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A Vision-Based Sensing Approach for
a Spherical Soft Robotic Arm
Matthias Hofer*, Carmelo Sferrazza and Raffaello D’Andrea

Institute for Dynamic Systems and Control, ETH Zurich, Zurich, Switzerland

Sensory feedback is essential for the control of soft robotic systems and to enable
deployment in a variety of different tasks. Proprioception refers to sensing the robot’s own
state and is of crucial importance in order to deploy soft robotic systems outside of
laboratory environments, i.e. where no external sensing, such as motion capture systems,
is available. A vision-based sensing approach for a soft robotic arm made from fabric is
presented, leveraging the high-resolution sensory feedback provided by cameras. No
mechanical interaction between the sensor and the soft structure is required and
consequently the compliance of the soft system is preserved. The integration of a
camera into an inflatable, fabric-based bellow actuator is discussed. Three actuators,
each featuring an integrated camera, are used to control the spherical robotic arm and
simultaneously provide sensory feedback of the two rotational degrees of freedom. A
convolutional neural network architecture predicts the two angles describing the robot’s
orientation from the camera images. Ground truth data is provided by a motion capture
system during the training phase of the supervised learning approach and its evaluation
thereafter. The camera-based sensing approach is able to provide estimates of the
orientation in real-time with an accuracy of about one degree. The reliability of the
sensing approach is demonstrated by using the sensory feedback to control the
orientation of the robotic arm in closed-loop.

Keywords: soft robotics, proprioception, vision-based sensing, computer vision, supervised machine learning,
pneumatic actuation, fabric bellows

INTRODUCTION

Soft robots show promise to overcome challenges encountered with rigid robots due to the versatility
resulting from the soft materials employed (Polygerinos et al., 2017). Their intrinsic mechanical
properties are beneficial in terms of safety, allowing for close human-robot collaboration (Abidi and
Cianchetti, 2017). The academic relevance of the field is reflected by an increasing number of
publications and growing attention within the field of robotics in general (Bao et al., 2018). However,
the potential benefits of soft robots come with several challenges, such as the complex dynamics that
are difficult to model and limit the application of open-loop control (Rus and Tolley, 2015).
Therefore, sensory feedback is indispensable for accurate control and deployment in real-word
applications (Wang et al., 2018).

A wide range of sensing principles are explored to provide proprioceptive feedback, i.e. feedback
of the robot’s own state. Vision-based approaches relying on internal cameras to observe the
deformation of soft materials are promising because the sensor provides a high resolution and is not
required to mechanically interact with the soft material that is observed.
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Our method originates from the work documented in Werner
et al. (2020). The principle idea is to integrate a camera into a
fabric-based bellow actuator and use three of these actuators to
control a spherical robotic arm (see Figure 1). The two rotational
degrees of freedom of the robotic arm are estimated from the
actuator expansion and deformation observed by the three
internal cameras.

The mapping from camera images to the orientation of the
movable link is identified by relying on a supervised learning
approach with ground truth information provided by a motion
capture system. A convolutional neural network architecture
maps the camera images to the orientation of the robot arm.
The sensing pipeline developed is deployed in real-time and used
for closed-loop control of the robotic arm.

Related Work
A number of different approaches are investigated to retrieve the
shape of a soft robot based on internal sensors only (Wang et al.,
2018). A common approach is to combine sensing algorithms
with machine learning techniques to retrieve the quantity of
interest from the raw sensor output. An overview of such
applications for sensing and control is provided in Chin et al.
(2020). Any sensor relies on the change in a physical property
induced by the soft structure undergoing a deformation or
expansion. Different sensing principles and the applications
thereof are summarized below.

Resistive and piezoresistive strain sensors detect a change in
resistance caused by material deformation (Stassi et al., 2014).
The advantage of resistive and piezoresistive sensors is their
relatively easy fabrication and integration (Wang et al., 2018).
An application of a resistive sensor is presented in Thuruthel et al.

(2019), in combination with a recurrent neural network that
maps the raw sensor output to the bending state of a soft finger.
Piezoresistive sensors are employed in Truby et al. (2020) to form
a soft, proprioceptive sensor skin, which can be attached to a soft
robotic system. A recurrent neural network predicts the robot
configuration based on the sensor measurements.

A capacitive strain sensor is presented in Shintake et al. (2018)
and deployed for an intelligent glove application. An approach
based on the change of inductance is presented in Felt (2019) for a
bellows-driven continuum robot and used in closed-loop for
feedback control. A sensing approach relying on a magnet and
a Hall sensor integrated into a soft bending actuator is
documented in Luo et al. (2017). The relative orientation
between the magnet and sensor varies as the soft structure
deforms, causing the observed magnetic field to change. The
sensing type is simple to integrate and can be used to control the
bending angle of the actuator. The method presented in Takaki
et al. (2019) leverages an acoustic sensing principle. A speaker and
microphone are integrated into a soft extensible pneumatic
actuator and used to detect the changing resonance
characteristics as the elongation of the actuator varies. The
sensing approach is used in closed-loop to track the desired
length of the actuator. The work presented in Grzesiak et al.
(2011) relies on commercially readily available Bowden cable
potentiometers to retrieve and control the shape of a continuum
robot arm.

Optical sensors detect changes in the light transmission of a
soft medium when deformed. A common approach is to measure
the varying light intensity. The integration of macrobend stretch
sensors into a soft arm is documented in Sareh et al. (2015). The
bending of the light transmitting fiber causes the intensity of the

FIGURE 1 | The figure on the left shows the spherical robotic arm used for evaluation of the vision-based sensing approach proposed in this work. The figure on the
right shows images from the cameras placed inside three inflatable bellow actuators. The arrangement of the camera images matches a view from the bottom looking
upwards. The orientation of the movable link can be observed in certain actuator elongations and deformations that are observed by the internal cameras.
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light transmission to change. The use of stretchable optical
waveguides is reported in Zhao et al. (2016a) to provide
sensing capabilities for shape and force for a prosthetic hand.
Closed-loop control is also demonstrated in Zhao et al. (2016b). A
fabric-based bellow actuator, similar to ours, is used in Yang et al.
(2019) as the light reflecting surface. A photo transistor is
attached to one end of the linear bellow actuator and
measures the light intensity from a light emitting diode (LED)
attached to the opposing end of the actuator. The intensity
decreases as a function of the actuator elongation. The
advantage of optical sensors is their high level of sensitivity
and repeatability (Kappassov et al., 2015) and the fact that the
electronics can be placed outside the sensing area (Wang et al.,
2018).

Another optical sensing principle relies on fiber Bragg grating.
The use of a distributed fiber Bragg sensor network is
demonstrated in Wang et al. (2016) for a cone-shaped soft
manipulator made from silicone.

The discussion of camera-based sensing approaches is limited
here to examples relying on internal cameras. Methods purely
based on external cameras, including motion capture systems, are
not discussed. Cameras visually observe material deformation
through the movement of visual features located in or attached to
the soft material. Camera-based sensing is actively explored in the
field of tactile sensing with an overview provided in
Shimonomura (2019).

Compared to placing the cameras externally, an advantage of
integrating cameras into the soft system and pointing them to the
interior of the structure is the possibility to design the area
observed by the camera for best performance without external
influences. The application of a pattern to the interior surface of
the structure allows for the provision of rich information about
the deformation state and control of the lighting conditions.
Consequently, the sensing approach does not depend on the
visual features present in the environment or the existing external
lighting conditions.

A vision-based tactile sensor including pneumatic actuation is
presented in McInroe et al. (2018). A combination of blob
detection and optical flow is used to track a number of
markers and infer contact conditions and membrane shear.
Increasing the internal pressure allows for inflation of the
membrane and thereby control of the interaction force. A
tactile sensor named TacEA combines vision-based tactile
sensing, pneumatic actuation and electroadhesive grasping
capabilities and is presented in Xiang et al. (2019). The
sensing principle relies on the TacTip family as presented in
Ward-Cherrier et al. (2018). After an object is gripped using the
electroadhesion, releasing the object can take a considerable
amount of time. Pneumatic actuation, i.e. inflation of the soft
membrane, allows the object to be released quickly. Other
camera-based tactile sensors are presented in Yuan et al.
(2017) and Sferrazza and D’Andrea (2019).

A method to sense the three-dimensional shape of a soft robot
relying on a self-observing camera is documented in Wang et al.
(2020). External depth cameras provide ground truth to train a
neural network, which predicts the shape of the object only from
images of the self-observing cameras. The approach is executed

on a graphics processing unit (GPU) and provides the three-
dimensional deformation of soft objects in real-time. A vision-
based sensing approach providing both proprioceptive and
exteroceptive sensing is demonstrated in She et al. (2020) for
an exoskeleton-covered soft finger. The sensing method relies on
a convolutional neural network architecture being executed on a
GPU that is able to predict the shape of a single finger in real-time
and to classify objects which are grasped with a gripper made
from two fingers.

In Oliveira et al. (2020), a sensing method is presented to
measure the bending deformation of a soft link and detect
interactions with the environment. A camera is mounted
inside an inflatable and compliant link. A blob detection
algorithm relates the two-dimensional tip position
displacement to the location of a center blob and changes in
the relative positions of lateral blobs are interpreted as a contact
with the environment. The compliant link is actuated by two
electric motors and a filtering approach is employed to the input
signals to reduce an excitation of the lowest natural frequency of
the link. The internal pressure is increased and thereby
demonstrated to compensate for a shift in the lowest natural
frequency when a payload is attached to the link.

Sensing approaches relying on a camera are promising because
the sensor (i.e. the camera) is not required to mechanically
interact with the soft material being observed. Therefore, the
compliance of the sensor and the soft material are not required to
match, simplifying material selection and avoiding stress
concentrations at the interface between the sensor and the soft
material, which otherwise can limit the maximum number of load
cycles of the soft robotic system. Furthermore, cameras provide a
high resolution, they are not affected by environmental influences
such as temperature or electromagnetic noise and their low cost
enables the deployment of multiple sensors in soft robotic
systems. Finally, the images recorded by the internal cameras
allow us to detect aging phenomena or damage to the observed
structure. The challenge with cameras is to integrate the rigid
sensor into the soft structure. The size of the camera itself can
impose design constraints and the material deformation of
interest is required to lie in the visible area of the camera,
which can further complicate integration. Additionally, the
high-dimensional sensor output needs to be processed in real-
time, which requires computational capacity (Kappassov et al.,
2015).

Contribution
While camera-based sensing approaches have been demonstrated
for a soft plush robot, soft fingers and a compliant link, we
demonstrate a vision-based sensing approach for a fabric-based
bellow actuator used in a soft robotic arm. Our approach relies on
the integration of a small camera with a footprint of 7 mm ×
7 mm and a distinctive white pattern which is applied to the
interior surface of the actuator. Multiple LEDs are integrated to
control the illumination.

A convolutional neural network architecture is trained and
used to map the raw camera images to the rotational degrees of
freedom of the robotic arm. We show that a lightweight network
architecture, which can be deployed on a regular laptop computer
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without GPU support, can predict the orientation of the robot
arm at 30 Hz and achieves a root-mean-square accuracy of about
one degree.

While camera-based interaction force control is demonstrated
in McInroe et al. (2018) and feed-forward vibration control in
Oliveira et al. (2020), no closed-loop position control relying on
feedback from cameras has been demonstrated for a soft robotic
system. We extend the results presented in Werner et al. (2020)
for a single, linear actuator, to the control of a spherical robotic
arm using three actuators each including an internal camera.

Outline
The remainder of this paper is organized as follows: Section 2.1
presents the design of the soft bellow actuator and the integration
of the camera and the peripherals required. The machine learning
pipeline to retrieve the orientation from the camera images is
discussed in Section 2.2 and the control approach employed in
Section 2.3. Results showing the real-time prediction capability of
the sensing approach are presented in Section 3, along with a
validation of the sensing approach to provide feedback for closed-
loop control experiments. Finally, a conclusion is drawn in
Section 4.

MATERIAL AND METHODS

The hardware used for realizing the camera-based sensing
approach is discussed in the first part of this section. In a
second part, a supervised machine learning approach is
presented that maps the camera images to the angles
describing the orientation of the robotic arm. The section is
concluded with a brief description of the controller employed on
the robotic arm.

Hardware
We start with an overview of the spherical robotic arm used for
evaluation of the camera-based sensing method. The following
sections outline principle design considerations regarding the
vision-based actuator, the manufacturing of the soft actuators and
the required camera peripherals employed. The section is
concluded by a discussion of the integration of the camera
into the actuator.

Spherical Robotic Arm
The spherical robotic arm is closely related to the system
presented in Zughaibi et al. (2020) and consists of two
inflatable links and three fabric-based bellow actuators that are
arranged symmetrically around a soft silicone joint connecting
the two links. The robotic arm has two rotational degrees of
freedom, which are described by the extrinsic Euler angles α and β
(see Figure 2). The orientation of the movable link can be
adjusted by inflating the actuators A, B and C to different
pressures pA, pB and pC to control the elongation of each
actuator. Therefore, the three actuator pressures form the
control inputs to the system. Note that each bellow actuator
can not only expand longitudinally (when pressurized), but
allows also for lateral deformation when the other actuators
expand.

Since we have three control inputs for only two rotational
degrees of freedom, it is also possible to control the stiffness of the
joint. An intuitive way to understand this property is the fact that
a certain orientation of the movable link can be attained by
multiple pressure combinations, where the sole difference lies in
the resulting joint stiffness. In this work, the capability of
adjusting the joint stiffness is not explored and the reader is
referred to Hofer and D’Andrea (2020) and Zughaibi et al. (2020)
for more details.

FIGURE 2 | A schematic of the soft robotic arm is shown in the left hand plot. The system consists of a static link (1) attached to the ground, a movable link (2), the
inflatable bellow actuators (3) and a soft joint (4) placed between the actuators and connecting the two links. The orientation parametrization of the spherical robotic arm is
shown in the middle plot. The static link is aligned with the inertial z-axis. A positive rotation of the movable link around the inertial x-axis is denoted by α and a positive
rotation around the inertial y-axis is denoted by β. The top view of the actuator configuration in the inertial coordinate frame is shown in the right hand plot. The three
actuators are arranged symmetrically around the inertial z-axis, where the actuator A is aligned with the inertial x-axis.
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Vision-Based Actuator
Principle design considerations for the vision-based actuator are
discussed in this section. The fabric-based actuator consists of
individual cushions, which are combined at seams around an
inner opening, and forming a bellow-type actuator. A simplified
sketch of the actuator is shown in Figure 3. The actuator
combines soft actuation when pressurized and sensing of the
actuator’s angular elongation and lateral deformation through an
integrated camera. The combined actuation and sensing system
needs to address several requirements for successful deployment.
These requirements are discussed below.

The camera field of view should cover a large range of the
actuator expansion to provide sensory feedback over a large range
of the movable link. The sensitivity of the sensing approach is
maximized if the actuator expansion and deformation cause large
variations in the camera images observed. Increasing the width of
the inner opening clearly improves the visible area of the camera.
Placing the camera with an offset, η, toward the outer edge of the
actuator and tilting the camera by an angle, ρ, toward the center
of the actuator increases the visible area of the actuator
deformation covered by the camera (compare Figure 3).

The angular expansion of the entire actuator should be
maximized such that the angular range of the movable link is
maximized. Therefore, the angular expansion of a single cushion
should be maximized by either increasing the radial width of the

actuator, which is done for all cushions except the top and bottom
cushions, or reducing the width of the inner opening which
violates the previously discussed design requirement. The angular
expansion of the actuator can further be improved by increasing
the number of cushions employed, which however also leads to a
longer production time.

Finally, the actuator needs to be compatible with the links of
the robotic arm. Therefore, the ratio of linear and angular
expansion of the actuator need to approximately fit the robotic
arm. The ratio of angular and linear expansion mainly depend on
the ratio between the inner opening width to the radial width of
the actuators. Additionally, the location of the inner opening also
affects the ratio between angular and linear expansion, where a
central positioning yields a linear actuator and a placement of the
opening off-center primarily leads to an angular expansion of the
actuator.

The final actuator geometry addressing all the design
requirements mentioned is detailed in the supplementary files
provided.

Manufacturing of the Soft Actuator
After defining the requirements of the vision-based actuator in
the previous section, the manufacture of the inflatable bellow
actuators is discussed here. The manufacture of the rotary
actuator is similar to the design presented in Werner et al.
(2020) for a linear actuator. The fabrication method as
presented in Yang and Asbeck (2018) is applied. The actuators
are made from fabric sheets consisting of a sandwich structure. A
layer of thermoplastic polyurethane (TPU) film (HM65-PA,
0.1 mm by perfectex) is used inbetween two layers of poplin
fabric (polyester cotton blend 65/35 by extremtextil) fused in a
heat press (TS7 swingaway heat press by Secabo). The resulting
fabric material is inextensible, airtight and sturdier than the single
layers of poplin fabric.

The actuator is composed of twelve single cushions, with each
cushion being constructed from two pieces of fabric. The pieces
have a cutout in the middle (except for the top and bottom parts)
where the individual cushions are connected to form a bellow
actuator. As mentioned in the previous section, placing the cutout
off-center results in a rotary expansion type. Additional TPU
ring-shaped seam pieces are prepared to combine the fabric
pieces. The actuator is built by stacking the fabric and TPU
pieces and fusing them sequentially in a bottom-up process. All
fabric and TPU pieces are prepared with a laser cutter and a
detailed description of the fabrication procedure can be found in
Yang and Asbeck (2018) (Layered Manufacturing-Type I).

Before the fabric layers are fused together, a white pattern is
applied to the layers facing the camera to provide visual features
with a high contrast to the black fabric. The pattern is cut from
adhesive stencil film (S380 by ASLAN) and applied with textile
spray paint (319921 textile spray paint by DupliColor) in
consecutively applied thin layers. The pattern includes dots
with a diameter of 2 mm on the top layer and rings around
the opening of the middle cushions.

Since the fabric material is opaque, a light source is required to
illuminate the interior of the actuator and make the white pattern
visible to the camera. The camera electronics, including its

FIGURE 3 | The figure shows a simplified sketch of the cross section of
an actuator with the visible area of the camera indicated in red (dashed). Angle
connectors are attached to both the top (shown in black on the left of the
figure) and bottom of the actuator (shown in gray in the bottom of the
figure). The bottom connector is used to pressurize the actuator and the top
connector to align it with the movable link. The inner opening which connects
neighboring cushions has a width denoted by w and plays a crucial role in the
resulting visible area of the camera. If the opening is sufficiently wide, the
majority of the cushions are within the visible area of the camera. The area of
the actuator deformation covered by the camera is increased if the camera is
placedwith an offset ηwith respect to the center of the inner opening and tilted
by an angle ρ with respect to the normal direction.
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peripherals, are discussed the next section. The files of all fabric
parts are provided in the supplementary files of this publication.

Camera Electronics Setup
The camera electronics setup used in each actuator is depicted in
Figure 4A. The camera (OV7251 by OmniVision) houses a
CMOS VGA sensor with a maximum resolution of 640 × 480
pixels and a corresponding frame rate of 100 frames per second.
The camera has a footprint of 7 mm x 7 mm and is significantly
smaller than the camera employed in Werner et al. (2020),
therefore simplifying integration. The camera is connected to
an adapter board which reroutes the pins to an Arducam USB
Camera Shield (UC-425 Rev. C). A custom LED board is
powered and controlled via the adapter board. The light
intensity is adjusted by setting the duty cycle of a pulse
width-modulated signal. A constant duty cycle of 0.22 is
used throughout this work. The camera employed allows
synchronization of the cameras over pins routed to the
adapter board and connected between the three cameras.
The camera of actuator A takes the role of the leading
camera that triggers the picture and the other two cameras
take the role of followers. The Arducam USB Camera Shield
SDK library is used for software integration. The schematics of
the LED board and the adapter board are provided in the
supplementary files to this publication.

Camera Integration
In this section we discuss the integration of the camera and its
peripherals into the soft actuator. Only the camera and the LED
board are mounted inside the actuator. The other peripherals
shown in Figure 4A are placed outside the actuator. The camera
and the LED board should point in the same direction
irrespective of the actuator expansion. Therefore, both the
camera and the LED board are glued (Silicone multi-purpose
sealant 732 by Dow Corning) to the 3D printed adapter piece
(made from PA12). The camera offset η and angle ρ, as discussed
in Camera-Based Sensing, can be addressed in the design of the
3D printed adapter. The adapter is fixed to an opening in the
bottom layer of the actuator over a flange-like structure (see
Figure 4C). The CAD files of the camera adapter are provided in
the supplementary files of this publication.

The resulting actuator is shown in Figure 5, when inflated to
different elongations with the image from the internal camera
alongside. Although the camera adapter is made from rigid
material, the adapter is enclosed by the actuator and the static
link parts shielding the rigid part toward the surroundings. The
camera electronics could be routed internally at the cost of a
higher design complexity. Equipping the actuators with a camera
and the required peripherals for the vision-based sensing
approach adds additional weight to the lightweight soft robotic
system. A single camera including all its peripherals (boards,

FIGURE 4 | (A) The figure shows the camera electronics used in each actuator. The camera (1) and LED board (2) are connected to a custom-made adapter board
(3) which reroutes the camera pins and powers the LED board. The adapter board includes pins which are used for synchronizing multiple cameras and is powered
through the black/red cables. The adapter board is connected to an Arducam USB Camera Shield (UC-425 Rev. C) with USB interface (4). The USB cable is not shown
for better visibility. (B) The picture shows the front view of the camera adapter housing the camera and the enclosing LED board. The camera is tilted by an angle of
25+ with respect to the normal direction of the adapter plane. The pressure is measured and controlled over the blue tubing connected to the adapter over black angle
connectors and routed to the two openings next to the camera. (C) The figure shows a rendering of the camera interface. The bottom fabric layer (1) is sandwiched
between the camera adapter (2) and a 3D printed flange ring (3) and is fastened using six screws. The LED board (4) and the camera (5) are inserted into the adapter from
the top and the camera cable is routed through a slit in the top piece (6). Silicone glue is used to seal all interfaces.
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adapter, etc.) adds 14 g for a single actuator, whereas the actuator
without camera and peripherals weights 77 g. Hence, the vision-
based sensing approach leads to a relative increase in weight of
18% for the actuators.

Camera-Based Sensing
The method to predict the orientation of the robotic arm from
the internal cameras is discussed in this section. The
identification of the mapping from camera images to the
angles describing the orientation of the robotic arm is posed
as a supervised learning problem with ground truth data
available by means of a motion capture system. The
approach presented in Werner et al. (2020) relies on a
feature engineering step, followed by a support vector
regression to predict the actuator deformation. The key
advantage is the limited training complexity of the support
vector regression, which came at the cost of the required feature
engineering step. In this work, a lightweight convolutional
network is used to predict the orientation of the robot arm
from the camera images. The end-to-end learning approach
bypasses any feature engineering step, but requires more
training data, resulting in longer training times. The network
architecture is outlined in the first part of this section. The data
collection and model learning are discussed thereafter.

Data Collection
Ground truth data is provided by an infraredmotion capture system
running at 200Hz and providing sub-millimeter accuracy of the x-y-
z-position of the tip of the movable link. The extrinsic Euler angles α
and β are calculated by applying the following formulas,

α � arcsin( − (y − y0)/R) (1)

β � arcsin((x − x0)/(R · cos(α))). (2)

Thereby, (x0, y0) denotes the coordinates of the pivot point
and R the radius of the movable link, which are both determined
in a calibration process.

The data collection includes storing the images from the three
internal cameras of the current link orientation and the
corresponding ground truth labels α and β. In order to cover
the α-β plane uniformly, a position controller as discussed in
Control is used to track a regular grid of α and β setpoints in the
range of [−30, 30+]. Although the camera images and the
corresponding ground truth labels are collected at a rate of
10 Hz, the sensing approach is deployed at a rate of 30 Hz for
the validation and control experiments described in Results. Note
that the maximum angular range of the robotic arm is slightly
larger than the quadratic area covered during data collection.
However, the same procedure could be applied to the full angular
range but would require more time for data collection and
training of the network.

The data is preprocessed by first sub-sampling each image
using linear interpolation to a resolution of 120 × 160 pixels. All
pixel values are converted to floating point format and
normalized to the interval [−1, 1]. A training data set of
approximately 54,000 images and labels is collected
(corresponding to 90 min of data) and a validation data set of
approximately 15,000 images and labels is recorded
(corresponding to 25 min of data).

Network Architecture
The network architecture used in this work is related to LeNet as
documented in Lecun et al. (1998). The main building block is a
convolutional layer followed by a nonlinear activation (i.e., ReLU)
and a max pooling step. This building block is repeated three
times, before the output of the last pooling step is fed into two
fully connected layers predicting the two dimensional output. The
resulting network is required to provide inference in real-time on

FIGURE 5 | The picture shows a single actuator inflated to different expansions and the corresponding image from the internal camera. The number of cushion
rings visible to the internal camera decreases as the actuator expands. The light intensity is set such that the white pattern is visible over the full range of the actuator
expansion.
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a standard laptop computer without GPU support. Therefore, the
maximum size of the network is limited. The following network
exhibits a good trade-off between prediction accuracy and
computational complexity.

All convolutional layers have a kernel of size three, a stride of
one and a padding of one. The max pooling kernel sizes (and the
corresponding strides) are chosen as (5, 4, 2) in the first, second
and third layers, respectively. No padding is used for the pooling
step. The output of the last pooling layer is fed into two fully
connected layers with 40 neurons each and ReLU activation
functions. The network architecture is depicted in Figure 6.
The network has a total number of 9,378 parameters, which is
about half of LeNet-4 with roughly 17,000 parameters.

Model Learning
The PyTorch framework (Paszke et al., 2019) is used for model
training. The AdamW optimizer is used to minimize the mean
squared error. Themodel is trained for 100 epochs with a learning
rate of 1e-3 and a batch size of 128. The data is shuffled before
training and a GPU (Nvidia Titan X Pascal) is used for training

the network (not used during the deployment of the network).
The evolution of the train and test loss over all epochs is shown in
Figure 7.

Variations of the parameters defining the model
architecture, namely the number of channels in each
convolution, the convolution and pooling kernel sizes and
the number of linear units were also considered, with no
significant improvement in prediction accuracy for a
network of similar size.

Control
The control approach for the spherical robotic arm is introduced
in this section. The focus of this work lies on the sensing method
and therefore only a simple control strategy is employed. A more
elaborate, i.e., model-based approach is documented in Zughaibi
et al. (2020).

The control approach relies on a cascaded control
architecture, similar to the one presented in Hofer and
D’Andrea (2020), with an outer control loop for the slower
motion dynamics of the robotic arm and three independent,
inner control loops for the faster pressure dynamics. Based on the
sensory feedback of α and β, the position controller computes the
pressure setpoints, which are the inputs to the inner control loops.
The sensor feedback is either provided by the motion capture
system or by the vision-based sensing approach presented in
Camera-Based Sensing. The control inputs required to track the
setpoints αSP and βSP are computed based on two decoupled
proportional-integral controllers,

uα � KP(αSP − α) + KI∫


(αSP − α)dt, (3)

uβ � KP(βSP − β) + KI∫


(βSP − β)dt, (4)

with KP and KI denoting the proportional and integral gains. The
two control inputs are mapped to the three actuator pressure
setpoints by applying the following two-part procedure. First, the
control inputs uα, uβ are aligned with the actuators by applying
the following linear transformation, which is based on the
actuator geometry (compare Figure 2),

FIGURE 6 | The figure depicts the architecture of the neural network employed. The input consists of the three camera images sub-sampled to a resolution of 120 ×
160 pixels. First a convolutional layer (in red) is applied, with four output channels followed by a nonlinear activation (not shown) and a max pooling step (in blue) reducing
the size of the image to 24 × 32. The procedure is repeated twice more, while the number of channels is increased to eight and 16, respectively. The pooling steps reduce
the size to 6 × 8 after the second and to 3 × 4 after the third max pooling step. Finally, two fully connected layers are applied which output the angles α and β. The
pooling layers reduce the number of parameters and consequently the computational complexity significantly, while retaining the most important features.

FIGURE 7 | The figure shows the square root of the training and test loss
over 100 epochs. The gap between train and test loss is relatively small,
showing slight indications of overfitting for higher epochs. The lowest test error
is achieved in epoch 31 with a corresponding error of 1.43+.
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pAB,SP � − 1�
3

√ uα − uβ (5)

pBC,SP � 2�
3

√ uα, (6)

where pAB,SP corresponds to the pressure setpoint difference
between actuators A and B and pBC,SP to the difference
between actuators B and C, respectively. Secondly, the relative
pressure setpoint differences between two actuators are allocated
to the absolute pressure setpoints by the following set of equations
originating from Zughaibi et al. (2020),

pA,SP � max{p, p + pAB,SP, p + pAB,SP + pBC,SP} (7)

pB,SP � max{p, p + pBC,SP, p − pAB,SP} (8)

pC,SP � max{p, p − pBC,SP, p − pAB,SP − pBC,SP}. (9)

Thereby, p is defined as a lower pressure level of all three
actuators,

p � min{pA,SP, pB,SP, pC,SP}. (10)

The validity of the second step can be verified by computing
the pressure differences between actuator A and B and similarly
for B and C and performing the required case distinctions. The
lower pressure level p can be interpreted as a mean to adjust the
unidirectional stiffness of the robotic arm (see (Hofer and
D’Andrea, 2020) for more details).

The pressure setpoints for actuators A, B and C are tracked by
three independent proportional-integral controllers,

uA � ~KP(pA,SP − pA) + ~K I∫


(pA,SP − pA)dt (11)

uB � ~KP(pB,SP − pB) + ~K I∫


(pB,SP − pB)dt (12)

uC � ~KP(pC,SP − pC) + ~K I∫


(pC,SP − pC)dt, (13)

with ~KP and ~KI denoting the proportional and integral gains of
the pressure controllers. The three controllers are executed on an
embedded hardware at a higher rate than the position controller.

RESULTS

The results of the experimental evaluation of the method
proposed are presented in this section. The results of the real-
time prediction of the two angles are presented in the first part.
The closed-loop experiments relying on the feedback from the
camera-based sensing approach are presented in the second part.

The network is deployed on a standard laptop computer (Intel
Core i7 CPU, 2.8 GHz). The ONNX Runtime framework1 is used
to reduce inference time of the neural network and provide a
prediction of α and β at a rate of 30 Hz. The frame rate of the
cameras is set accordingly to 30 Hz during the deployment of the
sensing approach for both experiments reported in Real-Time

Prediction and Vision-Based Control. The multithreaded software
application includes, besides model inference, a graphical user
interface and a position controller running at 50 Hz, where the
previous prediction of the angles is used for intermediate
executions of the controller. The pressure controllers are
executed at 1,000 Hz on an embedded platform
(STM32 Nucleo-144 development board with STM32F413ZH
MCU from STMicroelectronics). The gains of the position
controller are set to KP � 0.16 bar · rad− 1 and KI � 0.19 bar ·
rad− 1 · s−1 and the gains of the pressure controllers are set to ~KP �
0.05 bar− 1 and ~K I � 0.03 bar− 1 · s−1. All actuator pressures are
measured by pressure sensors (8230 from Burkert) and the
outputs of the pressure controllers are applied to proportional
valves (MPYE-5–1/8-HF-010-B from Festo) adjusting the air
pressures. The lower pressure level is set to p � 1.02 bar.
Communication between the main application and the
embedded platform is realized by means of serial
communication. The interested reader is referred to the video
attachment to gain an impression of the experiments conducted
(https://youtu.be/CldCKhukqqQ).

Real-Time Prediction
The robotic arm is commanded to track a series of steps and
ramps in the α and β-directions, relying on feedback from the
motion capture system. The range of frequencies considered
corresponds to the range of frequencies in which the system
typically operates. The trajectory is repeated five times to
investigate repeatability of the sensing approach. The camera-
based sensing approach is executed in real-time and the results of
two repetitions of the trajectory are depicted in Figure 8 showing
the network prediction along with ground truth.

In order to evaluate the consistency of the angle predictions
over the five iterations, the root-mean-square error between
prediction and ground truth is calculated for both angles and
for each of the five iterations separately. The mean of the
individual root-mean-square errors in α-direction is μα � 1.03+

and the standard deviation is σα � 0.06+. Accordingly, the mean
in β-direction is μβ � 1.39+ and the standard deviation is
σβ � 0.10+. The relatively low standard deviations of both
prediction errors emphasize the repetitive nature of the
deviation, indicating that there is a systematic trend which the
network employed fails to capture. However, the similarity
between the two realizations implies that a hardware
limitation is not the cause of the deviations in the predictions.
In fact, these repeatable behaviors are ascribed to the limited
representation power of the compact network architecture
mentioned in Model Learning. In this regard, variations of the
training parameters result in a trade-off in accuracy across
different regions of the α-β plane. As a result, with the current
architecture, improvements in one region are only possible at the
cost of an accuracy degradation in another region.

Finally, a worst case estimation for the delay of the sensing
approach is presented. Considering a frame rate of 30 Hz and a
measured average inference time of the neural network of
approximately 2 ms, the resulting total worst case delay is
35 ms. Thereby, inter thread communication delay and
communication delays between the laptop computer and the1https://onnxruntime.ai
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embedded hardware are not considered since they are not
inherent to the sensing approach.

Vision-Based Control
The results of the closed-loop control experiment relying on
feedback from the vision-based sensing approach are discussed in
this section. The robotic arm is commanded to track sinusoidal
setpoint trajectories in α and β-directions. The tracking
experiment is repeated for three different frequencies. The
results are depicted in Figure 9 showing the network
predictions (used as feedback) along with ground truth and
the setpoints. It can be observed that the delay between the
setpoint and the measured angle is increasing for higher
frequencies for both degrees of freedom. This is a consequence
of the robot’s dynamics exhibiting a higher phase lag for higher
frequencies.

The accuracy of the vision-based sensing approach is
evaluated by comparing it to ground truth. The root-mean-
square errors are calculated for both angles and then averaged.
The combined errors are summarized in column three of Table 1
(RMSE GT-VBS). The resulting errors for the low, intermediate
and high frequency correspond to the left, middle and right hand
plots of Figure 9, respectively.

The accuracy of the sensing approach and the setpoint
tracking performance achievable, are compared to the case
when ground truth sensory feedback is available. Therefore,
the same three tracking experiments as shown in Figure 9 are
repeated with ground truth from the motion capture system used
as feedback. The results are summarized in Table 1. The root-
mean-square error between different signals and averaged
between the two angles is calculated when using either ground
truth or the vision-based sensing approach as sensory feedback.

FIGURE 8 | The figure shows the rotational degrees of freedom α (top plot) and β (bottom plot) over time. The camera-based prediction (CAM) is shown in blue
(solid line) and the ground truth (GT) from themotion capture is depicted in red (dashed line). No filtering is applied to the output from the network. Slight deviations can be
seen for large values of β. The deviations between the two repetitions of the trajectory are comparable.

FIGURE 9 | The figure shows the results of the tracking experiments with the camera-based sensing approach used as sensory feedback. The angle α is shown in
the top plots and β is shown in the bottom plots. The tracking experiment is performed for three different frequencies. The left hand plot shows the lowest frequency
(0.12 Hz in α and 0.06 Hz in β), the middle plot corresponds to an intermediate frequency (0.16 Hz in α and 0.08 Hz in β) and the right hand plot shows the highest
frequency (0.25 Hz in α and 0.12 Hz in β). The camera-based predictions are shown in blue (solid line) and the ground truth from the motion capture in red (dashed
line). The commanded setpoint is shown in black (dotted line). Slight oscillations can be observed for large absolute values of β.
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The second column shows the root-mean-square error
between ground truth and the setpoint (RMSE GT-SP) when
relying on ground truth as sensory feedback. These tracking
errors show the control performance achievable with the soft
robotic arm when ground truth is available as feedback. The
experimental results shown in columns three to five rely on the
vision-based sensing approach as feedback. Column three reports
the accuracy of the vision-based sensing approach when
compared to ground truth (RMSE GT-VBS). The tracking
error between the vision-based sensing approach and the
setpoint, as used in the controller, is reported in column four
(RMSE VBS-SP). The reported errors are similar for all three
frequencies when compared to the results shown in column two.
Finally, the true tracking errors between ground truth and the
setpoint, when relying on feedback from the vision-based sensing
approach, are shown in column five (RMSE GT-SP). The results
indicate that the actual tracking errors achievable with the vision-
based sensing approach, are slightly higher compared to the case
when relying on ground truth sensory feedback. However, the
additional deviation induced by the vision-based sensing
approach is relatively small, emphasizing the suitability of the
sensing approach proposed for closed-loop control of the
robotic arm.

DISCUSSION

This paper presents a vision-based sensing approach for a soft
robotic arm made from fabric. The camera integration into
inflatable bellow actuators has been discussed, with three
actuators being used to control a spherical robotic arm. An
end-to-end deep learning approach relying on a shallow
convolutional network is employed and trained with ground
truth data from a motion capture system to map the camera
images to the two rotational degrees of freedom of the robotic
arm. Note that formulating a model-based sensing approach
would require us to explicitly account for material behaviors,
e.g., deformation, that are challenging to model accurately. In
addition, the use of convolutional filters results in an efficient
processing of the information at all pixels of the images,
contributing to the high accuracy obtained. The resulting
method is computationally lightweight and can be deployed
in real-time on a standard laptop computer providing
predictions of the two angles at a rate of 30 Hz with an
accuracy of about one degree. The reliability of the vision-
based sensing approach has been demonstrated by closed-loop

control experiments relying on the sensory feedback from the
camera-based sensing approach.

The proposed sensing approach, relying on a relatively small
network architecture, can be deployed on a standard laptop
computer without GPU support at 30 Hz. Note that the neural
network architecture enables the simultaneous prediction of the
two angles, efficiently exploiting the interconnections across the
three synchronous images and the two outputs with a single
architecture. This differs from Werner et al. (2020), where a
single-output support vector regression was employed to predict
the elongation of a linear actuator with a single camera at 40 Hz.
A multi-output angle prediction with such a method would
require the use of separate single-output regressors, with a
consequent increase in the computational cost.

In principle, the internal cameras would provide images at a
frame rate of up to 100 Hz. The computational resources
provided by the computer employed is currently the primary
limitation in terms of model size and update rate. Leveraging
specialized computational hardware that is able to process the
acquired image stream at full rate, would allow for the full
exploitation of the sensory feedback provided by the cameras.

In order to further improve the prediction accuracy, larger
network architectures might be required. The repeatability of the
current deviations indicates that the physical limitation of the
sensing approach is not yet reached and better prediction
accuracy is possible at the cost of larger networks and
correspondingly higher computational costs for training and
inference. Furthermore, we only investigated algebraic
mappings from camera images to output angles without any
previous state dependency. The use of e.g. recurrent neural
network architectures to rely on past predictions to capture
time dependent effects in the actuator deformation might be
another means to improve the performance of the sensing
approach presented.

There are several possible extensions to the approach presented:
The sensing pipeline is identified for a fixed lower pressure level p,
which is related to joint stiffness. Therefore, the lower pressure level
is likely to affect the actuator deformation and hence the images
observed by the internal cameras. An extension of the current work
would be to feed p as an input to the network and train it for different
values of p. Secondly, the robotic arm is commanded to track
positions during the data collection and evaluation experiments.
A subject for future work is an investigation of themethod presented
for deployment during interactive applications with disturbances
acting on the movable link. Thirdly, the information stream
provided by the cameras is currently only used for sensing the

TABLE 1 |Overview of the different root-mean-square errors (averaged between the two angles) when using ground truth (GT) as feedback (column two) or when using the
vision-based sensing approach (VBS) as feedback (columns three to five). The evaluation is done for trajectories of different frequencies shown in rows three to five. The
setpoint is abbreviated with SP. The signals used to calculate the root-mean-square errors (RMSE) are indicated by the two abbreviations following the RMSE.

Trajectory frequency GT as feedback VBS as feedback

RMSE GT-SP RMSE GT-VBS RMSE VBS-SP RMSE GT-SP

Low 2.98+ 1.56+ 3.04+ 3.68+

Intermediate 4.41+ 1.15+ 4.48+ 4.87+

High 7.18+ 1.26+ 7.06+ 7.30+
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rotational degrees of freedom. An interesting extension would be to
use the camera images to identify aging phenomena of the bellow
actuators or to detect damages in the actuators, both changing the
actuator deformation observed by the cameras. Finally, the sensing
pipeline presented relies on three cameras (one in each actuator) to
predict the rotational degrees of freedom. However, a change in both
angles, in the α and β-directions causes a variation of each of the
camera images. Hence, it is likely that the orientation of the robotic
arm would be observable with only one or two cameras. This would
simplify the hardware setup, but might come at the cost of reduced
prediction accuracy.
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