the deflections of one-way and two-way spanning TCC slabs with a parametric study

using numerical models. Their results show that for ly/lx = 1.5, the stiffness benefit is less than

half compared to a situation with a quadratic slab. For ly/lx > 2, the deflections of the one-way

and two-way spanning TCC slabs are almost identical.
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A distinct difference between the first loading and reloading stiffness was measured in all

static loading tests during this experimental campaign, confirming the respective observations in

the connection shear tests (Chapter 3) and uniaxial bending tests (Chapter 4). Tab. 5.7 shows

that the difference was more pronounced in the first two tests (uniaxial bending in x- and in

y-direction) than in the following experiments. This is most likely because in these later experi-

ments, the connectors had already been preloaded during the previous tests. It is to be assumed

that these results would be different if an alternative order of the experiments had been chosen.

Tab. 5.7: Ratio of slab stiffness during first loading and reloading.

(q/wm)2/(q/wm)1

Uniaxial bending test in x-direction 1.86

Uniaxial bending test in y-direction 1.72

Torsional test 1.20

Biaxial bending test 1.25

In the biaxial bending test, local punching failures occurred in the concrete cover above

several steel tube connectors. Cracks on the concrete surface above the steel tubes were observed

already in the connection shear tests (Chapter 3). It is to be assumed that the normal force in

the steel tube was higher in the bending test than in the connection shear tests. Combined with

the cracks due to the introduction of the connection moment, this higher normal force in the

steel tube led to the observed punching failure. No similar failure was observed in the uniaxial

bending tests (Chapter 4). This difference can be explained with the upper LVL beam that was

included in the uniaxial bending specimens. This beam acted as a flange on the steel tube and

thus increased the punching resistance.

In the biaxial bending test, these local punching failures led to small load drops in the load-

deflection curve ( 2 in Fig. 5.18a). The total load could be further increased afterwards as the

connection can transmit a moment also without the concrete cover. However, shear forces from

the concrete layer can no longer be transmitted to the steel tube after a punching failure has

occurred. In the experiment, this did not lead to any further failures because all 16 point loads

were positioned directly above a steel tube. Thus, no large shear forces had to be transmitted

from the concrete layer to the steel tube.

For applications in practice, these local punching failures should be kept in mind. Large

normal forces in the steel tubes should be avoided conceptually, e. g. by including a concrete

edge beam as it was done in the tested specimen. If necessary, the punching resistance could be

increased by welding a steel ring to the connector tubes as illustrated in Fig. 5.22b.

The failure mechanism of the tested specimen was significantly influenced by the resistance

of the side connections. As an assembly of the slab elements with the original side connection

concept was not possible, an alternative solution had to be found within this experimental cam-

paign. The chosen solution (Fig. 5.5) allowed to perform all experiments as originally planned.

However, the connection resistance was reduced. In some connections, failure occurred in the
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(a)

steel ring

(b)

Fig. 5.22: (a) Original connection concept and (b) concept with a steel ring welded to the connector

tube for improved punching resistance.

glue line (Fig. 5.21c) and in others, the threaded rod failed (Fig. 5.21d and 5.21e). This implies

that there may have been differences in the quality of these glued connections.

The load-bearing capacity of the tested specimen was limited by the failure of the side

connections ( 3 in Fig. 5.18a). However, before that, local punching failures were observed

in the concrete cover above several steel tube connectors. It is therefore likely that the load-

bearing capacity of the specimen would not have been substantially higher with a stronger side

connection. The global ductility of the slab, however, was significantly affected by the failure of

the side connection. It is likely that in a force controlled test, this failure would have led to a

total collapse of the slab. As in this experiment, the load was applied with a manually operated

oil pump (comparable to displacement control), a post-peak phase was observed. During this

phase, a larger share of the total load was carried in x-direction of the slab, which was still intact.

This redistribution of internal forces allowed for large deformations at 80% of the maximum load

even though a brittle failure had occurred in the side connection.

It is likely that the side connection failure did not occur exclusively due to tensile forces in

the GIR. Shear forces may have played an important role as well. This aspect has not been

studied within the scope of this research project. The revised concept for the side connection

described in Chapter 1.3 is expected to provide a higher shear resistance thanks to the conical

edge grooves in the LVL plate. However, the resistance of the side connection to combined shear

and tension should be investigated in further studies.

5.5 Conclusions

The load-bearing behaviour of the two-way spanning TCC slab with steel tube connection was

studied in an extensive experimental campaign. Both dynamic and static loading tests were

performed on the same specimen in different support conditions. Below, the main conclusions

from these experiments are summarised:

� The tested quadratic specimen with a span of l = 5.34 m showed a 34% higher stiffness

and 43% higher fundamental frequency in biaxial versus uniaxial support conditions. Even

though these values are lower than what would be expected in an isotropic slab, they

confirm the great potential of two-way spanning TCC slabs for the application in practice.
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� In the biaxial bending test, 60% of the total load was carried in x-direction and 40% in y-

direction. After the side connection failure, the load share in x-direction increased to 80%.

� A distinct difference between the first loading and reloading stiffness was measured in all

static loading tests during this experimental campaign, confirming the respective observa-

tions in the connection shear tests (Chapter 3) and uniaxial bending tests (Chapter 4).

� Assembly of the specimen elements was not possible with the originally intended side

connection concept. Therefore, an epoxy adhesive anchoring system was used to connect

the GIR in the test specimen. A revised side connection concept was developed after this

experimental campaign, which is described in Chapter 1.3).

� The load-bearing behaviour was not as ductile as in the uniaxial bending tests due to a

brittle failure of the glued side connections. However, a redistribution of internal forces

allowed for large deformations at 80% of the maximum load during a post-peak phase.

� Local punching failures occurred in the concrete cover above several connectors, which did

not lead to a global collapse of the specimen. Nevertheless, this failure mode should be

considered in the further development and in practical applications of this TCC slab.
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Chapter 6

Models for uniaxial bending

6.1 Introduction

In this chapter, two models are presented that can be used to predict the uniaxial load-bearing

behaviour of the investigated TCC slab. After a detailed description of both models, they are

applied to the boundary conditions of the uniaxial bending tests performed within the scope of

this research project. This allows for a comparison of the respective predictions with the test

results. On this basis, the accuracy of the models is assessed with regard to the prediction of

deformations, load-bearing capacity and dynamic behaviour. Recommendations regarding the

application of the calculation models are provided.

6.2 Elasto-plastic γ-method

6.2.1 Introduction

This chapter presents an analytical model for timber-concrete composite members with ductile

connections. The presented model is based on the work published by Frangi & Fontana [31]

as well as Boccadoro [4] who extended the model focusing on its application for a TCC system

with ductile notched connection.

Within the scope of this thesis, the model as described by Boccadoro [4] has been adapted

to the novel TCC system with steel tube connection. The notations and conventions regarding

the γ-method have been altered such that they are in accordance with Eurocode 5 [13] and

the final draft of the CEN/TC250/SC5 Technical Specification on the structural design of TCC

structures (TS TCC [15]). This should facilitate the application of the model for future analyses

covering also the long-term behaviour of the novel slab system.

The model presented by Frangi & Fontana [31] and Boccadoro [4] assumes linear-elastic,

perfectly plastic connection behaviour. This means that the connection is assumed to have un-

limited deformation capacity. The experimental investigations on steel tube connectors (Chap-

ter 3) have shown that this assumption may not be fully applicable in the presented structure.

Although plastic deformations were observed, the connectors usually showed a brittle failure
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after a certain slip displacement ∆umax. In the uniaxial bending tests (Chapter 4), a distinct

ductile load-bearing behaviour was observed. No significant load drops due to brittle connection

failures occurred even after large slip displacements of ∆u ≈ 40 mm. However, it cannot be

excluded that the upper LVL beam integrated in these specimens had a positive effect on the

connection ductility. Therefore, until experimental data are available also for specimens with-

out an upper LVL beam, the connection deformation capacity should be regarded as limited.

Consequently, the model has been extended for the case of such a connection system with lim-

ited deformation capacity. The main assumptions of the model regarding the concrete and the

connection behaviour are illustrated in Fig. 6.1. The timber section is modelled as linear-elastic

with brittle failure. Stress interactions are treated according to Eurocode 5 [13]. Furthermore,

the connectors are assumed to be arranged such that the resulting elastic shear forces are equal

in all connectors. This means that all connectors reach their shear capacity at the same time.
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Fig. 6.1: Assumptions of the elasto-plastic γ-method: constitutive laws for concrete during (a) state I,

(b) states II/III and (c) state IV; (d) & (e) connection behaviour.

The parameters of the connection behaviour used in the analysis (Fig. 6.1d) are derived

directly from the results of the connection shear tests (Chapter 3). All considerations and

calculation steps required for this are explained in Chapter 6.2.2.

The main part of the calculation model concerns the derivation of the moment-curvature

behaviour of the composite cross-section at mid-span in Chapters 6.2.3 – 6.2.6. Fig. 6.2 shows an

overview of the analysis, which is divided into four states, similar to the models typically used

to describe the moment-curvature behaviour of reinforced concrete cross-sections. In state I,

the concrete is uncracked and can carry tensile stresses. State I ends when the concrete tensile

strength is reached. In state II, the concrete is cracked and assumed to have no tensile strength.
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In the investigated TCC structure, the difference of the bending stiffness in state I and II is

very small (EII ≈ EIII), because of the interlayer between the concrete and timber sections.

However, concrete cracking has a distinct influence on the distribution of internal stresses. The

load-bearing behaviour of the composite member is elastic during states I and II and can therefore

be described with the elastic γ-method as described in Chapter 2.2.2. At the end of state II, all

connectors reach their shear capacity, which marks the end of the elastic phase. During states III

and IV, the theory of elastic composite action is not valid as there is no constant connection

stiffness anymore. The moment-curvature behaviour in this elasto-plastic phase is described

using analogies to the theories developed for the analysis of reinforced concrete cross-sections

developed by Marti et al. [53] and implemented in the Swiss standard SIA 262 [76], combined

with the suggested model by Frangi & Fontana [31]. These analogies were already described

and used by Boccadoro [4].

In Fig. 6.2, the transition points (cr, y, cc) are marked with a circular frame and the cor-

responding geometry, axial strains and stresses are depicted on the left side. In all states,

other failure modes are possible that would lead to a premature brittle failure of the composite

member before having exhibited large deformations. These types of failures are marked with a

rectangular frame on the right side in Fig. 6.2. The brittle failure modes caused by axial stresses

in the timber and the concrete part of the composite cross-section are directly addressed in

Chapters 6.2.3 – 6.2.6.

Potential failures caused by shear stresses in the partial sections are not discussed in this

chapter. Local shear failures close to the connectors are accounted for with the empirical connec-

tion model that is used in the analysis (limitation of connection shear and deformation capacity).

Shear failures in the timber or concrete section caused by global shear force were not observed

in any of the uniaxial bending tests (Chapter 4) with a relatively short span of 5.34 m. As cross-

sectional shear failures are less likely to occur with increasing span, this failure mode is not

expected to be governing in practice and was therefore not investigated in detail. For practical

applications, a simplified conservative design check can be performed by assigning the entire

shear force to the timber section.

As the assumed connection behaviour is plastic during states III and IV, the slip displace-

ments and deflections of the composite member cannot be calculated based only on the moment-

curvature behaviour at mid-span. Chapter 6.2.7 covers the necessary additional considerations

regarding the elastic and elasto-plastic areas of the composite beam and its boundary conditions.

Therefore, for the cross-section analysis (Chapters 6.2.3 – 6.2.6) the connection behaviour is as-

sumed to be linear-elastic, perfectly plastic. The slip displacement limit (connection deformation

capacity) and the corresponding failure mode is then studied in Chapter 6.2.7 to complete the

analysis.
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Fig. 6.2: Overview of the elasto-plastic γ-method: states of the composite cross-section, resulting

moment-curvature diagram, considered failure modes and corresponding abbreviations and indices used

in this chapter.
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6.2.2 Connection behaviour

The parameters describing the connection behaviour as illustrated in Fig. 6.1d are derived di-

rectly from the results of the connection shear tests (Chapter 3). The clamping stiffness of the

steel tube in the timber and concrete sections is represented by two different rotational springs.

As the characteristics of these springs are investigated in individual experiments, deriving the

elastic stiffness of the entire connection requires the use of a mechanical model, which is depicted

in Fig. 6.3. Within the scope of the test evaluation, the position of the rotational springs was

defined at the base of the steel tube (Chapter 3.2.4).
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Fig. 6.3: Derivation of elastic connection stiffness from experimental results: (a) geometry of the con-

nection, (b) mechanical model and (c) internal bending moments and shear forces in the steel tube.

Using the force method, the moments in the rotational springs are calculated:

Msup = −
lT/2EIT + 1/km,inf

lT/EIT + 1/km,inf + 1/km,sup
· T lT (6.1)

Minf = Msup + T lT (6.2)

The displacement ∆u and the elastic connection stiffness follow:

∆u = (2T lT + 3Msup) ·
l2T

6EIT
+

T lT
GAT

+ (T lT +Msup) · lT
km,inf

(6.3)

K =
T

∆u
(6.4)

If brittle failure behaviour in the rotational springs is assumed, Eq. 6.1 and 6.2 can be used to

determine a lower limit value of the connection shear capacity Ty. The nonlinear behaviour of

both upper and lower rotational springs, however, allows for a redistribution of moments and

therefore a higher connection shear capacity. If perfect plasticity is assumed in both rotational
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springs, an upper limit value of the connection shear capacity is obtained:

Ty =
Msup,y +Minf,y

lT
(6.5)

If experimentally determined moment-rotation (M –ϕ) curves are available for both rotational

springs, finite element software can be used to perform a nonlinear push-over analysis (Fig. 6.4).

This was done with the M –ϕ curves described in Chapter 3.3.7, for all four possible connection

combinations (embedment depth of the steel tube in timber ainf = 40 mm and in concrete

asup = 30, 40, 50, 60 mm), steel tube diameter D = 82.5 mm and varying length lT between

150 – 300 mm. The connection deformation capacity ∆umax was defined at the point where the

first significant force drop occurs, as illustrated in Fig. 6.4. In all studied cases, this point

coincides with the concrete connection reaching its maximum rotation ϕsup,max. Neglecting the

deformation of the steel tube (EIT,GAT →∞) allows for a simple hand calculation of a lower

limit value of ∆umax:

∆umax = ϕsup,max · lT (6.6)

Fig. 6.5 compares the results calculated from Eq. 6.5 and 6.6 with the results of the nonlinear

push-over analysis. For asup = 30, 40, 50 mm, Ty reaches more than 98% of the value calculated

assuming perfect plasticity. For asup = 60 mm, the values are slightly lower (95%).

(a)
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Δu
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EI
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(M,φ)inf

lT
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Fig. 6.4: Nonlinear push-over analysis: (a) & (b) input M –ϕ curves, (c) static system and (d) resulting

force-slip curve for asup = 30 mm, lT = 210 mm (reference configuration in the uniaxial bending tests).
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Whether the connection can exploit its full plastic potential depends mainly on the maximum

rotation that the concrete connection ϕsup,max can achieve before a brittle failure occurs. This

parameter was determined based on three push-out tests with asup = 40 mm and based on

only one test per configuration in the other cases. For asup = 60 mm, the value was chosen

conservatively because of a small force drop in the experiment (visible in Fig 3.29e), which has

a direct influence on the result shown in Fig. 6.5a. Overall, the upper limit value according

to Eq. 6.5 is a good approximation of the shear capacity Ty in the studied cases. Fig. 6.5b

shows that the simplified calculation with Eq. 6.6 delivers good results on the conservative side.

Also here, the results are a direct function of ϕsup,max. Further test campaigns are necessary to

extend the experimental basis for this parameter.

(a) (b)

Fig. 6.5: Results of nonlinear pushover analysis and simplified calculations: (a) connection shear capacity

Ty and (b) connection deformation capacity ∆umax (legends valid for both plots).

Tab. 6.1 summarises all experimentally determined input values necessary to calculate the

connection stiffness K, shear capacity Ty and deformation capacity ∆umax for the most impor-

tant cases. For static analyses the first loading stiffness km,1 should be used, while for dynamic

calculations the higher reloading stiffness km,2 is applicable.

Tab. 6.1: Input values for calculation of connection properties, with steel tube diameter D = 82.5 mm

in all cases.

km,1 km,2 My ϕmax

[kNm/rad] [kNm/rad] [kNm] [mrad]

Type 1, a = 40 mm 1’080 1’130 7.68 40

Type 3, a = 30 mm 621 1’480 2.73 40

a = 40 mm 916 4’470 4.38 30

a = 50 mm 1’440 9’900 5.39 30

a = 60 mm 3’460 15’000 6.28 20
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6.2.3 State I: connection elastic, concrete uncracked and elastic

During state I, the concrete section is uncracked and can carry both compressive and tensile

stresses. Fig. 6.6 illustrates the geometry of the composite cross-section and the axial strains,

stresses and internal forces during state I. As the connection between the partial sections is not

rigid, the strains along the height of the composite cross-section are discontinuous. The resulting

offset between the partial sections is referred to as slip strain ∆ε. As the vertical displacements

of the partial sections are assumed to remain equal at all times, the curvature χ (inclination of

the strain plane) has to be constant over the entire composite cross-section. The axial strains,

stresses and internal forces are calculated using the γ-method introduced in Chapter 2.2.2. State

I ends when the tensile stress at the bottom of the concrete section reaches the concrete tensile

strength. No other failures are expected during state I.
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Fig. 6.6: Axial strains, stresses and internal forces at the end of state I (concrete cracking).

The cross-sectional areas and moments of inertia of the concrete and timber sections are:

A1,I = b1h1,I = b1h1 (6.7)

A2 = b2h2 (6.8)

I1,I =
b1h

3
1,I

12
=
b1h

3
1

12
(6.9)

I2 =
b2h

3
2

12
(6.10)

The modulus of elasticity (MOE) of timber is chosen as the reference MOE. The different MOE

of concrete and timber are taken into account with the following factors:

n1 =
E1

E2
(6.11)

n2 =
E2

E2
= 1 (6.12)



6.2. Elasto-plastic γ-method 125

In accordance with Eurocode 5 [13] and TS TCC [15], the theoretical timber zero-strain axis is

chosen as the reference axis for the γ-method (axis 2,0 in Fig. 6.6). In the investigated TCC

structure, the entire timber section will be in tension during states I and II in most cases. This

means that the theoretical timber zero-strain axis will normally be positioned above the timber

section. The γ-values are calculated as follows:

γ1,I =
1

1 +
π2E1A1,Isef

Kl2

(6.13)

γ2 = 1 (6.14)

The effective connector spacing sef in Eq. 6.13 is estimated according to the recommendations

discussed in Chapter 2.2.2. The distance between the centroids of the concrete and timber

sections is:

eI = h0 +
h1

2
+
h2

2
(6.15)

The distances between the theoretical timber zero-strain axis and the centroids of the concrete

and timber sections are calculated as follows:

a1,I =
γ2n2A2

γ1,In1A1,I + γ2n2A2
· eI (6.16)

a2,I =
γ1,In1A1,I

γ1,In1A1,I + γ2n2A2
· eI (6.17)

The moment of inertia and the bending stiffness of the composite section result as follows:

II = n1I1,I + n2I2 + γ1,In1A1,Ia1,I
2 + γ2n2A2a2,I

2 (6.18)

EII = E2II (6.19)

The curvature of the composite cross-section during state I resulting from a bending moment

M ≤Mcr is:

χ =
M

EII
(6.20)

The axial strains during state I result as follows:

ε1 =

ε1,sup

ε1,m

ε1,inf

 =

−γ1,Ia1,I − h1/2

−γ1,Ia1,I

−γ1,Ia1,I + h1/2

 · χ (6.21)

ε2 =

ε2,sup

ε2,m

ε2,inf

 =

γ2a2,I − h2/2

γ2a2,I

γ2a2,I + h2/2

 · χ (6.22)
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Applying Hooke’s law yields the corresponding axial stresses during state I:

σ1 = E1 · ε1 =

σ1,sup

σ1,m

σ1,inf

 =

−γ1,Ia1,I − h1/2

−γ1,Ia1,I

−γ1,Ia1,I + h1/2

 · n1 ·
M

II
(6.23)

σ2 = E2 · ε2 =

σ2,sup

σ2,m

σ2,inf

 =

γ2a2,I − h2/2

γ2a2,I

γ2a2,I + h2/2

 · n2 ·
M

II
(6.24)

The internal forces acting on the partial sections are obtained by integration of the axial stresses,

leading to the following equations:

M1 = E1I1,I · χ =
n1I1,I

II
·M (6.25)

M2 = E2I2 · χ =
n2I2

II
·M (6.26)

N = σ2,m ·A2 = −σ1,m ·A1,I (6.27)

These fulfil the equilibrium conditions:

M = M1 +M2 +N · eI (6.28)

The slip strain is calculated as follows:

∆ε = (1− γ1,I) · a1,I · χ (6.29)

End of state I: concrete cracking

Setting σ1,inf = f1,t in Eq. 6.23 yields the external bending moment that leads to concrete

cracking

Mcr =
II

n1 · (h1/2− γ1,Ia1,I)
· f1,t (6.30)

And the corresponding curvature

χcr =
Mcr

EII
(6.31)

The axial strains, stresses and internal forces at the end of state I (concrete cracking) can be

calculated using Eq. 6.21 – 6.27 with M = Mcr and χ = χcr

6.2.4 State II: connection elastic, concrete cracked and elastic

During state II, the concrete section is cracked and the connection behaviour remains elastic.

Fig. 6.7 illustrates the geometry of the composite cross-section and the axial strains, stresses

and internal forces during state II. State II ends when the connection shear capacity is reached.
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Fig. 6.7: Axial strains, stresses and internal forces at the end of state II (connection shear capacity

reached).

After concrete cracking, the model assumes that the concrete section can only carry com-

pressive stresses (ft,1 = 0). To account for this, the statically active height of the concrete

section h1,II is reduced to the part that is subjected to compressive stresses.

h1,II = h1 − hcr (6.32)

As the behaviour of the composite member is elastic until the end of state II, the effective

concrete height is constant throughout this phase. Once h1,II is determined, the same procedure

as described in Chapter 6.2.3 can be applied for this new geometry. h1,II can be found using the

following condition, applying Eq. 6.21:

ε1,0 = (−γ1,II · a1,II + h1,II/2) · χ !
= 0

⇒ γ1,II · a1,II = h1,II/2
(6.33)

In Eq. 6.33, both γ1,II and a1,II are functions of h1,II. Solving this equation for h1,II leads to a

fourth degree polynomial. While it is possible to derive a closed-form solution, this procedure

results in a very long expression, leaving an iterative solution as the better option to obtain h1,II.

The mathematical reason for this is the fact that γ1,II is a function of h1,II. This dependency

can be eliminated by using a different definition of the γ-method. If, instead of the theoretical

timber zero-strain axis ( 2,0 in Fig. 6.7), the concrete zero-strain axis ( 1,0 in Fig. 6.7) is chosen

as the reference axis, the γ-factors read:

γ∗1 = 1 (6.34)

γ∗2 =
1

1 + π2E2A2sef
Kl2

(6.35)

As Eq. 6.15 – 6.28 remain valid also for this definition of the γ-method, Eq. 6.33 can be rewritten

as follows:

γ∗1 · a1,II = h1,II/2 (6.36)
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Solving Eq. 6.36 for h1,II leads to a quadratic equation. With the condition h1,II > 0 and

replacing γ∗1 = 1 and n2 = 1 for simplicity, the following closed-form expression is derived:

h1,II =
−γ∗2A2 +

√
γ∗2A2 · (γ∗2A2 + n1b1 · (2h0 + 2h1 + h2))

n1b1
(6.37)

The result obtained from Eq. 6.37 is valid independently from what reference axis is used in the

γ-method. In the scope of this thesis, the theoretical timber zero-strain axis is chosen, leading

to the γ-factors defined in Eq. 6.13 and 6.14. The values from Eq. 6.34 should be used only in

the context of Eq. 6.37.

Using the geometry of the composite cross-section during state II, the same procedure as

described in Chapter 6.2.3 can be applied to determine A1,II, I1,II, γ1,II, a1,II, a2,II and III. The

distance between the centroids of the concrete and timber sections during state II is:

eII = h0 + h1 −
h1,II

2
+
h2

2
(6.38)

The stresses during state II are:

σ1,sup = (−γ1,IIa1,II − h1,II/2) · n1 ·
M

III
(6.39)

σ2 =

σ2,sup

σ2,m

σ2,inf

 =

γ2a2,II − h2/2

γ2a2,II

γ2a2,II + h2/2

 · n2 ·
M

III
(6.40)

The internal forces acting on the partial sections result as follows:

M1 = E1I1,II · χ =
n1I1,II

III
·M (6.41)

M2 = E2I2 · χ =
n2I2

III
·M (6.42)

N = σ2,m ·A2 = −σ1,sup

2
·A1,II (6.43)

These fulfil the equilibrium conditions:

M = M1 +M2 +N · eII (6.44)

The slip strain is calculated as follows:

∆ε = (1− γ1,II) · a1,II · χ (6.45)

End of state II: yielding of all connectors

State II ends when all connectors have reached their shear capacity Ty. This also marks the end

of the elastic phase of the load-bearing behaviour. The normal force in the partial sections at

mid-span can be calculated from the equilibrium of horizontal forces (see Fig. 6.8):

N =

m∑
i=1

Ti = m · Ty (6.46)
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The model assumes that all connectors reach Ty at the same load level. This can be achieved

if the distance between the connectors is chosen such that the resulting elastic shear forces are

equal in all connectors. Such a connector layout should always be aimed for, as this also results

in the maximum possible bending stiffness for a given number of connectors m. The connection

shear forces can be approximated by integrating the theoretic elastic shear stress τ12(x) at the

interface of the composite member. Assuming that τ12(x) is a linear function of the shear force

V (x), the optimal connector positions can be derived as illustrated in Fig. 6.8. For a simply

supported beam subjected to uniformly distributed load, the optimal layout with m connectors

follows according to Eq. 6.47. Fig. 6.8 shows an example for m = 4.

xi =

√
i

m
· l

2
(6.47)

If a different connector layout is chosen, e. g. with uniform spacing, the connectors subjected to

higher elastic shear forces will exhibit plastic deformations already before the end of state II,

redistributing shear forces until all connectors reach their shear capacity. In the case of a limited

connection deformation capacity, this may affect the load-bearing capacity of the composite

member. This influence is further discussed in Chapter 6.4.3.
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x1 = √1/4 ·l/2
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T3 T2 T1T4 T1,2,3,4 = Ty

x2 = √2/4 ·l/2
x3 = √3/4 ·l/2

x4 = l/2

~ T1~ T2~ T3~ T4

lA

Fig. 6.8: End of state II: composite beam with m = 4 connectors per shear area.

Using Eq. 6.40, 6.43 and 6.46, the bending moment leading to yielding of all connectors My is

calculated:

My =
m · Ty

A2︸ ︷︷ ︸
σ2,m

· III

γ2n2 · a2,II
(6.48)

The corresponding curvature follows:

χy =
My

EIII
(6.49)
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Potential other failures during state II

In order to ensure a ductile failure mode of the composite member, any brittle failures during

state II should be avoided, such as:

� II,1c concrete crushing

� II,2tb timber tensile-bending failure

Setting σ1,sup = −f1,c in Eq. 6.39 yields:

MII,1c =
III · f1,c

(γ1,IIa1,II + h1,II/2) · n1
(6.50)

This expression delivers a lower limit value for the bending moment at which concrete crushing

would occur during state II. The real value would be higher because concrete can exhibit plastic

deformations in compression and therefore redistribute stresses. As this is a scenario that should

be avoided in any case, a more precise solution is not considered here.

According to Eurocode 5 [13], a combined tensile-bending failure in timber is reached when:

σt

ft
+
σm

fm
= 1 (6.51)

Applied to the stress state shown in Fig. 6.7, the failure criterion reads:

σ2,m

f2,t
+
σ2,inf − σ2,m

f2,m
= 1 (6.52)

Using Eq. 6.40, the bending moment leading to a potential timber tensile-bending failure during

state II is determined as follows:

MII,2tb =
III(

γ2a2,II
f2,t

+ h2
2f2,m

)
· n2

(6.53)

If My > min (MII,1c,MII,2tb), yielding of all connectors will not be reached. Instead, the load-

bearing behaviour ends at the corresponding load level with a brittle failure. Otherwise, the

bending moment can be further increased in state III.

6.2.5 State III: connection plastic, concrete cracked and elastic

During state III, the concrete section is cracked and the connection behaviour is plastic. As the

sum of the shear forces in the connectors is constant, the normal force N in the partial sections

remains constant during state III (Eq. 6.46). The curvature of the composite cross-section χ

and consequently the internal bending moments M1 and M2 are increased during state III. The

normal force in the concrete section can be formulated as follows:

N = h1,III · χIII · E1︸ ︷︷ ︸
−σ1,sup

·1
2
b1h1,III (6.54)
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Using Eq. 6.46 and solving for h1,III reveals the relation between the height of the concrete

compression zone and the curvature of the composite cross-section during state III:

h1,III =

√
2mTy

E1b1
· 1

χIII
(6.55)

In contrast to states I and II, the concrete compression zone height is not constant anymore

during state III, but gradually decreases with increasing curvature. It is also worth noting that

the concrete compression zone height is not dependent on the elastic connection stiffness K

anymore.

End of state III: concrete compressive strength reached

Fig. 6.9 illustrates the geometry of the composite cross-section and the axial strains, stresses

and internal forces at the end of state III, which is marked by the concrete compressive stress

reaching its compressive strength.
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hcr
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+

χcc
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_ +
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+

Mcc
ecc

m·Ty

h1,cc

Fig. 6.9: Axial strains, stresses and internal forces at the end of state III (concrete compressive strength

reached).

The compressive stress at the top of the concrete section is:

σ1,sup = −h1,cc · χcc · E1
!

= −f1,c (6.56)

Eq. 6.55 and 6.56 form a 2× 2 system of equations leading to the following solutions:

h1,cc =
2mTy

b1f1,c
(6.57)

χcc =
f1,c

E1h1,cc
(6.58)

As the normal force in the partial sections has not changed since the end of state II, the axial

strain and stress in the centroid of the timber section remain unchanged (Fig. 6.9). Using the
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curvature χcc, the axial strains and stresses in the timber section at the end of state III are fully

defined:

ε2 =

ε2,sup

ε2,m

ε2,inf

 =
mTy

E2A2
+

−h2/2

0

h2/2

 · χcc (6.59)

σ2 =

σ2,sup

σ2,m

σ2,inf

 =
mTy

A2
+

−h2/2

0

h2/2

 · E2 · χcc (6.60)

The distance between the centroids of the partial sections at the end of state III is calculated as

follows:

ecc = h0 + h1 −
h1,cc

2
+
h2

2
(6.61)

The internal forces acting on the partial sections at the end of state III result as follows (with

I1,cc from Eq. 6.9 with h1 = h1,cc):

M1 = E1I1,cc · χcc (6.62)

M2 = E2I2 · χcc (6.63)

N = mTy (6.64)

Based on the equilibrium conditions, the bending moment at the end of state III is found:

Mcc = M1 +M2 +N · ecc = (E1I1,cc + E2I2) · χcc +mTy · ecc (6.65)

The slip strain is calculated as follows:

∆εcc = (h0 + h1 − h1,cc +
h2

2
) · χcc −

mTy

E2A2
(6.66)

Potential other failures during state III

In order to ensure that the composite member can exhibit large deformations before ultimate

failure, any brittle failures should be avoided until the end of state III, such as:

� III,2tb timber tensile-bending failure

� III,∆u exceedance of connection deformation capacity (Chapter 6.2.7)

The curvature leading to a potential timber tensile-bending failure χIII,2tb is derived from

Eq. 6.52 and 6.60:

χIII,2tb =
2f2,m

E2h2
·
(

1− mTy

A2f2,t

)
(6.67)

If χIII,2tb < χcc, the composite member will collapse after small plastic deformations in the

connectors. In this case, the corresponding concrete compression zone height h1,III,2tb as well as

eIII,2tb, I1,III,2tb and the corresponding bending moment MIII,2tb can be calculated using Eq. 6.55,

6.61, 6.9 and 6.65 using χIII,2tb. If χIII,2tb > χcc, curvature and bending moment can be further

increased in state IV.
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6.2.6 State IV: connection plastic, concrete cracked and plastic

During state IV, the concrete section is cracked and the connection behaviour is plastic. The

concrete section exhibits plastic deformations after its compressive strength is reached at the

end of state III, leading to a redistribution of stresses. The ultimate failure of the composite

member can be caused by:

� u,1c concrete crushing (i.e. reaching the ultimate compressive strain ε1,u ≈ 0.003)

� u,2tb timber tensile-bending failure

� u,∆u exceedance of connection deformation capacity (Chapter 6.2.7)

In the analysis of reinforced concrete sections, various methods are available to consider stress

redistributions within the concrete compression zone. One possibility is to assume an analytical

nonlinear stress-strain relationship, e. g. as suggested in Eurocode 2 [12]. For simplified analyses,

the Swiss standard SIA 262 [76] suggests a rectangular stress block σ = −fc over a height of

85% of the concrete compression zone (Fig. 6.10). This simplification is valid for cases where the

reinforced concrete member fails due to concrete crushing while the reinforcement is yielding.

ε

x

σsimplified

0.85 x
_ _ _

ε1,u

-f1,c /E
σnonlinear

-f1,c -f1,c
1

uncracked
concrete

cracked
concrete

Fig. 6.10: Idealised stress-strain diagrams for concrete, according to SIA 262 [76].

In a TCC structure with a ductile connection system, instead of the steel reinforcement,

the connectors yield. The above-mentioned concepts regarding the stress redistributions are

applicable also here, if ultimate failure is caused by concrete crushing [4]. If any other failure

is decisive, the strain at the top of the concrete section does not reach ε1,u. As a consequence,

assuming a rectangular stress block as depicted in Fig. 6.10 leads to an overestimation of the

eccentricity of the resulting concrete compressive force. However, considering the geometry of

the investigated structure, this deviation is usually small compared to the distance between the

centroids of the partial sections e. Therefore, the stress block simplification is used to obtain an

approximation of the failure load also in these cases. Based on these assumptions, the concrete

compression zone height during state IV is calculated from the equilibrium of horizontal forces:

h1,IV =
mTy

0.85b1f1,c
(6.68)
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End of state IV: ultimate failure

The curvature leading to a timber tensile-bending failure at the end of state IV χu,2tb can be

calculated with the same formula as during state III (Eq. 6.67). The curvature causing concrete

crushing is:

χu,1c =
ε1,u

h1,IV
(6.69)

The governing failure mode is determined as follows:

χu = min (χu,1c, χu,2tb) (6.70)

Fig. 6.11 illustrates the geometry of the composite cross-section and the axial strains, stresses

and internal forces at the end of state IV, for the case where timber tensile-bending failure is

governing.
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Fig. 6.11: Axial strains, stresses and internal forces at the end of state IV (ultimate failure, here: timber

tensile-bending failure).

The axial strains and stresses in the timber section at ultimate failure can be calculated with

Eq. 6.59 and 6.60, using χu instead of χcc. The distance between the centroids of the partial

sections at ultimate failure is calculated as follows:

eIV = h0 + h1 −
h1,IV

2
+
h2

2
(6.71)

The internal forces acting on the partial sections at the end of state IV result as follows (with

I1,IV from Eq. 6.9 with h1 = h1,IV):

M1 =
1− 0.85

2
· h1,IV ·mTy (6.72)

M2 = E2I2 · χu (6.73)

N = mTy (6.74)
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Based on the equilibrium conditions, the bending moment at the end of state IV is found:

Mu = M1 +M2 +N · eIV = E2I2 · χu +mTy ·
(
eIV +

1− 0.85

2
· h1,IV

)
(6.75)

The slip strain is calculated as follows:

∆εu = (h0 + h1 − h1,IV +
h2

2
) · χu −

mTy

E2A2
(6.76)

6.2.7 Deflection and slip displacement

The derivation of the curvature χ and the slip strain ∆ε for any given bending moment at

mid-span is covered in Chapters 6.2.3 – 6.2.6. Fig. 6.12 shows typical results of this part of

the analysis. As already discussed in Chapter 6.2.1, the bending stiffness in states I and II

are typically almost equal. During states III and IV, the bending stiffness decreases at an

approximately constant rate (Fig. 6.12a). Therefore, once the external load leading to yielding of

all connectors is exceeded (q > qy), the composite beam does not have a uniform bending stiffness

over its entire length anymore. As a consequence, the deflections cannot be calculated accurately

based on commonly used formulas for beams with a constant bending stiffness anymore.

Mu

χ

Mcc
My

state I

Mcr

χcr χy χcc χu

state II

state III
state IV

M

EII ≈ EIII

(a)

Mu

Δε

Mcc
My

state I

Mcr

Δεcr Δεy Δεcc Δεu

state II

state III
state IV

M

(b)

Fig. 6.12: Typical results of the composite cross-section analysis explained in Chapters 6.2.3 – 6.2.6:

bending moment vs. (a) curvature and (b) slip strain.

In general, deflections w result from integrating the curvature χ twice along the beam axis, while

slip displacements ∆u are obtained by integration of the slip strain ∆ε:

w(x) = −
∫∫

χ(x) dx dx (6.77)

∆u(x) =

∫
∆ε(x) dx (6.78)

As the slip strain ∆ε is a function of the curvature χ (Eq. 6.29, 6.66, 6.76), the M -χ and M -∆ε

relationships are similar (Fig. 6.12). Considering Eq. 6.77 and 6.78, it can be concluded that the
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calculation of deflections w and slip displacements ∆u are two closely related problems. Thus,

it appears reasonable to use a method that allows to calculate w and ∆u based on the same

principles. As the connectors used in the investigated TCC structure have a limited deformation

capacity, the calculation of the slip displacement is an important step in the presented model.

Two approaches of how to calculate the deflections due to an external load q > qy have already

been suggested:

(i) For a rough estimation, an upper limit value of the deflections may be obtained by assuming

a constant bending stiffness over the entire beam, equal to the secant bending stiffness at

the point of maximum bending moment (for instance: EIu = Mu/χu) [4].

(ii) Boccadoro [4] suggested to assume that all deformations induced by loads ∆q = q − qy

are concentrated in a plastic hinge at the point of maximum bending moment, based

on an analogy to reinforced concrete beams. The total deflections are then obtained by

superposition w = wy + ∆wpl. However, calculation of ∆wpl requires an assumption for

the plastic hinge length, which is generally unknown [1].

While approach (i) could be used also for an estimation of the slip displacement, the resulting

upper limit value may not be close enough to the correct value to be used in the discussed

context. Approach (ii) strongly focuses on the calculation of the deflections and does not seem

suitable for a calculation of slip displacements. Apart from the fact that the length of the plastic

hinge is unknown, it would be difficult to estimate the slip displacements in this plastic zone.

Therefore, a different calculation method is presented below that allows to estimate both

deflections and slip displacements using the same principles and without the need to assume a

plastic hinge length. Depending on the application, solutions can be obtained based on numerical

or analytical integration. The method is applied to the case of a simply supported beam with

span l subjected to uniformly distributed load q. However, the same approach may be used to

find solutions also for other cases.

The model assumes the M -χ and M -∆u relationships as shown in Fig. 6.12 not only for the

cross-section at mid-span, but for the entire beam. Strictly speaking, this is a simplification

because during states III and IV, the behaviour depends on the number of connectors between

the support and the considered point. In the case of a simply supported beam subjected to

uniformly distributed load, this influence is neglected for the following reasons:

� In view of an optimised design, connectors are typically concentrated towards the supports.

As a consequence, the size of the areas affected by the described simplification is small.

� The affected areas close to the supports are subjected to relatively small bending moments

and mostly remain in state I or II.

Using a numerical integration method such as the Riemann sum (described e. g. by Truc [86]),

Eq. 6.77 and 6.78 can be solved with relatively small effort even for nonlinear M -χ and M -∆u

relationships. Fig. 6.13 shows results computed in this way for the case of a simply supported

beam with span l subjected to uniformly distributed load q.
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Fig. 6.13: Simply supported beam subjected to uniformly distributed load q: bending moments M , cur-

vature χ, deflections w, slip strains ∆ε and slip displacements ∆u calculated using numerical integration.
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With increasing load, curvature and slip strain start concentrating at mid-span. The length

of the area where the composite cross-section is in state III or IV (M > My) can be calculated

as follows:

lpl =

0 for q < qy√
1− qy/q · l for q ≥ qy

(6.79)

State I

For loads q < qcr, the entire beam is in state I. Solving Eq. 6.77 and 6.78, using Eq. 6.20, 6.29

and the boundary conditions w(0) = 0, w′(l/2) = 0 and ∆u(l/2) = 0 leads to analytical solutions

for this case. Solving the indefinite integral in Eq. 6.78 yields a negative value ∆u < 0 for the

support at x = 0, as depicted in Fig. 6.13, but would be positive for the support at x = l. For

simplicity, the slip displacement at the supports ∆u0 is defined as a positive value hereinafter.

wm,I =
5

384
· ql

4

EII
(6.80)

∆u0,I =
1− γ1,I

24
·
qa1,Il

3

EII
(6.81)

State II

In order to simplify the derivation of analytical expressions for loads q > qcr, the slightly higher

bending stiffness in areas remaining in state I is neglected hereinafter. The cracked stiffness

EIII is assumed for both state I and II areas. The same is done also for the M -∆ε relationship

(Fig. 6.14a). The following expressions result for loads qcr < q < qy:

wm,II =
5

384
· ql

4

EIII
(6.82)

∆u0,II =
1− γ1,II

24
·
qa1,IIl

3

EIII
(6.83)

State III

For loads qy < q < qcc, an analytical expression for ∆u0,III can be found by solving Eq. 6.78 as

a definite integral, dividing the beam into two segments as shown in Fig. 6.14b.

∆u0,III = ∆u
(1)
0 + ∆u

(2)
0 =

∫ (l−lpl)/2

0
∆εII(x) dx+

∫ lpl

(l−lpl)/2
∆εIII(x) dx

=
(1− γ1,II) · a1,II

EIII
·
∫ (l−lpl)/2

0
M(x) dx

+

∫ lpl

(l−lpl)/2

(
∆εy +

∆εcc −∆εy

Mcc −My
· (M(x)−My)

)
dx (6.84)
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Solving the definite integrals in Eq. 6.84 with M(x) = q
2(lx−x2) leads to the following expression:

∆u0,III =
1− γ1,II

16
·
qa1,II

EIII
·
[
l (l − lpl)

2 − 1

3
(l − lpl)

3

]
+

1

2
lpl∆εy

+
∆εcc −∆εy

Mcc −My
·
[
ql

16
· lpl (2l − lpl)−

q

48

(
l3 − (l − lpl)

3
)
− 1

2
lplMy

]
(6.85)

State IV

In analogy, an analytical solution can be derived also for loads qcc < q < qu, dividing the beam

into three segments corresponding to states I/II, III and IV (Fig. 6.14c). This leads to the

following expression:

∆u0,IV =
1− γ1,II

16
·
qa1,II

EIII
·
[
l (l − lpl)

2 − 1

3
(l − lpl)

3

]
+

1

2
(lpl,III∆εy + lpl,IV∆εcc)

+
∆εcc −∆εy

Mcc −My
·
[
ql

16
· lpl,III (2l − lpl − lpl,IV)− q

48

(
(l − lpl,IV)3 − (l − lpl)

3
)
− 1

2
lpl,IIIMy

]
+

∆εu −∆εcc

Mu −Mcc
·
[
ql

16
· lpl,IV (2l − lpl,IV)− q

48

(
l3 − (l − lpl,IV)3

)
− 1

2
lpl,IVMcc

]
(6.86)

with

lpl,IV =
√

1− qcc/q · l (6.87)

lpl,III = lpl − lpl,IV (6.88)
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Fig. 6.14: (a) Simplified M -∆ε relationship used in the derivation of analytical expressions for the slip

displacement at the supports ∆u0 by integration of ∆ε, during (b) state III and (c) state IV.
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Deriving analytical expressions for wm,III and wm,IV would be possible in the same way. Be-

cause of the double integral in Eq. 6.77, however, the expressions would become significantly

more complicated than in the case of ∆u0. Depending on the assumed connection behaviour,

∆u0 ≤ ∆umax may be the limiting condition for ULS design. Analytical expressions for ∆u0 are

therefore valuable in practice as they allow easy parametric design optimisation using spread-

sheet calculations. In contrast, estimating the deflections at mid-span for loads q > qy is mainly

of academic interest and can be done using numerical integration methods.

6.3 Strut-and-tie model

6.3.1 Introduction

The strut-and-tie model used in this research project is based on the work published by Grosse

et al. [33] and Rautenstrauch et al. [65], described in Chapter 2.2.2. Two main modifications

were made to the original strut-and-tie model to better reflect the specific characteristics of the

investigated TCC slab with an interlayer. Firstly, instead of using connector beam elements

with a fictitious bending stiffness EI∗ and a hinge (Fig. 2.7), rotational springs are implemented

(Fig. 6.15). This allows for a more direct representation of the connection behaviour, using the

rotational stiffness values obtained from the connection shear tests (Chapter 3). The properties

of the connector beam itself are derived from the cross-section of the concrete-filled steel tubes

(described in Chapter 3.2.4). Secondly, the hinged rigid beam elements representing the vertical

contact of the two members may be omitted depending on the stiffness of the interlayer material.

If a soft material is used (e. g. cellulose fibers), vertical forces between the two layers are only

transmitted via the steel tubes and in the location of the concrete edge beam (Fig. 6.15). Hence,

the structural behaviour is represented more accurately if the hinged rigid beam elements are

omitted in the model. In the case of the specimens tested in uniaxial bending (Chapter 4), the

stiffer stone wool combined with an upper LVL beam provided significant vertical support for the

concrete layer and therefore, the respective elements were kept in the model (dashed in Fig. 6.15).

l/2

upper rotational spring

timber chord (EI2, EA2, GA2)

concrete chord (EI1, EA1, GA1)

lower rotational springconnector beam

hinged rigid beam element

eI

eI

Fig. 6.15: Strut-and-tie model for a single span TCC slab with five steel tubes per shear area and a

concrete edge beam.
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As mentioned already in Chapter 2.2.2, one of the disadvantages of strut-and-tie models

concerns situations where concrete cracking occurs under positive bending moments and signif-

icantly influences the structural behaviour. The calculation results show that the investigated

TCC slab presents such a case. In the elasto-plastic γ-method (Chapter 6.2), concrete cracking

is automatically accounted for. An attempt was made to consider concrete cracking also in

the strut-and-tie model to improve the comparability of the calculation results. Furthermore,

the model was used with rotational springs either based on linearised stiffness values km or on

nonlinear M –ϕ curves obtained from the connection shear tests. Therefore, four versions of

the strut-and-tie model are presented in the subsequent chapters. An in-depth comparison of

the results of these models and the elasto-plastic γ-method with the results obtained from the

uniaxial bending tests, follows in Chapter 6.4.

6.3.2 Uncracked concrete and linear connection behaviour

Calculation of modified rotational spring stiffness

The properties of the steel tube connection were determined in push-out tests. Within the scope

of the data evaluation, the position of the rotational springs was defined at the base of the steel

tube (Chapter 3.2.4). In theory, this definition could be directly implemented also in the strut-

and-tie model, as illustrated in Fig. 6.3a. However, this would require additional short rigid

beam elements between the connector beams and the timber and concrete chords. For typical

geometries (lT > eI), these would overlap the connector beams, affecting the clarity of the

model and increasing the probability of errors in the model definition. Therefore, the rotational

springs are moved such that the connector beam elements (steel tubes) can be linked directly

to the timber and concrete chords as shown in Fig. 6.15. However, changing the position of the

rotational springs affects the resulting connection stiffness. To compensate for this influence,

modified rotational stiffnesses km,inf,mod and km,sup,mod are calculated.

In general, the eccentricity of the two rotational springs as well as their stiffness values are

not equal, which leads to an asymmetric distribution of the bending moment in the steel tube,

as shown in Fig. 6.3c. While an individual calculation of km,inf,mod and km,sup,mod considering

this asymmetry is theoretically possible, the resulting equations would reach an apparent level

of detail that is not anymore in agreement with the precision of the experimentally determined,

linearised input values km,inf and km,sup. Therefore, the stiffness modification is derived based

on a simplified static system illustrated in Fig. 6.16, assuming a symmetric connector with

M = 0 at half the height of the steel tube. Requiring that T and ∆u are equal in both

static systems depicted in Fig. 6.16 leads to Eq. 6.89, which can be used for both rotational

springs (km,inf → km,inf,mod and km,sup → km,sup,mod). A further simplification would be to

neglect the influence of bending and shear deformations in the steel tube (EIT, GAT →∞). In

this case, Eq. 6.89 reduces to km,mod = e2
I /l

2
T · km. However, with increasing values of km, this

simplification may lead to a significant overestimation of the resulting connection stiffness.

km,mod =
e2

I

(l3T − e3
I )/6EIT + 2(lT − eI)/GAT + l2T/km

(6.89)
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Fig. 6.16: Derivation of modified rotational spring stiffness: geometry of the connection, original spring

position and modification for strut-and-tie model.

Failures

With the described modification of the rotational spring stiffnesses, the strut-and-tie model is

fully defined and can be implemented in any standard FEM software. The concrete chord is

modelled with its uncracked cross-section stiffness. All relevant failure modes can be assessed

based on the following results that are obtained directly from the model: internal forces in the

concrete (M1, N1) and timber section (M2, N2) as well as the shear force in the connectors Ti.

A connection failure is reached when

max (Ti) = Ty (6.90)

with Ty according to Eq. 6.5. Applying the failure criterion for combined tension and bending

in timber according to Eurocode 5 [13] (Eq. 6.51) results in:

N2

A2 · f2,t
+

M2 · h2

2I2 · f2,m
= 1 (6.91)

The concrete section remains uncracked if:

N1

A1
+
M1 · h1

2I1
< f1,t (6.92)

where N1 < 0 (compression). If Eq. 6.92 is valid, concrete compressive failure can be assessed

analogously:∣∣∣∣N1

A1
− M1 · h1

2I1

∣∣∣∣ < f1,c (6.93)

If Eq. 6.92 is not valid, a cracked concrete analysis is necessary. Fig. 6.17 shows the strains and

stresses of an unreinforced, cracked concrete cross-section subjected to a bending moment M1

and a normal force N1 < 0. For small ratios M1/N1 the bending moment can be carried by

an eccentricity of the resulting internal normal force, without having to activate any reinforce-

ment. The compression zone height x, curvature χ and concrete stress σ1,sup are derived from

equilibrium (Eq. 6.94 – 6.96).

x = 3 · (h1/2 +M1/N1) (6.94)

χ = − 2N1

E1bx2
(6.95)

σ1,sup = −E1 · x · χ (6.96)
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Fig. 6.17: Unreinforced concrete section subjected to a normal force N1 and a bending moment M1.

However, this calculation only works if |M1/N1| < h1/2, as otherwise Eq. 6.94 delivers a

negative value for x. In such a case, the bending moment cannot be carried only by eccentricity

of the resulting internal normal force. Therefore, the reinforcement has to be considered in

the analysis. This can be done either using suitable software or with an iterative calculation as

described below. Fig. 6.18 shows the strains and stresses in the reinforced concrete cross-section.

Assuming linear elasticity in both concrete and reinforcement, expressions for the compression

zone height x and curvature χ can be derived from equilibrium (Eq. 6.97 and 6.98).

χ =
M1

AsEs(d− x)(d− h1/2) + 1
2bx

2E1(h1/2− x/3)
(6.97)

x =
1

bE1χ
·
(√

2AsEsE1bdχ2 + (AsEsχ)2 − 2N1E1bχ−AsEsχ
)

(6.98)

Eq. 6.97 and 6.98 can be solved iteratively. The stresses in concrete and reinforcement follow

according to Eq. 6.96 and 6.99.

σ1,s = Es · (d− x) · χ (6.99)
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Fig. 6.18: Reinforced concrete section subjected to a normal force N1 and a bending moment M1.
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If according to Eq. 6.99, σ1,s ≥ fs (reinforcement yielding), Eq. 6.97 and 6.98 have to be rewritten

as follows:

χ =
M1 − (d− h1/2) ·Asfs
1
2bx

2E1 · (h1/2− x/3)
(6.100)

x =

√
Asfs −N1

1
2bE1χ

(6.101)

Compressive failure in concrete occurs when σ1,sup = −f1,c, with σ1,sup according to eg. 6.96.

6.3.3 Uncracked concrete and nonlinear connection behaviour

Calculation of modified connection M –ϕ curves

Instead of characterising the rotational springs with a linearised stiffness km, many FEM software

packages also allow for nonlinear analyses based on multi-linear M –ϕ curves as an input. Such

curves were obtained from the connection shear tests (Chapter 3.3.7). In analogy to the linear

springs in Chapter 6.3.2, these curves have to be modified to compensate for the eccentricity

with respect to the base of the steel tube. Based on the same assumptions as explained in

Chapter 6.3.2 and shown in Fig. 6.16, the following equations can be derived for the modification

of both M –ϕ curves describing the lower and upper rotational springs:

Mmod =
eI

lT
·M (6.102)

ϕmod =
lT
eI
ϕ+

Mmod

6e2
IEIT

(l3T − e3
I ) +

2Mmod

e2
IGAT

(lT − eI) (6.103)

Failures

All equations derived in Chapter 6.3.2 regarding failures in the timber and concrete sections are

valid also for a calculation with nonlinear rotational springs. The connection shear capacity Ty

cannot be exceeded in the results of this model as the maximum connection moments My,inf,mod

and My,sup,mod are provided in the nonlinear M –ϕ curves as an input value. Therefore, this

failure does not have to be checked in the post-processing.

6.3.4 Cracked concrete and linear connection behaviour

Concrete cracking due to positive bending moments is usually not accounted for in strut-and-tie

models predicting the structural behaviour of typical TCC slabs with a small h1/h2 ratio. As

the uncracked bending stiffness of the concrete section is relatively low in such a case, the strut-

and-tie model usually predicts a small ratio M1/N1, which is in agreement with the assumption

of an uncracked concrete section.

In the investigated TCC structure with a large h1/h2 ratio, however, the situation is different.

Because of the relatively high bending stiffness of the uncracked concrete section, the strut-and-

tie model predicts a large ratio M1/N1, which would lead to significant concrete cracking and in
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some cases even a bending failure. However, concrete cracking leads to a substantial decrease

of the bending stiffness and, as a consequence, to a redistribution of the internal forces. In

the elasto-plastic γ-method (Chapter 6.2), this redistribution is automatically accounted for

in states II, III and IV. In order to improve the comparability of the calculation results, an

attempt was made to consider concrete cracking also in the strut-and-tie model, with an iterative

procedure described in this chapter.

The basic idea of this procedure is to reduce the concrete height to the resulting compression

zone height at mid-span and adjust the position and stiffness of the concrete chord in the model

accordingly, as shown in Fig. 6.19. To simplify this iterative process, a dimensionless auxiliary

factor η is defined with a value between 0 and 1:

h1,II = η · h1 (6.104)

EA1,II = η · EA1 (6.105)

EI1,II = η3 · EI1 (6.106)

eII = eI +
1− η

2
· h1 (6.107)

As the bending stiffness EI is reduced more than the axial stiffness EA, the M1/N1 ratio results

in a more realistic range where the reinforcement is not needed for equilibrium in the concrete

cross-section. Therefore, Eq. 6.94 can be used to derive the condition for the iteration:

ηi+1 =
3

2
ηi +

3M1,i

h1N1,i
(6.108)

As with the distance between the timber and concrete chords, also the length of the connector

beams is changed, the rotational spring stiffnesses have to be updated as well, using Eq. 6.89

with eII instead of eI. In the calculations done within the scope of this project, η typically

converged after two to three iterations.

d

h1

N1
M1 h1,II = η·h1

new position of
concrete chord

h1/2

·h1
1-η
2

cracked
concrete

uncracked
concrete

Fig. 6.19: Reduction of the concrete height and new position of the concrete chord.

The failure criteria for the concrete section that were derived in Chapter 6.3.2 are still valid

if h1 is replaced with h1,II in the respective equations. Either of the two calculation methods

without reinforcement (Eq. 6.94 – 6.96) or with reinforcement (Eq. 6.96 – 6.101) may be used. By

replacing h1 with h1,II, the new position of N1 (Fig. 6.19) is automatically taken into account.

Failures in the connection and in the timber section can be assessed with Eq. 6.90 and 6.91.
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6.3.5 Cracked concrete and nonlinear connection behaviour

For cases where both nonlinear connection behaviour and concrete cracking are to be considered,

the strut-and-tie model reaches its limits of application. In such a case, the resulting M1/N1

ratio is dependent on the current connection stiffness and the reduction factor η. Therefore,

to account for both influences, the iterative process described in Chapter 6.3.4 would have to

be carried out individually for a series of load levels until failure is reached. Doing so would

take a considerable effort and lead to results where the concrete chord changes its position with

increasing load. Therefore, switching to a more complex FE model (e. g. modelling the concrete

section with shell elements instead of beam elements), which is able to solve both nonlinearities,

may be the better option.

An approximate result can be obtained if η is assumed to remain constant. In this case, the

model does not have to be changed depending on the load level. Using the value of η obtained

with linear connection stiffness as described in Chapter 6.3.4 is the most pragmatic approach in

this analysis. The M –ϕ curves describing the connection behaviour have to be modified using

Eq. 6.102 and 6.103, with eII instead of eI. The failure criteria for the timber and concrete

sections remain unchanged with respect to Chapter 6.3.4.

6.4 Comparison of model calculations with test results

6.4.1 Introduction

In this chapter, the measurements from the uniaxial bending tests (Chapter 4) are compared to

the predictions obtained from the presented calculation models. Both elasto-plastic γ-method

(Chapter 6.2) and strut-and-tie models (Chapter 6.3) were applied for each of the eleven speci-

mens. The measured material properties of both timber and concrete used in the production of

the specimens are summarised in Tab. 4.3 and 4.4. The timber MOE and tensile strength were

tested on samples from the same LVL board used for the production of the respective bending

specimen. These individual results (given in [44]) were used in the calculation models for each

specimen. The upper LVL beam was not considered in any of the calculations.

The loading conditions of the experimental setup (10-point bending) was taken into account

in the calculation models. In the strut-and-tie model, this was achieved by placing point forces

in the respective positions. For the elasto-plastic γ-method, the respective relations between

the cylinder forces and the bending moments in the beam had to be derived, as illustrated

in Fig. 6.20. The slip displacements were numerically integrated based on these relations, in

analogy to Fig. 6.13. In the post-processing of the calculation, an equivalent distributed load q

was calculated in analogy to the test data evaluation, using Eq. 4.1.

When comparing nonlinear load-deformation curves from experiments and calculation mod-

els, the specimen self-weight and the corresponding deformations have to be considered. This

can be done either by deducting the self-weight and the corresponding deformation from the

model calculation, or by adding them to the experimental data. The second option was chosen in

all subsequent comparison plots because this allows to show the more relevant load q∗ including
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Fig. 6.20: Bending moments acting on the specimen in the test setup of the uniaxial bending tests.

self-weight on the y-axis. The measured load-deformation curve was therefore shifted vertically

by applying Eq. 4.2, and horizontally by adding wm(q∗ − q) or ∆um(q∗ − q). The latter (defor-

mations due to the specimen self-weight) could not be measured in the experiments. Therefore,

they were approximated using the uncracked strut-and-tie model with nonlinear connection

behaviour, which delivers accurate deformation predictions (Chapter 6.4.2).

In the subsequent four chapters, the performance of the models is assessed with respect to

the prediction of deformations (Chapter 6.4.2), load-bearing capacity (Chapter 6.4.3) and dy-

namic behaviour (Chapter 6.4.4). The structural behaviour in transversal direction is discussed

separately in Chapter 6.4.5.

6.4.2 Deformations

The accuracy of the deformation predictions obtained with the described calculation models is

assessed with regard to the mid-span deflection wm and the slip displacement at the supports

∆u0,L and ∆u0,R. For better clarity in the plots, no failure criteria are applied to the model

results yet. Fig. 6.21 shows the respective comparison plots for the example of specimens 1.1 and

4. The plots show only the data range that is relevant for the deformation prediction, approx-

imately up to the end of the nonlinear phase, where the mid-span deflection starts increasing

substantially.

Out of the five calculation models, the nonlinear strut-and-tie model with uncracked concrete

delivers by far the best deformation prediction. Both in the linear and in the nonlinear phase,

the predicted wm and ∆u0 are in excellent agreement with the test results.

A comparison of these calculation results with the nonlinear strut-and-tie model with cracked

concrete shows that the latter consistently overestimates the deformations. The influence of con-

crete cracking on the bending stiffness is exaggerated in this model. This conclusion is confirmed

by the results of the elasto-plastic γ-method, where concrete cracking is accounted for in a closed-

form calculation. No significant change of stiffness occurs between states I and II, which can

be explained with the presence of an interlayer between the timber and concrete sections. The

visible kink in the load-deformation curve calculated with the elasto-plastic γ-method denotes

the point where the shear capacity of all connectors is reached (end of state II).

The elasto-plastic γ-method and the linear strut-and-tie model with uncracked concrete

deliver similar predictions of the elastic bending stiffness. This means that for these cases,
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the choice of sef in the γ-method according to Eq. 2.1 and Fig. 2.6 was appropriate. While

both models deliver good predictions for loads up to around 10 kN/m2, the deformations are

substantially underestimated for higher loads, where the nonlinearity of the connection behaviour

starts to play a significant role.

(a) (b)

(c) (d)

(e)

Fig. 6.21: Comparison of test results and calculation models: mid-span deflection wm and slip displace-

ments at the supports ∆u0,L and ∆u0,R in the uniaxial bending specimens (a) & (b) 1.1 and (c) & (d) 4;

(e) plot legend.

Looking at Fig. 6.21a, the linear strut-and-tie model with cracked concrete seems to deliver a

better fit in terms of wm than the uncracked model. However, the reason for the underestimation

of deformations at higher loads in the linear models is not concrete cracking, but the nonlinear

connection behaviour. Fig. 6.21b confirms that the linear strut-and-tie model with cracked
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concrete imposes a stiffness reduction in the wrong place, as it results in lower slip displacements

compared to the original model with uncracked concrete.

Tab. 6.2 shows a comparison of the mid-span deflection wm at q∗ = 10 kN/m2 from test

results and model calculations for all specimens representing the longitudinal load-bearing di-

rection. Both linear calculation methods slightly underestimate wm. The relative deviations of

the nonlinear strut-and-tie model from the test measurements are smaller. This shows that even

at this low load level, the nonlinearity of the connection behaviour already has an influence.

Tab. 6.2: Mid-span deflection wm at load level q∗ = 10 kN/m2, test results and model calculations,

absolute values in [mm] and relative deviation from test result in brackets.

Specimen Test Elasto-plastic Strut-and-tie model

result γ-method lin./uncracked nonlin./uncracked

1.1 16.8 13.8 (−18%) 14.2 (−15%) 15.7 (−6.7%)

1.2 17.8 13.3 (−25%) 13.6 (−23%) 15.2 (−14%)

2 13.2 13.3 (+0.3%) 13.6 (+2.8%) 15.2 (+15%)

3 18.4 15.8 (−14%) 15.7 (−15%) 18.5 (+0.5%)

4 13.2 10.7 (−19%) 11.5 (−12%) 11.9 (−9.6%)

5 18.1 14.1 (−22%) 14.4 (−21%) 15.9 (−12%)

6 14.7 12.1 (−17%) 12.5 (−15%) 14.1 (−3.9%)

7 23.1 22.3 (−3.6%) 19.2 (−17%) 24.7 (+6.8%)

8 33.8 31.6 (−6.7%) 24.4 (−28%) 31.9 (−5.7%)

Average rel. deviation: −14% −16% −3.4%

In conclusion, both the elasto-plastic γ-method and the linear strut-and-tie model with un-

cracked concrete are suitable for deformation predictions under service loads, which are typically

in the range where the connection behaviour remains approximately linear. While the former

allows for a fast, parametric calculation, the latter offers more flexibility in the analysis of un-

even loading conditions, multi-span beams or in the optimisation of the connector layout. Both

linear calculation models slightly underestimate the deflections. Compared to other uncertain-

ties such as the variability of material properties and production tolerances, these deviations

are acceptable. However, in cases where high connection shear forces are to be expected, an

accurate deformation prediction is possible only with a nonlinear strut-and-tie model. Both

linear and nonlinear strut-and-tie models with cracked concrete were found not to be preferable

for deformation predictions.

6.4.3 Load-bearing capacity

In the comparison of the different calculation models with the test results, the consideration of

(a) concrete cracking and (b) connection deformation capacity and connector layout were found
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to have a distinct influence on the accuracy of the failure load prediction. Therefore, in the

subsequent two subchapters, these influences are explained and discussed separately.

Concrete cracking

In this section, the influence of concrete cracking on the predicted load-bearing capacity in

the different calculation models is assessed. As concrete cracking is accounted for in the elasto-

plastic γ-method in a closed-form calculation, this model is used as a reference in the comparison.

Fig. 6.22a shows the result of this calculation, including the transition points between states I,

II, III and IV as described in Chapter 6.2, assuming perfect plasticity in the connectors. In the

experiment, the displacement capacity of the hydraulic cylinders was reached at wm ≈ 300 mm.

Therefore, the predicted ultimate failure due to combined bending and tension in timber did not

occur in the experiment. However, the predicted failure load q∗u is in good agreement with the

test result. The load-deflection curves calculated with the strut-and-tie models are plotted in

Fig. 6.22a for specimen 1.1 without applying any failure criteria yet. Fig. 6.22b shows the same

data as Fig. 6.22a, with all failure criteria applied. Fig. 6.22c shows the equivalent comparison

for the example of specimen 4.

For all specimens, both linear and nonlinear strut-and-tie models with uncracked concrete

predict a concrete compressive failure that did not occur in the experiments. According to

the model calculation, this failure should have happened at a load level of around a third of

the maximum load measured in the experiments and before any connectors reached their shear

capacity. In order to explain this result, the proportions of internal moments predicted by the

different calculation models are analysed, based on the data shown in Fig. 6.22a. In a composite

slab with flexible connection, external bending moments are carried by a pair of normal forces

N · e and bending moments in the partial sections M1 and M2, as illustrated in Fig. 6.23b.

Fig. 6.23a shows the proportions of these three parts in the elasto-plastic γ-method as a

function of the external bending moment. After the concrete section cracks at the end of state I,

the proportion of M1 is significantly reduced. As the concrete compression zone height decreases

throughout states III and IV, the proportion of M1 tends towards zero. Fig. 6.23a also shows

that after the connectors reach their shear capacity at the end of state II, the proportion of N ·e
decreases. This is because the absolute value of N · e remains constant during states III and IV

while the external bending moment M further increases. Almost the entire additional external

bending moment between connection yielding and ultimate failure Mu −My is carried by M2.

The equivalent plots for the strut-and-tie models are shown in Fig. 6.23c – 6.23f. For better

comparability, the same range of M is plotted on the x-axis as in Fig. 6.23a, along with the four

states from the elasto-plastic γ-method, even though the strut-and-tie models do not directly

account for these different states.

Fig. 6.23c shows that the linear strut-and-tie model with uncracked concrete predicts similar

internal moments as the elasto-plastic γ-method in state I. However, the proportions remain

constant, which means that M1 increases linearly with the external bending moment also for

M > Mcr. This leads to a substantial overestimation of M1 during state II and thus, the predic-
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tion of a concrete compressive failure (× in Fig. 6.23c and 6.23e). The proportions of internal

moments predicted by this model are not realistic because the concrete section automatically

reduces its bending stiffness by cracking and thus evades such large bending moments.

(a)

(b) (c)

(d)

Fig. 6.22: (a) Result of the elasto-plastic γ-method assuming perfect plasticity in the connectors,

with transition points between states and ultimate tensile-bending failure in timber, strut-and-tie models

without failure points and test result of specimen 1.1, (b) & (c) governing failure criteria in the calculation

models with limited connection deformation capacity, specimens 1.1 and 4, (d) plot legend.



152 Chapter 6. Models for uniaxial bending

(a)

N

N

Mcr

N

N

My

M2

eIIeI

M1M1

M2

state I state II

(b)

(c) (d)

(e) (f)

Fig. 6.23: Proportions of internal moments in the different calculation models, based on the data shown

in Fig. 6.22a for specimen 1.1.
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In the linear strut-and-tie model with cracked concrete (Fig. 6.23d), this issue is mitigated by

reducing the bending stiffness of the concrete section EI1 manually. This leads to more realistic

proportions of the internal moments for M > Mcr similar as in the elasto-plastic γ-method in

state II. Thus, no premature concrete compressive failure is predicted by this model.

In the nonlinear strut-and-tie models with uncracked (Fig. 6.23e) and cracked concrete

(Fig. 6.23f), the proportions of internal moments at low load levels are similar as in the re-

spective linear models. However, the proportions are not constant anymore. With increasing

external bending moment, the connection stiffness and thus the proportion of N · e decreases,

similar as in states III and IV of the elasto-plastic γ-method. In Fig. 6.23f, Mu is not reached

because the model assumes a limited connection deformation capacity. This topic is discussed

in the following subchapter.

In conclusion, an accurate prediction of the load-bearing capacity of the investigated TCC

slab is possible only with a model that accounts for concrete cracking. Strut-and-tie models with

uncracked concrete do not perform well because they substantially overestimate M1, leading to

a premature concrete compressive failure.

Connection deformation capacity and connector layout

The main difference between the remaining three models (elasto-plastic γ-method, linear and

nonlinear strut-and-tie models with cracked concrete) is the extent to which they allow for plastic

force redistributions. In a TCC structure with ductile connection, the slip displacement due to

plastic connection deformation can be divided into two parts:

∆upl = ∆upl,a + ∆upl,b (6.109)

where ∆upl,a and ∆upl,b denote the slip displacement due to plastic connection deformation

occurring (a) before and (b) after all connectors have reached their shear capacity Ty. The first

part, ∆upl,a mainly depends on the connector layout and the loading conditions. Arranging

the connectors in a way that results in equal elastic shear forces in all connectors for a given

loading condition leads to ∆upl,a = 0, which is one of the assumptions of the elasto-plastic

γ-method. However, in any other connector layout, a force redistribution is necessary before all

connectors can reach their shear capacity and therefore ∆upl,a > 0. The magnitude of ∆upl,a

can only be assessed with a calculation model where each connector is considered individually

(e. g. strut-and-tie model).

The second part, ∆upl,b occurs after all connectors have yielded and is independent of the

connector layout. This part allows for a further increase of the curvature in the composite cross-

section. As a consequence, the bending moment in the timber section M2 increases and large

deformations occur. In the elasto-plastic γ-method, only this part is considered.

The structural behaviour observed in the uniaxial bending tests was remarkably ductile.

As discussed in Chapter 4.4.1, the experimental results indicate that, after the shear capacity

of the connectors was reached, the shear force in the connectors did not significantly decrease

throughout the experiment. The connection deformation capacity was not reached in the tests,

which means that the connection behaviour could be described with perfect plasticity.
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However, these results are not in agreement with the results of the connection shear tests,

where a limited deformation capacity was observed. Possible reasons for this discrepancy are

discussed in Chapter 4.4.1. Among other factors, the upper LVL beam included in the bending

specimens may have had a positive effect on the connection deformation capacity. Therefore,

a prediction of the uniaxial load-bearing capacity assuming perfect plasticity in the connectors

may not be on the safe side for a version without upper LVL beam, which was chosen as the

main concept version by the end of this research project. In conclusion, the connection defor-

mation capacity should be regarded as limited until further experimental results are available

on specimens without an upper LVL beam.

Because of the perfectly plastic connection behaviour that was observed in the experiments,

the influence of a limited connection deformation capacity and different connector layouts cannot

be discussed using only the test results. In the case of perfect plasticity (∆umax →∞), the load-

bearing capacity is independent of the connector layout. Therefore, the comparison of the test

results and model calculations with regard to this influence is performed in two steps:

� In a first step, the test results are compared to the predictions obtained from the elasto-

plastic γ-method, assuming perfect plasticity in the connectors (∆umax →∞).

� In a second step, the influence of limited connection deformation capacity and different

connector layouts is assessed based on a comparison between the remaining three cal-

culation models (elasto-plastic γ-method, linear and nonlinear strut-and-tie models with

cracked concrete), assuming a limited connection deformation capacity as described in

Chapter 6.2.2.

Tab. 6.3: Comparison of the load-bearing capacity q∗u measured in the uniaxial bending tests and

predicted with the elasto-plastic γ-method, absolute values in [kN/m2] and relative deviation in brackets.

Specimen Connection Test Elasto-plastic

concept ∗ result γ-method

1.1 g – f 32.5 30.8 (−5.2%)

1.2 g – f 29.6 29.8 (+0.9%)

2 g – g 34.3 29.8 (−13%)

3 g – f 28.4 27.4 (−3.6%)

4 g – f 40.4 40.5 (+0.4%)

5 g – f 32.3 32.8 (+1.4%)

6 g – f 33.7 32.8 (−2.8%)

7 f – f 30.3 29.9 (−1.2%)

8 f – f 26.0 23.3 (−10%)

Average rel. deviation, all specimens: −3.7%

Specimens with connection type ‘g – f’: −1.5%

∗ g = grouted connection, f = form-fitting connection without grouting
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Tab. 6.3 compares the load-bearing capacities measured in the uniaxial bending tests with the

predictions based on the elasto-plastic γ-method, assuming perfect plasticity in the connectors.

Fig 6.24 shows the corresponding q∗ –wm and q∗ – ∆u curves for specimens 1.1 and 4. The

comparison shows that the predicted load-bearing capacities are in excellent agreement with the

test results for specimens with the standard connection concept ‘g – f’ (grouted type 1 connection

and form-fitting type 2 connection, Fig. 3.1), with relative deviations between −5.2% and +1.4%.

For the specimens with other connection concepts, which are less relevant for an application in

practice, the elasto-plastic γ-method delivers predictions on the safe side (relative deviations

between −13% and −1%).

(a) (b)

(c) (d)

Fig. 6.24: Comparison of test measurements with the results of the elasto-plastic γ-method assuming

perfect plasticity in the connectors, with transition points between states and ultimate tensile-bending

failure in timber, for the examples of (a) & (b) specimen 1.1 and (c) & (d) specimen 4.

The elasto-plastic γ-method predicts an ultimate tensile-bending failure in timber for all

specimens. In the experiments, this failure could not be observed because of the limited dis-

placement capacity of the hydraulic cylinders. Therefore, the comparison should be interpreted
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with caution. The actual load-bearing capacity may have been higher than the maximum load

measured in the experiments. However, given the flat slope of the load-deflection curve at the

end of the experiments, a large difference is not to be expected. In any case, it can be concluded

that the model did not significantly overestimate the load-bearing capacity of any specimen.

The influence of a limited connection deformation capacity and different connector layouts

is assessed based on a comparison of specimens 1.1, 3 and 4. In these specimens, the number

of connectors per shear area was varied (m = 3, 4, 6). The connector layout was chosen based

on a simplified method assuming a uniformly distributed load (linear increase of the connector

spacing towards mid-span) and is shown in Fig. 4.2. A more detailed analysis was carried out

after the tests, with a strut-and-tie model considering the exact position of the point forces in the

test setup as depicted in Fig 6.20. Tab. 6.4 shows the resulting distribution of connection shear

forces based on this analysis. While the distribution is relatively even in specimen 3 (m = 3),

the difference between the elastic connection shear forces is significant in the other specimens.

Tab. 6.4: Distribution of elastic connection shear forces in different connector layouts based on the

linear strut-and-tie model with uncracked concrete.

Specimen T1/Tmax T2/Tmax T3/Tmax T4/Tmax T5/Tmax T6/Tmax

1.1 98% 100% 94% 66% – –

3 96% 100% 86% – – –

4 100% 99% 94% 82% 62% 34%

Fig. 6.25 shows a comparison of the remaining three calculation models, which differ in the

extent to which they allow for plastic force redistributions. The linear strut-and-tie model with

cracked concrete predicts failure when the first connector reaches its shear capacity, as no force

redistributions are possible. In the other two models, force redistributions are possible and

failure occurs when the connection deformation capacity ∆umax is reached. As explained in the

beginning of this subchapter, a force redistribution and thus plastic connection deformation is

necessary before all connectors can reach their shear capacity, if the elastic shear forces are not

equal in all connectors. The elasto-plastic γ-method does not account for these deformations as

an even connection force distribution is assumed and thus ∆upl,a = 0. In contrast, the nonlinear

strut-and-tie model with cracked concrete accounts for the entire deformation, including the

part that occurs before all connectors reach their shear capacity.

In specimen 3 (Fig 6.25b), the failure points predicted by the nonlinear strut-and-tie model

with cracked concrete and the elasto-plastic γ-method coincide. In this case, the elastic shear

forces are in the same range (Tab. 6.4) in all connectors and thus, the assumption upl,a = 0 in the

elasto-plastic γ-method is correct. The load-bearing capacity predicted by the linear strut-and-

tie model with cracked concrete is very similar to qy (yielding of all connectors) predicted by the

elasto-plastic γ-method, which is a direct consequence of the even connection force distribution.
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(a) (b)

(c) (d)

Fig. 6.25: Comparison of the load-bearing behaviour predicted with the elasto-plastic γ-method and

with linear and nonlinear strut-and-tie models with cracked concrete, for (a) specimen 1.1, (b) specimen 3

and (c) specimen 4; (d) legend for all plots.

In specimen 4 (Fig 6.25c), the situation is different. The nonlinear strut-and-tie model with

cracked concrete reaches only 85% of the load-bearing capacity predicted by the elasto-plastic

γ-method. In addition, failure occurs in this model before qy is reached. This result shows

that the assumed connection deformation capacity ∆umax was not sufficient to achieve a full

redistribution of the connection forces in this case. To confirm that the observed difference is

due to the uneven connection force distribution, a strut-and-tie calculation with an optimised

connector layout was performed. Fig 6.25c shows that after this optimisation, the failure point

approximately coincides with the prediction of the elasto-plastic γ-method.

Specimen 1.1 presents an intermediate situation between specimens 3 and 4 regarding the

connection force distribution (Tab. 6.4). The respective calculation results confirm the findings

from specimens 3 and 4. A difference between the predictions of the nonlinear strut-and-tie

model with cracked concrete and the elasto-plastic γ-method is visible in Fig. 6.25a but it is not
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as large as in specimen 4. In analogy to specimen 4, the failure points coincide if the connector

layout is optimised.

The comparison of specimens 1.1, 3 and 4 shows that the connector layout has a significant

influence on the load-bearing capacity of composite slabs with a limited connection deformation

capacity. Arranging the connectors in a way that results in equal elastic shear forces in all

connectors allows to activate the maximum possible bending stiffness of the composite slab.

As deformation criteria (SLS) often govern the design of TCC slabs, an optimised connector

layout should therefore be targeted in any case. The results discussed above show that, if the

connector layout is designed accordingly, the elasto-plastic γ-method is applicable to determine

the load-bearing capacity of the TCC slab.

However, in cases where such an optimised connector layout is not possible, the elasto-plastic

γ-method should not be used. If the chosen connector layout leads to a significantly uneven force

distribution among the connectors, and if the deformation capacity is small, this may lead to

a premature brittle connection failure before the end of state II. In such a case, a lower limit

value of the load-bearing capacity can be determined using a linear strut-and-tie model with

cracked concrete. Nonlinear strut-and-tie models with cracked concrete can account for force

redistributions even in such cases. However, these models are mainly suitable for use in research

as they involve considerable effort.

Further considerations

In a nonlinear strut-and-tie model, the connection behaviour is represented by M –ϕ curves. As

both connection stiffness K and shear capacity Ty are a function of these curves, K and Ty are

not independent input parameters. If mean values of all parameters are used, as in this chapter

for the comparison with experimental results, this is not a problem. However, if such a model

is to be used for design purposes, a characteristic value of the connection shear capacity Ty has

to be used and partial safety factors have to be applied in agreement with the current design

codes. However, reducing Ty by modifying the M –ϕ curves would also affect the connection

stiffness K and thus the prediction of internal forces in the TCC slab. As a consequence, a

nonlinear strut-and-tie model could only be used with a global safety factor, which is not in

agreement with the current design codes. In contrast, the connection stiffness K and shear

capacity Ty are two independent input parameters in the elasto-plastic γ-method. Therefore,

using a partial safety factor on Ty does not affect the connection stiffness K in this model.

The elasto-plastic γ-method with limited connection deformation capacity is based entirely

on analytical calculations, which means that a parametric design using spreadsheets is possible.

Therefore, this method is especially valuable during the early stages of the design process,

allowing for an efficient derivation of the most important parameters of the TCC slab (cross-

section geometry and number of steel tubes). In a later stage of the design process, it is advisable

to include analyses based on a strut-and-tie model. This allows to address issues such as defining

the final connector layout, or other analyses that exceed the limitations of the elasto-plastic

γ-method, for example in the case of concentrated loads or in multi-span situations.
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6.4.4 Dynamic behaviour

The free vibration response of the investigated TCC slab to an impulse excitation was mea-

sured in all uniaxial bending specimens before the static loading tests. In this chapter, the

experimentally determined fundamental frequencies are compared to the respective results of

the model calculations. As discussed in Chapter 3.3.5, the reloading stiffness km,2 is relevant for

the dynamic behaviour of the investigated TCC slab rather than the first loading stiffness km,1.

As the observed behaviour during reloading was approximately linear in all connection shear

tests, nonlinear calculation models are not necessary. Concrete cracking is not expected to have

an influence on the dynamic behaviour of the TCC slab. Thus, the γ-method (state I) and the

linear strut-and-tie model with uncracked concrete were used to predict the fundamental fre-

quency. The dynamic bending stiffness of the composite slab EIdyn according to the γ-method

was calculated with Eq. 6.1 – 6.19, using km,2. The fundamental frequency follows:

f1 =
π

2l2
·

√
EIdyn/b

ms/(bl)
=

π

2l2
·

√
EIdyn · l
ms

(6.110)

In Eq. 6.110, ms is the specimen mass as measured in the experiments (Tab. 4.5) and l is the

span. As a comparison, f1 was also calculated using the first loading stiffness km,1.

The same linear strut-and-tie models with uncracked concrete as in Chapters 6.4.2 and 6.4.3

were used, replacing km,1 with km,2 accordingly. The specimen mass ms was specified in the

models, allowing for a calculation of the fundamental frequency. Most modern FEM software

packages offer such a function. Alternatively, a static analysis could be performed to determine

EIdyn for a corresponding calculation of f1 with Eq. 6.110.

Tab. 6.5 shows all test measurements and the respective results of the calculation models.

The predictions using the static (first loading) stiffness km,1 consistently underestimate the

Tab. 6.5: Fundamental frequency f1 of the uniaxial bending specimens, test results and model calcula-

tions, absolute values in [Hz] and relative deviation from test result in brackets.

Specimen Test γ-method Strut-and-tie model

result with km,1 with km,2 lin./uncracked

1.1 12.0 9.6 (−20%) 10.6 (−12%) 10.5 (−13%)

1.2 11.6 10.0 (−13%) 11.0 (−4.7%) 11.0 (−5.3%)

2 13.0 10.0 (−23%) 11.0 (−15%) 10.9 (−16%)

3 11.6 9.2 (−21%) 10.1 (−13%) 10.2 (−12%)

4 12.8 10.8 (−15%) 11.8 (−7.5%) 11.6 (−9.0%)

5 11.4 9.9 (−13%) 10.8 (−5.5%) 10.8 (−5.0%)

6 12.0 10.1 (−16%) 11.3 (−6.2%) 11.3 (−6.2%)

7 11.2 7.9 (−30%) 9.7 (−13%) 10.0 (−11%)

8 10.0 7.0 (−30%) 8.4 (−16%) 8.8 (−12%)

Average rel. deviation: −20% −10% −10%



160 Chapter 6. Models for uniaxial bending

fundamental frequency. Using km,2 significantly improves the results, although the predictions

are still 10% below the test measurements. Both γ-method and linear strut-and-tie model

with uncracked concrete produce very similar results. This means that the choice of sef in the

γ-method according to Eq. 2.1 and Fig. 2.6 was appropriate.

In conclusion, the results show that both the γ-method and the linear strut-and-tie model

with uncracked concrete deliver sufficiently accurate estimations of the fundamental frequency,

if the reloading connection stiffness km,2 is used. In a practical design process, the former is

preferable in most cases as it allows for a fast, analytical calculation. Using the first loading

connection stiffness km,1 is not recommended as this may lead to a significant underestimation

of the fundamental frequency.

6.4.5 Uniaxial bending in transversal direction

The models described in this chapter are mainly intended for predicting the load-bearing be-

haviour of the one-way spanning version of the investigated TCC slab. However, the same models

can also be used to separately assess the longitudinal and transversal load-bearing directions in

a two-way spanning version of the slab. In the uniaxial bending tests, two specimens focused

on the transversal load-bearing direction in such a slab. The measurements obtained from these

two tests are compared to results from corresponding calculation models in this chapter.

No push-out tests on type 1 connections (steel tube in beech LVL) perpendicular to the

grain have been carried out within the scope of this research project. Therefore, the connection

stiffness was estimated based on the corresponding stiffness value parallel to the grain as follows:

km,inf,90 =
E2,90,mean

E2,0,mean
· km,inf,0 ≈ 0.32 · km,inf,0 (6.111)

with the MOE values E2,0,mean and E2,90,mean as determined in the material tests (Tab. 4.3 and

4.4). The yield moment in the connection perpendicular to the grain was estimated as follows:

Minf,y,90 =
f2,c,90,mean

f2,c,0,mean
·Minf,y,0 ≈ 0.42 ·Minf,y,0 (6.112)

As no compression tests were performed on the LVL boards used in the uniaxial bending speci-

mens, the respective strength values from van de Kuilen & Knorz [88] were used. The stiffness

and yield moment values obtained from Eq. 6.111 and 6.112 are rough estimations. Push-out

tests perpendicular to the grain should be performed in order to provide a more reliable data

basis.

An estimation of nonlinear M –ϕ curves in analogy to Eq. 6.111 and 6.112 is not feasible

in a consistent way because stiffness and yield moment are not independent parameters in

these curves. Therefore, only the elasto-plastic γ-method and a linear strut-and-tie model with

uncracked concrete were used in the comparison with the test results.

In the strut-and-tie model, the influence of the side connections (i.e. the two GIR connections

located at 1/3 and 2/3 of the span) was considered as shown in Fig. 6.26. Hunger et al. [37]

experimentally determined kGIR ≈ 130 kN/mm for GIR M12 in beech LVL parallel to the grain.
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timber chord (EI2, EA2, GA2)

threaded rod (EIsc, EAsc, GAsc)spring (connection stiffness kGIR)

lsc

Fig. 6.26: Side connection with glued-in rods in specimens T1 and T2 and consideration of local

connection stiffness in the strut-and-tie model.

The GIR in specimens T1 and T2 have a larger diameter (M16) and are oriented perpendicular

to the grain. However, as an approximation, this value is used without modification.

In the γ-method, local weaknesses such as the side connections cannot be considered explic-

itly. Therefore, the loss of stiffness in the timber section due to the side connections is distributed

along the entire span l, by reducing the respective MOE as follows:

E2,red =
l/A2

(l − nsclsc)/EA2 + nsclsc/EAsc + 2nsc/kGIR
(6.113)

In Eq. 6.113, nsc is the number of side connections along the span and lsc, EAsc, kGIR are

parameters characterising the side connection as depicted in Fig. 6.26.

Fig. 6.27 compares the test measurements with the results of the described two models. In

terms of stiffness, the predictions of both models are in good agreement with the test results.

At higher loads, the deflections are underestimated, which is due to the nonlinear connection

behaviour. As expected based on the findings of Chapter 6.4.3, the strut-and-tie model substan-

tially underestimates the load-bearing capacity because of a premature concrete compressive

(a) (b)

Fig. 6.27: Comparison of test measurements with the results of the elasto-plastic γ-method and the

linear strut-and-tie model with uncracked concrete, with consideration of the stiffness reduction due to

the side connections.
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failure. The elasto-plastic γ-method delivers a good prediction of the load-bearing capacity.

Failure is predicted due to exceedance of the connection deformation capacity during state III.

If perfect plasticity is assumed in the connectors, failure is predicted due to bending and tension

in timber, at an only slightly higher load but significantly larger deflection. Both failure modes

are marked in Fig. 6.27 (III,∆u and u,2tb). In the experiments, the maximum measured load

was determined by the connection behaviour, not by a cross-sectional failure in timber.

As both stiffness km,inf,90 and yield moment Minf,y,90 in the connection perpendicular to the

grain are subject to uncertainty, these parameters were varied in the elasto-plastic γ-method by

±25% and ±50% to investigate the respective influence on the predicted load-bearing behaviour.

The results in Fig. 6.28 show that Minf,y,90 has a significant influence on the predicted load-

bearing capacity. Therefore, the respective model results should be interpreted with caution

until reliable experimental data regarding this parameter are available. The stiffness km,inf,90

(a) (b)

(c) (d)

Fig. 6.28: Comparison of test measurements with the results of the elasto-plastic γ-method and sensi-

tivity of the predicted load-bearing capacity with regard to (a) & (b) Minf,y,90 and (c) & (d) km,inf,90.
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has no influence on the load-bearing capacity and only a limited influence on the stiffness.

Increasing this parameter by 50% leads to an only 7% smaller mid-span deflection.

The influence of the side connections was assessed with a comparison of calculation results.

For this purpose, the side connections were neglected in both strut-and-tie model and elasto-

plastic γ-method, assuming the timber chord as continuous. This led to an underestimation of

the mid-span deflections by approximately 20% in both models and in both specimens. This

result shows that the side connection has a significant influence on the stiffness and should

therefore be considered in the calculation model.

In conclusion, the elasto-plastic γ-method with a reduced timber MOE according to Eq. 6.113

is able to accurately predict both deflections and load-bearing capacity of the two test specimens

in transversal direction. As the load-bearing capacity strongly depends on the yield moment

in the connection perpendicular to the grain Minf,y,90, this parameter should be further inves-

tigated in push-out tests to provide a more reliable data basis. In analogy to the findings of

Chapters 6.4.2 and 6.4.3, the linear strut-and-tie model with uncracked concrete delivers good

deformation predictions but is not suitable for an accurate failure prediction.

6.5 Conclusions

In this chapter, two models were presented that can be used to describe the uniaxial load-

bearing behaviour of the investigated TCC slab: the elasto-plastic γ-method and the strut-and-

tie model. The latter can be implemented either with an uncracked or cracked concrete section

and with linear or nonlinear connection behaviour, which leads to four versions of this model.

The accuracy of the model predictions was assessed by means of a comparison with the results of

the uniaxial bending tests. Tab. 6.6 summarises the main conclusions regarding the applicability

of the different models for the prediction of deformations, load-bearing capacity and dynamic

behaviour.

Tab. 6.6 shows that the elasto-plastic γ-method is the only model that performs well in all

three mentioned analysis types. As it is entirely based on analytical calculations, it allows for a

fast, parametric design process. Furthermore, the model can be implemented with design values

of the connection shear capacity according to the current design codes. Therefore, this method

is recommended to be used as the main model in the design process of TCC slabs with steel

tube connection.

Compared to the elasto-plastic γ-method, strut-and-tie models cannot account for concrete

cracking in a closed-form calculation. As a consequence, their application for the prediction of

the load-bearing capacity involves an iterative procedure. However, strut-and-tie models are

a valuable complementary tool for all analyses requiring the specific consideration of a given

connector layout or loading situation.

The prediction of the load-bearing capacity obtained from the elasto-plastic γ-method is valid

only in cases where yielding of all connectors occurs before the connection deformation capacity

is reached. This can be ensured by choosing a connector layout that leads to approximately

equal elastic shear forces in all connectors. Such a connector layout also allows to activate the
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Tab. 6.6: Applicability of the assessed calculation models describing the uniaxial load-bearing behaviour

of the TCC slab with steel tube connection.

Prediction of Elasto-plastic Strut-and-tie model

γ-method lin./uncr. lin./cr. nonlin./uncr. nonlin./cr.

Deformations under

service loads
X X × X ×

Deformations under

loads inducing high

connection shear

forces

× × × X ×

Load-bearing

capacity in case of

even connection force

distribution

X ×
X

(LLV)
× X

Load-bearing

capacity in case of

uneven connection

force distribution

× ×
X

(LLV)
× X

Fundamental

frequency
X X – – –

Symbol legend: X model applicable, × model not applicable, – applicability not assessed

LLV = lower limit value

maximum possible bending stiffness of the composite slab. The most efficient way of optimising

the connector layout for any given loading situation is by using a linear strut-and-tie model with

uncracked concrete.

In practice, there may be cases where such an optimised connector layout is not possible. In

such cases, the elasto-plastic γ-method may overestimate the load-bearing capacity and should

therefore not be used for this purpose. Instead, a lower limit value should be determined using a

linear strut-and-tie model with cracked concrete. An estimation closer to the actual load-bearing

capacity in such a case is possible with a nonlinear strut-and-tie model with cracked concrete.

However, this model involves a considerable time effort and is therefore mainly suitable for

academic purposes.

With respect to the prediction of deformations, the elasto-plastic γ-method performs well

under service loads, which are typically in the range where the connection behaviour remains

approximately linear. However, in cases where high connection shear forces are to be expected,

an accurate deformation prediction is possible only with a nonlinear strut-and-tie model.
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Both elasto-plastic γ-method and the linear strut-and-tie model with uncracked concrete

deliver good estimations of the fundamental frequency, if the reloading connection stiffness km,2

is used. Dynamic calculations based on the first loading stiffness km,1 lead to a significant

underestimation of the fundamental frequency and are therefore not recommended.

The models described in this chapter are mainly intended for predicting the load-bearing

behaviour of the one-way spanning version of the investigated TCC slab. However, the same

models can also be used to separately assess the longitudinal and transversal load-bearing di-

rections in a two-way spanning version of the slab. In this context, the conclusions summarised

in Tab. 6.6 are valid also for the transversal load-bearing direction, if the stiffness of the side

connections is considered as described in Chapter 6.4.5.
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Chapter 7

Models for biaxial bending

7.1 Introduction

In Chapter 6, two models were presented that can be used to predict the load-bearing behaviour

of the investigated TCC slab in uniaxial bending. These two models are extended in this chapter

to represent the biaxial bending behaviour of the novel two-way spanning TCC slab.

The elasto-plastic γ-method (Chapter 6.2) is based on Bernoulli beam theory with an implicit

consideration of the connection flexibility using an effective bending stiffness. The extension of

this simplified method for a two-way spanning slab consequently leads to an orthotropic plate

model based on Kirchhoff-Love plate theory. This model is described in Chapter 7.2.

The strut-and-tie model (Chapter 6.3) is an FE based method that allows for an explicit

consideration of each single TCC connector in the slab. The concrete and timber chords are mod-

elled as horizontal beams, linked with vertical beams and springs that represent the connectors

in their exact position. Extending this model for the biaxial case leads to a three-dimensional

FE model where the timber and concrete layers are represented by shells. The two shells are

linked with the same connector beams as in the uniaxial case. This ‘coupled shell model’ is

described in Chapter 7.3.

Both models are applied to the boundary conditions of the biaxial bending test performed

within the scope of this research project. This allows for a comparison of the respective predic-

tions with the test results. On this basis, the accuracy of the models is assessed with regard to

the prediction of deformations, load-bearing capacity and dynamic behaviour.

7.2 Orthotropic plate model

7.2.1 Introduction

This chapter describes an approach to predict the load-bearing behaviour of two-way spanning

TCC slabs using orthotropic plate theory. FE based plate calculations are typically based either

on Kirchhoff-Love plate theory [39; 51] or on Reissner-Mindlin plate theory [55; 66]. The former

is derived from the hypothesis that plane sections remain plane after deformation and is the



168 Chapter 7. Models for biaxial bending

two-dimensional equivalent of Bernoulli beam theory. Shear deformations are not considered

in Kirchhoff-Love plates. The latter, Reissner-Mindlin plate theory, is the two-dimensional

equivalent of Timoshenko beam theory and takes into consideration both bending and shear

deformations.

In TCC slabs, the flexibility of the connection leads to slip strains between the timber and

concrete sections. As a consequence, the hypothesis that plane sections remain plane after

deformation is generally not valid. In the γ-method, the most widely used calculation model for

one-way spanning TCC slabs, this is taken into account with a calculation process in two stages.

In a first step, a reduced, effective bending stiffness is calculated. In this effective bending

stiffness, the shear deformations in the connection are implicitly considered. Therefore, all

subsequent analyses (second step of the process, e. g. calculation of deformations or vibrations)

are based on Bernoulli beam theory, not on Timoshenko beam theory.

Transferring this concept to a two-way spanning TCC slab leads to an orthotropic plate model

based on Kirchhoff-Love plate theory. The corresponding calculation process in two stages is

illustrated in Fig. 7.1. In a first step, the three orthotropic stiffness parameters are calculated:

� Bending stiffness in x-direction EIx (often referred to as D11 in FEM software)

� Bending stiffness in y-direction EIy (D22)

� Torsional stiffness EIxy (D33)

The parameters EIx and EIy can be calculated e. g. based on the γ-method, applying the

procedures explained in Chapters 6.2 and 6.4.5. Alternatively, strut-and-tie models can be used

as described in Chapters 6.3.2 and 6.4.5. In this case, EIx and EIy are backcalculated e. g. from

the mid-span deflection in the model under a chosen load.

Up to date, no models are available for an analytical calculation of the torsional stiffness EIxy

of a TCC slab with partial composite action. A lower limit value may be calculated according

Calculation of  EIx x,dyn

with γ-method (Chapter 6.2) or
linear strut-and-tie model with
uncracked concrete (Chapter 6.3.2)

with γ-method (Chapters 6.2 and 6.4.5) or
linear strut-and-tie model with uncracked
concrete (Chapters 6.3.2 and 6.4.5)

y,dyny Calculation of  EI

Lower limit value
without composite
action

xy

Dynamic behaviour 2)

(Chapter 7.2.3)

or EI Calculation of  EI or EI

ORTHOTROPIC PLATE MODEL

Deformations 1) Load-bearing capacity 1)

1) EIx x,dyn y,dynyand EI with connection stiffness k 2) EI and EI with connection stiffness km,1 m,2

(Chapter 7.2.2) (Chapter 7.2.4)

Fig. 7.1: Overview of the orthotropic plate model with input parameters and results.
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to Eq. 7.1, neglecting any composite action in torsion. The contribution of the timber section is

typically negligible because G2 � G1. Using a lower limit value for EIxy in the design analysis

leads to conservative results in terms of deformations and vibrations.

EIxy =
G1h

3
1 +G2h

3
2

12
≈ G1h

3
1

12
(7.1)

As discussed in Chapters 3.3.5 and 6.4.4, the reloading connection stiffness km,2 is relevant for

the dynamic behaviour of the investigated TCC slab rather than the first loading stiffness km,1.

Therefore, the input values EIx, EIx,dyn, EIy and EIy,dyn are calculated using the respective

connection stiffness depending on the type of analysis, as indicated in Fig. 7.1.

7.2.2 Deformations

The biaxial bending test campaign (Chapter 5) comprised four static loading tests as shown

in Fig. 5.2. The idea behind this concept was to measure all three input parameters of the

orthotropic plate model EIx, EIy and EIxy and the resulting load-bearing behaviour in biaxial

support conditions. This allowed for a specific assessment of the performance of the orthotropic

plate model in this case, as all input and output values were known from the experiment.

The model was calculated using the software RFEM 5 from Dlubal. The four line supports were

modelled such that only compressive support reactions are transferred. The orthotropic stiffness

parameters were EIx = 5’310 kNm2/m, EIy = 2’380 kNm2/m and EIxy = 3’030 kNm2/m.

Fig. 7.2a shows that the prediction of deflections is accurate in the linear range up to 40% of

the failure load. At higher loads, the nonlinear connection behaviour starts to play a significant

role and thus, the deflections are underestimated, similar as in the linear models for uniaxial

bending (Chapter 6.4.2). Fig. 7.2b shows that also regarding the ratio of the support forces in

x- and y-direction, the model prediction is in good agreement with the test results.

(a) (b)

Fig. 7.2: Comparison of the test measurements from the biaxial bending test with the results from the

orthotropic plate model: (a) deflections and (b) ratio of the support forces in x- and y-direction.
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As a comparison, the same calculation was performed with a lower limit value of the torsional

stiffness EIxy = 660 kNm2/m according to Eq. 7.1, which led to an overestimation of the mid-

span deflections by 35%. This result is on the safe side for practical design applications. However,

given the distinct influence of this parameter, further research should be conducted in order to

allow for a better estimation of EIxy considering partial composite action.

7.2.3 Dynamic behaviour

Dynamic tests were performed on the biaxial test specimen in four different support conditions

as illustrated in Fig. 5.2. For a prediction of the respective fundamental frequencies with the

orthotropic plate model, the experimentally determined reloading stiffness values (loading cy-

cles 2/3 in Tab. 5.3) were used. Apart from these stiffness values, the FE model was identical

to the one described in Chapter 7.2.2. Tab. 7.1 shows that the resulting predictions of the fun-

damental frequency f1 are within ±11% of the measurement values for all configurations with

line supports. In the case of point supports in the corners, the model underestimates f1 by 17%.

In the specimen, concrete edge beams were included (Fig. 5.3). In the orthotropic plate model,

these edge beams are not explicitly considered. It is likely that this edge beam had a stiffening

effect especially in the situation with point supports in the corners. This may explain at least a

part of the difference in this case.

If the static bending stiffness values are used in the model as in Chapter 7.2.2, the funda-

mental frequencies are significantly underestimated in all cases, on average by 30%. A similar

observation was made already in the comparison of test measurements and model results in

uniaxial bending (Chapter 6.4.4). These results confirm the need to distinguish between static

and dynamic stiffness values in the investigated TCC slab with steel tube connection.

Tab. 7.1: Fundamental frequency f1 in [Hz], measurement values before the respective static loading

tests and results from the orthotropic plate model.

Support conditions f1,test f1,model
∗ Rel. difference

Uniaxial bending in x-direction 10.1 9.0 −11%

Uniaxial bending in y-direction 6.3 5.8 −8%

Point supports in the slab corners 5.9 4.9 −17%

Biaxial bending 14.4 15.0 +4%

∗ Input parameters: EIx /EIy /EIxy = 9’860 / 4’110 / 3’620 kNm2/m

7.2.4 Load-bearing capacity

The uniaxial bending tests (Chapter 4) showed that the load-bearing capacity of the investi-

gated TCC slab is governed by a ductile connection failure. Based on this observation, several

calculation models were presented in Chapter 6 that are able to account for a limited plastic

redistribution of internal forces in a one-way spanning TCC slab.
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The biaxial bending test (Chapter 5) showed that the same ductile connection failure mech-

anisms develop also in a two-way spanning TCC slab with steel tube connection. However,

accounting for a limited plastic redistribution of internal forces is much more complex in a

two-way spanning system.

Two approaches for the calculation of the load-bearing capacity based on the orthotropic

plate model are presented in this chapter. The first approach aims at a direct calculation of the

maximum connection shear force from the elastic plate shear forces. The second approach is

based on the lower limit theorem of plasticity and uses the elasto-plastic γ-method.

Calculation of connection shear forces from elastic plate shear forces

One-way spanning TCC slabs with linear-elastic, brittle connection behaviour are usually de-

signed based on a linear-elastic analysis. Connection failure is predicted by these models when

the first connector reaches its shear capacity, assuming that no internal force redistributions

are possible. If the γ-method is used, the respective calculation procedure is identical to the

one described in Chapters 6.2.3 and 6.2.4 (states I and II). The maximum connection shear

force during state I is calculated with Eq. 7.2 based on the maximum shear force Vmax. S12

is the static moment at the interface of the partial cross-sections and all other parameters are

calculated according to Chapter 6.2.3.

Tmax =
S12sef

II
· Vmax =

γ1E1A1a1sef

EII
· Vmax (7.2)

In theory, the same concept can also be used to calculate the elastic connection shear forces in

a two-way spanning TCC slab, based on the plate shear forces vx and vy that result from the

orthotropic plate analysis. This approach was applied to the orthotropic plate model described

in Chapter 7.2.2 with the same stiffness parameters. Fig. 7.3 shows why a direct calculation

based on the plate shear forces can be problematic. Depending on the torsional stiffness EIxy,

the FE model predicts a strong concentration of shear forces towards the centre of the line

supports. Strictly applying Eq. 7.2 to obtain an elastic connection shear force would therefore

(a) (b)

Fig. 7.3: Qualitative distribution of plate shear force vx and support forces resulting from a calculation

with different torsional stiffness values: (a) EIxy = 3’030 kNm2/m and (b) EIxy = 10 kNm2/m, same

colour scale in both plots with dark areas corresponding to high values of vx.
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lead to a highly unstable result with regard to EIxy. As EIxy is an input parameter that is

difficult to estimate, such a strong dependency is not desirable.

This does not mean that it is impossible to obtain an estimation of the load-bearing capacity

based on the elastic plate shear forces resulting from an orthotropic plate model. However, a

post-processing of the results is necessary that involves a redistribution of the shear forces. As

a consequence, the results no longer correspond to an elastic solution. An example for such a

post-processing would be to manually distribute the total support force according to Eq. 7.3.

The widths bv,x and bv,y have to be chosen based on engineering judgement.

vx,max = Fx/bv,x and vy,max = Fy/bv,y (7.3)

This approach is applied to the biaxial bending specimen. Based on the ductile connection be-

haviour, the support forces are distributed along the entire specimen width (bv,x = bv,y = 5.46 m).

Eq. 7.2 is applied accordingly to calculate the resulting connection shear forces in x- and y-

direction. Fig. 7.4 shows that this procedure leads to a good estimation of the load-bearing

capacity in this example. Connection failure in x-direction is predicted at a distributed load of

q∗u,x = 24.4 kN/m2, which is 11% lower than the load at which the first significant load drop

due to a visible connection failure occurred in the experiment. However, this result is a linear

function of the chosen values of bv,x and bv,y and should thus be interpreted with caution.

Self-weight of the specimen and the load distribution
construction including the hydraulic cylinders in the
test setup

1

Predicted load-bearing capacity due to connection
failure in x-direction at qu,x = 24.4 kN/m2

3

Predicted load-bearing capacity due to connection
failure in y-direction at qu,y = 28.9 kN/m2

4

*

*

First significant load drop due to a visible connection
failure in the test (in x-direction) at q  = 27.5 kN/m2

2
*

Fig. 7.4: Load-deflection curve from the biaxial loading test and prediction of the load-bearing capacity

based on a calculation of the connection shear forces with bv,x = bv,y = 5.46 m.

Calculation based on the strip method and the elasto-plastic γ-method

Reinforced concrete slabs can be designed based on the lower limit theorem of plasticity. The

strip method is an application of this theorem for slabs [36]. Its main assumption is that the

torsional moments mxy = 0 and therefore, the equilibrium conditions are fulfilled with the

bending moments mx and my only. This method is applicable for slabs with a perfectly plastic

behaviour, which is typically assumed in the case of reinforced concrete slabs. Examples for the

application of the strip method are discussed e. g. by Marti et al. [53].
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In theory, as kinematic compatibility is neglected in the strip method, the distribution of

forces in x- and y-direction can be freely chosen. However, if a load distribution is chosen that

substantially differs from the elastic solution, a large plastic deformation capacity is necessary

to allow the assumed stress state to develop. Therefore, if the deformation capacity is limited

(as in the investigated two-way spanning TCC slab), the load distribution should be chosen as

close as possible to the elastic solution. Otherwise, the strip method may lead to results on the

unsafe side, as a brittle failure could occur before the assumed stress state has developed.

Fig. 7.5 presents an application of the strip method for a quadratic, orthotropic slab with

hinged line supports on all four sides. For λ = 0.5, this is a well-known solution of the isotropic

case, e. g. covered in [53]. For a slab with EIx > EIy, the parameter λ can take values between

0.5 and 1. As discussed above, λ should not be chosen without any consideration of kinematic

compatibility if this solution is applied to a slab with limited plastic deformation capacity.
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Fig. 7.5: Application of the strip method for a quadratic, orthotropic slab with hinged line supports on

all four sides.
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Based on the static systems depicted in Fig. 7.5, sections B – B and D – D, the following two

expressions for the elastic mid-span deflection can be derived:

wm,B−B =
23 + 57λ

6144
· ql

4

EIx
and wm,D−D =

80− 57λ

6144
· ql

4

EIy
(7.4)

Kinematic compatibility can be achieved at mid-span by requiring wm,B−B = wm,D−D, which

leads to the following expression for λ:

λ =
80 · EIx/EIy − 23

57 · (1 + EIx/EIy)
(7.5)

The ratio of support forces reads:

Fx

Ftot
=

1 + 2λ

4
and

Fy

Ftot
=

3− 2λ

4
(7.6)

The strip method presented in Fig. 7.5 with λ according to Eq. 7.5 allows for an estimation

of the load-bearing capacity of a quadratic, orthotropic slab with a limited plastic deformation

capacity, based on an analytical calculation procedure.

Alternatively, an estimation of the load-bearing capacity following the same principles can

be obtained from the FE based orthotropic plate model used in the previous section. Setting

the torsional stiffness to a low value leads to a solution with mxy ≈ 0 and delivers values for mx

and my that satisfy kinematic compatibility.

Both procedures were applied to the boundary conditions of the biaxial bending test. In

the FE model, point forces were positioned in the same locations as in the test setup. The

strip method (Fig. 7.5) assumes an equivalent distributed load, which leads to a lower bending

moment at mid-span as shown in Fig. 7.6. The bending moments mx and my resulting from

the strip method were therefore multiplied with the respective ratio 294/267 to account for this

influence. Eq. 7.5 returns a value of λ = 0.84 for the experimentally determined parameters

EIx and EIy. This value corresponds to Fx/Ftot = 67%, which is in a similar range as the

respective test measurement. The elasto-plastic γ-method predicts a uniaxial bending moment

resistance that is limited by exceedance of the connection deformation capacity during state III

in both directions, at mx,III,∆u = 92.5 kNm/m and my,III,∆u = 58.4 kNm/m. Failure of the slab

is defined when either mx = mx,III,∆u or my = my,III,∆u is reached at mid-span.

q = 4F/l

++

l = 5340

F F F F

870 1200 87012001200

M = Fl/2 = F· 2670 mmM = F· 2940 mm

Fig. 7.6: Bending moments resulting from four point loads F as in the test setup and from an equivalent

distributed load q = 4F/l.
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Fig. 7.7 shows the load-deflection curve from the biaxial loading test and the results of

both calculation procedures. In the experiment, the first significant load drop due to a visible

connection failure was observed in x-direction at q∗ = 27.5 kN/m2. Both calculation methods

predict a failure due to exceedance of the connection deformation capacity in x-direction. The

corresponding failure loads are in good agreement with the test results, 3% (strip method) and

13% (FE based calculation) below the mentioned load level in the experiment.

Self-weight of the specimen and the load distribution
construction including the hydraulic cylinders in the
test setup

1

Result of the FE based calculation with EIxy ≈ 0,
failure due to exceedance of connection deformation
capacity in x-direction at qu,x = 24.0 kN/m2

3

4

*

*

Result of the strip method, failure due to exceedance
of connection deformation capacity in x-direction at
qu,x = 26.7 kN/m2

First significant load drop due to a visible connection
failure in the test (in x-direction) at q  = 27.5 kN/m2

2
*

Fig. 7.7: Load-deflection curve from the biaxial loading test and prediction of the load-bearing capacity

based on the strip method and the elasto-plastic γ-method.

Fig. 7.8 shows the influence of λ on the predicted load-bearing capacity q∗u with the described

strip method. The maximum load-bearing capacity would result with a value of λ = 0.69, leading

to simultaneous failure in x- and y-direction. In a slab with perfect plasticity, this highest lower

limit value would be the best estimation of the true load-bearing capacity that can be obtained

from the described strip method.

Calculating λ according to Eq. 7.5 leads to a lower q∗u as it considers the elastic deflection at

mid-span. The resulting utilisation ratio in y-direction at failure is my/my,III,∆u = 66%. This

result implies that, with a sufficient plastic deformation capacity, the load could be increased

with a redistribution of internal forces towards the y-direction.

Fig. 7.8: Prediction of the load-bearing capacity with the strip method as a function of λ.
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In the experiment, a brittle failure of the side connections (i.e. the GIR connections in

the timber layer in y-direction) occurred at q∗u = 29.5 kN/m2, which limited the deformation

capacity of the slab. A redistribution of forces towards the y-direction may have been possible

if this failure had not occurred. However, the deformation capacity of the slab is also limited by

the steel tube connection system. Therefore, in the context of the investigated TCC slab, the

strip method should not be applied without any consideration of the elastic deformations.

Comparison of the two calculation approaches

Two different approaches for the estimation of the load-bearing capacity of the two-way spanning

TCC slab were investigated in this chapter.

The first approach showed that a consistent calculation of elastic connection shear forces

from the results of the FE based orthotropic plate model is not possible. Nevertheless, a rough

estimation of the load-bearing capacity can be obtained based on a manual distribution of the

support forces across a chosen width. This approach may be useful during early design phases

as it can be easily applied to more complex slab geometries and support conditions. The design

of TCC slabs in practice is typically governed by SLS criteria. Therefore, a rough estimation of

the load-bearing capacity based on conservative assumptions may be sufficient during an early

project phase.

The second approach is based on the lower limit theorem of plasticity and allows for a

more consistent calculation of the load-bearing capacity. Two alternative procedures based on

an analytical calculation and an FE based calculation of the bending moments at mid-span

were assessed. Both procedures allow for an accurate prediction of the load-bearing capacity. In

contrast to the first approach, no parameters have to be chosen that directly influence the result.

However, the application of this method may be more challenging for complex slab geometries

and support conditions.

Both calculation approaches were investigated only with regard to the boundary conditions

of the biaxial bending test performed within the scope of this research project. Further in-

vestigations are necessary to assess the performance of these models in the case of other slab

geometries and support conditions.

7.3 Coupled shell model

This chapter describes an approach to predict the load-bearing behaviour of two-way spanning

TCC slabs using a coupled shell model. This model is an adaptation of the strut-and-tie model

described in Chapter 6.3 and allows to explicitly consider each connector in its exact position

in the slab. The complexity of such a model is substantial and is therefore mainly intended

for academic purposes. The application of this model was investigated in a master thesis that

was carried out as a part of this research project [47]. Fig. 7.9 illustrates the model and its

components. A special detail is required in the connection of the shells with the connector beams.

Introducing a bending moment into a shell in a single node leads to a mesh size dependency



7.3. Coupled shell model 177

Concrete layer
(isotropic shell)

Timber layer
(orthotropic shell)Concrete edge beam

(isotropic shell)

Vertical connector beams
with rotational springs
and rigid cross beams

in the shell planes

Line supports

Point forces as in test setup

Fig. 7.9: Coupled shell model applied to the boundary conditions of the biaxial bending test.

that affects the model results. This problem can be mitigated by adding a set of rigid cross

beams in the shell plane (Fig. 7.9), which allows for an introduction of the bending moment as a

pair of shear forces into the shell. The length of these rigid beams corresponds to the steel tube

diameter. A convergence study with regard to the mentioned mesh size dependency is described

in [47]. Aside from this detail, the model is built in analogy to the uniaxial strut-and-tie model

as described in Chapter 6.3. This includes the modification of the rotational spring behaviour

to account for their shifted vertical position in the model.

The coupled shell model is characterised by the same advantages and disadvantages as the

uniaxial strut-and-tie model. The main disadvantage compared to the elasto-plastic γ-method

is the fact that concrete cracking can only be accounted for by iteratively adjusting the stiffness

and position of the concrete shell. Given the complexity of the described model, this iterative

process requires a substantial time effort. Nevertheless, this model allows to investigate a range

of aspects that cannot be assessed using a simplified orthotropic plate model, such as:

� Influence of different connector layouts on the biaxial load-bearing behaviour

� Possible interactions of the shear forces in the connectors in both directions

� Torsional stiffness of the composite slab

Not all of these aspects were investigated in detail within the scope of this study. In analogy to

the uniaxial strut-and-tie model, four versions of the shell model are possible. The rotational

springs can be modelled as linear or nonlinear and concrete cracking can be considered or ne-

glected. A coupled shell model with nonlinear rotational springs (Chapter 3.3.7) and cracked

concrete was applied to the boundary conditions of the biaxial bending test using the software

RFEM 5 from Dlubal. Fig. 7.10 shows the result of the obtained model prediction compared

to the test measurements. The starting point of the experimentally determined load-deflection

curve is shifted to account for the self-weight of the specimen and the load distribution con-

struction. Failure is predicted when the first connectors reach their deformation capacity. The

first connectors reaching their deformation capacity according to the coupled shell model are
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Self-weight of the specimen and the load distribution
construction including the hydraulic cylinders in the
test setup

1

First significant load drop due to a visible connection
failure in the test (in x-direction) at q  = 27.5 kN/m2

2

Deformation capacity reached in the connectors near
the supports in x-direction in the coupled shell model
at qu,x = 26.3 kN/m2

3
*

*

Fig. 7.10: Load-deflection curve from the biaxial loading test and prediction with the coupled shell

model with nonlinear rotational springs and cracked concrete.

located close to the line supports in x-direction. These are the same connectors where the first

failures were observed during the experiment. The corresponding load level in the model is

only 4% below the measured load in the experiment. This result shows the great potential of

coupled shell models for the detailed analysis of two-way spanning TCC slabs. Furthermore,

the prediction of the load-bearing capacity that was obtained with the simplified models in the

previous chapter is validated with this result for the given boundary conditions.

The coupled shell model should be further developed with the aim to facilitate the considera-

tion of concrete cracking, ideally without the need for an iterative procedure. Such an improved

version of this model would be a valuable tool to investigate more complex slab geometries, sup-

port conditions and connector layouts. As an alternative to costly large-scale experiments, the

respective model results could then serve as a basis to further validate the simplified methods

using orthotropic plate theory.

7.4 Conclusions

In this chapter, two models were presented that can be used to predict the biaxial load-bearing

behaviour of the novel TCC slab with steel tube connection. Both models were applied to the

boundary conditions of the biaxial bending test (Chapter 5), which allowed for a comparison of

the test results with the corresponding predictions. Below, the main conclusions are summarised:

� The orthotropic plate model delivers accurate predictions of the deformations under service

loads and the fundamental frequency of the slab.

� The torsional stiffness EIxy has a distinct influence on the deformation predictions of the

orthotropic plate model. Results on the safe side can be obtained using a lower limit

value. However, given that the design of TCC slabs is typically governed by deformation

criteria, this assumption prevents full exploitation of the advantages of a two-way spanning
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slab compared to a one-way spanning alternative. Therefore, further research is necessary

to allow for a better estimation of the torsional stiffness EIxy of TCC slabs with partial

composite action.

� For the boundary conditions of the biaxial bending test, several model approaches based

on orthotropic plate theory delivered accurate predictions of the load-bearing capacity.

The strip method was found to be applicable if the load distribution in x- and y-direction

is chosen based on the uniaxial bending stiffness ratio EIx/EIy.

� The results of the coupled shell model demonstrate its great potential for the detailed

analysis of two-way spanning TCC slabs. However, the iterative procedure that is needed

to account for concrete cracking requires a considerable time effort. The model should be

further developed to allow for a more efficient analysis. An improved version of this model

would be a valuable tool to investigate more complex slab geometries, support conditions

and connector layouts.
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Chapter 8

Conclusions and outlook

8.1 Conclusions

In this thesis, a novel two-way spanning TCC slab was developed and investigated. It was found

that an optimised stiffness-to-mass ratio can be achieved if the core of the slab between the

timber and concrete layers is filled with a light-weight material such as cellulose fibres or stone

wool. As a direct consequence of this concept choice, TCC connectors with a high bending

stiffness have to be used. Therefore, a solution using steel tubes as connectors was developed.

In order to achieve a biaxial load-bearing behaviour, the beech LVL plates have to be connected

along their side edges. A concept for this side connection was developed using glued-in rods.

The load-bearing behaviour of the novel TCC slab was investigated on three levels, focusing

on the local connection behaviour and the global behaviour in uniaxial and biaxial bending. Sev-

eral experimental campaigns as well as analytical and numerical investigations were conducted

for this purpose. The conclusions corresponding to the mentioned three levels are summarised

in the following sections.

Connection behaviour

The connection system with steel tubes was investigated in three series of push-out tests. The

experiments allowed for a separate assessment of the steel tube-timber and the steel tube-

concrete connection, which led to the conclusions summarised below.

Steel tube-timber connection:

� The results showed that a sufficient connection stiffness can only be achieved if the gap

between the steel tube and the timber cutout is filled with a grouting system.

� The shear capacity of the steel tube-timber connection is governed by inelastic compression

deformation in timber, which leads to a ductile behaviour. The deformation capacity is

limited by the shear capacity of the timber.
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Steel tube-concrete connection:

� The embedment depth a and steel tube diameter D were identified as the main parameters

influencing the connection behaviour.

� A ductile failure is achieved through force redistribution and eventually reinforcement

yielding. The deformation capacity is limited by concrete crushing close to the steel tube.

� A significant influence of pre-loading on the connection stiffness was observed. The first

loading curve should be the basis for calculations regarding deformations (SLS) and load-

bearing capacity (ULS). The higher reloading stiffness is relevant for dynamic analyses.

This conclusion was confirmed by the results of dynamic tests in both uniaxial and biaxial

support conditions and a comparison with the corresponding prediction of the calculation

models.

Uniaxial bending behaviour

The load-bearing behaviour of the one-way spanning version of the novel TCC slab was inves-

tigated in a series of uniaxial bending tests. Two calculation models were developed that can

be used to predict the uniaxial load-bearing behaviour. The analysis and comparison of the

respective results led to the following conclusions:

� The efficiency of the chosen connection concept with a grouted steel tube-timber connection

for TCC slabs with an interlayer was confirmed.

� The results show that the connection behaviour governs the global load-bearing behaviour.

Cross-sectional failures in timber or concrete were not observed. A ductile failure in the

connectors leads to a remarkably ductile behaviour of the TCC slab in uniaxial bending.

� The results consistently show that a higher number of connectors leads to a significant

increase in bending stiffness and load-bearing capacity.

� Increasing the interlayer height h0 does not generally lead to a higher bending stiffness or

load-bearing capacity. The positive effect of a larger static height of the composite beam

is partly or fully compensated by a reduced connection stiffness K due to the larger lever

arm of the steel tubes. Whether the load-bearing behaviour can be improved by increasing

h0 mainly depends on the span l and the number of connectors m.

� The elasto-plastic γ-method delivers accurate predictions of the deformations under service

loads, fundamental frequency and load-bearing capacity of the investigated TCC slab. This

analytical method is based entirely on analytical calculations and thus allows for a fast,

parametric design process.

� The connector layout should be chosen such that similar elastic shear forces result in

all connectors. This allows to activate the maximum possible bending stiffness of the
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composite slab. In addition, such a connector layout ensures that the prediction of the

load-bearing capacity obtained from the elasto-plastic γ-method is on the safe side.

� In the investigated TCC slab, applying strut-and-tie models without considering concrete

cracking leads to a substantial overestimation of the concrete bending moment M1. An

iterative procedure was developed to take this issue into account.

� Strut-and-tie models are a valuable complementary tool for all analyses requiring the

specific consideration of a given connector layout, loading situation or the nonlinearity of

the connection behaviour. They are especially useful for the optimisation of the connector

layout, analysis of multi-span situations or the prediction of deformations under loads

inducing high connection shear forces.

Biaxial bending behaviour

The load-bearing behaviour of the novel two-way spanning TCC slab was investigated in an

extensive experimental campaign. A test setup was developed that allowed to perform static and

dynamic tests on the same large-scale specimen in different support conditions. Two calculation

models were developed that can be used to predict the biaxial load-bearing behaviour. The

analysis and comparison of both experimental and model results led to the following conclusions:

� The tested quadratic specimen showed a 34% higher stiffness and 43% higher fundamental

frequency in biaxial versus uniaxial support conditions. 60% of the total load was carried

in the longitudinal direction and 40% in the transversal direction of the slab. These results

confirm the great potential of two-way spanning TCC slabs for the application in practice.

� After experiencing problems with the assembly of the specimen, an alternative solution

for the side connections was chosen using an epoxy adhesive anchoring system. The global

load-bearing behaviour was not as ductile as in the uniaxial bending tests due to a brittle

failure of these glued side connections. However, a redistribution of internal forces allowed

for large deformations at 80% of the maximum load during a post-peak phase. The final

side connection concept was developed on the basis of the practical experience gained

during the assembly of this specimen.

� The orthotropic plate model, combined with the elasto-plastic γ-method, delivers accu-

rate predictions of the deformations under service loads, fundamental frequency and load-

bearing capacity of the investigated two-way spanning TCC slab. The strip method was

found to be applicable if the load distribution in x- and y-direction is chosen based on the

uniaxial bending stiffness ratio EIx/EIy.

� The torsional stiffness EIxy has a distinct influence on the deformation predictions of the

orthotropic plate model and should therefore be further investigated.

� The results of the coupled shell model demonstrate its great potential for the detailed

analysis of two-way spanning TCC slabs.
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8.2 Limitations

All results and conclusions of this research project are limited to the short-term behaviour of the

investigated TCC slab. A preliminary creep test in biaxial bending showed a significant increase

of deformations after three days under a constant load. This result confirms that long-term

effects have to be considered in the design, which is typical for TCC slabs.

The findings of this research project are further limited to the use of beech LVL with cross-

layers in the timber section of the described TCC slab. None of the results presented in this

thesis should be transferred to other engineered wood products without conducting further

specific experimental investigations.

The calculation models presented in this thesis were only applied to the boundary condi-

tions of the conducted experiments. Mean values of all mechanical properties were used in all

calculations. This allowed for a comparison of the model results with the test measurements.

For practical applications, reduced design values of all mechanical properties have to be used in

accordance with the current design codes.

8.3 Outlook

In this research project, the concept of a novel two-way spanning TCC slab was developed and

the most relevant aspects of its structural behaviour were investigated and described. As part

of this research and development process, several ideas have emerged on how to further improve

the system and which aspects of the structural behaviour should be investigated in more detail.

This chapter addresses these points and provides a brief overview of the studies already launched

regarding these issues.

Further experimental and analytical investigation of the current concept

A substantial part of the connection shear tests conducted within this research project focused

on the respective concept development. Many parameters were varied in the tests, resulting

in small sample sizes for each configuration. Therefore, the current experimental data basis

regarding the connection behaviour does not necessarily satisfy statistical relevance. The results

of this thesis show that profound knowledge regarding the connection behaviour is the basis

for accurate predictions of the uniaxial and biaxial bending behaviour of the novel TCC slab.

Further connection shear tests should thus be performed to broaden the respective data basis. In

particular, the steel tube connection in timber perpendicular to the grain should be investigated

experimentally to review the respective assumptions that were made in this thesis.

The final concept of the side connection as depicted in Fig. 1.3 was developed after the last

experimental campaign of this research project. Therefore, no experimental data are available

yet concerning the stiffness and load-bearing capacity of this connection. The biaxial bending

tests showed that the combination of tensile and shear forces in the side connection may play a

significant role. This aspect should be investigated in further studies.
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The torsional stiffness EIxy of the two-way spanning TCC slab was identified to have a

significant influence on the deformation predictions of the orthotropic plate model. Currently, a

lower limit value has to be assumed, which delivers results on the safe side. However, given that

the design of TCC slabs is typically governed by deformation criteria, this assumption prevents

full exploitation of the advantages of a two-way spanning slab compared to a one-way spanning

alternative. Further studies should focus on the development of a method to calculate EIxy

considering partial composite action. The coupled shell model may present a valuable tool in

this process.

Further development of the current concept

The stiffness of the steel tube-concrete connection showed a distinct pre-loading dependency

in all experiments. This effect is likely caused by small cracks developing around the steel tube

as a consequence of concrete shrinkage. Reducing this influence would allow for a substantial

improvement of the connection efficiency, especially regarding the deflections of the slab. One

possible approach would be to increase the surface roughness of the steel tubes, e. g. with an

epoxy-glued sand coating. Ideally, this would lead to some adhesion with the surrounding

concrete and reduce the development of concentrated cracks at the interface with the steel tube.

In the biaxial bending test, local punching failures occurred in the concrete cover above

several steel tubes. A possible concept to improve the respective punching resistance is discussed

in Chapter 5.4.

In the past years, new engineered wood products have become available on the market

such as cross laminated timber made of beech or birch. A possible application of these mate-

rials in TCC slabs with an interlayer and steel tube connection should be investigated as this

would allow to broaden the application field in practice. Exploring this possibility is one of the

objectives of a follow-up research project that has been launched at the Institute of Structural

Engineering (IBK) of ETH Zurich. As a first step, the local connection behaviour in these

alternative materials will be investigated.

Long-term behaviour

The main objective of the mentioned follow-up project concerns the investigation of the long-

term behaviour of the presented TCC slab concept. Within the scope of this thesis, only a

preliminary 3-day creep test in biaxial bending was conducted. The results showed a significant

increase of deformations, confirming the need for further research on this topic. Guidelines for

the design of conventional TCC structures considering the long-term behaviour are given in the

TS TCC [15]. The applicability of the respective calculation models in this specific case has to

be assessed.

Practical application in projects

A first application of the novel two-way spanning TCC slab in practice is planned in the tallest

timber building in Switzerland. The partner companies involved in this research project Implenia
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Schweiz AG and WaltGalmarini AG won the respective project competition in 2019 [87]. The

novel TCC slab system made a significant contribution to this success, as its low construction

height allows better use of the total building volume. Compared to the solutions suggested by

the competitors, two additional floors can be realised in this 80 m tall building. In addition, the

low self-weight of the slabs allows for significant material savings in the vertical load-bearing

members such as the columns and the foundation.

A real-scale mock-up including a 12× 10 m segment of the two-way spanning TCC slab was

built in October 2020. The TCC slab spans 9.1 m at a total construction height of 320 mm

(h1/h0/h2 = 60/170/90 mm). This mock-up is built inside an old factory and presents a unique

opportunity to investigate the long-term behaviour of the slab as it is planned to remain installed

for at least two years. Measurement equipment has already been installed in order to record

displacements in several locations as well as the climatic conditions. The construction works on

the real building are planned to start in 2023.
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Abbreviations

CLT Cross laminated timber

COV Coefficient of variation

FBS Front block shear failure

FEM Finite Element Method

FFT Fast Fourier Transform

GIR Glued-in rod

LDC Load distribution construction

LFS Local front shear failure

LLV Lower limit value

LVDT Linear variable differential transformer

LVL Laminated veneer lumber

MOE Modulus of elasticity

RST Rear shear/tensile failure

SLS Serviceability limit state

TCC Timber-concrete composite

TS Technical Specification

ULS Ultimate limit state

Upper-case roman letters

A1 Cross-sectional area of the concrete section

A2 Cross-sectional area of the timber section

Av Shear area
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D Diameter

E1 Concrete modulus of elasticity

E2 Timber modulus of elasticity

EII Bending stiffness of the composite cross-section during state I

EIII Bending stiffness of the composite cross-section during state II

EIT Bending stiffness of the (concrete filled) steel tube

EIx Bending stiffness in x-direction

EIxy Torsional stiffness

EIy Bending stiffness in y-direction

Fcyl Cylinder force

Fx Support reaction in x-direction

Fy Support reaction in y-direction

G1 Concrete shear modulus

G2 Timber shear modulus

GAT Shear stiffness of the (concrete filled) steel tube

H Normal force in the steel tube

HS Bottom horizontal support reaction in the push-out test

I1 Moment of inertia of the concrete section

I2 Moment of inertia area of the timber section

II Moment of inertia of the composite cross-section during state I

III Moment of inertia of the composite cross-section during state II

K Elastic connection stiffness

M External bending moment or connection moment

M1 Internal bending moment acting on the concrete section

M2 Internal bending moment acting on the timber section

Mcc External bending moment at the end of state III (concrete compressive strength

reached)

Mcr External bending moment at the end of state I (concrete cracking)

MII,1c External bending moment leading to concrete crushing during state II

MII,2tb External bending moment leading to timber tensile-bending failure during state II

Minf Moment in the steel tube-timber connection
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Minf,y Yield moment in the steel tube-timber connection

Msup Moment in the steel tube-concrete connection

Msup,y Yield moment in the steel tube-concrete connection

Mu External bending moment at ultimate failure, or maximum connection moment in

push-out tests

My External bending moment at the end of state II (yielding of all connectors), or yield

moment in the steel tube-timber or steel tube-concrete connection

N Normal force

S12 Static moment at the interface of the partial cross-sections

T Connection shear force

Tu Maximum shear force in push-out tests

Ty Connection shear capacity

V Shear force

Lower-case roman letters

a Embedment depth of steel tube in timber or concrete

a1 Distance between the theoretical timber zero-strain axis and the centroid of the

concrete section

a2 Distance between the theoretical timber zero-strain axis and the centroid of the

timber section

ainf Embedment depth in the steel tube-timber connection

asup Embedment depth in the steel tube-concrete connection

b1 Width of the concrete section

b2 Width of the timber section

bv,x Width for the calculation of the plate shear force vx from the support force in

x-direction

bv,y Width for the calculation of the plate shear force vy from the support force in

y-direction

e Distance between the centroids of the concrete and timber sections

f1,c Concrete compressive strength

f1,t Concrete tensile strength

f2,c Timber compressive strength
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f2,m Timber bending strength

f2,t Timber tensile strength

g Standard acceleration due to gravity, g = 9.81 m/s2

h0 Height of interlayer between timber and concrete

h1 Concrete height

h2 Timber height

hcr Crack height

kGIR Axial connection stiffness of glued-in rod

km,1 Rotational spring stiffness during 1st loading

km,2 Rotational spring stiffness during reloading

km,inf Rotational spring stiffness representing the steel tube-timber connection

km,mod Modified rotational spring stiffness for strut-and-tie model

km,sup Rotational spring stiffness representing the steel tube-concrete connection

ks,1 Global connection stiffness during 1st loading

ks,2 Global connection stiffness during reloading

l Span

lA Distance of the first connector from the support

lpl Length of the region where the composite cross-section is in state III or IV

lpl,IV Length of the region where the composite cross-section is in state IV

lsc Length of the side connection

lT Length of the steel tube

m Number of connectors per shear area

mcyl Mass of the hydraulic cylinders in the biaxial bending tests

mLDC Mass of the load distribution construction in the uniaxial and biaxial bending tests

ms Specimen mass

mx Bending moment in x-direction

mxy Torsional moment

my Bending moment in y-direction

n90 Number of cross-layers in BauBuche Q

ni Ratio of MOE of material i to reference MOE

nsc Number of side connections along the span



Nomenclature 191

ntot Total number of veneers in BauBuche Q

q External uniformly distributed load

q∗ Uniformly distributed load including the self-weight of the specimen and the re-

spective load distribution construction in the uniaxial and biaxial bending tests

qcc External uniformly distributed load at the end of state III (concrete compressive

strength reached)

qcr External uniformly distributed load at the end of state I (concrete cracking)

qu External uniformly distributed load at ultimate failure

qy External uniformly distributed load at the end of state II (yielding of all connectors)

sef Effective connector spacing

si Relative horizontal displacement perpendicular to the element interfaces at position

i in the biaxial bending test

t Thickness or time

vx Plate shear force in x-direction

vy Plate shear force in y-direction

w Deflection

wcyl Cylinder displacement

wm Mid-span deflection

x Concrete compression zone height

Upper-case greek letters

∆u Relative displacement ‖ to beam axis or in x-direction of the slab (slip displacement)

∆u0 Slip displacement at the supports

∆umax Connection deformation capacity

∆upl Plastic slip displacement

∆v Relative displacement ‖ to beam axis or in y-direction of the slab (slip displacement)

∆w Relative displacement ⊥ to beam axis or slab plane (in z-direction)

∆ε Slip strain

∆εcc Slip strain at the end of state III (concrete compressive strength reached)

∆εcr Slip strain at the end of state I (concrete cracking)

∆εu Slip strain at ultimate failure
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∆εy Slip strain at the end of state II (yielding of all connectors)

∆ϑ Difference of the bending line inclination at the side connections

Lower-case greek letters

γ Model factor accounting for the flexibility of the composite connection

ε Strain

ε1 Concrete strain

ε1,u Concrete ultimate compressive strain

ε2 Timber strain

ζ Factor depending on the embedment depth a as well as the ratio between shear

force T and bending moment M in type 3 connections

η Dimensionless auxiliary factor for iterative strut-and-tie model with cracked con-

crete

ϑ Inclination of the bending line

λ Parameter for the load distribution in the strip method

σ Stress

σ1 Concrete stress

σ2 Timber stress

ϕ Rotation

ϕsup,max Maximum rotation in the steel tube-concrete connection before a brittle failure

occurs

χ Curvature

χcc Curvature at the end of state III (concrete compressive strength reached)

χcr Curvature at the end of state I (concrete cracking)

χIII,2tb Curvature leading to timber tensile-bending failure during state III

χu Curvature at ultimate failure

χy Curvature at the end of state II (yielding of all connectors)
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[75] Seim, W., Eisenhut, L., and Kühlborn, S. Adhesive-Bonded Timber-Concrete Com-

posites - Experimental Investigation of Thermal-Hygric Effects. In World Conference on

Timber Engineering (2016).

[76] SIA Swiss Society of Engineers and Architects. SIA 262: Concrete Structures,

2013.

[77] SIA Swiss Society of Engineers and Architects. SIA 262/1: Concrete Structures

– Supplementary Specifications, 2013.

[78] Sika. Sikadur-12 Pronto, Product Data Sheet, Version 01.01, 2019.

[79] Sika. Sikadur-42 HE, Product Data Sheet, Version 02.01, 2019.

[80] Skidmore Owings & Merrill. Timber Tower Research Project: System Report #1 –

Gravity Framing Developement of Concrete Jointed Timber Frame System, 2014.

[81] Skidmore Owings & Merrill. Timber Tower Research Project: Physical Testing Report

#1 – Composite Timber Floor Testing at Oregon State University, 2017.



BIBLIOGRAPHY 199

[82] Smith, A., Schänzlin, J., Piazza, M., Lawrence, A., and Bell, O. Formulaic Design

Methods for TCC floors, Paper 51-10-1. In International Network on Timber Engineering

Research (INTER) – Meeting fifty-one (Tallinn, 2018).
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