
DISS. ETH NO. 26955

OBJECTIVE COHERENT STRUCTURES NEAR THE
TURBULENT/NON-TURBULENT INTERFACE IN A

STABLY STRATIFIED TURBULENT FLOW

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Marius Mihai Neamtu-Halic

Master of Science, Roma TRE

born on 22.10.1989

citizen of Romania

accepted on the recommendation of

Prof. Dr. M. Holzner, examiner
Prof. Dr. J.R. Dawson, co-examiner
Prof. Dr. G. Haller, co-examiner

2020





PhD Thesis

Objective coherent structures near the
turbulent/non-turbulent interface in a stably

stratified turbulent flow

Marius Mihai Neamtu-Halic

July 9, 2020



Abstract

At the outer boundary of turbulent flows, irrotational ambient fluid is continuously ent-
rained into the turbulent flow region across a sharp and highly convoluted interface, the
so-called turbulent/non-turbulent interface (TNTI). This process has a direct bearing on
the transport and mixing of fluid mass and momentum in a variety of flows, as for example
in jets, wakes and boundary layers. Many recent studies indicated that vortical structures
might play a fundamental role in the entrainment process; however, arbitrariness in vortex
identification methods has hampered our ability to properly identify coherent structures
and establish their role in this process. A recent string of studies developing the Lagran-
gian coherent structures theory enables to overcome the issues connected with the classic
vortex extraction methods. By imposing the material coherence of the vortex core, these
identification methods fulfill the objective property of continuum mechanics, i.e. observer-
independence, which has been neglected in the past.

The main aim of this work is to use these novel detection methods to educe objective
vortical structures (OVSs) from a gravity current flow and shed a light on the relation
between these structures and the turbulent entrainment process. Gravity currents are
important in geophysical applications, as for example in the case of oceanic overflows
that are observed to play a key role in the thermohaline circulation and consequently
in the climate dynamics. A better understanding of the role of OVSs on the turbulent
entrainment will hence improve our ability to devise models for the growth rate of these
geophysical currents, which might increase the accuracy of climate model predictions.

In the first part of the thesis, the impact of OVSs on the TNTI and entrainment of
an experimentally realized gravity current is investigated. For flow measurements, a no-
vel multivolume 3D particle tracking velocimetry technique is developed and to extract
the OVSs, an automatic 3D extraction algorithm for multiple structures identification is
implemented. A conditional analysis based on the presence of OVSs near the interface
shows that the structures modulate the average TNTI height, affecting thereby the inter-
face area, and organize the flow field on both the turbulent and non-turbulent sides of the
gravity current boundary, influencing the local entrainment velocity. In conclusion, the
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results show that coherent structures have an impact on the two key factors of the overall
entrainment flux, namely the TNTI area and the local entrainment velocity.

In the second part of the thesis, direct numerical simulations (DNSs) of a temporal
gravity current is used to investigate the role of OVSs on the time evolution of the TNTI
area. The TNTI area is continuously produced and destroyed via stretching and curva-
ture/propagation effects. Our results show that the production/destruction of the TNTI
area is a multiscale process, in which production by flow stretching is balanced at all the
scales of the TNTI wrinkles by destruction via curvature/propagation effects. This scale-
by-scale balance is shown to be compatible with a demonstrated scale invariance of the
OVSs near the TNTI, in which TNTI area is produced at the leading edge and destroyed
at the trailing edge of the TNTI bulges in the OVSs proximity. We show that the latter
observation can be explained by the rotational motion of the flow induced by OVSs near
the interface. This study implies that the vortical structures not only contribute to set the
TNTI area, but they also influence the multiscale process of its time evolution.

In the last part of the thesis, the dynamics of the OVSs and their role on the local
entrainment process is investigated. To this end, DNSs of a temporal gravity current are
used. For the dynamical characterization of the structures, radial profiles of the enstro-
phy transport terms inside the OVSs are computed. It is shown that vortex-stretching
produces enstrophy inside the OVSs, while viscous diffusion transfers the enstrophy from
the core of the OVSs to the nearby fluid parcels. Although overlooked in the past, the
viscous dissipation of enstrophy is shown to play a role on the enstrophy budget, while the
baroclinic torque is negligible. When considering the region near the TNTI, it is shown
that the intensity of the conditional profiles of the enstrophy transport terms across the
interface is considerably higher when a structure is present near the interface. Moreover,
the shape of these profiles is observed to be compatible with the radial profiles of an OVS
positioned near the TNTI. The overall picture that emerges is that the vortical structu-
res have a significant impact on the enstrophy transport across the TNTI and thus on
the mechanism through which an initially irrotational fluid parcel enters in the turbulent
region. In conclusion, this dissertation presents novel tools for a rigorous investigation of
the impact of vortical structures on the TNTI area that enable a better understanding of
their role on the entrainment process. Although here limited to gravity current flow, the
results presented in this dissertation are expected to be transferable to other turbulent
flows that are bounded by a turbulent/non-turbulent interface, such as jets, wakes and
boundary layers.
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Sommario

Lo scopo principale di questa tesi è quello di utilizzare metodi di estrazione oggettivi per
l’identificazione di strutture vorticose in correnti di gravità al fine di far luce sulla relazione
tra queste strutture e il processo di entrainment. L’entrainment turbolento è quel processo
per il quale il fluido ambiente in stato irrotazionale presente all’esterno di una regione tur-
bolenta viene continuamente inglobato nella regione stessa fluendo attraverso una sottile
interfaccia estremamente convoluta, detta interfaccia turbolenta/non-turbolenta (TNTI).
Tale processo influenza notevolmente il trasporto ed il mescolamento (mixing) sia della
massa fluida, sia della sua stessa quantità di moto in una vasta gamma di flussi quali i get-
ti, le scie, e gli strati limite. Numerose ricerche recenti indicano che le strutture vorticose
coerenti potrebbero giocare un ruolo fondamentale nel processo di entrainment ; ciono-
nostante, l’arbitrarietà nei metodi per l’identificazione dei vortici ha ostacolato la nostra
capacità di individuare in un modo appropriato le strutture coerenti e capirne il ruolo in
questo processo. Una recente linea di ricerca, la cosiddetta teoria delle strutture coerenti di
Lagrange, permette di ovviare alle problematiche relative ai metodi classici di estrazione,
imponendo la coerenza materiale del nucleo del vortice. Questi metodi di identificazione
rispettano dunque la proprietà oggettiva della meccanica classica, ovvero l’indipendenza
dal sistema di riferimento dell’osservatore, trascurata da molti dei metodi classici.
In questo lavoro, l’analisi del legame tra le strutture coerenti e il processo di entrainment è
stata effettuato nell’ambito delle correnti di gravità. Le correnti di gravità hanno rilevanti
applicazioni geofisiche, come ad esempio nel caso degli oceanic overflows che svolgono un
ruolo chiave nella circolazione termoalina e di conseguenza nella dinamica climatica. Ne
consegue che una più approfondita conoscenza del ruolo delle strutture nell’entrainment
turbolento permette lo sviluppo di modelli più accurati per la simulazione di queste cor-
renti che possono avere un notevole impatto sui modelli climatici.
Nella prima parte di questa tesi, viene studiato l’impatto delle strutture vorticose oggetti-
ve (OVSs) sulla TNTI e sul processo di entrainment di una corrente di gravità realizzata
sperimentalmente in laboratorio. Per l’analisi dei dati è stata sviluppata una nuova tecnica
multivolume di 3D particle tracking velocimetry e le OVSs vengono estratte utilizzando un
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nuovo algoritmo automatico per l’identificazione di molteplici strutture in tre dimensioni.
Un’analisi condizionale è stata usata per studiare l’influenza delle OVSs sulla TNTI e sul
processo di entrainment. L’analisi ha dimostrato che le strutture modulano l’altezza della
TNTI, influenzandone dunque l’area della superficie, e che esse organizzano il campo di
moto del fluido da entrambe le parti dell’interfaccia, sia nella regione turbolenta che nella
regione irrotazionale, influenzando di conseguenza la velocità di entrainment locale. Per-
tanto, il quadro generale che ne emerge è che le OVSs condizionano entrambe le quantità
che governano il flusso di entrainment, ovvero l’area dell’interfaccia e la velocità locale di
entrainment.
Nella seconda parte della tesi, vengono impiegate simulazioni numeriche dirette (DNSs)
di correnti di gravità temporali per lo studio dell’impatto delle strutture vorticose sul
processo di produzione/distruzione dell’area della TNTI. L’area dell’interfaccia viene con-
tinuamente prodotta e distrutta attraverso effetti di stretching e di curvatura/propaga-
zione della stessa. Attraverso l’analisi delle simulazioni, si è dimostrato che il processo di
produzione/distruzione dell’interfaccia è un processo multiscala in cui la produzione di
area tramite stretching viene bilanciata a tutte scale della TNTI dalla distruzione tramite
effetti curvatura/propagazione. Successivamente, è stato dimostrato che questo equilibrio
è compatibile con una invarianza di scala delle OVSs vicino alla TNTI, nella quale l’area
della TNTI viene creata nella parte anteriore dell’interfaccia in prossimità delle strutture
e viene distrutta nella zona posteriore della stessa. Inoltre è stato dimostrato che questo
tipo di meccanismo locale puó essere associato ad un campo di moto rotatorio indotto
dalle strutture in prossimità dell’interfaccia. In conclusione, in questa seconda parte è sta-
to mostrato come le strutture coerenti influenzino l’entrainment locale anche attraverso il
processo di produzione/distruzione dell’interfaccia.
Nell’ultima parte della tesi, vengono studiate la dinamica delle OVSs e il loro ruolo nel
processo locale di entrainment. A tal fine, vengono utilizzate DNSs di una corrente di
gravità temporale. Per la caratterizzazione dinamica delle strutture, si sono valutati i pro-
fili radiali dei termini dell’equazione di trasporto dell’enstrofia all’interno delle OVSs. I
risultati della nostra analisi mostrano che il termine di vortex-stretching produce entrofia
all’interno delle OVSs mentre la diffusione viscosa la trasferisce dal nucleo delle OVSs alle
particelle di fluido circostanti. Sebbene spesso trascurata in passato, la dissipazione visco-
sa dell’enstrofia all’interno delle strutture vorticose ha un ruolo fondamentale nel bilancio
della stessa, mentre il momento torcente baroclinico è stato osservato essere essenzialmente
trascurabile. Quest’ultima parte del lavoro verte sul ruolo delle OVSs nel processo locale
di entrainment. Si è cośı dimostrato che l’intensità dei profili dei termini delle equazioni
di trasporto dell’enstrofia, attraverso l’interfaccia, è considerevolmente maggiore quando
una OVS è presente vicino alla TNTI e che la forma di questi profili è compatibile con la
forma dei profili radiali di una OVS posizionata in prossimità della TNTI. Ciò dimostra
che le strutture vorticose hanno un impatto notevole sul trasporto dell’enstrofia attraverso
l’interfaccia e dunque sul processo attraverso il quale una particella fluida, in stato irrota-
zionale, entra nella regione turbolenta.
In conclusione, questa tesi presenta una serie di strumenti per lo studio rigoroso dell’impatto
che strutture vorticose hanno sull’area dell’interfaccia turbolenta/non-turbolenta e sul pro-
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cesso di entrainment. Sebbene, l’analisi effettuata qui sia stata condotta nel caso particolare
di correnti di gravità, si prevede che i risultati presentati in questo lavoro possano essere
analoghi anche ad altri tipi di flussi turbolenti che sono confinati da regioni irrotazionali
come ad esempio i getti, le scie e gli strati limite turbolenti.
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Chapter 1
Introduction

In turbulent flows, the characteristics and dynamics of the vortical structures have been
studied extensively in recent decades. Vortical structures are often defined as tubular
regions with a high content of coherent vorticity and with a lifetime larger than the typical
time-scales of the flow. These structures are considered as one of the building blocks of
turbulence and they offer the possibility of understanding complex flow phenomena using
relatively simple models e.g. see Lesieur (1987). Moreover, several studies indicated that
vortical structures play a key role for the transport and mixing of mass, momentum and
scalars (e.g. temperature). Understanding how these transport processes are related to the
vortical structures is crucial for practical applications, as for example turbulence control,
heat exchange and dispersion of pollutants in atmosphere.

Following a common categorization in turbulent flows (da Silva et al., 2011), vortical
structures can be subdivided into two classes, namely, the so-called large-scale struc-
tures and the intense vortical structures. The large-scale structures are flow dependent
and generally originate from the mechanism that generates, or maintains, the turbulence
(Davidson, 2015). Their geometrical and kinetic properties such as size, orientation and
vorticity content depends on the particular type of flow. Usually identified through a
threshold on the pressure (da Silva et al., 2011), the size of these structures is also known
to be an outer cut-off for the range of possible sizes of the vortical structures in the tur-
bulent flow. Moreover, they are governed by an inviscid mechanism and are responsible
for the production of the turbulent kinetic energy that is transferred to the smaller scales
(Davidson, 2015).

As suggested by the name, the intense vortical structures contain the highest levels of
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the flow vorticity. Usually identified with a particularly high threshold on vorticity vector,
the intense vortical structures are also known in isotropic turbulence under the name of
vortex filaments (Siggia, 1981). Many studies have been dedicated to these structures,
particularly in isotropic turbulence (Siggia, 1981; Vincent & Meneguzzi, 1991; Ashurst
et al., 1987; Jimenez & Wray, 1998), but also in other flows such as mixing layers (Tana-
hashi et al., 2001), channel flows (Kang et al., 2007) and jets (Ganapathisubramani et al.,
2008; da Silva et al., 2011). Different from the large-scale vortical structures, the intense
vortical structures share similar characteristics in a variety of flows. For example, the
vortex radius is of order of 5η, where η is the Kolmogorov micro-scale, in isotropic tur-
bulence, mixing layers, channel flows and jets. While intense vortical structures seem to
be a general feature of many homogeneous density turbulent flows, they have never been
investigated in stratified flows which are the main focus of this thesis.

Up to date, progress in our understanding of the role of vortical structures in turbulence
has been hampered by the fact that there is no generally accepted definition of vortical
structures yet. There are broadly two accepted characteristics for the definition of vortical
structures. The first is that the vortices should possess a high content of vorticity and
the second one is that they should be materially coherent (Haller et al., 2016). In most
of the studies, their identification is made by a threshold on the vorticity relative to other
flow domains (Hussain, 1986; Jiménez et al., 1993; da Silva et al., 2011) or relative to
the strain (Okubo, 1970; Hunt et al., 1988; Weiss, 1991; Hua & Klein, 1998). In other
studies a high degree of material invariance of the vortex core is required (Chong et al.,
1990; Provenzale, 1999; Haller, 2005; Chelton et al., 2011). Indeed as Haller et al. (2016)
recognized, what constitutes a high degree of vorticity might be ”subject to individual
judgement, thresholding and choice of frame of reference”, whereas the material coherence
of a vortex core holds even ”more promise as a first requirement in an unambiguous vortex
definition”. The latter requirement implies that a vortex must have the objective property
of continuum mechanics, i.e. it must be observer-independent.

A recent vortical structure identification method that fulfils both the aforementioned
characteristics has been developed by Haller et al. (2016). This method uses a new dynamic
version of the classic polar decomposition introduced in Haller et al. (2016) and identi-
fies vortical Lagrangian coherent structures (VLCSs) as tubes of deforming fluid elements
that complete the same material rotation relative to the mean rotation of the surrounding
fluid. Haller et al. (2016) showed that the initial position of such tubes coincide with the
tubular level surfaces of the so-called Lagrangian-Averaged Vorticity Deviation (LAVD),
“the trajectory integral of the normed difference of the vorticity form its spatial mean”.
Moreover, in the limit of zero advection time, the Lagrangian definition turns into an ob-
jective Euleiran vortex definition. The objective vortical coherent structures (OECSs) are
identified by tubular surfaces of equal material rotation rate that is objectively measured
by the Instantaneous Vorticity Deviation (IVD). These two methods allow overcoming the
issues connected to the arbitrariness of the classic identification methods and constitute a
promising tool for a rigorous vortex definition that is objective as required by experimental
reproducibility. While both the aforementioned methods are equivalently valid, they are
intimately different. The LAVD method guarantees the material coherence of the vortex
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core over an imposed extraction time, but at the expense of high computational costs
due to the use of vorticity along fluid trajectories. On the other hand, the IVD method
is much less computationally expensive but the material coherence of vortex cores is not
guaranteed over time. However, in a recent work by Serra & Haller (2016), it was shown
that the initial position of many objective Eulerian vortices coincide with their Lagrangian
counterpart, thereby justifying the use of objective Eulerian methods when computational
costs are unsustainable. In this thesis, the LAVD method is used in chapter 2, where
experimental data is employed, whereas the IVD method is used in chapter 3 and chapter
4, in which heavier direct numerical simulation data is employed.

Vortical structures often reside at the dividing interface between turbulent and non-
turbulent flow regions which is an important but not well understood feature of several
turbulent flows. In this thesis, a particular attention is given the influence of vortical
structures on the kinematics and dynamics of the flow near this interface.

1.1 The turbulent/non-turbulent interface

A sharp and highly contorted interface is known to separate turbulent fluid from the outer
irrotational region of free shear (e.g. jets, wakes and mixing layers) and semi-bounded
(e.g. boundary layers and wall jets) turbulent flows (Corrsin & Kistler, 1955). Across this
interface, so-called turbulent/non turbulent interface (TNTI), initially irrotational fluid
is continuously incorporated in the turbulent region, a phenomenon known as turbulent
entrainment. From a local prospective, the flux of entrained fluid can be expressed as
the product of the local entrainment velocity, averaged over the whole TNTI surface,
and the instantaneous, wrinkled interface area. Conversely, the global entrainment flux is
expressed based on the time averaged and flat interface area (e.g. a plane for a planar jet or
a cone for a round turbulent jet) and the mean entrainment velocity. To date, it is widely
accepted that the turbulent entrainment occurs at the smallest scales of turbulence and
that is dominated by viscous processes (Mathew & Basu, 2002; Westerweel et al., 2009).
However, it is also broadly recognized that the overall entrainment rate is independent on
viscosity, viz. Reynolds number (Tritton, 1988; Tsinober, 2009). It is therefore believed
the large-scale vortical structures act to cancel the Reynolds number dependence of the
small-scale entrainment(Townsend, 1980; Sreenivasan et al., 1989). In other words, the
large-scale vortical structures distort and enhance the TNTI area in a way to cancel the
dependence on the small viscous scales. Recent flow-visualizations from direct numerical
simulations suggest that indeed vortical structures of average size of the Taylor microscale
occupy the largest convolutions of the TNTI, thereby lending support to this view (da Silva
& dos Reis, 2011). A more rigorous approach that uses conditional analysis showed that
effectively, the TNTI surface area increases in the vicinity of large scale motion of a
turbulent boundary layer (Lee et al., 2017). However, a systematic analysis case of how
objectively identified vortical structures modulate the TNTI is still missing. Furthermore,
it is not clear yet how the large-scale vortices in the TNTI proximity interact with the
interface to set the small-scale local entrainment.

The TNTI area is continuously produced and destroyed as a result of stretching and
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curvature/production mechanisms. Hypothesizing a constant entrainment velocity over
the TNTI, (Phillips, 1972) concluded that on average the curvature/propagation effect
creates TNTI area along the bulges and destroys it in the valleys of the TNTI. While
this is an important theoretical finding, the local entrainment velocity is known to vary
significantly along the TNTI (Holzner & Lüthi, 2011; Wolf et al., 2012; Watanabe et al.,
2014), with a predominance of negative values implying entrainment that alternate with
sporadic positive values representing detrainment zones. It is thus not clear how this
variation of the entrainment changes the curvature/propagation effect. In addition, it was
observed that the coherent vortices that fill the bulges near the TNTI distort the mean
flow in their proximity (Mistry et al., 2016). This indicates that the vortical structures
may have an impact on the process of production/destruction of the TNTI area. However,
the role of vortical structures on the time evolution of the TNTI is largely unknown.

The process through which an initially irrotational fluid parcel enters into the turbulent
core region across the TNTI has been observed to occur in a sequence of two stages
(Watanabe et al., 2017). Initially, fluid parcel acquires vorticity at the outer layer of the
TNTI via viscous diffusion of enstrophy. The outer layer of the TNTI where viscous effects
are dominant is the so-called viscous superlayer. Afterwards, in a second stage the fluid
particle undergoes an enstrophy amplification via the vortex-stretching mechanism in the
so-called turbulent sublayer. Up to date it remains unclear whether the vortical structures
that populate the region near the TNTI play a role in this process.

1.2 Gravity currents

In many flows in nature or industrial applications, turbulent shear flows develop in presence
of stable stratification. One of the most common examples is the case of gravity currents, in
which the flow is driven by the density difference between two fluids. Gravity currents are
ubiquitous in nature and in practical applications (Simpson, 1999). The most spectacular
examples include snow powder avalanches (figure 1.1a) and pyroclastic flows (figure 1.1b).
The latter are characterized by the presence of suspended volcanic material and gasses at
high temperature and they flow down along the mountainsides after a volcanic eruption,
reaching top velocities between 50 and 300 Km/h. A further example of a gravity current
is lahars (figure 1.2 a), a rather violent type of mudflow that forms as a result of volcanic
eruptions. Lahars are composed of pyroclastic material, rocky debris and water and flow
down from a volcano, typically along a river valley.

In these examples, the density difference between the gravity current and the ambient
fluid (air) is given by the presence of suspended material. However, in other examples the
density difference is due to a gradient of a scalar, as for example temperature or salinity.
This is the case of the katabatic winds, also known as downslope winds, or gravity winds.
These winds originate at high altitudes through rapid cooling of the air (figure 1.2 a). The
cooled air, with a higher density as compared to the surrounding, flows down a sloping
bottom under the force of gravity.

An important feature of these flows is that the turbulence generated by the shear is
damped by the stable stratification.
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Figure 1.1: (a) Avalanche on the mountain Zinal, Switzerland (source: Camptocamp.org).
(b) Example of pyroclastic flow (courtesy of Ulet Ifansasti—Getty Images).

Figure 1.2: (a) Lahar on the Saint Elena mountain in march 1982 (source: USGS). (b)
View of katabatic wind from the upper reaches of Tsanteleina Glacier in the western Italian
Alps (courtesy of T. Shaw).
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In this thesis, the particular case of inclined gravity currents is investigated. In this
case, the density difference is given by a salinity gradient and a dense turbulent fluid
flows in a lighter ambient fluid that is at rest along the bottom of an inclined wall. If
the density difference between the two fluids is small enough, the so-called Boussinesq
approximation applies, and this case is equivalent to lighter turbulent flow the flows up in
a denser quiescent fluid along the top of an inclined wall.

For these flows, the entrainment coefficient is known to diminish with increasing ratio
between the buoyancy and the shear strength of the flow, represented by the Richardson
number Ri. Recently, it has been demonstrated (Krug et al., 2015; van Reeuwijk et al.,
2018) that the reduction of the entrainment coefficient with increasing Ri is associated
with the decrease of both the average entrainment velocity and the TNTI area. It remains
thus to be understood whether the vortical structures that are known to populate the
region near the TNTI play a role in the area reduction and whether these structures have
an impact on the entrainment velocity decrease.

1.3 Objectives

The objectives of this thesis are to implement a fully automatic 3D extraction algorithm
for objective coherent structures identification based on the LAVD and IVD fields and to
use this algorithm to educe VLCSs and OECSs from experimental and direct numerical
simulation data of a gravity current. The aim is to characterize these structures from
a geometrical, kinematic and dynamic point of view and understand their role in the
entrainment mechanism. In particular, with regard to the entrainment mechanism, the
impact of the vortical structures on both the local entrainment velocity and the area of the
TNTI is investigated. This allows us to obtain a new understanding of how the vortical
structures modulate the TNTI area, how they control the time evolution of the area and
how they impact the two step process of fluid parcels entrainment.

1.4 Thesis Outline

This thesis is the result of the three distinct scientific publications, each of which constitute
an individual chapter, while the conclusions and the findings of this work are synthesized
in a final chapter.

In chapter 2, large-scale 3D VLCSs are extracted from experimental data of a gravity
current. The gravity current is realized using the experimental facility introduced in Krug
et al. (2013). The facility allows to create a gravity current in steady state conditions by
injecting a turbulent light fluid (a mixture of water and ethanol) at a constant rate in a
denser ambient fluid (a mixture of water and salt) along the top wall of an inclined tank.
Ambient fluid is continuously resupplied along the bottom of the tank to replenish the
entrained fluid. A multivolume three dimensional particle tracking is developed for flow
measurements, with the rationale of observing a large interrogation volume, while main-
taining a high resolution. For 3D VLCSs identification, a new extraction algorithm that
allows for multiple structures eduction is implemented. The size, shape and orientation are
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used to characterize the VLCSs, while conditional analysis is used to assess their impact
on the area of the TNTI and on the local entrainment velocity. The results presented in
this chapter allow to understand how the large-scale vortical structures act to cancel the
dependence of the entrainment rate on the viscosity.

Chapter 3 deals with the impact of objective coherent structures on the time evolution
of the TNTI area. To this end, direct numerical simulation data of a temporal gravity
current is used. While the algorithm described in chapter 2 is applied to the IVD field
extract 3D OECSs for a flow visualization, the main outcomes are based on results from
2D vertical planes. The results show that the TNTI area is continuously produced through
flow stretching and destroyed via curvature/propagation effects, which balance each other
in time and at all the scales of the flow. In particular, the time evolution of the area is
shown to be multiscale process that is compatible with an observed scale invariance of the
OECSs in the TNTI proximity. Conditional analysis is used to show that TNTI area is
produced at leading edge and destroyed at the trailing edge of the TNTI near a vortical
structure. As the stratification increases, the magnitude of the stretching production and
curvature/propagation destruction decreases. An explanation of the former is offered in
terms of a fractal model of the TNTI, which shows that this decrease is largely attributable
to a change TNTI geometry which tends to flatten at all the scales of the interfaces. The
framework presented in chapter 3 permits to understand how the TNTI area is set at the
different length-scales and what is the role played by vortical structures in this process.

In chapter 4, the dynamical structure of the OECSs is assessed. To this end, the same
data of a temporal gravity current used for chapter 3 is employed. For the OECSs dy-
namical characterization, the radial profiles of the enstrophy transport equation terms are
computed. In particular, it is shown that the enstrophy production via vortex-stretching
does not balance the viscous diffusion and the viscous dissipation of enstrophy inside the
boundaries of the OECSs, while the baroclinic torque has a negligible impact. For the
OECSs with different sizes and different vertical distances from the wall, the radial profiles
show a similar behavior although with a different magnitude. The conditional profiles of
the enstrophy transport equation terms across the TNTI are fundamental to understand
how initially non-turbulent fluid is entrained. The typical conditional profiles of these
terms are reproduced and it is shown that when further conditioning to the presence of
an OECS, their magnitude is up to one order of magnitude higher. This demonstrates
that the shape of these conditional profiles might be largely connected with the presence
of OECSs in the TNTI proximity, thereby shedding light on the important role played by
vortical structures in the entrainment process. Moreover, the same analysis is conduced
in terms of the scalar transport equation. It is shown that OECSs have an impact on
the transport of the scalar, which is trapped within their boundaries. This results in an
enhanced molecular diffusion as compared to the unconditioned mean diffusion, which
means that the OECSs accelerate the mixing of the scalar. The results presented in this
chapter clarify the dynamical behavior of the OECSs and sheds a light on their role on
the local entrainment.

The upcoming chapters (2-4) of this thesis are based on the following publications:
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Chapter 2:
M. Neamtua,b,c,d,e, D. Kruga,d,f , G. Hallerd,f and M. Holznera,d,f (2019)
Lagrangian coherent structures and entrainment near the turbulent/non-turbulent
interface of a gravity current. J. Fluid. Mech., 877(824-843)

https://doi.org/10.1017/jfm.2019.635

a Study concept and design; b Data acquisition; c Data analysis; d Interpretation of
the data; e Manuscript Drafting; f Critical revision;

My contribution to this chapter is the implementation of a multivolume flow mea-
surement technique. Subsequently, I performed the measurements, I post-processed
the data and I implemented an algorithm of the extraction of vortical coherent struc-
tures. Writing codes for data analysis, plotting of the figures and writing the first
draft of the manuscript were my task. All the co-authors contributed to improve the
manuscript.

Chapter 3:
M. Neamtua,c,d,e, D. Kruga,c,d,f , J.-P. Molliconeb, M. van Reeuwijkb,d,f , G. Hallerf

and M. Holznera,d,f (2020)
Connecting the time evolution of the turbulence interface to coherent structures.
Accepted for publication in J. Fluid. Mech.

a Study concept and design; b Data acquisition; c Data analysis; d Interpretation of
the data; e Manuscript Drafting; f Critical revision;

In this chapter, my contribution is the analysis of the numerical data, including
setting up the algorithms of data analysis and the results interpretation. I have
produced the figures and written the manuscript. All the co-authors contributed to
improve the text.

Chapter 4:
M. Neamtua,c,d,e, J.-P. Molliconeb,f , M. van Reeuwijkb,f and M. Holznera,d,f (2020)
Role of vortical structures for enstrophy and scalar transport in flows with and with-
out stable stratification. Submitted to J. Turbul.

a Study concept and design; b Data acquisition; c Data analysis; d Interpretation of
the data; e Manuscript Drafting; f Critical revision;
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In this chapter, my contribution is the analysis of the numerical data, including
setting up the algorithms of data analysis and the results interpretation. I have
produced the figures and written the manuscript. All the co-authors contributed to
improve the text.

In the last chapter of this thesis (Chapter 5), a summary of the conclusions drawn from
the three publications is provided. Moreover, suggestions for future research topics related
to the results presented here are made.
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Chapter 2
Lagrangian coherent structures and entrainment near

the turbulent/non-turbulent interface of a gravity
current

This chapter consists of a manuscript published in Journal of Fluid Mechanics, 2019:

M. Neamtu, D. Krug, G. Haller, and M. Holzner (2019). Lagrangian coherent structures
and entrainment near the turbulent/non-turbulent interface of a gravity current. J. Fluid.
Mech., 877(824-843), https://doi.org/10.1017/jfm.2019.635

Abstract: In this paper, we employ the theory of Lagrangian coherent structures for
three-dimensional vortex eduction and investigate the effect of large-scale vortical struc-
tures on the turbulent/non-turbulent interface (TNTI) and entrainment of a gravity cur-
rent. The gravity current is realized experimentally and different levels of stratification are
examined. For flow measurements, we use a multivolume three-dimensional particle track-
ing velocimetry technique. To identify vortical Lagrangian coherent structures (VLCSs), a
fully automated three-dimensional extraction algorithm for multiple flow structures based
on the so-called Lagrangian-averaged vorticity deviation method is implemented. The
size, the orientation and the shape of the VLCSs are analysed and the results show that
these characteristics depend only weakly on the strength of the stratification. Through
conditional analysis, we provide evidence that VLCSs modulate the average TNTI height,
consequently affecting the entrainment process. Furthermore, VLCSs influence the local

15
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entrainment velocity and organize the flow field on both the turbulent and non-turbulent
sides of the gravity current boundary.

2.1 Introduction

The flow in the vicinity of the sharp interface that is widely observed to form between a
turbulent flow and non-turbulent surroundings, e.g. a chimney plume issuing into quies-
cent air, has received considerable attention in the literature over the last decades (e.g.
Dimotakis, 2000; Holzner et al., 2008; da Silva et al., 2014). Among others, the main moti-
vation for these studies stems from the fact that across turbulent/non-turbulent interfaces
(TNTIs), fluid is continuously incorporated into the turbulent flow, a process known as
turbulent entrainment. The entrainment rate has direct bearing on mixing properties
and global dynamics of the flow and is therefore of high relevance and interest in many
applications, e.g. jet, wake and boundary layer flows.

To date, much research has focused on small-scale properties of the entrainment process
(see e.g. Westerweel et al., 2005; Holzner & Lüthi, 2011; Silva et al., 2018) and it is
now well established (Mathew & Basu, 2002; Westerweel et al., 2009) that the process
by which non-turbulent fluid initially acquires vorticity is of viscous nature, as originally
envisioned by Corrsin & Kistler (1955). However, the overall entrainment rate is known to
be independent of viscosity or, in other terms, of the Reynolds number (see e.g. Tritton,
1988; Tsinober, 2009). It is therefore believed that structures at larger scales act to cancel
the Reynolds-number dependence of the small-scale process. That is to say, even though
locally non-turbulent fluid becomes turbulent via viscous diffusion of vorticity, the overall
entrainment is imposed by fluid motion at larger scales which control the surface area of
the TNTI (Townsend, 1980; Sreenivasan et al., 1989). Recently, Lee et al. (2017) used
conditional analysis to show that the TNTI surface area of a turbulent boundary layer
increases in the vicinity of large-scale motions (LSMs). However, a similar observation
is missing for other flows, far from the wall, and at present it is not clear how the fluid
motion near the TNTI is related to the vortical structures in the flow.

da Silva & dos Reis (2011) visualized the vortical structures near the TNTI of a turbulent
planar jet. They suggested that the large-scale vortices “sitting” on the TNTI are mostly
defining its shape. Moreover, they conclude that the characteristic vorticity jump of the
TNTI, as well as its thickness, is imposed by the radial vorticity distribution of these
structures.

Nevertheless, progress in our understanding of the relation between the large-scale vorti-
cal structures and TNTI has been hampered by the arbitrariness in the ‘vortex’ structure
definition. Often structures are extracted based on arbitrary thresholds and based on
quantities that are not invariant to a change of the system of reference, i.e. they are not
objective. Newly developed Lagrangian methods (for a review, see Haller, 2015) for vortex
identification constitute a promising tool to overcome this issue.

Since the initial work of Haller & Yuan (2000), the theory of Lagrangian coherent
structures (LCSs) has aimed to identify vortical structures - referred hereinafter as vortical
Lagrangian coherent structures VLCSs to distinguish them from other types of LCSs
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- using dynamical systems approaches, overcoming the arbitrariness that characterizes
the classical non-objective methods, such as Q− (Hunt et al., 1988), ∆− (Chong et al.,
1990) and λ2 − criterion (Jeong & Hussain, 1995). LCS approaches are mostly based
on stretching requirements (Haller, 2015) and identify highly coherent, ‘black hole’ type
material regions with high accuracy, but at substantial computational cost (see e.g. Haller
& Beron-Vera, 2013; Hadjighasem & Haller, 2016).

Recently, a less computationally expensive approach has been developed that replaces
the stretching-based coherence requirement with rotational coherence. This method uses
a new dynamic version of the classic polar decomposition introduced in Haller (2016)
and identifies the initial positions of VLCSs as tubular level surfaces of the so-called
Lagrangian-averaged vorticity deviation (LAVD). Haller et al. (2016) identified vortical
structures, using LAVD-based methods, in two-dimensional (2D) and three-dimensional
(3-D) flow fields. However, as highlighted by Haller et al. (2016), a fully automated
implementation of LAVD methods for multiple 3D coherent structures is still missing.

In the present work, we seek to implement a 3D VLCS extraction method based on
the LAVD theory of Haller et al. (2016) and apply it to experimental data of a gravity
current. The gravity current constitutes an interesting flow case for two reasons. On
the one hand, it has important practical applications, e.g. river plumes, katabatic winds
and oceanic overflows. On the other hand, the entrainment rate across the TNTI varies
with the ratio between the buoyancy and the flow shear strengths, represented by the
Richardson number, Ri. This allows us to investigate how the properties of the TNTI
vary to accommodate the entrainment variation with Ri and how these properties are
related to the VLCSs in the proximity of the TNTI.

The paper is organized as follows. In 2.2 we describe the experimental measurements,
together with the TNTI identification and VLCSs eduction methods. Then in 2.3 we
characterize the VLCSs and analyse their relationship with the TNTI and the entrainment
process. The article closes with the discussion and conclusions in 2.4.

2.2 Methods

2.2.1 Experiments

The gravity current data presented here were collected using the experimental apparatus
developed in Krug et al. (2013). This set-up is sketched in figure 2.1 and was designed to
create a gravity current along the top of an inclined glass tank, which can be tilted between
0 and 90◦ and whose dimensions are 2 m long and 0.5 m wide and high. The gravity current
was realized by the continuous injection of a light fluid (a mixture of water and ethanol)
along the top wall of the tank into a denser ambient fluid (a mixture of water and sodium
chloride). As outlined in detail in Krug et al. (2014), a proper preparation of the solutions
provides the desired density difference, while keeping the same refractive index in the two
solutions. The latter is a crucial requirement for optical measurement techniques. During
the experiment, the flow rate of the light fluid is driven by a water pump, measured
via a flowmeter and its feedback is implemented as a closed-loop control. In this way, a
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constant flow rate is guaranteed throughout the entire experiment. The natural transition
to turbulence of the light fluid via Kelvin-Helmholtz instabilities requires an impracticably
long tank (for a discussion, see Krug et al., 2013). It was therefore preferred to force the
transition to turbulence at the inlet by means of a diffuser equipped with rotating flapping
grids. In previous experimental studies by Krug et al. (2013) and Odier et al. (2014), it
was shown that with this system the turbulence characteristics at a location sufficiently
’far’ from the inlet, as in the case of the present study, are independent of the inflow
turbulence. The ambient entrained fluid was gently resupplied along the bottom of the
tank to replenish entrained fluid. As noted by Krug et al. (2013), the particular value
of the flow rate of the ambient fluid does not influence the entrainment rate; however, a
proper choice of it avoids large-scale recirculation within the tank.

In this paper, we present results for three different flow cases. They differ in the initial
density difference between the two solutions ∆ρ0 and the tank inclination α. An overview
of the flow parameters is presented in Table 2.1. To compute the inflow Reynolds number,
Re0, and the inflow Richardson number, Ri0, we used the inlet height d and the mean
inflow velocity U0. Note that the label of the flow cases designates the respective value
of Ri0. As shown by Ellison & Turner (1959), a gravity current adjusts itself to an
equilibrium Ri number that depends only on the inclination of the tank α. Recently,
Negretti et al. (2017) demonstrated that for a gravity current at the onset of the turbulence,
the equilibrium Richardson number depends also on the inflow interfacial Richardson
number. Maintaining a constant inflow velocity U0, we varied ∆ρ0 such that the resulting
flow is close to the equilibrium state near the inflow. This was guided by the numerical
results of Krug et al. (2017b) and van Reeuwijk et al. (2019).

2.2.2 Measurements

Flow measurements were performed using three-dimensional particle tracking velocimetry
(3D-PTV). In order to capture a large investigation volume while maintaining a fine spatial
resolution, which is crucial for VLCS extraction method used here, we performed mea-
surements using four separate 3D-PTV systems. Their individual measurement domains
were then stitched together in the streamwise direction. Each 3D-PTV system consisted
of one high-speed camera (Mikrotron EoSens) equipped with a four-way image splitter to
mimic a classical four-camera set-up, which allowed a continuous recording of 120 s.

The light source for illumination was a diode-pumped Nd:YLF laser (Quantronix, Dar-
win Duo, 527 nm). As flow tracers, we used neutrally buoyant polyamide particles with a
mean diameter of 100 µm (manufactured by Evonik Industries, Germany).
Each single 3D-PTV system covered an observation volume of approximately 9 cm x 9 cm
x 4 cm in x (streamwise), y (wall-normal), and z (spanwise) directions, respectively. The
fields of view of the individual PTV systems overlapped for approximately 2 cm to track
particles continuously across the different observation volumes. The start of the measure-
ment volume was located approximately 50 cm away from the inlet and covered roughly 31
cm in the streamwise direction (figure 2.2). For each observation volume, it was possible
to track up to 3000 particles simultaneously. This corresponds to a mean interparticle
distance of approximately 3.5 mm, equivalent to roughly 10η, with η = (ν3/ε)1/4 being



Chapter 2 19

Figure 2.1: Sketch of the experimental set-up. The blue area indicates the gravity current
(lighter turbulent fluid) that flows along the top wall of the tank. At the bottom, heavy
fluid is resupplied to make up for the entrained flux, while mixed fluid spills out of the tank
through the outlet at the top-end of the tank. The four 3D-PTV investigation domains
are indicated by red rectangles.

Ri0 Ri10 Ri20

U0[cm/s] 10 10 10

∆ρ0[g/l] 0 2.1 4.1

α[◦] 0 10 5

d[cm] 5 5 5

Re0 = U0d/ν 5000 5000 5000

Ri0 = g′d sinα/U2
0 0 0.10 0.20

η[mm] 0.23 0.29 0.31

L[cm] 1.00 0.96 1.00

lsk[cm] 5.21 3.60 3.16

uη[cm/s] 0.43 0.34 0.32

ReL = u′L/ν 152 107 102

Table 2.1: Overview of flow parameters for the three flow cases. The subscript 0 indicates
the inflow parameters.

the Kolmogorov microscale, where ν is the kinematic viscosity and ε = u′3/L is the local
dissipation. Here, u′ is the root mean square (r.m.s.) of the velocity fluctuation and L
is the integral length scale of the turbulence, evaluated as the integral of the autocorre-
lation function of the streamwise velocity along x. The turbulence level was quantified
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through the integral Reynolds number ReL = u′L/ν (Table 2.1). As can be observed,
the stable stratification reduces the turbulence level. Reference length and time scales
were evaluated at a height of approximately 7 cm from the top wall, a location that is
far from the wall but still sufficiently far from the strongly intermittent region close to
the TNTI. The spatial resolution achieved in our experiments is not sufficiently accurate
to resolve the Kolmogorov scale. However, it was considered adequate for the purposes
of the present work and a suitable compromise between a large enough spatial domain
and spatial resolution. As shown by Krug et al. (2017b), the smallest convolutions of the
TNTI are of order of 10η and the TNTI geometry is therefore sufficiently captured by our
measurements. The LCS extraction method explained below is based on vorticity. Given
that the vorticity is somewhat under-resolved in our measurements, the extracted VLCSs
represent those of a filtered velocity field, where we neglect the effect of Kolmogorov-sized
eddies. The time resolution was set to 250 Hz, which oversamples approximately 20 times
τη, with τη = (ν/ε)1/2 being the Kolmogorov time scale. We applied a temporal Savitzky-
Golay filter with a span of 0.5τη to the velocity data. This reduced experimental noise due
to position uncertainty of tracked tracer particles (Lüthi et al., 2005; Wolf et al., 2012).

A well-known feature of experimental particle tracking data is that particle trajectories
have variable length and may be partly interrupted due to, for example optical occlusions.
However, the LCS extraction method explained below requires un-interrupted trajectories.
We therefore interpolated the Lagrangian velocity data on an Eulerian grid with a spacing
of 5η. Subsequently we advected fluid particles numerically from these Eulerian velocity
fields. A similar procedure has been applied for example by Ouellette (2012). In figure
2.2, we show samples of numerically computed fluid trajectories. To estimate the error of
numerically calculated fluid particle trajectories, we used the longest measured trajectories
and computed the r.m.s. distance between particle positions at the end of the trajectories.
For one full flow-through time of the entire volume, we obtained an acceptable value of
approximately one Kolmogorov length scale.

2.2.3 TNTI identification and local entrainment velocity

Following previous work, the identification of the TNTI was done using a threshold on the
enstrophy field, ω2 = ω · ω, where ω is the vorticity vector (see e.g. Holzner et al., 2008;
Krug et al., 2015). The TNTI location is then defined by an isosurface corresponding to
a specific ω2

th threshold. In the present investigation, the threshold was fixed at ω2
th =

2.5s−2 just above the noise level of the data. This value is very close to those chosen
by Krug et al. (2015) for the same flow and by Wolf et al. (2012) for a turbulent jet.
The local velocity propagation of the TNTI surface with respect to the fluid particles, the
entrainment velocity vn, was estimated using the direct approach, presented by Wolf et al.
(2012). In their approach, vn is computed from

vn = vω2
th
− vf , (2.1)

where vω2
th

is the local velocity of TNTI and vf is the local flow velocity. To determine

vω2
th

, we used the positions of the ω2
th isosurface at consecutive time steps. Similar to the
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Figure 2.2: (a) 3D fluid trajectories color-coded with the norm of the vorticity for the
flow case Ri20. The time period shown here is equivalent to three turnover-times (defined
in §2.2.4) of the largest eddies. The four alternated red and blue rectangular outlines rep-
resent the four 3D-PTV observation volumes. (b) Corresponding 3D VLCSs, represented
by blue tubular surfaces (boundaries) surrounding 1D curves (centres), and the TNTI of
the gravity current (red open-surface). The region above the TNTI is turbulent, whereas
below the flow is irrotational.

velocity data, we also applied a temporal filter to the measured TNTI interface locations
to remove occasional spurious outliers in the irrotational region.
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2.2.4 VLCSs eduction

The detection of the Lagrangian coherent vortices is based on LAVD theory. We recall
the definition of LAVD

LAV Dt
t0(x0) =

∫ t

t0

|ω(x(s, x0), s)− ω̄(s)|ds. (2.2)

where ω is the vorticity along fluid trajectories, ω̄ is its spatial average and x(t, x0)
denotes the fluid trajectory starting at x0 at time t0. According to Haller et al. (2016),
a rotational Lagrangian coherent vortex is defined as an evolving material domain filled
with a nested family of tubular surfaces of LAV Dt

t0(x0) with outward-decreasing LAVD
values. The boundary of the VLCS is the outermost tubular level surface, whereas its
centre is the innermost member of the LAVD level-surface family. LAVD-based methods
have been successfully applied in the past to 2D data of satellite oceanic velocity fields
and direct numerical simulations of forced turbulence, as well as to 3D data of the ocean
model ‘SOSE’ (Haller et al., 2016). Prior applications of the detection method to 3D
data utilized the physics and geometry of the problem to simplify the extraction of the
structures. For example, the 3D vortex extracted by Haller et al. (2016) from the ‘SOSE’
model is a single vertically oriented structure. In the present study, we implemented this
method for extraction of multiple 3D vortical structures without a prior knowledge on the
physics or geometry. Our algorithm can be described as a two-step procedure. In the first
step, we compute one-dimensional (1D) curves representing the centre of the structures,
and in a second step, we determine the boundaries of the VLCSs.

In Haller et al. (2016), the centres of VLCSs are defined by 1D ridges of the LAVD field.
In general, the computation of 1D ridges in three dimensions is a challenging task. In
the present work, we address this task by extending the 2D ‘gradient climbing’ algorithm
proposed by Mathur et al. (2007) to three dimensions. This algorithm uses the property
that trajectories computed on the gradient field of a scalar quantity tend to accumulate
along the ridges of the scalar field. The final position of these trajectories can be exploited
to determine 1D candidates for ridge identification. Our ridge extraction algorithm is
implemented as follows:

(i) For any initial time t0, we determine narrow regions in neighbourhood of ridges, where
the magnitude of the∇(LAV D) is higher than a predefined threshold and use points inside
these regions as the initial conditions for computing numerically the solutions x0(t) of the
gradient dynamical system:

dx0

dt
= ∇LAV Dt0+T

t0
(x0), (2.3)

where t denotes the time and ∇ denotes the spatial gradient with respect to the initial
position x0. The solution x0(t) takes the initial conditions to the closest ridge along the
local gradient field of the LAVD.
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(ii) For a given initial condition, the computation of the corresponding solution x0(t) is
stopped if the following two conditions hold: (a) the Hessian matrix ∇2LAV Dt0+T

t0
(x0(t))

has at least two negative eigenvalues (a prerequisite for a point to be on a ridge), and
(b) the angle between the eigenvector et0+Tt0

(x0(t)) corresponding to the smaller-in-norm

eigenvalue of the Hessian matrix ∇2LAV Dt0+T
t0

(x0(t)) and ∇LAV Dt0+T
t0

(x0(t)) shows no
appreciable change (a sign of closeness to a nearby ridge). For large enough T , the eigen-
vector et0+Tt0

(x0(t)) will be approximately tangent to a ridge.

(iii) To determine the ridge candidates, we use the final positions of the solutions x0(t)
and select among them only points with a sufficiently close neighbouring point. To this
end, we use a predefined threshold on the distance between two points.

(iv) We then group together points belonging to the same ridge and order them. To
order the points, we sort them in ascending order with respect to their x, y and z coordi-
nates and select among the three sets, the one that minimizes the curve arc length.

(v) Finally, we smooth the ridges. By parametrizing their x, y and z coordinates with
respect to the arc length, we fit them with a cubic smoothing spline.

In figure 2.3, we show an example of the application of the last three steps described
above. In this case, part of the points in ridge proximity are not aligned along a 1D curve
(figure 2.3a). We therefore select only points with sufficiently close neighbouring points,
sort them (blue curve in figure 2.3b) and apply a smoothing cubic spline (long blue curve
in figure 2.3c).

After computing the centres of structures, we determined their boundaries using the
following steps:

(i) For each point of a given ridge, we erect point-wise normal planes to the ridge curve
and determine the in-plane outermost almost-convex LAVD contour that encircles the
point. These curves are one-dimensional curves in 3D.

(ii) We then use these curves to build the VLCSs boundaries. This is achieved for every
pair of nearby curves by using the MATLAB function convhull to compute the lateral
surface connecting them.

In figure 2.3(c), we show the result of the application of these steps to the ridges shown in
figure 2.3(b). The second step of the construction of the boundaries of the VLCS is slightly
different from the one described in Haller et al. (2016) in that these authors use tubular
level surfaces of a fixed LAVD value. We observed that tubular LAVD level surfaces
typically enclosed only part of the LAVD ridges. That is, although perfectly aligned to
the structure’s centre and enclosed by almost-convex contours, part of the ridge remained
outside of the structure (see the example in figure 2.4a), which is why we preferred to use
the union of almost-convex contours.

To give an impression of how the method performs on our data, we show several VLCSs



24 2.2 Methods

Figure 2.3: Example of VLCS extraction. In (a), the final position of the solution x0(s)
of equation 2.3 is shown. The blue dots are selected for the ridge construction, whereas
the red ones are discarded. In (b), in blue, the connection of the points selected in (a)
and its smooth fitting curve (red) are shown. The corresponding VLCS is shown in (c).

in figure 2.2(b). These are composed of tubular surfaces enclosing 1D curves (centres),
in the proximity of the TNTI, represented under the form of an open surface. Here, the
portion of the volume above the TNTI, where the VLCSs are located, corresponds to the
turbulent part, whereas the lower side corresponds to the irrotational flow. While some
of the structures lie ‘far’ from the TNTI, others are located close to it. The latter appear
to shape the interface locally, as can be gleaned from figure 2.4(c). This aspect will be
investigated further in §2.3.2.

In the following, we discuss the effect of the extraction time ∆t on the detected VLCSs,
to explain how ∆t was chosen for the present data. We remark that, for short extraction
times, in the limit of ∆t→ 0, VLCSs tend to their Eulerian counterparts (see Haller, 2015).
In this case, the material coherence is guaranteed only instantaneously, in the sense that
there is no certainty that an Eulerian structure remains coherent over any observation
time ∆t > 0. On the contrary, for very long extraction times, no coherent structure can
survive since the material coherence is limited in time for unsteady flows. For the vortical
structures investigated here, the relevant temporal scale is the large eddy turnover time,
which can be estimated as t∗ = L/u′.

For the measurement set-up adopted in this work, there is a natural upper limit for
∆t. This is related to the residence time of a fluid particle in the observation volume
(i.e. the time spent by a particle inside the measurement volume). For the portion of
the measurement volume closer to the wall, we observed that the residence time varies
between one and four turnover times. In order to set the extraction time in formula (2.2),
we tested different ∆t values between zero (Eulerian proxy) and the maximum (4t∗) and
investigated their effect in terms of VV LCS , the average volume of a single VLCS. As can
be observed in Table 2.2, VV LCS is weakly influenced by the extraction time, at least in
the range t∗≤∆t≤4t∗. The same applies to other properties related to the size, the shape
and the orientation of the VLCSs (not shown). The extraction time has a considerable
impact on the number of structures that can be extracted using our measurement set-up.
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Figure 2.4: (a) VLCS reconstruction following the algorithm of Haller et al. (2016)
(green inner-surface) and the modified algorithm introduced here (blue outer-surface).
(b) Schematic of VLCS dimensions. (c) Schematic representation of R⊥, VLCS (blue)
cross-sectional size and R′, the distance between VLCS center and the TNTI (red).

∆t/t∗ 0 1 2 3 4

VV LCS/L
3 0.28 0.41 0.41 0.37 0.39

Table 2.2: Average volume of the single VLCS, VV LCS , for different extraction times of
the flow case Ri20.

As ∆t increases the number of trajectories entirely contained in the observation volume
decreases drastically. This reduces the available volume for the VLCS extraction and thus
the number of structures that can be educed. As a consequence of this and observing
that the extraction time appears to influence only weakly the characteristics of VLCSs,
we opted to use ∆t = t∗. We checked that qualitatively all results and conclusions remain
the same for longer extraction times, albeit with reduced statistics.

2.2.5 VLCS size and orientation

Given the three-dimensionality of VLCSs investigated here, we defined three characteristic
dimensions (figure 2.4b): one along the VLCS’s rotation axis and two in the cross-section.
The two cross-sectional sizes are measured as follows. At each point of the centreline of
the structure, we computed the pointwise perpendicular plane to the centreline. We then
evaluated the intersection between this plane and the VLCS’s boundary and we fitted an
ellipse to the intersection points. By taking the average of the minor and major axes of
the fitted ellipses, we assigned to each VLCS: R⊥1 (the minor) and R⊥2 (the major cross-
sectional size). The third dimension, Rω, is given by the length of the axis of rotation.
As can be observed in figure 2.2(b), some of the vortices are truncated in the rotation
axis direction by the boundaries of the measurement domain. In such a case, we made
an estimation of Rω based on a quadratic fit. The fit was done in 1D using the average
values between R⊥1 and R⊥2 along the rotation axis and using the zero crossing of the
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Figure 2.5: Average VLCS dimensions (a) and their growth rates (b) as a function of the
initial Richardson number Ri0.

fitted curve. That is, we assumed that Rω is finite and represented by the spatial distance
between two cross-sections with zero area.

The orientation of the VLCSs was assessed by computing the average unit vector n
tangent to the axis of rotation.

2.3 Results

2.3.1 VLCS geometrical properties

The average size parameters of the VLCSs as a function of the initial Richardson number
Ri0 are presented in figure 2.5(a). Here, the three dimensions are normalized by the
integral length scale of turbulence L, which is almost constant for all the flow cases (see
Table 2.1). From figure 2.5(a), together with the observation that L is almost constant with
Ri0, it follows that the mean dimensions of the VLCSs do not vary significantly with the
stratification. The cross-sectional average sizes R⊥1 and R⊥2 are equal to approximately
0.6L and 0.95L. This gives an idea of the shape of the cross-section of the structures,
which on average is an ellipse with eccentricity of roughly 0.6. The average size of the
third dimension, the axis of rotation Rω, is of order 7L. If the two cross-sectional sizes are
ordered as a consequence of their construction, the third dimension is technically free to
vary, i.e. it can be smaller or larger than R⊥1 and R⊥2. However, it is evident from figure
2.5(a) that the rotation axis of the VLCS is on average the longest one. The conclusion
from this observation is that most of the structures appear to have a tubular shape. The
inset in figure 2.5(a), in which we show the probability density functions (p.d.f.s) of the
three size parameters for Ri20 gives an impression about their distribution.

The VLCS dimensions presented in figure 2.5(a) are measured at the initial time t0 of
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their extraction. Solving the equation of motion between an initial time t0 and a final
time t0 + δt for the particles constituting the centres and the boundaries of the VLCSs,
it is possible to advect the structures under the flow evolution and to evaluate their
final size, and hence their growth rates, dR/dt. Here, δt was chosen to be equal to the
extraction time. The growth rates of the cross-sectional sizes were evaluated computing
R⊥1 and R⊥2 as described in §2.2.5 at the final time t0 + δt. The growth rate of the
axis of rotation was determined by the continuity equation, given that for a material
structure dR⊥1/dt + dR⊥2/dt + dRω/dt = 0. An alternative way to determine dRω/dt is
to compute it by directly estimating Rω as described in §2.2.5 at t0 respectively t0 + δt.
However, we preferred the use of the continuity equation in order to avoid the inaccuracies
introduced by the estimation approach of Rω when the structure is not fully contained
in the observation volume. In figure 2.5(b), we display the average growth rates of the
VLCS dimensions as a function of Ri0. The growth rates corresponding to the minor axis
and to the rotation axis are positive in sign, and thus these axes increase their sizes in
time, whereas the growth rate of the major axis is negative. The positive growth of the
rotation axis implies a predominant stretching of the vortical structures along the rotation
axis. In general, the picture that emerges is that, under the flow evolution, the VLCSs are
typically stretched and their cross-section tends towards a more isotropic shape compared
to their initial conditions.

Further, figure 2.5(b) shows clearly that the growth rates diminish as Ri0 increases.
Thus, the stratification reduces the average VLCS compression (of the intermediate axis)
and stretching (of the smallest and the rotation axis dimensions). We also note that for
all Ri0 the magnitude of average growth rates is rather small and of the order of the
Kolmogorov velocity scale magnitude uη (see Table 2.1), meaning that the VLCSs are
on average not very strongly stretched. This result confirms our expectations, since by
definition VLCSs are materially coherent structures that are not supposed to undergo very
significant deformation under flow evolution.

In figure 2.6, we present the orientation of the rotation axis of the VLCSs. Specifically,
we plot the joint p.d.f.s of two components of the unit vector tangent to the axis of rotation
of the VLCSs. Since there is no obvious choice in which direction the tangent vector should
point, we show the absolute values of the two components.

For all the flow cases, the joint p.d.f.s show a peak near nx ≈ 0.9. That is, the struc-
tures exhibit a preferential orientation in the streamwise direction. Also, some moderate
tendency for an orientation in the spanwise direction (nz ≈ 1) can be observed, whereas
the wall-normal orientation (nx ≈ nz ≈ 0) is not significant. As the Richardson number
increases, the spanwise orientation gains some more importance at the expense of the
streamwise one (figure 2.6c).

To assess the shape of the structures, one can build a map of Rmax/Rmin and Rint/Rmin,
with Rmax, Rint and Rmin representing, respectively, the major, intermediate and minor
VLCS size. We should mention here that R⊥1, R⊥2 and Rω do not coincide, respec-
tively, with Rmin, Rint and Rmax for all the structures, although we observed in figure
2.5 that this is true on average. The map is a useful tool to determine the shape of the
VLCSs. In particular, values of Rmax/Rmin and Rint/Rmin close to the origin (1, 1) rep-
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Figure 2.6: Joint p.d.f.s of VLCS orientation in the nx-nz plane at the initial time of the
detection of the VLCSs for Ri0 (a), Ri10 (b) and Ri20 (c). The wall-normal component
ny can be estimated from the joint p.d.f.s reminding that n2x + n2y + n2z ≈ 1.

Figure 2.7: Joint p.d.f.s of VLCS shape in the Rmax/Rmin and Rint/Rmin map at the
initial time of the detection of the VLCSs for Ri0 (a), Ri10 (b) and Ri20 (c).

resent isotropic, sphere-like, structures. Values lying close to the abscissa denote tubular
structures, whereas values in the proximity of the bisector denote sheet-like structures. In
figure 2.7, we show joint p.d.f.s of the shape map.

For all the flow cases, there is a clear prevalence of tubular structures, which persists
with increasing stratification. The three joint p.d.f.s show qualitatively similar behaviour,
with a peak of (Rmax/Rmin,Rint/Rmin) between (3, 1) and (7, 1). The peak position is
consistent with figure 2.5(a), in which we showed that the average value of the rotation
axis Rω is approximately seven times larger than R⊥1 and R⊥2.

2.3.2 Interaction between the TNTI and VLCSs

In the following, we present the relationship between the TNTI and nearby VLCSs.
Through conditional analysis, we provide evidence that the average interface height and
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the local entrainment velocity are locally modulated by the presence of VLCSs. As ob-
served in figure 2.2(b), part of the VLCSs are located in the proximity of the TNTI. We
selected VLCSs that are ‘sufficiently’ close to the TNTI by computing the ratio r between
R′, the vertical distance of the centre of the VLCS with respect to the TNTI, and R⊥,
the VLCS cross-sectional average radius, defined as one-half of the mean value between
R⊥1 and R⊥2. A sample representation of R′ and R⊥ can be found in figure 2.4(c). Given
that in the non-turbulent region there is no vorticity, the VLCSs cannot cross the TNTI.
This implies that r cannot be smaller than one. For the following conditional analysis, we
selected structures with r smaller than a threshold value rth = 2.5, which was fixed after
testing different values and observing qualitatively similar results.

In a second step, for each selected structure we resampled both the instantaneous veloc-
ity field at the initial extraction time and the LAVD field around it, onto a uniform grid.
For this operation, we positioned the frame of reference at the centre of the VLCS and
normalized the three dimensions x, y and z around the structure with the VLCS’s cross-
sectional average radius R⊥. The rationale was to have a common frame of reference for
all VLCSs and to compare flow fields around VLCSs of the same normalized size. Taking
the average of the LAVD fields around the VLCSs, we extracted a mean representative
VLCS, that is, we applied the extraction algorithm described in 2.2.4 to the average LAVD
field.

Applying the same coordinate transformation to the TNTI surfaces in the proximity of
the VLCSs, we computed the conditional average height of the TNTI. Moreover, at each
location of the average height, we evaluated a mean local entrainment velocity 〈vn〉. To this
end, we computed the mean of instantaneous entrainment velocities near the structures.
It is worth mentioning here that the high variance of the TNTI for the unstratified case
Ri0 did not permit us to include this flow case in our analysis, given that the TNTI is
observable in the measurement domain for a limited amount of instances, which did not
allow us to obtain a meaningful statistical analysis.

In figure 2.8, we present the results for Ri10 and Ri20. The centres of the structures
are represented by the continuous lines close to the origin of the frame of reference and
their boundaries by tubular surfaces enclosing them. Below the structures, the open
surfaces represent the average TNTI positions, which we colour-coded with the average
local entrainment velocity. Around each structure, we show the direction of the average
flow fields with cones that point along the velocity vector with the size representing its
magnitude.

The first observation that emerges from figure 2.8 is that the average VLCS is oriented
differently for the two flow cases. For Ri10, the average VLCS is oriented in the streamwise
direction (figure 2.8a), whereas for Ri20, the VLCS is mainly oriented in the spanwise
direction (figure 2.8d). In both flow cases, the TNTI is positioned at approximately
y/R ≈ −2 and the surface is clearly modulated by the nearby structure, having a curvature
that follows that of the VLCS’s boundaries. As the stratification increases, the curvature
of the TNTI is observed to reduce, which is consistent with a decrease of the mean surface
area of the TNTI.

In order to reveal the effect of the orientation of the VLCSs on the shape of the TNTI,



30 2.3 Results

Figure 2.8: Conditional average VLCS and TNTI position for Ri10 (a-c) and Ri20 (d-f).
VLCS centres are represented by the continuous blue lines and their boundaries by the
tubular surfaces. The open surface is the conditioned TNTI mean position, color-coded
with the average of the local entrainment velocity. The direction and the size of the vectors
represent the conditional average velocity field. In the first column (a,d) the conditional
analysis is made for all the structures, whereas in second (b,e) and the third column (c,f)
the analysis is conditioned also on the orientation of the structures. The structures are
oriented prevalently in the streamwise direction in (b) and (e), respectively in the spanwise
direction in (c) and (f).

we conditioned our analysis to streamwise (figure 2.8b,e), respectively spanwise oriented
structures. To this end, we compared nx and nz, evaluated as described in §2.2.5. For a
given VLCS, if nx > nz, the structure is considered to be oriented approximately in the
streamwise direction; otherwise it is considered to be oriented in the spanwise direction.
From the second and third columns of figure 2.8, it appears clearly that the interface shape
recalls that of the VLCS boundaries having a larger curvature in the plane orthogonal to
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the rotation axis of the VLCS. Consider for example figure 2.8(e), in which we conditioned
our analysis to VLCSs of Ri20 oriented in the streamwise direction. The curvature of the
average TNTI is almost entirely contained in y − z planes, which are orthogonal to the
centre of the structure, while they are almost flat in the x − y planes. Similarly, the
curvature of the TNTI near the structures oriented prevalently in the spanwise direction
is mostly limited to x − z planes (see for example figure 2.8c). The average entrainment
velocity 〈vn〉 is shown in colour on the TNTI surface. As is common practice, we normal-
ized vn with the Kolmogorov velocity microscale uη. Here, negative values of vn represent
entrainment of dense irrotational fluid from below into the lighter turbulent fluid. The
spatial distribution of 〈vn〉/uη on the TNTI shows a similar pattern for the two flow cases
in figure 2.8, with higher negative values downstream with respect to the centre of the
structure, that is to say, close to x/R⊥ ≈ 2 for the VLCSs oriented in the spanwise direc-
tion. For the structures oriented in the streamwise direction, 〈vn〉/uη has higher negative
values at the sides of the VLCSs near z/R⊥ ≈ ±2. Corresponding to the centre of the
VLCS, for (x/R⊥, y/R⊥) ≈ (0, 0) higher or even positive values of 〈vn〉/uη are observed
(see e.g. figure 2.8d). The maximum negative value of 〈vn〉/uη is different between the
two flow conditions, diminishing (in terms of absolute value) for increasing stratification,
from 〈vn〉/uη ≈ −1 for Ri10 (figure 2.8a) to 〈vn〉/uη ≈ −0.5 for Ri20 (figure 2.8b). As
previously observed, just below the centre of the VLCSs, positive values of 〈vn〉/uη can be
noticed. The existence of regions of positive 〈vn〉/uη (detrainment) is well known. Wolf
et al. (2012) showed that vn/uη can be positive in regions with positive curvature of the
TNTI (concave curvature looking to the interface from the turbulent side). As seen in
figure 2.2, some of these bulges host VLCSs. As shown by others (e.g. Watanabe et al.,
2014; Krug et al., 2017a), unconditioned averages of 〈vn〉/uη are negative (entrainment),
but instantaneous positive (detrainment) values can be observed (Mistry et al., 2019). To
interpret the latter, one can take into account the local entrainment velocity decomposi-
tion based on the turbulent enstrophy equation introduced by Holzner & Lüthi (2011).
Based on their decomposition, 〈vn〉/uη can be locally positive if the enstrophy destruction
outweighs both the enstrophy production, which is comparatively small in the viscous
superlayer, and the viscous diffusion, which is mostly positive in the viscous superlayer.
This can lead to the reduction of the local enstrophy level below the threshold used for
the TNTI identification.

In Table 2.3, we present the mean radius of curvature RH of the TNTI surfaces shown in
figure 2.8(a) and (d). The mean radius of curvature increases from RH/R⊥ = 6.6 for Ri10
to RH/R⊥ = 9.4 for Ri20. The effectiveness of the VLCSs to contort the average interface
reduces with increasing stratification. Although the mean radius of curvature is not a
direct measure of the surface area of TNTI, it is clear that higher values of RH correspond
to lower values of the surface area. It follows thus that the conditioned surface area of the
TNTI decreases with increasing stratification, which is consistent with earlier work (see
e.g. Krug et al., 2015). Furthermore, in Table 2.3, we report 〈vn〉/uη. the average of the
local entrainment velocity over the TNTI surfaces in figures 2.8(a) and (d). The average of
〈vn〉/uη exhibits a higher value for the lower stratification passing from 〈vn〉/uη = −0.27

for Ri10 to 〈vn〉/uη = −0.03 for Ri20.
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Ri10 Ri20

RH/R⊥ 6.6 9.4

〈vn〉/uη -0.27 -0.03

Table 2.3: Average entrainment velocity and mean curvature of the surface of TNTI
conditioned on the presence of VLCSs for Ri10(a) and Ri20(b).

Figure 2.9: Conditioned spanwise average of the local entrainment velocity in the prox-
imity of the VLCSs related to the figures 2.8(a,d).

In order to further illustrate how the large-scale VLCSs influence the small-scale en-
trainment, in figure 2.9 we show the spanwise average of 〈vn〉/uη corresponding to figures
2.8(a,d). In both cases shown in figure 2.9, the entrainment velocity is higher in the
downstream region (x/R⊥ ≈ 2), and lower or even positive (figure 2.9b) in the proximity
of the centre of the VLCS (x/R⊥ ≈ 0). In a similar fashion to figure 2.8, we show the
effect of the orientation of the structures on the entrainment velocity. For Ri10 (figure
2.9a), it is clear that the entrainment has the same behaviour for the structures oriented
both in the spanwise and in the streamwise directions. For Ri20 (figure 2.9b), 〈vn〉|z/uη
has considerably smaller negative values, and for the structures oriented in the spanwise
direction, it has positive values around 0.2 for x/R⊥ ≈ 0.

Finally, we analyse how VLCSs near the TNTI influence the flow around them. The
impact of the VLCSs on the mean flow in the proximity of the TNTI surface is different
for the two flow conditions shown in figure 2.8. For Ri10, no clear influence of the VLCSs
can be observed (figure 2.8a). However, the spanwise-oriented structures (figure 2.8c)
organize the flow both inside and outside the turbulent zone. Inside the turbulent region,
the average flow field revolves around the centre of the structure, giving rise to a rotational
motion, whereas outside, it deviates towards the upstream region. In the case of Ri20,
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Figure 2.10: Flow visualization. Streamlines of figure 8, color-coded with the average
velocity magnitude.

this behaviour can be observed without the need of conditioning on the orientation of the
VLCSs (figure 2.8d). However, this flow pattern is reinforced when only spanwise-oriented
structures are considered (figure 2.8f).

For a clearer visualization, we display in figure 2.10 the streamlines of the average flow
fields around the conditionally oriented structures shown in figure 2.8. Here, the stream-
lines are colour-coded with the local velocity magnitude and the TNTI is represented by the
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gray transparent open surface, positioned below the VLCS. For the structures oriented in
the streamwise direction (figure 2.10a,c), the streamlines in the non-turbulent zone appear
to be rather horizontal, curving in the proximity of the VLCS (y/R⊥ ≈ 0) and following
the direction of the mean flow in the turbulent region. In both cases, the magnitude of
the velocity field is higher far from the TNTI, in both the non-turbulent and the turbulent
regions. When the spanwise-oriented structures are considered (figure 2.10b,d), a different
flow organization arises. Outside the turbulent zone, far from the TNTI, the streamlines
are again almost horizontal, similar to those close to the streamwise-oriented structures in
figure 2.10(a,c). However, in the turbulent side, they follow the rotational motion induced
by the VLCSs, curling up around the structures. This is evident in figure 2.10(c,d), where
the swirling motion due to the presence of the structures can be clearly distinguished. For
Ri20 (figure 2.10d), the streamlines follow the TNTI almost tangentially. The velocities
along the streamlines forming the swirling motion inside the turbulent zone are higher for
both Ri10 and Ri20 on the upper side of the structures (y/R⊥ ≈ ±1), decreasing in the
proximity of the centre of the structures and increasing again in the non-turbulent side.

2.4 Discussion and summary

In this paper, we focused on the detection and characterization of Lagrangian vortical
coherent structures (VLCSs) and their influence on the turbulent/non-turbulent interface
(TNTI) and entrainment of a gravity current. Using 3D-PTV data, the VLCSs were educed
by means of the so-called Lagrangian-averaged vorticity deviation (LAVD) method. The
TNTI was identified using an enstrophy threshold, whereas its entrainment velocity was
computed through a direct method described in Wolf et al. (2012).

In §2.3.1, we described the geometrical characteristics of the VLCSs. In particular, in
figure 2.5(a) we observed that the average cross-sectional dimensions of the VLCSs are of
the order of the integral length scale of the turbulence L. By normalizing them with L,
almost no variation of their size with increasing stratification was noticed. Thus, the size
of the VLCSs appeared to scale with integral length scale. A similar observation was made
for the largest vortical structures near the TNTI of a turbulent jet by da Silva & dos Reis
(2011). Using a low-pressure iso surface for the structure eduction, the authors found that
the radius of what they call large-scale vortical structures is of the order of the Taylor
microscale. Furthermore, analysing the growth rates of the dimensions of the VLCSs,
we noticed that VLCSs are predominantly stretched and in time their cross-sections tend
towards a rather isotropic shape. This is reminiscent of the predominant vortex stretching
mechanism (Tsinober, 2000), which has been well known since, for example, the initial
studies by Chong et al. (1990), Cantwell (1993) and Soria et al. (1997) on the invariants of
the velocity gradient tensor. Through coarse-grained and filtered velocity gradient tensors,
Meneveau (2011) demonstrated that predominant stretching is discernible also at larger
flow scales that are well in the inertial range, as is in the case for the ones investigated
here.

In figure 2.6 and 2.7, we showed that on average the VLCSs are of tubular shape oriented
mainly in the streamwise direction. The fact that the structures are prevalently oriented
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in the streamwise direction is interesting, given that, in our flow, the mean vorticity is
oriented in the spanwise direction. A well-known picture in wall-bounded turbulence is
that an initially spanwise-oriented vortex, formed near the wall of the boundary layer, is
disturbed by an ejection event that raises part of the vortex tube to a height where the
mean flow is faster. The mean flow advects this coherent mass faster than the vortex tube
near the wall tilting its legs towards vertical planes, in which they are stretched by the
mean shear (Kim & Adrian, 1999). We speculate that a similar mechanism may be at
the base of formation of the VLCSs investigated here. In the mixing layer of the gravity
current, initial vortices form via a Kelvin-Helmholtz type of mechanism and are then tilted
by turbulence and the mean shear. In figure 2.6, we also noted that, as the stratification
increases, more structures tend to be oriented in the spanwise direction. We associate this
with the mechanism described before. Indeed, as the stratification increases, the vertical
motion of the fluid is known to be reduced. This attenuates sweeps and ejections, with the
consequence that the probability to observe spanwise-oriented structures may be higher.
Moreover, the orientation of the structures close to the TNTI was shown to be almost
horizontal. This is a consequence of the fact that the VLCSs cannot cross the interface
and cannot finish or start on it. This is in line with the findings of da Silva & dos Reis
(2011) in the case of a planar turbulent jet.

In §2.3.2, we investigated the interaction between large-scale VLCSs and the TNTI,
with a focus on both elements constituting the entrainment process, namely, the TNTI
area and the local entrainment velocity. We showed that the VLCSs modulate the TNTI
height, thereby increasing the TNTI surface area. A similar observation was done by Lee
et al. (2017) for the TNTI height of a turbulent boundary layer. Here the authors con-
ducted a conditional analysis based on the position of LSMs, showing that the interface is
locally contorted by the LSMs. In both examples, the gravity current and the turbulent
boundary layer, it is demonstrated that the large-scale flow structures enhance the TNTI
area thereby augmenting the entrainment flux. Moreover, we showed that the local en-
trainment velocity at the smaller scales of the turbulence is modulated by the large-scale
VLCSs (figure 2.8). In particular, the local entrainment velocity was seen to be higher
downstream with respect to the position of the VLCSs, decreasing and becoming even
positive (detrainment) just beneath the centre of the structure. We hypothesize that this
might be connected to the presence of the VLCS, which induces a motion tangent to the
surface of the TNTI locally reducing the entrainment rate. The visualization of stream-
lines of the mean velocity field supports this idea. A similar remark was made by Bisset
et al. (2002) for the instantaneous streamlines near a bulge of the TNTI of a turbulent
wake. Here the authors observed that the streamlines enter it on the turbulent side (high
entrainment) only in regions with a convex curvature of the surface as seen from the tur-
bulent side (see figure 15 in Bisset et al., 2002), whereas beneath the bulge the streamlines
are almost horizontal (low entrainment or detrainment). In figure 2.2, we observed that
part of these bulges hosts a VLCS, which is compatible with findings in Bisset et al. (2002).
A more recent work by Mistry et al. (2019), which discusses the existence of instantaneous
detrainment zones in a turbulent jet, further supports our observations on the detrainment
near the VLCSs. Here, the authors show that similarly to our findings high detrainment
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is observed when the fluid moves tangentially to the interface on both sides of the TNTI.

We are grateful for financial support from DFG priority program SPP 1881 under grant
number HA 7497/1-1.
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Chapter 3
Connecting the time evolution of the turbulence

interface to coherent structures

This chapter consists of a manuscript accepted for publication in Journal of Fluid Me-
chanics, 2020:

M. Neamtu, D. Krug, J.P. Mollicone, M. van Reeuwijk, G. Haller, and M. Holzner
(2020). Connecting the time evolution of the turbulence interface to coherent structures.

Abstract: The surface area of turbulent/non-turbulent interfaces (TNTIs) is continu-
ously produced and destroyed via stretching and curvature/propagation effects. Here, the
mechanisms responsible for TNTI area growth and destruction are investigated in a turbu-
lent flow with and without stable stratification through the time evolution equation of the
TNTI area. We show that both terms have broad distributions and may locally contribute
to either production or destruction. On average, however, the area growth is driven by
stretching, which is approximately balanced by destruction by the curvature/propagation
term. To investigate the contribution of different length scales to these processes, we apply
spatial filtering to the data. In doing so, we find that the averages of the stretching and
the curvature/propagation terms balance out across spatial scales of TNTI wrinkles and
this scale-by-scale balance is consistent with an observed scale invariance of the nearby
coherent vortices. Through a conditional analysis, we demonstrate that the TNTI area
production (destruction) localizes at the front (lee) edge of the vortical structures in the
interface proximity. Finally, we show that while basic mechanisms remain the same, in-

41



42 3.1 Introduction

creasing stratification reduces the rates at which TNTI surface area is produced as well as
destroyed. We provide evidence that this reduction is largely connected to a change in the
multiscale geometry of the interface, which tends to flatten in the wall-normal direction
at all active length scales of the TNTI.

3.1 Introduction

In unbounded (e.g. jets, wakes, mixing layers) and semi-bounded (e.g. boundary layers)
turbulent flows, a sharp and highly contorted interface separates the turbulent flow region
from the non-turbulent ambient flow (Corrsin & Kistler, 1955; Dimotakis, 2000; da Silva
et al., 2014). Across this so-called turbulent/non-turbulent interface (TNTI), surrounding
irrotational fluid is continuously incorporated into the turbulent flow. This process, known
as turbulent entrainment, is of importance in many practical applications, in that it governs
the spreading rate, mixing and reactions in a wide range of industrial and environmental
flows (Davidson, 2015; Simpson, 1999; Murthy, 2013).

Commonly, the TNTI is identified through a threshold on a scalar quantity, such as
vorticity magnitude or enstrophy (Bisset et al., 2002), turbulent kinetic energy (Holzner
et al., 2006) or passive scalars (Westerweel et al., 2005). From a local perspective, the
entrained volume flux can be expressed as the product of 〈vn〉, the average ‘local’ entrain-
ment velocity, where 〈 · 〉 denotes an average over the surface area of the TNTI, and Aη,
the surface area of the TNTI (Sreenivasan et al., 1989; Mathew & Basu, 2002). To date,
it is widely accepted that Aη has a fractal shape (Sreenivasan et al., 1989; de Silva et al.,
2013; Krug et al., 2017b), that bears the multiscale properties of turbulence, while its
propagation velocity relative to the fluid elements 〈vn〉 is very slow and on the order of
the Kolmogorov velocity scale (Holzner & Lüthi, 2011). Although the local propagation
of the TNTI is of viscous nature, it is well-known that the overall entrainment rate is
independent of viscosity (Morton et al., 1956; Townsend, 1966; Tritton, 1988; Tsinober,
2009), viz. the Reynolds number. It thus follows that Aη plays a crucial role in setting
the entrainment rate, canceling out the viscosity dependency of 〈vn〉 (Townsend, 1966).
To date, much of the research on the TNTI and associated entrainment process focused
on vorticity transport across the TNTI (Westerweel et al., 2005; Holzner & Lüthi, 2011;
Silva et al., 2018) and little is known about the mechanism that sets the surface area of
the TNTI.

In his theoretical work, Phillips (1972) introduced an equation for the time evolution
of the surface area of the TNTI (see §3.2), which demonstrated that the growth of the
interface area is the result of the sum between a flow stretching term and a curvature/prop-
agation term. Hypothesizing a constant entrainment velocity over the TNTI, he concluded
that on average the curvature/propagation effect creates TNTI area along the bulges and
destroys it in the valleys of the TNTI. While this is an important theoretical finding,
the local entrainment velocity is known to vary significantly along the TNTI (Holzner &
Lüthi, 2011; Wolf et al., 2012; Watanabe et al., 2014), with a predominance of negative
values implying entrainment that alternate with sporadic positive values representing de-
trainment zones (Wolf et al., 2012; Krug et al., 2017a; Mistry et al., 2019). In this work,
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we evaluate locally the stretching and the curvature/propagation terms on the TNTI in
order to assess their role in the time evolution of surface area of the TNTI.

In the last decade, an effort has been made to define the role of coherent structures
in the entrainment process. da Silva & dos Reis (2011) used direct numerical simulation
(DNS) data of a turbulent planar jet to show that the large-scale vortices near the TNTI
define the shape of the interface area. Related findings were presented by Lee et al. (2017),
who used conditional analysis to show that the surface area of the TNTI increases in the
vicinity of large scales motions of a turbulent boundary layer. More recently, vortical
structures near the TNTI have been shown to influence both the intensity of the local
entrainment velocity and the mean curvature of the TNTI (Mistry et al., 2019; Neamtu-
Halic et al., 2019). This suggests that vortical structures may impact the evolution of
the TNTI area. Besides, it was also observed that the coherent vortices near the TNTI
distort the mean flow in their proximity (Lee et al., 2017; Watanabe et al., 2017), which
indicates that they may also influence the stretching of the TNTI. However, to date, the
role of coherent flow structures on the time evolution of the TNTI area is largely unknown.
Contrary to previous approaches, it is our goal to identify Eulerian vortical structures in
a systematic, observer-independent fashion. To this end we detect objective (i.e. frame-
independent) Eulerian coherent structures (OECSs) (Haller et al., 2016; Serra & Haller,
2016) and elucidate their role on the time evolution of the TNTI area.

Due to their relevance in many geophysical scenarios, turbulent flows with stable strat-
ification have received substantial attention from the scientific community. Examples of
such flows include river plumes (MacDonald et al., 2013), cloud-top mixing layers (Mel-
lado, 2010) and oceanic overflows (Legg et al., 2009). For these flows, the entrainment
coefficient is known to diminish with increasing ratio between buoyancy and the shear
strength of flow, represented by the Richardson number Ri (Ellison & Turner, 1959). Re-
cently, it has been demonstrated (Krug et al., 2015; van Reeuwijk et al., 2018) that the
reduction of the entrainment coefficient with increasing Ri is associated with the decrease
of both 〈vn〉 and Aη. In particular, Krug et al. (2017b) showed that the reduction of Aη
is caused by the decrease of its fractal scaling exponent, while the scaling range remains
largely unaffected. Here, we explore how varying Ri affects the role of stretching and
curvature/propagation for the time evolution of the TNTI area.

The main scope of the present work is to investigate the mechanisms that continuously
produce and destroy the turbulence interface in flows with and without stable stratification
with a particular regard to the role played in this process by coherent flow structures and
the degree of stratification.

The analysis will be carried out using a DNSs of a temporal wall-jet and gravity currents,
details of which will be presented in §3.2. This is followed by the presentation of the results
in §2.3, while concluding remarks are given in §3.4.
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α(deg.) Ri0 Re0 Reλ =
√

15/νεe1/2 NxNyNz LxLyLz/h
3
0

Ri0 − 0 3700 115 15362 × 1152 202 × 10

Ri11 10 0.11 3700 105 15362 × 1152 202 × 10

Ri22 5 0.22 3700 70 15362 × 1152 202 × 10

Table 3.1: Simulation parameters: Ni and Li denote the number of grid points and the size
along i-direction respectively. The subscript 0 indicates the inflow parameters. Results
for Reλ are averaged over 110 < t < 120.

3.2 Methods

3.2.1 Direct numerical simulations

In the present paper, we use DNSs of temporal gravity currents and of a temporal wall-
jet for which there is no stratification. Temporally evolving flows are ideally suited for
obtaining converged statistics relatively inexpensively since they are homogeneous in wall
parallel planes (van Reeuwijk et al., 2018). For the simulations, we solve the Navier–Stokes
equations in the Boussinesq approximation with a fourth-order accurate finite volume
discretization scheme (Craske & van Reeuwijk, 2015) on a cuboidal volume of 1536 ×
1536× 1152 cells. Periodic boundary conditions are applied both in y (the spanwise) and
in x (streamwise) directions. In the z (vertical) direction, at the wall (z = 0) and at the top
of the simulation domain, no slip respectively free slip velocity boundary conditions are
imposed for the velocity, whereas Neumann (no-flux) boundary conditions are imposed
for buoyancy. As schematically represented in figure 3.1(a), for the initial conditions
(indicated by subscript 0), a uniform distribution of both the streamwise velocity u0 and
the buoyancy b0 < 0 up to a height h0 above the bottom wall is used.

The size of the domain in the z direction is Lz = 10h0, whereas in x and in y directions
it is Lx = Ly = 20h0. In order to simulate a sloping bottom, the buoyancy vector b = bĝ
is tilted at an angle α with respect to the vertical. Here b is a scalar with Schmidt number
Sc = 1 and ĝ = (sin α, 0,−cosα)g. In this way, the component b sin(α) drives the flow
along x, while b cos(α) is causing a stable stratification in the wall-normal direction. For
a more detailed discussion on the DNSs concept and numerical configuration we refer to
van Reeuwijk et al. (2018), whereas the adequacy of the grid resolution is verified in van
Reeuwijk et al. (2019).

The different flow cases investigated here differ in the initial Richardson number Ri0 =
−B0cos(α)/u20, whereas the initial bulk Reynolds number Re0 = u0h0/ν, where ν is the
kinematic viscosity, is kept constant.

To compute the time evolution of Ri = −B0cos(α)/u2T , we use the following top-hat
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Figure 3.1: Schematic representation of the simulation setup (a). Time variation of the
bulk Richardson number (purple) and the gradient Richardson number (red) (b). Vertical
profiles of the mean streamwise velocity (c) and mean buoyancy (d).

definitions

uTh =

∫ ∞
0

udz, u2Th =

∫ ∞
0

u2dz and B0 = bTh =

∫ ∞
0

bdz, (3.1)

where B0 is a conserved quantity in the temporal problem (van Reeuwijk et al., 2018) and
u is the streamwise velocity (the over-line indicates averaging in wall-parallel planes; the
corresponding fluctuations are given by u′ = u−u). The components of the velocity vector
u along the y- and z-axes are denoted by v and w respectively. Table 3.1 summarizes the
parameters of the simulations employed in this study. To compute Reλ, we average the
turbulent kinetic energy e and the rate of turbulent dissipation ε in horizontal planes, which
were limited at 0.3 < z/h < 1.2 in order to avoid the influence of the near-wall region
(Krug et al., 2017b). Note that the label of the flow cases indicates the value of Ri0. For
the gravity currents (Ri11 and Ri22), Ri0 is varied by changing the inclination angle α
while keeping the integral forcing sin(α)B0 in the x-direction constant. In addition, we ran
a simulation with the buoyancy term switched off, resulting in an unstratified (temporal)
wall jet (Ri0) that is driven by initial momentum only. Apart from the section §3.3.1,
where the whole domain was used, results will be based on data over six independent
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xz-planes, which are spaced equally in the y-direction, amounting to 250 snapshots over
a period of 120h0/u0. Throughout the paper, the time t is normalized by h0/u0.

For a flow characterization, the time evolution of the gradient Richardson number Rig =

(N/S)2 is shown in figure 3.1(b). In this definition, N
2

= db/dz is the buoyancy frequency
and S = du/dz is the mean shear. As can be seen from the figure, after an initial
transient Rig stabilizes and tends asymptotically towards two different constant values
for the gravity current simulations. This behavior resembles that of the bulk Ri however
with slightly lower magnitudes (figure 3.1b). It is important to note that for Rig < 1/4,
the flow is expected to be ‘shear-dominated’ according to the classification by Mater &
Venayagamoorthy (2014), which has indeed been confirmed for the simulations presented
here by Krug et al. (2017b). Moreover, as can be seen from figure 3.1(c), when normalized
with the top hat definitions, the mean streamwise velocity profiles of all the flow cases
collapse on a single curve. This indicates that although there are fundamental differences
between the stratified and unstratified cases, the structure of the flows is indeed very
similar among all the flow cases. It is noteworthy that also the mean buoyancy profile
of the gravity currents collapses on a single curve when normalized with the top hat
definitions (figure 3.1d).

3.2.2 TNTI identification and local entrainment velocity

In this study, the position of the TNTI is identified through a threshold on the enstrophy
field ω2 = ωiωi, where ωi is the vorticity vector (Bisset et al., 2002; Holzner et al., 2007,
2008; Silva et al., 2018; Wolf et al., 2012; Neamtu-Halic et al., 2019). Here, the threshold
is the same for all flow cases and is set to ω2

thr = 10−3u0
2/h0

2, well within the interval
of possible values identified by Krug et al. (2017b) for DNSs with the same code and
parameters as the ones presented here. By identifying the TNTI through an iso-surface of
the enstrophy field, the entrainment velocity can be evaluated using the transport equation
for the enstrophy (Holzner & Lüthi, 2011; Krug et al., 2015). In this case vn is given by

vn = −2ωiωjSij
|∇ω2|

− 2νωi∇2ωi
|∇ω2|

−
2εijkωi

∂bk
∂xj

|∇ω2|
, (3.2)

where εijk is the Levi-Civita operator and Sij = 1/2(∂ui/∂xj +∂uj/∂xi) is the strain rate
tensor. Throughout the paper, we make use of both fully three-dimensional (3D) data, as
well as two-dimensional (2D) data from vertical planes. In the case of the 2D approach, the
entrainment velocity is determined through interface tracking, with a procedure similar to
the one used by Wolf et al. (2012) in which, vn is computed as

vn = vI − un, (3.3)

where vI is the local normal velocity of the TNTI and un = uf · n , with uf , the flow
velocity at the location of the TNTI and n , the unit vector normal to the surface of the
TNTI pointing towards the turbulent flow region. vI is computed by tracking the position
of ω2

thr-isosurfaces in time.
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3.2.3 Equation for the time evolution of the TNTI area

In the present work, we investigate in detail the time evolution of the TNTI area. Ini-
tially introduced by Phillips (1972), the equation for the time evolution of a non-material
infinitesimal surface element of area δA reads

1

δA

dδA

dt
= (δij − ninj)Sij + vn∇ · n , (3.4)

where δij is the Kronecker operator, ni are the components of n , the unit vector normal
to δA, Sij is the strain rate tensor and ∇ · n is the mean curvature of the surface. In
this study, n points outward towards the non-turbulent side. The first term on the right
hand side (rhs) of (3.4) is the area stretch term, whereas the second term, hereinafter
referred to as curvature/propagation term, arises from the combined effect of curvature
and propagation velocity. Even though (3.4) was initially introduced in the context of
studying TNTIs, it has since received more extensive attention from the reactive flows
community (Candel & Poinsot, 1990; Dopazo et al., 2006). In this field, the equation (3.4)
is known as the flame stretch equation.

Since in this work, also 2D data from vertical planes is employed, we note that by
passing from a 3D to a 2D approach, the TNTI reduces from a 2D surface to a 1D line
and accordingly the symbol A is substituted with the symbol l for the length of a line
element. In this case, the 1D analog of (3.4) reads

1

δl

dδl

dt
= (δij − ninj)Sij + vn∇ · n , (3.5)

where n is the 2D unit vector normal to the segment δl and Sij is the 2D strain rate
tensor.

3.2.4 Coherent flow structures extraction

For observer-independent vortical structure identification, we employ the recently devel-
oped instantaneous vorticity deviation (IVD) technique of Haller et al. (2016). Derived
by Haller (2016) from a new, dynamic version of the classic polar decomposition, the IVD
field represents an intrinsic material rotation rate in the fluid. Specifically, the IVD field,
defined by the normed deviation of the vorticity vector ω(x, t) from its spatial mean ω(t)
over an evolving fluid mass, i.e., by the formula

IVD(x, t) = |ω(x, t)− ω(t)| (3.6)

provides an observer-independent (objective) local angular velocity for each point of the
fluid mass. Outermost tubular surfaces of the IVD, therefore, enable the identification of
OECSs in an observer-independent manner, as required for experimentally reproducible
coherent structure extraction (Haller, 2015). To find vortical OECSs in our data set, we
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use the extraction algorithm developed in Neamtu-Halic et al. (2019), applied here to the
IVD field. In this case, the center of the vortical structure is represented by a codimension-
2 line that is the concatenation of local maxima of the IVD in planes perpendicular to the
line itself, whereas the boundary of the structure is the union of the outermost almost-
convex iso-contours of IVD encircling the local maxima in planes perpendicular to the
center-line.

When 2D data from vertical planes is considered, a 2D OECS results form the intersec-
tion of a 3D structure with the plane itself. In this case we select only those OECSs with a
limited intersection angle with respect to the normal unit vector of the plane. To this end,
we impose an upper limit to the ratio between the two eigenvalues of the Hessian of IVD
at the location of IVD maxima. The rationale behind this selection is based on the fact
that most of the dynamics of tubular vortical structures happens in planes perpendicular
to the center-line of the structure.

3.3 Results

3.3.1 Time evolution of the TNTI area

A visualization of the TNTI in a sub-domain of the gravity current for the Ri11 flow case
at t = 100 is shown in figure 3.2. Here, the TNTI is color-coded with the terms of (3.4).
In equation (3.4), positive values of the terms on the right-hand side contribute to the
production of surface area of the TNTI, whereas negative values promote its destruction.
As can be seen from figure 3.2(a-f), both (δij − ninj)Sij and vn∇ · n act to produce and
destroy the TNTI area. In particular, (δij − ninj)Sij is mainly positive at the leading
edges (figure 3.2b) and negative at the trailing edges of the bulges of the TNTI (figure
3.2c).

Conversely, vn∇ · n is particularly active in the valleys of the interface (see e.g. figure
3.2(e) and 3.2(f) and the zoom of figure 3.2(e)), where strong negative values can be
observed. This is expected, given that the valleys of the TNTI are regions with high
curvature. Moreover, vn∇·n appears to have positive values on the bulges, but at a lower
intensity as compared to the valleys. The sum of the two terms, which describes the time
evolution of a non-material infinitesimal element of area δA, is mostly dominated by (δij−
ninj)Sij on the bulges and by vn∇ · n in the valleys (see figure 3.2h and i). Interestingly,
we note that the sign of the patches, especially for (δij − ninj)Sij and 1/δA · d(δA)/dt,
seems to correlate with the geometry of the bulges.

From figure 3.2, there appears to be a spatial organization of the terms in equation (3.4)
with respect to the TNTI bulges. Neamtu-Halic et al. (2019) showed that TNTI bulges
are populated by OECSs. In figure 3.3, we show part of the OECSs extracted from a
subvolume of the flow field shown in figure 3.2.

Here, the OECSs are composed by tubular surfaces, that constitute the boundaries of the
structures. These surfaces enclose 1D-curves, which represent the center of the structures.
In addition to the OECSs, we also display the nearby TNTI (yellow transparent open-
surface) along with a vertical xz-plane (at y = 9.75) color-coded with intensity of the
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Figure 3.2: Visualization of the stretching term (a-c), curvature/propagation term (d-f)
and the time evolution of a non-material infinitesimal element of area δA, 1/δA ·d(δA)/dt
(g-h) of the TNTI for different view angles as captured from a snapshot of the Ri11 flow
case at t = 100. The black arrow indicates the mean flow direction.

IVD. As observed in Neamtu-Halic et al. (2019), most of the bulges are filled with OECSs
that appear to shape the nearby TNTI. To investigate the local effect of the OECSs on the
TNTI area production/destruction, we use the conditional analysis of Neamtu-Halic et al.
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Figure 3.3: Visualization of the OECSs and the TNTI from Ri11 at t = 100. The OECSs
are represented by blue tubular surfaces (boundaries) surrounding one-dimensional curves
(centers), whereas the TNTI is represented by the yellow open-surface. The region above
the TNTI is irrotational, whereas below the surface, the flow is turbulent. The OECSs
with green boundaries cross the vertical plane at y = 9.75 almost perpendicularly. On the
vertical plane at y = 9.75 the IVD field is shown in red contourplot.

(2019), and explore the impact of the coherent structures on (δij − ninj)Sij and vn∇ · n .

To simplify the analysis and manage the computational cost, we perform the subsequent
analysis in 2D. Using the selection criterion described in §3.2.4, in figure 3.3, we highlight
the 3D OECSs (green boundaries) that are considered for the further 2D analysis in the
case of the vertical plane at y = 9.75.

Before proceeding, the accuracy of the 2D approach as compared to the 3D approach is
addressed in terms of probability density functions (PDFs) of the three terms of (3.4). In
figure 3.4, we show the results for the Ri11 flow case. As can be seen from the figure, in
all three PDFs, the two approaches provide very similar results.

In general, the PDF of the stretching term (figure 3.4a) has a higher positive tail and
the overall distribution is slightly shifted towards positive values. Conversely, the PDF of
the curvature/propagation term (figure 3.4b) has a higher negative tail and has a strong
peak at vn∇ ·n = 0. Moreover, the variance of the two aforementioned PDFs is different.
In fact, the PDF of the curvature/propagation term presents a much narrower distribution
as compared to the PDF of the stretching term. The PDF of the sum of the two terms
(figure 3.4c) shows characteristics of the PDFs of both (δij −ninj)Sij and vn∇·n , in that
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it has a positive peak and a slightly higher negative tail.

Figure 3.4: PDFs of stretching (a) and curvature/propagation terms (b) and their sum
(c) from 2D (black) and 3D data (red) for Ri11.

3.3.2 Time evolution of the TNTI area: a 2D approach

In the following, only results from 2D data are presented. In figure 3.5, we show the time
evolution of the spatial averages of the terms in (3.4) for each of the flow cases. Note
that, 1/δl · d(δl)/dt can be computed locally as a sum of (δij − ninj)Sij and vn∇ ·n only.
However, since we consider average values over the entire box, an estimation of the average
of 1/δl · d(δl)/dt can be made by taking for δl the entire length of TNTI. This can be
formalized according to〈 1

δl

dδl

dt

〉
=

1∑
l δl

d(
∑

l δl)

dt
= 〈(δij − ninj)Sij〉+ 〈vn∇ · n〉. (3.7)

As can be seen for all the flow cases, the stretching term is positive on average and decays
in time from about 0.1 at t = 25 to 0.01 at t = 120. Conversely, the curvature/propagation
term is negative on average and its magnitude decays in time similar to the stretching
term from about −0.1 at t = 25 to −0.01 at t = 120. We note that several turbulent
time scales were tested for the scaling of these trends, namely, the Kolmogorov time scale

(ν/ε)1/2, the mean shear time scale S
−1

, the turbulence time scale e/ε and the integral
time scale h/uT . However, none of these time scales were able to collapse rates in time and
across Ri hinting thus at a multiscale nature of the terms in (3.4). As Ri increases, both
the average stretching and curvature/propagation terms decrease. Moreover, the spatial
average growth of the TNTI surface, 1/δl · d(δl)/dt, results to be very small for all the
time steps between t = 25 and t = 120. That is, the two terms on the rhs of equation
(3.4) approximately balance each other out for all the time steps shown in figure 3.5.

In order to understand how the two terms on the rhs of equation (3.4) balance out
on average, we show in figure 3.6 the joint PDFs of all possible couples of the terms in
equation (3.4) for Ri0 (a-c), Ri11 (d-f) and Ri22 (g-h).

The joint PDF of (δij −ninj)Sij and vn∇·n (first column of figure 3.6) has a vertically
elongated shape with a distinguishable horizontally elongated peak. This demonstrates
that the stretching term dominates over the curvature/propagation term for small values
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Figure 3.5: Time evolution of the spatial average of stretching term (red), curvature/prop-
agation term (blue) and 1/δl·d(δl)/dt (purple) forRi0 (continuous line), Ri11 (dash-dotted
line) and Ri22 (dashed line).

of (δij − ninj)Sij and vn∇ · n (between ±0.1), whereas the curvature/propagation term
has longer tails. Furthermore, the joint PDF shows higher probability for positive values
of (δij − ninj)Sij and negative values of vn∇ · n . As Ri increases the tails of the curva-
ture/propagation term are reduced, whereas the stretching term shows a slightly broader
distribution and a more centered peak. The joint PDF of (δij−ninj)Sij and 1/δl ·d(δl)/dt
(sum of the two terms on rhs of (3.4)) is shown in the second column of figure 3.6. A
high degree of correlation between the (δij−ninj)Sij and 1/δl ·d(δl)/dt can be noticed for
small values (between ±0.1), whereas for higher values the PDF is elongated in the vertical
direction, a sign of weaker correlation between the two terms. Again, as Ri increases the
tails of 1/δl ·d(δl)/dt reduce. The joint PDF between vn∇·n and 1/δl ·d(δl)/dt is shown
in the last column of figure 3.6. In this case, the two quantities correlate very well for
intense values, whereas they appear to be almost uncorrelated near origin. In conclusion,
the area growth is mostly driven by the strain term for weak to moderate events that
tends to produce interface area. However, the large tails of the curvature/propagation
term dominate the extreme events and has a negative mean, so that on average this term
counterbalances the positive stretching. As Ri increases the curvature/propagation term
has a narrower distribution, whereas the peak of the stretching term tends to move closer
to the origin. A physical interpretation of this latter observation is provided in §3.3.3,
where we connect the interface evolution to the presence of coherent structures.
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Figure 3.6: Joint PDFs of (δij −ninj)Sij , vn∇ ·n and their sum for Ri0 (a-c), Ri11 (d-f)
and Ri22 (g-h) for 30 < t < 120. The corresponding values of the black contour lines
increase with logarithmic intervals.

Effect of the stable stratification on the production/destruction process of the TNTI
area

In the following we investigate the effect of the stable stratification on the terms of (3.4).
Initially, we focus on the stretching term, that in 2D can be written as:

(δij − ninj)Sij = (1− n2x)
∂u

∂x
− nxnz(

∂u

∂z
+
∂w

∂x
) + (1− n2z)

∂w

∂z
. (3.8)

In figure 3.7, we show PDFs of the three components of (δij − ninj) and of the three
components of Sij . As can be seen, a significant effect of the stable stratification can be
noticed on the three coefficients (δij − ninj) of (3.8) (figure 3.7a-c). While (1− n2x) shows
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a higher probability for values close to unity with increasing Ri (figure 3.7a), (1 − n2z) is
seen to diminish as the stratification increases (figure 3.7c). Also, as Ri increases, −nxnz
shows a higher probability for values close to 0. These observations indicate that nx → 0
while nz → 1 as the stratification increases, that is, the interface tends to flatten with
increasing Ri.

To better understand the effect of the stratification on the components of (δij − ninj)
tensor, we use the fractal scaling theory for the geometry of the TNTI (Sreenivasan et al.,
1989). According to the theory, the length of the TNTI depends on li/lo, the inner and
the outer cutoffs of the scaling range and on β, the fractal scaling exponent. In their
work, Krug et al. (2017b) showed that for gravity currents, li/lo is essentially constant for
0 < Ri < 0.22, whereas β decreases with increasing stratification. Moreover, the authors
observed that the convolutions of the TNTI are anisotropic, scaling with lsk in the wall-
normal and with h in the streamwise direction. Based on the observation that the ratio
r = lsk/h decreases with increasing stratification, they implemented a model for β = f(r),
that was able to reproduce the trends of the fractal scaling exponent β with increasing
Ri. The model is based on a simple fractal model where in subsequent iterations line
segments with length ln+1 are placed at distance rln from the center of ln (Krug et al.,
2017b). Here we use this model to check quantitatively if the trends observed in figure
3.7(a-c) can also be related to the anisotropy of the interface bulges. In figure 3.7(d),
we display the geometry of the modeled interface where li/lo ≈ 100, chosen according to
our Reynolds number, and r has the values indicated in the caption. As can be noticed,
for Ri22 the fluctuations of the TNTI position in the wall-normal direction are much
lower as compared to the wall-jet and thus the interface tends to flatten with increasing
stratification. A comparison between the fractal model and the DNS data in terms of
average value of (δij − ninj) components against Ri is shown in figure 3.7(e). Notably,
the model reproduces rather well the average of (δij − ninj), especially for (1 − n2x) and
(1−n2z), the two terms that vary more significantly with Ri. We therefore conclude that, in
agreement with the model, the stratification impacts the interface geometry at all ‘active’
length scales of the TNTI between li and lo.

In figure 3.7(f-h), we show PDFs of the components of the rate of strain. All three
PDFs are only weakly affected by increasing stratification, which is reflected in a mod-
erate increase of the weight of the tail and an associated decrease of the peak at small
magnitudes. While in the PDFs of ∂u/∂x and ∂w/∂z the skewness reduces (figure 3.7f
and h), the PDF of ∂u/∂z + ∂w/∂x is more negatively skewed with increasing Ri. The
latter is consistent with a stronger mean velocity gradient, i.e. smaller h at similar uT ,
and therefore stronger ∂u/∂z at increasing Ri.

The average values of the terms in equation (3.8) against Ri are shown in figure 3.7(k).
Although the PDF of ∂u/∂x presents a slightly higher negative tail, the average of (1 −
n2x)∂u/∂x is positive. This means that there is coupling between high values of (1 − n2x)
and positive values of ∂u/∂x. As the stratification increases, (1 − n2x)∂u/∂x increases
slightly. The average of −nxnz(∂u/∂z + ∂w/∂x) is positive as expected from the PDFs
in figure 3.7(b) and (c). As the stratification increases, −nxnz(∂u/∂z + ∂w/∂x) increases
slightly at Ri = 0.11, to decrease afterwards at Ri = 0.22. In particular, the smaller
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Figure 3.7: PDFs of the three components of (δij − ninj) (a-c) for Ri0 (continuous line),
Ri11 (dash-dotted line) and Ri22 (dashed line). TNTI surface as obtained from the fractal
model of (Krug et al., 2017b) for r = 0.3 (Ri0), r = 0.12 (Ri11) and r = 0.09 (Ri22)
(d). The thickness of the lines increases with Ri. Average value of (1 − n2x) (squares),
−nxnz (triangles) and (1−n2x) (circles) from the fractal model (green) and form the DNS
data (red) with 30 < t < 120 (e). PDFs of the three rate of strain components (f-h)
of the stretching term and PDFs of the entrainment velocity (i) and of the curvature
of the TNTI (j) for 30 < t < 120. Average values of (1 − n2x)∂u/∂x (square symbols),
−nxnz(∂u/∂z+∂w/∂x) (red triangle symbols), (1−n2z)∂w/∂z (circles) and of ∇·n (blue
diamonds) and −vn/uη (blue triangles) against the Ri number (j).
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value −nxnz(∂u/∂z + ∂w/∂x) at Ri = 0.22 might be related to a higher probability of
−nxnz = 0 as compared to the other flow cases, given that the PDF of ∂u/∂z+∂w/∂x for
Ri22 is comparable to the one of Ri11 and exhibits even a higher negative tail as compared
to the one of Ri0. Also the average of (1− n2z)∂w/∂z is positive, meaning that, as for the
other terms, there is a coupling of high values of 1− n2z and positive values of ∂w/∂z. As
the Ri increases, 1 − n2z tends towards smaller values and the average of (1 − n2z)∂w/∂z
decreases.

In conclusion, most of the reduction in the stretching term of (3.4) with increasing
stratification is related to a change in the components of (δij−ninj) tensor as a result of a
change in the multiscale geometry of the TNTI which tends to flatten out with increasing
Ri.

Furthermore, in figure 3.7 we show the impact of the stable stratification on the curva-
ture/propagation term. As can be gleaned from the presented PDFs, the stable stratifi-
cation reduces the magnitude of both vn and ∇ · n . In particular, while the reduction of
the vn (figure 3.7i) with increasing Ri is well-documented (see e.g. Krug et al., 2015; van
Reeuwijk et al., 2019), it can be seen from figure 3.7(j) that the stratification reduces also
the probability to observe strong convex regions, associated with positive values of ∇ · n .
This is not unexpected, given the changes in the geometry of the TNTI discussed above.
The average values of the two terms against Ri is shown in figure 3.7(k) and as expected
the magnitude of both the terms decrease on average with increasing stratification.

Multiscale nature of the production/destruction of the TNTI area

As observed in figure 3.2, the positive and the negative patches of the terms in (3.4)
appear to correlate with the orientation of the TNTI bulges. Since the TNTI surface has
a fractal shape, in figure 3.8 we investigate the scale dependence of the terms in (3.4).
Following the procedure used in Krug et al. (2017b), we use a box filter to eliminate the
effect of the spatial scales smaller than the size of the filter length. To find the position
of the interface in the filtered field, we first convert the enstrophy field ω2 to a binary
field I, where I = 1 if ω2 > ωthr

2 and I = 0 if ω2 < ωthr
2. We then filter I according

to f̃ =
∫
f(x − x′)G(x′)dx′, where f̃ is the filtered quantity and G denotes the kernel

of a square box filter of width ∆. We then define the position of the filtered interface as
the isocountour I = 0.5. Contrary to filtering the enstrophy field directly, this procedure
has the advantage that it preserves the mean position of the TNTI. As highlighted by
Krug et al. (2017b), this is a necessary condition to keep the entrained flux across scales
constant. Moreover, to compute the filtered terms in equation (3.4), we apply the same
filter to the streamwise and the wall-normal velocity fields and evaluate the quantities in
equation (3.4) at the location of the filtered interface.

In figure 3.8, we display the time and space averages of the filtered quantities of equa-
tion (3.4) for different sizes of the filter length ∆, here normalized with the Kolmogorov
length scale η. All three-flow cases shown here display a similar behavior, with decaying
magnitude of the stretching and the curvature/propagation terms with increasing filter
size. Initially for ∆/η smaller than ≈ 10 the decay is very slow. Conversely, for ∆/η
larger than ≈ 102 the magnitude of the stretching and the curvature/propagation terms
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Figure 3.8: Box and time averages of space-filtered stretching term (red), curvature/prop-
agation term (blue) and the time evolution of a non-material infinitesimal element of area
δl (purple) for 30 < t < 120.

is negligible, while for ∆/η between ≈ 10 and ≈ 102 a strong reduction of the two terms
can be observed. We note that the limits of the latter region are consistent with the
inner (≈ 10η) and the outer (≈ 0.6 − 0.8h) cutoffs of the scaling range of Aη observed
by Krug et al. (2017b). Again, as seen in figure 3.5, when Ri increases, the terms on the
rhs of equation (3.4) are smaller. The sum of the two terms of (3.4), the variation of the
infinitesimal area, remains constant and close to 0 for all the filter sizes. That is to say,
the two terms on the rhs of equation (3.4) not only balance out overall, but this balance
holds also on a scale by scale basis.

In conclusion, we observe that the difficulty on finding a time scaling for the stretching
and the curvature/propagation term discussed in the context of figure 3.5 is in agreement
with the results presented here, in that we showed how these terms are the result of
multiscale process. They can therefore not be characterized by a single time scale.

3.3.3 Impact of OECSs on the production/destruction of TNTI area

A connection between local interface shape and nearby vortical structures was already
established in Neamtu-Halic et al. (2019). This is confirmed in figure 3.3 where we observed
that part of the bulges of the TNTI are filled with OECSs. We now examine how the area
change of the TNTI is related to the nearby coherent structures.

As a first step, we focus only on the structures that shape the TNTI, that is, on the
structures that are positioned ‘sufficiently’ close to the TNTI. To this end, we compare
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Figure 3.9: PDF of the size (a) of the structures in the proximity of the TNTI. Increasing
thickness and transparency of the curves corresponds to increasing Ri. Joint PDF of the
stretching (b) and curvature/propagation terms (c) with respect to the relative velocity
between the OECS and the TNTI for Ri11. The inset in (b) shows schematically where
uf and uc are computed.

the size R of the structures with the minimum distance min(d) between the boundary
of the structure and the TNTI. If the ratio min(d)/R is smaller than a threshold (here
fixed at 1.5), the structure is selected and discarded otherwise. The particular value of
the threshold was chosen by observing that beyond this limit, the correlation between
the structure position and the local interface evolution weakens considerably. In order to
determine R, we fit an ellipse to the boundary of each structure and compute R as the
mean of the minor- and the major-axis of the ellipse. To give an impression of the typical
size of the structures, we show the PDFs of the size of OECSs near the TNTI, normalized
with the Kolmogorov length scale η for all the flow cases in figure 3.9(a). As can be seen,
all three PDFs have a similar behavior, increasing rapidly from the minimum value of
R/η ≈ 5 to the position of the peak at about R/η ≈ 10. The PDFs then decrease more
slightly up to the highest values at about R/η ≈ 50. Thus, the size of the OECSs covers
a rather broad range of ‘active scales’ over one order of magnitude, which may suggest an
important role played by these structures in the multiscale aspects discussed in relation
to figure 3.8.

In order to understand the role of the OECSs on the evolution of the area of the TNTI,
we examine whether the relative motion of the coherent structures with respect to the
TNTI has an impact on the stretching, and the curvature/propagation term respectively.
To this end, for each selected structure, we isolate a region of the TNTI in the neighbor-
hood of the structure that lies within a distance from the center of the structure of about
5R. This value was chosen in order to select most of the points of the bulge formed by
the TNTI in the proximity of the OECS. We then compute the relative velocity uf − uc
between each of these points of the TNTI and the center of the OECS. Here uf denotes the
fluid velocity at the location of the TNTI and uc the one at the location of the center of
the OECS. We then project this velocity difference along the connection segment between
each point of the TNTI and the center of the OECS to obtain (uf − uc)//. In figure 3.9,
we show the joint PDF of (uf − uc)// against the strength of (δij − ninj)Sij (figure 3.9b)
respectively vn∇ · n (figure 3.9c). As can be gleaned from figure 3.9(b), (uf − uc)// and
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(δij − ninj)Sij are anti-correlated. That is, when (uf − uc)// is negative, and thus the
OECS approaches the TNTI, the stretching term is positive, whereas when (uf − uc)//
is positive the (δij − ninj)Sij contributes to the TNTI compression. This is not entirely
unexpected given that the motion of the OECS towards (away from) the interface implies
a compression (stretching) normal to the interface and hence, by incompressibility of wa-
ter, stretching (expansion) in the tangential plane. A similar behavior is encountered for
the curvature/propagation term and (uf − uc)// (figure 3.9c), although less pronounced
than in the previous case. Also here, when the OECS approaches the TNTI the cur-
vature/propagation term produces area, whereas when the OECS moves away from the
interface, the TNTI area is decreased. Both the joint PDFs shown in figure 3.9 indicate
that the motion of the OECS near the TNTI have an influence on the time evolution of
the area of the TNTI.

Self similarity of the flow fields around OECSs near the TNTI

In the following, we demonstrate that the flow fields around the OECSs near the TNTI are
self similar with respect to the size of the structures by means of a conditional analysis.
In particular, we re-sample the velocity, the enstrophy and the IVD fields onto a uniform
grid, frame referenced at the center of the OECSs, and normalized in x and z directions
with the average size of the structures R. The rationale here is to have a common frame
of reference for all the OECSs and to compare flow fields around OECSs of the same
normalized size. By taking the average of the IVD fields around the OECSs, we extract a
mean representative OECS, that is, we apply the extraction algorithm to the conditional
average of the IVD field. To compute the conditional average of the TNTI position, we
apply the same change of the coordinate system to the TNTI position near each selected
OECS. By defining a curvilinear coordinate s/R along the TNTI which has its origin at
the same x coordinate of the highest point on the boundary of the OECS, we compute
x̃i(s) and z̃i(s), the normalized coordinates of the TNTI position near the i-th OECS. In
this way, the mean position of the TNTI is computed by taking the average of x̃i(s) and
z̃i(s) over i conditioning with respect to s/R. The same procedure is used also for the
terms in (3.4), as well as for the entrainment velocity vn.

The normalization used here for the spatial coordinates presupposes self similarity of
the velocity and the enstrophy fields in the proximity of the OECSs, as well as of the TNTI
position and of the terms in (3.4) with respect to the size of the structures R. In order to
demonstrate this self similarity, we subdivide the selected structures near the TNTI (of the
Ri11 flow case) in four different groups with similar cardinality based on their size (with
the limits indicated in the caption of figure 3.10) and we conduct a conditional analysis
using the spatial normalization indicated above.

In figure 3.10, we present the results of the conditional analysis. Here, the mean position
of the TNTI is color-coded with the conditional average of the time evolution of the surface
area of the TNTI. Moreover, in the background the conditional average of the enstrophy
field is shown, while the arrows indicate the average velocity field relative to the velocity
at the center of the OECS. Focusing on figure 3.10(a), the first observation that emerges is
that the conditional average position of the TNTI is shaped by the nearby OECSs. Also,
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Figure 3.10: Mean OECS and conditional average position of the TNTI for Ri11. The
boundary of the mean OECS is constituted by the red closed-curve. The open curve is
the conditional average position of the TNTI, color-coded with the time evolution of a
non-material infinitesimal element of area δl. The direction and the size of the vectors
represent the conditional average velocity field relative to the velocity at the center of
the OECSs, whereas in the background the conditional average of the enstrophy field is
shown. The conditional analysis is limited to structures near the TNTI with respectively
R/η < 10.5 (a), 10.5 < R/η < 12.75 (b), 12.75 < R/η < 15 (c) and R/η > 15 (d).

the mean flow around the OECS in the frame of reference co-moving with the center of the
structures indicates a rotational fluid motion. The average enstrophy field is particularly
high at the center of the mean OECS, decreasing radially towards the boundaries of the
OECS. Furthermore, the conditional average of the infinitesimal area variation (shown in
colors at the mean position of the TNTI) displays a clear pattern: positive at the leading
edge and negative at the trailing edge. As can be seen in figure 3.10(b-d), all the groups
show identical patterns and there is a striking similarity in all the aspects discussed for
figure 3.10(a). However, as the size of the structures increases (from figure 3.10a to figure
3.10d), both the intensities of the enstrophy field inside the boundaries of the OECS and
of the flow field around the OECS decrease. This means that the smaller the structures
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Figure 3.11: Same conditional average shown in figure 3.10 for Ri11. In this case, the
conditional average position of the TNTI is color-coded with the average entrainment
velocity (a), stretching (b) and curvature/propagation terms (c) and the time evolution
of a non-material infinitesimal element of area δl.

are, the faster is their rotational motion. Moreover, also the typical pattern shown by the
conditional average of the time evolution of the TNTI appears to weaken, when the size of
the structures is larger. In conclusion, the results shown in figure 3.10 demonstrate clearly
that the vortical structures near the TNTI exhibit a scale-invariant behavior.

Conditional analysis of the time evolution of the TNTI

The effect of the OECSs on the terms of (3.4) is investigated in the following through
the conditional analysis presented in section §3.3.3. In figure 3.11, we present the results
of the conditional analysis for Ri11 in which all the selected structures near the TNTI
are considered. In particular, in figure 3.11(a), the mean TNTI is color-coded with the
conditional average of the entrainment velocity conditioned with respect to the position
on the TNTI. As can be seen, vn varies along the TNTI and in particular, it is negative
at the leading edge, where it reaches values as high as vn/uη = −1, whereas it decreases
(in magnitude) at the trailing edge. This result is consistent with the findings from the
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sc

Figure 3.12: Conditional average of the stretching (blue) and the curvature/propagation
term (red) and of their sum (purple) in the proximity of the OECS against the curvilinear
abscissa s/R for Ri0 (continuous line), Ri11 (dash-dotted line) and Ri22 (dashed line).
In the inset, a schematic of the conditional average flow direction around the OECS in the
proximity of the interface is shown. The arrows indicate the flow direction between the
boundary of the OECS and the TNTI (blue) and in the turbulent region below the OECS
(black). ‘C’ denotes the compression, whereas ‘S’ denotes the stretching.

experimental work by Neamtu-Halic et al. (2019), where a very similar pattern for vn
was observed. In figure 3.11(b), we display the conditional average of the stretching term
of equation (3.4). Here, the mean stretching term has a clear pattern along the TNTI.
Indeed, it has positive values at the leading edge respectively negative values at the trailing
edge. On the tails, far from the center of the structure, it shows smaller and positive
values recovering the unconditioned average value. The surface of the TNTI shown in
figure 3.11(c) is color-coded the conditional average of the curvature/propagation term of
equation (3.4). The mean curvature/propagation term exhibits a similar behavior as the
stretching term, being slightly positive at the leading edge and negative at the trailing
edge. The sum of the two terms is plotted in figure 3.11(d). The average infinitesimal area
growth rate shown here is positive at the leading edge and negative at the trailing edge.
That is, the interface area is produced at the leading edge and destroyed at the trailing
edge, whereas far from the structure is negligible reaching the unconditioned average value.

In the following, a comparison of the conditional averages of terms in (3.4) among the
different flow cases is presented. For an easier quantitative analysis, in figure 3.12 the
conditional averages are shown against the curvilinear abscissa s/R. As can be noticed,
all three terms of equation (3.4) have similar trends independently of the flow cases. In
particular, moving from s/R = −6 in the direction of increasing s/R, the stretching term
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decreases, reaching a minimum at about s/R ≈ −2. Continuing in the in the direction of
increasing s/R, (δij−ninj)Sij starts to increase and after an inflection point at s/R = 0, it
reaches a maximum at s/R ≈ +2 and then it decreases again. The behavior just described
is more intense for the stratified cases, where the minimum of (δij −ninj)Sij at s/R ≈ −2
is negative. For Ri0, the (δij − ninj)Sij has the same behavior but it never reaches
negative values. Interestingly, the inflection point of (δij − ninj)Sij happens exactly at
s/R = 0. A possible mechanism that generates the tangential stretching/compression at
the leading/trailing edge of the TNTI surface near the vortical structures is schematically
depicted in the inset of figure 3.12. Here the arrows indicate the conditional average flow
direction of the fluid motion between boundary of the OECS and the TNTI (blue) and
in the turbulent region below the OECS (black). As can be seen, at the leading edge the
flow tends to stretch fluid elements, when projected on the tangent to the TNTI surface.
Conversely, at the trailing edge, fluid elements are compressed along the direction tangent
to the TNTI. In the mechanism just described, the faster the fluid layers beneath the
structures, the higher the difference between the relative maximum and minimum of the
stretching term. As Ri increases, faster and more horizontal layers of fluid are known to
form in the turbulent region. These layers might be responsible for the observed difference
among the flow cases. We also note that in the conditional average stretching shown in
figure 3.12, the positive contribution of the larger scales is superimposed to the mechanism
just described. This is why, for Ri0 the relative minimum of the stretching term never
reaches negative values. Finally, it is worth noting that the formation of the positive-
negative double-peak seen for Ri22 is compatible with the more symmetric stretching
observed in figure 3.6.

Starting from s/R = −6 where it is negative and moving into direction of positive s/R,
the conditional average of the curvature/propagation term increases, reaching a positive
maximum at s/R ≈ 1, and decreases, turning again negative at about s/R = 2. To
explain this behavior, we notice that on both sides of a bulge the curvature is positive
(valleys), whereas the entrainment velocity is negative (ambient fluid is entrained). Thus
their product is negative and it contributes to the destruction of the area of the TNTI.
This is why, negative values of the curvature/propagation term are observed at both
sides of the OECSs. Moving from downstream to the leading edge, the curvature of the
interface changes the sign (at about s/R ≈ 2) becoming negative (concave shape as seen
form the turbulent side). The entrainment velocity is still negative here, and thus the
curvature/propagation term becomes positive. A weak effect of the stratification can be
noticed also here where a higher positive value for the maximum of vn∇·n can be observed
for the unstratified case.

The sum of the two terms, the time variation of the infinitesimal area, shows a profile
that is similar to the stretching term. Indeed in the proximity of the structure, (δij −
ninj)Sij dominates the time evolution of the interface area, dominating over vn∇ · n .
Thus, the time variation of the infinitesimal area is positive at the leading edge, it has an
inflection point at about s/R ≈ 0 and it becomes negative at the trailing edge. That is,
the area of the TNTI is produced at the leading edges and destroyed at the trailing edges.
This behavior is clearly consistent with the trends observed qualitatively in figure 3.2.
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3.4 Concluding remarks

In this paper, we investigated the production/destruction process of the TNTI area of
gravity current flows. We showed that a curvature/propagation term, which is particu-
larly active in the valleys of the TNTI (figure 3.2), contributes on average to the destruction
of the TNTI area (figure 3.5), while this is counterbalanced by a flow stretching which on
average produces interface area (figure 3.5). In particular, the stretching drives the time
evolution of the TNTI area for weak to moderate events, whereas the curvature/propaga-
tion term dominates the extreme events (figure 3.6). Very similar results have been found
by Wang et al. (2017) in the case of a premixed jet flame. In their work, the authors
report that the tangential strain produces interface in regions with low curvature, whereas
the curvature/propagation term destroys flame surface area in high curvature regions.

The multiscale aspects of the production/destruction of the TNTI area were investigated
by filtering the scales smaller than a filter length ∆ (figure 3.8). We showed that the
stretching and the curvature/propagation terms balance each other at all scales and that
the magnitude of the two terms decreases with increasing ∆. Recently, Mistry et al. (2016)
showed that the mass-flux rate of entrained fluid across the TNTI is constant across all
the scales ∆, as envisaged by Meneveau & Sreenivasan (1990). That is, the reduction of
Aη with increasing ∆ is balanced by the enhancement of vn at the larger scales. In our
case, vn∇ · n reduces with increasing filter length, which means that the increment of vn
is smaller than the rapid decrease of curvature with increasing ∆.

We showed that increasing stratification reduces the averages of both the stretching and
the curvature/propagation terms (figure 3.5), while maintaining the same trends for their
time variation (figure 3.5) and their filtered values (figure 3.8). In particular, we showed
that the reduction of the stretching term is largely attributable to changes in δij − ninj
tensor (figure 3.7) and we associated this with the tendency of the interface to flatten
with increasing stratification. Indeed, as shown by Krug et al. (2017b), for the same flows
investigated here, the convolutions of the TNTI scale with the shear length scale lsk =
e1/2/S in the vertical direction respectively with h in the streamwise direction. While the
range of the length scales of the TNTI convolutions impacted by the stable stratification
remains the same, it is the growing anisotropy implied by different scalings that modify the
geometry of the interface with increasing Ri. Moreover, this change of the TNTI geometry
is also compatible the observation that the positive tail of the interface curvature reduces
with increasing Ri, which together with the entrainment velocity reduction explains the
reduction of the curvature/propagation term.

The local effect of the coherent structures on the TNTI area production/destruction
process was investigated through a conditional analysis similar to Neamtu-Halic et al.
(2019). The conditional analysis showed that both stretching and the curvature/prop-
agation terms produce TNTI area at the leading edge and to destroy it at the trailing
edge of the TNTI in proximity of vortical structures. In particular, we inferred that the
behavior of the stretching term is related to the mean rotational motion induced by the
vortical structures (figure 3.12). A similar mechanism for the tangential stretch of a pre-
mixed flame was described in Sinibaldi et al. (2003), where the authors observed that
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toroidal vortices near the flame boundaries induce a rotational motion that stretches the
boundaries on one side of the vortices and compresses it on the other.

Using the conditional analysis, we demonstrated the existence of a scale invariant be-
havior of the vortices near the TNTI (figure 3.10). A self-similarity of the shapes of the
TNTI has been observed a long time ago (Sreenivasan et al., 1989), however a similar ob-
servation for the coherent structures near the TNTI is missing up to date in the literature.
Moreover, we showed that also the conditional average of the time evolution of the TNTI
is self-similar with respect to the size of the OECS. In particular, the time evolution of
the TNTI area exhibits lower values for increasing size of the OECS. In figure 3.12, we
displayed that near the vortical structures, the time evolution of the interface is mostly
dominated by the stretching term. This together with the observation that the rotational
motion of the OECS is slower for increasing size of the OECSs (figure 3.10) lends sup-
port to the interpretation that the stretching mechanism of the interface is related to the
rotation of the OECSs.

In conclusion, to our knowledge, the detailed analysis presented here constitutes a first
tentative to describe the evolution of the surface area of the TNTI in the case of turbulent
stably stratified shear flows. This work may motivate further studies into the produc-
tion/destruction mechanisms of the TNTI of other types of turbulent shear flows, such
as turbulent jets and wakes and turbulent boundary layers. In particular, it may be of
interest to understand whether the vortical structures near the TNTI of these flows have a
similar impact on the time evolution of the TNTI and universally apply to all shear flows
with an interface. A further issue that may deserve further study is how stratification acts
to suppress stretching at large inertial scales.
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Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A.
2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids
24 (10), 105110. pages 42, 46





Chapter 4
Role of vortical structures for enstrophy and scalar

transport in a turbulent flow with and without stable
stratification

This chapter consists of a manuscript submitted to Journal of Turbulence, 2020:

M. Neamtu, J.-P. Mollicone, M. van Reeuwijk, G. Haller, and M. Holzner (2020). Role
of vortical structures on the terms of enstrophy and scalar transport equation.

Abstract: In this paper, we investigate the enstrophy dynamics in relation to objective
Eulerian coherent structures (OECSs) and their impact on the enstrophy and scalar trans-
port near the turbulent/non-turbulent interface (TNTI) in flows with and without stable
stratification. We confirm that vortex-stretching produces enstrophy inside the boundaries
of the OECSs, while viscous diffusion transfers the enstrophy across the boundaries of the
structures. Although often overlooked in the literature, viscous dissipation of enstrophy
within the boundaries of vortical structures is significant. Conversely, for the weakly
stratified flows also investigated here, the effect of the baroclinic torque is negligible. We
provide evidence that the OECSs advect the passive/active scalar and redistribute it via
molecular diffusion. Finally, we use conditional analysis to show that the typical profiles
of the enstrophy and scalar transport equation terms across the TNTI are compatible
with the presence of OECSs positioned at the edge between the turbulent sublayer and
the turbulent core region. We show that when these profiles are further conditioned to
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the presence of OECSs, their magnitude is considerably higher.

4.1 Introduction

Vortical coherent structures have received considerable attention from the turbulence com-
munity over the last decades. Mostly defined as regions with concentrated vorticity and
material coherence with a life time larger than the typical time scales of the flow Dubief &
Delcayre (2000); Haller (2015), vortical structures constitute an appealing tool for under-
stating complex turbulent flow phenomena (Lesieur, 1987). Moreover, vortical structures
are valuable to investigate the mixing and the transport of mass, momentum and scalar
(e.g. temperature or concentration) in turbulent flows (Haller, 2015).

In turbulent flows, a well-established convention divides vortical structures into two
classes: the so-called large scale vortices (LSVs) and the intense vorticity structures (IVSs)
(da Silva et al., 2011). The LSVs originate from the particular instability of a certain type
of flow and their characteristics such as size and lifetime are reported to be flow dependent
(Frisch & Kolmogorov, 1995; Tsinober, 2009). On the other hand, IVSs have similar char-
acteristics across a variety of flows. Mostly detected through a threshold on the vorticity
(Jiménez et al., 1993), IVSs are known in isotropic turbulence as “worms” (Siggia, 1981).
Many studies dedicated to these worms showed that universally their size is of order of 5η,
with η the Kolmogorov length scale, in isotropic turbulence (Siggia, 1981; Jiménez et al.,
1993; Jimenez & Wray, 1998; Vincent & Meneguzzi, 1991), in mixing layers (Tanahashi
et al., 2001), in channel flows (Kang et al., 2007) and in jets (Ganapathisubramani et al.,
2008). In an early study by Jiménez et al. (1993), IVSs were observed to be rather sta-
ble structures and their dynamical behaviour was shown to be similar to that of a stable
Burger vortex model, which is characterized by a radial balance inside a vortex tube be-
tween enstrophy production and enstrophy diffusion. However, a direct assessment of the
enstrophy production and enstrophy diffusion mechanisms is still missing in the literature.
Moreover, it is not clear how other mechanisms such as viscous dissipation of enstrophy
or the baroclinic torque that is present in stratified flows may contribute to these. To
date, research progress on the enstrophy transport by vortical structures has been ham-
pered by arbitrariness in the detection methods, which are mostly based on thresholding
either the vorticity field (Hussain, 1986; Jiménez et al., 1993; da Silva et al., 2011) or the
vorticity relative to the strain field (Okubo, 1970; Hunt et al., 1988; Weiss, 1991; Hua
& Klein, 1998). Progress made in a recent string of research (Haller, 2015) allows to
overcome the arbitrariness of the classic methods and permits to identify objective (i.e.
observer-independent) coherent structures, as required for replicable experiments.

In the present work, we extract objective coherent structures and investigate the en-
strophy dynamics inside vortical structures to shed a light on the mechanisms that govern
the time evolution of the enstrophy contained in these structures. We use a newly devel-
oped extraction method to systematically identify objective Eulerian coherent structures
(OECSs) (Haller et al., 2016; Serra & Haller, 2016) and we apply it to direct numerical
simulations (DNSs) data of a turbulent flow with and without stable stratification.

The impact of vortical structures on the transport of scalars, such as concentration
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or temperature, have been matter of numerous studies in recent years (Kadoch et al.,
2011; Beta et al., 2003). The main motivation has been to better understand the role of
vortical structures in organizing scalar transport which is relevant in many practical ap-
plications, e.g. mixing of pollutants in atmosphere or heat-transfer in heat exchangers and
gas turbines. In particular, Kadoch et al. (2011) showed that in homogeneous, isotropic
turbulence vortical structures are mainly responsible for turbulent transport and mixing
of passive scalars. The impact of vortical structures on heat transport was investigated
by Dharmarathne et al. (2018) in a thermal turbulent channel flow. They observed that
vortical structures near the wall contribute to the removal of hot fluid from the wall to
outer region. Debusschere & Rutland (2004) studied heat transport in plane channel and
Couette flows. Their results indicated that in channel flow the overall vertical heat transfer
is lower as compared to Couette flow. They attributed this observation to the presence of
large scale vortical structures in Couette flow that transport heat across the center line of
the flow, while similar structures are missing in plane channel flow. Fröhlich et al. (2008)
investigated the scalar transport in co-annular swirling jets. They found that 30− 40% of
the concentration fluctuation is carried by large-scale coherent flow structures. Here, we
use conditional analysis to investigate the impact of OECSs on the transport and diffusion
of the active/passive scalar of flows with and without stable stratification.

At the boundaries of turbulence, a sharp and highly contorted interface, so-called
turbulent/non-turbulent interface (TNTI), is known to separate the turbulent region form
the irrotational surrounding fluid (Corrsin & Kistler, 1955; Westerweel et al., 2009; da Silva
et al., 2014). The ambient surrounding fluid is continuously entrained into the turbulent
side through the TNTI, a phenomenon known as turbulent entrainment. It has been
shown that turbulent entrainment is a two-stage process (Chauhan et al., 2014; Mistry
et al., 2016; Watanabe et al., 2016). Initially, at the outer edge of the TNTI, a non-
turbulent fluid parcel acquires vorticity via viscous diffusion (Holzner & Lüthi, 2011) and
subsequently, in the turbulent region vorticity is amplified through vortex stretching. The
role played by the vortical structures along these two stages was recently investigated by
Watanabe et al. (2017). The authors used a model to show that the average profile of
enstrophy production and enstrophy viscous diffusion near the TNTI are compatible with
the presence of Burger-type vortex near the interface. By positioning a Burger-vortex of
the size of the IVSs at a distance of approximately 9η from the TNTI, they predicted
reasonably well the profiles of the enstrophy production and enstrophy viscous diffusion
across the TNTI of a free shear turbulent flow. However, in its present form their model
lacks other effects such as viscous dissipation of enstrophy and baroclinic torque that may
potentially be of significance. In this work, we compute the conditional profiles of the
terms in the enstrophy transport equation across the TNTI and compare them to those
crossing an OECS near the interface. The goal is to understand the impact of vortical
structures as extracted from the flow on the dynamics of enstrophy near the TNTI. To
identify the OECSs that are in proximity of the TNTI and to investigate their contribu-
tion to enstrophy and scalar transport, we use a recently developed conditional analysis
by Neamtu-Halic et al. (2019).

The turbulent transport of the scalar across the TNTI is an important phenomenon for
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many applications of practical interest (e.g. chemical reactors) (Dimotakis, 2000). In a
recent work by Watanabe et al. (2015), it was shown that a large jump of passive scalar
exists at the boundary of turbulent flow regions and that molecular diffusion exchanges
the passive scalar between the turbulent region and the fluid in the TNTI proximity. Since
vortical structures are known to carry large amount of scalar (Kadoch et al., 2011), larger
gradients of the scalar are expected in proximity of the TNTI when OECSs are present.
Our aim is to understand how OECSs impact the transport of the scalar near the TNTI.

In nature, turbulent flows develop frequently in presence of stable stratification (e.g.
cloud-top mixing layers, river plumes and oceanic overflows). In these flows, the entrain-
ment rate is known to diminish with increasing Richardson number Ri, the ratio between
the buoyancy and shear strength of the flow (Ellison & Turner, 1959). Nowadays, it is
widely accepted that entrainment rate reduces with increasing stratification as a conse-
quence of the reduction of both the local entrainment velocity and the area of the TNTI
(Krug et al., 2015; van Reeuwijk et al., 2018, 2019). Recently, Neamtu-Halic et al. (2019)
used experimental data of a gravity current to show that OECSs modulate the area of the
TNTI and that their modulating capacity diminish with increasing stratification. More-
over, OECSs have been observed to organize the flow field on the TNTI proximity thereby
imposing the local entrainment velocity (Neamtu-Halic et al., 2019) and setting the mech-
anism that produces/destroys the surface area of the nearby TNTI (Neamtu-Halic et al.,
2020). It remains to be understood how OECSs affect the process of the entrainment and
how do they adapt at different levels of stratification. To this end, we apply the con-
ditional analysis of the enstrophy transport equation to the direct numerical simulations
data of gravity currents and of a wall-jet. Moreover, we investigate how the diffusion of the
active/passive scalar across the interface in the OECSs proximity varies with increasing
stratification.

The main scope of the paper is to investigate the dynamics of the enstrophy inside the
OECSs and to understand the role of the OECSs in the transport of the scalar, with a
particular regard to the region in proximity of the TNTI.

The paper is organized as follows. In §4.2 we present the DNS data set. This is followed
by the presentation of the results in §4.3, while a summary and concluding remarks are
given in §4.4.

4.2 Methods

4.2.1 DNS data set

The data set employed in this work consists of DNSs of temporally evolving gravity cur-
rents and of a temporal turbulent wall-jet. These flows are particularly suitable to study
the transport of enstrophy and scalar in that different intensities of vertical transport of
these quantities can be obtained by varying the stratification level. It is thus possible to
investigate how OECSs adapt to this change and contribute to transport. The simula-
tions reproduce the classical experiment of Ellison & Turner (1959), in which a lighter
turbulent fluid flows along the top of an inclined wall in a heavier ambient irrotational
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α(deg.) Ri0 Re0 Reλ NxNyNz LxLyLz/h
3
0

Ri0 − 0 3700 115 15362 × 1152 202 × 10

Ri11 10 0.11 3700 105 15362 × 1152 202 × 10

Ri22 5 0.22 3700 70 15362 × 1152 202 × 10

Table 4.1: Simulation parameters: Ni and Li denote the number of grid points and the
size along i-direction respectively. The subscript 0 indicates the inflow parameters. The
Taylor Reynolds number Reλ =

√
15/νεe1/2 is computed averaging the rate of turbulent

dissipation ε and the turbulent kinetic energy e over 120 < t < 130.

fluid. As sketched in figure 4.1(a), we reverse the problem upside-down as we simulate
the motion of a negatively buoyant fluid flowing down a slope inclined at an angle α.
The physics of the problem is unaffected as we consider a Boussinesq fluid. The temporal
problem is particularly suitable for obtaining converged statistics relatively inexpensively,
as it is homogeneous in the wall-normal planes and the statistics depend only on time and
wall normal direction. For the simulations, we employ SPARKLE, a code that solves the
Navier–Stokes equations in the Boussinesq approximation (Craske & van Reeuwijk, 2015)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u + b, (4.1)

∂c

∂t
+ u · ∇c = D∇2c, (4.2)

∇ · u = 0. (4.3)

with a fourth-order accurate finite volume discretization scheme (Craske & van Reeuwijk,
2015) on a cuboidal domain. Here, u = (u, v, w) is the fluid velocity in the x streamwise,
y spanwise and z wall-normal direction, p is the (modified) kinematic pressure, b = βgc is
the buoyancy, with g = (sinα, 0,cosα) to simulate the sloping bottom and β = ρ−10 ∂ρ/∂c|c0 ,
and ν, D are the kinematic and molecular diffusivity, respectively. For the wall jet c is a
passive scalar (with Schmidt number Sc = 1), whilst for the gravity current c is an active
scalar.

The boundary conditions are periodic in the streamwise and the spanwise direction,
while in the vertical direction, at the wall (z = 0) and at the top of the simulation
domain, no slip and free slip velocity boundary conditions are imposed respectively for
the velocity and Neumann (no-flux) boundary conditions are imposed for scalar c. For the
initial conditions (indicated by subscript 0), a uniform distribution of both the streamwise
velocity u0 and the scalar c0 up to a height h0 above the bottom wall are implemented.
A schematic representation of the simulation set-up is shown in figure 4.1(a). The size of
the domain is Lx × Ly × Lz = 20h0 × 20h0 × 10h0 with a resolution of 15362 × 1152. For
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a more detailed discussion on the DNSs concept and numerical configuration we refer to
van Reeuwijk et al. (2018, 2019).

Following Neamtu-Halic et al. (2020), we simulated three different flow cases, namely
a wall-jet (β = 0) and two different gravity currents (β > 0). The flow cases differ in
the initial Richardson number Ri0 = B0 cos (α)/u20, where B0 = βgc0h0 is a conserved
quantity in the simulations, whereas the initial bulk Reynolds number Re0 = u0h0/ν
is kept constant. Table 4.1 summarizes the parameters of the simulations employed in
this study. Note that the label of the flow cases indicates the value of Ri0. The results
presented here are based on data over six independent xz-planes, which are equally spaced
in the y-direction, amounting to 280 snapshots over a period of 140t̃, with t̃h0/u0.

Throughout the paper, we use the following top-hat definitions

uTh =

∫ ∞
0

udz, u2Th =

∫ ∞
0

u2dz and cTh =

∫ ∞
0

cdz, (4.4)

where u and c are the mean streamwise velocity respectively the mean concentration,
computed averaging in wall-parallel planes.

To characterize the structure of the flows, in figure 4.1(b) the mean profile of the stream-
wise velocity are normalized with the top hat definitions, showing a collapse on a single
curve for all flow cases in the outer layer of the flow. That is, although there are funda-
mental differences between the gravity currents and the wall-jet, the structure of the flows
is similar. The mean profile of the scalar concentration is shown in figure 4.1(c). Again,
when normalized with the top hat definitions, the profiles collapse on a single curve, al-
though c has a different physical interpretation in the stratified cases as compared to the
unstratified one. We note that the similarities of the flow structure shown here are due
to the fact that although the gravity currents presented here are buoyancy driven, the
turbulence characteristics are shear dependent (Krug et al., 2017b).

The time evolution of the top-hat definitions is shown in figure 4.1(d-f). After an initial
transition, the current height h grows linearly for the gravity currents and h ∝ t̃1/2 for
the wall-jet, while uT is constant for the gravity currents and uT ∝ t̃−1/2 for Ri0 (van
Reeuwijk et al., 2018). As Ri increases, h decreases while uT increases. On the other
hand, cT ∝ t̃−1 for the gravity currents and cT ∝ t̃−1/2 for the wall-jet, with cT increasing
with decreasing stratification.

4.2.2 OECSs eduction and TNTI identification

The identification method used in this work to extract vortical structures is based on the
so-called instantaneous vorticity deviation (IVD). The IVD is an observer-independent
scalar field that measures an intrinsic material rotation rate of fluid elements (Haller
et al., 2016). Derived from a new dynamic version of the classic polar decomposition
(Haller, 2016), the IVD field is defined by

IVD(x, t) = |ω(x, t)− ω(t)| (4.5)
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Figure 4.1: Schematic representation of the simulation setup (a). Vertical profiles of the
mean streamwise velocity (b) and mean concentration (c) for Ri0 (red), Ri11 (purple) and
Ri22 (light blue). Time variation of current height (c), top-hat velocity (d) and top-hat
concentration (e).

where ω(x, t) is the vorticity vector and ω(, t) is its spatial mean. In particular, the IVD
provides an observer-independent local angular velocity for each point of the fluid mass
and therefore, enables the identification of OECSs in an observer-independent manner,
as required for reproducible coherent structure extraction (Haller, 2015). Local maxima
of the IVD field identify the center of the OECSs, while the outermost almost convex
contour of the IVD encircling a local maximum represents the boundary of the structure.
To contain the computational costs, we extract 2D OECSs from vertical planes of 3D data.
We use a criterion defined in Neamtu-Halic et al. (2020) in which a maximum of the IVD
field is selected only if the ratio between the two eigenvalues of the Hessian of IVD at the
location of IVD maxima is below a threshold. The rationale behind this criterion is based
on the fact that a 2D OECS in a slice results form the intersection of the tubular structures
with the plane itself. Since most of the dynamics of tubular vortical structures happens in
planes perpendicular to the center-line of the structure, we select only structures that are
perpendicular to the plane (Neamtu-Halic et al., 2020). The results presented throughout
the paper corresponds to 120 < t̃ < 130.

To identify the position of the TNTI, we impose a threshold on the enstrophy field
ω2 = ωiωi (Bisset et al., 2002; Holzner et al., 2007, 2008; Silva et al., 2018; Neamtu-
Halic et al., 2019). Here, the threshold is selected as ω2

thr = 10−3ω2, where ω2 is the space
average of the enstrophy. Following a criterion by Taveira et al. (2013), the threshold values
were verified to lie within the interval of possible values in which there is no appreciable
variation of the volume fraction of the turbulent region with ω2

thr.
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4.2.3 Radial profiles and conditional profiles.

We investigate the radial profiles inside the OECSs of the terms of the enstrophy transport
equation

Dω2

Dt
= 2ωiωjSij + ν∇ · (∇ω2)− 2ν∇ωi : ∇ωi + 2εijkωi

∂g′k
∂xj

(4.6)

where Pω2 = 2ωiωjSij is the the enstrophy production, with Sij the rate of strain tensor,
Dω2 = ν∇· (∇ω2) is the viscous diffusion of enstrophy, Eω2 = −2ν∇ωi : ∇ωi is the viscous

dissipation term, Bω2 = 2εijkωi
∂g′k
∂xj

is the baroclinic torque, and of the scalar transport
equation

Dc

Dt
= D∇ · (∇c). (4.7)

In order to compute these profiles, for each selected structure we connect the center of the
structure with the points on the boundaries (figure 4.2a) with a segment and interpolate
the scalar terms of (4.6,4.7) above on the points of the segment. The distance from the
center of the OECS is then normalized with the distance between the center and the
boundary R. Note that the material derivatives are computed from the terms on the right
hand side of (4.6,4.7).

In the TNTI proximity, average values of the terms in equations (4.6) and (4.7) are
also computed conditioned with respect to the position of the TNTI. As consolidated in
the literature (Krug et al., 2015; da Silva et al., 2014), these terms are computed along
lines that are normal to the TNTI itself, as schematically shown in figure 4.2(b), with the
distance form the interface normalized by the Kolmogorov length scale η. Here the normal
to the interface points in the direction of the turbulent region. In a second set of results
presented in this work, we use a further condition. That is, we compute the conditional
averages of the quantities in equations (4.6) and (4.7) with respect to the TNTI along lines
that are approximately perpendicular (90◦ ± 30◦) to the TNTI and passing through the
center of OECSs near the TNTI. A sketch of this concept is illustrated in figure 4.2(b).
Also in this case the origin is fixed at the TNTI position.

4.3 Results

4.3.1 General description of coherent structures

In the following we provide a general description of the OECSs extracted from the three
flow cases. In figure 4.3(a), we show the probability density function (PDF) of the size
of the structures D, normalized by the Kolmogorov length scale η = (νε)1/4. To compute
D we fit an ellipse on the boundaries of the OECSs and calculate D as the mean value
between the minor and the major axes of the fitting ellipse. Note that the use of a single
single size to express the dimension of the OECSs is justified by the fact the aspect ratio
of the structures is not far from 1, with an average value of approximately 0.8. The PDF
of the OECSs size shows a sharp increase from approximately 3η to 7η where it presents
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Figure 4.2: (a) OECSs (red) and radial lines (dashed blu lines), with the scalar field in
the background. Local normal lines (yellow) to the TNTI (red open curve) and local
approximately-normal lines (red dashed lines) passing trough the center of an OECSs,
with the enstrophy field in the background.

Figure 4.3: PDFs of size of the OECSs (a) and of the position of their center (b). Mean
streamwise (c) and wall-normal (d) velocities at the center of the OECSs (continuous)
against the mean velocity profiles (dashed) for Ri0 (red), Ri11 (purple) and Ri22 (light
blue).

a maximum, to decrease more gradually up to 40η. As the Ri number increases, there is
no significant difference in terms of the size distribution of the structures.

The position of the center of the structures normalized by the current height h is shown
in figure 4.3(b). For all flow cases, in the wall proximity, the PDFs grow approximately
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linearly up to z/h ≈ 0.15, where the PDF shows a peak. Interestingly, this height corre-
sponds to the position of the maximum of the mean stream-wise velocity profile, which
means that this region is a particularly active region for the formation of coherent flow
structures. From the maximum towards larger wall distance, a different behaviour can
be noticed for the unstratified case compared to the stratified ones. For Ri0, the PDF
decreases monotonically towards the outer region of the current at z/h ≈ 1.5. Conversely,
for the gravity currents, the PDFs show a second peak in the center of the mixing layer
region at about z/h = 0.7. The two peaks of the PDFs of the gravity currents indicate that
two different population of OECSs are present in the flow. As discussed in (van Reeuwijk
et al., 2018), the turbulence production is zero at the velocity maximum, implying that the
boundary layer becomes ‘decoupled’ from the outer layer. This is corroborated in figure
4.1 by the increasing concentration difference between the boundary layer and outer layer
with increasing stratification.

The mean streamwise and wall-normal velocity profiles built with the velocities at the
center of the structures are shown in figure 4.3(c) and (d). For a comparison, we show also
the unconditioned mean velocity profiles. As shown in figure 4.3(c), the structures follow
the mean flow for z/h < 0.5, while they are on average somewhat faster than the mean flow
in the streamwise direction near the outer region of the current. This is consistent with
the behaviour in the wall-normal direction. For z/h > 0.5, the OECSs tend, on average,
to move upwards. This means that they move from a region with a higher streamwise
velocity to a region with a lower one, which makes them faster than the mean flow. Note
that the upward movement of the OECSs is consistent with the growth in time of the
current depth in the temporal problem. Since the structures are identified uniquely in the
turbulent region, they tend to move away from the wall as the current depth grows in time.
Since the vertical movement of the fluid is suppressed by stable stratification (Ellison, 1957;
Townsend, 1958), this effect is less pronounced as Ri increases. This average movement
away from the wall of vortical fluid does not violate conservation of mass as non-turbulent
fluid moves on average inward. That is, due to the external intermittency of these flows,
the turbulent fraction moves on average outwards, while the non-turbulent fraction move
inward. Conversely, the unconditioned vertical mean velocity is zero everywhere.

In the following, we display the spanwise component of the vorticity ωy at the center of
the structures. We present results for Ri11 flow case; however qualitatively similar results
can be found for the other flow cases (not shown). A joint PDF (JPDF) of ωy and of the
position of the center of the structures is shown in figure 4.4(a). Two distinctive elongated
zones of high probability can be observed. Both zones have a peak at about z/h = 0.7,
but they have opposite signs of the vorticity component. That is, the structures in this
region possess either a clockwise and an anticlockwise rotations. As the outer-shape of the
JPDF suggests, on average the structures tend to rotate in the counterclockwise direction
(negative ωy) in the outer and in the mixing-layer region while they tend to rotate in the
clockwise direction (positive ωy) in the near-wall region, which is consistent with the sign
of the mean velocity gradient in these regions.

The joint PDF of ωy at the center of the structures with respect to their size is shown
in figure 4.4(b). While the two probability peaks of ωy of opposite sign are positioned at
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Figure 4.4: JPDFs of the spanwise component of the vorticity at the center of the OECSs
and the position of their center (a), respectively their size (b) for Ri11 flow case.

Figure 4.5: Radial profiles of the enstrophy (a) and of the scalar (b) and of the terms in
transport equation of enstrophy (c), respectively of the scalar (d). Increasing thickness
and transparency of the lines corresponds to increasing Ri.

about 5η, the highest vorticity is associated with structures with a size of ≈ 8− 10η.

4.3.2 Radial profiles of the terms of enstrophy and scalar transport equations

In this section, we present results for the radial profiles of the terms of the enstrophy
and concentration transport equations. As explained in section §4.2, in these profiles the
distance form the center of the OECSs is normalized with the distance R between the
center of the structures and their boundaries.

In figure 4.5, we show the radial profiles averaged over all the structures in the flow.
Figure 4.5(a) shows that the profile of the enstrophy has a bell shape with a maximum
at the center of the structure, followed by a sharp decrease towards the boundary at



82 4.3 Results

r/R = 1, reaching the unconditioned average value outside the boundaries of the structure
at r/R = 2. The shape of the enstrophy profile is fundamental to understand how the
OECSs are sustained, in that it results from a balance of inertial and viscous effects as
shown below. As Ri increases, the profile flattens. This is not unexpected given the
smaller magnitude of the vorticity in the whole flow with decreasing stratification. In
figure 4.5(b), we also show the radial profile of the scalar normalized with the value at
the center of the structures c0. The radial profile of c/c0 shows a similar profile as the
enstrophy, although much less steep since it decreases only by a few per cent over the same
span.

In figure 4.5(c), the radial profile of the terms in the enstrophy transport equation
are shown. The production term Pω2 is positive with a maximum at the center of the
structure and it decreases sharply towards the boundary. This is in agreement with the
well-known vortex stretching mechanism, in which the enstrophy is on average produced by
the interaction between vorticity ω and rate of strain Sij . Note that Pω2 has a maximum
at the center of the OECSs which is consistent with the radial profile of ω2 shown in figure
4.5(a). The viscous diffusion of the enstrophy Dω2 is negative inside the boundaries of the
structure and changes sign outside the boundaries. This means that the enstrophy inside
the OCESs is diffused through the boundaries of the structures to the surrounding flow.
Note that the trend of Dω2 is also consistent with the radial profile of ω2, which shows a
negative curvature for r/R < 1 and a positive one for r/R > 1. The viscous dissipation
of the enstrophy Eω2 is negative everywhere with a minimum (in magnitude) coinciding
with the center of the structures. This is again expected based on the radial profile of ω2,
which shows little variation in the proximity of r/R = 0, while it has a sharper decrease
towards the boundaries. It is important to note that this view holds for little variation of
enstrophy in the axial direction, that is for vortical structures with an elongated shape.
In (Neamtu-Halic et al., 2019), we showed that 2D OECSs in vertical planes results as the
intersection of tubular structures with the plane itself, justifying thereby our perspective.

The radial profile of the baroclinc torque Bω2 shows that this term is negligible in
comparison with the other terms. This means that on average, Bω2 has no relevant impact
on the enstrophy transport for OECSs. The sum of all the terms, the material derivative
of the enstrophy, shows a negative value inside the OECSs with a minimum at r/R = 0,
reaching an unconditioned negligible value outside the OECSs. The fact that Dω2/Dt
is negative inside the boundaries of the OECSs means that on average the structures
decrease their enstrophy content over their evolution. In particular, it is the negative
viscous diffusion of enstrophy in addition to enstrophy dissipation inside the OECSs,
which is only partially balanced by the enstrophy production, that causes the decrease of
ω2 over time. As stratification increases, all the terms of the enstrophy transport equation
increase in magnitude, which is consistent with the increase of the mean enstrophy at the
center of the OECSs with increasing stratification.

In figure 4.5 (d), we show the radial profiles of the terms of the transport equation
for the concentration. The diffusion of the concentration D∇ · (∇c) is positive inside the
structure which means that the concentration decreases in magnitude. Note that this is
also consistent with the radial profile of the concentration (figure 4.5 b) which shows a
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Figure 4.6: Radial profiles of the enstrophy (a) and of the scalar (b) and of the terms in
transport equation of enstrophy (c) and of the scalar (d) for Ri11 conditioned with respect
to the distance of the OECSs from the wall. The thickness and the transparency of the
curves increase with the distance from the wall as indicated in the text.

strong positive curvature at r/R = 0.5 that decreases towards the boundaries. Moreover,
as Ri increases, the diffusion is damped.

In the following we display the same profiles shown in figure 4.5 conditioned with respect
to the distance of the center of structures from the wall. We selected three regions: a
near-wall region (z/h < 0.3), a region where the mean shear is constant (0.3 < z/h < 1.2)
and a region near the outer boundary of the current (z/h > 1.2). In figure 4.6 (c),
the profiles of the terms in the enstrophy transport equation show a similar behaviour
to the ones presented in figure 4.5(c), although with a different magnitude. They are
more intense in the near-all region and decrease with increasing distance from the wall.
This is in agreement with the radial profiles of enstrophy (figure 4.6a), which show more
intense values in the near-wall region. Indeed, as observed above, the intensity of mean
velocity gradient is maximum near the wall (z/h < 0.15), it decreases in the mixing layer
(0.3 < z/h < 1.2) and it is minimum in the outer region. Differently, the radial profile
of the scalar diffusion is more intense in the outer region and is minimum in the region
between 0.3 < z/h < 1.2 (figure 4.6d).

The radial profiles of the terms of enstrophy and scalar transport equation conditioned
with respect to the size of the structures are shown in figure 4.7. The limits of the
intervals in which the OECSs are grouped are the following: D/η < 4.5, 4.5 < D/η < 8,
8 < D/η < 12 and D/η > 12. In figure 4.7(a), we show the radial profiles of the enstrophy.
The enstrohy at the center of OECSs increase with the size of the structures to reach a
maximum for 8 < D/η < 12, to then decrease again for D/η > 12. The average size of
former interval is 10η, which is the average size of the most intense vortical structures
in this work and observed by others (Jiménez et al., 1993; da Silva et al., 2011). The
profiles of the terms of the enstrophy transport equation follow a similar trend in which
the most ”active” OECSs are those in the interval 8 < D/η < 12 (figure 4.7 c). These
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Figure 4.7: Radial profiles of the enstrophy (a) and of the scalar (b) and of the terms in
budget equation of enstrophy (c) and of the scalar (d) for Ri11 conditioned with respect
to the size of the OECSs. The thickness and the transparency of the curves increase with
increasing size of the structures, which are divided in the following groups: D/η < 4.5,
4.5 < D/η < 8, 8 < D/η < 12 and D/η > 12.

OECSs are also the more stable structures, in that they present a minimum of Dw2/Dt.
A different trend can be observed for the scalar diffusion. The radial profiles of the scalar
transport equation show that the magnitude of the scalar molecular diffusion decreases
with increasing size of the structures (figure 4.7 d). At first sight, this result seems to
be in contradiction with the curvature of the radial profiles of the scalar (figure 4.7 b).
However, note that while the radial profiles are normalized with R, the curvature of the
profile it is not. That is, a match between the profile of the scalar and the magnitude of
the scalar molecular diffusion cannot be expected. The results are qualitatively similar for
Ri0 and Ri22 (not shown).

4.3.3 Impact of coherent structures on the enstrophy and concentration
transport near the TNTI

In the following, we investigate the impact of the OECS on the terms of the enstrophy
and scalar transport terms conditioned with respect to the TNTI position. The normal
distance z̃ from the TNTI is normalized by the Kolmogorov length scale η as it is common
in the literature (da Silva et al., 2014; Krug et al., 2015; Silva et al., 2018) and the normal
to the interface is oriented in the turbulent direction such that z̃/η is positive inside the
turbulent region and negative outside.

In figure 4.8 (a), we show the conditional average of the enstrophy with respect to the
TNTI position. The enstrophy has the typical profile described in the literature, with a
sharp increase between z̃/η = 0 and z̃/η ≈ 10. As the stratification increases this jump is
less sharp.

The conditional average profiles across the TNTI of the terms of the enstrophy transport
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Figure 4.8: Conditional average of the enstrophy (a) and of the terms in the enstrophy
transport equation (b) with respect to the TNTI position. Conditional average of the
enstrophy (c) and of the terms in the enstrophy transport equation (d) with respect to
the presence of an OECS near the TNTI position. The thickness and the transparency of
the lines increases with Ri.

equation are shown in figure 4.8. The profiles present the typical shape described in the
literature with the presence of three distinct regions. Near the TNTI, the vortex-stretching
is negligible and the enstrophy increases due to viscous diffusion. This region, also known
as the viscous superlayer (VSL), extends to z̃/η ≈ 4 where viscous diffusion is maximal.
Further inside the turbulent region, the vortex stretching term increases and dominates the
enstrophy growth, reaching a maximum at about z̃/η ≈ 11, where the viscous diffusion
shows a minimum, while the dissipation term shows an inflection. The region between
z̃/η ≈ 4 and z̃/η ≈ 11 is known as the turbulent sublayer (TSL). Form here onwards, the
viscous diffusion becomes negligible and the vortex stretching is balanced by the viscous
dissipation. This region is known as the turbulent core (TC). As also shown by Krug et al.
(2015), at these Ri the baroclinic torque is negligible near the TNTI.

In the recent literature (Watanabe et al., 2017), it has been inferred that the typical
shape of the profiles of the enstrophy transport equation terms across the interface is
compatible with the presence of vortical structures at about z̃/η ≈ 9. This distance was
obtained by Watanabe et al. (2017), as the sum between the radius D/2 ≈ 5η of a Burger
vortex modelling IVSs and the average size δv ≈ 4η of the VSL. By superimposing the
profiles of enstrophy transport equation terms conditioned with respect to the TNTI to
those from the model, they observed a reasonable agreement. To test if the TNTI profiles
are compatible with the presence of coherent structures, in figure 4.8 (d), we show the same
conditional analysis presented above, this time conditioned with respect to the presence
of an OECS. All the terms of the enstrophy transport equation exhibit the same trends
shown in figure 4.8(c) although with a different magnitude. Note the different vertical axis
limits in figures 4.8(c) and 4.8(d). In particular, in the VSL and the TSL, all the terms are
magnified up to one order of magnitude with respect to the levels when conditioned on the
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Figure 4.9: Conditional average of the scalar (a) and of the terms in the scalar transport
equation (c) with respect to the TNTI position. Conditional average of the scaler (b) and
of the terms in the scalar transport equation (d) with respect to the presence of an OECS
near the TNTI position.

TNTI only. The shape of the profiles shown in figure 4.8 (d) is consistent with the radial
profiles of a coherent structure positioned at a mean distance of z̃/η ≈ 11. This is further
supported by figure 4.8(b), in which we display the conditioned profile of the enstrophy
with respect to the TNTI position and the presence of the OECSs. The enstrophy profiles
have a peak at about z̃/η ≈ 11. As shown in Watanabe et al. (2017), this position is close
to the center of the most dominant vortical structures in the proximity of the TNTI. As the
stratification increases, the peak position is slightly farther form the TNTI, which indicates
that on average the OECSs are more distant form the TNTI. The results presented here
clearly indicate that a large amount of the intensity of the enstrophy transport equation
terms near the TNTI is attributable to the OECSs in the interface proximity.

The same analysis conducted above is reproduced for the transport equation of the
scalar. Figure 4.9(a) shows that the scalar increases sharply from the non-turbulent to the
turbulent side, which is steeper in the presence of OECSs (figure 4.9 b). That is, given
that OECSs contain a higher scalar concentration as compared to the background, they
also enhance the gradient of the scalar in the proximity of the TNTI. As the stratification
increases, the concentration jump is less sharp. The conditional average of the scalar
diffusion is shown in figure 4.9 (c). Notably, D∇ · (∇c) is negative in the TC and positive
in the TSL. It then changes sign and it shows a positive peak in the VSL. This means that
D∇ · (∇c) transports scalar from the TC to the outer fringes of the TNTI. Compatible
with the curvature of the scalar profile, this is most effective for the unstratified case when
compared to the gravity currents. By conditioning the profile of D∇ · (∇c) with respect
to the presence of an OECS, it can be seen that magnitude of the positive and negative
peaks near the interface are approximately twice as high. This shows that the OECSs
contribute to enhance the scalar diffusion near TNTI.
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4.4 Summary and conclusions

We investigated the role of vortical structures on the transport of the enstrophy and of
the scalar concentration. To educe vortical structures we employed an objective Eule-
rian coherent structures (OECSs) extraction method based on the instantaneous vorticity
deviation field (IVD).

We showed that high levels of enstrophy can be found within the boundaries of the
OECSs. In particular, we showed that the radial profile of the enstrophy has a shape
that is reminiscent of a half-Gaussian curve with a maximum at the center of the OECS
followed by a sharp decrease towards the boundaries. For highly stable vortical structures,
as in the case of the worms investigated by Jiménez et al. (1993); da Silva et al. (2011)
the radial profile of enstrophy has been shown to be Gaussian. In their work, Jiménez
et al. (1993) identify these worms as regions of space that possess the highest vorticity in
the flow (1% of of the total volume). In our approach, even though the vortical structures
are identified through a different extraction method that is independent of the vorticity
magnitude, the results are very similar to those of Jiménez et al. (1993).

The shape of the radial profile of the enstrophy is crucial to understand the time evo-
lution of OECSs, in that it is at the base of the various terms of the enstrophy transport
equation. The shape of the stretching and of the viscous diffusion terms are similar to
those described in the literature for IVSs Jiménez et al. (1993), in which viscous diffu-
sion of enstrophy is balanced by the vortex stretching. While in the previous literature
these terms were only inferred based on a fitting to the Burgers model (Jiménez et al.,
1993; da Silva et al., 2011), here these terms were computed directly from the flow fields.
Moreover, contrary to the Burgers model, we showed that the viscous dissipation of en-
strophy is not negligible. We also found that Dω2/Dt is on average negative inside the
OECSs. This can be explained in terms of vertical movement of the OECSs. By moving
upwards, the structures carry enstrophy towards the outer layer of the current where on
average enstrophy production cannot sustain the combined effect of viscous diffusion and
destruction. As Ri increases, the depth of the current is lower and the mean vorticity
is higher. This is reflected on the OECSs enstrophy content which is higher for higher
Ri. As a consequence, both the radial gradient and the radial curvature of enstrophy are
higher and thus the magnitude of terms of the enstrophy transport equation is stronger.
Importantly, we observed that for the gravity currents, the baroclinic torque is negligible
in comparison to the other terms of the enstrophy equation.

By investigating the radial profile of the scalar, we showed that it resembles that of
the enstrophy except that it is flatter. This means that, the OECSs on average carry
a slightly higher scalar concentration compared with the background fluid. This can be
explained in terms of material barriers. Since, on average, OECSs move upwards (figure
4.3) and thus towards regions with a lower average concentration, a higher content of the
scalar is expected within their boundaries as compared to the fluid around them. As the
stratification increases, the radial profile of the scalar is less steep. This may, at first
sight, be counter intuitive as c is a passive scalar for Ri0, while it is an active one for Ri11
and Ri22. In the gravity currents, fluid parcels that possess a higher concentration are
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lighter and thus one might expect that these lighter parcels migrate towards the center
of the OECSs due to centrifugal effects, which should result in a steeper radial profile
as compared to Ri0. The apparent contradiction may be again explained by vertical
movement of the OECSs. Since the structures move on average away from the wall faster
in the unstratified case and traverse a steeper concentration gradient, higher differences
between the concentration at the center of the OECSs and the surrounding fluid are seen
for Ri0 as compared to Ri11 and Ri22.Consistent with the radial profiles of concentration
(i.e. their curvature), we also observed that the diffusion of the concentration is positive
inside the boundaries of the OECSs, that is, these structures contribute to redistribute
the scalar across their boundaries.

Conditioning on the wall-normal position of OECSs center, we observed that the struc-
tures near the wall are the most active ones in terms of enstrophy transport. This is
not unexpected given the highest gradient of the mean flow in this region. However, a
difference we show is that the scalar diffusion is maximum in the outer region. This region
corresponds to the maximum upward average velocity of the OECSs, which lends further
support to the view that the scalar diffusion is connected to the vertical movement of the
structures away from the wall.

The effect of vortical structures on the typical profiles of the enstrophy transport equa-
tion conditioned with respect to the TNTI position was investigated by further condition-
ing the analysis to the presence of OECSs. We showed that with this further condition, the
intensity of the terms in the enstrophy transport equation can be one order of magnitude
higher. This means that the shape of these profiles across the TNTI might be attributable
to vortical structures near the interface. Recently, Watanabe et al. (2017) used a stable
Burgers vortex positioned at approximately 9η form TNTI to reconstruct relatively well
the vortex-stretching and the viscous diffusion profiles across the TNTI. However, in their
model the viscous dissipation of enstrophy and the effect of the baroclinic torque are miss-
ing. As a difference, with their model we used conditional analysis to assess the impact
of the OECSs on all the terms of the enstrophy transport equation near the TNTI. We
confirmed their findings related to the vortex-stretching and the viscous diffusion of en-
strophy profiles, even though the profiles are compatible with an OECSs positioned a little
farther away from the TNTI, i.e. at approximately 11η. This difference may be related
to the fact that their Burgers vortex models IVSs, while we employed OECSs that have
a different size compared to IVSs. We also showed that while OECSs have no significant
impact on the baroclinic torque which remains small in magnitude compared to the other
terms, their footprint on the viscous dissipation is not negligible. This means that the
model proposed by (Watanabe et al., 2017) could be improved by further taking in account
role of vortical structure on the viscous dissipation of enstrophy. Furthermore, compatible
with the observations of previous literature (Krug et al., 2015; van Reeuwijk et al., 2019),
as the stratification increases, the magnitude of the enstrophy transport equation terms
decreases, that is, the OECSs are less ’active’ and entrainment process is less effective.

We showed that similar considerations made for the enstrophy transport equation also
hold for the scalar transport equation. When the profiles computed by conditioning to
the TNTI position are further conditioned to the presence of OECSs, their magnitude is
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approximately double. Therefore, the OECSs also play an important role on the diffusion
of the scalar across the TNTI by maintaining a steep concentration profile of the scalar.

The methodology used in this work to describe the enstrophy dynamics inside OECSs
can be easily extended to other flows. It would be useful to understand if some charac-
teristics of OECSs educed from the flows investigated here share common features with
OECSs in other flows. We expect that for free shear flows such as wakes and jets or flows
with weak unstable stratification such as turbulent convections in which the baroclinic
torque has a weak influence on the enstrophy transport (Holzner & van Reeuwijk, 2017),
the enstrophy dynamics of OECSs may be similar to that described here. When the baro-
clinic torque starts to acquire importance with respect to the other terms of the enstrophy
transport equation, as in the case of turbulent plumes (Krug et al., 2017a), the analy-
sis introduced here can be replicated to understand how this term affects the enstrophy
dynamics of OECSs and how it impacts enstrophy, scalar transport and the entrainment
process near the TNTI.
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Chapter 5
Summary and Conclusions

This dissertation investigates the characteristics and the dynamics of vortical coherent
structures in a turbulent flow with and without stable stratification with a particular re-
gard to their impact on the entrainment process. To this end, recently developed vortex
identification methods are used (Haller et al., 2016). The peculiarity of these methods is
that they are observer-independent, as required for experimentally reproducible coherent
structure extraction methods (Haller, 2015). The data used here combines experiments
and numerical simulations. The experiments rely on three dimensional particle tracking ve-
locimetry (3D-PTV) measurements of the flow near the turbulent-turbulent/non-turbulent
interface (TNTI) of a gravity current, while numerical data constitutes of the direct nu-
merical simulations (DNSs) of temporal gravity currents and of a temporal wall-jet. In the
first part of this thesis, the effect of large-scale vortical structures on the turbulent/non-
turbulent interface (TNTI) and entrainment of a gravity current is investigated. The
vortical structures are educed through the so-called Lagrangian coherent structures the-
ory and a fully automated 3D extraction algorithm to identify vortical Lagrangian coherent
structures (VLCSs) is implemented. The algorithm is applied to the particle trajectories
obtained from a newly developed multivolume 3D-PTV measurement of an experimental
gravity current. A geometrical description of the VLCSs in the mixing layer of the grav-
ity current shows that the average cross-sectional dimension of the structures is of order
of the integral length scale of the turbulence. Similarly to the flow structures described
by others (Watanabe et al., 2019), on average the VLCSs are of tubular-shape oriented
mainly in the mean flow direction. Our results show that these characteristics depend only
weakly from the strength of the stratification. The effect of the vortical structures on the
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entrainment mechanism is assessed using a newly developed conditional analysis, based
on the presence of the structures in the TNTI proximity. In particular, the VLCSs are
observed to influence both the terms that constitute the entrainment flux, namely the area
of the TNTI and the local entrainment velocity. On one hand, they modulate the TNTI
height, thereby increasing the TNTI surface area, while on the other hand, they organize
the flow field on both the turbulent and the non-turbulent regions, thereby modulating the
local entrainment velocity. The results presented in this chapter show how the large-scale
vortical structures interact with the TNTI in their proximity which is consistent with the
cancellation of the dependence of the entrainment rate from the small viscous scales.

Stretching and curvature/propagation effects continuously produce and destroy the sur-
face area of the TNTI. This mechanism is investigated at the TNTI of a temporal gravity
current and of a wall-jet generated using DNSs. The results show that on average area pro-
duction via the stretching mechanism is balanced by area destruction via curvature/prop-
agation effects. This balance holds across several spatial scales of TNTI wrinkles and it
is consistent with an observed scale invariance of the nearby coherent vortices. Objective
Eulerian coherent structures (OECSs) are extracted from instantaneous snapshots of the
DNS flow fields. Using conditional analysis, it is shown that the surface area is produced
at the leading edge and destroyed at the trailing edge of the TNTI in the proximity of
the OECS. This is interpreted as a consequence of the rotational motion induced by the
OECSs to the flow near the TNTI. As the stratification increases, both the production and
the destruction of the TNTI area decrease. This is largely connected to a change in the
multiscale geometry of the interface which tends to flatten with increasing stratification.
The analysis conducted in this chapter is not only a first tentative to describe how the
time evolution of the TNTI area in turbulent flows with and without stable stratification,
but it also clearly indicates that vortical structures do play an important role in setting
the interface area.

Finally, the impact of OECSs on the transport of enstrophy and scalar is investigated
using DNSs of temporal gravity currents and of a wall-jet. As a comparison with the
previous literature (Jiménez et al., 1993; da Silva et al., 2011; Watanabe et al., 2017) in
which they were inferred based on vortex models, the radial profiles inside OECSs of the
enstrophy and of the terms in the enstrophy transport equation are assessed directly from
the flow fields of the DNSs data. It is shown that the enstrophy profile resembles that of a
Gaussian curve with a sharp decrease towards the boundaries of the OECSs. The profile
of the enstrophy is crucial to appreciate the shape of the radial profile of the terms of the
enstrophy transport equation. The shape of the stretching and of the viscous diffusion
are similar to those described in the literature for stable Burgers vortices Jiménez et al.
(1993), in which viscous diffusion of enstrophy is balanced by enstrophy production via
vortex stretching. However, as a difference with the model the viscous destruction of
enstrophy is not negligible and the results indicate that OECSs tend on average to lose
their enstrophy content. The coupling between the vorticity and the stratification gradient,
represented by the baroclinic torque, appears to be negligible. Moreover, the OECSs are
shown to trap and transport the scalar from regions with higher concentration to regions
with a lower one. Through this mechanism, they enhance the redistribution of the scalar
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via molecular diffusion through their boundaries. The profiles of the entrophy transport
terms across the TNTI are essential to understand how initially irrotational fluid parcels
enter in the turbulent region, acquiring vorticity. It is shown that when these profiles are
computed by further conditioning them to the presence of an OECS, their magnitude is
considerably higher. This means that the shape of these profiles across the TNTI might
be largely attributable to the presence of vortical structures near the interface. Lastly, the
profile of the scalar across the interface is shown to steepen when an OECS is positioned
near the TNTI and the resulting molecular diffusion of the scalar from the turbulent to
the non-turbulent region is approximately twice compared with the unconditioned case.
These results advance our understanding of the dynamics of OECSs and of their impact
on the dynamics of the entrainment process.

5.1 Suggestions for future work

The work presented in this thesis could be extended in several directions.

Firstly, it can be noticed that the size of the structures extracted from the experimental
data in the first chapter was about one integral length scale. Although, spanning one
order of magnitude, the size of the OECSs extracted from the DNSs is much smaller.
This apparent difference may be given by the different resolution of the data. In the
experiments the mean interparticle distance between the tracers is about 10η, while the
resolution of the DNSs was about 1η. But then which one is the characteristic size of
these objective vortical structures? Is it closer to the dissipative scales or of the order
of the integral scales? To our view none of two. As commonly accepted in the scientific
community, eddies of different scales are superimposed in a turbulent flow. However,
the theoretical framework of the extraction methods presented here does not allow the
detection of superimposed structures. Thus, if the resolution of the data is sufficiently
accurate, the size of the detectable structures is of order of the Kolmogorov microscale
and up to one order of magnitude higher. At high enough Reynolds numbers, this size is
much smaller than the integral scale. However, if the flow fields are filtered to eliminate
the features of the smallest scales, the extraction method is able to identify the largest flow
structures. Indeed, in the experimental data, the low resolution might be considered as a
filter of the flow field. Thus, a further extension of this work could be a systematic analysis
of vortical structures extracted from flow fields filtered with different filter lengths. On
one hand, the same analysis presented here might be conducted to verify over how many
scales (possibly all), between the dissipative and the integral length scale, the entrainment
process and the dynamical behaviour of the structures are self-similar. On the other hand,
it would be interesting to understand the relation between the structures at the different
length scales. This may open a perspective on the turbulent kinetic energy transfer form
the largest to the smallest length scales.

A further possible extension of this work is to apply the different tools here developed
to different flow configurations. Indeed the algorithms and the analyses used here could
be applied to any type of turbulent flow. It would be useful to understand whether the
coherent structures share any common features across a multitude of flows. Remaining in



98 5.1 Suggestions for future work

the context of stratified flows, an appealing configuration is that of an unstably stratified
mixing layer. In this case, based on the Atwood number At the flow develops according to
different regimes. While for low Atwood numbers the flow is shear dominated, and thus
the transition to turbulence is connected to the large-scale Kelvin-Helmholtz structures,
at higher At numbers the flow is buoyancy dominated and large-scale plumes guide the
thickness of the layer. It is thus interesting to understand how the smallest scale vortices
adjust to the different instability that generates the turbulent flow.
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